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Appendix A. Details of population model and its parameterization 
 

Density dependent mortality  

 

We incorporated density-dependent fawn survival but not fecundity rate (FR) because 

density-fecundity relationships for mule deer are not well developed in the literature.  For 

example, from the only direct estimate of density-dependence FR for white-tailed deer 

(Swihart et al. 1998, Fig 2: FR= (1.86±0.5)–0.0058D), density dependence provides 

population stabilization at densities D~300 deer/km
2
, which is not realistic for the CWD 

area in Alberta (Merrill et al. 2011).   

 

To estimate FR in (7) we use mean daily food requirements for each kind of deer, Fv,x, 

where v={S,I} and x={m,f,j}.  If we denote winter duration by T0, then the food density 

needed for perfect deer existence is  

  
jjImmIffIjjSmmSffSR IFIFIFSFSFSFTF ,,,,,,0  .  (A01) 

Estimates of FA from the existing vegetation types are very difficult and require too 

detailed information, which is hardly available. It is easier to use the mean equilibrium 

densities of healthy population S0f, S0m, S0j, which are available from deer observations, 

and to determine “typical” value V0 from average deer mortality. Then we obtain the 

equality 
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This immediately allows us to obtain the expression for the starvation index for current 

population densities, 
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which contains only values assumed to be known. It is convenient to introduce the 

relative food consumption coefficients 
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then  
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FA is calculated from observed mean deer density of 1.58 deer/km
2
 (Merrill et al.) and FR 

from mean daily food intake of all deer categories. We used extreme winter fawn survival 

values of (White and Lubow 2002), which we associate with V close to 0 and 1, and also 

equilibrium fawn mortality, which allows obtaining the value of V0. 

 

The effect of winter food availability on juvenile mule deer mortality has been studied in 

(Baccante and Woods 2008).  Winter food availability depends not only on population 
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density, but on winter severity and snow depth in particular.  (Baccante and Woods 2008) 

have shown strong linear correlation between winter severity index and juvenile survival.  

In (White and Lubow 2002) there are data on both juvenile and adult survival. If we plot 

them in one graph, we can see very little correlation between juvenile and adult female 

survival (Fig. A1).   

 

For healthy juveniles White and Lubow (2002) give the estimates of per year survival 

probability of mule deer fawns and adult females.  Fawn survival varies between 

sjmin=0.05 and sjmax=0.77.  If we assume that the lower estimate corresponds to V close to 

1, and the upper one to V=0, then, using (8) and converting per year survival sj into 

mortality coefficients xjm  corresponding to each year conditions (see below), we obtain 

the values of V for each year.  This in turn allows us to estimate the average starvation 

index V0=0.17.  

 

 
 

Fig. A1. Adult survival vs. juvenile survival in Colorado mule deer, data from (White and 

Lubow 2002).  

 

 

Deer harvesting 

 

For harvest modeling it is convenient to use population proportions regardless of the 

infection status, 
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We assume that the rate of harvesting of each deer category is proportional to deer 

density and hunting effort: the number of hunters or the number of licences purchased. If 

hunters were choosing the game at random, then proportions of killed animals of different 

kind  
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would coincide with proportions x  in deer population.  However, published data show 

that there may be strong difference between x  and Kx , see e.g. data in (Medin and 

Anderson 1979): the proportion of killed adult males (antlered) is significantly greater 

their proportion in the studied Colorado population.  There may be two reasons for this 

effect: 1) hunters may prefer to get antlered deer and 2) hunting regulation may be 

directed towards preferred killing of a certain type of deer category. 

 

We may consider the following model of hunters’ success. To kill an animal, a hunter 

must encounter it, then decide whether to shoot or not, then, if decided, try to kill. 

Assuming all steps being random, we obtain that the number of killed animals of 

category s is proportional to  

 )shoot|killPr()encounter|shootPr()encounterPr(~Kill  xxx .  (A09) 

Probability to encounter an animals of category s is proportional to its density, probability 

to kill we assume equal for all deer, then  

   )encounter|shootPr(,Kill xPxPxxPxxxx hhaphISa  ,  (A10) 

where a is a constant proportional to the total number of hunters and the area, and hPx 

reflects hunting preferences to kill different types of animals.  Then  
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The proportions of killed and living animals can be measured. The value T is unknown, 

but we assume that at least for one category of animals hunters always attempt to shoot, 

that is the probability to shoot is one. This immediately gives that  
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According to data (e.g. Medin and Anderson 1979), most hunters want to kill antlered 

males, and so we set hPm=1,  hPf<1, hPj<1.  

 

Using the introduced hunters’ preference hPj, the harvest rate of the category x is 

xPx xhh  , where h is the total harvest effort. The total number of harvested animals 

from the area A during time interval t  is   tAhhhhpN PjjPmmPff  . This 

relation allows estimating the hunting effort h from the data. 

 

We denote for brevity  

 Pxx hhh  ,         (A14) 

the effective harvest rate for each deer category. We assume that hunters are unable to 

distinguish between healthy and sick animal, and for infected deer the harvest rate is 

estimated in the same way. 
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Model equations for healthy population 

 

For healthy population all Ix=0, x=0 and only Eq. (1)-(3) remain:  
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These equations always have zero solution Sj=Sf=Sm=0.  Linearizing the system near it 

(that is, just setting V=0) we find that the zero solution becomes unstable when  
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The meaning of this condition is transparent: population grows when the birth rate 

exceeds death rate.  Another interpretation of (A15) is related with harvest intensities.  If 

they are so great that (A15) does not hold, then population collapses.  

 

When zero solution looses stability, population tends to a nonzero steady state.  For the 

latter, all time derivatives vanish, and we have a system of algebraic equations  
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According to Fredholm’s alternative, this system possesses nonzero solution only if 

determinant of its matrix is zero, that is  
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or 
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We assume that V
*
<1, otherwise it would mean that population may stay at nonzero 

equilibrium without winter food at all, which means incorrect model parameterization.  

From (A15) it now follows that V
*
>0, which means that (A15) defines the condition of 

existence of the nonzero equilibrium as well. 

 

Knowing V
*
, we can express Sm and Sf through Sj from (A17) and (A18), and then 

determine Sj from (A06):   
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By means of standard but bulky calculations it can be shown that the matrix of system 

(1a)– (3a) linearized near the positive equilibrium does not have positive eigenvalues if 

(A15) holds, and hence the nonzero solution is stable. To save space, we shall not present 

these calculations here. 

 

Below we use this equilibrium solution for model parameterization.  

 

 

 

Model parameterization at equilibrium 

 

Mortality coefficients and per year survival. At equilibrium, population size p, 

starvation index V, and mortality do not depend on time. For constant mortality 

coefficient we can analytically obtain relations for per year survival. 

 

Let us consider a fixed group of Nf0 adult females at t=0 (in experiment this is the number 

of collared deer).  Their number Nf(t) will diminish with time due to all types of mortality 

as   
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After one year the number of survivors is     
fff hmNN  00 exp1 , and hence the 

female per year survival is  
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Or equivalently  

  
fff shm ln0          (A23) 

Similarly for males we have 

  mmm shm ln0  .        (A24) 

 

For juveniles there is a more complicated relation because they not only die, but maturate 

as well.  Similarly, let at t=0 there are Nj0 juveniles.  Their dynamics with time satisfy 
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The number Mj(t) of those who has died satisfy  
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and per year survival is  
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or  
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This equation cannot be solved analytically, and for the sake of brevity we shall denote 

its solution as  

  
jjj shm  .        (A30) 

Plots of  
js  are shown in Fig. A2 for 0.1  (WTD) and 5.1  (MD). 

 

 
Fig. A2. Mortality estimates from equilibrium per year survival estimates 

 

Equilibrium proportions and per year survival. From equilibrium conditions (A16)–

(A18) we obtain the following ratios, relating equilibrium population proportions and per 

year survival: 

  11  










jjjf

j

f

j

s

B

hm

B

S

S
,     (A31) 

    
fff

f

j

f

j
shm

S

S
ln22 0 




 ,     (A32) 

   mmm

m

j

m

j
shm

S

S
ln22 0 




 .     (A33) 

Dividing the last two equations one onto another, we obtain 
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If both proportions and per year survival are known, these relations allow one to verify, 

whether current population state is close to equilibrium or far from it. If only a part of 

them are known, then the assumption that the population is at or near the equilibrium 

allows one to obtain the others. For example, knowing the proportions to estimate 

survival or vice versa. 

 

Survival rates from population proportions based upon aerial survey data at WMU 

728 and 730 (CFB Wainwright). Population proportions estimated from survey data are 

shown in Fig. A3. We used only years when population structure data were available.  

When estimating population proportions, we ignored the unclassified part of animals, 

assuming that there is no bias in counting and hence proportions in observed, unobserved, 

and unclassified parts are equal.  There are no visible trends in the data, and we assume 

that average proportions can characterize the state of equilibrium. 

 

From (A31)-(A33) we have  
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The results are shown in Table A1, estimates from data are shown in bold, estimates from 

(A35), (A36) in normal text. 

 

Estimating hunting preferences and intensity from WMU 728 & 730 hunting data. 

Hunting registration data contain information about the number of killed males, females, 

and juveniles, which allows us to estimate the proportions of each category in harvested 

animals Ks .  To estimate the hunting intensity we need to know the removed proportion 

of the population, and hence we need the estimate of the population size at the beginning 

of the hunting season.  However, there are two problems: 

1) Aerial surveys contain the estimates of the total population in the end of 

December or beginning of January, that is after the hunting season.  Hence to 

obtain population for which hunters have made their decisions, we must add 

killed animals back to the population. 

2) Aerial surveys observe only a part of deer population.  By default, SRD assumes 

that surveys observe 50% of deer.  We make estimates for the cases when 

observed are  50%, 75%, and 100% of deer. 

Let us denote the number of deer observed in survey as NS, the number of killed animals 

as NK, the proportion of observed animals as . Then the true number of animals during 

survey is SN1 , the proportion of killed animals in the population is  
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We also assume that during a hunting season we can neglect all other mortality reasons 

besides hunting, as well as deer migration inside and outside the hunting region. Then the 

proportion of females in the population before the hunting is  
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where f is proportion from the survey.  The hunters’ preference for females is  
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Similarly we estimate preference for males and juveniles, and T is estimated from analog 

of (A13).  The estimate gives that hPm=1, hence the proportion of males removed from 

population shows the hunting intensity h: 
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The estimates of proportions before hunting, h, hPs, and mortality coefficients for three 

values of  are given in Tables A2 and A3.   

 

In simulations the values for mule deer and =0.75 were selected. 
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Appendix B. Derivations of transmission functions in Table 3 
 

B.0 Implicit accounting for seasonality in contacts 

 

 We incorporated seasonal contact rates implicitly by assuming simplified 

dynamics in groupings of deer as: 1) Summer (May to October): males and females stay 

in separate groups and there are practically no direct contacts between them, fewer 

interactions among both female and male groups in this season due to spatial dispersion 

after migration, but high intra-group contacts. 2) Rut: (November to December): male and 

female groups remain separated but new types of contacts appear: mating contacts 

between males and females and fights between some males. 3) Winter (January to April): 

deer form larger, mixed-sex groups.  Migration to winter locations where food is more 

accessible under winter snows results in groups staying near each other, and between-

group contacts are more frequent but within group contact remain similar to other 

seasons.  

 Seasonal changes in direct and environmental contacts by deer require different 

expressions for the force of infection terms during different seasons when groups are 

separate (summer and rut) and mixed (winter) together on winter ranges.  To avoid 

introduction of too many parameters, we accounted for seasonality implicitly: we 

combine terms corresponding to different seasons into a weighted sum, and use it for the 

whole year.  

We incorporated group dynamics by weighting the effect of groups by the length of the 

season when deer spent time in the group. We assumed seasons had durations 1t , 2t  

and 3t  respectively, and across the year they summed as 321 tttt  .  We 

modelled the change in population size over time,  tyfdtdy ,/  , by assuming that y 

changes slowly during a year, but f(y,t) varies quickly, such that during winter time 

   yftyf 1,  , during summer    yftyf 2,  , and during rut    yftyf 3,  . That is, 

we have a model  
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      (B1) 

Neglecting terms proportional to 2t  (due to assumption of slow y change) one obtains 

    )0(, 0101011 yytyfytyy  , 

        20221021212 tyftyyftyttyy  , 

        30332103213 tyftyyyfttytyy  . 

We would like to find a single model  YYY yfdtdy /  such that  ttyY   

approximately equals  tty   provided    tytyY  .  This means that 

Yyyyy  321 , or 

        tyftyftyftyf Y  303202101 . 

This gives the averaging rule 

       yfwyfwyfwyfY 332211  ,      (B2) 
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that is the resulting function is a weighted average of the three functions with the weights 

proportional to the duration of these periods. This result can easily be generalized for 

other numbers of seasons.   

 Therefore, if we have several seasons with the relative durations of w1, w2, w3, and 

different expressions for force of the infection during each season, then the effective term 

in our model is  

         1......, 321332211  wwwIwIwIwI .  (B3) 

This allows us to account for seasonality without increasing the model complexity.  More 

accurate description of within-year population variations would require using explicit 

seasonality like in (B1). 

 

B.1 Direct vertical transmission.  
 Vertical or maternal transmission is implemented through two different birth rates 

for infected females: they produce healthy juveniles at the rate BIS and infected juveniles 

at the rate BII.  Although some fawns born at late stages in the disease may be not viable 

(Mathiason et al. 2010), reducing fertility (Dulberger et al. 2010), we assume that fertility 

for infected and healthy females coincide, BBB IIIS   (see Discussion below).  If we 

denote the probability of vertical transmission by pV, then   BpBBpB VIIVIS  ,1 .  

According to studies on penned mule deer (Miller et al. 2000), for CWD pV does not 

exceed 0.05; when vertical transmission occurs in our models, we use this value.  

B.2 Direct horizontal transmission 

 Direct horizontal transmission assumes that with direct contact, such as grooming 

and mating, the host infects a healthy individual with some probability.  At present there 

are no measures of the frequency of direct transmission, although several studies provide 

metrics of pair-wise proximity based on GPS-telemetry as surrogates for contact rates 

(Kjaer et al. 2008, Schauber et al. 2007, Habib et al. 2011).  To keep our approach 

general, we assumed three types of deer social groups (matrilinear family group of 

females + juveniles, males only groups, and mixed groups) whose proportion in the 

population varied by season, and the efficiency of transmission for pairs of deer within 

these groups varied as described below.    

B.2.1 Direct contacts within a group. We assume that the population consists of the 

groups of size k, and the number of groups in the population is NG=AD/k, where A is the 

area occupied by the population and D is deer density, therefore AD is the total number 

of deer in the area (Table 1). We assume that the groups are representative such that the 

proportions of healthy and infected animals in the groups are similar to with the 

proportions within whole population. We derive the formula for the force of infection 

corresponding to transmission from deer of type u to type x, e.g., females to females 

(u=x=f) or males to juveniles (u=m, x=j), by assuming the number of contacts between 

healthy and infected deer is proportional to the product of the number of healthy and 

infected deer in the group. The number of infected deer of type u in a group therefore is 

 DIk u /  and the number of healthy deer of type x is  DSk x / . Then for the total number 

of new infections in the population due to within-group contacts of u and x during a small 

time interval t is:  
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where bxu is the rate of disease transmission (contact rate times probability of 

transmission).  Summing up for u={m,f,j} and dividing by A and t, we obtain the rate of 

new infections per unit area in category x as  
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If we denote xu=kbxu, then we obtain the expression for respective force of infection x in 

(1)–(6) as 

D

III jxjfxfmxm

x


        (B6) 

In case of male groups in summer and rut, we consider only the male subpopulation 

instead of the whole population and use Sm+Im instead of D when calculating the number 

of infected and healthy individuals within a group and the total number of male groups:  

mm

mmm
m

IS

I




 .         (B7) 

Similarly, for female family groups (females and juveniles) in summer and rut we use 

only female and juvenile population jjff ISIS   instead of D and obtain as a result 

 jfx
ISIS

II

jjff

jxjfxf

x ,, 



 .      (B8) 

 Coefficients xu may change independently across seasons, e.g. due to change in 

mean group size k. As a simplification, we assume that disease transmission coefficients 

do not change independently, and hence the relative values of transmission coefficients 

within the matrix  

  ststxuxu  max/ ,       (B9) 

do not change with season.  Therefore, we use the factor  stst max  to standardize the 

transmission coefficient during summer, rut and winter as 1S, 1R, and 1W. Now the 

expressions for force of infection in males take the form for males of  
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and for a family group 
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To simplify these force of infection expressions, we introduce the amplitude factor,  

  2/1111 WWRRWS www  , and weights for separate and mixed groups, 

  1111 / RRWSS www ,  111 / WWM ww ,  wS1+wM1=2. Now 1  describes the mean 

cross-season transmission coefficient, and the weights incorporate seasonal differences in 

both seasonal duration and magnitude of transmission. Then the final expression for the 

disease transmission function for direct contacts within groups of males across seasons is  
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and for family groups is 
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 Weighting factors for seasonal groupings of deer, xu  may be important for 

accurate description of disease transmission through direct contact, and thus we present 

the general form above (B12)-(B13) because it may be useful in the future work. 

However, because there are no data on direct disease transmission among age/sex groups, 

for the simulations presented here we assume all relative transmission coefficients are 

equal, or all xu=1, and only 1 and the ratio wS1/wM1 are varied in our initial simulations. 

This results in the simplified expression for the force of infection for males of 
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and for family groups of 
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After our initial simulations, we also explore an alternative choice for xu  based upon 

sex-related susceptibility (see below).  

 

B.2.2  Direct contacts between groups. The frequency of between group contacts varies 

strongly by season because of observed shifts in the distribution of deer that alters home 

range overlap (Habib et al. 2010).  We follow the same derivation as for within group 

contacts, but assume the whole population is one group of the size k=AD, which is always 

mixed at all seasons.  Denoting uvuv Ab  and assuming that the relative values of 

transmission coefficients (B9) do not change with season, we come to the expression, 

which has a common form for males, females and juveniles,  

  
jxjfxfmxmWWRRSSx IIIwww  222 ,   (B16) 

where x may be m, f, or j. Introducing the amplitude factor 2, we come to the general 

expression for between group transmission,  

  
WWRRSSjxjfxfmxmx wwwIII 222222 ,  .  (B17) 

As before, we assume all xu=1 and we obtain the simplified expression  

  
jfmjfm III  2222 .      (B18) 

 

B.2.3 Mating contacts, female to male transfer.  Let nX be the mean number of males 

that contact one female during mating. The total number of infected females in the 

population is AIf, and the total number of mating contacts involving them is AIfnX, the 

proportion of susceptible males is Sm/(Sm+Im). Denoting the probability of disease transfer 

from a female to male during mating (fm) by bFM, the number of new male infections 

during small time interval t is 
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These contacts occur only during rut, hence we use only one seasonal weight. Denoting 

3=wRbFMkX, we obtain 
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B.2.4 Mating contacts, male to female transfer. Repeating the arguments for obtaining 

3m  and using the number of susceptible females in the population, ASf and proportion of 

infected males Im/(Sm+Im), we come to  

 
mm

m
f
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I


 44 .        (B21) 

B.2.5 Male fights.  Fights during rut typically occur between males from different social 

groups, and they should be distinguished from sparring matches that contribute to 

contacts contacts within male groups. We model transmission during fights similarly to 

between-group disease transmission by assuming that the number of contacts where the 

disease can be transmitted is proportional to the product of the densities of susceptible 

and infected males, assuming random mixing. This gives disease transmission due to 

fighting as  

 mm I55  .         (B22) 

 

 B.3. Environmental transmission  
 For environmental transmission, we model both the accumulation of prions in the 

environment and transmission from the environment to deer at both the level of the social 

group and between groups. We do not explicitly model the environmental compartment E  

for disease transmission, but follow an approach described by Haken (1983) where 

slowly changing variables “enslave” ones with “fast relaxation”, and the latter can be 

approximated by functions of just the slow variables. As a result, the complex model 

including both slow and fast variables can be replaced by a simpler model containing 

slow variables only. Accuracy of the approach depends on the difference between 

characteristic times for slow and fast modes: the greater is the difference, the more 

accurate the method is. 

The equation for the prion content E in the environment is a generalization of the 

Miller et al. (2006) model:  

.EIII
dt

dE
jjffmm        (B22) 

where x denote rates of environment contamination for the 3 deer age-sex classes, and   

is the rate that prions become inaccessible to deer due to decay or degradation (Rapp et 

al. 2006) or movement in soils or water (Smith et al. 2011).  Miller et al. (2006) reported 

 =2.55 year
–1

 for CWD transmission in penned deer. This rapid rate of removal means 

that a portion of prions left in the environment decreases with time as )exp( t  and 

reduces to 0.078 of its original amount in one year and to 0.006 in two years. Note that 

these calculations account for the amount of prions actively participating in the disease 

transmission rather than the total amount of prions in the environment. 
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The deer density and hence deer infection, Ix(t), changes slowly compared to this rate of 

prion decline.  For example, in Alberta detected prevalence of CWD increased about 6 

fold in 5 years after it was once detected (Alberta SRD 2006-2011), which corresponds to 

growth exponent about 10 times less in magnitude than  reported by Miller et al. (2006).  

In such a situation a “fast” variable (prion content in the environment) is determined by 

current density of CWD infected deer Ix(t), while the influence of the number of infected 

deer in the past is waning.  The solution to (B22), assuming 0)0( E , can be written as 

            

t

jjffmm dttttItItItE
0

''exp'''    Due to the exponential factor, 

essential contribution to )(tE  comes only from time interval tttt  '  where 

 /1~t  and in our case is close to 1 year.  If  'tI x  does not change significantly at this 

interval, than    tItI xx ' , then the integral easily evaluates, and, neglecting term 

  1exp  t , one obtains  

 
     






tItItI
tE

jjffmm
.       (B23) 

The assumption that E~I makes the force of infection terms for the environmental and 

direct transmission look similar, though the transmission coefficients have different 

meaning.  Terms in a model describing rate of environmental transmission, e.g. term ES  

in (Miller et al. 2006), take the form   SISI xxx '/  , and formally the model with 

environmental transmission becomes an SI model with the effective transmission 

coefficients  /' xx . 

 

B 3.1 Discussion of exclusion of environment compartment  

The appropriateness of this approach can be assessed by comparing parameter values 

presented in (Miller et al 2006) for direct (SI) and environmental transmission (SEI) 

models.  If we use an analog of (B23) for their SIE model and substitute the resulting 

expression for E into two remaining equations for S and I, formally we obtain a model 

similar to their SI model for direct contacts with the effective value of transmission 

coefficient =0.034 year
–1

, while direct fitting of the SI model to data gives 

=0.0326 year
–1

.  We can conclude that models of quasi-direct contact may quite well 

describe environmental transmission as well.  In (Miller et al 2006) the AICc difference 

between SI and SEI models was only 2.4. Taking into account the number of model 

parameters, we can find that BIC criterion gives BIC0.4 for this pair of models, and 

both values show that the two models can be considered as comparable (Ghosh and 

Samanta 2001; Burnham and Anderson 2004).  The difference in model performance 

detected by AICc is related most probably with the fact that in SIE model arising of an 

infected deer does not immediately lead to the infection spread: build-up of prions in the 

environment takes some time, after which the disease transmission effectively starts, 

while in SI model there is no transmission delay. Otherwise the disease pattern predicted 

by both models should be very close. 

 

In applying his model of environmental transmission, Miller et al. (2006) ignored social 

structure because they the study involved a small captive population. In contrast, we 



 

15 

distinguish two types of environmental transmission: within a small social group and 

across a big population between social groups.  For deer within a social group, the 

chances to contact the environment contaminated by the member of the same group must 

be higher than that contaminated by a member of other groups (Schauber et al. 2007).  

 

One more assumption made in our model is that we can study CWD transmission without 

explicit latent stage, when deer already have infection, but do not spread it further. This 

choice follows from the results in (Miller et al. 2006), where the best model did not have 

the latent compartment. More detailed comparison of SI and SLI models is given in 

Appendix D, where we show that, under certain conditions, SI models well describe 

dynamics of a disease with short enough latent stage. However, the transmission 

coefficients in such SI model should be smaller than that in SLI model describing the 

same disease: this is effective accounting for mortality in the latent stage, due to which 

some individuals getting the infection do not enter infected compartment and do not 

spread the infection further. 

 

B.3.2 Environmental transmission within a group.  

 We consider the indirect rate of disease transmission within a mixed group of size 

k from infected deer of category u to healthy deer of category x. The consideration of 

separate groups is done similarly.  The average number of infected individuals of 

category u in a group is kIu/D, and the number of healthy ones is kSx/D.  In general, the 

rate of contamination of the environment u is proportional to food consumption rate of 

infected individuals FI,u.  The rate of transmission from the environment to healthy 

individuals is proportional to (i) their food consumption rate, FS,x, (ii) the coefficient bx, 

which incorporates the probability of developing the disease given intake of 

contaminated food, and (iii) parameters used to reflect prion degradation and increased 

inaccessibility.  The increase in the number of sick deer of age/sex x due to consumption 

of food contaminated by deer of type u in a mixed group during small time interval t is 
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where AD/k  is the total number of groups in the population, NG.  Summing up infected 

individuals in a group u={m,f,j} and dividing by t, we obtain change in the number of 

infected individuals over time as 
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We denote the coefficient for transmission of the disease from infected individuals of 

specific age/sex class (x) to age/sex class (u) via the environment due to food intake as 

xu=kbxFS,xFI,u, and obtain the force of infection for within-group environmental 

transmission for the age/sex class x, x as the sum of the rates across all age/sex classes:  

D

III jxjfxfmxm

x


 .       (B26) 

For separate groups such as  summer male groups and family groups, instead of the total 

population density D in the denominator we use the male population ( mm IS  ) and 

female + juvenile population ( jjff ISIS  ) for the expressions 
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Similar to the case of within group direct transmission, we assume that a set of weighting 

factors showing relative intensity of environmental contacts  ststxuxu  max/  does 

not depend on season. As above, we assume that males, females, and juveniles have the 

same probability of getting CWD given a contact, that is bm=bf=bj, then  
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 ,       (B28) 

and hence this matrix  can be estimated from deer food consumption. Similar to the case 

of direct transmission, we denote the amplitude factor  stst max  during summer, rut 

and winter as 6S, 6R, and 6W so that the force of infection terms with accounting for 

seasonality (B3) take the form   
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where the amplitude factor,   2/6666 WWRRWS www  , and weights for separate 

and mixed groups,   6656 / RRWSS www , and mixed groups, 666 / WWM ww ,  

wS6+wM6=2. The final expression for the force of infection for environmental 

transmission within groups is  








 







D

III
w

IS

I
w

jmjfmfmmm

M

mm

mmm
Sm 6666 ,   (B31) 

jfx
D

III
w

ISIS

II
w

jxjfxfmxm

M

jjff

jxjfxf

Sx ,,6666 










 





 . (B32) 

As in direct transmission within groups (Section B.2.1), only 6, and one of wS/wM  will 

be varied when we simulate disease spread to explain the observed disease patterns. 

 

B.3.3  Environmental transmission between groups.  

Between group transmission arises when home ranges of deer from other groups intersect 

and deer from one group are exposed to areas infected by the second group.  This is less 

frequent in summer because deer are relatively more dispersed across the landscape than 

in winter (Habib et al. 2011). However, there is no accounting for social structure in 

between group transmission, and seasonal weights just add up as in (B16), such that all 

these differences can be aggregated into single effective transmission coefficient. 

Repeating the above derivation for the case k=AD and integrating all seasonal-dependent 

factors into one coefficient 7 as in (B17), we obtain a general expression for 

environmental between group contacts:   

  
jxjfxfmxmx III  77 .      (B33) 
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B 4 Combined force of infection and classification of disease transmission 

mechanisms 

 Combining all possible mechanisms of transmission described above , the most 

general relation for the transmission of CWD for an age/sex class rate is: 

 7654321 xxxxxxxx        (29) 

This expression denotes the cumulative force of infection for each age/sex class (x) and 

each hypothesized mechanisms.  Corresponding formulas of hypothesized transmission 

mechanisms 1-7 described above are listed in Table 3.  The mechanisms 1, 2, 6, and 7 are 

in effect year round and affect all deer categories, and below we call them “basic”.  The 

rut mechanisms 3, 4, and 5 involve only one or two deer categories, and cannot explain 

the observed pattern, and by themselves can support the disease only in males.  Therefore 

the minimum combination of transmission mechanisms must include at least one basic 

mechanism.  

 In addition the seven mechanisms can be classified as frequency dependent (FD) 

and density dependent (DD). This classification is often used in disease modeling. It is 

related with the dependence of force of infection on population density: for FD 

transmission the force of infection is proportional to disease prevalence and remains 

constant as density increases, for DD transmission the force of infection is proportional to 

the number of infected individuals or their density and scales with density (McCallum et 

al. 2001, Begon et al. 2002). Thus, transmission coefficients  for FD and DD 

mechanisms have different dimensionality:  year
-1

 for FD and year
-1

km
2
 for DD.  

 When the population density changes, e.g. due to population control measures, 

but proportions of the infected individuals remain the same, force of infection 

corresponding to FD mechanisms does not change, but that of DD mechanisms increases 

or decreases proportionally to the density.   For the expressions 1  to 7  in Table 3, we 

see that  1 , 3 , 4  and 6  are invariant to density change because both numerator and 

denominator are proportional to the density, while 2 , 5 , and 7  scale proportionally to 

population density.  For this reason we refer to the former group as frequency-dependent 

(FD) transmission mechanisms, and the latter as density-dependent (DD) mechanisms.  

 The fact that (29) includes both FD and DD mechanisms means that their relative 

importance depends on population density.  We test the mechanisms for the density D 

close to the disease-free equilibrium one, D0.  In simulations it is then convenient to 

rescale DD coefficients with respect to the fixed density.  For FD transmission force of 

infection has the form DIFDFD / , and for DD one IDDDD  .  If in the expression 

for DD force of infection we multiply and divide by the equilibrium density 0D , 

  00 / DIDDDDD   and introduce 0' DDDDD  , then 0/' DIDDDD  .  Thus, we 

note that DD'  has the same dimensionality as FD , which is convenient for comparison. 

If at the disease-free equilibrium an infection is introduced and DDFD ' , then initially 

both mechanisms equally contribute to the disease spread. 
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Appendix C. Forage intake data 
 

Alldredge et al. (1974) present data for Colorado mule deer forage intake in grams of air 

dry food per kilogram of carcass weight per day.  For fawns there are 4 figures for males 

and females of the ages 6-11 months and 12-17 months: 33.4, 31.7, 32.9, 27.8 with the 

average 31.5.  For adult males the consumption rate is estimated as 16.7, and for adult 

females 19.2, though statistically their difference was insignificant. We also have to take 

into account that adult males eat very little during rut, so in the other periods the 

difference must be smaller, and in spring males consume more food per kg than females 

(perhaps, because of growing antlers). For this reason, we assume the rate per kg per day 

equals to 19.2 for both males and females.  Therefore, the difference in food consumption 

between males and females is mainly due to the difference in their body masses. 

 

Alldredge et al. (1974) gives the average weights for males, females, and fawns of the 

age 6-11 are 72.9kg, 59.4kg, and 32.7kg.  Medin and Anderson (1979) in Table 18 give 

slightly different data with varying female/male weight ratios between the years: average 

male masses are 52.4, 54.0, 57.1 and female masses 42.7, 44.5, 39.1.    This shows big 

variety in body masses across years, sexes, and locations.  However, the ratio of female 

to male mass stays in a narrow range between 0.82 and 0.68 with the average 0.78.  

Eventually we assumed male body weight 72.9kg, female weight 56.7kg, and fawn 

weight 32.7 kg. Multiplying this by per kg per day consumption rates, we obtain the daily 

intake rates for these categories: 

daykgFdaykgFdaykgF SjSfSm /03.1,/09.1,/40.1   

of air dry forage. For juveniles these data seem to reflect late autumn consumption, when 

they have already grown and there is a lot of food available. From our point of view, this 

figure characterizes maximum rather than year average food consumption and in the 

model we used half of it:  

daykgFSj /51.0  
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Appendix D. Relationship between SI and SLI (with latency) models 
 

Among CWD models tested by Miller et al. (2006) were those with disease latency stage. 

Since CWD does have a latent period during which infection develops internally, but is 

not transmitted further, it may be necessary to pay attention to two questions that may 

arise after reading of Miller et al. (2006) and our paper: 

a) Why the model with explicit latent stage did not appear the best in Miller et al. 

(2006) results? 

b) Is it appropriate to model a disease with latent stage with SI-type model, and if 

yes, under what conditions? 

To answer these questions, we consider generic SI and SLI models. In the literature these 

models are typically named SEI for Exposed stage, but not to confuse Exposed and 

Environment compartments, we follow (Miller et al. 2006) and call it Latency. 

 

Let us consider a generic SLI model without sex/age structure 

,)()( SIShmILSb
dt

dS
       (D1) 

  .LhmLSI
dt

dL
        (D2) 

  .IhmL
dt

dI
        (D3) 

Here   is the rate of leaving the latent stage, approximately the inverse of the stage 

duration. For CWD deer starts to spread the disease after ~9 months after getting the 

infection, so we can assume that 3.1 year
-1

. hm  represents total healthy adult deer 

mortality, and at disease-free equilibrium it is close to recruitment of new adults, so 

6.0hm  year
-1

. For increased disease-related mortality we take 57.0  year
-1

. 

 

Equation for L can be written as  

  SILhmL
dt

dL
        (D4) 

with formal solution (assuming L(0)=0) 

         
t

dthmISL
0

exp .     (D5) 

Now, if the product SI changes with time significantly slower than the exponent, then 

approximately it can be taken as a constant, and, after integrating and neglecting quickly 

decreasing exponent   thmexp  responsible for initial transient period, we obtain  

 
hm

SI
L




 .         (D6) 

The same result can be obtained slightly differently, as it is done e.g. in (Haken 1983): if 

the decay rate for L is sufficiently faster than changes in SI, then approximately we can 

consider L as almost converged to its “asymptotic” state, where 0/ dtdL . Then the 

equation for L becomes algebraic rather than differential, and we can express L through 

SI with the above result (D6).  
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Substituting the expression for L into the equation for I we come to  

   .IhmSI
hmdt

dI





       (D6) 

This equation looks like one in SI model with a different transmission coefficient,  

 
SLISI

hm





 ,        (D7) 

however, there one difference: here S is the size of the old susceptible population, and 

now we need to integrate the excluded latent compartment into it, 

  
hm

SIS
hm

I
LSS

















 ,11' .   (D8) 

Then  

   .'
1

1
IhmIS

Ihmdt

dI





      (D9) 

Therefore, formally we can write an effective SI model 

,''')()'(
'

ISShmISb
dt

dS
       (D10) 

  ,'' IhmIS
dt

dI
        (D11) 

but, strictly speaking, the new transmission coefficient  

 








Ihm 1

1
'  

now depends on the infection compartment and decreases as infection progresses. In the 

beginning of the epidemics SI' , see (D7), and then it diminishes until reaching of 

endemic equilibrium. 

 

Therefore, if we assume that approximation (D6) is valid and associate with the SLI 

model (D1)-(D3) the following SI model: 

,)()( SIShmISb
dt

dS
SI       (D10) 

  ,IhmSI
dt

dI
SI         (D11) 

where SI  is defined in (D7), then both models provide the same description of the initial 

stage of the epidemic. As the disease progresses, (D10), (D11) effectively has greater 

effective transmission coefficient, and hence has equal or worse disease development. 

Therefore, if population survives and the disease can be controlled in SI model, then the 

same should be true for SLI model as well. 

 

The above derivations have been made for the case of density-dependent transmission, 

however similar arguments will work in case of frequency-dependent transmission as 

well. 

 

We can summarize this section as follows. Depending on the duration of the endemic 

stage or the rate   of leaving it, there are three cases: 
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1) hm , that is the majority of individuals that get the infection leave the latent 

stage and end up as infected. Then SLISI   and the latent stage can be just ignored. 

 

2) )(2~ hm , then non-negligible part of individuals who get the infection do not 

make it to infected stage and die being at latent stage. In this case the dynamics of SLI 

model can be well approximated by SI model, but with a smaller value of transmission 

coefficient given by (D7). This decrease of the transmission coefficient is due to 

noticeable mortality in latent stage and reflects the fact that these individuals do not 

spread the infection further. 

 

3) )(~ hm , then approximation (D6) does not work, and SI model may be not 

appropriate, though it still may give reasonable qualitative picture. 

 

From the values cited in the beginning of this section, we can obtain that in case of CWD 

2.2)/(  hm  and SLISI  7.0 , so we fit into case 2: SI model well describes the 

disease dynamics, but must have different transmission coefficient compared to SLI 

model.   

 

Why different models can have different values of transmission coefficients? Because 

these coefficients have different meaning.  In DD SI model SI  is per capita susceptible 

per capita infective rate of new infected cases. In DD SLI model SLI  is per capita 

susceptible per capita infective rate of new latent cases. Since some latent animals die 

before becoming infected, these values must be different. Only when mortality in latent 

state is negligible (case 1), these coefficients have to be equal. 

 

We repeated model calculations in the paper for a model with susceptible, latent and 

infective disease stages. The presence of the latent stage caused decrease of the 

prevalence ration rmax. This decrease depends on the mean duration of the latent stage and 

for 6-9 months it is about 6%.  However, all conclusions concerning transmission 

mechanisms remain unchanged. 
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Table A1 Aerial surveys in WMU 728, 730 give average estimates of population 

proportions. Application of (A35), (A36) give the estimates of per year survival. 

 

Species B   Estimates from aerial survey data in 

WMU 728, 730 

Estimates from  

(A35), (A36) 

f  m  j  fs  ms  js  

MD 1.63 1.5 0.440.02 0.180.03 0.380.02 0.75 0.49 0.45 

WTD 1.83 1.0 0.470.02 0.160.04 0.370.02 0.67 0.31 0.49 

 

Table A2. Averaged proportions in aerial survey data, in hunter kill data, and estimated 

population proportions before hunting season, WMU 728, 730 

 

% deer 

observed 

Average proportions  

In aerial surveys,  

all years 

Before hunting, estimate Killed, since 1998  

m f j m f j m f j 

MD, 50 0.19 0.44 0.37 0.23 0.42 0.35 0.53 0.29 0.17 

MD, 75 0.19 0.44 0.37 0.25 0.41 0.34 0.53 0.29 0.17 

MD, 100 0.19 0.44 0.37 0.26 0.41 0.33 0.53 0.29 0.17 

WT, 50 0.16 0.47 0.37 0.19 0.46 0.35 0.53 0.33 0.14 

WT, 75 0.16 0.47 0.37 0.21 0.45 0.34 0.53 0.33 0.14 

WT, 100 0.16 0.47 0.37 0.22 0.45 0.33 0.53 0.33 0.14 

 

 

Table A3.  Hunters’ preferences and mortality coefficients from WMU 728, 730 data. 

 

% deer 

observed 

Hunting 

intensity  h 

Hunters’ preferences Mortality without hunting  

hPm hPf hPj xm xf xj 

MD, 50 0.30 1 0.30 0.21 0.38 0.19 1.19 

MD, 75 0.38 1 0.33 0.23 0.29 0.15 1.16 

MD, 100 0.45 1 0.36 0.26 0.22 0.12 1.14 

WT, 50 0.24 1 0.27 0.15 0.89 0.32 1.34 

WT, 75 0.31 1 0.29 0.17 0.81 0.29 1.32 

WT, 100 0.38 1 0.31 0.18 0.74 0.27 1.31 
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 a)  b) 

  

c) d) 

 

 

Fig. A3. Population proportions from aerial survey data (a,b) and proportions in killed 

animals (c,d) for mule deer (a,c) and white-tailed deer (b,d) in WMU 728, 730. Lines: 

males (dashed), females (dot-dashed) and juveniles (dotted). In 1970-1995 regulations 

allowed hunting only male mule deer, and for estimating hunters’ preferences only the 

data for 1996-2000 were used. 
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a) b) 

 

 

Fig. A4.  (a) The plot shows the relationship between maximum male to female 

prevalence ratio at rmax and the range of transmission coefficient  values where the 

ratio of male to female prevalence rmf >2. Each dot represents either a single transmission 

mechanism or a combination of two mechanisms from Table 3.  Numbers without 

brackets are the numbers of transmission mechanisms; numbers in brackets show the 

weight of separate groups in percents.  For example, 6(50)+3 means combination of 

environmental within group transmission 6  with 50:50 weights and mating female to 

male transmission 3 .  We assume that the larger  is, the more likely that given 

mechanisms are contributing to the observed prevalence difference in males and females.  

Both  and rmax increase when the contribution of separate groups increases or when the 

rut female to male transmission (3) is added. (b) Enlarged bottom left corner of the panel 

(a). 

 



 

25 

Table A4. Similar to Table 4, but with intensive harvest h=0.38. 

 

 

 

Mechanism and wS:wM, 

Basic  

only 

 

Basic + 

mating  

f to m 

(+3) 

Basic + 

mating  

m to f 

(+4) 

Basic + 

mating  

m fights 

(+5) 

Single basic mechanisms     

Environmental within groups, 90:10   12.4 14.7 0.90 15.1 

Environmental within groups, 50:50   1.83 3.71 0.75 2.31 

Environmental within groups, 10:90   1.03 2.27 0.66 1.17 

Direct within groups,  90:10   1.03 3.45 0.73 1.33 

Direct within groups, 50:50   0.94 2.00 0.72 1.00 

Direct within groups, 10:90   0.91 1.60 0.71 0.95 

Environmental between groups 0.97 2.87 0.52 1.21 

Direct between groups 0.90 2.20 0.63 0.98 

     

Combinations of 2 basic mechanisms, rmax>2     

Direct within groups(90:10)+environmental 

within groups(90:10) 
3.45 5.53 0.96 4.34 

Environ within group(90:10)+environmental 

between groups 
2.43 3.94 0.91 2.87 

Direct within groups(90:10)+environmetnal 

within groups(50:50) 

1.44 2.77 0.89 1.67 

Direct within groups(50:50)+environmental 

within groups(90:10) 

1.52 2.68 0.92 1.72 

Direct between groups+environmental within 

groups(90:10) 

1.58 2.83 0.90 1.80 

Environ within groups(50:50)+environmental 

between groups 

1.32 2.48 0.81 1.50 

Direct within groups(90:10)+environmetnal 

between groups 

1.02 2.25 0.78 1.15 

Direct within groups(90:10)+environmental 

within groups(10:90) 

1.06 1.98 0.83 1.15 

Direct within groups(50:50)+environmental 

within groups(50:50) 

1.13 1.99 0.86 1.22 

Direct within groups(10:90)+environmental 

within groups(90:10) 

1.19 1.99 0.89 1.29 

Direct between groups+ environmental within 

groups(50:50) 

1.28 2.04 0.81 1.29 
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Table A5. Values of   for the combinations of transmission mechanisms given in Table 

4, which are plotted in Fig. 5 and Fig. A6.  Bold font shows the cases shown in Fig. 5 

and Fig. A4 as larger circles. 

 

 

 

Mechanism and wS:wM, 

Basic  

only 

 

Basic + 

mating  

f to m 

(+3)  

Basic + 

mating  

m to f 

(+4) 

Basic + 

mating  

m fights 

(+5) 

 

Single basic mechanisms 
    

Environmental within groups, 90:10   0.86 1.02 — 0.96 

Environmental within groups, 50:50   0.11 0.58 — 0.35 

Environmental within groups, 10:90   — 0.21 — — 

Direct within groups,  90:10   — 0.16 — 0.10 

Direct within groups, 50:50   — 0.06 — — 

Direct within groups, 10:90   — — — — 

Environmental between groups — 0.66 — — 

Direct between groups — 0.09 — — 

     

Combinations of 2 basic mechanisms, rmax>2     

Direct within groups(90:10)+environmental 

within groups(90:10) 

0.13 0.16 — 0.15 

Environ within group(90:10)+environmental 

between groups 

0.20 0.02 — 0.08 

Direct within groups(90:10)+environmental 

within groups(50:50) 

0.02 0.11 — 0.06 

Direct within groups(50:50)+environmental 

within groups(90:10) 

0.02 0.11 — 0.06 

Direct between groups+environmental within 

groups(90:10) 

— 0.17 — 0.08 

Environ within groups(50:50)+environmental 

between groups 

— 0.01 — — 

Direct within groups(90:10)+environmental 

between groups 

— 0.09 — — 

Direct within groups(90:10)+environmental 

within groups(10:90) 

— 0.05 — — 

Direct within groups(50:50)+environmental 

within groups(50:50) 

— 0.04 — — 

Direct within groups(10:90)+environmental 

within groups(90:10) 

— 0.04 — — 

Direct between groups+ environmental within 

groups(50:50) 

— 0.06 — — 

 

 



 

27 

 

Additional references 

 

Baccante, N., Woods, R.B., 2008. Relationship between weather factors and survival of 

mule deer fawns in the Peace Region of British Columbia. Fish and Wildlife Sect., Min. 

Environment BC, Fort St. John, pp. 1-21. 

 

Burnham, K.P., Anderson, D.R., 2004. Multimodel inference: Understanding AIC and 

BIC in model selection. Sociol. Method. Res. 33, 261-304. 

 

Ghosh, J.K., Samanta, T., 2001. Model selection - an overview. Curr. Sci. 80(9-10), 

1135-1144. 

 

Medin, D.E., and Anderson, A.E., 1979. Modeling the dynamics of a Colorado mule deer 

population. Wildlife monographs, no. 68. 

 

Swihart, R.K., Weeks, Jr., H.P., Easter-Pilcher, A.L., and DeNicola, A.J., 1998. 

Nutritional condition and fertility of white-tailed deer (Odocoileus virginianus) from 

areas with contrasting histories of hunting. Can. J. Zoology 76, 1932-1941 

 

White, G.C., Lubow, B.C., 2002. Fitting population models to multiple sources of 

observed data. J. Wildl. Management 66, 300-309.  

 

 

 


