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Abstract

Poker provides an excellent testbed for studying decision-making under conditions of
uncertainty. There are many benefits to be gained from designing and experimenting
with poker programs. It is a game of imperfect knowledge, where multiple competing
agents must understand estimation, prediction, risk management, deception, counter-
deception, and agent modeling. New evaluation techniques for estimating the strength
and potential of a poker hand are presented. This thesis describes the implementation of a
program that successfully handles all aspects of the game, and uses adaptive opponent

modeling to improve performance.
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Chapter 1

Introduction

Game playing is an ideal environment for examining complex topics in machine in-
telligence because games generally have well-defined rules and goals. Additionally.
performance, and therefore progress, is easily measured. However, the field of com-
puter game playing has traditionally concentrated on studying chess, and other two-
player deterministic zero-sum games with perfect information, such as checkers and
Othello. In these games, players always have complete knowledge of the entire game
state since it is visible to both participants. High performance has been achieved
with brute-force search of the game trees, although there are some exceptions, such
as the game of Go where the game tree is far too large. Although many advances in
computer science (especially in searching) have resulted, little has been learned about
decision-making under conditions of uncertainty. To tackle this problem, one must
understand estimation, prediction, risk management, the implications of multiple op-
ponents, deception, counter-deception, and the deduction of decision-making models
of other players.

Such knowledge can be gained by studying imperfect information games, such as
bridge and poker, where the other players’ cards are not known and search alone is
insufficient to play these games well. Poker in particular is a popular and fascinating
game. It is a multi-player zero-sum game with imperfect information. The rules
are simple but the game is strategically complex. It emphasizes long-term money
management (over a session of several contiguous interdependent games), as well as
the ability to recognize the potential of one specific game and to either maximize
gain or minimize loss. Most games are analogical to some aspect of real life, and
poker can be compared to “policy decisions in commercial enterprises and in political
campaigns” [8].

Poker has a number of attributes that make it an interesting domain for research.
These include multiple competing agents (more than two players), imperfect knowl-
edge (your opponents hold hidden cards), risk management (betting strategies and
their consequences), agent modeling (detecting and exploiting patterns or errors in
the play of other players), deception (bluffing and varying your style of play), and
dealing with unreliable information (your opponents also make deceptive plays). All
of these are challenging dimensions to a difficult problem.



Certain aspects of poker have been extensively studied by mathematicians and
economists. There are two main approaches to poker research. One approach is to
use simplified variants that are easier to analyze [10] {11] [12]. For example, one could
use only two players or constrain the betting rules. However, one must be careful
that the simplification does not remove the challenging components of the problem.
The other approach is to pick a real variant, but to combine mathematical analysis,
simulation and ad hoc expert experience. Expert players, often with mathematical
skills, are usually involved in this approach [13] [14] [15].

However, little work has been done by computing scientists. Nicolas Findler
worked on and off for 20 years on a poker-playing program for Five-Card Draw [6]
[7] [8], however he focused on simulating the thought processes of human players and
never achieved a program capable of defeating a strong player. Koller and Pfeffer
[10] have investigated poker from a theoretical point of view. They implemented the
first practical algorithm for finding optimal randomized strategies in two-player im-
perfect information competitive games. However, such a system will likely not win
much more from a set of bad players than a set of perfect players, failing to exploit
the property that human players make many mistakes (i.e. it presumes the opponent
always plays the best strategy).

One of the interesting aspects of poker research is that opponent modeling can be
examined. It has been attempted in two-player games, as a generalization of minimax,
but with limited success [5] [9]. Part of the reason for this is that in games such as
chess, opponent modeling is not critical for computers to achieve high performance.
In poker, it is essential for the best results. Working under the assumption that our
opponents will make mistakes and exhibit predictability, opponent modeling should
be accounted for and built into the program framework.

Although our long-term goal is to produce a high-performance poker program that
is capable of beating the best human players, for our first step we are interested in
constructing a framework with useful computer-oriented techniques. It should min-
imize human expert information and easily allow the introduction of an opponent
modeling system, and still make a strong computer poker program. If we are suc-
cessful, then the insights we gain should have wide applicability to other applications
that require similar activities.

We will present new enumeration techniques for determining the strength and
potential of a player’s hand, will demonstrate a working program that successfully
plays ‘real’ poker, and demonstrate that using opponent modeling can result in a sig-
nificant improvement in performance. Chapter 2 will introduce terminology (there is
a glossary in Appendix C) and will give the rules of poker and of Texas Hold’em (the
poker variant we have chosen to study). Chapter 3 describes how humans play poker.
Chapter 4 discusses various ways to approach the problem using a computer, and
details the architecture we have selected. Chapter 5 describes the enumeration tech-
niques we use for hand evaluation. Chapter 6 describes our betting strategy. Chapter
7 details the opponent modeling system. Chapter 8 discusses the experimental system
and some results. Chapter 9 discusses the conclusions and future work.

Parts of Chapters 5 and 6 have been published in Advances in Artificial Intelligence
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[4], and parts of Chapter 7 have been published in AAAJ-98 [3]. Our poker-playing
program is called Loki and has been demonstrated at AAAI-98. It is written in C
and C++ and runs with real-time constraints (in typical play, an action should not
take more than a few seconds). The primary mechanism for performance testing is
self-play, however we also play against human opponents through an Internet poker
server. The interface between the program and the server is written in PERL.



Chapter 2
Poker

Poker is a set of multi-player card games (standard deck of 52 cards) that is typically
played as a session comsisting of a sequential series of multiple games (sometimes
called deals or hands). Each player begins the session with a certain amount of chips
(equated to money). Poker is a zero-sum game (one player’s gain is another’s loss)
where the long-term goal is to net a positive amount of chips. This is accomplished
by maximizing winnings in each individual game within the session.

There are numerous variants of poker. This chapter covers the basic structure
that defines the majority of these variants, and describes the specific variant of Teras
Hold’em.

A note on symbols:

e We use a standard deck of 52 cards (4 suits and 13 ranks per suit).

e For card ranks, we use the symbols 2 (Deuce), 3 (Trey), 4 (Four), 5 (Five). 6
(Six), 7 (Seven), 8 (Eight), 9 (Nine), T (Ten), J (Jack), Q (Queen), K (King),
and A (Ace).

e For card suits, we use the symbols ¢ (Diamonds), & (Clubs), O (Hearts). and
& (Spades).

e A single card is represented by a pair of symbols, e.g. 2$ (Deuce of Diamonds)
and Té (Ten of Clubs).

e A set of cards is represented by a list separated by dashes, e.g. 44-5&-6& (Four,
Five and Six of Clubs).

2.1 Playing a Game

Each game is composed of several rounds, which in turn involve dealing a number of
cards followed by betting. This continues until there is either only one active player
left in the game or when all the betting rounds have been completed. In the latter
case, the game then enters the showdown to determine the winner(s).



Betting involves each player contributing an equal amount of money to the pot.
This amount grows as the game proceeds and a player may fold at any time, which
means they lose the money they have already contributed and are no longer eligible
to win the pot.

When all players fold but one, the remaining player wins the pot. Otherwise, if
the game proceeds to a showdown, the highest ranked set of cards held by a player
(the highest hand) wins the pot (ties are possible, in which case the pot is split). Note
that poker is full of ambiguous terminology; for example, the word hand refers both
to one game of poker and to a player’s cards.

2.1.1 Ante

Before the initial deal, participating players are required to blindly contribute a fixed
amount of money (ante) to the pot. In some variants an alternative system is used
where some of the players immediately following tke rotating dealer (called the button)
are forced to put in fixed size bets (called the blinds). Without these forced bets, risk
can be minimized by only playing the best hand, and the game becomes uninteresting.

2.1.2 The Deal

Each round begins by randomly dealing a number of cards (the non-deterministic
element of poker). In some variants these are community cards which are shared
by all players. Each player receives the same number of cards — each of which is
either face-down (known only to this player) or face-up (known to all players). There
are other possible dealing steps such as drawing (discarding and replacing face-down
cards) and rolling (revealing some face-down cards). The face-down cards are the
imperfect information of poker. Each player knows their own cards but not those of
their opponents.

A variant can be defined by a script which specifies the number of rounds and
what dealing actions are to be taken at each round. This script has one entry for
each round in the variant (recall there is also a series of betting that occurs at the
end of each round). Here are the scripts for some well-known poker variants:

Five-Card Draw (2 betting rounds):

e deal 5 cards face-down to each player

e each player discards 0-3 cards and receives the same number of new face-down
cards.

Seven-Card Stud (5 betting rounds):
e 2 cards face-down and 1 face-up to each player
e 1 face-up to each player

e 1 face-up to each player



e 1 face-up to each player

e 1 face-down to each player

2.1.3 Betting

The betting portion of poker is a multi-round sequence of player actions until some
termination condition is satisfied. Without it your probability of winning the game
depends solely on nature (the deal of the cards). Betting increases the pot and
indirectly gives information about players and their hands. When playing against
good opponents who pay attention to the actions of the other players, betting can
also be used to give misinformation (the element of deception in poker).

Betting Order

The players are in a fixed seating order around the table (even in a virtual environment
the set of players is referred to as the table). The dealer button rotates around in
a clockwise fashion, as do betting actions. Betting always begins with the first to
act, which in most games is the first active player following the button (in stud
games, which have face-up cards, it is usually the player with the highest ranked
cards showing). Betting proceeds around the table, involving all active players, but
does not end at the last active player.

Termination Condition

Betting continues sequentially around the table until all active players have con-
tributed an equal amount to the pot (or until there is only one active player remain-
ing). The game then proceeds to the next round (as defined by the script). In the
final round the remaining players enter the showdown.

Note that all players must be given at least one opportunity to act before betting
is terminated (this allows for the case where all players have equally contributed
$0). Being forced to put a blind bet in the pot does not count as having had an
opportunity to act. Also, there often is a limit on the number of raises (increments
to the contribution amount) which artificially forces an end to the betting.

Betting Actions

In most situations, each player has 3 different actions to choose from. Each action
directly affects the number of active players, the size of the pot, and the required
contribution to remain active in the game. Here are the 3 action categories and 5
different actions that fit into those categories:

e Fold: Drop from the game (become inactive). A player who folds is no longer
eligible to win the pot. The player is now out of the current game and loses the
money that has been contributed to the pot.



e Call: Match the current per-player contribution (e.g. if player A has con-
tributed $12 (the most) and player B $8, then B must place an additional $4.
the amount to call, in the pot). A check is a special case of calling when
the current amount to call is $0 (which is usually the case with the first active
player). It means you forego opening the betting for the round.

e Raise: Increase the current per-player contribution (e.g. if player A has con-
tributed $12 and player B $8, then B can put $8 into the pot (a raise of $4) to
make the required contribution $16). A bet is a special case of raising when
the current amount to call is $0. It means you open the betting for the round.

At any point in the game a player will have three actions available: fold/check/bet
or fold/call/raise. An exception occurs in games with blinds where a player was forced
to blind bet and everyone else calls or folds. Since the player was not originally given
a choice, they are given an option to raise when the action returns to them (the
amount to call is $0). The available actions are fold/check/raise; check because it
is 80 to call and raise because there has already been a bet (the blind). Another
exception can occur because there is normally a limit of 4 raises (including the initial
bet or blind). If it is a player’s turn and the betting has already been capped (no
more raises allowed) the available actions are fold/call.

Betting Amounts

There are many different ways to restrict the betting amounts and the various systems
can produce very different games (requiring different strategies).

e No-limit poker: this is the format used for the World Series of Poker champi-
onship main event. The amount a player is allowed to bet/raise is limited only
by the amount of money that they have.

e Pot-limit poker: this format normally has a minimum amount and the max-
imum raise is whatever is currently in the pot (e.g. if the pot is at $50 and the
amount to call is $20, a player can at most raise $70 by placing $90 in the pot).

e Spread limit: a format commonly used in friendly games. There is both a
fixed minimum and maximum in each round (e.g. 1-5 Stud is a game where the
raise or bet size can be between $1 and $5 in any round).

e Fixed limit: a common format used in casinos. There is a fixed bet size in
each round (same as spread limit with the minimum equal to the maximum).
Usually the bet size is larger in the later rounds. Games that feature the same
bet size in all rounds are called flat limit.

2.1.4 Showdown

When there is only one active player remaining in the game, that player wins the
pot without having to reveal their cards. Otherwise, when the final round terminates
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normally, the game enters the showdown where all active players reveal their cards
and the player with the strongest 5-card hand wins the pot. In the case of a tie. the
pot is split evenly.

Note that individual cards are ranked from Deuce - the lowest — to Ace. However,
in most games, Ace can optionally be used as a low card (comes before Deuce instead
of after King). The suit is not used in ranking (but is sometimes used for other
purposes, such as awarding an odd chip when splitting the pot in ties). Here are all
the 5-card hands ranked from strongest to weakest:

Straight Flush: (e.g. 90-80-70-60-50) The strongest hand in regular poker
- 5 cards that form both a straight and a flush (see below). Straight flushes are
ranked by the top card in the straight (note that if Ace is used as low in an Ace
to Five straight flush then the Five is the top card). An Ace-high straight flush
(the highest possible hand) is called a Royal Flush.

Four of a Kind: (e.g. K&-KO-K{O-K&-38) 4 cards of identical rank and one
unmatched kicker. Compare four of a kinds by the rank of the 4 matched cards.
The kicker is used to break ties (note that in games with community cards, like
Texas Hold’em, it is possible for multiple players to hold the same four of a

kind).

Full House: (e.g. 48-40-40-J0-J&) 3 cards of one rank and 2 cards paired
but of another rank. Compare full houses first by the triple and then the pair
in the event of a tie.

Flush: (e.g. AQ-K{O-80-70-6<) 5 cards of identical suit. Rank multiple flushes
first by comparing the top card, and then each subsequent card (e.g. Ad-Ké-
9&-5&-2& is better than AQ-KO-80-70-60).

Straight: (e.g. J&-TQ-90-8{-7M) 5 cards in sequence. Straights are ranked
by the highest card.

Three of a Kind: (e.g. 50-50-5&-T#-78) 3 cards of one rank with 2 kickers
of unmatched rank. First compare the rank of the triple, and then examine

each kicker (the higher one first).

Two Pair: (e.g. AB-AS-84-8&-90) 2 cards of one rank, 2 card of another,
and one kicker of a third rank. Always compare by the highest pair first, then
the second pair, and finally use the kicker.

One Pair: (e.g. QO-Q&-KO-80-20) 2 cards of one rank with 3 kickers of
unmatched rank (compare by the rank of the pair and then examine each kicker
in order from the highest to the lowest).

High Card: (e.g. K&-JO-T{-9&%-3¢) 5 unmatched cards. Compare by the
highest to lowest cards, like a flush.



Some variants of poker recognize other special hand types (e.g. 4-card flush) and
allow wild cards (cards that can represent any other card). but these are not common
in casino games.

2.2 Texas Hold’em

The specific variant under consideration in this thesis is Texas Hold’em, the most
popular variant played in casinos. It is used in the main event of the annual World
Series of Poker championship to determine the World Champion. It is considered to
be one of the most strategically complex poker variants and has “the smallest ratio of
luck to skill” [2]. The script for Texas Hold’em is as follows (each of the four rounds
is followed by betting):

Pre-flop: each player is dealt two face-down cards (hole cards).

Flop: 3 cards dealt face-up to the board (community cards).
e Turn: 1 card dealt face-up to the board.

e River: 1 card dealt face-up to the board.

After the betting on the river, the best 5-card hand formed from the two hole
cards and five board cards wins the pot.

Specifically, we examine the game of Limit Texas Hold’em with a structured bet-
ting system of 2-2-4-4 units, and blinds of 1 and 2 units. This means that the bet size
is fixed at 2 (the small bet) for the pre-flop and flop, and 4 (the big bet) for the turn
and river. Before the pre-flop, the first player after the button is the small blind and
is forced to put 1 in the pot, and the subsequent player is the big blind and forced
to bet 2 (meaning the amount to call is 2 for all subsequent callers, 1 for the small
blind, and if there has been no raise, the big blind has the option to fold, check or
raise to 4 units). Limit Hold’em is typically played with 8 to 10 players, although the
minimum is 2 and possible maximum is 23.

In later chapters, we use a special convention for representing Texas Hold'em
hands. The designation 80-JO/4&-5&-6& represents hole cards of 8¢-JO with a
board of 4ds-5d-6db.



Chapter 3

How Humans Play Poker

There have been many books written on how to play poker. However, these are
intended for the development of human players and must be reinterpreted to be
applicable to computer play. The author typically presents a small number of rules
for human players to follow. These rules are frequently based on experience and
sometimes also have a mathematical foundation. For example, in his book, Norman
Zadeh uses mathematical analysis to deduce a series of generalized rules for several
poker variants [15]. His rules all basically follow the form of giving the reader a
threshold hand type to take a certain action in a certain situation.

Two of the more useful books for the purposes of this thesis are [{14] and [13].
The first book, Hold’em Poker for Advanced Players by David Sklansky and Mason
Malmuth, presents a high-level strategy guide for the game of Texas Hold’em {which
only recently has become the focus of poker literature), with a special treatise on
playing the pre-flop. It presents a strong rule-based approach with an emphasis that
knowledge of your opponent should always be taken into account. The second book,
The Theory of Poker by David Sklansky, is described by Darse Billings as “the first
book to correctly identify many of the underlying strategic principles of poker” [2]
and uses illustrated examples from several variants including Texas Hold’em. In this
chapter, some of the more important concepts and strategies are described.

3.1 Hand Strength and Potential

A human player should be able to estimate the probability that a certain set of cards
will win. This is implicit in the rule-based systems which give threshold hands for
betting decisions.

There are two different measures for the goodness of a hand: the potential and
the strength. Potential is the probability that the player’s hand will become the likely
winning hand (a 4 card flush counts for nothing but is very strong if a fifth suited card
is dealt). It can easily be roughly estimated by humans — good players are usually
able to estimate a hand’s potential accurately, in terms of outs: “the number of cards
left in the deck that should produce the best hand” [14]. In contrast, strength is the
probability of currently being in the lead (would win if no further cards were dealt).
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This is often based on experience or knowledge of the statistical distribution of hand
types, although knowledge of one’s opponents is used by expert players to get a much
more accurate estimate.

Knowing where one stands with respect to these measures is used to determine
an appropriate strategy, such as raising to reduce the number of opponents, trying to
scare one’s opponents into folding by betting aggressively, and so on.

3.2 Opponent Modeling

The better players are at understanding how their opponents think, the more suc-
cessful they will be. Experts are very good at characterizing their opponents and
exploiting weaknesses in their play, and knowing when they do or do not have the
best hand. They often try to put an opponent on a certain range of hands (guess the
cards they hold) based on observed actions. It is important to note here that, if a
player wins a game uncontested (no showdown), they do not have to reveal their cards.
The showdown (exposure of an opponent’s hidden cards) gives away information that
can be used with the betting history to infer the decision-making process.

To iake a less specific approach, one can estimate probabilities for a generic (or
“reasonable”) opponent. However, observing an opponent’s play may give you useful
information that allows you to bias the probabilities, allowing for more informed (and
more profitable) decisions. For example, an observant player is less likely to take a bet
seriously from someone who bets aggressively every game. Good opponent modeling
is vital to having a good estimate of hand strength and potential.

3.3 Position

Another variable expert players take into account for a betting decision is their po-
sition at the table with respect to the dealer (how many players have acted before
you and how many act after you). In [14] the authors emphasize that a later posi-
tion is better because you have more information available before you must make a
decision. Their pre-flop strategy is dependent on a player’s expected position in the
later betting rounds. For example, they discuss a tactical raise, called “buying the
button”, which is used in late position in the pre-flop to hopefully scare away the
players behind you to become the last player to act in future betting rounds.

3.4 Odds

This is a fundamental concept introduced in [13] and includes pot odds, effective
odds, implied odds and reverse implied odds. Odds gives you a way to compare your
cost versus the potential winnings, and determine how good of a hand, in terms of
potential or strength, you require to call a bet (or what the expected return is for
each of your possible actions).

11



3.4.1 Pot Odds

Also called immediate odds, pot odds are the ratio of money in the pot against the
cost to call. For example, if there are $12 in the pot and it costs $4 to call then you
are getting 3-to-1 odds (winnings-to- “cost to stay in”). This can be translated to a
percentage, representing the size of your contribution in the new pot, by using the
following formula:

cost

. 3.1
(pot _stze + cost) (3-1)

“winnings — to — cost” ~

This percentage is the required probability of winning. If you are on the final round
of betting then these are the odds you should have of winning the hand.

Continuing the example, the required probability is 4/(12+4) = 0.25. Hence, you
need at least a 25% chance of winning to warrant a call. For example, if your hand
was 40-8¢0 and the board was 7O)-A-68-KQ you would have a four-card diamond
flush on the turn. You would estimate having 9 outs of the remaining 46 cards to
make a winning diamond flush. This translates to a hand potential of 9/46 = 0.196
so it would be incorrect to call. On the other hand, you also have an inside straight
draw (any 5 would give you a straight) and this is an additional 3 outs (the 5¢ has
already been counted). Now your potential is 12/46 = 0.261 so it is correct to call.

However, there are several caveats. Simply making the call does not necessarily
end the round in a multi-player scenario; if there is a player behind you who has yet
to see the bet, they may raise. In the above example, if you were expecting the player
behind you to raise another $4 and the original bettor to call, then your pot odds
are now 5-to-2 (pay $8 to win $20), elevating the threshold for staying in the hand
to 8/(20 + 8) = .286. Also, knowledge of your opponents is not only required for
an accurate estimate of hand strength or potential, but also to determine if you can
expect to have to pay more. When considering potential this also assumes that the
cards you are hoping for will make your hand the winner and not the second best.
Further complications arise when there is more than one card left to be dealt.

3.4.2 Implied Odds and Reverse Implied Odds

Implied odds (and reverse implied odds) are based on the possibility of winning (or
losing) more money later in the hand. They consider the situation after the next
cards have been dealt and explain situations where things are better (or worse) than
pot odds make them seem. Put another way, implied odds is the ratio between the
amount you expect to win when you make your hand (more than what is in the pot)
versus the amount it will cost to continue playing. In contrast, reverse implied odds
is the ratio between the amount in the pot (what you win if your opponent does not
make their hand) versus what it will cost you to play until the end of the hand. One
of the major factors behind considering implied odds is how hidden your hand is (how
uncertain your opponent is of your hand); another is the size of future bets. For the
latter reason, implied odds become more important in no-limit and pot-limit games
than in fixed-limit games.
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As an example of implied odds. consider that at the turn there is $12 in the pot.
it is $4 to call (pot odds 3-to-1), hitting your hand means you very likely will win,
and additionally your opponent is likely play to the showdown. If you miss you will
simply fold (costing $4). If you hit you can expect to make an extra bet of $4 from
your opponent, winning $16 total so your implied pot odds are 4-to-1.

For reverse implied odds, consider that you have a strong hand but little chance
of improving and your opponent has a chance of improving to a hand stronger than
yours, or possibly already has a hand stronger than yours (they have been betting
and you are not sure if they are bluffing) - essentially a situation where you are not
certain that you have the best hand. Say it is the turn and there is $12 in the pot
and it is $4 to call (pot odds 3-to-1). If your opponent has a weak hand or misses
their card they may stop betting in which case you would only win 812 (it costs 34
to find out you are winning). Otherwise, you have committed to playing to the end
of the hand in which case it would cost you $8 to find out you are losing (pot odds
3-to-2). There are many variations to this scenario. The essential idea is that reverse
implied odds should be considered when you are not certain you have the best hand;
it will cost more in future betting rounds to discover this.

3.4.3 Effective Odds

When you are considering the odds of making your hand with two cards remaining,
it is difficult to estimate the expected cost to play those two rounds. For example, if
there is $6 in the pot after the flop and your single opponent has just bet $2, then
your pot odds are 3-to-1. However, you have two cards to make your hand so you
must try to estimate the cost of the next round. Against a single opponent the worst
case is that your opponent will bet next round and you will simply call; you would
be paying $6 to win $10 (5-to-3) which increases the requirement for playing.

However, since you have two chances to make your hand your potential will im-
prove as well. If you held 40-8¢ and the board was 7{-A{-68, your estimated
chance of hitting the flush or the inside straight (12 outs) after two cards is now
12/47 + 35/47 * 12/46 = .45, making it correct to call (or possibly raise) a bet on the
flop.

3.5 Playing Style

There are several different ways to categorize the playing style of a particular player.
When considering the ratio of raises to calls a player may be classified as aggressive,
moderate or passive. Aggressive means the player frequently bets or raises rather
than checking or calling (more than the norm), while passive means the opposite.
Another simple set of categories is loose, moderate and tight. A tight player will play
fewer hands than the norm, and tend to fold in marginal situations, while a loose
player is the opposite. Players may be classified differently for pre-flop and post-flop

play.
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3.6 Deception and Unpredictability

A predictable player in poker is generally a bad player. Consider a player who never
bluffs (when that player bets, they always have a strong hand). Observant oppo-
nents are more likely to fold (correctly) when this player bets, reducing the winning
pot size. Of course, against weak, unobservant opponents, never bluffing may be a
correct strategy. However, in general, deception and unpredictability are important.
Although the cost and benefit of such actions must be considered, unpredictability
can be achieved by randomly mixing actions. For example, do not raise every time
you hold a high pair before the flop, otherwise an observant opponent can assume
you are not holding a high pair when you simply call in the pre-flop. Deception is
more complex and can be achieved through numerous different high-level strategies.
Following are some of these strategies.

e Changing Styles: is a simple form of deception to deliberately create false
impressions. For example, early in the session you might play a tight conserva-
tive style and show a lot of winning hands at the showdown. Later you switch
to a looser style, and observant players are likely to continue to treat you as a
tight player and take your bets very seriously.

¢ Slowplaying: “ ... is playing a hand weakly on one round of betting in order
to suck people in for later bets” [13]. Checking or calling in an earlier round
of betting shows weakness, and this hopefully leads to your opponents being
willing to put money in the pot later in the hand (particularly in those variants
of Hold’em where the bet size doubles in later rounds). However, since you will
often be up against many opponents, you need a very strong hand for this kind
of play.

e Check-raising: is another way to play a strong hand weakly. Sklansky calls it a
way to “trap your opponents and win more money from them” [13]. Essentially
you believe that had you opened betting in the round you would either drive
out players or only get one bet (no one would raise). But if you believe that
one of your opponents will open the betting you begin the round by checking.
Assuming the opening bet is then made, you follow by raising. Hopefully,
players who have already put in a bet are willing to put in a second. However,
even if players fold you still have their money from the opening bet.

e Bluffing: is an essential strategy in poker. It has been mathematically proven
that you need to over-play or under-play (bluff or slowplay) in some way for
optimal play in simplified poker [11]. Bluffing allows you to make a profit
from weak hands, but it also creates a false impression which will increase the
profitability of future hands (a lot of money can be won when betting a very
strong hand and your opponent suspects you may be bluffing). In practice,
you need to be able to predict the probability that your opponent will call in
order to identify profitable opportunities. A game-theoretic explanation of the
optimum bluffing frequency is presented in [13].
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¢ Semi-bluffing: is a bet with a hand which is not likely to be the best hand
at the moment but has a good chance of outdrawing calling hands (e.g. a four-
card-flush). On occasion this play will also win outright when your opponents
fold. The combined chances of winning immediately, or improving when called,
makes it a profitable play.

Note that sometimes deception can be used to play an action which does not
necessarily have the largest expected value, but rather creates a false impression
which may indirectly lead to returns in the future. While undoubtedly important, it
is difficult to measure the effectiveness of this type of deception.

3.7 Summary

The short term goal in poker (the goal in a specific deal) is either to maximize your
gain if you think you can win (either with a strong hand or by bluffing with a weak
hand) or to minimize your loss if you think you will lose. However, the outcomes of
individual games are not independent. You can afford to make some ‘bad moves’ (the
expected value for the chosen action in the current game is not the highest) provided
they contribute to greater gains in later games.

An expert player is one who can usually recognize when they have or do not have
the winning hand, and can maximize the money they win appropriately. They also
occasionally invest money in misinformation (such as bluffing) and have the ability to
identify good hands and understand their opponents (how they will react to certain
actions or what hand they likely hold based on their actions). Knowledge of tells
(physical mannerisms) and psychological plays are sometimes used in the human side
of opponent modeling. Overall, the expert player has a good understanding of playing
strategies, hand strength and potential, pot odds, and good opponent modeling skills.
These factors are used as the basis for every decision made.
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Chapter 4

How Computers Play Poker

Very little work has been done on poker by computing scientists, although there
are numerous commercial and hobbyist approaches. The various computer-based
approaches to poker can be classified into three high-level architecture descriptions
(or a mixture thereof): expert system, game-theoretic optimal play, and simulation /
enumeration-based systems. Each of these will be discussed in the following sections.

This chapter will also discuss several case studies of programs by computing sci-
entists and hobbyists. Included in the former group is the historical work of Nicolas
Findler along with the more recent ideas of Daphne Koller and Avi Pfeffer. Findler
worked on a poker-playing program for 5-card draw poker [6]. Koller and Pfeffer im-
plemented the first practical algorithm for finding optimal randomized strategies in
two-player imperfect information games [10]. Among the hobbyist approaches exam-
ined are several that play poker on an online poker server over IRC (Internet Relay
Chat). Three of these programs are r00lbot, replicat and zbot (although variations
of these sometimes run under different names). Additionally there are two public
domain programs: Smoke’em Poker for Microsoft Windows, as well as Seven-Card
Stud and Texas Hold’em implementations by Johann Ruegg for the UNIX curses
package. There are numerous approaches by commercial companies, although only
a few have a target audience of professional players. The best of these is Turbo
Tezas Hold’em by Wilson Software (http://www.wilsonsoftware.com). It is an
extremely rule-based system.

The final section discusses the architecture selected for our poker player and the
reasons behind the selection.

4.1 Expert Systems

An expert system is essentially a set of specific rules to cover various game situations.
Given the correct knowledge, this is perhaps the simplest approach to a reasonably
strong program. However, since it is difficult to make an expert knowledge-based
system learn (opponent modeling), it can easily be defeated by a strong player. Figure
4.1 contains a rudimentary example piece of such a system: when it is two or more
bets to you on the flop and you do not have top pair (you have not paired the top
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PlayFlop(CARDS myhand, STATE state)

if (state.bets_put_in==0)
&% state.bets_to_call > 1
&% myhand < TOP_PAIR
&% myhand!=FOUR_FLUSH
&& myhand!=0PEN_STRAIGHT)
return SelectAction(RAISE,10,CALL,10,FOLD 80)
else ..

Figure 4.1: Example of an Expert Knowledge-Based System

card on the board and do not have a hole pair bigger than that card), nor do you
have a four card flush or an open-ended straight, then raise 10% of the time, call 10%
of the time, and fold 80% of the time.

There are many problems with this type of approach. Clearly, covering enough of
the situations that will arise in practice would be very laborious. Also such a system is
difficult to make flexible. If the system were made specific enough to be quite strong,
conflicting rules could possibly be constructed and there would need to be a way to
handle exceptions. Missing rules covering certain situations or making the rules too
general would make the program weak and/or predictable. Additionally, you need an
expert who can define these rules. This knowledge-acquisition bottleneck may prove
to be a serious problem.

4.2 Game-Theoretic Optimal Strategies

Kuhn [11] along with Nash and Shapley [12] have demonstrated that “optimal strate-
gies” using randomization exist for simplified poker. An optimal strategy always
takes the best worst-case move, and this means two things: “the player cannot do
better than this strategy if playing against a good opponent, and furthermore the
player does not do worse even if his strategy is revealed to his opponent” [10]. For
example, consider the two-player game of Roshambo (Rock, Paper, Scissors). The
optimal strategy is to select a move uniformly at random (i.e. [3, 3,3]) irrespective
of the game history.

Finding an optimal approach is not so easy in a complex game like poker; there
is a major stumbling block. Due to the enormous branching factor (see Figure 4.2),
both the calculation and storage of the game-theoretic optimal strategy would be
extremely expensive. Additionally the branching factor numbers are only for the two
player environment — the multi-player environment is even more complex due to the
addition of more imperfect information and many more possible betting interactions.
As demonstrated by the attention devoted to multi-player situations in the poker
literature, such considerations are quite important.

Additionally, the game-theoretic optimal approach is not necessarily the best.
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Clearly, as the game-theoretic optimal strategy is fixed, it cannot take advantage of
observed weaknesses in the opponent. Doing so would risk falling into a trap and
losing. Consider Roshambo for an example. After witnessing your opponent playing
Rock 100 times in a row, deciding to play Paper risks your opponent anticipating
your action (the situation may be intended as a trap or your opponent may know
your strategy). The existence of the risk, no matter how small, would violate the
optimality of the strategy (the second guarantee, that the player cannot do worse).

Because of this, even against bad players an optimal strategy is likely to only
break even. In contrast, a maximal strategy using opponent modeling (which does
not assume perfect play from its opponents) would identify weaknesses and exploit
them for profit (significantly more than an optimal strategy). There is some risk,
because deviation from the optimal opens the door for your opponent to exploit it.
But, if your knowledge of the opponent is good, the potential gains outweigh the
risk. A game-theoretic optimal strategy would, however, make an excellent default
or baseline to complement such an “adaptive” strategy.

4.3 Simulation and Enumeration

Simulation involves playing the hand out several times, where opponent hands and
upcoming community cards are dealt randomly each time. The number of simulations
can be fixed, variable, or dependent on some real-time constraint. If the sampling
method is good, this will give a rough estimate of the strength and potential of your
hand.

In contrast, enumeration involves evaluating each possible situation to get exact
probabilities of your winning chances. This is not feasible for playing the hand out
(given the branching factor and wide variety of possible opponent hands, see Figure
4.2) but is easily calculated for measures such as immediate hand strength: on the flop
there are only (427) = 1,081 possible cases for opponent cards. Also note that given
enough storage space some of the more complex enumerations could be pre-calculated.

These approaches can easily be mixed with an expert system (e.g. bet if you have
a 50% chance of winning), or with game theory (e.g. bluff, or call a possible bluff,
some game-theoretic optimal function of the time). In particular, opponent model-
ing can easily be combined with simulation or enumeration to generate reasonably
accurate probabilities of outcomes. A useful opponent model would contain infor-
mation specifying the probability of an opponent holding each possible pair of cards.
In any particular simulation, this probability array could be used to appropriately
skew the selection of cards held by an opponent. In an enumeration context, these
probabilities would be used as weights for each subcase considered. Additionally, a
faster but coarser estimate could be generated by only enumerating over the most
likely subcases.

Finally, there is another advantage to being able to combine simulation or enumer-
ation with opponent modeling. If the model contains information such as the calling
frequency of a given opponent in a given situation, you would be able to take advan-

18



Assuming only two players:

2 possibilities for who acts first
(5._,2) = 1, 326 different hole cards

(5:) + 47 » 46 = 42, 375, 200 significantly different ways the board can be dealt ((530) different
flops, 47 different turn cards, 46 different river cards)

15 different ways the betting can proceed in the pre-flop (only 7 do not end in one side winning
uncontested)

19 different ways the betting can proceed in any round after the pre-flop (only 9 do not end
in one side winning uncontested)

Therefore:

2x* 522) *Tx* (5:) = 363.9 = 10° different states at the beginning of the flop
363.9 % 10% « 9 x 47 = 153.9 = 10° different states at the beginning of the turn
153.9 % 10° + 9 + 46 = 63.7 « 1012 different states at the beginning of the river

Also note there are up to (3) possible opponent hands at each stage in the game (n = 50 for
the pre-flop, 47 for the flop, 46 for the turn, and 45 for the river). This hidden information
was not included in the above products (which are the number of possible variations of known
information).

This is still a large tree even though there is some redundancy in the way the cards are dealt (suits
are isomorphic):

169 significantly different classes of hole cards rather than 1,326 (see Appendix A). This
reduces the number of states at the beginning of the flop to 46.4 = 10%, and 8.1 = 10'? at the
beginning of the river (approximately a 7.8-fold reduction).

An additional complex reduction based on the isomorphism of suits can reduce the original
number of possible flop states and starting hands from 1326 + (%) = 26.0 = 10° (3.3 = 10°
with the elimination of redundant starting hands) to 1.3 * 10% (approximately an additional
2.5-fold reduction — still leaves a large number at the river). The details of the reduction
are not presented here. It is based on enumerating each possible combination of suits in the
starting hand and on the flop. For example, there are only (123) = T8 significantly different
starting hands where both cards are of the same suit (map this suit to, say, #), and there are
only 11 (*?) = 858 significantly different flops where one card is of the original suit (mapped
to @) and the other two cards are of a second suit (mapped to, say, ©).

The addition of multi-player considerations exponentially complicates the tree:

three players in any round after the pre-flop: 138 sequences of betting actions end with two
players remaining and 46 end with three players remaining (93 end in an uncontested win).
For two players there were only 9 different sequences that did not terminate the game instead
of 184.

four players on any round after the pre-flop: 1504 sequences of betting actions end with two
players remaining, 874 end with three players remaining, and 161 end with all four players
remaining (792 end in an uncontested win).

Figure 4.2: Branching Factor for Structured Betting Texas Hold’em With a Maximum
of 4 Bets/Round
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tage of a more realistic consideration of some outcomes. For example. consider the
situation where you are at the river against one opponent, the pot contains $20. and
your options are to check or bet $4. Given the probability array of your opponent’s
model you calculate by enumeration that you have only a 10% chance of having the
stronger hand. The model tells you that, when faced by a check in this situation,
your opponent will check 100% of the time, and faced by 2 bet your opponent will
fold 30% and call 70%. You can therefore calculate the expected value (EV) of your
two options:

e check: win $20 10% of the time, lose 80 90% of the time.
EV =20+0.10 — 0 = 0.90 = 2.00.

e bet: since vour opponent will likely fold the weakest 30% of hands, and you
could only beat 10% of all hands (or the worst third of the hands they fold)
then there is no chance that you win if they call.

— opponent folds 30%: win $20 100% of the time.
— opponent calls 70%: win $24 0% of the time, lose $4 100% of the time.

EV = 0.30%(20+1.00) +0.70 % (24 %0.00 — 4+ 1.00) = 3.20. Therefore, it is more
profitable if you bet (due to the reasonable possibility of scaring your opponent
into folding).

This is a simple contrived example but it demonstrates how well an accurate
opponent model complements a simulation or enumeration system.

4.4 Findler’s Work

Nicolas Findler worked on and off for 20 years on a cognition-based poker-playing
program for Five-Card Draw [6] [7] [8]. He recognized the benefits of research into
poker as a model for decision-making with partial information. However, much of the
applicability of his work to ours is lost due to differing goals; rather than being con-
cerned about producing a high performance poker program, he focused on simulating
the thought processes of human players. Hence, to achieve this, instead of relying
heavily on mathematical analysis, his approach was largely based on modeling human
cognitive processes. He did not produce a strong poker player.

4.5 The Gala System

A more theoretical approach by computing scientists was taken by Koller and Pfeffer
[10]. They implemented the first practical algorithm for finding optimal randomized
strategies in two-player imperfect information competitive games. This is done in
their Gala system, a tool for specifying and solving problems of imperfect informa-
tion. Their system builds trees to find the game-theoretic optimal (but not maximal)
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strategy. However, even when considering only the two-player environment. only
vastly simplified versions of poker can presently be solved, due to the large size of
trees being built. The authors state that “... we are nowhere close to being able to
solve huge games such as full-scale poker, and it is unlikely that we will ever be able
to do so.”

4.6 Hobbyists

Several programs by hobbyists were examined to explore the architecture and ap-
proach used. The most common approach is expert-based, however simulation-based
approaches tend to be stronger (although more computationally expensive).

e xbot by Greg Reynolds uses an expert system which is manually patched when
weakness is observed.

http://webusers.anet-stl.com/~gregr/

e replicat by Stephen How also uses an expert system in combination with ob-
serving a large number of possible features about the hand and board (e.g.
three-straight).

e r00lbot by Greg Wohletz is perhaps the strongest of the three IRC programs.
For the pre-flop it uses Sklansky and Malmuth’s recommendations [14], and
for the post-flop it conducts a series of simulations (playing out the hand to
the showdown, typically 3,000 times) against N random hands (where N is
the number of opponents, and is artificially adjusted for bets and raises). The
actual action is dependent on what percentage of simulations resulted in a win.

e Smoke’em Poker is a Five-Card Draw program by Dave O'Brien. It uses an
expert system and has a set of rules for each opponent type (e.g. tight, loose).
http://www.cgl.uwaterloo.ca/~gmgrimsh/ poker.html

e There are two poker games by Johann Ruegg, Sozobon Ltd. Both the Seven-
Card Stud and Texas Hold’em games use a simulation-based approach where
the program plays the hand to the showdown several times against random

opponents. The resulting winning percentage is artificially adjusted depending
on the game state and compared against several hard-coded action thresholds.

ftp://ftp.csua.berkeley.edu/pub/rec.gambling/ poker/spoker.tar.Z

4.7 Architecture

Consideration of these other programs and the various advantages of the different
approaches led us to select a primarily enumeration-based approach for the purposes
of this thesis. There were several reasons:
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o The expert system is too limited and context sensitive (the game is far too
complex to cover all possible contexts). It also is inflexible, and will inherit any
error in the designer’s approach to the problem.

e The game-theoretic optimal strategy is very complex to compute and, if such
a system could be built, presumes optimal play on the part of the opponents.
We are working under the assumption that our opponents will make errors and
therefore maximal play is preferable.

e An enumeration-based approach is easy to combine with an opponent modeling
system based on the probability distribution of possible opponent holdings.

e Most of the desired values are computationally feasible in real-time. Where this
is not so, there are many ways to calculate good approximations of the measures
(e.g. random simulation, pre-computation, heuristics).

e Values calculated by enumeration (as opposed to simulation) are more accurate
since random sampling introduces variance, and rule-based systems are subject
to systemic error.

Loki (Figure 4.3) is a complete poker-playing program (able to play a full game
of Texas Hold’em unaided). There are three main co-dependent components which
control the play of the program. These components are discussed in the following
chapters. They are hand evaluation (using the opponent models and game state, it
generates values which roughly correspond to the probability of holding the strongest
hand), betting strategy (it uses the values generated by hand evaluation, the op-
ponent models, and the game state to determine the best action), and opponent
modeling (it translates the betting history of the opponent into information about
betting behavior and possible hands held).

4.8 Summary

Three main approaches to program design were summarized in this chapter: the
expert system (hard-coded rules based on the knowledge of an expert), game-theoretic
optimal strategies, and simulation/enumeration-based. The first two approaches have
some obvious limitations. However, the different approaches can be combined to
various extents.

While there are many poker-playing programs, none are very strong, and few
make source code or a description of the inner workings available. Also, with the
exception of Findler and Koller/Pfeffer there are few resources in the computing
science literature. There is also little on building a high-performance poker program,
except for some ideas presented in [2].
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Chapter 5

Hand Evaluation

Accurate assessment of your winning chances is necessary when considering the cost
of playing versus the payoff with pot odds. Hand evaluation uses the opponent models
and game state to calculate estimates of the winning chances of your hand. However,
since there are more cards to come on the flop and turn, the present strength of a
hand is insufficient information. For this reason, post-flop hand evaluation is broken
into two parts: strength and potential. Strength is the probability of a hand currently
being the strongest and potential is the probability of the hand becoming the strongest
(or of losing that status to another hand) after future cards have been dealt. Due
to the computational complexity of potential for the pre-flop (the first two cards),
evaluation in this stage of the game is given special treatment.

5.1 Pre-Flop Evaluation

Hand strength for pre-flop play has been extensively studied in the poker literature.
For example, [14] attempts to explain strong play in human understandable terms, by
classifying all the initial two-card pre-flop combinations into nine betting categories.
For each hand category, a suggested betting strategy is given, based on the strength
of the hand, the number of players in the game, the position at the table (relative to
the dealer), and the type of opponents. For a poker program, these ideas could be
implemented as an expert system, but a more general approach would be preferable.

For the initial two cards, there are (522) = 1,326 possible combinations, but only

169 distinct hand types (13 paired hands, (123) = 78 suited hands and 13 = (g) =
78 unsuited hands). For each one of the 169 possible hand types, a simulation of
1,000,000 games was done against each of one, three and six random opponents (to
cover the 2, 3-4 and 5 or more player scenarios!). Each opponent was simple and
always called to the end of the hand. This produced a statistical measure of the
approximate income rate (I/R) for each starting hand; income rate measures the

return on investment.
net_bankroll

_ 5.1
hands_played (5.1)

IR

1We consider these the most important groupings. See Appendix B.
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The computed values are presented in Appendix A. These numbers must always be
viewed in the current context. They were obtained using a simplifying assumption,
where the players always call to the end. However, this experiment gives a good first
approximation of how strong a hand is. For example, in the 7-player simulation the
best hand is a pair of aces and the worst hand is a 2 and 7 of different suits. While
the absolute IR value may not be useful, the relative order of the hands is. As we
discuss in Appendix A, there is a strong correlation between these simulation results
and the pre-flop card ordering given in [14].

5.2 Hand Strength

Hand strength assesses how strong your hand is in relation to what other players may
hold. Critical to the program’s performance, it is computed on the flop, turn and river
by a weighted enumeration which provides an accurate estimate of the probability of
currently holding the strongest hand. This calculation is feasible in real-time: on
the flop there are 47 remaining unknown cards so (4;) = 1,081 possible hands an

opponent might hold. Similarly there are (426) = 1,035 on the turn and (425) = 990
on the river.

Figure 5.1 contains the algorithm for computing hand strength. The bulk of the
work is in the call to the hand identification function Rank which, when given a hand
containing at least 5 cards, determines the strongest 5-card hand and maps it to a
unique value such that stronger poker hands are given larger values and hands of
equal strength are given the same value. Rank must be called ('2‘) + 1 times where n
is the number of unknown cards.

The parameter w is an array of weights, indexed by two card combinations, so the
function determines a weighted sum. It is the weight array for the opponent under
consideration (each possible two-card holding is assigned a weight). When the array
is normalized so the sum is 1, the weights are conditional probabilities meaning “for
each possible two-card holding what is the probability that it is the hand held by this
opponent” (given the observed betting). Without normalization, the values in the
weight table are conditional probabilities meaning “what is the probability that this
opponent would have played in the observed manner” (given they held this hand).
Without opponent modeling, it can simply be filled with a default set of values, either
a uniform or ‘typical’ distribution. Under uniform weighting each entry in the array
is equal (an appropriate representation if the opponent has a random hand). A more
typical distribution would be a set of values based on the IR tables. This is the only
model information used directly by the hand strength enumeration.

Suppose our starting hand is A)-Qé and the flop is 30-44-JQ (1,081 possible op-
ponent hands). To estimate hand strength using uniform weighting, the enumeration
technique gives a percentile ranking of our hand (our hand rank). We simply count
the number of possible hands that are better than ours (any pair, two pair, A-K, or
three of a kind: 444 hands), how many hands are equal to ours (9 possible remaining
A-Q combinations), and how many hands are worse than ours (628). Counting ties as
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HandStrength (CARDS ourcards, CARDS boardcards, FLOAT wJ)

{

RANK ourrank, opprank
CARDS oppcards
FLOAT ahead, tied, behind, handstrength

ahead = tied = behind = 0
ourrank = Rank(ourcards, boardcards)
/+ Consider all two card combinations of the remaining cards */

for each case(oppcards)

{

opprank = Rank(oppcards, boardcards)

if (ourrank>opprank) ahead += w[oppcards]
else if (ourrank==opprank) tied += w[oppcards]
else /* < */ behind += wloppcards]

}

handstrength = (ahead+tied/2) / (ahead+tied+behind)
return (handstrength)

}
Figure 5.1: HandStrength Calculation

half, this corresponds to a hand rank (HR) of 0.585. In other words there is a 58.5%
chance that our hand is better than a random hand (against non-uniform weights we
call it hand strength, or HS).

This measure is with respect to one opponent, but when all opponents have the
same weight array it can be roughly extrapolated to multiple opponents by raising
it to the power of the number of active opponents (H Rn is the hand rank against n
opponents, HR = HR,).

HR, = (HR,)". (5.2)

It is not an exact value because it does not take into account interdependencies
arising from the fact that two players cannot hold the same card. However, thisis a
secondary consideration.

Continuing the example, against five opponents with random hands the adjusted
hand rank is HSs = .585° = .069. Hence, the presence of additional opponents has
reduced the likelihood of our having the best hand to only 6.9%.

This example uses a uniform weighting: it assumes that all opponent hands are
equally likely. In reality this is not the case. Many weak hands like 40-J& (IR < 0)
would have been folded before the flop. However, with the example flop of 30-4&-JO,
these hidden cards make a strong hand that skews the hand evaluations. Specifically,
accuracy of the estimates depend strongly on models of our opponents (the array of
weights w). Therefore, we compute weighted sums to obtain hand strength (HS). As
with HR, HS, is the hand strength against n opponents and HS = HS).

HS. = (HS)". (5.3)
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5.2.1 Multi-Player Considerations

The above description of the weighted enumeration system for hand strength is in-
tended for one opponent. When the system was first put to use, the weight array
was common to all opponents (either uniform or some fixed ‘typical’ distribution) so
HS, was easily extrapolated by using Equation 5.3. However, our opponent modeling
system will be computing a different set of weights for each specific opponent.

The correct approach would be to treat each possible case independently. For
example, one possible case is that player 1 holds A©V-Q$ and player 2 holds QO-
J&. To handle this distinction, the function would need an extra iteration layer for
each opponent (and would still be dependent on the order of the iteration). For each
possible case it would then use a weight w(z] = wi[z1] * wo[z2] * ... ¥ wn[za] (Where
z is the complex subcase, z; is the subcase for the cards held by player ¢ and w;[zi]
is the weight of that subcase for player i). The weight of the complex subcase given
in the example is wW[AD-QO-QU-J&] = wi[AV-QO] * w[QV-Jd]. The increase in
computational complexity is substantial (approximately a factor of 1,000 for each
additional player) and becomes infeasible with only 3 opponents.

There are two simpler methods to approach this problem and obtain good esti-
mates of HS,. The first calculates HS,, for all opponents p; (such that 1 = l..n)
given each respective weight array. It then uses the equation

HS,=HS, *HS,, *..x HS,,. (5.4)

The second method calculates H S, using a special weight array, called the field array,
computed by combining the weight arrays of all active players. H S, is then calculated
with Equation 5.3. The use of the field array as an estimate is a compromise between
computational cost and accuracy. It represents the entire table by giving the average
weights of the opponents. The process of obtaining hand weights and generating this
array is described in Chapter 7.

Both of these methods are only estimates because they ignore the interdepen-
dencies arising from the fact that two players cannot hold the same card. Several
situations were examined from data gathered during play against human opponents.
For both methods, the absolute error was measured with respect to the correct full
enumeration but only against two or three active opponents (four opponents was too
expensive to compute). For the first method (Equation 5.4), this testing revealed
the error never exceeded 2.19%. The average error was 0.307% with two opponents
and 0.502% with three opponents. For the second method (using the field array and
Equation 5.3), the error never exceeded 5.79% for two opponents and 4.15% for three
opponents. In fact, for two opponents only 59 out of 888 cases had an error larger
than 2% (and 20 out of 390 three opponent cases). The average errors were 0.671%
and 0.751%. The estimated values were usually slight overestimates.

This isolated test scenario suggests that the first method is better but the differ-
ence is small. The error also appears to get slightly worse with additional opponents.
Loki uses the second method due to the faster computation and ease of introduction
into the present framework (particularly with respect to multi-player considerations
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for hand potential, as will be discussed later). We have not invested the time to
further explore the error arising from these interdependencies, however we believe it
is minor in comparison to the extra work that would be required for a very accu-
rate measure of HS,. Also, this amount of error is considered to be negligible given
that the error introduced by other components of the system tends to be greater in
magnitude.

5.3 Hand Potential

In practice, hand strength alone is insufficient to assess the quality of a hand. Hand
potential assesses the probability of the hand improving (or being overtaken) as addi-
tional community cards appear. Consider the hand 80-7¢ with a flop of 90-6&-20.
The probability of having the strongest hand is very low, even against one random op-
ponent (11.5%). On the other hand, there is tremendous potential for improvement.
With two cards yet to come, any ), 10, or 5 will give us a flush or a straight. Hence
there is a high probability that this hand will improve substantially in strength, so
the hand has a lot of value. We need to be aware of how the potential affects hand
strength.

This example describes positive potential (PPOT): the probability of pulling
ahead when we are behind. We can also compute the negative potential (N POT):
the probability of falling behind given we are ahead. Both of these can be computed
by enumeration in real-time. We have 1,081 possible subcases (opposing hands for
which we have weights) on the flop and 990 on the turn. For each subcase we can
either do a two card look-ahead (consider the 990 combinations of the next two cards
on the flop) or a one card look-ahead (45 cards on the flop and 44 on the turn). For
each subcase we count how many combinations of upcoming cards result in us being
ahead, behind or tied. The total number of cases to be considered 1is:

e PPOT, and NPOT, (two card look-ahead on the flop): 1,070,190

e PPOT; and NPOT; (one card look-ahead): 48,645 on the flop and 43,560 on
the turn

The potential for A{-Qd/30-4d-JO with uniform weighting is shown in Table
5.1. The table shows what the result would be after seven cards, for cases where we
are ahead, tied or behind after five cards. For example, if we did not have the best
hand after five cards, then there are 91,981 combinations of cards (pre-flop and two
cards to come) for the opponents that will give us the best hand. Of the remaining
hands, 1,036 will leave us tied with the best hand, and 346,543 will leave us behind.
In other words, if we are behind we have roughly a PPOT; = 21% chance of winning
against one opponent in a showdown. Additionally, if we are currently ahead and
that opponent plays to the showdown, we have roughly a NPQOT; = 27% chance of
losing.

If Towcot Tefers to the values in the table (for brevity we use B, T, A, and S for
Behind, Tied, Ahead, and Sum) then PPOT; and N POT,; are calculated by:
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5 cards 7 cards
Ahead Tied | Behind Sum
Ahead | 449,005 | 3,211 | 169,504 621,720 = 623x990
Tied 0| 8,370 540 8,910 = 9x990
Behind | 91,981 [ 1,036 | 346,543 439,560 =  444x990
Sum | 540,986 | 12,617 | 516,587 | 1,070,190 = 1,081x990

Table 5.1: Unweighted potential of AO-Qé#/30-4&-JO

T, T:
Tb“4+-—%dl+'—%i

PPOT; = 5.5
: Tgs+ T—';i (5:5)

Tar , Trp
NPOT, = 148+ 75" + 73 (5.6)

Trs
Tas+ 5=

Figure 5.2 describes the algorithm for two card look-ahead from the flop. The
parameter w is, as for Figure 5.1, for the weight array of the opponent (opponent
modeling is discussed later), and can simply be a uniform set of weights. The Hand-
Strength calculation is easily embedded within this function, and the one card look-
ahead function HandPotentiall is essentially the same as HandPotential2. In this
function, the inner loop is executed (427) * (425) = 1,070,190 times and so the Rank

function is called
47 47 45
1+ (2) + 2% (2) *(2) = 2,141,371

times. However, there are many redundant calculations. There are only (427 ) = 1,081

possible unique calls in the inner loop to Rank for ourcards and only (447) = 178,365
for oppcards (this redundancy exists because there is no order constraint to the eval-
uation of poker hands). Therefore, with pre-calculation, HandPotential2 need only

make 47 47 47
= 180,
() () + () - o

calls to Rank (although the number of times the inner loop is executed is not reduced
from 1,070,190). Similarly, HandPotentiall originally needs

1+ (427) +2=* (427) * 45 = 98,372

calls to Rank on the flop (92,116 on the turn) but with pre-calculation only
47 47 47
() (5) ¢ () =
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HandPotential2(CARDS ourcards, CARDS boardcards, FLOAT w[l)
{

/* Each index represents ahead, tied and behind. */

FLOAT HP[31[3] /* initialize to O =/

FLOAT HPtotal[3] /#* initialize to O */

FLOAT ppot2,npot2

RANK ourrankS,ourrank?7, opprank

CARDS additionalboard

INTEGER index

ourrank§ = Rank(ourcards, boardcards)
/* Consider all remaining two card combinations for the opponent */

for each case(oppcards)

{

/* after 5 cards */
opprank = Rank(oppcards, boardcards)

if (ourrankS>opprank) index = ahead
else if (ourrankS==opprank) index = tied
else /* < %/ index = behind

HPtotallindex] += w[oppcards]

/* Consider all possible two card board combinations to come */
for each case(additionalboard)
{

board = boardcards + additionalboard

ourrank? = Rank(ourcards,board)

opprank = Rank(oppcards,board)

if (ourrank7>opprank) HP[index] [ahead] += w[oppcards]

else if (ourrank7==opprank) HP[index][tied] += wloppcards]

else /% < */ HP [index] [behind] += wloppcards]
}

}

/* ppot2: we were behind but moved ahead (Equation 5.5) %/

ppot2 = (HP[behind] [ahead] + HP[behind][tied]/2 + HP[tied] [aheadl/2)
/ (HPtotal[behind] + HPtotall[tied]/2)

/* npot2: we were ahead but fell behind (Equation 5.6) */

npot2 = (HP[ahead] [behind] + HP[ahead] [tied]/2 + HP[tied] [behind]/2)
/ (HPtotal[ahead] + HPtotall[tied]/2)

return(ppot2,npot2)

Figure 5.2: HandPotential2 Calculation
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on the flop (17,251 on the turn).
In Table 5.1 we compute the potential based on two additional cards and it pro-

duces 1036
91,981 + 232 + 2

439,560 + 2310

3.211
169,504 + 3211 4 242
621,720 + 2319

The calculation for one card lookahead is exactly the same as the above calculation,
except there are only 44 or 45 possible outcomes instead of 990. With only one card
to come on the turn, we find PPOT, = 0.108 and NPOT, = 0.145. When combined
with an array of weights from opponent modeling (each subcase is weighted according
to the two card combination defining the subcase) the calculations provide accurate
probabilities that take into account every possible scenario. Hence, the calculation
gives smooth and robust results, regardless of the particular situation. PPOT, is used
in practice due to the greater complexity of using PPOT; (calculating the effective
odds, or how much it might cost to see a second card) as well as the calculation
time. On a 150 MHz SGI Challenge, using pre-calculation but otherwise unoptimized,
computing PPOT; from the flop typically takes 130 ms of CPU time and PPOT,
takes 3200 ms on average.

PPOT, = = 0.208, (5.

(&1}
)
~—

NPOT; = = 0.274. (5.8)

5.3.1 Multi-Player Considerations

As described in Section 5.2.1, Loki makes use of a field array provided by the opponent
modeling module which is representative of the entire set of active opponents. Unlike
hand strength, against multiple (two or more) opponents the PPOT and NPOT
values calculated with the field array are used without adjustment. The correct
calculation would be similar to the one described in Section 5.2.1 (accounting for
each player adds an extra iteration layer of approximately 1,000 subcases), but, for
potential, the value against one player is believed to be a simple but reasonable
estimate (high usefulness and low computational complexity).

Calculating potential in the context of multiple opponents is complex due to the
many interactions; there is no easy reduction to an approximate value similar to HS,,.
However, it is likely that the present estimates are typically optimistic and the correct
value would worsen with additional opponents. For example, consider the situation
where you have a straight draw (40-58/69-30-TQ) but you are unaware of any
tendencies of your opponents (i.e. uniform weight arrays). Each additional opponent
increases the chances that someone has a flush draw in hearts (in fact, it increases the
chances of any particular hand occurring). This means that ‘intersection cards’ like
9Q and 79 are worth less to you since the likelihood that they give you the winning
hand decreases, as does PPOT. For another example, consider that you hold top
pair (K&-T¢/69-3¢-TQ). Each additional opponent increases the chance that you
are up against a flush or straight draw so cards like a 2, a 7 or a heart are more likely
to give you a losing hand. Therefore, NPOT increases with additional opponents.
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But over-optimism is not always the case; muitiple opponents can improve your
chances. For example, if you have a straight draw with small cards (40-5db [ 6d-3O-
KQ) and your opponents are likely holding high cards, then each additional opponent
increases the chance that the upcoming card is not high. This will overall both
decrease N POT and increase PPOT, although additional players also increases the
size of the pot, which increases the value of our draw.

These are only rough examples intended to demonstrate the complex interactions
involved in multi-player considerations for hand potential. The actual effect of each
additional opponent is dependent on the probability distribution of possible hands
and its relationship to the probability distributions of the other players, as well as its
relationship to your needed cards.

5.4 Summary

This chapter describes the methods used for evaluating our hand in any particular
situation. The algorithms presented are intended to provide good estimates of your
winning chances.

For the pre-flop, we used an unsophisticated simulation technique for the cal-
culation of pre-flop income rates. We feel that these values are sufficient (will not
be the limiting factor to the strength of the program), although there is room for
improvement.

This chapter also describes the enumeration techniques used for evaluating hands
(both strength and potential) after the flop. The algorithms, particularly in multi-
player scenarios, abandon the treatment of some complexities in favor of simplicity
and computation time. We have not invested the time to fully explore the magnitude
of this error, however we believe it is minor in comparison to the savings in time and
complexity.



Chapter 6

Betting Strategy

Using the game state, opponent models and hand evaluation derived from that data,
the betting strategy determines whether to fold, call/check, or bet/raise. But exactly
what information is useful and how should it be used? The answer to these questions
are not trivial and this is one of the reasons that poker is a good testbed for artifi-
cial intelligence. One approach would be to use the game theoretic optimal betting
strategy, but, despite the fact that it is very complex to calculate, human opponents
do not play optimally so this may not be the best decision in practice (leading to the
most profit).

A minimal system could simply be based on hand strength (i.e. ignore hand poten-
tial and simply bet/call based on the immediate strength of our hand). Refinements
to the betting strategy would involve the addition of high-level strategy concepts (like
slowplaying or bluffing). For each decision to be made, one of several variables (like
PPOT) is compared to some threshold (which may be based on another variable,
like pot_odds). This structure uses expert knowledge but is easy to implement and
the overhead is insignificant. All of these refinements are intended to be quick ways
to select the play which (hopefully) has the largest expected value (E'V'), since com-
puting the exact EV is not feasible. There is a real-time constraint, in that a single
game of poker only takes a few minutes to play, and from Figure 4.2 we see that the
game tree can be very large.

This chapter first describes the pre-flop betting strategy (which is treated as a
special case). This is followed by an explanation of a simple post-flop (flop, turn and
river) betting strategy (using only hand strength) which serves as a template, and
then the measures and strategies that Loki uses for the post-flop rounds. Finally,
unimplemented strategies are discussed.

Note that this chapter is included for completeness. The betting strategy is (so
far, necessarily) ad hoc and therefore left undeveloped (it is a target for future im-
provement with computer-oriented techniques such as Monte Carlo simulation).
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6.1 Pre-Flop Betting Strategy

The implemented pre-flop betting strategy is preliminary and makes use of expert
information. It is sophisticated enough to not hamper overall performance so that
the focus can be put on post-flop play (the more interesting portion of the game).
Loki examines several variables, uses the expert knowledge to determine thresholds
for various betting actions, and chooses a strategy:

e MakeO: fold if it costs more than zero to continue playing, otherwise check.

e Calll: fold if it costs two or more bets to continue (and we have not already
voluntarily put money in the pot this round), otherwise check/call.

e Makel: like Calll except bet if there has not been a bet this round (with the
big blind this cannot happen in the pre-flop).

e Call2: always call/check (despite what the name of this strategy suggests., even
more than 2 bets).

e Make2: bet/raise if less than two bet/raises have been made this round, oth-
erwise call.

e Maked4: bet/raise until the betting is capped, otherwise call.

Except for the small blind, which is given special treatment, Calll and Call2 are
effectively not used, so there are really only 4 different strategies. Once a strategy
is selected it is fixed for all subsequent actions in the pre-flop. The small blind is a
special case due to only having to call one half of a bet (so Calll is really Call0.5
and Call2 is really Calll.5), and has fixed thresholds for these two strategies.

Calll (and hence Makel) has a special case folding requirement, that “we have
not already voluntarily put money in the pot this round.” This is a feature added
after testing with human opponents on IRC. Many players were very aggressive and
would raise frequently. This meant that often when Loki called the blind with a
decent hand (but not Call2 or better), two or more players would then raise, causing
Loki to fold. Due to this commonly exploited weakness, the kludge is necessary until
some amount of opponent of modeling is implemented into the pre-flop.

The thresholds for selecting a betting strategy are determined from a set of linear
formulas of the form

threshold(strategy) = base + increment * position (6.1)

where strategy is the betting strategy (e.g. Makel), base and increment are defined
by a human expert (see Appendix B), and position is the number of players to act
before it is the small blind’s turn again (so, if num_npot is the number of players
still in the pot, the small blind is position num_inpot — 1, the big blind is position
num_npot — 2, the first player to act is position num_inpot — 3 and so on, until the
button (dealer) who is position 0).
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For example, if Loki is playing tight against 3-4 players, the [base, increment]
values used for Make2 are [200,50] (based on Table B.1) so the formula used is

threshold(Make2) = 200 + 50 = position

based on Equation 6.1. That is, the coefficients used for the linear formula depend
on both the variable (group) and the parameter (tightness).

The variable group is based on the expected number of players (E num_players),
which is

E_num_players = num_guaranteed + (6.2)
probability_play * (num _inpot — num_guaranteed).

There are three cases of interest for the expected number of players. We round
E_num _players to the nearest integer and determine the appropriate group based on
what range that value falls in: “2 players”, “3-4 players” and “5 or more players” (see
Appendix B). The state variable nurn_guaranteed is the number of players who have
already put money in the pot (and have presumably committed to playing). This
includes the blinds as well as ourselves (we assume we will play). Probability play
is an expert-defined value for the average playing percentage of players (by default
0.60). Appropriate opponent modeling would provide much better estimates for this
value, based on the observation of the current session .

The parameter tightness is a setting which affects the percentage of hands that
Loki will play (indirectly, by selecting a different set of thresholds). The three settings
are tight, moderate, and loose (the default). With ten players these roughly translate
into playing 18%, 21% and 24% of all hands (the distinction is not large so the terms
are a misnomer — all levels are relatively conservative).

There is one [base, increment] pair per set of group, strategy and tightness
values (Table B.1) so there are 27 pairs total (since MakeO is the default strategy
only three thresholds are needed for determining the strategy). Once the thresholds
are determined, the actual strategy selected is dependent on the pre-calculated income
rate (I R) of the hole cards. Figure 6.1 describes the algorithm for selecting a strategy.

For example, consider a six player game. We hold AO-T¢ and are playing tight.
The first two players put in blinds, the next two fold, and it is Lok?’s turn. There is
still one player, the button, who has not yet acted. So position =1, numinpot = 4
and num_guaranteed = 3 (including Loki). We then calculate

E_num_players =3+ 0.60 « (4 —3) = 3.6
and use this to determine group = “3-4 players”. Then, using Table B.1 we calculate

threshold Makel) = 504501 =100,
thresholdMake2) = 200 +50+1 =250, and
thresholdMake4) = 580 +0+«1 = 580.

Finally, we find the value of our hand is /R = 491 and select the appropriate strategy.
Since 250 < 491 < 580, we select the Make2 strategy, and raise.
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/+ Called the first time we are asked for an action in the pre-flop,
* the selected strategy dictates the current and subsequent actions */
GetStrategyPreflop(CARDS myhand, STATE state, PARAMETERS param)

{

FLOAT E._num_players /* expected number of players */

INTEGER group /+ TWO, THREEORFOUR, or FIVEPLUS #/
FLOAT IR /* income rate */
FLOAT thresh(] /* indexed by strategies */

/* determine the group */
E.num players = state.num guaranteed +
param.probability_play * (state.num_inpot - state.num_guaranteed)
if (state.num_inpot < 2.5)
group = TWO
else if (E.num players >= 4.5)
group = FIVEPLUS
else
group = THREEORFOUR

/# calculate IR (see Appendix A) and thresholds. */

IR = IR_table[group,myhand]

/* only the small blind has different thresholds for CALL1 and CALL2 */
thresh = SetThresholds(group,param.tightness,state.position)

/* now use IR to select the appropriate strategy */

if (IR>=thresh [MAKE4])
strategy = MAKE4

else if (IR>=thresh[MAKE2])
strategy = MAKE2

else if (IR>=thresh[CALL2])
strategy = CALL2

else if (IR>=thresh[MAKE1])
strategy = MAKE1

else if (IR>=thresh[CALL1])
strategy = CALL1

else
strategy = MAKEO

return strategy

Figure 6.1: Pre-Flop Betting Strategy
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6.2 Basic Post-Flop Betting Strategy

A minimal system for betting or calling could be based solely on the immediate
strength of our hand. In fact, a more useful betting strategy could still use this
basic system as a template and simply proceed to a hierarchy of alternative branches
whenever the current decision is rejected. For example, if the initial betting decision
based on hand strength decides to fold we could fall back on another consideration
such as semi-bluffing. If we then do not decide to semi-bluff, we fall back on to another
decision like pot odds. Each time the proposed action is rejected the next decision
point can be checked against some defined order of priority. Priority is dependent
on how aggressive the action is. Pot odds and showdown odds (described below) are
low priority because they are passive calling/checking decisions (if we always used the
pot odds decision first, we would never bet). However, a strategy like check-raising
is only used with a very strong hand so it would be given the highest priority (i.e.
considered first).

A simple betting strategy, based on hand strength, is described in Figure 6.2. It
uses a function called Make which is used to show a level of strength appropriate for
the hand held. The Make function is used in the pre-flop betting strategy and to
some extent in the actual post-flop betting strategy.

6.3 Effective Hand Strength

The majority of betting decisions are made based on a variable which represents the
strength of Loki’s hand in the current situation. Basic hand strength (H Sn) is the
probability that it presently has the strongest hand. This alone is not fully adequate
when there are more cards to come which can easily change the situation. For this
reason, we compute the potentials PPOT and N POT, which tell us Loki’s probability
of winning/losing given that it is currently behind/ahead. Using these values we can
compute an estimate of Loki's chances of winning at the showdown (or of being the
strongest after the next card, if it is the flop and we are using PPOT;). We define
effective hand strength as

EHS = HS. + (1 — HS,) * PPOT — HS, » NPOT. (6.3)

Observe that on the river EHS = HS,, since there are no more cards to be dealt.
However, there are some problems with including N POT in the calculation. First,
when we bet we do not know if our opponent will play. Second, in many situations
where we compute a high NPOT, it is often a better strategy to bet/raise to force
the opponent out of the hand. So when effective hand strength is used as a betting
decision (as opposed to a calling decision) it is preferable to use a more optimistic
version, EHS’:
EHS' = HS, + (1— HS,) * PPOT. (6.4)

This is an estimate which means “the probability that we are currently leading, or
that we will improve to the best hand by the showdown.”
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/* BET/RAISE: when bets_to.make < num._bets
* otherwise CHECK/CALL/FOLD appropriately #*/
Make (INT bets_to_make, STATE state)

{

/* bets_tomake is the level of strength we want to show

* num bets is the number of bets or raises made by all players this round
* bets_put_in is the number we have voluntarily put in this round

* bets_tocall is the number of bets we have yet to call */
if (state.num._bets < bets_to._make)

return BET/RAISE
/* We will call anything if

* - we have voluntarily put money in the pot this round (see Section 6.1)
* - bets_tomake >= 2 */
else if (state.betsput_in > O || bets_tomake >= 2

|| state.bets to.call<=bets_to.make)

return CHECK/CALL
else

return FOLD

}

GetAction(FLOAT HSn, STATE state, PARAMETERS param)

{

if (HSn >= param.make2)
return Make(2,state)

else if (HSn >= param.makel)
return Make(1,state)

aelse
return Make(0,state)

Figure 6.2: Simple Betting Strategy

The basic betting decision used in Loki is similar to Figure 6.2, with the exception
that EHS' is used instead of HS,. A Make2 hand is defined as a hand with EHS’' >
0.85. We raise when less than 2 bets have been made this round, otherwise we call. A
Makel hand is defined as a hand with EH S’ > 0.50. We bet if no one else has, and
call otherwise, except when it is 2 bets to call and we have not already called a bet
this round. Finally, with EH S’ < 0.50 we consider the strategies of semi-bluffing, pot
odds and showdown odds (instead of resorting to MakeO as in Figure 6.2). These
thresholds are an ad hoc but reasonable way to decide when to bet based on strength.

The lack of the ability to raise beyond two bets after the flop is a historical artifact,
although not likely to be very limiting. Of course it must be addressed eventually,
but it is a low priority function and hopefully will be superseded by a more general
betting strategy.
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6.4 Semi-Bluffing

The decision to semi-bluff has the next highest priority (meaning if we do not bet or
call based on EH S’ we consider semi-bluffing). If we are faced with 0 bets and have a
high enough potential to call both a bet and a raise, we will open the betting ourselves.
If none of the other players bet or raise we will continue to bet in subsequent rounds
even without sufficient potential (continuing to represent a strong hand while there
is a reasonable chance of winning the pot immediately). Semi-bluffing is used when

PPOT >= Pot_.Odds2, where

2 x bet_size

—. 6.5
(pot_size + 4 * bet _size) + 2 x bet_size (6.5)

Pot_Odds2 =

The term ‘2 * bet_size’ represents the bet and raise we are saying we can call. The
term ‘4 * bet_size’ represents the money the bettor and raiser will be putting in to
the pot to match ours (2 bets each, including the assumption that the initial bettor
would call the raise). Since it is not possible to know how much is going to go into
the pot, we do this as an approximation of the pot odds we would be getting.

Bluffing in this manner has a positive side effect by contributing to deception. If
Loki never bluffed the human opposition would recognize this after a few showdowns
and would quickly adapt, folding when faced with a bet or raise (lowering winnings).
In fact, since Loki bluffs infrequently, the more experienced players on IRC often
detect and exploit this predictable pattern.

6.5 Calling With Pot Odds

Pot odds is an important concept that differentiates poker from many other games,
and contributes to its usefulness as a testbed for concepts in the real world. Pot odds
is the comparison of your winning chances to the expected return from the pot. For
example, if there is only a 20% chance that Loki has the best hand on the river, should
we fold, call or bet? Assume the pot contains $§20 after the only opponent bets $4.
Calling in this situation will lose 4 times out of 5, at a cost of $4 each time. However,
we win 1 time out of 5 for a profit of $20. Therefore, under these assumptions, a call
is better than a fold, resulting in an average profit of $0.80 per hand. However, if the
pot only contained $12, we should fold, since calling would yield an average loss of
$0.80 per hand.

On the flop and turn the calling decision is based on a slightly different concept.
If PPOT = 0.20 then there is a 20% chance that the next card will give Lokt a very
strong hand. It does not necessarily win the hand, but for the sake of pot odds, we
consider this to be the chance that Loki will clinch the hand with the next card (the
current pot is our winnings). This is a basic decision and does not take into account
other nuances such as the fact that the other 80% of the time Lok: may still have a
reasonable chance of winning.

To make this calling decision we verify that the pot odds justify paying to receive
one more card (or to play the showdown when we are on the river). We call when

39



PPOT > Pot_Odds (or HS, > Pot_Odds on the river), where

to_call

Pot_Odds = (6.6)

pot_size + to_call’

6.6 Calling With Showdown Odds

Calling with pot odds is based on the immediate situation (the cost to see one more
card) and is based purely on potential for improvement (for the flop and turn). It does
not cover situations where Loki has both a moderate PPOT and a mediocre HS,
but neither is good enough to justify a call. For this reason, we introduce calling
when EHS >= Showdown_0Odds (since this is not a decision to bet, we must include
NPQOT, so EHS’ is not used). Showdown odds is a defensive measure that ensures
the opponent cannot win simply by betting at every opportunity. By calling whenever
our hand is strong enough to show a profit in the long run, Loki discourages frequent
bluffing by the opponent.
On the turn,

to_call + bet_size

Showdown_Odds(turn) = (6.7)

pot_size + to_call + 2 x bet size’
Expecting to face one more bet on the river, we add one bet to the cost and one to
the pot for the bet we expect to be made. On the flop,

to_call + 4 * bet size
pot_size + to_call + 8 = bet _size’

Showdown_Odds( flop) = (6.8)

This case is more complex. The bet size doubles going to the turn and we expect
to face (on average) one more bet on both the turn and river. For this reason,
four bets of the current size are added to the cost and to the pot. This is a first
approximation and ignores much of the information available, such as the number of
players. Additionally on the flop it would be more appropriate to re-evaluate EHS
with PPOT, and NPOT,. However, it is sufficient to capture the essence of the

strategy.

6.7 Other Strategies

The betting strategy in Loki is a simple approach to enable the use of the more
sophisticated hand evaluation system. A preferable approach would be to redesign
the system and attempt to make decisions based on computation of expected values
(perhaps by simulations playing out the game many times). However, in our expert-
strategy dependent architecture there are several more simple refinements that could
be made to improve performance. Two categories of refinements are unpredictability
and deception.

Unpredictability is a simple addition that makes it harder for the opponent to
build a model of the program’s play. Consider adding unpredictability to the betting
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based on an EHS’ decision: we could use a linear scale so that we bet 50% of the
time with a 0.50 hand, 0% of the time with a 0.40 hand and 100% of the time with
0.60 hand.

Deception includes strategies such as pure bluffing, slowplaying and check-raising.
It causes the opponent to make wrong assumptions about the current state of the
game. Deception can also be used to make a play that does not necessarily lead
to the highest expected value for the current game but rather is intended as “false
advertising” to indirectly lead to increased profits in future hands. To be complete,
all possible actions that one can witness from Loki should have a dual interpretation
so no conclusions can be made with certainty. For example, in the present system
(without check-raising), if Loki checks, a knowledgeable observer can infer that Lok:
has a hand with EHS’ < 0.5.

We have included some of these deceptive strategies successfully in later versions:
check-raising, pure bluffing (betting with a weak hand on the river) and balancing
raises (sometimes raising instead of calling). They are currently used unpredictably
(randomly). We also occasionally check-raise with a mediocre hand, so our opponents
cannot infer that we always hold a strong hand when we check-raise.

6.8 Summary

The full betting strategy algorithm is presented in Figure 6.3. It is an incomplete
expert system using the objective hand evaluation techniques for the betting decisions,
used for its easy implementation and low cost. This version has not been adjusted to
use the opponent modeling system, which was added afterwards. A more computer-
oriented approach would be preferable (for example, computing expected values by
playing out several simulations) but the present system is sufficient to not significantly
hamper the performance, and to allow for the easy introduction and testing of other
high-level betting strategies (like semi-bluffing).
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/* Uses the Make() function defined in Figure 6.2. #*/
GetAction(FLOAT EHS, FLOAT EHS’, FLOAT PPOT,, STATE state, PARAMETERS param)

{

FLOAT pot_odds,pot_odds2,showdown.odds,showdown_cost

/* reset the semi-bluff flag on the flop or if someone has bet or raised */
if (state.round == FLOP || state.bets_to_call > 0)
state.semi bluff flag = FALSE /* may have been set in a previous round */

/% bet based on strength */

it (EHS’ >= param.make2)
return Make(2,state)

it (EHS'’ >= param.makel)
return Make(1,state)

/* decide to semi-bluff, check otherwise (no further betting decisiomns) */
if (state.betsto_call == 0)
{

pot_odds2 = 2sstate.betsize / (state.pot.size + 6*state.bet size)

if (state.semibluff flag || (state.round != RIVER & PPOT; >= pot_odds2))

{
state.semibluff flag = TRUE
return BET
}
return CHECK /* all following decisions are CALL/FOLD */

}

/* check pot odds */
pot_odds = state.bets_tocall / (state.pot_size + state.bets_to_call)
if (state.round == RIVER && EHS >= pot._odds)
return CALL
if (state.round != RIVER && PPOT; >= pot_odds)
return CALL

/* check showdown odds - on flop and turn only */
if (state.round == RIVER)
return FOLD
if (state.round == FLOP)
showdown_cost = state.bet size * 4
else
showdown_cost = state.bet size
showdown_odds = (state.bets_to._call + showdown_cost) /
(state.pot.size + state.bets._to_call + 2*showdown.cost)
if (EHS >= showdown_odds)
return CALL

/* give up */
return FOLD

Figure 6.3: Post-Flop Betting Strategy
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Chapter 7

Opponent Modeling

In strategic games like chess, it is acceptable to assume that the opponent is perfect
because that assumption does not result in a significant loss in performance for the
algorithm against weaker players. Opponent modeling has been attempted in two-
player games as a generalization of minimax but with limited success [5] [9]. In
contrast, not only does opponent modeling have tremendous value in poker, it can be
the primary distinguishing feature between players at different skill levels. If a set of
players all have a comparable knowledge of poker fundamentals, the ability to alter
decisions based on an accurate model of the opponent may have a greater impact on
success than any other strategic principle.

Having argued that some form of opponent modeling is indispensable, the actual
method of gathering information and using it for betting decisions is a complex and
interesting problem. Not only is it difficult to make appropriate inferences from
certain observations and then apply them in practice, it is not even clear how statistics
should be collected or categorized.

This chapter describes opponent modeling in Loki. Using the betting history of
the opponents, it determines a likely probability distribution for their hidden cards
which is used by the hand evaluation system. A minimal system might use a single
fixed model for all opponents in a given hand, based on the cards played to the flop
by typical players. The system in place in Loki generates a model for each opponent
and maintains information between games. It is a simplistic first approximation that
takes specific observed information and transforms it to a more useful form. However,
this is sufficient to demonstrate a significant performance improvement using only a
simple analysis of context.

The first section discusses the representation of the model: the action frequen-
cies for select decision categories and the weight array for all the possible two card
holdings. The second section explains the learning system (how the weight array
is determined and how the action frequencies are used for this). The final section
discusses how the weight array is used in hand evaluation, in particular how the field
array is calculated.
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7.1 Representation

There are two structures that comprise an opponent model, the weight array and the
action frequencies, and both are updated by the learning portion of the opponent
modeling system. The weight array is actually a model of the opponent’s hand; it is
reset at the beginning of each hand and contains information pertaining to what cards
the opponent may be holding. It is used by the hand evaluation system to give more
accurate estimates of hand strength. The action frequencies are inter-game statistics
on how many times the opponent has taken each action in a given situation. They
are used by the learning system to appropriately update the weight array, and they
could be used by the betting strategy system.

7.1.1 Weight Array

The weight array is a model of the opponent’s hand. Each opponent p has an array
of weights w,[h] where h represents each possible two card hand. There is a weight
associated with each h (reset to 1 each new hand) which approximately represents the
conditional probability that player p would have played in the observed manner (given
that they held hand k). We call these values weights because they act as multipliers
in the enumeration computations. If we want a probability distribution of possible
hands held by p, we normalize the array by dividing each entry by the total sum of
all the entries (the number of valid entries depends on which hands are still possible).
The normalized entries w)[k] represent the conditional probability that player p holds
hand % (given the betting history).

This is a very detailed representation, although there is some error since interde-
pendencies are not considered. In the multi-player scenario we do not address the
fact that different opponents cannot hold the same card. For example, if we assign a
high relative probability to one specific opponent holding an Ace, we do not reduce
the relative probabilities of the other opponents holding an Ace. This also means
that when a player folds, the information regarding which hands that player may
have held is discarded. The weight array is not adjusted with respect to the weight
arrays of the other opponents. However, we feel this error is minor in comparison to
the savings in complexity and computation time.

7.1.2 Action Frequencies

When an opponent’s action is used to adjust their weight array, it is important to take
into account what type of opponent it is. As a first approximation we can assume
all opponents play the same (e.g. raise with the top 15% of hands, and so on). In
this case, all that matters when adjusting the weight array is the action taken, and
not the type of player. This is called generic opponent modeling because the re-
weighting system is identical for each player. However, initial tests against human
opponents revealed that this was an incorrect assumption. A loose and aggressive
opponent might bet with almost anything and therefore a bet should not be taken
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too seriously. On the other hand, a tight and passive opponent will usually only bet
with a very good hand.

To account for this we introduce specific opponent modeling. Statistics for each
opponent are tabulated and used to calculate betting frequencies, and these frequen-
cies adjust how the re-weighting system works. For example, if we observe that a
certain opponent bets 80% of the time when acting first on the flop, then we will
take this into account when adjusting the weight array for a bet observed by that
opponent in that same situation.

This introduces a new problem. Statistics can be retained for a large number of
categories. Consider, for example, that we index each frequency by the number of
active opponents (1, 2, 3+; 3+ is the ‘3 or more’ category), total raises this round
(0, 1, 2+), bets to call (0, 1, 2+), and game round (pre-flop, flop, turn or river). The
‘n+’ classification is useful for putting together similar cases. In this example, each
situation fits into one of 3+ 3 * 3 * 4 = 108 categories. It would take a large number
of observed games before we had sufficient data for some categories. In fact, this
categorization could easily be made more complex by also taking into account other
important variables such as table position, remaining callers, and previous action
taken (to catch advanced strategies like check-raising).

The finer the granularity of the data collected, the harder it is to get meaningful
information (more observations are required). There are two ways to make it more
manageable. The first way is to distinguish many different categories for the data
collection phase (a fine level of granularity) and then combine classes that have similar
contexts in the data usage phase. The other, less sophisticated, approach is to simply
have few different categories for the data collection phase. This allows the frequency
calculations of the data usage phase to be quick and simple. This is what we have
done.

Data is categorized into 12 categories, indexed by (0, 1, 2+) bets to call and
the 4 different game rounds. This is a simple first approximation but is sufficient
to determine if this level of opponent modeling can be beneficial. [t also has the
advantage of enabling the program to learn ‘quickly’, although less accurately. It is
easy to adjust the definition of the context for the purpose of gathering statistics. The
learning system (the re-weighting system that uses this information) is only interested
in the frequency of an observed action and not how that figure was calculated.

For each opponent p, we determine the category c of the observed action (the con-
tezt — amount to call and game round) and record the action a taken (fold, check/call,
bet/raise) by incrementing Tp[c][a]. When we need to know the frequency that a player
has taken a certain action in a certain situation, fy[c|[a], we simply compute the ratio
of T,[c][a] versus Sp[c] (the total number of actions recorded for that context):

Sple] = ng[CI[i], and (7.1)
sl = T, (72
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Default Frequencies

Until enough data has been accumulated for a category (20 points, this value was
selected arbitrarily), we weight the frequencies with hard-coded defaults' d[c][a]. and
mix the observed frequencies with the defaults, using linear interpolation:

frlella] * %El + d[c][a] * 30;213)2151 when S,[c] < 20;
flella] = (7.3)

frlella] otherwise.

However, each player will play the earlier rounds more than the later rounds (i.e.
more pre-flops than flops, and so on). Assuming that a player’s style does not change
drastically between rounds, we can take advantage of data gathered in prior rounds
and use only one set of defaults and a recursive definition of frequency. To this end,
we must first adjust the notation to consider the round. Given that the definition for
the category c is composed of a round r and number of bets to call b, we can also
define c as (r, b) where r = 0 for the pre-flop. Now we can recursively define the new
frequency function f” based on the reduced set of defaults d'[5][a]:

d'[b][a] when r < 0;

fiir,bllal =4 f2Ir,blla] + 28 + f2fr — 1,b][a] + 20=5elr8l  when S,[r, ] < 20;

20

fo[r, b][a] otherwise.
(7.4)
An alternative approach would have been to use Loki's own frequencies as the
default behavior for opponents, however the majority of human players on IRC were
observed to play much looser than Loki. The default frequencies were therefore based
on a typical IRC player (and do not involve any additional computation).

7.2 Learning

Each time an opponent makes a betting action, the weights for that opponent are
modified to account for the action. For example, a raise increases the weights for the
stronger hands likely to be held by the opponent given the flop cards, and decreases
the weights for the weaker hands.

With this re-weighting system we consider two distinct levels of modeling, as
discussed in Section 7.1.2. First, an opponent’s betting actions are used to adjust
the weights. The actual transformation function used for the re-weighting is inde-
pendent of the player in question. A different weight array is still maintained for
each opponent, but a raise observed in a certain category is treated the same for
all players. Second, we maintain data between games (the action frequencies) and

1Gee Appendix B for the values used.
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these frequencies are used to adjust the transformation function itself. This tech-
nique is called specific opponent modeling, because the re-weighting depends on the
opponent’s model. In fact, the only difference between the two levels is that without
specific opponent modeling, the re-weighting function always uses the generic default
frequencies (i.e. f [r,b][a] = d[b][a]).

The remainder of this section discusses the general idea of the re-weighting system.
and then presents the specific details with respect to the pre-flop and post-flop rounds.

7.2.1 Re-Weighting System

The weight adjustment for any particular subcase is based on the threshold hand
value needed for the observed action. The threshold is in turn based on the observed
frequency of folding, calling and raising of the player in question (or the default
frequencies when we are using generic opponent modeling or have insufficient data).
From these frequencies we deduce the average (u, representing the mean hand) and
spread (&, to account for uncertainty) of the threshold needed for the observed action.

The values ¢ and o define an expected distribution of hands to be played, realizing
a transformation function for re-weighting. We take some ranked distribution of all
possible hands held (/R for the pre-flop and EHS'’ for the post-flop rounds, meaning
we presume our opponents rank hands like we do) and each hand h is compared to
g and o and re-weighted accordingly (see Figures 7.1 and 7.2). When the value for
h is equal to yu, the re-weighting value is 0.5; when it is more than o below 4, it is
0.01; when it is more than o above g, it is 1 (the weight is unchanged); and when it
is within o of g it is linearly interpolated between 0.01 and 1 (we use a simple linear
interpolation because it is easy and we do not know what the distribution should look
like). Since we do not want to completely rule out any legal subcase we do not allow
the weight to go below 0.01.

The value p is based on the threshold needed for the observed action, which is in
turn based on the frequency. For example, consider that player p has been observed
100 times in the pre-flop with 2 bets to call: 20 times it was raised, 70 times called
and 10 times folded. If we wanted to re-weight based on a raise we compute the
frequency of raising: F = f;’[0,2][raise] = X = 0.20, meaning the threshold is
p =1—F = 0.80 (player p raises with the top 20% of hands). However, if we
wanted to re-weight based on a call (frequency 0.70) we must note that the threshold
for a call is not g = 1 — 0.70 = 0.30 but is rather 0.70 below the raise threshold:
g = 0.80—0.70 = 0.10 (player p calls with the middle 70% of hands). There are other
intricacies dependent on the actual round of play, such as determining o and using [ R
values (which are non-percentile), which will be discussed in the following sections.
One immediately noticeable source of error is that this system presumes a proper
distribution over the hand rankings (i.e. the hands above u = 0.80 represent 20% of
all hands). This is not true for the post-flop rounds, because EHS' is optimistically
increased with PPOT. However, the relative ranking of hands is still correct.

As a final note, to prevent the weight array from being distorted by automatic
or false actions, we only perform one re-weighting per model per round. We store a
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constant low.wt 0.01
constant highwt 1.00

/* weight[] is the weight array from the beginning of the round */
Reweight (FLOAT p, FLOAT o, FLOAT weight[1)
{
FLOAT reweight
FLOAT handvalue /* depending on the round this is either IR or EHS’ */
CARDS hand
for each subcase(hand)
{
handvalue = GetHandValue(hand)
/* interpolate in the range pxo */
reweight = (handvalue - p + 0) / (2%0)
if (reweight<lowwt) reweight = low.wt
if (reweight>highwt) reweight = highwt
weight[hand] = weight[hand] * reweight
/% don’t let the weight go below 0.01 */
if (weight[hand]<lowwt) weight[hand] = low.wt

Figure 7.1: Re-weighting Function Code

Reweighting Factor

0.01 ?
p—c [ pto

Figure 7.2: Re-weighting Function
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copy of the weight array at the beginning of the round and each time a new action
is witnessed requiring a higher threshold, the saved weight array is used in the re-
weighting. For example, if we witness opponent p calling a bet, we may re-weight
using some p, say 0.5. If, later in the betting round, we see that opponent raise.
re-weighting will be done with the higher value of p, and is based on the original
weight array.

7.2.2 Pre-Flop Re-Weighting

In the pre-flop we do not have the convenience of a percentile hand valuing system.
So u needs to be converted from a percentile value to a value in the /R scale. To
achieve this we use p to index into a sorted array (sample the nearest point) of the
1326 IR+ values from Appendix A (for simplicity I R; is always used). For example,
suppose an opponent raises 30% of all hands, this translates to hand with IR = +118
(roughly corresponding to an average of 0.118 bets won per hand played) so we now
use p = 118.

We do not observe the consistency of an opponent adhering to the estimated
threshold, or of any other specific tendencies. While two separate opponents may call
on average with a 118 hand, they both may have a very different standard deviation
to the distribution of hands they call with (one may rarely call with a hand below
0 while another may sometimes play a hand as low as -200). For the present imple-
mentation, we have selected o = 330 in an ad hoc manner: 68.26% of the hands (or
two standard deviations in a normal distribution) lie in the income rate range -323
to +336. However, we only use a linear interpolation for re-weighting values within
the range (1 — o,u + o) rather than an S-curve based on a normal distribution.

However, there is one clear source of error when u is very low. Consider a player
who has been observed to take a certain action in a certain situation 100% of the time.
We re-weight with 4 = —495 (the lowest value), but this means that even the hands
with the lowest IR will only be re-weighted with a factor of 0.5 (which should be 1).
For this reason, we do not re-weight when u is below the 5th percentile (-433 in I R7).
A more accurate fix is possible, but is unlikely to be worth the added complexity.

7.2.3 Post-Flop Re-Weighting

For the three betting rounds after the flop, we infer 2 mean and variance (uz and o) of
the threshold for the opponent’s observed action and rank all hands according to the
effective hand strength (EHS’) calculation from Equation 6.4. Although the relative
ranking of all hands is not affected, it is an optimistic view, because hands with an
EHS’ above u = .80 represent more than 20% of all hands (due to the inclusion of
PPOT in the equation). Additionally, we use HS, instead of HS, so the number of
opponents can instead be addressed as part of the context of the action frequencies
(although presently it is ignored in the interest of a simplified definition of context).

To calculate EHS’ we must compute both hand strength (HS) and positive po-
tential (PPOT). Since PPOT is a computationally expensive operation and we
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must obtain PPOT values for about 1,000 hands every call to the re-weighting
function, we use a crude but fast estimating function (PPOT,). In terms of cost,
PPOT. << PPOT, << PPOT;. 1t is crude because it ignores much of the available
information (such as weight arrays) and looks for a few features about the hand, using
heuristics to associate a value to each. For example, if the board has only 2 diamonds
of our 4-card diamond flush draw, then we have 9 outs (1 out per remaining card),
but if the board has 3 diamonds, each of the remaining cards is worth 0.5 to 1 out, de-
pending on the rank of your suited hole card (a Two is worth 0.5 and an Ace is worth
1). This is because we are more likely to be up against other diamond flush draws.
PPOT. approximates very roughly our winning chances given each possible card to
be dealt). This function produces values within 5% of PPOT}, 95% of the time (this
is from a random sampling of five card unweighted cases). Since these values are
amortized over about 1,000 possible hands, the overall effect of this approximation is
small.

However, the opponent is also likely to play some hands based on the pot odds
required for the action (i.e. the decision is not always based on EHS’). For this
reason we have introduced an adjustment to the re-weighting algorithm for the post-
flop. When PPOT. is sufficient to warrant calling the pot odds, which is

amount_put_in

pot_size + amount _put _in’

the weight for that subcase is not reduced. This is a simplification of the betting
decision the opponent could be making based on the pot size, however we feel it is
sufficient to capture enough cases to prevent hands with low EHS’ but high potential
from being severely under-estimated. The new re-weighting algorithm can be found
in Figure 7.3.

What value do we use for ? We chose to use a typical value of 0 = .2 at £ = .5
(interpolating over the range .3 to .7) and to increase o with smaller 4 while decreasing
it for larger u. This reflects the tendency for loose players (with low u) to exhibit
more uncertainty and tight players (with high u) to adhere more consistently to the
threshold. Hence, we use o = 0.4 * (1 — u).

However, as was the case with pre-flop re-weighting, there is a clear source of error
when 4 is very low. Observe that the area of the re-weighting function is a rectangle
of height 1 and width 1 — (u + o), with a triangle between u — o and p + o (Figure
7.2). That is,

2*x0
2
(if we were to ignore the area due to the minimum re-weighting factor of 0.01). But,
since the function domain is bounded by 0, when ¢ > p (z < 0.2857) we have
A <1 — pu. For the weaker hands, the re-weighting factor is too low. When we are
in this special case, we compensate by changing the re-weighting function so that at
EHS’ = 0 the re-weighting factor is r instead of 0.01 (and the function interpolates
linearly between r and 1 when the hand value is between 0 and p + o).

The value r is calculated to give A = 1 —p. The function now looks like a rectangle
to the right of 4 + o, a triangle of height 1 — r (width z 4 o) and a second rectangle

A=(1-(p+0))+ =1-p 7.5)
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constant low.wt 0.01
constant high et 1.00

/* weight[] is the weight array from the beginning of the round
* state.pot.odds is the Pot Odds required for the observed action */
PostflopReweight (FLOAT u, FLOAT o, FLOAT weight{], STATE state)
{
FLOAT reweight
HANDVALUE value /* member elements are PPOT. and EHS' */
CARDS hand
for each subcase(hand)
{
/* Compute crude potential PPOT. and hand value EHS' */
value = GetHandValue(hand)
/* Do not change weight if potential is sufficient for pot.odds #/
if (state.round != RIVER && value.PPOT. >= state.pot.odds)
next subcase
/* interpolate in the range uxo */
reweight = (value.EHS' - pu + o) / (2*0)
if (reweight<low.wt) reweight = low.wt
if (reweight>highwt) reweight = high.wt
weight [hand] = weight[hand] * reweight
/* don’t let the weight go below 0.01 */
if (weight[hand]<low.wt) weight[hand] = lowwt

Figure 7.3: Post-Flop Re-weighting Function
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Figure 7.4: Re-weighting Function With g < o

of height r below it (Figure 7.4). The total area of the function is now the area of
the triangle subtracted from 1:

_(=neta) 76)

A=1

Since we want A = 1 — u we then see that

1- =1_(1—-T)(p+0’) (7.7)
2
which leads to the conclusion that
f)
r=1-—F&, (7.8)
p+o

7.2.4 Modeling Abstraction

In the above discussion, it is suggested that when we maintain weight arrays for our
opponents we only maintain all known possible cases (for the flop 1,081 cases of the
original 1,326 since we hold two known cards). However, when we compute EHS'
for an opponent in the re-weighting function, what do we use for the weight array?
Our opponent does not know the two cards we hold, meaning if we hold two aces it
is not correct to assume our opponent is aware there are two less aces in the deck.
Additionally we may want to consider that sometimes an opponent’s estimation of
EHS' is inflated by in turn observing actions denoting weakness from other opponents
(and ourselves).

To address these problems we have added a level of abstraction to the opponent
modeling in the original design. All the opponent models, including a model of
ourselves (in effect our opponents’ model of us), are gathered and adjusted using the
public information available (our hole cards, private information, are not considered
public information). In the re-weighting step for a particular player, when EHS'
is calculated, a field array (Section 7.3) is used which is composed from the weight
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arrays of all the opponents of that player. As a result, the second re-weighting in a
round is performed within the context of the first.

Of course, when we compute hand values for our betting strategy, we use all
available information and do not include all the subcases which use one or both of
our hole cards. Since the weight arrays have been normalized with these subcases
included, some additional minor error is introduced.

7.3 Using the Model

At present, the action frequencies are only used in the re-weighting module (although
this type of information could be useful in the betting strategy module). The only
opponent information used externally is the weight array, which is used in the hand
evaluation module (Chapter 5). In that context, since each subcase has a specific
weight, the array is used to calculate weighted sums and to infer better estimates of
hand strength (which can be expressed as the total weight of all subcases that are
weaker than you, added to half the total weight of all tied subcases, divided by the
total weight of all subcases). Note that when used in this fashion the weight array
does not need to be normalized.

7.3.1 The Field Array

In Chapter 5 we were presented with a problem: how to use the information available
in multiple weight arrays to get a general value for strength and potential. The
solution was the field array, an intuitive approach that fits into the existing framework.
We average (or add, since in the relative sense they are the same operation) the weight
arrays of all the opponents to give a new array representing the entire table. However,
since the weights represent relative probabilities, we must normalize the individual
weight arrays (to the same scale) before they can be combined. Specifically, when
we need to calculate hand values for player p, we calculate a field array that is the
average of the normalized weight arrays of all players except p.

This approach does introduce a small amount of error by abandoning some second-
order considerations with respect to intersection cases, but again this error is minor
when compared to the reduction in complexity. For example, if we want to compute
the probability, given the appropriate normalized weight arrays, that either statement
A (player 1 holds A#-AQ) or statement B (player 2 holds A#-AQ) is true we need
to compute

P(A or B) = P(A) + P(B) — P(A and B).

In fact, it is significantly more complex than this. For each subcase we would need
to also rule out all the other intersecting subcases (e.g. the probability that player 1
holds A#-AQ precludes player 2 holding either the A# or the AQ).
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7.4 Summary

The opponent modeling module includes a data accumulation system to infer action
frequencies, and a model of the player’s hand represented by an array of weights.
The action data gathered is based on a coarse definition of context, however it is only
intended as a simple framework to examine the feasibility of the approach. It is easy
to adjust the definition of context because the learning system is only interested in the
resulting frequency of an observed action, and not how that value was calculated. A
lot of the potential data that could be accumulated is currently ignored. For example,
variance is not measured so all opponents are presently assumed to have the same
level of uncertainty or consistency in their actions. We also do not consider recency
(applying more weight to recent data points) although this is a more complex change
to the present system.

There are two different levels of opponent modeling that can be examined. In
generic opponent modeling the action frequencies are always assumed to be the same
(predetermined defaults) and the only opponent modeling that is done is by infer-
ring the weight array (the re-weighting system). In specific opponent modeling, the
observed action frequencies (specific to each opponent) are used to adjust the re-
weighting system itself. The difference between the two systems can be examined in
the function at the heart of the opponent modeling (Figure 7.3).

The re-weighting system is the complex portion of the opponent modeling system.
It involves learning the distribution of probable hands held based on observed actions
and storing this information in an array of weights (which are the relative probabilities
that the opponent would have played that hand given the observed actions that
game). The re-weighting system is given a certain p and o representing the threshold
required for making the observed action, under whatever hand ranking measure is
most appropriate: IR for the pre-flop and EHS’ for the post-flop rounds. A linear
interpolation transformation function (based on y and o) is applied to the weight
array to give a new weight array. There are some problems with the system. For
example, o is a fixed expert value when it should be based on observations. However,
more importantly we never do inverse re-weightings (i.e. a call or check should suggest
an upper threshold of hands the opponent likely does not have).

Of course, the opponent’s decisions may in reality be based on a different metric
than IR or EHS', resulting in an imperfect model. There are other problems with
the re-weighting system, such as the presumption that the hand rankings are properly
distributed (EH S’ is an optimistic view). However, forming a perfect model of the
opponent is in general unboundedly difficult, since their exact actions are unknowable.
New techniques can improve the results, but the current method does capture much
of the information conveyed by the opponent’s actions.

In competitive poker, opponent modeling is more complex than portrayed here.
One also wants to fool the opponent into constructing a poor model. For example, a
strong poker player may try to create the impression of being very conservative early
in a session, only to exploit that image later when the opponents are using incorrect
assumptions. In two-player games, the M* algorithm allows for recursive definitions
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/» Update the opponent model given an observed action */
HandleAction(PLAYER p, ACTION action, PARAMETERS param)

{

FLOAT u, o

/* The model for player p is composed of:
* - frequency count T

+ - frequency f; (see Equation 7.4)

* - weight array wp, %/

/* BLIND is a forced action so gives no information %/
if (action == BLIND)
return

/* this is the only difference between SPECIFIC and GENERIC;
* GENERIC always uses the defaults */
if (parameter.modeling == SPECIFIC)

T, [state.round,state.bets_to.call] [action] += 1

/* we do not re-weight on a FOLD or CHECK */
if (action == FOLD || action == CHECK)
return

/+ This function is described in Section 7.2 and Equation 7.4 %/
p = GetThreshold(Tp ,state.round,state.bets to_call ,action)

/+ In both cases, the second parameter is an ad hoc value for o (see Section 7.2) */
if (state.round == PREFLOP)

Reweight(x, 330, wp)
else

PostFlopReweight(u, 0.4+ (1 —p), wp, state)

Figure 7.5: Central Opponent Modeling Function

of opponent models, but it has not been demonstrated to improve performance in
practice [5)].

We have maintained a certain level of abstraction in our modeling system. For
example, we maintain an opponent model of ourselves (our opponent’s model of us)
and all opponent models are maintained using public information (meaning when we
re-weight the board cards are known, but we do not presume that our own hole cards
are). However, we do not attempt to manipulate this information. It merely makes
the re-weighting system more accurate since EH S’ is then calculated with respect to
information our opponent has available.
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Chapter 8

Experiments

Experimentation provides a simple way to determine the effectiveness of changes, or
to identify potential problems and shortcomings in the system. For Loki we have
used a variety of different experimental methods. The primary method is self-play
simulation between different versions of the program. The other methods, much more
difficult to interpret but presented as anecdotal evidence, involve play against other
computer programs or human opponents through an on-line poker server running on
IRC (Internet Relay Chat).

8.1 Self-Play Simulations

Self-play simulations offer a convenient method for the comparison of two or more
versions of the program. In addition to verifying that a certain enhancement has a
beneficial effect, it is possible to quantify the contribution made by each new com-
ponent to the system. Since all participants in the simulated game are versions of
the program, play can proceed at a rapid pace, and results can be based on large
(statistically significant) sample sizes.

The self-play simulations use the duplicate tournament system described in [2],
based on the same principle as duplicate bridge. Since each hand can be played with
no memory of the cards dealt in preceding hands, it is possible to replay the same deal,
but with the participants holding a different set of hole cards each time. This system
simulates a ten-player game. Each hand is replayed ten times (ten trials), shuffling
the seating arrangement so that every participant has the opportunity to play each
set of hole cards once, and no two players are seated in the same relative position
more than once (so, for instance, each player will play directly behind each other
player exactly once). The hole cards are always in the same betting order so those
belonging to the small blind are identical in each trial. The seating permutations are
listed in Table 8.1 (T = 10).

This arrangement greatly reduces the “luck element” of the game, since each
player will have the same number of good and bad hands. The differences in the
performance of players will therefore be based more strongly on the quality of the
decisions made in each situation. This large reduction in natural variance means that
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Seat Number for Each Player
Round || 1| 2| 3] 4|535]6]7|8]9}T
1 1] 2[3]4]5]6]7|8|9|T
2 2| 4/6|8|T| 13579
3 3|6|9f1|4|7|T| 2|58
4 4 8|1|5]9(2|6|T|3]7
5 5/!T| 4|9 3!8[2|7j1}|6
6 6| 1171 2|8|3[9]4|Tj|S>5
7 713|{T|6|2|9|5|1]|8]4
8 g(5|2|lT| 7} 4|1|9]|6]3
9 9|l 7|s5{3|1{T|8|6] 4|2
T T|9(8j7|6|5}1413]2]1

Table 8.1: Seating assignments for tournament play (reproduced from [2])

meaningful results can be obtained with a much smaller number cf trials than in a
typical game setting.

There are numerous different ways to use self-play simulation to test different
versions of the program. One simple application would be to play five copies of a new
version against five copies of an older version, differing only in the addition of one
new feature. If the new component has improved the program (against itself). then
the newer version will win against the older version. The average margin of victory,
in terms of expected number of small bets per hand, can also give a preliminary
indication of the relative value of the new enhancement.

However, one must be careful when drawing conclusions from self-play experi-
ments. It is important to not over-interpret the results of one simulation [1]. With
the above format, there are limitations to how much can be concluded from a single
experiment, since it is representative of only one particular type of game and style
of opponent. It is quite possible that the same feature will perform much worse (or
much better) in a game against human opposition, for example. A wider variety of
testing is necessary to get an accurate assessment of the new feature, such as changing
the context of the simulated game.

However, most versions of Loki are very similar and have fairly conservative styles.
It is quite possible that the consequences of each change would be different against a
field of opponents who employ different playing styles. For example, against several
human players, the effect of the weighting function may be much bigger than that
of hand potential. Inter-dependencies between the involved players can also affect
results. The second-best player may perform first overall if it can exploit a particular
bad player more than the best player can.

8.2 Other Experiments

Loki has been tested for extended periods of time in more realistic settings against
human opposition (and an occasional computer player). For this purpose, the pro-
gram participates in an on-line poker game, running on the Internet Relay Chat
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(irc.poker.net). Human players connect to IRC and participate in games conducted
by dedicated server programs. Bankroll statistics on each player are maintained. but
no real money is at stake, and this may contribute to results being a little optimistic.
There are three different games available for limit Texas Hold’em. For the first level.
you begin with $1000 and the betting scale is 10-20. Once you have $2000 (z.e. won
a net of $1000) you are allowed to play in a second game where the betting scale is
20-40. At $5000 you are allowed to play in a third game where the betting scale is
50-100. The competition becomes much stronger at each level, but it is more difficult
to find opponents, so games at the higher levels are less common. Early versions of
Loki participated in games with 2 to 12 players. Later the server was changed to
allow only 2 to 10 players.

Playing short-handed (2-4 players) empbhasizes the need for strong opponent mod-
eling. Typically, with many players (5 or more) the computer can win in the long
run by playing the odds, usually because there are some bad players. With only
a few opponents, we face many one on one situations where the non-mathematical
elements of the game become more important. When those few players are strong
(or colluding), Loki loses a large amount of money. It does not “give up” in a bad
situation, so it continues to lose. Since games go by significantly faster, there is too
much data in this limited context. We ignore results for games with 2 to 4 players
because the overall results are distorted. All the reported results are for games with
5 to 12 players (or 5 to 10 in the later sessions).

As this is not a closed environment, the natural variance in these games is very
high, and the results depend strongly on which players happen to be playing. Con-
sequently, not enough information has been gathered to make any safe conclusions.

Very early versions of Loki had mixed results on the IRC server, but played too
few games to be conclusive. However, it appeared to play at about the same level
as the average human participant in the open games, roughly breaking even over the
course of about 12,000 hands. Opponent modeling appeared to be much stronger:
in one session of 8,894 games (5 to 12 players), a version using generic opponent
modeling (GOM) achieved a winning rate of 0.07 small bets per hand (this places
Loki comfortably in the top 10% of players who play the 10-20 games on the server).
In a later session of 29,301 games (5 to 10 players), another version that used specific
opponent modeling (SOM) achieved a winning rate of 0.08 small bets per hand.
While the difference between the two modeling versions may not be significant, they
both win consistently and perform much better than the previous versions.

Recognizing that many human opponents were easily identifying when Loki had
a strong or weak hand (occasional semi-bluffing did not add enough deception), we
added some new deceptive strategies: pure bluffs (betting with the weakest hands
on the river), balancing raises (occasionally raising instead of calling), and check-
raising (following a check with a raise in the same round). Check-raising is normally
used with the strongest hands, but to ensure that no information can reliably be
gained from any particular action, we also use “fake” check-raises with mediocre
hands. However, these are simply more expert rules (e.g. check-raise 60% of the time
with three callers behind us when EHS’ >= 0.92). We are interested in machine-
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dependent approaches to computer poker where Lok: can discover for itself what the
best strategy is in a situation (which makes it easier to introduce opponent modeling
into such decisions). So we are not interested in the performance contribution of any
particular strategy. However, the introduction of these advanced tactics probably
explains why the following results are better. The two opponent modeling versions
that use these features are GOM' and SOM'.

We used these stronger features to see if we could find a noticeable performance
difference between GOM' and SOM’. In 35,607 games, SOM' maintained a winning
rate of 0.12 small bets per hand. In 36,299 games, GOM ’ maintained a winning rate
of 0.10 small bets per hand. This is stronger evidence that specific opponent modeling
is better. In fact, we believe that it may not be worth as much against the weaker
class of human players (in the 10-20 game) and may lead to a stronger disparity in
the higher level games.

In the stronger IRC game (20-40), earlier versions of the program without op-
ponent modeling lost, averaging about -0.08 small bets per hand in 2,354 games.
This is too small a sample size for conclusive results, but strongly suggests it was a
losing player overall in these games. Opponent modeling demonstrated a noticeable
difference at this level; SOM averaged about +0.05 small bets per hand in 34,799
games. This was probably influenced by good results early on (before the human
players had adjusted to the new style of Loki) so it is probably closer to a break-even
player. However, this is noticeably better than the earlier version without opponent
modeling. We have have not tested GOM, GOM’ or SOM’' at this level.

A third form of competition was introduced strictly against other computer pro-
grams on the IRC server, called BotWarz. In BotWarz I, four programs partici-
pated, using three copies of each in a 12-player game. Two programs, R00lbot and
Loki, were clearly dominant over the other two, Xbot and Replicat, with the more es-
tablished R0Olbot winning overall. In 39,786 hands, Loki averaged about +0.03 small
bets per hand. It should be noted, however, that this competition is representative
of only one type of game, where all the players are quite conservative. Replicat in
particular performed much better in the open games against human opposition than
in this closed experiment, in which it lost the most money. Also, despite the closed
environment, the variance was still quite high.

There were also noticeable interdependencies between the different players. Late
in the competition, Replicat dropped out and it became apparent that Loki may have
been taking advantaging of this player more than the other two. In a final session of
23,773 hands, Loki lost 0.03 small bets per hand.

After some changes, like the introduction of the new pre-flop system (but prior
to opponent modeling) Loki participated in BotWarz I1. Again, there were 3 copies
each of 4 different programs; this time the opponents were Prop, R00lbot, and Xbot.
Prop only played roughly the first 9,000 hands and Xbot only played roughly the first
18,000 hands. In 10,103 games with all 12 players, Loki averaged a winning rate 0.03
small bets per hand. Against only Xbot and ROOIbot it lost at a rate of approximately

0.02.
Finally, BotWarz III was played after the introduction of the 10-player limit.
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This time there were five programs, with two copies of each. The four opponents were
USAbot, Xbot, R00Ibot and Fishbot (USAbot and Fishbot are most similar in design
to Xbot). The results had a much higher variance because, in addition to only having
two copies, numerous players kept dropping out and coming back in. This time, Xbot
easily won the most money overall while USAbot and Fishbot lost the most. In the
first 19,000 hands of the tournament, both GOM and SOM approximately broke
even.

For the latter part of the tournament (significantly longer) GOM and SOM were
replaced by GOM’ and SOM" (recall they used additional expert rules for bluffing
and check-raising). GOM’ played 64,037 hands, but half of these were with 8 players.
One quarter involved 6 players and the remaining quarter involved only 4 players.
Over all the games, it broke even, but with all the players involved (3,840 hands) it
achieved a winning rate of 0.05 small bets per hand. SOM’ won about 0.01 small
bets per hand over all the games, and 0.06 over the 3,840 games with all 10 players.
The results of these tournaments suggest that a simple program with a decent betting
strategy (expert rules) can play better than a program with many other strengths,
but a weak link in its betting strategy.

In addition to programs by hobbyists playing over IRC, there are numerous com-
mercial programs available. However, we have not tested Loki against them because
we have not found any with a programmable interface. Hence, it is not known if they
are better or worse.

One final important method of evaluation we have not mentioned is the critique
of expert human players. Experts can review the play of the computer and determine
if certain decisions are “reasonable” under the circumstances, or are indicative of a
serious weakness or misconception. Based on this opinion, it appears to be feasible
to write a program that is much stronger than the average human player in a casino
game, although Loki has not yet achieved that level.

8.3 Betting Strategy Experiments

As a sample self-play experiment, we have tested five different versions of Loki to-
gether, using different components of the betting strategy, for a 10,000 hand tourna-
ment (100,000 trials). We use the average bankroll of the two copies of each version as
a metric for performance. The results can be seen in Figure 8.1 (note this is with a 2-4
betting structure). Player A used the entire betting strategy, and B, C, and D each
lacked a particular feature (B did not use showdown odds, C' did not use pot odds,
and D did not use semi-bluffing). Finally, player E used the simple betting strategy
from Figure 6.2 (only HS, is used). All five versions used a moderate tightness level,
and generic opponent modeling to ensure reasonable weights.

This experiment reveals the danger of over-interpreting self-play simulations. It
suggests that every feature except showdown odds is a gain, especially semi-bluffing.
Player B won the tournament by a large margin suggesting that Loki is better off
without the showdown odds feature. However, in practice this is often not the case.
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Figure 8.1: Betting Strategy Experiment

For example, in one long IRC session (4857 games) against a variety of human op-
ponents, showdown odds were considered 883 times and used to call and continue
playing 123 times. In these games, Loki later folded 30 times for a total cost of $108
(scaled to a betting structure of 2-4), won 6 games without a showdown, and won
37 of the 87 remaining hands that went to a showdown. The total winnings were
$1221 and the total cost (of the initial call and later betting actions) was $818. Thus,
the EV of showdown odds was a net gain of $3.28 per decision, or 1.64 small bets
(the EV of a folding decision is $0 since there is no cost and there are no winnings).
Although this was a good session, the EV for this feature was consistently positive in
other sessions. In a longer set of 12,192 games, it was $0.72 per decision (or 0.36 small
bets). Although the performance after the decision point is dependent on the perfor-
mance of the betting strategy overall, Loki would have netted $0 in these situations,
instead of a consistent gain, without showdown odds.

Showdown odds was originally added because Loki often over-estimated what its
IRC opponents were holding. Bets were taken too seriously and EHS’ would be just
under the betting threshold. With showdown odds we will typically decide to play a
hand which has a PPOT that is just under the calling threshold and an EH S’ that is
just under the betting threshold. When Loki over-estimates its opponents, showdown
odds is usually a gain. However, in self-play, because it plays a very tight game (the
other extreme), a bet is not taken seriously enough (EHS' is too high). So when we
decide to play the showdown odds it is often a mistake. However, it will be profitable
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Figure 8.2: Showdown Odds Experiment

in an environment where opponents are frequently bluffing or otherwise betting too
much.

To see the reverse of this effect (showdown odds as a winner in self-play), Figure
8.2 shows the results from an experiment between two copies of A (all features),
two copies of B (no showdown odds), and six copies of BPL'. BPL (“Best Player
Loose”) is a loose non-modeling player, who uses all features of the betting strategy
but with reduced thresholds for looser play. This player also uses a fixed weight
array for all opponents regardless of their actions (since it performs no re-weighting,
a “reasonable” set of weights is much more realistic than uniform weights). BPL' is
the same as BPL, except it ignores the number of opponents (uses HS; instead of
HS, in EHS calculations) for much more aggressive play. In this experiment, it is
clear that using showdown odds resulted in a significant performance gain, although
both A and B had a large advantage over BPL'.

Because we recognize that the present betting strategy is a potential limitation
and is in need of re-designing, we are not particularly interested in the value of each
particular feature. Since showdown odds is theoreticaily a gain (positive expected
value) when the weights are accurate, this experiment shows the limitations of the
present system and reinforces the need for good opponent modeling. The main focus
of our experimentation is to examine the benefits and problems of opponent modeling,
including the difference between generic and specific modeling.
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8.4 Opponent Modeling Experiments

Humans can be very good at opponent modeling because they can make inferences
(extrapolation) based on limited data to identify general trends or errors in an op-
ponent’s play. This ability relies on an opponent being predictable, but this is often
the case against all but the best players. For example, you may observe an opponent
showing a failed flush draw in the showdown twice in situations where they made
calls with very poor pot odds. You then infer that this opponent over-values flush
draws until evidence contrary to this conclusion is presented.

For a computer, it is difficult to identify what parts of the context of an action
are important, or how to make accurate inferences without large quantities of data.
It is also difficult to make a computer identify trends outside of its mathematically
understood value system (probabilistic measures of potential and strength), such as
a particular opponent’s over-optimistic evaluation of flush draws. Such a feature
would require the computer to somehow learn how each opponent values the various
features of particular hands. This is a complex problem, unless possible tendencies
are anticipated so the computer can look for them.

There are numerous statistics that a computer could gather in a poker game,
and conclusions that could be inferred with sufficient data. Every time an opponent
reveals cards in the showdown, a retroactive analysis of betting actions in that game
could be used for data. However, the majority of observations are not so informed.
Without showdowns, the complete betting history of a player could be recorded, and
data could be classified by a variety of contextual information: betting round, bets
to call, bets put in that round, number of active opponents, and the previous action
by this player.

As a first cut, Loki does not use the extra information presented in showdowns,
and makes inferences using only information for which it has sufficient data points.
Until 20 data points have been acquired for a particular context, the opponent mod-
eling action frequencies are based on a weighted average between some pre-defined
defaults and the observed data. The context definition used is coarse in granularity,
considering only betting round and bets to call. This is a simple approach to learn
more about the requirements for opponent modeling. A better approach might be to
try to identify which aspects of the context are most valuable for consideration.

8.4.1 Generic Opponent Modeling (GOM)

Generic modeling is our first attempt at opponent modeling. It assumes that our
opponents use a value scale similar to our own. The observed actions of each opponent
are used to adjust their weight array. No statistics are gathered, so the re-weighting
system treats all actions equally, dependent only on the context and regardless of
which player it is.

We pitted together four different versions of Loki for 100,000 trials. The focus of
the experiment was four copies of GOM (a player using all betting strategy features,
generic opponent modeling, and a tightness setting of loose). The competition was
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Figure 8.3: Generic Opponent Modeling Experiment

three different non-modeling players (two copies of each, also using all betting strategy
features):

e BPL (“Best Player Loose™) is a loose player, who uses (0.4, 0.8) for (makel,
make?), and subtracts 100 from all pre-flop /R thresholds for looser play.

o BPM (“Best Player Moderate”) is a moderate player who otherwise uses all
the defaults.

e BPT (“Best Player Tight”) is a tight player, who uses (0.6, 0.9) for (makel,
make2), and adds 100 to all pre-flop I R thresholds for tighter play.

Figure 8.3 shows the results of the experiment. GOM quickly demonstrated clear
dominance while the three non-modeling players were ranked based on the tightness
of their play. As expected, GOM is able to exploit the basic players because its model
of how they play is fairly accurate, and is used to make better decisions. GOM might
not perform as well against players with very different styles of play, because its model
would be less accurate, but it would be better than using no modeling at all.

8.4.2 Specific Opponent Modeling (SOM)

Specific modeling is our first attempt at using the observed betting history to dis-
tinguish different types of players. It is clearly what human experts use, although
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Figure 8.4: Specific Opponent Modeling Experiment

our approach is crude and only captures the essence. We measure action frequencies
based on a rough description of context and use these frequencies to appropriately
adjust the weight array on future actions.

The experiment’s focus was on two copies of SOM (specific opponent modeling)
with respect to two copies of GOM. Like the previous experiment, the other six
players were two copies each of BPL, BPT and BPM. The results can be seen in
Figure 8.4.

Very quickly, the two opponent modeling programs asserted their superiority over
the non-modeling versions. SOM is able to attain a comparable degree of success to
GOM based on observed frequencies rather than a good default model. While we
cannot conclude on the basis of this one experiment that there is a statistically signif-
icant difference between the two modeling versions, anecdotal evidence is somewhat
promising: on IRC GOM achieved a winning rate of 0.07 small bets per hand and
SOM achieved a winning rate of 0.08 small bets per hand.

The advantage of good opponent modeling is clear. Lok: with opponent modeling
is a noticeably stronger program than without it. However, our implementation of
specific modeling does not appear to produce a significant advantage over generic
modeling. We recognize that the granularity of the context for gathering action fre-
quencies may be so coarse that the error undermines the gain. For example, Loki
does not recognize that, for some players, calling a bet is automatic given they have
already called a bet previously in that round - the second action contains no in-
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formation. Some other variables which may make the identification of the context
stronger include the previous action, number of opponents and number of callers re-
maining. However, the number of cases becomes very large so it would seem necessary
to somehow combine the action frequencies of “similar” scenarios.

Additionally the re-weighting system is not adjusted based on the specific oppo-
nent (which only provides simple frequencies). It would be better if we could predict
how each opponent would handle each specific subcase rather than using our value
system for assigning strength/potential with a simple linear function. For example,
some opponents may over-value flush draws, or may find it more imperative to bet
a mediocre hand with low potential. The present re-weighting system itself neglects
handling certain information. When a check or call is observed we could infer that
the opponent does not have a hand above a certain threshold and can apply an in-
verse re-weighting function to the weight array. This would prevent Loki from being
too pessimistic and would allow it to bet more often after several checks (currently,
since checks are ignored and Loki uses HS,, a checking opponent still poses the same
threat as one who has not yet acted).

8.5 Summary

There are several different ways to evaluate Loki’s performance, however since self-
play is the most controlled, results are easily measured. But, we must always be
careful in interpreting the results (such as taking into account the interdependencies
between players). With only self-play, it is difficult to measure Loki's strength. To
help determine this, we use evidence gathered from play on IRC which suggests that
it is better than the average human amateur (at least in multi-player scenarios). In
particular, all of the evidence indicates that the addition of opponent modeling results
in a significant increase in strength.

The performance gain from generic modeling is conclusive, however the further
superiority of specific modeling is not so clear. This could be due to the granularity
of the data gathering, or how the action frequencies are used in the re-weighting, or
because the information is not used in the betting strategy. In fact, we strongly believe
that the present ad hoc betting strategy, which was originally designed to allow us
to quickly test other components, may be a bottleneck preventing further significant
progress. This is witnessed in BotWarz with the relatively good performance of less
sophisticated computer programs, which put more effort into designing a (rule-based)
betting strategy. It is also evidenced by the ease with which strong human players
can take advantage of Loki in short-handed play (too many head to head situations

against better players).
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Chapter 9

Conclusions and Future Work

Loki successfully demonstrates beneficial opponent modeling in a high-performance
game-playing program. In closed self-play experiments it was clearly beneficial to use
modeling, and the results from IRC play are also promising. However, it does not
necessarily follow that it will be equally successful in games against strong human
players. Humans can be very good at opponent modeling, and less predictable than
the players in these experiments.

In our self-play experiments, we have not yet investigated modeling opponents
who vary their strategy over time. There are also many other interesting questions to
be addressed. Our approach was a first approximation using an intuitive approach,
and the major benefits came from the introduction of the weight array (and the
re-weighting). The enumeration algorithms for hand evaluation are well suited to
this expression of opponent modeling, allowing it to be a very useful asset to the
accounting system.

The overall performance was hampered by the ad hoc betting strategy. In fact,
many aspects of Loki were a tradeoff between usefulness and correctness — in many
places we selected the simple (and cost-effective) approach for its reasonable approx-
imations. Provided the error is not one-sided we should see an amortizing effect. We
have not actually examined what the error is in our many approximations, but it is
not worth the effort until it is a limiting aspect of play. Since we plan on replacing
the betting strategy with something less dependent on expert rules, it is not worth
examining the benefits of particular features. Similarly, we feel that Bot Warz or
general IRC play could have had better results had we put more time into the bet-
ting strategy. However, this would have amounted to tweaking artificial parameters
without general applicability.

The betting strategy should also use the opponent modeling information. A good
approach might be to run simulations to the end of the game using the weight array
to randomly select “reasonable” opponent hands (and to weight the results as in our
enumeration techniques). The specific opponent information could then be used to
predict opponent actions in the simulations, resulting in estimates of the expected
value for each of our options. Presumably, strategies such as check-raising or bluffing
would emerge naturally. For example, bluffing may turn out to be the best action in
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a situation where we recognize that our opponent is likely to fold.

The specific opponent modeling program (SOM) was hampered by the crude
method used for collecting and applying observed statistics. Much of the relevant
context was ignored for simplicity, such as the previous action taken by a player. A
more sophisticated method for observing and utilizing opponent behavior would allow
for a more flexible and accurate opponent model.

The re-weighting system could be adjusted, such as inverse re-weightings for pas-
sive actions like checking/calling. Presently, every witnessed action leads to the oppo-
nent’s average hand getting “stronger”. If we considered upper thresholds on actions
implying some weakness, like checking and calling, we could appropriately re-weight
their weight array. Specific modeling could also observe variance, or the consistency
the opponent exhibits in their behavior. This information could be used in the re-
weighting function instead of the simple linear function we use (with a fixed o).

Poker is a complex game. Strong play requires the player to handle all aspects
of the game adequately, and to excel in several. Developing Loki seems to be a
cumulative process. We improve one component of the program until it becomes
apparent that another aspect is the performance bottleneck. That problem is then
tackled until it is no longer the limiting factor, and a new weakness in the program’s
play is revealed. We have made an initial foray into opponent modeling and are
pleased with the results, although it is far from a completed subject.

Wherever possible, the project should be driven to remove whatever human expert
information is used. Betting strategy is clearly a major component that needs to be
addressed. However, there are other candidates such as more sophisticated opponent
modeling. Eventually, more sophisticated simulations for learning good pre-flop play
could be based on Loki’s post-flop playing ability.

Concepts such as hand strength and potential are appropriate for any poker vari-
ant. While parts of our implementation, such as the weight array, may be specific to
Texas Hold’em, our ideas are easily mappable to other variants.

Is it possible to build a program which is the best poker player in the world?
Certainly we can construct a program which has a very strong mathematical basis
and runs within the real-time constraints. It is also clear that some form of opponent
modeling (in addition to other advanced features) are necessary to beat the better
players. However, it is not clear how difficult it will be to build and maintain opponent
models that are sufficiently detailed and context sensitive. While we are probably
close to a program which can win money in most typical low-limit casino games, we
are far from the lofty goal of being the best in the world.
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Appendix A

Pre-Flop Income Rates

These are the computed income rates (* 1000) used for all 169 distinct hand types
(13 paired, (123) = 78 suited and 13 * (;) = 78 unsuited). Each table is labeled
IR, where z is the number of players (hands dealt) in the simulation (so there are
z — 1 opponents). Each entry is indexed I R;[row][col] and the cards are suited when
row > col. This means that for 2 players the income rate for a 3 and 2 of the same
suit is 1 R2[3][2] = —279, and for a 3 and 2 of different suits is /(2] [3] = -351.

In all simulations a pair of aces had the highest income rate (a gain of 2.043 with
7 players, meaning an investment of $1 would return a profit of $2.043, on average).
In the 7-player simulation, a 2 and 7 of different suits bad the lowest income rate (a
loss of $0.495 for every $1 invested) and 88 of the 169 different hand types returned
non-negative income.

There is a strong correlation between these rankings and the pre-flop hand rank-
ings given in Sklansky and Malmuth [14]. They break the pre-flop hands into 9
groups, ranked by their strength (call this ranking of hands SM). If we take /R
(most reflective of the full game they are assuming) and break it into the same num-
ber of groups with the same number of hands per group (5 for group 1, 5 for group 2,
6 for group 3, and so on) we note that all but 16 of the 169 hand types are either in
the same group or are only one away. While most of the hands in the middle groups
are shifted by one class, the top three groups are virtually identical. Details of the
comparison by groups can be found in Table A.4.

The most interesting similarity is that the top two groups contain the same hands
but there is only one different hand in the third group. In IRz, KTs (King and Ten
of the same suit) replaces JTs (Jack and Ten of the same suit). In fact, there appears
to be a trend favoring big cards in /R;. However, any minor discrepancy could be
due to the simple-minded approach of the simulations.
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2 3 4 5 6 7 8 9 T J Q K A

2 7 1-351 | -334 | -314 | -318 [ -308 | -264 | -217 | -166 | -113 | -33 10| 98

3 || -279 74 | -296 | -274 | -277 | -267 | -251 | -201 | -148 -93 | -35 27 | 116

4 1l -263 | -225 | 142 | -236 | -240 | -231 | -209 | -185 | -130 -75 | -17 46 | 134

5 || -244 | -206 | -169 | 207 | -201 | -189 | -169 | -148 | -114 -55 2 68 | 153

6 || -247 | -208 | -171 | -138 | 264 | -153 | -134 | -108 -78 -43 19 85 | 154

7 11 -236 | -200 | -162 | -125 | -91 | 324 | -99 | -72 | -43 -6 37| 104 | 176

81l -192 | -182 | -143 [ -108 | -75| 43| 384 | -39 -4 29 72 1 120 | 197

9ll-152 | -134)-122| -84 -50| -17 16 | 440 28 65 | 106 | 155 | 215

T -104 | -8 | -69 -56 | -19 12 47 81 | 499 | 102 | 146 | 195 | 254

J -52 351 -19 0 11 46 79 | 113 | 149 | 549 | 161 | 212 | 271

Q 2 21 34 55 72 86 | 121 | 153 | 188 | 204 | 598 | 228 | 289

K 63 79 98 | 116 | 132 | 151 ] 168 ] 200 | 235 | 249 | 268 | 647 | 305

A 146 | 164 | 180 | 198 | 198 | 220 | 240 | 257 | 291 | 305 | 323 339 | 704

Table A.1: I R,: income rates for 1 opponent
[T 2] 3] 41 5] 6] ] 8] 9] T] J] QI K| Al
9 1 -121 | -440 | 409 | -382 | -411 | -432 | -394 | -357 | -301 | -259 | -194 | -1 16 16
3 || -271 42 | -345 | -312 | -340 | -358 | -371 | -328 | -277 | -231 | -165 -87 54
4 || -245 | -183 52 | -246 | -269 | -287 | -300 | -308 | -252 | -204 | -135 -55 84
5 1 -219 | -151 | -91 | 152 | -200 | -211 | -227 | -236 | -227 | -169 | -104 -24 118
6 Il 247 | -177 | -113 | -52 | 256 | -145 | -152 | -158 | -152 | -145 -74 9 99
711-261]-201§-129 | -65 3] 376| -76 | -719 | -68 -66 -44 48 148
8] -226 | -204 | -140 | -73 -2 66 | 503 0 15 24 45 84 194
91 -1911-166 | -147 | -79 -5 68 | 138 647 | 104 | 113 136 177 | 241
T -141 | -116 | -91 | -69 -4 75| 150 | 235 | 806 | 226 255 295 | 354
J -89 -671 -41 -12 7 821 163 ] 248 | 349 | 965 301 348 | 410
Q -29 -3 22 a1 80 | 108 | 185 | 274 | 379 | 423 | 1141 403 | 473
K 47 761 101 | 128 | 161 | 199 | 230 | 318 | 425 | 473 529 | 1325 | 341
A 175 | 211 | 2371 266 | 249 | 295 338 | 381 [ 491 | 539 594 655 | 1554
Table A.2: I R,: income rates for 3 opponents



Table A.4: Comparison between SM and IRz
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2 3 4 5 6 7 8 9 T J Q K A
2 6 | -462 | -422 | -397 | -459 | -495 | -469 | -433 | -383 | -336 | -274 | -188 -39
3 || -180 91 | -347 | -304 | -365 | 418 | 447 | -414 | -356 | -308 | -248 | -163 -1
4 [ -148 | -69 67 | -227 | -273 | -323 | -362 | -391 | -334 | -287 | -223 | -133 32
5| -121| -38 31| 122 -198 | -230 | -270 | -303 | -309 | -259 | -200 | -103 64
6| -174] -95| -10 64 | 206 | -151 | -175 | -204 | -217 | -235 | -164 -72 23
7T -208 | -135 | -47 35| 108 298 | -87|-106 | -112 | -128 | -124 -26 72
8|l -184 | -164 | -83 2 93 | 168 | 420 -5 6! -10 -10 22 126
9|l -146 | -128 | -111 -26 64| 153 | 245| 565 | 134 | 118 118 151 189
T 88| -68| -46 | -29 59 | 155 | 268 | 383 | 765 | 299 | 305 336 | 373
J 38} -15 1 30 51| 147 | 256 | 377 | 536 | 996 | 380 | 420 | 462
Q 35 49 72 99 | 127 | 162 | 268 | 384 | 553 | 628 | 1279 | 529 [ 574
K 117 | 141 | 167 | 190 | 223 | 261 | 304 | 423 [ 591 | 669 | 764 | 1621 | 712
A 269 | 304 | 333 | 363 | 313 | 365 | 416 | 475 | 644 ] 720 | 815 | 934 [ 2043
Table A.3: I R;: income rates for 6 opponents

Group | Size Matches in || Group | Size Matches in

IRz grouping || IR grouping

1 5 51 6] 10 2

2 5 5|l 7 17 6

3 6 5 8 16 1

4 8 4 9 85 69

5 17 11




Appendix B
Expert-Defined Values

Loki uses several hard-coded constants where the optimal value is too difficult to
determine (or we have not invested the effort to determine a better value). They have
been selected by a poker expert, Darse Billings, and have not been experimentally
validated. They are used as placeholders, and we foresee eventually upgrading the
system so that the computer can determine proper behavior on its own.

For the post-flop betting strategy, there are only two expert-defined values: makel
and make?2 (these are absolute constants, 0.50 and 0.85 respectively, not to be confused
with Makel and Make2). These are the betting and raising thresholds for EH S,
and represent the likely hand strength required for these actions to be profitable.

For the pre-flop, when the function SetThresholds is called, it is given three pa-
rameters: group, tightness and position. The first two parameters are used to retrieve
a set of values ([base, increment], one per strategy). Then the function generates a
threshold for each strategy using Equation 6.1, which in turn uses position.

e probability_play: This value is hard-coded at 0.6, meaning when estimating the
number of players (for group) we expect 60% of all players, who have not yet
acted, to play to the flop.

e group: For the pre-flop, we have reduced the number of classifications, based
on the number of players, to three groups: 2, 3-4 and 5 or more players. We
consider these the most important groupings and the I R rankings for more than
4 players are nearly identical in any case.

e tightness: There are three settings (tight, moderate and loose). By default
Loki plays with the loose setting. Note that all three sets of parameters are
relatively tight styles of play. Even the loose set of parameters is considerably
more conservative than a typical loose human player.

o strategy: There are several different pre-flop strategies that we may use: Make0,
Calll, Makel, Call2, Make2 and Make4. Each strategy has a different
threshold value based on the context, except MakeO which is the folding strat-
egy. The values for Calll and Makel are the same, as are the values for Call2
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2 players
tight | moderate loose
Makel || (-50,50) [ (-50,50) | (-50,50)
Make2 || (150,50) (50.50) (0,0)
Make4 (300,0) (300,0) | (300,0)
3-4 players
it tight | moderate |  loose
Makel (50,50) (50,25) | (50,10)
Make2 || (200,50) | (200,25) | (200,10)
Make4 (580,0) (580,0) | (580,0)
5 or more players

tight | moderate loose

Makel || (0,70) (0,50) | (0,30)
Make2 || (450,50) | (450,25) | (450,10)
Maked || (900,0) | (900,0) | (900,0)

Table B.1: Values for [base, increment]

action a
bets to call z || Fold | Check/Call | Bet/Raise
0 0 0.5 0.5
1 0.5 0.3 0.2
2+ 0.7 0.2 0.1

Table B.2: Default frequencies d'[z][a]

and Make2, except for the case of the small blind, which has fixed values for
these two strategies depending only on group.

e base, increment: There is one pair of [base, increment] values defined per group,
strategy and tightness (presented in Table B.1). For the small blind, the Calll
threshold is fixed at 0 for 5 or more players, -75 for 3-4 players, and equal to
the Makel threshold for 2 players. The Call2 threshold is 450 for 5 or more
players, 200 for 3-4 players, and equal to the Make2 threshold for 2 players.

For opponent modeling, we use expert values in the re-weighting function.

o Default Frequencies: In the absence of sufficient data, the action frequencies are
weighted by hard-coded default frequencies (Equation 7.4). The set of values
for d’[z][a] are presented in Table B.2.

o Re-weighting Function o: As described in Section 7.2, for the pre-flop we use
a o of 330. For the post-flop we use o = 0.4 * (1 — p), to reflect the fact that
tighter players adhere to a narrow range of threshold hands.
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Appendix C

Glossary

This is a glossary of both technical terms (indicated with ¢¢.) and poker jargon used
in the thesis. Many of the poker term definitions are based on selected excerpts from
the rec.gambling Glossary of Poker terms, used by permission of the main author,
John C. Hallyburton, Jr.. http://www.conjelco.com/faq/rgpglossary.html.

Action Frequency: n. tt. The frequency a certain opponent makes a certain
action in a certain context — based on inter-game statistics.

Active Player: n. A player who is still in the pot.

Ante: n. A small bet all players are required to make before a hand is dealt.
Not all games have an ante. Related terms: blind.

Bankroll: n. Current total gambling funds available. To be distinguished from
the current money you happen to have on the table. See also: stake.

Bet: v. To put money into the pot, pursuant to the rules of the game, thus
maintaining a chance of winning the pot.

Bet For Value: v. Betting a hand that, in the long run, is expected to win
more than it loses. Antonym: bluff.

Bettor: n. In a given round, the first person to put money in the pot.

Big Blind: n. A blind bet, usually a raise of an earlier blind which would be
called the small blind. In limit poker, the big blind is usually the size of the
minimum bet on the first round of betting.

Blind: n. A mandatory bet made by certain player(s) usually sitting left of the
button before each new hand is dealt. Used in place of, or in conjunction with,
antes. See also: ante, big blind, small blind.

Bluff: n. A bet or raise made with a poor hand, hoping that the remaining
active player(s) will fold. Can also be used as a verb.
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Board: n. The exposed cards in Hold’em. Also called board cards. See also:
community cards.

Button: n. A distinctive token held by the player sitting in the theoretical
dealer’s position (when the dealer is not a player in the game). The button
rotates around the table so that every player has an opportunity to be the last
to act. “The button” can refer to the player who currently has the button.

Call: v. To put in to the pot the minimum amount of money necessary to
continue playing.

Caller: n. One who calls. Sometimes used collectively, as in “3 callers.”

Cap: v. To cap the betting is to make the last permitted raise in a round. In
this case, the betting is said to have been capped.

Check: v. To bet zero, when it is legal to do so. Frequently a sign of only a
fair hand.

Check-Raise: v. To check initially, then raise a bet made later on in the same
betting round. Frequently a sign of strength, but may be a bluff. See also:
sandbag.

Chip: n. A gaming token used in place of cash for convenience in handling and
counting. The standard form of currency in most casinos.

Community Cards: n. Cards that are available for every player to use in
making a hand. Usually dealt face-up somewhere in the middle of the table.
See also: board.

Deuce: n. A two.

Draw: n. [1] A class of poker games characterized by players being dealt 5 cards
face-down and later having the opportunity to replace some of the original 3.
“Draw poker” and “Five-card draw” are examples of usage.

Draw: n. [2] In Hold’em games, the set of cards that will be dealt later can be
collectively called “the draw.”

Draw: v. To discard some number of cards and have dealt an equal number of
replacements.

Early Position: n. Being one of the first players to act in a betting round.
See also: middle position, late position.

Effective Odds: n. A refinement to pot odds which includes estimated extra
winnings and cost to see more than one card. The ratio of the expected winnings,
when you make your hand, to the cost to play. Used when considering a hand
with a high potential given more than one card to come.
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EHS: n. t{. Acronym for effective hand strength: the probability of being the
strongest hand in the future (i.e. using PPOT and NPOT). EHS' is an
optimistic version which ignores NPOT (used when EHS is considered for
a betting decision instead of for a calling decision).

Face Card n. A jack, queen or king (a card with a face on it, not joker).

Face-Down: adj. Specifies a card that is known only to the owning player (e.g.
your hole cards in Hold’em).

Face-Up: adj. Specifies a card is that is known to all players (e.g. community
cards or board).

Field Array: n. tt. The average of the normalized weight arrays of all oppo-
nents.

First to Act: n. First active player following the button.

Fixed Limit: n. A betting structure where the amount of each bet is a specific
fixed quantity. Usually specified as A-B, where A is the amount to bet in the
first few betting rounds and B (larger than A) is the amount bet in the later
rounds. Related terms: flat limit, no limit, pot limit, spread limit.

Flat Limit: n. A variant of fixed limit where all bets are the same amount.
Flop: n. In Hold’em, the first three community cards, dealt simultaneously.
Flush: n. A poker hand consisting of five cards all of the same suit.

Flush Draw: n. Four cards of the same suit (i.e. missing one card to make a

flush).

Fold: v. To decline to call a bet, thus dropping out of a hand.

Four of a Kind: n. A hand containing all four cards of the same rank.
Free Card: n. A card dealt after all players checked in a betting round.
Full House: n. A hand consisting of three of a kind and a (different) pair.

GOM: n. tt. Acronym for generic opponent modeler: a version of Loki that uses
default action frequencies for all opponents (the re-weighting system is the
same for all opponents). GOM’ is a later version that uses additional betting
strategies like check-raising. Compare: SOM.

Hand: n. [1] A player’s hand is the set of cards that only they may use at the
showdown. In Texas Hold’em, a player’s hand is their set of hole cards.

Hand: n. [2] One full game of poker (i.e. from the blinds or ante until the pot
is awarded). See also: trial.
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High Card: n. The weakest poker hand, 5 unmatched cards.

Hit: v. To make a hand or catch a card or cards that improves one’s hand
(e.g. you hold 2-3-4-6 and a 5 is dealt, giving you a straight). Antonym: miss.

Hold’em: n. [1] Generic name for a class of poker games where the players
receive a certain number (2 to 4) of hole cards and 5 community cards. Usually
there are betting rounds after dealing the hole cards, then after dealing 3 face-
up cards (flop), after dealing a 4th face-up card (turn) and finally after dealing
a 5th face-up card (river).

Hold’em: n. [2] When used in the specific sense (e.g. “We’'re playing Hold’em”)
the term usually refers to the game of Texas Hold’em.

Hole Cards: n. In certain poker variants, such as Hold’em, the face-down
cards dealt to each player. Sometimes called the hole.

HR: n. tt. Acronym for hand rank: the probability of being the strongest hand
in the present state, against one random hand. HR, is the hand rank against
n hands.

HS: n. tt. Acronym for hand strength: the probability of being the strongest
hand in the present state. HS, is the hand strength against n opponents.

Immediate Odds: See pot odds.

Implied Odds: n. A refinement to pot odds which includes money not yet in
the pot. Considers the ratio of estimated extra winnings, when a player forms
a good hand, to the present cost to call.

In: adj. Still eligible to win the pot. “I'm in” is often spoken as one calls.

Inside Straight: n. Four cards to a straight, where only one rank will complete
the hand. For example, 4-5-6-8 is an inside straight since only a 7 will complete
the hand. Compare: open-ended straight.

Kicker: n. In hands containing pairs and three of a kind, the highest card
not matched. In draw games, sometimes a card kept for deception purposes.

Late Position: n. For a particular betting round, a player who does not have
to act until most of the other players have acted. See also: early position,
middle position.

Limit Poker: n. A poker game wherein the amount to be bet is fixed, or at
most variable within a prescribed minimum and maximum. Antonym: no-limit
poker. See also: fixed limit.

Loose: adj. Playing more hands than the norm. Antonym: tight.
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Middle Position: n. Betting positions approximately halfway around the table
from the first player to act. See also: early position, late position.

Make: v. To make a hand is to receive cards that improve one’s hand. See
also: hit.

Miss: v. To receive a card that does not improve one’s hand. Antonym: hit.

No-Limit Poker: n. A game where there is no maximum bet; a player can
wager any amount (perhaps above some minimum) up to whatever money is on
the table in front of him. Antonym: limit poker. See also: fixed limit.

NPOT: n. tt. Acronym for negative potential: the probability of falling behind
given that we are ahead (approximately, the percentage of upcoming cards that
help our opponents). N POT; is the one card potential and N POT, is the two
card potential. Compare: PPOT.

Off-Suit: adj. Not of the same suit. “I held A-Q off-suit” or “The flop was
10-6-2 off-suit.” When speaking of 5 or more cards, then not all of the same suit
(i.e. no flush).

One Pair: n. The second weakest poker hand. It contains two cards of the
same rank and 3 unmatched cards (kickers).

Open: v. Make the first bet in a hand, especially in draw poker.

Open-Ended Straight: n. Four cards to a straight which can be completed by
drawing a card at either end. E.g. 6-7-8-9 is an open-ended straight. Compare:
inside straight.

Out: n. A card that will improve your hand, often substantially. A hand with
many outs is preferable to a hand with only a few. E.g. with a flush draw in
diamonds, any diamond is an out.

Out: adj. Folded, ineligible to bet or win this hand. “I'm out” is often a
synonym for “I fold.”

Overpair: n. In Hold’em, a pair in the hole that is larger than any community
card on the board.

Pair: n. Two cards of the same rank.

Position: n. One’s location in the betting sequence, relative to the players still
in the hand. First position is first to act.

Post-Flop: n. In Texas Hold’em, the rounds following the turning of the flop
cards (i.e. the flop, turn and river). Compare: pre-flop.

Pot: n. The total amount of money bet so far in a hand.
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Pot Limit: n. A game where the maximum bet is determined by the size of
the pot at the time. Note that a player wanting to raise first calls the bet, then
totals the pot to determine the maximum amount he can raise. See also: fixed
limit.

Pot Odds: n. The ratio of the money in the pot to the amount of money to

call. Often used with respect to the potential of your hand to determine if a
pot offers enough reward to pay to see the next card.

PPOT: n. tt. Acronym for positive potential: the probability of pulling ahead
given we are behind (approximately the percentage of upcoming cards that
make us a sure winner). PPOT] is the one card potential and PPOT; is the
two card potential. In some cases where we need a very quick estimate, we use
PPOT. (for crude). It uses some fixed rules to quickly determine an estimate

of PPOT;. Compare: NPOT.

Pre-Flop: n. In Texas Hold’em, the round preceding the turning of the flop
cards, where there are no community cards. Compare: post-flop.

Pure Bluff: n. A bluff made with a minimal chance of winning, usually on
the final round with no further cards to come.

Raise: v. To wager more than the minimum required to call, forcing other
players to put in more money as well.

Raiser: n. One who raises.
Represent: v. Implying, by one’s betting style, that one has a particular hand.
Reraise: v. To raise after an opponent has raised.

Reverse Implied Odds: n. A refinement to pot odds which includes extra
cost to play the hand. Considers the ratio of the present pot to the estimated
extra cost to play to the end of the hand.

Re-weight: v. tt. The process of taking an observed action (and its action
frequency) and applying a transformation function to adjust the weight array
to represent a more likely distribution of hands held by the opponent.

River: n. The last card dealt in a hand of Hold’em.

Roll: v. In some variants, instead of dealing extra cards the rules may call for
players to roll over some face-down cards (turn them face-up).

Round: n. A poker variant is composed of several rounds. In each round,
players take some action (such as being dealt a new card) and then proceed to
a betting series. E.g. Texas Hold’em has four rounds (pre-flop, flop, turn and
river).
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Royal Flush: n. An ace-high straight flush, the best possible hand in regular
poker.

Sandbag: v. Playing a strong hand weakly. See also slowplay, check-raise.

Script: n. tt. The definition for a poker variant presented as a sequence of
events (e.g. each player receives z cards face-down, followed by a round of
betting, etc.).

Semi-Bluff: n. A bet with a weak hand that has good drawing potential and is
likely to win if it hits (e.g. a flush draw with no pair is often a good semi-bluffing
hand). Can be used as a verb.

Session: n. A contiguous series of hands (games of poker).

Short-Handed: adv. Playing against only a few other opponents (usually 2-4
players total). Opponent modeling is much more important.

Showdown: n. The point at the end of the hand where all active players reveal
their cards and the pot is awarded to the winner(s).

Showdown Odds: n. A refinement to pot odds which considers the ratio of
the estimated winnings to the estimated cost to play to the end of the hand.

Slowplay: v. To play a strong hand weakly, by checking instead of betting or
by calling instead of raising. Usually done to win extra bets by keeping more
players around for future rounds of betting. See also sandbag.

Small Blind: n. In games with two blinds the first blind is the small blind
because it is usually one-half (or less) the second or big blind.

SOM: n. tt. Acronym for specific opponent modeler: a version of Loki that ac-
cumulates statistics for each opponents to calculate action frequencies which
are used to appropriately re-weight based on observed actions. SOM’ is a
later version that uses additional betting strategies like check-raising. Com-
pare: GOM.

Spread Limit: n. A variation on fixed limit wherein the minimum and max-
imum bets are different. A 1-4-8 game allows bets from 1 to 4 in the early
rounds and 1-8 in the last round. A 1-4-8-16 game allows bets from 1 to 4 in
the early rounds, 1 to 8 in the next-to-last round, and 1 to 16 in the last round.

Stake: n. The amount of money a player is willing or able to play with in a
given session. Compare: bankroll.

Steal: v. To win the pot by bluffing.

Straight: n. A hand consisting of 5 cards in sequence but not in suit.
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Straight Draw: n. A four card straight. See also: inside straight, open-
ended straight.

Straight Flush: n. A hand consisting of 5 cards in sequence and the same
suit.

Suited: n. Two or more cards all the same suit. Antonym: off-suit.
Table: n. The set of players playing together.

Tell: n. Any personal mannerisms that reveal the quality of one’s hand. E.g.
constantly looking at one’s hole cards is often a tell of a poor hand. (Some
players, knowing this, will at times check their hole cards when they have a
great hand and don’t need to look).

Texas Hold’em: n. A Hold’em game where players receive two hole cards and
may use zero or more of them, together with 5 board cards, to make their hands.
See Hold’em.

Three of a Kind: n. Three cards of the same rank.
Tight: adj. Playing fewer hands than average. Antonym: loose.

To Call: adj. The amount that the current player must call to continue playing;
it is a factor of the previous betting action this round. E.g. if the current player
has called the first bet of $10 but there has since been a raise of $10 then it is
“$10 to call” for that player. Compare: to go.

To Go: adj. The current betting level, as in “$20 to go” meaning every player
must contribute $20 (total) or drop. A $10 raise would then make the pot “830
to go.”

Top Pair: n. In flop games, having a hole card that matches the highest card
on the board.

Trey: n. A three.

Trial: n. ¢t. In the self-play tournaments that Loki uses, a trial is one particular
instance of a hand. For each particular distribution of cards, the hand is re-
played ten times (trials), shuffling the seating arrangement each time to reduce
the luck element.

Turn: n. The fourth community card in Hold’em.

Two Pair: n. A poker hand which contains two pairs of different ranks and
one kicker.
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e Weight Array: n. tt. The component of an opponent model that is used to
obtain a weighted sum in the hand evaluation algorithms. For each opponent
there is a weight for each possible combination of hole cards. This weight ap-
proximately represents the conditional probability that they would have played
in the observed manner (given that hand). See also: re-weight.

e Wild Card: n. A joker or standard card that, by player agreement and/or
dealer’s choice, can be used to represent any card desired.

e World Series of Poker: n. A series of several different poker games with
relatively large entry fees, culminating in a $10,000 entry-fee no-limit Hold’em
tournament, the winner of which is crowned the World Poker Champion. Spon-
sored by Binion’s Horseshoe Club in Las Vegas.
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