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Abstract

We investigate the use of machine learning to create effective heuristics for single-agent search.

Our method aims to generate a sequence of heuristics from a given weak heuristic h0 and a set of

unlabeled training instances using a bootstrapping procedure. The training instances that can be

solved using h0 provide training examples for a learning algorithm that produces a heuristic h1 that

is expected to be stronger than h0. If h0 is so weak that it cannot solve any of the given instances we

use random walks backward from the goal state to create a sequence of successively more difficult

training instances starting with ones that are guaranteed to be solvable by h0. The bootstrap process

is then repeated using hi instead of hi−1 until a sufficiently strong heuristic is produced. We test this

method on the 15- and 24-sliding tile puzzles, the 17- , 24- , and 35-pancake puzzles, Rubik’s Cube,

and the 15- and 20-blocks world. In every case our method produces heuristics that allow IDA* to

solve randomly generated problem instances quickly with solutions very close to optimal.

The total time for the bootstrap process to create strong heuristics for large problems is several

days. To make the process efficient when only a single test instance needs to be solved, we look

for a balance in the time spent on learning better heuristics and the time needed to solve the test

instance using the current set of learned heuristics. We alternate between the execution of two

threads, namely the learning thread (to learn better heuristics) and the solving thread (to solve the

test instance). The solving thread is split up into sub-threads. The first solving sub-thread aims at

solving the instance using the initial heuristic. When a new heuristic is learned in the learning thread,

an additional solving sub-thread is started which uses the new heuristic to try to solve the instance.

The total time by which we evaluate this process is the sum of the times used by both threads up to

the point when the instance is solved in one sub-thread. The experimental results of this method on

large search spaces demonstrate that the single instance of large problems are solved substantially

faster than the total time needed for the bootstrap process while the solutions obtained are still very

close to optimal.
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Chapter 1

Introduction

Consider the problem of traveling from an initial location to a destination location within a city.

Heuristic search is a common approach to find a path from the initial location to the destination

location. The above problem can be converted to a graph search problem in which each node in the

graph is a location within the city. Each edge in the graph then corresponds to a direct path between

two locations, i.e., when no other location exists in the middle of the path between the two locations.

Heuristic search finds a solution to the problem by searching the graph and finding a path in the

graph that leads from the initial location to the destination location.

Heuristic search uses some information, called the heuristic function (heuristic, for short), in

addition to the search graph itself, to speed up finding a path between the initial location and the

destination location. Although in some cases, finding a path would be sufficient, finding a path with

the lowest cost, which is called an optimal solution path, is often more desirable. Any solution

path with a cost larger than the cost of an optimal path is called a suboptimal solution path. The

heuristic function at each location estimates the cost of reaching the destination from that location.

If, for each location in the graph, the value of the heuristic function is a lower bound on the cost

of the lowest cost path from the location to the destination location, the heuristic function is called

admissible. Heuristic search algorithms exist that guarantee finding an optimal solution path when

an admissible heuristic function is given.

In addition to the cost of the path, the time that it takes for the algorithm to find the path is also

very important. Modern heuristic search systems require “good” heuristics to ensure that the time

needed to find the solution path is acceptable. It can happen that a near-optimal path is preferred

to an optimal one as the time needed to find the optimal path can be very long (e.g., on the order

of days) whereas suboptimal paths can be found quite quickly. In this thesis, we study a general

technique to create heuristics that enable solutions that are close to optimal to be found quickly.
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1.1 Approach to the Problem

1.1.1 Bootstrapping

Current methods to automatically create admissible heuristics are unable to create strong heuris-

tics for large problems; therefore, even the best heuristics created by them are too weak to solve

arbitrarily instances of large problems in a reasonable time. For example, the best such heuristic

for the 24-puzzle1 needs about two days on average to solve an arbitrary instance of the prob-

lem optimally [42]. The problem solving can become much faster if an inadmissible heuristic is

used, i.e., when optimal solutions are not required.

One possible approach to creating inadmissible heuristics is to apply machine learning to a set of

problem instances whose distance-to-goal is known (the training set) to create a heuristic function

that estimates distance-to-goal for an arbitrary problem instance. The learned heuristic might be

inadmissible as it may overestimate the distance-to-goal for a new problem instance. This idea has

been applied with great success to small search spaces (e.g., the 15-puzzle) [13, 55], but could not

be directly applied to larger spaces, e.g., the 24-puzzle, because of the infeasibility of creating a

sufficiently large training set containing a sufficiently broad range of distances to goal.

In this thesis, we directly learn heuristics for large search problems by an iterative procedure to

improve an initial (weak) heuristic function. We call our approach “bootstrap learning of heuristic

functions” (bootstrapping, for short). We experimentally show that bootstrapping succeeds, without

modification or manual intervention, to create effective heuristics on both small (e.g., the 15-puzzle)

and large problems (e.g., the 24-puzzle).

Initially, this procedure requires an initial heuristic function h0 and a set of states we call the

bootstrap instances. Unlike previous machine learning approaches to create heuristics, there are no

solutions given for any instances, and h0 is not assumed to be strong enough to solve any of the given

instances. A standard heuristic search algorithm is run with h0 in an attempt to solve the bootstrap

instances within a given time limit. The set of solved bootstrap instances, together with their solution

lengths (not necessarily optimal), is fed to a learning algorithm to create a new heuristic function h1

that is intended to be better than h0. After that, the previously unsolved bootstrap instances are used

in the same way, using h1 as the heuristic instead of h0. This procedure is repeated until all but a

handful of the bootstrap instances have been solved or until a succession of iterations fails to solve

a large enough number of bootstrap instances that were not solved on the previous iterations.

The initial heuristic, the bootstrap instances, and the features used for learning are user-supplied,

but they do not have to be carefully crafted. If the initial heuristic h0 is too weak to solve even a few

of the given bootstrap instances within the given time limit we enhance h0 by a random walk method

that generates bootstrap instances at the “right” level of difficulty (easy enough to be solvable with

h0 but hard enough to yield useful training data for improving h0). These instances are generated

1The puzzles used as testbeds in this thesis are described in Section 2.1.1.
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using random walks backward from the goal.

Using bootstrapping to create heuristics for large search spaces, e.g., the 24-puzzle, raises a

new issue. The time to create “good” heuristics can be so large that it can only be justified if the

heuristic is going to be used to solve many problem instances. For example, it takes about 18 days

for bootstrapping to create heuristics for the 24-puzzle that enable solving arbitrary instances of the

problem almost optimally in a few seconds. When only a single instance of the 24-puzzle needs to

be solved, using the admissible heuristic is preferred to bootstrapping as (i) it is faster in total for

the admissible heuristic to solve the instance, and (ii) the solution generated is optimal. Therefore,

an approach different than bootstrapping is needed when only a single instance is to be solved.

1.1.2 Interleaving Bootstrapping and Problem Solving

In order to address the problem of solving only a single instance efficiently, we present a variation

of bootstrapping that provides a balance between the time spent on learning better heuristics and the

time needed to solve the test instance using the current set of available heuristics. This variation

interleaves learning new heuristics and solving the problem instance in an attempt to minimize

the sum of the learning and solving times. We call this approach “interleaving bootstrapping and

problem solving” (interleaving, for short). Interleaving works as follows.

Two threads are created; one, which we call the learning thread, for learning better heuristics

from the training instances created by random walks backwards from the goal state, and the other,

which we call the solving thread, for trying to solve the test instance. These two threads were

alternatively run. The time allocated to each thread is a parameter of interleaving and is set manually.

The solving thread itself is comprised of “solving sub-threads”. The first solving sub-thread

aims at solving the instance using the initial heuristic. Whenever a new heuristic is learned in the

learning thread, a new solving sub-thread is started. This new sub-thread uses the new heuristic to

try to solve the test instance. The process stops when the instance is solved in one of the solving

sub-threads. The total time by which we evaluate this process is the sum of the times used by both

threads (including all the sub-threads) up to the point when the instance is solved in one sub-thread.

1.2 Contributions of this Research

Some parts of Chapter 3 of this thesis are published in the Third Annual Symposium on Combina-

torial Search (SoCS 2010) [36]. The major contributions of this research are as follows.

1. We introduced an incremental bootstrapping process to learn heuristic functions for search

problems. This work substantially extends previous methods in three regards.

(i) It does not require the distance-to-goal for any of the given training states to be given.

(ii) It does not require a strong initial heuristic. Whenever the initial heuristic is so weak

that bootstrapping cannot start, bootstrapping is augmented with a random walk method

3



for generating successively more difficult problem instances.

2. We provided experimental evidence that bootstrapping succeeds in producing effective heuris-

tics to solve randomly generated problem instances quickly with solutions that are very close

to optimal. On all domains our method systematically outperforms Weighted IDA* (the IDA*

equivalent of Weighted A* [48]) and BULB [20]. We further compared our method with the

state-of-the-art optimal methods to show that when relatively little degradation from the op-

timal solution is allowed, our method can solve problems much faster than optimal methods.

For example, our method solves an average 24-puzzle instance in less than 10 seconds with

solutions that are within 10% of the optimal cost, whereas the optimal methods require 2 days,

on average, to solve 24-puzzle instances.

3. We introduced a variation of bootstrapping aimed at minimizing the sum of the learning and

solving time. This variation involves interleaving the process of learning heuristics and solv-

ing the test instance using the current set of learned heuristics. We experimentally showed that

interleaving is very effective in decreasing the learning time of bootstrapping for large search

spaces. For example, on the 24-puzzle, its total time to solve each random instance is less

than 16 minutes on average while the cost of solutions are, on average, within 7% of optimal.

1.3 Outline

This thesis proceeds as follows. Basic background on heuristic search and the machine learning

concepts used throughout this thesis is provided in Chapter 2.

Chapter 3 describes our bootstrap learning method to create strong heuristics from given (weak)

ones and our random walk technique to create a sequence of successively more difficult instances to

prime Bootstrap. It also includes the experimental results of our method on the 15- and 24-sliding

tile puzzles, the 17- , 24- , and 35-pancake puzzles, Rubik’s Cube, and the 15- and 20-blocks world.

Chapter 4 presents a variation of the ideas discussed in Chapter 3 that aims to decrease the total

time of learning new heuristics and solving a single target instance by interleaving the learning and

solving processes. The experimental results and a brief review of notable planning techniques to

solve a single instance of a problem are also presented in this chapter.

Chapter 5 reviews other research related to learning heuristic functions to guide search and

methods that use random walks to generate successively more difficult training instances. Chapter

6 concludes the thesis. It provides a summary of the findings and limitations of our work. It also

discusses some possible future directions of this research.
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Chapter 2

Essential Background

This chapter consists of a brief overview of the heuristic search and machine learning concepts used

throughout this thesis. In Section 2.1, first the concept of heuristic search is introduced. Next, the

test domains used in our experiments are introduced. Then heuristics and a general way of creating

heuristics using abstraction are presented. Finally, the heuristic search algorithms used in this thesis

and the concept of a weighted heuristic are discussed. In Section 2.2, two learning algorithms, neural

networks and linear regression, are described.

2.1 Heuristic Search

Heuristic search is a technique to solve an instance of a search problem. The search space is a graph

G that consists of a finite set of nodes V and a set of edges E. Each node represents a state in the

search space while each edge (a, b) indicates that state b can be directly reached from state a by a

legal move. State b is called a successor of state a. Each edge in the graph G is associated with a

cost. We assume all the edge costs are non-negative. In all the test domains used in this thesis (see

Section 2.1.1), the edge costs are always 1. The cost of a path between two nodes a and b is the sum

of the edge costs in the path between a and b (the length of the path when all the edge costs are 1).

A problem instance is represented by an initial state s and a goal state g. A solution consists of

a sequence of edges that leads from s to g. An optimal path between s and g is a path (which is

not necessarily unique) with the minimum cost. The cost of an optimal path is called the optimal

solution cost of the problem instance. Any solution with a larger cost than the optimal solution

cost is called a suboptimal solution. Heuristic search finds the solution to each problem instance

by traversing the graph G and finding a sequence of edges that leads from the start state s to the

goal state g. The order in which a heuristic search algorithm traverses a graph G is determined by

a heuristic function. The heuristic function for each state n estimates the cost of reaching the goal

state g from state n.

In the rest of this section, we first briefly introduce the test domains for our experiments. Then

we present the concept of heuristic functions and review a general approach to create heuristics using

5



abstraction. Finally, we introduce the search algorithms that were used throughout this thesis and

the concept of weighted heuristic.

2.1.1 Domains

We used the following domains for our experiments.

(i) Sliding-tile puzzle (n2–1-puzzle) [61]: The puzzle is an n × n grid containing of n2 − 1

numbered tiles (numbers are ranging from 1 to n2–1) and an empty tile called the blank. Each

state is represented as a vector of length n2, in which component k of the vector names what is

located in the kth puzzle position (either a number representing a tile or a symbol representing

the blank). Every operator swaps the blank with a tile adjacent to it. The objective is to

rearrange the tiles from an initial configuration (the start state) to a goal configuration (the

goal state) corresponding to (blank, 1, . . . , n2 − 1). Figure 2.1 shows a sample start state and

the goal state for the 15-puzzle (n = 4).

Figure 2.1: A sample start state and the goal state for the 15-puzzle.

The number of reachable states in a n2–1-puzzle is
n2!
2

. In our experiments we used n =

4 (the 15-puzzle) and n = 5 (the 24-puzzle) which respectively contain more than 1013 and

1025 reachable states. The largest version of the puzzle that has been solved optimally by

abstraction-based heuristic search methods is the 24-puzzle [42].

(ii) n-pancake puzzle [11] : Each state in the n-pancake puzzle is represented as a permutation

of the numbers from 1 to n. It can also be considered as a stack of n pancakes in which the

value of the component k of the permutation represents the size of the kth pancake in the

stack. In the goal state, the numbers in the permutation will be in an ascending order, i.e., the

pancakes are stacked in ascending order of their size (from top to bottom). The goal state for

the 6-pancake puzzle is shown in Figure 2.2.1

Each state has n–1 successors with the lth successor formed by reversing the order of the first

l+1 elements of the permutation (the top l+1 pancakes in the stack). It is possible to reach

any state from any other state, therefore, the n-pancake puzzle has n! reachable states. In our

experiments we used n = 17, n = 24, and n = 35 which respectively contain more than

1This figure is taken from Helmert [28] and modified.
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Figure 2.2: The goal state for the 6-pancake puzzle.

1014, 1023 and 1040 reachable states. The largest version of the puzzle that has been solved

optimally by general-purpose abstraction-based methods is n = 19 [30].

(iii) Rubik’s Cube [41]: The version of the puzzle that we used is the standard 3x3x3 cube made

up of 20 movable 1x1x1 “cubies” with coloured stickers on each exposed face. The movable

cubies can be divided into 8 corner and 12 edge cubies. Each move rotates a face of the cube

90, 180, or 270 degrees clockwise. In the goal state, all the stickers on each face are of the

same color. Figure 2.3 shows the goal state for Rubik’s Cube.2 More than 4× 1019 reachable

states exist in this puzzle [41]. The best general purpose admissible heuristics for Rubik’s

Cube need more than one day, one average, to solve each random instance of the problem

optimally [41].

Figure 2.3: The goal state for Rubik’s Cube.

(iv) n-blocks world [60]: Each state in the n-blocks world is represented as a pair. The first com-

ponent is a permutation of {1, . . . , n} while the second component is an (n–1)-digit binary

number. The permutation represents a sequence of blocks, given by concatenating the se-

quences of blocks in all the stacks of blocks in the state, starting with the stack that contains

block 1, followed in order of the smallest block number contained in a stack. The n–1 digits in

the binary number encode, for every two adjacent numbers in the permutation, whether or not

they belong to different stacks. Figure 2.4 shows a sample start state of the 5-blocks world.

This state is represented by the pair {(1,3,5,2,4), (0100)} using our representation. The goal

state that we chose has all the blocks in one stack in order of the smallest block number at the

bottom to the largest block number on the top. For example, the goal state for 5-blocks world

is represented by the pair {(1,2,3,4,5), (0000)} and it is shown in Figure 2.4.

2The figure is taken from http://www.math.cornell.edu/˜mec/Winter2009/Lipa/Puzzles/pics/
rubiks-cube.jpg and modified.
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Figure 2.4: A random start state and the goal state for the 5-blocks world.

In each state, only the blocks that are at the top of a stack are allowed to move. For example,

in the start state shown in Figure 2.4, only blocks 3 and 4 are allowed to move. Each action

moves one block from the top of a stack to the top of another stack or to the table. For example,

block 3 can either move to the top of block 4 or to the table. The objective is to change an

initial state into the goal state by moving one block at a time. We used n = 15 and n = 20 in

our experiments; the number of reachable states in these domains is more than 1013 and 1020

respectively [60].

The above representation is called the “handless” blocksworld. In Section 4.3.5, we imple-

mented another version of the blocksworld that uses a hand. The hand is used to pick up

and put down the blocks. For example, if block 3 needs to be moved to the top of block 4

in the start state shown in Figure 2.4, it first needs to be picked up by the hand and then the

hand needs to put it down on top of block 4. The hand can only pick up a block when it is

empty, i.e., when the hand does not hold any other block.

2.1.2 Heuristics

A heuristic function h(s) is a function that estimates the distance from state s to the goal state g. A

heuristic h is admissible if for every state s the value of h(s) does not overestimate the cost of the

optimal path from state s to the goal state g. The heuristic function h is said to be consistent if for

any adjacent nodes a and b in graph G, h(a)–h(b) never overestimates the cost of reaching b from

state a. When the heuristic value of the goal state (h(g)) is zero, a consistent heuristic function will

be admissible by definition.

Manhattan distance (MD) is an example of an admissible and consistent heuristic for the sliding-

tile puzzle. It is the sum of the vertical and horizontal distances of each non-blank tile from its

location at the goal state. For the start state of the 15-puzzle shown in Figure 2.1, tiles 1, 4, 5,

8, and 9 are not in their goal locations; therefore the value of the MD heuristic for this state is

6 (1+1+1+1+2 for tiles 1, 4, 5, 8, and 9). MD is admissible because each non-blank tile should at

least be moved from its current location to its position in the goal state and each legal move only

moves one non-blank tile one step vertically or horizontally; therefore, MD is less than or equal to
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the length of any solution path to the goal. It is consistent because each move will change the value

of the heuristic by one and the distance between two adjacent nodes in the search space graph is

always one.

Figure 2.5: Mapping of two states in the 15-puzzle to an abstract state.

A general approach to create heuristics is abstraction. An abstraction is a mapping that maps the

nodes in the graph of search space S to nodes in the graph of an abstract search space φ(S). For

example, consider an abstraction of the 15-puzzle that is made by considering tiles 2 and 3 to be

equivalent. Figure 2.5 shows that the two states of the 15-puzzle on the left will be mapped to the

abstract state on the right if such an abstraction is used for the 15-puzzle. In this mapping the edges

are inherited, i.e., if an edge exists between two nodes a and b in the graph of search space S, an

edge will exist between φ(a) and φ(b) or a and b will be both mapped to the same abstract state.

Consider two sets of states A and B in the search space that are respectively mapped to two abstract

states φ(A) and φ(B). The cost of the shortest cost path between φ(A) and φ(B) in the abstract

space is never more than the cost of any path between any state a ∈ A and b ∈ B in the original

search space. Therefore, the distance between the abstract start state φ(s) and the abstract goal state

φ(g) is guaranteed to be an admissible heuristic [3, 9, 24, 34] for the search space S.

Pattern databases (PDBs) [9] are the most common technique to create heuristics using abstrac-

tion. A PDB is a precomputed table of the optimal cost of all the states in the abstract search space

from the abstract goal state φ(g). For each abstract state, the cost of the shortest cost path between

the abstract state and the abstract goal state φ(g) will be stored in the table as the entry for the ab-

stract state. This entry can be used as the heuristic value for the states in the search space that are

mapped to this abstract state. When all the edge costs are one, a breadth first search3 is run to make

the table. The breadth first search runs backwards from φ(g) until all the abstract states are visited.

The memory required to store the table and the time to build the entire pattern database depend
3Breadth first search starts with expanding the start state and adding all its successors to a First-In-First-Out queue. Then,

the state on the front of the queue is removed and all it successors are added to end of the queue. This process is repeated
until the goal state is found.
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on the granularity of abstraction. A fine-grained abstraction requires more memory and needs more

time to build the PDB but leads to a more accurate heuristic. For example, Holte et al. [34] reported

that it takes about 3 hours to build a 7-8 additive pattern database [42] for the 15-puzzle. The

memory needed to store the PDBs is about 577 megabytes.

To build the 7-8 additive PDB for the 15-puzzle, the non-blank tiles are divided into two groups

such that each non-blank tile only belongs to one group. The first group contains tiles 1 to 7 (7 tiles)

while the other group contains tiles 8 to 15 (8 tiles). Then a PDB is built for each group; each PDB

stores the minimum number of moves required to move the tiles in the group to their locations in the

goal state while not counting the moves that involve a tile from the other group. This pair of PDBs is

called additive because the value of these two PDBs can be added to create an admissible heuristic

for each state. If the moves of the tiles that are not in the group are also counted, the resulting PDB is

called non-additive. An admissible heuristic can be created from more than one non-additive PDBs

by computing their maximum value for each state.

Our experiments showed that making three non-additive 6-tile PDBs4 for the same problem takes

less than 6 minutes and all the PDBs together need about 173 megabytes of memory. However,

solving an instance of the 15-puzzle using a standard search algorithm, e.g., IDA* [39], with the 7-8

additive PDB is on average more than 10,000 times faster than solving the same instance using the

maximum of three 6-tile non-additive PDBs. The extensive memory requirement of PDBs limits

their application.

Several enhancements have been proposed to extend the range of the problems to which abstrac-

tion is applicable. Korf and Felner [42] studied additive PDBs for problems that can be divided into

a set of disjoint subproblems. Here, disjoint means that each move in the search space only changes

one subproblem. Yang et al. [66] generalized this concept of additivity to additive abstractions that

can be applied to any search space. Furthermore, compression schemes [2, 12, 56] have been used

to decrease the memory requirements of PDBs.

Although these enhancements have improved the performance of the PDBs, it is easy to imagine

problems so large that even the best PDB heuristic created (considering the available memory) by

these systems will be too weak to enable arbitrary instances to be solved reasonably quickly. For

example, the biggest abstraction that can be held in memory for the 24-puzzle (a 6-6-6-6 additive

PDB [42]) solves a random instance of the 24-puzzle optimally in two days on average. Therefore,

it seems that the PDB heuristic is not very helpful in large domains and one cannot imagine PDBs

and their enhancements to be applicable to even larger domains when optimal solutions need to be

computed (e.g., the 35-pancake puzzle which is about 1015 times larger than the 24-puzzle).

4A 6-tile PDB for the 15-puzzle is built by considering 9 of the non-blank tiles to be equivalent in the abstract search
space, e.g., when tiles 7 to 15 are considered to be equivalent in the abstract search space. The pattern database built based
on this abstraction only considers the location of tiles 1 to 6 and the blank tile to compute the heuristic value of each state of
the 15-puzzle.
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2.1.3 Heuristic Search Algorithms

A heuristic search algorithm is an algorithm that traverses the graph of the search space using the

guidance of the heuristic function to make decisions on which path to follow during the search. A

heuristic search algorithm is complete if it is guaranteed to find a solution if one exists.

The performance of search algorithms is measured using time complexity and solution quality.

The time complexity of a heuristic search algorithm is the time that the algorithm needs to find a

solution. For each heuristic search algorithm, this time is generally proportional to the number of

nodes that were generated during the search. For example, if a heuristic search algorithm generates x

and 2x nodes to solve two problem instances, we expect the time to solve the first problem instance

to be about half of the time needed to solve the second problem instance. The solution quality

of the algorithm compares the cost of the solution found by the algorithm to the optimal solution

cost. The suboptimality of a solution is defined as the difference between the cost of the solution

found by the algorithm and the optimal solution cost divided by the optimal solution cost. For

example, a suboptimality of 7% means the solution generated was 7% longer than the optimal one.

We do not consider the space complexity, the amount of memory that an algorithm requires, as

a measure of performance in this thesis as the algorithms that we use in this thesis are bounded

memory algorithms.

In the rest of this section, different heuristic search algorithms such as A*, IDA*, RBFS, beam

search and BULB are introduced. We use the term nodes generated for nodes that were visited by

the search algorithm. A node is called expanded whenever all its successors are generated.

A*

Best first search algorithms [48] explore the search space graph using an evaluation function f . Best

first search ensures that the nodes in the search graph will be expanded in increasing order of their

f -value. For each state n in the search graph, f(n) = g(n)+h(n) where h(n) is the heuristic value

of state n and g(n) is the cost of reaching state n from the start state. The most famous best first

search algorithm is A* [48].

A* uses two lists: OPEN and CLOSED. OPEN stores the nodes that have been generated but not

expanded yet. The node that has the minimum f -value will be always selected for expansion from

OPEN. CLOSED stores the nodes that have been expanded during the search, i.e., their successors

were added to OPEN. Whenever a node is generated, both OPEN and CLOSED will be checked to

make sure that the generated node is not a duplicate of a previously generated node. If a node that

is in either OPEN or CLOSED is reached during the search with a lower f -value it will be either

removed from CLOSED and added to OPEN (if it was in CLOSED) or its f -value will be updated

in OPEN (if it was already in OPEN). A* returns a solution when the goal is selected for expansion.

If the heuristic h is admissible, A* is guaranteed to find the optimal solution.

A* has high memory requirements as it keeps all the visited states during the search in memory.
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Korf suggested algorithms called IDA* [39] and RBFS [40] that have linear memory requirements

in terms of the depth of the solution. These algorithms remove the intensive memory consumption

of A* by ignoring duplicate detection at the cost of increasing the number of nodes generated.

IDA*

Iterative Deepening A* (IDA*) [39] performs a series of depth first searches bounded by a cost. The

cost bound for the first iteration is the heuristic value of the start state. In each iteration of IDA*, all

the nodes with an f -value of at most the cost bound will be expanded in a depth first order, i.e., going

deeper and deeper in the graph by expanding the first successor of each node. Nodes whose f -value

exceed the current bound will be pruned and the cost bound for the next iteration will be set to

the minimum f -value of the pruned nodes. The algorithm finishes when a goal is reached whose

f -value does not exceed the current cost bound.

IDA* reduces the memory requirements of A* to linear with respect to the maximum search

depth. However, it can expand the same node numerous times in total as the search starts anew from

the start state at each iteration (with a new cost bound). It has been proved that IDA* will expand

the same number of nodes as A* asymptotically if the search graph is a tree [39]. IDA* given an

admissible heuristic is guaranteed to find the optimal solution.

RBFS

Recursive Best-First Search (RBFS) [40] is similar to IDA* in terms of memory requirements, but

unlike IDA*, it expands nodes in the same order as A*. RBFS performs depth first searches. Instead

of expanding the children in a specific order (as is done by IDA*), RBFS selects the child with

the lowest f -value for expansion. It has a cost bound similar to IDA* and also keeps track of the

f -value of an alternative path from the ancestor of the current node. The search backtracks to the

alternative path when the f -value of the current path exceeds the f -value of the alternative path.

During backtracking, the f -value of each node along the path will be updated by the lowest f -value

of its children. The algorithm finishes when a goal is reached whose f -value does not exceed the

current cost bound. Similar to A* and IDA*, RBFS finds an optimal solution given an admissible

heuristic.

Beam Search

Beam search is a variant of breadth/best first search that reduces the memory requirements of these

algorithms. Beam search prunes the non-promising nodes, the ones with the highest heuristic values,

during the search to reduce its memory requirements. The number of promising nodes, those that

have the lowest heuristic values, that will be kept in memory is called the “beam width” (B) and is

the parameter of the beam search. The set of promising nodes that are kept in memory during each

iteration is called the “beam”.
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The algorithm begins with expanding the start state and sorting the successors of the start state

based on their heuristic value. The best B successors, i.e., those with lowest heuristic values, will

be added to the current beam. If fewer than B successors were generated, all of them will be added

to the current beam. For the next step, all the nodes in the current beam are expanded and the B

successors with the lowest heuristic values will be added to the next beam. The search succeeds

when a goal is found or fails when the beam becomes empty.

Beam search is not guaranteed to find an optimal solution as it does not consider all parts of the

state space. Furthermore, by pruning some parts of the state space (possibly all the paths to the goal

state) beam search is not a complete search algorithm either.

Limited Discrepancy Search

Harvey and Ginsberg [23] suggested a search algorithm based on the intuition that the failure of a

heuristic search algorithm (in the beam search family) might be because of a small number of wrong

decisions during the search. Their Limited Discrepancy Search (LDS) is a backtracking search

designed to work with binary trees5 of a finite depth. Figure 2.6 shows the first three iterations of

LDS on a binary tree6 of depth three. In the binary tree, for each state, the heuristic value of the left

child is always lower than the heuristic value of the right child. In the first iteration of the search,

for each state, the child with the lower heuristic value is selected for expansion. Therefore, only the

leftmost path in the tree is visited in the first iteration.

A discrepancy happens when the heuristic is not followed at some point to make a decision,

e.g., when a right child is selected for expansion. LDS has a limit on the number of discrepancies

allowed for each iteration. This limit is set to zero for the first iteration. When the search fails to find

a goal at the end of each iteration, the number of allowed discrepancies increases by 1. Therefore,

in the second iteration new parts of the tree will be explored that differ from the first iteration by

at most one discrepancy. The order in which the discrepancies are allowed is first at the top of the

search tree and then further down the tree. This is based on an intuitive justification that heuristic

functions are generally least accurate near the start state. The numbers at the leaf nodes in the figure

show the order in which the leaf nodes are visited during each iteration.

BULB

To make beam search complete, Furcy and Koenig [20] enhanced it with backtracking. Their al-

gorithm, which is called BULB (Beam search Using Limited discrepancy Backtracking), has two

parameters: a limit on the number of states that can be stored in memory in total (M ) and the beam

width parameter (B). BULB is complete if a solution of length
M

B
exists for the problem. For

example, with a beam width of 50, 000 and a memory limit of 5 million nodes, BULB will not be

able to solve all the instances of the 24-puzzle using the MD heuristic (the optimal solution for these

5LDS can be extended to work on non-binary trees.
6This figure is from David Furcy’s PhD thesis [19].
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Figure 2.6: Limited Discrepancy Search on a binary tree.

problems instances can be more than 100 while
M

B
is 100). BULB does not guarantee any bounds

on the quality of the solutions returned by the search. Increasing the beam width generally seems

to improve the quality of solutions. Increasing the beam width to infinity makes BULB the same as

breadth first search.

The main concept in BULB is Limited Discrepancy backtracking [23]. Suppose that more than

B successors are generated at some stage during the search when the current beam was expanded.

The successors will be sorted based on their heuristic values into a number of slices denoted as

1, 2, · · · ,K. Each slice i (1≤i≤K–1) will contain B successors while slice K can contain less than

B successors (depending on the number of nodes that were generated by expanding the previous

beam). A discrepancy occurs whenever instead of using the B successors with the lowest heuristic

values at the next level (slice 1), another slice is used. Figure 2.7 shows parts of a search graph

for BULB. The slices that are expanded by BULB are colored in gray and only their successors

are shown in the search graph. Figure 2.7 shows that BULB is using one discrepancy as slice 2 is

expanded instead of slice 1 in depth 2.

BULB has a limit on the number of discrepancies that can happen during the search. This limit

is set to zero for the first iteration. Backtracking happens whenever the memory limit M is reached
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Figure 2.7: An example of BULB.

before finding a solution. The search backtracks to the beam whose successors were generated using

a discrepancy. For example if the memory limit M is reached for the search shown in Figure 2.7,

then the search backtracks to depth 1. Then a new slice that again causes a discrepancy will be

selected for expansion (e.g., if slice 2 was expanded last time, now slice 3 will be selected for

expansion). If no such slice exists, the successors will be constructed without a discrepancy (slice

1 will be expanded). For example, as no such slice 3 exists in depth 2 of Figure 2.7, slice 1 will

be expanded (no discrepancy). If backtracking reaches the root of the graph and the first beam

was constructed without a discrepancy, then the discrepancy limit will be incremented and a new

iteration of BULB starts. The search stops when the goal state is reached.

2.1.4 Weighted Heuristics

A weighted heuristic is constructed by multiplying the heuristic function h by a constant factor

W∈ R ≥ 0 which is called the weight [48]. We use the term “Weighted” before the name of each

algorithm to show that the algorithm uses a weighted heuristic. For example, Weighted IDA* refers

to using a weighted heuristic with IDA*.

When W≥1 and h is admissible, the resulting weighted heuristic function will likely decrease

the amount of search. Ira Pohl [48] proved that Weighted A* generates solutions that are at most W

times longer than the optimal ones. A similar bound can be proved for Weighted IDA* (W-IDA*)

and Weighted RBFS (W-RBFS).
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2.2 Learning Algorithm

A learning algorithm is an algorithm that learns the patterns underlying the training data and gen-

eralizes from the given training examples to make predictions on in new cases. Neural networks

and linear regression, which will be discussed here, belong to the supervised learning class in which

each training example is a pair. The first element of the pair is a vector of feature values representing

the input object while the second element is the desired output value.

One way of speeding up search, which is our goal in this thesis, is to learn a heuristic from a set

of training data. For example, in our system each training example consists of some user-defined

features of a state as the input and the solution length of the state (not necessarily optimal) as the

output. A learning algorithm is used to predict the distance from any state to the goal, the heuristic,

in new cases. In the next section, we briefly introduce neural networks and linear regression as they

are frequently used in the heuristic search and planning for learning heuristic/control knowledge.

2.2.1 Neural Networks

A Neural Network (NN) [53] is a multi-layer structure in which each layer is composed of units that

are connected to the units of the next layer. Figure 2.8 shows a simple neural network7 with one

output, three hidden, and two input units. Each arrow in the figure indicates a weight. Smaller arrows

in the figure indicate the weights associated to bias nodes. Bias can be considered as a unit with an

input value that is always equal to one. The output value of each unit is computed in two steps. First

the weighted sum of the inputs of the previous layer (including the bias units) is computed. Then

this value will be used as an input to a non-linear function (e.g., a sigmoid function). The output of

the non-linear function will be the output of the unit. The output of each layer in the network forms

the input to the next layer.

Figure 2.8: A simple neural network.

Backpropagation [54] is used to train the neural network, i.e., to learn the weights. The back-

propagation algorithm works in two phases. For each training example, it first computes the output

of the neural network using the current weights and calculates the difference between this value

7This figure is taken from http://www.heatonresearch.com/node/704 and modified.
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and the desired output given for this training example. The difference is called the error. Then it

propagates the error backwards to update the weights. Mean square error is a commonly used error

function which is defined as:

MSE =
∑
t∈T

(F (t)− F ′(t))2

|T |
(2.1)

in which T is the set of training examples and |T | is the number of training examples. For each

training example t ∈ T , F (t) and F ′(t) respectively show the desired output for t and the output of

the network for training example t. The backpropagation stops after a finite number of iterations or

when the error function falls below a fixed threshold.

2.2.2 Linear Regression

Linear regression models the relationship between an output variable y and a set of input variables

X using a linear function. After developing such a model, linear regression can be used to predict

the value of y when a new input is given without its accompanying output value.

The model to predict the output of a new input variable can be represented as:

y′ =
∑
i

wixi + c (2.2)

in which xi is the value of the ith input variable, wi is a weight, c is a constant, and the output y′ is

the weighted linear combinations of inputs. The weights are learned by minimizing the sum of the

squared prediction error (y − y′)2 for each training example in which y is the given output for the

training example and y′ is the output predicted by the linear regression.

One possible technique to learn the weights for linear regression is to use gradient descent.

Gradient descent starts with assigning random small numbers to each wi. Then for each training

example t, the prediction error is computed and will be used to update the weights. This process

will be repeated until a termination condition (e.g., the error falling below a threshold) is met.

2.3 Summary

In this chapter, a brief overview of basic concepts of heuristic search and the learning algorithms

used in heuristic search literature for learning a heuristic function were presented. First, the basic

ideas of heuristic search such as the concept of heuristic, weighted heuristic, and heuristic search

algorithms were introduced. Then, neural network and linear regression as examples of machine

learning algorithms used to learn heuristics were introduced.
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Chapter 3

Bootstrap Learning of Heuristics

In this chapter, we first describe the algorithmic approach of our method for learning heuristic func-

tions for heuristic search and planning domains. Our method consists of two procedures. The first

one, called the Bootstrap procedure, incrementally updates a given initial (weak) heuristic. In addi-

tion to the initial heuristic, Bootstrap uses a set of unlabeled training instances, which we call the

bootstrap instances. Bootstrap requires the initial heuristic to be strong enough to solve several of

the bootstrap instances in the given time limit. If it is not, a set of easier instances will be automati-

cally generated by the second procedure, called the RandomWalk procedure. These easier instances

are needed to improve the initial heuristic until the easiest bootstrap instances can be solved.

Then, we present experimental results of the combination of the Bootstrap and RandomWalk pro-

cesses on several test domains. The experimental results show that our method produces a heuristic

that allows IDA* to solve randomly generated problem instances quickly while generating solutions

very close to optimal.

Some parts of this chapter have been published in the Third Annual Symposium on Combinato-

rial Search (SoCS 2010) [36].

3.1 Method

In this section, we present a more detailed description of our method along with examples of apply-

ing it to search problems.

3.1.1 The Bootstrap Algorithm

Algorithm 1 shows our Bootstrap procedure. Its inputs consist of a heuristic function hin and a set

Ins of states to be used as bootstrap instances. We do not assume that hin is sufficiently strong that

any of the given bootstrap instances can be solved using it. Bootstrap needs a state space and a fixed

goal state g. It also uses global variables to represent the current time limit (tmax), the upper bound

on the time limit (t∞), and a fixed threshold (insmin).

The Bootstrap procedure proceeds in two stages. In the first stage, for every instance i in Ins,
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Algorithm 1: The Bootstrap procedure.

1 procedure Bootstrap(hin, Ins): hout

2 uses global variables tmax, t∞, insmin, g
3 create an empty training set TS
4 while (size(Ins) ≥ insmin) && (tmax ≤ t∞) do
5 for each instance i ∈ Ins do
6 if Heuristic Search(i, g, hin, tmax) succeeds then
7 for each state s on i’s solution path do
8 Add (feature vector(s), distance(s,g)) to TS
9 end

10 end
11 end
12 if (#(new bootstrap instances solved) > insmin) then
13 hin := learn a heuristic from TS
14 remove the solved instances from Ins
15 clear TS
16 else
17 tmax := 2 × tmax

18 end
19 end
20 return hin

a heuristic search algorithm is run with start state i and hin as its heuristic (line 6). Every search is

cut off after a limited period of time (tmax). If i is solved within that time then some user-defined

features of i, together with its solution length, are added to the training set. In addition, features

and solution lengths for all the states on the solution path for i are added to the training set (lines 7

and 8). This increases the size of the training set at no additional cost and balances the training set

to contain instances with long and short solutions.

The second stage examines the collected training data. If “enough” bootstrap instances have

been solved then the heuristic hin is updated by a learning algorithm (line 13). Otherwise the time

limit is increased without changing hin (line 17). Either way, as long as the current time limit (tmax)

does not exceed a fixed upper bound (t∞), the Bootstrap procedure is repeated on the remaining

bootstrap instances with the current heuristic hin. “Enough” bootstrap instances here means a number

of instances above a fixed threshold insmin (line 12). The procedure terminates if tmax exceeds t∞

or if the remaining set of bootstrap instances is too small (smaller than insmin).

To illustrate the behaviour of the Bootstrap procedure, Table 3.1 shows each iteration of the Boot-

strap procedure on the 15-puzzle when Ins contains 5000 randomly generated solvable instances,

insmin is 75, and tmax is 1 second. The definition of the initial heuristic h0 and the features used

for learning are described in Section 3.3.1. The Iteration, Number Solved, and Remaining Un-

solved columns respectively show the current iteration of the Bootstrap procedure, the number of

bootstrap instances solved in this iteration, and the total number of bootstrap instances that remained

unsolved (out of the 5000 user-provided bootstrap instances) after this iteration. The Solution Cost
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and Nodes Generated columns show the solution cost and number of nodes generated averaged

over the solved instances. The Optimal Cost column shows the optimal solution cost for the solved

instances while the Suboptimality column indicates the suboptimality of the solutions found.

The first row of Table 3.1 shows the result of the initial iteration, which uses h0 as the heuristic.

All 5000 instances in Ins were attempted but IDA* with h0 was only able to solve 857 of them in

the time limit of 1 second. All these 857 instances were solved optimally since h0 was admissible.

The states along these 857 solution paths, together with their distances to the goal, form the training

set to which a learning algorithm is applied to create a new heuristic, h1.

Iter- Number Remaining Solution Optimal Sub- Nodes
ation Solved Unsolved Cost Cost optimality Generated

0 857 4143 45.81 45.81 0.0% 611,656
1 3508 635 54.13 53.57 1.0% 215,976
2 553 82 59.07 57.76 2.3% 330,887
3 77 5 60.32 58.32 3.4% 324,002

Table 3.1: Bootstrap iterations for the 15-puzzle.

An attempt is then made using h1 to solve each of the 4143 instances that were not solved using

h0. The next row (iteration 1) shows that 3508 of these were solved in the time limit, but not all

were solved optimally. On average the solutions found were 1% longer (0.56 moves) than optimal.

All the states along all these solution paths were used to learn a new heuristic h2, which was then

used in an attempt to solve each of the 635 instances that were not solved on the first two iterations.

The next row (iteration 2) shows that 553 of these were solved, with a greater average suboptimality

than on the previous iteration. The heuristic, h3, learned from these solutions solved 77 of the 82

instances not solved to this point, and those solution paths provide the training data to create a new

heuristic, h4. The Bootstrap process ends at this point because there are fewer than insmin unsolved

instances (5 unsolved instances), and h4 is returned as the final heuristic.

The suboptimality of the solutions found by Bootstrap increases in successive iterations because

on each iteration the learning algorithm might be given solution lengths larger than optimal, biasing

the learned heuristic to even greater overestimation. The number of nodes generated in each iteration

shows that Bootstrap is improving the heuristic as (1) the number of nodes generated in iterations 1-

3 is lower than the number of nodes generated by the initial heuristic on iteration 0 and (2) the

instances solved in iterations 1-3 are harder than those solved in iteration 0. Note that the speedup

obtained by Bootstrap is at the cost of generating suboptimal solutions.

It can happen that Bootstrap fails to solve enough instances in one iteration. When this happens,

tmax increases without changing the heuristic. Table 3.2 shows iterations of the Bootstrap procedure

on Rubik’s Cube when Ins contains 5000 randomly generated solvable instances, insmin is 75, tmax

is 1 second, and t∞ is 512 seconds. The time limit used for each iteration of the Bootstrap procedure

is shown in column Time Limit. The definition of h0 and the features used for learning are given in
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Section 3.3.3.

Iter- Number Remaining Solution Nodes Time
ation Solved Unsolved Cost Generated Limit

0 2564 2436 6.58 33,772 1
1 355 2081 13.81 3,118,882 16
2 126 1955 15.63 11,180,904 32
3 82 1873 16.61 27,364,222 64
4 166 1707 17.81 59,888,730 128
5 149 1558 18.79 54,415,700 128
6 162 1396 19.75 59,818,531 128
7 163 1233 20.58 60,467,465 128
8 76 1157 20.60 70,262,338 128
9 255 902 21.11 141,268,160 256
10 85 817 21.48 139,496,014 256
11 135 682 21.53 266,919,602 512
12 218 464 21.82 255,906,281 512
13 206 258 22.01 301,639,498 512
14 192 66 22.58 262,832,032 512

Table 3.2: Bootstrap iterations for Rubik’s Cube Using 5000 bootstrap instances.

The first row of Table 3.2 shows that h0 is strong enough to solve 2564 of the user-provided

instances within the time limit of 1 second in the initial iteration. A new heuristic, h1 is created

using the data collected from the initial iteration. h1 is too weak to solve a sufficient number of the

unsolved bootstrap instances; therefore, the time limit was multiplied by two until h1 solved more

than insmin instances. Here, the time limit was increased four times (from 1 to 16) until Bootstrap

solved enough instances from the 2436 unsolved bootstrap instances. The process finished after

iteration 14 because less than insmin unsolved instances (66 unsolved instances) remain.

The Bootstrap process may also terminate when tmax exceeds t∞. Table 3.3 shows iterations of

the Bootstrap procedure on Rubik’s Cube when Ins contains only 500 randomly generated solvable

instances (as before insmin is 75, tmax is 1 second, and t∞ is 512 seconds).

Iter- Number Remaining Solution Nodes Time
ation Solved Unsolved Cost Generated Limit

0 256 244 6.53 33,141 1
1 86 158 14.64 82,229,055 512

Table 3.3: Bootstrap iterations for Rubik’s Cube using 500 bootstrap instances.

The process terminated after iteration 1 because the last heuristic created by Bootstrap only

solved 34 of the 158 unsolved bootstrap instances using a time limit of t∞. The last heuristic created

by Bootstrap is returned as the final heuristic.
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3.1.2 The RandomWalk Algorithm

The initial heuristic hin can be so weak that the heuristic search algorithm in Bootstrap is unable to

solve enough bootstrap instances in Ins, using hin, to get a sufficiently large set of training data.

Therefore, a procedure is needed to generate training instances that are (i) easier to solve than

the bootstrap instances the user provided but (ii) harder to solve than instances solvable by sim-

ple breadth-first search in acceptable time (to guarantee a high enough quality of training data). We

used random walks of a suitably chosen length backward from the goal to generate these instances.

Algorithm 2 describes the RandomWalk procedure. It first tests whether the initial heuristic

is strong enough to solve a sufficient number of the user-provided bootstrap instances (line 4). If

so, the Bootstrap procedure can be started immediately (line 9). Otherwise, we perform random

walks backward from the goal up to depth “length” and collect the final states as training instances

(RWIns).

These training instances are used as input to the Bootstrap procedure (line 6) to create a stronger

heuristic. This process is repeated with increasingly longer random walks (line 7) until it produces

a heuristic that is strong enough for bootstrapping to begin on the user-given instances or fails to

produce a heuristic with which sufficiently many instances in RWIns can be solved within time limit

t∞.

Algorithm 2: The RandomWalk procedure.

1 procedure RandomWalk (hin, Ins, lengthIncrement): hout

2 uses global variables tmax, t∞, insmin, g
3 length := lengthIncrement
4 while (hin is too weak to start the Bootstrap process on Ins) && (tmax ≤ t∞) do
5 RWIns := generate instances by applying “length” many random moves backward

from the goal
6 hin := Bootstrap(hin, RWIns)
7 length := length + lengthIncrement
8 end
9 return Bootstrap(hin, Ins)

The choice of “lengthIncrement” is an important consideration. If it is too large, the instances

generated may be too difficult for the current heuristic to solve and the process may fail as the time

limit (tmax) needs to increase to fill the gap between the difficulty of generated instances and the

weakness of the current heuristic. If it is too small, a considerable amount of time will be wasted

(i) applying the Bootstrap process to instances that do not substantially improve the current heuristic

and (ii) testing whether this new heuristic is strong enough to solve a sufficient number of user-

provided bootstrap instances.

In our experiments, the lengthIncrement was set as follows.

1. Run a breadth-first search backwards from the goal state with a time limit given by the initial

value of tmax. Let S be the set of states thus visited.
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2. Repeat 5000 times: do a random walk backwards from the goal until a state not in S is reached.

Set lengthIncrement to be the floor of the average length of these 5000 random walks. Note

that we always disallow the inverse of the previous move while doing the random walks.

For example, to compute the lengthIncrement for the 24-pancake puzzle, the breadth-first search

backwards from the goal visited states with a distance of at most 4 from the goal state during the

tmax = 1sec allocated to the search. Repeating the random walk from the goal for 5000 times, the

lengthIncrement was computed to be 5 for this domain.

Table 3.4 illustrates the RandomWalk procedure on the 20-blocks world when Ins contains 5000

randomly generated solvable instances, insmin is 75, tmax is 1 second, and 200 random walk in-

stances are generated (RWIns) for each distinct random walk length. The value of lengthIncrement

is set at 20 by our method. Random walks are necessary in this domain because the initial heuristic

h0 is too weak to solve a sufficient number (insmin) of the bootstrap instances within the time limit

of tmax. The definition of h0 and the features used for learning are given in Section 3.3.4.

The RW length and Time Limit columns respectively show the value of “length” and the time

limit (tmax) for each row. The Number Solved and Solution Cost columns are the same as in

Table 3.1. The first row shows the result of the initial iteration. 200 instances have been generated

by random walks of length 20, and passed to the Bootstrap procedure along with h0. The average

solution cost of these instances is 8.97. IDA* using h0 as the heuristic was able to solve 197 of

these 200 instances within the time limit so there is just one iteration of the Bootstrap process,

which returns a new heuristic, h1. This heuristic is then used in an attempt to solve the bootstrap

instances. It is too weak to solve a sufficient number of them in the time limit so another iteration of

the RandomWalk process is needed.

Row RW length Number Solved Solution Cost Time Limit
1 20 197 8.97 1
2 40 145 11.83 1
3 60 115 14.20 1
4 60 79 16.23 2
5 80 99 16.31 2
6 80 95 19.66 4
7 100 174 20.59 4
8 120 139 23.9 4

Table 3.4: RandomWalk procedure applied to the 20-blocks world.

The random walk length is increased by 20 (the value of lengthIncrement) and a set of 200

random walk instances is generated by random walks of length 40 and passed to the Bootstrap

procedure along with h1. Here, 145 of them are solved in a single Bootstrap iteration and the

Bootstrap procedure returns a new heuristic, h2, since there are now fewer than Insmin unsolved

RandomWalk instances. This heuristic is used to attempt to solve the bootstrap instances. It is too

weak to solve a sufficient number of them in the time limit so another iteration of the RandomWalk
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process is needed.

The random walk length is increased by 20 and 200 random walk instances are generated by

random walks of length 60 and passed to the Bootstrap procedure along with h2. The Bootstrap

process (Row 3) is only able to solve 115 of these instances using h2. A new heuristic, h3, is learned

from these but is not passed back to the RandomWalk procedure because there are still more than

insmin unsolved RandomWalk instances. A second iteration of the Bootstrap procedure attempts to

solve them with its new heuristic, h3, but fails to solve a sufficient number (insmin) and therefore

doubles the time limit and attempts them again with h3. Row 4 shows that this iteration of the

Bootstrap procedure succeeds in solving 79 of them with the new time limit, and from these it learns

a new heuristic, h4. Since there are now fewer than insmin unsolved RandomWalk instances, the

Bootstrap procedure returns h4 to the RandomWalk process. This heuristic is used in an attempt to

solve the bootstrap instances. It is too weak to solve a sufficient number of them in the time limit so

another iteration of the RandomWalk process is needed.

As the table shows, in total 6 iterations of the loop in the RandomWalk process were executed

(6 distinct values of the RandomWalk length) and for each of these iterations either one or two

Bootstrap iterations were required to find a heuristic that could solve the random walk instances.

The time limit had to be increased 2 times. The RandomWalk process ended because the heuristic,

h8, corresponding to the final row of the table was able to solve a sufficient number of the bootstrap

instances that the bootstrap procedure could finally be started on the set of bootstrap instances with

h8 as its initial heuristic.

The rest of this chapter describes the experimental results of our method on various heuristic

search and planning domains.

3.2 Experimental Settings

In this section, we first describe the settings used for our experiments. In the next section, we present

experimental results on four different heuristic search and planning domains.

3.2.1 Settings

The following settings were used for our experiments.

Hardware. All the experiments ran on a 2.6 GHz computer with 32GB of RAM. Although we

had a large amount of memory available, we only used a small portion of it in each experiment to

store the pattern databases.

Search Algorithm. IDA*, Weighted IDA* (W-IDA*) and BULB were the search algorithms

used. We used standard techniques to prune duplicates. For example, in Rubik’s Cube we disallowed

twisting the same face twice in a row. Furthermore, we arbitrarily forced an order for each pair of

opposite faces and disallow moving the two opposite faces consecutively in the opposite order.

Therefore, for Rubik’s Cube the branching factor was reduced from 18 to about 13.35 [41].
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Learning algorithm. A neural network (NN) with one output neuron representing distance-to-

goal and three hidden units was trained using backpropagation [54]. We used the neural network

toolbox of Matlab in our implementation. The weights were initialized randomly to real numbers

between -1 and 1. Mean squared error (MSE) was used as the error function and training was ended

after 500 epochs or when MSE < 0.005. Each training example fed to the network consisted of

features of a state and the solution length obtained for that state during bootstrapping.

Features. Machine learning applications need “good” features to succeed. In our experiments

we did not carefully engineer the features used, exploit special properties of the domain, or alter

our features on the basis of early experimental outcomes or as we scaled up the problem. The input

features for the NN are described separately below for each domain.

Most of the features are weak heuristics created using abstraction for the respective problems.1

The issue of automatically creating good features is outside the scope of this thesis. In the context

of planning, Yoon et al. [67] studied this issue for learning search control knowledge.

Heuristics. The initial heuristic h0 for each domain was defined as the maximum of the heuris-

tics used as features for the NN. After each iteration of our method, the new heuristic was defined

as the maximum over the output of the NN and the initial heuristic.

Bootstrap instances. Ins always consisted of either 500 or 5000 solvable instances. For the

sliding-tile puzzle, the pancake puzzle, and the blocks world, bootstrap instances are generated

uniformly at random. We used random solvable permutations for the sliding-tile puzzle and the

pancake puzzle and the random state generator described by Slaney and Thiébaux [60] for the blocks

world to create bootstrap instances. For Rubik’s Cube, the bootstrap instances were generated by

random walks of various lengths between 1 and 25.

Numeric parameters. In all experiments, insmin = 75, tmax = 1sec, t∞ = 512sec, and the size

of the set RWIns was 200.

We never attempted fine-tuning any of the numeric parameters used in our experiments or altered

them on the basis of early experimental outcomes. The next section presents the experimental results

of Bootstrap on four different domains.

3.3 Experimental Results

The tables below summarize the results on our test domains, which are based on a set of test instances

generated independently of the bootstrap instances. In the tables, the column h (Algorithm) denotes

the heuristic used; the search algorithm, if different from IDA∗, is given in parentheses. The symbol

#k indicates that the same heuristic is used in this row as in row k. The Cost and Nodes columns

show the average solution cost and average number of nodes generated to solve the test instances.

The Subopt column indicates the suboptimality of the solutions found. For example, Subopt=7%

1The features used for Rubik’s Cube are not weak heuristics. We chose them to be able to compare our results to
BULB [20].
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means the solutions generated were 7% longer than optimal on average.

The Solving Time column shows the average search time (in seconds) to solve the test instances.

Unless specifically stated, no time limit was imposed when systems were solving the test instances.

Each entry of the Learning Time column shows the total time used by our method, since the process

has begun, to learn the heuristic corresponding to that row. Each “m”, “h”, and “days” represent the

units of time (minutes, hours, and days respectively).

In the tables, each row shows the data for a system that we implemented or found in the litera-

ture. The run-times taken from the literature are marked with an asterisk to indicate they may not

be strictly comparable to ours. Hyphenated row numbers “row-y” indicate Bootstrap results after

iteration y.

All weighted IDA∗ and BULB results (excluding the results for Rubik’s Cube) are based on our

own implementations. The parameters (W=weight) and (B=beam width) reported for W-IDA∗ and

BULB are those for which the results are most similar to Bootstrap (i) in terms of suboptimality and

(ii) in terms of the number of generated nodes (see boldface numbers in the tables).

The last Bootstrap iteration shown in the tables represents the last successful iteration of the

Bootstrap process. If there were fewer than insmin unsolved bootstrap instances remaining after

that iteration (15-puzzle, 17- , 24- , and 35-pancake puzzle, Rubik’s Cube using 5000 bootstrap

instances, 15-blocks world, and 20-blocks world using 5000 bootstrap instances), the Bootstrap

process terminated as soon as that iteration was done and the “Bootstrap Completion Time”, which

measures the entire time required by the Bootstrap process, is equal to the “Learning Time” reported

for the final iteration. However, if there were insmin or more unsolved bootstrap instances remaining

after the last iteration shown in a table (24-puzzle, Rubik’s Cube with 500 bootstrap instances,

and 20-blocks world with 500 bootstrap instances), another Bootstrap iteration would have been

attempted on those instances but Bootstrap terminated it without creating a new heuristic because

tmax exceeded t∞. In such a case the “Bootstrap Completion Time” includes the time taken by the

final, unsuccessful iteration. For example, the “Learning Time” for Row 1-3 of Table 3.7 shows

that it takes 1 day and 11 hours to learn the final heuristic for the 24-puzzle using 500 bootstrap

instances, but the “Bootstrap Completion Time” is reported as 2 days and 2 hours. The difference

(15 hours) is the time required by an iteration after the one reported in Row 1-3, which failed to

solve insmin new instances within the time limit of t∞.

3.3.1 Sliding-Tile Puzzle
15-puzzle

For the 15-puzzle the input features for the NN were Manhattan distance (MD), number of out-of-

place tiles, position of the blank, number of tiles not in the correct row, number of tiles not in the

correct column, and five heuristics, each of which is the maximum of two 4-tile pattern databases

(PDBs). The total memory used for this experiment was about 6 megabytes. The time to build the
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pattern databases and generate bootstrap instances, which we call the pre-processing time, was a few

seconds.

The results in Tables 3.5 and 3.6 are averages over the standard 1000 15-puzzle test instances [42],

which have an average optimal cost of 52.52, except for the last row in Table 3.6, which is the aver-

age over 700 random instances with an average optimal solution length of 52.62 [13].

Table 3.5 shows the results for bootstrapping on the 15-puzzle. The initial heuristic (h0) was

sufficient to begin the Bootstrap process directly, so no RandomWalk iterations were necessary.

Row 1 of Table 3.6 shows the results when h0 is used by itself as the final heuristic. It is included to

emphasize the speedup produced by Bootstrap.

Rows 1-0 to 1-2 of Table 3.5 show the results for the heuristic created on each iteration of the

Bootstrap method when it is given 500 bootstrap instances. The next four rows (2-0 to 2-3) are

analogous, but when 5000 bootstrap instances are given. In both cases, there is a very clear trend:

search becomes faster in each successive iteration (see the Nodes and Solving Time columns) but

suboptimality becomes worse. In either case, bootstrapping produces very substantial speedup over

search using h0. For instance, using 500 bootstrap instances produces a heuristic in 11 minutes that

makes search more than 4000 times faster than with h0 while producing solutions that are only 4.5%

(2.4 moves) longer than optimal.

row iteration Cost Subopt Nodes Solving Time Learning Time
500 bootstrap instances

Bootstrap Completion Time = 11 minutes
1-0 0 (first) 53.09 1.1% 422,554 0.424 8m
1-1 1 53.94 2.7% 76,928 0.075 10m
1-2 2 (final) 55.12 4.5% 32,425 0.041 11m

5000 bootstrap instances
Bootstrap Completion Time = 1 hour 52 minutes

2-0 0 (first) 53.15 1.2% 388,728 0.379 1h 20m
2-1 1 53.91 2.6% 88,235 0.087 1h 48m
2-2 2 55.34 5.4% 21,800 0.022 1h 51m
2-3 3 (final) 56.55 7.7% 10,104 0.010 1h 52m

Table 3.5: 15-puzzle, Bootstrap.

There are two key differences between using 500 and 5000 bootstrap instances.

1. The most important difference is the total time of the Bootstrap process. Because after ev-

ery iteration an attempt is made to solve every bootstrap instance, having 10 times as many

bootstrap instances makes the process roughly 10 times slower. For example, in the 15-puzzle,

using 5000 bootstrap instances is more than 9 times slower than using 500 bootstrap instances.

2. The larger bootstrap set contains a larger number of more difficult problems, and those drive

the Bootstrap process through additional iterations (in this case one additional iteration), pro-

ducing, in the end, faster search but worse suboptimality than when fewer bootstrap instances

are used.
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There are rich sets of tradeoffs inherent in the Bootstrap approach. For example, the time-

suboptimality tradeoff suggests that the search effort decreases at the cost of increasing the solution

length.

Another tradeoff is between the learning time and solving time: a heuristic that takes more time

to be learned solves problems faster on average. For example, the heuristic in row 2-3 of Table 3.5

solves problems about 38 times faster than the heuristic learned in row 2-0. It takes 1 hour and

52 minutes to learn the former heuristic while the latter takes 1 hour and 20 minutes. Therefore,

computing the final heuristic of Bootstrap (row 2-3) will be efficient, in terms of sum of learning

and solving times, only when more than five thousand instances of 15-puzzle are solved.

In this chapter, we do not address the issue of how to choose among these options, we assume

that a certain number of bootstrap instances are given and that the heuristic produced by the final

Bootstrap iteration is the system’s final output. In Chapter 4, we present one approach to exploit

the relationship between learning time and solving time when there is only one problem instance to

solve.

row h (Algorithm) Cost Subopt Nodes Solving Time
Results of Initial Heuristic

1 h0 52.52 0% 132,712,521 116.478
Results of W-IDA*

2 h0 (W-IDA*,W=1.6) 57.20 8.9% 310,104 0.194
3 h0 (W-IDA*,W=2.3) 74.53 41.9% 10,734 0.007

Results of BULB
4 h0 (BULB,B=250) 56.57 7.7% 26,013 0.017
5 h0 (BULB,B=90) 59.17 12.7% 10,168 0.006

Results of hsum
6 hsum 163.27 211.0% 1,538 0.001

Results from previous papers
7 Add 7-8 52.52 0% 136,289 0.063*
8 #7 + reflected lookup 52.52 0% 36,710 0.027*
9 #8 + dual lookup 52.52 0% 18,601 0.022*

10 NN using tile positions
+#8+MD (RBFS) 54.26 3.3% 2,241 0.001*

11 PE-ANN version of #10
(RBFS) 52.61 0.2% 16,654 0.014*

12 NN “A” 54.45 3.5% 24,711 7.380*

Table 3.6: 15-puzzle, other methods.

Table 3.6 shows the results of other systems applied to the same test instances (except for the

last row). Rows 2 through 5 are when our initial heuristic (h0) is used with W-IDA∗ and BULB.

Both algorithms are dominated by Bootstrap, i.e., if W and B are set so that W-IDA∗ and BULB

compare to Bootstrap in either one of the values Subopt or Nodes, then the heuristic obtained in the

final Bootstrap iteration (Table 3.5, Row 2-3) is superior in the other value.

Row 6 shows the results with the heuristic hsum, which is defined as the sum of the heuristic
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values among the NN’s input features (h0 is the maximum of these values). The issue of which

subset of heuristic features should be used in hsum is outside the scope of this thesis and in all

domains we simply add all of the heuristic features. Although hsum can, in general, be much

greater than the actual distance to goal, hsum might be quite an accurate heuristic when a moderate

number of weak heuristics are used for NN features, as is the case in our experiments. By comparing

its performance with Bootstrap’s we can see the return on investment for learning how to combine

the different heuristics as opposed to just giving them all equal weight as hsum does. As the results

show, hsum performs very poorly in terms of Subopt but is superior to all the results reported in

Table 3.6 in terms of Nodes and Solving Time.

Rows 7-9 show state-of-the-art results for optimally solving the 15-puzzle. Rows 7 and 8 refer

to results from Korf and Felner [42], where the maximum of sum of two disjoint 7-8 PDBs, and their

reflections across the main diagonal are the heuristics. Row 9 is from Felner et al. [15], where the

heuristic is as in Row 8, augmented with dual lookup2 (in both the regular and the reflected PDB).

Bootstrap with 5000 bootstrap instances (Table 3.5, Row 2-3) outperforms all of these systems in

terms of Nodes and Solving Time.

The last three rows of Table 3.6 show state-of-the-art results for the one-step heuristic learning

systems. The idea behind the one-step learner of a heuristic is: a learning system is trained on the set

of states whose optimal distance-to-goal is known. Then, the learning system will be used to create

a heuristic function that estimates distance-to-goal for an arbitrary state. Section 5.2.2 describes

one-step learners of heuristics in Rows 10-12 of Table 3.6 in detail.

Rows 10 and 11 are taken from Samadi et al. [55]. Row 10 uses the tile positions as features

for the NN along with the heuristic from Row 8 and Manhattan Distance. Row 11 is the same as

Row 10 but using a modified error function during the neural net training to penalize overestimation.

This drives suboptimality almost to 0, at the cost of substantially increasing the search time.

Row 12 shows the results from Ernandes and Gori [13] for the setting in their paper that gener-

ated the fewest nodes (“A”). These are averages over 700 random instances with an average optimal

solution length of 52.62, not over the 1,000 test instances used by all other systems in this section.

The NN input features are the positions of the tiles and the initial heuristic (MD augmented with

a set of correction techniques, e.g., linear conflicts3). This system performs better than Bootstrap

in terms of suboptimality but worse in terms of nodes generated, most likely because it aims to

optimize solution quality rather than nodes generated.

2In permutations state spaces, e.g., the 15-puzzle, for each state s, a state sd exists that is the same distance from the
goal as s. This state sd is called the dual of state s. A regular PDB lookup for state s returns the value stored in the PDB
for the abstract state φ(s). One the other hand, a dual PDB lookup for state s returns the stored value for the abstract state
φ(sd) [15].

3Linear conflict [42] refers to the cases when two tiles are in their goal row/column but are in a reversed order relative to
their goal locations. For example, in the bottom left 15-puzzle state shown in Figure 2.5, tiles 2 and 3 are in their goal row
but in a reversed order relative to their goal locations. To move these tiles to their goal locations, one of them needs to be
moved down to allow the other tile to move to its correct location and then it needs to be moved back up to be in its correct
location. MD simply ignores these moves as it does not consider the interaction between the tiles. Therefore, two moves can
be added to MD in the case of a linear conflict and the heuristic will still remain admissible.
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Bootstrap with 5000 bootstrap instances (Table 3.5, Row 2-3) outperforms all of these systems

in terms of Nodes except for Row 10, which also outperforms Bootstrap in terms of suboptimality.

The superior performance of the system in Row 10 is simply the result of having vastly stronger

heuristics as input features to the NN. The use of stronger heuristics helps whenever the maximum

of the heuristics used in the feature vector has a higher value than the output of the NN. To prove the

above hypothesis, we reran our Bootstrap system with 5000 bootstrap instances, exactly as described

above, but with the following features replacing the weak PDB features used above: the value of the

7- and 8-tile additive PDBs individually, for both the given state and its reflection, and the maximum

of the sum of 7- and 8-tile PDB values for the state and its reflection. With these input features,

and the corresponding h0, Bootstrap solved all 5000 bootstrap instances on its first iteration, and

the heuristic it produced, when used with RBFS, solved the 1000 test instances with an average

suboptimality of 0.5% while generating only 9,402 nodes on average4. We thus see that Bootstrap,

when given a heuristic that is strong enough that it can solve all bootstrap instances in the given

time limit, is equivalent to the one-step systems previously reported. But, as was seen in Table 3.5,

its iterative RandomWalk and Bootstrap processes take it beyond the capabilities of those systems

by enabling it to perform very well even when the initial heuristic is not strong enough to solve the

bootstrap instances.

24-puzzle

Table 3.7 shows our results on the 50 standard 24-puzzle test instances [42], which have an average

optimal cost of 100.78. The input features for the NN are the same as for the 15-puzzle. Note that

here 4-tile PDBs, though requiring more memory, are much weaker than for the 15-puzzle. The

amount of required memory for the 24-puzzle was about 50 megabytes while the pre-processing

phase took about two minutes.

The initial heuristic is sufficiently weak that eight RandomWalk iterations were necessary before

bootstrapping itself could begin (ten iterations were required when there were only 500 bootstrap

instances). The first four rows (1-0 to 1-3) show the results when 500 bootstrap instances are given.

The next eleven rows are analogous (2-0 to 2-10), but when 5000 bootstrap instances are given.

In both cases, the trend is very similar to the 15-puzzle: search becomes faster in each successive

iteration (see the Nodes and Solving Time columns) but suboptimality becomes worse.

Table 3.8 shows the results of other systems on the same test instances. Row 1 reports on W-

IDA* using our initial heuristic (h0) multiplied by a weight (W) chosen so that Subopt is roughly

equal to the Subopt value achieved by the final Bootstrap heuristic (Table 3.7, Row 2-10). In Row 2,

W is chosen so that Nodes is roughly equal to the Nodes value achieved by the final Bootstrap

heuristic (Table 3.7, Row 2-10). The results of similar settings for BULB’s beam width (B) when h0

4It seems that in the 15-puzzle, RBFS performs slightly better in terms of solution quality and worse in terms of nodes
generated compared to IDA* with the inconsistent and inadmissible heuristic learned from the bootstrap instances. IDA*
using the same heuristic as in Row 9 generated 8,776 nodes on average over the same set of test problems while the solutions
were 0.8% longer than the optimal ones.
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row iteration Cost Subopt Nodes Solving Time Learning Time
500 bootstrap instances

Bootstrap Completion Time = 2 days and 2 hours
1-0 0 (first) 105.94 5.1% 2,195,190,123 4,987.10 3h
1-1 1 106.50 5.7% 954,325,546 2,134.78 8h
1-2 2 106.77 5.9% 663,058,673 1,204.32 15h
1-3 3 (final) 106.92 6.1% 164,589,698 273.51 1day 11h

5000 bootstrap instances
Bootstrap Completion Time = 17 days and 17 hours

2-0 0 (first) 106.26 5.4% 1,316,197,887 2,439.72 1day 04h
2-1 1 106.42 5.6% 390,589,747 723.54 1day 22h
2-2 2 106.46 5.6% 215,726,120 406.01 2days 13h
2-3 3 106.70 5.9% 198,324,168 370.66 3days 15h
2-4 4 106.78 6.0% 115,721,236 214.59 5days 10h
2-5 5 107.30 6.5% 77,653,775 144.56 7days 15h
2-6 6 107.70 6.9% 31,631,208 60.34 11days 02h
2-7 7 107.84 7.9% 29,956,637 55.85 12days 21h
2-8 8 109.62 8.8% 12,547,576 23.51 14days 05h
2-9 9 110.26 9.4% 5,236,088 9.84 15days 17h

2-10 10 (final) 110.46 9.6% 5,221,203 9.83 17days 06h

Table 3.7: 24-puzzle, Bootstrap.

is used are shown in Rows 3 and 4. Bootstrap (Table 3.7, Row 2-10) dominates in all cases, in the

sense that if W and B are set so that W-IDA* and BULB compare to Bootstrap in either one of the

values Subopt or Nodes, then the heuristic obtained in the final Bootstrap iteration (Table 3.7, Row

2-10) is superior in the other value.

Row 5 shows the results with the heuristic hsum. As the results show, hsum performs very

poorly in terms of both Subopt and Nodes.

row h (Algorithm) Cost Subopt Nodes Solving Time
Results of W-IDA*

1 h0 (W-IDA*,W=1.5) 111.3 10.4% 14,183,039,982 12,896.9
2 h0 (W-IDA*,W=2.6) 181.69 80.3% 5,849,910 4.3

Results of BULB
3 h0 (BULB,B=18000) 111.35 10.5% 6,896,038 22.3
4 h0 (BULB,B=16000) 112.87 12.0% 5,286,874 18.2

Results of hsum
5 hsum 295.94 193.7% 49,810,188 46.0

Results from previous papers
6 Add 6-6-6-6 100.78 0% 360,892,479,670 47 hours*
7 #6 (DIDA*) 100.78 0% 75,201,250,618 10 hours*
8 #6, Add 8-8-8 100.78 0% 65,135,068,005 ?
9 #6, W=1.4 (RBFS) 110.30 9.4% 1,400,431 1.0*

10 PE-ANN,
Add 11-11-2 (RBFS) 101.41 0.7% 118,465,980 111.0*

11 #10, W=1.2 (RBFS) 104.48 3.7% 582,466 0.7*

Table 3.8: 24-puzzle, other methods.
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Rows 6 to 8 show the results of state-of-the-art heuristic search methods for finding optimal

solutions. Row 6 shows the results using the maximum of sum of four disjoint 6-tile PDBs and their

reflections across the main diagonal as a heuristic [42]. Row 7 shows the results for DIDA∗5 [69]

using the same heuristic. In Row 8 the heuristic used is the maximum of the heuristic from Row 6

and a partially created disjoint 8-tile PDB [14] (Solving Time was not reported). The very large time

required by these systems shows that the 24-puzzle represents the limit for finding optimal solutions

with today’s abstraction methods and memory sizes. Row 9 [55] illustrates the benefits of allowing

some amount of suboptimality, Here RBFS is used with the heuristic from Row 6 multiplied by 1.4.

The number of nodes generated has plummeted. Although this result is better, in terms of Nodes and

Solving Time, than Bootstrap (Table 3.7, Row 2-10), it hinges upon having a very strong heuristic

since we have just noted that W-IDA* with our initial heuristic is badly outperformed by Bootstrap.

Rows 10 and 11 show the PE-ANN results [55]. Note that this is not a direct application of

heuristic learning to the 24-puzzle because it was infeasible to generate an adequate training set

for a one-step method. Samadi et al. [55] manually divided the problem into subproblems, and

learned a heuristic for each subproblem. In particular, they divided the 24-puzzle into two disjoint

11-tile subproblems, learned a heuristic for each subproblem and added the learned heuristics to

get a heuristic for the 24-puzzle. The main problem with this approach is that the crucial choices

of which subproblems to use and how to combine them were made manually. Row 10 shows that

our method is superior to PE-ANN used in this way by a factor of more than 20 in terms of nodes

generated, although it is inferior in terms of suboptimality. Row 11 shows that if PE-ANN’s learned

heuristic is suitably weighted it can outperform Bootstrap in both Nodes and Subopt.

3.3.2 Pancake Puzzle
17-pancake puzzle

For the 17-pancake puzzle the input features for the NN were six 5-token PDBs6, a binary value

indicating whether the middle token is out of place, and the number of the largest out-of-place

token. The total memory used for this domain was about 4.5 megabytes while the pre-processing

took a few seconds. All the results in Tables 3.9 and 3.10 are averages over the 1000 test instances

used by Yang et al. [66], which have an average optimal solution length of 15.77. Optimal solution

lengths were computed using the highly accurate, hand-crafted “break” heuristic7.

Consider a state in the 5-pancake puzzle such as (4, 1, 5, 2, 3)8. To compute the break heuristic,

5Dual IDA* (DIDA*) [69] is a search algorithm in which at each state s the search decides to search from either s or sd

to the goal state. For example, if the heuristic value of sd is larger than the heuristic value of s, the search algorithm can
decide to continue its search from sd instead of s.

6To make a 5-token PDB for the 17-pancake puzzle, an abstraction of the 17-pancake puzzle is made by considering 12
numbers in the permutation to be equivalent. For example, if numbers 6 to 17 are considered to be equivalent in the abstract
search space, then the pattern database that was built for this abstraction only considers 5 numbers in the permutation and is
a called a 5-token PDB.

7The heuristic is from Tomas Rokicki. See http://tomas.rokicki.com/pancake/ for more details.
8In this example, pancakes of size 4 and 3 are respectively at the top and the bottom of the stack of pancakes. This

example is taken from Rokicki, see http://tomas.rokicki.com/pancake/ for more detail.
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an extra number equal to the number of pancakes plus one will be added at the end of the state.

Therefore, the state becomes (4, 1, 5, 2, 3, 6). A “break” is defined as a point in which the difference

between two consecutive numbers in the sequence is not one. The total number of breaks in a state

is the value of the break heuristic for that state. For example, the above state has 4 four breaks;

therefore, the heuristic value for this state is 4. There is no break in the goal state (the heuristic value

of the goal state is zero). Each move can reduce the number of breaks by at most one. Therefore,

the break heuristic is both admissible and consistent.

Table 3.9 shows the results for bootstrapping on the 17-pancake puzzle. The initial heuristic

(h0) was too weak for us to evaluate it on the test instances in a reasonable amount of time. The first

two rows (1-0 and 1-1) show the results for the heuristic created on each iteration of the Bootstrap

method using 500 bootstrap instances. The next three rows (2-0 to 2-2) are analogous, but when

5000 bootstrap instances are given. In both cases, we see the same trends as in the 15-puzzle: (a)

search becomes faster in each successive iteration but suboptimality becomes worse; and (b) having

more bootstrap instances is slower and results in extra Bootstrap iterations. Note that a suboptimality

of 7% here means the solutions generated are only 1.1 moves longer than optimal.

When there were 5000 bootstrap instances h0 was able to solve enough bootstrap instances to be-

gin the Bootstrap process directly, but when there were only 500 two iterations of the RandomWalk

process were needed before bootstrapping on the bootstrap instances could begin. Therefore, the

heuristic that Bootstrap using 500 instances uses for its iteration 0 is stronger compared to the heuris-

tic that Bootstrap using 5000 instances uses. This results in the total time of the process using 5000

bootstrap instances being less than 6 times more than the total time when 500 bootstrap instances

were used.

row iteration Cost Subopt Nodes Solving Time Learning Time
500 bootstrap instances

Bootstrap Completion Time = 26 minutes
1-0 0 (first) 16.26 3.1% 253,964 0.112 22m
1-1 1 (final) 16.50 4.6% 75,093 0.034 26m

5000 bootstrap instances
Bootstrap Completion Time = 2 hours and 23 minutes

2-0 0 (first) 16.15 2.4% 15,232,606 6.700 1h 24m
2-1 1 16.52 4.8% 76,346 0.034 2h 15m
2-2 2 (final) 16.89 7.1% 30,341 0.014 2h 23m

5000 bootstrap instances + duality
Bootstrap Completion Time = 2 hours and 4 minutes

3-0 0 (first) 16.10 2.1% 14,631,867 30.790 1h 21m
3-1 1 16.43 4.2% 57,119 0.111 1h 57m
3-2 2 (final) 16.88 7.0% 7,555 0.009 2h 04m

Table 3.9: 17-pancake puzzle, Bootstrap.

The final three rows in Table 3.9 examine the effect of infusing into the bootstrapping process

the domain-specific knowledge that for every pancake puzzle state s there exists another state sd,
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called the dual of s, that is the same distance from the goal as s [69]. To exploit this knowledge,

when training the NN for every training example (s,cost) we added an additional training example

(sd,cost). When calculating the heuristic value for s we took the maximum of the values produced

by the NN when it was applied to s and to sd and h0(s) and h0(sd). The initial heuristic here was

given by the maximum over the heuristic values occurring in the feature vectors for s and sd. A

comparison of Rows 3-2 and 2-2 shows that the additional knowledge substantially reduced search

time without affecting suboptimality.

row h (Algorithm) Cost Subopt Nodes Solving Time
Results of break heuristic

1 break 15.77 0% 6,731 0.002
Results of W-IDA*

2 h0 (W-IDA*,W=2) 16.90 7.1% 20,949,730 9.800
3 h0 (W-IDA*,W=8) 47.55 201.5% 8,650 0.004

Results of BULB
4 h0 (BULB,B=5000) 16.96 7.5% 955,015 0.715
5 h0 (BULB,B=10) 40.31 155.5% 11,005 0.008

Results of hsum
6 hsum 35.06 122.3% 776 0.001

Results from previous papers
7 Add 3-7-7 15.77 0% 1,061,383 0.383∗

8 #7 + dual lookup 15.77 0% 52,237 0.036∗

9 #8 (DIDA*) 15.77 0% 37,155 0.026∗

10 50 lookup + dual lookup 15.77 0% 673,340 49.30∗

11 #10 (DIDA*) 15.77 0% 411,830 60.39∗

Table 3.10: 17-pancake puzzle, other methods.

Table 3.10 shows the results of other systems. Row 1 shows the results for the break heuristic.

Break is a hand-crafted heuristic; it is only included for completeness and it is not comparable

with our method which uses general techniques to create heuristics. Rows 2 to 5 are when our

initial heuristic (h0) and duality is used with W-IDA∗ and BULB. Both algorithms are dominated

by Bootstrap (Table 3.9, Row 3-2).

Row 6 shows the results of using the sum of the heuristics in the feature vector as the heuristic.

Duality is also used here. Therefore, the maximum value of the sum of the heuristics for s and sd is

taken. Similar to the 15-puzzle, hsum performs very poorly in terms of Subopt but is superior to all

the results reported in Table 3.10 in terms of Nodes and Solving Time.

Rows 7 to 9 are for the state-of-the-art optimal heuristic search methods that have been applied

to the 17-pancake puzzle. Rows 7 and 8 [66] use a set of three additive PDBs, without and with

dual lookups. Row 9 uses dual lookups and dual search [69]. In terms of Nodes and Solving Time,

Bootstrap outperforms these systems even without exploiting duality (Table 3.9, Row 2-2).

Rows 10 and 11 show the best results, in terms of Nodes, from Helmert and Röger [30] when

a different abstraction, called the relative-order abstraction9, is used to make the pattern database.
9The relative-order abstraction only considers the relative order of a set of pancakes in the abstract state. For example,
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Row 10 shows the results when the maximum of 50 regular and dual PDB lookups is used as the

heuristic value of each state. Here, each of the 50 PDBs is built by considering the relative order

of a random set of 5 pancakes. Row 11 shows the results with the same heuristic as row 10 when

DIDA* [69] is used as the search algorithm. Bootstrap, even when it uses 500 bootstrap instances

and does not exploit duality (Table 3.9, Row 1-2), outperforms these system in terms of both Nodes

and Solving Time.

24-pancake puzzle

The experimental setup for the 24-pancake puzzle is identical to that for the 17-pancake puzzle.

A 5-token PDB is a much weaker heuristic (although it takes more memory) when there are 24

pancakes. The pre-processing took about 2 minutes and the memory required for this domain was

about 31 megabytes.

1000 randomly generated instances, with an average optimal solution cost of 22.75, were used

for testing. The initial heuristic is so weak that four RandomWalk iterations were necessary before

bootstrapping itself could begin. Table 3.11 is analogous to Table 3.9, with 500 bootstrap instances,

5000 bootstrap instances, and 5000 bootstrap instances with duality exploited. All the trends seen

in previous domains are evident here.

No previous system that automatically creates heuristics has been applied to this problem domain

because of its size. Table 3.12 includes results only for the break heuristic, W-IDA∗, BULB and

hsum. Row 1 shows the results of the break heuristic. The results for the next three lines are when

those algorithms use duality, so the appropriate comparison is with Row 3-6 of Table 3.11. Neither

W-IDA* nor BULB was able to achieve a “Nodes” value similar to Bootstrap, so Rows 2 and 4

of the table just show the minimum number of nodes these two algorithms generated (we tried 15

values10 for W between 1.1 and 10, and 15 values11 for B between 2 and 20,000.). As can be seen,

W-IDA∗ and BULB produce a very high degree of suboptimality when generating the fewest nodes

and are therefore not competitive with Bootstrap.

Looking for settings for which W-IDA∗ or BULB can compete with Bootstrap in terms of subop-

timality was not successful. Allowing 10 times more time than IDA* with Bootstrap’s final heuristic

needed on each test instance, W-IDA∗ did not complete any instances at all. The best results of

BULB in terms of suboptimality is shown in Row 3. It shows that BULB even with a greater sub-

optimality than Bootstrap’s final iteration (Row 3-6 of Table 3.11) will generate more than 65 times

more nodes than Bootstrap.

The result of hsum is shown in Row 5. Again the maximum of hsum in s and sd is taken as

the heuristic. Although hsum performs very poorly in terms of both Nodes and Subopt compared

if a set of three pancakes in an n-pancake puzzle is considered to make a PDB (all other pancakes are considered to be
equivalent in the abstract space), the PDB will only have 6 entries (regardless of the size of the problem), each entry contains
the heuristic value for a relative order of three pancakes.

10We tried W ∈ {1.1, 1.2, 1.5, 1.8, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
11We tried B ∈ {2, 3, 5, 7, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000}.
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row iteration Cost Subopt Nodes Solving Time Learning Time
500 bootstrap instances

Bootstrap Completion Time = 1 hours and 19 minutes
1-0 0 (first) 24.59 8.1% 9,502,753 9.70 42m
1-2 2 24.86 9.3% 3,189,610 3.20 1h 02m
1-4 4 (final) 25.09 10.3% 1,856,645 1.89 1h 19m

5000 bootstrap instances
Bootstrap Completion Time = 14 hours and 43 minutes

2-0 0 (first) 32.69 6.9% 24,488,908 32.68 6h 27m
2-2 2 24.48 7.5% 10,372,652 14.31 8h 08m
2-4 4 24.65 8.3% 4,389,271 5.65 10h 04m
2-6 6 24.89 9.4% 2,443,556 3.49 12h 01m
2-8 8 25.08 10.2% 1,547,765 2.19 12h 59m

2-10 10 25.14 10.5% 1,369,474 2.07 13h 10m
2-12 12 25.29 11.2% 1,285,021 1.82 13h 58m
2-14 14 25.41 11.7% 1,086,280 1.55 14h 26m
2-16 16 (final) 25.50 12.1% 770,999 0.80 14h 43m

5000 bootstrap instances + dual lookup
Bootstrap Completion Time = 9 hours

3-0 0 (first) 24.72 8.2% 3,345,657 7.08 6h 52m
3-1 1 24.92 9.5% 746,831 1.57 7h 42m
3-2 2 25.23 10.9% 445,420 0.93 8h 16m
3-3 3 25.38 11.6% 323,678 0.53 8h 40m
3-4 4 25.50 12.1% 226,475 0.37 8h 50m
3-5 5 25.74 13.1% 168,890 0.28 8h 57m
3-6 6 (final) 25.96 14.1% 92,098 0.16 9h 00m

Table 3.11: 24-pancake puzzle, Bootstrap.

row h (Algorithm) Cost Subopt Nodes Solving Time
Results of break heuristic

1 break 22.75 0% 46,442 0.03
Results of W-IDA*

2 h0 (W-IDA*,W=8) 52.34 130.1% 2,128,702 1.88
Results of BULB

3 h0 (BULB,B=20,000) 31.45 38.2% 6,050,234 43.2
4 h0 (BULB,B=10) 643.08 2726.7% 267,017 1.10

Results of hsum
5 hsum 39.74 74.7% 193,927 0.14

Table 3.12: 24-pancake puzzle, other methods.

to the Bootstrap, its solution quality has improved in comparison to the 17-pancake puzzle. This

is because the heuristics in the feature vector became weaker and the chance for overestimating the

heuristic value of each state using hsum has decreased.

35-pancake puzzle

The input features for the NN are very similar to those for the 17- and 24-pancake puzzle. Here,

we added an extra 5-token PDB as the number of tokens in the puzzle has increased. The pre-
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processing time to build the pattern databases was about 18 minutes while the memory used to

hold the pattern databases was about 272 megabytes. 50 randomly generated instances, with an

average optimal solution cost of 33.6, were used for testing. The initial heuristic is so weak that

7 RandomWalk iterations were necessary before bootstrapping itself could begin (9 iterations were

required when there were only 500 bootstrap instances). Table 3.13 has rows for selected iterations

with 500 bootstrap instances, 5000 bootstrap instances, and 5000 bootstrap instances with duality

exploited.

The trends are almost the same as for the 17- and 24-pancake puzzle: (a) search becomes faster

in each successive iteration but suboptimality becomes worse; (b) having more bootstrap instances

is slower and results in extra Bootstrap iterations, which produces faster search but greater subop-

timality; and (c) duality substantially reduces the search effort. However, it seems that the number

of nodes generated does not always decrease in each successive iteration (for example, see rows 3-2

and 3-4 in Table 3.13). Although bootstrapping is expected to speed up the search in each successive

iteration, here we only test the resulting heuristic on 50 test instances. Therefore, such anomalies

might simply be the result of using too few test instances.

Table 3.14 compares a few iterations of Bootstrap when 50 and 1000 test instances are used.

When using 50 test instances, some numbers do not follow the trend (see boldface numbers in the

Table 3.14); however, these anomalies disappear when the number of test instances is increased to

1000. Similar anomalies exist in Tables 3.18, 3.20, and 3.16 because only 200, 50, and 10 test

instances were used respectively.

No previous system that automatically creates heuristics has been applied to this problem domain

because of its size, so Table 3.15 includes results only for the break heuristic, W-IDA∗, BULB, and

hsum. Row 1 shows the results of the break heuristic.

W-IDA* was not able to compete with Bootstrap (Row 3-23 of Table 3.13) in terms of nodes

generated, so Row 2 of the table just shows the minimum number of nodes that W-IDA* generated.

We tried 15 values12 for W between 1.1 and 10. As can be seen, W-IDA∗ produces a very high degree

of suboptimality when generating the fewest nodes. Looking for settings for which W-IDA∗ can

compete with Bootstrap in terms of suboptimality was not successful. Allowing 10 times more time

than IDA* with Bootstrap’s final heuristic (Row 3-23 of Table 3.13) needed on each test instance,

W-IDA∗ did not complete any instances at all. Therefore, similar to the 17- and 24-pancake puzzle

W-IDA* is not competitive with Bootstrap.

For BULB, we tried 15 values13 for B (between 2 and 20,000). BULB is not competitive with

Bootstrap in terms of either Nodes or Subopt. The best results of BULB are shown in rows 3 and 4.

Row 5 shows the result of hsum using duality. In comparison to the smaller pancake problems,

the results of hsum has improved in terms of solution quality but it is still inferior to Bootstrap in

terms of both Nodes and Subopt.

12We tried W ∈ {1.1, 1.2, 1.5, 1.8, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
13We tried B ∈ {2, 3, 5, 7, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000}.
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row iteration Cost Subopt Nodes Solving Time Learning Time
500 bootstrap instances

Bootstrap Completion Time = 1 days and 2 hours
1-0 0 (first) 37.12 10.5% 178,891,711 217 7h
1-1 1 37.02 10.2% 181,324,430 219 9h
1-2 2 37.42 11.4% 169,194,509 202 11h
1-3 3 37.35 11.2% 191,333,354 228 16h
1-4 4 (final) 37.78 12.4% 131,571,637 158 1day 02h

5000 bootstrap instances
Bootstrap Completion Time = 8 days and 11 hours

2-0 0 (first) 36.66 9.1% 2,766,675,135 4,168 1day 17h
2-2 2 36.86 9.7% 1,591,749,582 1,923 2days 07h
2-4 4 37.02 10.2% 586,345,3534 687 2days 20h
2-6 6 37.25 10.8% 295,187,243 345 3days 08h
2-8 8 37.47 11.5% 134,075,802 157 3days 18h

2-10 10 37.70 12.2% 65,290,479 102 4days 04h
2-12 12 37.74 12.3% 47,998,040 76 4days 20h
2-14 14 37.72 12.3% 45,571,411 71 5days 15h
2-16 16 37.76 12.3% 39,128,839 45 5days 23h
2-18 18 38.02 13.2% 38,126,208 43 6days 05h
2-20 20 37.92 12.9% 39,440,284 44 6days 16h
2-22 22 38.14 13.5% 36,423,262 52 7days 00h
2-24 24 38.36 14.2% 25,034,580 42 7days 10h
2-26 26 38.60 14.9% 26,089,593 43 7days 23h
2-28 28 38.65 15.0% 13,156,609 21 8days 07h
2-30 30 (final) 38.77 15.4% 14,506,413 21 8days 11h

5000 bootstrap instances + duality
Bootstrap Completion Time = 3 days and 17 hours

3-0 0 (first) 37.48 11.5% 147,325,035 339 1day 02h
3-2 2 37.82 12.6% 35,062,330 82 1day 12h
3-4 4 38.10 13.4% 35,167,589 82 1day 21h
3-6 6 38.18 13.6% 17,851,201 42 2days 05h
3-8 8 38.28 13.9% 15,465,958 35 2days 12h

3-10 10 38.66 15.1% 11,978,938 28 2days 18h
3-12 12 38.8 15.5% 11,047,491 25 2days 23h
3-14 14 39.04 16.2% 6,592,431 15 3days 03h
3-16 16 38.92 15.8% 6,763,642 11 3days 06h
3-18 18 39.10 16.4% 5,540,040 9 3days 10h
3-20 20 39.06 16.3% 7,340,341 12 3days 13h
3-22 22 38.98 16.0% 3,880,717 6 3days 16h
3-23 23 (final) 39.50 17.6% 2,655,945 4 3days 17h

Table 3.13: 35-pancake puzzle, Bootstrap.

3.3.3 Rubik’s Cube

For Rubik’s Cube, the input features for the NN were the three PDBs used by Korf [41], namely, one

PDB for the eight corner cubies and two PDBs each for six edge cubies. We used 333 megabytes of

memory for the PDBs14 and the pre-processing took about 16 minutes.

14This is more than the amount of memory that Korf reported using the same PDBs [41]. We store each entry of the pattern
database in 8 bits ignoring the fact that each entry is less than 12 and can be stored in 4 bits.
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row iteration Cost Subopt Nodes Solving Time
50 test instances

3-2 2 37.82 12.6% 35,062,330 82
3-3 3 38.10 13.4% 42,459,691 98
3-4 4 38.10 13.4% 35,167,589 82
3-5 5 38.06 13.3% 17,372,344 38
3-6 6 38.18 13.6% 17,851,201 42
3-7 7 38.34 14.1% 18,767,205 44
3-8 8 38.28 13.9% 15,465,958 35
3-9 9 38.26 13.9% 20,630,541 48

1000 test instances
3-2 2 37.94 12.6% 51,576,124 120
3-3 3 38.03 12.8% 43,326,193 101
3-4 4 38.11 13.1% 34,164,746 80
3-5 5 38.21 13.5% 26,357,552 60
3-6 6 38.30 13.6% 26,030,494 60
3-7 7 38.34 13.8% 19,790,206 46
3-8 8 38.43 14.0% 15,745,643 37
3-9 9 38.53 14.3% 14,709,532 35

Table 3.14: 35-pancake puzzle, Bootstrap on different number of test instances.

row h (Algorithm) Cost Subopt Nodes Solving Time
Results of break heuristic

1 break 33.6 0% 670,337 1
Results of W-IDA*

2 h0 (W-IDA*,W=9) 71.1 111.6% 1,478,146,011 1,606
Results of BULB

3 h0 (BULB,B=20,000) 81.6 142.85% 202,149,804 1,750
4 h0 (BULB,B=20) 3547.3 10457.3% 53,610,580 170

Results of hsum
5 hsum 54.32 61.7% 5,449,933 5

Table 3.15: 35-pancake puzzle, other methods.

The 10 standard Rubik’s Cube instances [41] were used for testing. The average optimal solution

cost for these instances is 17.5. The initial heuristic was sufficient to begin the Bootstrap process

directly, so no RandomWalk iterations were necessary. Row 6 of Table 3.17 shows the results when

the initial heuristic is used by itself as the final heuristic [41].

Table 3.16 shows all the iterations of the Bootstrap process when 500 and 5000 bootstrap in-

stances are given. In both cases, bootstrapping produces very substantial speedup over search using

h0. For instance, using 500 bootstrap instances produces a heuristic that makes search more than

43 times faster than with h0 while producing solutions that are only 4% (0.7 moves) longer than

optimal. The trends across Bootstrap iterations are almost the same as those observed in all previ-

ous experiments. Similar to the 35-pancake puzzle, the number of nodes generated does not always

decrease between two consecutive iterations of Bootstrap (e.g., see rows 2-2 and 2-3 of Table 3.16)

as the results are obtained on only a few (10) test instances.
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row iteration Cost Subopt Nodes Solving Time Learning Time
500 bootstrap instances

Bootstrap Completion Time = 2 days 19 hours
1-0 0 (first) 18.0 2.9% 67,264,270,264 78,998 05m
1-1 1 (final) 18.2 4.0% 8,243,780,391 10,348 2days

5000 bootstrap instances
Bootstrap Completion Time = 31 days and 15 hours

2-0 0 (first) 18.1 3.4% 69,527,536,555 86,125 43m
2-1 1 18.3 4.6% 7,452,425,544 10,477 10h
2-2 2 18.5 5.7% 3,314,096,404 3,976 1day 06h
2-3 3 19.2 9.7% 3,722,365,147 4,444 2days 16h
2-4 4 19.7 12.6% 974,287,428 1,119 5days 08h
2-5 5 20.4 16.6% 748,608,645 848 7days 05h
2-6 6 21.4 22.3% 599,503,676 823 9days 09h
2-7 7 21.0 20.0% 614,676,983 842 11days 07h
2-8 8 21.3 21.7% 465,772,443 626 13days 04h
2-9 9 21.6 23.4% 552,259,662 624 16days 14h

2-10 10 21.5 22.9% 518,980,590 577 19days 10h
2-11 11 21.8 24.6% 624,542,989 686 23days 20h
2-12 12 21.8 24.6% 422,066,562 464 27days 06h
2-13 13 22.3 27.4% 251,228,458 280 30days 02h
2-14 14 (final) 22.6 29.1% 192,012,863 208 31days 15h

Table 3.16: Rubik’s Cube, Bootstrap.

The results of other systems are shown in Table 3.17. Rows 1 and 2 are when the initial heuristic

(h0) is used with W-IDA* on the same set of test instances. Row 4 shows the results with hsum.

Similar to the previous domains, Bootstrap (Table 3.16, Row 2-14) dominates in all cases.

For BULB, we present the results reported by Furcy and Koenig [20]. These results are obtained

using h0 but on a different set of test instances. They created 50 solvable instances by applying

random walks of length 500 backwards from the goal state. The optimal solutions for these instances

are not known; to estimate the suboptimality of the solutions found we assume their average optimal

solution is the same as for our test instances, 17.5. All the results related to BULB are marked with

an asterisk which means that they are not strictly comparable with the numbers reported for our

method. Row 3 reports on BULB when B is set so that its result is close to Bootstrap (Table 3.16,

Row 2-14) in terms of both suboptimality and nodes generated. The results show that BULB and

Bootstrap perform equally well in Rubik’s Cube.

Rows 5 to 7 show the results of state-of-the-art heuristic search methods for finding optimal

solutions for the testing instances. Row 5 shows the results using the initial heuristic (h0) [41].

Row 6 shows the results from Zahavi et al. [70] when dual lookups [15] for both 6-edge PDBs were

added to the heuristic of Row 5. In Row 7 [70], the edge PDBs used in Row 6 are increased from

6 edges to 7 edges and dual lookup is used. Bootstrap (in both cases of 500 and 5000 bootstrap

instances) outperforms all of these optimal systems in terms of Nodes and Solving Time.
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row h (Algorithm) Cost Subopt Nodes Solving Time
Results of W-IDA*

1 h0 (W-IDA*,W=1.9) 22.8 30.3% 5,653,954,001 6,632
2 h0 (W-IDA*,W=3.3) 31.8 81.7% 217,463,103 245

Results of BULB
3 h0 (BULB,B=50,000) 22.7∗ 30%∗ 189, 876, 775∗ 431*

Results of hsum
4 hsum 27.2 55.4% 246,235,226 256

Results from previous papers
5 h0 17.5 0% 360,892,479,670 102,362*
6 #5 with dual lookup 17.5 0% 253,863,153,493 91,295*
7 max{8,7,7} with dual lookup 17.5 0% 54,979,821,557 44,201*

Table 3.17: Rubik’s Cube, other methods.

3.3.4 Blocks World
15-blocks world

For the 15-blocks world we used 200 random test instances in which the goal state has all the blocks

in one stack. Their average optimal solution length is 22.73. We used 9 input features for the

NN: seven 2-block PDBs, the number of out-of-place blocks, and the number of stacks of blocks.

The abstractions used for the PDBs is so coarse-grained that we only used less than 2 kilobytes of

memory for this experiment. Optimal solutions were computed using the hand-crafted blocks world

solver PERFECT [60].

Table 3.18 shows the Bootstrap results. The initial heuristic is so weak that three RandomWalk

iterations were needed before bootstrapping. The trends are, again, (a) search is sped up in each

iteration but suboptimality increases; and (b) having more bootstrap instances is slower and requires

more Bootstrap iterations. A suboptimality of 7% here means the solutions generated are about 1.6

moves longer than optimal.

Table 3.19 shows the results of BULB using our initial heuristic, which is again dominated by

Bootstrap (Table 3.18, Row 2-9).

An attempt to compare with W-IDA* failed due to the poor performance of W-IDA* with time

limits 10 times larger than the solving time using Bootstrap’s final heuristic for each test instance.

Varying the weights15 between 1.1 and 10, W-IDA* never solved more than about 70% of the in-

stances (W=8 was best). The average number of nodes that each setting of W-IDA* generated with

this time limit was always more than Bootstrap. Each setting of W-IDA* still needs to generate

more nodes to find a solution for those instances that were not solved during this time limit; there-

fore, W-IDA* generates more nodes than Bootstrap. A similar explanation can be made to show that

the setting of W-IDA* that is closest to Bootstrap in terms of suboptimality, is inferior in terms of

nodes generated. Therefore, Bootstrap (Table 3.18, Row 2-9) outperforms W-IDA* in terms of both

Nodes and Solving Time.

15We tried W ∈ {1.1, 1.2, 1.5, 1.8, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
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row iteration Cost Subopt Nodes Solving Time Learning Time
500 bootstrap instances

Bootstrap Completion Time = 1 hour and 46 minutes
1-0 0 (first) 23.06 1.5% 1,157,510,765 2,656.99 52m
1-1 1 23.38 2.8% 554,160,659 2,149.07 1h 22m
1-2 2 23.80 4.7% 21,289,247 69.37 1h 44m
1-3 3 (final) 24.31 6.9% 3,651,438 15.87 1h 46m

5000 bootstrap instances
Total Time to create the final heuristic = 8 hours

2-0 0 (first) 23.09 1.6% 2,253,260,711 5,081.57 4h 46m
2-1 1 23.34 2.7% 280,752,780 1,247.28 5h 23m
2-2 2 23.48 3.3% 132,234,387 587.87 6h 03m
2-3 3 23.62 3.9% 44,616,679 101.19 6h 40m
2-4 4 23.66 4.1% 11,973,435 26.58 7h 14m
2-5 5 24.12 6.1% 2,777,423 6.13 7h 30m
2-6 6 24.25 6.7% 3,468,436 7.65 7h 40m
2-7 7 24.29 6.9% 1,252,535 2.76 7h 51m
2-8 8 24.35 7.1% 534,123 1.45 7h 57m
2-9 9 (final) 24.40 7.3% 155,813 0.35 8h 00m

Table 3.18: 15-blocks world (1-stack goal), Bootstrap.

row h (Algorithm) Cost Subopt Nodes Solving Time
Results of BULB

1 h0 (BULB,B=4000) 24.40 7.3% 972,380 2.09
2 h0 (BULB,B=500) 28.28 24.4% 177,187 0.46

Table 3.19: 15-blocks world, other methods.

An attempt to compare the results to hsum failed because the heuristics used in the feature vector

were so weak that even the sum of these values is still a weak heuristic for this domain. Using a

time limit of 10 minutes for IDA* using hsum, only 73 out of 200 instances were solved while the

average solution length for the solved instances was about 5 times longer than the average optimal

solution length of those instances.

We compare our solution quality (Table 3.18, Row 2-9) to three hand-crafted suboptimal solvers

for the blocks world, US [21] then, GN1 [22], and GN2 [22]. These planners do not use search

algorithms, so we cannot compare in terms of the number of nodes generated.

US [21] (unstack-stack) is the simplest strategy for the blocks world that was introduced by

Gupta and Nau. It moves all the misplaced blocks to the table (unstack) and then builds the goal

state by applying constructive moves (stack). A constructive move is a move that places a misplaced

block in its correct position. GN1 [22] first applies all possible constructive moves. When no

constructive move exists, it moves a random misplaced clear block16 to the table. GN1 repeats this

process until all blocks are placed in their correct positions. GN2 [22] is similar to GN1 except that

in case of no available constructive move, it moves a clear block to the table that leads to a state in
16A block is clear when it is the topmost block on the stack (i.e., no block exists on top of a clear block).
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which constructive moves become available.

With an average solution length of 24.4, Bootstrap performed almost as well as GN1 (23.88) and

GN2 (22.83), and slightly better than US (25.33).

20-blocks world

The experimental setup for the 20-blocks world was identical to that for 15 blocks, but here a 2-

block PDB is a much weaker heuristic than for 15 blocks. The total amount of memory required for

this experiment was less than 3 kilobytes while the pre-processing took a few seconds.

We used 50 random test instances with an average optimal solution length of 30.92. The initial

heuristic is so weak that six RandomWalk iterations were necessary before bootstrapping (eight

iterations for 500 bootstrap instances). The trends across Bootstrap iterations are those observed in

the 15-blocks world.

Table 3.20 shows the Bootstrap iterations for the 20-blocks world. The heuristics used in the

feature vector were so weak that solving the test instances using the early heuristics produced by

Bootstrap was infeasible; therefore, rows 1-0 and 2-0 to 2-2 are not shown in the table. The comple-

tion time of Bootstrap using 500 bootstrap instances is much longer than the total time to learn the

final heuristic of Bootstrap using 500 instances (rows 1-3 of Table 3.20) as “enough” instances were

not solved in the last iteration of the Bootstrap and the process terminated due to tmax exceeding t∞.

row iteration Cost Subopt Nodes Solving Time Learning Time
500 bootstrap instances

Bootstrap Completion Time = 2 days
1-1 1 31.38 1.5% 13,456,726,519 55,213 11h
1-2 2 31.54 2.0% 8,886,906,652 35,692 1day 02h
1-3 3 (final) 32.02 3.6% 615,908,785 2,763 1day 10h

5000 bootstrap instances
Bootstrap Completion Time = 11 days and 1 hour

2-3 3 31.56 2.1% 12,771,331,089 52,430 3days 06h
2-4 4 31.86 3.0% 8,885,364,397 35,636 4days 04h
2-5 5 31.94 3.3% 941,847,444 3,828 5days 21h
2-6 6 32.10 3.8% 660,532,208 2,734 7days 03h
2-7 7 32.14 3.9% 789,515,580 3,240 8days 05h
2-8 8 32.50 5.2% 191,696,476 791 9days 05h
2-9 9 32.84 6.2% 22,413,312 93 9days 22h

2-10 10 33.28 7.6% 11,347,282 47 10days 18h
2-11 11 33.50 8.3% 17,443,378 72 10days 10h
2-12 12 33.56 8.5% 7,530,329 31 10days 20h
2-13 13 (final) 33.78 9.2% 5,523,983 23 11days 01h

Table 3.20: 20-blocks world (1-stack goal), Bootstrap.

Bootstrap with an average solution length of 33.78 (Table 3.20, Row 2-13) is again somewhat

inferior to GN1 (32.54) and GN2 (30.94), and slightly better than US (34.58).

The results of other systems on the same test instances are shown in Table 3.21. Similar to the
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15-blocks world, W-IDA* with time limits 10 times larger than the solving time using Bootstrap’s

final heuristic for each test instance failed to solve more than half the test instances (W was varied17

between 1.1 and 10). In the best case (W=9) W-IDA* solved 24 of the test instances. In addition,

hsum failed to solve any instance given a time limit of one day per instance. Therefore, Table 3.21

only shows the results for BULB.

BULB’s results when B is set so that BULB is approximately equal to Bootstrap (Table 3.20,

Row 2-13) in terms of Nodes is shown in Row 2. For suboptimality, BULB could not compete with

Bootstrap; we tried 15 values18 for B between 2 and 20,000. The best suboptimality achieved by

BULB is shown in Row 1. It shows that even with much greater suboptimality, BULB is inferior to

Bootstrap in terms of Nodes and Solving Time.

row h (Algorithm) Cost Subopt Nodes Solving Time
Results of BULB

1 h0 (BULB,B=20,000) 40.14 29.8% 278, 209, 980 2,482
2 h0 (BULB,B=2,400) 64.8 109.6% 5,809,791 32

Table 3.21: 20-blocks world, other methods.

3.4 Summary

This chapter described our incremental method that aims to generate strong heuristics from a given

initial (weak) heuristic h0 and a set of states called the bootstrap instances. A heuristic search

algorithm with h0 is run to solve the bootstrap instances within a given time limit. For each solved

bootstrap instance, a set of features and the solution length for that instance is fed to a learning

system to create a new heuristic function h1 which is intended to be stronger than h0 in terms of

the average speed of solving the problems. After that, the previously unsolved bootstrap instances

are used in the same way, using h1 as the heuristic instead of h0. This procedure is repeated until a

sufficiently strong heuristic is created.

The initial heuristic h0 can be so weak that it cannot solve even a few of the bootstrap instances

within the given time limit. We then enhance h0 by a random walk method that aims to improve

the initial heuristic to a point that the new heuristic becomes able to solve enough bootstrap in-

stances. The RandomWalk method generates training instances that are (i) hard enough to yield

useful training data to improve h0 and (ii) easy enough to be solvable by h0.

We provided experimental evidence that machine learning can help to create strong heuristics

from given (weak) ones. The key approach is a bootstrap learning procedure for improving heuris-

tics incrementally, with successive iterations solving gradually harder problems from a user-given

set of instances. We also demonstrated that random walks can be effectively used to prime the

bootstrapping process if a heuristic is too weak to solve enough of the user-given instances.
17We tried W ∈ {1.1, 1.2, 1.5, 1.8, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
18We tried B ∈ {2, 3, 5, 7, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000}.
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Throughout all tested domains, we observed a huge reduction in the number of nodes IDA∗

generates with the learned heuristics. The total time needed for learning the heuristic was rather

large for large problem domains. That makes bootstrapping useful only when a large number of test

problem instances need to be solved. In the next chapter, a variation of Bootstrap will be presented

that decreases this total time substantially so that Bootstrap becomes practical (in terms of total time)

even for solving a single test instance.
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Chapter 4

Solving Single Instances

4.1 Introduction

The experimental results in Chapter 3 showed that the combination of our RandomWalk and Boot-

strap methods (bootstrapping) can help to speed up search dramatically with relatively little degra-

dation in solution quality. However, the completion time for bootstrapping becomes rather large for

large search spaces (e.g., the 24-puzzle, the 35-pancake puzzle, Rubik’s Cube, and the 20-blocks

world) so that it becomes ineffective to use bootstrapping for situations in which the user is inter-

ested in solving a single instance (or a few instances) of a search problem. For example, many

planning problems require just a single instance to be solved; a task for which our bootstrapping

approach may seem ineffective because of the large total time required.

In this chapter, we present a method that interleaves learning better heuristics and solving the

test instance using the current heuristics so that the sum of the learning and solving times is made as

small as can be. Here, we first describe our method. Then, we present experimental results of our

method showing that it solves single instances of problems many orders of magnitude faster than the

total time needed for bootstrapping while the solutions obtained are still very close to the optimal

ones. Finally, we first briefly summarize related work on solving a single instance of a heuristic

search/planning problem.

4.2 Method

The experimental results with our bootstrap learning method in Chapter 3 showed that most of the

bootstrapping time was spent on the instances that were not solvable in each iteration of the process

using the heuristic of that iteration. On the other hand, the RandomWalk process was not very time-

consuming as most of the random walk instances were at the “right” level of difficulty. Therefore,

one possible approach to decrease the total time of Bootstrap is to use the RandomWalk process to

iteratively improve the initial heuristic until the heuristic becomes able to solve the single instance

of the problem.

In other words, given a single instance of a problem, which we call ins∗, as the test instance, we
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can run our RandomWalk process to learn heuristics to solve this instance. If the initial heuristic is

good enough to solve the instance in time tmax then the system returns the solution and terminates.

Otherwise, the system would invoke the RandomWalk process until it could solve the instance in

time tmax. The system increases the length of the random walk to create harder instances and

increases tmax when fewer than insmin instances were solved in the current iteration. The total time

of this system would be the total time for solving the instance.

This system (in terms of total time) is faster compared to the case of using many bootstrap

instances. In other words, unlike the bootstrap instances (provided by the user), the RandomWalk

process produces instances that are most of the time at the “right” level of difficulty; therefore, less

time would be spent on the instances that are not solvable within the time limit of tmax in each

iteration.

Figure 4.1 shows the results of such a system after 25 iterations of the RandomWalk process

(about 80 minutes of total time) when each of the 50 random instances of the 24-puzzle used by

Korf and Felner [42] is used as the single test instance. In other words, the method just described

was repeated 50 times, each time using one of the 50 test instances as ins∗. The x-axis shows the

total time of the process while the y-axis shows the number of instances that were solved in that time

or less. For example, a point with the x-value of 20 and y-value of 19 in Figure 4.1 shows that if this

system is given 20 minutes of total time for each instance, 19 out of 50 test instances will be solved.
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Figure 4.1: Number of solved test instances versus the total time of the process on the 24-puzzle.

Figure 4.1 shows that after 80 minutes of total time, only 39 out of 50 test instances were solved.

This is the result of using the time limit tmax and forcing ins∗ to be solvable within that time limit.

When dealing with a large set of bootstrap instances, tmax is less critical, because we only need to

solve a small fraction of the bootstrap instances in each iteration. In contrast, in the case of a solving

a single instance of the problem without any bootstrap instances the total time will strongly depend

on the parameter tmax. If tmax is too low, we might need a great many iterations of the RandomWalk
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process. If tmax is too high, we force the solver, when using too weak a heuristic, to spend the full

amount of tmax in vain while it would be advantageous to invest more in learning. For example,

in the above example the time limit is so low (4 seconds after 25 iterations of the RandomWalk

process) that only 39 of the 50 test instances were solved even after great many iterations of the

RandomWalk process.

Avoiding tmax completely by fixing a training time and then trying to solve the test instance with

the last heuristic learned after the fixed amount of training is one other possibility. For example, if

we stop the RandomWalk process in the same experiment after only 10 minutes, the 50 test instances

of the 24-puzzle will need 278 seconds of solving time on average (the hardest test instance needs

about 86 minutes of solving time). Note that this solving time is in addition to the 10 minutes

spent on learning better heuristics. On the other hand, if the process stops after 20 minutes, the

test instances need 38 seconds of solving time on average (the hardest test instance needs about 3

minutes). Unfortunately, here the training time is the critical parameter that cannot be set without

prior knowledge.

These observations motivate us to interleave solving and learning the heuristic. We alternatively

invest some time in two threads, namely in (i) learning a better heuristic (the learning thread), and

in (ii) trying to solve the test instance ins∗ (the solving thread). The solving thread is comprised of

sub-threads which themselves are executed in an interleaved fashion. The first “solving sub-thread”

aims at solving ins∗ using the initial heuristic. As soon as a new heuristic is learned in the learning

thread, we start an additional solving sub-thread, which uses the new heuristic to try to solve ins∗.

No thread is ever stopped completely until ins∗ is solved in one of the solving sub-threads. The total

time by which we evaluate this process is the sum of the times used by both the learning and solving

threads (including all the solving sub-threads) up to the point when ins∗ is solved in one sub-thread.

Algorithm 3: The Interleaving procedure.

1 procedure Interleaving(ins∗, hin, ts, tl): solution
2 Create a list, Solvers, containing just one solving sub-thread using hin.
3 solved := false
4 while (!solved) do
5 solved := InterleavedSolving(Solvers,ts)
6 h := continue(RandomWalk,tl)
7 if (h is a new heuristic) then
8 add a solving sub-thread using h to the beginning of Solvers
9 end

10 end
11 return solution from the interleaved solving processes

Algorithm 3 shows our interleaving approach. The algorithm uses two threads, one for learning

new heuristics and the other for trying to solve the test instance. The learning thread calls the

RandomWalk procedure (line 6). This RandomWalk procedure does not use any bootstrap instances

at all and is suspended after a time limit of tl. Therefore, “continue(RandomWalk,tl)” in line 6 of
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the algorithm means that the RandomWalk process runs for tl seconds. Then, it is suspended when

the time limit tl is reached.

The solving thread uses the current list of available solving sub-threads (Solvers) to solve the test

instance (by the call to the interleaved solving procedure in line 5). The solving thread is suspended

after a time limit of ts. When the algorithm starts, Solvers only contains one solving sub-thread

that uses the initial heuristic. Whenever RandomWalk finishes creating a new heuristic, a solving

sub-thread using that heuristic is created and added at the beginning of Solvers (line 8). The process

stops when a solution for the test instance is found.

The ratio of ts:tl determines the time allocated to solving (ts) and the time allocated to learning

(tl). Determining the best ratio ts:tl is beyond the scope of this thesis; in the current system it is set

manually. In Section 4.3, we run experiments with ratios of 1:1, 1:2, 1:5, and 1:10. Generally, when

the initial heuristic is very weak, the solving sub-thread that uses this heuristic needs a lot of time to

find a solution for the test instance. As we mainly use weak initial heuristics in our experiments to

solve large search problems, we did not use ratios favouring the solving thread.

For the allocation of solving time among the various solving sub-threads, we considered two

strategies, which we call “uniform” and “exponential”. Other strategies, such as Röger and Helmert’s

alternation technique [52], are certainly possible.

Uniform This strategy allocates the same amount of time to all the available solving sub-threads

every time line 5 in Algorithm 3 is executed. Note that this results in sub-threads that were started

earlier—which presumably are using weaker heuristics—getting allocated more time, in total, than

sub-threads using stronger heuristics. Pseudocode for this strategy is given in Algorithm 4.

This uniform strategy to allocate the same time budget to all available solving sub-threads bor-

rows from Valenzano et al. [64]. Their work considers simultaneous searches with different parame-

ter settings (e.g., Weighted A* searches with different weight parameters). Their results show that on

a set of testing instances of a standard heuristic search domain (e.g., the sliding-tile puzzle), simulta-

neous searches speed up the problem solving over the best single parameter setting on the same set

of test instances. Although our uniform strategy to allocate time to solving sub-threads is similar to

the concept of simultaneous searches with different parameter settings, we are looking at a different

problem as (i) not all the solving sub-threads in our method are available from the beginning and (ii)

there is also a learning time overhead associated with each new solving sub-thread.

Exponential Because heuristics created later in the learning process are expected to be stronger

than those created at early stages, the more recently created heuristics may be more likely to quickly

solve the test instance, and it therefore seems reasonable to invest more time in solving sub-threads

using the heuristics learned in later iterations. The “exponential” strategy is to halve the time al-

located to the solving sub-threads using previous heuristics when a new heuristic has been created.

Thus the solving sub-thread for the new heuristic gets half the total time available for solving (ts)
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Algorithm 4: Uniform allocation for solving sub-threads.

1 procedure InterleavedSolving (uniform) (Solvers,time):status

2 t :=
time
|Solvers|

3 for each solver sub-thread S ∈ Solvers do
4 if continue(S, t) succeeds then
5 return true
6 end
7 end
8 return false

on each round until another heuristic is created. The reason not to suspend solving sub-threads with

weak heuristics completely is that there is still a chance that they are closer to finding a solution

than the solving sub-thread using the most recently created heuristic. This may be (i) because more

time has been invested in the sub-threads using weaker heuristics already or (ii) because a weaker

heuristic may occasionally still behave better on one particular test instance than an overall stronger

heuristic.

Algorithm 5: Exponential allocation for solving sub-threads.

1 procedure InterleavedSolving (exponential) (Solvers,time):status
2 t := time
3 for i = 1 to |Solvers| do
4 S := ith sub-thread in Solvers
5 if i 6= |Solvers| then
6 t := t/2
7 end
8 if continue(S, t) succeeds then
9 return true

10 end
11 end
12 return false

The pseudocode for this time allocation strategy is shown in Algorithm 5. The time invested

in the solving sub-thread using the best available heuristic is twice as large as that invested in the

sub-thread using the second best heuristic, which again is a factor of two larger than the time for

the next “weaker” sub-thread, and so on. The weakest two sub-threads will always be allocated the

same amount of time, so that the total time spent on the sub-threads sums up to the time allocated to

the solving thread overall.

This strategy for allocating the total solving time into time budgets for the currently available

heuristic solvers borrows from the hyperbolic dove-tailing approach to interleaved search introduced

by Kirkpatrick [38]. Kirkpatrick proved his approach to be average-case optimal and worst-case

optimal for a certain variation of the so-called cow path problem, which was first studied by Baeza-

Yates, Culberson, and Rawlins [1].
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Kirkpatrick [38] studied a multi-list traversal problem in which the length of each list is un-

known. Traversing each list is associated with a cost equal to the length traversed in the list and

there is no cost associated with re-traversing the previously traversed part of each list. The objective

is to traverse one list to the end while minimizing the total traversal cost.

Our problem of how to allocate time to solving sub-threads in order to make the total time of

solving a test instance as small as possible is similar to the multi-list traversal problem in the sense

that each solving sub-thread in our strategy can be considered as a list in the multi-list traversal

problem. Traversing a list to the end would then be the same as finding a solution by a solving

sub-thread. The main difference between these two problems is that not all the solving sub-threads

in our problem are available from the beginning. In fact only the first solving sub-thread (the one

that uses the initial heuristic) is available from the beginning. Whenever a new heuristic is learned,

a new solving sub-thread will be added. Furthermore, each new solving sub-thread has the inherent

cost of learning the heuristic that is not considered in Kirkpatrick’s study. Therefore, the problem

studied by Kirkpatrick does not model the search problem we are facing. Hence we do not have any

formal guarantees on the efficiency of our exponential allocation method.

4.3 Experimental Results

This section discusses the experimental results of both versions of our interleaving approach on

single instances of the largest search spaces used in Chapter 3, namely the 24-puzzle, the 35-pancake

puzzle, Rubik’s Cube, and the 20-blocks world. We further run experiments on the blocksworld

instances used in the AIPS planning competition1. The experimental settings for each domain,

i.e., the initial heuristic, the features, and the neural network settings, are the same as those used in

Chapter 3. Furthermore, the test instances and the numeric parameters, i.e., insmin, tmax, t∞, and

the size of the set RWIns, are the same as those used in Chapter 3.

We use a fixed ratio of ts:tl of time for training and solving processes. We report the results with

ratios of 1:1, 1:2, 1:5, and 1:10 i.e., ts was set to 1 second while tl varied between 1, 2, 5, and 10

seconds.

The tables and figures below summarize the results on our test domains. In the tables, the

allocation ( either uniform or exponential) and ratio (ts:tl) columns show the experimental setting

used for that line of the table. The min, max, mean, med, and std columns respectively show the

minimum, maximum, mean, median, and standard deviation of the solving time on the test instances.

The Subopt column indicates the average suboptimality of our solutions.

The figures show the total time to solve each instance using our interleaving approach with dif-

ferent settings for the ratio. The instances on the x-axis are always sorted with respect to the setting

that resulted in the best performance in terms of average total time. Furthermore, a logarithmic scale

is always used for the y-axis (total solving time).

1See http://www.cs.toronto.edu/aips2000/ for more details about the instances.
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Most of the figures are consisted of two parts. The top part shows the results when the y-axis

starts from zero and the bottom part shows the results when the y-axis starts from a time in which

the minimum solving time by all the settings shown in the figure is achieved. The bottom part of the

figure is only included so that the difference between difference strategies can be better visualized.

4.3.1 24-puzzle

We used each of the 50 standard test instances of the 24-puzzle [42] as the single instance to be

solved. These instances have an average optimal solution cost of 100.78.
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Figure 4.2: Total solving time for each instance of the 24-puzzle - exponential allocation.

Figure 4.2 shows the total time to solve each instance using the exponential interleaving approach

with ratios 1:1, 1:2, 1:5. The instances on the x-axis are sorted with respect to the time that the

approach with ratio of 1:5 needs to solve them. Using a ratio of 1:5, almost all the test instances

(47 out of 50) are solved in less than 30 minutes (16 minutes and 30 seconds on average) while the

solutions were, on average, only 6.9% (7 moves) longer than optimal.

Note that the exponential interleaving that uses a ratio of 1:5 (“exponential (1:5)” in Figure 4.2)

corresponds to a step function. Each interval in that function shows the instances that were solved
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Figure 4.3: Total solving time for each instance of the 24-puzzle - exponential and uniform alloca-
tions.

using the same heuristic. For example, the first interval (for instances 1-16) contains all the instances

that were solved using the heuristic learned from tenth iteration of the RandomWalk process.

Figure 4.2 shows that increasing the time allocated to the learning process relative to the solving

process, speeds up the process and reduces the total solving time for almost all the instances. It

is because the heuristics created in the earlier iterations of the RandomWalk process are so weak

that the solving sub-threads that use them need a lot of time to solve the problem. Therefore, it is

reasonable to allocate less time to these solvers and focus on learning better heuristics.

Figure 4.3 compares the solving time of two time-allocation strategies for ratios of 1:1 and 1:5.

Note that the results for the ratios of 1:2 and 1:10 are not included in Figure 4.3 just to make the

figure easier to read. Figure 4.3 shows that for a fixed ratio, the exponential strategy for allocating

time among the solvers outperforms the uniform strategy for almost all the instances.

Table 4.1 shows the results for both time-allocation strategies for the solvers (uniform and ex-

ponential) for all four ts:tl ratios. Note that when the ratio is set to 1:20 (for both time-allocation

strategies), the total time of the process increased compared to the case of using a ratio of 1:10.

Therefore, the results for the ratio of 1:20 are not shown in the table. The trends observed from
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Table 4.1 are:

1. The average suboptimality increases when the time allocated to the learning process increases

relative to the solving process. This is simply because the solver that uses a heuristic from

later iterations of the RandomWalk process will be able to solve the instance in a shorter total

time. The more iterations of the RandomWalk process, the more suboptimal the solutions.

2. The mean and median values decrease and the range (max-min) increases as more time is

allocated to the learning process. It turns out that, on average, the actual solver that first solves

the test instance requires only a couple of seconds of solving time. Considering the total times

reported in Table 4.1, most of the solving is spent on unsuccessful trials using other solvers.

Increasing the learning time makes the system produce stronger heuristics faster. This in turn

decreases the total solving time for most instances (mean and median decreases). However,

the hardest instances, i.e., those with the largest solving times, appear to require about the

same amount of solving time as in a setting with less learning time.

3. The exponential strategy for allocating time among the solvers outperforms the uniform strat-

egy for all ts:tl ratios.

row ratio allocation min max mean med std Subopt
(ts:tl)

1 1:1 exponential 20m 48s 44m 54s 23m 36s 21m 54s 4m 07s 6.4%
2 1:1 uniform 24m 06s 41m 54s 24m 10s 23m 24s 3m 36s 6.4%
3 1:2 exponential 15m 36s 43m 36s 18m 03s 16m 30s 4m 15s 6.7%
4 1:2 uniform 15m 36s 44m 57s 18m 34s 17m 03s 3m 28s 6.8%
5 1:5 exponential 12m 30s 42m 42s 15m 50s 14m 30s 5m 53s 6.9%
6 1:5 uniform 13m 02s 55m 22s 16m 53s 15m 10s 7m 14s 6.9%
7 1:10 exponential 11m 36s 48m 48s 15m 59s 14m 36s 6m 42s 6.9%
8 1:10 uniform 11m 31s 53m 46s 15m 48s 14m 14s 6m 55m 6.9%

Table 4.1: Statistics on solving a single instance of the 24-puzzle.

The average total time spent on a test instance (including the learning time) is substantially

lower than the total time spent by our Bootstrap process using a large set of bootstrap instances

but no interleaving. According to Table 3.7, the latter requires more than 2 days when using 500

bootstrap instances and about 18 days when using 5000 bootstrap instances. The first heuristics

created by Bootstrap for the 24-puzzle (rows 1-0 and 2-0 of Table 3.7 for using 500 and 5000

bootstrap instances) need about 80 and 40 minutes of solving time on average, respectively, to solve

each instance of the 24-puzzle. These solving times are comparable to the total times reported for

the interleaving (see Table 4.1); however, the standard Bootstrap method has an additional overhead

of 3 and 27 hours (see the “Learning Time” Column of rows 1-0 and 2-0 of Table 3.7) to create those

two heuristics. Therefore, our method to solve a single test instance is substantially faster than the

normal Bootstrap method.
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4.3.2 35-pancake Puzzle

Here, each bootstrap instance is a random instance of the 35-pancake puzzle. We used 50 of them,

same as those instances uses in Section 3.3.2. These instances have an average optimal solution

length of 33.6. Figure 4.4 shows the total time to solve each instance using the exponential strategy

for allocating time among the solvers when the ratio ts:tl is set at 1:1, 1:2, and 1:5.
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Figure 4.4: Total solving time for each instance of the 35-pancake puzzle - exponential allocation.

The best solving time averaged on these 50 instances was achieved using the ratio of 1:10. It

solved the instances on average in 4 hours and 28 minutes while the solutions were 8.4% (2.9 moves)

longer than optimal (see Table 4.2). Similar to the 24-puzzle, increasing the time allocated to the

learning process relative to the solving process, speeds up the process while suboptimality slightly

increases (see Figure 4.4 and Table 4.2). Note that the total time of the process increases when the

ratio is set to 1:20 for both time-allocation strategies (not shown in the figures or tables).

Figure 4.5 compares our two different time-allocation strategies for two fixed ratios of 1:1 and

1:5. It again shows that for a fixed ratio, the exponential strategy outperforms the uniform strategy

in terms of total time for almost all the instances.

Table 4.2 provides detailed statistics on each of these allocation strategies and ratio settings. The
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Figure 4.5: Total solving time for each instance of the 35-pancake puzzle - exponential and uniform
strategies.

trends observed in this experiment were the same as those observed for the 24-puzzle. However,

the two strategies for allocating time among the solvers seem to perform almost equally well here.

The exponential strategy apparently has an advantage on the hardest instances in the test set, as the

entries in the “max” column suggest.

row ratio allocation min max mean med std Subopt
(ts:tl)

1 1:1 exponential 7h 13m 9h 48m 7h 36m 7h 28m 30m 7.9%
2 1:1 uniform 7h 14m 10h 59m 7h 45m 7h 30m 42m 8.0%
3 1:2 exponential 5h 24m 7h 28m 5h 45m 5h 32m 24m 8.0%
4 1:2 uniform 5h 24hm 7h 05m 5h 46m 5h 33m 24m 8.0%
5 1:5 exponential 4h 19m 6h 42m 4h 45m 4h 39m 28m 8.2%
6 1:5 uniform 4h 19m 7h 58m 4h 48m 4h 42m 36m 8.3%
7 1:10 exponential 3h 58m 7h 19m 4h 28m 4h 31m 43m 8.4%
8 1:10 uniform 4h 14m 7h 50m 4h 51m 4h 45m 37m 8.4%

Table 4.2: Statistics on solving a single instance of the 35-pancake puzzle.

The results in Section 3.3.2 suggested that using domain knowledge (e.g., duality) will improve
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the results. Here, we repeated the previous experiment by adding the dual heuristic lookup. Fig-

ure 4.6 shows the total time to solve each instance using the exponential strategy for allocating time

among the solvers with three different ratios of ts:tl (1:1, 1:2, and 1:5). The average solving time for

the 50 test instances using the ratio of 1:2 is under 3 hours while the solutions are on average 11.9%

(4 moves) longer comparing to the optimal ones. Unlike the previous experiments, changing the

ratio from 1:2 to 1:5 increased the total solving time for almost all the instances. Here, the time to

create each heuristic is rather short and the early heuristics created by the process are fairly accurate.

Therefore, allocating more time to the solving process compared to the learning process, e.g., using

a ratio of 1:2 compared to a ratio of 1:5, leads to solving the problem instances faster for almost all

the instances.

5 10 15 20 25 30 35 40 45 50

1

10

50

100

200

500

Instances of the 35−pancake puzzle

T
ot

al
 s

ol
vi

ng
 ti

m
e 

(M
in

ut
es

)

 

 

exponential(1:1)
exponential(1:5)
exponential(1:2)

5 10 15 20 25 30 35 40 45 50
50

100

200

300

400

500

Instances of the 35−pancake puzzle

T
ot

al
 s

ol
vi

ng
 ti

m
e 

(M
in

ut
es

)

 

 

exponential(1:1)
exponential(1:5)
exponential(1:2)

Figure 4.6: Total solving time for each instance of the 35-pancake puzzle using duality - exponential
strategy.

Figure 4.7 compares the two different allocation strategies for fixed ratios of 1:1 and 1:2 when

dual lookups are used. Similar to the 24-puzzle experiment, the exponential allocation outperforms

the uniform allocation in almost all the test instances.

Table 4.3 summarizes the statistics for different allocation strategies and ratios used for the
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Figure 4.7: Total solving time for each instance of the 35-pancake puzzle using duality - exponential
and uniform strategies.

35-pancake puzzle when duality is added. Note that although the total time changes substantially

between different settings, the suboptimality remains almost constant. These results show that using

duality substantially decreases the total time for all the instances at a small cost of degradation in

solution quality.

Similar to the 24-puzzle, the average solving time shows a substantial improvement over the

total time needed by the standard Bootstrap (see Table 3.13) while the solutions generated here are

even closer to optimal.

4.3.3 Rubik’s Cube

As in Section 3.3.3, each of the 10 instances of Rubik’s Cube used by Korf [41] is used as the test

instance. These instances have an average optimal solution length of 17.5. Figures 4.8 and 4.9 and

Table 4.4 show the results of our interleaving approach for different ratios of ts:tl. Although these

results show speedup over the total time of the Bootstrap (compare results in Table 4.4 to the total

time of Bootstrap in Table 3.16), the time that the interleaving approach needs to solve a single

instance of Rubik’s Cube is still very long.
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row ratio allocation min max mean med std Subopt
(ts:tl)

1 1:1 exponential 2h 54m 7h 40m 5h 18m 5h 14m 1h 14m 12.0%
2 1:1 uniform 1h 58m 7h 47m 5h 30m 5h 42m 1h 19m 12.0%
3 1:2 exponential 1h 11m 4h 48m 3h 00m 2h 58m 56m 11.9%
4 1:2 uniform 2h 06m 7h 12m 4h 10m 4h 14m 1h 01m 11.8%
5 1:5 exponential 1h 44m 5h 32m 3h 17m 3h 10m 44m 11.7%
6 1:5 uniform 07m 7h 24m 3h 24m 3h 14m 1h 00m 11.8%
7 1:10 exponential 1h 48m 6h 30m 3h 06m 2h 52m 47m 11.8%
8 1:10 uniform 1h 48m 7h 48m 3h 33m 3h 30m 58m 11.8%

Table 4.3: Statistics on solving a single instance of the 35-pancake puzzle using duality.
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Figure 4.8: Total solving time for each instance of Rubik’s Cube - exponential strategy.

Table 4.4 summarizes the results of solving a single instance of Rubik’s Cube using our inter-

leaving approach. The trends in these results are a bit different from the previous experiments. For

example, for all different settings of allocation and ratio the solutions were only 5.1% (0.9 moves)

longer than the optimal ones.

After the first two heuristics were learned from the random walk instances (the lengthIncrement

was set at 5 for this domain), the time to learn a new heuristic from random walk instances becomes
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Figure 4.9: Total solving time for each instance of Rubik’s Cube - exponential and uniform strate-
gies.

so long that it is more efficient to spend time on solving the instance rather than learning a new

heuristic. For example, it takes more than 6 hours to learn the heuristic for instances created by ran-

dom walks of length 15 from the goal2. Therefore, it seems more reasonable just to use the heuristic

learned from instances generated by random walks of length 10 to solve the instance. This long

learning time causes all the instances to be solved with the same heuristic regardless of the settings

used; therefore, the suboptimality is the same for all the settings.

4.3.4 20-blocks World

As in Section 3.3.4, each test instance is a random state created using the random state generator

described by Slaney and Thiébaux [60]. For this experiment, 50 of them were used with an average

optimal solution length of 30.92. Figures 4.10 and 4.11 and Table 4.5 show the experimental results

of our interleaving approach with different settings for allocation and ratio on these 50 instances

of the 20-blocks world. Figure 4.10 shows the distribution of the solving time for the 50 instances

2It took about two hours to solve 81 of the 200 random walk instances as the time limit increased from 1 to 64. Then, it
took another 4 hours to solve 80 of the remaining 119 random walk instances.
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row ratio allocation min max mean med std Subopt
(ts:tl)

1 1:1 exponential 1h 22m 26h 16m 15h 36m 15h 2m 6h 20m 5.1%
2 1:1 uniform 2h 02m 33h 04m 17h 42m 16h 15m 8h 02m 5.1%
3 1:2 exponential 2h 02m 29h 54m 14h 51m 13h 04m 7h 23m 5.1%
4 1:2 uniform 3h 02m 40h 08m 18h 01m 14h 53m 10h 13m 5.1%
5 1:5 exponential 4h 03m 29h 29m 17h 23m 14h 45m 8h 42m 5.1%
6 1:5 uniform 6h 05m 48h 30m 20h 44m 17h 27m 13h 28m 5.1%
7 1:10 exponential 57m 47h 34m 21h 40m 20h 09m 13h 05m 5.1%
8 1:10 uniform 5h 35m 53h 46m 26h 50m 25h 02m 14h 57m 5.1%

Table 4.4: Statistics on solving a single instance of Rubik’s Cube.

used for the experiment when the exponential interleaving approach is used with different ratios.

Similar to the 24-puzzle experiment, increasing the time allocated to the learning process relative to

the solving process decreases the total time for almost all the instances.
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Figure 4.10: Total solving time for each instance of the 20-blocks world - exponential strategy.

Figure 4.11 shows that for a fixed ratio, exponential allocation of resources to the solving sub-

threads results in shorter solving time for almost all the instances compared to a uniform allocation.

However, the two approaches are very similar in this domain.

Table 4.5 shows that in all different settings the solutions generated were only 1.2% (0.36 move)

longer than the optimal ones. In addition, at least 37 of the 50 instances were solved optimally

for each setting. In this experiment, our initial heuristic is so weak that it takes a few iterations

of RandomWalk until the heuristic becomes strong enough that the solver using it can solve the

instance in a reasonable amount of time. After this point, for a few iterations, the new heuristics

learned solves the instance faster without changing the solution quality. This is the reason why we

observed a constant suboptimality of 1.2% when the ratio is set to 1:1, 1:2, 1:5, and 1:10. As usual

though, increasing the time allocated to the learning process relative to the time allocated to the
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Figure 4.11: Total solving time for each instance of the 20-blocks world - exponential and uniform
strategies.

solving process, reduces the average total time of solving the instances of 20-blocks world.

The speedup compared to the initial Bootstrap method (which needed 2 days when using 500

bootstrap instances and 11 days when using 5000 bootstrap instances) is again remarkable. In addi-

tion, the solution lengths are much closer to optimal than before (cf. Table 3.20 for Bootstrap results

on the 20-blocks world).

row ratio allocation min max mean med std Subopt
(ts:tl)

1 1:1 exponential 1h 24m 25h 30m 5h 42m 2h 06m 6h 34m 1.2%
2 1:1 uniform 1h 23m 26h 10m 5h 48m 2h 21m 6h 34m 1.2%
3 1:2 exponential 1h 02m 19h 12m 4h 10m 1h 36m 4h 45m 1.2%
4 1:2 uniform 1h 2hm 19h 30m 4h 12m 1h 38m 4h 47m 1.2%
5 1:5 exponential 02m 15h 18m 3h 52m 1h 12m 4h 30m 1.2%
6 1:5 uniform 50m 15h 12m 4h 00m 1h 14m 4h 41m 1.2%
7 1:10 exponential 46m 15h 01m 3h 46m 1h 41m 4h 23m 1.3%
8 1:10 uniform 46m 15h 25m 3h 50m 1h 41m 4h 32m 1.3%

Table 4.5: Statistics on solving a single instance of the 20-blocks world.

4.3.5 Blocksworld Instances of AIPS Planning Competition

We further tested our technique on the 35 instances of blocksworld domains of varying size that

were used in the Track 1 of the AIPS planning competition in 2000. The features and the initial

heuristic used for these problems are the same as those used for the 15- and 20-blocks world (see

Section 3.3.4). Table 4.6 shows the results on the 20 instances of the set. The first column names

the instances, where x-y refers to the yth instance that consists of x blocks. The other columns

show the total time (in seconds) and suboptimality achieved by the exponential interleaving with

different ratios. In this table, “Time” entries with a check mark indicate that the total time was
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below 0.1 seconds; “Subopt” entries with a check mark indicate the corresponding instance was

solved optimally. The 15 instances with the fewest blocks (between 4 and 8) are not shown; all were

solved optimally by our system in less than one-tenth of a second total time. Table 4.6 shows that

our interleaving method using ratios of 1:1, 1:2, and 1:5 is capable of solving all the instances in less

than 30 minutes (the time limit that is used to solve an instance in the AIPS planning competition)

while the solutions are very close to the optimal ones.

instance Optimal ratio (1:1) ratio (1:2) ratio (1:5)
Time Subopt Time Subopt Time Subopt

9-0 30 X X X X X X
9-1 28 X X X X X X
9-2 26 X X X X X X
10-0 34 22 X 33 X 65 X
10-1 32 X X X X 2 X
10-2 34 13 X 19 X 38 X
11-0 32 73 X 58 X 47 X
11-1 30 58 X 42 X 46 X
11-2 32 2 X 3 X 6 X
12-0 34 12 X 18 X 37 X
12-1 34 3 X 4 X 9 X
13-0 42 1451 4.8% 1102 4.8% 914 4.8%
13-1 44 170 X 1024 X 861 X
14-0 38 23 X 51 X 67 X
14-1 36 62 X 73 X 176 X
15-0 40 313 5% 310 5% 242 5%
15-1 52 627 X 475 X 393 X
16-1 54 1347 X 1271 X 1105 X
16-2 52 1001 X 751 X 603 X
17-0 48 331 X 258 X 230 X

Table 4.6: Blocksworld, results for exponential interleaving.

Yoon, Fern, and Givan [67] learned a heuristic and a policy to solve a subset of these blocksworld

problem instances. They used the first 15 instances of the set, the ones not shown in Table 4.6, as

training instances to learn the heuristic/policy. Their method is discussed in detail in Section 5.2.4.

When the learned policy is used to rank the states in a greedy best first search, their system

solved all the 20 test instances in the time limit of 30 minutes. The solutions generated were on

average 17% longer than optimal while the time to solve the instances was about 100 seconds, on

average. When greedy best first search was used with the maximum of the learned heuristic and

FF’s heuristic [31], their system solved all the test instances in the time limit of 30 minutes. The

solutions generated were 120% longer than optimal and the system spent about 613 seconds on

average to solve the instances. Our exponential interleaving with a ratio of 1:5 solved all the 20

instances on average in 242 seconds while the solutions generated were 0.5% longer than optimal.

We also compared the results of our interleaving method to some of the domain-independent
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planners3 discussed in Section 4.5.2.4

FF [31] solved 29 of the 35 instances in the time limit of 30 minutes. The solutions generated

for the solved instances were, on average, 2% (0.48 move) longer than optimal while it took less

than 6 seconds on average for FF to solve the instances that it could solve in under 30 minutes. Our

exponential interleaving approach using a ratio of 1:5 solved the same 29 instances optimally. It

took about 25 seconds, on average, for the interleaving approach to solve these instances.

Fast Downward [27], when preferred operators are used, solved all the 35 instances in the time

limit of 30 minutes. It took Fast Downward, on average, about a second to solve the instances while

the solutions were, on average, 146% longer than optimal. Our interleaving approach using a ratio

of 1:5 solved the same instances in about 138 seconds, on average, while the solutions generated

were, on average, 0.4% longer than optimal.

Optimal planners have also been applied to these blocksworld problem instances. The admissible

landmark heuristic introduced by Karpas and Domshlak [37] along with their variation of A* (see

Section 4.5.2) solved 20 of the 35 test instances optimally within a time limit of 30 minutes. The

average solving time on these 20 instances was 66 seconds. Our exponential interleaving approach

when the ratio was set at 1:5 solved the same set of instances optimally in less than a second, on

average.

4.4 Using One Solving Sub-thread

This section investigates the idea of not splitting up the solving thread into a set of sub-threads

when the current set of heuristics has more than one element. In other words, we investigate what

would happen if we allocate all the solving time to the most recently learned heuristic. In particular,

whenever a new heuristic is created, we abort the current solver and start a new search using the

latest heuristic created. For example, when the first heuristic is created by the learning process, the

search with h0 in the solving thread is stopped and restarted using the new heuristic.

The advantage of this strategy is that all the solving time is always spent on the heuristic that

is expected to be strongest. On the other hand, this strategy denies the fact that the other searches,

which have been aborted, might have been very close to finding a solution to the test instance.

We implemented this strategy on the 24-puzzle, the 35-pancake puzzle, Rubik’s Cube, and the

20-blocks world. All other settings, e.g., the features and test instances, are the same as those used in

Section 4.3. Table 4.7 shows the results when ratios 1:1, 1:2, 1:5, and 1:10 are used. The definition

of each column in the table is the same as for Tables 4.1–4.5.

These results are mostly very close to the results obtained when exponential time-allocation

3All these planners are domain-independent and they are not provided with any features/heuristics of the state space. Our
system uses a hard-coded description of the domain and our weak features are provided by the user. Therefore, our results
are not strictly comparable to these systems.

4Here, we took the results from previous papers. These results are obtained using a different computational setting than
ours and are not strictly comparable to ours.
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row ratio (ts:tl) min max mean med std Subopt
24-puzzle

1 1:1 20m 24m 44m 15m 23m 10s 21m 36s 3m 54s 6.4%
2 1:2 15m 36s 43m 01s 17m 48s 16m 12s 4m 11s 6.7%
3 1:5 12m 29s 34m 48s 15m 14s 12m 59s 4m 47s 6.6%
4 1:10 11m 26s 70m 54s 16m 06s 14m 18s 10m 8s 6.8%

35-pancake puzzle
5 1:1 7h 13m 9h 36m 7h 32m 7h 20m 29m 7.9%
6 1:2 5h 24m 7h 12m 5h 42m 5h 30m 24m 8.0%
7 1:5 4h 20m 6h 44m 4h 42m 4h 40m 4h 28m 8.2%
8 1:10 3h 49m 7h 3m 4h 28m 4h 21m 43m 8.5%

35-pancake puzzle using duality
9 1:1 2h 48m 7h 36m 5h 12m 5h 06m 1h 16m 12.0%
10 1:2 2h 08m 6h 09m 3h 54m 3h 48m 58m 11.9%
11 1:5 1h 42m 5h 24m 3h 12m 3h 4m 44m 11.7%
12 1:10 1h 48m 6h 26m 3h 07m 2h 48m 46m 12.0%

Rubik’s Cube
13 1:1 41m 19h 27m 13h 29 13h 50m 4h 54m 5.1%
14 1:2 31m 14h 35m 10h 06m 10h 22m 3h 41m 5.1%
15 1:5 25m 11h 40m 8h 05m 8h 18m 2h 57m 5.1%
16 1:10 22m 35h 48m 9h 55m 7h 36m 9h 24m 5.1%

20-blocks world
17 1:1 45m 24h 39m 4h 51m 1h 16m 6h 18m 1.2%
18 1:2 34m 18h 29m 3h 40m 57m 4h 45m 1.2%
19 1:5 28m 14h 47m 3h 28m 46m 4h 30m 1.2%
20 1:10 25m 14h 28m 3h 23m 1h 18m 4h 22m 1.2%

Table 4.7: Statistics on solving a single instance of test problems.

strategy is used. The exception is Rubik’s Cube; here, the average time to solve single instances of

the problem is substantially smaller than when exponential strategy is used. As mentioned earlier,

the time to create efficient heuristics for Rubik’s Cube is so long that spending all the solving time for

the latest heuristic is a better strategy than splitting the solving time to the set of current heuristics.

Similar to the results obtained in Section 4.3, changing the ratio from 1:5 to 1:10, i.e., increasing

the time allocated to the learning process in comparison to the time allocated to the solving process,

mostly increases the total time of the process. Furthermore, using ratios 1:15 and 1:20, not included

in the table, increased the total time on average for Rubik’s Cube and the 35-pancake puzzle.

4.5 Related Work

This section briefly reviews related work that can be applied to solve a single instance of a search

problem. In the heuristic search section (Section 4.5.1), we mainly discuss the possibility of using

the available heuristic search methods for the single instance case. In the planning section (Sec-
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tion 4.5.2), we introduce planning systems that performed well in the AIPS planning competition5.

4.5.1 Related Work in Heuristic Search

Different heuristic search approaches can be considered for quickly solving a single instance of a

search problem. One approach is to find a good heuristic for the problem and solve the instance

using the heuristic6. As discussed in Chapter 2, pattern databases are a general technique to create

a heuristic by using abstraction. The quality of the heuristic depends on the granularity of the

abstraction. A finer-grained abstraction will lead to a better heuristic compared to a less fine-grained

abstraction, at the cost of increasing (i) the time needed to compute the heuristic and (ii) the memory

required to store the heuristic value for the abstracted states.

In addition to the problems discussed in Chapter 2, finding the best granularity of abstraction is

not trivial when the objective is to reduce the total time to build the pattern database and solve the

instance. For example, the 7-8 additive pattern database [42] for the 15-puzzle needs about 3 hours

to be computed [34]. On the other hand, we built three non-additive 6-tile pattern databases for the

same problem in less than 6 minutes. Although using the 7-8 additive PDB makes the search with

IDA* thousands of times faster compared to the three 6-tile non-additive PDBs, the time to build the

7-8 PDB is so large that using the 7-8 additive PDB is only efficient when more than 10,000 new

instances of the 15-puzzle need to be solved.

Considering that only a small percentage of the entries in the pattern database will be used

during the search for a single instance of the problem, Holte, Grajkoswki, and Tanner [34] and

Larsen et al. [44] suggested hierarchical heuristic search algorithms that only compute the entries of

the pattern database that are needed to solve the given problem instance.

In order to compute the heuristic value of each state, hierarchical heuristic search is used to

find the exact distance between an abstraction of the state and an abstraction of the goal state. This

process will be repeated. The search in each level is guided by the distances computed for an even

more abstract level. Holte et al. [34] showed that for many single-agent search domains (e.g., the

15-puzzle) this approach will improve the time to solve the given instance compared to making the

entire high-performance pattern database (e.g., the 7-8 additive PDB for the 15-puzzle). Larsen et

al. [44] improved these results by using combination of forward and backward searches to avoid

re-expanding the abstract states.

An alternative approach would be to use heuristic search algorithms that can deal with large

state spaces. These algorithms find suboptimal solutions in order to speed up problem solving over

algorithms that find the optimal solutions. Beam search is an important family of such algorithms

while BULB [20] is the most promising one to consider as previous experimental results reported

5see http://planning.cis.strath.ac.uk/competition/ for more details.
6Note that here we only focus on techniques that can be generally used for all the problem domains. Therefore, hand-

crafted heuristics similar to the break heuristic for the pancake puzzle (that can solve single instance of large pancake puzzles
very fast) are not considered.
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by Furcy and Koenig [20] showed that it is very successful in finding solutions for large state spaces

using weak heuristics (e.g., the 48-puzzle using MD).

The problem with BULB is that it is not trivial to choose the beam width parameter in order

to find solutions that are very close to the optimal ones. One solution would be to use an anytime

version of BULB [20] that can either (i) continue searching the state space with the same parameters

when a goal is found and hope that BULB finds solutions of shorter length or (ii) increase the beam

width whenever it finds a solution with the current beam width.

In conclusion, our experiments with BULB and the results reported by Furcy and Koenig [20]

show that although BULB can find solutions that are fairly close to the optimal ones very fast (e.g., BULB

can find solutions that are 15-20% longer than the optimal solution for the 24-puzzle in a few sec-

onds), it is impractical to use it for cases in which even closer to optimal solutions are needed.

4.5.2 Related Work in Planning

The problem of solving a single instance of a planning problem has been widely studied in the

planning literature. Here, we briefly introduce notable domain independent heuristic search planners

that proved to be efficient in solving a single instance of the planning problem. In Section 4.3.5, we

compared the results of our interleaving approach to some of these planners on the blocksworld

domain.

The main ideas behind a heuristic search planner are [3]: 1) to automatically extract the heuristic

from the planner’s encoding of the search space (e.g., the STRIPS encoding), and 2) to solve the

planning problem as a heuristic search problem using the extracted heuristic and a heuristic search

algorithm.

The idea of extracting a heuristic from the problem encoding was first suggested by McDer-

mott [45]. His planner, called UNPOP, searches backwards from the goal state for a sequence of

actions that reaches the initial state. The heuristic used for the search is computed from an AND/OR

graph and estimates the distance of each state from the initial state. UNPOP considers the plan-

ning task as the conjunction of subgoals that all must be achieved. For example, each subgoal in

the blocksworld is the correct position of a block. In the graph, AND branches are considering the

conjunction of subgoals that all must be satisfied while OR branches are a sequence of actions that

satisfies each subgoal. For each state, the heuristic is the sum over AND branches; each of them sat-

isfying a subgoal of the problem. The value of each AND branch is the minimum over OR branches.

Each of the OR branches is one possible plan to satisfy the subgoal. The leaf nodes in the graph

are conditions that are true at the initial state. UNPOP uses hill-climbing7 as the search method and

whenever a new state is reached, a new graph will be made to compute the heuristic value of that

state.
7Hill-climbing is a best first search algorithm. In hill-climbing, the best successor of the current state, e.g., the one with

the lowest heuristic value, will be selected for expansion. If more than one such successor exists, one of them is selected
randomly. A local minimum occurs when the heuristic value of the current state is lower than the heuristic value of all its
successors.
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One general approach to extract a heuristic from the encoding is to solve a relaxed form of

the problem and use the plan length of the relaxed problem as a heuristic estimate for the original

problem. Bonet and Geffner’s Heuristic Search Planner (HSP) [3] relaxes the planning problem by

ignoring the delete list8. However, finding the actual cost of the relaxed problem is NP-hard [3].

Therefore, an estimate of this cost is computed. HSP computes the cost of achieving individual

subgoals from the state s and combines them to form the heuristic. If the maximum of such costs

is taken (hmax), the resulting heuristic will be admissible but will not be very informed. If the sum

of these costs is taken (hadd), the heuristic will be more informed but (possibly) inadmissible (hadd

is only admissible when the subgoals are independent). HSP then uses this heuristic along with a

hill-climbing approach to search from the start state to the goal state. HSP performed very well in

the AIPS planning competition in 1998 [3].

HSP using hadd is neither optimal nor complete. Therefore, in the AIPS planning competition

in 2000 a variation of it (HSP2 [3]) that uses hadd with Weighted A* was used.

Computing the heuristic in HSP and HSP2 is very costly. For example, for the 15-puzzle neither

of the planners generates more than one thousand nodes per second9. The reason for the low node

generation rate in HSP and HSP2 is that the cost of satisfying each subgoal is computed from scratch

in every new state [3].

HSPr [3] overcame this problem by searching the state space backwards (from the goal state to

the initial state). The heuristic value for each state s estimates the cost of reaching the initial state

from s and is computed as follows. For each atom in state s, the cost of reaching the atom from the

initial state is computed. The costs for all the atoms in state s will be added together to compute the

heuristic value for state s. Whenever the cost of reaching an atom from the initial state is computed,

it is stored and will be used to compute the heuristic value of each state that contains that atom.

Hoffmann and Nebel [31] used ideas similar to HSP for their Fast Forward (FF) planner that

led to huge success in the AIPS planning competition in 2000. FF is different from HSP in three

important details [31]. First, FF finds an explicit solution for the relaxed problem and uses its length

as the heuristic value for the original problem while HSP assumes that the relaxed problem can be

divided into subgoals and solves each subgoal and combines the costs to compute a rough solution

length for the relaxed problem. Note that the Relaxed Plan Length (RPL) heuristic that FF uses is not

guaranteed to be a lower bound on the cost of the original problem, therefore, it is not admissible.

Second, an enforced hill-climbing10 strategy is used in FF as the search algorithm. Finally, FF uses

a heuristic to prune the search space. For each state in the original problem, only those successors

that were used to solve the relaxed problem will be considered (helpful actions).

8In STRIPS encoding, each action a is a triple a = (pre(a),add(a),del(a)). Pre, add, and del respectively correspond to
action’s precondition, the conditions that will be added and removed by applying the action.

9Bootstrap generates more than a million nodes per second for the 15-puzzle.
10Enforced hill-climbing is different from hill-climbing whenever a local minimum occurs. In the case of a local minimum,

enforced hill-climbing performs a breadth first search from the current state until it finds a state that has a heuristic value
lower than the heuristic value of the current state. Then, the search continues from this new state.
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Helmert introduced the Fast Downward (FD) planner [27] which performed well in the AIPS

planning competition in 2004. The FD planner has three steps to solve a problem. First, it translates

STRIPS tasks to a representation in which the causal structure between subgoals can be better rep-

resented. Second, it extracts knowledge in the form of causal graphs from the new representation.

Causal graphs represent the dependency between the state variables. The heuristic is created from

the causal graphs. This heuristic is inadmissible as it ignores positive interaction between state vari-

ables. Finally, FD uses a greedy best first search algorithm along with the heuristic computed in the

second step to solve the problem.

The search is enhanced with preferred operators and deferred evaluations. Preferred operators

are conceptually similar to the helpful actions used in FF. They are defined as operators that are

more promising during the search. FD uses two OPEN lists. One for the states that were reached

by using preferred operators and the other one for other states reached during the best first search.

The next state to be expanded will be alternately chosen from these OPEN lists. Unlike the helpful

actions used in FF, preferred operators do not prune the state space; therefore, the search will remain

complete.

Deferred evaluation means that the successors of a state will only be evaluated when they were

selected for expansion. In other words, the successors will not be evaluated when they were inserted

into the OPEN list (they will be added to the list using the heuristic value of their parent). As

computing the heuristic for each state is very expensive, this technique can decrease the number of

states evaluated (especially when combined with preferred operators) while increasing the number

of states expanded [27].

Landmarks are an important concept in domain-independent planning, and were introduced by

Hoffmann et al. [32]. According to Karpas and Domshlak [37], “a landmark is a fact that must be

true at some point in every solution path”. For example, consider an instance of the 3-blocks world

in which blocks 1 and 2 are on the table and block 3 is stacked on top of the block 2. In the goal

state, block 2 is stacked on top of block 111. Therefore, block 2 must become clear at some point

during any solution of the instance because only clear blocks are allowed to move based on the

definition in the blocksworld domain. Therefore, Clear(2) is a landmark for this problem instance.

Every condition that must be true at the goal state is a landmark by definition. For example,On(2, 1)

which means that the block 2 should be on top of the block 1 in the goal state is a landmark for the

previous example.

Hoffmann et al. [32] studied an algorithm to extract the landmarks from the relaxed plan graph

and order them in a way that a solution can be reached by satisfying the landmarks in order. Consid-

ering the previous example, Clear(2) should be ordered before On(2, 1). Instead of directly finding

a solution path from the start state to the goal state, a path will be found to satisfy each landmark.

A planner (e.g., FF planner [31]) will be used to find such a path. Although this method shows

11Here, the goal state is a set of states in which this condition holds. This example is taken from Richter et al. [51].
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substantial speedup over the planner without landmarks (e.g., the FF planner to directly search from

the initial state to a goal state), it is not guaranteed to be optimal or complete.

Richter et al. [51] studied another way of finding and combining landmarks that (1) reduces the

plan length and (2) decreases the chance of failure compared to Hoffmann et al.’s planner. Richter et

al.’s planner, called LAMA, was the winner of the AIPS planning competition in 200812. LAMA

uses landmarks as a heuristic function. The heuristic value of each state s counts the number of

landmarks that still need to be satisfied at state s. Note that this heuristic is inadmissible as an action

may satisfy more than one landmark at one time.

Domain independent admissible heuristic functions have recently been studied in the planning

community. Edelkamp [12] extended pattern databases [9] to create domain independent admissible

heuristic for STRIPS planning. The abstraction technique used by Edelkamp is slightly different than

the one defined by Culberson and Schaeffer [9]. To construct the pattern database, first groups of

mutually exclusive atoms for the problem will be identified. A group of atoms is mutually exclusive

when at each state of the search space, only one of the them is true. Then, some set of mutually

exclusive groups will be selected and the atoms that do not belong to any of these selected groups

will be ignored in the abstract search space.

Haslum and Geffner [24] created an admissible heuristic which is the generalization of the hmax

heuristic of Bonet and Geffner [3]. This heuristic, which is called hm, considers each possible subset

of m subgoals that are not satisfied in the current state and must be satisfied in the goal state. The

cost of the most costly subset to achieve is considered as the heuristic value for the current state. For

example, consider a 3-blocks world instance in which blocks 1, 2, and 3 are on the table. The goal

is to stack the blocks in one stack in which blocks 1 and 3 are respectively at the bottom and top of

the stack. The value of the h1 heuristic for this instance is 1, because each of the subgoals On(2,1)

and On(3,2) can be achieved in one step. Based on the definition, h1 is the same as hmax [3]. If

h2 is considered, the heuristic value of the state will be 2 because now both atoms On(2,1) and

On(3,2) should be satisfied. As m increases the computational cost of computing hm increases

exponentially. Haslum and Geffner [24] used this heuristic with m = 2 and IDA* for their planner,

which is called HSPr∗. To avoid recomputing the heuristic in each state ideas similar to HSPr [3]

are used. HSPr∗ resulted in successful results on the 8-puzzle and small blocksworld instances (at

most 15-blocks world).

Landmarks have recently been considered by Helmert [29] and Karpas and Domshlak [37] to

derive admissible heuristics for planning domains. Karpas and Domshlak [37] studied the idea of

creating an admissible heuristic from the inadmissible landmark heuristic used in LAMA [51]. Here,

each action that satisfies more than one landmark will share its cost among different landmarks that

it satisfies. For example, if one action satisfies two landmarks, a cost of 0.5 will be assigned to each

landmark. The admissible heuristic will then be made by adding the cost of landmarks (rather than

12See http://ipc.informatik.uni-freiburg.de/ for more details.
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counting the number of landmarks).

Karpas and Domshlak used this heuristic with a variation of A* to solve planning problems. In

this variation, whenever a state is reached via a different path it should be re-evaluated as each path

that reaches the same state can satisfy a different set of landmarks during the path; therefore, the

state can have a different heuristic value. The experimental results of this variation of A* with the

admissible heuristic showed that it is still not strong enough to solve most of the planning problems

used in the AIPS planning competitions optimally in the time limit of 30 minutes.

Using machine learning to learn heuristics or other forms of the control knowledge has recently

been widely considered in the planning community. We discuss two successful systems [16, 67] that

used machine learning to solve planning problems in detail in Chapter 5.

4.6 Summary

In this chapter we investigated the question of whether a variation of our bootstrapping method can

quickly solve a single instance of a given problem domain. Instead of minimizing the solving time

at the expense of requiring very large learning times, as in the previous chapter, we looked for a

balance in the learning and solving times so that the sum of the learning and solving times is made

as small as can be.

We presented a method that involves interleaving the learning and solving processes. The only

parameter for this method is the ratio of solving time to learning time. We allocated the solving time

among the various solving sub-threads by strategies that we called “uniform” and “exponential”.

The experiments with both versions of our interleaving approach were performed on the 24-puzzle,

the 35-pancake puzzle, Rubik’s Cube, the 20-blocks world and IPC2 blocksworld instances, when

the ratio was set to 1:1, 1:2, 1:5, and 1:10.

Our experimental results showed that in all cases the time to solve the single instance in these

domains is substantially smaller than the total time needed by our Bootstrap method to learn its final

heuristic. Therefore, it is experimentally shown that even in the single instance case, bootstrapping

can be very effective.
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Chapter 5

Related Work

This chapter briefly surveys previous work that used machine learning to speed up search programs.

We categorize the previous work based on the strategy used for speeding up problem solving. For

instance, if an iterative process is used to improve an initial heuristic function, then the system

is discussed in the bootstrap learning section. We also survey methods that use random walks to

generate successively more difficult training instances (see Section 5.1.4).

5.1 Bootstrap Learning

Bootstrap learning (bootstrapping, for short) is a technique to iteratively improve the performance

of a learning algorithm through training. The idea of bootstrapping to speedup search programs was

first studied by Rendell [49, 50].

5.1.1 Penetrance Learning System

Rendell’s Penetrance Learning System (PLS) starts with no heuristic and performs a breadth first

search producing statistics to form an evaluation function for a unidirectional search. The evaluation

function, called the penetrance, measures the probability that a given state is on the solution path

to the goal. Computing this evaluation function for all the states of the problem is infeasible as it

needs a breadth first search tree of all the possible instances of the problem. Instead, Rendell used a

bootstrap learning technique to estimate the value of this function.

Performing the breadth first search until a certain number of nodes are expanded (e.g., 1500

nodes in 15-puzzle), PLS maps all the states visited during the search to a feature space. For exam-

ple, if two features f1 and f2 are used, each state s visited during the search is mapped to the feature

space based on the value of f1(s) and f2(s). This feature space can be represented by a rectangle

each side of which corresponds to one of the features. The length of each side of the rectangle is

equal to the maximum value of the feature corresponding to that side. Then, the feature space is

partitioned into rectangular regions by considering the splits that can be applied in the integer values

of the features. The penetrance of each region is estimated as the number of states in the region that
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are on the solution path to the goal divided by the total number of states in the region. An evaluation

function is made by training a linear regressor over the feature space using the data collected from

the regions.

The evaluation function will then be used to solve the new set of training (bootstrap) instances

and this process will be repeated until the residual error of the linear combination of features con-

verges. The final evaluation function of PLS uses the data collected from all iterations of the process.

PLS was the first system to solve all 50 random instances of the 15-puzzle suboptimally (1976).

Six features were used in the feature vector; all of them considering the basic characteristics of the

problem space. For example, one feature counts the number of rows/columns in which all the tiles

belong to that row/column. The total number of nodes generated on 50 random instances of the 15-

puzzle was less than 1000 while the solutions generated were more than 2 times longer than optimal

(the average length of solutions found by PLS was 113).

The main difference between our system and PLS is in the set of bootstrap instances. PLS needs

the user to provide at least a solvable bootstrap instance using the current evaluation function for

each iteration; however, our system fills the gap between the difficulty of bootstrap instances using

either an increment in the time limit or a set of its own instances at the right level of difficulty

(random walk instances). Furthermore, the penetrance that PLS learns is not exactly a heuristic and

it is only used to rank the states during a best first search.

5.1.2 Learning an Admissible Heuristic from an Inadmissible Heuristic

Bramanti-Gregor and Davis [5] used a similar bootstrapping approach to learn an admissible heuris-

tic from a non-admissible one. First, they compute a non-decreasing function, called MAXH(x),

that returns the maximum value of the inadmissible heuristic, on the states whose actual distance to

the goal state is at most x. Then the admissible heuristic hM will be computed from MAXH . For

each state s, hM (s) is the minimum value of x in which the inadmissible heuristic value of state s is

less than or equal to MAXH(x). In other words, MAXH projects the true distance to the goal to

a space in which the distance to the goal is overestimated; then hM projects the new overestimated

distance back to the true distance space.

MAXH(x) cannot be computed directly as it requires the optimal solution length for all the

states in the search space. Therefore, an estimate of it will be learned using an A* search on a set

of training (bootstrap) instances. The process starts with setting MAXH(x) to zero for all values

of x. A* will be run on each bootstrap instance and whenever a node n is selected from the OPEN

list, the value of MAXH will be updated. This estimate will then be used to compute an estimate

of hM . This process will be repeated iteratively on a new set of bootstrap instances to update the

estimate for MAXH and hM . The process is terminated manually by the user.

The goal of this system is to learn an admissible heuristic that contains the insight of the inad-

missible heuristic and thus can reduce the search effort while finding (near-)optimal solutions.
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The experimental results of the system are on the 8-puzzle. The inadmissible heuristic is the sum

of MD and the sequence score1. The admissible heuristic learned from this heuristic after 8 iterations

generated 15% fewer nodes than MD still while finding the optimal solutions. A similar system when

manually stopped after the first iteration led to about 50% improvement in node generation while

the solutions were on average 6% longer than optimal.

5.1.3 Bootstrap Learning to Solve a Single Instance of a Problem

Humphrey, Bramanti-Gregor, and Davis [35] studied another bootstrapping approach to solve a

single instance of a search problem. Their algorithm, SACH, improves the heuristic from failed

search attempts on the single instance. In other words, SACH iteratively learns a heuristic to solve a

single instance of the problem.

SACH starts with no heuristic and expands the search tree until the number of nodes expanded

using A* reaches a constant bound (10, 000 nodes expanded for the 15-puzzle). SACH then uses

a user defined feature vector and linear regression to learn a better heuristic (features used for the

15-puzzle are tiles-out-of-place, MD, and reversal count2) based on the data collected from states

visited during the A* search.

Repeating this procedure, SACH improves the heuristic gradually. Failing to solve the instance

after a maximum number of attempts (20 attempts for the 15-puzzle), SACH multiplies the heuristic

by a weight and repeats the process. The process stops whenever a solution to the instance is found

or when the process has been repeated for a maximum number of weight increases (20 for the 15-

puzzle). Here failure in each attempt, will lead to a constant increment of the weight (0.1 for the

15-puzzle).

SACH successfully solved the 15 hardest of the 100 standard test instances of the 15-puzzle [39],

the ones with the longest optimal solutions. The total number of nodes generated over all iterations

of SACH was 724, 032 which is more than 2000 times less than the number of nodes that IDA*

using MD will generate [39]. The generated solutions are 2% longer on average than optimal.

SACH can be extended so that the heuristic is learned from failed attempts on multiple instances

of the problem while the goal is to solve all those instances. Bramanti-Gregor and Davis [6] reported

the results of such a system on the 20 easiest of the 100 standard instances of the 15-puzzle [39], the

ones with the shortest optimal solutions. The total number of nodes generated over all the iterations

of this system was 160, 742 which is about 100 times less than the number of nodes that IDA* using

MD generates on the same set of test instances [39]. The solutions generated are on average 1%

longer than optimal.

1Sequence score checks the non-central tiles in turn, and adds 2 to the value of the heuristic for each tile not followed
by its proper successor. A non-blank tile in the center adds one to the value of the heuristic. This can be understood better
knowing that this heuristic is made for the case that in the goal state the blank is in the central position, i.e., the goal state
for the 8-puzzle is (1 2 3 8 blank 4 7 6 5) in which 1 is the tile in the top left position of the grid and 5 in the bottom right
position of the grid.

2Reversal count adds one to the value of the heuristic whenever two adjacent tiles are interchanged from the goal position.
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5.1.4 Generating Training Instances Using Random Walks

In all the systems discussed so far, the user provides the bootstrap instances. However, some systems

like our RandomWalk method, generate their own bootstrap instances. The idea of creating instances

in an increasing order of difficulty for single-agent search problems was first studied by Finkelstein

and Markovitch [18].

Finkelstein and Markovitch [18] used the idea of creating instances with increasing level of

difficulty using random walks backwards from the goal to learn macro-operators3 for the sliding-tile

puzzle. For example, they created instances using 100 random moves backwards from the goal for

the 15-puzzle. To make harder instances, they increase the length of the random walk by 100 each

time. The main difference between this approach and ours is that their initial random walk length

(to produce easy instances) and the increment (to produce more difficult instances) is user specified.

Fern, Yoon, and Givan [16] used random walks of increasing length to learn a control policy for

planning problems. The goal of the system is to learn an efficient policy that can solve planning

problems with high success rate and low average length of solutions.

Their system starts with an initial policy and easy training instances. For example, it starts

with a random policy and training instances that are created by random walks of length one. Then,

it improves the policy from the training instances until the success ratio4 of the policy exceeds

some success threshold. The problems then become harder by increasing the length of the random

walk. The process stops when the length of random walks exceeds a threshold or when the policy’s

progress stops.

Two key differences exist between this system and our method of creating instances in an in-

creasing order of difficulty (random walk instances). First, in this system, random walks instances

are generated by random walks forward from the initial state. Second, the choice of the initial

random walk length and the increment are user specified.

5.2 One-step learning

In single-agent search, the basic idea behind a one-step learner of heuristics is: a learning system is

trained on the set of states whose optimal distance-to-goal is known. Then the learned heuristic will

be used to guide the search. Although the idea is very simple, it cannot be applied to large search

spaces (e.g., the 24-puzzle) as collecting sufficient training data is infeasible for such spaces.

3A macro-operator is a sequence of original operators for a problem. For example, the sequence {left, up, right} can be
considered as a macro-operator for the sliding-tile puzzle. Whenever this macro-operator is used the blank tile moves to left,
then up, and finally right.

4The success ratio of a policy π on a set of problem instances T is a real number between 0 and 1 that determines the
ratio of the number of instances in T that can be solved using the current policy π in a time limit tmax, to the size of T . If all
the instances in T are solved then success ratio is 1; if none of them is solved, then the success ratio is 0.
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5.2.1 Learning Heuristic by Partitioning the Search Space

One-step learners typically assume that the initial heuristic is sufficiently strong that arbitrary in-

stances of the problem (the training set) can quickly be solved using it. Then learning is used to

create a heuristic that is even stronger to allow instances to be solved more quickly although with

some amount of suboptimality.

The simplest one-step learner of heuristics was studied by Sarkar, Ghose, and Chakrabarti [59].

They partitioned the problem space using a set of features. This partitioning is very similar to the

rectangular partitioning discussed in Section 5.1.1. Each state in the problem space is assigned to

one of the partitions based on the value of the features of the state.

Similar to SACH, described in Section 5.1.3, considering the optimal distance of all the states

in each partition from the goal state, the minimum of these distances is an admissible heuristic

value for all the states that belong to the partition. Computing this heuristic requires the optimal

solution length for all the states in the search space which is impractical for larger domains (e.g., the

24-puzzle). Therefore, an estimate of this value is learned for each partition by sampling. A set

of training instances is created randomly and solved using A*. Then the optimal distance of each

training instance from the goal is placed in the partition that the instance belongs to. The minimum

number in each partition is used as the heuristic value for all the states belong to that partition. The

computed heuristic may be inadmissible as the minimum value for each partition is not computed

based on the all the states in that partition.

Sarkar, Chakrabarti, and Ghose [58] revised this approach in a way that the distribution of the

distance to the goal of the states in each partition can be learned. Their experimental results for the

8-puzzle showed that A* using MD, sequence score, and number of out-of-place tiles as features

reduces the number of nodes expanded by a factor of more than two compared to A* using MD,

while preserving the optimality of the solutions.

5.2.2 One-step Learning of Heuristic Functions Using Neural Networks

Ernandes and Gori [13] studied a one-step learning algorithm to find near-optimal solutions for

Manhattan space problems (e.g., the 15-puzzle). They considered the probability that a heuristic h

underestimates the distance to the goal for each state as a constant; then used this estimate indepen-

dently for all the states in the region on the solution path to the goal to reach a probability that an

A*-style search guided by the heuristic h will optimally solve an arbitrary instance of the problem.

Different neural networks were learned with a varying probability of underestimating the heuris-

tic value of each state. Each training example fed to the neural network is a pair. The first element

of the pair is a set of feature values for a state. The second element is the optimal distance-to-goal

for the state. Finally, the neural networks were combined by taking the minimum output of different

neural networks for each state to enforce an optimality bound on the solutions.

Ernandes and Gori [13] reported experimental results on the 15-puzzle. They used a feature
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vector that encodes the 16 inputs (15 numbered tiles and the blank tile, which is represented by

zero) by a vector of size 162 bits where the bit 16 × k + t is 1 if the tile k is occupied by number

t, and 0 in all other cases. The training data were randomly generated instances of the 15-puzzle.

A set of correction techniques added to MD was used as the initial heuristic to optimally solve the

training instances. The final heuristic was the maximum of this heuristic and the heuristic learned

from the training data. They used 20,000 instances for training. The average optimal solution cost of

the training instances used was no more than half the average optimal solution cost of the problem

(about 26.5). The generation of training data took 100 hours.

They changed the standard error function of backpropagation (MSE) to an asymmetric error

function that dynamically changes during learning to stress target underestimation. Furthermore,

either the target function or the gap target function5 was learned. They also tuned many different

parameters of the neural network including the number of hidden units and the learning rate. The

learning phase for the 15-puzzle took 200 hours because of the extensive amount of tuning.

The heuristic was tested on 700 randomly generated instances of the 15-puzzle with an average

solution length of 52.62. The best results, considering the number of nodes generated, solved prob-

lems very close to optimal (the average solution length was 54.45) while generating only 24,711

nodes on average. However, the encoding used for the feature vector (162 inputs for the neural net-

work to compute the heuristic value of each state) led to a very poor performance of their system in

terms of CPU time; 7.38 seconds average solving time for the 15-puzzle when IDA* is used as the

search algorithm.

Samadi, Felner, and Schaeffer [55] used ideas similar to Ernandes and Gori [13] in their one-step

learner of the heuristics. They developed two similar systems, called ANN and PEANN. ANN is

a neural network similar to the one used in our experiments while PEANN uses a modified error

function in the neural network to penalize the overestimation. For small search spaces (e.g., the

15-puzzle) their systems are very similar to Ernandes and Gori’s [13]. The main differences are: 1)

using a much stronger initial heuristic (7-8 additive pdbs [42]), and 2) using heuristics as features in

the feature vector.

For the 15-puzzle, Samadi et al. [55] used 10,000 training instances, created by backward ran-

dom walks from the goal, that were solved optimally to train the neural network. They also tuned

different parameters while training the neural network. They improved the results reported by Ernan-

des and Gori [13] substantially in both suboptimality and search effort by using stronger heuristics

in the feature vector. Their experimental results for the 15-puzzle are available in Section 3.3.1.

As mentioned earlier, a one-step learning system cannot be applied to larger problems (e.g., the

24-puzzle) as creating sufficiently many training data requires optimally solving random instances of

the problem which is infeasible. Samadi et al. [55] manually solved this problem using abstraction.

5The target function estimates the distance of the state from the goal state. On the other hand, the gap target function
estimates the difference between the distance of the state from the goal state and the initial heuristic (MD augmented with
linear conflicts in this case) value of the state.
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Instead of directly learning a heuristic for the 24-puzzle, they learned heuristics for two disjoint 11-

tile abstractions of the 24-puzzle and added the value of these heuristics to the value of the remaining

2-tile abstraction of the problem. PEANN solved random instances of the 24-puzzle using RBFS

generating less than 120 million nodes while the solutions generated were less than 0.3% longer than

the optimal ones. Although these results are very impressive, critical choices for selecting efficient

abstractions of the problem and deciding how to combine them to obtain these results are made

manually. Moreover, as the approach uses abstraction, it inherits the limitations of abstraction.

5.2.3 One-step Learning of Heuristic Functions Using Linear Regression

Bramanti-Gregor and Davis [6] studied a technique that learns a linear combination of input features

as a heuristic. Their approach differs from the above approaches in two details. First, instead

of optimally solving the training instance for the learning system, they used the data from partial

A* searches, considering that whenever A* selects a node for expansion, the path to that node is

optimal if A* uses an admissible and consistent heuristic. Second, they extended the feature vector

by adding transformations (e.g., square or square root) and cross products of the original features as

new features. The shortcoming of this approach is that for large problems (e.g., the 24-puzzle even

using the best available admissible and consistent heuristic for the problem [42]) the A* search will

run out of memory before collecting sufficient training data of different levels of difficulty.

They used MD, number of out-of-place tiles, and reversal count along with their transformations

as features. Their experimental results show that A* solved random instances of the 8-puzzle ex-

panding 150 nodes. The solutions were on average 1% longer than the optimal ones. A* using MD

expands about 625 nodes on average on the same set of test instances.

5.2.4 Learning Heuristic Functions for Planning Problems

Yoon, Fern, and Givan [67] applied similar ideas to planning domains. Their system is different from

the above systems as their training data is collected from suboptimally solved instances of each

domain thus biasing the learned heuristic towards inadmissibility. Furthermore, their approach is

automatic and domain-independent as the features of each domain are extracted using an automatic,

domain-independent technique.

The initial heuristic of the system is the relaxed plan length computed by FF [31]. This heuristic

is used to solve a few instances of the problem appearing in the beginning of the set (e.g., the first

15 instances of each domain) without a time limit. They assumed that such instances correspond to

easy instances of the problem. Furthermore, it is assumed that the suboptimal solutions obtained by

using the initial heuristic to collect the training data are reasonably good. None of these assumptions

necessarily hold in general.

The data collected from the solved instances are used to learn a weight vector over the linear

combination of the features. They learned the gap target function that estimates the difference be-
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tween the distance of the state from the goal state and FF’s heuristic value for the state. Finally, they

used a greedy best first search algorithm with the learned heuristic to solve the test instances. The

experimental results of this system on the blocksworld domain was described in Section 4.3.5.

5.3 Genetic Programming

Genetic Programming (GP) [43] is an evolutionary methodology related to genetic algorithms [33].

The main difference between GP and genetic algorithms is that in GP the representations that are

changed using crossover and mutation are computer programs rather than bit strings. If the program

represents a heuristic function, GP is similar to bootstrapping as it iteratively improves/evolves an

initial heuristic.

Hauptman et al. [25, 26] used GP to learn heuristic functions for the Rush Hour puzzle and

FreeCell. Their system uses some (weak) heuristics of the domain along with other domain specific

features to represent a state. For each problem domain a set of different heuristic functions was

learned; each of them is used only in parts of the search space.

The value of each heuristic and the condition regarding when to apply each heuristic are repre-

sented as trees and called value and condition trees respectively. In both trees, the features repre-

senting the state are the leaf nodes. The combine the features, the functions {×,+} were used in

value trees and functions {AND,OR,≤,≥} were used in condition trees.

The problem instances were divided into easy and hard instances based on the number of nodes

that IDA* without a heuristic generates to solve them. The easy ones were used for training while

the hard ones were kept for testing. The training data in this system is not of the form of set of

states whose distance to goal is known. In fact, the distance to goal for each training instance is

not considered at all in this system. The system uses GP to iteratively improve the combination of

features, which forms the heuristic, with the objective of reducing the number of nodes generated

on training instances.

The system starts with random value and condition trees and uses GP to iteratively evolve them

using crossover and mutation operators. The fitness score assigned to each individual is equal to

the percentage of nodes reduction when IDA* with the learned heuristic is compared to search with

no heuristic on 10 random training instances. This iterative process stops after a fixed number of

iterations. All the numeric parameters of the system including the population size, reproduction

probability, crossover and mutation probability, and the depth of each tree were set manually.

The main difference between this system and ours is the number of heuristics used to solve each

test problem. Furthermore, this system assumes that the training instances are easy enough that

IDA* using the initial heuristic or search without a heuristic can solve them in a reasonable amount

of time.

Their experimental results on Rush Hour showed that the heuristics learned by genetic program-

ming reduce the search by a factor of at least 2.5 over search without a heuristic for Rush Hour.
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The heuristics learned for FreeCell also speeded up search over a hybrid A*/hill-climbing search

algorithm. For FreeCell, the solutions found by GP are 30% shorter than those found by the hybrid

algorithm while no such comparison is reported for Rush Hour. Furthermore, no time is reported for

learning the heuristic.

5.4 Online Learning

In an online learning framework the label for each instance is predicted based on the feedback

received when the true label of a previously predicted instance is discovered. In the context of

learning heuristics, the true label can be considered as the optimal distance of a state from the goal

state while the feedback is the difference between the distance that the learner predicts and the true

distance.

Fink [17] studied an online automated mechanism for learning heuristic functions. In Fink’s

system, the heuristic function is a vector of importance weights over a set of features. The features

were created by abstraction and the weights were learned using linear regression.

Although the feedback for all the states visited during the search can be considered (as all the

optimal solution lengths for all the states visited during the A* search are available), the update rule

only updates the weights based on the feedback from the state in which the current heuristic deviates

the most from the optimal solution length.

A* is used to solve the testing instances. The experimental results are on very easy instances of

small problems (e.g., when the average solution length of solved instances is 4.22 in the 8-puzzle)

and the method improves the performance of A* without a heuristic (the Dijkstra algorithm) by a

factor of 10 while finding optimal solutions. Although this paper theoretically analyzes the con-

ditions under which finding the optimal solution path is guaranteed, it is difficult to generalize the

algorithm to a more tractable version that is feasible for larger problem spaces.

5.5 Linear Programming

Linear programming [65] is a technique to solve an optimization problem in which the solution to

the optimization problem is constrained by a set of linear equations and the objective is to minimize

a linear function. For example, the equation below shows a linear program in which x is the vector

of variables (to be calculated by the optimization) while A, B, and C are known. The objective

function is CTx and Ax ≤ B is the set of constraint equations. Different techniques can be used to

solve a linear program; however, the discussion of them is outside the scope of this thesis.

minx CTx

subject to Ax ≤ B

Petrik and Zilberstein [47] used linear programming to learn an admissible heuristic function for

planning domains. The objective of this work is not to improve the state-of-the-art heuristics for each
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domain, but to provide a general framework for creating domain-independent admissible heuristics.

The optimization problem6 (learning an admissible heuristic) is modeled as a minimization problem

in which the goal is to minimize the cost of a goal-terminating path for each state s.

The training data for this system is collected from the states on optimal solution paths. Therefore,

similar to the one-step learning methods discussed in Section 5.2, this system can only be applied

to search spaces in which the training instances can be solved optimally. The training instances are

created by random walks of a specific length backward from the goal state (e.g., random walks of

length 20 for the 8-puzzle).

A set of features is used to represent each state and the features are combined linearly with a

set of weights to form the heuristic. In the above equations, C and x respectively represent features

and the weights (that should be learned). The optimization problem has two sets of constraints to

combine the features. The first set ensures the admissibility of the heuristic function by bounding

the heuristic value of each state by the minimum cost of all goal-terminating paths from that state

that were observed during the training. The second set of constraints is to enforce the consistency

of the heuristic, i.e., for each two consecutive states visited, the difference between their heuristic

value must be less than the cost of moving from the first state to the second state.

To guarantee admissibility, the set of constraints should consider all the states in the problem

space, which is infeasible even for a search space the size of the 15-puzzle. Petrik and Zilberstein

showed that admissibility can also be guaranteed for a sample of fixed size; however, the upper

bound on the heuristic error (the difference between the heuristic value of each state and optimal

distance of the state from the goal state) becomes larger.

Their experimental results are for the 8-puzzle. They showed that when Manhattan Distance

of each tile including the blank is given as features, the system is able to recover the Manhattan

Distance heuristic by computing the sum of features corresponding to non-blank tiles. A similar

experiment with the sequence score showed that the sequence score is an inadmissible heuristic and

will be converted to an admissible one when divided by four.

5.6 Learning Other Forms of Control Knowledge

This section briefly introduces research on learning other forms of control knowledge.

5.6.1 Macro-Learning

A macro(-operator) is a sequence of original operators of a problem. Macro-learning studies dif-

ferent strategies to learn macros for a problem. Finkelstein and Markovitch [18] suggested an

6In the original paper [47], Petrik and Zilberstein modeled the problem as a maximization problem to be consistent with
the Reinforcement Leaning [62] literature. They defined reward for each state s as the negative of the cost of reaching s from
the initial state. As rewards are negative along the path from each state to the goal state, the optimization problem maximizes
the cumulative reward achieved from each state. Here, we present their work as a minimization problem, i.e., with costs not
rewards, to be consistent with other descriptions in this thesis.
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algorithm to learn macros for many different search domains including the (N2−1)-puzzle when

N∈{4, 5, ..., 10}. Their algorithm, called MICRO-HILLARY, first produces solvable training in-

stances using random walks. Then it runs a hill-climbing algorithm in which the heuristic value

of the state is used as the evaluation function7. To escape from local minima8, an iterative limited

breadth first search method is applied to search the areas near the local minimum. The sequence

of operators that leads from a local minimum to a non-local minimum state is stored as a macro.

The algorithm stops at a quiescence point in which no new macros can be learned from the training

instances.

Instead of directly applying the same procedure to solve very large problems (e.g., the 99-

puzzle), an iterative approach is studied that uses the macros learned from smaller problems as

basic operators for the larger problem. For example, the macros learned for the 8- and 15-puzzles

were used as basic operators for the 24-puzzle. This idea led MICRO-HILLARY to solve random

instances of the 99-puzzle with an average solution length of about 3000 moves. Their experiments

for the 99-puzzle showed that the process reached quiescence while learning macros for the 35-

puzzle and most of the final macros were learned from the 8- and 15-puzzles. The main drawback

of macro-learning is that the solutions generated by macro-learning are usually much longer than

optimal.

Minton [46] studied a macro-learning system, called MORRIS, to solve problems similar to

planning. This work focuses on selective macro-learning, i.e., learning the most useful macros for

the problem. MORRIS extracts two sets of macros from the solution to the training examples, scripts

(S-Macros) and tricks (T-Macros). Each of the S-Macros is a sequence of operators that is common

in the solution of training examples. Whenever a new training example is solved, a new set of macros

will be added to the set. There exists a limit on the number of S-Macros; when the limit is reached,

the least commonly used macros (considering the solution to the training examples) will be removed

from the set.

The T-Macros are similar to macros used by MICRO-HILLARY [18]. These macros are used

when progress is not made when the search algorithm traverses a path in the search graph, e.g., when

the heuristic values of the states along the path are not decreasing.

MORRIS uses a best first search algorithm to solve a set of robot world problems. It is empir-

ically shown that MORRIS improves the performance over (1) a similar system that considers all

potential macros learned during the training, and (2) a system that does not use macros at all.

Botea, Müller, and Schaeffer [4] used macro-learning for planning. Their method is consisted of

three steps. First, it extracts macros from a set of training examples. Then, the extracted macros are

filtered with the objective of reducing the overhead of considering a large number of macros for each

state during the search. Finally, the macros and the original operators are used in a search algorithm

7The algorithm does not rely on an admissible heuristic; however, they assume that the heuristic function should be fairly
accurate.

8A local minimum is a state in which the value of the heuristic is larger than the heuristic value of all the children.
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to solve the test instances.

Extracting macros from a training instance works as follows. First, a graph is created from the

solution to the instance in which each node in the graph is an action performed to obtain the solution

and each edge represents the causal relation between the actions, e.g., when performing one action

satisfies the pre-conditions of another action. Second, macros of pre-defined length are extracted

from this graph considering different subsets of nodes in the graph.

The learned macros are used in a heuristic search planner similar to FF [31]. The enhancement

used in FF to decrease the search effort, e.g., the helpful action pruning, is also applied in this

macro-learner. This system is showed to perform well in a variety of domains used in the AIPS

2004 planning competition [4].

5.6.2 Reinforcement Learning

The concept of a value function in Reinforcement Learning (RL) [62] is very close to the concept of

a heuristic function in heuristic search. A value function Vπ(s) for a policy π at a state s, estimates

the return when policy π is followed from state s. Therefore, the value function can be considered

as the reverse of the heuristic function. For example, the value function for a state near the goal state

should be more than the value function for a state further from the goal state (the heuristic value

for states near the goal state is smaller). Finding the optimal value function, V ∗π , in RL is similar to

finding the exact distance of each state from the goal state in heuristic search.

The main difference between RL and our work is the search algorithm. In RL, the search algo-

rithm is a greedy best first search, which is called the policy. To find a solution for each instance,

the policy will be followed, i.e., in each step the action that leads to a state with the highest value

function will be selected. On the other hand, the search algorithm used in our work uses f = g + h

to find a solution.

Yoon, Fern, and Givan [67] used RL techniques to solve planning problems. They used a search

algorithm that is slightly different from a greedy best first search. The search algorithm performs a

greedy best first search for a limited number of steps (e.g., 50 steps) and adds all the states generated

during the search to a queue. If this search fails to find a solution, the best node from the queue will

be selected for expansion, the one with the lowest heuristic value. A similar limited greedy best first

search will be performed from this new state. This process is repeated until it finds a solution. It

is empirically shown that this search algorithm outperforms the greedy best first search on domains

used in the AIPS planning competition.

5.7 Evaluation Functions for Two-Player Games

Learning an evaluation function for a two-player game is very close to learning a heuristic function

in single-agent search. The main difference is that the evaluation function in two-player games

considers the effect of an opponent that also tries to win the game while the heuristic in single-agent
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search is not affected by such. Learning evaluation functions for two-player games dates back to

Samuel’s checkers player [57]. At each state during the game, a limited search was performed and

the leaf nodes were evaluated using the current evaluation function. These evaluated leaf nodes then

were used through a mini-max strategy9 to select the best action from the current state. Then, the

evaluation function was updated so that the evaluation function at the current state becomes closer

to the evaluation function at the states that appeared in the limited search. The evaluation function

used in Samuel’s program was a weighted sum of the features of the game.

Reinforcement Learning has been successfully applied to learn an evaluation function for two-

player games. Tesauro [63] applied RL to learn an evaluation function for the game of backgammon.

The evaluation function in each state estimates the probability of winning the game from that state.

The training data for this system is collected from by the learner playing games against itself. The

learning algorithm used for this system was a neural network in which the backpropagation was

used to update the weights at the end of each self-played game. The features used for the program

were only representing the position of black and white pieces on the board, e.g., the number of

black/white pieces exists on each point on the board. This program is showed to perform as well as

the best human players in the world.

Buro [7] studied learning an evaluation function for the game of Othello by combining a set of

user-defined features of the game. To collect training data that contain a broad range of situations

that can occur during the game, all the games that were played by earlier versions of the program

were considered. Then, the training data was refined by fixing the label for the games in which one

player made a big mistake. Win, lose, or draw is assigned as the label to each training example

and learning algorithms such as logistic regression, linear and quadratic discriminant analysis were

used. The final program works with expanding the game graph for each state and using an algorithm

similar to mini-max to assign a score to each of the actions that can be made at the state. The eval-

uation function for all the states during this limited search is computed using the learned evaluation

function.

Clune [8] studied learning evaluation functions for general game playing. His system first ab-

stracts the game into a set of parameters, e.g., payoff or stability of the payoff. Then, it automatically

extracts features of the game and learns a linear combination of the features to estimate each param-

eter. To learn how to combine the features, a set of training game states was generated by random

walks and regression was used as the learning algorithm. The evaluation function in each state is a

combination of the parameters at the state by considering the game as a compound lottery. Clune’s

system showed great performance in the AAAI General Game Playing Competition10.

9A mini-max strategy is a strategy to choose the next action in two-player games. At each state of the game, the search
tree is expanded from the current state to a fixed depth. All the leaf nodes in the tree will be evaluated using the evaluation
function. Assuming that the opponent always selects an action that minimizes our value, the action that maximizes our value
with respect to opponent’s action is returned.

10See http://www.aaai.org/Conferences/AAAI/2008/aaai08generalgame.php for more detail about
the competition.
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5.8 Summary

In this chapter, a brief survey of related work on learning (in)admissible heuristic for heuristic search

and planning domains is presented. We discussed each related work and compared its components

to our system and mentioned the advantages and disadvantages of each work. The main shortcom-

ings of these works in comparison to ours are: (1) some works are only applicable to small search

spaces [6, 13, 17, 26, 47, 59], (2) those that are applicable to larger search spaces are extensively

hand-crafted [50, 55], and (3) those that do not suffer from either (1) or (2) produce solutions that

are much larger than the optimal ones [18].
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Chapter 6

Conclusions

6.1 Summary

The main problem considered in this thesis was investigating the use of machine learning to create

effective heuristics for search algorithms such as IDA* or heuristic-search planners. Our incremental

bootstrapping method aimed to generate strong heuristics from a given (weak) heuristic h0 through

a bootstrapping process. The “easy” problem instances that can be solved using h0 provide training

examples for a learning algorithm that produces a heuristic h1 that is expected to be stronger than h0.

The Bootstrap process is then repeated using hi instead of hi−1 until a sufficiently strong heuristic

is created. When h0 is so weak that it cannot solve any of the given instances, we use a random

walk technique to create a sequence of successively more difficult instances starting with ones that

are solvable by h0. We tested our method on the 15- and 24-puzzle, the 17- , 24- , and 35-pancake

puzzle, Rubik’s Cube, and the 15- and 20-blocks world.

Our experiments demonstrated that bootstrap learning can help to speed up search dramatically

with relatively little degradation in solution quality. An inherent and non-negligible expense is the

time invested in learning the heuristic function. The total times (for training and solving) reported

are on the order of several days for the larger problems (e.g., the 24-puzzle, the 35-pancake puzzle,

Rubik’s Cube, and the 20-blocks world). Such a lengthy process would be warranted if the final

heuristic was going to be used to solve numerous problem instances that were distributed in the

same way as the bootstrap instances, since one would expect most of the new instances would be

solved as quickly with the final heuristic as the bootstrap instances were.

However, many planning problems require just a single instance to be solved—a task for which

our bootstrapping approach may seem infeasible because of the large total time required. Therefore,

we also investigated the question of whether a variation of bootstrapping can quickly solve a single

instance of a given problem domain. Instead of minimizing solving time at the expense of requiring

very large learning times, we looked for a balance in the learning and solving times so that the sum

of the learning and solving times is made as small as can be. With this goal in mind, we presented a

method that involves interleaving the learning and solving processes. The interleaving method sets
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the ratio of solving time to learning time manually. We presented experimental results on the 24-

puzzle, the 35-pancake puzzle, Rubik’s Cube, the 20-blocks world and IPC2 blocksworld instances,

demonstrating that, even in the single instance case, bootstrapping can be very effective.

The next section discusses the main limitations of this research and some directions for future

work on the ideas presented in this thesis.

6.2 Limitations and Future Work

The main limitation of our Bootstrap system is the completion time of the Bootstrap process. For

example, it takes about 18 days to learn the final heuristic for the 24-puzzle. This time makes

bootstrapping only useful when a large number of test instances need to be solved. In Chapter 4, we

introduced a variation of our Bootstrap method to improve this total time for solving a single testing

instance. We ran our system without any initial bootstrap instances (just using random walks to

create training instances at successive levels of difficulty) and interleaved learning and solving until

finding a solution for the testing instance. This variation of our Bootstrap method was experimentally

shown to decrease the time overhead of bootstrap learning of heuristics substantially.

Instead of ignoring the bootstrap instances, we might be able to somehow sort the bootstrap

instances based on their difficulty (the number of nodes that the search algorithm using the current

heuristic generates for each bootstrap instance). If we knew how many nodes each bootstrap instance

will generate to find a solution at each iteration, we could have only tried the current heuristic on a

subset of bootstrap instances; those that generate the fewest number of nodes to find a solution and

therefore can be solved within the given time limit of that iteration.

We thought about using the existing techniques that predict the number of nodes that IDA* with

a specific heuristic will generate for a single instance of a problem. For example, Zahavi et al. [68]

proposed a formula (GKRE) to predict the number of nodes that IDA* generates at a certain depth

given a (possibly inconsistent) heuristic. Although GKRE showed great prediction accuracy for

domains similar to those used in this thesis, it cannot be directly used in Bootstrap because

(i) The goal depth needs to be known for each bootstrap instance as GKRE predicts the per-

formance of IDA* at a certain depth d ignoring that the goal may exist at a depth less than

d.

(ii) GKRE’s prediction is very accurate when averaged over a set of instances but it can be very

noisy for a single instance. To decrease the noise, GKRE was augmented by an IDA* search

up to a depth r and then the prediction was made for all the nodes at depth r and the GKRE’s

prediction was the average of predictions for each node at depth r. Although this led to better

predictions for a single state, it is more costly as it involves (1) expanding the search graph to

a depth r for each instance and (2) making predictions for some of the states at depth r.
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One other limitation of our work is that for each problem, we learn a heuristic to estimate the

distance of each state in the problem space from a fixed the goal state; therefore, all the learning

phase should be done anew whenever the goal state changes. Bramanti-Gregor and Davis [6] sug-

gested learning the distance between a pair of states by using the features of both states in the feature

vector. The feature vector for the pair of states can be made by either (1) doubling the size of the

feature vector to include the features for both states, or (2) using a feature vector to represent the

difference between the value of each feature in two states.

Many directions for future research on the ideas presented in this thesis can be considered. The

first direction would be applying our interleaving method for solving a single instance of the problem

to more planning domains (e.g., to all the problem domains used in the AIPS planning competition1).

To be competitive with the state-of-the-art suboptimal planners [27, 31, 67] on this set of problems,

we need at least two enhancements to our current settings. First, we need to create the features using

automatic domain-independent techniques (e.g., see Yoon et al. [67]) rather than expecting the user

to provide the features for each domain. Second, we would like to be able to generalize from small

problem domains to larger problem domains. Our experiments in Section 4.3.5 showed that the

total time of our method to solve an instance of the planning problem increases with the size of the

problem and solving instances of larger problems may become infeasible within the time limit given

for each problem instance (30 minutes). Therefore, it would be necessary to generalize from the

learned knowledge on small problem instances to solve larger problem instances. Yoon, Fern, and

Givan [16, 67] have previously used this idea to learn different types of control knowledge to solve

planning problems.

In our experiments, the features for each domain were not selected carefully nor based on the

outcome of early experiments. Mostly the features used were weak PDBs created by abstraction.

One interesting direction for feature work would be testing the effect of other set of features on the

performance of Bootstrap. Our limited observations from initial experiments suggest that:

(i) Using stronger heuristics in the feature vector decreases the number of Bootstrap iterations

as stronger heuristics will likely solve more bootstrap instances at each iteration. Decreasing

the number of Bootstrap iterations will likely decrease the completion time of the Bootstrap

process and result in fewer nodes generated and better solution quality for the heuristic gen-

erated by the last iteration of the Bootstrap (see Section 3.3.1 for an example of making the

initial heuristic stronger on the 15-puzzle. A similar trend was seen on the 17-pancake puz-

zle.). Regarding the number of nodes generated, the use of a stronger heuristic helps whenever

the maximum of the heuristics used in the feature vector has a higher value than the output

of the neural network. Regarding the solution quality, fewer Bootstrap iterations means that

fewer training data biased toward inadmissibility are collected. Therefore, the last heuristic

of Bootstrap is expected to find closer to optimal solutions comparing to the case that weaker

1see http://planning.cis.strath.ac.uk/competition/ for more details on these domains.
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heuristics are used in the feature vector.

(ii) Our observations showed that (weak) heuristic features are very important, especially to guide

the search near the goal state. We performed an experiment on the 15-puzzle in which

we solved all the training instances optimally using a state of the art heuristic for the 15-

puzzle [42], but we only used the tile positions as the features in the feature vector. The

results show that the heuristic learned from these weak features (without the guidance of a

weak heuristic near the goal) fails to produce a useful heuristic.

One other future work is to investigate the effect of starting the Bootstrap procedure without any

initial heuristic. In our bootstrapping, to compute the heuristic value for a state s, the maximum

of the value of the initial heuristic for state s and the heuristic value created by the neural network

for state s is considered. Our experiments showed that computing the maximum helps when the

heuristic value calculated by the neural network for a state is smaller than the initial heuristic value

for that state. Our experiments further showed that the guidance of the initial heuristic is important

especially near the goal state. In order to ensure this guidance when the system starts without any

heuristic, perimeter search [10] can be used in which the perimeter of the search is used to provide

guidance near the goal state2. The perimeter can be consisted of all the states visited during the

time bounded breadth first search performed to compute the LengthIncrement parameter (see

Section 3.1.2).

Another future direction is to consider a different search algorithm for bootstrapping. As boot-

strapping has a time limit for each iteration and the search stops when the time limit is reached for

each bootstrap instance, one can think of using a more efficient algorithm than IDA* because IDA*

can expand the same node numerous times in total. For example, A*, if implemented efficiently, can

be used.

A study of the effect of using suboptimal heuristic search algorithms, i.e., those like BULB that

sacrifice solution quality to find a solution faster, with Bootstrap can also be considered. This study

should at least consider the changes in the completion time of the Bootstrap, the solution quality

and number of nodes generated by the final heuristic of Bootstrap. Future work can also be done to

investigate the effect of the learning component of our system in the total success of our results. For

example, one can investigate how important it is to use a non-linear learning system (neural network)

and whether we can get similar results when we combine our features using a simple linear model

(e.g., linear regression).

The heuristic in our system is neither consistent nor admissible. One possible method to exploit

inconsistency is Bidirectional Pathmax (bpmx) [15] to propagate the heuristic value of a state to its

children and also in the reverse direction. For example, consider that the heuristic value of a state

s is 1 and the heuristic value of its child is 5 and each action in the search space has a cost of 1.

2This idea is due to an anonymous AAAI reviewer.
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Then, the heuristic value of the state s can increase to 4 because each action (here, moving from the

state to its child) changes the distance to the goal state by at most 1. Therefore, using bpmx with an

inconsistent heuristic may result in pruning subtrees that would otherwise be expanded. Note that

bpmx is designed for an admissible heuristic. Therefore, using bpmx with Bootstrap may result in

propagating inadmissibility to more parts of the search space. We did not extensively explore bpmx,

but preliminary experiments showed that using bpmx with the final heuristic of Bootstrap slightly

increases the solution length while the number of nodes generated will slightly decrease compared

to Bootstrap without bpmx.

6.3 Contributions and Closing Remarks

The major contribution of this thesis is to provide experimental evidence that machine learning

can be used to create strong heuristics from given (very weak) ones through an incremental boot-

strapping process augmented by a random walk method for generating successively more difficult

problem instances. Our system was tested on eight different problem domains and successfully

created heuristics that enable IDA* to solve randomly generated test instances quickly and almost

optimally. This work substantially extends previous one-step methods as it does not require:

(i) the given heuristic to be very strong to start the process. For example, system developed by

Ernandes and Gori [13] could not be applied to the 24-puzzle because of the infeasibility of

creating a large training set as solving a thousand instances of the 24-puzzle using the best

existing heuristics [14, 42] would take many CPU years.

(ii) to choose the learning features carefully. For example, to learn a heuristic for the 24-puzzle,

Samadi et al. [55] made crucial choices on how to manually divide the problem into smaller

subproblems and how to combine them instead of directly learning a heuristic for the 24-

puzzle.

The total time needed for our system to create these heuristics strongly depends on the number of

given bootstrap instances. In fact, a very large portion of the training time is spent on trying to solve

bootstrap instances that are still too difficult for the current heuristic. With the goal of decreasing

this total time in mind, we presented a method that involves interleaving the learning and solving

processes and experimentally showed that it will lead to a substantial speedup over the total time of

our bootstrapping method while generating solutions that are even closer to the optimal ones.
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