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Abstract 

Here, we use the premise of an actual image-retrieval application to examine how various 

approaches and techniques in computer vision help to bridge the much talked about semantic 

gap. A lot of cross-fertilization of ideas from the world of text processing has found its way into 

image processing as well. When images are processed for various purposes, their low-level 

features  usually bear no resemblance with the types of concepts used in describing them. When 

tasked with developing a useful image model, most strategies take a data-driven or ontological 

route, or a combination of both. Whatever strategy is adopted, we observe how different image 

contexts are used to derive some type of semantic knowledge. In this study, we provide an 

analysis of how an ontological model can be derived from the structural composition of clustered 

features that result from an image-retrieval task, especially focusing on error pairs. In other 

words, we explore the additional contexts in which the semantic gap can be narrowed, when the 

search context for images relative to a large database of features, is also narrowed. We use a 

small sample of games set to train and eventually test how effective our image-retrieval task can 

find and match an image based on its low-level features.  In so doing, we had wanted to create 

the basis for potentially pairing these unique low-level features to a higher-level concept based 

on scene class, for instance. But ultimately for each image-retrieval task, we keenly recognize 

when errors do occur, under different object descriptor and search strategies, and particularly 

look out for consistent error patterns across these descriptors, based on the retrieved results from 

an image search. We discover an additional context for deriving semantic knowledge about the 

query image, providing for the basis to develop another data-driven ontological model. 
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Chapter 1    Introduction 

Perhaps, an almost alarmist tone from a New York Times article by Markoff (2012), may provide 

some perspective in ascertaining some of the goals of this study: 

But even as images and video rapidly come to dominate the Web, search engines can 

ordinarily find a given image only if the text entered by a searcher matches the text 

with which it was labeled. And the labels can be unreliable, unhelpful (―fuzzy‖ 

instead of ―rabbit‖) or simply nonexistent. To eliminate those limits, scientists will 

need to create a new generation of visual search technologies — or else, as the 

Stanford computer scientist Fei-Fei Li recently put it, the Web will be in danger of 

‗going dark‘. 

We explore the same problem here as well, by seeking to understand how those limits as stated 

in the quote above could be eliminated in image-retrieval contexts. Another term for the 

elimination of those limits is essentially the narrowing of the semantic gap, which will be a 

persistent premise underlying all our discussion.   

 

1.1 Motivation 

Computer vision is a budding field of study that has emerged from the need to enable computers 

and other types of machines to have the ability to perceive the world as humans would. This 

process depends on so many types of image processing techniques that are always constantly 

being improved upon. Regardless of the approach taken, most methods will include the various 

procedures for acquiring, processing, analyzing, and understanding images, in general, high-

dimensional data from the real world in order to produce numerical or symbolic information, so 

as to make informed decisions, (Klette, 2014). This ability to emulate human perception forms 

an important step in designing world-facing systems that can perform certain intelligent tasks. 

We are inundated with rich visual information in the real world and interpreting this vast amount 

of data can be a challenging process. Vision-based systems rely on the extraction of information 

from the images captured to carry out certain tasks. Normally, the eventual goal is to use this 

information to gain an understanding of different objects present in an environment along with 

their physical and geometrical attributes. The type of information extracted and its analysis 

depends upon the application to be performed. This is evident in the many visual object 
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recognition tasks devoted to understanding the basic conceptual categories a recognized object 

may belong to, including their scene classes. Our study aims to take this a step further, restricting 

our focus to a basic image-retrieval task where each image is assumed to represent a distinct 

scene class. We forward an image-retrieval tool using OpenCV
1
 libraries within the Visual 

Studio 2010 framework. However, we had earlier tested hundreds of scripts and applications 

using both the OpenCV and Matlab vision tools with the hopes of properly evaluating our 

games‘ real-world image dataset. But we encountered a huge problem during this study: most 

computer vision applications that have resulted from academic research or otherwise are strictly 

tied to the types of dataset used.  

 

                   Figure 1.1  OpenCV Haar Cascade pipe 

In other words, an object or facial recognition algorithm is designed around the dataset used to 

train and test for it, meaning that it is not always possible to basically plug in a games‘ image 

dataset without seriously tweaking the source code, a process which costs more time. For 

example, using the OpenCV Haar classifiers will not easily work for our chosen games dataset. 

This is because most of the trained datasets in use were designed to recognize real-world faces 

and objects and not drawn or modelled characters. The initial direction of this thesis was to find a 

way to build a Haar classifier from our image dataset using the exact same process OpenCV uses 

to make their own Haar Classifiers which are basically XML files containing object descriptor 

vectors. While OpenCV uses the Haar classifier as an approach, we are not limited to using its 

technique since we can easily use its libraries in our own application. We had use an image-

retrieval tool that is not limited to using XML files to store image vectors.  We instead use an 

Inverted File for storing the features we had extracted; and we also use an Inverted Search 

process to retrieve them. When a query image is used to discover a match, the descriptive 

features extracted from the query image is compared against those in our database, usually for 

                                                           
1
 OpenCV (Open Computer Vision) is an open source library of computer vision tools. 
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the purpose of object recognition. Inverted matching was described by Sivic and Zisserman 

(2003), where they state that ―an inverted file is structured like an ideal book index. It has an 

entry for each word in the corpus followed by a list of all the documents (and position in that 

document) in which the word occurs.‖  However, XML file vectors are not usually the ideal 

structures for making inverted file storages, thus limiting the broad utility of OpenCV Haar 

Cascades. Object Recognition underlies the core problem of learning visual categories as well as 

identifying new instances of those categories. Most vision recognition tasks fundamentally rely 

on the ability to recognize faces, objects, scenes, in specific cases besides the resolution of 

general categories which in turn depends on a lot of other factors (which we will explore in the 

study), including the annotation and eventual training of a dataset.  

 

                Figure 1.2   Training stages for Haar Cascade 

In fact we did build a simple Object Marker annotation tool to be able to mark out objects and 

particular regions of interest from our images that do contain the object or faces we want to train 

and recognize.
2
 This is from recognizing that the concept of a face or monster from a games‘ 

character point of view is so very different from what normal facial recognizers have been 

trained to expect. The following figures are actual screen shots of our annotating script, using a 

bounding box to mark out the object of interest for training.  But we soon discovered in the 

course of this research that the OpenCV Haar Classifiers do work best as bounding box object 

                                                           
2
 This was the initial thrust of this thesis project before being forced to change direction due to time. 
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detectors, and the accuracy of our own classifier will depend on the quantity of the training 

images used and the ratio of the negative to positive image samples we intend to use. Depending 

on the object descriptor and clustering strategy used, it takes weeks to actually train image 

samples in order to get any level of accuracy at all, during testing. The general rule of thumb has 

been that the larger the training set used, the more accurate the recognizer will get in identifying 

new unseen instances of the same objects, faces, events or scenes. Nonetheless, as stated before, 

much of the current research effort has been based on the recognition of objects and scenes in the 

real world, and this is reflected in the types of datasets already annotated and trained, with 

annotated games content, completely absent.    

 

          Figure 1.3 Object marker tool for annotating images 

In the figure above, notice that there are no distinctive facial features on the character to indicate 

a normal face exists. We had to manually mark out the head/face area of the character for the 

purpose of creating a unique Haar-based classifier that recognizes such visual instances above as 

a face. This will also hint to the great difficulty any current facial recognition system will likely 

encounter when trying to discover a face in the game‘s image. The same problem can be 

extended to finding a monster in an image. Currently, there are no recognition systems dedicated 

to finding monsters, even though monsters may share some vague facial traits with humans or 

animals. Ordinary facial recognition is still a very hard and unsolved problem. Developing a 

future monster recognition system is not a trivial task. We predict that this is going to be an even 
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harder problem than ordinary facial recognition. Which unique features constitute a monster is 

not a simple question after all. Consequently, an exercise that saw this study initially annotating 

game‘s content with faces and monsters including other objects for eventual training had to 

inevitably stop because we were running out of time.  The decision was taken to focus on an 

image-retrieval task where each image is likened to a unique scene class and to search for 

visually similar images with our tool can be likened to searching for a collection of similar scene 

classes—or not, since we decided that we will be very particular about the significance of 

retrieval mismatches or errors and how the same errors can contain significant semantic 

information about the query image itself.                                                                                                                                                   

 

             Figure 1.4 Object Marker tool designating a monster‘s face 

1.2     Problem definition and Contribution  

  We decided to focus on the basic task of image-retrieval in this study with these objectives in 

mind:  i. We treat each image as a unique scene class since we did not have the time to annotate 

individual faces and objects in the image for eventual recognition ii. By viewing each game‘s 

image as a unique scene class, we had expected the possible mapping of the image‘s low-level 

features to a higher abstract description, or the bridging of the semantic gap, iii. But this mapping 

will also depend on how efficiently the chosen object descriptors we used for this study were 

able to repeatedly locate and match the images based on their features; thus, we will measure 

their performance iv. Unfortunately, in most image-retrieval tasks there will always be errors and 

mismatches based on a host of factors. This study investigates the possible additional semantic 
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input gotten from these same errors, or as we describe them, error pairs. This thesis‘ unique 

contribution emerges from viewing these errors derived from several image-retrieval tasks, as 

possible signals for the probe image, in so doing, generating new sources of learnable semantic 

knowledge about the probe images. We also propose a new form of image search.  

1.3     The Semantic Gap 

Evidently most of the central object recognition problems in vision have come a long way in the 

classification of objects into different conceptual categories. The introduction of better 

techniques and data has seen confidence scores risen for many such recognition tasks. Basically 

it is no longer enough to simply visually recognize an object into a category, even though so 

much of this task is yet to be solved, since the occurrences of many unique objects seem 

limitless. Even though the classification layers of this field of study have barely been exhausted 

with so many types of tasks and categories still considered, (as seen by the many ImageNet, 

PASCAL and Voc tasks carried yearly), the overall trend has shifted towards the fine-granular 

examination of objects (as in a flower, what type of flower--based on the analysis of petals and 

leaves, as seen in many ImageNet tasks), or even the process of visually comparing the features 

of one these objects to those of an entirely unrelated one based on their sub-similarities. With 

this observation, one cannot deny the underlying importance of a semantic layer of sorts, to assist 

in the in-depth disambiguation of objects. However, the bulk of the techniques in computer 

vision have so far relied on low-level image analysis techniques which have no bearing to the 

overall cognitive depiction of the same object. Hence, a semantic gap is created as a wide gulf 

between these low-level features the object has and its high-level cognitive description. A 

semantic layer that links local surface features with other visual cues from a related vocabulary 

to broaden the understanding of a given object being processed and recognized is always 

welcomed.  There is a distance between the descriptions obtained by automatic methods for 

image analysis and their real content, as explained in the semantic gap.  
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           Figure1.5 The Semantic Gap between the image and the concept for it 

 This gap is further explained by the absence of a meaningful concurrence between the 

information extracted automatically by computers and the human perception of the real image 

resource, based on high-level concepts (Hare et al. 2006).  Low-level features of auditory 

streams as well as video sequences and static images have received a lot of attention because 

features at this level can support automated indexing of content as opposed to high-level 

descriptions which currently map poorly to scenes, and also require an arduous manual 

annotation process, prone to errors. Automated indexing of content can be exemplified by 

attempts to generate descriptions of broadcasted sports events (e.g. identification of goals in a 

soccer match) based on (combinations of) low-level features.  Low-level feature extraction using 

attributes such as color, texture parameters, borders, etc., is typical for most current feature 

extraction, but there are also higher abstractions of these features that aim to correspond to 

higher concepts which we will discuss in the next chapter.  

1.4   Local Features 

Local feature descriptors are designed to find local image structures in a repeatable manner and 

to represent them in robust ways that are invariant to typical image transformations, such as 

translation, rotation, scaling, and affine deformation. Indeed, the local features constitute the 

basis of approaches developed to automatically recognize specific objects or scene classes, as 

pointed out by Grauman and Leibe, (2011). The most popular local feature extraction method is 

the Scale Invariant Feature Transform (SIFT), introduced by Lowe (2004) which we will further 

discuss in the next chapter, and also adopt as our object descriptor baseline for our thesis 

experiment.  
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         Figure 1.6 Locating corresponding local features 

The ability to identify whole scene classes, particular locations or even particular objects like 

buildings usually depends on how accurately our object descriptors were able to detect the 

unique local features in an image, and eventually mapping them to a similar image. This is 

exactly the basis for the recognition of object instances. The goal of instance-level recognition is 

to match (recognize) a specific object or scene, for any image-retrieval task. Possible examples 

include recognizing a specific building, such as the Notre Dame, or a specific painting, such as 

Starry Night by Van Gogh. The challenging objective is to also recognize these images despite 

changes in scale, viewpoint, illumination conditions and partial occlusion. The application of 

feature descriptors—like SIFT, and its equivalents— has had an impact on image-retrieval 

research which relies on corresponding descriptors when searching from an image of an object of 

interest (the query or probe), to obtain (or retrieve) those images that share similar traits with the 

target object. 

1.5     Overview of chapters 

In Chapter 2, the theoretical background of this thesis‘s work is explained using concrete 

examples from related research. Chapter 3 describes our experiment with an image-retrieval 

application, where we also focus on the error pairs generated. There we discuss the types of 

signals these have for a probe image. Chapter 4 provides a brief conclusion.  The Appendix aims 

to visually summarize the key ideas discussed in this thesis, with the hopes of providing a better 

understanding of the various strategies in use to algorithmically resolving the meaning of images. 
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Chapter 2    Theoretical Background/Related Research 

 

2.1  Appreciating the Problem 

A student whose core research was in Computer Vision describes his parents‘ initial simplistic 

understanding of the field when he tried to explain his research.
3
  He stated that it was mostly 

about making computers ―see‖ and recognize objects in an image. Naturally, just as many others, 

his parents were confused about why that was difficult. Given that, when scrutinizing from afar, 

it only takes looking at a picture and, say, ―see a chair in it. It is so effortless!‖ (for humans at 

least). What is the problem? The problem, as the student goes on to explain, is that the programs 

that exist and that are written do not come with a magical Visual Cortex. To best illustrate the 

problem, the student proceeds to plainly reveal what the computer has to work with, in order to 

accomplish any recognition task: a huge array of every pixel‘s Red, Green and Blue component 

that together give the color of that pixel. The following is a much-truncated listing of one such 

array that stores an image: 

 … (17, 16, 11), (124, 120, 85), (120, 112, 76), (122, 114, 78), (122, 124, 87), (118, 114, 79), (126, 

118, 81), (122, 114, 78), (123, 115, 79), (103, 110, 69), (123, 119, 84), (124, 116, 77), (122, 114, 75), (126, 

118, 82), (115, 112, 79), (121, 117, 82), (124, 116, 80), (125, 117, 81), (50, 55, 23), (121, 116, 78), (119, 

111, 74), (121, 113, 74), (126, 117, 84), (20, 17, 12), (121, 117, 82), (119, 111, 75), (120, 112, 73), (121, 

115, 79), (115, 111, 76), (117, 109, 70), (118, 110, 74), (123, 115, 78), (105, 111, 85), (122, 116, 82), (115, 

110, 70), (117, 107, 71), (120, 114, 80), (112, 109, 74), (121, 112, 81), (102, 101, 57), (117, 110, 66), (60, 

63, 36), (112, 106, 72), (106, 101, 63), (106, 98, 62), (115, 111, 66), (18, 18, 18), (109, 107, 66), (34, 34, 

10), (110, 101, 62), (115, 110, 72), (116, 108, 72), (102, 94, 55), (94, 91, 58), (110, 103, 61), (24, 27, 10), 

(108, 100, 63), (74, 73, 42), (100, 91, 58), (114, 109, 67), (111, 109, 70), (95, 86, 53), (27, 24, 17), (94, 87, 

43), (87, 88, 57), (99, 94, 62), (76, 73, 42), (77, 70, 41), (78, 73, 44), (20, 19, 17), (81, 79, 54), (18, 18, 18), 

(75, 70, 38), (107, 103, 66), (102, 93, 60), (72, 66, 40), (59, 57, 34), (14, 10, 1), (88, 92, 65), (72, 64, 51), 

(52, 53, 35), (42, 37, 17), (104, 95, 66), (101, 99, 60), (53, 46, 30), (21, 22, 17), (62, 61, 43), (61, 62, 28), 

(75, 70, 38), (33, 31, 16), (29, 27, 15), (50, 44, 30), (15, 16, 11), (6, 5, 1), (25, 27, 22), (47, 44, 35), (91, 85, 

49), … 

The student points at the massive array of numbers and says, ―There. Can you tell me if there is a 

chair in the above image? It just so happens that there is.‖ After few moments of shocked gaze, 

and a minute spent clarifying the problem, his parents proclaimed the task impossible. Observing 

                                                           
3
 Based on actual events read in a forgotten Vision blog a long time ago. 
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the cluster of numbers in triples, indeed, the task looks much more daunting but this is exactly 

what computers and the human researchers who analyze these images have to deal with. 

However it is worth noting too that so much progress has been done, after poring over the lower 

features of an image. There is nothing inherent in the lower-level features to suggest that a 

human or an object may even exist since the machine only sees numbers. But a great deal of 

effort has been made towards abstracting away an image and representing them beyond just 

pixels, so as to better study and train them.  An image representation beyond the pixel is 

welcomed. Describing the semantic gap, (Agarwal and Roth, 2002) state it this way: ―…we 

suggest that in order to extract high-level, conceptual information such as the presence of an 

object in an image, it is essential to transform the raw, low-level input (in this case, the pixel 

gray scale values) to a higher-level, more ‗meaningful‘ representation that can support the 

detection process.‖ (1) As can be noticed in the figure below, image representations that get 

mapped into a high-level function are possible, and also indicative of what happens to images 

when they are processed with a learning model. 

 

         Figure 2.1 The Image as a Matrix Mapping function 

 Obviously, unlike the language world, images do not readily have the equivalent of a part of 

speech, to enable the prediction of their distributional patterns. Parker  (2011) also reflected on 

this core problem:  ―… at its heart, computer vision is about making measurements on images 

and/or determining what objects appear within those images. Many people have difficulty 

understanding why this is a hard problem. After all, people recognize complex objects with 

apparent ease, and quickly. Why is this hard for computers? The answer is that computers use 

pixels to represent objects rather than some more natural representation that has more structure.‖ 

Indeed, the pattern in which these pixels appear are as arbitrary and varied as it can be. The 

fundamental elements of any language have a lot more predictable structure when compared to 

the elements of an image.  Rizoiu et al. (2014) further clarifies this when scrutinizing the 

degrading data quality problem: 
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The difficulty when analyzing images comes from the fact that digital image 

numerical formats poorly embed the needed semantic information. For example, 

images acquired using a digital photo camera is most often stored in raster format, 

based on pixels. A pixel is an atomic image element, which has several 

characteristics, the most important being the size (as small as possible) and its color. 

Other information can be color coding, alpha channel etc. Therefore, an image is 

stored numerically as a matrix of pixels. The difficulty raises from the fact that low-

level features, such as position and color of individual pixels, do not capture too 

much information about the semantic content of the image (e.g., shapes, objects). 

This problem is also known as the semantic gap between the numerical 

representation of the image and its intended semantics. To address this issue, 

multiple representation paradigms have been proposed… (2) 

One of the proposed paradigms that builds on layers and layers of previous work is the Bag of 

Words model which we will be discussing much later in the chapter. 

 

 

  Figure 2.2 Illustration of bag of visual words procedure: (a) detect and represent local  

interest points as descriptor vectors (b) quantize vectors (c) histogram computation  

to form Bag of Visual Words vector for the image. 

In the above model, an image not only consists of a large matrix of pixels made up of numerical 

values along its rows and columns, but also allows for normal arithmetic operations to be applied 

to it. Hence we find particular regions in the image detected for some importance, enabling 

computations for a histogram count of features. Each image region has a frequency count for a 

particular feature. Most image-processing algorithms execute matrix operations at this basic 

level, when applying operators and learning models on the raw matrix. We could liken the 

properties of these pixels to types of semantic attributes that could be further processed by an 

algorithm. A pixel may also have a certain type of colour, position, luminance and texture, also 



12 
 

captured by numerical values inside its matrix representation (pixel colour, position, luminance, 

location and texture are all types of semantic attributes as well). We equally discover that 

different regions of the matrix may contain numeric values that are similarly based on colour or 

luminance. Eventually, we understand that the regions with particular contrasting numeric values 

can as well define the shades of an ―edge‖ or a line. If we follow the contours of these lines we 

eventually can determine a unique segment or shape which denotes a semantic value as well, but 

at a higher level of abstraction. While humans can easily make out what these shapes mean, it is 

still not an obvious process for a machine. It is the task of image detectors to determine the most 

interesting regions of an image and the task of image descriptors to transform those regions into 

a consistent feature vector. (Nixon, 2008) describes the process: 

Objects are represented as a collection of pixels in an image. Thus, for purposes of 

recognition we need to describe the properties of groups of pixels. The description is 

often just a set of numbers – the object‘s descriptors. From these, we can compare 

and recognise objects by simply matching the descriptors of objects in an image 

against the descriptors of known objects. However, in order to be useful for 

recognition, descriptors should have four important properties. First, they should 

define a complete set. That is, two objects must have the same descriptors if and only 

if they have the same shape. Secondly, they should be congruent. As such, we should 

be able to recognise similar objects when they have similar descriptors. Thirdly, it is 

convenient that they have invariant properties. (281) 

We will further discuss feature descriptors in detail in the next chapter where we get to compare 

how accurate several common descriptors accurately process and match images from a number 

of games cover content using the OpenCV based tool we developed for this project. Feature 

descriptors have emerged to be a very essential step in the processing of images for varied tasks 

and with it, also carry semantic importance because of their abstractions. In this study, we cluster 

various image descriptors using a bag of words model and carry out an inverted search to retrieve 

corresponding images, especially looking out in particular for errors when mis-matches occur. 

We also developed a tool to measure the relative distance candidate test images have in 

comparison to the other images in the dataset. The significance of this being that we can proceed 

to set a thresh-hold where closer images could belong to the same visual family, based on the 

similarity of their feature descriptors.  However, in the remainder of this chapter, we will explore 



13 
 

some background detail around the extensive amount of work done so far to narrow the semantic 

gap, noting sadly, that a chunk that will be discussed here in this chapter has not been 

incorporated in the experiments done for this thesis because of time constraints. 

 

2.2   Analyzing the Semantic Gap 

If the numbers behind pixels did represent the atomic elements behind an image, any form of 

abstraction that attempts to configure an image around color, shape, texture, or location, 

embodies noteworthy but simple attempts to bridge the semantic gap. Indeed, color, as well as 

shape, texture and location, in an image context are semantic descriptions of images 

themselves—nonetheless, still at a lower level of abstraction. Those depictions, while extremely 

useful, do not go far enough in helping the machine really understand the contents of an image.  

Improved forms of image representation that utilize both the low-level features and a high-level 

structure approximating the content in a reasonable time frame, we not only required, but have 

also captured a lot of ongoing research.  While it is true that most techniques in computer vision 

use hard language models that encapsulate statistical tools for visual object recognition, some 

attention is also paid to the critical role semantic models can also bring.  

 An extremely high-level problem to illustrate this is the concept of scene and action 

recognition (relevant because each game‘s cover content could also depict a type of scene or 

action as well).  What type of scene or action does an image or frame depict? In this regard, we 

realize how useful the location of individual objects in relation to others is, as well as their 

positions or place in a wider spatial semantic network. This problem has consequence for the 

analysis of game image content since most covers attempt to depict a very focal type of event 

that also describes the title. Understanding colors, shapes and texture may help in building up the 

layers of semantics that eventually help determine what type of action or scene a games‘ image 

cover portrays, but then, as explained earlier, this is not a straightforward interpretation for the 

computer.  If the machine really knew what all those basic elements sum up to, it could possibly 

identify scenes where ―characters sky-diving and shooting‖ or where ―characters evading arrows 

and rocks‖ are—and easily index them for a content-based search engine. This is far from a 

solved problem and it represents another core challenge of bridging the semantic gap. (Rizoiu et 

al. 2014) describes their strategy in solving an aspect of the problem:  
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One of the privileged tracks to closing the semantic gap is to take into account 

additional information stored in other types of data (e.g., text, labels, ontologies of 

concepts) associated with the images. This raises the difficulty of object co-

occurrence. For example, a picnic scene is defined by the simultaneous presence of 

―people‖, ―trees‖, ―grass‖ and ―food‖. In terms of labels, this translates into label co-

occurrence. Our approach can be scaled to image classification by addressing the 

label co-occurrence issue.  (25) 

Influences from textual distributional semantics seem to have also influenced image inferences in 

the instance of label co-occurrence. Bruni et al. (2011) explains distributional semantic models 

as: ―the use of large text corpora to derive estimates of semantic similarities between words. The 

basis of these procedures lie in the hypothesis that semantically similar words tend to appear in 

similar contexts‖, something also noted by Miller and Charles (1991) and Wittgenstein (1953). 

In clarifying their distributional semantics from text and images, Bruni et al. also asserts that, 

―the meaning of spinach (primarily) becomes the result of statistical computations based on the 

association between spinach and words like plant, green, iron, Popeye, muscles. Alongside their 

applications in NLP areas such as information retrieval or word sense disambiguation (Turney 

and Pantel, 2010).‖ (1) Analogously, when objects in an image appear in a clutter, it is possible 

to make informed predictions about their co-occurrence with other objects and likely predict 

scene classes based on their distributional patterns in the real world (as long as it is not the 

chaotic image of a garbage scene). When an image contains books, a bed, a lampstand, a pillow, 

and a drawer it could possibly infer what other types of real world objects which may appear in 

the image as well—since these are typically objects found in the bedroom. The bedroom 

becomes the scene class based on the objects that co-occur in the image. In other words, the 

existence of real world objects in their natural or man-made order project a meaningful 

distributional pattern with reasonable semantic properties. Hence it is likely odd, finding a tree or 

a boat inside a bedroom; therefore, processed images that utilize semantic models can infer 

probable objects for a scene class in addition to scoring very low, those that are incongruent. 

 An additional higher level pattern with interesting semantic properties hinted by Acharya and 

Ajoy (2005) is the process of image segmentation. They illuminate on the concept: 

Segmentation is the process that subdivides an image into a number of uniformly 

homogeneous regions. Each homogeneous region is a constituent part or object in the 
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entire scene. In other words, segmentation of an image is defined by a set of regions 

that are connected and non-overlapping, so that each pixel in a segment in the image 

acquires a unique region label that indicates the region it belongs to. Segmentation is 

one of the most important elements in automated image analysis, mainly because at 

this step the objects or other entities of interest are extracted from an image for 

subsequent processing, such as description and recognition…. After extracting each 

segment, the next task is to extract a set of meaningful features such as texture, color, 

and shape. (2) 

Notice how the assigning of semantic labels carefully follows the segmentation process. There is 

clear topological structure that guides any segmentation process given the fact that they are also 

a key component in scene analysis. (Shotton et al. 2008),
4
 identified how little has been done in 

event recognition so far as static images are concerned, even proceeding to define an event to be 

a semantically meaningful human activity taking place within a selected environment and 

containing a number of necessary objects. Shotton et al. proceeded to set the goal of ―achieving 

an event categorization by as much semantic level image interpretation as possible‖. They 

describe how this is somewhat like what a school child does when learning to write a descriptive 

sentence of an event. It is taught that one should pay attention to the five W’s: who, where, what, 

when and how. In Shotton et al.‘s system, they attempted to answer three out of the five W‘s: 

what (the event label), where (the scene environment label) and who (a list of the object 

categories). They defined their goal as classifying an event in the image as well as providing a 

number of semantic labels to the objects and scene environment within the image. For example, 

given a rowing scene, their algorithm recognizes the event as ―rowing‖ by classifying the 

environment as a lake and recognizing the critical objects in the image as athletes, rowing boat, 

water, etc. They were able to achieve this integrative and holistic recognition through a 

generative graphical model. Observed from an engineering viewpoint, event classification is a 

useful task for a number of applications. It is part of the ongoing effort in providing effective 

tools to retrieve and search semantically meaningful visual data. Such algorithms are at the core 

of the large-scale search engines in addition to some digital library organizational tools. Event 

                                                           
4
 Actually, Shotton et. al, used a Semantic Texton Forests for image segmentation, reviving interests in the 

potential for textons as a result. Textons use a completely different approach from normal descriptors. 
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classification is also particularly useful for automatic annotation of images, as well as descriptive 

interpretation of the visual world for visually impaired patients.  

 MIT Professor Patrick Winston in a class on Visual Object Recognition proceeded to write 

down these verbs on the board and challenge his students.
5
 ―How do you visually determine 

what's happening? If you could write a program that would reliably determine when these verbs 

are happening in the field of view, I will sign your…!" He utters after writing the following 

verbs on the board: 

Approach   Carry  Dig   Fall  Give   Hit     Lilt   Push                            

Run   Touch  Arrive  Catch   Deep   Flee   Go  Hold   Move  Put                         

Down  Snatch  Turn   Attach  Chase  Enter  Fly  Hand  Kick  Open                 

Raise  Stop  Walk  Bounce  Close   Exchange  Follow  Haul  Jump                       

Pass Receive  Take  Bury  Collide  Exit  Get  Have  Leave  Pick up                   

Replace  Throw 

Winston was attempting to demonstrate something that goes beyond basic conceptual categories. 

Each of these verbs would likely show a human being doing something in relation to another 

human or another object. In this regard, our object recognizer is tasked with not only 

―identifying‖ the primary target object or human, but also resolving how this same human is 

connected with other secondary objects in the field of view. In the case of drinking, the object 

recognizer must not only detect the human but also detect the object in the human‘s hand or in 

close proximity with the human and then make clever inferences as to what may be going on 

based on this connection. However, of all the techniques Winston discussed when analysing the 

problem, he may have overlooked a key contribution a graph-based approach might mean for 

understanding the main verb in the image by the simple detection of co-occurring objects in the 

image context. We assume that when certain objects co-occur near each other, an obvious but 

latent action (or verb) is inferred (as in when images contain human, tomatoes and knife, the verb 

―cutting‖ is elicited; or when human, paper and pen co-occur, the elicited verb is ―writing‖). But 

there are some other difficult types of verbs for the machine to understand. How does the system 

understand the concept of Pick up or Replace; Put or Give; Fall or Lift? –just to mention a few. 

                                                           
5
 Patrick Winston’s lecture can be found on MIT OpenCourseWare’s Youtube Channel: 

http://youtu.be/gvmfbePC2pc 
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Recognizing these actions is still a very high-level of abstraction and is a crucial part of scene or 

event recognition of images. We mention this because any serious future studies of images using 

both games and movie content will not only have to go beyond the recognition of individual 

objects in an image, but also go towards identifying what type of action(s) the image is depicting 

and possibly the emotional valence of the identified scene class. This type of research is also 

very useful for the analysis of image-retrieval using games image content. On the other hand, 

reality is a domain much of the current research in image analysis has resided and so applying 

any existing technique or reality-based data to fantasy worlds –as found in some movie genres or 

video game content— may prove problematic. This is because the image content of these other 

worlds attempt to provide additional meanings to what may pass as familiar objects or scenarios, 

or even provide unfamiliar objects and scenarios entirely.  

 

2.3     The Event Triples 

In their analysis of language models for visual recognition, (Le et al. 2013) forwarded their 

thoughts on what may be seen as an increasingly conflating dichotomy between the textual and 

image worlds. They had argued that ―Computational linguistics has created many tools for 

automatic knowledge acquisition which have been successfully applied in many tasks inside the 

language domain, such as question answering, machine translation, semantic web, etc.‖ (1) 

Interestingly, in their paper they had asked whether such knowledge generalizes to the observed 

reality outside the language domain, where well-known image datasets can serve as a proxy for 

observed reality: ―In particular, we aim to determine which language model yields knowledge 

that is most suitable for use in Computer Vision.‖ They had set out to test a number of language 

models and a linguistically minded knowledge base in the context of Human action recognition 

and Objects in context, using the premise of the semantic triple. Their task of human action 

recognition is to determine if a human exists in an image and then proceed to recognize the 

<subject, verb, object> triples based on objects (e.g., car, horse) and scenes (the place that the 

actions occur, e.g., countryside, forest, office) recognized in images. In this scenario, they only 

consider images with human actions so the ―human‖ subject is always present. The second task, 

Objects in context involved the prediction of the most likely identity of an object given its 

context as expressed in terms of co-occurring objects in the same way we had discussed 

distributional semantic models above.   Le et al. tested their language models in two ways: 1. By 
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directly comparing the statistics of the linguistic models with statistics extracted from the visual 

domain. 2. By comparing the linguistic models inside the two computer vision applications, 

leading to a direct estimation of their usefulness. They had hoped to address these research 

questions: 1. Is the knowledge from language compatible with the knowledge from vision?         

2. Can the knowledge extracted from language help in computer vision scenarios? 

 Kläser (2010), in his dissertation, focuses on the problem of action recognition in realistic 

video material, such as movies, internet and surveillance videos. In order to be more precise 

about his goal, he had to clarify the meaning of an action and action recognition by an analogy to 

languages. Although he did not explicitly mention the triple in his proposal, he does concede to 

the fact that every action will compose of a subject, verb and object element as a means to 

decomposing the meaning of a parsed action. Those are in turn triples inevitably. 

 

      Figure 2.3 Texts and Images as a Multimodal semantic unit 

   

 Similar to Le et al., Kläser also took inspiration for his image model from natural language 

models. He explains, ―Human language is composed of sentences which are themselves 

structured with subjects, verbs, and objects. In order to describe the visual content of a video in 

an automatic fashion, a structure similar to that of a language is necessary.  From an algorithmic 

point of view, this translates to the detection of (a) subjects (or actors) which most commonly are 

humans; (b) objects which can be other humans, they can be objects, and they also include 

environments in which the subject is operating; (c) verbs which describe actions of the subject as 
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well as interactions between subjects and objects. In this sense, an action can be precisely 

localized in a short interval in time, yet it can also refer to an event that lasts for a rather long 

time period.‖ (5) While we may not be analyzing video or internet content in this study, we 

mention Kläser‘s work here because it has relevance for the different types of scene or action 

recognition which can be applied to the analysis of image content from relevant games covers 

and videos. Understanding why the formation of triples assists in event recognition is key in any 

in-depth future study in this area. Beyond the triples, an understanding of action taxonomy was 

surveyed in (Poppe, 2010) and defined in (Moeslund et al. 2006) where an action primitive (or 

movement), can denote an action, and activity. An action primitive describes a basic and atomic 

motion entity out of which actions are built. An activity is a set of several actions. Activities can 

be understood as larger scale events that often depend on the context and the environment in 

which the action happens. 

 Interestingly, Le et al. were not the only ones keen on applying their knowledge of language 

models in the visual world. (Bruni et al. 2013) also proceeded to create a Visual Semantics 

Toolkit (or VSEM) 6 to assist computational linguists with cross-over research interests to 

explore Computer Vision within an accessible framework. The VSEM‘s toolkit‘s all-in-one 

integrative approach had hoped to provide investigators with a clearly recognizable processing 

pipeline for representing and working on image data. Within the Visual Semantics premise, an 

image is regarded as a document and described by general features kept in a dictionary. In the 

same way, a text document can be described by a related bag of words; an image document can 

also be described by a corresponding bag of words also, or features of visual words.  

 The basic pipeline for image representation is as follows: First, interesting local patches of an 

image are found by what we call a detector. These are subsequently described by descriptor 

vectors and mapped to their respective visual words from a pre-made visual dictionary. A visual 

word can be regarded as a cluster of similar descriptor vectors. In this manner, the whole image 

can be described by a visual word histogram. To arrive at a concept representation, histograms of 

images tagged with the same concept are aggregated. As a result, one of the ways in which 

object and human detection is possible in images is through the process of grouping these classes 

of images in a training process and then comparing the resulting histogram with unknowns.  A 

                                                           
6
 VSEM is based on Matlab. We tested it for this study but we always ran out of memory when processing. 

Depending on the size of the data it can be a resource hog, crashing as a result. 
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pipeline for visual representation may likely be divided into these steps:  i. vocabulary creation, 

and ii. image representation, where a common vocabulary of visual words is created by 

clustering lower level image features from a training set. After creating the vocabulary, the 

system proceeds to represent images in terms of bag-of-visual-words histograms using the 

following steps:  i. the extraction of local image features, ii. mapping of local features to higher-

level visual words contained in the vocabulary, iii. creation of bag-of-visual-words histograms, 

based on the mapping obtained in the previous step, and iv. spatial binning.  

 Differing settings can be adjusted based on the experimental objective inside the VSEM 

toolkit, (Bruni et al., 2013). Tentatively, a visual pipeline in VSEM could have the following 

settings:  Descriptors: SIFT descriptors with gray colour scale settings. 

  Dictionary: k-means dictionary. 

   Encoding: Hard quantization. 

Spatial binning: 2 square divisions, 3 horizontal divisions, giving rise to a feature 

                            vector eight times the size of the number of visual words. 

 

 

    Figure 2.4   Training and testing visual words 
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Descriptor settings can be adjusted accordingly depending on experimental objectives. (Tomasik 

et al. 2009) describe their pipeline using a similar SIFT-based descriptor as above (SIFT is the 

Scale Invariant Feature Transform). They had used a standard "bag of visual words" image 

classifier, as implemented in Vedaldi's open-source Matlab package, (Vedaldi and Fulkerson, 

2010). To be able to extract these bags of words, their work involved the extraction of 10,000 

SIFT features from each image. They proceeded to collect a subset of these features from each 

training image and applied the hierarchical k-means clustering to construct a tree of cluster 

centers in SIFT-feature space. Each of these vectors can be thought of as a "visual word" that 

characterizes an image in some way. It is from this tree that they transformed each image into a 

"bag of words" by associating each of the image's SIFT vectors with the words in the tree to 

which it is closest. The result is a histogram of frequency counts for each word, subsequently 

applied to standard information-retrieval techniques like term frequency-inverse document 

frequency (TF-IDF) weighting and cosine similarity. We use the latter distance measure for our 

images in this study. On the other hand, Tomasik et al. classified their test images using a 

distance-weighted variant of k-nearest neighbour, in which each training image "votes" for its 

own category label in proportion to how much closer it is to the test image than the average 

training image, an insight we will also build on when discussing error pairs. 

 Obviously, we now notice how so much of the pipeline for image-processing contains some 

similarities with text-processing pipelines with the former borrowing a lot of concepts and 

procedures from the latter, even though texts do not understandably have a SIFT in their 

pipelines. In developing tools for image processing, a lot of the concepts used to analyze texts 

filtered into the realm of images as well: with visual words and vocabulary assuming an entirely 

new meaning. Sift-based bag of words models can be used to achieve so many varied image 

recognition tasks, including the usual facial/object detection and recognition, as well as higher 

level concepts like event recognition. However, one of the drawbacks when using the bag of 

words model is the noted loss of spatial information which does provide an additional semantic 

context in the analysis of an image. How useful is a visual sentence if it is not able to make sense 

of the regions within the image? (Tirilly et al. 2008) point this out when discussing language 

models for image categorization: 

Two shortcomings of this representation are the loss of the spatial information of 

visual words and the presence of noisy visual words due to the coarseness of the 
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vocabulary building process. On the one hand, we propose a new representation of 

images that goes further in the analogy with textual data: visual sentences, that 

allows us to ―read‖ visual words in a certain order, as in the case of text. We can 

therefore consider simple spatial relations between words. We also present a new 

image classification scheme that exploits these relations. It is based on the use of 

language models, a very popular tool from speech and text analysis communities. On 

the other hand, we propose new techniques to eliminate useless words, one based on 

geometric properties of the keypoints, the other on the use of probabilistic Latent 

Semantic Analysis (pLSA). (1) 

The use of spatial information for bag of words models has seen resurgence, where the Spatial 

Pyramid Matching technique is the most notable. One could argue that for the most part, 

languages are just coded images with different levels of abstraction and vice-versa. In this regard 

we note how the progress of text processing techniques have been reconceptualised in image 

analysis, producing what is already identifiable, like visual words, vocabulary and visual 

sentences as mentioned above. Bae and Juang (2010) applied the idea of linguistic parsing to 

generate the Bag of Words feature for image annotation. Specifically, images are represented by 

a number of variable-size patches in a multidimensional incremental parsing algorithm.  

 

Figure 2.5 The left figure illustrates the image space and its composition. A hedgehog image may 

be seen as a collection of local image patches which are from different subspaces (primitive, 

texture, color, etc.) of varying dimensions and complexities. The right figure shows a few 

automatically learned hybrid image templates learned by composing the four types of patch 

prototypes. For each object/scene category, four example images are shown, followed by four 

bands of the hybrid templates. 
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Since each image patch represents a concept akin to how words represent a concept, they are 

parsed accordingly.  Each patch may correspond to different properties around the image‘s 

segment (color, texture, location etc.,). Then, the occurrence pattern of these parsed visual 

patches is fed into a LSA (Latent Semantic Analysis) framework.  

 Other techniques use a multiple windowing system over the image segment and are designed 

to detect the same low-level features and then map them to a high-level concept inside the 

window. Consequently, instead of having a single window detecting only a single concept, 

perhaps, a cow, we instead have patches of variable sizes located on different segments of said 

cow being able to resolve which parts of the cow they are (as in, the cow‘s head, eyes, tail, and 

legs etc.,). Other techniques take account of the accretion of completely different visual words 

from completely different image datasets in order to build completely different vocabularies, and 

then later merge them in a larger codebook. (Lopez-Sastre et al. 2013) describe their Visual 

Word Aggregation (VWA) process: 

…recent category-level object and activity recognition systems work with visual 

words, i.e. vector-quantized local descriptors. These visual vocabularies are usually 

built by using a local feature, such as SIFT, and a single clustering algorithm, such as 

K-means. However, very different clustering algorithms are at our disposal, each of 

them discovering different structures in the data. (1) 

Combining different vocabularies into one has the effect of countering the spatial loss problem 

that comes from building and using a single vocabulary. In Lopez-Sastre et al.‘s approach, 

viewing each visual vocabulary as one unit, they offered a Visual Word Aggregation 

methodology to learn a common codebook, where the strength of the visual vocabulary 

construction process is increased, and the size of the codebook is determined in an unsupervised 

integration, and where more discriminative representations are obtained. They also added a 

contextual component to their visual words by incorporating the spatial neighbouring relation 

between the local descriptors in the VWA process, culminating in the Contextual-VWA (C-

VWA) approach. In their own words: ―We integrate over segmentation algorithms and spatial 

grids into the aggregation process to obtain a visual vocabulary that narrows the semantic gap 

between visual words and visual concepts.‖  (1) They had also used a distance metric on 

clustered features to measure how unlike or similar certain objects are and cast that as a basis to 

classify these same objects and events.  
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 However, while the aforementioned techniques and pipelines have been enlightening, we are 

still left wondering how exactly the creation of low-level dictionary features and their distances 

from each other actually map to a higher level understanding of human action recognitions, 

objects in context prediction or even scene classifications especially in the view of closing the 

semantic gap? Is the semantic gap merely the gap or distances between high-level features? Or 

even low-level descriptor patterns? Do we still need an intermediate process between these 

features and the concepts they might also represent? This is an important question since active 

research is slowly evolving beyond the mere identification of individual objects to analyzing 

how these objects connect or relate with one another in an image— either in a hierarchical 

action- based taxonomy or a loose graphical structure. Regardless of strategy, it is noteworthy 

pointing out that the triple as a concept could be used to understand an image either as a lower 

level feature (as in the numeric colour values of a pixel or shape, colour and texture) to the 

extremely high-level descriptions of an event, scene or human action that could possibly emerge 

from a higher level analysis. All the same, the lingering problem of the semantic gap still 

remains since there is no clear linkage between the lower level triples and the higher level ones.  

 

2.4     Problem Background  

Studies able to initially identify with the challenges of the semantic gap from an image content 

analysis viewpoint were those in the image-retrieval realm, according to (Smeulders, et al. 2004). 

Content-based image-retrieval (CBIR), which was suggested in the early 1990s, is a technique 

for automatically indexing images by extracting their (low-level) visual features, such as color, 

texture, and shape, with the retrieval of images based entirely on the indexed image features, 

(Kherfi et al. 2004). It was theorized that relevant images can be retrieved by calculating the 

similarity between the low-level visual contents, (Datta et al. 2008). However, because of the 

existing semantic gap between those low-level visual features and formulated user queries, that 

approach tended to provide unsatisfactory results. As a result, improved image annotations were 

suggested. The objective of image annotation is to automatically assign keywords to images, 

enabling image-retrieval based on aligned query images by keywords. As explained by (Tsai, 

2012), ―Image annotation can be regarded as the image classification problem: that images are 

represented by some low-level features and some supervised learning techniques are used to 

learn the mapping between low-level features and high-level concepts (i.e., class labels). One of 
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the most widely used feature representation methods is Bag of Words (BoW).‖ (1) Although 

there are merits to annotating images that are assigned keywords, it still suffers from some 

performance errors and also the ―human-in-the-loop‖ problem since the amount of visual and 

video data has since exploded, making manual annotation impractical on such a large scale 

(though we still see efforts like LabelMe, Amazon Mechanical Turk, and the ESP Game, that 

attempt to encourage annotation with a game or reward element to it—those are still not 

practical for web scale image indexes). Imagine assigning a keyword to every single static image 

frame in a movie or video game. Perhaps the intention is to train a few annotated images and 

then test it on the un-annotated remaining. But therein exists another problem: No two scenes are 

intended to be exactly alike, informing the need to re-appraise the annotation strategy towards a 

visual understanding of image fundamentals and a lesser need for a human annotator in the loop. 

Tsai explains this further, ―Typically, images are represented as points in high dimensional 

feature space. Then, a metric is used to measure similarity or dissimilarity between images on 

this space. Thus, images close to the query are similar to the query and retrieved. Although CBIR 

introduced automated image feature extraction and indexation, it does not overcome the so-

called semantic gap....‖ (1) 

 The semantic gap problem still lingers on despite the massive amounts of human annotation 

and semi-supervised learning approaches taken to classify images. ―The notation of similarity in 

the user‘s mind is typically based on high-level abstractions, such as activities, entities/objects, 

events, or some evoked emotions, among others. Consequently, retrieval by similarity using low-

level features like color or shape will not be very effective. In other words, human similarity 

judgments do not obey the requirements of the similarity metric used in CBIR systems.‖ Tsai 

(2012:1). We could argue on the contrary that perhaps images with darker visuals or some deep 

amounts of red may likely correlate with the emotions of fear, sadness, gore or even death, and 

those with some brightness may signify hope, joy peace and so on—such connotations do 

suggest that low-level features may have some direct input to capturing higher level emotional 

types contrary to Tsai‘s arguments; however, this is not always the case (the cover art image of 

Silence of the Lambs being a classic example and many gothic images that employ bright 

luminance).  

 On the other hand, say, we have games images and need to classify them based on action and 

emotion. How do we go about that? Some type of annotation may be required at the start, since 
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we need to take some positive example images that depict the classes of fear, courage, pain, joy, 

fun and so on, and then proceed to train our images as seeds to discover other similar types of 

images in the same group. It is still a very high-level of abstraction for the machine. On the other 

hand we could allow the machine to recognize the actions in the scene of an image and then 

proceed to make inferences as to what type of emotion those actions may elicit. If the first 

recognition part is solved, then the inference part is made easier. But both are very difficult 

problems to date because this process goes beyond just assigning keywords to images. For 

instance, when humans observe a scene, three simultaneous actions happen: i. High-level 

recognition (classification) ii. Identification of specific items in the scene (annotation).  iii. 

Localization of scene components (segmentation).  

 All of these individual tasks contribute to understanding what the whole scene is all about and 

what class of emotion could be applied to it. When machines do the same, current methods at 

different levels of abstraction may tend to: i. Provide a single label to an image. ii. Provide 

multiple labels to an image without localization.  iii. Separate imagery between background 

clutter and foreground objects, all of which can be computationally expensive tasks. This has not 

deterred some recently proposed models which have attempted to capture the simultaneous 

occurrence of multiple objects in an image along with their high-level scene classes. This 

strategy not only limits the entire dependence of human annotators in labelling images, but has 

also resulted in more accurate semantic representations of the observed images.  Once the visual 

object recognition algorithm recognizes the individual objects in the image, it can then proceed 

to make inferences as to what class of scene or action the image belongs to or what type of 

emotional value it evokes, based on the nature of the co-occurring objects it has discovered in the 

image. 

 

2.5     Image-retrieval with Semantic Features 

A few techniques have been proffered to deal with the semantic gap presented in images and 

their textual descriptions. A key difference between content-based and text-based retrieval 

systems is the fact that the human interaction is a crucial part of the latter system. Humans tend 

to use high-level features (concepts), such as keywords, text descriptors, to interpret images and 

measure their similarity.  Obviously, the features automatically extracted using computer vision 
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techniques are mostly low-level ones (colour, texture, shape, spatial layout, etc.), and 

consequently, there is no direct link between the high-level concepts and the low-level features.  

 Even though many sophisticated algorithms have been developed to describe colour, shape, 

and texture features, (depicting progress in the right direction), on the whole, these algorithms 

cannot yet adequately model image semantics and do have numerous limitations when dealing 

with broad content image databases. Furthermore, so much of the available image datasets 

currently under active study largely concern the analysis of images around everyday objects 

(cars, planes, faces, chairs etc.), exposing the fact that there has been so little study of image 

content around reality replicas or imaginary concepts that may appear as modelled figures in 

drawings or games. Applying a generic facial recognition algorithm that has been trained on 

normal images to images games‘ covers is likely to reveal how much failure can result from the 

system attempting to grasp what constitutes an approximation or exaggeration of reality.  For 

instance, the images encountered for this study either showed a lot of blurry, small, blank or 

almost empty faces; or revealed caricatures that depicted monsters. A generic facial recognition 

system will likely fail in detecting those types of anomalies unless a dedicated dataset with the 

target content has been properly marked out and trained for the purpose of detecting the types of 

peculiar faces or monsters that may appear in video games. (As noted earlier, a small script was 

written for this study to clearly mark out regions of interest in the games image content for a 

Haar-cascade classifier). Delineating a region of interest in an image is a semantic task that 

enables the algorithm to take special notice of particular regions of image contents during the 

training process.  

 However, there is a difference between marking regions of interest for training possibly using 

a tool like the Object Marker and the dedicated process of image segmentation. When we simply 

mark out regions of interest around objects in images we only desire that the end result be the 

simple detection of similar objects in varied images usually with a descriptive bounding box 

around the object. Segmentations tend to outline the objects in their own field.  

 There are two types of segmentations as well. Normal segmentation models that only depend 

on the pixel values of the affected regions, and Landmark-based segmentation models where a 

lot more attention is paid to the entire surface as well as the sub-surface of the affected regions. 

Object-delineated annotation for segmentation in the latter case is a usually more involved 

process when compared to a simple box-based or pixel-value marking since it generally involves 
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the use of more complex landmark annotations and precise measurements that subdivides an 

object surface into many smaller sub-parts: see (Cootes, 1995) research into Active Shape 

Models (ASM) and Active Appearance Models (AAM).  

 However, we will only focus on regional markings as training pre-process for images in this 

study since we had also used box-based regional markers to determine image areas and thus 

objects of interest. For instance, if we wanted to make our training algorithm recognize a shoe in 

an image, we would have to manually mark out many training images containing different types 

of shoes. During the testing phase when the unseen data has to recognize shoes, the areas 

occupied by shoes will have a bounding box to signify a resolved recognition or could be 

segmented in the displayed result. Nonetheless, as stated before, ASM-based segmentation is a 

more involved process both in the annotation and training phases given that its recognition 

accuracy is expected to be a lot higher. ASM-based segmentation models are used in tasks that 

demand precise recognition, like facial recognition. While, on the other hand, normal pixel value 

based segmentations are used in simple object detection processes. This is also reflected by 

(Nalina and Muthukannan, 2013): 

… dividing an image into sub partitions on the basis of some similar characteristics 

like color, intensity and texture is called image segmentation. The goal of 

segmentation is to change the representation of an image into something more 

meaningful and easier to analyze. Image segmentation is normally used to locate 

objects and boundaries that are lines, curves, etc. in images. Segmentation can be 

done by detecting edges or points or line in the image. When we detect the points in 

an image then on the basis of similarities between any two points we can make them 

into separate regions. (1) 

Consequently, we are now observing a higher form abstraction beyond colour, location, and 

texture to that of a set of regions in an image. Because of segmentation a set of regions is 

produced. Each region in turn is a set of image elements belonging to that set. The grouping of 

these elements into regions states a relationship between them: they are believed to belong to the 

same object. That is, when the image elements in one region share a set of properties, they are 

said to be similar. Between different adjacent regions there is discontinuity. Most often, all 

elements in each region have to be connected with each other. This is one constraint which can 

be applied on each region, the connectivity constraint. Often, each region also has to fulfill 
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certain regularity; for instance being smooth to some degree or have a fixed topology. Typically, 

segmented regions are made to represent a single object or concept. Their spatial layout in the 

image can be represented in a graphical tree structure with the familiar root and branching leaf 

nodes that can be found in some in textual analysis (like trees in context-free grammars). 

Segmented regions with different colors can also represent the canonical ground truth
7
 for a class 

of images.  Johnson et al. (2006) describes how semantic labels affect the understanding and 

representation of an image since the process encompasses the problems of object detection, 

recognition, and segmentation, therefore expanding the range of relevant semantic labels. In 

other words, a segment constitutes a semantic label and the automated regional segmentation of 

an image region is also a type of annotation since semantic labels are assigned. Johnson et al. 

also highlight how the newest algorithms tend to consider image regions in the context of the rest 

of the image, counting other clever approaches for retrieving images from automatically 

classified image libraries. (Li et al. 2011) seem to concur with this approach in their work: 

Our proposed model captures the co-occurrences of object and high-level scene 

classes. Recognition becomes more accurate when different semantic components of 

an image are simultaneously recognized, allowing each component to provide 

contextual constraints to facilitate the recognition of the others. In addition, both 

object recognition within a scene as well as scene classification can benefit from 

understanding the spatial extents of each semantic concept. Our model can recognize 

and segment multiple objects as well as classify scenes in one coherent framework. 

(1) 

Accordingly, multiple object segmentations and labelling are said to actually feed the event or 

scene recognition process. Their spatial structure in relation to one another in the image captures 

another important semantic property, spatial contexts for objects (the sky region is always up, the 

ground or water is always below, the clouds in between, and anything else, just above the 

ground). This is also not to say that the fast detection of multiple objects in an image is already a 

solved problem. It is still a hard problem. So many familiar objects may appear different when 

viewed from different angles, or under poor illumination, and this tends to disturb the accuracy 

of the detection process. Furthermore, occlusions, deformations and the great variety some 

objects can take, can also affect how they can be detected. This is why so much work has been 

                                                           
7
 Ground truth refers to the accuracy of the training set's classification for supervised learning techniques. 
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done in perfecting image descriptors that can consistently locate and describe images using 

invariant properties. This was highlighted by (Nixon, 2008): 

Other important invariance properties naturally include scale and position and also 

invariance to affine and perspective changes. These last two properties are very 

important when recognising objects observed from different viewpoints. In addition 

to these three properties, the descriptors should be a compact set. Namely, a 

descriptor should represent the essence of an object in an efficient way. That is, it 

should only contain information about what makes an object unique, or different 

from the other objects. The quantity of information used to describe this 

characterisation should be less than the information necessary to have a complete 

description of the object itself. Unfortunately, there is no set of complete and 

compact descriptors to characterise general objects. Thus, the best recognition 

performance is obtained by carefully selected properties. As such, the process of 

recognition is strongly related to each particular application with a particular type of 

object. (281) 

The last point is important for us because it helps to explain the reason why so many of the tools 

and algorithms studied for this thesis research had solutions that were simply optimized for a 

particular dataset, making it either impossible to suddenly use a game-cover image data for 

processing; or if it were even possible to use them, they resulted in so many errors because the 

studied algorithms could not generalize their learning models to new domains. Of course, this 

might mean the need to tweak a lot from the settings of the utilized descriptors or overhauling 

the entire code behind the tools themselves in which time did not just permit. Essentially, 

descriptors that have been used to build a visual vocabulary around facial recognition; gender or 

emotional recognition, cannot suddenly be used to analyze a chair for instance. There are not that 

many applications that are generalized. And because there is no set of complete and compact 

descriptors that can characterize general objects, it remains an open area of research. An 

integrated framework may have large and diverse datasets in addition to self-contained tools of 

varied kinds in a single framework, and is able to select the appropriate algorithm and descriptors 

for processing the appropriate testing image. In the course of this study it was discovered that 

tens of these types of tools are still in a developmental or proof of concept stage and were not so 

practical for the analysis of games image content. 
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2.6     Levels of Retrieval 

Extensive experiments on various visual object recognition techniques and CBIR systems show 

that low-level contents often fail to describe the high-level semantic concepts in a user‘s mind, 

hinting that so much remains to be done to match the accuracy levels of text-based retrieval 

systems. This is informed by the fact that Computer Vision is a far more difficult problem and 

initial user anticipations usually run high. While progress is still being made, the performances of 

these systems still fall short of current user‘s expectations. In the context of CBIR, there are three 

query levels according to (Min and Yang, 2010), also marking the levels of difficulty 

surrounding the problem: 

Level 1: Retrieval by primitive features such as colour, texture, shape or the spatial 

location of image elements. Typical query is query by example, ‗find pictures like 

this‘. 

Level 2: Retrieval of objects of given type identified by derived features, with some 

degree of logical inference. For example, ‗find a picture of a flower‘. 

Level 3: Retrieval by abstract attributes, involving a significant amount of high-level 

reasoning about the purpose of the objects or scenes depicted. This includes retrieval 

of named events, of pictures with emotional or religious significance, etc. Query 

example, ‗find pictures of joyful crowd‘. Levels 2 and 3 together are referred to as 

semantic image-retrieval, and the gap between Levels 1 and 2 as the semantic gap. 

(2) 

 (Min and Yang, 2010) also point out the discrepancy between the limited descriptive power of 

low-level image features and the richness of user semantics as a ‗semantic gap‘. Users in Level 1 

retrieval are usually required to submit an example image or sketch as a query. But what if the 

user does not have an example image at hand? This results in the reliance of semantic image-

retrieval as a more convenient means for users since it supports query by keywords or by texture. 

Conversely, in high-level semantic-based image-retrieval, low-level image features can be 

related with high-level semantic features as a way of reducing the ‗semantic gap‘.  Low-level 

image features and high-level semantic features exist in two completely different contexts 

hinting of an even wider gap than realized. Some have stated the need for ontologically-driven 

approaches as the appropriate to model as these take additional contexts into account as a 

strategy to narrowing this gap. (Bannour and Hudelot, 2011) had also forwarded three types of 
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hierarchies for computer vision: i. A language-based hierarchy, ii. visual hierarchy and iii. a 

semantic hierarchy: based on both semantic and visual features, which encompasses an 

ontological-driven process, unlike other techniques, and allows for a semantic description of 

images. They argue that this is best suited for image-retrieval systems because they model the 

semantics of images through relationships that help reasoning about it and understanding its 

meaning. In addition, they observed that an appropriate ontology can make explicit the 

relationships between the labels and concepts. Tu et al. (2005) seem to have taken the language-

based hierarchy approach quite literarily. Theirs is a graphical approach that uses a type of 

hierarchy inspired by the parsing graph of languages. In their work that attempts unifying 

segmentation, detection, and recognition, they explain: 

The parsing algorithm optimizes the posterior probability and outputs a scene 

representation in a ―parsing graph‖, in a spirit similar to parsing sentences in speech 

and natural language. The algorithm constructs the parsing graph and re-configures it 

dynamically using a set of reversible Markov chain jumps. This computational 

framework integrates two popular inference approaches – generative (top-down) 

methods and discriminative (bottom-up) methods. The former formulates the 

posterior probability in terms of generative models for images defined by likelihood 

functions and priors. The latter computes discriminative probabilities based on a 

sequence (cascade) of bottom-up tests/filters. (1) 

Being a set of reversible Markov chain jumps, their image parsing algorithm is not rigid (as in a 

series of pre-determined fixed templates) and must construct the parsing graph on the fly. Hence, 

making their ontological framework a statistically driven one with each type of chain jump 

corresponding to an operator for reconfiguring the parsing graph. Generated templates are a lot 

more dynamic in this type scene interpretation, following the values and outcomes from priors 

and posteriors on successive nodes. This may find uses in the parsing of games image content 

that require re-adapting reality. However, this purely data-driven approach in truth is a little 

harder to achieve requiring more sophisticated algorithms. On the other hand, (Min and Yang 

2010) tend to agree more with Bannour and Hudelot‘s line of thinking regarding ontology 

models, but theirs is a hybrid approach. They proceed to suggest five techniques that can connect 

the different contexts: i. Using object ontology to define high-level concepts, ii. Using machine 

learning tools to associate low-level features with query concepts, iii. Introducing relevance 
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feedback (RF) into the retrieval loop for continuous learning of users‘ intention. iv. Generating 

semantic templates (ST) to support high-level image-retrieval, v. Making use of both the visual 

content of images and the textual information obtained from the Web in situations where WWW 

(the Web) images and pages are retrieved as a type of context for the images. Indeed, Min and 

Yang‘s opting for a more synthetic approach that embraces the semantic model as well as the 

machine learning model, including the human model thrown in the mix for a relevance feedback 

is an attempt to ascertain a feasible fusion solution for web-based image-retrieval. Evidently, in 

more practical web usage contexts, people will prefer to search for images using textual 

descriptions. The current state-of-the-art on the web still finds texts and textual-based metadata 

controlling the way searches are made and web items found. On the other hand, with the 

increasing use of different mobile devices, there is a growing interest in applications that enable 

a Level-1 retrieval type visual task, especially with faster image processing, because at the 

moment, most image applications in this area are slow and far from perfect. Graphical 

approaches that parse images on the fly should be welcomed. But there is still a problem of 

processor and network bottlenecks and speed to contend with. When images are captured on a 

mobile device, should the processing be done on the same device, or should the app extract 

features and send them to a remote server? Transmitting whole images to a faster remote server 

is not practical (images can run in the megabytes, costing more to transmit from a phone). 

Processing the images locally on the phone, with current techniques, is not so practical as well 

(processor speeds and storage is limited). A compromise will likely involve extracting features 

from the images on the mobile device and transmitting these features to a remote server. But 

even this can be an involved process for the mobile devices, delaying the much needed 

instantaneous response for the image processing tasks. This is why so much research focus has 

gone the direction of developing faster and more accurate feature descriptors to take advantage 

of these types of contexts. Graphical approaches to parsing images have been viewed as a faster 

class of techniques that can be utilized in contexts where response times are critical. It is 

anticipated that real-time feature-driven visual tasks will likely surge when recognition 

accuracies increase for various types of search contexts that are meaningful for the user. This 

underscores the key importance of feature descriptors in conflating the semantic gap, bridging 

input signals to learnable features. It also highlights the reason why our scope for this study will 
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focus on these descriptors as described in the next Chapter. We will examine how accurate these 

feature descriptors are in different image-retrieval contexts.    

 

2.7     Object-ontology 

In systems utilizing simple semantics, different intervals may be defined for low-level image 

features, with each interval corresponding to an intermediate-level descriptor of images. For 

example: ‗light green, medium green, dark green‘. These descriptors form a simple vocabulary, 

the so-called ‗object-ontology‘ which provides a qualitative definition of high-level query 

concepts (notice that the descriptor also appears as a triple). Database images can be classified 

into different categories by mapping such descriptors to high-level semantics (keywords) based 

on our knowledge. For example, ‗sky‘ can be defined as region of ‗light blue‘ (colour), ‗uniform‘ 

(texture), and ‗upper‘ (spatial location) -- again, notice the triple defining an object or region‘s  

meaning in terms of  colour, texture and location in the image. 

 Hare et al. (2006) conducted a survey around content-based image-retrieval focusing on the 

lack of coincidence between the information that one can extract from the visual data and the 

interpretation that the same data has for a user in a given situation. At the end of the survey the 

authors concluded that: 

A critical point in the advancement of content-based retrieval is the semantic gap, 

where the meaning of an image is rarely self-evident. The aim of content-based 

retrieval systems must be to provide maximum support in bridging the semantic gap 

between the simplicity of available visual features and the richness of the user 

semantics. (2) 

Some techniques which aim at bridging the semantic gap in retrieval systems have mostly used 

an auto-annotation approach, where keyword annotations are applied to unlabelled images. Hare 

et al. discuss some short-comings of auto-annotation due to their lack of richness when compared 

to real image annotations in archival collections. They go on to suggest that perhaps a way 

forward is to combine shareable ontologies to make explicit the relationships between the 

keyword labels and the concepts they represent. For example, a number of auto-annotation 

techniques directly associate descriptors with labels, without any concept of objects. The first 

attempt at automatic annotation was perhaps the work of (Mori et al. 1999) which applied a co-

occurrence model to keywords and low-level features. (Duygulu et al. 2002) will later use that 
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insight to learn a lexicon and apply it to a fixed image vocabulary.  (Zhao and Grosky, 2002) 

proposed an approach to bridging the semantic gap using Latent Semantic Indexing (LSI). This 

necessitated the creation of a semantic-space involving the use of linear algebra to associate 

images and terms, thus, avoiding the need for words or labels (the Latent Semantic Indexing is a 

technique originally developed for textual information retrieval).  Nonetheless, the surging 

interest amongst some researchers on the use of ontologies and semantic web tools with 

multimedia collections seems to be on the rise were also on the rise on par with data driven 

approaches. ―Semantic descriptions of non-textual media can be used to facilitate retrieval and 

presentation of media assets and documents containing them. Existing multimedia metadata 

standards, such as MPEG-7, provide a means of associating semantics with particular sections of 

audio-visual material. While technologies for multimedia semantic descriptions already exist, 

there is as yet no formal description of a high quality multimedia ontology that is compatible 

with existing (semantic) web technologies. ‖ (Hardman, 2008). 

 In a study of annotations explain their observations: ―Due to the well-known semantic gap 

problem, a wide number of approaches have been proposed during the last decade for automatic 

image annotation, i.e. the textual description of images. Since these approaches are still not 

sufficiently efficient, a new trend is to use semantic hierarchies of concepts or ontologies to 

improve the image annotation process. This paper presents an overview and an analysis of the 

use of semantic hierarchies and ontologies to provide a deeper image understanding and a better 

image annotation.‖  (Bannour and Hudelot, 2011:1) How practical or feasible these are in the 

context of the semantic gap problem remains to be seen. Earlier work on semantically describing 

images using ontologies as a tool for annotating and searching images more intelligently was 

described by (Schreiber et al. 2001). A number of authors like (Hare et al. 2006) have also 

described efforts to move the MPEG-7 description of multimedia information closer to ontology 

languages such as RDF and OWL. However, in their work, Bannor and Hudelot also fixated on 

the role of context as a key driver in disambiguating images:  

Always in the quest for models that could help to map successfully low-level features 

into high-level semantic concepts, some approaches make use of "contextual 

knowledge" by building semantic hierarchies or integrating a priori knowledge to 

improve image analysis and interpretation. Indeed, objects in the real world are 
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always seen embedded in a specific context, and the representation of that context is 

essential for the analysis and the understanding of images. (1) 

Again, their observation merely echoes what we have previously discussed on label co-

occurrence and distributional semantic models all of which tended to use the cluster of 

recognized objects in an image as a context. (Bannour and Hudelot, 2011) on the other hand 

seem to be hinged on topology as an additional context for a resolution constraint: 

Contextual knowledge for image interpretation may stem from multiple sources of 

information, including knowledge about the expected identity, size, position and 

relative depth of an object within a scene. For example, topological knowledge can 

provide information about which objects are most likely to appear within a specific 

visual setting, e.g. an office typically contains a desk, a phone, and a computer, but it 

is unlikely that it contains a bed. Spatial information can also provide information 

about which locations within a visual setting are most likely to contain objects, e.g. 

in a beach scene, the sky is usually placed at the top, while the sea is below. Given a 

specific context, this kind of knowledge can help reasoning on data to improve image 

annotation. (1) 

 Graph theory and a graphical approach to the analysis of objects as a unit and objects in 

relation to others in an image is key. We observe how much the topological analysis of objects 

and regions in images has informed the work of the likes of (Cootes, 1995), who has used both 

regional segmentations and graphical analysis to recognize faces and objects, in his Active Shape 

Models proposal. However, it is likely that Bannour and Hudelot‘s idea of spatial analysis and 

topology may not be in the mould of entirely data-driven templates like Coote‘s, which includes 

additional sub-segmentation of object surfaces beyond the identified regional segment as an 

object unit. Topology in this regard is utilized differently by Cootes. Bannour and Hudelot‘s 

much simpler position on the other hand is the notion that ontologies are a means of capturing 

the relevant knowledge of a domain, thereby providing a common understanding of this domain 

knowledge. Furthermore, it includes the determination of the acknowledged vocabulary of this 

domain, as well as giving the explicit definition of the vocabulary (terms) and the relations 

between these vocabularies in formal models at different levels. Their notion of spatial analysis 

does not zero in on sub-surface segmentation, but instead view the concept from a broader 

position of inter-object structure and relationship that is peculiar to certain types of scene classes. 
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Thus, when observing an image of a sunset, seen here as a domain, it is assumed from a spatial 

and topological standpoint that the sun, clouds, grass or trees, occupy very strategic positions in a 

picture that will be replicated in many varied images of the same type. If a busy street is another 

domain, we can also extend the same idea of fixed segmented domains in the image space‘s 

ground truth. A street sign will occupy a position below a cloud and besides a building or car for 

instance. A graphical structure modelling this ontology can also be depicted from this analysis. 

However, when we apply this understanding to the study of games content or cover images, all 

the regular notions of a domain simply stops. This is because our ontological models from reality 

may not necessarily map to the structures that are in a games world in many cases. What kind of 

ontological model does a cover art like the Super Mario Galaxy depict? The natural world and its 

ontologies are simply reversed in so many fantasy realms. It could vary with genre but it is 

highly likely that models from the fantasy genre will likely produce very inconsistent and varied 

ontological representations since their goal is rewriting the rules of reality in their own self-

contained worlds, in most cases. Other than that, it is possible sharing a visual vocabulary of 

games image content across different genres and clustering them into various families. But there 

is no existing games vocabulary that aims to encode the structure of these worlds at the moment, 

for eventual object, facial and scene recognition unique to that world. 

 In image-retrieval, the application of ontologies usually targets the following objectives, as 

identified by (Bannour and Hudelot, 2011): i. A unified description of low-level features: where 

ontologies are used to provide a standard description of low-level features. ii. A visual 

description ontology: where ontologies are used to represent the different types of relations 

among image features such as edges, lines and regions. iii. Knowledge description: ontologies 

are used to model the concepts (objects) and relations among them. Typically, these approaches 

use reasoning on concepts or on contextual information, (i.e. after the image analysis or visual 

object recognition process) tackling the problem of image interpretation along the way. 

iv. Semantic mapping: ontologies are used to help the mapping between the visual level and the 

semantic level. With regards to the last point, one could argue that machine learning techniques 

that learn a visual model can identify obvious and hidden patterns between the visual and 

semantic features and appropriately map them. But if we define our expectations from ontology, 

how can an algorithm use machine learning models to discover hidden patterns? How consistent 

can a semantic hierarchy work with a learning model? 
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 Bannour and Hudelot argue that the use of semantic hierarchies, which are based on visual 

and semantic information, is more convenient as it cares about perceptual and conceptual 

semantics. In other words, when analyzing images semantic hierarchies are important because 

they try to connect low-level features with higher level concepts. Conceptual semantics alone (as 

observed in texts) may not correspond to image semantics, but a "semantic-visual" representation 

attempts to tie the two worlds together in a hierarchy that could help reasoning on both images 

and concepts. However, building and using concept hierarchies for image analysis constrains the 

reasoning to the inheritance relationships, i.e. "is-a" relationship in a top-down model. While it 

should enrich the types of relationships used to reason about images (counting composition 

relationships, spatial, topological, etc.) they do benefit from the strong reasoning power on 

contextual knowledge but are less useful in generalizing to newer contexts because of the rigidly 

inherent top-down is-a ontology. Contrariwise, building a "semantic network" for image analysis 

instead of semantic hierarchies was suggested by the researchers as a good way to narrowing the 

semantic gap and to improving image semantics modeling, since it would certainly allow for the 

free association of concepts easily, in a flexible bottom-up approach. Yes, fishes and sharks and 

buildings can appear and locate in the sky too (referencing the cover art of Sharknado and 

Inception). When structural scene rules are re-written this way, image parsers that work with 

natural world examples will likely fail here.  

 Approaches that simply provide a latent correlation between the low-level features and their 

descriptive tags are types of semantic hierarchies (hierarchies of concepts) and are also a 

particular type of ontology. It would seem as if the idea of correlations put in this hierarchy, 

might be potentially evoking the property of conceptual inheritance for detected objects. This 

idea, subtly suggested, can be defended or argued for. If objects in an image co-occur based on 

their relative positions in the image parsing graph, do they necessarily inherit some global 

property? Obviously, yes. It is a possibility especially when we make inferences. The presence of 

objects like a pot, a stove, and assorted ingredients may signal and elicit the verb cooking shared 

by each of the co-occurring objects in the scene, thereby enabling the possible inheritance of that 

global inferred property, even though these individual objects may share little or no other linking 

property with each other (based on size, colour, texture and so on). But in a semantic hierarchy, 

that single verb connects them together loosely based on location or based on their functionality 

triggered by the dominant inferred verb (A pot on a stove is used to cook food). These, according 
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to Bannour and Hudelot appear as collections of classes ordered by the transitive closure of 

explicitly declared subclass or subtype relations. Their clarifying example was: Given that A is a 

subclass of B, captures the fact that the state and the behaviour of the elements of A are coherent 

with the intended meaning of B, while disregarding the additional features and functionalities 

that characterize the subclass.  Meaning that we could grasp an object‘s intent when it is 

contained in a context. This can be explained in another location- based example. In scene 

recognition for instance, co-occurring objects in A can describe a scene or event class B, as in: a 

knife, along with pots, cookers and tables may denote a kitchen scene, but a knife could also 

appear with guns, blood, bombs, ropes and helmets to denote an entirely different class. In both 

scenarios, the type of event or class B describes the exact functionality of what a knife will be 

used for. The fact that an object like knife can co-occur with different objects to predict entirely 

different scenes or events suitably highlights the weakness of rigid semantic hierarchies. 

However, semantic hierarchies are still being used in image-retrieval as a framework for 

hierarchical image classification, to consequently provide multi-level image annotation, usually 

when automated segmentations of these objects occur. Nonetheless, a rigid semantic hierarchy 

may not have the predictive power to detect how objects may appear in new contexts, hence the 

suggestion for semantic networks instead. Semantic networks are likely to discover or allow for 

the prediction of new, out-of-context objects and scene classes. At the moment, much of the 

research in semantic hierarchies and networks is for enabling more accurate object and scene 

recognition in cluttered images. It should be stated that there is a clear difference between object 

recognition/categorization and scene classification although the two processes can be combined 

into one. This has been discussed by (Quel et al. 2005). 

 At the other extreme end of the image analysis spectrum, some methods have taken the 

opposite approach tending to avoid words or direct labelling altogether when making similarity 

judgments around diverse contents or bridging the semantic gap. For instance, by opting for a 

mathematical representation using LSI, therefore avoiding the need for labels as the primary 

descriptor, a high-dimensional space for both lower-level features and descriptions can be 

actualized. Some efforts generalise CLIR (Cross Language - Latent Semantic Indexing), where 

any document (be it text, image, or even video) can be described by a series of observations 

made about its content, as explained by (Hare et al. 2006). We refer to each of these observations 

as terms. In order to create a semantic-space for searching images, we first create a ‗training‘ 
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matrix of terms and documents that describe observations about a set of annotated training 

images; these observations consist of low-level descriptors and observations with keywords that 

occur in each of the images.
 
 LSI is then applied to this training term-document matrix. The final 

stage in building the semantic-space is to ‗fold-in‘ the corpus of un-annotated images, using 

purely visual observations. The result of this process is two matrices; one representing the 

coordinates of the terms in the semantic space, and the other representing the coordinates of 

documents in the space. Similarity of terms and documents can be assessed by calculating the 

angle between the respective coordinate vectors. This approach is based on the actual feature 

properties and their relative distances. The resulting semantic spaces are quite similar to 

applications that use the vector space models. According to Liska (2013), ―vector space models 

have proven to be successful in many applications, tending to represent the meanings of concepts 

or words as points in high-dimensional arithmetic vector spaces, also referred to as semantic 

spaces. There are at least two good reasons to use vector spaces. First, individual vector 

components can stand for specific features (such as size, animacy or context), which is a natural 

way to characterize a concept. Secondly, the notion of "distance" or "similarity" between 

concepts reduces to the distance between representation vectors in the vector space.‖ (2) 

 Meaning that features that cluster closer together or towards common centres called centroids, 

may represent concepts that are quite similar, but those farther away from these centres or 

features in the semantic space will likely have little or nothing in common. With regards to the 

generalisation of these terms to unknowns, machine learning techniques have become the norm 

in most computer vision research. Lillywhite (2013) elucidate on this: 

One of the main goals of computer vision is to take raw sensor data, the input signal, 

and create a set of symbols that represents the data. In object recognition these 

symbols are referred to as features. Machine learning techniques are commonly used 

to take these features and then classify them as either belonging to the object of 

interest or not. In general, machine learning algorithms take in symbols, find patterns 

in the symbols, and use mathematical methods to separate the symbols into classes. 

(1) 

 Learning models free the annotator from having to identify or create rules for classification 

based on unique image patterns and are in general more accurate than human experts (thus, 

lessening the need for further annotators). These machine learning models require that the set of 
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features uniquely describes the object of interest in order to be more accurate in finding those 

unique patterns. This ability is in turn dependent on the quality and quantity of data used for 

training, in addition to the quality of the object descriptor used to extract the features.  Keypoint 

descriptors like Sift employ complex pattern-finding methods in order to detect and extract 

features from an image at the lowest level. Consequently, learning models are used both in the 

extraction process, and also at a higher level when these features are mapped into a higher 

dimension. Nevertheless, it is noteworthy pointing out that there are actually levels in the 

complexity of the type of processing and learning that can be applied on images. Using feature 

descriptors to mark out the areas of interests on the image is a basic start. Clustering them and 

creating a type of vocabulary will depend on the strategy and objective. Learning models and 

distance functions are usually applied on features that have been encoded into a vocabulary. We 

are simply distinguishing between pattern finding at the raw pixel level and pattern finding that 

mostly uses various distance functions to learn more about the hidden structures and relations of 

high-dimensional features in the images. Finding these unique patterns will always depend on the 

type of training data used. Even as the image processing used to create a higher-level 

representation of the input bridges the semantic gap that exists between the raw input signal and 

what is needed by the machine learning algorithm, the gap still remains when we view it from a 

user‘s perspective, since the abstract descriptions likely utilized by the user is still far removed 

from the possible distances or combinations of these image representations. 

 

  Figure 2.6 One of the hardest goals for a learning model is to find the representative 

       prototypes from the codebook image representation. 
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Merging the concepts of ontology and machine learning for images is still a nascent field. 

 

2.8    The Sift Descriptor 

 

The SIFT descriptor (Scale Invariant Feature Transform) was proposed by Lowe (1999) and 

further described in Lowe (2004). It includes both a feature detector and descriptor. This 

algorithm converts an image into a large set of local feature vectors that describe key regions in 

the image called SIFT keys. These descriptors are invariant to scaling, rotation, and translation, 

and partially invariant to illumination changes and affine projection to enable them to extract 

low-level features in images regardless of the slight changes. Sift locates key points on the same 

image consistently regardless of the aforementioned changes. The concept of repeatability is 

important for object descriptors, and that is: a useful and efficient descriptor must be able to 

consistently detect and describe the key features in an image no matter how many times it is 

processed with that objective from varying angles or positions. Sift has become one of the most 

widely used descriptors to date. For this study we will be using it as our baseline and comparing 

it against other descriptors that have been proposed to replace or complement it. A survey 

conducted by Mikolajczyk and Schmid (2005) to compare the performances of different 

descriptors showed that Sift performed better than all other local descriptors. Sift is capable of 

efficiently identifying stable key locations using the following steps to extract a set of descriptors 

from an image: i. Scale-space extrema detection, ii. Key point localisation, iii. Orientation 

assignment, iv.  Key point description. 

 The Sift descriptor is based on the idea of using the local gradient patch around a point to 

build a representation for the point. This representation is built by generating multiple orientation 

histograms for the patch. Given a feature point in the image and a square patch around it which 

has been appropriately scaled and rotated, the gradient magnitudes and orientations in the patch 

are used to generate orientation histograms over a 4x4 region. For each orientation histogram 8 

bins are used. The final descriptor is computed by concatenating the outputs of 16 orientation 

histograms which results in a 128 element feature descriptor. A number of processes are 

integrated into the construction of the orientation histograms so as to improve the robustness of 

the SIFT descriptor. One such process involves weighting the magnitude of gradient samples by 

a Gaussian function centered on the keypoint before the samples are added to the orientation 
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histograms. This ensures that samples which are closer to the center are more significant and are 

assigned more weight.  

 

Figure 2.7 A keypoint descriptor is created by first computing the gradient magnitude and orientation 

at each image sample point, as shown on the left. These are weighted by a Gaussian window, 

indicated by the overlayed circle. These samples are then accumulated into orientation histograms 

summarizing the contents over larger regions, as shown on the right, with the length of each arrow 

corresponding to the sum of the gradient magnitudes near that direction within the region. 

It also makes the descriptor less sensitive to small positional shifts in the local patch. In the final 

transformation stages, Sift requires its descriptor be invariant to changes in image illumination. 

Normalizing the descriptor to unit length helps in overcoming any brightness or contrast changes 

that may have occurred in the image. But, this does not dispose of the non-linear illumination 

changes that may have taken place. Therefore, to overcome such changes, a thresholding 

operation is performed to restrict the maximum gradient magnitude of the descriptor followed by 

a normalization operation. Sift uses a similarity measure based on the ratio of Euclidean 

distances, which is a measure calculated by computing the ratio of distances to the closest and 

the second closest neighbour for a given descriptor. It is assumed that the nearest neighbour is a 

correct match while the second nearest is an incorrect match. It has been shown that it is easier to 

differentiate between correct and incorrect matches using this measure based on ratio of 

distances rather than using the distance of nearest neighbour alone. Sift performs better when the 

similarity measure used is distance ratio matching, whereas the PCA-SIFT (Principal 

Component-Sift) descriptor gives better results for nearest neighbour matching; this has been 

experimentally confirmed by Mikolajczyk and Schmid (2005).  This applies when comparing the 

performances of different descriptors for both the nearest neighbour similarity measure and the 

distance ratio measure which we will demonstrate in the next Chapter. The Sift computing steps 

is explained by Lowe (1999): 
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i. First, detect keypoints using the SIFT detector, which also detects scale and 

orientation of the keypoint. 

ii. Next, for a given keypoint, warp the region around it to canonical orientation and 

scale and resize the region to 16X16 pixels 

 

        Figure 2.8 An interest point warped 

iii. Compute the gradients for each pixels (orientation and magnitude). 

iv. Divide the pixels into 16, 4X4 squares. 

v. For each square, compute gradient direction histogram over 8 directions 

  

  

 Figure 2.9 Concatenate the histograms to obtain a 128 (16*8) dimensional feature vector 

There are other types of descriptors besides Sift. We will be comparing some of them in the next 

chapter. Some object description techniques forgo a histogram of gradient techniques altogether 

and choose to reconceptualise patches of pixels as textons.  According to Malik et al. (1999), 

―Julesz introduced the term texton, analogous to a phoneme in speech recognition, more than 20 

years ago as the putative units of pre-attentive human texture perception.‖ Textons are defined 

qualitatively for simple binary line segment stimuli using oriented segments, crossings and 

terminators as primitives, even though they did not provide an operational definition for gray-

level images. Consequently, texton theory fell into disfavor as a model of human texture 

discrimination when models like Sift became popular. However, novel techniques based on the 
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work of Shotton et al. (2008) uses a more advanced concept of the texton for cutting-edge event 

categorization and image segmentation. 

 

2.9   Images as Visual Words 

As indicated earlier, it is possible to encode an image in terms of visual words.  Before that is 

done, we need to first encode these images as a dictionary. This dictionary is derived from a 

large set of training images that are unlabeled, but known to contain examples of all of the scenes 

or objects that will ultimately be classified. Usually similar points in the image are grouped into 

one visual word using algorithms like k-means. Agglomerative techniques are used to cluster 

features and to identify similar points from different images which are then more easily 

compared. Csurka et al. (2004) built a generative bag of visual words model to distinguish 

between examples of books, bicycles, people, buildings, cars, trees, and phones. Despite the wide 

variety of visual appearances within each class, they achieved a 72% correct classification. By 

applying a discriminative approach to the same problem, they managed to improve performance 

further. However, there are a number of drawbacks to the generative bag of words model as it:    

i. assumes that the words are generated independently, although this is not necessarily true. The 

presence of a particular visual word tells us about the likelihood of observing other words. ii. But 

it ignores spatial information. Consequently, when applied to object recognition, it cannot tell us 

where the object is in the image. This is solved with spatial pyramid approaches among others.                                                                                                                    

2.10   Bag of Words 

The bag-of-words methodology was first advocated within the problem area of the text retrieval 

domain for document analysis, but has since been adapted for computer vision applications. It is 

because the BoW model is a more accessible type of technique that has also enabled an extensive 

range of application successes that has led to a wider adoption by different researchers working 

on different types of image analysis tasks. For image analysis, a visual equivalent of a word is 

used in the BoW model, which is based on the vector quantization process by clustering low-

level visual features of local regions or points, such as color, texture, and so forth. In explaining 

the bag of words for action recognition, Klaser (2010) clarifies that ―it originates from document 

retrieval applications where orderless methods are a popular choice for representing textual data. 

The bag-of-words model describes text documents as frequency distributions over words and has 
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been applied extensively in this domain.‖ (28) Its processes can be further defined as follows: 

Given a training dataset containing images of a domain, an image represented based on interest 

regions is detected and marked out. Visual features are extracted from these regions using a 

specific unsupervised learning algorithm, such as k-means. These features get tokenized as 

keypoint-based features, with the scale-invariant feature transform as one example. K-means is 

used to group these features based on a fixed number of visual words (or categories) using a 

cluster number within the generated visual-word vocabulary (or codebook). The vector of an 

image contains the presence or absence of information of each visual word in the image. For 

example, the number of keypoints in the corresponding clusters is the visual word. A co-

occurrence table finally summarizes the data in a co-occurrence table of counts.  

 

Figure 2.10 To extract the BoW feature from images involves the following steps: (i) automatically 

detect regions/points of interest, (ii) compute local descriptors over those regions/points,  

(iii) quantize the descriptors into words to form the visual vocabulary, and (iv) find the  

occurrences in the image of each specific word in the vocabulary for constructing the 

 BoW feature (or a histogram of word frequencies 

 

Noted challenges with the bag of words model include the fact that while the model is quite 

effective for object and scene recognition, it can be improved upon by a number of techniques:  

a. modeling the co-occurrence of visual words (creating the latent Dirichlet allocation model). b. 

This model can be extended to describe the relative positions of different parts of the object 

(creating a constellation model) and c.  Extended again to describe the relative position of objects 

in the scene (creating a scene model). The goal when matching local features is to find those 
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descriptors from any previously seen model (exemplar) that are near in the feature space to those 

local features in a novel image. Since each exemplar image may easily contain on the order of 

hundreds to thousands of interest points, the database of descriptors quickly becomes very large; 

consequently making searching for matches impractical. The database must be mapped to data 

structures for efficient similarity search. The very constituent nature of this data structure that it 

must be mapped to is of important note to us as it seems to also hint to us what may be useful 

bridge between the raw image and feature descriptors as well as the higher level description for 

that image. In this study, we had proposed the notion of error pairs and reversed search as one 

possible strategy that can be used to effectively reduce or limit the number of features that can be 

searched in the database. This is further discussed in the next chapter on Experiments.

 Despite these drawbacks however, the bag of words model is still being used for a wide array 

of applications ranging from annotation and image-retrieval; object, event and action 

recognition, among others.  (Sivic and Zisserman, 2003) further applied the image feature 

representation method for document representation, in the area of image and video retrieval, with 

promising results. (Aly et al., 2011)
8
 decided to use the Bag of Words model for large scale 

object recognition using a massive 11,000 games cover dataset. They explain their objective: ―In 

this setting, the goal is to find the matching image in the collection given a probe image 

containing the same object. In this work we explore the different possible parameters of the bag 

of words (BoW) approach in terms of their recognition performance and computational cost. We 

make the following contributions: 1) we provide a comprehensive benchmark of the two leading 

methods for BoW: inverted file and min-hash; and 2) we explore the effect of the different 

parameters on their recognition performance and run time, using four diverse real world 

datasets.‖ (1).  In this study, we also adopt some of the experimental objectives of Aly et al. with 

the aim of finding a matching image from a collection using a probe image using an inverted 

search approach.  

 However, in this regard, our images are not exclusive to games data image, since we are 

particular about finding matches from a diverse set as well. Image datasets are usually the main 

sources of semantic knowledge in the bag of words model. They contain a meaningful semantic 

                                                           
8
 We also did test Aly’s Matlab-based tool and sadly found the use of linux g++ files for certain tasks alienating for 

us Windows folks. That can be annoying since it limits us from using his project as his is the ONLY vision project 
seriously focused on games content. 
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representation of types of the visual inputs typical of a particular domain. For this study we used 

a lot of games-related image content, hence, our bag of words derived from the training set will 

likely signal the key semantic concepts encountered in this domain. They are offered under the 

form of a collection G images, with m labels: 

G = {mi| i = 1, 2…k} 

The notion behind this type of representation suggests that visual words are also expected to 

encode the semantics of the images patterning to a domain. The quality of the visual words (and 

their predictive power) would certainly be enhanced if they are constructed with features from 

the respective objects or scene classes (more training data equals better recognition, right?). But 

if the learning model only uses images from its own domain, the predictive power is made 

weaker, because it would hardly generalize to new contexts. Or in our case, comparable images 

from an equivalent games domain will likely learn visual patterns unique to the genre. Choosing 

only features from the same domain will likely eliminate the background noises that also 

generate extraneous features in the mix, or with our example, features belonging to other objects 

or other domains. Selecting the right mixture of images certainly increases the relevant/noise 

feature ratio. Consequently, the resulting visual words are more accurate descriptions of the 

objects denoted by the labels or domain type. On the contrary, in this study, we perform both 

types of experiments by proposing to construct a dedicated visual vocabulary for domains that 

include not only games covers; where mi G contains only features extracted from images 

peculiar to games, mi—but, we also include sets that are not part of the games domain, and as 

such, those sets become our hard negatives to further strengthen the predictive power of our 

model. Recognizing different types of character actions on the game covers using semantic 

triples would have been an enriching research experience; however, we are severely constrained 

to basic image-retrieval for the discovery of unique features from our images that could 

potentially map to scene classes.  

(Klaser, 2010) had used a bag of words model for action classification using a random 

sampling approach. He describes it as a bag-of-features representation for a video sequence 

which contains a loose representation of a set of local space-time features obtained in a sparse set 

of spatio-temporal interest points. These points are gotten by applying the space-time extension 



49 
 

of the Harris operator, (Laptev, 2005). Klaser‘s work had used the bag of words model for 

human action recognition.  

 

          Figure 2.11 Bag of words for action recognition 

Faced with a massive amount of video data, Klaser (2010) was still able to retrieve the most 

relevant features from a very large pool, by repeatedly applying a clustering algorithm to the 

extracted features to reduce the margin of errors. In further developing his visual vocabulary, he 

explains he had to: 

  …apply either random sampling or k-means on the set of training features. 

Random sampling has the advantage that it is very fast since only a subset of V 

random training features needs to be computed. For results using k-means, we cluster 

a subset of 100,000 randomly selected training features in order to limit 

computational complexity. We increase precision by initializing k-means 8 times and 

keeping the result with the lowest error. Features are assigned to their closest 

vocabulary word using Euclidean distance. The resulting histograms of visual word 

occurrences are used as video sequence representations. (Appendix A1). 

Although Klaser does not mention semantic triples, we can still grasp that his resulting 

histograms were all targeted towards the identification of a human subject, an object (which can 

be another human or an actual object), and the connecting verb or action that defines their 

relationship. On the whole, the bag of words model has found varied uses for a range of diverse 

tasks and has become an important link in bridging the semantic gap between the low-level 

features and the high-level concepts surrounding those features. It is ubiquitous in so many 

applications: from general object recognition and scene classification, to human action 

recognition, image segmentation, query expansion, and similarity measures, not forgetting the 

annotation of large scale image databases, just to name a few.  
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Chapter 3   Experiment 

 

3.1   Our Scope 

 

In this study, we develop and test the accuracy of a simple image-retrieval tool which in turn 

uses libraries from the OpenCV framework. Due to constraints (time and resources), we have 

limited our experiment to the comparison of various image descriptors based on their ability to 

accurately describe features and retrieve images from games cover content. We group the image 

features using k-means clustering to form our bag of words and then proceed to measure the 

relative distances of these features using different distance functions. We utilize an inverted 

search process to retrieve similar or equivalent images as a way of ascertaining how precisely 

our descriptors were able to uniquely differentiate one image from another based on the detected 

image features.  We also measure the relative distances of these features from one another as a 

way of defining image similarity and possibly grouping a family of visually-related images. The 

accuracy of a relevant image descriptor is important because so much of an algorithm‘s ability to 

recognize objects, events or actions depends on this preceding task. If we had trained our 

algorithm to recognize certain types of faces or objects commonly found in games, we would 

want our image-retrieval tool to accurately match the correct object when performing facial or 

object detection on the images. However, since we used a global-feature approach for the 

automated analysis of our images, by means of a descriptor‘s mapping out of the whole image as 

a single field for detection and description (for this image-retrieval task, we did not mark out 

specific regions of interest in the image for objects to enable individual character or object 

recognition). Our objective here is not to recognize individual objects or define specific scene 

classes or scene actions for this thesis, even though our algorithm does make a good effort in 

detecting and describing image regions that have particularly interesting features, easily creating 

the possibility of mapping out game characters and objects within the same images. We instead 

treat each image as a unique semantic unit or its own scene class. We want to understand how 

unique they are based on the visual features. The significance being that if we could identify 

what makes the image unique based on its features alone, the same low-level features can easily 

be later mapped to any type of metadata describing the same image (be it a text, a link etc.,). 
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 As previously stated, we are simply interested in observing how the scenes in our images 

structure as a single semantic unit, where they are uniquely described as distinctly from one 

another as possible, based on their low-level features. Incidentally, our work almost resembles 

the automated large scale discovery of image families, (Aly et al. 2009), in that we also used a 

small portion of their games image dataset with some of their objectives. However, unlike Aly et 

al., our objective is not the discovery of large image families, but an inquiry into how one image 

is uniquely described from another.  This is not to say finding image similarities the way Aly et 

al. had done does not have its merits. In fact we were inspired by (Aly et. al‘s 2009) work as a 

starting point by adopting the notion of comparing two approaches for measuring image 

similarity and assessing their performance on datasets: 

This work focuses on the problem of automatically identifying image families in 

unprocessed image collections. We compare two broad approaches for measuring 

similarity between images: global descriptors vs. a set of local descriptors. The 

global approach represents each image by one feature descriptor computed from 

the whole image. The local approach represents each image by a set of local 

feature descriptors computed at some interesting points in the image…1) We use 

the term family to indicate groups of images having high visual similarity with 

possible change in color, view-point, scale ... etc. (1) 

Once more, unlike Aly et al. we hinge on a global-based image distinction as our focus because 

we are interested in further building the premise of having data-driven visual links based on 

natural images that have to be as different from a similarly-looking image as possible. The 

opposite of family clusters is lone distinction, but can both concepts help each other? We hope to 

also explore this possibility with our experiments. Certainly, this process is also important for 

image-retrieval, and so we will be sensitive to errors. A possible near future experiment will be 

to use the same images to annotate the types of scenes or actions each games cover depicts, train 

them accordingly and then apply learning algorithms to discover similar scenes or events in 

unseen images. In this particular scenario, we can tolerate having ―a family of images‖ that share 

the same visual characteristics, thereby adopting Aly et al.‘s approach. But we will be doing this 

with the key difference being that we are not merely clustering images into families based on the 

simplistic concepts of colour or texture. When considering an event or action recognition in 

image contexts, colours and texture do play a small part at the lower levels. However, a lot also 
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depends on how objects are recognized in addition to the structural relationship each individual 

object has in the image including how they connect to a more abstract theme (as in, how 

thematically different is character holding a knife from character holding a ball—why?). A 

future study into the image families of games and other natural scenes will concentrate on these 

types of Event Triples using a graphical representation. The same concept can be applied to 

sequences of video frame images, not just static images, enabling people to search for scenes 

within movies and games using a high-level of abstraction (as in,  perform a search for all scenes 

where ―character gazes at stars‖ or ―character reads the Bible‖). Connecting the semantic triple 

in a textual search to an equivalent visual component, where image features have also been 

clustered as semantic triples in high-dimensional vectors will be an exciting area of study, but is 

beyond the scope of this study. We will limit our focus to basic retrieval for now. 

 

3.2     Application Description 

We mentioned earlier that a simple image-retrieval tool was used for this study and will be the 

framework by which we train, test and evaluate our image data based on different descriptor 

settings. We track for errors in the retrieval results based on these settings. It will also be the 

basis by which we aim to understand some of the arcane concepts in the visual recognition field. 

The screenshots below give a clearer description of our tool, showing the images from our 

vocabulary on the left and the query image alongside image statistics on the right. To use the 

tool, we load a number of images into the application constituting our training set. For this 

project we used three images, most of which come from games content and a few from non-

games content. Based on the settings chosen, unique feature descriptors are extracted from this 

set. There are different routes to take to determine how these features are clustered (k-means 

among others being a common strategy). There are also different settings for measuring distances 

between extracted features using the nearest neighbour concept. There are two strategies to 

choose when inputting our test image for comparison or retrieval. The application has two 

methods for adding test images: i. by using a webcam to capture and detect objects from a live 

stream (hence, the camera panel in the middle of the application). ii. Or by adding an image file 

or a list of files from a directory of static images. These images get displayed within the camera 

viewer panel, and can be similarly ―played‖ as sequences of images in the panel. 
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Target rate/Actual rate  Detector/Descriptor    Total Features Extracted               Statistics 

 

Figure 3.1   Image-retrieval App. Possible matching image          Test or Query Image     Surf Descriptor spots 

 

Figure 3.2 The likelihood panel showing a graph of the inverted search results. Each point on the graph corresponds 

to an image‘s proximity to the query image with the highest match peaking the most in the graph (in this case with 

763 objects). On the likelihood plot, you can mouse over the dots to show the related image. The image in the graph 

is actually an error-match. 
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Figure 3.3 showing matching image between Query image and highest result, from the inverted search. You can 

change any parameters at runtime, making it easier to test feature detectors and descriptors without always 

recompiling. 

In this study we chose as a second option of loading our test images containing a hundred games 

cover content and executing an inverted search for each image in the test set against our earlier 

features extracted from our dataset (the 100 test images are also part of the 300 earlier loaded). It 

is sadly a small sample and is not an actual true test for the accuracy of our image-retrieval tool, 

but in order to train the 11,000 games content images from Aly et al. that we already had for this 

study will cost us a lot more valuable time which we did not have. Thus, each of the 100 games 

images in our test set also has features extracted and compared against our trained images using a 

distance function. Whenever we observe a particular image on the camera panel, we observe how 

its described features compares against a candidate match to the right. Based on the settings as 

well as the descriptor chosen to process the image, the number of features detected, described 

and extracted, not forgetting the vocabulary size for each image will vary greatly even for the 

same image. These are all shown on the statistics panel with a sample shown below. The 

statistics panel displays how many features were detected and descriptors described, indexed and 

matched showing how fast those tasks were performed in milliseconds (ms).  The panel also 

reveals the distances between the indexed features and the total vocabulary for both the trained 

and probe images. 
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    Figure 3.4 The Statistics panel 

 

3.3     Basic Procedure 

The following is a basic description on how to use the tool. We had acknowledged two methods 

in loading and testing images in the application. We can test using webcam mode or using an 

inverted search mode. To find objects using a webcam, here are the steps: 

1. Go "Edit" -> "Add object...",  

2. Present an object,  

3. Select the features extracted from the object, return to main screen,  

4. Play ("Edit" -> "Start") and  

5. See highlighted features corresponding to the object.  

  As indicated earlier, you can change the parameters at run time, thus making it easier to test 

feature detectors and descriptors without recompiling. The tool‘s detectors and descriptors use 

the same libraries found in OpenCV. Here are a few supported: BRIEF, Dense, FAST, 

GoodFeaturesToTrack, MSER, ORB, SIFT, STAR, and SURF. We briefly encountered the 

concept SIFT in the previous chapter, but there are other competing descriptors claiming various 

advantages. We will use SIFT as our baseline and compare its performance against other selected 

descriptors.         

 The other way to load training/and testing data in our tool is by using the inverted search 

mode. Here is a basic description of its procedure: 
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 1.   Download your training and evaluation dataset  

 2.   Open the application and reset all settings to default (menu "Edit->Restore all default  

  settings").  

 3.   Open Parameters panel (menu "View->Parameters") and go to "Detector_Descriptor"  

  section. From there scroll down to SURF parameters. Uncheck "SURF_extended"  

  parameter and set "SURF_hessianThreshold" to 150.  

4.    In the "General" section of the parameters, check "controlsShown" and "invertedSearch".  

5.    Open the likelihood panel (menu "View->Likelihood"). When detecting, this will show  

   the likelihood score of the scene with all the objects. 

6.    Load objects from the training dataset previously downloaded by using the menu 

  "Edit->Add objects from files....‖ Select all the files in the directory of the training 

   dataset. This may take a while until all images are processed (extracting features and  

   creating the vocabulary). 

7. You can resize the objects size by moving the scroll bar next to "Update objects". 

8. Setup the camera to use a directory of images by using menu "Edit->Camera from 

directory of images...", and then select the evaluation dataset. 

9. Press "Space" or action "Play" and observe what is going on. This would look like the 

image panel in the figures above. Note that the "Objects" panel scrolls automatically to 

object with the highest likelihood score. A rectangle is shown if the homography can be 

computed. 

10.  On the likelihood plot, you can mouse over the dots to show the related image. 

With regards to data collection and training with our application, the process is similar to the 

outline in the figure below. The figure helps to capture the sequences of actions for the entire 

experimental process from a learning model viewpoint.  

 

 

   Figure 3.5  A learning model life-cycle 

 Interestingly, the process of actually collecting images is getting easier at the moment with the 

advent of image sharing websites. But then again, according to Aly et al. (2009) such collections 
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contain duplicates and highly similar images or what they referred to as image families. Our 

application can handle tens of thousands of unprocessed images, but time-constraints forces us to 

use just a few.  Still for a second set of experiments we used another tool to calculate the 

distances of a probe image against the rest of the images in the games dataset. For this second 

tool we also used a pre-computed visual codebook or dictionary containing 10, 000 visual words 

unrelated to games. Aly et al. (2009) explains how the automatic discovery and cataloguing of 

similar images in large collections is important for many applications, e.g. image search, image 

collection visualization, and research purposes among others. In their work they get to assess 

their performance as the image collection scales up to over 11,000 images with over 6,300 

families presenting an algorithm to automatically determine the number of families in the 

collection. As specified earlier, we only used 300 of the 11,000 images to analyze the opposite of 

image families—image uniqueness.  

 

3.4     Image Matching 

Our goal is the implementation of basic image-retrieval where we need to match the exact probe 

image with a similar one found in the cluttered image database using only low-level features. In 

order to do this we need to choose an object descriptor that allows for a highly distinctive 

description. As Sift is our baseline, it has been described by Lowe (2004): 

The keypoint descriptors are highly distinctive, which allows a single feature to find 

its correct match with good probability in a large database of features. However, in a 

cluttered image, many features will not have any correct match in the database, 

giving rise to many false matches in addition to the correct ones. The correct matches 

can be filtered from the full set of matches by identifying subsets of keypoints that 

agree on the object and its location, scale, and orientation in the new image. The 

probability that several features will agree on these parameters by chance is much 

lower than the probability that any individual feature match will be in error. The 

determination of these consistent clusters can be done rapidly by using an efficient 

hash table implementation of the generalized Hough transform. (2) 

The best candidate match for each keypoint is resolved by detecting its nearest neighbour 

in the database of keypoints from training images. The nearest neighbour is defined as the 
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keypoint with the minimum Euclidean distance for the invariant descriptor vector. Other types of 

distance functions can also be used depending on strategy. The basis for image matching uses 

these types of distance metrics, to evaluate key-point features relative to a point. Image matching 

is actually the appraisal of various distance functions applied on high-dimensional features. It is 

one of the fundamental tasks in computer vision since a good set of correspondences between 

images is vital in order to carry out certain tasks down the processing pipeline. But, numerous 

features from an image will have no reliable match in the training database because they arise 

from background clutter or have ambiguous matches. For that reason it would be useful to 

discover a way to measure the constancy of each individual feature match. This cannot be done 

based just on individual feature distance, as with some descriptors. This is why some techniques 

utilize additional learning models to find these, taking into thought other types of distance 

functions like the second closest nearest neighbour. We consider the second-closest match as an 

estimate of the density of false matches within this portion of the feature space and at the same 

time detecting specific instances of ambiguous features. In other words, can an image‘s 

uniqueness in a clutter of images be discovered based on the types of errors or mismatches it 

produces? (Errors can also indicate a pattern that can be learnable too).  Unfortunately, there are 

no efficient algorithms to ascertain the exact nearest neighbour of a point in high dimensional 

spaces. Our keypoint descriptor has a 128-dimensional feature vector, and the best algorithms, 

such as the k-d tree, Friedman et al. (1977), provides almost no speedup over exhaustive search 

for such a high number of dimensions, resulting in a lot of approximations to enable matches. 

 Evidently, precision is important in image-retrieval applications or tasks that seek to apply 

high-level classes or categories to the images. In this work we want to see if a probe image will 

find itself among the background clutter. As in, we are interested in retrieving both the exact 

image as well as images similar to a query image that constitutes our closest neighbours. The 

image‘s distinctive features as identified and constructed by the object detectors and descriptors 

should maintain the concept of repeatability when finding a match based on these features. We 

analyze the matches obtained for different techniques and evaluate their performance for 

different evaluation metrics. The objective at this point is to find the best matching strategy 

amongst all the different configurations. Given a query image, we use several matching 

strategies developed in this inquiry to retrieve an image from the database which is most similar 

to the query.  



59 
 

 

 

 

 

 

 

 

Figure 3.6   Mismatches in Retrieval results reveal the concept of Error Pairs 
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The figures above depict different image-retrieval results from the application we had described 

earlier. Most of the images are actually error pairs, and not actual matches. We explained in the 

previous chapter that we will be sensitive to errors in this study. The images in the figures 

illustrate the end result of an inverted search process after matching image descriptors. The 

results can either show precise or error matches. Usually, the image that provides the maximum 

number of corresponding visual word matches with the query image is regarded as a match even 

though they might be so semantically dissimilar. The objective of performing such a retrieval 

application is to find images which correspond to the intersection points or are closest to the 

intersection points between different games scene sequences. The matches obtained are refined 

using the Random Sample Consensus (RANSAC) method before deciding on the closest image. 

We forward the argument in this thesis that while we desire consistent matches to mark image 

distinction from a clutter, consistent errors emitted from image-retrieval from a particular probe 

is indicative of a type of distinction marker for the probe image as well. Objects in our probe 

image are matched against those in a vocabulary created with descriptors. Our vocabulary was 

built mostly from game content. The colourful spots on the screenshot images are actually a 

visualization of the visual words from our vocabulary. In performing this task, we utilize an 

inverted search. As indicated earlier, inverted matching (or likelihood computation) as defined 

by Sivic and Zisserman (2003) are feature reference files structured like an ideal book index.  

 

Figure 3.7 a. All database images are loaded into the index mapping words to image numbers.                

b. new query image is mapped to indices of database images that share a word. 

But instead of actual textual words, we have visual words in its place that has been derived from 

the respective images‘ object descriptors and their indexes. 
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3.5    Distance Metrics 

Here are a few distance metrics used in the image-retrieval experiment in this study. Depending 

on the objective and strategy, different distance metrics are used to discover features in high-

dimensional space. Each type of applied metric elicits its own strength and weaknesses with the 

consequence that the overall performance of the bag of words model usually depends on the 

metric strategy employed in discovering hidden features. A distance metric learning may 

discover a ‗true‘ similarity function that respects a set of constraints. Given a set of pairwise 

constraints, which  must-link constraints M and cannot-link constraints C, the task is to find a 

distance metric D that minimizes the total distance between must-linked pairs. 

 

And maximizes total distance between cannot-linked pairs: 

 

We use the Euclidean l2 distance type for the first type of must-link pairs: 

d (x, y) = 
2( ) )i ix y  

However we also note that the l1 metric is quite often used in computer vision for feature 

distance calculation. 

1 1

1

(p,q) || p q || | |,
i

i
i

d p q


     

We had also used a cosine similarity function as a type of similarity metric between the images. 

The cosine measure works as follows: 

  

Where the scalar product is defined as, 

x ° y = Σ xi * yi 
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And the length of vectors is the following: 

2 2|| x || ;|| ||i ix y y  
 

When measuring for similarity, two points a and b are similar if the distances between their 

descriptors remains below an arbitrary threshold:    
( ) .M a bd D D t 

 The figure below shows 

the values of the distance measures of a probe image compared against other games covers in the 

dataset. The cosine similarity measure was used to compute the relative distances of the images 

to each other based on their extracted visual words. The figure below is just a truncated sample 

of the overall results. 

 

  

Figure 3.8 In the figure above, we take a single query image ―Advanced Wars 2‖ measure its similarity against every 

other image in the dataset. Due to space constraints we only show a small sample of the results. 

When comparing the descriptors of the several images in the figure above we use the cosine 

normalized difference, which ranges between 0 (identical) and 1 (completely different).  For this 

experiment we also used a pre-computed dictionary containing ten thousand pre-computed visual 

words. After obtaining initial candidate image matches, either from an IF (inverted file) or MH 
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(min-hashing), we may well also opt to re-ranking these images by using the consistency of 

corresponding features. 

 

Table 3.1 Small sample showing the distances from Advanced Wars 2 as probe  

based on the figure 3.8. 

We could also visualize the corresponding visual words or descriptors on the probe and their 

equivalent images, including the value of their cosine distances.  

 

         Figure 3.9 Visual words on images and relative cosine distances 

As stated before, we could use the cosine measures as a means to not only understand visual 

thresholds but also as a basis for grouping the images into various image families based on visual 

description. We had actually used feature matching crudely using the visual words, where 
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features that have the same visual word are simply considered matched. Other more advanced 

techniques can be used, for example Jégou et al., (2008), but we had used the simplest approach 

here. These feature matches are then used to fit an affine transformation between the probe 

image and the candidate images using RANSAC, Forsyth and Ponce (2002). Basically, affine 

transformations are a relation between two images, based on their rotations, translations and 

scale. It basically means that we could take an image, make a copy of it, and try to invert the 

copy, reduce its size or rotate it along an axis, but an ideal object descriptor will still be able to 

notice the visual similarities between the images. 

 Nevertheless, we are not interested in merely clustering the images based on visual 

appearances alone as hinted earlier. Our semantic objective is a lot more sophisticated than that. 

We understand that using the similarity measure defined above, a 0.0 score equates an identical 

image. This precise match prompts us to take a closer look at its unique visual descriptor. What 

makes the image‘s features exactly distinctive from another in the dataset? If these visual 

patterns are exactly unique to that image, could these features be easily mapped to a high-level 

concept representative of the core image scene, equating to a descriptive scene class? It is a way 

of inquiring into the possibility of having low-level features peculiarly identify an image scene 

and directly link same to any additional meta-data or semantic concepts surrounding that image. 

 

3.6     Error Pairs  

While we are concerned about precision, we are also sensitive about errors or image mismatches 

our application generated during the various image-retrieval tasks. The whole objective of any 

learning model is to minimize errors in the discovery and analysis of features. The types of errors 

that results, is usually dependent on the binary descriptor as well as settings that was applied in a 

retrieval task. We compare the types of errors each descriptor produces when tested with our 

game‘s cover content. We selected a few descriptors from an array currently used in the OpenCV 

framework and integrate these libraries into our application. The following is a very broad 

overview of the other object descriptors that were tested (we omit Sift because we have 

discussed it earlier as our baseline):  i. BRISK: Binary Robust Invariant Scalable Keypoints-- is a 

novel method for keypoint detection, description and matching. The key to speed lies in the 

application of a creative scale-space FAST-based detector in combination with the assembly of a 

bit-string descriptor from intensity comparisons retrieved by dedicated sampling of each 
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keypoint neighbourhood, Leutenegger(2011). ii. SURF: Speeded Up Robust Features-- is a 

robust local feature detector, first presented by Bay et al. (2006). As the name suggests, it is a 

speeded-up version of SIFT taking its inspiration from it. If Lowe‘s SIFT approximated the 

Laplacian of Gaussian (LoG) with Difference of Gaussian for finding scale-space, SURF goes a 

little further and approximates LoG with Box Filter. Essentially, for purposes of clarity, the 

Laplacian of an image highpoints regions of rapid intensity change, and is therefore often used 

for edge detection. The same Laplacian is often applied to an image that has first been 

approximated with a Gaussian smoothing filter in order to reduce its sensitivity to noise, and 

hence the term LoG. SURF leverages a common image analysis approach for regions-of-interest 

detection that is called blob detection. The typical approach for blob detection is a difference of 

Gaussians. There are several reasons for this, the first one being to mimic what happens in the 

visual cortex of the human brains. The drawback to difference of Gaussians (DoG) is the 

computation time that is too expensive to be applied to large image areas. In order to bypass this 

issue, SURF takes a simple approach. A DoG is simply the computation of two Gaussian 

averages (or a Gaussian blur) followed by taking their difference. An approximation is to 

estimate the Gaussian blur by a box blur. A box blur is the average value of all the image values 

in a given rectangle which can be computed efficiently via integral images. SURF also uses a 

wavelet response for orientation assignment and feature description. This makes Surf suitable for 

vision tasks like object recognition or 3D reconstruction. iii. ORB: Oriented FAST and Rotated 

BRIEF
9
—it is a very fast binary descriptor based on another descriptor called BRIEF, but has the 

advantage of being sensitive to image orientation, Rublee et al. (2011). ORB is mostly the 

merging of the FAST
10

 keypoint detector and the BRIEF descriptor with many modifications to 

enhance performance. While it uses FAST to find keypoints we understand that FAST does not 

compute orientation. So what about rotation invariance? The developers simply modified the 

FAST and BRIEF fusion to accommodate such invariances. Orb similarly applies the Harris 

corner measure to find top N points among them and uses a pyramid to produce multiscale-

features.  The following tables show how the various object descriptors performed when 

compared against Sift using the l1 and l2 distance measures for the features.  The tables indicate 

                                                           
9
 BRIEF: Binary Robust Independent Elementary Features 

10
 FAST: Features from Accelerated Segment Test 
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errors from the various descriptors in failing to match a query image from our 300 games dataset 

sample.  

 

   Table 3.2   Detector/Descriptor errors using l2 distance 

What the table shows is that Sift performs better from our small sample set when compared 

against the other descriptor techniques, especially when using the Euclidean distance measure for 

the image features. However, its performance suffers considerably when the l1 distance is used. 

 

 

  Table 3.3 Sift performs poorly here with l1 mostly because of background clutter. 

We also decided to test our object descriptors using a smaller dataset –our original 100 games 

image sample without mixing them with additional image content from domains completely 

outside of games.  
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            Table 3.4 The relative proportion of errors remain the same with Surf improving 

 Curiously, we discover that the pattern of errors relatively held with Sift performing a lot 

better in our tests. However, Sift had no errors at all when the l1 distance measure was used 

again for this smaller sample. 

 

            Table 3.5 Sift had no errors here for l1, 100 images 

 

When we used our baseline descriptor on 300 games cover set under the l2 Euclidean distance, 

we got 8 errors.  When we mixed the images with non –games images during training under the 

l1 distance, the errors degraded to over 20. When we made the training sample size to just 100 

games cover set, under the l2 distance, the errors shrunk to just three. When we used the same set 

under the l1 distance, our baseline Sift recorded no errors at all. The other descriptors showed far 

worst performance under each parameter and types of data set when compared to Sift. 
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 Evidently this could mean that Sift is merely good at verifying an image match when no other 

competing pattern from a background clutter is there to confuse it. This smaller sample will 

hardly constitute a true learning model for our descriptors since errors tend to be artificially 

minimized especially when we have a smaller sample set and when there are no other tough 

choices to make, regarding the analysis of the image‘s features.  Incidentally we are simply 

stating that image-retrieval errors are dependent on the types of descriptors and learning models 

used. But when we find a consistent pattern of the types of errors or image mis-matches across 

different object descriptors for a particular query image, it does tell us something. To put it 

another way, if we used the Brisk, Surf, Orb and Sift descriptors in different instances to invert 

search our image database and the results consistently produce the same type of errors or image 

mis-match pair (the second closest nearest neighbours for that image), based on the concept of 

descriptor repeatability, it is also suggesting to us that a particular image can also be identified 

by its mis-match patterns. If Sift or Orb descriptors produce a feature mismatch, and we are able 

to observe 10 other similar images or errors in the likelihood panel, the 10 images in that 

neighbourhood can become error-patterns for our probe. In other words, while the second nearest 

neighbour approach can be used to find images nearest to the probe image, or sample the density 

of errors in that neighbourhood, we soon discover that for each probe image, every consistent 

error resulting from the probe is also a distinctive marker indicative of the probe image as well. 

This essentially means that while a perfect and precise match for a query image shows an 

example of image distinctiveness, the types of consistent errors an image produces when there is 

a mismatch, shows a type of distinctiveness too, that could be traced back to the probe image. By 

their errors, we shall know them. The only drawback to this hypothesis being that if we suddenly 

mixed our original 100 image dataset to a larger and newer dataset, the pattern of errors suddenly 

changes for our probe images because of the new background clutter. But then again even the 

new dataset will likely create a new set of consistent error patterns for each query image to 

enable us mark out that image based on the errors or nearest-neighbour cluster they had elicited 

in the likelihood graph and panel. It should be noted that the images in the graph of our 

likelihood panel are all images in the neighbourhood of our query image, each having a relatively 

close distance from the probe. Not only can they be analyzed into distance-based family clusters, 

with additional semantic descriptions to highlight them, but in the context of our study, they are 

all hypothetically error-candidates for the query image no matter how many similar object 
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features they share. Image-retrieval errors in our context are a new type of meta-data by 

themselves, designed to recognize the target image. 

 

3.7   Local Descriptor Metrics 

The tables in the previous section essentially show the individual performances of the various 

local descriptors used in this study. Because our sample size was really small and we lacked the 

time to proceed with further tests, we did not perform further evaluation of these descriptors. We 

had instead focused on the analysis of error-pairs since they hinted at a new semantic knowledge 

that has previously been untouched. However, in discussing the usual metrics for accuracy for 

these types of experiments we henceforth list the various descriptor metrics starting with the 

general Descriptor Success rate based on repeatability: 

   

     ,    
Correctly Matched Interest Points

Repeated Interest PointsDescriptor Success Rate s   

The more common evaluation metrics includes a matching score for the image-retrieval task: 

number of correct matches

number of detected regionsmatching score =
 

The values for the matching score can all be lifted from our application‘s statistics panel. 

However we also use our error-pair tables in addition to the information in our statistics panel to 

get additional values for precision and recall for each object descriptor: 

number of correct positives

total number of positives in the data setrecall =
 

And, 

number of correct positives

number of correct positives + number of false positivesprecison =
 

The precision parameter describes the number of correct detections relative to the total number 

of detections. On the other hand, the threshold is usually set below the value of a false positive 

rate otherwise the number of false matches becomes too high to provide reliable scene 

recognition. For our experiment, we are more interested in knowing the number of false 

detections relative to the total number of detections, and so we make use of the 1-precision 

parameter: 
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number of false positives

number of correct positives + number of false positives1 precision 
 

In our study context, a correct positive corresponds to a correct match between the two images 

while a false positive refers to a false match. The total number of positives in the dataset refers to 

the total number of correct matches that can be found. The number of correspondences is 

obtained using repeatability. Using the above definitions we redefine recall and 1- precision as: 

number of correct matches

number of correspondencesrecall =
 

and, 

number of false matches

total number of matches1 precision 
 

What about possible but not actualized matches? Given two images representing the same scene 

or image, the detection rate is the number of correctly matched points with respect to the number 

of possible matches: 

#

#

correct matches

possible matchesPcorrect 


 

The false positive rate is the probability of a false match in a database of descriptors. Each 

descriptor of the query image is compared against each descriptor of the database counting the 

number of false matches. The probability of false positives is the total number of false matches 

with respect to the product of the number of database points and the number of image points: 

      

    int )(#      int

#

# )(

of false matches

database po s query image po sfalseP 
 

 

3.8    Reversed Search 

A consequence of treating error pairs as a signal has important ramifications for reversed search, 

utilized with the inverted index approach. In this thesis we had forwarded the premise that any 

mismatches, errors or false positives can also be learned using an algorithm, to be indicative of 

the probe image.  Therefore, our assumption purports that when these errors relative to a probe 

are consistent, in the context of our error-pairs, they are not quite unusable, since they can also 

be used to predict the particular probe image especially when an exact match is not found, in a 
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sort of reversed search process. The actual implication for real world search contexts occurs 

when our learning model defines a cluster of images to be most representative of a particular 

probe. Whenever these clusters occur as error pairs, they trigger the probe. Other contexts 

include situations where a user has to use an abstract description or even several image examples 

to target an actual scene. A hypothetical search context would be facial recognition and scene 

class retrieval: Find the scene where X drives into the sunset or Find a scene where a mother 

holds her baby in Church or Find the Characters that look like X. When the user locates the 

scene or character of interest, we propose that the cluster of images that were produced as a 

result of the search can also be a proxy for the same target image. This different approach to 

image-retrieval as forwarded by this thesis simply asserts the modest assumption that, probe or 

query images do not always have to be a one-against-all comparison; a cluster can also target 

one. In a future application along this line, we would want to have several images forwarded at 

once as our probes or query images, to enable us locate just one target image. Basically, what we 

are doing is reversing the image-retrieval process so that a cluster of features (that in the present 

appear in our Likelihood graph panel as a neighbourhood) can become a representative prototype 

for a single candidate image. It is somewhat like condensing the features of a neighbourhood 

cluster into one super candidate. As stated before, the search context could be text or image 

driven. To be able to locate the image features similar to what the user has in mind, or map the 

search texts to corresponding high-dimensional feature vectors, will mean simultaneously 

treating the combined features of several images as one, helping to also narrow down the search 

context. If the user had one particular scene or person in mind, and wants to retrieve similar 

scenes to be able to locate the target scene, this reversed approach could be a start. The 

effectiveness of this approach will almost always be influenced by the dictionary size of the 

relevant images. 

 In more conventional approaches, the dictionary size (that is, the number of visual words in 

the codebook) significantly affects the recognition performance and run time of the BoW 

approach. It has been demonstrated that using larger dictionaries, in the order of hundreds of 

thousands, improves performance and reduces search time in the inverted file. Dictionaries can 

be generated using the Approximate K-Means technique (AKM), Philbin et al., (2007), and by 

using random Kd-trees, Arya et al., (1998) to perform an approximate nearest neighbour search. 
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The table below is gotten from Aly et al. (2009). Notice how the increasing the dictionary size 

generally increases the recognition performance, especially with harder scenarios like 2 and 4.  

 

 Table 3.6 The effect of dictionary size. Results for {none, l1, l1} combination with different dictionary sizes: 10K, 

100K,   and 1M visual words built with AKM. In the bottom row, solid lines represent time to compute visual 

words, while dashed lines show time to search the inverted file. 

 

With larger dictionaries, the time to compute visual words for features increases slightly (since 

we are using Kd-trees), however, the time to search the IF decreases. This is intuitive since the 

number of images with similar words goes down as the number of words increases. This suggests 

that using larger dictionaries is generally the way to go. On the other hand, using the premise of 

our reversed search where combined multiple probe images are used to search for a single 

candidate image, will also have the effect of not only narrowing the search context, but also 

improving retrieval speeds accordingly.  

Recall that every type of match or false positive ultimately depends on the type of descriptor 

used including the clustering strategy for the particular image-retrieval task. 

 

 

If we used K-means clustering to group comparable features from our dataset, and we also used a 

measure to minimize the sum of squared Euclidean distances between points xi and their nearest 

cluster centers mk, there is a possibility of tweaking the algorithm to make centers, seekers: 

i. Randomly initialize K cluster centers for our training images 

2

cluster point in
cluster

( , ) ( )i k

k i
k

D X M    x m
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ii. Iterate until convergence: 

a) Assign each data point to the nearest center 

b) Recompute each cluster center as the mean of all points assigned to it 

Our argument for error pairs re-examines the figure below and appreciates it in a new way: Let 

these errors become new centres around the probe image. Let the green dots not only represent 

feature centres but also the key features from our probe image. Let the blue neighbourhood 

clusters around the green dots become all candidate features for an image match.  

 

 

 

 

 

 

 

 

 

 

         Descriptor Goal: find a set of representative prototypes 

                                                                                                                                                                          

Figure 3.10   Centers amidst a neighbourhood feature cluster. 

If our probe image consistently produces the same types of error clusters, then we can assume 

that errors themselves constitute a set of representative prototypes for our probe image, where we 

could take these set of errors in a reversed situation, and they would all point to the query image 

as a match.  This also leads to newer insights for reversed searches. In normal searches, every 

blue dot above tries to cluster near the green centre based on some similarity measure. But using 

the error pairs approach within a reversed search context, the error-pairs are faced with two 

scenarios: i. Have no initial centre, but vote in the query image as a prototype centre ii. Combine 

their features to search against the remaining database for a new centre, relative to the 

representative features of the probe image. In other words, we make the cluster of blue dots 

attract the green centre instead. This can be done through a voting process where the features in 

the neighbourhood cluster may well define their relative distances from each, or from features in 
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the database, relative to a probe.  The candidate centre with the most votes becomes the 

archetypal exemplar for that cluster.  

 In summary, when an image search occurs and we get a series of images that are expected to 

be visually similar to our query image but may not be in reality, what we are actually seeing are 

the results of the nearest neighbour features for that query image. Since we did not find an exact 

match, we could either dismiss the entire result as a mismatch, or we could decide to further train 

a learning model to associate the exact or approximate series of image clusters with the original 

query image we had in mind. In this regard, when trying to make approximate matches for the 

probe image, the error pairs can easily find its target. Thus, even errors are not wasted. The 

semantic gap is lessened when these types of additional contexts are also included in the retrieval 

task. In other situations, we may have several example images as our query image(s) combined 

to retrieve a single target image. This forms not only our desired result but also serves as a 

prototype for that cluster. The proposed reversed search model is also designed to narrow the 

search context in larger sized dictionaries where object descriptors can be very large. In our 

premise, we go beyond using features from a single query image, by expanding the context of 

features from multiple images now formed into a group, to search against the remaining 

database. Because each image provides a unique aspect to what is being searched for, it is 

predicted that the types of faces, objects, scene classes, or actions that can be predicted from this 

approach, will be more accurate than if the search only came from a single probe image. This 

also has the consequence of narrowing the search context, and the semantic gap during retrieval. 
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Chapter 4   Conclusion 

 

4.1   Study Outcome and Contributions 

 

Firstly, the amount of knowledge gained and generated in the course of this project has been 

staggering. It is a result of a deep desire to master machine learning techniques over the years, 

emerging from a deep need to learn something practical and challenging. Computer vision is 

hard and challenging, especially when one wishes to push the envelope. In this thesis we had 

investigated the concept of the semantic gap by exploring the various approaches that have 

already been adopted by a number of researchers using both ontological and data-driven 

techniques.  We had examined instances of the semantic gap in our study and the various 

strategies that were adopted by various researchers to narrow that gap for image processing. We 

took particular note of ontological models as reflected in the thoughts of Bannour and Hudelot 

(2011):  

Ontologically-driven approaches are widely accepted now as very appropriate to 

model and take contexts into account. Thereby, unlike other techniques that allow a 

semantic description of images, ontologically driven approaches are best suited for 

image-retrieval systems as they model the semantics of images through relationships 

that help reasoning about it and understanding its meaning. (2) 

However, in our own particular case, using the premise of several image-retrieval tasks, we had 

sought to expand the context by which additional semantic knowledge from low-level features 

can be incorporated to bridge the semantic gap for image-retrieval tasks. Evidently our goal is 

not the mere evaluation of the performances of different object descriptors. That type of 

evaluation has already been done with copious literature to that effect. We were very interested 

in discovering additional contexts for our image search. We had evaluated the types of mismatch 

errors generated by these different object descriptors under different parameters, for an added 

purpose: To help provide the keen insight into how these error patterns occur across the different 

descriptors. We were eager to understand if the notion of descriptor repeatability has been 

maintained under different parameters, sample sizes, and distance functions.  The contribution of 

our image analysis comes from determining the relative importance of error-pairs. Although we 

were also very interested in discovering how each games cover possessed features that were 
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distinctive enough to be matched during an image search; which indeed, is something significant 

since an image‘s feature distinction effectively means that the global field of that image can 

easily be mapped directly to a high-level concept, since those features were unique enough (low-

level feature uniqueness, equates the narrowing of the semantic gap by assigning high-level 

concepts to describe the global field of that image). But we were also interested in image 

mismatches that resulted from the many image-retrieval exercises that we made with our games 

content. We soon realized that these groups of images that cluster in the graph of our likelihood 

panel can also be a type of ontological representation of the probe image relative to the 

neighbouring cluster of images in that panel. In other words, what we have just done is expand 

the ontological contexts by which we could re-explain the query image by the types of results it 

generates from a learned dataset. This is a novel contribution of this thesis, which we hope to 

further investigate. Another significant contribution emerges from the enabling of a reversed 

image search process, where image results can now be used to determine a single prototype 

candidate. In other words, we had suggested the concept of multiple, simultaneous image 

searches, to contribute diverse features to what is being searched for and to also narrow the 

context of the search at the same time in a large database.      

 

4.2   The Image-retrieval Tool 

The image-retrieval tool used for this study will also be further developed to accommodate new 

clustering and search contexts.  One of our goals is to enable the selection of a group of image 

clusters in the likelihood panel to be able to retrieve a target image that is a representative 

prototype of that cluster. The current application as it is does not have those features.  

Ultimately, another goal will be to develop a web and mobile-based equivalent of the image-

retrieval tool to enable web-scale, and real world search context for images.  
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APPENDIX A 

More Screenshots from application showing mismatches 

 

Figure A.1 General color templates and image texture seem to resemble, although they are thematically unlike 

 

 

Figure A.2 The darker colors here may also coincide with a darker theme from both games. 
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APPENDIX B 

The Inverted Search Process 

 

 

       Figure B.1 Clusters and centers 

 

 

   Figure B.2 Inverted Index   
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APPENDIX B 

The Inverted Search Process 

 

 

                     Figure B.3 Populating the Vocabulary Tree 

 

 

 

   Figure B.4 Test image against model images  
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APPENDIX C 

Aly et al.’s (2009) Discovery of Large Image Families 

 

 

   Figure C.1 The simple Matlab based image family viewer. (we tried it for this study, sadly, Matlab had problems   

    on Windows, with the framework relying on Linux-based scripts/compilers for certain critical vision tasks) 

 

                  Figure C.2 They clustered duplicate images  
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APPENDIX D 

Semantic space and Segmentations 

 

 

       Figure D.1 An illustration of the semantic space 

 

 

 Figure D.2 Segmentations with labelling of co-occurring objects as Ground Truth for scenes.   
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APPENDIX E 

The Parsing Graph 

 

 

Figure E.1 Image parsing example. The parsing graph is hierarchical and combines generative 

models (downward arrows) with horizontal connections (dashed lines), which specify spatial 

relationship between the visual patterns.  

 

 

              Figure E.2 The decomposition of a scene class using a parsing graph. 
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APPENDIX F 

Human Actions and Scene Classes 

 

 

Figure F.1   Images showing the various types of actions or verbs that can be recognized. 

 

 

     Figure F.2   Images showing different scene classes 
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APPENDIX G 

Textons 

 

 

Figure G.1 The texton representation of a flying bird 

 

 

Figure G.2 A three-level generative model: an image I (pixels) is a linear addition of some image 

bases selected from a base dictionary. The base map is further generated by a smaller number of 

textons selected from a texton dictionary. Each texton consists of a number of bases in certain 

deformable configurations, for example, star, bird, cheetah blob, snowflake, bean, etc. 

 

 

 

 

 

 

 

 

 

 

 


