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Abstract

in prowramming via constructive proois, the specifications of the programm arc first
proven to be satisfinbie and the code i< then extracted from the proof. In this researcch,
the feasibniity of this nrogramming reethodology 5 being investigated by using and
cxtending the Muian-C svstemn, a natural deduction proof environinent that extracts
Lisp code from constructive proofs.

The MiZar-C system is extended with a basie data iype of bit strings. My main
project was to implemient a binary tree data structnre in the svstem. in this thesis,
we used definition by impiemenmation to define binary trees. This approach dehines
recursive structures directly and gives an iterative test for correctness of constric-
tion. In addition, we defined a new inference rule which allows the intreduction of a

recursive funetion fron a proof of its specitications.
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Chapter 1

Introduction

1.1 Formal Methods

Formal niethods in computing s~ience are mathematical modellineg techniyues for de-
scribing properties of computer svstems. hose me fods have a sound mathematicad
basis that provides the means for proviag that the system design and implernnentat jon
satisfly precisely specified propertics. For a general introduction wo formal methods,
see [24].

Why are formal methods necessary? Honestly, the nse of formal methods is not
applicable to all syvstems due to the extra time. and thus cost. reauired to perform the
furmal proofs of specifications. However, there are systems where the cost of failure
s extremely high. The extra cost of using formal methods is thus justifiable for these
svstems. There are also systems where no rigorous testing can test all possible actions.
As a result, the use of fornal methods is necessary to guarantee the correctness of
nnmplementation,

Althongh uncommon, formal methods have been applied 1o industrial projects.
For example, IBM™s CICS i3], a large. 20.vear-cld transaciion-processing svstem,
was redesigned using formal methods. it contains more than a aif miallion lines of
code. Commercial operations such as Praxis [6] are dedicated users of formal methods.
They write specifications and devejon software {from them.

The use of {armal meithods is not an all-or-nothing approach. A useful strategy
is to apply formal methods to the most critical portions of a system only. In this
way, we can increase the reliability of the system with a justifiable cost. As formal
methods become more common and well developed. we can formally describe and
verify the correctuess of more portions of a large complex svstem.

1.2 Programming via Constructive Proofs

One of the major research areas in formal methods is the use of constructive proofs
to specify and produrce correct programs. In traditional programming methodolgy,
a program is specified. implemented. and then tested to satisfy the specifications.

1



Howevor in progranun ng via construc n‘ e proots, the specitications of the progream
are finst proven to be savsfiable and the code is then extroeted from the proof. A
pact of the MIZAR-C gronp at the | m\.'mw?l_\ of Aibertas | have been wvestivating the
feasibility of this programupuag methodoicey by using and extending the Nzag ¢
svstem 1230 o neturel deddionien proot environmient that cxtracts isp code trom
constenetive prools,

In programuning via constructive nroais, the itionship hetween spealivations
and programs is usually cstabhisied by a specitication lansuage.  In the - ase of
Musar-C the specificat cn tenage is the lanemaee of Himated secs aed order prred
icaze loeie formulas, For cxample. we can raate mpio 4 1o ontparl o by reading the
formula

Ty st Postr, _4/]

As osoectication of a trovram which, whon siven an e, tinds oy ior wiich sreperty
Postiz. i on » and y holds.

Berides our Mizan-C gronp. there are ather research gronps investinating 1 he e

Ol Lisibia constenc ive proois to realize corroect prowrins, NepRE 3 Corg ]l alarn
L57 Type Theory TH6] and 1the Calenlus of Constroetion [ e tvpe sestens as
their formal langaage, They try to approach the probicm of progvam devividion teom,
the type perspective. On the other Tand, PY [T, 8] is o svstem that uses o logie
such that the prograns exists oy terms in the objeen languaee. A Lisp program can
therefore be extracted from a constructive prooi of a formuta. While PN anplements
a particular logic, FIf [17) s a logical framework in which different fories can be
niplermented.  WI1ZAR- ;’ 5 a system which fails somewhere hetween PN and I
as 1t can implement many different logics through the exsension of inference rmles
and axioms. Like both, programs are eencrated from proofs tironeh o realizability
interpretation.

One of the distinetive features of 202a8-C is that i attermpts to cceount for the
resonrces required to compute whereas systets ke NUPREL o C'00 do ot s eetn o
address this problem. The {act thay (he organization of the proot alfecrs he ofli
clency of the extraceed program s woll- kuown, For exatnpics Manua and Waldinger
113] investigate program syuthesis viing deductive-tablean proofs and they empha-
size the importance of the compiexity of the synthesized programs. o Mrzan )
statements proved by non-constructive reasonine asre marked an ton cotngaitable «x"('
do rot contain any ~omputational content. Other stateinenis are marked ae cording
to the resources consumed when their compitational coutent, is extracted. In this
way. we can empioy classical reasoning on the statements where comprtations ate
net required.

Other current, rese;u‘chcrs in this arca include Breny Kuaight (1200 Iy Lis thesis, he
poinis out that the proerams extracted fror const ructivze proofs are nsually Hittered
with redundant comprmcmn. He then gives an algorithm for automatically prifuing

theve useless subprograins.



1.3 The MIzAR-C System

The Mizar-C svstem is a natural Jdeduction proot —nvironment that extracts code
trom counstructive proofs.  The language ol the logic is closely related to that of
the MIZAR-MSE language [9]. a subset of MIZARISL MIZAR-C's proof checking
environment is implemented using the Synthesizer Generator [13). which provides a::
interactive syntax-directed editing environment for writing proof texts. The language
for the realizations that make up the extracted programs is Lisp.

It was Kleene [1. 117 who proposed the ides of realizability which relates formu-
fas to progriaums. Curry and Howard (1] <howed aa isomorplisin hetween natural
deduction jogics and typed lambda calculi. In other words. they reiated propositions
to types. The realizability interpretation of Mizan-C, called sparsc realizability, is
nased aipon the Curry-Howard isomorphism. althongh the isamorphizin is destroved
since it is no longer possibic to convert programs back into their corresponding proofs.

Every logical formula has its corresponding computation under a {uil realizabiiiiy
interpretation. Sucu a computation is called the reafization of that formula. However.
not every realization has wcrual cormputational content. For examipie, some realiza-
fions have no inputs and so they are simply constants or expressions that require
valuation in order to produce the constant. Under sparse realizability, realizations
are generated only for those formuias that have computational content. In other
words, this sparse realization of formulas results in rencrated code that is opuinized.
since it only produces expressions that contribute to the overall computation.

1.4 Overview of Thesis

My main project was to implement binary tree data stricture of bit strings in the
MIZAR-C system. This can be seen as a continuation of the work done by Kippen
{10i. Tu Kippen's thesis, she defines finite sequences of bit strings in MizAR-C. |
continued this research direction by inplementing binary trees in the system. Our
motivation was to investigate if it is feasible t., represent binary trees in bits strings
since the binary tree is a hasic and useful data structure in programming. We also
wanted to find out any existing errors in M1ZAK-C as well as any incompleteness of
the system.

This thesis contains six chapters in addition to the introduction. Chapter 2 con-
tains some backgronnd material on the Bits machine, an extension for which the
functions extracted from the proofs is applied to. Chapter 3 describes how binary
trees are represented and detined in Mi1zaR-C. Chapter 4 discusses the proofs of
some theorems for binary trees. Then. it discusses the definition of some functions
for binary trees and motivates us to impiement a new inference rule. recursive func-
tion definition. Chapter 5 discusses the new inference rule in deiail and illustrates the
nse of the rule by a small example. Appendix A discusses the realization of the rule
and compares it with that of the induction rule. Chapter 6 decribes the definitions
of two recursive functions for binary trees in Mi1ZAR-C and discusses their complexi-



ties. Appendices B and € shows their arnotated proufs. Finallv. Chapter 7 contains
some iuture research directions in Hinary trees, as weil as in the Mizag. O svstem in
generai.

The reader may find the following information nseful in reading this thests. Every
visiect o MIZAR-C is expressad in the form of:

<mosdute_name> . <ohiect_naned>

This convention aliows us to distinguish different objects having the same names de-
fined in difflerent modules. In this thesis. onlv the ebject names are mentioned except
in the examples of statements and proofs done in M17AR-C. For these examples, the
following 1vpe stvle is used:

/™ This is a comment line ¢/
for x being T'x hoids P{xj:



Chapter 2

Background

2.1 Bits

The rexlizability interpretation of A1Zar-C alcne has no computational power, With-

HENS

ver

out any other extensions, the functions extracied from the Dreols Rave no obiects to
apply to. The system has thus been extended with a basic data type called Bits. that
5. bit strings of 0's and s, The fundamental building blocks are the Lit sirines O.1,

and bil.

/* Definition of the iype Bits */
given Bits being [Any j;

/* Define ¢ £ 1 to be the bit strings of lepgth 1; "/
» P and ail to Le the empty Bic steing ©/
given 0, 1, nil being Bits:
A decider function is provided that determines if a given bir string s pil or not.
BA_uil_or ot (for x being Bits Lolds

( (X = nil) or (x <> nil} );

Two length predicates are provided to compare the length of two different bit
strings. bits len_it[x.v] means bit »tring x is shorter in lenpsth than bit string v and
bits den_eqfx.y] means bit «iring x has ihe same i=ngt! as bit string y.

given bits len It being {Biis. Bits :
given bits_len_.eq being IBirs, Bits i

A function that decides if a given bit (i.e. a bit siring of length eqnal to 1Y is a 0

>

ur a | is provided,



t
A ten_eqol: for x being Bits houds
Chitsden_eqi .

RS EATERN

o= llorx = 6 0));

A funcrian s ac,
X, deternunes i

zivern fwa hit strines ¥ and
[ X is longer in jengtn than v or x t 1= the

vieueh that o has leneth no Jess than

samme lenpth as vas srovided
BALci_naidt: 18 xo v being Bits holds ((net birs len_fox, v 5 mplios
bits lonifv, x T or mr.s_mz.--v-«;;.\'. ALK

M axioms stating the asynnnetrie and the transitive properties of bits_len_lt are
Drovided,
BAZien_liasym: for X, 3 being Bits holds
ihits den_itfx. v [ npiies juoi Litsden It x ]V
BA_en_it_irons: ior xov 2 beng Hits holds (bits len ]t ix
(bitsden dtjy, z | implies oiss den dtfx, z [j) )

Fimplies

The axtoms stating the rellexive the svmmetric and the transitive propertios of
bits len_eq are also provided.

BAlea_eq.mefl: for s being Bits holds bits den_oqlx, x [}
B A len e svius (for x. v Leing Bits holds
('})I'LS_.'

ea_eqfx. v | iupiies bits_len_oqfy, x 1))

Ballen.cy trans:  for x. 3. z being Bits hoids (bt lou_aqfx. v Diplie
(dtsdea_oqfy, i T iimplies Lits Jen_calx, 2 0}))

’1 W

et

ponattive cperations on Bits are crovided to build new biv strings and
CHLT

act sub-strings {rom existing oit strings. The eat function concatenates two Lit
strings together. while the spiit function divides a bit string into two pieces modulo
anothter bit siring. Therefore. only the lengtl of

fthe second biv string is relevant 1o
zhe spiit fanction.

For example:
(cat < 1. 00>, = 100
(spiit < 11}, 0>) =< 1,1i]>
fsofit < III, 011 >) =< |11,

nil >
fepiit < 111. 0101 >

=< [1l. nil >



given cat being (<Bits, Bits > -> Biizi;

BA_cat: ifor x, v heing 3its holds
(ex z being Bits st iz = (cat <x. 3 2i);;

given split being (T Bits, Bits > -> <Bits, [lits >

e

BA spiit: (for x. v being Bits holds
{ex zl, «2 being Bits st ((split <x, v >) = <z], 22 >}));

Two axiotns on the reiationships beiween cat and split are provided.

BA _catsplit: (forx. y being Bits holls
(x = {cat :apliticx. Vi)

BA split _cat: (for x. v being {3its holds
(Cspdit feal <X v >0 x>) = <x. v >k

Sorme other axioms {iisted hefow) have aiso been added to the MizaR-C sys-
tem. An noplementation has been written for those primitives thar have associated
computation.

BA_nil_not_i: (nil <> 1};
BA _nil_not_0: (nil <> 0);
BA_!_not 0: (1 <> 0);

BA_nil_or_aot: (tor x being Bits holds { (x = ail} or (x <> nil) }):

BA len_it_uii: ror x being its hoids
((x <> nil) if bitsden_It/nil, x j});

BAden_eq_nodi: (for x. y being Bits holds (bits_ien_eqix. v | iff
{not ( bits_len_it{x. v [ or bitsdentiy, x [ )))):

BA len_eq_1: (for x being Bits iol-ds
(hitsdeaeqfl. x JiF{ (x = 1) or(x = 0) })):

BA_cat_nil: i(for x heing Bits holds
( ((rat <nil. x >) = x} L ((cat <x.nil >3 = x) ));

BA_cat len_ey: (for x, v, z being Bits holds { bits_len_eq[y, z | ilF
bitsdea-eqf(cat <x.y >), (vat <x. z >} 1));

BA_cardendt: (for x. y. z being Bits holds {bitsden dtly, = ] iff



bits len_itftcar <x. v > ) (cat «x. 2 >) ik

BA_cat_dothlden_cq: (for x. v being Bits holds
bits_len_egiicat <x. )y >} (cat <3, x>V )
BA_cat_assoc: (for x, = 7z heing Biits hoids
fleat eat <X, 5 > oY= (eal <Xyt <yv,oz Y >t

BA_split_1: ffor x being Bits holds ( ((split <i. x>) = <[, 2il > or
((split <1 x>; =<gil. 1> 11;

BA _split_eq: ttor x. ¥, z being Bite Folds (bits_lenoqly. = [ imiplies
(Psplic €x, 3 >) = (split <x. 2>)))):

BA_split_eq_rev: ({for x. =, z being Bits holds
(‘not kitsden_{t[x. v [} imniies ((not vits_len_it{x, » }) mplies
{split <o v >0 = isplit <x, >0 M
bits_leni_eqly, 7 1k
BA _split_bir: (for x, 3 being Bits holds
c(not hits_len [0 x [V itF ((splin <x, 3 >) = <x, nil >)));

giveu LT being [Bits, Bits |;

BA_LT: (for x. y being Bits holds
(bits len it~ y JifF LTix. y [)):

The idea was to add the minimal set of primviiives such that ail other Jdesived
functionality conid be derived from them. In addition, a library of helper functions
and theorenis has been built 1o redunee the etiort spent on re-proving the same function
or theorem all the time.

We use Bits as the basic data type. so we need an aceess funetion to index into
bits, to read and write individual bits. But 1o do that, we need ar index type. So we
nse the length of a bit string as the index, which leads to unary vaturals.

2.2 Unary Naturals

Unary naturals. ur unat. is defined as the set of hit strings where every bit is a 0,
that is.

{nil, 0.00,000,...}

The fundameantai building blocks in unat are U0 and U] with U0 = niland 171 = 0. U0
is the unat representation of the natural nurnber 0. It is not the biv string containing



the bit 0. so we eall it €0, Similariz L' s thie gnat representation of the natural
nurmmber 1.

/" Deline the type of 1°0 </
given (7170 being Biws;

A Impilementation of UQ i Bits </
U.U0: (U170 = ail);

/* Define the type of 11 </
given U UL being Bits:

JY Impiementation of 17! in Bits */
UL (U U = 0):

In order to define unae formally in Mizar-C. we need to introduce the function
index, We derived the Tunction index which takes in two bin strings x and § aud
revarns the (1 + 1)™ hit of x i there is one. Otherwise, it rewurns nil. For example:

Mindex 101} (i) = 0
({index 0) 191) = ni!

Z* State the domain and range of index */

‘

given Ulindex being {Bits => (Bits -> Bits));

/¥ Speriiication of index */
lindex: (for x heing Bits Lolds
(tor i being Bits holds
(ex xI. x2, x3 being Bits st

( ((split <x,i>) = <xl.x2>)& i{<plit <x2, U.1'] >; = <({ Ulindex x} ij. x3 >k

A

The formal detinition of unat is shown below:

U.uiat_def: define V.unat of x being Bits by
(for v being Bits holds
(bitsden_Itfy, x ] implies (((U.index x) y) = M));

Note that recursive definition of unat{xjis not required. since by using the universal
quantifier in the direct definition. we can iterate the test for a 0 bit over each bit
position.

We wanted to have a function that gives the length of a bit string. Since we do
not have a built-in method for counting, we expressed the length of a bit string iu
unat using the length function. In other words. length converts every single bit of a
bit string to a 0. For example:

(length 101) = (0O
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given Ullength being (Bits -> Hits);
enath: (for x being Biis hoids
Cbits den_eqix. (Uldeagth x.) & Ulunaifi Ulenath x)) 0

The way taat we derived she Tongth nction can be seen as definition by proper-
ties. [nstead of actuaily implementing the finction (as we nsually do in traditional
programming}, we proved its properties. This s one of the distimetive features of
programming via constructive proofs.

2.3 Finite Sequences

Ancther more complex strocture a0 ANUZAR-C s finite stgticnces of Bits. Belore
AXplaining how this stractire s represented, we bave Lo introdice some relevant
funcuions and deiinitions,

The function nozab returns the munber of zeros at beginning of a bit string. For
example:

{rezab 00101) = 40
(rozab 101) = nii

given fseq.nozab being (Bits => Bits};

iseq.nozab: {for x being Rits holls
{ex zi. 22 being Bits st

{ U.unatfi fseq.nozab x)] &

{{(spiit <x. {feeq nozab x)> )=<(fseq.uorald <, 21>) &

{izl=ril) or ((split <zl, U li> =<1, 225), 1)

A Packet is detined as a structure consisting of a bit string preceded Ly its lenath,
A T bitis used as a delimiter between the length and the bi string, ket example:

000i>xxx
is the Packet of the bin string xxx. which has leagth 000,

1

is the Paciet of the ni! bit string, which has lengih nil.
The following is the formal definition of Packet used in Mizanr-C:

packet_def: define Packet of x beineg Bits by
(ex z1, z2 being Bits st
( ({split <x. (seq.nozab x) >} = <(fseq.nozab x), 21 o) &
{(spiit <z1, U.U1 >)=<1,22%) &
bits_len_eqj(fseq.nozab x), 22 | });



The function first returns the first Packet of a bit string, if there is vne

the function returns the original Liv string. For example

(first LONII010I0) = 0001101
ffrze DOCHIG) = 900110

given fsequdirst being (Bits => Bits);

fseq.first: (for x being Bits holds
(ex zI, 22, 23, z4, 25 being Bils st
( ((split <x, (fseq.nozab x)>)=<{iseq.nozab x), 2i>) &
((split <zi, U.UI> 1=<z2. 23>) &
((split <z3, (fseq.nozab x)> i=<z4. z5>) A&
{{(fseq.tirst x)=(cat <(cat < {fseqy.uc:ab x), z2>

N - Yo .
"’ e ’{()>,I.' A)s

. Utherwise.

The function rest performs exactly what its name implies. {rest x) returns the bit

string that remains once (first o} has been removed {1om . For examiple:

(rest GOUVLIOIOIG) = 010
(rest 000110) = nil
aiven fveq.rest being (Bits -> Bits);

Leq.rast: (for x being Bits holds
(ex zl, z2, 23, z4 being Bits st

( ((split <x, (fseq.nozab x)>)=<(fseq.nozab x). z1>) &
((split <z, UL.UI>)=<z2, 23>) &
(isplit <z, fseq.nozal x)> j=<zd. (fseq.resi x)>) 31);

4

(({iter ) (length ny) xt = ({(f---(f
N

{length n) times

Figure 2.i: The [ter function

The tunction lter takes in

e f, a total function on Bits

e n. the number of times that f is to be composed

® x. a bit string

X))

and returns the result after appiying { to x n times (Figure 2.1). To simplify the

definition of the Iter function, we express n in unat using the length function.

p——
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given fseq.iter being ((Bits => Bits) -> (Bits => (Bits => Ritsi};

fseq.lter: (for f being (Birs -> Bits) holids
{(tor x being Bits holds ((f x}=(f x})) implies
‘for n Leing Bits holds
{for x being Bits hold:
{ ((((Tseq Yter £) ( Uldergrh 23D)) xh=vi &
(({(fseq.iter £} ({7 length (cat <n. 0 >))) x)
=(f {((Fsea.lter ) ( Ulength n)) x))) )3))):

The Iter function was initially derived to deiine recursive structures by implemen-
tation. This definition by impiementation approach introduced in Nippen's thesis [10]

defines recursive structures directly and gives an iterative test for correctness of con-
struction.

i
DIToottrootrl1y
N P
i i
i. first Packet containing the bit string 0
ii.  second Packet containing the bit string 1
ii.

third Packet containing the bit string 10

Figure 2.2: Analysis of the bit string representing the finite sequence {0,110}

Let uis go back to the defimtion of a finite cequence in MIZAR-C. Since we have to
express a linite sequence as a Lit string, we need to be able to recover the individual
bit strings that make up the sequence. Therefore, cach bit, string s wrapped in a
Packe:i, and thus a finite sequence is defined as a sequence of Packets. For exarmple:

01001100110

represents the finite sequence {0,1,10}
Figure 2.2

> shows a detaiied anaiysis of the bit string representing the finite sequence,
Finally. the formal definition of a finite scquence in MiZAR-C is shown below:

finseq.d2f: define FinSeq of x being Bits by
(for n being Bits holds
( {(tseq.first (((fseq.lter tseq.rest) (U.length n)) x)) = uil) or
iseq.Packetf(fseq.first {((fseq.Iter fseq.rest) (Udength 1) x3) | ) )



Chapter 3

Binary Trees in Mizar-C

3.1 Representation of a Binary Tree

In programming, a binary tree is usuailv represented by a 3 tuple consisiing of a
data item stored in the node, and pointers to the left and the rizht sub-trees. Fach
stib-tree is either a binary tree or empty. For example, in Pascal, the declaration of
the tvpe BTree is as follows:

type Blrer = “TreeRep;

TreeRep = record
Root : Elem Type;
Left : BTree:
Right: BTroe
end: { Treeltep }

Since we are working with Bits. we do not have the notion of vointer. Direct
implementation of the data structure scems to be impossible. However., this gives
us some intuition on how a binary tree should be represented. Lei us consider the
following example.

i Node i Da.t?!

1y i 0
n, {
! ns3 ! 10 l

Table 3.1: Data stored in nodes ny to s

Table 3.1 shows the data stored in cach of the nodes ny to ns. In general. the data
can be any bit siring of finite length.
Figure 3.1 shows a binarv tree 73 consisting of a single node 72, only. We can view
Ty to be a binary trec consisting of a root node n; with data 0. an empty left sub-tree
13
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Figure 3.1 Binary tree 77
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Fignre 20 Binary cree T
“tunre 12 shows a binary tree 1Y cansistinge
of a singic node ny. Figure 3.3 then shows a binary tree 1) conststing of a root node
rig, ateft sub-tree 79, and a right sub-tree 7.

Intuitively, the pointer-free representation of 74 is:

atied wn o empiy righi sub-tree. Stmiariy, i

<10, <O, uil. wif>. <. il 1> >
where
e [0 represents the data stored in ny,
e <0, uil, uil> represents Ty, wnd
e <[, nii. nil> rcpresents 1.

Towever. cur existing Biws exienzion onlv ailows types B3its and tuphes of Bits, The
representation of Ta above is far more ~ompiicated than just taples of Bits.

'n the previous chapter, we introduced a data strociure cabied finite Sequences,
This structure gives us a way 1o store auy finite mmber of itens in a bit st P sing
Packets. So, a finite sequence with 3 Packets is a way 1o represent o binary free.
with tne first Packoe!l representing the wrapped data itera, the second the wrapped
left sub-tree and the third the wrapped right sub-tree. In onr previous example, the
bit siring representing T. is shown in Fiaure 3.4 The data 0 is wrapped in the first
Packet while the empty icft and the empty right <nbh-trees are wrapped i the second
and the third Packets respectively.

Similarly, the Lit string representing 7, 1 Lown in Figure 3.3, The data 1 is
wrapped in the first Paciket while the empty ot L nd the empty rishit sub-trees are
wrapped in the second aud the third Packets rospectively.

Knowing the representation of 75 and 7, the bit string representine 1y is shown in
Figure 3.6. The data 10 is wrapped in the first Packet while the left sub-tree 7y and
the right sub-tree T, are wrapped in the second and the third Packets respectively,



i
S S | ]
——— ——
i 11
i. vrapped data 8

ii.  wrapped emnty left sub-tree
ili. wrapped empty right sub-tree

Figure 3.4: Bit String representing Ty

3.2 Some Useful Functions

For case of deali..g with binary trees. we derived the following functions in order to
create a Packet. to retrieve the data from a Packet, and 1o retrieve the wrapped data.
the left and the right sub-trees from a binary tree.

The function pack wraps a bit string iu a Packet. Technically, it cenicatenates a.
bunch of zeros with length equal to vhe bit suring, a 1 as a delimiter. and the bit
string together. For exampie:

(pack 10) = 00110
tpack ni1) =1

given bt.pack being (Bits -> Bits);

bt.pack: (for x being Bits holds
t(bt.pack x)=(cat <(Ulengta x), (rat <. x>)>)j);

[fow did we get the above? In the proof text below, pack_spec is the specification
of the pack function. The proof of the pack_spec results in its nmplenientation. We
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then extract and name the function in pack_extract and pack name respectively.
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Figure 3.5: Bit String representing 79
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i wrappaed data 10
. wrapped Left sub-tree 1Y
iit.  wrapped right sub-tree 7,

Figure 3.6: Bit String representine 7,

now
/* Prouf of pack_spec */
let x be Bits:

consider z being Bits such that

I: (z = (rat <1, «>)) by elimi !l xii BA _cat);
- f

2: { bitsdeneqlx, (Ulength x) | & Uit (Ullength x) ] ) by elinxJi U dongih);

consider z° being Bits such that
{z" = (cat <«{U.length x), {cat <!, x >i>))

by elim[{ U.llength x),(cat <1.x >) [(BA_cat, .PREVIOUS, 11:

thus (ex y being Bits st
(v = {cat <(U.length x), (rat <I.x >} 3))
) by exintro( . PREVIOUS);

end:

/* Specification o1 zack */
pack_spec: (for x being Bits holds
fex y being Bits st
‘v = {cat <({Ulength x), (cat <1. x >)>))
3

/
) by direct{_PREVIOUS);



/7 Extract the pack function ©/
park_exiract: iex pack being (Bits -> Bitsi st
(tor x being 12its holds
((pack x) = ccat <{Uldength x; Jrat <10 x2)> )}
;

) by choicet PREVIOUS;:

J* Name the pack function */
consider pack being { Bits => 3its) such that packiame: | for x being Bits hcids
fpack x) = (-at <{U.length x:. frat <1, x>i>;) i by directt _ PREVIOUS:

As appaosed to the way that we derived the lengrh function, the wayv that we
dertved the pack fundtion can he seen as detinition Ly implenientation. lnstead of
proving the properties of pack. ve <pecify the tunction directly.

On the other hand. the tunction unpack performs exactly the opposite 1o what
the pack function does. Janpack »; returns the nnwrapped bit ~1ring if x is a Packet.
Fechnieally, it removes all the leading zeres ana then remeoeves the leading 1 there
s anv. For example:

{unpack 00110) = 10
{unpack 1) = nil
(unpack 0011 =

given htouapack being (Bits -> Bitzi;

bt.uapack: {for x being Bits Lolds
(X 21, 22" boing Bits =1
( ifsplit <x, {fseq.pozai X)) 1=<(fsequuozab 2, 21> &
((split <2177 01> )=<2". (bt.unpack v ) )3,

The function data does exactly what the firsi Junction does. We define this func-
tion again because we want to have a more meaningful function when working with
binary trees. If the input bit string is a binary wree. the data function returns the
wrapped data of the root. For example:

fdata 0101!) = 010

{daxia U1100) = (11
(data 00011) = 140011

given bt.data being ( Bits => Bits):

bt.data: {for x being Bits holds
t(bt.dara xi=(fseq.first xij}:

The function [_tree takes in a bit string x and returns the left sub-tree of v if x
is & binary tree. For exampie, consider the binary tree Ty in the previous section. we
have:
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aiven bil troe being  Bits -> Bitsi:

br.i tree: (for x beng Bits folls
(bt rree xi={btunpack ({seq dirst (fseq.rest x)ND )

.

Sineiiar 1o the function Liree. e function rofree takes in a bit steine v and returns
tie right s1b-tree of x if x is a sinary *ree. For example, consider the binary tree 77
again. we hLave:

(rozeee Ty o= 1

given br.r.tres being (Bits -> Bits):

bt.rotree: (for x being Birs Roiis
i(htritree x)={btoeapack fsegorest (fnog.rest 1))

3.3 The “walk” Function

After deciding how to represent a binary tree in MIZAR-C and defining some pelevan
functions, we have to find a way to define a binary tree {ermaily in the svstem. The
basic intuition is clearly ro deline a binary tree recursiveiy as follows:

bt.brree_def: define bt.biree of x boiag Pits by
{ freq.Packetfbt.data )] & :
( fseq.Packetitbt.ltree :)] & ((ht.i_tree x)=nil) or bt.btreef(ht. i tree x)] ) &
{ fseq.Packet{{bt.rorree x)] & (bt.r_tree x):=pnii) or bt.btreef(bt.rtreo xif ) ):

That is. a binary tree is compased of & node, a left sab-tree and a rizht sul-tree,
while each snub-sree is oither a ninarsy 'roe or crienty,

However, this version of M1ZAnr-C does not have the ability to sdefine recnrsive
suructures directly. The reazon is 1o avola the possibility of the introdnction of con-
tradiction:s by the definition. {for exampic, from ihe definition below:

define P of x Heing Any by (noi Plxj;;

we can derive contradictions, and thus introduce whatever we want into the svsten.
To avuid such contradiciions. syntactic ruies need to he nsed  the one in Mizar €
1s that a deiinition canunot mention the dung Leing defined. that s delinitions are
INacres.

Another possibic way to define a binary tree is to describe how 1o test if a bit
string 15 a correctly ‘orm.ed binary tree. That is. to give an iterative test for the
correctness of construction using the Jter function. 'V'hv onlv wav of testing o slata
structure is to go through it sequentially. For o list. this is easv. We can simply look
at the head and then traverse the tail. But for a tree. this means 1hat v have to
look at every possibie path. How do we do this walk?

We want to derive the function walk to tuke in
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Figure 43.8: Binary tree 7%

o (walk <T5,01>) = <Iy,1>
The function returns the left sub-iree T and the remaining path |,

o (walk <75,1>) = <T.,.uil>
The function returns the right sub-tree T, and the cmpty path nil.

] (‘J'&]k <Touib>) = <T3,nil>
The function returns the original tree Ty and the original empiy path il

o (walk <I5,!01>) = <[,,0I>
The function returns the right sub-tree Ty and the remaining path 01,

o (walk <T4,01>) = <74.01>
The function returns the original tree Ty and the original path 01,

3.4 Eliminating Tuples from the “walk” Function

The walii funcuion discussed above is of type:
<Bits. Bits> => <Dits. Bits>

that is. from a tuple to a tuple. We use tuples to handle input and output parameters
of a function such as waik. In general, tnuples are the method of choice for muitiple
input and output parameters. _

An alternative to pass in multiple parameters instead of using tuples i« to apply
the ciroice rule multiple times. The choice rule allows the introduction of a function
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Figure 3.9: Binary tree Ts with labels on the branches

from a proof of its specifications. Its proper form should take a statement of exisience.

pius vne of uniqueness:

for x being TYPEL holds (ex y being TYPE2 st P[x.y}),
for x being TYPEI holds (for v, z being TYPE2 holds P

[or
‘.\.

vj & Plx.z] implies y = z)

ex [ being TYPEL -> TYPE? st [for x being TYPEI holds Plx, ([ x)])

For example, if we want to derive a function that takes in two biv strings and
returns the length of the longer one (if thetr length are the same, just simpiy return
the length of any one of them), we can use the following method:

How

let x be Bits:

now

let y be Bits;

thus (ex z being Bits st

)

end;

((z=2}) &
(bits_len_it{x. v | implies {1z = (U.length y))) &

{(not_bits_len_it[x, y ]) impiies (z = { U.iength x)}} )
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thus (ex { being [Bits => Bite) st
Jor y being Bits holds
CUEy) = fv); &
(bitsden_lt!x, ¥ J implies ((f+}) = (Uldength v1)) &
((not bits_fen_lt{x. v 1) fmplies {(fy) = (Ullength x)}) )

¥

/
) by choice( PREVIOUS):

end;

{ex max being ( Bits => (Bits -> Bits)} 51
{for x being Bits holds
{for y being Bits holds
C(/(max x)y) = ((max x; v)} &
(hits len_It!x, v I implies (‘/{max x' v) = (Ulonuth v A
((nor bitsden_ftix. v | implies ({(fwax x} v) = (ITlength x1;) )
}

Vi

)
} by choice(_PREVIOUS);

However, we have no other direct way to pass out iultiple parameters withont
using tupies. The ciioice rule simply only introduces functions that can pass ont one
ouiput parameter.

Although the use of tuples scems to be a good way to derive the walk lunction, we
sinally decidea 16 nse another approach because of the following two reasons. First, the
fter function is mstantiated only for functions whose domains are Bits. Instantiating
another iterator function that works for functions on <Bits. Bits> domain reqguires re-
proving mauy *heorems, This is easy in prindiple but extremely tedious. Second, we
want to =ee if it is teasible to ase 3its to handle functions with maltiple input and
OULBUL pATAMALATS.
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e

i
i. wrapped binary tree 01011

il.  wrapped path 0/

Figure 3.10: Analvsis of the {inite requence consisting of the binary tree 01011 and
the path 01

Since the walk function takes in and returns two parameters, a binary tree and a
path, we wrap cach of them up using a Packet and then concatenate them together
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to form a finite sequence with two Packets. We call this finite sequence a tree-path
finite sequence. Fur example, if we want to apply the walk function to the tree 01011
and the path JI. we pass in the following bit string 1o the walk function:

0000010101100101

Figure 3.10 shows a detailed analysis of the bit string.

On the other hand, we also need some way to recover the binary tree and the path
from a tree-path linite sequence. The following [v1ctions were derived to simplify this
Process.

The function tree takes in a bit string x and returns the binary tree in x if x s 2
tree-path {inite sequence. Technically, the function nunwraps the first Packet if “hore
is one. For example:

{tree 0000010101100101) = 010i1

given bt tree being (Bits -» Bitsj;

bt.tree: (for x being Bits holds
((bt.tree x)=(bt.unpack {fseq.first x))));

Simiiar to the tree function, the function path takes in a bit string x and returns
the path in x is x is a tree-path finite sequence. Technically, the function unwraps
the second Packet il there is one. For example:

(path 0000010101100101) = I

given bt.path being (Bits -> Bits);

bt.path: (for x being Bits holds
((bt.path x)=(bt.unpack (fseq.rost x})));

Finally, we derived the function walk formally in MizAR-C as follows:

given bt.walk being (Bits => Bits):

bt.walk: (for x being Bits holds
( ((bt.walk x})=ibt.waik x}) &
{ex stepl. o_pathl being Bits st
( ({split <{bt.path xj, U.UI>)=«stepl, o_pathl>) \:
((stepl=nil} implies ((bt.walk x)=x}) &
{(stepl=0) impiies
{ (((bt._tree (bt.tree x))=nil) implies {(bt.walk x)=x}) &
(({bt.l_tree (bt.tree x))<>nii) implies
((bt.walk x)=(cat <(bt.pack (bt.i_tree (bi.tree x))), (bt.pack o.pathl}>))))) &
((stepl=1) implies
{ (({bt.rtree (bt.tree x)})=nil) implies ((bt.walk x)=x)) &
{({bt.r-tree {bt.tree xj)<>nii ) implies
((bt.walk x)=(cat <(bt.pack (bt.r_tree (bt.tree x})), (bt.pack o_pathl )>))))))))):



3.5 Definition of Binary Trees

Once the walk function was derived, the detinition of binary trees in Nizar-C could
be stated accordingly. \We define a binary tree as a bit string such that no matter
waich path we walk down the tree. the resalting bit string is s+ill a linite sequence
with three Packets. The definition is a bit dilferent from onr usual understanding of a
hinary tree. In order to verify that onr delinition corresponds to our intuitive recnrsive
inderstanding of a binary tree, we need to prove that vur definition is isomorphic to
the usual accepted one. However. the proof is outside the scope of this thesis.
The foliowing is the formal detinition of a binary tree in Mizar-C:

bt.3 packets_def: define bt.3packets of X being Bits by

( fseq.Packet!ifseq.first x)] &

iveq. Packet{(fseq.first (fseq.rest xj)] &

fseq.Packet[(fseq.rest (fseq.rest x))i ):
bt.brree_def: deiine bt.biree of x being Bivs by

{for n being 8its holds
bt.3packets[(ht.tree (({fseq.dter bt.walk) (U length n))
(cat <(bt.pack x). (bt.pack 1)>)))]j:

Suppose a bit string is a binary tree, applying the walk function to it with any
path will return the original binary tree, its left siub-tree or its right sub-tree. Sinee
each of the left and the right sub-irees of « binary tree is again a binary tree, applyving
the walk function to the bit string any number of times with any path will still yield
a finite sequence with three Packets. On the other hand, if a bit string satisties 1 he
definition. we can actually re-constrict the binary tree by breaking down the finite
sequence into the root. the left sub-tree and the right sub-tree. We can continne this
process until the whole tree is bewng re-constricted Lecause eachi of the left and the
right sub-trees is o finite sequence with three Packets by the definition. Henee, the
binary tree definition captures our intent.

U.unai_defl: define U.unai of x being Bits by
(for y being Bits holds
(bitsden_lt[y, x ] implies ({(V.index x) y) = 0))):

Figure 3.11: Definition of Unary Naturals

It is interesting to compare the definition of binary trees to that of unary naturals
and that of finite sequences. Although unats are recursive objects. it is not uecessary
to use recursion in order to define them. In the definition ( Figure 3.11), the nuniversaily
quantified variable acts as an index into to the unat structure. Therefore. Lhe universal
quantifier provides the mechanism for iterating over the structure.



finseq def: define FinSeq of x being Bits by
(for u heing Bits holds
( ((fseq.first ({(fseq. fter fseq.rest) (Ulength n)} x)) = nii} or
fseq.Packet[( fseq.first ({(fseq.lter feq.rest) (Uldength n)) x)) [ )):

Figure 3.12: Deiinition of Finite Sequences

On the other hand, the definition of finite sequences (Figure 3.12, uses a unat as
the index. The Iter function, together with the rest function. provides the mechanism
for iterating over the structure.

Finally, the definition of binary trees uses a binary bit string as the path and its
length as the index. ‘The iter functiva. together with the waik function. provides the
mechanism for iterating over the structure.

(M
3
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Chapter 4

More on Binary Trees

4.1 Some Theorems on Binary Trees

Once binary trees were ceiined, the theory of binary trees needed 1o be proven.
several thewrems are uecessary to detine the properties of binary trees, Pwo ol the
most important are tho recursioe definition of a binary tree and the hinary tree decider,
We iiad chosen to prove the recursive definivien first and then the decisder beeanse of
the f{ollowing reasons:

e We e not want to refer 1o the originnl definition of a binary tree every time
since the definition is too complicated.

o We can make use of the revursive definition to simplify our proof of the decider.

4.1.1 Recursive Properties

We want to prove a theorem re-stating the definidivn of a bInary tree in s reonrsive
form. This is important because it is the proofl that estabiishes that onr delinition
captures the recursive properiies. Moreover, we stale propertios sl alweritinns on
binary trees recursively ail the time. Our initial attempt was to state the theorem
using the walk function as follows:

(for x being Bits holds
(bt.btree(x] i (bt.3packetsix] &

bt.beree[(bt.tree { bt.walk (cat </bt.pack x), (bt.pack 0> 1)) &
bt.btreef(bt.cree (bt.walk (cat <(Dt.pack x), (bt.pacic 1;5>)))]))):

The major advantage of stating the theorem iu this way is that empty sub-trees
and non-empty sub-trees do not need to be considered in different cases explicitiy.
Hewever. its disadvantage dominates the advantage in this case. First. we do not
want to refer back to the walk funciion every time since this function is too “low
level” for binary trees. Second. this definition docs not belp in proving the decider
that we are zoinz to prove later.

We finally decided to state the recursive definition in the following way:

26



th: (for x being Bits folds
(bt.btree(x] iff (bt 3packetsx] &
(({htd tree x) = nil) or ’)'.])l!f_'(?[(I)'.i-[rl'!,‘ %)) &
ttihtrtree x) = nil) or bt .biree((bt.r_tree xif})));

The attempt to prove this theorem oulined many sub-theorems that were useful.
As binary trees are defined in terms of Pucicits. 1 was necessary to prove some thorems
on operators related to Packets as follows:

bi.unpack_pack: {for x being Bits holds
({(bt.unpack (ht.pack x)) = x));

bl.Packet_pack: (for x heing Bits holds
fseq.Packet{(bt.pack x;];

bl.pack_unpack: (for x heing Bits nolds
ifseq.Packet{x] implies ((bt.pack (bt.unpack x1) = x:)J;

bhl.tree_extract: (for x. ¥ being Bits holds
((bt.tree (cat <(ht.pack x), (bt.pack v)>)) =

-
N —

bl.path_extract: (for x. y being Bits holds
((bt.path (cat <(br.pack x), (bt.pack y)>)) = v; )

The theotem unpack_pack states that if we wrap a bit string in & Packer and
then unwrap it. the result will be the orwmal bit string for all bit strmgs. The

tiworem Packet_pack states that every wrapped bit string is a Packet. The theorem
pack_unpack states that if we unwrap a Packet and *hen wrap it. the result will still
be the original Packet. The theorem free_extract states that if we turn a binary tree
and a path into a tree-path finite sequence and then exiract the tree component of
the sequence, the result will be the criginai tree. Lastly, the theorem path_extract
states that if we turn a binary tree and a path into a tree-path iinite seguence anid
then extract the path component of the sequence, the result will be the original path.

4.1.2 Decider

Given the recursive definition of a binary tree, we can prove the binary tree decider
stated as follows:

b2.btreo_decide: (for x being Bits holds
( bt.btree[x] or (not bt.btree{x]} ));
Proven constructively, this theorem provides a program that decides whether a
given bit string is a proper hinary tree.
The proof was by induction on the length of a bit string. However, in order to
use the induction hypothesis, the following-were proven:

-1



b2Utree It _x: (for X being 15its liolds
((x <> nil) iinplies bits yenatiobtdtres 3. x)));

b2 r_tree it _x: (for x being Hits hoids
({xX <> niiy implics bits_len_{t[ bt .c_tree x), x13);

The above states that both the fett sub-tree and the rieht sub-tree of o bit

string
are shorter than the bit string itself for any non-cmpty biv string.

4.2 Deriving Functions for Binary Trees

Once some basic theorems on binary trees were proven, our next step was to derive
some functions for binary trees. One of the most basic finctions ~hat we want to
derive is the in-order traversal function, or simply the {raversaf fmucuion. which sives
The in-order traversal of «li the nodes i a binary tree.

4.2.1 To Derive the Traversal Function

In a Pascal-like prograntming languase, the traversal function is nusuativ iimplemented
. . (e - . .

using the recursive approach,

procedure traverse(t: link):

begin

if t<>nil then
begin
traverse( 1~ .1};
printuode(t);
traverseft™.r)
end

end:

or the stack-based approach,

procedure traverse/t: [ink);

begin
exitflag := FALSE:
push(t):
repeat
t := pop;

if t=nil then
if stackempiv then
exitflag := TRUE
else
printnode(pop)
else

]

A
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begin
pushit= g )
pushft):
push(t=.l)
end
until exitflag
end;

The recursive approach precisely mirrors the definition of traversal: =if the tree
is nonempty. first traverse the left subtree. ihen print the root. then traverse the
right subtree.” This implementation secns very straightforward., but onr question is
whether we can implement the traversal function in this way using our existing infer-
ence rules. We want to prove sume statement similar to the following in MiZaRrR-C:

ex trav being (Bits -> Bits) st
{for x being Bits holds
({(not bt.bireeix]) implies (z=nil)) &
(bt htreelx] imiplies
(z=(cat <(cat <(trav (bt.I_tree x)), (bt.data x)> ), (‘rav (ht.r.iree xj}»))))}:

The first conjunct in the specifications takes care of the situations where the bit string
is cither not a binary tree or an emptyv one. In this way, we can derive trav as a total
function on the domain Bits. The second conjunct states the recursive definition of
the function.

The most intuitive way to prove the above is to use the choice rule (Section 3.4)
as it allows the introduction of a function from & proof of its specifications. However,
there is no way to derive recursive functions by this rule. In the above case. the choice
rule does not ailow us to extract rhe (rav funcrtion witl some term (trav {l_tree x})
{or (trav {r.tree x))) in the specifications.

The second methed involves a stack. The stack is assumed to be initialized ontside
this procedure. This implementation works by saving the right subtree on a stack,
then the root. then the left subtree. In this way. the in-order traversal of the tree will
always be preserved inside the stack. In MizAR-C, the stack-based approach can be
implemented by applying the iterator function to the stack.

4.2.2 To Derive Recursive Functions

Although we could implement the traversal function in MIZAR-C using the stack-
based approach. we tinally decided to derive it using the recursive approach as this
seems to be more natural. The recursive implementation of tree traversal is more
natural than the stack-based implementation because “frecs are recursively defined
structures and iraversal is a recursively defined process™ 201

Our first attempt was to derive the traversal function by using strong induction.
We wanted to prove:



X U heing (Bits => Bits) s
(for x being DBits Lolis spec[l, x]);

where specif, «f iz the spectiications of the traversal funetion £ However, strong,
mdurt\uu vnly lets s prove statements in the form of 2 leading universal quantifier:

for x being Bits fiolds P'x):

and so couid not be used in deriving recursive functions in general.
Our second attempt was to derive a ficed pomd operator similar to the parta:l

recursive function in [‘)] A partml recursive function s written as (o L 8 where #

is an expression with fire(f, o F)al = (o= a. [ = fir(/,

J ro B for any expression
. For example. if we mtcrprvt F(r, ) as

.

icat <lean U (Ttree ), (data 3>, (F (ritree x)e,

Jrri foeo By wili gi"ﬁ ns the traversal function {recursive portion). However, we face
the same problerm in detining such an operator as in cdetining the traversial funetion
recursivery, This motivated us to invent a new inference rale

recursive function
celimsion.

1



Chapter 5

Recursive Function Definition

5.1 The New Inference Rule

A binary relation = s a pariial order if for ot .oy, =,
Py S
N A A R

In other words. a Linary relation is & parial order if it is irreflexive and transitive.
We can interpret © <y as “rois simoler than ™. The iirst clause guarantees that
we have no loops ¢~ r, and in combination with the second assures that we have
nothing of the form

’

rg < 01 ~ ... =< T, X Iy

However. being a variial order is not sufficient 10 gnarantee that recursion can be
performed over the ordering. We also need the partial order 10 be well foinded. A
partial ordering = over a set A s well founded if and only if there are no sequences
~ .y 2y in b so thai

el Tody N L. < = Dy

Sich a sequence &= called an infinite deseending chain.

The well founded parnial ordering guarantees that for every clement in ihe type.
all sequences induced by the ordering that start at the «lement lead to some minimal
clemnent. A minimal element is an element for which no element is “simpler than™ it.
In MizAR-C. the order bits_leudt is well founded over the built-in iyvpe Bits, with
the clement nil being the minimal eiement.

In MuzaAR-C we waut to be able 1o introduce recursive functions. lowever, if we
allow the introduction of a recursive function. we have to be very careful to check
that cach subsequent cail to the function is applied to elements that are simpler than
the one biefore. [t seems to Le sufficient that this ordering on the clements be a well
founded partial order. Thus we can allow the introduction of a recursive function as
long as a proof of the well foundedness of the partial order is supplied.
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We detine the recursive function definition rule. or stimply recursive deiiniion,
that allows the introduaciion of a recursive fanction from a proof of its specitications.,
as foliows:

WellFoundediTYPE, LT].
tur x being TYPE hoids
ttnr t heiug { TYPE => TYPE] Lolds
{{for y being TYPFE holds { LT'[v.x] imipiies Specf, . (£ v 1V implies
rex z heing TYPE <t Specit, x. 21} ")
ex [ being (t TYPE — = PYPE)st.ior x beang PYPE holds Specif. .. (f x 'j——i

This rule is allowed on cny type using any weil founded partial order for that tvpe.
We want to verify hat the recursive definition rule is correct by analvzing the
structure of the proof. In generall a recorsive definition prool looks like the following:

zow
et v he A ns;
now
fet The iAny => Any
assurue Recidyp: tfor v being \n> holds
LT[y, x | binpiies Specif, o (£} ])
1Y /% inside refer tov obiects simpler than x */
thus (ex = bring Any st
Spec{f. x, zi:
end:
thas (for [ belug (Auyv -> Any; holds
Jolor v oberne Aav Lolds
LUV R Tmies Spec v if v
RAENY L I 3 M)
implios (0x 2 heine Any <t
Specit, xo200) by direct PRINVIONS):
e

(ex Fheing cAny -> Aav) <t
for x being Any hoids
Specit, x. (f x,1Y; by recdei{ _PREVIOUS):

where Specif. x. z] is the specification uf the recursive function. The object zis usnally
defined in terms of the function fand the object x. When 2z = (7 x;. Specil, x. 2] gives,
the speaifications of a recursive function. For example, we can denne the specifications
of the traversal function as fuliows:

define trav_spec of f being (Bits -> Bits;, x being Bits. z being 1its by
fz=z) &
{{not bt.btree/x]} irnplins (z=nil}) &
¢ht.btree[x] implies (z=t(cat <{cat <(f (bt tree x i, (bt.data x)> ) (£ ibt.rtree x)i>) ;e



Note that we have incinded (z=z1 in the specifiications <o as 1o gnarantee that the
function is total on Bits. Otherwise. if the range of the function is not a subset of
its domain, the function will e undefined for some input as compniing it recursively
is not possible.  in general. ihis certificate of a total function is required for ail
specifications in using recursive definition.

We want to conclude that there exists a funcuen f satisfyvineg the specifications
for all r. In other words. we have 1o show that such a function can be computed.
From the proof of (ex z being Any 5t Spec/f. x. zf), we have a wax 19 compute (£ x) by
using references to {itsellt Since the oniy place that we can get refercnce 1o fis trom
the recursion bvpothesis, and vhe recursion hyvpothesis is only useiul for elements that
are simpler than xo theretfore al! the references 1o fitseif catled by (f x) are appited 0
clements that are ~impler than x. Moreover. (21} states the following:

The function [ s defined by well-founded recursion over the rolation = i 01 has
the form '

(far=y .. (fay).. .. faq ...
where cacl a4, = a.
Therefore, the recursive detinition rule is correst. The above reasoning gives us not
only a proof sketceh of Lhe recursive definition but also some insight on how to imple-
ment the realization of the rule. The realization of recursive definition is shown in
Appendix A,

5.2 A Small Example

We want to itlustrate the use of recursive definition by a small example. This should
he a recursive funciion which is both easv to state as wetl as casy to prove. The
identity tuuction is a good choice.

We deline the identity function of a bit string x bv the concatenation of the first
bit of x and the identity function ¢f the rest bits of x. In order to simpiify thie proof.
we derived the funciions first bit and rest_bits in M1ZaR-C as foliows:

given rec.rest_bits being { Bits => Bits):
rec.rest_bits: (for x being Bits holds
cex 12 being Bits st
({split <x, 0> }=<t2. (rec.rest_bits x1>305;

given rec.first_bit being (Bits -> Bits):

rec.first_bit: (ivr x being Bits holds
{ex r! being Bits st

3
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(USPIY <X. > =< e irst it X rl> i)Y

rec.Arst_res:: | for \ belneg Bits iionds
Cisprir <x. D I=recdirstiovit oL roeorest Bits x> )
The fanetion firet ibit vetirns the Hest Lit of a bit siring i there ix one. Otherwise.,
1 returns il On the other band. the iaction rest_bits retirns the rematning hit
siting once the lirst bit ix removed U returns nil 17 the inpat Bt steing 1= il
Belore we prove anyiliing, we have to state the specifications of the identiny fune-
tion formally as fallows:

spec_dell define spec f 1 bewng (Bitz => Bits), x being Bits, 2 being Rits in

{2 =z} e/ cortificate of a total function */

dix = nil) implies (0= ail}) A 2% terminadion case
Jx &> el splies

iz = tcat < hestlbit 8 rest Lits X)) 20 precursive dedinition T

The proof of the tdentiny function w shown below. The prool s kind of casy to
futlow. Firsi, we prove jex 2z being Bits <t snecifoxzl) for x=nil. This can be treated
as the simplest case or the wermination case of the recursion. Second. we prove
rex z being Bits st specilfxirfi for a<Onil. This is wheve the actinal cecursion takes
place. Finally, we summarize the two casos by cane aaalveis and then use recursive
definition to introduce the 'dentivy function.

now
/% Proof of the recursive identity funection

let x be BRits:

LW

ket £he (Biis -> Bits:

¢ F Recursicr Hypothesis 7
assume Reclyp: ffor v beiug Bits nolds
LT v x Jimplies speclt. yo (Fyv) )
B
cases x_nil_ornot: ((x = nil) or (x <> iy ; by elim{xJ( BA_nil_or_ion
x_nil_rase: now
/* When x is nii, */
assuine xl: (x = i
conjl: (x = x} by eqintrof):
( (x <> nil} or(x = nii) j by disjinirorx nili;
conj2: ({x = ail) irapiies (x = vil}) by disiZimp _PRIEVIOGUS);
({x = nill or (x = (cat <first_bit x;, {I'(rest_bits <j) > ) ; by disjiiutror_nil);
conj3: ((x <> niiyimplies {x = reat <first_bit xi. [t (rest_bits xj; >0 )
by disi2imp( L REVIOUS ):
C(x = x, & dx o= 0dl) Dmplies tx = ail)) & ((x <> ailj implies



(x = (cat <(first.bit x), (f (resi_bits x)) >) j} ) by conj(conjl, conj2, conj3);
speclf, x. x ] by definitivn(spec_def, PREVIOUS);

/* the function returns nil */
thus (ex z being Bits st
speclf. x, z ]

) by exintrol _ PREVIOUS);
end;

x_not_nil_case: now
/* When x is not nil, */
assnme x.uot_nil: (x <> nii);
siest_bit_rel: ({spist <x. 01 >) = <(first_bit x;, {rest_bits x) > vy elim Ix](first_rest);
sits_den Itf(rest_bits x), x | by elim{x.0,(first_bit x).(rest_lits x)} ]
(1.3, .PREVIOUS, _PREVIOUS. x_not_nil, BA_nil_not_ ., _PREVIOUS);
/% Lrest_bits X)) is simpier than x *

LT{(rest_bits x}, x | by elim[(rest_bits x),x](BA_LT, _PREVIOUS, _.PREVIOUS });

-/

/¥ reterence to (f (rest_bits x)) */
spec[f. (rest_bits x), /f (rest_bits x)) |
by elimn[(rest_bits x)}{ RecHyp, -PREVIOUS, _-PREVIOUS);
{ ((f(rest_bits x)) = (f (rest_bizs x))} & ({{rest_bits x) = nil; implies
(([ (rest_bits x)) = nil)) & ({{rest_bits x) <> nil) implies
((f (rest_bits x)) = (cat <{first_bit (rest_bits x)), (f (rest_bits (rest_bits x))) >)};)
by definition{spec.det. _.PREVIO!US);
consider z being Biis such that
(z = (cat <(first_bit x}, (f (rest_bits xj ; >})
by elim{first_bit x),(f (rest_bits x)) [ BA_cxzy. first_bit_ref. _PREVIOUS);
((x = nil) or {z = (cat <{first_bit x), {{ {rost_bits x)) >)) )
by disjintro( _.PREVIOUS);
conj3: ((x <> nil) implies (z = {cat <tfirst_bit x, {{ (rest_bits x}) >} }
by disj2imp( .PREVIOUS);
conjl: (z = z} by eqintro();
{ (x <> nil) or (z = nil) ) by disjintro{x_not_nil);
conj2: {{x = nil) implies (z = nii}) by disj2imp{_PREVIOUS);
( (z=2z) & ({x = nil) implies (z = nil)) & ((x <> nil) impiies
{z = {cat <(first_bit x), ({ (rest_bits x)) >) }) } by conj(conji, conj2. conj3;:
specff, x. z ] by definition{spec_def. _PREVIOUS);

/* the function returns (cat <(first_bit x), (f (rest_bits x)) >) */
thus (ex zz being Bits st

spec[f, x, zz ]
) by exintro( .’REVIOUS);



.

/™ Combine the 2 cases by case analvsis =7
thus (ex z bring Bits st
spec(i, x, z |
} by caseanal{cases x_nii_or_not, x_r:il_case. x_not _nil_case);

enu:

thus { for f being { Bits -> Bits) holds
{{for v bei~g Bits holds
(LTIy, x | naplies specif, y, (fv) )
) iraplies (ex z iwing Bits st
specit. x, z §
)
) by directi _PREVIOUS):;

end;

rx
/
’

Extract the function */
{ex id being {Bits => Biis) st
(for x being Bits bolds
specfid, x. {id x) |
)
} by recdef(_PREVIOUS):

5.3 Recursive Definitionn Versus Choice

Oue interesting observation is that the rocursive defivition rule can actually replace

the choic~ rile (Section 3.4} in introducing rew functions. In other words, the e
cursive definition rule is rot restricted to intraduce recursive functions oulv. This

is easy to understand because if we do not include the function itself 1o be part of

the specifications, the resnlting specifications would then he the specifications of
nen-recursive function.

We illustrate this interesting fact by introducing the non-recursive identity fune-
tion using first the choice rule and then the recursive definition rule: and then com-
paring the contents of the two proofs. After that, we compare their netual extracted
Lisp code. The non-recursive identity function of a bit string x is simplv defined as
the bit string x itself.

The proof of the non-recursive identity function using the choice rule is shown
below:

now
let x he Bits;

3¢
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(X = x) by eqintro( );
thus (ex vy being Bits .t
(y = x)
J by exintror PREVIOUS j:

end;

(ex [ bring (Bits -> Hits) st
(for x being Bits holdds
(1%} = x)
)
) by choicet _PREVIOUS);

The proof of the non-recursive identity function using the recursive defiuition ruie
is shown beiow:

spec_dof: deiine spec of § heing ( Bits => Bits;. x being Bits. z being Birs by 1 = &

now
lot x he Bits:

now
let f be ( Bits -> Bits);

assume RecHlyp: (for y being Bits holds
(LT{y, x | implies specff, 3, (fy) )

H

{X = xi by eqintrof j;

(ex z being {its 1
(z = x}

Y by exintrot PREVIOUS);

thus (ex z bome Bits st
speell, x. z |

) by definitiontspec.def. _PREVIOIUS);

end:

thus (for t being (Bits => Bits) Lolds
{(for v being Bits holds
(LT([y, x | implies specff, v. (v} })
) impiies {(ex @ being Bits st
specff, x, z ]
)}
) by direct(_.PREVIOUS);

end:



‘ex ! being (Bits => Biis) st
ifor x being Bits holds
specif. x. (£ x)]
J
by recdeif . PREVIOUS):
Adthough the secoud proof seems to be miuch longer and complicated. the actual

contents of both proofs are basically vhe same. Al the remaining details of the second
proot are only the format of using the recursive defnition rale.

(LIST (APPLYQ (LAMBDA NIL
(LAMBDA (x)
(APPLYGUAPPLY (LAMBDA (v) (LAMBDA NIL v 1)

. \
Nty

Sanr

)

Figure 5.1: Lisp program extracted [rom the proot of the non-recnrice identite fune-
g P prog !
tion using choice

(LIST {APPLYO { LAMBDA NIL
(LAMBDA (x)
(APPLY (REC-DIEI (LAMBDA ()
(LAMBDA 12
(LAMBDA NIL ¢5)

X)),

cigure 5.0 Liso program extracted from the roof of the non-res nrsive tdentity fum -
tion usiny recursive definition

The Lisp programis extracted from the prooi using choice and the proot using
recursive definition are shown in Figure 5.1 and Figure 3.2 respectively. Refer to
Appendix A for the definition of REC-DEF und APPLYD. After stmplifsine, the two
programs both result in the tollowing simple Lisp program:

tLIST (LAMBDA (x)
x})



Chapter 6

Recursive Functions for Binary
Trees

Ounee the recursive definivion ruie was defined. we could derive recursive functions in
Mizar-C. As our inival motivation was to derive the traversal function. our first
recursive function derived for binary trees was the traversal function which gives the
in-order iraversal of a binary tree. Next, we derived the depth Tunction which gives
the depth of a binary tree expressed in unary naturals.

6.1 The Traversal Function

We derived the traversal function for binary trees in MizaR-C as follows:

b3.trav_spec: define b3.trav_spec of f being {Bits => Bits), x being Bits. z being Bits by
( (z=2) &
{(not bt.btreeix]} implies (z=nil}) &
(bt.btreeix] implies (z={cat <(cat <(t {(bt.dtree x;) (bt.data x)>). (F(bt.r_tree x))>))) ):

given b3.trav being (Bits => Bits);

bd.trav: (for x being Bits holds
b3.trav_spec[b3.irav, «. {b3.irav x)]);

The proof is shown in Appendix B.

We illustrate how the traversal function works by an example. Figures 6.1 to 6.1
show the step-by-step construction of a binary tree S, with four nodes my to my.
Table 6.1 shows the data stored in each of the nodes.

Figure 6.1 shows a binary tree 5, which consists of the root my, an empty left
sub-tree and an empuy right sub-tree. Figure 6.2 shows a tree S, which ~onsists of
the root ., an empty left sub-tree and a right sub-tree 5. Figure 6.3 sliows a tree
3 which consists of the root s, an empty left sub-tree and an empty right sub-tree.
Finally. Figure 6.4 shows the binary tree S; which consists of the root my. a left
sub-tree Sy and a right sub-tree Sj.
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' Node | Data |
ey 1 }
my |0 i
my 1 11l |
riiy "o }

Table 6.1: Data stored in nodes my o

Froure b1 Binary tree &)

We want to show how (trav S1)is computed. We denote the concatenation of two
bit strings x and y by x-v. From the specifications of the traversai funetion, we have:

(trav 1) = (trav 5§2) - 00110 - (trav N3).
Shinilarly, we have:

(trav 52) = {trav uil) - 010 - {trav S1).
(trav nil} = nil,

(trav S1} = (trav wil) - 011 - (trav nily,
(trav 53) = {trav nii) - Q0111 - (trav nil).

Therefore. the computed results are:

(trav S1) = 011

(trav S2) = (100!

(trav S3) = 00111

(trav S4) = 0100110011000111

6.2 The Depth Function

The definition of the depth function of a binary tree is recursively defined as follows:
e the depth of an empty tree is 0 (decimal).

e the depth of a non-erupty hinary tree xis 1 (decimal) plus the maximum of the
depth of the left sub-tree of x and the depth of the right sub-tree of x
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Figure 6.2: Binary tree &,

Figure 6.3: Binary tree N3

As we have to represent the depth of a binary tree in a bit string, we express the
depth in unary naturals. Before we derived the depth function, we had to derive the
function max which takes in two individual bit strings and returns the tength of the
bit string with length no less than the other. For example:

{{max 0) €0} = 00
((max 101) 011; = 0G0
((max nil) 00) = 00
((max nil} uil) = nil

given b-i.max being (Bits -> (Bits -> Bits)):

bd.max: (for x being Bits holds
{for v being Bits holds
{ (({bd.max x) y)=((bt.maxx) y)} &
(bitsden_lt[x. v] implies (((b4d.max x) yj=( U.length v))) &
((not bits_len_itfx, y]) impiies (((bd4.max x) y)=(U.length x))) ))):

We derived the depth function for binary trees as follows:

bd.depth_spec: define bd.depth_spec of [ being { Bits => Bits}. x being Bits. z being Bits by



Mimare oo i Binaey tree Sy

! (Z———Z) &

({not bt.btreeix]) inmipiies tz=nil)) &

br.btree(xj implies (z=(cat <{{b-t.max (f (bt.d_tree x))) (F(bt.rtree xi)), 0>)3) );
tYy ! ( /. . /

given bl.depth being (Bits -> Bits);

bd.depth: (lor x heing Bits hoids
bd.depii_specibd.depth. x, (bd.deprh x3015;

The proofl is shown in Appendix €.

We illusirate now the depth funcuion works by compiting the depth of the hinary

tree Sy (Figure 6.4). Irom the specifications of the fanction. we hasve:
{depth 51) = (max (depth S2) idepth S3)) - 0.
Simtlarly, we have:
{depthh S2) = (max {deptii nil) (depth S1)) - 0.
(depth nil) = nil.
(deptit S1, = (max (depth nil) (depih nilyj - 0.
(depth 53) = (max (depth nil) (depth nil)) - 0.
Thereiore, the computed results are:
{depth S1) = 0,
(depth S2) = 00.
(depth S3) = 0,
(depth S4) = 000.

il



6.3 Complexity Analysis

Being able to derive recursive functions is not enongt. we also want to Lave an idea
on how these functions perform. In this scction. we compute the time complexities
of the traversal and the depth functions.

First, let us look at the time complexity of the traversal fMinetion. Lot o Le the size
and d be the depth of the input biuary tree. The first call 1o the traversal function
requires (J(n) time, since the whole tree has o be scanned through. The function
will then call two copies of itseif and cach of them will take in a bit string with length
less than n/2. This is because every sub-tree is either nii or wrapped in a Packet.
The length of that sub-tree is less than half the levgth of its Packet, and s is less
than half the lengih of the vriginal tree. This process continues until the whole tree
is traversed.

Time | Maximum aumber of copies

of the funciion running

[ Level of recursion

f

! P Olny) | ’
. | Oy | 2 |
3 | Oty | ! |
i
: U = |
o ooty n i
I : i

Table 6.2: Time complexity of traversa

Table 6.2 shows the time required and the maximuin number of copies of the
function running for cach level of recursion. Summing ecach level np gives:

Qirey 2L+ Oy <24+ 0n/) < dt+--+0(1) xn

 times
= d-n)
Therefore, the time complexity of the traversal function that we derived is O(d- 1)
where o and n are the depth and the size of the binary tree respectively.
Similarly, the time comgploxity of the depth function is the same as that of the
traversal function. This is dine 1o the fact that the max function is a linear function
and so the time complexity of computing

((max (depti (i-tree x))) {(depth (r_tree x)))
1s the same as that of computing both
(depth (i-tree x}) and (depth {r_.tree x) ).

Hence, using similar reasoning as we do in computing ‘he time complexity of the
traversal function. the time complexiiy of the depth function is also O(d - 1) where
and n are the depth and the size of the binary tree respectively.
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Chapter 7

Conclusions

7.1 Ordered Binary Trees

The binary tree is not an efiicient data structure for search nniess the data stored in
cacht node is ordered. W cail such a binary tree an ordered binary teee. In order to
access the data efficiently, we need 1o have somie operations on ordered hinary trees,
The muost basic operations needed are search. insersion. and deletion. I we are to nse
ordered binary trees as a data structure in NHZAR-C, we have to be able to perform
these operations in M1zZaAR-C cfficiently.

Search can be easily implemented with our existing representation of binary trees.
As binary trees are represented as a finite sequence with 3 Packets in Nzan-C.
a search is simplv a comparison of the search item with the data stored in the lirst
Packet and then a search on the appropriate sub-tree represented by either the seeond
or the third Packet. The search ends when the item is found or an empty ~ub tree is
reached.

What is the time complexity of scarch? Tl qirst call requires () as the whoie
Linary tree has to Le scanned through. The time required for cach subseqguent cadl is
at least reduced to half of thet of thie previons call. Therefore, the time complexity
of search is
On) +O0n/2) + O(n/t) + -4 ()i
O(2n)

O(n)

Il

Hence, it is linear.

On the other hand. insertion and deletion cannot be done as easily as search. An
insertion normally means a search for the appropriate location and then an addition of
a new leaf to the binary tree. As binary trees are represented as “Packets in Packets”
in MIZAR-C. an addition of a leaf requires a change of the content of the innermost
Packet and thus requires changes of the contents of all related onter Packets. Deletion
i1s even worse. A deietion normally requires re-location of sub-trees which is a very
difficult task with our exisuing representation of binary trees. So, our next step in
developing binary trees as a data structure is to cfficiently implement insertion and
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dedetion.

7.2 Proof Checking Environment

In Al1ZzAR-C. and many other furmal proof checking envirenments. the users often
have to deal with a farge amount of details. In order 10 increase the produn tivity. the
proof checking envirenment needs to be improved.

Oune suggestion to improve the proof checking environment in MIZAR-C is 1o
increase the antomatic theorem proving power of the system. Often the users have 1o
spend a ot of time proving something that contributes nothing to the computations
at all. If we can let the svstem handle these details. the users can have more time to
concentrate on the “meaninging® parts of the proofs. However. this automatic heip
canrot be done in the constructive part of the proof without indineucing the vesulting
cedes After all, 1 s the contents of the proof that gives us the programn.

“WVhen proving & more compliicated staternent, the user usnally needs (o inchude a
large number of references. Moreover, these references need to be entered in sequence.
If the system can prompt the user for the correct type of reference. errors made by
the user can be greatly reduced.

Another wayv 1o reduce the time the vsers nred to spend on writing proofs is to
have the svstem provide an outline of the proot. So. all the users are responsibie to
do are o fill in the details of the outline. This is possible hecause many inference
ruies have their own formars. For example. case analvsis has the {oilowing general
format:

cases: for x beirng Any holds Plx] or not P[x]:

P_case: now
assume ’Ix];

thus Qlx]:
»ud:

not_’_case: now
aee N fo-iy.
assume (niot P{xj);
thus Qjx/:

end;
thus Q[x] by rascanalicases. P_case, not_P_case):

Other inference rules such as induction and recursive definition Lave their own for-
nmats, tow.

A large proof usually contains many sub-proofs, or sub-theorems. Once a sub-
theorem has been proven. it is not necessary for the user to see the details of the

ow
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i
sub-proof again as it s impossible to reference any ~tatement within the scope of
the sub-theorem from cutside anvways. Since all the user needs ic the sub-theorem
stetement, the system caen Lide the rest of the details nuiess the nser wants 1o refer

back to them. This can provide o more tigh-ievel prooi outline to the user.



Appendix A

Realization of Recursive
Definition

In generol, o recursive definition looks like:

rdstep: (for x being Any Lolds
(tor f being (Auy -> Any) hold
((for v being Any holds
(LT!y, x [ implies spec[f, y. ([ v) [}
) implies (ex z being Any st
specit, x, z |
)
)
)

{ex t being (Any => Abpy) st
(for x being Aav holds
specif, x, (fx)]

)
H

) by recdef(rdstep);
The realizaticn of recursion definition looks like:

{(defun REC-DEF (rdstep)

creturn LAMBDA form that computes f
(LAMBDA :x;
(APPLY
(APPLY
(APPLY rdstep x)
{APPLY REC-DEF rdstep)
j
)

)
) : end defun
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(DEFUN APPLY0 (func)
(APPLY firc NII)

v
v

Figire ALl Definition of the function APPLY O

where APPLYQ is defined as the function unwrapping the LAMBDA expression (Fig-
are ALl).

REC-DEF takes in the recursive definition proof and returns the LAMBDA form
that computes £ It works by applying the proof 10 x and then £ Finally, it unwraps
the resniting LAMBDA expression and wraps it up again in the LAMBDA form. In
{act. we got the idea on how to implement the reaiization of recursive detinition from
thai of induct:on.

in - onerall an induction looks like:

isiep: [for X belng ¢ \nr -> Aay) hoids
((tor v being Auy holds
{LT{y, x j implies Ply})
) impiies P[x])

V.
)

(for x being Any holds
P[x]) by induction(istep);
The realization of induction looks like:

(defun GEN-IND (istep®

i return LAMBDA form that computes (for x holds P[x])
(LAMBDA (x)
(APPLY
(APPLY istep x) ;: needs to be applird 10 11
(LAMBDA (y) (APPLY (GEN-IND isten) 3))
J
)
)

GEN-iND takes in the induction proof. which has type
x => (IH -> P[x])

and returns the LAMBDA form that computes (for x holds P[x]). It v rks by applving
the proof to x ana then the induction Lypothesis, which has type

¥ => (LT[v,x] => P[v]).

Finally, it wraps the result up in the LAMBDA farm.



Appendix B
Proof of the Traversal Function

/* Specifications of traversal */

trav.spec: define trav_spec of  beinzg ( Bits => Bits). x being Bits. = being Bits by
((z=2)&
((not bt.btreefx 1) impiies (z = nii;) &
(bt.btree(x | impiies (z=(cat <(cat <(f (bt.l_tree x)), (bt.data x) >). /f (bt.r_tree x)) >))));

now
/* Proof of traversal */
let x he DBits;

now
let f be (Bits => Bits);

/* Recursion Hypothesis */
assume RD: (for v being Bits holds
(LT[, x ] implies trav_specif. y. (fy) 1}
)i
cases_btree_or_not: ( bt.btree/x ] or 'not Li.btreejx |) ) by elim{x](b2.btree_decide);
btree_x_case: now
/* When x is a binary tree. */
assume biree_z: bt.btree[x [;
x-not_nil: (x <> nil) by elim{xj(b2.brrec_not_nii._ PREVIOUS;
bits_len_It[(bt.l_tree x), x ] by elim{x](b2.1_iree_It_x, _PREVIOUS);

/* (I-tree x) is simpler than x =/
LT[ bt.i_tree x), x | by elimj(bt.i_tree x),x}{ BA_LT. _.PREVIOUS. _PREVIO Us);

/* reference to (f (bt.l.tree x)) */

travspec(f, (bt.l_tree x), (f (bt.I_tree x)) ]
by elim[(bt.I_tree x}J(RD. _PREVIOUS, PREVIOUS);

Ist: ( ((f(bt._tree x)) = (f (bt.I_tree x))) & ((not bt.btree[(bt.l_tree x) ]) implies
((f(bt.ltree x)) = nil)) & (bt.btreef(bt.Itree x} ] implies ((f (bt.l_tree X)) =
(cat <(cat <(f (bt.i_tree (bt.I_tree x))), (bt.data (bt.l_tree x)) >),
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(Tibtritree (Br.istree x))) 1) ) by definition(irav_spec, PREVIOUS);

({(bt.data x) = (fseq.first x1) by climixiiht.data);

ronsider z being Bits such that

z.cdelr 1z = (rat < f (bt troe x, ). (bt.data x) >))
by eiim/[if (bt.i_tree x)).(bt.data x) (BA_cat. Ist. _PREVIOUS):

Dicsden {i{{bt.r_tree x), x | by eiiin/x](b2.r_tres_t_x. x_not_nil);

/* (bturitree x1 is simpler than x */

LT{ibt.r_teee x ). x ! by elim[(bt.r_tree x).xj{BA_LT. PREVIOUS, _PREVIOUS):

/¥ reference to (f (bt.r_iree xj) */

trav_specft, (bt.r_tree xj. (£ (ht.itree x)) ]
by elim{(bt.r_tree x)}(RD. _.PREVIOUS, _PREVIOUS:;

({(fibt.rutree )} = (f(bt.rree x))) & (faot br.brreel(ht.rzree x) [} impiies
((fidtrctree x}) = wii}) & (bt.bireef(bt.r_tree x) | implics (£ {bt.r_tree xj) =
{cat < cat <(f (b1l twee (bt.r.tree x)}j, (bt.data (bt.r_tree xV) > 1,

(f(btr_iree (Ltiraree x)3) >))) ) by definition trav spec, _PREVIOUS);
consider z' Leing Bits suchk that

{z' = (cav <z, (F(bt.rtree x)) >)) by elimfz,(f ibt.rtree x)3)(BA_cat. PREVIOUS);

(27 = (car <(cat <(f(btt tree x)), (bt.data ) >), (f (bt.riree x))>);
by equality( _PREVIOUS, 2z defy;

( {nof bi.biree{x |) or (z° = {cat <(cat <{f (bt.i_tree x}), (bt.data x)>).
(f(bt.rtree x)) >)) ) by disjiutro{ PREVIOUS):

conj3: (bt.btreofx J imypiies (27 = (rat <fcat <(f{bt.I_tree x)), (bt data x) > ),
(f(bt.rtree x)} >) 5) by disj2imp(_PREVIOUS);

conjl: (z’ = 2’) bv eqintro( j;

( bt.btree/x | or iz’ = ail) } by disjintro( btreex);

{(not bt.btreefx [) implies (2' = nil)) by disj2impi PREVIOUS,

((z7 =27} & Nuot bt.hireelx [) implics (27 = wii)) & (Dt.biree[x | implics
{2’ = (cat <(cat <({ibtd_tree x0), 'bt.datia x) S)hfihtvtiee x;)>3)) )
oy conjlconjl, _.PREVIOUS, conj3):

travspec(f, x, z° ] by defivitionctrav_spee. _PREVIOUS;

S* it returns (cat <{cat <(f (bt tree x)). (bt.data x)>), (Fibt.riree x)) >0 4/
thus (ex zz being Bits st

travspec{’, x. zz |
) by exintro( _PREVIOUS);

end:

not_btree_x_case: now
;¥ When x is uot a binary tree, */
assume not.btree_x: {not Lt.btree/x |):
conji: (nil = nil) by eqintroq);
{ bt.btree(x | or v nii = ail) ) by disjintro( _.PREVIOU'S ;:
conj2: ({not bt.btresx |1 implies (nil = nil)) by disj2imp( PREVIOUS):



{ (not bt.btreefx [} or (nil = rcat <fcar </f (bt tree <)) Ibt.data x) > ).
(f(bt.ritree x;) >) ) i by disjintro(not_btree_x;:

(bt.btreeix | implies (nil = (cat </cat <(f (bt tree x}), (bi.daia x} > ).

(f (bt.r_iree x)) >))) by disj2imp( . PREVIOUS);

( (wil = nil) & ({not bt.btree[x ]) implies (nil = nil)} & {br.btreais | implies
tnil = (cat <(cat <(filLt.i tree x}) , tht.data x) >), (F{bt.r.tree xi)>1)) )
by conj(conjl. conj2. _PREVIOUS);

trav spec(f. x, nil ] by definition(trav_spec. -PREVIOI'S);

/T it reteres nil */

thus (ex zz bDeing fits st
trav_speclf, x. zz |

) by exintro( _PREVIOUS):

ond;

S Cumbine the 2 cases by case analvsis */
thus (ex z being Bits st

trav.spoecit. x, z ]
) by caseanal(cases_btree_or_not, btree_x_case, PREVIOUS):

end:

thus (for f being (Bits -> Bits) holds
{(for y being Bits holds
(LT([y, x ] implies trav_spec{f, v, (fv} |}
) implies (ex z being Bits st
trav.specf, x. z |
))
) by direct(_PREVIQUS:;

end:;

/* Re-stating the specifications */
(for x being Bits holds
(for f being (Bits => Bits) hoids
((for y being Bits holds )
{LT[y, x ] implies trav_spec(f. y, (¥} )
) implies (ex z being Bits st
travspecff. x. z |
Ry
)
) by direct(_.PREVIOUS);

/* Extract the function */



{ex t being { Bits => Bits) st
{for x being Bits hoids
trav_specif. x, (fx} ]
)

¢
P

) by recdeff _FREVIOUS):

/* Name the function =/

consider trav being ; Bits => Bits) such that trav: (for x being Bits holds
travspecitrav, X, Jtrav x) ]

i by directi .PREVIOUS;



Appe.ndix C
Proof of the Depth Function

/¥ Proof of max */
now
/% xis the first input bit string */

let x be Bits;

now
/* y is the second input bit string */
let y be Bits;

cases: ( bitslen_It[x, y] or (not bitslen_It[x. y])) by elim[x.yj(It.decide.ien_It_or_not);
it: now
/* When x is shorter than v, */
assume [t: bits_len_it[x, y |;
bits_len_eqfy, v | by elim[y](BA den_eq_refl};
conjl: ((U.length y) = (U.length v)} by eiim[y,y](U.unat2. PREVIOUS):
{(not bits len_ltfx, v |} or ((U.length y)=(1l.lengih v))) by disjintro(_PREVIOUS);
conj2: {hitsden_lt[x, y ] impiies ((U.length v ) = (Ullength y);)
by disj2imp(_PREVIOUS);
( bitsdendt{x, y | or ((U.length y) = (U.length x)) ) by disjintro(it);
((not bits_fent{x, y ]} implies ((U.length y) = (U.length x)))
by disj2imp(.PREVIOUS);
( ((Ulength y) = {Ulength y)) & (bitslenlt[x, y ] implies ((U.length v) =
(U.leagth y))) & ((not bitslen_it[x, y |} implies {({U.length y) = {U.length x))) )
by conj(conjl, conj2, .PREVIOUS);

/* it returns the length of y */

thus (ex z being Bits st
((z = z) & (bitsden_It[x. y | implies {z = (U.length ¥))) &
((not bits_len dtfx, y ]) implies (z = (U.length x})) )

o

) by exintro(_PREVIOUS. _-PREVIOUS);

end;



o
not_lt: now

S* When x is no shorter than v, 2/

assunie not It {not bitsden lzx. v 1)

bits len_egfx, x ] by elim{xjiBA len_eqoreti):

conjl: ((U.dlength x)} = (Ul.length x)) by elim[x.xj( U.unat2, _.PRIZVOUS):

( (not bitsden_ft{x. ¥ j) or ((Ulength x) = (U.leagth v ;) ) by disjintrognot t):

cony2: (bitsden_ii{x. v ! itplies ((Uldcugth x! = (Ulsnerti y1))
by disj2imp(- PREVIOUS);

( bitslen_It[x. v | or ({Uldength x) = (U length x1) ) by disjiutro(conjl);

({not bitsden dtlx. v ]) implics ({U.length x} = (Uldength x)))
by disi2imp(-PREVIOUS):

{ ((Udengrh x) = (Ulength x)) & (bissdencitjx, vy }implies ((Udenath x0 =
(Udength v))) & (faot bitsden It!x, y |} kaplies ((Uldength x) = (Ullength x3)) )
by conj(conj!. conj2, _PREVIOUS);

/0t returns the iength of x */

thus (vx 2 being Bits st
((z = z) & thitsden_tIx, v ] implies (z = (Ulleagrh v))) &
((not bits_lendt[x, y |) impiies (2 = {Uldength x))) )

) by exintro( _PRENVIOUS, .I’REVIOUS);

end:

/* Combine the 2 rases by case analysis */

thus (ex z being Bits st
((z = z) & (bitsden_ltfx, y | implies (z = {U.length y))) &
((not bits_lenit[x. y ]) implies (x = (!7.length x);) )

) by caseanaif cases, It, _.PREVIOUS);

end;

thus (ex [ being {Bits => Bits) st
{for y being Bits holds
( ((Fy) = (ry)) & (bitslendt[xc. v | imphes (({y) = (Ulength v))) &
((not bits_jen_dt[x, v 1) implies ((fv) = (Ullength x})) )
)
} by choice(_.PREVIOUS);

aend;

/* Use clivice twice to extract the function as it has 2 inpurs */
(ex max being (Bits -> (Bits -=> Bits}) st
{for x being Bits holds
(for y being Bits holds
 (((max x) y) = ((max x) v)j &



(bitsden_lt[x. y | implies (((max x) y) = (U.length y)}) &
((not bits_len_It{x. y [} implies ({(max x) y) = (U.length x))) )
)
)
) by choice(_PREVIOUS);
/* Name the function */
consider max being (Bits -> (Bits -> Bits)) such that max: (for x being Bits holds
(for y being Bits holds
( ((max x) y) = ((max x) y)) &
(bitslen_lifx, y ] implies (((inax x) y) = (U.length y))) &
((not bits_len_lt{x, y ]) implies (((max x) y) = (U length x))) )

)
) by direct(_PREVIOUS);

/* Specifications of depth */

depth_spec: define depth_spec of f being ( Bits ~> Bits). x being Bits. z being Bits by
((z=2)&
((not bt.btree[x ]) implies (z = nil)) &
(bt.btree[x | implies (z = (cat <({max (f(bt ltree x))) (f (bt.r_tree x))) . 0>))) );

now

/* Proof of depth */
let x be Bits;

now
let f be (Bits -> Bits);
/¥ Recursion Hypothesis */
assume RD: (for y being Bits holds
(LT[y, x | implies depth_spec[f, y. (fv) ])
)i

cases_btree_or_not: ( bt.btreejx | or (not bt.btreejx |) ) by elim[xj(h2.btree_decide);

btree_case: now
/* When x is a binary tree, */
assume btree: bt.btree[x |:
x_not_nil: (x <> nil) by elim{xj(b2:btree_not_nil, _PREVIOUS):
bits.lendt[(bt.I_tree x), x ] by elim[x](b2.1_tree it x. .PREVIOUS);

/¥ (bt.l_tree x) is simpler than x */

LT[(bt.i_tree x), x | by clim{{bt.l_tree x),x](BA_LT. _.PREVIOUS, _PREVIOUS)'

/™ reference to (f (bt.l_tree x)) */
depth_spec[f, (bt.l.tree x), (f (bt.l.tree x)) ]
by elim[(bt.l_tree x)](RD. _.PREVIOUS, _-PREVIOUS);

I_tree_ret: ( ((f(bt.l-tree x)) = (f (bt.i-tree x))) & ((not bt.btreef(bt.l_tree x) ])
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implies (({ (bt.l_tree x)) = nil)) & (bt.btree[(bt.l_tree x) | implies

((f{bt.l_tree x)) = (cat <((max (f (bt.l.tree (bt.l_tree x))))

{f (bt.r_tree (bt.l.tree x)))), 0 >})) ) by definition(depth_spec, .PREVIOUS);
bits_len_lt{(bt.r_tree x), x ] by elim[x](b2.r_tree It x, x_not_nil);

/* (bt.r_tree x) is simpler than x */
LT[(bt.r_tree xj, x ] by elim{{bt.r_tree x),x)( BA_LT. .PREVIOUS. _.PREVIOUS);

/* reference to (f (bt.r_tree x)) */
depth_specft, (bt.r_tree x), (f (bt.r_tree x)) ]
by elim{(bt.r_tree x)J(RD, _.PREVIOUS, _.PREVIOUS);
r-treeref: ( ((f (ht.r.tree x)) = (f(bt.r_tree xj)) & ((not bt.btree[(bt.r_tree x) |)
implies ((f (bt.r.tree x)) = nil)) & (bt.btreej(bt.rtree x) | implies
((f(bt.r-tree x)) = (cat <({max (f (ht._tree (bt.r.tree x))))
(f (bt.r_tree (bt.r_tree x)))), 0 >))) ) by definition{dep:h_spoc, PREVIOUS);
(((max (f{bt.l tree x))) (f (bl.r_tree x}))
= ((max (f (bt.l_tree x))) ((bt.r_tree x})))
by eiim[{{ (bt.I_tree x)) ,(f {ht.r_tree x)}J(max, I_tree_ref, _.PREVIOUS);
consider z being Bits such that
(z = (cat <{(max (f (bt.i_tree x)})) (f (bt.r_tree x))), 0 >))
by elim[((max (f (bt.i-tree x})} ) ({ (bt.r.tree x))),0)( BA_cat, _.PREVIOUS);
( (not bt.btree[x [) or (z = (cat <({max (f (bt.I_tree x})) (f (bt.r_tree x))), 0>)) )
by disjintro(_.PREVIOUS);
conj3: (bt.btree[x | impiies (z = (cat <({max (f (bt.l.tree x))) (f (bt.r_tree x))),
0>))) by disj2imp(_.PREVIOUS); '
{ bt.btree[x ] or (z = nil) ) by disjintro(btree);
conj2: ((not bi.btree[x ]) implies (z = nil)) by disj2imp(_PREVIOQUS);
(z = z) by eqintro();
( (z = z) & ((not ht.btree[x ]) implies (z = nil)) & (ht.btreefx ] implies
(z = (cat <{{max (f (bt.l_tree x})) (f ‘bt.r_tree x))), 0 >))) )
by conj(_PREVIOUS, coni2. conjl);
depth_spec(f, x, z | by definiticn(depth_spec, _.PREVIOUS);

/* it returns (cat <((max (f (Dt.I_tree x))) (f (bt.r_tree xj}), 0>) */
thus (ex z’ being Bits st

depth_spec[f, x. z" ]
) by exintro(_.PREVIOUS);

end;

not_btree_case: now
/* When x is not a binary tree, */
assume not_btree: (not bt.btreefx ]);
conjl: (nil = nil) by eqintro();
( bt.btreejx | or (nil = nil) ) by disjintro(_.PREVIOUS);
conj2: ((not bt.btreefx }) implies (nil = nil)) by disj2imp(_PREVIOUS);



BY
((not bt.biree[x ]) or (nil = (cat <((max (f (bt.l.tree x))) (f (bt.r_tree x))), 0>)))
hy disjintrofnot_btree);
(bt.htree[x [ implies (pil = (cat <((max (f (bt._tree x})) (f(bt.rtree x))), 0>}))
by disj2imp( .PREVIOUS):
( (nil = nil) & ((not bt.htree{x ]) implies (nil = nil)) & (bt.btree[x | implies
(nil = (cat <((max (f(bti_tree x))) (f (bt.r_trec x}}), 0>)); )
by conj(conjl, conj2, _FREVIOUS);
depth_specif, x, nil | by definition(depth_spec. _PREVICTS);

/% it retarns nil */

thus (ex z° being Bits st
depth_spec(f, x. 2" ]

) by exintro( _ PREVIOUS);

end;

S¥ Combine the 2 cases by case analysis */
thus (ex z° being Bits st
depth_spec(f, x, =" ]
) by caseanal(cases_btree_or_not, btree_case, _PREVIOUS i:

end;

thus (for f being (Bits => Bits) holds
((for y being Bits holds
(LT{y. x ] implies depth_spec{f, y, (f v) ])
) ilmplies (ex z being Bits st
depth_spec[f, x, z ]
By
) by direct(.PREVIOUS):;

end;

/¥ Exrract the funciion */
(ex f being (Bits -> Bits) st
(for x being Bits holds

depth_specif. x. (fx) ]
)
J by recdef( _PREVIOUS);

/* Name the function ¥/

consider depth being (Bits => Bits) such that depth: (for x being Bits holds
depth_spec[depth. x. (depth x) ]

) by direct(_PREVIOUS);
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