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Abstract

Invasive species and infectious diseases cause signi�cant ecological and economic harm all over

the world. Therefore, substantial e�ort is made across the globe to prevent the spread and

decrease the impact of biological invasions and epidemics. To optimize policy and make

control e�orts more e�ective, managers need risk assessment and decision support tools

providing them with practical management advice. The development of such tools is the

objective of this thesis.

A major vector for many invasive species and infectious diseases is human tra�c and trade

through road networks. Therefore, reliable predictions of road tra�c are needed to facilitate

optimal invasion and disease control. Tra�c estimates can be used to determine where new

invasions and infections are most likely to occur and to optimize prevention measures reducing

the introduction of propagules and pathogens to uninfested areas. A challenge, however, is

the vast number of potential routes that road travellers could take to reach their destinations.

This challenge can make both tra�c estimates and e�ective spread control di�cult.

In this thesis, I develop a set of tools to both assess the tra�c of potential invasive species

or disease vectors and to optimize road-side control measures hindering the propagation of

biological invasions and epidemics. I introduce a novel method to compute routes that

potential vectors might reasonably take and incorporate the resulting paths in a hybrid

gravity and route choice model for vector tra�c. The hybrid model accounts for both the

travel incentive and the route choice of potential vectors. This hybrid approach makes it

possible to �t the model to survey data collected at roads and to determine the major

pathways of potential vectors. Fitting the model to road-side survey data facilitates more
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accurate tra�c estimates and permits the construction of large-scale tra�c models, which

were di�cult to �t with traditional methods. The road-speci�c tra�c estimates, in turn,

can be used to determine the best locations to control potentially infested vectors, and I

develop a management support tool for this task. The decision support tool can account for

location-speci�c management constraints and provides speci�c management advice.

I introduce a number of statistical tools to test model assumptions and to assess the

credibility of parameter estimates and predictions. In particular, I develop a robust and

e�cient algorithm to compute pro�le likelihood con�dence intervals. The new algorithm

is applicable even in situations in which earlier methods regularly fail or return erroneous

results.

I apply all methods developed in this thesis to prediction and control of the transport

of zebra and quagga mussels (Dreissena spp.) to the Canadian province British Columbia.

Dreissenid mussels are invasive in North America and have various negative e�ects on both

ecosystems and human well-being. A major spread mechanism for zebra and quagga mussels

is tra�c of boaters transporting their watercraft from invaded to uninvaded waterbodies. I

apply the newly developed management support tools to optimize placement and operation

of watercraft inspection stations, where watercraft are screened for invasive mussels and de-

contaminated if potentially infested. Considering di�erent management scenarios, I identify

general principles for optimal invasive species and disease management.
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Chapter 1

General introduction

Human tra�c and trade are major vectors for infectious diseases and invasive species (Karesh

et al., 2005; Kimball, 2006; Hulme, 2009), which have signi�cant e�ects on human well-being,

economy, and the functioning of ecosystems (Pimentel et al., 2005; Kimball, 2006; Pejchar

and Mooney, 2009). Examples include human diseases such as the Severe Acute Respiratory

Syndrome (SARS) distributed via airplane travellers (Kimball, 2006), animal diseases such

as avian �u spreading via trade of infected birds (Van Den Berg, 2009) and invasive species

such as zebra and quagga mussels (Dreissena spp.) �hitchhiking� on trailered watercraft

(Johnson et al., 2001). Due to the vast damages infectious diseases and invasive species

cause, signi�cant e�orts are made to prevent their spread and reduce their impact (Shine

et al., 2010; Johnson et al., 2017; Turbelin et al., 2017).

A large body of research is concerned with developing tools to make the control of in-

fectious diseases and invasive species most e�ective (Lewis et al., 2016). Two major toolsets

are needed to optimize infectious disease and invasive species management: tools to gain

an understanding of the epidemic or invasion process, and tools to optimize management

actions given this information. This thesis seeks to address both these tasks. Methods to

estimate the tra�c of potential disease or invasive species vectors are developed as well as a

management support tool using these results to optimize control. Hence, this thesis provides,

within its range of applicability, a speci�c but comprehensive toolset to minimize the spread

of infectious diseases and invasive species.
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Speci�cally, this thesis considers the scenario in which a disease or invasive species spreads

by means of human road tra�c and is managed via road-side control measures. This sce-

nario is challenging from a modelling perspective, as the behaviour of road travellers may

vary among individuals and could be a�ected by a variety of factors. Hence, sophisticated

modelling tools are needed to address this management problem. The main result of this

thesis is a management support tool that (1) facilitates risk assessment by estimating vector

pressure to entities of management concern and (2) provides speci�c management advice on

when and where to apply control actions.

Though the mechanisms behind the spread of infectious diseases and invasive species are

often similar � making relevant theory applicable to both issues alike � I will focus on man-

agement of invasive species in this thesis. In particular, I will apply the developed methods

to the control of zebra and quagga mussels in the Canadian province British Columbia (BC).

Zebra and quagga mussels are invasive in North America and cause severe economic and

ecological damages (Rosaen et al., 2012; Karatayev et al., 2015b).

Below, I give a brief introduction on the issues surrounding invasive species management,

providing background on the ecology of invasive species, their dispersal, impact, and man-

agement, and review research on optimal management. As modelling plays an integral role in

this thesis, I furthermore discuss earlier work on invasive species modelling and the challenges

associated with this task. Finally, I provide some background on zebra and quagga mussels

and give an overview of the structure of this thesis.

1.1 Biological invasions

1.1.1 A working de�nition of invasive species

An important step towards e�ective invasive species management is to gain a general under-

standing of biological invasions. The very �rst challenge is thereby to �nd a clear de�nition

of the term �invasive�. Though the militaristic connotation of the word may evoke the unam-
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biguous image of a species aggressively conquering habitat outside its native range, de�ning

the term �invasive� has proven di�cult and sparked a controversial debate among ecologists

(Lockwood et al., 2013). For example, it can be unclear how far from its home range a species

is considered �non-native� (Colautti and MacIsaac, 2004; Valéry et al., 2009), and how the

invasion process can be distinguished from �natural� range extension and colonization (Davis

et al., 2001). Similarly, arguments have been made on to what extent the impact of a species

determines its status as invasive (Richardson et al., 2000; Daehler, 2001). Even the term

�invasive� in itself has been criticized, as its negative connotation may convey a value state-

ment that may neither be accurate (Davis et al., 2011) nor even justi�able without stepping

outside the realm of science (Simberlo�, 2003; Chew and Carroll, 2011).

In this thesis, I consider biological invasions from the management perspective. This

resolves potential issues with a negative connotation of the word �invasive�, as a management

desire � and thus a value statement justifying the control of the species � is already presumed.

In a similar manner, this perspective permits the characterization of invasive species on a

functional level, taking some liberty in aspects of a general de�nition. Within this thesis, I

will consider a species invasive if (1) it is not present in some suitable habitat, (2) there is

a signi�cant chance that the species will be introduced to this habitat, (3) the species has

the potential to establish and spread within and from this habitat, and (4) the species has a

(negative) impact potentially motivating management.

This working de�nition coincides largely with the invasion process formalized by Lock-

wood et al. (2013). Note, however, that some species may ful�ll this de�nition even though

they belong to the general native species pool of the �invaded� habitat and would therefore

not be considered invasive by many ecologists. Similarly, species that have not yet invaded

any foreign habitat (and are thus not invasive in the classical sense) could fall in the range of

this de�nition due to their potential to invade. Furthermore, as the de�nition includes aspects

variable in space, time, and human judgment and actions, no species is considered inherently

invasive. For example, a species stopping to disperse because it has invaded all suitable habi-
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tat looses its status as invasive species even though it could still be (rightfully) considered

alien based on its dispersal history. For these reasons, the given working de�nition is not

suited as a general de�nition of invasive species. Nonetheless, important mechanisms behind

biological invasions can be understood based on the four given characteristics, especially in

the context of management.

1.1.2 The mechanisms behind biological invasions

To understand the mechanisms behind biological invasions, we may consider the four de�ning

properties of invasive species. With regard to the �rst and the third property, we may ask how

suitable habitat can be characterized, and which factors facilitate and hinder establishment

of an invasive species. Habitat suitability can depend on a variety of factors. These may

include abiotic factors, such as climate and topography (Hirzel and Le Lay, 2008), and

biotic factors, such as presence of predators, prey, competitors, and mutualists (Levine and

D'Antonio, 1999; Simberlo� and Von Holle, 1999). Furthermore, establishment can both be

hindered and facilitated by disturbances, such as natural disasters (Hobbs and Huenneke,

1992). Finally, invadable habitat must be su�ciently segregated from the considered species'

home range, as the new habitat would already have been invaded otherwise (Seebens et al.,

2013).

Looking at the second property, dispersal of invasive species can be classi�ed as human-

aided or natural and, in the former case, intentional or unintentional (Lockwood et al., 2013).

A major driver for human-aided dispersal of invasive species is global trade (Hulme, 2009).

Thereby, propagules may be transported attached to carriers (Kolar, 2002; Von der Lippe

and Kowarik, 2007) or along with goods (Johnson et al., 2001; Koch et al., 2012; Drake

and Mandrak, 2014). Intentional distribution may happen through import and release of

food or game species (Lockwood, 1999; Mack, 2003). The nature of the dispersal mechanism

determines where, how frequently, and how abundantly propagules are introduced to new
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habitat. Therefore, knowing the spread mechanism is key to understanding the dynamics of

an invasion.

Considering the fourth property, the impacts of invasive species are diverse in magnitude

and nature. The arguably most direct impact of invasive species is their e�ect on the invaded

ecosystems. As invasive species may be lacking enemies limiting their spread, invasives often

grow quickly in abundance (Keane, 2002). Since the host systems are often poorly adapted to

the foreign species, species loss (Bellard et al., 2016) and loss in ecosystem function (Pejchar

and Mooney, 2009) can be the consequence. As a result, the impact of invasive species can go

far beyond the realm of ecology. For example, direct economic damage may be encountered

if invasive pests decrease the yields of crop harvests (Pimentel et al., 2000). Less direct

e�ects include decreasing touristic value of sites, e.g. due to decreasing water quality in

lakes (Rosaen et al., 2012). Hence, invasive species cause tremendous costs to economies all

over the world (Pimentel et al., 2005). However, the cultural impact of invasive species, e.g.

through loss of culturally important species, may be just as signi�cant (Pfei�er and Voeks,

2008).

In the past century and present, anthropogenic in�uences have increased the prevalence

of each of the de�ning characteristics of invasive species. For example, climate change alters

abiotic conditions so that species can invade habitats in which they were previously unable to

establish (Hellmann et al., 2008). The rapid increase in tra�c and trade opens new pathways

for the spread of invasions and has led to a boost in dispersed propagules (Hulme, 2009).

At the same time, anthropogenic ecosystem disturbances can pave the way for new invasions

and extend their e�ects (Didham et al., 2007). This increases the need for e�ective invasive

species management.
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1.2 Management of invasive species

1.2.1 Management options and current policy

The typical goal of invasive species management is to reduce some impact of invasive species.

To mitigate this impact, management can target di�erent stages of the invasion process:

transport, establishment and spread, and impact. If no live propagules are introduced to

new habitat, they cannot establish and spread; if a species cannot establish and spread, it

will likely have no e�ect; if a species does not have an e�ect, the management incentive is

lost.

Transport of propagules can be divided into three substages: uptake of propagules, trans-

port of live propagules, and release of propagules into new habitat (Carlton and Ruiz, 2005).

Each of these substages can be addressed with management. Pickup of propagules may,

for example, be reduced by limiting access to donor regions; survival of propagules may be

decreased by treatment of carriers or transported goods (Briski et al., 2013); and release of

propagules may be inhibited by imposing import restrictions (Johnson et al., 2017). Estab-

lishment and spread in recipient habitat may be counteracted by eradicating new populations

(Pluess et al., 2012). Finally, the impact of invasives may be mitigated by decreasing the

species density in infested habitat (Yokomizo et al., 2009) or even adjustment to the new

circumstances (McDermott et al., 2013; Marbuah et al., 2014).

Theoretical and empirical studies suggest that it is often more cost-e�ective to prevent

the introduction of live propagules rather than managing established populations of invasive

species (Leung et al., 2002; Lodge et al., 2006; Pluess et al., 2012). Following such insights,

many governments have issued regulations restricting the import of particular goods and

require treatment of potentially infested freight and carriers (Shine et al., 2010; Johnson et al.,

2017; Turbelin et al., 2017). To facilitate rapid response measures and timely eradication,

government agencies have furthermore established early detection and information sharing
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networks (Simpson et al., 2009). In addition, there have been coordinated attempts to

eradicate established invasive species (Wilson et al., 2013; Jones et al., 2016).

1.2.2 Optimizing management

In line with the signi�cant e�orts made to control invasive species, considerable research e�ort

has been made to identify optimal management strategies. Many studies on optimal invasive

species management consider bio-economic models pairing an ecological invasion model with

an economic model for invasion and control costs (Potapov and Lewis, 2008; Potapov et al.,

2008; Finno� et al., 2010; Carrasco et al., 2010; Epanchin-Niell and Wilen, 2012). Though

these models were often developed with focus on speci�c species, some general insights were

consistent throughout studies. For example, several results emphasize the importance of

managing invasions early, when they are spatially contained (Finno� et al., 2010; Blackwood

et al., 2010; Epanchin-Niell and Wilen, 2012). In later stages of invasions, when most suitable

habitat patches are invaded already and act as secondary propagule sources, it can be more

cost-e�ective to cease control e�orts completely (Potapov et al., 2008; Finno� et al., 2010).

Several studies furthermore highlighted the bene�t of controlling invasive species with actions

variable in time and space (Albers et al., 2010; Finno� et al., 2010; Epanchin-Niell and Wilen,

2012).

A major challenge involved with bio-economic modelling is the necessity to estimate the

costs of invasions. Though attempts have been made to estimate the economic damages

caused by invasive species (Pimentel et al., 2000, 2005; Rosaen et al., 2012), it is di�cult

to put cost labels on cultural and aesthetic loss and to incorporate ethical considerations

in economic models. Therefore, bio-economic approaches cannot provide an �objectively�

optimal solution to invasive species management.

A second limitation of many theoretical studies on optimal invasive species management

is their relatively high level of abstraction. Though many of the developed tools could be

applied to real management scenarios, it is challenging to model real ecosystems, manage-
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ment options, and management constraints spatially explicit and detailed enough to yield

speci�c management advice. Knowing of these challenges and the uncertainty inherent to

invasion models, managers often rely on qualitative models and decision support tools de-

spite the abundance of developed quantitative tools. Therefore, it remains an important task

for researchers to develop quantitative methods that are easily applicable by managers and

provide concrete management advice in speci�c situations. This will be the major goal of

this thesis.

1.2.3 Solving high-dimensional management problems

Typically, optimizing management strategies on a detailed level requires the consideration

of many control options and constraints. Solving such high-dimensional problems is rarely

possible with analytical techniques, and even numerical solutions can be di�cult to obtain.

These challenges can be overcome if the objective function and constraints are convex or,

even better, linear functions. Convex problems with thousands of variables and constraints

can be solved within seconds via interior point methods. Consequently, convex and linear

programming has also been used in the context of invasive species management (Hastings

et al., 2006).

Despite the computational advantages of convex optimization, convex and linear pro-

gramming may not be directly applicable if the optimized control policy involves discrete

decisions, such as the choice of control locations. Though it is often possible to model de-

cision problems with convex functions, the integer constraints required to model discrete

choices make these problems NP-hard in general (Conforti et al., 2014). Although there is

an established theory to solve convex or linear integer problems (Conforti et al., 2014), it

is often impossible to �nd optimal solutions in reasonable time, and approximate solutions

may be the best possible result (Ageev and Sviridenko, 2004). Nonetheless, since any feasi-

ble solution satisfying integer constraints is also admissible if these constraints are removed,

convex and linear programming can be used to bound the optimal solution of convex and
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linear integer problems. This is helpful when a highly optimal solution is sought (Ageev and

Sviridenko, 2004).

1.3 Modelling the spread of invasive species

An important tool for informed invasive species management are invasion models. These

models can be used to predict the spread of invasive species, thus facilitating early detection

and rapid response measures, and to assess how management actions a�ect the rate and

impact of future invasions. Furthermore, models can be used as a research tool to increase

our understanding of invasive species and their dispersal. This understanding, in turn, may

facilitate management later.

Invasion models di�er in their level of abstraction and the invasion stages they cover.

A comprehensive invasion model would need to consider both transport of invasive species

(involving uptake, survival, and release of propagules) and their chance to establish in the

new habitat (Lewis et al., 2016). Modelling propagule pressure and establishment jointly is

particularly important if Allee e�ects strongly impact the dynamics of small populations (see

e.g. Potapov and Lewis, 2008). Though joint propagule transport and establishment models

have been constructed for a variety of species and scenarios (Leung et al., 2004; Potapov

and Lewis, 2008; Seebens et al., 2013), developing, �tting, and analyzing such comprehensive

models can be challenging or, if data are missing, infeasible. Therefore, many studies focus

on modelling either the introduction of propagules or the suitability of habitat for invaders

(Lewis et al., 2016).

1.3.1 Modelling tra�c and trade

Many models for invasive species spread focus on one particular vector driving the spread

of the considered species at the considered scale. As human tra�c and trade are major

vectors for invasive species (Lockwood et al., 2013), models for invasive species spread must

often account for the social and economic factors in�uencing human decisions. While high-
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quality data on human trade are often available (see e.g. Seebens et al., 2013), modelling

human behaviour on an individual-based level is more challenging in general, because many

di�erent factors can a�ect individuals' choices, and individual-speci�c data are often di�cult

to collect.

As road tra�c is a major vector for several invasive species (Johnson et al., 2001; Von der

Lippe and Kowarik, 2007; Koch et al., 2012; Drake and Mandrak, 2014), modelling road

tra�c is important to understand, predict, and manage invasions. Models for road tra�c

often consist of two components, one modelling the travel incentive (who drives where how

often), and one modelling the route choice. In many instances, it is su�cient to model

the travel incentive, as the route choice may not a�ect the distribution of invasive species.

However, incorporating the route choice is necessary if invasive species can invade habitat

surrounding roads (e.g. weeds, Von der Lippe and Kowarik, 2007), if control measures are

applied at roads, or if data obtained at road sides shall be used to �t the models.

1.3.2 Modelling travel incentive

Often, the travel incentive of road travellers is modelled with so-called gravity models (Bossen-

broek et al., 2001; Leung et al., 2004; Potapov et al., 2010; Mari et al., 2011; Muirhead and

MacIsaac, 2011). These models, originally developed in the context of economics (Anderson,

2011), build on the assumption that the mean tra�c �ow between an origin and a destination

is proportional to the �repulsiveness� of the origin (e.g. the number of potential travellers

living at the origin) the �attractiveness� of the destination (e.g. number of touristic facilities),

and a power of the distance between the origin and destination. To increase the mechanistic

validity of gravity models, researchers often introduce additional constraints, for example to

ensure that the estimated outbound tra�c �ows do not exceed the number of individuals

residing at an origin (Wilson, 1970; Muirhead et al., 2011). Other models account for un-

known underlying processes by understanding tra�c as a stochastic process (Flowerdew and

Aitkin, 1982; Potapov et al., 2010). However, as an alternative to gravity models, travel

10



incentive could also be modelled mechanistically, e.g. with random utility models (Siderelis

and Moore, 1998; Chivers and Leung, 2012).

Models for travel incentive are often �tted via traveller counts collected at origins and

destinations, or mail-out surveys collecting details on past and planned trips from potential

travellers. Both these data sources, however, may represent only small fractions of the tra�c.

Origin/destination based sampling is di�cult if many origins and destinations are considered

or if origins and destinations have many access points. Mail-out surveys, in turn, can rarely

cover the complete set of potential vectors and su�er from high sampling error if only few

respondents make trips relevant for the study. These challenges are most prevalent in large-

scale systems, in which, �rst, many and large origins and destinations are considered and,

second, the number of travelling vectors is small in comparison to the number of vectors

who could potentially start a trip. For example, millions of people in North America could

potentially travel to British Columbia, but only few will actually do so. Identifying the latter

individuals can be di�cult. Due to these challenges, most models for the tra�c of invasive

species vectors rely on a single, large survey. This, in turn, makes it di�cult to discern

systemic stochasticity from modelling error.

A potential solution to this problem is to survey travellers at roads used by many in-

dividuals. Often, long-distance tra�c concentrates on a small set of major highways (see

Abraham et al., 2010), which would therefore be promising locations for tra�c samples.

Sampling tra�c in multiple time intervals permits assessment of stochastic tra�c variations

and thus a thorough model validation. For these reasons, this approach will be pursued in

this thesis. Note, however, that travellers could travel along various (and also unmonitored)

routes. Therefore, survey data obtained at road sides are of limited use unless combined with

a route choice model.
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1.3.3 Modelling route choice

Modelling route choice is a challenging task due to the vast number of possible routes, the

variation between individuals, and the multitude of factors potentially a�ecting route choice.

To account for the �rst challenge, many models understand route choice as a two step process,

in which agents �rst determine a set of potentially suitable routes, from which after closer

consideration the �nal route is chosen (Prato, 2009). This approach is justi�ed via the

assumption that travellers do not have the capacity to consider all possible alternatives (Di

and Liu, 2016). The variation between individuals is often accounted for with stochastic

models for the �nal route choice (Prato, 2009).

Typically, the heuristic that individuals apply to determine route choice candidates is

not known precisely. A number of approaches exist to compute promising routes (Bovy,

2009). Many of the methods used to determine choice candidates involve considerable com-

putational complexity and/or require detailed assumptions about the mechanisms behind

route choice (Bovy, 2009). Furthermore, if route choice is assumed to be a�ected by mul-

tiple route characteristics (e.g. travel time, fuel consumption, or scenery along the route),

corresponding data are needed. As a consequence, it is di�cult to apply these approaches in

large-scale models with many origins and destinations and, potentially, missing data. Since

invasion models often consider many origins and destinations that are distributed over large

areas, alternative methods are needed to compute route choice sets for large-scale propagule

transport models.

A potential alternative to modelling the mechanisms behind route choice explicitly is to

understand route choice as a multi-scale process with di�erent factors a�ecting choices on

di�erent spatial scales. Consider an individual driving from origin A to destination B via

some intermediate destination C. For example, this intermediate destination could be a

scenic road section, a city of interest, or even the home of a friend or relative. In general,

it will be di�cult to know intermediate destinations of an individual. However, the route

to and from an intermediate destination will likely be determined by simpler, somewhat
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economic factors, such as travel time. Therefore, the chosen route may be optimal on a

local scale, whereas unknown factors may a�ect the route on the large scale. Note that this

principle also applies to routes resulting from di�erent reasoning applied on di�erent scales.

For example, an individual may seek to minimize the overall fuel consumption by taking the

shortest route. Nonetheless, they may take main roads through towns and villages rather

than neighbourhood roads even if the latter may be on the shortest path.

So far, locally optimal routes have been considered in the context of route planning (Abra-

ham et al., 2013; Delling et al., 2015; Luxen and Schieferdecker, 2015). Many mapping tools,

such as Google Maps or Bing Maps, suggest to users multiple routes to a destination. To

compute such routes, Abraham et al. (2013) have developed an algorithm that e�ciently

determines few, �good� locally optimal paths between a single origin and a single destination.

This approach meets the needs of route planning software, where computational speed is val-

ued more highly than an exhaustive search. Route choice models, however, need to consider

all admissible routes between many origins and destinations. Therefore, the existing algo-

rithms are not suited to compute route choice sets for comprehensive route choice models,

and new methods are needed. This problem will be addressed in this thesis.

1.3.4 Identi�ability, estimability, and credibility of parameter val-

ues and predictions

Most models for biological invasions contain parameters that are not known a priori. To

estimate these parameters and ensure that conclusions drawn from the models also hold

in reality, models are often �tted to empirical data. A common approach is to choose the

parameter values so that the discrepancy between empirical data and model predictions is

minimized. If the residuals are assumed to be caused by stochastic processes, models can

be �tted by maximizing the likelihood (Casella and Berger, 2002). Roughly speaking, the

�likelihood� measures how likely collected data could be observed if a model were true.
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If parameters are �tted to observations that are subject to random variations, the param-

eter estimates are random variables as well. To ensure that conclusions drawn from models

are not due to chance but rather supported by empirical evidence, it is important to assess

to what extent random in�uences could a�ect parameter estimates and predictions. Though

maximum likelihood estimates are typically precise and highly credible if enough data are

available, it is not always clear how many data would be required. Furthermore, there are

situations in which parameters cannot be estimated precisely regardless of how many data

are collected (Raue et al., 2009). Consequently, it is important to determine the credibility

of parameter estimates and predictions before inference is drawn.

Two situations exist in which estimates are not credible: parameters may be non-identi�able

or non-estimable (Raue et al., 2009). If the best-�tting model is not unique, i.e. multiple

parameter choices �t the data equally well, the corresponding parameters are called non-

identi�able. Typically, non-identi�ability is thought of as inherent to the model and in-

dependent of the data (Jacquez and Greif, 1985). That is, even if the data set would be

increased arbitrarily, the best-�tting estimator would not be unique. In contrast, parameters

are said to be non-estimable if the data set does not su�ce to obtain credible parameter

estimates (Raue et al., 2009). Consequently, estimability depends on the desired level of

credibility and the size of the data set.

The typical cause for identi�ability and estimability issues is that models account for

processes without a (major) e�ect or for multiple processes with similar e�ects. For example,

errors between predictions and observations could be due to environmental stochasticity as

well as measurement error. Consequently, it would be impossible to determine how much

each of these processes contributes to observations. Though some models permit analytical

investigation of identi�ability and estimability issues, the interplay of processes can be com-

plicated and oblique (Lele et al., 2010). Therefore, computational techniques are often the

only way to detect these problems.
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A widely used statistical tool to assess the credibility of estimates are con�dence intervals.

These intervals indicate under which range of parameters the collected data would be ob-

servable with reasonable chance if the model were correct (Casella and Berger, 2002). Small

con�dence intervals suggest that parameters are identi�able and estimable. If models are

�tted by maximizing the likelihood, con�dence intervals are often computed approximately

via Wald's method. This method exploits asymptotic properties of the maximum likelihood

estimator and fails or yields misleading results if these properties are not achieved approxi-

mately. Furthermore, Wald's method may be inaccurate if the maximized likelihood is close

to but not at the maximum. This may happen if the likelihood is maximized numerically and

the search is stopped based on misleading termination criteria. As a consequence, Wald's

method may overestimate or underestimate con�dence intervals strongly.

This problem can be solved by using other, more accurate methods to construct con�dence

intervals. One alternative is to use sampling-based techniques (Efron, 1981; Buckland, 1984;

Ponciano et al., 2009). These methods are generally reliable, and some are also suited to

detect estimability issues (Ponciano et al., 2009). At the same time, however, sampling-based

methods require many evaluations of the likelihood function. Therefore, these techniques may

not be su�ciently e�cient if the likelihood function is di�cult to compute or large data sets

are considered.

A second possible approach is to construct con�dence intervals based on the pro�le likeli-

hood (Cox and Snell, 1989). The idea is to �xate a parameter of interest θ0 at di�erent values

and, respectively, maximize the likelihood with respect to the remaining parameters. The

con�dence interval for θ0 consists of the values θ0 that admit a su�ciently high likelihood

value.

The pro�le likelihood approach is computational demanding, as the likelihood must be

maximized several times. However, methods exist to determine the end points of pro�le like-

lihood con�dence intervals within a single optimization e�ort, making the process much more

e�cient (Venzon and Moolgavkar, 1988; Neale and Miller, 1997; Wu and Neale, 2012). Un-
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fortunately, these algorithms often fail if the likelihood function has unfavourable properties,

such as steep �cli�s�, or if parameters are not estimable (see e.g. Ren and Xia, 2019). There-

fore, an approach that combines a high success rate with computational e�ciency would be

desirable. Such a method will be presented in this thesis.

1.4 Zebra and quagga mussels

I will apply the methods developed in this thesis to the prevention of zebra and quagga

mussel introductions to British Columbia. Below, I provide some background knowledge on

the biology, spread, impact, and management of these mussels.

Zebra mussels (Dreissena polymorpha) and quagga mussels (Dreissena rostriformis bu-

gensis) are two mollusc species native to the Ponto-Caspian region and sharing several traits,

such as life history characteristics and habitat requirements (Karatayev et al., 2013). The

species occur in both fresh and brackish water and have relatively large temperature toler-

ances, ranging between a minimum of 5-15◦C required for spawning and a maximum of 30◦C

(Mills et al., 1996; Karatayev et al., 2013). Both species require water conditions with low

pH values and high calcium concentrations (Ramcharan et al., 1992; Jones and Ricciardi,

2005).

Zebra and quagga mussels have a life cycle with a veliger, juvenile, and adult stage

(Karatayev et al., 2013). During its 2-4 year life span, a female zebra mussel can release up

to 350, 000 eggs per productive season (Stoeckel et al., 2004); the veligers hatching from the

eggs settle to some hard surface after few weeks in open water and enter the juvenile stage

(Ackerman et al., 1994). Juvenile zebra mussels mature to fertile adults after reaching a size

of 8-10 mm after few months (Mackie, 1991).

Zebra and quagga mussels have received particular attention due to their role as invasive

species in Europe and North America (Karatayev et al., 2013). While zebra and quagga

mussels have an invasion history dating back to the early 1800s in Europe, their introduction

to North America, presumably via ballast water of ships, was in the mid 1980s (Karatayev
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et al., 2015b). Since then, zebra and quagga mussels have invaded large parts of the United

States and Canada (USGS, 2019). Zebra mussels spread and reproduce more quickly than

quagga mussels but are often outcompeted by the latter in the long run (Karatayev et al.,

2015b). The natural spread mechanism of dreissenid mussels is mainly through water �ow

but has been aided by inland vessel tra�c (Karatayev et al., 2013). Intra-continental long-

range spread is facilitated by the tra�c of boaters transporting watercraft and gear from

invaded to uninvaded waterbodies (Johnson et al., 2001).

Though a multi-layer model considering multiple spread mechanisms exists for zebra mus-

sels (Mari et al., 2011), most models for the invasion of dreissenid mussels focus on boater

tra�c (Padilla et al., 1996; Bossenbroek et al., 2001; Leung et al., 2004; Bossenbroek et al.,

2007), which is their main long-distance vector in North America. Models for habitat suitabil-

ity focus mainly on the calcium concentration and the pH value of lakes (Ramcharan et al.,

1992; Whittier et al., 2008; Karatayev et al., 2015a). Joint models for spread and establish-

ment of zebra mussels exist for lakes in the area surrounding the Great Lakes (Bossenbroek

et al., 2001; Leung et al., 2004; Leung and Mandrak, 2007). These models were �tted to

historical invasion data. Bossenbroek et al. (2001) modelled the infestation probability of a

lake as a linear function of the yearly number of incoming infested boaters, with one boat

per year corresponding to an invasion probability of 0.000041. Leung et al. (2004) and Le-

ung and Mandrak (2007) used models with better mechanistic justi�cation and accounted

for the Allee e�ect. However, because they �tted submodels for propagule transport and

establishment simultaneously or used only relative travel estimates, their �tted establish-

ment models cannot be used with di�erent propagule transport models. Though few models

consider the spread of quagga mussels explicitly, the similarities between zebra and quagga

mussels (Karatayev et al., 2013) suggest that many models for zebra mussel spread can also

be applied to model the spread of quagga mussels.

Zebra and quagga mussels are considered ecosystem engineers and can have a variety of

signi�cant ecological e�ects (Karatayev et al., 2015b). As �lter feeders, dreissenid mussels
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decrease the plankton level in lakes, thereby depleting resources available to native competi-

tors and increasing water clarity, thus inducing system-wide e�ects bene�ting littoral food

webs and withering littoral food webs (Strayer, 2009; Karatayev et al., 2015b). Some stud-

ies suggest that dreissenid mussels facilitate algal toxin production through selective feeding

(Knoll et al., 2008; Pick, 2016), but scienti�c evidence is not clear (Karatayev et al., 2015b),

and quagga mussels have also been suggested as biocontrol for harmful algal blooms (Waajen

et al., 2016).

Similar to the ecological e�ects, the economic impacts of zebra and quagga mussels are

versatile and far-reaching. Impacts include clogging of water intake pipes of freshwater supply

systems and power plant cooling systems, boat fouling, and loss of touristic and recreational

value of lakes (Connelly et al., 2007; Rosaen et al., 2012). Quantitative cost estimates are

di�cult but range in the order of billions of US dollars in yearly costs to the US economy

alone (Pimentel et al., 2005; Rosaen et al., 2012).

To counteract the inland spread of zebra and quagga mussels, several American states and

Canadian provinces set up inspection stations at road sides, where transported watercraft

are inspected for invasive mussels (Mangin, 2011; Alberta Environment and Parks Fish and

Wildlife Policy, 2015; Inter-Ministry Invasive Species Working Group, 2015). If an inspected

watercraft has a high potential of being infested, it is decontaminated and, if necessary,

put to quarantine (BC Ministry of Environment and Climate Change Strategy, 2019). In

British Columbia, 12 inspection stations were operated on a yearly budget of 3.75 million

Canadian Dollars in 2019. Thereby, BC was assumed to be uninvaded. Though eradication

of dreissenid mussels has been reported successful in some instances, eradication is costly and

possible only if the mussel population is su�ciently contained and lake ecology and usage

admit the application of control (Wimbush et al., 2009; Chakraborti et al., 2013; Lund et al.,

2018).

Several studies have developed methods to optimize the management of dreissenid mus-

sels (Leung et al., 2002; Potapov and Lewis, 2008; Potapov et al., 2008; Potapov, 2008;
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Vander Zanden and Olden, 2008; Finno� et al., 2010). For example, Leung et al. (2002)

emphasize the bene�ts of invasion prevention. Potapov and Lewis (2008) determine the

optimal con�guration of inspection stations in spatially explicit lake systems, thereby high-

lighting the importance of controlling connections between clusters of lakes. Furthermore,

contrasting the options to inspect watercraft leaving invaded waterbodies as opposed to those

arriving at uninvaded lakes, Potapov et al. (2008) show that either strategy can be optimal

dependent on the progression of the invasion but never both. Finally, in a qualitative study,

Vander Zanden and Olden (2008) provide a conceptual framework to determine lakes that

should be prioritized for early detection and rapid response measures.

1.5 Thesis overview

In this thesis, I will address major challenges involved with modelling and controlling the

transport of invasive species spreading by means of human road tra�c. In particular, I will

develop a method to determine route choice sets for large-scale tra�c models, apply the

results to build a hybrid gravity and route choice model for vector tra�c, and use the model

output to optimize road-side control measures. Finally, I will introduce a robust and e�cient

method to determine pro�le likelihood con�dence intervals. I will demonstrate the bene�ts

of the developed techniques by applying them to the control of the potential invasion of

dreissenid mussels to BC. Below I provide an overview of the chapters of the thesis.

In the second chapter, I develop a novel algorithm to determine route choice sets for

large-scale tra�c models. The approach focuses on locally optimal routes and adds on to

existing methods by performing an e�cient and exhaustive search for routes between many

origins and destinations. I apply the algorithm to the road network in BC and investigate

the impact of model parameters on the results and the e�ciency of the algorithm.

In the third chapter, I derive a hybrid gravity and route choice model to assess vector

tra�c in large-scale road networks. The model involves four hierarchies accounting for agents'

travel incentive, route choice, travel timing, and compliance with surveys. As a consequence,
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the model can be �tted to data collected in road-side surveys. I develop methods to validate

model assumptions rigorously and to overcome computational challenges involved with �tting

the model. I apply the model to assess boater tra�c to BC, thereby identifying the most

signi�cant origins and destinations of boaters and the most frequently used roads. The results

can be used to inform control measures targeting incoming boaters and to assess the invasion

risk of British Columbian lakes.

In the fourth chapter, I present a method to optimize road-side vector control. Framing

the problem speci�c to aquatic invasive species management, I show how linear integer pro-

gramming techniques can be used to optimize placement and operating times of watercraft

inspection stations. I apply the method to dreissenid mussel control in BC, whereby I utilize

the tra�c estimates from the third chapter. I consider di�erent management scenarios and

investigate how changes in management constraints and model uncertainty a�ect the optimal

policy.

My �fth chapter will be devoted to developing a robust and e�cient method to compute

pro�le likelihood con�dence intervals. The motivation for this chapter is to compute con�-

dence intervals for the parameters estimated in chapter 3. I build on a classic algorithm for

this task (Venzon and Moolgavkar, 1988) and introduce several extensions increasing both

the e�ciency and the robustness of the algorithm. I evaluate the performance of the new al-

gorithm in comparison to several existing methods by applying the algorithms to benchmark

problems.

In the sixth and last chapter of this thesis, I highlight the signi�cance of this thesis for �

and beyond � invasive species management and suggest extensions for the presented methods.
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Chapter 2

Locally optimal routes for route choice sets

2.1 Introduction

Route choice models have important applications in transportation network planning (Yang

and Bell, 1998), tra�c control (Mahmassani, 2001), and even epidemiology and ecology, as

will become apparent later in this thesis. Route choice models can be classi�ed as either per-

fect rationality models or bounded rationality models. In perfect rationality models (She�,

1984), travellers are assumed to have complete information and choose their routes optimally

according to some goodness criterion, whereas bounded rationality models (Simon, 1957)

take information constraints and the complexity of the optimization process into account.

Though both perfect rationality models and bounded rationality models have been used in

route choice modelling, bounded rationality models have been found to �t observed data

better (Di and Liu, 2016).

Many bounded rationality models consider route choice as a two-stage process: �rst, a so-

called �choice set� of potentially good routes is generated, and second, a route from the choice

set is chosen according to some goodness measure (Ben-Akiva et al., 1984). This approach is

motivated through travellers' limited ability to consider all possible paths. Instead, they may

heuristically identify a small set of routes from which they choose the seemingly best. Besides

this conceptual reasoning, the two-step model has computational advantages, as the choice

sets can be generated based on simple heuristics, while complex models may be applied to
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determine travellers' preferences for the identi�ed routes. Therefore, the two-stage process is

widely used in route choice modelling (Prato, 2009).

Most of the approaches to identify route choice sets are based on a combination of the

optimality assumption, the constraint assumption, and the stochasticity assumption.

� According to the optimality assumption, travellers choose routes optimally according

to some criterion, which could be based on route characteristics (e.g. travel costs and

travel time), or on scenarios (e.g. that the travel time on the shortest route increases).

Examples include the link labelling approach (Ben-Akiva et al., 1984), link elimination

(Azevedo et al., 1993), and link penalty (De La Barra et al., 1993).

� According to the constraint assumption, travellers consider all paths whose quality

exceeds a certain minimal value (e.g. acyclic paths not more than 25% longer than the

shortest route). This assumption motivates constrained enumeration methods (Prato

and Bekhor, 2006).

� The stochasticity assumption accounts for the possibility of stochastic �uctuations of

route characteristics (e.g. through tra�c jams or accidents) or error-prone information.

Often, stochastic route choice sets are computed based on the optimality principle

applied to a randomly perturbed graph (see Bovy, 2009).

Though each of the assumptions mentioned above has a sound mechanistic justi�cation,

they require that the heuristic that travellers use to identify potentially suitable paths is

known and that corresponding data are available. However, if travellers choose a route for

unknown reasons, e.g. because they desire to drive via some intermediate destination, their

routes would be hard to consider with the common methods. The natural solution would be

to increase the set of generated routes by relaxing constraints or modelling more mechanisms

explicitly. However, in comprehensive and large-scale route choice models, many origin-

destination pairs may have to be considered, making it costly or even infeasible to work with

large choice sets. Thus, it would be desirable to characterize choice sets based on a more
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general but su�ciently restrictive criterion that does not require knowledge or data of the

speci�c mechanism behind route choices.

A potentially suitable criterion is local optimality. A route is locally optimal if all its short

(�local�) subsections are optimal, respectively, according to a given measure. For example, if

travel time is the applied goodness criterion, a locally optimal route would not contain local

detours.

The rationale behind the principle of local optimality is that the factors impacting trav-

ellers' routing decision may di�er dependent on the spatial scale. Tourists, for example,

may want to drive along the shortest route locally but plan their trip globally to include a

number of sights. Other travellers may want to drive along the quickest routes locally while

minimizing the overall fuel consumption. Yet others may have a limited horizon of perfect

information and act rationally within this horizon only. Independent of the speci�c mech-

anism behind travellers' route choice on the large scale, it is possible to characterize many

choice candidates as locally optimal routes.

A potential problem with considering locally optimal routes is that the set of locally

optimal routes between an origin and a destination can be very large and include zig-zag

routes, which may seem unnatural. A possible solution is to focus on so-called single-via

paths. A single-via path is the shortest path via a given intermediate location.

Since not all locally optimal paths are single-via paths, restricting the focus on single-

via paths excludes some potentially suitable paths from the choice set. However, single-via

paths have a reasonable mechanistic justi�cation through travellers choosing intermediate

destinations, and the reduced choice sets are likely to include most of the routes that travellers

would reasonably choose. Since the reduced sets contain relatively few elements, sophisticated

models can be used for the second decision stage, in which a route is chosen from the choice

set. Therefore, constraining the search for locally optimal routes on single-via paths may

lead to overall better �tting route choice models.
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To date, methods identifying locally optimal single-via paths have been developed with the

objective to suggest multiple routes to travellers (Abraham et al., 2013; Delling et al., 2015;

Luxen and Schieferdecker, 2015; Bast et al., 2016). Such suggestions of alternative routes are

a common feature in routing software, such as Google Maps or Bing Maps. However, route

choice models have di�erent demands than routing software, as travellers' decisions shall be

modelled or predicted rather than facilitated.

Route planning software seeks to compute a small number of high-quality paths that

travellers may want to choose. Thereby, computational speed is more important than rig-

orous application of speci�c criteria characterizing the returned paths. In contrast, route

choice models should consider all routes that travellers may take, and rigorous application

of modelling assumptions is key to allow mechanistic inference and to make models portable.

In addition, route choice models may consider multiple origins and destinations. Therefore,

many algorithms designed to facilitate route planning cannot be directly applied to identify

route choice sets.

In this paper, we bridge this gap by extending an algorithm originally designed for route

planning. The algorithm REV by Abraham et al. (2013) searches a small number of �good�

locally optimal paths between a single origin-destination pair. Thereby, the algorithm uses

an approximation causing some locally optimal paths being misclassi�ed as suboptimal.

Our extended algorithm overcomes these limitations. Unlike REV, our algorithm returns

(almost) all admissible paths between a set of origins and a set of destinations. Therefore,

we call our algorithm REVC, the �C� emphasizing the attempted complete search. REVC

identi�es locally optimal routes with arbitrarily high precision. That is, the algorithm may

falsely reject some locally optimal routes, but the error can be arbitrarily reduced by cost

of computational speed. As the execution time of REVC depends mostly on the number

of distinct origins and destinations rather than the number of origin-destination pairs, the

algorithm is an e�ective tool to build tra�c models on comprehensive scales.
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This paper is structured as follows: �rst, we introduce helpful de�nitions and notation,

review concepts we build on, and provide a clear de�nition of our goal. Then we give an

overview of REVC, before we decribe each step in detail. After describing the algorithm, we

present test results proving the algorithm's applicability and e�ciency in real-world problems.

Finally, we discuss the test results and the limitations and bene�ts of our approach.

2.2 Algorithm

2.2.1 Preliminaries

In this section, we specify our goal and introduce helpful notation and concepts. First,

we provide de�nitions and notation, which we then use to characterize the routes we are

seeking. Afterwards, we recapitulate Dijkstra's algorithm and brie�y describe the method of

reach based pruning, two basic concepts that our work builds on.

2.2.1.1 Problem statement and notation

Suppose we are given a graph G = (V,E) that represents a road network. The set of vertices

V models intersections of roads as well as the start and end points of interest. The directed

edges e ∈ E represent the roads of the road network and are assigned non-negative weights

ce, denoting the costs for driving along the roads. To ease notation, we will refer to the cost

of an edge or path as its length without loss of generality. In practice, other cost metrics,

such as travel time, may be used. Our goal is to �nd locally optimal paths between all

combinations of origin locations s ∈ O ⊆ V and destination locations t ∈ D ⊆ V .

To specify the desired paths more precisely, we introduce convenient notation and make

some de�nitions:

d(u, v) is the length of the shortest path from the vertex u to the vertex v in the consid-

ered graph.

dP (u, v) is the length of the subpath of P from vertex u to vertex v.
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l(P ) is the length of the path P . That is, l(P ) =
∑
e∈P

ce.

Psv1v2,...vkt is the shortest path from s to t via vertices v1, . . . , vk in the given order. That is,

Pst is the shortest path from s to t, Psv1v2,...,vkt = Psv1 ∪Pv1v2 ∪ · · · ∪Pvk−1vk ∪Pvkt

and l(Psv1v2,...vkt) = d(s, v1)+d(v1, v2)+ · · ·+d(vk−1, vk)+d(vk, t). For simplicity,

we assume that Psv1v2,...vkt is always uniquely de�ned. In practise, Psv1v2,...vkt is

the concatenation of shortest paths found by algorithms outlined below, which

are responsible for breaking ties.

P uv is the subpath of P from u ∈ P to v ∈ P .

With this notation, we introduce the notions of single-via paths.

De�nition 2.1. A single-via path (or short v-path) Psvt via a vertex v is the shortest path

from a vertex s to a vertex t via v. We say, v represents the single-via path Psvt with respect

to the origin-destination pair (s, t).

We proceed with a precise de�nition of local optimality. Generally speaking, a path is

T -locally optimal if each subpath of P with a length of at most T is a shortest path. However,

because paths are concatenations of discrete elements, we need a more technical de�nition.

De�nition 2.2. Consider a subpath P ′ ⊆ P and let P ′′ ⊂ P ′ be P ′ after removal of its end

points. We say P ′ is a T -signi�cant subpath of P if l(P ′′) < T . A path P is T -locally optimal

if all its T -signi�cant subpaths P ′ are shortest paths. We say P is α-relative locally optimal

if it is T -locally optimal with T = α · l(P ).

We want to identify locally optimal paths between many origin and destination locations.

However, there may be an excessive number of such paths. Therefore, we apply slightly

stronger constraints on the searched paths, which we call admissible below.

De�nition 2.3. Let α ∈ (0, 1] and β ≥ 1 be constants. A v-path Psvt from vertex s ∈ O to

vertex t ∈ D via vertex v ∈ V is called admissible if
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1. Psvt is α-relative locally optimal.

2. Psvt is longer than the shortest path by no more than factor β, i.e. l(Psvt) ≤ β · l(Pst).

Objective. The objective of this paper is to identify (close to) all admissible single-via paths

between each origin s ∈ O and each destination t ∈ D.

2.2.1.2 Dijkstra's algorithm

Large parts of our algorithm are based on modi�cations of Dijkstra's algorithm (Dijkstra,

1959; Dantzig, 1998). Dijkstra's algorithm is a frequently used method to �nd the shortest

paths from an origin s to all other vertices in a graph with non-negative edge weights. Though

the algorithm is well-known to a large audience, we brie�y recapitulate the algorithm to

establish some notation that we will use later.

� In Dijkstra's algorithm, every vertex v is assigned a speci�c cost denoted cost(v). Even-

tually, this cost shall be equal to the distance between the origin vertex s and vertex v.

Initially, however, the cost of each vertex is ∞. An exception is the origin s, for which

the initial cost is 0.

� We say that a vertex v is scanned if we are certain that cost(v) = d(s, v). Furthermore,

we say that a not yet scanned vertex v is labelled if cost(v) <∞. All other vertices are

called unreached. In line with our notion of scanned vertices, we call edges e = (u, v)

scanned if we know that e ∈ Psv for some scanned vertex v.

Dijkstra's algorithm is outlined in Algorithm 2.1. Initially, all vertices are in a container that

allows us to determine the least-cost vertex e�ciently. Dijkstra's algorithm consecutively

removes the least-cost vertex v from the container and scans it. That is, the algorithm

iterates over v's successors w and updates their costs if the distance from the origin s to w

via v is smaller than the current cost of w. In this case, v is saved as the parent of w.

After execution of Dijkstra's algorithm, shortest paths can be reconstructed by following

the trace of the computed parent vertices, starting at the destination vertex and ending at
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Algorithm 2.1: Dijkstra's algorithm.

1 while container is not empty do

2 Take the vertex with the lowest cost from the container and remove it;

3 Scan the vertex v:

4 forall successors of v that have not been scanned yet do

5 Label w:

6 if cost(w) < cost(v) + cvw then

7 Set cost(w) := cost(v) + cvw ; // cvw is the length of the

edge from v to w

8 Set parent(w) := v;

the origin. The edges (parent(v), v) for all scanned vertices v ∈ V form a shortest path tree.

Hence, we call the procedure described above �growing a shortest path tree�. The distance

from the start vertex to its farthest descendant is called the height of the shortest path tree.

As we will see below, it can be bene�cial to stop the tree growth when the tree has reached

a certain height.

When the shortest path between a speci�c pair of vertices s and t is sought, the bidirec-

tional Dijkstra algorithm is more e�cient than the classic algorithm (compare Figures 2.1 (a)

and (b)). The bidirectional Dijkstra algorithm grows two shortest path trees: one in forward

direction starting at the origin s and one in backward direction starting at the destination

t. The trees are grown simultaneously; i.e., the respective tree with smaller height is grown

until its height exceeds the other tree's height. The search terminates if a vertex v is included

in both trees, i.e., scanned from both directions. The shortest path is the concatenation of

the s-v path in the �rst shortest path tree and the v-t path in the second tree.

2.2.1.3 Reach-based pruning

Dijkstra's algorithm is not e�cient enough to �nd shortest paths in large networks within

reasonable time. Therefore, multiple methods have been developed to identify and prune
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Figure 2.1: Conceptual illustration of di�erent path search algorithms for an origin s and a destination t. The
shaded areas depict shortest path trees. (a) Dijkstra's algorithm grows a single shortest path tree around
the origin until the destination is reached. (b) The bidirectional Dijkstra algorithm grows a forward tree
around the origin and a backward tree around the destination until the two shortest path trees meet at a
vertex v. (c) Multiple v-paths can be constructed by growing overlapping shortest path trees around origin
and destination.
Figures (a) and (b) are redrawn from Bast et al. (2016).

vertices that cannot be on the shortest path. One of these approaches is reach-based pruning

(RE; Goldberg et al., 2006), which we introduce below.

Let us start by introducing the notion of a vertex's reach.

De�nition 2.4. The reach of a vertex v is de�ned as

reach(v) := max
u,w∈V : v∈Puw

{min (d(u, v), d(v, w))} . (2.1)

That is, if we consider all shortest paths that include v, split each of these paths at v, and

consider the shorter of the two ends, then the reach of v is the maximal length of these

sections. The reach of v is high if v is at the centre of a long shortest path. Typically,

vertices on highways have a high reach, since many long shortest paths include highways.

Disregarding vertices with small reaches can speed up shortest paths searches. Suppose

we use the bidirectional Dijkstra algorithm to �nd the shortest path between the vertices s

and t and have already grown shortest path trees with heights h. Let v ∈ Pst be a vertex

that is located on the shortest path between s and t but has not been scanned yet. Then

d(s, v) > h and d(v, t) > h, since v would have been included in one of the shortest path

trees otherwise. Therefore, we know that reach(v) ≥ min (d(s, v), d(v, t)) > h. Thus, when
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Figure 2.2: Optimizations that REVC employs to e�ciently identify admissible v-paths between origin-
destination pairs (s, t). (a) Shortest path trees (depicted as shaded areas) are grown to a tight bound only and
exclude low-reach vertices, which cannot be on long locally optimal paths. (b) U-turn paths (e.g. s→ v → t)
are excluded by requiring that an edge adjacent to the via vertex is included both in the shortest path tree
around the origin (black arrows) and the shortest path tree around the destination (blue arrows). Edges
satisfying this constraint are highlighted with red background. Note that arrows with di�erent directions
depict distinct edges. (c) If v-paths via di�erent vertices v1 and v2 are identical, only one of these vertices
is chosen to represent the path. (d) If v-paths for di�erent origin-destination pairs (here: (s1,t) and (s2,t))
are represented by the same via vertex v and share a subpath (highlighted red), the local optimality of this
section is tested only once for all origin-destination pairs.

adding further vertices to our shortest path trees, we can neglect all vertices with a reach

less or equal to h. This speeds up the shortest path search.

Computing the precise reaches of all vertices is expensive, as this would require an ex-

tremely large number of shortest path queries. However, Goldberg et al. (2006) developed

an algorithm to compute upper bounds on vertices' reaches e�ciently. These upper bounds

can be used in the same way as exact vertex reaches.

2.2.2 Outline of the algorithm

After specifying our goal and introducing necessary notation and concepts, we can now

proceed with an overview of our algorithm. The main idea of REVC is (1) to grow shortest

path trees in forward direction from all origins and in backward direction from all destinations

and (2) to check the admissibility of the v-paths via the vertices that have been scanned in

both forward and backward direction (see Figure 2.1a). For each vertex v that is scanned

both from an origin s and a destination t, the v-path Psvt can be reconstructed easily from

the information contained in the shortest path trees. Therefore, the only remaining step is to
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Figure 2.3: Overview of REVC.

check whether Psvt is admissible, i.e. locally optimal and not much longer than the shortest

path Pst.

As each vertex v ∈ V could serve as via vertex for many origin-destination combinations,

checking the admissibility of all possible v-paths may be infeasible. Therefore, it is important

to identify and exclude vertices that cannot represent admissible v-paths. The following

observations can be exploited: (1) v-paths via vertices that are very far from an origin or

destination cannot ful�ll the length requirement. (2) Some vertices represent intersections

of minor roads, which can be bypassed on close-by major roads. Thus, these vertices cannot

be part of locally optimal paths. (3) Some v-paths may include a u-turn at the via vertex

(see Figure 2.4). That is, travellers driving on such a path would need to drive back and

forth along the same road. This is not locally optimal behaviour. (4) Some via vertices may

represent the same v-paths. That is, the v-paths corresponding to distinct via vertices may

be identical, and only one of these via vertices needs to be considered.

Our algorithm REVC makes use of the observations listed above. (1) When shortest

path trees are grown around each origin and destination, the trees are grown up to a tightly

speci�ed height only. That way, many vertices that are too far o� will not be scanned.

(2) When the shortest path trees are grown, reach based pruning is applied to exclude
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vertices that are not on any su�ciently locally optimal path (see Figure 2.2a). (3) Instead

of considering all v-paths via vertices scanned in forward and backward direction, REVC

considers only v-paths in which an edge adjacent to the via vertex has been scanned forward

and backward. This excludes paths involving u-turns (see Figure 2.2). (4) Before checking the

admissibility of the remaining v-paths, the algorithm ensures that each v-path is represented

by one vertex only (see Figure 2.2c).

After these steps, REVC excludes v-paths that are exceedingly long and checks which

v-paths are su�ciently locally optimal. Testing whether all v-paths Psvt via a speci�c vertex

v are locally optimal would be expensive if each origin-destination pair (s, t) ∈ O ×D were

considered individually. Therefore, REVC checks the admissibility of many paths simultane-

ously, thereby reusing earlier results and applying approximations. That way, the algorithm

becomes much more e�cient than individual pair-wise searches for admissible paths (see

Figure 2.2d). In Figure 2.3, we provide an overview of REVC.

Before the actual algorithm can be started, some preparational work and preprocessing

are required. We will provide a detailed description of the preprocessing procedure after

introducing the algorithm in detail.

2.2.3 Step 1: Growing shortest path trees

The algorithm REVC starts by growing forward shortest path trees out of each origin and

backward shortest path trees into each destination. For each admissible v-path P , we need

to scan at least one vertex v with P = Psvt from both the origin s and the destination t.

In addition, we want to scan one edge e ∈ P adjacent to v from both directions if possible.

These edges will be used to exclude u-turn paths. For each vertex v included in a shortest

path tree, we note v's predecessor and height in the tree. Furthermore, we memorize from

which origins and destinations each edge has been scanned.

32



2.2.3.1 Tree bound

To save the work of scanning vertices inadmissibly far away from the origins and destinations,

we aim to stop the tree growth as soon as possible. We need to scan at least one vertex v for

each admissible path Psvt with a length l(Psvt) = d(s, v) + d(v, t) ≤ β · l(Pst). Since either of

d(s, v) and d(v, t) could be arbitrarily small, the algorithm REV by Abraham et al. (2013)

grows the trees up to a height of β · l(Pst). Nevertheless, we can terminate the search earlier

if we take into account that we are searching for locally optimal paths.

To derive a tighter tree bound, note that for an α-relative locally optimal path P , each

subsection with length α · l(P ) is a shortest path. This is in particular true for the subsection

P ′ ⊆ P starting at the origin. Since P ′ is a shortest path, the end point xs of this subsection

will be included in the origin's shortest path tree. Therefore, it su�ces to grow the destina-

tion's shortest path tree until xs is reached, which is closer to t than β · l(Pst). The same

applies in the reverse direction.

To specify the tree bound, de�ne xs ∈ P more precisely to be the �rst vertex that is

farther away from the origin than α · l(P ). If this vertex is located in the second half of the

path, change xs to be the last vertex in the �rst half of P . Choose xt accordingly in relation

to the destination. Our observations from above are formalized in the following lemma and

corollary, which we prove in Appendix 2.A.

Lemma 2.1. With s, t, xs, xt, and P de�ned as above, there is at least one vertex v ∈ P

with

1. dP (s, v) = d(s, v) ≤ dP (s, xt) and

2. dP (v, t) = d(v, t) ≤ dP (xs, t).

Corollary 2.1. For each admissible v-path between an origin-destination pair (s, t), a via

vertex will be scanned from both directions if the shortest path trees are grown up to a height
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of

hmax := max

{
(1− α) βl(Pst),

1

2
βl(Pst)

}
. (2.2)

In Corollary 2.1, we consider a single origin-destination pair. However, we want to identify

admissible paths between multiple origins and destinations and have to adjust the tree bound

accordingly. The tree around each origin and destination shall be large enough to include

via vertices for all paths starting at the respective endpoint. Hence, if we grow a tree out

of origin s, we grow it to a height of max
{

(1− α) βMs,
1
2
βMs

}
with Ms = max

t∈D
l(Pst). We

proceed with destinations similarly.

Note that the tree bounds above can only be determined if the shortest distances between

the origins and destinations are known. Though these distances can be determined while the

shortest path trees are grown, we will see in the next section that the shortest distances

can also be used to speed up the tree growth itself. Therefore, it is bene�cial to determine

the shortest distances in a preprocessing stage. This also makes it easy to grow the trees in

parallel.

2.2.3.2 Pruning the trees

The search for admissible paths can be signi�cantly sped up if vertices with small reach

values are ignored when the shortest paths are grown. Consider a vertex v on an admissible

s-t path P . Let us regard the subpath P ′ that is centred at v and has a length just greater

than α · l(P ). Since P is α-relative locally optimal, we know that P ′ is a shortest path.

Furthermore, P ′ is roughly split in half by v, unless v is close to one of the end points of P .

Thus,

reach(v) ≥ min
{α

2
l(P ), d(s, v), d(v, t)

}
(2.3)

(see Lemma 5.1 in Abraham et al., 2013).
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If we are growing the tree out of origin s, we can use (2.3) to prune the successors of

vertices v with reach(v) < min
{
α
2
l(P ), d(s, v)

}
. Pruning the successors but not v itself

ensures that at least one vertex per admissible path is scanned from both directions, even if

(2.3) is dominated by d(v, t).

Since l(P ) is unknown when the shortest path trees are grown, the length of P must be

bounded with known quantities. Abraham et al. (2013) use the triangle inequality

l(P ) ≥ d(s, v) + d(v, t) ≥ cost(v). (2.4)

However, we can also determine shortest distances before we search admissible paths and

exploit that P ≥ d(s, t) or, if we are considering multiple origins and destinations, l(P ) ≥

Ls := min
t̃∈D

d
(
s, t̃
)
. Therefore, we may prune the successors of vertices v with

reach(v) < min
{

cost(v),
α

2
max {cost(v), Ls}

}
(2.5)

when we grow the shortest path tree out of origin s.

We can prune even more vertices if we grow the trees in forward and backward direction in

separate steps. The idea is to use data collected in the �rst step to derive a sharper pruning

bound for the second step. Whether we grow the forward or the backward trees in the �rst

step depends on whether there are more destinations or more origins to process. Below we

assume without loss of generality that we consider more destinations than origins, |D| ≥ |O|.

We proceed as follows: we start by growing the forward trees out of the origins. In this

phase, we prune vertices' successors according to inequality (2.5). After growing the forward

trees, we determine for each scanned vertex v the distance dmin(v) := min
s∈O; v scanned from s

d(s, v)

to the closest origin it has been scanned from. If v has not been scanned, we set dmin(v) :=∞.

Now we grow the backward trees and use dmin(v) as a lower bound for d(s, v) for all origins
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Algorithm 2.2: Growing a forward shortest path tree out of origin s.

1 while container is not empty do

2 Take the vertex v with the lowest cost from the container and remove it;

3 Mark edge leading to v as visited from origin s;

4 Include v in the shortest path tree;

5 if dmin(v) > cost(v) then

6 dmin(v) := cost(v);

7 if reach(v) ≥ min
(
cost(v), α

2
max (cost(v), Ls)

)
then

8 Scan the vertex v; // see Algorithm 2.1

Algorithm 2.3: Growing a forward shortest path into destination t.

1 while container is not empty do

2 Take the vertex v with the lowest cost from the container and remove it;

3 Mark edge leading to v as visited from destination t;

4 if reach(v) ≥ min
(
cost(v), α

2
max (cost(v), Lt)

)
then

5 Include v in the shortest path tree;

6 Scan the vertex v with early pruning:

7 forall neighbors w of v that have not been scanned yet do

8 NewCost := cost(v) + d(v, w);

9 if reach(v) ≥ min
(
NewCost, α

2
max (NewCost, Lt) , dmin(v)

)
then

10 Label w; // see Algorithm 2.1
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Figure 2.4: Advantages of considering via edges instead of via vertices. Arrows highlighted in dark blue
depict the forward shortest path tree grown from the origin s, and arrows highlighted in light red represent
the backward tree grown into the destination t. Edges that are scanned from both directions are potential
via edges and drawn as solid black lines. The remaining edges are drawn as dashed black lines. All vertices
are scanned both from s and t and would therefore considered potential via vertices. However, paths via the
two topmost vertices would require a u-turn. Restricting the focus on v-paths via vertices adjacent to the
solid lines excludes these u-turn paths.

s ∈ O. Hence, we can prune all vertices with

reach(v) < min
{

cost(v),
α

2
max {cost(v), Lt} , dmin(v)

}
. (2.6)

In contrast to criterion (2.5), we can apply criterion (2.6) directly to each vertex v and

not only to its successors. This decreases the number of considered vertices. We provide

pseudo code for the tree growth procedures in Algorithms 2.2 and 2.3.

2.2.3.3 Determining potential via vertices

With the shortest path trees, we can determine which vertices may potentially represent

admissible v-paths. Each vertex scanned in forward and backward direction could be such a

via vertex. However, since some of the resulting paths could include u-turns, we consider the

scanned edges rather than the vertices. This excludes paths with u-turns (see Figure 2.4).

We proceed as follows: we determine for each scanned edge e the sets Oe and De of

origins and destinations that e has been scanned from. We discard all edges that have not

been scanned from at least one origin and one destination. Let Evia be the resulting set of

edges. The set of considered via vertices Vvia := {v ∈ V | ∃w ∈ V : (v, w) ∈ Evia} is given by

the starting points of the edges in Evia.
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Note that though the procedure above eliminates paths with u-turns, some admissible

single-via paths may be rejected as well. However, this issue will rarely occur in realistic

road networks, since the problem arises only at speci�c merging points of very long edges.

We provide details in Appendix 2.B.

2.2.4 Step 2: Identifying vertices representing identical v-paths

Some of the vertices in Vvia may represent identical v-paths. Since we want to save the e�ort

of checking the admissibility of the same path multiple times and, similarly importantly, we

do not want to return multiple identical paths, we need to ensure that each admissible path

is represented by one via vertex only.

To identify vertices representing identical paths, we have to compare the v-paths corre-

sponding to all v ∈ Vvia for each origin-destination pair. This requires O(|Vvia| |O| |D|) steps.

However, for some vertices, identical paths can be identi�ed more quickly, as adjacent ver-

tices typically represent similar sets of v-paths. Therefore, we proceed in two steps: �rst, we

reduce Vvia by eliminating vertices whose via paths are also represented by their respective

neighbours, and second, we check which of the remaining vertices represent identical v-paths.

Below we describe the two steps in greater detail.

2.2.4.1 Eliminating vertices that represent the same v-paths as their neighbours

The endpoints of an edge can be neglected as via vertices if the edge has been scanned from

the same origins and destinations as a neighbouring edge. Consider for example an edge

(v, w) that has been scanned from both an origin s and a destination t. Then Psw = Psvw

and Pvt = Pvwt. It follows that v and w represent the same v-path with respect to (s, t):

Psvt = Pswt. Now consider an adjacent edge (u, v) that has been scanned from s and t as

well. Clearly, it is Psut = Psvt and Psvt = Pswt, which implies that the v-paths via u, v, and

w are identical. Therefore, only one of these vertices has to be considered.
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To introduce an algorithm that e�ciently detects such con�gurations, let Oe be the set

of origins and De the set of destinations that edge e has been scanned from. For each edge

e ∈ Evia, we check whether one directly preceding edge e′ ∈ Evia has been scanned from a

superset of origins and destinations, i.e. Oe ⊆ Oe′ and De ⊆ De′ . If such an edge exists and

one of the set inequalities holds strictly, i.e. Oe ⊂ Oe′ or De ⊂ De′ , we may disregard edge e,

as all v-paths via e are also v-paths via e′.

Things become more complicated if Oe = Oe′ and De = De′ , as we may either reject e, e′,

or both edges. The latter case may occur if e′ has another directly preceding edge e′′ ∈ Evia

with Oe′ ⊆ Oe′′ and De′ ⊆ De′′ . If one of these inequalities is strict, we disregard both e

and e′. Otherwise, we continue traversing the edges in Evia until either (1) an edge is found

whose origin and destination sets supersede the sets of all previous edges or (2) no further

predecessor with su�ciently large origin and destination sets is found. In the second case,

we may disregard all traversed edges but e. We apply the same approach to the successors

of e and repeat this procedure until all edges in Evia have been processed.

The updated set Vvia of via vertices consists of the starting vertices of the edges in the

reduced edge set Evia. We provide pseudo code for the outlined algorithm in Algorithm 2.4.

An e�cient implementation may compare the origin and destination sets of the edges in Evia

before the traverse is started. This makes it easy to implement the most expensive parts of

the algorithm in parallel.

2.2.4.2 Eliminating identical v-paths

Using adjacency relationships to identify all vertices representing the same v-paths would

involve a traverse over all edges in Evia. However, it is more e�cient to identify similar v-paths

by their lengths. To this end, we may assume that Psvt = Pswt if and only if l(Psvt) = l(Pswt).

Though it can happen that distinct paths have the same length, this case is usually not of

greater concern in practical applications. The issue can be reduced by introducing a small
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Algorithm 2.4: Eliminating vertices that represent the same v-paths as their neigh-

bours.

1 Function has_superior_predecessor(e):

2 Remove e from Evia;

3 forall directly preceding edges e′ of e do

4 if Oe ⊆ Oe′ and De ⊆ De′ then

5 if Oe = Oe′ and De = De′ then

6 return has_superior_predecessor(e′)

7 else

8 return True;

9 return False;

10 Function has_superior_successor(e):

11 Remove e from Evia;

12 forall directly succeeding edges e′ of e do

13 if Oe ⊆ Oe′ and De ⊆ De′ then

14 if Oe = Oe′ and De = De′ then

15 return has_superior_successor(e′)

16 else

17 return True;

18 return False;

19 E ′via := ∅;
20 while Evia 6= ∅ do
21 Set e := next entry in E ′via;

22 if not has_superior_predecessor(e) and not has_superior_successor(e)

then

23 Add e to E ′via;

24 Evia := E ′via;
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random perturbation for the lengths of edges. We examine this limitation further it in the

discussion section.

With the above assumption, identical paths can be identi�ed e�ciently. Since for each

origin-destination pair (s, t) and each potential via vertex v ∈ Vvia the distances d(s, v) and

d(v, t) are known, the v-path lengths can be computed easily. For each origin-destination

pair, a comparison of the lengths of the v-paths corresponding to all v ∈ Vvia can be conducted

in linear average time with hash maps. Note that the path lengths must be compared with

an appropriate tolerance for machine imprecision.

In later steps it will be of bene�t if most v-paths are represented by a small set of via

vertices. If there are multiple vertices representing the same v-paths, we therefore choose the

via vertex v that has been scanned from the most origin-destination combinations Ov ×Dv.

This makes it easier to reuse partial results when we check whether the v-paths are locally

optimal.

2.2.5 Step 3: Excluding long paths

Before we check whether paths are su�ciently locally optimal, we exclude the paths that

exceed the length allowance. That is, we disregard all paths Psvt with l(Psvt) > β · l(Pst)

with origin-destination pairs (s, t) and via vertices v ∈ Vvia. Since this step involves a simple

comparison only, it is computationally cheaper than identifying identical paths. Therefore,

it is e�cient to conduct this step just before identical paths are eliminated (section 2.2.4.2).

This also reduces the memory required to store potentially admissible combinations (s, v, t)

of origin-destination pairs and via vertices.

2.2.6 Step 4: Excluding locally suboptimal paths

The most challenging part of the search for admissible paths is to check whether paths are

su�ciently locally optimal. To test whether a subpath is optimal, we need to �nd the shortest
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alternative, which is computationally costly. Therefore, we apply an approximation to limit

the number of necessary shortest path queries.

Our method generalizes the approximate local optimality test by Abraham et al. (2013).

They noted that v-paths are concatenations of two optimal paths. Hence, v-paths are locally

optimal everywhere except in a neighbourhood of the via vertex. More precisely, a v-path

Psvt from s to t via v is guaranteed to be T -locally optimal everywhere except in the section

that begins T distance units before v and ends T distance units after v. Therefore, Abraham

et al. (2013) suggest to perform a shortest path query between the end points x and y of this

section to check whether it is optimal. Abraham et al. (2013) call this procedure the T-test.

The T-test does not return false positives. That is, a path that is not T -locally optimal

will never be misclassi�ed as locally optimal. However, the T-test may return false negatives:

paths that are T -locally optimal but not 2T -locally optimal may be rejected. In modelling

applications, a more precise local optimality test may be desired.

It is possible to increase the precision of the T-test. Instead of checking whether the whole

potentially suboptimal subpath is optimal, we may test multiple subsections to gain a higher

accuracy. While this procedure ensures that fewer admissible paths are falsely rejected, the

gain in accuracy comes with an increase in computational costs. Therefore, it is desirable to

use the results of earlier local optimality checks to test the admissibility of other paths.

There are two situations in which local optimality results can be reused. First, if a

subsection of a path is found to be suboptimal, other paths that include this section can be

rejected as well. Second, if a subpath of a path is found to be locally optimal, other paths

including this subpath may be classi�ed as locally optimal as well. That way, many paths

can be processed all at once.

When reusing partial results, it is important to note that even though we require all

paths to be α-relative locally optimal, the absolute lengths of the subsections that need to be

optimal depend on how long the considered paths are. Therefore, paths must be considered

in an order dependent on their lengths. We provide details below.
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2.2.6.1 Preparation

Before we can start testing whether the remaining v-paths are locally optimal, a preparation

step is needed to identify the subpaths that may be suboptimal and thus need to be assessed

more closely. To reuse partial results e�ciently, we furthermore need to determine subsections

that di�erent paths have in common. We describe the preparation procedure below.

We start by introducing helpful notation. Suppose we want to test whether the v-paths via

vertex v are locally optimal. Let Õ := {s ∈ O | ∃t ∈ D : l(Psvt) ≤ β · l(Pst)} be the origins

for which at least one destination can be reached via v without violating the length constraint.

Let D̃ be de�ned accordingly for the destinations. De�ne D̃s :=
{
t ∈ D̃ | l(Psvt) ≤ β · l(Pst)

}
as the set of destinations that can be reached from the origin s via v without violating the

length constraint.

In the preparation step, we determine for each origin s ∈ Õ the destination

ts := argmax
t∈D̃s

l(Psvt) for which the potentially suboptimal section is longest. Furthermore,

we search for the vertex xs := argmin
x̃∈Psv ; d(x̃,v)≥αl(Psvts )

d(x̃, v), which is the last vertex on Psv with

d(xs, v) ≥ α · l(Psvts), and we determine xt de�ned accordingly. Now we �ll the arrays

Aus :=


True if u ∈ Psv

False else,

Aut :=


True if u ∈ Pvt

False else

(2.7)

for all vertices u ∈ Pxsv and u ∈ Pvxt , respectively.

The information saved in the shortest path trees are suitable to �nd paths from scanned

vertices to the origins and destinations. However, the trees contain no information on the

reverse paths starting at the end points. That is, while it is easy to �nd the backward shortest

path from v to xs, it is hard to follow the path in the opposite direction starting at xs. We

gather the necessary information in the preparation step: for each origin s ∈ Õ, we save the

successors of each relevant vertex u ∈ Psv.
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Algorithm 2.5: Filling the array A for the origins and �nding successors. The

algorithm for the destinations is similar.

1 foreach destination s ∈ Õ do

2 ts := argmax
t∈D̃s

(d(s, v) + d(v, t));

3 u := parents(v);

4 successors(u) := v;

5 stop := False;

6 while not stop do

7 if u /∈ A then

8 Initialize Aus̃ := False for all s̃ ∈ Õ;

9 Aus := True;

10 successors(parent(u)) := u;

11 if d(v, u) > α (d(s, v) + d(v, ts)) then

12 stop := True;

13 else

14 u := parent(u);

In Algorithm 2.5, we provide pseudo code for the described procedures. The pseudo-code

considers the origins only. The algorithm for the destinations is similar. The preparation

phase ends with sorting all origin-destination pairs with respect to the lengths of the respec-

tive v-paths via v.

2.2.6.2 Testing local optimality for one origin-destination pair

We use an approximation approach with �exible precision to check whether paths are locally

optimal. For a parameter δ ∈ [1, 2], we call this procedure the Tδ-test. Thereby, δ is a

measure for the test's precision.

To outline the Tδ-test, let us consider a v-path P := Psvt from s to t via the vertex v. Let

Ss := {u ∈ Psv | d(u, v) < T} be the set of vertices that are on the path Psv and have a distance

less than T to the vertex v. Furthermore, add to Ss the vertex x := argmin
x̃∈Psv ; d(x̃,v)≥T

d(x̃, v) that
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Figure 2.5: Tδ-test with δ = 1.4. The three sub�gures depict the steps of the Tδ-test for a path Psvt connecting
origin-destination pair (s, t) via vertex v. The vertices x and y are the end points of the potentially locally
suboptimal section. The edge lengths are given by the Euclidean distance except for the edges with an
indicated gap. (a) In a �rst step, the test determines the vertex w1 that is at least δT units along the path
away from u1 := x (the distance is depicted as blue arrow). (b) If the shortest path query between u1 and
w1 indicates that the subsection Pu1w1

svt is optimal, the test continues by determining the �rst vertex u2 that
is at least T units away from w1 in backwards direction. (c) From u2, the algorithm searches the vertex w2

that is at least δT units along the path beyond u2 and conducts a shortest path query between u2 and w2.
If all the shortest path queries yield subpaths of Psvt, the path is deemed approximately T -locally optimal.
Note that a T2-test would have misclassi�ed the path as not locally optimal, provided the shortest path from
x to y includes the horizontal edge.

is closest to v but has d(x, v) ≥ T if such a vertex exists. Choose St accordingly with respect

to the destination vertex t. Let partnert(u; τ) := argmin
w̃∈St; dP (u,w̃)≥τ

dP (u, w̃) for u ∈ Ss be the

vertex w ∈ St that is closest to u but has dP (u,w) ≥ τ . If no such vertex exists in St, set

partnert(u; τ) = y := argmax
w̃∈St

dP (u, w̃). De�ne accordingly partners(w; τ) for w ∈ St as the

vertex u ∈ Ss that is closest to w but has dP (u,w) ≥ τ .

The Tδ-test proceeds as follows: the algorithm starts at the vertex u1 := x and checks

whether the subpath P u1w1 between u1 and w1 := partnert(u1; δT ) is a shortest path. If so,

the algorithm progresses searching u2 := partners(u1; T ) in backward direction and repeats

the steps formerly applied to u1 now with u2. This procedure repeats until un = v for some

n ∈ N. If all the shortest path queries yield subpaths of P , the path is deemed approximately

T -locally optimal. Otherwise, it is classi�ed as not locally optimal. We depict the algorithm

in Figure 2.5. We provide pseudo-code in Algorithm 2.6.

Similar to the T-test, the Tδ test does not return false positives. However, paths that

are T -locally optimal but not δT -locally optimal might be rejected. Hence, the the T1-test

is exact, whereas the �classical� T-test by Abraham et al. (2013) is the T2-test. An increase

in precision comes with a computational cost. The Tδ-test requires at most 2
⌈

1
δ−1

⌉
shortest
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Algorithm 2.6: Tδ-test.

1 Search for the vertex x ∈ Ss with maximal distance to v;

2 Set u := x;

3 Set w := v;

4 while u 6= v and w 6= y do

5 Set w′ := partnert(u; δT );

6 if w = w′ then

7 Set w := next farthest vertex to v in St;

8 else

9 Set w := w′;

10 Check whether the u-w subpath is optimal

11 if d(u,w) < d(u, v) + d(v, w) then

12 return "Not locally optimal"

13 Set u′ := partners(w; T );

14 if u = u′ then

15 Set u := next closest vertex to v in Ss;

16 else

17 Set u := u′;

18 return "Locally optimal"

path queries if δ > 1. However, query numbers around 1
δ−1

are more common. Either way,

the number of required queries is bounded by a constant independent of the graph, unless

δ = 1.

2.2.6.3 Using test results to check local optimality for multiple origin-

destination pairs

The Tδ-test is a suitable procedure to check whether a single v-path is locally optimal.

However, if many v-paths shall be tested, the required number of shortest path queries may

exceed a feasible limit. Therefore, we show below how negative test results can be used to
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Figure 2.6: Accepting and rejecting multiple paths at once. Suppose we want to check the admissibility of
the paths from the origins si to the destinations tj via the vertex v. Suppose that we start with the path
Ps1vt2 from s1 to t2 via v and �nd that the subsection Puvw1 is not optimal, because there is a shorter path
(orange) from u to w1. Then we know that the paths Ps1vt1 , Ps2vt1 , and Ps2vt2 are not su�ciently locally
optimal, either. Now suppose we continue with the pair (s1, t3) and �nd that Ps1vt3 is locally optimal because
the section Puvw2

(blue) is optimal. Since Ps1vt4 includes this subsection, too, and is not much longer than
Ps1vt3 , we can deduce that Ps1vt4 is approximately locally optimal as well.

reject multiple paths at once. Afterwards we describe a method to use positive test results

to classify many paths as locally optimal.

2.2.6.3.1 Rejecting paths

Suppose that in order to test whether Psvt is admissible, we checked whether the subpath

P uw
svt between some vertices u and w is a shortest path, and suppose we obtained a negative

result, i.e. found that d(u,w) < d(u, v) + d(v, w). We can not only conclude that the path

Psvt is not locally optimal but also reject other v-paths that include the subpath P uw
svt (see

Figure 2.6).

To see which paths can be rejected, let Ωu := {s̃ ∈ O | d(s̃, v) = l(Ps̃uv)} be the set of

origins for which u is on the shortest path to v and de�ne ∆w :=
{
t̃ ∈ D | d

(
v, t̃
)

= l(Pvwt̃)
}

accordingly for the destinations. Let furthermore P :=
{

(s, t) ∈ Õ × D̃ | l(Psvt) ≤ β · l(Pst)
}

be the set of all origin-destination pairs with a potentially admissible v-path via v, and let

Puw := P ∩ (Ωu ×∆w) denote the respective set of origin-destination pairs for which the

v-path via v also includes u and w. The following lemma shows which paths can be rejected

as approximately inadmissible.

Lemma 2.2. Suppose the Tδ-test is applied to check whether a path Psvt is α-relative locally

optimal and that the test fails, because d(u,w) < d(u, v) + d(v, w) for some vertices u and
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w. Then, for each pair
(
s̃, t̃
)
∈ Puw with Ps̃vt̃ ≥ l(Psvt), the v-path Ps̃vt̃ is not relative locally

optimal with a factor higher than αs̃vt̃ <
l(Pxvy)

l(Psvt)
≤ αδ, whereby x and y are the neighbours of

u and w in direction of v, respectively.

Proof. By construction of Puw, it is Pxvy ⊆ Ps̃vt̃ for any origin-destination pair
(
s̃, t̃
)
∈ Puw.

Therefore, Ps̃vt̃ is at most T -locally optimal with T < l(Pxvy). Hence, the local optimality

factor αs̃vt̃ for Ps̃vt̃ satis�es

αs̃vt̃ =
T

l(Ps̃vt̃)
<
l(Pxvy)

l(Ps̃vt̃)
≤ l(Pxvy)

l(Psvt)
≤ αδl(Psvt)

l(Psvt)
= αδ. (2.8)

Following Lemma 2.2, we can reject all pairs
(
s̃, t̃
)
∈ Puw with Ps̃vt̃ ≥ l(Psvt). The origin-

destination pairs in question can be determined by considering the array A constructed

in the preparation phase (equation (2.7)). Let Ãu :=
{
s ∈ Õ |Aus = True

}
and Ãw :={

t ∈ D̃ |Awt = True
}
. Then, Auw := Ãu × Ãw ⊆ Puw, and Puw\Auw contains only pairs(

s̃, t̃
)
with l(Ps̃vt̃) < l(Psvt). It follows that all pairs

(
s̃, t̃
)
∈ Puw with Ps̃vt̃ ≥ l(Psvt) are also

in Auw.

As Auw may also contain pairs
(
s̃, t̃
)
with l(Ps̃vt̃) < l(Psvt), we process the origin-

destination pairs in the order of increasing via-path length. Then the pairs
(
s̃, t̃
)
∈ Auw

with l(Ps̃vt̃) < l(Psvt) will be processed before (s, t). If we label these pairs as �processed�

and exclude them from Auw, then we can reject all remaining pairs in Auw.

2.2.6.3.2 Accepting paths

The procedure outlined in the previous section allows us to reject many inadmissible paths

with a single shortest distance query. However, the procedure may yield limited performance

gain if many of the considered paths are admissible. Therefore, we introduce a second

relaxation of our local optimality condition: we classify paths as (approximately) admissible

if they are (αγ)-relative locally optimal with some constant γ ∈ (0, 1].
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To see how this relaxation can be exploited, suppose that we are considering an origin-

destination pair (s, t) and that we have already con�rmed that the path Psvt is α-relative

locally optimal. Let x := argmin
x̃∈Psv ; d(x̃,v)≥αl(Psvt)

d(x̃, v) be the last vertex on Psv with a distance

to v of at least α · l(Psvt). Let y := argmin
ỹ∈Pvt; d(v,ỹ)≥αl(Psvt)

d(v, ỹ) be de�ned accordingly for the

destination branch. During the Tδ-test we have ensured that the section Pxvy is approximately

T -locally optimal with T = α · l(Psvt).

In the lemma below, we will identify the paths that can be classi�ed as approxi-

mately admissible after a successful Tδ-test. In line with the notation in the previ-

ous section, let Ωx := {ŝ ∈ O | d(ŝ, v) = l (Pŝxv)}, ∆y :=
{
t̂ ∈ D | d

(
v, t̂
)

= l
(
Pvyt̂

)}
, and

Pxy := P ∩ (Ωx ×∆y).

Lemma 2.3. Let (s, t) ∈ P be an origin-destination pair. If the Tδ-test applied to Psvt

considered the vertices on Pxvy ⊆ Psvt and con�rmed that the path is α-relative locally optimal,

then all paths Ps̃vt̃ with
(
s̃, t̃
)
∈ Pxy and l(Ps̃vt̃) ≤ 1

γ
l(Psvt) are at least (αγ)-relative locally

optimal.

Proof. The Tδ-test for Psvt assured that Psvt is T -locally optimal with T = α · l(Psvt). There-

fore, all paths Ps̃vt̃ with
(
s̃, t̃
)
∈ Pxy are also T -locally optimal with T = α · l(Psvt). The local

optimality factor αs̃vt̃ of paths Ps̃vt̃ with
(
s̃, t̃
)
∈ Pxy and l(Ps̃vt̃) ≤ 1

γ
l(Psvt) is therefore at

least

αs̃vt̃ =
T

l(Ps̃vt̃)
≥ T

1
γ
l(Psvt)

=
γαl(Psvt)

l(Psvt)
= αγ. (2.9)

That is, the paths Ps̃vt̃ are at least (αγ)-relative locally optimal.

Following Lemma 2.3, we can accept all pairs
(
s̃, t̃
)
∈ Puw with l(Ps̃vt̃) ≤ 1

γ
l(Psvt). We do

this in the same manner as we rejected paths. Let Axy ⊆ Pxy be de�ned as in the previous

section. Since Pxy\Axy contains only pairs
(
s̃, t̃
)
with l(Ps̃vt̃) < l(Psvt), which have been

processed before Psvt, we only need to consider the pairs in Axy and classify all not yet

processed v-paths Ps̃vt̃ with
(
s̃, t̃
)
∈ Axy and l(Ps̃vt̃) ≤ 1

γ
l(Psvt) as admissible. The described

procedure to reject and accept multiple paths at once is outlined in Algorithm 2.7.
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Algorithm 2.7: Testing whether the potentially admissible paths are approximately

α-relative locally optimal.

1 R := ∅; // set of approximately admissible paths

2 foreach vertex v ∈ Vvia do
3 Let P be the set of all origin-destination combinations for which v is a potential

via vertex;

4 Sort the pairs in P in increasing order of the lengths of their v-paths;

5 while 6= ∅ do
6 (s, t) := next origin-destination pair in P ;
7 Do a Tδ-test for the path Psvt via v;

8 if the test fails and �nds a suboptimal section Puvw ⊆ Psvt then

9 foreach pair (s′, t′) ∈ do
10 if Puvw ⊆ Ps′vt′ then

11 Remove (s′, t′) from P ;

12 else

13 Add Psvt to R;

14 Let Pxvy ⊆ Psvt be the subsection of Psvt that has been checked for local

optimality;

15 foreach pair (s′, t′) ∈ do
16 if Pxvy ⊆ Ps′et′ and γ · l(Ps′vt′) ≤ l(Psvt) then

17 Add Ps′vt′ to R;

18 Remove (s′, t′) from P ;

19 return R;
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2.2.6.4 Optimization: using previous shortest path queries to determine locally

optimal subsections

The outlined speedups become even more e�ective if the results of individual shortest path

queries are reused. Therefore, we save all vertex pairs (u,w) for which we know that Puvw =

Puw. Note that we do not have to save unsuccessful shortest path tests, because all v-paths

Ps̃vt̃ with Puvw ⊆ Ps̃vt̃ will be rejected right after Puvw has been found to be suboptimal (see

section 2.2.6.3).

The gain obtained from reusing shortest path results decreases as the considered paths

become longer. Since we are considering paths in increasing order of lengths, the lengths of

the subsections that are required to be optimal increase as well. Therefore, the results of

earlier shortest path queries are of limited value if they are only used as a lookup Table.

However, we can exploit that due to the δ-approximation, the shortest path queries in

the Tδ-test typically consider sections longer than required. The Tδ-test conducts shortest

path queries between vertices u and their partners w := partnert(u; δT ). Choosing δ > 1

reduces the number of necessary shortest path queries but also makes the algorithm reject

admissible paths. Therefore, a test that sets w := partnert(u; τ) for some τ ∈ [T, δT ] will do

at least as good as the original algorithm.

With this observation, we can reuse previous shortest path results as follows: when we

search for the partner w := partnert(u; δT ) of a vertex u, we test for all intermediate visited

vertices w̃ := partnert(u; τ) with τ ≤ δT whether the subpath Puvw̃ is known to be optimal.

If such a vertex w̃ is found and τ ≥ T , we accept w̃ as the partner of u and progress as usual.

2.2.7 Preprocessing

Before REVC can be applied, a preprocessing step is required. If the set of origins and

destinations of interest is known a priori, we may start by reducing the graph by deleting

dead ends that do not lead to any of the considered origins and destinations. In a second
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step, we may add a random perturbation to the edge lengths to make it easier to identify

identical paths based on their length. As the road costs (length, travel time, or other) are

usually known with limited precision, small perturbations will typically not change the results

signi�cantly.

After these preparation steps, we can follow the preprocessing algorithm by Goldberg

et al. (2006). The algorithm determines upper bounds on the reaches of vertices. Thereby,

the algorithm introduces shortcut edges, which may bias the results so that admissible paths

are falsely rejected. However, it is easy to impose a length constraint on the shortcut edges

to reduce the introduced error. If REVC is applied to a set of origins and destinations known

in the preprocessing phase, vertices bypassed by shortcut edges can be removed completely

from the graph. This increases the e�ciency further.

The preprocessing step concludes with computing the shortest distances between all ori-

gins and destinations. This can either be done with individual shortest path queries for all

origin-destination combinations or in a single e�ort involving only one shortest path tree

per origin-destination pair. Either way, this step usually does not add signi�cantly to the

algorithm's overall runtime. If the origins and destinations are not known at the reprocessing

time, this step can be postponed to the execution of REVC.

2.3 Tests

To test the performance of REVC and to assess how the parameters a�ect results and com-

putational e�ciency, we applied REVC to random route �nding scenarios. Below we �rst

provide details on the test procedure and implementation and present the results afterwards.

2.3.1 Test procedure

We tested REVC by applying it to a road network modelling the Canadian province British

Columbia (BC). The graph had 1.36 million vertices and 3.16 million edges weighted by travel

time. When we preprocessed the graph, we limited the length of shortcut edges to 20min,

52



which was less than 3% of the mean shortest travel time between the considered origins and

destinations.

We used a Monte Carlo approach to assess the e�ect of di�erent parameters on the per-

formance and the results of REVC. Speci�cally, we considered the local optimality constant

α, the length constant β, the approximation parameters γ and δ, and the numbers of origins

and destinations. We randomly generated 10 route �nding scenarios (20 for tests on γ and

δ) and computed the mean and standard deviation of the results.

For each random scenario, we selected the origin and destination locations randomly

from the graph's vertices. We generated 10 (+10 for tests on γ and δ) sets of origins and

destinations, which we reused for each assessed parameter combination to reduce random

in�uences on the results. When we varied the number of origins and destinations, we increased

the origin and destination sets as necessary.

To measure the performance of the algorithm, we noted the execution time of the algo-

rithm and the execution time per resulting path. Furthermore, we determined the slowdown

factor (see Abraham et al., 2013), denoting the ratio between the execution time of REVC

and the corresponding pair-wise shortest path search. In contrast to the execution time, the

slowdown factor is not strongly a�ected by the implementation and hardware, since both

REVC and the shortest path queries are run with the same software on the same machine.

Therefore, the slowdown factor may be a more meaningful performance measure than the

execution time.

Note that it is possible to execute shortest path queries between many origin-destination

pairs in linear time of the origins and destinations (Bast et al., 2016). However, the pair-wise

approach used to compute the slowdown factor provides a better comparison to pair-based

algorithms used in route choice modelling. Therefore, we applied the pair-wise approach.

To assess the resulting paths, we determined the average number and distribution of

identi�ed approximately admissible paths and the mean length of these paths. These metrics

may provide hints on which parameter combinations are suitable in modelling applications.
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2.3.2 Implementation

We implemented REVC in the high-level programming language Python (version 3.7) in

combination with the numerical computing library Numpy (version 1.16) and the software

Cython (version 0.29), which we used in particular to build a C extension for the shortest

path search. Despite our e�orts to reduce bottle necks with C extensions, a low-level im-

plementation of REVC can be expected to be faster by orders of magnitude. We computed

shortest paths with the algorithm RE (Goldberg et al., 2006). We executed our code in

parallel on a Linux server with an Intel Xeon E5-2689 CPU (20 cores with 3.1GHz) and with

512GB RAM.

2.3.3 Results

Below we describe our test results. The results are also displayed in Figure 2.7.

The constant α, controlling the local optimality requirement, had a strong in�uence both

on the algorithm's running time and the number of resulting paths. The e�ect of α on the

execution time levelled o� at high values of α. Decreasing α from 0.3 to 0.05 increased the

execution time by more than 60% and reduced the execution time per identi�ed path by

about factor 20. In contrast, increasing α from 0.3 to 0.5 had little e�ect. The mean number

of paths followed a power law in α (exponent −1.75). The length of the resulting paths

decreased gradually as α increased. An increase from 0.05 to 0.5 decreased the mean length

of admissible paths by about a quarter.

The parameter β, limiting the length of admissible paths, a�ected the number and length

of identi�ed admissible paths but not the execution time. The number of admissible paths

increased almost linearly with β, whereby an increase of 0.1 resulted in about 0.7 additional

paths being found per origin-destination pair. Consequently, the execution time per resulting

path decreased with β. The mean lengths of the identi�ed paths increased with their number.

Raising β from 0.1 to 2 increased the mean path length by about 30%.
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β. The y-axis shows which fraction of origin-destination pairs were connected by at least the number of paths
given by the colour. The parameters are the same as in Figure 2.7 column A and B.

The approximation parameters γ and δ had little e�ect on the execution time but a

notable impact on the results. An increase of γ (increase in precision) consistently lengthened

execution times slightly. However, a decrease of δ (again, increase in precision) reduced the

execution time per resulting path and led to an optimal execution time at intermediate values

of δ.

The number of identi�ed paths varied more strongly than the execution time. Dependent

on the value of δ, decreasing γ from 1 to 0.6 increased the number of identi�ed routes by

40%-80%. Conversely, an increase of δ from 1 to 2 decreased the number of identi�ed paths

by more than 50%. The lengths of the resulting paths decreased gradually both in γ and δ.

Changing the number of origins and destinations a�ected the execution time but not the

characteristics of the admissible paths. The execution time increased mostly linearly with the

origin and destination number, whereby the slope depended on the origin to destination ratio.

With a ratio of 1 : 1, the execution time increased by 87 s per 100 origins and destinations.

With a ratio of 1 : 4, the average increase was 56 s per 100 origins and destinations. The

time per identi�ed path and the slowdown factor decreased as more origin and destination

locations were added.
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Figure 2.8 displays the distribution of paths per origin-destination pair dependent on the

local optimality constant α and the length constant β. Many origin-destination pairs are

connected by numerous admissible paths if α is smaller than 0.2. For example, with α = 0.1

and β = 1.5, about three quarters of the origin-destination pairs were connected by more

than 20 routes. In contrast, with α = 0.3, less than 0.7% of the pairs were connected by more

than 5 paths, and 22% of the pairs were connected by the shortest path only. The latter

fraction increased to 72% for α = 0.5.

The distribution of paths per origin-destination pair changed more gradually with β.

With α = 0.2, a large value of β = 2 resulted in 99% of the pairs being connected by multiple

admissible paths, whereby 22% were connected by more than 10 paths. On the other end

of the spectrum, with β = 0.1, 40% of the origin-destination pairs were connected by one

admissible path only and 0.6% were connected by more than 5 admissible paths.

2.4 Discussion

We have introduced an algorithm that e�ciently identi�es locally optimal paths between

many origin-destination pairs and tested the algorithm's performance in a realistic road

network. Our algorithm REVC identi�es all approximately admissible routes between the

origins and destinations, and its execution time is driven by the number of distinct origins

and destinations rather than the number of origin-destination pairs. Therefore, REVC is

applicable in large-scale tra�c models.

Our test results show that REVC's performance depends mostly on the local optimality

constant α and the number of origins and destinations. While the total execution time

increases with the number of considered origins and destinations and with decreasing α, the

time per identi�ed path gets reduced. That is, REVC becomes more e�cient compared to

repeated path queries the more paths are generated.

The length bound β had only a minor e�ect on the execution time. This may be surprising,

as an increase in β allows more vertices to be included in the shortest path trees. However,

57



the impact of β is reduced by our pruning technique, which is most e�ective for long paths.

Furthermore, large parts of the graph had been scanned for small values of β already, since we

considered origins and destinations spread over the whole graph. Therefore, few additional

vertices were considered with increased β.

The e�ect of β may be larger if all origin and destination locations are located within

a small subsection of the graph. Nonetheless, in many modelling applications, the origin

and destination locations will be distributed over the whole considered road network. For

example, when the tra�c from the outskirts of a city to downtown is modelled, it is unlikely

that travellers leave the greater metropolitan area. Therefore, it is reasonable to consider an

accordingly constrained graph.

REVC applies approximations to gain e�ciency. However, the approximation constants

had relatively small e�ects on the performance in our tests. This suggests that approximations

may not always be necessary. However, the bene�t of the approximations will become larger

if the origin and/or destination vertices are not randomly spread over the whole graph but

located in constrained areas. Then, partial results can then be reused more e�ectively. As

the admissibility checks were responsible for a small portion of the overall execution time

only, the gain of the approximations will also become more signi�cant if more paths have to

be checked for local optimality.

An interesting observation is that intermediate values of the approximation constant δ

led to lower execution times than large values. This is surprising, because smaller values of δ

increase the number of shortest path queries required in the Tδ-test. However, small values

of δ have the advantage that the subsections checked for local optimality get shorter. This

makes it more likely that test results can be reused to reject many inadmissible paths at once.

In point to point queries, the T2-test (used by Abraham et al., 2013) may still be superior.
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2.4.1 Signi�cance

Determining multiple paths between an origin and a destination based on a local optimality

criterion is a well established approach in route planning research (Abraham et al., 2013;

Delling et al., 2015; Luxen and Schieferdecker, 2015; Bast et al., 2016). An obstacle hin-

dering the application of these algorithms in route choice models was that these algorithms

return only few heuristically chosen paths rather than the complete set of admissible paths.

Furthermore, these algorithms are based on an in�exible approximation whose impact on the

result was not exactly known. Our algorithm REVC solves these issues. Though REVC may

not be competitive in point to point queries, the algorithm e�ciently exploits redundancies

occurring when many origin-destination pairs are considered.

Generating route choice sets based on local optimality has multiple advantages. The

underlying principle is simple and has a sound mechanistic justi�cation. The optimality

principle is applied on a local scale, whereas the mechanisms governing travellers' overall

route choices do not need to be known. Therefore, no extensive data sets are needed to

generate choice sets.

Fitting the choice set parameters to data is a discrete optimization problem and can

therefore be challenging. REVC permits two free variables: the local optimality parameter

α and the length parameter β. As the latter does not have a strong impact on the execution

time, β can be chosen liberally, leaving α as the only remaining free parameter. Optimizing

α, in turn, is comparatively easy, as this is a one-dimensional problem.

Choice sets formed by locally optimal v-paths are typically relatively small while still

covering a broad spectrum of di�erent routes (see Abraham et al., 2013). This allows for

sophisticated models for the second decision step, in which travellers choose routes from the

choice sets. The option to use sophisticated metrics to measure the quality of the route

candidates may improve the overall model �t.

The favourable quality to quantity ratio of locally optimal v-paths and the practically lin-

ear relationship between execution time and origin and destination numbers make REVC par-
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ticularly useful in comprehensive tra�c models. In such applications, many origin-destination

pairs have to be considered, and the computed choice sets need to be kept in memory for

further processing. This makes it di�cult to apply methods based on point to point queries,

such as link elimination (Azevedo et al., 1993), link penalty (De La Barra et al., 1993), or

constrained enumeration methods (Prato and Bekhor, 2006). Similar challenges face algo-

rithms that need to generate many paths, such as stochastic approaches or methods that

include a �ltering step to select admissible paths from a large number of candidates (see

Bovy, 2009). Therefore, REVC may be of speci�c use in comprehensive models.

The results of REVC provide insights into the distribution and properties of locally opti-

mal routes in real road networks. In our tests, the number of admissible paths decreased with

α in a power law relationship, whereas it increased linearly in β. Such experimental results

could be the starting point for a more in-depth theoretical analysis of the distribution of lo-

cally optimal routes in road networks. The resulting insights may facilitate the development

of new algorithms.

The experimental results are also valuable as benchmarks for existing algorithms searching

locally optimal v-paths for route planning purposes (Abraham et al., 2013; Kobitzsch, 2013;

Luxen and Schieferdecker, 2015). Some of these algorithms apply approximations to gain

e�ciency. The presented results can help to assess the impact of these approximations. Our

results suggest that the applied T2-approximation falsely rejects half of the admissible paths.

In addition to assessing the accuracy of faster algorithms, the complete sets of admissible

paths generated with REVC can also be used to evaluate the success rate and the quality of

the paths generated with these algorithms. Note, however, that our de�nition of admissible

paths deviates slightly from the de�nition applied in earlier papers. Refer to Appendix 2.C

for details.

REVC contains several optimizations that can be directly applied to make the family of

algorithms based on REV more e�cient. These optimizations include the improved bounds

for tree growth and pruning as well as the idea to exclude u-turn paths by considering via
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edges. Similarly, the Tδ-test can be directly applied to increase the accuracy of all algorithms

using the T-test. Hence, this paper may also contribute to make route planning software more

e�cient. We provide a more in-depth discussion in Appendix 2.C.

2.4.2 Limitations

REVC focuses on single-via paths. A complete search for locally optimal routes should not

limit the set of considered paths. However, considering v-paths can be justi�ed by assuming

that travellers may drive via an intermediate destination. Furthermore, the focus on v-paths

excludes zig-zag routes, which may be deemed unrealistic. Therefore, a criterion limiting the

set of admissible paths may not only be a computational necessity but also bene�cial in route

choice models.

Nonetheless, REVC may be extendable to include paths via two intermediate destinations.

Road networks usually have a small set W of vertices so that every su�ciently long shortest

path includes at least one of these vertices (Abraham et al., 2010). If W could be identi�ed

e�ciently, REVC could be applied to compute v-paths from the origins to the vertices in W

and from the vertices in W to the destinations. Concatenating these v-paths to admissible

�double-via� paths would be comparable to the admissibility checks described in this paper.

REVC seeks to identify all admissible paths between the given origins and destinations.

However, even if we do not apply approximations (i.e. choose γ = δ = 1), some admissible

paths may be falsely rejected. This limitation is due to the preprocessing step, in which

shortcut edges are added to the graph, and the requirement that an edge adjacent to the via

vertex must be scanned in forward and backward direction. However, we have already noted

that the e�ect of the shortcut edges can be arbitrarily reduced by imposing length constraints

on shortcut edges. Furthermore, most admissible paths will satisfy the mentioned edge

requirement (see Appendix 2.B). Therefore, these limitations generally have minor e�ects on

the results.
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REVC, as introduced in this paper, identi�es identical paths based on their lengths.

Alternative approaches exist but might be less e�cient. In practice, distinct paths may have

identical lengths, and REVC may therefore falsely reject some admissible paths. Paths with

equal lengths occur most frequently in cities whose roads form a grid structure. Nevertheless,

since the roads may have distinct speed limits and tra�c volumes, and because turns take

additional time, paths with identical lengths may not occur frequently in practice. Since ties

are even less likely in long paths, we argue that it is reasonable to distinguish paths based

on their lengths.

Misclassi�cations of distinct paths with equal lengths can be reduced by adding small

random perturbations to the lengths of all edges. Though this procedure makes it unlikely

that admissible paths with similar lengths are considered identical, the perturbation term

randomly de�nes an optimal path in grid networks. Therefore, the random perturbation is

of limited help in these networks. Note, however, that regardless of how we identify identical

paths, REVC and similar shortest path based methods are not well suited in grid networks,

as ties must be broken when the shortest path trees are grown.

In this paper, we presented performance measurements to assess the e�ciency of REVC.

When evaluating these results, it is important to note the limitations of our implementation.

For example, our parallel implementation comes with scheduling overheads. Some parts of

the algorithm were not parallelized at all, leaving room for further speedups. Furthermore,

the slowdown factors we measured can be considered as upper bounds, since we compared

a highly optimized shortest path search with a high-level implementation of REVC. Despite

these limitations, the most important timing result remains visible: the performance of REVC

scales well with the numbers of routes and end points.

We provided several conceptual arguments suggesting that sets of locally optimal v-paths

are likely to cover most paths considered by real travellers. Nonetheless, we did not present

empirical evidence in this paper. In chapter 3 REVC will be applied to model the tra�c of

recreational boaters across North America. However, an in-depth empirical validation of the
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hypothesis that travellers generally choose locally optimal paths remains a task for future

research.

2.5 Conclusion

Generating route choice sets with locally optimal single-via paths has a sound mechanistic

justi�cation, leads to small choice sets with reasonable alternatives, and requires minimal

data. We presented an algorithm that e�ciently generates such choice sets for large numbers

of origin-destination pairs. The algorithm is able to identify (almost) all locally optimal

single-via paths up to a speci�ed length between the origins and destinations. Therefore,

the algorithm extends earlier methods based on local optimality and makes the approach a

valuable method to generate route choice sets.

We tested our results on a real road network and assessed the algorithm's performance de-

pendent on the input parameters. The results provide insights into the e�ect of approximation

parameters and the distribution of locally optimal paths in real road networks. Therefore,

our study provides the necessary prerequisites to construct route choice sets based on local

optimality in large-scale tra�c simulation applications.
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Appendices

2.A Proofs

In this Appendix, we prove Lemma 2.1 and Corollary 2.1 (main text). We adjust the state-

ment of Lemma 2.1 to recall notation from the main text.

Lemma 2.1. Consider an arbitrary admissible single-via path P from s to t. With x′s =

argmin
x∈P ; dP (s,x)≥αl(P )

dP (s, x), let

xs :=


x′s if dP (s, x′s) ≤ 1

2
l(P )

argmax
x∈P ; dP (s,x)≤ 1

2
l(P )

dP (s, x) else.
(A2.1)

Choose xt accordingly. Then there is at least one vertex v ∈ P with

1. dP (s, v) = d(s, v) ≤ dP (s, xt) and

2. dP (v, t) = d(v, t) ≤ dP (xs, t).

Proof. Since P is a single-via path, P contains at least one vertex v′ such that dP (s, v′) =

d(s, v′) and dP (v′, t) = d(v′, t). That is, v′ splits P into two shortest paths. Now choose a

vertex v as follows:

v :=


v′ if dP (s, v′) ≤ dP (s, xt) and dP (v′, t) ≤ dP (xs, t),

xt if dP (s, v′) > dP (s, xt),

xs if dP (v′, t) > dP (xs, t).

(A2.2)

We show that v satis�es the lemma's requirements by regarding the di�erent possible

choices of v:
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1. If dP (s, v′) ≤ dP (s, xt) and dP (v′, t) ≤ dP (xs, t), then the conditions 1 and 2 are clearly

satis�ed for v := v′.

2. If dP (s, v′) > dP (s, xt), then inserting v := xt yields dP (s, v′) > dP (s, v). Therefore, the

subpath P sv from s to v is a subpath of the subpath P sv′ from s to v′. Since v′ splits

P into two shortest paths, P sv′ is a shortest path. Therefore, P sv must be a shortest

path, too. Thus, dP (s, v) = d(s, v) = dP (s, xt), and condition 1 is satis�ed.

To show that condition 2 holds as well, observe that dP (v, t) = dP (xt, t) ≤ 1
2
l(P ) ≤

l(P ) − dP (s, xs) = dP (xs, t). It remains to be shown that dP (v, t) = d(v, t). Since P

is α-relative locally optimal, each subpath whose length after removal of one end point

would be smaller than αl(P ) is a shortest path. By construction, this applies to the

subpath from xt to t. Hence, it is dP (v, t) = d(v, t) and condition 2 is satis�ed.

3. The proof for the case dP (v′, t) > dP (xs, t) is analogous to the argument presented

under point 2.

Corollary 2.1. For each admissible v-path between an origin-destination pair (s, t), a via

vertex will be scanned from both directions if the shortest path trees are grown up to a height

of

hmax := max

{
(1− α) βl(Pst),

1

2
βl(Pst)

}
. (A2.3)

Proof. Let P be an admissible path, which implies that l(P ) ≤ βl(Pst). Recall that

x′t = argmin
x∈P ; dP (x,t)≥αl(P )

dP (x, t)

= argmin
x∈P ; l(P )−dP (s,x)≥αl(P )

(l(P )− dP (s, x))

= argmax
x∈P ; dP (s,x)≤(1−α)l(P )

dP (s, x). (A2.4)
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Therefore, xt is either the last vertex in P with dP (s, x) ≤ (1− α) l(P ) ≤ (1− α) βl(Pst)

or the last vertex with dP (s, x) ≤ 1
2
l(P ) ≤ 1

2
βl(Pst) (see equation (A2.1)). Either way,

xt will be included in the shortest path tree if we grow the tree to a height of just above

max
{

(1− α) βl(Pst),
1
2
βl(Pst)

}
. The same argument holds in backward direction for xs.

From Lemma 2.1 we know that P is a v-path via a vertex v ∈ P xsxt located between xs and

xt. Since both xs and xt are scanned from both sides, the vertex v will be scanned from both

sides as well.

2.B Admissible paths excluded by requiring that a

neighbouring edge of the via vertex has been

scanned from both directions

Requiring that a neighbouring edge of the via vertex has been scanned in both directions

excludes u-turns without reducing the number of found admissible paths signi�cantly. How-

ever, there is exactly one scenario in which an admissible v-path is not found if we impose

this constraint. The situation is depicted in �gure A2.1.

Suppose the v-path P from s to t via the vertex v is admissible but falsely rejected by

the exact version of REVC (γ = δ = 1). Suppose furthermore that u ∈ P is the predecessor

of v and w ∈ P the successor. Then there must be a vertex x ∈ P su and a vertex y ∈ Pwt

such that the following conditions hold:

1. The shortest path from x to w does not include v: d(x, v) + d(v, w) > d(x,w).

2. The shortest path from u to y does not include v: d(u, v) + d(v, y) > d(u, y).

3. Let x′ be the direct successor of x in P . It must be d(x′, v) > α · l(P ).

4. Let y′ be the direct predecessor of y in P . It must be d(v, y′) > α · l(P ).

5. The shortest path from u to w must include v: d(u,w) = d(u, v) + d(v, w).
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Figure A2.1: Scenario in which an admissible path is excluded due to the requirement that an edge adjacent
to the via vertex is scanned in both directions. Blue lines depict the edges included in the forward shortest
path tree grown from the origin s and orange lines the edges of the backward tree grown into the destination
t. Lines that may represent multiple edges are indicated with a gap. As the edges adjacent to v are included
in one shortest path tree only, the path Psvt would be rejected by REVC.

If the �rst two conditions were not satis�ed, at least one edge on P adjacent to v would be

scanned from both directions and P would be found. If the last three conditions were not

satis�ed, P would not be admissible.

Though it is possible that all of these conditions are satis�ed, we believe that such a

scenario is unlikely in real road networks.

Remark 2.1. It can be shown that pruning does not weaken these conditions.

2.C Comparison of REV and REVC

In this Appendix, we compare our algorithm REVC to the algorithm REV (Abraham et al.,

2013) that it is based on. To a large extent, REVC uses the same ideas as REV: shortest

path trees are grown around the origin and destination, and v-paths via vertices scanned from

both directions are checked for admissibility using an approximate test for local optimality.

However, REV and REVC di�er in (1) the admissibility de�nition (2) the choice of the

returned paths, and (3) technical optimizations that REVC introduces. Below we discuss

each of these points.
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2.C.1 Admissibility de�nition

The admissibility de�nition by Abraham et al. (2013) includes three requirements. They say

a v-path Psvt is admissible if

1. Psvt has limited overlap with previously identi�ed admissible paths Pswt between s and

t. That is, l
(
Psvt ∩

(
∪
w
Pswt

))
≤ η · l(Pst).

2. Psvt is T -locally optimal with T = α · l(Pst).

3. Psvt has β-uniformly bounded stretch. That is, for all u,w ∈ Psvt, it is l(P uw
svt ) ≤ β ·

l(Puw).

None of these requirements coincides exactly with the constraints we imposed in our paper.

Requirement 1 does not appear in our admissibility de�nition. The constraint requires

that the admissible paths have a clearly speci�ed order. However, though Abraham et al.

(2013) suggest a reasonable ordering, this introduces another degree of freedom whose impact

on the results may be oblique. Furthermore, we were interested in identifying all routes that

satisfy certain criteria and leave it to the second modelling stage, in which a route is chosen

from the choice set, to take route overlaps into account (see e.g. Cascetta et al., 1996). Lastly,

the local optimality criterion naturally limits the pair-wise overlap of paths. Therefore, we

dropped this constraint.

Requirement 2 di�ers from our local optimality constraint, because the length T of the

subsections required to be optimal depends on the shortest distance between s and t rather

than the length of the via path. This allows for more admissible paths. We changed this

requirement for two reasons: (1) the spatial scale at which travellers' decision routines change

is likely dependent on the path they actually choose rather than the shortest alternative,

which may � dependent on the global quality metric � not even be a favourable option.

Travellers on a long trip may have a higher incentive to choose a route with long optimal

subsections. (2) The adjusted local optimality criterion allows for more e�ective pruning with
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simpler bounds when considering many origin-destination pairs. Using a pair-wise static local

optimality criterion as Abraham et al. (2013) would require us to choose the pruning bound

dependent on the origin-destination pair closest together. For these reasons, we introduced

the notion of relative local optimality. Note that REVC can also be used to identify all paths

satisfying requirement 2 if the constant α is adjusted accordingly and the resulting paths are

�ltered so that suboptimal paths are excluded.

Requirement 3 is relaxed in our admissibility de�nition. Abraham et al. (2013) do not

introduce an e�cient algorithm to identify paths satisfying requirement 3. Instead of bound-

ing the lengths of all subpaths, they consider the complete path only, as we do in this paper.

Nonetheless, uniformly bounded stretch is a valuable characteristic for choice set elements.

However, since REVC will return a moderate number of paths in many applications, paths

could be checked for uniformly bounded stretch after execution of REVC. Consequently, we

have used the relaxed constraint directly.

2.C.2 Returned paths

Abraham et al. (2013) aim to compute a small number of high-quality paths between an origin

and a destination e�ciently. To save computation time, they do not assess the admissibility

of all path candidates. Instead, REV processes the potentially admissible paths in an order

dependent on some objective function, estimating the quality of the paths. REV returns the

�rst n processed approximately admissible paths.

Since we are interested in an exhaustive search for admissible paths, we do not process

the paths in a speci�c order. We return all approximately admissible paths and leave the

assessment of their quality, if desired, to a second, independent algorithm.

2.C.3 Optimizations

REVC introduces multiple optimization to REV. First, REVC uses a tighter bound for the

tree growth and the pruning stage. Though our pruning bound would have to be adjusted
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to comply with the admissibility de�nition applied by Abraham et al. (2013) (see section

2.C.1), the ideas introduced in this paper are still applicable.

Second, REVC excludes u-turns by considering via edges rather than via vertices. Fur-

thermore, REVC identi�es vertices representing identical paths before assessing their ad-

missibility. Both optimizations could be directly applied to speed up REV. However, REV

processes the paths in an order given by some objective function (see section 2.C.2). It is

possible to construct this objective function so that u-turn paths are not processed before

any admissible path.

Third, to control the accuracy of the results, REVC uses the Tδ-test instead of the T-test

to check whether a path is locally optimal. This optimization could also be applied in REV,

though it may e�ect the performance of REV more strongly than the performance of REVC.

Lastly, REVC is optimized to process many origin-destination pairs at once. Though the

idea to grow each shortest path three only once per origin and destination is straightforward,

the main innovation of REVC is in the e�cient local optimality checks of many v-paths via

one via vertex.

70



Chapter 3

A hybrid gravity and route choice model to assess

vector tra�c in large-scale road networks

3.1 Introduction

Assessing road tra�c and the transportation of goods through road networks is key to un-

derstanding the impacts of human movement in the context of epidemiology and invasion

biology. For example, animal transport and trade are major vectors for animal and human

diseases (Karesh et al., 2005). Similarly, many invasive species spread by means of human

tra�c along roads. Examples include plant seeds contained in dirt on cars (Von der Lippe

and Kowarik, 2007), insects carried in �rewood of campers (Koch et al., 2012), bait�sh car-

ried by anglers (Drake and Mandrak, 2014), and aquatic invasive species �hitchhiking� on

trailered watercraft (Johnson et al., 2001).

To understand and control these processes, scientists and managers need estimates of the

tra�c �ows in road networks. There are two perspectives on modelling tra�c �ows: the

supply/demand perspective (Friedrich et al., 2014) and the route choice perspective (Prato,

2009). While models for supply and demand (or travel incentive and destination choice)

measure the motivation for travel or transport, route choice models determine the pathways

along which the travel or transport occurs. Individually, supply/demand models and route

choice models provide powerful tools for estimating tra�c �ows. However, as we will show

below, there are situations where a hybrid approach is desirable.
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The distribution of trips between origins and destinations is often modelled with gravity

models (Anderson, 2011), which have two main sources of data: on-site surveys of individual

agents taken at source/destination locations, or mail-out surveys collecting details of planned

or past trips from potential travellers. In general, on-site surveys yield precise estimates of

absolute tra�c �ows but are more expensive, unless the data are readily available e.g. through

booking records. In contrast, mail-out surveys may be more subject to sampling error but

less expensive. While both survey types are used for parameterizing gravity models, �eld

surveys are typically necessary if absolute measures of tra�c �ows are needed.

A potential alternative approach is to sample the tra�c �ow at given locations on roads.

This contrasts with the on-site survey approach described above, where agents are sampled

at source or destination locations. In many realistic situations, surveys conducted at inter-

mediate roads can provide much more data than origin/destination sampling. For example,

consider a region with 100 possible sources and a region with 100 possible destination loca-

tions, with 2 main routes connecting them. The number of agents travelling along any of

these main roads will, on average, be 50 times higher than the number leaving from or arriving

at any individual location. Therefore, when there are many possible source and destination

locations but few major routes linking them, the number of agents sampled at intermediate

roads will far exceed the number sampled leaving sources or arriving at destinations.

Because of the large amounts of data potentially available along roads, it would be ad-

vantageous to use such data to parameterize gravity models. However, to the best of our

knowledge, this has not yet been done. As the tra�c �ow through roads depends on trav-

ellers' route preferences, a hybrid approach, which links gravity models to route choice models,

would be required. This is the approach taken in this paper.

Gravity models and large-scale systems

The main idea of gravity models is to estimate the number of trips between an origin and a

destination location based on agents' tendency to start a trip at the origin (repulsiveness),
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their tendency to travel to the destination (attractiveness), and the distance between origin

and destination. Based on this basic idea, variations on gravity models have been derived

to increase their predictive accuracy and mechanistic validity, such as constrained gravity

models (Wilson, 1970) and stochastic gravity models (Flowerdew and Aitkin, 1982). In

�classical� gravity models, tra�c �ows are assumed to be deterministic, and variations in

observed tra�c are viewed as measurement error. In contrast, stochastic gravity models

suppose that the tra�c �ow itself is a stochastic process. That is, properties of donor and

recipient determine the mean tra�c �ow, whereas the actual tra�c �ow varies over time,

following some stochastic distribution.

Though stochastic gravity models were originally developed in the context of economics

(Flowerdew and Aitkin, 1982), they have also been successfully applied in invasion ecology

and epidemiology to model the tra�c of potential invasive species or disease vectors (Drake

and Mandrak, 2010; Potapov et al., 2010; Muirhead and MacIsaac, 2011; Muirhead et al.,

2011; Potapov et al., 2011; Barrios et al., 2012; Chivers and Leung, 2012; Drake and Mandrak,

2014). The systems modelled in these studies had small or medium spatial scale. However,

long-distance trips can occur su�ciently often to pose a considerable risk of introducing

invasive species or diseases to regions far away from the infested area. Hence, long-distance

trips can be a major factor for shifting invasion or disease fronts (Kot et al., 1996). Therefore,

models for long-distance tra�c are needed.

In large-scale systems, it is hard to collect the data required to �t a gravity model.

Often, origins and destinations span over large areas, or regions of origin and destination

may be considered instead of individual locations. In both cases, the considered origins and

destinations have many access points, which are expensive to monitor all at once. Conducting

mail-out surveys is usually not an option, too, as only few of the surveyed individuals who

could potentially start a trip will actually start a long-distance trip and thus provide useful

data. Consequently, an alternative approach is required to �t gravity models in large-scale

systems.
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The shortcomings of gravity models in large-scale systems concern not only the model �t

but also how the models can be used to facilitate management of diseases or invasive species.

A common management goal is to reduce the number of vectors leaving an infested area

or entering a susceptible area. As the number of origins and destinations is large and they

may have many access points in large-scale systems, it may be infeasible to apply control

directly at the infested and susceptible locations. Instead, managers may want to control

the tra�c on intermediate roads that are shared by agents travelling from di�erent origins

to di�erent destinations. To �nd the best roads for such control measures, a route choice

model is necessary, which determines how the tra�c between an origin and a destination is

distributed over the road network.

Route choice models

Travellers are usually not able to consider all possible routes to their destination due to

the vast number of options. Therefore, many route choice models assume that travellers

make route choices in two steps: �rst, they apply some heuristic to determine a set of

potentially good (�admissible�) routes, and second, they choose one of these routes based on

their characteristics (Di and Liu, 2016).

A variety of approaches have been developed to model the two decision steps. Models for

route admissibility may determine all routes that satisfy certain criteria or focus on routes

that are optimal with respect to di�erent goodness measures (Bovy, 2009). Alternatively,

locally optimal routes may be considered (see chapter 2), which assume that travellers act

rationally on local scales while unknown factors may a�ect the routes on large scales. This

method has been found to yield realistic routes while maintaining high computational e�-

ciency (chapter 2; Abraham et al., 2013).

To model the second stage of the decision process, the admissible routes are typically

assigned probabilities for being chosen. The corresponding models may include economic

aspects, such as the length of a route and the expected travel time, but also other factors,
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such as potential intermediate destinations and the scenery and sights along a route (Prato,

2009). However, since multiple admissible routes between all combinations of origins and

destinations must be considered, large-scale systems require a model balancing accuracy and

computational e�ciency.

Outline

Both gravity models and route choice models are widely used in their respective �elds. In this

paper, we present a hybrid model combining the two to assess tra�c in large-scale systems.

Since tra�c varies over time, we use an additional model to account for time-driven variations

in survey data. Furthermore, we introduce another model for the compliance of travellers,

because not every traveller may participate in the survey and provide complete information.

This hybrid approach allows us to �t a gravity model to data collected in road-side surveys.

As a result, the hybrid method is applicable regardless of the system's spatial scale and

yields not only estimates of the tra�c out�ow and in�ow of origins and destinations but also

estimates the tra�c volume on roads.

We demonstrate our approach by applying it to the potential invasion of zebra and quagga

mussels Dreissena spp. to the Canadian province British Columbia (BC). Dreissenid mussels

are invasive in North America and cause severe economic and ecological damages (Pimentel

et al., 2005; Rosaen et al., 2012). A major spread mechanism of zebra and quagga mussels is

boaters transporting mussel-infested watercraft and gear to uninvaded lakes (Johnson et al.,

2001). Therefore, knowledge of destinations and travel routes for these boaters is key for

mussel prevention and early detection.

This paper is structured as follows: in section 3.2, we give an overview of the hybrid

approach and the submodels for the the distribution of trips between origins and destinations,

the route choice, temporal tra�c patterns, and the compliance of travellers. In section 3.3,

we describe how survey data collected at roads can be used to �t the submodels. In section

3.4, we apply the hybrid model to the potential invasion of dreissenid mussels to BC and
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present the resulting estimates of vector pressure and pathways in BC. Finally, in section 3.5,

we discuss shortcomings, applicability, and potential extensions of our approach.

3.2 Model

Before introducing our hybrid tra�c model, we need to clarify which travellers we want to

consider. Not every person travelling from an infested region to a susceptible destination

has the potential to carry a disease or invasive species. Similarly, not every potential carrier

of propagules or pathogens will actually be infested and thus be a vector. In this paper,

we assess the tra�c of all potential vectors, regardless of whether they carry pathogens or

propagules. Below, we call these potential vectors �agents�.

We propose a hierarchical approach to model how many agents can be observed in a

survey shift conducted at a road side. An agent will be observed in a road-side survey if,

and only if, they (1) start a trip, (2) choose a route via the survey location, (3) time their

journey so that they pass the survey location during the survey shift, and (4) participate in

the survey. Since these decisions are di�cult to know precisely, we assume that the number

of surveyed agents results from a hierarchical stochastic process (see Figure 3.1): (1) every

time unit, a random number Nij of agents travel from origin i to destination j; (2) out of

these agents, a random number Nijk choose a route via the survey location k; (3) out of

these agents, a random number Nijkt time their journey so that they pass the survey location

during the time interval t when the survey is conducted; (4) out of these agents, a random

number N+
ijkt agents decide to participate in the survey and provide complete information.

This approach allows us to �t the model to data collected in road-side surveys.

The distributions of Nij, Nijk, Nijkt, and N+
ijkt depend on submodels. Though some

applications may require more speci�c submodels, we now propose a set of models applicable

in many real-world systems. A detailed list of our assumptions can be found in Appendix

3.A.
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Figure 3.1: Hierarchical stochastic model for the number of agents passing a survey location during a survey
shift. The total number Nij of agents travelling from i to j depends on the parameters µij and p. With a
probability ρijk, the travelling agents will choose a route via the survey location k. With probability τijkt,
the Nijk agents who choose such a route will also time their journey so that they pass the location in the
time interval t when the survey is conducted. These Nijkt choose with probability ξijkt to participate in the
survey and to provide complete information. The resulting N+

ijkt agents are the ones included in the survey.

3.2.1 Gravity model

We model the daily numbers Nij of agents travelling from origin i to destination j with a

stochastic gravity model. The mean value µij of the random variable Nij is proportional to

the repulsiveness mi of the origin i, the attractiveness aj of the destination j, and a negative

power of the distance between i and j:

µij = c
miaj
dαdij

. (3.1)

Usually, mi and aj are estimated as functions of covariates that correlate with the number of

agents leaving donor region i and the number of agents arriving at recipient j, respectively.

The functions used to estimate mi and aj consist of �building blocks� corresponding to

one covariate xr, r ∈ {1, . . . , n}, each. Convenient functional forms for the building blocks

are the power function f0(xr) := xα1
r and the saturating function f1(xr) :=

(
xr

xr+α0

)α1

. The

functional form f1 is appropriate if the covariate has a particularly high impact after some

threshold value or if di�erences in large covariate values are insigni�cant (see e.g. Potapov

et al., 2010). Otherwise, f0 is typically su�cient.
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Many such building blocks can be connected to account for spatial heterogeneity. If

two covariates are e�ective only in combination with each other, their respective building

blocks should be multiplied together. For example, if both recreational opportunities and

accommodations are necessary to attract agents, attractiveness is given by the product of

the corresponding building blocks. In turn, if covariates have an e�ect independent of each

other, the respective building blocks should be added together. For example, if either a

boat launch or mountain biking opportunities can attract agents, the corresponding building

blocks should be added together. In that sense, multiplication models an �and� relationship,

whereas addition models an �or� relationship.

Though the mean number µij of travelling agents is given by a deterministic function, the

number Nij of agents travelling in a time unit follows a stochastic distribution. Most stochas-

tic gravity models build on the Poisson distribution, the negative binomial distribution, or the

zero-in�ated negative binomial distribution (Burger et al., 2009). The Poisson distribution is

applicable if agents decide independently of each other in each time unit whether they start

a trip. If agents' decisions are correlated, for example because weather conditions, holidays,

and other factors a�ect many agents at once, the density of the Poisson random variable can

be chosen to vary with time. If the sources of correlations are not known precisely, a negative

binomial distribution can be used to approximately account for the overdispersion resulting

from such correlations (Gardner et al., 1995). Lastly, zero-in�ated distributions suppose that

there is a stochastic mechanism that stops all agents from travelling between an origin and

a destination in some time units. In the remaining time units, Nij is assumed to follow a

common stochastic distribution, such as the negative binomial distribution. We build our

gravity model based on the negative binomial distribution, as this distribution is appropriate

in many use cases and generalizes the Poisson distribution.

We parameterize the count distribution so that the ratio between mean and variance of

the agent counts is constant for all origin-destination pairs. With this parameterization,

the sum of two independent negative binomial random variables is still negative binomially
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Figure 3.2: Admissible paths from origin s to destination t. The shortest path (solid grey) and the path via
u and v (dashed grey) are admissible. The path via point w (dotted red from u to v, dashed grey from s to
u and from v to t) is inadmissible, because it is not locally optimal: the short subsection u→ w → v (dotted
red) is not a shortest path.

distributed. This is particularly important when the model is built to assess tra�c between

regions of multiple individual origin or destination locations. In this scenario, the �ow be-

tween the regions is the sum of the �ows between the individual locations. Choosing a

constant mean to variance ratio makes the model invariant to how the individual locations

are pooled together. Refer to Appendix 3.B for further details.

3.2.2 Route choice model

We assume that agents choose their routes randomly and independently from one another.

This is reasonable, because agents of concern usually constitute only a fraction of the full

tra�c on a road. Therefore, tra�c jams and other tra�c-dependent factors that a�ect the

attractiveness of routes are mostly independent of the modelled agents' routing decisions.

Many route choice models assume that agents choose their routes from a small set of

�admissible� routes (Prato, 2009). We de�ne route admissibility as in chapter 2 in this thesis,

where we claim that admissible paths should not contain local detours. The rationale behind

this claim is that major route decisions may be a�ected by factors unknown to us, while

minor route decisions follow strict rational rules. Consequently, an admissible path P can

only contain a detour if the detour is longer than δ · length (P ). The constant δ de�nes which

detours are deemed �local�. We illustrate this concept of local optimality in Figure 3.2.

79



The resulting set of admissible paths may still be very large. To limit the number of

admissible paths further, we require that they are not more than a factor γ longer than the

shortest alternative. Furthermore, we focus on �single-via paths�. These are shortest paths

via one arbitrary intermediate destination, respectively. We compute the corresponding set

of admissible paths with the algorithm presented in chapter 2.

After computing the set of paths that agents may choose from, we need to assign the

individual paths with probabilities. We assume that the probability that an agent chooses

a route P is inverse proportional to a power of its length lP . That is, if Pij is the set of

admissible routes from origin i to destination j and λ ≥ 0 a constant, the probability to

choose route P is given by

P(choose routeP | travelling on admissible route) =
l−λP∑

P̃∈Pij
l−λ
P̃

. (3.2)

Though we expect most agents to drive on admissible paths, some agents may choose

routes deemed inadmissible. We account for that possibility by assuming that agents choose

inadmissible routes with a small probability ηc. As these agents could choose any path

through the road network, it is di�cult to estimate the probability to observe such agents

at a speci�c survey location. In the absence of a �good� model and considering that only

few agents choose inadmissible routes, we assume that any survey location could be on any

inadmissible route with probability ηo, respectively. In summary, the probability that an

agent travelling from i to j passes a survey location k is

ρijk = (1− ηc)︸ ︷︷ ︸
prob. to choose
an adm. route

∑
P∈Pij :k∈P︸ ︷︷ ︸
sum over all

adm. routes via k

l−λP∑
P̃∈Pij

l−λ
P̃︸ ︷︷ ︸

prob. to
choose route P

+ ηcηo.︸︷︷︸
prob. to be observed
on inadm. route

(3.3)
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3.2.3 Temporal pattern model

The numbers of agents observed in road-side surveys vary in temporal patterns. Tra�c may

�uctuate in daily, weekly, and seasonal cycles and depend on the survey location, because

agents will reach locations far away from their starting points later than locations close to

their origins. In this study, we focus on daily patterns to keep the model simple. Furthermore,

we assume that the temporal tra�c pattern is independent of the survey location, because

starting time, travel speed, and overnight breaks vary among agents. The complex interplay

of these factors makes it di�cult to model tra�c patterns mechanistically. Therefore, it is

appropriate to use a simple phenomenological tra�c pattern model.

Unimodal cyclic distributions constitute a good �rst approximation to daily tra�c pat-

terns, since tra�c is denser during the day than during the night, in general. A commonly

used unimodal cyclic distribution is the von Mises distribution (Lee, 2010). This distribution

resembles a normal distribution and takes a location parameter, determining the tra�c peak

time, and a scale parameter, controlling how �spiky� the peak is. Other distributions can be

used if tra�c is expected to follow a more complex pattern, but we will proceed with the von

Mises distribution due to its simplicity and intuitive shape.

3.2.4 Compliance model

The number of agents stopping to be surveyed may depend on their origin and destination,

the time of day of the survey, and the setup of the survey location. For example, more agents

may stop if the survey location is clearly visible or if compliance can be enforced. If required,

the compliance rate could be measured for each survey location individually. However, to

keep the model simple, we assume that the probability that an agents chooses to participate

in the survey � and provide complete and correct data � is constant across agents, survey

time, and survey locations.
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Figure 3.3: Overview of the model �tting procedure. The green rectangles depict data; the blue rectangles
depict submodels. The arrows show which components are needed to �t the three submodels, respectively.

3.3 Model �t

In the previous section, we described a hierarchical model for the number of agents observed

in a road-side survey shift. In this section, we show how such survey data can be used to �t

the model.

We �t the four submodels in the order inverse to the hierarchy. That is, we start with

the compliance model and the temporal pattern model, proceed with the route choice model,

and end with the gravity model (see Figure 3.3). Before we describe the �tting procedures

in detail, we give an overview of the data required to �t the model.

3.3.1 Required data

We need �ve data sets to �t our hybrid model: (1) a count data set, (2) a compliance data

set, (3) a survey time data set, (4) a covariate data set, and (5) a graph representation of

the road network with edges weighted by length or travel time. The count data set contains

the start and end time of each survey shift, the respective survey location, and how many

agents were surveyed driving from each origin to each destination. Most of these count values

will be zero, especially if many origin-destination pairs are considered. The compliance data

set contains the total number of agents who passed the survey locations and the number of

agents who participated in the survey and provided complete data. The survey time data
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set encompasses the times of day when agents were surveyed and the start and end times

of the respective survey shifts. The covariate data set contains information related to the

outbound and inbound tra�c volume at origins and destinations. For example, this could be

the population counts for the source locations or the number of close-by tourist attractions

for the destination locations. Lastly, we require a graph representation of the road network

we consider. Roads translate to edges, weighted by the roads' respective lengths or the time

required to drive along the roads. The set of vertices consists of all junctions of the road

network as well as the origins and destinations of the agents. All survey locations, origins,

and destinations must correspond to speci�c vertices or edges in the graph. Collectively, the

�ve data sets are shown by the green rectangles in Figure 3.3.

3.3.2 Fitting the compliance model

The compliance model measures which proportion of agents is expected to stop at a survey

location and to provide complete data. The model can be �tted in a single step by dividing

the number of agents who provided useful data by the total number of agents who passed

the survey locations. However, in some applications, the origin of agents, and thus their

potential of being a vector, can be determined easily once they have stopped for the survey.

This could be done, for example, by using license plate information. In this case, only the

data provided by agents from infested jurisdictions need to be checked for integrity, and the

overall compliance rate ξ may be obtained by estimating the participation rate ξp and the

complete data rate ξc separately.

We compute the rate ξp using count data of how many agents stopped at survey locations

and how many agents passed these locations without stopping. The estimated participation

rate ξp is given by the number of agents who stopped divided by the total number of passing

agents:

ξp =
#agents stopped

#agents stopped + #agents bypassed
. (3.4)
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Similarly, we compute the complete data rate ξc as

ξc =
#high-risk agents providing complete data

#high-risk agents stopped
. (3.5)

The overall compliance rate ξ is the product of the two rates:

ξ = ξpξc. (3.6)

3.3.3 Fitting the temporal pattern model

The temporal pattern model accounts for the temporal variations in the tra�c density. When

we �t this model, we have to take into account that the survey shifts in which the data were

collected do not cover all times of day equally well, in general. For example, if most surveys

were conducted in the morning, our data set would contain a disproportionate number of

agents observed in the morning, even if the true tra�c peak were during the afternoon. To

avoid the resulting bias, we �t our model with a maximum likelihood approach based on

the conditional likelihood, which takes into account when the surveys were conducted. We

provide details in Appendix 3.D.

3.3.4 Fitting the route choice model

The route choice model speci�es the probabilities that agents take speci�c routes. As with

the temporal pattern model, we �t the route choice model based on the conditional likelihood.

Usually, it is infeasible to monitor all potential routes of agents at once, and surveyors have

to focus on a small set of routes. To ensure that our choice of survey locations does not bias

our results, we �t the route choice model by maximizing the likelihood conditional on which

routes we monitored for how long.

There are several practical challenges associated with �tting the route choice model.

These challenges are not only due to the computational complexity of the task but also due
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to identi�ability problems, which could lead to non-informative results. In Appendix 3.D we

provide more details of these challenges and show how the issues can be resolved.

3.3.5 Fitting the gravity model

The gravity model estimates how many agents are driving from each origin to each destination

per time unit. We �t the model by maximizing the composite likelihood (Besag, 1975).

The di�erence with classical likelihood estimation is that we make an approximation via

independence assumptions so as to facilitate straightforward computation.

When we �t the gravity model, we exploit that the number N+
ijkt of surveyed agents is

negative binomially distributed (Villa and Escobar, 2006). This simpli�es the model �t, as

the likelihood function can be written down easily. Nonetheless, computing the likelihood

is computationally costly, because each survey shift yields a count value for each origin-

destination pair. In Appendix 3.D we present an algorithm to speed up the computations by

orders of magnitude.

3.4 Application

In the previous sections, we outlined the hybrid gravity, route choice, temporal pattern, and

compliance model and described how it can be �tted to data. Now we demonstrate our

approach by applying it to the potential invasion of zebra and quagga mussels Dreissena spp.

to the Canadian province British Columbia (BC).

3.4.1 Methods

We �t the hybrid model with survey data collected by the BC Invasive Mussel Defence

Program. The survey data were obtained during 1571 inspection shifts at 31 locations in

BC over the course of the years 2015 and 2016. All shifts were conducted during day time.

As small boats present a lower risk of being fouled by dreissenid mussels, we counted only
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medium to large motorized watercraft (e.g. cabin cruiser, wakeboard boats, speed boats, car

toppers) as potential mussel vectors.

By provincial law, it was mandatory for boaters to stop at the survey locations. Nonethe-

less, not all boaters complied with this provision. We counted the number of bypassing

boaters in 293 of our survey shifts. As it is di�cult to determine the type of bypassing towed

boats precisely, we did not distinguish between boat types when estimating the participa-

tion rate. However, the proportion of boaters providing complete data was determined with

respect to high-risk boaters only.

We identi�ed 5981 potentially boater accessible lakes in British Columbia and considered

them as potential destination points for the boaters. As origins we included the Canadian

provinces and territories and the American states of the North American mainland. We

treated a state or province as potential zebra and quagga mussel donor if either (1) there

was a con�rmed dreissenid mussel detection in a waterbody within the jurisdiction or (2)

if the jurisdiction (2a) had a connected waterway with a dreissenid mussel infested lake in

a neighbouring state or province and (2b) did not have an established dreissenid mussel

monitoring program at the time at the time the data were collected. All remaining source

jurisdictions were used to �t the model but ignored when we assessed potential propagule

transport.

We �tted a gravity model with the population number and number of registered anglers

as proxies for the repulsiveness of donor jurisdictions. To estimate lake attractiveness, we

considered the lake area, the lake perimeter, the presence of marinas, campgrounds, and

other facilities (including public toilets, tourist information, viewpoints, parks, attractions,

and picnic sites) in a 500m range of the lakes, and the population living in 5 km ranges around

the lakes. To measure distances and compute potential routes, we used a road network with

edges weighed based on travel time. We provide further details of the data, including a list

of the data sources, in Appendix 3.C.
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We used a model selection criterion to determine which covariates our model should

include to �t the data well without over�tting. Contrasting the criterion by Akaike (AIC)

and the Bayesian information criterion (BIC), Ghosh and Samanta (2001) point out that

AIC is to be preferred if the goal is to provide precise predictions. Therefore, we chose our

model based on AIC. See Appendix 3.E for a more in-depth discussion of model selection.

Our model candidates incorporated a large number of covariates. Therefore, it was not

feasible to check all possible combinations of covariates, parameters, and functional forms of

the building blocks. Thus, we ignored models with few covariates after noting that they led

to much larger AIC values in general.

To get a sense of the credibility of our parameter estimates and check for identi�ability

issues, we determined con�dence intervals for the model parameters with the method that

will be introduced in chapter 5 (see also our notes on composite likelihood based con�dence

intervals in Appendix 3.E). Furthermore, we tested our base hypotheses on boater counts and

the temporal tra�c pattern and assessed the accuracy of our model. Details can be found in

Appendix 3.G.

3.4.2 Results

In this section, we provide information on the �tted submodels and show results on the

compliance rate, the temporal tra�c distribution, the sources of high-risk boaters, the boater

in�ow to threatened lakes, and the boater tra�c through the road network.

3.4.2.1 Resulting models

The participation rate was estimated to be 80%. That is, only a �fth of the boaters passed

the survey locations without participating in the survey. 93% of the boaters driving to BC

from other jurisdictions provided complete data. The estimated overall compliance rate is

thus 74.4%.
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Figure 3.4: Tra�c pro�le. The line depicts the probability density function modelling the time when boaters
pass survey locations.

Our �tted tra�c pattern model has the tra�c peak at 2 : 00PM. Thereby, the estimated

boater tra�c is about 15 times higher during the peak time than at night. The probability

density function of the temporal pattern model is plotted in Figure 3.4.

The �tted route choice model suggests that boaters have a strong preference for the

shortest route. According to the model, an alternative route only 10% longer than the

shortest route attracts only half as many agents.

The gravity model with minimal AIC value estimates the repulsiveness mi of source

jurisdictions based on their population count and nation. Canadian provinces were weighed

about 15 times as high as American states. The submodel for the lake attractiveness aj

included all available covariates except for the lake perimeter, whereby the presence of a

marina and a large population close to a lake had the highest weight. The travel times between

jurisdictions and recipient lakes had a huge e�ect on the expected numbers of travelling

boaters. Numbers decreased in cubic order of the travel time.

In Appendix 3.F, we provide further details of the �tted model and present parameter

estimates and con�dence intervals.

88



0 1,000500 Kilometers¯

Number of daily high-risk
boater departures to BC

0.00 - 0.01
0.01 - 0.02
0.02 - 0.05
0.05 - 0.10
0.10 - 0.50
0.87
4.01
British Columbia (BC)

Figure 3.5: Potential donor regions of dreissenid mussels. The red shading depicts how many boaters are
estimated to drive from the jurisdictions to BC each day.

3.4.2.2 Propagule transport

Donor regions

According to our model, most of the external boaters driving to BC come from Alberta

(71%) and Washington (19%). However, we did not consider these jurisdictions as potential

propagule donors. The most signi�cant sources of high-risk boaters were Saskatchewan (4.3%

of the total in�ow) and Manitoba (1%). Note that we treated Saskatchewan as a potential

donor of dreissenid mussels even though no dreissenid mussels have been found in the province

to date (see section 3.4.1). In total, the Canadian provinces were contributing more than

three times as many high-risk boaters as the American states. In Figure 3.5, we depict the

respective contributions of the potential donor regions.
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correspond to the respective arrival counts. Subsections of large lakes are treated as separate lakes to allow
for a higher spatial resolution. The letter labels correspond to the three lakes with the highest boater in�ow
(summed over all subsections): (A) Okanagan Lake, (B) Kootenay Lake, (C) Shuswap Lake.
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Boater pressure to lakes

The in�ow of high-risk boaters concentrates on few lakes in BC. The 9 most-frequented lakes

receive 50% of the total high-risk boater pressure; the top 157 lakes receive 90% of the total

high-risk boater pressure. The lakes attracting most high-risk boaters were Okanagan Lake

(received 17% of all high-risk boaters), Kootenay Lake (7.5%), and Shuswap Lake (6%).

These lakes are large and located in the populated southern part of BC. See Figure 3.6 for a

map showing the high-risk boater arrivals for the British Columbian lakes.

Most frequented roads

In Figure 3.7, the high-risk boater tra�c is mapped onto the highway network of BC. The

tra�c concentrates on a small set of major roads accommodating tra�c to clusters of many

or highly attractive lakes. Thereby, the roads crossing the eastern border of BC, in particular

the Trans-Canada Highway, have the highest boater counts.

3.5 Discussion

We presented a hybrid gravity, route choice, temporal pattern, and compliance model to

assess tra�c �ows in realistic continent-sized road networks. The hybrid model can be

used to estimate the agent out�ow of donor regions, the agent tra�c volume on roads,

and the arrival counts of agents at recipients. We provided both a general framework for

building tra�c models based on �eld tra�c survey data as well as a set of directly applicable

submodels. We demonstrated the applicability of our approach by studying the in�ow of

potentially mussel-infested boats to the Canadian province British Columbia.

Combining a gravity, route choice, temporal pattern, and compliance model has two major

advantages: data can be collected and used more e�ciently, and the combined models yield

more information than the submodels individually. First, data collected at few locations in

the road network can be used to draw inference on the tra�c between many origin-destination
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Figure 3.7: Tra�c of potentially infested boats along major British Columbian roads. The colours correspond
to the expected daily numbers of travelling boaters. The roads' lanes are coloured separately to depict the
tra�c in di�erent driving directions.

pairs at once. This makes it possible to assess tra�c even in continent-scale road networks.

Second, neither a gravity model nor a route choice model alone could provide estimates of

how many agents travel along a speci�c road. A model predicting how many agents drive

is required as much as a model predicting where these agents drive. Thus, our combined

approach is more powerful than sequential individual modelling e�orts.

Various data sources have been used to �t gravity models in ecology. However, as will

become apparent below, these data sources have considerable limitations in many scenarios.

Most studies in ecology are based on data gathered in mail-out surveys (e.g. Drake and

Mandrak, 2010; Potapov et al., 2010; Chivers and Leung, 2012). Though this is often the
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easiest method to gather data to parameterize gravity models, mail-out surveys are subject

to signi�cant sampling error, in particular if only few of the surveyed potential travellers

actually start a trip. Furthermore, mail-out surveys can only yield relative tra�c estimates,

unless further data are available to calibrate the model.

In other studies, gravity models are �tted with survey data collected at a small sample of

origin or destination locations (Bossenbroek et al., 2007). Similar to mail-out surveys, these

data are prone to sampling error. In addition, special care has to be taken to ensure that the

sample of origins or destinations is representative. Otherwise, the data will lead to biased

estimates.

In some rare cases, tra�c data can be obtained from booking systems at the destination

locations (Prasad et al., 2010). This data source is among the best possible foundations for

�tting gravity models. However, data from booking systems are often not available, especially

in large-scale systems, in which each destination may cover a large area.

Lastly, some studies in invasion ecology combine a gravity model with an establishment

model, which maps the output of the gravity model to invasion probabilities. Then, the joint

model is �tted to data of the temporal progression of the considered invasion (Bossenbroek

et al., 2001; Leung et al., 2004; Mari et al., 2011). This approach can be taken only if the

invasion has already progressed su�ciently far and the temporal progression of the invasion

is known. Furthermore, this method may not yield concrete estimates of the tra�c �ows, be-

cause some tra�c-related parameters may remain unidenti�able if gravity and establishment

model are �tted simultaneously (Leung et al., 2004). Consequently, a combined gravity and

establishment model is useful only in speci�c cases.

In conclusion, road-side surveys are often better suited for �tting gravity models than

the data sources commonly used to date. The hybrid gravity and route choice model makes

these road-side survey data available for �tting gravity models.

Though the presented model for the transport of propagules or pathogens in large-scale

systems is new, other studies have considered large-scale invasions before (Bossenbroek et al.,
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2007; Mari et al., 2011). These studies reduce the need for survey data by making strong

assumptions on the drivers of repulsiveness and attractiveness. However, the models may

su�er from inaccuracy, since large parts of the models are �tted without survey data. In

fact, errors resulting from the additional assumptions cannot even be measured, because no

data are available to validate the models rigorously. Furthermore, the added assumptions

also decrease model portability (Potapov et al., 2010). Thus, the hybrid model, �tted with

actual survey data, has strong advantages over earlier large-scale models, which were largely

based on strong assumptions without data.

3.5.1 Applications

The primary purpose of the hybrid model presented in this paper is to study the tra�c of

agents potentially carrying propagules or pathogens. If the travel behaviour of these agents

is known, early detection and control actions can be implemented more e�ectively. Thus, the

hybrid model can help managers to control invasions and infectious diseases.

First, the hybrid model can facilitate early detection of invasions and infections by pro-

viding estimates of the number of potentially infested agents arriving at susceptible locations.

These estimates are a valuable proxy for propagule or pathogen pressure and have been used

to estimate invasion or infection risk (Bossenbroek et al., 2001; Prasad et al., 2010; Barrios

et al., 2012). These risk estimates, in turn, could be applied to allocate early detection e�ort

and rapidly deploy resources to the locations that are threatened most.

Second, the hybrid model's estimates of agent tra�c along roads can be used to decrease

invasion or infection risk before infestations occur. For example, invasive species managers in

BC set up watercraft inspection stations on roads to detect and treat mussel-infested trailed

watercraft. Since most long-distance tra�c concentrates on a small number of roads, it is

much more e�cient to apply such control measures on intermediate roads rather than at the

access points of susceptible locations. Our hybrid model could be used to facilitate the choice

of optimal control locations.
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When using the hybrid model to �nd optimal control locations, it is helpful that the

model does not only estimate the agent tra�c at all considered roads but also predicts how

control applied at one road a�ects the remaining propagule or pathogen �ow at other roads.

As a consequence, the hybrid model has the potential to aid management much better than

simple tra�c measurements on roads, the momentarily common method to identify good

control locations.

Besides facilitating management of invasions and infectious diseases, the hybrid model

could also lead to a more comprehensive general understanding of human-aided dispersal

of species. As the hybrid model focuses on agents that have the potential to carry several

invasive species, it would be possible to investigate the dispersal of multiple species with

a single modelling e�ort. The option to incorporate many origin-destination pairs with

relatively low survey e�ort would allow comprehensive studies. This could help ecologists to

gain a deeper understanding of the dispersal of both native and invasive species and to assess

the impact of road tra�c on ecosystems.

3.5.2 Limitations

Since the hybrid model involves four submodels for speci�c agent decisions, it has a con-

siderable level of complexity, which we aimed to reduce by using simple submodels. As a

consequence, some of the proposed submodels may seem unrealistic. Nonetheless, we argue

that the proposed models provide valuable insights despite their limitations.

First, we assumed that the compliance of agents is independent of when and where the

survey is conducted and who is surveyed. However, in particular the survey location can

play a major role for the compliance of agents. For example, more agents may participate in

the survey at a boarder crossing, where they all travellers have to stop. However, we chose

our survey locations carefully with proper signage, and compliance was mandatory. This

decreases the variations of the compliance rates.
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Second, we accounted for temporal tra�c variations with a simple two-parameter model.

Thereby, we ignored weekly and seasonal tra�c patterns and assumed that the temporal

tra�c distribution is independent of the sampling location. In reality, tra�c is likely to

follow more complex patterns. However, even if the �tted temporal tra�c distribution does

not match the data perfectly, the introduced error will be small, unless the model is very

far from the real tra�c pattern. Furthermore, the overdispersion resulting from not properly

modelled weekly and seasonal tra�c patterns is phenomenologically accounted for with the

negative binomial distribution. Therefore, our simple temporal tra�c pattern will yield

generally accurate estimates, even though estimates resulting from a more sophisticated

model could be more precise.

Third, we assumed that agents base their route choices solely on expected travel time,

and we ignored potential issues arising from overlapping admissible routes (Cascetta et al.,

1996). In addition, our noise tra�c model, accounting for agents travelling along inadmissible

paths, allows unrealistic disconnected routes. All these issues could be resolved by using more

sophisticated submodels. However, modelling routing decisions more realistically could make

further data necessary, and the model �t would become computationally harder. We believe

that our route choice model constitutes a good �rst approximation of routing decisions.

Fourth, we made several approximations via independence assumptions. These assump-

tions decrease the meaningfulness of con�dence intervals and model selection criteria (see

Appendix 3.E). Nonetheless, parameter estimates remain unbiased (Lindsay, 1988), while

the gain of computational e�ciency resulting from the independence assumptions is consid-

erable. In fact, accounting for all potential dependencies could make the model �t computa-

tionally infeasible. Therefore, the independence assumptions may be a necessary concession

to computational e�ciency.

The precision of the hybrid model is strongly dependent on how well the available co-

variates describe attractiveness and repulsiveness of origins and destinations. Due to this

limitation, the di�erences between predictions and observations were larger than expected
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for our boater tra�c model (see Appendix 3.G). However, model accuracy is always depen-

dent on the explanatory power of the used data. Therefore, it is unlikely that a di�erent

model based on the same data would yield signi�cantly more precise estimates.

Note that though a more precise model would be desirable, the rigorous model validation

that revealed our model's inaccuracies would have been hardly possible without the com-

prehensive survey data made available through the hybrid approach. For example, mail-out

surveys are typically designed as cross-sectional studies. Solely based on these data, it is dif-

�cult to determine whether di�erences between model predictions and observations are due

to random processes or due to a poorly �tting model. A longitudinal study, such as repeated

collection of count data at road sides, is required to discern between prediction error and

stochasticity inherent to the modelled system.

Given that existing models could not be validated as rigorously as ours, we do not have

evidence that our hybrid model of boater tra�c is less accurate than similar models presented

earlier. Quite the contrary, the hybrid model could make a contribution to reveal hidden

shortcomings of commonly used models.

3.5.3 Future Directions

A strength of our approach is in its �exibility. The model �tting techniques that we presented

in this paper remain applicable if submodels are exchanged or added. Therefore, we hope

that future research will build on this study and develop adjusted and re�ned submodels to

tackle di�erent problems in invasion ecology and epidemiology.

The increased amount of survey data made usable by our approach can also lead to new

methodological results. The newly available survey data may allow modellers to incorporate

more covariates in gravity models and use more e�ective methods to draw inference from the

covariates. For example, machine learning techniques could be used to compute repulsiveness

and attractiveness of origin and destination locations more accurately. This could lead to

tra�c models with a new level of predictive quality.
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Additional data could be used to �t more sophisticated models for compliance, temporal

tra�c patterns, and route choice. Compliance rates could be estimated for each survey

location independently. Furthermore, the conditional likelihood method presented in this

paper could easily be extended to �t a temporal tra�c pattern model accounting for weekly

and seasonal cycles. Alternatively, a gravity model with a temporally variable mean could be

used. Route choice probabilities could be computed based on a variety of route characteristics,

such as the scenery or the number of sights along a route (see e.g. Alivand et al., 2015). With

such improvements, the model could become more accurate.

New and more precise ways of �tting the gravity model could be developed if cell phone

tracking data of agents are available. Such data could not only yield precise measures of

relative count data but also be used to �t a more realistic route choice model, potentially

even without computing admissible routes �rst (Ton et al., 2018). With such improvements,

agent tra�c could be predicted and understood more precisely.

The results on agent �ows computed with the techniques presented in this paper open

new possibilities for optimizing invasion and disease control measures. If agent tra�c �ows

are known, methods from optimal control theory could be used to improve control strategies

and determine locations where control measures are most e�ective. Consequently, this study

provides the prerequisites for a number of highly relevant management problems.
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Appendices

3.A Modelling assumptions

Below we provide a comprehensive list of our modelling assumptions.

1. For each time unit, the number of travelling agents Nij is given by a stochastic gravity

model.

2. Each time unit, the number Nij is drawn from a negative binomial distribution.

Thereby, the numbers Nij and Nkl for origin-destination pairs (k, l) 6= (i, j) are in-

dependent of each other and of the past.

3. The distribution of Nij is independent of the spatial scale at which we consider the

system.

4. Agents choose their routes randomly and independently of each other.

5. Most agents drive along a set of �admissible� routes. This route set should encompass

all �major alternatives� that agents choose from.

6. A route is admissible if it does not contain local detours and is not much longer than

the shortest route from the origin to the destination.

7. The probability to choose an admissible route is inverse proportional to a power of its

length.

8. All agents who are not driving along an admissible route can be observed everywhere

in the route network with the same probability.

9. Agents choose randomly the time of day when they pass a location on their route.
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10. The distribution of the time of day when an agent passes a certain location is indepen-

dent of the location, the origin and destination of the agent, earlier time choices of the

agent, and other agents' timing.

11. The temporal pattern determining when agents pass a survey location is a von Mises

distribution.

12. Agents choose randomly and independently of each other whether or not they partici-

pate in the survey.

13. The compliance rate is independent of the respective agents, the time when they pass

the survey location, and the location of the survey.

3.B Scale-invariant count distributions

A desirable property of spatial models is scale invariance. In the case of gravity models this

means that the distribution of the number of trips starting or arriving at a region i should

not change if we increase the spatial resolution and considered subregions i1 and i2 instead

of i. That is, we require Ni1j +Ni2j
d
= Nij. See �gure A3.1 for a depiction of the considered

scenario.

If the agent counts in the subregions are independent of each other, Poisson random

variables satisfy this condition always. However, independent negative binomial random

variables satisfy this property only if they have the same mean to variance ratio, p = µ
σ2 .

This ratio measures the level of overdispersion of the distribution.

Following the claim that the gravity model is scale invariant and assuming that the

agent counts in subregions are independent, we have to choose the mean to variance ratio p

independently of origins and destinations. Hence, it makes sense to parameterize the negative

binomial distribution in terms of the mean µ and the parameter p. Then, the probability

mass function of Nij reads
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P(Nij = n) =

(
n+ rij − 1

n

)
prij (1− p)n (A3.1)

with rij := p
1−pµij.

Note that scale invariant distributions are also invariant against how locations are pooled

together. Since large regions can be split in smaller regions without changing the cumulative

distribution of the count data, the same applies also when smaller regions are connected to

larger regions. Consequently, origin and destination regions can be chosen based on practical

considerations without the risk of introducing a bias.

The negative binomial distribution can be understood as a Poisson distribution with a

gamma distributed rate. That is, we could write

Nij ∼ Poisson (µijλ) ,

whereby λ is a gamma distributed random variable with mean 1. The random rate λ models

that all agents' travel decisions may depend on common unknown factors, such as weather.

If we hold the mean to variance ratio p constant, this implies that the variance of the rate

V(λ) = cµ−1
ij is inverse proportional to the mean number of travelling agents µij with some

proportionality constant c. This can be interpreted as a phenomenological model for mecha-

nisms that reduce the variance of travelling agents at highly frequented destinations, where

limitations of accommodations and other facilities may play a major role in reducing the

variance of the agent in�ow. If the model did not account for these factors, the model might

predict an exceeding variance for count data from highly frequented locations.

3.C Details of the data

This appendix contains details of the data used in the application section of this study.

101



(a)

i j
N ij

(b)

i1
j

i2

N i1 j

N i2 j

Figure A3.1: Scale invariance property. The total �ow Nij from a source i to a sink j (Panel a) shall not
change if we split the source region into two subregions i1 to i2 and consider the two �ows Ni1j and Ni2j
(Panel b). Thus, Ni1j +Ni2j has the same distribution as Nij .

3.C.1 Data sources

The sources for the data used in this study are displayed in Table A3.1.

3.C.2 Variable spatial resolution

We used data with variable spatial resolution. Often it is hard to �nd or collect data with

high spatial resolution. Similarly, incorporating high-resolution data in models can come

with considerable computational challenges. However, typically, a high spatial resolution is

only required in certain areas of interest. Consequently, it is advisable to use data with a

resolution that is high in the area of interest and low elsewhere.

Following this principle, we used a detailed road data set for BC and a sparse data set for

the rest of Canada and the USA, because all survey locations and all roads of management

interest were located in BC. The sparse road network contained highways only. In total, our

road network consisted of 1.4 million vertices and 1.6 million edges.

To get a better spatial resolution of the boater origins close to BC, we split the province

Alberta into three parts (north, middle, south) and the state Washington into an eastern and

a western part. Some lakes in BC span hundreds of kilometres. This can make it di�cult

to determine the best access routes if the lakes have far-apart access points. Therefore, we
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Data Source URL

Boater Survey Data BC Ministry of
Environment

https://www2.gov.bc.ca/gov/content/invasive-
mussels

Base GIS Data (e.g. road
network, lake data, borders)

BC Ministry of
Environment

https://catalogue.data.gov.bc.ca/dataset

Angler Count Data Canada Department of
Fisheries and Oceans
Canada

www.dfo-mpo.gc.ca/stats/rec/can/2010/
section4-eng.htm

Angler Count Data USA American Sport�shing
Association

asa�shing.org/wp-content/uploads/
Sport�shing_in_America_January_2013.pdf

Population Data Canada Statistics Canada www.statcan.gc.ca/eng/start

Population Data USA U.S. Census Bureau www.census.gov

Locations of Cities
Open Street Map www.openstreetmap.org

Facilities (public toilets,
tourist information,
viewpoints, parks, attractions,
and picnic sites)

Campgrounds
USCAmpgrounds www.uscampgrounds.info

British Columbia
Lodging and
Campgrounds
Association

www.campingrvbc.com/camping/

Marinas Manual web search for
marinas in BC

�

Table A3.1: Data sources.
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checked the access routes to all lakes with a perimeter larger than 100 km and split the lakes

that were accessible via multiple substantially di�erent routes.

3.C.3 Data accuracy

In this section, we discuss the accuracy of the data we used.

3.C.3.1 Survey data

The destinations of some surveyed boaters were not perfectly clear. The surveyed boaters

were asked for their destination waterbodies and close-by cities. As not all lakes in BC have

unique names and cities are rare in some regions of BC, we had to use common sense to

deduce which lakes boaters went to, when the destinations were ambiguous. Thereby, we

took into account the properties (size and available facilities) of the potential destination

lakes and considered where the boaters were surveyed. As the data were unambiguous for

highly frequented lakes, only a small fraction of the data were a�ected by the cleaning step.

Nonetheless, for the lakes that we split due to their large size (see section 3.C.2), some boater

destinations may have been misclassi�ed. Though these errors may result in skewed estimates

of how many boaters use which section of a large lake, the errors should not have a major

a�ect on the arrival estimates for the complete lakes. Clearly inconsistent or incomplete data

were used only to determine the rate at which boaters provide trustworthy and complete

data.

While erroneous and ambiguous data could be reduced by providing agents with a compre-

hensive list of possible destination locations, a second problem arises if surveys are conducted

close to destination regions with multiple access points. A considerable number of agents

accessing these recipients may not pass the survey location if they are using other access

points. Furthermore, the route choice model will be imprecise close to destination points

unless they are not known exactly, which is often not the case. Consequently, data collection
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in direct proximity of destinations with multiple access routes can yield unreliable results.

This issue may also have a�ected our study.

3.C.3.2 Covariate data

As we collected the covariate data from external sources, we do not have speci�c insights

on their accuracy. Note, however, that the angler data we used were collected by di�erent

agencies in Canada and the USA. This can lead to a bias if the classi�cation of anglers is

di�erent in the two countries. We sought to reduce the potential resulting error by including

the nation of source jurisdictions in the model.

3.D Details of the model �t

In this Appendix, we provide details of how to �t the four submodels of the hybrid model

and compute the likelihood functions e�ciently. Furthermore, we outline the likelihood

maximization procedure. Though we describe all important conceptual steps, we do not

provide implementation details.

To make our explanations more understandable, we choose a speci�c time unit for this

appendix. This contrasts with the main text, where we have have formulated our model in

terms of a general time unit and left it up to the modeller to decide whether it is appropriate

to model tra�c as a repetitive process running in daily, weekly, or other cycles. Though we

choose �days� as our time unit for this appendix, all the described methods apply without

further limitations if a di�erent time unit is used instead of days.

Slight adjustments to the presented equations may be necessary if multiple survey shifts

are conducted during one time interval. In this appendix, we assume that at most one survey

shift is conducted at a location per day. If it is possible that multiple, disjoint survey shifts

are conducted in a time interval, the notion of �survey time interval� has to be replaced

by �survey time set�, and the computation of probabilities has to be adjusted accordingly.
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However, these adjustments concern only simple probability calculations and should be clear

from the context.

3.D.1 Fitting the compliance model

No sophisticated techniques are required to determine the compliance rate. To determine the

participation rate, we simply determine the number of surveyed agents and divide it by the

total number of agents passing our survey location. However, as it is typically impossible to

know origin and destination or other properties of bypassing agents, the number of surveyed

boaters should not be �ltered by origins and destination or any other characteristics. Hence,

it is important to record the compliance of agents that may not be of interest, unless these

agents can be clearly distinguished from agents of interest without surveying them.

We proceed similarly to determine the proportion of agents that provide consistent and

complete data. However, the origins of agents can often be determined easily based on license

plate information once the agents have stopped for the survey. Hence, the complete data rate

can be determined focusing on the agents of interest only.

3.D.2 Fitting the temporal pattern model

The temporal pattern model describes the distribution of tra�c over the day. When we �t

this model, we have to recall that our sampling e�ort is not uniformly distributed over all

day times. Therefore, we have to �t the model using the conditional likelihood.

Let Ti be the random variable describing when the i-th agent passes a survey location, and

let
[
tstarti , tendi

]
be the time interval of the survey shift in which agent i was observed. As we

can only observe agents who pass our location while we conduct the survey, Ti ∈
[
tstarti , tendi

]
must hold for all agents i in our data set. Consequently, if fTime is the probability density

function of the temporal pattern model and FTime the respective cumulative density function,
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the likelihood function for our temporal pattern model reads

LTime (θTime) =
∏
i

fTime

(
tobsi |θTime, t

obs
i ∈

[
tstarti , tendi

])
=

∏
i

fTime

(
tobsi |θTime

)
FTime (tendi |θTime)− FTime (tstarti |θTime)

. (A3.2)

Here, tobsi is the time when the i-th agent has been observed, and θTime is the parameter

vector for the temporal pattern.

Since both fTime and FTime are usually easy to evaluate and the computational complexity

is independent of the system size and linear in the number of surveyed agents, no sophisticated

algorithms are required to evaluate and maximize the likelihood.

3.D.3 Fitting the route choice model

In this section, we provide instructions on how to �t the route choice model. We start by

discussing conceptual details before we show how to evaluate the likelihood function e�ciently

by computing and reusing partial results.

We maximize the likelihood of the route choice model in a repeated two step procedure:

�rst, we compute the set of admissible routes that most agents choose from. Then we �t

the submodel that assigns the admissible routes with probabilities. We repeat these steps

with di�erent route admissibility parameters until a model is identi�ed that maximizes the

likelihood approximately.

The need for the two step procedure comes from our distinction between admissible

and inadmissible routes. Whether or not a route is classi�ed as admissible is a yes/no

question. Therefore, the likelihood function is not continuous in the parameters that de�ne

admissibility. As a consequence, classic gradient descent methods cannot be applied to �nd

the best �tting parameters to de�ne route admissibility. In fact, computing admissible routes

is so computationally costly that an exhaustive search for the optimal route admissibility

parameters is often impracticable.
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Below, we will focus on the second step of the two step procedure outlined above. We will

not provide details of how to compute admissible paths, as this is beyond the scope of this

paper. Instead, we refer the interested reader to chapter 2 of this thesis. Throughout this

appendix, we will assume that a suitable set of admissible routes has already been computed

and focus on �tting the submodel that assigns probabilities to routes.

Recall that our survey e�ort is not uniformly distributed over all potential routes in

general. Therefore, we have to consider where, when, and for how long we conducted surveys

on the survey date. To measure the e�ect of survey timing, the temporal pattern model must

be �tted before the route choice model. Similar to the survey timing, the compliance rate

a�ects the route choice model, too, as we will see below. Therefore, the compliance model

must be �tted before the route choice model as well.

If an agent appears in our data set, they must have been surveyed somewhere on the

survey date. Let kobsa be the location where we observed agent a. With the compliance model,

the temporal pattern model, the route choice model, and parameters θRoute to be �tted, we

can determine the probability pobsa (θRoute) to observe agent a in the survey shift conducted at

location kobsa on the observation day. Furthermore, we can compute the probability palla (θRoute)

to observe agent a at some survey location operated on that day. This probability re�ects

the survey e�ort on the day of the observation and takes the lengths of the survey shifts into

account. The quotient pobsa /palla is the probability that we observed the agent at location kobsa

given that the agent was surveyed at some survey location operated that day. Consequently,

the conditional likelihood function reads

LRoute (θRoute) =
∏
a

P
(
survey agent a at location kobsa |θRoute, agent a surveyed on day da

)
=

∏
a

pobsa (θRoute)

palla (θRoute)
. (A3.3)

To compute pobsa and palla , we have to recall the structure of our route choice model. If

agent a is travelling from origin i to destination j, then the probability that agent a passes
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survey location k on their journey is

ρijk = (1− ηc)
∑

P∈Pij :k∈P

l−λP∑
P̃∈Pij

l−λ
P̃

+ ηcηo. (A3.4)

Here, Pij is the set of admissible routes for the source-sink pair (i, j), lP is the length of

path P , and ηc, ηo, and λ are the parameters to be �tted. Recall that ηc is the probability

that an agent chooses an inadmissible path, and ηo is the probability that agents driving on

inadmissible paths are driving via any given location in the road network.

In subsection 3.D.3.1, we will provide details of how equation (A3.4) is related to pobsa

and palla . Furthermore, in subsection 3.D.3.2, we will show how the likelihood function can

be computed e�ciently. Beforehand, however, we have to discuss issues that could result in

non-informative models.

Avoiding dominant noise

Equation (A3.4) includes a noise term accounting for agents not driving on admissible routes.

We assume that these agents choose the locations they pass randomly. If all tra�c were

random (ηc = 1) and all randomly driving agents were driving by all survey locations (ηo = 1),

the probabilities to observe these agents would be maximized. However, with ηc = ηo = 1,

our route choice model would be non-informative and misleading.

To avoid that maximizing the likelihood results in a non-informative model, we need to

integrate additional information. We therefore assume that agents driving on an inadmissible

route have not been surveyed more than once once. This makes models un�t in which agents

drive on zig-zag routes via many survey locations.

We apply this assumption to our survey data only and not for potential model predictions.

That is, the additional assumption does not a�ect our model but how we view our data set.

Since survey locations are often far apart from each other, the additional assumption is

typically true in practice. However, if we surveyed tra�c at locations close to each other,
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the additional assumption could lead to wrong results. Nonetheless, tests with simulated

observation data suggest that the error introduced by this additional assumption is small as

long as only few agents travel on inadmissible routes.

Non-estimability of noise

Even if noise does not dominate the model, our noise model leads to identi�ability issues. Our

route choice model allows us to determine the correct ratio between tra�c along admissible

paths and the random tra�c observed at survey locations. However, our data contain no

information on how many agents are driving on inadmissible routes without passing any

survey location. Therefore, the total share of agents driving on inadmissible routes remains

unknown. Consequently, we can neither estimate the probability ηc that agents choose an

inadmissible path nor the probability ηo that these agents are observed at a survey location.

This issue can be resolved by assuming that most of the tra�c (e.g. 95%) follows admis-

sible paths. We can obtain speci�c estimates of ηc and ηo only if we know the total daily

number of driving agents for some donor-recipient pairs. This number, however, is usually

unknown in large-scale systems.

We argue that it is reasonable to assume that most agents drive on admissible routes,

unless models with a larger noise term �t the data signi�cantly better. We �t our model

constraining ηc ≤ 0.05.

3.D.3.1 Deriving the likelihood function of the route choice model

After providing an overview of the model �tting procedure and potential issues, we proceed

to derive the concrete structure of the likelihood function to be maximized.

Consider an agent a travelling from i to j via survey location k on day d. Let ξ be the

compliance rate, and let τkd be the probability that this agent passes the survey location

while it is operated. The value of τkd depends on the length and the starting time of the

survey shift conducted at location k on day d. As route choice and travel timing are assumed
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to be independent random choices, the probability to survey agent a at k on day d is given

by pobsijkd = ρijkτkdξ. Recall that ρijk is the probability that agent a drives via location k.

As discussed in the previous section, we make an additional assumption on agents trav-

elling on inadmissible routes. Therefore, we cannot apply equation (A3.4) to determine ρijk

when we �t the model. To derive an expression for pobsijkd based on the adjusted ρijk, we start

by considering agents travelling on inadmissible routes. As proposed above, we assume that

such agents in our data set were not observed at more than one survey location. Hence, the

probability that we observed such an agent on day d at location k (and not at any other

operated survey location) is

η̃okd = ξτkdηo
∏

k̄∈Ld:k̄ 6=k

(1− ξτk̄dηo) , (A3.5)

whereby Ld is the set of all survey locations operated on day d. Here,

ξτkdηo = P(survey ã at location k) (A3.6)

1− ξτk̄dηo = P
(
do not survey ã at location k̄

)
(A3.7)

for any agent ã driving on an inadmissible route.

Now let us consider an agent a travelling from i to j on day d on an admissible or

an inadmissible route. Recall that agents choose inadmissible routes with probability ηc.

Consequently, the probability that agent a chooses an admissible route via location k is

(1− ηc)
∑

P∈Pij :k∈P

l−λP∑
P̃∈Pij

l−λ
P̃

and the probability that we surveyed a at k on day d is given by

pobsijkd = ξτkd (1− ηc)
∑

P∈Pij :k∈P

l−λP∑
P̃∈Pij

l−λ
P̃

+ ηcη̃
o
kd. (A3.8)
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After computing pobsijkd, we must determine the probability pallijd to observe an agent trav-

elling from i to j on day d at some location. Note that the distribution of travelling agents

is independent of the day according to our model. The only reason why pallijd depends on d is

that surveys are conducted at di�erent locations and times on di�erent days.

We can split pallijd into

pallijd = (1− ηc) padmijd + ηcp
inadm
d , (A3.9)

whereby padmijd is the probability to observe an agent driving on an admissible route from i to

j on day d, and pinadmd the respective probability for an agent driving along an inadmissible

route. The value of pinadmd is independent of origin and destination of the considered agent.

We �nd padmijd by summing over all admissible paths P ∈ Pij from i to j that go via a

survey location k̃ ∈ Ld that is operated on day d. The probability to choose an admissible

path P ∈ Pij is given by

P(choose path P | driving on an admisible path) =
l−λP∑

P̃∈Pij
l−λ
P̃

. (A3.10)

The probability to observe an agent driving along this path at at least one operated survey

location is

P(survey agent | driving on path P on day d) = 1−
∏

k̄∈Ld:k̄∈P

(1− ξτk̄d) . (A3.11)

Consequently,

padmijd =
∑

P∈Pij :k̃∈P,k̃∈Ld

l−λP∑
P̃∈Pij

l−λ
P̃

1−
∏

k̄∈Ld:k̄∈P

(1− ξτk̄d)

 . (A3.12)
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After �nding padmijd , we need to �nd an expression for pinadmd . This is the probability to

observe an agent driving along an inadmissible path at exactly one of the survey locations

operated on day d (compare with equation (A3.5)):

pinadmd = ηo
∑
k̄∈Ld

ξτk̄d
∏

k̂∈Ld:k̂ 6=k̄

(1− ξτk̂dηo) . (A3.13)

Putting these pieces together we obtain the log-likelihood function

L (θ) =
∏

(ijkd)

pobsijkd (θ)

pallijd (θ)
(A3.14)

with pobsijkd as de�ned in equation (A3.8) and pallijd as de�ned in equation (A3.9) with the terms

given in equations (A3.12) and (A3.13). Our goal is to �nd θ̂ =
(
λ̂, η̂c, η̂o

)
that maximizes

L (θ).

3.D.3.2 Computing the likelihood of the route choice model

During the likelihood maximization, we have to evaluate L (θ) and its derivatives many times.

Computing L (θ) as derived above is expensive, because we have to compute nested products

and sums. In this section, we show how the function can be split to speed up computations.

When we maximize the likelihood L (θ), we consider the log-likelihood lnL (θ) to avoid

numerical instabilities. However, we will work with the original likelihood function here for

notational convenience.
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To evaluate the likelihood function faster, we compute the following expressions �rst:

ΞdP = 1−
∏

k̄∈Ld:k̄∈P

(1− ξτk̄d) , Λnorm
ij (λ) =

1∑
P̃∈Pij

l−λ
P̃

,

Φd (ηo) =
∏
k̄∈Ld

(1− ξτk̄dηo) , Λspec
ijk (λ) =

∑
P∈Pij :k∈P

l−λP ,

Υd (ηo) =
∑
k̄∈Ld

ξτk̄d
1− ηoξτk̄d

, Λall
ijd (λ) =

∑
P∈Pij :k̃∈P,k̃∈Ld

l−λP ΞdP . (A3.15)

With these expressions, we can write

L (λ, ηc, ηo) =
∏

(ijkd)

ξτkd

(
(1− ηc) Λnorm

ij (λ) Λspec
ijk (λ) + ηcηo

1−ηoξτkd
Φd (ηo)

)
(1− ηc) Λnorm

ij (λ) Λall
ijd (λ) + ηcηoΥd (ηo) Φd (ηo)

. (A3.16)

Computing all required values of ΞdP , Φd (ηo), Υd (ηo), Λnorm
ij (λ), Λspec

ijk (λ), and Λall
ijd (λ) before

the likelihood increases the computational e�ciency.

Runtime analysis

To demonstrate how the function split speeds up the likelihood computation, we will now

conduct a runtime analysis. To this end, we de�ne count variables as follows:

nobs: total number of surveyed agents

npairs: number of origin-destination pairs for which we have surveyed at least one agent

ndays: number of survey days

nloc: number of survey locations

npairs/day: average daily number of origin-destination pairs for which we have surveyed at

least one agent

nloc/day: average number of survey locations operated on a survey day
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npaths/pair: average number of admissible routes between an origin and a destination

Let us start the runtime analysis by noting that ΞdP is independent of all parameters

that we are optimizing. Therefore, we can compute ΞdP for all indices d and P be-

fore the optimization. For each survey day, we have to compute ΞdP for all admissible

paths connecting origin-destination pairs for which we have observed an agent. Comput-

ing a single value of ΞdP requires O
(
nloc/day

)
operations. Hence, we can compute ΞdP in

O
(
ndaysnpairs/daynpaths/pairnloc/day

)
. Later, we can access the pre-computed values in e�ec-

tively constant time.

To determine the values of Φd and Υd, we compute a product or sum over all survey

locations operated on each day, respectively. This are O
(
ndaysnloc/day

)
operations.

The normalization constants Λnorm
ij for route choice probabilities must be computed for

each origin-destination pair for which we have surveyed at least one agent. Computing a single

Λnorm
ij value requires us to sum over all paths from the considered origin to the respective

destination. Hence, we require O
(
npairsnpaths/pair

)
operations in total. The same applies to

the computation of Λspec
ijk with the exception that we have to consider a di�erent set of paths

for each observed combination of origin, destination, and survey location. Hence, computing

all the Λspec
ijk values requires O

(
npairsnpaths/pairnloc

)
operations.

To compute the values of Λall
ijd, we conduct operations similar to those for Λspec

ijk . However,

each survey day we may consider a di�erent set of survey locations. Therefore, we need

O
(
ndaysnpairs/daynpaths/pairnloc/day

)
operations.

With all partial results determined, we can compute the likelihood in O(nobs) operations.

We arrive at a �nal runtime of O
(
npairsnpaths/pairnloc + ndaysnpairs/daynpaths/pairnloc/day + nobs

)
,

whereby the second summand is usually dominating. Note that O
(
ndaysnpairs/day

)
is bounded

by O(nobs). Furthermore, npaths/pair and nloc/day are usually moderate numbers that are

independent of the scale of the considered system and do not increase with the sample size.

Thus, it is appropriate to classify the runtime of our algorithm as O(nobs), which is the

sample size.
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3.D.4 Likelihood of the stochastic gravity model

In this section, we �rst state the optimization problem that must be solved to �t the gravity

model to survey data. Then, we describe why this problem is computationally hard. In

the second part of this section, we show how the structure of the likelihood function and the

excess of observed zero counts can be exploited to compute the log-likelihood more e�ciently.

3.D.4.1 Deriving the likelihood function of the stochastic gravity model

We parameterize the negative binomial distribution for a random variable N by

P (N = n) = fNB (n |µ, p) =

(
n+ r (µ, p)− 1

n

)
pr(µ,p) (1− p)n (A3.17)

with r (µ, p) := p
1−pµ. Here, µ = E(N) is the mean of the random variable N , and p = µ

σ2 is

the quotient of mean and variance of N . For convenience, we write fNB (n | r, p) below. The

�tted value of µ can be obtained using the equation µ̂ = 1−p̂
p̂
r̂.

Let Ψ be the set of all considered origin-destination pairs, denoted by (i, j) ∈ Ψ. We

assume that on each day, the number of travelling agents for each origin-destination pair

(i, j) ∈ Ψ is negative binomially distributed with parameters rij and p. The parameter rij

depends on the origin-destination pair (i, j), because we estimate the mean number of trav-

elling agents with a gravity model that depends on the properties of origins and destinations.

The parameter p, however, is assumed to be similar for all origin-destination pairs.

Let us index survey shifts with s ∈ S, whereby S is the set of all survey shifts. Each

survey shift s ∈ S is conducted at a location ks and in a time interval ts =
[
tstarts , tends

]
. Let

ρijks be the probability that an agent travelling from origin i to destination j chooses a path

via location ks. Furthermore, let τs be the probability that an agent travelling via ks passes

the survey location ks during the time interval ts the survey was conducted, and let ξ be

the compliance rate. Lastly, let nijs be the number of agents travelling from i to j who were

surveyed in shift s.
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In our hierarchical stochastic model, the number Nijs of agents travelling between the

origin-destination pair (i, j) ∈ Ψ and observed in shift s ∈ S is distributed as

Nijs ∼ Binomial (Binomial (Binomial (NegativeBinomial (rij, q) , ρijks) , τs) , ξ) . (A3.18)

De�ne p̃ijs := p
p+ρijksτsξ(1−p)

. It can be shown (Villa and Escobar, 2006) that

P(Nijs = nijs) = fNB (nijs | rij, p̃ijs) . (A3.19)

We desire to maximize the likelihood

L (θ) =
∏

(i,j,s)∈Ψ×S

fNB (nijs | rij (θ) , p̃ijs (θ)) , (A3.20)

whereby θ is a vector of parameters.

3.D.4.2 Computing the likelihood of the stochastic gravity model

To compute the likelihood given in equation (A3.20), we have to consider |Ψ| |S| combina-

tions of origin-destination pairs and survey shifts. This is a very large number in general. For

example, in the application section of this paper, we considered about |Ψ| ≈ 3.7 · 105 origin-

destination pairs and |S| ≈ 1600 survey shifts. Though computing fNB (nijs | rij (θ) , p̃ijs (θ))

for all combinations of i, j, and s might be feasible, it takes too much time for a multidi-

mensional optimization. To maximize the likelihood with reasonable e�ort, we would need to

evaluate L within fractions of a second. Below, we present a way to speed up the likelihood

computation.

Given agent counts nijs, the log-likelihood function reads

` (θ) =
∑

(i,j,s)∈Ψ×S

ln fNB (nijs | rij (θ) , p̃ijs (θ)) . (A3.21)
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The probability mass function fNB (nijs | rij (θ) , p̃ijs (θ)) is particularly simple to compute in

two cases: (1) if there is no admissible path from i to j via the survey location ks, and (2) if

nijs = 0. Typically, most of the observations fall in one of these categories. We exploit that

in the following way:

1. We assume that all observations satisfy the criterion (1) or (2), respectively, and com-

pute the log-likelihood under this assumption.

2. We consider all the data for which the assumption above was incorrect and compute

the actual likelihood for these count values.

3. We determine the portion of the likelihood that we computed in step 1 under a wrong

assumption. Then we replace this part of the likelihood with the correct likelihood

computed in step 2.

Before we provide further details, we introduce some helpful notation.

3.D.4.2.1 Some notes on notation

Let Ω = Ψ × S be the set of the indices of all observations. For convenience, we label the

following logical statements as given below:

� Statement �0�: nijs = 0

� Statement �e�: ∃P ∈ Pij : ks ∈ P .

Recall that Pij is the set of all admissible paths from i to j.

To denote that all elements in an index set satisfy a certain logical statement, we attach

a corresponding subscript to the set. For example, Ω0 ⊆ Ω is the subset of Ω for which all

elements satisfy statement �0�:

Ω0 = {(i, j, s) ∈ Ω |nijs = 0} . (A3.22)
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That is, Ω0 contains the indices of zero counts. Similarly,

Ωe = {(i, j, s) ∈ Ω | ∃P ∈ Pij : ks ∈ P} (A3.23)

contains the indices of all counts of agents surveyed at one of their admissible routes. That

is, observations in Ωe do not have to be considered tra�c noise. Instead, these agents were

observed where we expected them. Hence, we labelled the corresponding logical statement

�e� for �expected�.

We can use the same subscript notation to denote intersections, unions, and complements

of sets. Recall that for any logical statements A and B, �¬A� means �not A�, A ∨ B means

�A or B�, and �A ∧ B� means �A and B�. Thus, for example, Ω¬0 = Ω\Ω0, Ω¬e = Ω\Ωe,

Ω0∧e = Ω0 ∩ Ωe, and Ω0∨e = Ω0 ∪ Ωe.

Below, we are going to compute the log-likelihood ` under speci�c assumptions about our

data. To show which data we are considering, respectively, we use a subscript. For example,

`Ωe (θ) =
∑

(i,j,s)∈Ωe

ln fNB (nijs | rij (θ) , p̃ijs (θ)) (A3.24)

denotes the log-likelihood of data with indices in Ωe.

Furthermore, we use a superscript to denote under which assumption we compute the log-

likelihood. For example, if we compute the log-likelihood of all data under the assumption

that we only observed zeros, we write

`0
Ω (θ) =

∑
(i,j,s)∈Ω

ln fNB (0 | rij (θ) , p̃ijs (θ)) . (A3.25)

Note that we iterated over all data here. That is, we included non-zero counts and assumed

(falsely) that they were zero.
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3.D.4.2.2 Splitting the log-likelihood

After introducing the required notation, we now proceed explaining how the log-likelihood

can be computed more e�ciently. Observe that for any logical statement A,

`Ω (θ) = `AΩ (θ)− `AΩ¬A (θ) + `Ω¬A (θ) . (A3.26)

That is, if we compute the log-likelihood under some assumption A, subtract the portion of

this quantity for which the assumption was wrong, and add the correct log-likelihood value

for these data instead, then we obtain the correct log-likelihood value.

Applying this observation and basic set operations, we obtain

`Ω (θ) = `0∧¬e
Ω (θ)− `0∧¬e

Ω¬0∨e (θ) + `Ω¬0∨e (θ) (A3.27)

`0∧¬e
Ω¬0∨e (θ) = `0∧¬e

Ωe (θ) + `0∧¬e
Ω¬0∧¬e (θ) (A3.28)

`Ω¬0∨e (θ) = `Ωe (θ) + `Ω¬0∧¬e (θ) (A3.29)

`Ωe (θ) = `0
Ωe (θ)− `0

Ω¬0∧e (θ) + `Ω¬0∧e (θ) (A3.30)

Inserting these equations into each other yields

`Ω (θ) = `0∧¬e
Ω (θ)−`0∧¬e

Ωe (θ)−`0∧¬e
Ω¬0∧¬e (θ)+`0

Ωe (θ)−`0
Ω¬0∧e (θ)+`Ω¬0∧e (θ)+`Ω¬0∧¬e (θ) . (A3.31)

The likelihood components on the right hand side of equation (A3.31) are easy to compute,

because they have either a simple functional form or consider only a small fraction of our

data. Most of our observations are in Ω0 and/or Ωe.
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3.D.4.2.3 Computing the log-likelihood

To compute the log-likelihood we determine all the individual components of equation (A3.31)

and insert them into the equation. Below, we describe how to compute each of the components

e�ciently.

`0∧¬e
Ω (θ): If none of our survey locations were on any admissible route (statement �¬e�),

then the probability that an agent travels from i to j via a survey location ks is

ρijks = ηcηo, (A3.32)

which is independent of origin, destination, and survey location. It follows that

p̃ijs = p
p+ρijkτs(1−p)

= p
p+ηcηoτs(1−p) = p̃s is independent of the considered source-

sink pair (i, j). If we furthermore assume that no agent has been observed (state-

ment �0�), then the likelihood function is given by

L0∧¬e
Ω (θ) =

∏
s∈S

∏
(i,j)∈Ψ

(
0 + rij (θ)− 1

0

)
(p̃s (θ))rij (1− p̃s (θ))0 , (A3.33)

and the log-likelihood is

`0∧¬e
Ω (θ) =

(∑
s∈S

ln (p̃s (θ))

) ∑
(i,j)∈Ψ

rij (θ)

 . (A3.34)

We can compute this value in O(|S|+ |Ψ|) steps.

`0∧¬e
Ωe

(θ): Let Ψk = {(i, j) ∈ Ψ | ∃P ∈ Pij : k ∈ P} be the set of origin-destination pairs

for which at least one admissible path P ∈ Pij passes survey location k. Let

furthermore r̃k =
∑
ij∈Ψk

rij be the sum of the r-parameters for these pairs. Then it
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is easy to compute

`0∧¬e
Ωe (θ) =

∑
s∈S

r̃ks ln (p̃s (θ)) . (A3.35)

Computing the values of r̃k for all used survey sites before evaluating equation

(A3.35) saves the e�orts of computing the same quantity multiple times. The

worst-case runtime for computing the values of rk is O(|L| |Ψ|), whereby L is the

set of all survey locations. Computing `0∧¬e
Ωe

(θ) runs in O(|S|+ |L| |Ψ|).

`0∧¬e
Ω¬0∧¬e

(θ): The set Ω¬0∧¬e contains the indices of those observations where the agents were

certainly driving along inadmissible routes. As most agents drive along admissible

routes, the set Ω¬0∧¬e is small. Hence, we do not need any optimizations to

compute the value of `0∧¬e
Ω¬0∧¬e

(θ):

`0∧¬e
Ω¬0∧¬e (θ) =

∑
(i,j,s)∈Ω¬0∧¬e

rij ln (p̃ijs (θ)) . (A3.36)

This runs in O(|Ω¬0∧¬e|).

`0
Ωe

(θ): Computing the value of `0
Ωe

(θ) may be the most challenging part of the likelihood

computation, as the set Ωe is large and the likelihood function is not simple.

Therefore, we apply Taylor approximations in νs := ξτs to split the nested sums

into separate sums that can be computed more e�ciently. The approximation

point of the Taylor expansion will be the mean ν̄ := ξ
|S|
∑
s∈S
τs. We get
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`0
Ωe (θ) =

∑
s∈S

∑
(i,j)∈Ψks

rij ln (p̃ijs)

=
∑
s∈S

∑
(i,j)∈Ψks

rij ln

(
p

p+ (1− p) ρijksνs

)
Taylor

expansion ≈
∑
s∈S

∑
(i,j)∈Ψks

rij

(
ln

(
p

p+ (1− p) ρijks ν̄

)
+

M∑
m=1

1

m

(
− (1− p) ρijks (νs − ν̄)

p+ (1− p) ρijks ν̄

)m)

=
∑
s∈S

∑
(i,j)∈Ψks

rij ln

(
p

p+ (1− p) ρijks ν̄

)

+
∑
s∈S

M∑
m=1

1

m
(νs − ν̄)m

∑
(i,j)∈Ψks

rij

(
− (1− p) ρijks

p+ (1− p) ρijks ν̄

)k

=
∑
s∈S

Rks +
∑
s∈S

M∑
m=1

1

m
(νs − ν̄)m R̃ksm (A3.37)

with

Rk =
∑

(i,j)∈Ψk

rij ln

(
p

p+ (1− p) ρijkν̄

)
, (A3.38)

R̃km =
∑

(i,j)∈Ψk

rij

(
− (1− p) ρijk

p+ (1− p) ρijkν̄

)m
. (A3.39)

Note that p and rij, and therefore also p̃ij, Rk, and R̃km depend on θ. The pa-

rameter M determines the precision of the Taylor approximation.

We can estimate the error introduced by the Taylor approximation by consider-

ing the term −(1−p)ρijks (νs−ν̄)

p+(1−p)ρijks ν̄
. Recall that νs, ρijks , and p can be interpreted as

probabilities and are therefore bounded between 0 and 1. Consequently, choosing

ν̄ = 1
2
would imply |νs − ν̄| ≤ 1

2
. In this case,

∣∣∣∣− (1− p) ρijks (νs − ν̄)

p+ (1− p) ρijks ν̄

∣∣∣∣ ≤ (1− p) ρijks ν̄
p+ (1− p) ρijks ν̄

, (A3.40)

which is a function decreasing in p and increasing in ρijks . As p = µ
σ2 > 0, we

know that the full term is less than 1, which in turn guarantees that the series
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converges. Moreover, it is reasonable to assume that the overdispersion is not

extreme and p = µ
σ2 ≥ 1

10
. This would imply that

∣∣∣∣− (1− p) ρijks (νs − ν̄)

p+ (1− p) ρijks ν̄

∣∣∣∣ ≤ 9

11
, (A3.41)

and the error would be bounded by a quantity proportional to 1
M+1

(
9
11

)M+1
. In

practice, the error can be checked by investigating the change in the computed

log-likelihood as M is increased. In our application, the error was small for

M = 3.

To see how the Taylor expansion simpli�es the computation, note that both

Rk and R̃km do not have to be computed for each survey shift s ∈ S but

rather for each used survey location k ∈ L. Therefore, computing these val-

ues runs in O(M |L| |Ψ|). Evaluating the right hand side of equation (A3.37)

runs in O(M |S|). Thus, the Taylor expansion allows us to compute `0
Ωe

(θ) in

O(M |L| |Ψ|+M |S|) instead of O(|Ψ| |S|).

`0
Ω¬0∧e

(θ): As the number of non-zero counts is moderate, so is |Ω¬0∧e|. Therefore, we could

compute `0
Ω¬0∧e

(θ) without further optimizations. However, we compute `0
Ω¬0∧e

(θ)

to reduce `0
Ωe

(θ) by the amount corresponding to the data for which statement

�0� was incorrect. Therefore, we apply the same Taylor approximation as above.

That is,

`0
Ω¬0∧e (θ) =

∑
(i,j,s)∈Ω¬0∧e

rij ln (1− q̃k (θ))

≈
∑

(i,j,s)∈Ω¬0∧e

rij

(
ln

(
p

p+ (1− p) ρijks ν̄

)

+
M∑
m=1

1

m

(
− (1− p) ρijks (νs − ν̄)

p+ (1− p) ρijks ν̄

)m)
. (A3.42)

This computation runs in O(M |Ω¬0∧e|).
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`Ω¬0∧e (θ): The number of non-zero observations is small. Therefore, we can compute

`Ω¬0∧e (θ) directly:

`Ω¬0∧e (θ) =
∑

(i,j,s)∈Ω¬0∧e

ln fNB (nijs | rij (θ) , p̃ijs (θ)) , (A3.43)

which runs in O(|Ω¬0∧e|).

`Ω¬0∧¬e (θ): We have already noted that the set Ω¬0∧¬e of tra�c noise observations is small.

Therefore, we compute `Ω¬0∧¬e (θ) directly:

`Ω¬0∧¬e (θ) :=
∑

(i,j,s)∈Ω¬0∧¬e

ln fNB (nijs | rij (θ) , p̃ijs (θ)) . (A3.44)

This runs in O(|Ω¬0∧¬e|).

In conclusion, we can compute the likelihood in O(M |S|+M |L| |Ψ|+M |Ω¬0|). The set

Ω¬0 contains all those observations that are non-zero and has a size proportional to |S| in

general.

There are more (minor) optimizations that can be applied to compute intermediate terms

independent of θ before the optimization process. We do not list these details here.

3.D.5 Maximizing the likelihood

We apply di�erent optimization techniques consecutively to maximize the likelihood. All

algorithms we used were implemented in the Scipy package �optimize� version 1.0 (Jones

et al., 2001). We started with the �di�erential evolution� algorithm by Storn and Price

(1997), a meta-heuristic global optimization algorithm that does not require an initial guess.

We chose the region of admissible parameters liberally. With the di�erential evolution result

as initial guess, we applied the L-BFGS-G algorithm (Byrd et al., 1995), which proved to be

robust and e�cient even if the result from the genetic algorithm was far from the optimum.

In a next step, we applied sequential least squares programming (Kraft, 1988) due to its high
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e�ciency and �nally a trust-region Newton-Raphson method (Nocedal and Wright, 2006),

which is guaranteed to converge very fast if the initial guess is close to the optimum.

Whenever necessary, we determined derivatives of the likelihood function using algorith-

mic di�erentiation in reverse mode, which is much more e�cient and precise than numerical

di�erentiation. We used the python package �autograd� for this task.

Though some of the optimization algorithms we applied can deal with constraints on

parameters, we enforced constraints with parameter transformations. Let c be a parameter

as it appears in the model, and c̃ the same parameter as used in computations.

� Parameters constrained to be positive were expressed as

c =


exp c̃ if exp c̃ < 0

c̃+ 1 else.

(A3.45)

� Parameters constrained to the interval (0, 1] were expressed as c = 1
π

arctan (c̃) + 1
2
.

This allowed us to avoid numerical instabilities arising when the results are close to the

boundaries.

3.E Model selection and con�dence intervals based on

the composite likelihood

3.E.1 Model selection

We used an information criterion to determine which of our gravity models �ts the data best

without over�tting. The most widely used criteria for model selection (Aho et al., 2014)

are the information criterion by Akaike (AIC, Akaike, 1974) and the Bayesian information

criterion (BIC, Schwarz, 1978). Both AIC and BIC are based on the log-likelihood of the

compared models.
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When working with composite likelihood, as we did to determine the best structure for

the gravity model, AIC and BIC loose their validity (Varin and Vidoni, 2005). However,

the corrected information criterion that Varin and Vidoni (2005) derived for composite like-

lihood models is hard to compute. Furthermore, only a small portion of our data violate

the independence assumption. Therefore, we proceeded using the classical model selection

criteria.

3.E.2 Con�dence intervals

For practical reasons, we computed the con�dence intervals for our parameters (see Tables

A3.2 and A3.3 below) under simplifying assumptions. The �rst simpli�cation is that we

determined the con�dence intervals for each submodel individually. This approach measures

the credibility of the �tted parameters under the assumption that the previously �tted sub-

models are known. However, if all submodels were �tted simultaneously, changes to the

parameters of one model would also a�ect the parameter estimates for the other model.

Consequently, the con�dence intervals would increase. The second simpli�cation is that we

computed the con�dence intervals based on the composite likelihood. Though this does not

bias our parameter estimate, more sophisticated methods would be necessary to determine

the con�dence intervals accurately (Varin, 2008).

Though these limitations decrease the rigorous meaning of the con�dence intervals we

computed, the presented con�dence intervals still provide valuable insights into the levels of

credibility of our estimates, since only small portions of our data are dependent on each other.

Since our primary goal is to estimate propagule pressure rather than building a mechanistic

model, the heuristic nature of the con�dence intervals is su�cient for our purposes.
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3.F Details of the model for the in�ow of potentially

mussel-infested boaters to British Columbia

In this appendix, we provide details of the model that we used to estimate the number of

potentially mussel-infested boats brought to BC. In the �rst section of this appendix, we

describe the speci�c structure of the gravity model. In the second section, we present details

of the �tted model and give parameter estimates along with con�dence intervals.

3.F.1 The structure of the gravity model

The covariates available to �t the gravity model need to be appropriately combined to yield

useful measures of the repulsiveness mi of donor jurisdictions i and the attractiveness aj of

destination lakes j. As described in section 2.1, the speci�c functional form of the gravity

model depends on assumptions on how the covariates interact with each other to make

jurisdictions repulsive or lakes attractive. We list these assumptions below.

We assumed that the nation and the boater count of a jurisdiction act together in yielding

high counts of travelling boaters. As the number of boaters residing in the jurisdictions is

unknown, we tested both population and angler number as proxies for the boater number. For

destination lakes, we assumed that both a su�cient size and presence of tourist facilities are

necessary to attract many boaters. Thereby, the type of the facilities is of minor importance.

We tested both lake area and lake perimeter as measures for the lake size. A list of the

covariates and parameters can be found in Table A3.3.

Connecting all building blocks, we arrived at the following model for the daily mean

number of travelling agents:

µij = c ·
(

popi
popi + pop0

)αpop
· βCAiCA ·

(
Aj

Aj + A0

)αA
·
(

1 + βcampcampj + βfacfacj + βmarmarj + βlpop

(
lpopj

lpopj + lpop0

)αlpop)
· d−αdij . (A3.46)
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3.F.2 Resulting model

Gravity model

The gravity model with minimal AIC value included 8 covariates and 11 parameters. The

parameter values can be found in Table A3.3 along with their con�dence intervals. Since

gravity models are phenomenological models, the parameter values have limited meaning.

Nonetheless, we can make some comparative statements concerning the roles of the di�erent

covariates in our model.

The submodel for the lake attractiveness aj included the covariates lake area, presence of

campgrounds, marinas, and other points of interest, and the population living close to the

lakes. The presence of campgrounds weighed 45% more than the presence of �other facilities�

(public toilets, viewpoints, etc.; see Table A3.3). The presence of a marina, in turn, weighed

more than four times as much as the presence of a campground. An equally important factor

for lake attractiveness was the population close to lakes: 23, 800 persons living in a 5 km

bu�er around the lake were equivalent to the presence of a marina.

The repulsiveness mi of source jurisdictions was estimated based on their population

count and nation. Canadian provinces were weighed about 15 times higher than American

states. The numbers of anglers in the jurisdictions were not included.

The travel times between jurisdictions and recipient lakes had a huge e�ect on the ex-

pected numbers of travelling boaters. Numbers decreased in cubic order of the travel time.

Route choice model

The �tted route choice model suggests that boaters have a strong preference for the shortest

route. According to the model, an alternative route only 10% longer than the shortest route

attracts only half as many agents. The parameters for the best-�tting route choice model

are displayed in Table A3.2.
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Para-

meter

Parameter Explanation Estimate Pro�le CI

γ Maximal stretch of admissible paths 1.4 � �

δ Required local optimality of admissible paths 0.2 � �

ηc Probability to travel on an inadmissible path 0.049 0.013 0.05

ηo Probability to choose a path via a given survey
location if travelling on an inadmissible path

0.062 0.044 0.47

λ Travel time exponent 7.4 6.53 8.29

Table A3.2: Parameters and estimates along with 95% con�dence intervals for the route choice model. As ηc
and ηo are not estimable, we bounded ηc ≤ 0.05 to obtain the �nal parameter estimates. Since the likelihood
function is not continuous in the parameters γ and δ and computing admissible routes is computationally
expensive, we did not construct con�dence intervals for these parameters.

The probability ηc that boaters choose an inadmissible route and the probability ηo that

such boaters drive via a survey location are not estimable: we do not know how many boaters

went along inadmissible routes that were not covered by a survey station. Hence, we cannot

draw inference on tra�c along inadmissible routes (see Appendix 3.D.3).

Temporal pattern model

We used a von Mises distribution stretched over the 24 hours of the day to model temporal

variations in tra�c density. The estimated tra�c peak was at 2 : 00PM with 95% con�dence

interval [1:48PM, 2:20PM]. For the scale parameter, which determines how �spiky� the

tra�c peak is, we obtained a value of 1.34 with con�dence interval [1.11, 1.56]. This implies

that the boater tra�c density during mid-day is about 15 times as high as at night. The

probability density function of the tra�c time model is plotted in Figure 4 in the main text.
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Cova-

riate
Covariate Explanation

Para-

meter
Estimate Pro�le CI

� Scaling factor c 3.73e−8 2.36e−8 5.83e−8

� mean/variance p 0.23 0.21 0.25

popi Population of jurisdiction i [1e6]
pop0 0.16 0.09 0.26

αpop 1 � �

CAi 1 if jurisdiction i is Canadian, else 0 βCA 14.79 12.82 17.15

campj 1 if major campgrounds are present at
lake j, else 0

βcamp 6.55 4.66 9.3

facj 1 if other facilities (toilets, viewpoints,
tourist infos, parks, attractions, picnic
sites) are present at lake j, else 0

βfac 4.51 3.04 6.63

marj 1 if marinas are present at lake j, else
0

βmar 26.4 19.41 36.59

lpopj
Population living closer than 5km to
the lake j [1e3]

βlpop 1011 396 > 6e9

lpop0 888 318 > 1e10

αlpop 1 � �

Aj Area of lake j
[
km2

] A0 1236 1044 1464

αA 1 � �

dij Shortest traveltime between
jurisdiction i and lake j [1e4 min]

αd 3.45 3.35 3.54

Table A3.3: Covariates, parameters, and estimated parameter values along with 95% con�dence intervals for
the best-�tting gravity model. Parameters without con�dence intervals (���) were not part of the model with
the best AIC value and �xed beforehand. Further covariates tested but not included in the model with the
best AIC value were the numbers of anglers in jurisdictions and the lake perimeters. Refer to Appendix 3.H
for a discussion of the large con�dence intervals for βlpop and lpop0.
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Compliance model

The estimated proportion of boaters participating in the survey was 80%. Out of these

boaters, 93% delivered consistent and complete data. The overall rate of boaters providing

useful information was thus 74.4%.

3.G Model validation

In this appendix, we present model validation results and the methods that we applied to

obtain these results. Speci�cally, we con�rm that the distribution choices for our temporal

pattern model (von Mises distribution) and the count data (negative binomial distribution)

are appropriate. Furthermore, we check our model for an overall bias and assess the precision

of the model's predictions. We start with a description of our methods, continue with the

results, and conclude the Appendix with a short discussion of both validation results and

methods.

3.G.1 Methods

Before we start describing our methods in detail, we make a general note on model vali-

dation. In general, it is hard to apply classical hypothesis testing for model validation, as

the distribution of the data under the null hypothesis �model is incorrect� is unknown. We

therefore validate our model by ascertaining that it cannot be rejected on a high con�dence

level. That is, our null hypothesis is �model is correct�, and high p-values indicate that the

test statistic results computed with the data we observed are likely to occur if the model is

correct. Though this method can provide some insights into whether the model is appropri-

ate, the approach does not yield a rigorous measure for the model validity. Therefore, we

also perform validation steps based on graphical comparison.
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3.G.1.1 Homogenized samples

Some of the tests we are about to apply require samples from count data distributions. That

is, we need a set of independent and identically distributed (i.i.d.) observations. Both the

survey location and the survey time a�ect the distribution of count data of observed agents.

Therefore, we will get i.i.d. observations only if we consider count data collected at the same

survey location and during the same time interval.

We generated such samples by considering count data collected in a time interval that

overlapped with many of our observation shifts. We proceeded as follows:

1. We considered all survey shifts that started at 11AM or earlier and ended at 4PM or

later. We neglected all other survey shifts.

2. For each of the above survey shifts, we counted the agents surveyed between 11AM and

4PM.

3. For each survey location, we noted how many survey shifts were considered in step

2. To ensure we had enough data for a meaningful statistical analysis, we neglected

samples with sizes below 20.

3.G.1.2 Shape of the temporal tra�c pattern

In this section, we describe a test to check whether our temporal tra�c model has an appro-

priate shape. We used the von Mises distribution to model the temporal variations of agent

tra�c. This distribution has a speci�c unimodal shape. This shape may di�er signi�cantly

from the observed tra�c pro�le, which may have multiple peaks.

To ensure that the von Mises distribution is appropriate to model the daily tra�c pattern,

we compared it to �tted step function distributions, which do not have a prede�ned shape.

Let Itot = [t0, tn] denote the portion of the day that was covered by at least one survey shift.

A step function distribution splits Itot in n equally sized disjoint intervals I1, . . . , In ⊆ Itot
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with Ii = [ti−1, ti). The probability density function is given by

fstep
(
t
∣∣p1, . . . pn

)
=


p1 if t ∈ I1

...
...

pn if t ∈ In.

(A3.47)

We �tted the parameters pi with a maximum likelihood approach and repeated this pro-

cedure for distributions with di�erent interval numbers n. Then, we compared the resulting

AIC values and probability density functions with the best-�t von Mises distribution. Both

the AIC value and graphical comparison yield insights into whether the von Mises distribution

is appropriate.

3.G.1.3 Distribution of count data

In this section, our goal is to check whether the negative binomial distribution is appropriate

to model the distribution of our count data. To that end, we use the homogenized count

data described in section 3.G.1.1. We have count data xi = {xi1, . . . , xini} for di�erent origin

destination pairs, obtained at di�erent locations. Here, i enumerates all combinations of

origins, destinations and sampling locations for which we have su�cient data. The numbers

ni ∈ N denote the respective sample sizes. Below, we write Xi for the random variable that

xi has been drawn from.

Since we expect that both the sampling location as well as origin and destination a�ect the

count distribution, we need to check that all data come from negative binomial distributions,

i.e. Xi ∼ NB(µi, pi), without assuming that all data come from the same distribution. That

is, µi and pi may di�er dependent on i. In this section, we describe a method to test this

hypothesis.

Famoye (1998) compared the power of di�erent empirical distribution function tests to

test whether observations come from a generalized negative binomial distribution. In their
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simulations, the discrete Anderson-Darling test performed best. The Anderson-Darling test

compares the cumulative mass function (cmf) of a null distribution with its empirical counter-

part generated from the considered sample. Thereby, the Anderson-Darling test puts higher

weight on the tails of the distribution than other comparable tests, like the Kolmogorov-

Smirnov test. If the empirical and the hypothesized cmf di�er signi�cantly, the null hypoth-

esis is rejected.

The distribution of the Anderson-Darling statistic is known for fully speci�ed continu-

ous null distributions. We, however, consider a discrete distribution and do not have prior

knowledge of the parameters. Instead, we are only interested in whether the observed data

come from some negative binomial distribution. To generate the cmf of the null distribu-

tion, which is needed for comparison with the empirical cmf, we would have to estimate the

distribution's parameters �rst. This, in turn, a�ects the distribution of the test statistic.

We are not aware of any result providing a closed-form expression for the distribution of

the Anderson-Darling statistic applied to negative binomial random variables. Therefore, we

determine the p-values for our samples by adjusting the the parametric bootstrap procedure

used by Famoye (1998). Parametric bootstrap methods approximate the distribution of a

test statistic by repeated application of the statistic to samples randomly generated from

the null distribution. Therefore, parametric bootstrap methods are not exact but easy to

implement.

The p-value of a test statistic T applied to a sample xi is the probability to observe T (xi)

if the null hypothesis is true. Consequently, a high p-value indicates that the null distribution

may be appropriate to model the data. Thus it seems reasonable to assume that if the p-

values for all individual samples xi, i ∈ {1, . . . , N}, are large, the null distribution can be

assumed to be a good model for all our count data. This is the main idea of our approach.

Note that since each computed p-value depends on the randomly drawn sample xi, the

p-values itself are random variables as well. To test our count distribution hypothesis on all

N samples, we may check whether the N computed p-values come from the distribution of
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p-values that we would expect under the null hypothesis. By this means, we could summarize

all individual tests in one joint test.

For such a joint test, we need to know the distribution of p-values under the null hypoth-

esis. Since, by construction of the p-value, 80% of the samples randomly drawn from the null

distribution lead to a p-value less than or equal to 0.8, 60% of the samples lead to a p-value

less than or equal to 0.6, and so on, it is intuitive to assume that the p-values follow a uniform

distribution on the interval (0, 1]. This is in fact true for continuous null distributions. For

samples from discrete distributions, however, things are more complicated.

Discrete random variables attain their values with positive probabilities. Hence, the same

applies to samples drawn from this distribution and thus for computed p-values. Suppose,

for example, that we have drawn a sample xi from the null distribution and computed the

p-value φ(xi), say φ(xi) = 1. Then the probability to obtain a p-value of 1 is at least P(xi),

which could be arbitrarily high. In fact, since samples taken from a single distribution are

permutation-invariant, P(φ (Xi) = 1) can attain relatively large numbers in practice. There-

fore, the distribution of φ (Xi) may not even be close to a uniform distribution, and we have

to determine the distribution of φ (Xi) under the null hypothesis before we can test our joint

hypothesis.

We present our overall approach by breaking it down into parts. First, we describe the

parametric bootstrap algorithm we use to compute p-values for a single sample xi. Then, we

show how we estimate the joint distribution of the p-values for all samples x1, . . . , xN . Third,

we describe how a second parametric bootstrap procedure can be applied to compute the

p-value for our joint hypothesis. In a fourth step, we study the distribution of our count data

samples under the null hypothesis and provide computationally e�cient parameter estima-

tors. Fifth, we describe how random numbers can be drawn from the null distribution. We

conclude this section by showing how partial results can be reused to speed up computations

and discussing how the accuracy of the resulting p-value can be determined.
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3.G.1.3.1 Computing p-values with the Anderson-Darling test for a null distri-

bution with unknown parameters

In this subsection, we describe the parametric bootstrap procedure based on Famoye (1998)

that we apply to determine the p-values for the Anderson-Darling tests for individual samples.

Let T (xi, θ) be the function that maps a sample xi to the Anderson-Darling statistic based

on the null distribution with parameters θ. Furthermore, let Θ(xi) be an estimate of the

parameters θ of the null distribution based on sample xi. Let x0 be the sample that we want

to study, n := |x0|, and M1 ∈ N+ be a positive integer. Throughout this Appendix, |A|

denotes the number of entries in a vector or set A.

The parametric bootstrap method works as follows:

1. Use the sample x0 to �nd an estimate θ̂0 := Θ(x0) of the parameters of the null

distribution.

2. Compute the test statistic t0 := T (x0, θ̂0) under the null distribution with the �tted

parameters.

3. Generate M1 samples x̃i, i := 1, . . . ,M1, of size n from the null distribution with

parameters θ̂0.

4. For each generated sample x̃i:

(a) Find an estimate of the parameters θ̂i := Θ(x̃i) based on sample x̃i.

(b) Compute ti := T (x̃i, θ̂i).

5. The approximate p-value is given by the fraction of samples that had an at least equally

large test statistic: φ(x0) := 1
M1
|i : ti ≥ t0|.
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3.G.1.3.2 Determining the null distribution of p-values

To test which distribution of p-values we would expect under the null distribution, we apply

a Monte Carlo simulation. That is, we draw many samples from the null distribution and

determine the respective p-values. Then, we determine the empirical distribution function of

these samples.

Recall that the null-distribution of p-values may be di�erent for each sample xi, because

we do not require that all samples come from the same distribution. Therefore, the true

distribution of p-values is a multi-variate distribution. However, to compute a statistic from

the samples, we have to reduce the dimension somehow. We therefore consider the random

variable Φ resulting from the following random process:

1. Choose i ∈ {1, . . . , N} randomly from a uniform distribution.

2. Set Φ = φ(Xi).

That is, we suppose that Φ assumes p-values from each dimension with the same probability.

To ease the explanation of our method, let us now assume that the parameters θi of the

null distribution for sample i are known, i.e., that the null distribution is fully speci�ed. We

will extend the method to not fully speci�ed null distributions in the next section.

Let x1, . . . , xN be our count data samples, and let ni := |xi| and M2 ∈ N+ be a positive

integer. To determine the distribution of Φ under the null hypothesis, we proceed as follows:

1. For i ∈ {1, . . . , N}:

(a) Given the parameters θi of the null distribution for sample i, draw M2 samples

x̃ij, j := 1, . . . ,M2, of size ni from the null distribution.

(b) Determine φ (x̃ij) as described in section 3.G.1.3.1.

2. The probability mass function f̂Φ of Φ is approximately given by

P(Φ = p) := 1
NM2
|i, j : φ (x̃ij) = p|.
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3.G.1.3.3 Computing the p-values for the joint hypothesis

In the previous subsection, we have shown how the distribution of p-values under the null

hypothesis can be estimated if the null distribution is fully speci�ed. We, however, need to

know the distribution of the p-values if the parameters θ1, . . . , θN are unknown. Therefore,

we have to apply a second level of parametric bootstrap to test the joint hypothesis that all

data come from negative binomial distributions.

Again, let x = (x1, . . . , xN) be our count data samples, and let ni := |xi| and M3 ∈ N+

be a positive integer. Furthermore, let Θ(xi) be the estimate of the parameters θ of the null

distribution based on sample xi, and let T (y, f) be a statistic suitable to test whether sample

y comes from a distribution with probability mass function (pmf) f . We proceed as given

below:

1. For i ∈ {1, . . . , N}:

(a) Find an estimate θ̂i := Θ(xi) of the parameters of the null distribution.

(b) Find the p-value pi := φ (xi) using the method from section 3.G.1.3.1.

2. With θ̂ :=
(
θ̂1, . . . , θ̂N

)
compute f̂Φ as described in section 3.G.1.3.2.

3. With p := (p1, . . . , pN), determine t0 := T (p, f̂Φ).

4. For j ∈ {1, . . . ,M3}:

(a) For i ∈ {1, . . . , N}, draw a sample x̃ij of size ni from the null distribution with

parameters θ̂i.

(b) Compute tj with the steps 1-3 applied to the joint sample x̃j := (x̃1j, . . . , x̃Nj).

5. The approximate p-value for the joint hypothesis is given by the fraction of samples

that had an at least equally large test statistic: φ(x) := 1
NM3
|j : tj ≥ t0|.
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3.G.1.3.4 Estimating the parameters

The procedures outlined above require parameter estimates that �t the observed data well. In

this subsection, we describe how the parameters can be estimated e�ciently based on sample

data. However, as not all samples may contain useful information to test our base hypothesis,

we start by discussing how ignoring non-informative samples could be of advantage.

Samples consisting only of zero-counts do not contain useful information on the distri-

bution family they have been drawn from. Many distribution families have parameters that

make zeros arbitrarily likely. Therefore, we would be unable to determine from which of

these distributions a zero-sample has been drawn from. As a consequence, considering zero-

samples could decrease the power of a test applied to check from which distribution family

samples were drawn. For this reason (and to save computation time), it is bene�cial to

neglect samples consisting of zeros only and to focus on samples with at least one non-zero

observation.

Considering only samples with at least one non-zero observation changes the hypothesized

null distribution. Even if the true distribution yields zero-samples frequently, we will only

consider samples with at least one non-zero observation. We therefore have to adjust our

parameter estimates accordingly.

Our goal is to check whether the negative binomial distribution is appropriate to model

our count data. If we disregard zero-samples, we therefore consider a negative binomial

distribution conditioned such that zero-samples are impossible. In this paper, we call this

distribution the �zero-sample truncated negative binomial distribution� (ZSTNB).

Besides the ZSTNB, we also regard the analogously de�ned �zero-sample truncated Pois-

son distribution� (ZSTP), which is a limiting distribution of the ZSTNB. The ZSTP is im-

portant if parameter estimates for the ZSTNB do not exist. In addition, we use the ZSTP to

check the power of our approach. In this subsection, we focus on deriving estimators for the
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parameters of the ZSTNB and ZSTP, whereas we provide instructions on how to generate

samples from these distributions in the subsection below.

There are di�erent methods to estimate parameters based on a sample of observations.

Commonly used techniques are maximum likelihood estimation and method of moment es-

timation (Casella and Berger, 2002). While maximum likelihood estimators have favourable

statistical properties and are highly e�cient in general, the method of moment estimators are

often easier to compute. Because our testing procedure requires us to estimate parameters

an excessive number of times, we follow Famoye (1998) in estimating parameters with the

method of moments.

The idea behind the method of moments is to compute the moments of a distribution

based on its parameters θ and equate the results with the respective sample moments. Then,

the parameter estimates θ̂ are computed by solving this equation system. For example,

consider a distribution with the parameters θ1 and θ2 and let µS and σ2
S be the sample mean

and variance. The true mean µ and variance σ2 of the distribution can be computed as

functions of the parameters:

µ = gµ (θ1, θ2)

σ2 = gσ2 (θ1, θ2) . (A3.48)

The method of moments parameter estimates θ̂1 and θ̂2 are computed by replacing µ and σ2

on the right hand side of equation system (A3.48) with their respective sample equivalents

µS and σ2
S and solving the system for θ1 and θ2.

Before we proceed, we formalize the notion of zero-sample truncated distributions.

De�nition 3.1. Let Y := (Y1, . . . , Yn) be a random vector consisting of independently and

identically distributed random variables. Then we say thatX := Y
∣∣ (∃i ∈ {1, . . . , n} : Yi 6= 0)

follows a zero-sample truncated distribution.
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Strictly speaking, zero-sample truncated distributions are multivariate distributions, be-

cause the individual sampling resultsXi are not independent of each other. What we regarded

as a sample consisting of multiple identical independent draws before turns out to be a single

draw from a multivariate distribution. Therefore, the distribution does not have a univariate

mean and variance, as would be required for the method of moments.

However, we can still apply the method of moments if we consider quantities analog to the

sample mean and variance in the univariate case. Let X := (X1, . . . , Xn) be a zero-sample

truncated random variable derived from the independent random variables Y := (Y1, . . . , Yn)

with probability mass function (pmf) f , mean µ, and variance σ2 respectively. Our sample

mean µS = 1
n

∑
iXi and sample variance σ2

S = 1
n−1

∑
i (Xi − µS)2 will resemble the mean

and variance of a single entry of X. Therefore, we make the following de�nitions:

De�nition 3.2. We say that f̄(x1) := P(X1 = x1) is the sample pmf and

F̄ (x1) := P(X1 ≤ x1) is the sample cmf.

De�nition 3.3. We say that µ̄ := E(X1) is the expected sample mean, and σ̄2 := V(X1) is

the expected sample variance.

Note that the index �1� used above is not of importance, because the random variables

X1, . . . , Xn are identically distributed and thus exchangeable.

To ease computation of the quantities de�ned above, we make the following observations:

Lemma 3.1. It is f̄(x1) =


f(0)−f(0)n

1−f(0)n
if x1 = 0

f(x1)
1−f(0)n

else.
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Proof. If x1 = 0, then

f̄(0) = P(X1 = 0)

= P
(
Y1 = 0

∣∣∃i ∈ {1, . . . , n} : Yi 6= 0
)

=
P(Y1 = 0 ∧ ∃i ∈ {1, . . . , n} : Yi 6= 0)

1− P(Y = 0)

=
P(Y1 = 0 ∧ ∃i ∈ {2, . . . , n} : Yi 6= 0)

1− P(Y = 0)

=
P(Y1 = 0) (1− P(Y1 = 0)n−1)

1− P(Y1 = 0)n

=
f(0)− f(0)n

1− f(0)n
.

Here, we used that the entries of the vector Y are identically independently distributed.

If x1 6= 0, then ∃i ∈ {1, . . . , n} : Yi 6= 0. Hence,

f̄(x1) = P(X1 = x1)

= P
(
Y1 = x1

∣∣∃i ∈ {1, . . . , n} : Yi 6= 0
)

=
P(Y1 = x1 ∧ ∃i ∈ {1, . . . , n} : Yi 6= 0)

1− P(Y = 0)

=
P(Y1 = x1)

1− P(Y1 = 0)n

=
f(x1)

1− f(0)n
.

This concludes the proof.

Corollary 3.1. It is µ̄ = µ
1−f(0)n

and σ̄2 = σ2+µ2

1−f(0)n
− µ̄2 = σ2

1−f(0)n
− f(0)nµ2

(1−f(0)n)2 .
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Proof. Direct computation yields

µ̄ = E(X1)

=
∑
i∈N+

i
f(i)

1− f(0)n

=
1

1− f(0)n

∑
i∈N+

if(x1)

=
µ

1− f(0)n
.

Similarly, for the expected sample variance,

σ̄2 = E
(
X2

1

)
− µ̄2

=
∑
i∈N+

i2
f(i)

1− f(0)n
− µ̄2

=
1

1− f(0)n

∑
i∈N+

i2f(i)− µ̄2

=
1

1− f(0)n
(
σ2 + µ2

)
− µ̄2

=
σ2

1− f(0)n
− f(0)nµ2

(1− f(0)n)2 .

Now we can apply our general �ndings to �nd method of moments estimators for the

parameters of the ZSTNB and ZSTP. For convenience, we parameterize the negative binomial

distribution with the parameters r and p as described in Appendix 3.D.4.1 (equation (A3.17)).

We start by considering the expected sample mean of the ZSTNB. The negative binomial

distribution has mean µ = r(1−p)
p

and variance σ2 = r(1−p)
p2 . Hence,

µ̄ =
µ

1− f(0)n

=
r (1− p)
p (1− prn)

. (A3.49)
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This is equivalent to

1− prn =
µ

µ̄
. (A3.50)

For the expected sample variance, we get

σ̄2 =
σ2 + µ2

1− prn
− µ̄2

with (A3.50) =
µ̄ (σ2 + µ2)

µ
− µ̄2

= µ̄
1 + r (1− p)

p
− µ̄2, (A3.51)

which is equivalent to

r =
p (σ̄2 + µ̄2)− µ̄

µ̄ (1− p)
. (A3.52)

Inserting (A3.52) in (A3.49) leads after some algebra to

0 =
µ̄

p
− µ̄2prn − σ̄2

with (A3.52) =
µ̄

p
− µ̄2pn

p(σ̄2+µ̄2)−µ̄
µ̄(1−p) − σ̄2, (A3.53)

which can be numerically solved for p if the expected sample mean and variance µ̄ and σ̄2

are replaced with the observed sample mean and variance µS and σ2
S.

It can be shown with basic techniques that equation (A3.53) has at most two zeros in the

interval (0, 1), one of which is pl := µ̄
σ̄2+µ̄2 . However, inserting pl in equation (A3.52) would

lead to an r-estimate of 0. We know that r > 0. Therefore, pl cannot be a valid parameter

estimate. Because r > 0, we also know that the true estimate p̂ must be larger than pl. We

thus can use a simple bisection method to �nd p̂ in the interval (pl, 1). After computing p̂

by this means, we insert p̂ into equation (A3.52) to get our estimate r̂ for the parameter r.
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It is possible that the method of moments estimator p̂ does not exist. This happens if

equation (A3.53) does not have a root in (pl, 1), which is the case if, and only if,

0 > µ̄− µ̄2e
−n
(
σ̄2

µ̄
+µ̄−1

)
− σ̄2. (A3.54)

If this happens, we will assume that the sample came from the ZSTP, which is a limiting

case of the ZSTNB. As we will see below, the methods of moments estimator exists for the

ZSTP in most instances.

We proceed by deriving an estimator for the parameter of the ZSTP. Oftentimes, the

Poisson distribution is directly parameterized by its mean µ. The expected sample mean is

given by

µ̄ =
µ

1− f(0)n

=
µ

1− e−nµ
, (A3.55)

which is equivalent to

µ =
1

n
W
(
−nµ̄e−nµ̄

)
+ µ̄. (A3.56)

Here, W denotes the Lambert W-function, which is the inverse function of h(W ) := WeW .

Packages with e�cient implementations of the Lambert W-function exist for many program-

ming languages. This makes it easy to compute the parameter estimate for µ.

The right hand side of equation (A3.56) assumes a real value if µ̄ > 1
n
. However, if, and

only if, there is exactly one non-zero count value in the sample and this count value is 1, then

µ̄ = 1
n
. In this case, the parameter estimate does not exist, because the sampling result could

be made arbitrarily likely by choosing a very small value for µ. Therefore, we adjust the

procedures outlined in the sections above so that samples with µ̄ = 1
n
always lead to p-values
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of 1. Furthermore, we say that the distribution of p-values based on a null distribution whose

parameters were estimated based on such a sample returns 1 with probability 1.

3.G.1.3.5 Generating random numbers

In this subsection, we describe algorithms to draw random numbers (x1, . . . , xn) form the

ZSTNB and the ZSTP. Drawing numbers from these distributions is a crucial component of

the algorithms described in the subsections above. Though e�cient random number genera-

tors are available for the negative binomial distribution and the Poisson distribution, drawing

numbers from zero-sample truncated distributions is a more complicated task. However, with

a combination of the algorithms given below, samples can be generated with almost the same

e�ciency as samples from the �classical� negative binomial and Poisson distribution.

The naive approach to drawing samples from zero-sample truncated distributions is to

generate samples from the original distribution until a sample with at least one non-zero

entry is obtained. This approach is very e�cient if the probability that the sample consists

of zeros only is small. If f is the pmf of the original function and n is the sample size, then

f(0)n is the probability that the sample consists of zeros only. If this quantity is small, only

few samples have to be generated until a suitable one is found. Therefore, the alternative

approaches below should be applied only if f(0)n is large.

To avoid an excessive number of trials until a suitable sample is found, we propose to

�rst draw the sum xΣ :=
∑n

i=1 xi of all entries of the sample and to determine the values

of the summands afterwards. Recall that xΣ 6= 0 for zero-sample truncated distributions.

For both the negative binomial and the Poisson distribution, the sum of n independent and

identical trials is known to be negative binomially and Poisson distributed as well. Hence,

the distribution of xΣ, which is constrained to be positive, is easy to derive. If fΣ is the

pmf of the random variable YΣ modelling the sum of n independent draws from the original
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distribution and XΣ is the random variable from which xΣ is drawn, then for xΣ 6= 0,

P(XΣ = xΣ) = P
(
YΣ = xΣ

∣∣YΣ 6= 0
)

=
fΣ(xΣ)

fΣ(0)
. (A3.57)

If f(0)n is large, fΣ(xΣ)
fΣ(0)

is usually small, unless xΣ is small. We therefore suggest the following

procedure:

1. Compute a high quantile xmax, e.g. the q = 0.99999 quantile, of YΣ.

2. For 1 ≤ xΣ ≤ xmax, compute P(XΣ = xΣ).

3. Draw an integer xΣ, 1 ≤ xΣ ≤ xmax, according to the probabilities computed above.

Using xmax as upper bound for xΣ introduces a potential error, because for both the negative

binomial and the Poisson distribution arbitrarily high values occur with a positive probability.

However, bounding xΣ makes it easy to apply common random number generators to draw

from a zero-truncated distribution. If a hard boundary for the error introduced by using a

�nite xmax is desired, the quantile q can be chosen as q = f(0) + (1− ε) (1− f(0)). Then, a

value larger than xmax occurs only with probability ε.

After drawing the sum xΣ, we need to determine the individual count values xi. For small

values of xΣ, only few di�erent con�gurations of count values are possible. Each of these

con�gurations has a probability, which can be computed easily. Then, the �nal con�guration

can be drawn according to these probabilities. For large values of xΣ, we propose to use

a Metropolis-Hastings algorithm to determine the �nal con�guration. We provide details

below.

If xΣ = 1, we can just set x1 := 1 and xi := 0 for 2 ≤ i ≤ n. The order of the sample does

not matter in this paper. Therefore, it is appropriate to set the �rst entry to 1 always. If, for

a di�erent application, the order of the entries is important, a random shu�ing algorithm

can be applied to make the ordering unbiased.
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If xΣ = 2, there are two possible con�gurations: 2 entries of 1 or 1 entry of 2 while all

remaining entries of the sample are 0, respectively. The probabilities for these con�gurations

are easy to compute. Since the computations are simple but tedious, we do not present them

here. After the probabilities of the con�gurations have been determined, the con�guration

of the sample is drawn randomly according to the probabilities.

If xΣ = 3, the number of possible con�gurations is still small and the respective proba-

bilities are easy to compute explicitly. As above, we do not present the computations here.

The �nal con�guration is then drawn according to the computed probabilities.

As xΣ ≥ 4 becomes large, the number of possible con�gurations increases quickly. In

practice it happens rarely that xΣ ≥ 4 if f(0)n is large. In fact, often xmax < 4. Nonetheless,

dependent on when f(0)n is considered large, it can indeed happen that xΣ ≥ 4. In this

case, we propose to use a Metropolis-Hastings algorithm to determine the con�guration of

the sample. This algorithm accepts and rejects changes to a given distribution based on the

likelihood ratio of the original and new sample. The algorithm is as follows:

1. Set x := (x1, . . . , xn) to some arbitrary initial condition with
∑n

i=1 xi = xΣ.

2. Randomly draw two distinct indices i, j with 1 ≤ i, j,≤ n, xi 6= 0, and xi 6= xj.

3. Create a copy x′ of x and set x′i := xi − 1 and x′j := xj + 1.

4. Determine P(x′) and P(x).

5. If P(x′) ≥ P(x) set x := x′. Otherwise, set x := x′ with probability P(x′)
P(x)

.

6. Repeat steps 2 to 5 a large number of times.

If a sample from the ZSTP distribution shall be drawn, the process can be replaced by a

simple draw from a multinomial distribution with n bins and uniform probabilities 1
n
.
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3.G.1.3.6 Reusing partial results

The approach outlined above requires us to draw M1M2M3 samples for each count sample

xi, i = 1, . . . , N , and to determine parameter estimates and evaluate the Anderson-Darling

statistic for each of these samples. Hence, the nested parametric bootstrap method is com-

putationally costly. However, computations can be sped up if earlier results are reused.

As the distribution for the samples xi = (xi1, . . . , xini) is permutation-invariant, the only

information that we use is how often each possible count value occurred. That is, if νik :=

|j : xij = k|, then a set νi :=
{

(k, νik)
∣∣νik 6= 0

}
containing all non-zero νik su�ces to describe

xi. Furthermore, each sample xi has a speci�c parameter estimate Θ (xi), statistic value

T (xi,Θ (xi)), and p-value φ (xi) associated to it. Therefore, it is su�cient to compute Θ (xi),

T (xi,Θ (xi)), φ (xi) for each νi only once. This can be implemented e�ciently via hash-maps

with hashes of νik as keys.

Dependent on which partial results are reused, reusing results can lead to precision loss

of the overall algorithm. The quantities Θ (xi) and T (xi,Θ (xi)) are computed with deter-

ministic algorithms. Therefore, reusing these quantities comes with no additional cost. The

p-values φ (xi), however, are computed with a parametric bootstrap technique. Therefore,

reusing these results can lead to an increased variance of the results. Nonetheless, the per-

formance gain obtained from reusing partial results usually outweighs the precision loss. In

fact, since p-values do not have to be computed as frequently if results are reused, a large

valueM1 can be chosen with minor increase in computation time. This usually leads to more

precise results in the end.

3.G.1.3.7 Determining the accuracy of the approach

The nested bootstrap method for testing the distribution of count data is based on frequent

resampling and therefore subject to error. The p-value resulting from the nested bootstrap-

ping is a random variable. The variance of the result can be arbitrarily decreased by choosing
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large sample numbersM1,M2, andM3. Nonetheless, it would be desirable to get an estimate

of the error. We therefore suggest to repeat the procedure M4 times and to determine the

standard deviation of the resulting p-values as measure for the error.

Repeating the procedure also decreases the error further, as the resulting mean value

will be close to the actual p-value than each result individually. Since the nested bootstrap

method is computationally expensive, we chose a moderate M4 = 20 in this paper.

3.G.1.4 Check for model bias

We tested our model for bias with an observed versus predicted regression as described by

Haefner (2005). If the model is accurate, predictions should be close to the observed data.

Hence, all data should be close to a line with slope 1 and intercept 0, when observed data are

plotted against predictions. The test described by Haefner (2005) checks the null hypothesis

�slope = 1 and intercept = 0�. If the model is unbiased, the resulting p-value should be high

so that the null hypothesis cannot be rejected.

The test requires that all predictions follow normal distributions with similar variances.

Therefore, a transformation step was required to make the test applicable to our model. To

obtain normally distributed predictions, we considered sums of identically and independently

distributed (i.i.d.) random variables. These sums are approximately normally distributed

according to the central limit theorem. We generated the sets of i.i.d. random variables

by considering the homogenized count data obtained as described in section 3.G.1.1. We

considered the total number of boaters observed in each shift. Then we proceeded as follows:

1. Using our �tted model and knowing the sample sizes at each survey location, we com-

puted the predicted standard deviation of the count data for each survey location.

2. We normalized the count data so that they had a predicted standard deviation of 1.

3. We normalized our model predictions accordingly.
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4. We applied the method by Haefner (2005) to the normalized observations and predic-

tions and computed the p-value.

We applied the method described above to a validation data set distinct from the data set

used to �t the model. To generate the validation data set, we randomly selected 30% of all

survey shifts. The rest of the data were used to �t the model.

3.G.1.5 Accuracy of the predicted mean boater �ow

In this section, we describe the method we applied to assess the accuracy of our model's

predictions. A commonly used measure for model accuracy is the coe�cient of determination

R2. However, R2 is not applicable in our case, because we assume that the variance of our

count data increases proportional to the respective mean values. That is, R2 would put higher

emphasis on large count data than desired. Furthermore, R2 would provide a measure for the

�absolute� error, while the relative error is often of higher interest to managers. Considering

the relative error, in turn, is hard if the data are dominated by low counts.

Since R2 is not an appropriate measure of accuracy for our model, we conducted a graph-

ical comparison of predicted and observed count values. We determined predicted and ob-

served count values based on our survey set up. That is, our predictions took into account

where and when we conducted surveys. Then we plotted the observed count values against

predicted mean values. Since the model is stochastic, we expect the observed values to de-

viate from the predictions. Nonetheless, the predicted-observed pairs can be expected to be

close to a line with slope 1 and intercept 0 if the model is accurate.

To identify strengths and weaknesses of our model, we conducted the analyses from four

perspectives:

1. To assess the model's ability to predict the �ow between individual origin-destination

pairs, we plotted for each donor-recipient pair the number of observed and predicted

boaters.
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2. To assess the model's ability to determine the repulsiveness of donor jurisdictions, we

plotted observed and predicted boaters for each individual donor jurisdiction.

3. To assess the model's ability to estimate the attractiveness of recipient lakes, we plotted

observed and predicted boaters for each recipient lake.

4. To assess the model's ability to predict the boater �ow along roads, we plotted observed

and predicted boaters for each survey location.

Similar to the check for model bias, we applied the check for model accuracy to a validation

data set distinct from the data set used to �t the model. We tested model accuracy based

on the same validation set used to check the model for an overall bias.

3.G.2 Results

3.G.2.1 Shape of the temporal tra�c pattern

To check whether the von Mises distribution is appropriate to model the temporal tra�c

pattern, we compared the �tted von Mises distribution to step function distributions �tted

to the data. In Figure A3.2, it is visible that the distributions resemble each other in shape.

Besides a graphical comparison, we also compared the distributions based on the model

selection criterion AIC. The AIC values of the distributions were close, though the best step

function model (n = 10) was slightly lower than the von Mises distribution (∆AIC = 2.9).

3.G.2.2 Distribution of count data

We tested whether our count data came from a negative binomial distribution. We obtained

a p-value of 0.27 with standard deviation 0.05. To test the power of our approach, we also

applied the nested parametric bootstrap method to test whether the count data are Poisson

distributed. This hypothesis resulted in a p-value of 0.
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Figure A3.2: Comparison of di�erent step-function distributions with the von Mises distribution. The curves
depict the probability density functions of the best-�t step distributions with n = 5 intervals (blue), n = 10
intervals (orange), n = 15 intervals (green), and the von Mises distribution (red). To ease comparison, all
curves were normalized to be probability distributions on the time interval 7AM till 8PM, for which we have
count data. It is visible that the shapes of the step functions resemble the shape of the von Mises distribution.

3.G.2.3 Check for model bias

The check for model bias resulted in a p-value of 0.22.

3.G.2.4 Accuracy of the predicted mean boater �ow

The observed versus predicted plots that we generated to test the accuracy of our model

are displayed in Figure A3.3. It is visible that our model has di�culties to predict the

number of travelling boaters for separate origin-destination combinations (Figure A3.3a).

There are several jurisdiction-lake pairs for which the observed value is far from the mean

of the estimated distribution. The same applies to the plot displaying the model's ability

to predict the total in�ow to lakes (Figure A3.3d). However, the predicted and observed

values match relatively well for the total out�ow of jurisdictions (Figure A3.3c) and the �ow

through the survey locations (Figure A3.3b).
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(a) (b)

(c) (d)

Figure A3.3: Observed versus predicted count values. The blue dots depict the the predicted mean and the
observed count value of boaters for (A3.3a) each jurisdiction-lake pair, (A3.3b) each survey location, (A3.3c)
each source jurisdiction, and (A3.3d) each recipient lake. If the model were perfect, all points would be close
to the solid line, at which predicted mean and observed value are equal. The predicted stadard deviation is
twice the square root of the respective predicted mean.
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3.G.3 Discussion

3.G.3.1 Methods

Before discussing the main validation results, we discuss the model validation methods that

we applied.

We used a graphical comparison method to check whether the von Mises distribution is

appropriate to model the temporal variations of tra�c. Of course, a more rigorous statistical

test, e.g. the Anderson-Darling test, would have been possible, too. However, since such

tests require identically distributed samples in general, we would not have been able to use

all available data for these tests. Furthermore, statistical tests may be suitable to show

that a hypothesis is wrong, but other methods may be more appropriate to con�rm a null

hypothesis. The observation that distributions without pre-imposed shape mimic the von

Mises distribution is a strong hint suggesting that the von Mises distribution is appropriate

to model temporal tra�c variations.

Our nested parametric bootstrap method for testing whether the count data come from a

negative binomial distribution is computationally expensive and can lead to imprecise results.

However, in simulations (not shown here) the method proved to be powerful in discerning

negative binomially distributed data from data coming from other distributions. This obser-

vation goes in line with the low p-value with which the nested parametric bootstrap showed

that the count data did not come from a Poisson distribution. Though the computational

constraints make it impossible to generate a large number of bootstrap samples, the error of

the method was su�ciently small to allow well-informed inference.

The observed versus predicted analysis that we used to check for model bias is a suitable

method to con�rm that the model is implemented correctly. However, though the method

is able to identify an overall bias in our predictions, the method would be unable to identify

biases in subsets of our data. For example, if our model would underestimate the tra�c to

attractive lakes and overestimate the tra�c to unattractive lakes, the aggregate predictions
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would not show a bias. Therefore, the method cannot be used to measure the accuracy of

our predictions.

The graphical observed versus predicted analysis we conducted to assess the accuracy of

our model is a suitable tool to measure model performance, as it is easy to check which parts of

the model �t the data well and where inaccuracies result from. As an alternative to a graphical

analysis, a nested bootstrap method could be applied to check whether a statistic applied

to the observed data would be likely to return the observed value if the model is correct.

However, given the apparent inaccuracies, which far exceed expected standard deviations, it

is not necessary to apply additional tests to con�rm that the model is inaccurate. Therefore,

we abstained from implementing this computationally expensive validation method.

3.G.3.2 Results

We have checked two main hypotheses our model is based on and validated the accuracy of

the model's predictions. Overall, our test results indicate that the model assumptions are

appropriate. However, the model's predictions turned out to su�er from inaccuracies.

For the temporal tra�c pattern model, the �tted step function distributions resembled

the von Mises distribution and resulted in only slightly better AIC values. This justi�es the

choice of the von Mises distribution to model the temporal tra�c pattern, also considering

that (1) the von Mises distribution has a lower risk of being over�tted to the data, and (2)

the von Mises distribution provides reasonable estimates for night-time tra�c, for which we

have no data. Hence, it is appropriate to model the temporal tra�c pattern with the von

Mises distribution.

For the distribution of the count data, we obtained a relatively high p-value for the null

hypothesis that our data are negative binomially distributed. Even though this does not prove

that the data are negative binomially distributed, this result does not allow us to conclude

the opposite. Since a distribution test with the null hypothesis that the data are Poisson

distributed resulted in a very small p-value, our test appears to be su�ciently powerful to
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reject wrong hypotheses. This supports the negative binomial hypothesis further. Hence, the

negative binomial distribution seems appropriate to model our count data.

Our test for an overall model bias resulted in a moderate p-value. Hence, the null hy-

pothesis that the model yields unbiased results cannot be rejected. Therefore, we have no

reason to believe that the model predictions are subject to an overall bias.

Our comparison of predicted and observed values has shown that our model su�ers from

inaccuracies. As we conducted separate checks for the model's ability to predict the out�ow

of donor jurisdictions and the in�ow to recipient lakes, we can make informed guesses about

which model component is responsible for the errors. Both the temporal pattern model

and the route choice model are likely to a�ect all predictions similarly strongly. If these

model components were the main cause for the inaccuracies, we would see the same level of

inaccuracy on all predicted versus observed plots. However, we observed that our model's

predictions of the out�ow from jurisdictions were much more accurate that the predictions

of the in�ow to jurisdiction lakes (compare Figures A3.3c and A3.3d). The outlier in Figure

A3.3c corresponds to boaters coming from the middle part of Alberta, a neighbouring province

of BC, and may be partially caused by di�culties to determine the origin of boaters on a sub-

provincial scale. Therefore, it is likely that our model's inaccuracies result from its inability

to precisely estimate the attractiveness of lakes rather than from other model components.

We can conclude from the model validation results above that a more accurate model

would require a more sophisticated submodel for lake attractiveness. Improving the other

model components may also enhance the model accuracy but presumably not to the same

extent as an improved gravity model. A more sophisticated model for lake attractiveness,

however, would likely also require more covariates to distinguish between attractive unattrac-

tive lakes. This is a constraint that all models for agent tra�c would face. Therefore, the

limited accuracy of our model does not generally outweigh the methodological advancements

of this study.
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3.H Identi�ability of the parameters βlpop and lpop0

The con�dence intervals for the parameters βlpop and lpop0 given in Table A3.3 are very

large. That is, the correct values of these parameters are not estimable with the data that

we used to �t the model. Often, such estimability issued decrease the credibility of inference

and predictions drawn from a model. However, we argue that though the parameter values

appear to be not estimable, our model and resulting predictions are reliable.

In Figure A3.4, we have plotted the contribution f(x) := βlpop

(
x

x+lpop0

)
of the covariate

�population in a 5 km range of a lake� (here denoted x) to the lake attractiveness for two

extreme parameter choices. It is visible that the contribution curves di�er by no more than

factor 1.5. The di�erence is maximal for lakes with a high surrounding population. Note that

only two of the considered lakes have a surrounding population exceeding 250, 000. These

lakes have a small area and therefore do not attract many boaters. Hence, these lakes do

not contribute to the results signi�cantly. For lakes with surrounding population counts

below 250, 000, in turn, the estimates di�er by no more than 15%. For the middle section of

Okanagan Lake, the only lake section that has both a high surrounding population count and

a large size, the contribution of the surrounding population count to the lake attractiveness

di�ers by less than 5% between the models.

Note that the large range of permissible parameter values suggest that even a model

without the parameter lpop0 could �t the data well. Indeed, the AIC di�erence between the

models with and without this parameter is less than 2, so that both models can be considered

well-�tting. Nonetheless, the model with the additional parameter has the minimal AIC value

and was thus chosen.
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Figure A3.4: Contribution of the covariate �population in a 5 km range of a lake� (in thousand; denoted x)
to the lake attractiveness for two extreme parameter choices. The two functions di�er moderately for large
population counts. The left panel shows a subsection of the right panel. Parameters: solid blue: βlpop = 1011,
lpop0 = 887; dashed orange: lpop0 = 1.182e10, αlpop = 1.186e10.
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Chapter 4

Managing aquatic invasions: optimal locations

and operating times for watercraft inspection sta-

tions

4.1 Introduction

Human tra�c and trade are major vectors for invasive species (Lockwood et al., 2013). Due

to the signi�cant ecological and economic damages invasive species cause (Pimentel et al.,

2005), government regulations restrict the import of certain goods and require treatment of

potentially infested freight and carriers (Shine et al., 2010; Johnson et al., 2017; Turbelin

et al., 2017). While such regulations may be enforced comparatively easily at ports, air

ports, and border crossings, control of inland tra�c is more di�cult, as a vast number of

routes need to be monitored. This applies for example to the spread of zebra and quagga

mussels (Dreissena spp.) and other aquatic invasive species (AIS), which often spread with

watercraft and equipment transported from invaded to uninvaded waterbodies (Johnson et al.,

2001). Zebra and quagga mussels are invasive in North America and have negative e�ects

on native species and ecosystems, water quality, tourism, and infrastructure (Rosaen et al.,

2012; Karatayev et al., 2015b).

To counteract the spread of these AIS, watercraft inspection stations are set up on roads,

where transported watercraft are inspected for AIS and decontaminated if at risk for carrying

AIS (Mangin, 2011; Alberta Environment and Parks Fish and Wildlife Policy, 2015; Inter-
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Ministry Invasive Species Working Group, 2015). However, since budgets for inspections are

limited, not all pathways can be monitored around the clock, and managers need to prioritize

certain locations and day times. Though several theoretical studies provide managers with

helpful guidelines for their work (Leung et al., 2002; Potapov and Lewis, 2008; Potapov et al.,

2008; Vander Zanden and Olden, 2008; Finno� et al., 2010; Hyytiäinen et al., 2013), more

speci�c results are needed in practice to determine the locations and times where and when

control is most e�ective. To date it has been di�cult to tackle these questions rigorously, as

comprehensive models for road tra�c of potential vectors were missing. Therefore, AIS man-

agers have relied on past watercraft inspection data, shared experience between jurisdictions,

and iterative improvements of control policies. The modelling advances made in chapter 3,

however, now permit the application of quantitative methods to optimize control measures

in road networks and to evaluate their e�ectiveness. This will be the subject of this paper.

Our goal will be to minimize the number of boaters reaching uninvaded waterbodies

without being inspected for AIS. Thereby, we will assume that a �xed budget is available

for AIS control. This problem setup di�ers from scenarios considered in other studies on

optimal control of invasive species (Hastings et al., 2006; Potapov and Lewis, 2008; Potapov

et al., 2008; Finno� et al., 2010; Epanchin-Niell and Wilen, 2012), where budget allocation

over time is optimized along with the control actions. However, to optimize the budget,

invasions need to be assigned �cost labels�. This is an often di�cult and politically sensitive

task. Furthermore, the budget available for AIS control may be subject to political and social

in�uences and determined on a di�erent decision hierarchy than the management actions.

Therefore, AIS managers may seek to spend a �xed yearly budget optimally rather than to

determine the theoretically best control budget. The presence of �xed budget constraints

also reduces the need to consider the invasion as a dynamic process.

Identifying the locations where a maximal number of boaters could be screened for AIS

is similar to the problem of �nding optimal locations for road-side infrastructure (Trullols

et al., 2010). A well-known technique to solve such problems is linear integer programming
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(Conforti et al., 2014). The idea is to model the optimization problem with functions linear in

the decision variables. Though solving linear integer programs is a computationally di�cult

task in general, good approximate solutions can often be determined, and a variety of software

tools are available to compute solutions. Therefore, linear integer programming has also been

used in the context of invasive species management (Epanchin-Niell and Wilen, 2012; K�b�³

and Büyüktahtak�n, 2017).

A crucial step in linear integer optimization is to �nd a problem formulation that facili-

tates good approximations (Ageev and Sviridenko, 2004). In this paper, we provide such a

formulation to optimize locations and operating times of watercraft inspection stations. This

problem di�ers from comparable resource allocation problems (Surkov et al., 2008; Trullols

et al., 2010), as we need to account for the temporal variations in tra�c. These variations

are key when we consider the trade-o� between operating few inspection stations intensely,

e.g. around the clock, and distributing resources over many locations operated at peak tra�c

times only.

We demonstrate the potential of our approach by applying it to optimize watercraft

inspection policies for the Canadian province British Columbia (BC). We show how uncer-

tainty, di�erent cost constraints, and additional propagule sources impact the optimal policy.

Thereby, we identify control principles applicable beyond the considered scenario.

This paper is structured as follows: we start by introducing model components required

to optimize watercraft inspection station operation. Then, we show how the considered

optimization task can be formulated as linear integer problem. Thereby, we focus �rst solely

on inspection station placement before we introduce the full problem, in which also operating

times of inspection stations are optimized. After this general description of our approach, we

apply the method to AIS management in BC and present results under di�erent scenarios.

Lastly, we discuss our results and the limitations of our approach and draw general conclusions

on AIS management.
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Figure 4.1: Components of our approach. The control model determines how the tra�c estimated by the
tra�c model changes under a given control policy. The cost model yields the costs for control actions. The
optimizer maximizes the controlled tra�c subject to a cost constraint.

4.2 Method

4.2.1 Model

Our goal is to identify how limited resources can be allocated most e�ectively to minimize the

number of boaters arriving at uninvaded waterbodies without being inspected for AIS. We

assume that two aspects of the control strategy can be changed: the locations and operating

times of watercraft inspection stations. As tra�c typically follows cyclic patterns, we consider

one such cycle as the time horizon for the control optimization.

To �nd an optimal inspection policy, we need three models (see Figure 4.1): (1) a model

for boater tra�c, (2) a model for control, and (3) a model for control costs. The tra�c model

gives us estimates of when, where, and along which routes boaters travel. The control model

shows us when and where inspections could be conducted and how e�ective they are. Lastly,

the cost model measures the costs for inspections. The information from the three models

serve as input for a control optimizer that determines a good � or, if possible, the best �

watercraft inspection strategy. Below, we describe each of the models in greater detail before

we introduce suitable optimization routines in the next section.

4.2.1.1 Tra�c model

The tra�c model provides estimates of when, where, and along which routes boaters drive.

Knowledge about routes is key to understanding whether boaters passing one control location
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have already been inspected at another location. For each considered route, the tra�c model

provides us with a tra�c estimate. In this study, we use the hybrid gravity and route choice

model from chapter 3 to estimate the tra�c. The model includes components accounting for

boaters' travel incentive, their route choice, the timing of tra�c, and boaters' compliance

with inspections.

In practice it is rarely feasible to consider all routes that boaters could possibly take,

and we need to focus on some set of �reasonable� routes (Bovy, 2009; see also chapter 2).

As a consequence, there may be some agents travelling along unexpected routes. When

boaters travelling along such routes arrive at inspection locations, we do not know whether

their watercraft have been inspected earlier. This makes it di�cult to optimize inspection

strategies. Nonetheless, we may want to account for these boaters by introducing a �noise�

term to our model. To that end, we assume that a fraction of the travelling boaters could be

observed at any inspection location with a small probability (see chapter 3).

As road tra�c is rarely uniform over time, we furthermore need a submodel predicting

how tra�c varies with time. While it may be comparatively easy to determine the tempo-

ral distribution of tra�c at a speci�c location, it can be di�cult to identify the temporal

relationship between tra�c at two locations on the same route. For example, agents passing

one location in the morning may not be able to reach another location before the afternoon.

Modelling such relationships is particularly di�cult for locations far from each other, as

boaters may have di�erent travel speeds. We therefore apply a simpli�cation and assume all

boaters travelling along a route have the same speed.

4.2.1.2 Control model

We assume that there is a speci�c set of locations where watercraft inspections could be

conducted. For example, these locations could be pullouts large enough to provide a safe

environment for inspections. We suppose that compliant boaters stop for an inspection

whenever they pass an operated inspection station. Conversely, uncompliant boaters are
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assumed to bypass any inspection station on their route. Consequently, we seek to maximize

the number of boaters that pass at least one operated watercraft inspection.

As with the inspection locations, we assume that there are speci�c time intervals when

inspection can be conducted. The admissible time intervals may be determined by safety

concerns or practical considerations and can be location dependent. As sta� cannot move

between distant inspection locations easily, and the working hours of inspection sta� are

subject to legal and practical constraints, we may furthermore assume that every inspection

station can be operated in shifts of given lengths only.

4.2.1.3 Cost model

Inspection costs may be split in two classes: infrastructure costs that apply once for each

chosen inspection location, and operational costs, which depend on when and for how long

an inspection station is operated. The operational costs may also account for ongoing equip-

ment maintenance costs and training of sta�. The control costs may be location and time

dependent. For example, it may be expensive to conduct inspections at remote locations if

sta� must travel long distances to their work place. Furthermore, some locations will require

signi�cantly more infrastructure costs (e.g. lighting and washrooms) in order to operate

overnight shifts. In addition, wages are often higher in overnight shifts.

4.2.2 Optimizing control locations

With the submodels from the previous section at hand, we can proceed optimizing the in-

spection strategy. Optimizing both locations and operating times of watercraft inspection

stations at the same time is conceptually and computationally challenging. To ease the

introduction of our approach, we �rst consider a scenario in which inspection stations are

operational around the clock. In this case, we can ignore the temporal variations of tra�c

and focus on choosing optimal control locations (cf. Trullols et al., 2010).
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In this section, we show how the corresponding optimization problem can be formulated

as a linear integer problem. To that end, we let L be the set of all admissible inspection

locations and introduce for each location l ∈ L a binary variable xl that assumes the value 1

if and only if an inspection station is set up at l. Let R be the set of potential routes that

boaters may choose, nr the expected number of complying boaters travelling along route

r ∈ R, and Lr ⊆ L the set of locations where the boaters travelling on route r could be

inspected.

As noted earlier, one inspection station su�ces to control all complying boaters driving

along a route r. Consequently, boaters travelling on route r will be controlled if and only if

∑
l∈Lr

xl ≥ 1. (4.1)

Otherwise, the left hand side of equation (4.1) will be 0. Therefore, we can express the total

number of inspected boaters by

Floc(x) :=
∑
r∈R

min

{
1,
∑
l∈Lr

xl

}
nr. (4.2)

To formulate the cost constraint, let cl be the cost for operating control location l ∈ L

and B the available budget. As we assume that all inspection stations are operated for the

same time, we do not need to distinguish between infrastructure and operation costs. Hence,

we can write the cost constraint as

∑
l∈L

clxl ≤ B. (4.3)

The optimal placement policy can be identi�ed by maximizing Floc(x) over all x ∈ {0, 1}|L|

subject to constraint (4.3). Though Floc contains a �minimum� function, Floc can be easily

transformed to a linear function by introducing further variables and linear inequality con-

straints (see e.g. Ageev and Sviridenko, 1999). Since the left hand side of the cost constraint
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(4.3) is linear in x as well, and x is constrained to be a vector of integers, the considered

optimization problem is a linear integer problem. This can be solved with a suitable general

linear integer programming solver or a speci�cally tailored rounding algorithm (Ageev and

Sviridenko, 2004). We discuss possible optimization routines in section 4.2.5.

4.2.3 Optimizing control locations and timing

After focusing on inspection station placement, we now extend our approach to permit free

choice of inspection station operating times. In this extended scenario, we need to balance the

trade-o� between operating few highly frequented inspection stations around the clock and

distributing e�orts over many locations operated at peak tra�c times only. This trade-o�

makes combined optimization of location choice and timing more challenging than separate

optimization of location choice and timing (cf. Epanchin-Niell and Wilen, 2012).

While location choice is a discrete optimization problem � each potential inspection lo-

cation is either chosen or not � optimization of operating times is a continuous problem,

since inspections could be started at any time. To exploit the toolset of discrete optimization

anyway, we simplify our problem by discretizing time. That is, we split the boater traf-

�c corresponding to boaters' departure times and consider only discrete sets of admissible

inspection shifts.

Let T be a set of disjunct time intervals covering the complete time span of interest. We

write nrt for the expected number of boaters who travel on route r ∈ R, start their journey

in time interval t ∈ T , and are willing to comply with inspections. Let furthermore Sl be

the set of admissible inspection shifts for location l ∈ L. Each shift corresponds to a time

interval in which the inspection station is operated. Since the shift lengths are given, the set

Sl can be fully characterized by the shifts' start times.

As we assume that all boaters travelling along a route have the same speed, we can

determine the set Slrt ⊆ Sl of control shifts during which boaters who started their journey

in time interval t ∈ T arrive at location l ∈ L via route r ∈ R. Under reasonable error
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allowance, it is usually possible to construct the sets Slrt in a way that each shift covers the

departure time intervals either completely or not at all, respectively. This setup prevents

issues arising if some intervals overlap only partially.

To formulate our optimization problem as linear integer problem, we describe the control

policy again with binary variables xls ∈ {0, 1}. Here, xls is 1 if and only if an inspection

station at location l ∈ L is operated in shift s ∈ Slrs. Agents travelling on route r ∈ R who

departed in time interval t ∈ T are controlled if and only if

∑
l∈Lr

∑
s∈Slrt

xls ≥ 1. (4.4)

Consequently, the total controlled agent �ow is given by

Ffull(x) :=
∑
r∈R

∑
t∈T

min

{
1,
∑
l∈Lr

∑
s∈Slrt

xls

}
nrt. (4.5)

To derive the cost constraint, recall that we distinguish between infrastructure costs cloc
l

for using location l and operating costs cshift
ls payable per control shift s conducted at l.

Consequently, the total costs for control at l are given by

∑
s∈Sl

cshift
ls xls + cloc

l max
r∈R, t∈T

(∑
s∈Slrt

xls

)
, (4.6)

and the cost constraint reads

∑
l∈L

(∑
s∈Sl

cshift
ls xls + cloc

l max
r∈R, t∈T

(∑
s∈Slrt

xls

))
≤ B. (4.7)

As in the previous section, B denotes the available budget. Optimizing Ffull subject to (4.7)

is a linear integer problem, since the �minimum� term in (4.5) and the �maximum� terms in

(4.7) can be replaced by introducing correspondingly constrained variables.
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4.2.4 Noise

Even if the tra�c model accounts for most routes boaters use, some boaters may travel along

unexpected routes. It is di�cult to optimize inspection station operation with regards to these

boaters, as we do not know which inspection stations cover the same routes. Nonetheless, it

can be desirable to account for noise, since the level of uncertainty may a�ect the optimal

inspection policy.

In the absence of a mechanistic model for tra�c noise, we may assume that boaters

who are travelling on unexpected routes are passing any inspection location with a small

probability ηo, whereby they choose the passing time randomly. Under this assumption, the

expected number of inspected boaters travelling along unknown routes is given by

Fnoise =

(
1−

∏
l∈L

(
1− ηo

∑
s∈Sl

xlsτsl

))
nnoise. (4.8)

Here, nnoise denotes the expected number of boaters travelling on unknown routes.

As Fnoise is not a convex function, adding this noise term to the objective function would

make optimization di�cult. However, as η0 is typically small, equation (4.8) is well approxi-

mated by

F̂noise = ηonnoise

∑
l∈L

∑
s∈Sl

xlsτsl, (4.9)

which is linear and can thus be easily added to the linear integer problem. This approximation

is most precise if xls = 0 for most l and s. If the budget is high enough to operate many

inspection stations for long times, the noise may be overestimated. However, since nnoise

is typically small compared to the total boater tra�c, inaccuracies in the noise model are

unlikely to alter the overall optimization results signi�cantly.
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4.2.5 Solving the optimization problems

Having derived the problem formulation in the previous sections, we now proceed by dis-

cussing suitable solution methods. The inspection station placement problem described in

section 4.2.2 is equivalent to the budgeted maximum coverage problem (Khuller et al., 1999),

also called maximum coverage problem with knapsack constraint (Ageev and Sviridenko,

2004). This problem is well studied in computing science, and it has been shown that �nd-

ing a solution better than factor (1− e−1) of the optimum is an NP-hard, often infeasibly

di�cult, problem (Feige, 1998). This result applies also to the extended problem introduced

in section 4.2.3, as it is more general than the placement problem. Though these theoretical

results show that scenarios exist in which the problems considered in this paper cannot be

solved exactly within reasonable time, good approximate or even optimal solutions can often

be obtained in practical applications.

When seeking a good solution, we can exploit that the linear integer formulation of our

problem helps us to obtain upper and lower bounds to solutions e�ciently. Consider a slightly

changed optimization problem in which the management variables x are not constrained to

be integers but drawn from the continuous domain [0, 1]N . Here, N is the dimension of the

problem. In this case, the problems can be solved with linear programming techniques within

seconds even if N is large. Clearly, the integer domain {0, 1}N is a subset of the continuous

domain [0, 1]N . Therefore, the solution to the problem with relaxed integer constraint is an

upper bound to the desired integer solution.

Often it is possible to obtain good integer solutions by rounding the solution to the con-

tinuous problem. Ageev and Sviridenko (2004) present an algorithm that always achieves

the approximation bound (1− e−1) for the inspection station placement problem, in which

operating times are �xed. Nonetheless, general solvers with possibly poorer worst-case per-

formance may yield better solutions in �benign� cases. A number of generally applicable

methods exist (Conforti et al., 2014). In this study, we use branch and bound methods, in
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which the distance between upper and lower bounds on the optimal objective are found by

solving continuously relaxed subproblems with some constrained variables.

A challenge that general solvers face is to �nd a good initial feasible solution that they can

improve on. For the pure inspection station placement problem, we could apply the rounding

algorithm by Ageev and Sviridenko (2004), which would also guarantee us the best approx-

imation bound. However, for the joint optimization of both placement and operating times

of watercraft inspection station, we are not aware of any algorithm with such a guarantee.

We therefore propose a �greedy� rounding algorithm to obtain good initial solutions. The

idea is to solve the relaxed linear programming problem and to determine the largest non-

integer decision variable that can be rounded up without violating the cost constraint. We

applied this procedure with some improvements described in Appendix 4.A. In applications,

we consistently obtained solutions better than 80% of the optimum with this approach.

4.3 Application

To show the potential of our approach, we applied it to optimize watercraft inspections in the

Canadian province British Columbia (BC). Below we provide an overview of the scenario-

speci�c submodels we used. Furthermore, we brie�y describe our implementation of the

presented approach.

4.3.1 Scenario-speci�c submodels

4.3.1.1 Tra�c model

To model boater tra�c, we used the hierarchical gravity and route choice model for boater

tra�c developed in chapter 3. The model was �tted to data collected at British Columbian

watercraft inspection stations in the years 2015 and 2016. At the time this study was con-

ducted, dreissenid mussels were not known to be established anywhere in BC. As sources of

potentially infested boaters, we therefore considered the Canadian provinces and American
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states that (1) were known to be invaded by dreissenid mussels or (2) had connected water-

way to an infested jurisdiction and no coordinated mussel detection program in place at the

time the data were collected. As sinks we identi�ed 5981 potentially boater accessible lakes

in BC.

To estimate the boater tra�c between an origin and destination, the model considered

characteristics of the donor jurisdiction, the recipient lake, and the distance between the two.

Major sources of high-risk boaters were characterized by high population counts. Further-

more, Canadian provinces were found to have higher boater tra�c to BC than American

states. Attractiveness of destination lakes increased with their surface area, the population

counts of surrounding towns and cities, and the availability of close-by touristic facilities,

such as campgrounds. Lastly, the boater �ow was estimated to decay in cubic order of the

distance between an origin and a destination. For a detailed description of the model along

with precise parameter estimates, refer to chapter 3.

To identify potential boater pathways, we computed locally optimal routes (see chapter

2) between the considered origins and destinations. These routes arise if routing decisions

on local scales are rational and based on simple criteria (here: minimizing travel time)

whereas unknown factors may a�ect routing decisions on larger scales. Consequently, the

model accounts for routes arising from a multitude of mechanisms. The attractiveness of the

routes was computed based on their length measured in travel time. Again, a more in-depth

description of the model and the �tted parameter values can be found in chapter 3.

The fraction of boaters travelling on routes not covered by our tra�c model was estimated

as 4.9%. However, this number is not estimable from survey data obtained at watercraft

inspection stations, because it is negatively correlated with the parameter ηo (section 4.2.4),

denoting the probability to observe a boater travelling on an unknown route at an arbitrary

inspection location. Therefore, we introduced an additional model assumption bounding the

noise term below 5% (see chapter 3). Note that due to the dependency of ηo on the noise

level, the estimability issue has little e�ect on the noise level observed at watercraft inspection
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stations and thus on inspection policy. Based on a noise level of 4.9%, ηo was estimated as

0.06 (chapter 3).

The temporal distribution of tra�c was modelled with a von Mises distribution. This is

a unimodal circular distribution often used in models (Lee, 2010). The temporal pattern was

assumed to have a period of one day. The tra�c high was estimated to be at 2PM, whereby

the estimated peak tra�c was 15 times higher than the estimated tra�c volume at night. As

tra�c data were available for speci�c inspection locations only, we assume that the temporal

tra�c distribution is uniform over all locations.

Assuming an equal temporal tra�c distribution for all potential inspection locations

makes it di�cult to account for the time boaters need to travel between two sites. This,

is a model limitation but not of major concern in the considered scenario of boater tra�c to

BC. First, note that we seek locations that are not on the same pathway. If boaters do not

pass multiple operated inspection locations, we are safe to neglect the travel time between

sites. Furthermore, we can exploit that the considered boater origins are located outside

of the province and boaters drive, with minor exceptions, along highways in one particular

direction. Consequently, the temporal tra�c distribution of close-by locations on such a

highway would be equal up to a shifting term, and the optimized inspection times could be

adjusted accordingly.

4.3.1.2 Control model

As described in section 4.2.1.2, we assume that every complying boater passing an operated

inspection location is inspected for invasive mussels. The compliance rate across all inspection

stations was estimated to be 80% (chapter 3). To �nd potentially suitable locations for

inspections, we identi�ed pullouts across BC. We reduced the number of possible options by

disregarding some pullouts in close proximity to others. In total, we considered 249 location

candidates.
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Due to the large number of location candidates, we did not conduct a detailed evaluation

of the operational suitability of all considered locations (e.g. pullout size, signage, and

safety). Instead, we consulted with the BC Invasive Mussel Defence Program to gauge the

general suitability of the locations suggested by the optimizer. If a suggested location seemed

unsuitable, we removed it from the candidate set and repeated the optimization procedure.

Despite this super�cial suitability check, a more detailed analysis would be necessary to

account for all potential practical constraints. These must be considered independent of the

model before an inspection station can be placed.

For each location, we assumed that 8 h long inspection shifts could be started at each full

hour of the day. Note that �shift� here refers to the time inspections are conducted and does

not include time required for sta� to access or set up an inspection station. The work time of

sta� will therefore be longer in practice. The assumed length of the inspection shifts aligns

with average operation patterns of watercraft inspection stations in BC and divides each day

in three equally sized shifts, which simpli�es the model. Though the e�ective operation time

(limited by access time of sta�) is lower at remote locations, our time model provides a good

�rst approximation.

4.3.1.3 Cost model

We determined the inspection costs based on correspondence with the BC Invasive Mussel

Defence Program. The considered optimization problem is often easier to solve if costs are

rounded to well aligned cost units. Therefore, we set the infrastructure costs for setting up

an inspection station as our base cost unit. The costs per conducted inspection shift are then

3.5 units during day-time hours and 5.5 units between 9 PM and 5 AM. These costs include

salary, training, and equipment for inspection sta�. In 2017, the BC Invasive Mussel Defence

Program was operating on a budget of approximately 80 cost units.

As in-depth location-speci�c cost analysis would have been di�cult, we assumed that

the inspection costs are equal for all considered locations. Note, however, that site speci�c
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costs can vary signi�cantly and may be a limitation when assessing a location for overnight

operations.

4.3.2 Implementation

As we considered about 300, 000 origin-destination pairs connected by 6.7 routes on average,

considering all boater pathways individually would be di�cult. Therefore, we merged tra�c

of boaters passing the same sets of potential inspection locations. As a result, the number of

distinct boater �ows reduced to 2026.

We determined the optimal inspection locations and operating times under di�erent bud-

get scenarios. This allowed us to determine the budget required to minimize the fraction of

uninspected high-risk boaters to a desired level. We also varied the model's noise term to test

how inspection strategies change under increased uncertainty. To see how new infestations

in close-by jurisdictions change the inspection policy, we furthermore considered a scenario

in which the American states Idaho, Wyoming, and Oregon are invaded.

We implemented the model in the high-level programming language Python version 3.7.

To formulate the linear integer problem, we used the modelling software CVXPY version

1.0.25 with added support for initial guesses. To solve the linear integer problem, we used the

commercial solver MOSEK. We computed initial guesses with the greedy rounding procedure

described in section 4.2.5. We let the solver terminate if a solution with guaranteed accuracy

of 99.5% was found or if 50 minutes had passed. We conducted the computations on a Linux

server with a 20 core Intel Xeon 640 E5-2689 CPU (3.1GHz per CPU) and with 512GB RAM.

4.4 Results

In 72% of the considered scenarios, we were able to identify a solution with the desired

accuracy of 99.5%. In the remaining cases, the guaranteed solution quality never fell below

92%; in scenarios with budgets B ≥ 25 units, we could always identify solutions with 98%

accuracy and above. The greedy algorithm used to compute an initial guess provided a
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Figure 4.2: Optimal locations and operation shifts for three di�erent budget scenarios. Most inspection
stations are placed close to the British Columbian border. The markers depict the optimal inspection locations
for each scenario. Green (triangle): optimal locations with a budget of 25 units; blue (square) 50 unit budget;
red (circle) 100 unit budget. The number of markers stacked on top of each other corresponds to the optimal
numbers of inspection shifts. The darkness of the roads show the estimated boater tra�c volume. The hollow
circles depict the considered candidates for inspection locations.

solution with 99.5% accuracy in 58% of the considered cases. The initial guesses always had

a quality above 90%.

Figure 4.2 displays the optimized locations and operating times for watercraft inspection

stations in the considered model scenario. We depict the respective optimal policy under

three di�erent budget constraints. The optimal locations for inspections are located close to

border crossings if suitable locations are available. However, where the tra�c through many

border crossings merges on a major highway (e.g. in the Vancouver metropolitan area), it is

optimal to place the inspection stations farther inland.

Figure 4.3 depicts characteristics of the optimal inspection stations in di�erent scenarios.

The expected tra�c volume at an inspection station coincides with the optimized operating
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Figure 4.3: Characteristics of the optimized inspection stations in scenarios with (a) di�erent budget con-
straints, and (b) di�erent levels of uncertainty. Additional budget is preferably spent on additional inspection
locations rather than longer operating hours. Increased uncertainty results in resources being distributed over
more locations at cost of decreasing operating hours. Overall, however, uncertainty does not have a strong
e�ect on the inspection policy. Each marker corresponds to an inspection station. The position of a marker
depicts the daily tra�c volume expected at the location and the fraction of daily tra�c covered under the
optimal operation policy (compliance supposed). The �noise level� denotes the fraction ηc of boaters travel-
ling on routes not covered by the route choice model. Note that the noise level also a�ects the daily tra�c
volume at the inspection locations.

times: stations with high expected boater tra�c are operated longer than stations with

lower tra�c. If the budget is increased, some stations are assigned longer operating times.

However, larger portions of the additional budget are spent on additional locations (see also

Figure 4.2). If the uncertainty in the tra�c predictions increases, more inspection stations

are set up at the cost of shorter operations. Overall, however, the noise level has little e�ect

on the inspection policy.

Optimizing inspection station operation under a range of di�erent budget allowances

showed that a moderate inspection budget, corresponding to about half the 2017 BC inspec-

tion budget, su�ces to inspect half of the incoming high-risk boaters (Figure 4.4). However,

the resources required for inspections increase quickly if more boaters shall be controlled.

Thereby, the faction of inspected boaters is limited by boaters' compliance with inspections.

The considered change in the invasion state of three American states had only a moderate

impact on inspection policy. The results are depicted in Appendix 4.B. As the additional
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Figure 4.4: Inspection e�ectiveness dependent on the budget constraint (a) and price per inspected high-risk
boater dependent on the proportion of inspected boaters (b). While a large fraction of high-risk boaters can
be covered with moderate e�ort, inspecting all complying boaters is costly. Panel (a) shows the expected
fraction of incoming high-risk boaters that can be inspected under the optimal policy. The dotted line shows
the level of complying boaters, which is the maximal fraction of boaters that can be inspected.

propagule sources were located south of BC, the inspection e�ort increased at the southern

border under the optimal policy. Furthermore, the optimal policy contained less overnight

inspections and distributed resources more evenly across inspection stations.

4.5 Discussion

We presented a method to optimize placement and operating times of watercraft inspection

stations. The approach is suited to model management scenarios on a detailed level and

gives speci�c advice for management actions. We applied our approach to invasive mussel

management in BC and investigated the impact of budget constraints, model uncertainty,

and potential future invasions on management actions and e�ciency. However, it must be

recognized that our model did not account for all critical operational factors, such as site

safety. Nonetheless, the presented results provide valuable insights into optimal management

of AIS when combined with critical operational factors.

Most of our results are consistent with common sense. In general, it is optimal to inspect

boaters as soon as they enter the managed region. That way, waterbodies close to the border
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can be protected. If multiple routes via di�erent border crossings merge close to the border,

it can be optimal to inspect boaters after this merging point. Inspections stations should

operate longer at locations with high tra�c volume. Furthermore, uncertainty in tra�c

predictions increases the bene�t of spreading the inspection e�orts over many locations.

Driven by these simple principles, our results were remarkably robust throughout considered

scenarios and agree well with the watercraft inspection policy currently implemented in BC.

While these qualitative principles may seem obvious, it can be challenging to identify

quantitative de�nitions of terms like �close to the border� and �longer�. The di�culty in

optimizing management policies is in balancing trade-o�s, such as between leaving some

waterbodies close to the border unprotected and maximizing the overall number of inspected

boaters, or between long-time operation of few highly frequented inspection stations and

distribution of resources over many locations. As the approach proposed in this paper is

suited to account for these trade-o�s, it is a valuable extension to earlier more theoretical

results on AIS management (Potapov and Lewis, 2008; Potapov et al., 2008; Finno� et al.,

2010).

Considering scenarios with di�erent budget constraints allowed us to investigate the trade-

o� between resources invested in AIS control and the number of inspected high-risk boaters.

In combination with the expected monetary damage caused by the arrival of an uncontrolled

boater at an uninvaded lake, this trade-o� curve can be used to identify the optimal budget for

inspections. Since both invasion risk and damages due to invasions are di�cult to quantify, a

rigorous computation of the optimal inspection budget may not always be feasible in practice.

Nonetheless, the cost-e�ectiveness curve provides an estimate of the e�cacy of control e�orts

and shows which budget is required to achieve a certain management goal.

In the case of AIS control in BC, a moderate budget su�ces to inspect a signi�cant

portion of the incoming high-risk boaters. This is because boater tra�c in BC concentrates

on a small number of major highways. Nevertheless, an attempt to inspect all high-risk

boaters would be very costly, as many minor roads would have to be considered as well. It
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could therefore be more cost-e�ective to implement measures to increase the compliance of

boaters, e.g. through additional road signs or public outreach and education.

We see particular use of our approach in its potential to optimize rapid response actions

under scenarios of interest. The extended invasion scenario considered in this paper shows

that slight adjustments to the inspection policy may su�ce to react on the new conditions.

In a similar manner, our approach could be used to assess the bene�t from cross-border

collaborations, in which inspection e�orts are combined to control the boater in�ow to a

large joint area. Due to the �exibility of our model, managers can consider a variety of

scenarios at little cost.

4.5.1 Limitations and possible extensions

The accuracy of our approach in real-world applications is strongly dependent on the accuracy

and level of detail of the utilized data and models. Therefore, the results should be combined

with expert knowledge and re�ned iteratively if necessary. Nonetheless, our approach can be

extended to account for many management constraints and is thus a helpful tool to optimize

inspection policies.

Limitations exist with respect to the considered objective function. Though the number

of potentially infested watercraft arriving at a waterbody is a valuable proxy for invasion risk,

the establishment probability of dreissenid mussels is not linear in propagule pressure (Leung

et al., 2004). Hence, our approach is not suited to minimize invasion risk directly. However,

high-dimensional non-convex optimization problems are di�cult to solve, and minimizing a

proxy for invasion risk may thus be the better option in practice. Nonetheless, signi�cant

realism could be added by considering the suitability of the destination waterbodies as habitat

for AIS. This could be done by weighting boater �ows di�erently dependent on the invasion

risk of the destination waterbodies.

Since our tra�c model does not explicitly account for the time boaters need to travel

between locations, the optimized inspection station operating times may have to be adjusted
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to local temporal tra�c patterns. Though this shortage in model realism could a�ect the

results signi�cantly if boaters pass multiple inspection stations under the optimal policy,

optimal inspection locations are often on independent routes. In the scenario considered in

this study, the optimized operating times were all centered around the tra�c peak. This

indicates that interactions between locations did not a�ect the operating times and the error

due to the simplifying model assumption is small.

Another modelling challenge is to account for uncertainty appropriately. The noise model

used in this study is a non-informative null model that treats all potential inspection locations

equally. As more boater tra�c may be expected at major highways than at minor roads, the

noise model could be improved by incorporating location-dependent covariates. However,

since our results were not very sensitive to the noise level, a realistic noise model might not

change the optimal policy signi�cantly.

Our model did not incorporate site-speci�c costs and operational constraints. In high-

budget scenarios, this let our model suggest overnight inspections at remote sites that are

lacking the required infrastructure to safely operate at night. Requirements for overnight

inspections include proper road infrastructure (lanes/barriers), lighting, access to safe com-

munication and nearby living accommodations for sta�. A lack of living accommodations for

sta� can also limit the number of sta� based in remote locations. These constraints could be

incorporated in a more detailed model as well as increased costs at remote locations. A more

detailed model could also account for inspection stations operated by neighbouring jurisdic-

tions. As an example, the BC program works closely with the Canadian Border Services

Agency and neighbouring provinces and states to receive advanced noti�cations of high risk

watercraft destined for BC. Nonetheless, the presented model includes major factors a�ecting

inspection station operation. Therefore, the model can serve as a helpful resource to inform

managers' decisions in parallel with operational constraints.

Another potential extension of our model is to incorporate location-speci�c or

management-dependent compliance rates. At certain sites, such as cross-national border
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crossings, compliance can be enforced more easily than at other locations. Compliance may

furthermore depend on management e�orts: it may be possible to increase the compliance

rate of boaters at some costs. In Appendix 4.C, we show how non-uniform and �exible

compliance rates can be considered with small model adjustments.

The computational method we used to optimize inspection station operation is well es-

tablished and builds on a large body of theoretical insights (Ageev and Sviridenko, 2004;

Conforti et al., 2014). Nonetheless, the problem is computational di�cult, and there may be

scenarios in which linear integer solvers fail to provide good solutions. Optimization failures

are most prevalent in scenarios in which portions of the budget remain unused under the

optimal policy or in which many boaters pass multiple inspection stations under optimized

operation. In both cases, the solution to the continuous relaxation of the problem may di�er

signi�cantly from the integer solution.

However, issues due to unused budget become minor if the considered budget is su�ciently

large. Furthermore, the issue may be mitigated by adjusting the budget slightly. Issues

with redundant inspection stations, in turn, are unlikely to occur if the propagule donors

and recipients are in separate regions. Then, independent inspection locations can often

be identi�ed. This is often the case if invasion processes are considered on large scales.

Therefore, our approach will yield good results in most applications. We provide more details

in Appendix 4.D.

4.5.2 General conclusions for invasive species management

In this paper, we considered speci�c management scenarios with focus of AIS control in

BC. Nonetheless, some common patterns were consistent throughout our results and may

thus apply with greater generality. These principles may be used as rules of thumb if no

comprehensive modelling and optimization e�ort is possible. Below we summarize these

conclusions.
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� Inspection stations should be placed close to the border of the uninfested region. Con-

sequently, cross-border collaborations between uninvaded jurisdictions have a high po-

tential of improving the cost-e�ectiveness of control.

� If tra�c �ows merge close to the border, inspections are more cost-e�ective after the

merging point. Hence, identifying such points is crucial for successful management.

� If tra�c predictions involve a high level of uncertainty, inspection e�orts should be

distributed over many locations at the cost lower inspection e�ort at each site.

� If a high reduction of the propagule in�ow is desired, it may be most cost-e�ective

to implement measures increasing the compliance rate rather than operating more

inspection stations for longer hours.
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Appendices

4.A Greedy rounding algorithm

In this Appendix, we describe the greedy rounding algorithm we applied to obtain initial

guesses for the general branch and bound solvers. We start by introducing some helpful

notation. Let P be the linear integer problem that we desire to solve and Pcont its continuous

relaxation, in which decision variables may attain fractional values. We write x for the N -

dimensional vector of decision variables, indexed by (l, s) ∈ L × S. Let els be a unit vector

that is 0 everywhere except for the component corresponding to the index (l, s). Suppose

that C(x) denotes the cost for implementing a policy given by x. We provide pseudo code

for the greedy rounding algorithm in Algorithm A4.1.

The algorithm repeatedly solves the relaxed problem Pcont with di�erent constraints �xing

some decision variables to integer values. The algorithm proceeds in two phases. In the �rst

phase, the maximal non-integral decision variable that can be rounded up without violating

the budget constraint is determined. With this variable �xed, problem Pcont is solved again.

When no additional component can be rounded up without violating the cost constraint,

all previous constraints are removed, and the set of utilized locations is �xed instead. The

algorithm sets a �ag locked to True to show that the second phase of the algorithm has

started.

In the second phase, components of x are still rounded up if possible. However, now we

do not round up the largest non-integral component of x. Instead, we determine for some

location l ∈ L with non-integral operation (i.e. ∃s̃ ∈ Sl : xls̃ /∈ {0, 1}) the �rst time interval

t := minargmax
t∈T

{∑
s∈Slt

xls

∣∣∣∣∣xls < 1∀s ∈ Slt

}
(A4.1)
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that is operated strongest at this location. Here, minargmax {·} refers to the minimal ad-

missible value for argmax {·} if the maximum is not unique. Then, we round up the latest

a�ordable shift s ∈ Sl that covers the time interval t and add xls = 1 to the set of constraints.

If no additional shift can be operated at location l, we add a constraint �xing the usage of

this location: xls = bxlsc for all s ∈ Sl.

Distinguishing between the two phases of the algorithm yields optimized operating times.

Suppose we are in phase 2, and consider the example depicted in Figure A4.2. The solution

to the relaxed problem Pcont suggests that 3 inspection shifts s1, s2, and s3 are conducted

fractionally at the considered location l. Thereby, s2 overlaps with s1 and s3. The respective

operation intensities are xls1 = xls3 = 0.8 and xls2 = 0.2. The budget assigned to this location

does not su�ce to operate both s1 and s3 completely. Hence, only one shift can be operated

at l. Naive greedy rounding would suggest to operate shift s1, as it is the earliest shift

with the maximal fractional operation. However, in the optimal solution, the time interval

between 8 AM and 4 PM should be operated strongest. Therefore, shift s2 would be the

optimal choice.

In its second phase, the suggested algorithm rounds up shifts based on the maximal

cumulative operation rather than choosing the shift with the highest operation variable.

Nonetheless, it would be of disadvantage to apply this rounding scheme in phase 1 of the

algorithm, in which the set of used locations is not �xed. In this case, shifts in the middle of

the day would always be chosen with preference, which make operation of two shifts on a day

less e�cient. In the second phase, it is typically known how many shifts should be operated

at each location.

Slight improvements to the suggested algorithm are possible. For example, we added

constraints in phase 1 to suppress fractional operation of shifts that would not be a�ordable

completely under the costs of the already constrained variables. However, this improvement

is unlikely to have a major e�ect on the results.
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Algorithm A4.1: Greedy rounding algorithm.

1 Function lock_location(x̃, l, Θ):

2 foreach s ∈ Sl do
3 Θ := Θ ∪ {xls = x̃ls};

4 locked := False; Θ := ∅;
5 while True do

6 x := solution to Pcont subject to additional constraints in Θ;

7 if x ∈ ZN then

8 return x;

9 x̃ := bxc;
10 Ω := {(l, s) ∈ L× S | 0 < xls < 1; C(x̃+ els) ≤ B};
11 if Ω = ∅ then
12 if not locked then

13 locked := True; Θ := ∅;
14 foreach l ∈ L with max

s∈Sl
xls = 1 do

15 Θ := Θ ∪ {max
s∈Sl

xls = 1};

16 else

17 l := some location with 0 < xls < 1 for some s ∈ Sl;
18 lock_location(x̃, l, Θ);

19 else

20 (l, s) := minargmax
(l,s)∈Ω

xls;

21 if locked then

22 t := minargmax
t∈T

{ ∑
s∈Slt

xls

∣∣∣∣∣xls < 1∀s ∈ Slt

}
;

23 Ψ :=
{
s ∈ Slt

∣∣C(x̃+ els) ≤ B
}
;

24 if Ψ = ∅ then
25 lock_location(x̃, l, Θ);

26 continue;

27 else

28 s := maxSlt;

29 Θ := Θ ∪ {xls = 1};
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Figure A4.1: Motivation for the changed rounding procedure in phase 2 of the greedy rounding algorithm.
The operation intensity is depicted as a function of time for some inspection location. The intervals on the
time axis depict the discretization of the day time. The grey boxes show the extent to which the inspection
station would be operated in the respective time intervals if fractional operation would be allowed. The
boxes' colours correspond to the respective operation shifts. Naive greedy rounding would suggest to operate
shift s1. Improved rounding, however, would prefer the time interval in which the cumulative operation is
maximal (shift s2).

4.B Optimal inspection policy if additional parts of the

USA are infested

To assess how the optimal inspection policy changes if additional states are infested, we

considered a scenario in which boaters from Idaho, Oregon, and Wyoming were considered

high-risk boaters. The results are depicted in Figure A4.2. As more high-risk boaters enter

BC via the southern border, inspection e�orts at this border are increased. The required

resources are freed by operating fewer inspection stations over night and by abandoning

inspection locations in the north. Nonetheless, the overall changes are moderate, because even

in the changed invasion scenario most high-risk boaters are expected to enter the province

via the eastern border.

4.C Flexible and location-speci�c compliance rates

It may be more cost-e�ective to implement measures enforcing boaters' compliance than to

operate many inspection stations for long hours. Furthermore, compliance of boaters may
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be higher or enforced more easily at some speci�c locations. In this appendix, we show how

the approach presented in this paper can be adjusted to take these factors into account.

4.C.1 Location-speci�c compliance rates

We start by considering the case of non-uniform compliance rates. To that end, we split the

boater �ows based on the compliance of the boaters. Let C be the set of possible compliance

rates, cl ∈ C the expected compliance rate of boaters at location l ∈ L, and Lc the set of

locations with compliance rate c̃ ≥ c. For a route r ∈ R and a time interval t ∈ T Let nrtc

be the expected number of boaters who travel along route r ∈ R, started their journey in

time interval t ∈ T , and comply at all inspection locations l with lc ≥ c but not at inspection

locations with lc < c. These boaters will be inspected if and only if

∑
l∈Lr∩Lc

∑
s∈Slrt

xls ≥ 1. (A4.2)

As in the main text, xls is a binary variable denoting whether inspections are conducted at

location l ∈ L in shift s ∈ S. Consequently, the total number of inspected boaters is given

by

Floc-compliance(x) :=
∑
c∈C

∑
r∈R

∑
t∈T

min

{
1,

∑
l∈Lr∩Lc

∑
s∈Slrt

xls

}
nrtc. (A4.3)

This function can be optimized with the same method discussed in the main text. With a

similar approach, time-dependent compliance rates could be incorporated, too.

4.C.2 Flexible compliance rates

In some applications, the compliance rate may be altered at a speci�c cost. If these costs

can be expressed as a convex function of the achieved compliance rate, a �exible compliance
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rate can be incorporated in our model easily. Below, we consider for simplicity the base case

with a uniform compliance rate at all locations. Allowing location-speci�c �exible compliance

rates can be done by combining the two approaches introduced in this appendix.

Let nrt be the expected number of boaters travelling on route r ∈ R and who started

their journey in time interval t ∈ T . Note that other than in the main text, compliance of

these boaters is not supposed. Altering equation (4.5) from the main text to

Fflex-compliance(x) := c
∑
r∈R

∑
t∈T

min

{
1,
∑
l∈Lr

∑
s∈Slrt

xls

}
nrt (A4.4)

accounts for the �exible compliance rate c.

Let us assume assume that the costs for enforcing a speci�c compliance rate c at a location

l ∈ L and during shift s ∈ S are given by the linear function

costls(c) = αl (c− c0) , (A4.5)

whereby c0 is the base compliance rate if no actions are taken to increase compliance. More

complex cost functions can be modelled with convex piece-wise linear functions or general

convex functions. Adding these costs to the overall cost function changes the cost constraint

to

∑
l∈L

(∑
s∈Sl

(
cshift
ls + αl (c− c0)

)
xls + cloc

l max
r∈R, t∈T

(∑
s∈Slrt

xls

))
≤ B. (A4.6)

In addition to changing the objective function and the cost constraint, we have to intro-

duce one further constraint limiting the compliance rate to the feasible range:

c0 ≤ c ≤ 1.
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With these changes, the compliance rate can be optimized along with the inspection locations

and operating times.

4.D Di�cult inspection optimization scenarios

In many real-world instances, good solutions to the linear integer problems derived in this

paper can be identi�ed within reasonable time. Nonetheless there are examples in which

the optimization is computationally challenging. In this appendix, we discuss two important

mechanism that can make it di�cult to �nd a highly optimal solution in short time. We also

provide examples for the discussed mechanisms.

Di�culties can arise (1) if a signi�cant fraction of the budget is unused under the op-

timal policy and (2) if many boaters pass multiple operated inspection locations under the

optimal policy. We start by considering budget-related issues before we discuss problems

arising from unfavourable relationships between potential inspection locations. At the end of

this appendix we discuss why these challenges are not of major concern in many real-world

applications. To simplify explanations, we consider the case of optimizing inspection sta-

tion placement only. The described mechanisms extend easily to the full problem in which

operating times must be optimized as well.

4.D.1 Di�culties due to cost constraints

Let us �rst consider a scenario in which a fraction of the given budget remains unused under

the optimal policy. For example, suppose that operation of an inspection station costs 5 cost

units and that we are given a budget of 9 units. Consequently, 4 cost units of the budget

will remain unused. To obtain an approximate solution and obtain an upper bound on the

optimal objective value, solvers consider the problem's continuous relaxation, in which partial

use of inspection locations (and shifts) is permissible. In this relaxed scenario, all 9 cost units

will be spent, which allows the inspection of more boaters than in the realistic scenario with

binary choices. Consequently, the upper bound on the solution given by the solution to the
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relaxed problem may be much higher than the true optimal solution. This makes it di�cult

to check whether an identi�ed solution is highly optimal and thus increases computation

time.

The problem described above becomes even more di�cult if control actions with di�erent

costs are possible. Suppose that we may operate one of three inspection stations, which

are passed by di�erent sets of boaters, respectively. That is, no boater passes two of the

potential inspection locations. Assume that per day n1 = n2 = 5 boaters pass stations l1

and l2, respectively, and that n3 = 8 boaters may be inspected at location 3. Suppose we are

given a budget of 9 units and that the costs for operating stations l1 and l2 are c1 = c2 = 5

cost units, whereas operation of station l3 requires c3 = 9 cost units.

Again, optimizers may consider the problem's continuous relaxation to �nd an approx-

imate solution and a quality estimate. An optimal solution to the relaxed problem is to

operate both station 1 and station 2 fractionally with weight x1 = x2 = 0.9. Then, the total

costs x1c1 +x2c2 = 9 satisfy the budget constraint and the total number of inspected boaters

is given by x1n1 + x2n2 = 9. However, in the original integer problem, stations cannot be

operated fractionally, and only one station can be chosen. As more boaters pass location

3 than locations l1 or l2, it would be optimal to conduct inspections at location l3, where

8 boaters can be inspected. Applying a greedy rounding algorithm to the relaxed solution,

however, would suggest to operate either location l1 or l2, where only 5 boaters would be

expected.

4.D.2 Di�culties due to unfavourable relations between inspection

locations

Besides challenges induced by cost constraints, speci�c relationships between potential in-

spection locations can make the optimization di�cult. Consider the example depicted in

Figure A4.3, whereby an arbitrary number of boaters may drive from each origin/destination

(black circle) to each other origin/destination. Suppose that operating an inspection location
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l3l4

l1 l2

Figure A4.3: Inspection location setup that leads to a challenging optimization problem. The lines denote
roads, the solid black circles origins and destination, and the hollow orange circles potential inspection
locations.

at any of the permissible locations has unit cost and that we are provided a budget of 2 cost

units. If the relaxed version of the problem is considered and fractional operation of stations

is permitted, operating each location with intensity 1
2
would cover all boater �ows and hence

be the optimal solution. However, if discrete choices must be made, some boaters will not

be inspected. As all locations are operated equally in the optimal solution to the relaxed

problem, this solution does not provide any hint towards which of the locations should be

operated in the original scenario with binary decisions. Therefore, the problem is di�cult to

solve.

4.D.3 Prevalence of di�cult scenarios in real-world applications

Any of the challenging scenarios discussed above can occur in real-world problems. However,

certain characteristics of real-world scenarios lower the risk of running into optimization is-

sues. In many management scenarios of interest, various inspection stations can be operated.

Problems induced by the budget constraint become less signi�cant if a large budget is con-

sidered so that a potential remainder of the budget becomes insigni�cant. For example, in all

scenarios with a budget above 30 units considered in this paper, we reached a solution with

at least 98% optimality within minutes. Furthermore, issues induced by budget constraints

can be mitigated by investigating alternative scenarios with slightly adjusted budgets.
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Scenarios with unfavourable relationships between potential inspection locations can be

expected in real-world applications. Note that the issue with the setup in Figure A4.3

persists if the roads connecting the potential inspection locations have a shape di�erent from

the road pattern drawn in the �gure. Furthermore, the depicted situation may refer to a

portion of the road network only, with multiple origins and destinations connected to each

of the depicted origin/destination vertices. In fact, situations such as the considered one

could appear multiple times in a road network. Therefore, the considered challenges do not

only occur in scenarios in which inspections are restricted to locations close to origins and

destinations.

Nonetheless, invasion patterns frequent in real-world scenarios reduce the prevalence of

such unfavourable inspection station relationships. As short distance dispersal of invasive

species is typically more likely than long-distance dispersal, invaded habitat patches form

clusters so that the in�ow of potentially infested vectors, such as boaters, comes from speci�c

directions only. For example, high-risk boaters enter BC through the southern and eastern

border only. Therefore, it is often possible to identify inspection location con�gurations in

which only few high-risk boaters pass multiple operated inspection stations. This simpli�es

optimization of the inspection policy. Greater optimization challenges can be expected if

origins and destinations are intermixed.
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Chapter 5

A robust and e�cient algorithm to �nd pro�le

likelihood con�dence intervals

5.1 Introduction

5.1.1 Pro�le likelihood con�dence intervals

Con�dence intervals are an important tool for statistical inference, used not only to assess

the range of predictions that are supported by a model and data but also to detect potential

estimability issues (Raue et al., 2009). These estimability issues occur if the available data do

not su�ce to infer a statistical quantity on the desired con�dence level, and the corresponding

con�dence intervals are in�nite (Raue et al., 2009). Due to the broad range of applications,

con�dence intervals are an integral part of statistical model analysis and widely used across

disciplines.

Often, con�dence intervals are constructed via Wald's method, which exploits the asymp-

totic normality of the maximum likelihood estimator (MLE). Though Wald's method is ac-

curate in �benign� use cases, the approach can be imprecise or fail if not enough data are

available to reach the asymptotic properties of the MLE. This will be the case, in particular,

if the MLE is not unique, i.e. parameters are not identi�able, or if the likelihood is very sen-

sitive to parameter changes beyond some threshold, e.g. in dynamical systems undergoing
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bifurcations. Therefore, other methods, such as pro�le likelihood techniques (Cox and Snell,

1989), are favourable in many use cases.

Both Wald-type and pro�le likelihood con�dence intervals are constructed by inverting

the likelihood likelihood ratio test. That is, the con�dence interval for a parameter θ0 en-

compasses all values θ̄0 that might suit as acceptable null hypotheses if the parameter were

to be �xed; i.e. H0 : θ0 = θ̄0 could not be rejected versus the alternative H1 : θ0 6= θ̄0. As the

likelihood ratio statistic is, under regularity conditions, approximately χ2 distributed under

the null hypothesis, the con�dence interval is given by

I =

[
θ̄0

∣∣∣ 2(max
θ∈Θ

`(θ)− max
θ∈Θ : θ0=θ̄0

`(θ)

)
≤ χ2

1,1−α

]
, (5.1)

whereby Θ is the parameter space, ` denotes the log-likelihood function, α is the desired

con�dence level, and χ2
k,1−α is the (1− α)th quantile of the χ2 distribution with k degrees of

freedom.

The function that maps θ̄0 to the constrained maximum

`PL

(
θ̄0

)
:= max

θ∈Θ : θ0=θ̄0
`(θ) (5.2)

is called the pro�le log-likelihood. While Wald's method approximates ` and `PL as quadratic

functions, pro�le likelihood con�dence intervals are constructed by exact computation of the

pro�le log-likelihood `PL. This makes this method more accurate but also computationally

challenging.

5.1.2 Existing approaches

Conceptually, the task of identifying the end points θmin
0 and θmax

0 of the con�dence interval

I is equivalent to �nding the maximal (or minimal) value for θ0 with

`PL(θ0) = `∗ := `
(
θ̂
)
− 1

2
χ2

1,1−α, (5.3)
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Here, θ̂ denotes the MLE; the value `∗ follows from rearranging the terms in the inequality

characterizing I (see equation (5.1)).

There are two major perspectives to address this problem. It could either be understood

as a one-dimensional root �nding problem on `PL or as the constrained maximization (or

minimization) problem

θmax
0 = max

θ∈Θ : `(θ)≥`∗
θ0 (5.4)

(θmin
0 analog). Approaches developed from either perspective face the challenge of balancing

robustness against e�ciency.

The root �nding perspective (Cook and Weisberg, 1990; DiCiccio and Tibshirani, 1991;

Stryhn and Christensen, 2003; Moerbeek et al., 2004; Ren and Xia, 2019) is robust if small

steps are taken and solutions of the maximization problem (5.2) are good initial guesses for

the maximizations in later steps. Nonetheless, the step size should be variable if parameters

might be not estimable and the con�dence intervals large. At the same time, care must be

taken with large steps, as solving (5.2) can be di�cult if the initial guesses are poor, and

algorithms may fail to converge. Therefore, conservative step choices are often advisable even

though they may decrease the overall e�ciency of the approaches.

The constrained maximization perspective (Neale and Miller, 1997; Wu and Neale, 2012)

has the advantage that e�cient solvers for such problems are readily implemented in many

optimization packages. If the likelihood function is �well behaved�, these methods converge

very quickly. However, in practical problems, the likelihood function may have local extrema,

e.g. due to lack of data, or steep �cli�s� that may hinder these algorithms from converging to

a feasible solution. Furthermore, general algorithms are typically not optimized for problems

like (5.4), in which the target function is simple and the major challenge is in ensuring that

the constraint is met. Therefore, an approach would be desirable that is speci�cally tailored

to solve the constrained maximization (5.4) in a robust and e�cient manner.
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A �rst step in this direction is the algorithm by Venzon and Moolgavkar (1988), which

solves (5.4) by repeated quadratic approximations of the likelihood surface. As the method is

of Newton-Raphson type, it is very e�cient as long as the local approximations are accurate.

Therefore, the algorithm is fast if the asymptotic normality of the MLE is achieved approx-

imately. Otherwise, the algorithm relies heavily on good initial guesses. Though methods

to determine accurate initial guesses exist (Gimenez et al., 2005), the algorithm by Venzon

and Moolgavkar (1988) (below abbreviated as VM) can get stuck in local extrema or fail to

converge if the likelihood surface has unfavourable properties (see e.g. Ren and Xia, 2019).

Moreover, the algorithm will break down if parameters are not identi�able. Thus, VM cannot

be applied in important use cases of pro�le likelihood con�dence intervals.

5.1.3 Our contributions

In this paper, we address the issues of VM by introducing an algorithm extending the ideas of

Venzon and Moolgavkar (1988). Our algorithm, which we will call Robust Venzon-Moolgavkar

Algorithm (RVM) below, combines the original procedure with a trust region approach (Conn

et al., 2000). That is, the algorithm never steps outside of the region in which the likelihood

approximation is su�ciently precise. Furthermore, RVM accounts for unidenti�able param-

eters, local minima and maxima, and sharp changes in the likelihood surface. Though RVM

may not outcompete traditional approaches in problems with well-behaved likelihood func-

tions or in the absence of estimability issues, we argue that RVM is a valuable alternative in

the (common) cases that the likelihood function is hard to optimize and the model involves

parameters that are not estimable.

Another well-known limitation of the approach by Venzon and Moolgavkar (1988) is that it

is not directly applicable to construct con�dence intervals for functions of parameters. Often

the main research interest is not in identifying speci�c model parameters but in obtaining

model predictions, which can be expressed as a function of the parameters. In addition to

presenting a robust algorithm to �nd con�dence intervals for model parameters, we show
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how RVM (and the original VM) can also be applied to determine con�dence intervals for

functions of parameters.

This paper is structured as follows: in the �rst section, we start by outlining the main

ideas behind RVM before we provide details of the applied procedures. Furthermore, we

brie�y describe how the algorithm can be used to determine con�dence intervals of functions

of parameters. In the second section, we apply RVM and alternative algorithms to benchmark

problems with simulated data. Thereby, we review the implemented alternative algorithms

before we present the results. We conclude this paper with a discussion of the benchmark

results and the bene�ts and limitations of RVM in comparison to earlier methods.

All code used in this study, including a Python implementation of RVM, is available

online in the supplementary material accompanying this paper.

5.2 Algorithm

5.2.1 Basic ideas

Suppose we consider a model with an n-dimensional parameter vector θ := (θ0, . . . , θn−1)

and a twice continuously di�erentiable log-likelihood function `. Assume without loss of

generality that we seek to construct a level-α con�dence interval for the parameter θ0, and

let θ̃ := (θ1, . . . , θn−1)> be the vector of all remaining parameters, called nuisance parameters.

For convenience, we may write ` = `(θ) as a function of the complete parameter vector or

` = `
(
θ0, θ̃

)
as a function of the parameter of interest and the nuisance parameters.

The algorithm RVM introduced in this paper searches the right end point θmax
0 (equation

(5.4)) of the con�dence interval I. The left end point can be identi�ed with the same approach

if a modi�ed model is considered in which ` is �ipped in θ0. As RVM builds on the method

by Venzon and Moolgavkar (1988), we start by recapitulating their algorithm VM below.
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Let θ∗ ∈ Θ be the parameter vector at which the parameter of interest is maximal,

θ∗0 = θmax
0 , and `(θ∗) ≥ `∗. Venzon and Moolgavkar (1988) note that θ∗ satis�es the following

necessary conditions:

1. `(θ∗) = `∗ and

2. ` is in a local maximum with respect to the nuisance parameters, which implies ∂`

∂θ̃
(θ∗) =

0.

The algorithm VM searches for θ∗ by minimizing both the log-likelihood distance to

the threshold |`(θ)− `∗| and the gradient of the nuisance parameters ∂`

∂θ̃
. To this end, the

algorithm repeatedly approximates the log-likelihood surface ` with second order Taylor

expansions ˆ̀. If θ(i) is the parameter vector in the ith iteration of the algorithm, expanding

` around θ(i) yields

ˆ̀(θ) := `
(
θ(i)
)

+ g>
(
θ − θ(i)

)
+

1

2

(
θ − θ(i)

)>
H
(
θ − θ(i)

)
= ¯̀+ g̃>δ̃ + g0δ0 +

1

2
δ̃
>

H̃δ̃ + δ0H̃
>
0 δ̃ +

1

2
δ0H00δ0 =: ˆ̀δ

(
δ0, δ̃

)
. (5.5)

Here, δ := θ − θ(i), ¯̀ := `
(
θ(i)
)
; g := ∂`

∂θ

(
θ(i)
)
is the gradient and H := ∂2`

∂θ2

(
θ(i)
)
the

Hessian matrix of ` at θ(i). Analogously to notation used above, we split δ into its �rst entry

δ0 and the remainder δ̃, g into g0 and g̃, and write H0 for the �rst column of H, H̃ for H

without its �rst column and row, and split H0 into H00 and H̃0.

In each iteration, VM seeks δ∗0 and δ̃∗ that satisfy conditions 1 and 2. Applying condition

2 to the approximation ˆ̀δ (equation (5.5)) yields

δ̃∗ = −H̃
−1
(
H̃0δ0 + g̃

)
. (5.6)

Inserting (5.5) and (5.6) into condition 1 gives us
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Figure 5.1: Flow chart for RVM. The procedure is repeated until the termination criterion is met and the
result is returned.

1

2

(
H00 − H̃

>
0 H̃
−1
H̃0

)
δ∗20 +

(
g0 − g̃>H̃

−1
H̃0

)
δ∗0 + ¯̀− 1

2
g̃>H̃

−1
g̃ = `∗, (5.7)

which can be solved for δ∗0 if H is negative de�nite. If equation (5.7) has multiple solutions,

Venzon and Moolgavkar (1988) choose the one that minimizes δ according to some norm.

Our algorithm RVM applies a di�erent procedure and chooses the root that minimizes the

distance to θmax
0 without stepping into a region in which the approximation (5.5) is inaccurate.

In section 5.2.5, we provide further details and discuss the case in which equation (5.7) has

no real solutions.

After each iteration, θ is updated according to the above results:

θ(i+1) = θ(i) + δ∗. (5.8)

If `
(
θ(i+1)

)
≈ `∗ and ∂`

∂θ̃

(
θ(i+1)

)
≈ 0 up to the desired precision, the search is terminated

and θ(i+1) is returned.

The need to extend the original algorithm VM outlined above comes from the following

issues: (1) The quadratic approximation ˆ̀ may be imprecise far from the approximation
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point. In extreme cases, updating θ as suggested could take us farther away from the target

θ∗ rather than closer to it. (2) The approximation ˆ̀may be constant in some directions or

be not bounded above. In these cases, we may not be able to identify unique solutions for

δ0 and δ̃, and the gradient criterion in condition 2 may not characterize a maximum but a

saddle point or a minimum. (3) The limited precision of numerical operations can result in

discontinuities corrupting the results of VM and hinder the algorithm from terminating.

To circumvent these problems, we introduce a number of extensions to VM. First, we

address the limited precision of the Taylor approximation ˆ̀ with a trust region approach

(Conn et al., 2000). That is, we constrain our search for δ∗ to a region in which the approxi-

mation ˆ̀ is su�ciently accurate. Second, we choose some parameters freely if ˆ̀ is constant in

some directions and solve constrained maximization problems if ˆ̀ is not bounded above. In

particular, we detect cases in which `PL approaches an asympote above `∗, which means that

θ0 is not estimable. Lastly, we introduce a method to identify and jump over discontinuities

as appropriate. An overview of the algorithm is depicted as �ow chart in Figure 5.1. Below,

we describe each of our extensions in detail.

5.2.2 The trust region

In practice, the quadratic approximation (5.5) may not be good enough to reach a point

close to θ∗ within one step. In fact, since ` may be very �non-quadratic�, we might obtain a

parameter vector for which ` and ∂`
∂θ̃

are farther from `∗ and 0 than in the previous iteration.

Therefore, we accept changes in θ only if the approximation is su�ciently accurate in the

new point.

In each iteration i, we compute the new parameter vector, compare the values of ˆ̀ and `

at the obtained point θ(i) + δ∗, and accept the step if, and only if, ˆ̀ and ` are close together

with respect to a given distance measure. If ¯̀ is near the target `∗, we may also check the

precision of the gradient approximation ∂ ˆ̀

∂θ̃
to enforce timely convergence of the algorithm.
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If we reject a step, we decrease the value δ∗0 obtained before, reduce the maximal admissible

length r of the nuisance parameter vector and solve the constrained maximization problem

δ̃∗ = max
δ̃ : |δ̃|≤r

ˆ̀δ
(
δ0, δ̃

)
. (5.9)

As the quadratic subproblem (5.9) appears in classical trust-region algorithms, e�cient

solvers are available (Conn et al., 2000) and implemented in optimization software, such

as in the Python package Scipy (Jones et al., 2001).

We check the accuracy of the approximation at the resulting point θ(i) + δ∗, decrease

the search radius if necessary, and continue with this procedure until the approximation is

su�ciently precise. The metric and the tolerance applied to measure the approximation's

precision may depend on how far the current log-likelihood ¯̀ is from the target `∗. We suggest

suitable precision measures in section 5.2.8.

Since it is often computationally expensive to compute the Hessian H, we desire to take as

large steps δ0 as possible. However, it is also ine�cient to adjust the search radius very often

to �nd the maximal admissible δ∗0. Therefore, RVM �rst attempts to make the unconstrained

step given by equation (5.5). If this step is rejected, RVM determines the search radius with

a log-scale binary search between the radius of the unconstrained step and the search radius

accepted in the previous iteration. If even the latter radius does not lead to a su�ciently

precise result, we update δ∗0 and r by factors β0, β1 ∈ (0, 1) so that δ∗0 ← β0δ
∗
0 and r ← β1r.

5.2.3 Linearly dependent parameters

The right hand side of equation (5.6) is de�ned only if the nuisance Hessian H̃ is invertible. If

H̃ is singular, the maximum with respect to the nuisance parameters is not uniquely de�ned

or does not exist at all. We will consider the second case in the next section and focus on

the �rst case here.
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There are multiple options to compute a psudo-inverse of a singular matrix to solve

underspeci�ed linear equation systems (Rao, 1967). A commonly used approach is the Moore-

Penrose inverse (Penrose, 1955), which yields a solution with minimal norm (Rao, 1967).

This is a desirable property for our purposes, as the quadratic approximation is generally

most precise close to the approximation point. The Moore-Penrose inverse can be computed

e�ciently with singular value decompositions (Golub and Kahan, 1965), which have also

been applied to determine the number of identi�able parameters in a model (Eubank and

Webster, 1985; Viallefont et al., 1998).

Whether or not a matrix is singular is often di�cult to know precisely due to numerical

inaccuracies. The Moore-Penrose inverse is therefore highly sensitive to a threshold param-

eter determining when the considered matrix is deemed singular. As the Hessian matrix is

typically computed with numerical methods subject to error, it is often bene�cial to choose a

high value for this threshold parameter to increase the robustness of the method. Too large

threshold values, however, can slow down or even hinder convergence of the algorithm.

An alternative method to account for singular Hessian matrices is to hold linearly de-

pendent parameters constant until the remaining parameters form a non-singular system. In

tests, this approach appeared to be more robust than applying the Moore-Penrose inverse.

Therefore, we used this method in our implementation. We provide details on this method

as well as test results in Appendix 5.A. Note that we write H̃
−1

for this generalized inverse

below.

To determine whether the approximate system has any solution when H̃ is singular, we

test whether δ̃∗ computed according to equations (5.6) and (5.7) indeed satis�es the necessary

conditions for a maximum in the nuisance parameters. That is, we check whether

0 ≈ ∂

∂δ̃
ˆ̀δ = H̃δ̃∗ + H̃0δ

∗
0 + g̃ (5.10)

holds up to a certain tolerance. If this is not the case, ˆ̀ is unbounded, and we proceed as

outlined in the next section.
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5.2.4 Solving unbounded subproblems

In each iteration, we seek the nuisance parameters θ̃ that maximize ` for the computed value

of θ0. Since the log-likelihood function ` is bounded above, such a maximum must exist in

theory. However, the approximate log-likelihood ˆ̀could be unbounded at times, which would

imply that the approximation is imprecise for large steps. Since we cannot identify a global

maximum of ˆ̀ if it is unbounded, we instead seek the point maximizing ˆ̀ in the range where

ˆ̀ is su�ciently accurate.

To test whether ˆ̀ is unbounded in the nuisance parameters, we �rst check whether H̃ is

negative semi-de�nite. If H̃ is invertible, this test can be conducted by applying a Cholesky

decomposition on −H̃, which succeeds if and only if H̃ is negative de�nite. If H̃ is singular,

we use an eigenvalue decomposition. If all eigenvalues are below a small threshold, H̃ is

negative semi-de�nite. To con�rm that ˆ̀ is bounded, we also test whether equation (5.10)

holds approximately if H̃ is singular (see section 5.2.3).

If either of these tests fails, ˆ̀ is unbounded. In this case, we set δ∗0 ← r0, r ← r1, for

some parameters r0, r1 > 0 and solve the maximization problem (5.9). The parameters r0

and r1 can be adjusted and saved for future iterations to e�ciently identify the maximal

admissible step. That is, we may increase (or reduce) δ∗0 and r as long as (or until) ˆ̀ is

su�ciently precise. Thereby, we adjust the ratio of δ∗0 and r so that the likelihood increases:

ˆ̀δ
(
δ∗0, δ̃

∗
)
> ¯̀.

5.2.5 Step choice for the parameter of interest

Whenever ˆ̀ has a unique maximum in the nuisance parameters, we compute δ∗0 by solving

equation (5.7). This equation can have one, two, or no roots. To discuss how δ∗0 should

be chosen in either of these cases, we introduce some helpful notation. First, we write

ˆ̀
PL(θ0) := max

θ̃

ˆ̀
(
θ0, θ̃

)
for the pro�le log-likelihood function of the quadratic approximation.
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Furthermore, we write in accordance with previous notation

ˆ̀δ
PL(δ0) := ˆ̀

PL

(
θ

(i)
0 + δ0

)
= aδ2

0 + pδ0 + q + `∗ (5.11)

with a := 1
2

(
H00 − H̃0H̃

−1
H̃0

)
, p := g0− g̃>H̃

−1
H̃0, and q := ¯̀− 1

2
g̃>H̃

−1
g̃− `∗ (see equation

(5.7)).

Our choices of δ∗0 attempt to increase θ0 as much as possible while staying in a region in

which the approximation ˆ̀ is reasonably accurate. The speci�c step choice depends on the

slope of the pro�le likelihood ˆ̀δ
PL and on whether we have already exceeded θmax

0 according

to our approximation, i.e. ˆ̀δ
PL(0) < `∗. Below, we will �rst assume that ˆ̀δ

PL(0) > `∗ and

discuss the opposite case later.

5.2.5.1 Case 1: decreasing pro�le likelihood

If the pro�le likelihood decreases at the approximation point, i.e. p < 0, we select the smallest

positive root:

δ∗0 =


− q
p

if a = 0

− 1
2a

(
p+

√
p2 − 4aq

)
else.

(5.12)

Choosing δ∗0 > 0 ensures that the distance to the end point θmax
0 decreases in this iteration.

Choosing the smaller positive root increases our trust in the accuracy of the approximation

and prevents potential convergence issues (see Figure 5.2a).

If ˆ̀δ
PL has a local minimum above the threshold `∗, equation (5.11) does not have a

solution, and we may attempt to decrease the distance between ˆ̀δ
PL and `∗ instead. This

procedure, however, may let RVM converge to a local minimum in ˆ̀δ
PL rather than to a point

with ˆ̀δ
PL = `∗. Therefore, we �jump� over the extreme point by doubling the value of δ∗0.

That is, we choose
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Figure 5.2: Step choice for θ0 in special cases. The �gures depict the pro�le likelihood function `PL (solid

black), quadratic approximation ˆ̀
PL (dashed parabola), and the threshold log-likelihood `∗. (a) The approx-

imation has two roots δ∗0 and δ′0. Though the largest root of ` is searched, the smaller root of ˆ̀ is closest to
the desired result. In fact, consistently choosing the larger root would let the algorithm diverge. (b) If `PL

is decreasing but ˆ̀
PL does not assume the threshold value `∗, we �jump� over the local minimum. (c) If `PL

is increasing but ˆ̀
PL does not assume the threshold value `∗, we reset the target value to an increased value

`∗′.

δ∗0 = −p
a

(5.13)

if p2 < 4aq (see Figure 5.2b).

5.2.5.2 Case 2: increasing pro�le likelihood

If the pro�le likelihood increases at the approximation point, i.e. p > 0, equation (5.11) has

a positive root if and only if ˆ̀
PL is concave down; a < 0. We choose this root whenever it

exists:

δ∗0 = − 1

2a

(
p+

√
p2 − 4aq

)
. (5.14)

However, if ˆ̀
PL grows unboundedly, equation (5.11) does not have a positive root. In this

case, we change the threshold value `∗ temporarily to a value `∗′ chosen so that equation
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(5.11) has a solution with the updated threshold (see Figure 5.2c). For example, we may set

`∗′ := max

ˆ̀δ
PL(0) + 1,

¯̀+ `
(
θ̂
)

2

 .

This choice ensures that a solution exists while at the same time reaching local likelihood

maxima quickly. After resetting the threshold, we proceed as usual.

To memorize that we changed the threshold value `∗, we set a �ag maximizing := True.

In future iterations j > i, we set the threshold `∗ back to its initial value `∗0 and

maximizing := False as soon as `
(
θ(j)
)
< `∗0 or ˆ̀

PL is concave down at the approxima-

tion point θ(j).

5.2.5.3 Case 3: constant pro�le likelihood

If the pro�le likelihood has a local extremum at the approximation point, i.e. p = 0, a 6= 0,

we proceed as in cases 1 and 2: if a > 0, we proceed as if ˆ̀
PL were increasing, and if a < 0,

we proceed as if ˆ̀
PL were decreasing. However, the approximate pro�le likelihood could also

be constant, a = p = 0. In this case, we attempt to make a very large step to check whether

we can push θ0 arbitrarily far. In section 5.2.6, we discuss this procedure in greater detail.

5.2.5.4 Pro�le likelihood below the threshold

If the pro�le likelihood at the approximation point is below the threshold, ˆ̀δ
PL(0) < `∗, we

always choose the smallest possible step:

δ∗0 =


− 1

2a

(
p+

√
p2 − 4aq

)
if a 6= 0, p < 0

− q
p

if a = 0, p 6= 0

− 1
2a

(
p−

√
p2 − 4aq

)
if a 6= 0, p > 0.

(5.15)

This shall bring us to the admissible parameter region as quickly as possible.
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As RVM rarely steps far beyond the admissible region in practice, equation (5.15) usually

su�ces to de�ne δ∗0. Nonetheless, if we �nd that ˆ̀δ
PL has a local maximum below the threshold,

i.e. p2 < 4qa, we may instead maximize ˆ̀δ
PL as far as possible:

δ∗0 = − p

2a
. (5.16)

If we have already reached a local maximum (p ≈ 0), we cannot make a sensible choice for δ0.

In this case, we may recall the iteration k := argmax
j : `(θ(j))≥`∗

θ
(j)
0 , in which the largest admissible θ0

value with `
(
θ(k)
)
≥ `∗ has been found so far, and conduct a binary search between θ(i) and

θ(k) until we �nd a point θ(i+1) with `
(
θ(i+1)

)
≥ `∗.

5.2.6 Identifying inestimable parameters

In some practical scenarios, the pro�le log-likelihood `PL will never fall below the threshold

`∗, which means that the considered parameter is not estimable. In these cases, RVM may

not converge. However, often it is possible to identify inestimable parameters by introducing

a step size limit δmax
0 . If the computed step exceeds the maximal step size, δ∗0 > δmax

0 and

the current function value exceeds the threshold value, i.e. ¯̀ ≥ `∗, we set δ∗0 := δmax
0 and

compute the corresponding nuisance parameters. If the resulting log-likelihood `
(
θ(i) + δ∗

)
is not below the threshold `∗, we let the algorithm terminate, raising a warning that the

parameter θ0 is not estimable. If `
(
θ(i) + δ∗

)
< `∗, however, we cannot draw this conclusion

and decrease the step size until the approximation is su�ciently close to the original function.

The criterion suggested above may not always su�ce to identify inestimable parameters.

For example, if the pro�le likelihood is constant but the nuisance parameters maximizing

the likelihood change non-linearly, RVM may not halt. For this reason, and also to prevent

unexpected convergence issues, it is advisable to introduce an iteration limit to the algorithm.

If the iteration limit is exceeded, potential estimability issues issues may be investigated

further.
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5.2.7 Discontinuities

RVM is based on quadratic approximations and requires therefore that ` is di�erentiable

twice. Nonetheless, discontinuities can occur due to numerical imprecision even if the likeli-

hood function is continuous in theory. Though we may still be able to compute the gradient

g and the Hessian H in these cases, the resulting quadratic approximation will be inaccurate

even if we take very small steps. Therefore, these discontinuities could hinder the algorithm

from terminating.

To identify discontinuities, we de�ne a minimal step size ε, which may depend on the

gradient g. If we reject a step with small length |δ∗| length (ε), we may conclude that ` is

discontinuous at the current approximation point θ(i). To determine the set D of parameters

responsible for the issue, we decompose δ∗ into its components. We initialize D ← ∅ and

consider, with the jth unit vector ej, the step δ∗′ :=
∑

j≤k, j 6=D
ejδ
∗
j until ˆ̀δ(δ∗′) 6≈ `δ(δ∗′) for

some k < n. When we identify such a component, we add it to the set D and continue the

procedure.

If we �nd that ` is discontinuous in θ0, we check whether the current nuisance parameters

maximize the likelihood, i.e. ` is bounded above and g̃ is approximately 0. If the nuisance

parameters are not optimal, we hold θ0 constant and maximize ` with respect to the nuisance

parameters. Otherwise, we conclude that the pro�le likelihood function has a jump discon-

tinuity. In this case, our action depends on the current log-likelihood value ¯̀, the value of `

at the other end of the discontinuity, and the threshold `∗.

� If `
(
θ(i) + e0δ

∗
0

)
≥ `∗ or `

(
θ(i)
)
< `
(
θ(i) + e0δ

∗
0

)
, we accept the step regardless of the

undesirably large error.

� If `
(
θ(i) + e0δ

∗
0

)
< `∗ and `

(
θ(i)
)
≥ `∗ , we terminate and return θ(i)

0 as the bound of

the con�dence interval.

� Otherwise, we cannot make a sensible step and try to get back into the admissible

region by conducting the binary search procedure we have described in section 5.2.5.4.
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If ` is discontinuous in variables other than θ0, we hold the variables constant whose change

decreases the likelihood and repeat the iteration with a reduced system. After a given number

of iterations, we release these parameters again, as θ may have left the point of discontinuity.

Since we may require that not only ˆ̀but also its gradient are well approximated, a robust

implementation of RVM should also handle potential gradient discontinuities. The nuisance

parameters causing the issues can be identi�ed analogously to the procedure outlined above.

All components in which the gradient changes its sign from positive to negative should be

held constant, as the likelihood appears to be in a local maximum in these components. The

step in the remaining components may be accepted regardless of the large error.

5.2.8 Suitable parameters and distance measures

The e�ciency of RVM depends highly on the distance measures and parameters applied

when assessing the accuracy of the approximation and updating the search radius of the

constrained optimization problems. If the precision measures are overly conservative, then

many steps will be needed to �nd θ∗. If the precision measure is too liberal, in turn, RVM

may take detrimental steps and might not even converge.

We suggest the following procedure: (1) we always accept forward steps with δ∗0 ≥ 0 if the

true likelihood is larger than the approximate likelihood, `δ(δ∗) ≥ ˆ̀δ(δ∗). (2) If the approx-

imate likelihood function is unbounded, we require that the likelihood increases `δ(δ∗) ≥ ¯̀.

This requirement helps RVM to return quickly to a region in which the approximation is

bounded. However, if the step size falls below the threshold used to detect discontinuities,

we may relax this constraint so that less time must be spent to detect potential discontinu-

ities. (3) If we are outside the admissible region, i.e. ¯̀< `∗, we enforce that we get closer to

the target likelihood:
∣∣`δ(δ∗)− `∗∣∣ < ∣∣¯̀− `∗∣∣. This reduces potential convergence issues. (4)

We require that

∣∣∣ˆ̀δ(δ∗)− `δ(δ∗)∣∣∣∣∣¯̀− `∗∣∣ ≤ γ (5.17)
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for a constant γ. That is, the required precision depends on how close we are to the target.

This facilitates fast convergence of the algorithm. The constant γ ∈ (0, 1) controls how strict

the precision requirement is. In tests, γ = 1
2
appeared to be a good choice. (5) If we are close

to the target, `δ(δ∗) ≈ `∗, we also require that the gradient estimate is precise:

∣∣∣∂ ˆ̀δ

∂θ̃
(δ∗)− ∂`δ

∂θ̃
(δ∗)

∣∣∣
|g|

≤ γ. (5.18)

This constraint helps us to get closer to a maximum in the nuisance parameters. Here, we

use the L2 norm.

When we reject a step because the approximation is not su�ciently accurate, we adjust

δ∗0 and solve the constrained maximization problem (5.9) requiring
∣∣∣δ̃∣∣∣ ≤ r. To ensure that

the resulting step does not push the log-likelihood below the target `∗, the radius r should

not be decreased more strongly than δ∗0. In tests, adjusting r by a factor β1 := 1.5 whenever

δ∗0 is adjusted by factor β0 := 2 appeared to be a good choice.

5.2.9 Con�dence intervals for functions of parameters

Often, modellers are interested in con�dence intervals for functions f(θ) of the parameters.

A limitation of VM and VMR is that such con�dence intervals cannot be computed directly

with these algorithms. However, this problem can be solved approximately by considering a

slightly changed likelihood function. We aim to �nd

φmax = max
θ∈Θ : `(θ)≥`∗

f(θ) (5.19)

or the respective minimum. De�ne

ˇ̀(φ,θ) := `(θ)− 1

2

(
f(θ)− φ

ε

)2

χ2
1,1−α, (5.20)
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with a small constant ε. Consider the altered maximization problem

φ̌max = max
θ∈Θ : ˇ̀(φ,θ)≥`∗

φ, (5.21)

which can be solved with VM or RVM.

We argue that a solution to (5.21) is an approximate solution to (5.19), whereby the error

is bounded by ε. Let (φmax,θ∗) be a solution to problem (5.19) and
(
φ̌max, θ̌

∗
)
a solution

to problem (5.21). Since φmax = f(θ∗), it is ˇ̀(φmax,θ∗) = `(θ∗) ≥ `∗. Therefore, (φmax,θ∗)

is also a feasible solution to (5.19), and it follows that φ̌max ≥ φmax. At the same time,

ˇ̀(φ,θ) ≤ `(θ), which implies that f
(
θ̌
∗
)
≤ f(θ∗), since θ∗ maximizes f over a domain

larger than the feasibility domain of (5.21). In conclusion, f
(
θ̌
∗
)
≤ f(θ∗) = φmax ≤ φ̌max.

Lastly,

`∗ = `
(
θ̂
)
− 1

2
χ2

1,1−α ≤ ˇ̀
(
φ̌max, θ̌

∗
)

= `
(
θ̌
∗
)
− 1

2

f
(
θ̌
∗
)
− φ̌max

ε

2

χ2
1,1−α. (5.22)

Simplifying (5.22) yields
∣∣∣f(θ̌∗)− φ̌max

∣∣∣ ≤ ε. Thus,
∣∣φmax − φ̌max

∣∣ ≤ ε.

Though it is possible to bound the error by an arbitrarily small constant ε in theory, care

must be taken if the function f(θ) is not well-behaved, i.e. strongly nonlinear. In theses

cases, overly small values for ε may slow down convergence.

Note that the suggested procedure may seem to resemble the approach of Neale and Miller

(1997), who also account for constraints by adding the squared error to the target function.

However, unlike Neale and Miller (1997), the approach suggested above bounds the error

in the con�dence interval bound, not the error of the constraint. Furthermore, we do not

square the log-likelihood function, which would worsen nonlinearities and could thus make

optimization di�cult. Therefore, our approach is less error-prone than the method by Neale

and Miller (1997).
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5.3 Tests

To compare the presented algorithm to existing methods, we applied RVM, the classic VM,

and �ve other algorithms to benchmark problems and compared the robustness and perfor-

mance of the approaches. Below we review the implemented methods. Then we introduce

the benchmark problems, before we �nally present the benchmark results.

5.3.1 Methods implemented for comparison

Besides RVM and VM, we implemented three methods that repeatedly evaluate the pro�le

likelihood function and two methods that search for the con�dence intervals directly. We

implemented all methods in the programming language Python version 3.7 and made use of

di�erent optimization routines implemented or wrapped in the scienti�c computing library

Scipy (Jones et al., 2001).

First, we implemented a grid search for the con�dence bounds. The approach uses re-

peated Lagrangian constrained optimizations and may resemble the method by DiCiccio and

Tibshirani (1991); however, rather than implementing the algorithm by DiCiccio and Tibshi-

rani (1991), we applied the constrained optimization algorithm by Lalee et al. (1998), which

is a trust-region approach and may thus be more robust than the method by DiCiccio and

Tibshirani (1991). Furthermore, the algorithm by Lalee et al. (1998) was readily implemented

in Scipy.

We conducted the grid search with a naive step size of 0.2, which we repeatedly reduced

by factor 2 close to the threshold log-likelihood `∗ until the desired precision was achieved.

To account for unidenti�able parameters, we attempted one large step (1000 units) if the

algorithm did not terminate in the given iteration limit. We considered a parameter as

unbounded if this step yielded a log-likelihood above the target value `∗.

Second, we implemented a quadratic bisection method for root �nding on `PL (cf. Ren

and Xia, 2019). Initially we chose a step size of 1. Afterwards, we computed the step of
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θ0 based on a quadratic interpolation between the MLE θ̂0, the maximal value of θ0 for

which we found `PL(θ0) > `∗ and the smallest identi�ed value of θ0 with `PL(θ0) < `∗. Until

a point θ0 with `PL(θ0) < `∗ was identi�ed, we interpolated `PL between θ̂0 and the two

largest evaluated values θ0. When only two points were available or the approximation of `PL

did not assume the target value, we introduced the additional constraint d`PL

dθ0
= 0. Using a

quadratic rather than a linear interpolation for bisection has the advantage that the algorithm

converges faster if the pro�le log-likelihood function is convex or quadratic. To evaluate `PL,

we applied sequential least squares programming (Kraft, 1988), which is the default method

for constrained optimization in Scipy.

Third, we implemented a binary search with an initial step of 1. Until a value θ0 with

`PL(θ0) < `∗ was found, we increased θ0 by factor 10. This preserves the logarithmic runtime

of the algorithm if the problem has a solution. To broaden the range of tested internal

optimization routines, we used a di�erent method to evaluate `PL than in the bisection

method: we �xed θ0 at the desired value and performed an unconstrained optimization on

the nuisance parameters. Here, we used the quasi-Newton method by Broyden, Fletcher,

Goldfarb, and Shanno (BFGS; see Nocedal and Wright, 2006, pp. 136).

To test methods that search for the con�dence interval end points directly, we solved

problem (5.4) with sequential least squares programming (Kraft, 1988). Furthermore, we

implemented the approximate method by Neale and Miller (1997). They transform the

constrained maximization problem (5.9) to an unconstrained problem by considering the

sum of the parameter of interest θ0 and the squared error between the target `∗ and the

log-likelihood. Minimization of this target function yields a point in which the target log-

likelihood is reached approximately and the parameter of interest is minimal. Again, we used

the method BFGS for minimization (see above).

Finally, we implemented Wald's method to assess the need to apply any pro�le likelihood

method.
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5.3.2 Benchmark problem

To investigate the performances of the implemented methods, we applied the algorithms to

a benchmark problem with variable parameter number and data set size. We considered a

logistic regression problem with n count data covariates cij, j ∈ {1, . . . , n} for each data point

i ∈ {1, . . . , N}. We assumed that the impact of the covariates levels o� at high values and

considered therefore the transformed covariates cαjij with α ∈ (0, 1). This is not only reason-

able in many real world problems but also makes likelihood maximization a computationally

challenging problem if not enough data are available to achieve asymptotic normality of the

MLE. Hence, this scenario gives insights into the performance of the implemented methods

in challenging realistic problems. The benchmark model's probability mass function for a

data point Xi was thus given by

P(Xi = 1) =

(
1 + exp

(
−β0 −

∑
j

βjc
αj
ij

))−1

(5.23)

and P(Xi = 0) = 1− P(Xi = 1).

We drew the covariate values randomly from a negative binomial distribution with mean

5 and variance 10. The negative binomial distribution is commonly used to model count data

(Gardner et al., 1995) and thus suited to represent count covariates. To simulate the common

case that covariates are correlated, we furthermore drew the value for every other covariate

from a binomial distribution with the respective preceding covariate as count parameter.

That is, for uneven j,

ci,j+1 ∼ Binomial(ci,j, p),

with p = 0.2 in our simulations. To avoid numerical problems arising when covariates with

value 0 are raised to the power 0, we added a small positive perturbation to the count values.

That way, we achieved that 00 was de�ned to be 1. We chose the parameters αj and βj so
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that the data were balanced, i.e. the frequency of 0s and 1s was approximately even. Refer

to Appendix 5.B for the parameter values we used.

5.3.3 Test procedure

To test the algorithms in a broad range of scenarios and assess how their performance is

impacted by model characteristics, we considered a model with 1 covariate (3 parameters),

a model with 5 covariates (11 parameters), and a generalized linear model (GLM) with 10

covariates, in which the powers αj were set to 1 (11 parameters). Furthermore, we varied the

sizes of the simulated data sets, ranging between N = 500 and N = 10000 for the models

with transformed covariates and N = 50 and N = 1000 for the GLM. In Figure 5.3, we

depict the impact of N on the shape of the likelihood function and thus the di�culty of the

problem.

For each considered set of parameters, we generated 200 realizations of covariates and

training data from the model described in the previous section. We determined the maximum

likelihood estimator by maximizing the log-likelihood with the method BFGS and re�ned the

estimate with an exact trust region optimizer (Conn et al., 2000). Then, we applied each of

the implemented algorithms to each data set and determined the algorithms' success rates

and e�ciencies.

As the likelihood functions of the tested models decrease drastically at αj = 0, potentially

causing some algorithms to fail, we constrained the αj to non-negative values. Tho that end,

we considered transformed parameters α′j := ln(exp(αj)− 1). Such transformations are rea-

sonable whenever the parameter range is naturally constrained from a modelling perspective.

Nonetheless, we evaluated the results of the tested algorithms based on the back-transformed

parameters αj.

We measured the algorithms' success based on their ability to solve problem (5.4) rather

than their capability to determine the true con�dence intervals for the parameters. Though

pro�le likelihood con�dence intervals are usually highly accurate, they rely on the limit-
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ing distribution of the likelihood ratio statistic. Therefore, algorithms could fail to solve

optimization problem (5.4) but, by coincidence, return a result close to the true con�dence

interval bound and vice versa. To exclude such e�ects and circumvent the high computational

e�ort required to determine highly precise con�dence intervals with sampling methods, we

determined the �true� con�dence interval bound by choosing the widest con�dence interval

bound obtained by either of the tested methods provided it was admissible, i.e. `(θmax) ≥ `∗

up to a permissible error of 0.001.

We considered an algorithm successful if (1) the returned result was within a ±5% range

of the true con�dence interval bound or had an error below 0.001, and (2) the algorithm

reported convergence. That is, to be deemed successful, an algorithm had to both return the

correct result and also claim that it found the correct solution. The latter constraint ensures

that if none of the algorithms converges successfully, even the one with the best result is not

considered successful.

As many of the tested methods rely on general optimizers without speci�c routines to

identify situations with divergent solutions, we considered parameters with con�dence in-

terval bounds exceeding [−1000, 1000] in the transformed parameter space as unbounded.

Consequently, all algorithms returning a larger con�dence interval were considered success-

ful.

We limited the runtime of all methods except the pre-implemented optimizers by intro-

ducing a step limit of 200. If convergence was not reached within this number of steps, the

algorithms were viewed unsuccessful except for the case with inestimable parameters.

To test whether some methods tend return misleading results, we determined the mean

absolute error between the returned and the true con�dence interval bounds when algorithms

reported success. As this quantity can be dominated by outliers, we also determined the mean

of all errors below 10 and the frequency of errors beyond 10.

We measured the computational speed of the di�erent methods by recording the number

of function evaluations required until termination. This provides us with precise benchmark
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Figure 5.3: Likelihood surface of the 3-parameter benchmark model with di�erent data set sizes N . As N
increases, the con�dence region becomes smaller and closer to an elliptic shape. The orange dots depict the
accepted (large dots) and rejected (small dots) steps of RVM searching for a con�dence interval for β1. RVM

follows the ridge of the likelihood surface. The red dot shows the location of the MLE θ̂. The background
colour depicts the respective maximal log-likelihood for the given α1 and β1 ranging from ≤ ˆ̀− 50 (dark

blue) to ˆ̀ (yellow). The solid blue line denotes the target log-likelihood `∗ for a 95% con�dence interval. (a)
N = 500; (b) N = 1000; (c) N = 10000.

results independent of hardware and implementation details. To display a potential trade-o�

between robustness (success rate) and speed (number of function evaluations), we did not

consider cases in which convergence was not reached. That way, internal stopping criteria

did not a�ect the results.

The speci�c advantage of some optimization algorithms is in not requiring knowledge of

the Hessian matrix. As computing the Hessian is necessary for RVM and may reduce the

algorithm's performance compared to other methods, we included the number of function

evaluations required to determine the Hessian and the gradient in the recorded count of

function evaluations. We computed gradients and Hessian matrices with a complex step

method (Lai et al., 2005) implemented in the Python package numdi�tools (Brodtkorb and

D'Errico, 2019).

5.3.4 Results

To get an impression of how RVM acts in practice, we plotted the trajectory of RVM along

with ancillary function evaluations in Figure 5.3. It is visible that the algorithm stays on the
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�ridge� of the likelihood surface even if the admissible region is strongly curved. This makes

RVM e�cient.

In fact, for all considered quality measures, RVM yielded good and often the best results

compared to the alternative methods (see Figure A5.1). In all considered scenarios, RVM

was the algorithm with the highest success rate, which never fell below 90% (second best:

binary search, 52%). In scenarios with small data sets, the success rate of RVM was up to 37

percent points higher than any other method. At the same time, RVM was among the fastest

algorithms. In scenarios with large data sets, RVM often converged within three iterations.

Furthermore, RVM was quick in the 3 parameter model, in which the Hessian matrix is easy

to compute. In the scenario with transformed covariates and 11 parameters, RVM required

about three times as many likelihood evaluations as the fastest algorithm but had a more

than 56% higher success rate. The error in the results returned by RVM was consistently

low compared to other methods. The proportion of large errors was always below 1%, and

the mean error excluding these outliers never exceeded 0.05.

The algorithms that require repeated evaluations of the pro�le likelihood function per-

formed second best in terms of the success rate. Except for the GLM with 50 data points, the

binary search, the grid search, and the bisection method consistently had success rates above

70%, whereby the success rate increased with the size of the considered data set. However,

these algorithms also required more function evaluations than other methods. In fact, the

grid search was more than 5 times slower than any other algorithm. The binary search was

slightly less e�cient than the bisection method, which exploits the approximately quadratic

shape of the pro�le likelihood function if many data are available. In scenarios with large data

sets, the bisection method was among the most e�cient algorithms. The errors of the three

root �nding methods decreased the more data became available to �t the models. However,

while the binary search had a consistently low error, both the grid search and the bisection

method were more prone to large errors than all other tested methods.
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The algorithms developed from the constrained maximization perspective (the method

by Neale and Miller and direct constrained maximization) had success rates ranging between

45% and 85% in problems with transformed covariates. In the GLM scenario, the success rate

was smaller in with 50 data points and higher with more data. The constrained maximization

procedure was slightly more successful than the method by Neale and Miller (1997). Both

methods required relatively few function evaluations, whereby direct constrained maximiza-

tion performed better. Both methods were less prone to large errors than the grid search

and the bisection method. However, the outlier-reduced error was on average more than

twice as large than with any other method except RVM (Neale and Miller: 0.16, constrained

maximum 0.09, RVM: 0.07).

The success of the algorithm VM depended highly on the properties of the likelihood

function. In scenarios with few data and transformed covariates, VM had very low success

rates (as low as 10%). When more data were added, VM became as successful as the method

by Neale and Miller and direct constrained maximization. Thereby, VM was highly e�cient

whenever results were obtained successfully. Similar to the success rate, the mean error of

VM decreased strongly as more data were considered.

Wald's method had very low success rates and large errors except for the GLM with large

data sets. In the models with transformed covariates, Wald's method never had a success

rate above 17%.

5.4 Discussion

We presented an algorithm that determines the end points of pro�le likelihood con�dence

intervals both of parameters and functions of parameters with high robustness and e�ciency.

We tested the algorithm in scenarios varying in parameter number, size of the data set, and

complexity of the likelihood function. In the tests, our algorithm RVM was more robust than

any other considered method. At the same time, RVM was among the fastest algorithms in

most scenarios. This is remarkable, because there is typically a trade-o� between robustness
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Figure 5.4: Benchmark results. The success rate, the mean error, and the number of function evaluations
are plotted for the 3 parameter and the 11 parameter model with transformed covariates and for the 11
parameter GLM. Throughout the simulations, our algorithm RVM had the highest success rate. At the same
time, RVM had a low mean error and required only few likelihood function evaluations compared to the
considered alternative methods. The parameter values used to generate the Figures are given in Appendix
5.B.
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and computational speed of optimization algorithms. RVM achieves this result by exploit-

ing the approximately quadratic form of the log-likelihood surface in �benign� cases while

maintaining high robustness with the trust-region approach. Consequently, RVM naturally

extends the algorithm VM (Venzon and Moolgavkar, 1988), which appeared to be highly

e�cient but lacking robustness in our tests.

Surprisingly, RVM turned out to be even more robust than methods based on repeated

evaluations of the pro�le likelihood. For the bisection method and the binary search, this may

be due to failures of internal optimization routines, as initial guesses far from the solution can

hinder accurate convergence. The grid search method, in turn, was often aborted due to the

limited step size, which precluded the method from identifying con�dence bounds farther than

40 units away from the respective MLE. This, however, does not explain the comparatively

high error in the results of the grid search, as only successful runs were considered. We

therefore hypothesize that internal optimization issues were responsible for some failures.

As expected, the algorithms that searched for the con�dence interval end points directly

were more e�cient but less robust than algorithms that repeatedly evaluate the pro�le like-

lihood. Remarkably, a �standard� algorithm for constrained optimization performed slightly

better than an unconstrained optimizer operating on the modi�ed target function suggested

by Neale and Miller (1997). This indicates that the approximation introduced by Neale and

Miller (1997) might not be necessary and even of disadvantage.

All methods implemented in this study (except RVM and VM) rely on general optimizers.

Consequently, the performance of these methods depends on the chosen optimizers both in

terms of computational speed and robustness. Careful adjustment of optimization parameters

might make some of the implemented algorithms more e�cient and thus more competitive

in benchmark tests. Though we attempted to reduce potential bias by applying a variety of

di�erent methods, an exhaustive test of optimization routines was beyond the scope of this

study. Nonetheless, the consistently good performance of RVM throughout our benchmark

tests suggests that RVM is a good choice in many applications.
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Though RVM performed well in our tests, there are instances in which the algorithm

is not applicable or su�ciently e�cient. This are scenarios in which (1) the log-likelihood

cannot be computed directly, (2) the Hessian matrix of the log-likelihood function is hard to

compute, (3) the dimension of the parameter space is very large, or (4) there are multiple

points in the parameter space in which problem (5.4) is solved locally. Below, we brie�y

discuss each of these limitations.

(1) In hierarchical models, the likelihood function may not be known. As RVM needs

to evaluate the log-likelihood, its gradient, and its Hessian matrix, the algorithm is not

applicable in these instances. Consequently, sampling based methods, such as parametric

bootstrap (Efron, 1981), Monte Carlo methods (Buckland, 1984), or data cloning (Ponciano

et al., 2009) may then be the only feasible method to determine con�dence intervals.

(2) Especially in problems with a large parameter space, it is computationally expensive

to compute the Hessian matrix with �nite di�erence methods, as the number of function

calls increases in quadratic order with the length of the parameter vector. Though alternative

di�erentiation methods, such as analytical or automatic di�erentiation (Griewank, 1989), are

often applicable, there may be some instances in which �nite di�erence methods are the only

feasible alternative. In these scenarios, optimization routines that do not require knowledge

of the Hessian matrix may be faster than RVM. Note, however, that the higher computational

speed may come with decreased robustness, and sampling based methods might be the only

remaining option if application of RVM is infeasible.

(3) If the parameter space has a very high dimension (exceeding 1000), internal routines,

such as inversion of the Hessian matrix, may become the dominant factor determining the

speed of RVM. Though it may be possible in future to make RVM more e�cient, sampling

based methods or algorithms that do not use the Hessian matrix may be better suited in

these scenarios.

(4) RVM as well as all other methods implemented in this study are local optimization

algorithms. Therefore, the algorithms may converge to wrong results if maximization prob-
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lem (5.4) has multiple local solutions. This is in particular the case if the con�dence set

{θ0 : `PL(θ0) ≥ `∗} is not connected and thus no interval. RVM reduces the issue of local

extreme points by choosing steps carefully and ensuring that the point of convergence is

indeed a maximum. This contrasts with VM, which could converge to the wrong con�dence

interval end point (e.g. maximum instead of minimum) if the initial guesses are not chosen

with care. Nonetheless, stochastic optimization routines, such as genetic algorithms (Akrami

et al., 2010), and sampling methods may be better suited if a local search is insu�cient.

Despite these caveats, RVM is applicable to a broad class of systems. Especially when

inestimable parameters are present, commonly used methods such as VM or grid search

techniques can break down or be highly ine�cient. Furthermore, optimization failures are

commonly observed if not enough data are available to reach the asymptotic properties of

the MLE (Ren and Xia, 2019). RVM is a particularly valuable tool in these instances.

5.5 Conclusion

We developed and presented an algorithm to determine pro�le likelihood con�dence intervals.

In contrast to many earlier methods, our algorithm is robust in scenarios in which lack of data

or a complicated likelihood function make it di�cult to �nd the bounds of pro�le likelihood

con�dence intervals. In particular, our methods is applicable in instances in which parameters

are not estimable and in cases in which the likelihood function has strong nonlinearities. At

the same time, our method e�ciently exploits the asymptotic properties of the maximum

likelihood estimator if enough data are available.

We tested our method on benchmark problems with di�erent di�culty. Throughout our

simulations, our method was the most robust while also being amongst the fastest algorithms.

We therefore believe that RVM can be helpful to researchers and modellers across disciplines.
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Appendices

5.A An alternative way to account for singular matrices

In each iteration, we seek to maximize the approximate likelihood ˆ̀ with respect to the

nuisance parameters. To that end, we solve the equation

0 =
∂

∂δ̃
ˆ̀δ = H̃δ̃∗ + H̃0δ

∗
0 + g̃ (A5.1)

which has a unique solution if and only if H̃ is invertible. Otherwise, equation (A5.1) may

have in�nitely or no solutions. In the main text, we suggested to solve (A5.1) with the Moore-

Penrose inverse if H̃ is singular. However, this procedure appeared to be very sensitive to

a threshold parameter in tests, and we obtained better results with an alternative method,

which we describe below. We furthermore show test results comparing the two methods.

5.A.1 Description of the method

If ˆ̀ has in�nitely many maxima in the nuisance parameters, we can choose some nuisance

parameters freely and consider a reduced system including the remaining independent pa-

rameters only. To that end, we check H̃ for linear dependencies at the beginning of each

iteration. We are interested in a minimal set S containing indices of rows and columns whose

removal from H̃ would make the matrix invertible. To compute S, we iteratively determine

the ranks of sub-matrices of H̃ using singular value decompositions (SVMs). SVMs are a

well-known tool to identify the rank of a matrix.

The iterative algorithm proceeds as follows: �rst, we consider one row of H̃ and determine

its rank. Then, we continue by adding a second row, determine the rank of the new matrix

and repeat the procedure until all rows, i.e. the full matrix H̃, are considered. Whenever
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the matrix rank increases with addition of a row, this row is linearly independent from

the previous rows. Conversely, the rows that do not increase the matrix rank are linearly

dependent on other rows of H̃. The indices of these rows form the set S.

In general, the set of linearly dependent rows is not unique. Therefore, we consider the

rows of H̃ in descending order of the magnitudes of the corresponding gradient entries. This

can help the algorithm to converge faster.

After S is determined, we need to check whether there is a parameter vector θ∗ satisfying

requirements 1 and 2 from section 5.2.1 for the approximation ˆ̀. Let H̃dd (�d� for �dependent�)

be the submatrix of H that remains if all rows and columns corresponding to indices in S are

removed from H̃. Similarly, let H̃ff (�f� for �free�) be the submatrix of H̃ containing only the

rows and columns corresponding to indices in S, and let H̃df = H̃
>
fd be the matrix containing

the rows whose indices are not in S and the columns whose indices are in S. Let us de�ne g̃d,

g̃f , δ̃d, and δ̃f accordingly. If H̃dd is not negative de�nite, ˆ̀ is unbounded, and requirement

2 cannot be satis�ed. Otherwise, we may attempt to solve

0 =
∂

∂δ̃
ˆ̀δ (A5.2)

⇐⇒

0 = H̃ddδ̃
∗
d + H̃df δ̃

∗
f + H̃0dδ

∗
0 + g̃d (A5.3)

0 = H̃
>
df δ̃
∗
d + H̃ff δ̃

∗
f + H̃0fδ

∗
0 + g̃f . (A5.4)

If equation system (A5.3)-(A5.4) has a solution, we can choose δ̃∗f freely. Setting δ̃∗f ← 0

makes equation (A5.3) equivalent to

δ̃∗d = −H̃
−1

dd

(
H̃0dδ0 + g̃d

)
. (A5.5)

That is, we may set H̃← H̃dd, g̃ ← g̃d, δ̃
∗ ← δ̃∗d for the remainder of the current iteration and

proceed as usual, whereby the free nuisance parameters are left unchanged: δ̃∗f = 0. With
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Figure A5.1: Comparison of di�erent methods to handle linearly dependent parameters. The success rate
of RVM is plotted for the 3 parameter and the 11 parameter model with transformed covariates and for the
11 parameter GLM. Though the algorithm using the Moore-Penrose inverse (RVM-MPI) performed slightly
better for the GLM with little data (panel C), the method had lower success rates when the 11 parameter
model with transformed variables was considered (panel B). The parameter values used to generate the
Figures are given in Appendix 5.B.

the resulting δ∗0, we check whether (A5.4) holds approximately. If not, the log-likelihood is

unbounded above. We consider this case in section 5.2.4 in the main text.

5.A.2 Tests

We implemented RVM with both suggested methods for treating linearly dependent param-

eters. To that end, we applied the same testing procedure described in section 5.3 of the

main text. The two methods yielded similar results in terms of computational speed (number

of required likelihood evaluations) and error in case of reported success (see section 5.3.1 in

the main text). However, holding some parameters constant as suggested in this Appendix

turned out to be more robust in general and lead to slightly higher success rates (see Figure

A5.1). Therefore, we suggest using this method in practice.

5.B Parameters for benchmark tests

Here we provide the parameter values used to generate the data for our benchmark tests.

We tested models with transformed covariates with 3 and 11 parameters and a GLM with
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11 parameters. For the models with transformed covariates, we considered scenarios with

N = 500, N = 1000, N = 3000, and N = 10000 data points. The parameters for the two

model families are given in Tables A5.1 and A5.2. For the GLM, we considered data sets

with sizes N = 50, N = 100, N = 300, and N = 1000. We provide the parameter values in

Table A5.3.

Parameter α1 β0 β1

Value 0.5 −10 5

Table A5.1: Parameters for the model with 3 parameters and transformed covariates.

Parameter α1 α2 α3 α4 α5 β0 β1 β2 β3 β4 β5

Value 0.2 1 0.1 0.2 0.5 −1 5 2 −1 −3 −2

Table A5.2: Parameters for the model with 11 parameters and transformed covariates.

Parameter β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Value 0.8 0.2 −0.6 −1 −1 0.2 0.5 0.1 −0.2 0.2 2

Table A5.3: Parameters for the 11 parameter GLM. The covariate powers αi are all �xed at 1.

230



Chapter 6

Synthesis and discussion

In this thesis, I have introduced a set of tools suitable to enhance invasive species and disease

management. First, I have developed an algorithm to compute locally optimal routes for

route choice networks. This method facilitates comprehensive tra�c models. Second, I have

described a hybrid approach to model the tra�c of invasive species and disease vectors.

The hybrid model can be �tted with data from road-side tra�c surveys and admits a new

quality of inference on the spread of infectious diseases and invasive species. Third, I have

developed a decision support tool that builds on the tra�c estimates from the hybrid model

and yields detailed management advice. Fourth, I have presented a new algorithm to compute

con�dence intervals. The algorithm is robust end e�cient even in the presence of inestimable

parameters.

I have applied all these methods to a management scenario seeking to prevent the in-

troduction of zebra and quagga mussels to British Columbia. Evaluating the results, I have

drawn general conclusions on optimal management. All presented methods are scalable by

design and applicable in a broad range of scenarios. Consequently, this thesis contributes to

a variety of research areas.

Our understanding of the spread and management of invasive species and diseases is

increasing constantly, and the number of scienti�c studies on the topics have seen an expo-

nential increase within the past decades (Lockwood et al., 2013). Consequently, this thesis

is embedded in a continuum of research, building on earlier methods and results, extending
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these, and � hopefully � serving as a basis for later studies increasing our understanding fur-

ther. In this chapter, I discuss the methods and results presented in this thesis in the context

of earlier �ndings. Moreover, I look further down the road at promising possibilities to extend

the presented approaches and deepen our understanding of the spread and management of

invasive species and diseases.

6.1 Invasive species and disease modelling

6.1.1 Advancements in invasive species and disease modelling

Models play an integral role for understanding the spread of invasive species and diseases

(Lewis et al., 2016). Among others, models can be used to extrapolate data from speci�c

locations and times to draw inference on the full state of a system and to predict future

developments under scenarios of interest. Consequently, models are an important tool to

inform science and management. This motivates the development of ever new, improved,

and more accurate models. In this thesis, I presented methods extending the accuracy and

range of applicability of gravity models.

Gravity models have been frequently applied to model the spread of invasive species

(Bossenbroek et al., 2001, 2007; Potapov et al., 2010; Muirhead and MacIsaac, 2011) and

infectious diseases (Stijns, 2003; Xia et al., 2004; Ferrari et al., 2006; Li et al., 2011; Tuite

et al., 2011). Though gravity models are often introduced as phenomenological models, they

have been justi�ed mechanistically in economic contexts (Anderson, 2011), and further re-

alism can be added by introducing constraints (Wilson, 1970) and accounting for stochastic

processes (Flowerdew and Aitkin, 1982). Gravity models can incorporate a variety of covari-

ates and thus model many mechanisms impacting travellers' decisions. This facilitates the

accuracy of predictions, makes gravity models adjustable, and also admits scienti�c inference

via hypothesis testing (in nested models) or multiple working hypotheses (Anderson et al.,

2000). Consequently, it is likely that gravity models will remain actively used even though
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increasing computational resources allow the application of more mechanistic models (e.g.

individual based models, Raney et al., 2003; Doniec et al., 2008) and potentially more precise

predictors (e.g. machine learning techniques, Humphries et al., 2018).

In this thesis, I have shown how gravity models can be �tted to data obtained via road-side

surveys. Incorporating this new data source allows researchers to build models with higher

accuracy and to reduce the need for (untested) modelling assumptions. Furthermore, the

new approach makes it possible to �t vector tra�c models for large-scale systems, which was

di�cult or even infeasible before. Since long-distance tra�c can be the major force moving

an invasion or disease front forward (Kot et al., 1996), the introduced extensions to classic

gravity models may allow researchers and managers to gain signi�cant new insights on the

progression of epidemics and invasions.

The hybrid approach does not only open a new way to �t gravity models but also yields

estimates for vector tra�c on roads. These estimates can be used to optimize management

actions targeting road tra�c, as done in this thesis and discussed later. In addition, tra�c

estimates can also prove useful if roads are entry points or hubs for infectious diseases or

invasive species (cf. Trombulak and Frissell, 2000). For example, road travellers stopping

at rest areas may spread diseases to locals or other travellers. Consequently, municipalities

close to major highways may have increased infection risk even if they are not attractive

�nal destinations. Similar to the described process of disease transmission, intentionally or

unintentionally transported animals may be able to escape into the environment at any point

of a trip. The escaped animals could be invasive species or carry an infectious diseases. The

hybrid model developed in chapter 3 provides scientists and managers with a new tool to

model the spread of such infectious diseases and invasive species.

6.1.2 New opportunities for model validation

Due to the potentially high impact of model predictions on both scienti�c conclusions and

policy, scientists need not only to develop new, improved models but also to assess the quality
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of models developed earlier. This way, insu�ciently justi�ed conclusions can be identi�ed.

Furthermore, model assessment facilitates improvements of existing methods, supports re-

searchers in their choice of modelling tools, and increases their awareness of potential pitfalls.

Di�erent studies have evaluated the predictive quality of gravity models in the context of

invasive species and disease modelling (Li et al., 2011; Muirhead and MacIsaac, 2011; Roth-

lisberger and Lodge, 2011), at times with surprising conclusions. For example, Muirhead

and MacIsaac (2011) found that constraints added to increase the validity of gravity models

decreased their accuracy. Since the hybrid model developed in this thesis can make use of

more data than traditional gravity models, the hybrid model can be utilized to test and

validate di�erent types of models and assumptions.

When models are �tted to data with statistical methods, modellers typically need to make

assumptions about the mechanisms causing the discrepancies between model predictions and

data. If a model is deterministic, these discrepancies are usually assumed being due to

measurement or sampling error. For stochastic models, modelled stochastic processes are a

second possible cause for deviations between data and models.

If data on tra�c �ows are available, deterministic gravity models are often �tted with

least squares methods (Flowerdew and Aitkin, 1982; Bossenbroek et al., 2007). In the realm

of maximum likelihood, this is equivalent to assuming that residuals are normally distributed

with uniform variance. This assumption is often lacking mechanistic justi�cation. Further-

more, it is unlikely that all processes impacting tra�c can be modelled deterministically, and

it may be more appropriate to account for unknown impacts by assuming that tra�c is ran-

dom to some degree. For these reasons, stochastic gravity models have been developed and

are commonly regarded better justi�ed than deterministic models (Flowerdew and Aitkin,

1982; Potapov et al., 2010).

Even stochastic gravity models, nonetheless, face the challenge of identifying the most

appropriate stochastic model for the random impacts. Typically, several observations of a

random process are necessary to identify its underlying stochastic distribution. Collecting
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the data necessary to �t a gravity model, however, is often associated with considerable

e�orts. Therefore, stochastic gravity models are commonly �tted to a single realization of

the modelled random process, and the �best �tting� distribution is determined via a model

selection criterion. This approach makes it hard to distinguish tra�c stochasticity from

prediction error and can thus lead to wrong conclusions, as will become apparent shortly.

Count data, such as tra�c counts, are often modelled with either a Poisson or a negative

binomial distribution (Burger et al., 2009). The negative binomial distribution is overdis-

persed and thus appropriate if correlations between the counted events are supposed. As a

consequence, large di�erences between predicted mean values and observed counts are more

likely in the negative binomial model. Now consider a hypothetical scenario in which we

desire to model tra�c with a stochastic gravity model. Suppose that the traveller counts

are approximately Poisson distributed in reality but that the gravity model is not perfectly

suited to account for all the mechanism behind travel choices. Consequently, the deviance

between observations and model predictions will be high regardless of what distribution is

used. However, since large residuals are more likely under a negative binomial distribution, a

gravity model with negative binomial distribution will �t the data (statistically signi�cantly)

better than a model with the Poisson distribution. This could have two consequences: we

may falsely conclude that traveller counts are indeed negatively binomially distributed, which

would suggest that travellers' decisions are correlated. Secondly, the Poisson gravity model

may yield more accurate predictions and parameter estimates than the negative binomial

model even though the latter �ts the data better.

Due to the described issue, overdispersion may have been overestimated and the impact

of large residuals not su�ciently taken into account in many studies. However, the problem

is not speci�c to the negative binomial and Poisson distribution and could be even more

signi�cant if completely di�erent families of distributions, e.g. zero-in�ated distributions

(Burger et al., 2009; Muirhead and MacIsaac, 2011), are considered.
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A potential solution to this problem is to collect additional tra�c samples to infer the

distribution of the data. This however, becomes di�cult if the parameters of the applied

stochastic distribution are assumed to depend on the origins and destinations of travellers.

Furthermore, the distribution choice could not be easily integrated in a model selection

framework. The hybrid model introduced in this thesis makes use of data that can be

resampled multiple times with relatively low e�ort. As these data are used to �t the complete

model, traveller count distributions can be �tted origin and destination dependent, and model

selection criteria can be applied.

Though the hybrid model may still face the problem of overestimating the tra�c variance

if the model �ts poorly, the hybrid approach is much less prone to this limitation. For

example, the residuals in the model �tted in chapter 3 were larger than predicted by the

best-�t model (see Appendix 3.G of chapter 3). Though this indicates that the model did

not �t the data overly well (which is a bad news), this limitation was directly apparent,

reducing the risk of misjudging the model's accuracy (which is a good news). Along with

the hybrid model, I introduced several statistical tools to check model assumptions about

the stochastic distributions. Thus, the toolset introduced in this thesis can not only be used

to construct models that are less error prone but also to assess the impact of the discussed

limitations on the accuracy of �classical� stochastic gravity models.

6.1.3 Future directions

The models developed in this thesis were applied to model a speci�c stage in the invasion

process of a particular set of species. Future work could build upon the presented methods

by constructing either a more comprehensive model for the zebra and quagga mussel invasion

or a model to investigate the transport and dispersal of multiple invasive species.

A comprehensive model for the invasion of zebra and quagga mussels would need to

incorporate a submodel for the establishment of new populations. To build a joint model,

two major challenges would have to be overcome. First, the density of mussel populations in
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donor regions would need to be known to predict the expected number of propagules carried

per boat. For example, a boat transported from a highly infested area is more likely to be

infested than a boat transported from an area with only few invaded lakes. Unless lake-to-lake

tra�c is modelled on a continental scale (which might be computationally infeasible), the

model would need to aggregate the invasion state of many lakes. Thereby, lake usage would

have to be taken into account: a jurisdiction with 1 invaded and 99 uninvaded lakes can be

a signi�cant propagule donor if the infested lake is heavily frequented by boaters. Knowing

the invasion status and the usage of all lakes across North America could be di�cult.

The second challenge would be to develop a model linking the number of arriving propag-

ules to establishment probabilities. Though there are models integrating transport and es-

tablishment of zebra mussels, these models may be too simplistic to yield a signi�cant bene�t

over a pure transport model (Bossenbroek et al., 2001; Mari et al., 2011) or are not not easily

portable to a new system (Leung et al., 2004). To �t an establishment model, experimental

results or data on past invasions would be necessary. A challenge with experimental results

is that establishment is likely dependent on local population densities and that zebra mussels

are subject to an Allee e�ect (Leung et al., 2004). That is, there may be a certain minimal

number of mussels required to establish a population. However, if a lake is, for example, tens

of kilometres long, mussels introduced at one end may not be able to interact with mussels

introduced at the other end. The spatial scale at which mussels can bene�t from each other

could be di�cult to determine (Stephens et al., 1999). This challenge could potentially be

addressed with new technologies, such as environmental DNA sampling (Rees et al., 2014),

yielding data on the spatial distribution of mussels in lakes (Youngbull and Devlin, 2018).

Alternatively, historic invasion data could be used to �t an invasion model. This, however,

would require a model for historic vector tra�c. Constructing such a model may only be

feasible if tra�c pattern have not changed signi�cantly in recent years.

Adding on to the required submodels discussed above, an improved invasion model could

also take into account transport mortality of propagules or environmental similarities be-
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tween donor and recipient regions. Zebra mussels are hypothesized to adjust to local habitat

conditions over time (Elderkin and Klerks, 2005). Transport mortality could be modelled

with a simple distance decay function (Seebens et al., 2013) or by introducing a maximal

transport time (Mari et al., 2011). To account for habitat similarity, a general habitat suit-

ability model would be needed (Seebens et al., 2013). Though a truly comprehensive invasion

model would account for all the mechanisms discussed above (and more), incorporating any

single mechanism could already improve risk assessment and management.

A second direction for future research is to model the spread of multiple invasive species

all at once. Often, many invasive species can be transported by means of the same vector.

Hence, a comprehensive tra�c model extending the presented hybrid model could be used to

model the spread of invasive species via road tra�c on a general level, such as has been done

for invasive species spreading via commercial navigation (Seebens et al., 2013). A general

model could increase our understanding of the role of road tra�c as a vector for invasive

species.

6.2 Invasive species and disease management

6.2.1 The need for detailed management models

Due to the growing volume of tra�c and trade all over the world, the task to manage

invasive species and infectious diseases e�ectively will likely have increasing relevance in the

foreseeable future. Consequently, there is a high need for new scienti�c insights about invasive

species and infectious diseases, for models predicting their spread, and for tools facilitating

management decisions with general and speci�c advice. The hybrid gravity and route choice

model developed in this thesis can serve as the major component of a risk assessment tool.

The management support tool presented in the fourth chapter enables managers to optimize

control policies, to prepare for potential invasion and infection scenarios, and to identify
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general guidelines for successful management. Hence, this thesis makes multiple signi�cant

contributions to e�ective invasive species and disease management.

Researchers have conducted several studies on optimal invasive species and disease man-

agement (Joshi et al., 2006; Potapov and Lewis, 2008; Blayneh et al., 2009; Finno� et al.,

2010; Carrasco et al., 2010; Epanchin-Niell and Wilen, 2012). Though e�orts have been made

to capture both the main mechanisms behind invasions or epidemics and the most important

management options, many results from these studies are too general to be directly applied

in practice. In the context of invasive species management, quite sophisticated models exist

to predict the progression of invasions (Mari et al., 2011). However, when these models are

paired with control models, the control actions are often modelled on a rather super�cial level,

considering management actions in broad categories, such as �early detection�, �prevention

of introductions�, or �eradication�.

Despite the undoubtedly signi�cant insights gained with abstract models, management

actions depend strongly on speci�c local conditions, constraints, and cost factors. For ex-

ample, eradication may be feasible at one location but not at another. Should invasion

prevention e�orts then be higher at the former location? To what extent? Since managers

have to answer these questions on a daily basis, models modelling management options and

constraints on a greater level of detail would be needed.

6.2.2 Why are there so few detailed management models?

There are several potential reasons for the low number of detailed management models.

First, there is the obviously great challenge to construct a spatially explicit model on a scale

both broad and detailed enough to incorporate speci�c management options. Fitting such

models requires, in particular, su�ciently large and detailed data sets. I can deem myself

fortunate being given access to watercraft inspection data from the BC Invasive Mussel

Defence Program. Without these data, I would not have been able to �t the models developed
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in this thesis. Nonetheless, as noted above, detailed invasion models have already existed

before this thesis.

In line with the challenge to gather data on the invasion process, the second obstacle for

constructing realistic management models is that control options and constraints may not be

easily known. In general, a lively dialog and data exchange between modellers and managers

will be required to build realistic management models. This thesis bene�ted strongly from

the collaboration with invasive species managers who contributed with their expertise and

data. Such collaborations may not always be easy to establish.

Third, scientists may be averse to the di�culties involved with solving high-dimensional

optimization problems, which might be NP-hard and thus practically unsolvable in some in-

stances. The expected numbers of invasion events (and hence the invasion costs) are typically

non-convex functions of decision variables and therefore di�cult to minimize. Consequently,

researchers may consider only few management options. There are studies attempting to

solve di�cult optimization problems with meta-heuristic approaches, such as neurodynamic

programming (e.g. Potapov, 2008). Another alternative is to adjust management goals to

make optimization problems tractable, as done in this thesis, where propagule transport is

minimized instead of invasion risk. The results from simpli�ed management scenarios could

serve as useful initial guesses for problems with more complex objective functions.

A fourth factor potentially repelling scientists from considering detailed management

models is that the e�ort required to build such models may be disproportionate to the ex-

pected scienti�c gain. Added realism may not lead to new, �interesting� results, and obtained

results may largely coincide with common sense. Considering many scenario-speci�c details

can also limit the general applicability of results, decreasing their relevance for a general au-

dience. Detailed management optimization problems may in addition be unattractive from

a methodological perspective. Realistic management problems are often not tractable with

analytical techniques, such as Pontryagin's maximum principle (cf. Potapov et al., 2008;

Blayneh et al., 2009), and numerical methods may be the only way to optimize strategies.

240



The arising numerical optimization problems, in turn, may be either already well studied in

computing science (such as some of the linear integer problems considered in chapter 4) or

so di�cult that new solution algorithms or approximation methods are di�cult to establish.

Despite these challenges and drawbacks, disease and invasive species managers need to

make speci�c management decisions. They may, however, not have the training and capac-

ities to build decision support tools themselves. Though solving high-detail management

optimization problems may appear more like a (software) engineering task, a high expertise

in both invasion biology/epidemiology and modelling are necessary. Hence, I believe that

science can, and should, make a signi�cant contribution to support policy makers. In this

thesis, I have provided both corresponding theory and implementations.

6.2.3 Future directions

The management optimization tool I developed in this thesis targets only one stage of the

invasion process: the introduction of propagules. As discussed earlier, a more comprehensive

model for the invasion process would be desirable, and minimizing establishment of invasive

species, and thus their impact, should be the �nal objective. This goal could be pursued if a

more comprehensive model is available.

Though this thesis includes major advancements towards more detailed management mod-

els, the considered management model could be made more realistic with reasonable e�ort.

This might be a worthwhile task for the future. However, a more sustainable solution would

be to develop a decision support software that is easy to use for managers, �exibly adjustable

to various invasion or epidemic scenarios, and allows managers without modelling expertise

to add management options and constraints. In the best case, such a tool would integrate

well with existing software used by managers, e.g. for geospatial analysis. The software

package developed along with this thesis could serve as the basis for such a tool.

Spread prevention is only one among many ways to control epidemics and biological

invasions. Another important part of successful invasive species and infectious disease man-
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agement is rapid response. For example, the chances to eradicate an invasive species are much

higher if the considered population is small and spatially contained (Pluess et al., 2012). As

a consequence, early detection is an important component of successful invasive species and

disease management. As for spread prevention, managers have to decide where and to what

extend they spend resources on early detection. Developing spatially explicit quantitative

management support tools for early detection will be an important task for future research.

6.3 Beyond infectious diseases and invasive species

The models and methods developed in this thesis were all developed with the motivation to

facilitate invasive species and disease management. This applies also to the route compu-

tation algorithm presented in chapter 2 and to the con�dence interval computation method

presented in chapter 5. Nonetheless, these methods have applications exceeding the �eld of

invasion and infectious disease modelling. Below I discuss some of these applications.

6.3.1 Tra�c models

Tra�c models have a broad range of applications including planning of road infra structure

(Yang and Bell, 1998) and tra�c control (Mahmassani, 2001). The hybrid gravity and

route choice model developed in this thesis could also be applied to these problem sets.

Though the hybrid model introduced in this thesis does not account for interactions between

road travellers, e.g. when individuals avoid congested roads, such details could be included.

Route candidates computed with the method developed in chapter 2 could also be applied

in equilibrium-based tra�c models (She�, 1984) if it is infeasible to consider all roads in a

road network. The methods developed in this thesis are particularly useful for large-scale

tra�c models, especially if analytical and likelihood based methods shall be used for tra�c

inference. These techniques may be better suited to gain a general understanding of tra�c

than alternative approaches such as individual based models.
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6.3.2 Models for trade

Since gravity models were initially developed in the context of economics to model trade, the

new method to �t these models introduced in this thesis may also bene�t economic models.

Though there may be more easily accessible data sources than road-side surveys to �t trade

models, there could be instances where no trade data are readily available. For example,

trade in developing countries may not be as well monitored as in industrialized countries. In

instances in which data are sparse and large-scale models are needed, the presented hybrid

approach could be a promising alternative to existing methods.

6.3.3 Statistical inference

The method to construct pro�le likelihood con�dence intervals developed in chapter 5 has

a vast range of potential applications, reaching as far as maximum likelihood model �tting

techniques are used. The test results presented in chapter 5 suggest that the introduced algo-

rithm proves particularly useful in situations in which earlier methods fail or are ine�cient.

Therefore, the new algorithm �lls a methodological gap that may have hindered researchers

from conducting a careful investigation of parameter uncertainty (Ren and Xia, 2019), and

could thus lead to more reliable scienti�c insights.

6.3.4 Future directions

As tracking and routing applications on smart phones and driving assistance systems are

increasingly used, enormous sets of tra�c data are generated each day. Using only a small

fraction of these data to inform tra�c models opens new doors to model, predict, and under-

stand tra�c. Researchers have already presented several methods to incorporate these data

to answer a variety of tra�c related questions (Bierlaire et al., 2010; Tettamanti et al., 2012;

Duan and Wei, 2014; Zimmermann et al., 2017). It would be a worthwhile task to develop

methods to �t the introduced hybrid tra�c model to such data.
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In the last decade, we have witnessed a dramatic rise of machine learning techniques.

Though machine learning techniques may not be suited to yield information on the mecha-

nisms impacting tra�c, they can lead to highly accurate predictions if enough training data

are available (Humphries et al., 2018). A potential application of machine learning techniques

in the context of the tool set developed in this thesis would be to estimate attractiveness and

repulsiveness of traveller origins and destinations. This could lead to more accurate tra�c

estimates.

The introduced algorithm to construct pro�le likelihood con�dence intervals builds on a

number of subroutines and parameters that could potentially be adjusted to increase speed

and robustness of the algorithm. Though this would certainly be worthwhile, I believe it is

more important to make the algorithm accessible to end users of statistical software. Only if

the algorithm is implemented in widely used programming languages, such as R or Python,

the algorithm will ful�ll its potential to bene�t the scienti�c community. Hence, proper

deployment of the algorithm may the most important next step.

6.4 Concluding remarks

In this thesis, I have developed a set of methods facilitating the control of biological invasions

and epidemics. The presented methods are suited to assess the tra�c of invasive species

and disease vectors. The obtained tra�c estimates can be used to gain a better scienti�c

understanding of the spread of propagules and pathogens and to inform early detection and

rapid response strategies against invasions and epidemics. Furthermore, the results can be

used to optimize control measures seeking to prevent the spread of invasive species and

diseases. I have introduced a method for this task in this thesis. The developed management

support tool can account for local management constraints and provides speci�c management

advice. I have applied the presented methods to the management of zebra and quagga mussels

in British Columbia. There, the results are used by invasive species managers to inform
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optimal operation of watercraft inspection stations. In conclusion, this thesis makes several

important contributions to the control of epidemics and biological invasions.

In my thesis, I have applied, extended, and developed methods from a wide spectrum of

scienti�c �elds. I have used graph theoretical approaches to develop an e�cient algorithm to

identify locally optimal routes in route networks. Thereby, I have connected the research area

of route planning with the �eld of tra�c modelling. I have used the resulting paths as input

for a hybrid route choice and gravity model, the latter of which originated from economics.

I have developed and applied statistical tools to �t the hybrid model to data and to validate

the model. Furthermore, I have extended methods from the area of numerical optimization

to construct con�dence intervals for the hybrid model. Lastly, I have used the estimates from

the hybrid model to optimize the management of invasive species and epidemics. Thereby, I

applied methods from the �eld of discrete optimization.

Considering the range of the developed and applied methods, this thesis is a striking

example for the usefulness and necessity of interdisciplinary approaches. Since the developed

methods can furthermore be applied in various contexts, this thesis can have an impact

reaching far beyond the management of epidemics and invasions.
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