This document has been digitized by the Oil Sands Research and Information Network, University of Alberta, with permission of Alberta Environment and Sustainable Resource Development.

RELATIONSHIPS BETWEEN HABITATS, FORAGES AND CARRYING CAPACITY OF MOOSE RANGE IN NORTHERN ALBERTA

PART I: MOOSE PREFERENCES FOR HABITAT AND STRATA AND FORAGES

by

R.A. Nowlin ALBERTA RECREATION, PARKS AND WILDLIFE FISH AND WILDLIFE DIVISION

for

ALBERTA OIL SANDS ENVIRONMENTAL RESEARCH PROGRAM

> Project TF 1.2 July 1978

The Hon. D.J. Russell Minister of the Environment Legislative Building Edmonton, Alberta

and

The Hon. L. Marchand Minister of State for the Environment Fisheries and Environment Canada Ottawa, Ontario

Sirs:

Enclosed is the report "Relationships Between Habitats, Forages, and Carrying Capacity of Moose Range in Northern Alberta. Part I: Moose Preferences for Habitat Strata and Forages."

This report was prepared for the Alberta Oil Sands Environmental Research Program, through its Terrestrial Fauna Technical Research Committee (now part of the Land System) under the Canada-Alberta Agreement of February 1975 (amended September 1977).

Respectfully,

W. Solodzuk, P, Eng.

W. Solodzuk, Ping. Chairman, Steering Committee, AOSERP Deputy Minister, Alberta Environment

A.H. Macpherson, Ph.D. Member, Steering Committee, AOSERP · Regional Director-General Environmental Management Service Fisheries and Environment Canada

RELATIONSHIPS BETWEEN HABITATS, FORAGES, AND CARRYING CAPACITY OF MOOSE RANGE IN NORTHERN ALBERTA. PART I: MOOSE PREFERENCES FOR HABITAT STRATA AND FORAGES

DESCRIPTIVE SUMMARY

ABSTRACT

Relationships between moose (Alces alces andersoni) and the habitat strata and forages available to them in northern Alberta were studied within the Alberta Oil Sands Environmental Research Program (AOSERP) study area during fall (September through November 1976) and winter (December 1976 through March 1977). Radio telemetry was employed to delineate seasonal use, and preference and avoidance of both habitat strata and forages. Specific categories of use of habitats were also identified and evaluated. These included feeding, bedding, non-feeding-bedding, and "presence only". In addition, environmental variables affecting habitat use were variously identified and measured. Both physical and vegetation variables were considered. The habitat use data indictated that upland habitat strata were most heavily utilized and were preferred (p<0.01), while lowlands were least utilized and were avoided (p<0.01), during both fall and winter, for all categories of habitat use except non-feeding-bedding. Individual upland and lowland habitats were variously important. During the fall, the aspen (Populus tremuloides) habitat stratum and aspen mixed with either white spruce (Picea glauca) or jack pine (Pinus banksiana) were heavily utilized for all categories of use. Only the mixedwood habitats were variously preferred. And, in the "presence only" category of use, black spruce (Picea mariana) and black sprucetamarack (Larix laricina) were lightly used and were avoided (p<0.01). During the winter, aspen and aspen-white spruce were heavily utilized and were preferred (p<0.01) for all categories of use except non-feeding-bedding. Only aspen-white spruce was preferred (p<0.10) for this latter category. During

both fall and winter, saskatoon (Amelanchier alnifolia) was clearly the most heavily utilized species of browse, and it appeared to be the only species that was preferred. Recommendations relevant to impact assessment and rehabilitiation within the AOSERP study area were made. Both the discussion of results and the recommendations were qualified because of inadequate sample sizes overall, and unusually mild weather conditions during the winter.

BACKGROUND AND PERSPECTIVE

This project was commissioned on behalf of the Alberta Oil Sands Environmental Research Program through the former Terrestrial Fauna Technical Research Committee (now part of the Land System). The study commenced in November 1975 with the general objectives of delineating seasonal food habitats of moose and relating utilization of habitat strata and forage species to their availability. The project is part of a broad investigation of moose ecology intended to gain a thorough understanding of the existing status of the species and of the moose-vegetation-landform interactions in the area. This knowledge will be useful in the assessment of the impact of oil sands development on moose, and in planning reclamation of mined areas.

ASSESSMENT

The Alberta Oil Sands Environmental Research Program has reviewed and accepted the report on "Relationships Between Habitats, Forages, and Carrying Capacity of Moose Range in the AOSERP Study Area" which was prepared by R.A. Nowlin.

The final report contains a large amount of data and has drawn some preliminary conclusions on the relationships of moose to habitat and forages. In association with reports on moose population dynamics from TF 1.1 (LS 21.1) it helps present a picture of the baseline status of moose in the AOSERP study area.

V

The content of this report does not necessarily reflect the views of Alberta Environment, Fisheries and Environment Canada, or the Oil Sands Environmental Study Group. The mention of trade names for commercial products does not constitute an endorsement or recommendation for use.

M

R.A. Hursey, Ph.D. ∠ Research Manager Land System

S.B. Smith, Ph.D. Director Alberta Oil Sands Environmental Research Program

RELATIONSHIPS BETWEEN HABITATS, FORAGES AND CARRYING CAPACITY OF MOOSE RANGE IN NORTHERN ALBERTA

PART I: MOOSE PREFERENCES FOR HABITAT AND STRATA AND FORAGES

by

R.A. Nowlin ALBERTA RECREATION, PARKS AND WILDLIFE FISH AND WILDLIFE DIVISION

for

ALBERTA OIL SANDS ENVIRONMENTAL RESEARCH PROGRAM

> Project TF 1.2 July 1978

TABLE OF CONTENTS

		Page
DECLARAT	ION	, ii
LETTER O	F TRANSMITTAL	III.
DESCRIPT	IVE SUMMARY	iv
LIST OF	TABLES	xī
LIST OF	FIGURES	xii.
ABSTRACT	· · · · · · · · · · · · · · · · · · ·	xiii
ACKNOWLE	DGEMENTS	xiv
1.	INTRODUCTION	1
2.	PROJECT STUDY AREA	2
3. 3.1 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 3.5 3.6	METHODS	5 5 6 8 9 10 10 11
$\begin{array}{c} 4.\\ 4.1\\ 4.1.1\\ 4.1.1.2\\ 4.1.1.2\\ 4.1.1.3\\ 4.1.1.5\\ 4.1.1.5\\ 4.1.2\\ 4.1.2.1\\ 4.1.2.1\\ 4.1.2.2\\ 4.1.2.3\\ 4.1.2.5\\ 4.1.2.5\\ 4.1.2.6\\ 4.2\end{array}$	RESULTS	12 12 12 12 12 12 12 14 14 14 14 15 15 15

TABLE OF CONTENTS (CONCLUDED)

Page

4.3 4.3.1 4.3.2 4.4 4.5 4.6 4.6.1 4.6.2 4.7	Habitat Utilization15Habitat Utilization During Fall15Habitat Utilization During Winter19Environmental Variables20Forage Utilization22Preference and Avoidance of Habitat Strata22Preference and Avoidance During Fall28Preference and Avoidance During Winter29Preference and Avoidance of Forages29
5.	DISCUSSION
6.	RECOMMENDATIONS
7.	LITERATURE CITED
8.	APPENDIX
9.	AOSERP RESEARCH REPORTS

х

LIST OF TABLES

	Ρ	age
1.	Habitat Strata Present on the Study Area and Their Per- cent of Total Habitats Available	13
2.	Sex, Age, and Number of Relocations of Telemetered Moose .	16
3.	Percent Habitat Utilization According to Categories of Use During Fall and Winter	17
4.	Mean Depth of Snow at Microplots, and Mean Depth and Densit of Snow at Sampling Points on the Snow Course for each Habitat Stratum	y 21
5.	Long-term and 1976-77 Meteorological Summaries from the For McMurray Airport for December through March (provided by Fisheries and Environment Canada, Atmospheric Environment Service)	t 23
6.	Utilization of Browse Species during Fall and Winter, and availability of Browse During Winter	24
7.	Preference and Avoidance of Upland and Lowland Habitats for Different Categories of Habitat use During Fall and Winter	25
8.	Preference and Avoidance of Habitat Strata for Different Categories of Habitat use During Fall	26
9.	Preference and Avoidance of Habitat Strata for Different Categories of Habitat use During Winter	27
10.	Numerical Codes for Interpretation of Table 2 for Habitat Strata, Categories of Habitat Use, Position on Slope, and Topographic Undulations	39
11.	Animal Number, Date, Time, Location, Habitat Stratum Utilized, Verification, Location Type, Category of Habitat Use, Canopy Closure, and Physical Factors for each macro- plot	40
12.	Abbreviations for Browse Species	50
13.	Measurements taken at Microplots to Determine Densities of Browse Species	51
14.	Instances of Use of Each Browse Species Within Macroplots	55
15.	Depth and Density of Snow Measured at Sampling Points on the Snow Course During January and February	59

LIST OF FIGURES

	Pa	ige
1.	Location of the AOSERP Study Area	3
2.	Project Study Area	4
3.	Macroplot and Microplot Sampling Scheme at Radio Relocations of Moose	; 7

ABSTRACT

Relationships between moose (Alces alces andersoni) and the habitat strata and forages available to them in northern Alberta were studied within the Alberta Oil Sands Environmental Research Program (AOSERP) study area during fall (September through November 1976) and winter (December 1976 through March 1977). Radio telemetry was employed to delineate seasonal use, and preference and avoidance of both habitat strata and forages. Specific categories of use of the habitats were also identified and evaluated. These included feeding, bedding, non-feeding-bedding, and "presence only". In addition, environmental variables affecting habitat use were variously identified and measured. Both physical and vegetative variables were considered. The habitat use data indicated that upland habitat strata were most heavily utilized and were preferred (p<0.01), while lowlands were least utilized and were avoided (p<0.01), during both fall and winter, for all categories of habitat use except non-feeding-bedding. Individual upland and lowland habitats were variously important. During the fall, the aspen (Populus tremuloides) habitat stratum and aspen mixed with either white spruce (Picea glauca) or jack pine (Pinus banksiana) were heavily utilized for all categories of use. Only the mixedwood habitats were variously preferred. And, in the "presence only" category of use, black spruce (Picea mariana) and black spruce-tamarack (Larix laricina) were lightly used and were avoided (p<0.01). During the winter, aspen and aspen-white spruce were heavily utilized and were preferred (p<0.01) for all categories of use except non-feeding-bedding. Only aspen-white spruce was preferred (p<0.10) for this latter category. During both fall and winter, saskatoon (Amelanchier alnifolia) was clearly the most heavily utilized species of browse, and it appeared to be the only species that was preferred. Recommendations relevant to impact assessment and rehabilitation within the AOSERP study area were made. Both the discussion of results and the recommendations were qualified because of inadequate sample sizes overall, and unusually mild weather conditions during the winter.

ACKNOWLEDGEMENTS

This research project TF 1.2 was funded by the Alberta Oil Sands Environmental Research Program, a joint Alberta-Canada research program established to fund, direct, and co-ordinate environmental research in the Athabasca Oil Sands area of northeastern Alberta.

I thank Alberta Recreation, Parks and Wildlife, Fish and Wildlife Division, for providing clerical help and supervision for this project. The supervision of Mr. Bill Wishart, Dr. Barrie Gilbert, and Mr. Gerry Lynch was invaluable.

Special thanks go to Mr. Ed Telfer, Canadian Wildlife Service and Dr. Bob Hudson, University of Alberta, who unselfishly gave their time and expertise for improvement of this research.

I also thank Mr. Dirk Hadler and Mrs. Carol Boyle, of the AOSERP field staff, for providing logistical support which was above and beyond the call of duty.

INTRODUCTION

1.

The Alberta Oil Sands Environmental Research Program (AOSERP) is committed to determining methods of ensuring an acceptable environment for terrestrial fauna during and after mining of the Athabasca Oil Sands. To satisfy this commitment for moose (Alces alces andersoni), detailed, year-round information about the habitat requirements of this ungulate is essential.

Some information is available from Alberta. Allison (1972), Carins (1976), Nowlin (1976), Penner (1971, 1976), and Holsworth (1958) variously considered habitat utilization and/or food habits using radio telemetry, pellet counts, observations, and browse transects. Barrett (1972) described food habits in the Cypress Hills by analysis of rumen samples. However, none of these studies provided the detail required by AOSERP.

Data collected for this project was begun in September 1976. At least two years of field work were planned to achieve the following objectives:

- 1. Delineate seasonal use of habitat strata;
- Identify environmental variables affecting habitat use and evaluate the importance of each;
- 3. Delineate seasonal use of forages; and
- Relate utilization of habitats and forages to their availability in order to quantify preference and avoidance.

Unfortunately, it was impossible to achieve the objectives because funding was not available to continue this research beyond one year. However, significant progress was made and those results are presented in this report.

PROJECT STUDY AREA

2.

The project study area encompassed approximately 220 ${\rm km}^2$ within the AOSERP study area (Figures 1 and 2). It was bounded roughly by the Athabasca River on the west, the Muskeg River on the east and south, and the 25th baseline on the north.

Density of moose in the area was low. A helicopter census in 1976 by Jacobson (1978) estimated 0.22 moose per square kilometre.

The study area lies within the mixedwood section of the boreal forest region of Canada (Rowe 1972).

Figure 1. Location of the AOSERP and project study areas.

project study area.

3. METHODS

3.1 HABITAT STRATIFICATION

Habitat strata were subjectively identified using Stringer's (1976) report as a basis. They were also subjectively grouped into lowland and upland categories based upon relative soil moisture. Uplands were well-drained, and lowlands were poorly-drained.

All forested habitats were classified according to dominant overstory species. In pure stands of one tree species, that species composed at least 90 percent of the overstory. In mixed stands, no single tree species composed more than 89 percent of the overstory, and the stand was identified by the two most dominant species of trees that were present.

A systematic survey was conducted to determine the availability of each habitat (Figure 2). The habitat stratum at 231 sampling points along seismograph lines was identified, and percent occurrence was calculated.

3.2 MOOSE RELOCATIONS

Radiotelemetry was used to relocate the moose. The animals were collared with radio transmitters by the Moose, Caribou, Wolf Ecology (TF 1.1) researchers (Hauge and Keith in prep.). Tracking was begun on 1 September 1976, and continued through 4 March 1977.

Relocations of instrumented animals were determined on an opportunistic basis by ground triangulation of radio signals from known points. Once a relocation was determined, additional fixes were attempted at hourly intervals during daylight for a period of not more than three days.

The geographical position of each relocation was recorded as X-Y co-ordinates read from grids overlaying aerial photos in a manner similar to that described by Phillips et al. (1973). The position was also marked with nylon flagging and/or timber marking paint.

Results were grouped into two time periods, fall (September through November) and winter (December through March).

3.3 HABITAT UTILIZATION

Most observations of use of habitat strata were determined by recording the habitat(s) utilized within a macroplot of approximately 30 m radius, whose centre was defined by the radio relocation of a moose (Figure 3). Use was defined as the presence of fresh tracks within the macroplot.

Sometimes, no fresh tracks were found at the radio relocation. In this event, the point closest to the relocation, within a circle of 60 m radius, where fresh tracks were found was used to define the centre of the macroplot. If there was a total absence of tracks, the relocation was discarded.

If more than one habitat was utilized within the macroplot, then two types of observations were recorded (Figure 3). Use of the habitat in which the relocation fell was designated as a primary observation. Use of any other habitat(s) was designated as a secondary observation(s). For present purposes, these two types of observations have been combined.

Radio relocations occurred several times at the same geographical position when the animals did not move from hour to hour. In this case, data collected at the primary observation point were duplicated according to the number of relocations. Data collected at secondary observation points were not duplicated.

Specific categories of use of each habitat were also recorded, depending upon the evidence found within the macroplot. Discernible categories were feeding, bedding, rutting, non-feedingbedding, and "presence only". The first three categories were not mutually exclusive. Non-feeding-bedding was simply the absence of feeding or bedding. "Presence only" was presence in a given habitat regardless of, and not mutually exclusive of, the other categories.

Some radio relocations were not visited for verification and categorization of habitat use, and, occasionally, moose without collars were sighted. These observations were included in the "presence only" category.

3.4 ENVIRONMENTAL VARIABLES

One of the original objectives of this project was to identify environmental variables affecting habitat use and evaluate the importance of each. In order to accomplish this objective, two sets of data were to be developed and compared, statistically. One data set was to consist of variables measured within the macroplots, and the other was to consist of these same variables measured systematically over the entire study area. Both physical and vegetative environmental variables were to be considered.

Measurements of the variables within macroplots was done only during December through February. The measurements were not fully initiated prior to December because manpower was not available. They were terminated in February because of the impending termination of the project.

Environmental measurements within macroplots were completed within circular microplots with a radius of 7 m (Figure 3). The primary and secondary observation(s) of habitat use defined the centres of the microplots.

Measurements of the variables systematically over the study area were not fully initiated. Depth and density of snow were the only ones considered.

Because of the small amount of data collected, only selected results are presented in the body of this report. The bulk of the data is tabularized in the Appendix. The methods of data collection are explained below.

3.4.1 Physical Variables Measured as Microplots

Slope, aspect, position on a slope, minor topographic undulations, and snow depth were the physical variables measured at each microplot.

Slope was measured in percent with a Suunto clinometer (PM-5/360 PC).

Aspect was measured in degrees using a Silva Ranger compass.

Position on a slope was subjectively assessed to be within one of the following categories: top of a ridge, upper one-third of a slope, middle one-third of a slope, lower one-third of a slope, or bottom of a valley.

Minor topographic undulations were subjectively rated according to the amount of relief. The assigned categories were: $\frac{1}{2}$ 0.00 to 0.50 m, $\frac{1}{2}$ 0.51 to 1.50 m, and $\frac{1}{2}$ 1.51 to 3.00 m.

Snow depth was measured (to the nearest centimetre) at the centre of the microplot with a hand-held tape measure.

3.4.2 Vegetation Variables Measured at Microplots

Canopy closure, heights and densities of trees, and browse species were the vegetation variables measured.

Canopy closure was measured as a percent using a spherical densiometer (Lemmon 1957).

Heights of trees and browse were measured to the nearest foot with a Suunto clinometer or tape measure. Final results were converted to metres.

Densities of trees and browse were determined using the corrected-point-distance method of Laycock and Batcheler (1975), with the following modifications for browse.

Density of clumps of browse, regardless of species, was first determined. This was accomplished by measuring two distances at each microplot: from the centre of the microplot to the nearest clump of browse, and from that clump to its nearest neighbour. A clump is defined as one stem growing from one base, or several stems growing from a common base. During the measurements, the number of stems per clump of each species of browse was noted.

Next, densities of clumps of individual species of browse were determined. This was accomplished by multiplying the density of clumps of browse, regardless of species, by the percent occurrence of individual species in the distance measurements.

Finally, densities of stems of individual species were determined by multiplying the densities of clumps of individual species by their mean clump size. Only browse plants greater than 0.61 m high and less than 3.8 cm in diameter at breast height were measured for densities.

3.4.3 Snow Depths Measured Systematically Over the Study Area

A snow course was established systematically over the study area (Figure 2), with 68 measurement points marked at approximately 0.211 km intervals. Habitat strata was recorded at each point.

During January and February 1977, snow depth was measured twice per month, and density was measured once per month. A Mount Rose snow sampler was used.

Results were summarized as means for each habitat stratum for the winter.

3.5 FORAGE UTILIZATION

Feeding sites were examined within the macroplots in order to determine forage use. If feeding was found in more than one habitat type within any one macroplot, then separate feeding sites were examined in each type.

The methods of Cole (1956) and Knowlton (1960) were used to record instances of use of individual plants. An instance of use was each browsed twig, or twig from which leaves had been stripped. Approximately 200 instances of use was the upper limit at each site. Percentage of use for each species was calculated using the average aggregate percent method of Martin et al. (1946).

Willows were identified according to Raup (1959), and other plants according to Moss (1959).

A key to identification of willow twigs during winter was developed. This was accomplished by tagging individuals of each species during the growing season. Following leaf abscission, twig collections were made from the marked individuals and a key was developed, based on vegetative characteristics.

3.6 PREFERENCE AND AVOIDANCE OF HABITATS AND FORAGES

The methods of Neu et al. (1974) were employed to determine preference and avoidance of habitat strata. This involved testing the hypothesis that each habitat was utilized in proportion to its availability. If this hypothesis was accepted, the habitat was neither preferred nor avoided. If the hypothesis was rejected, then a habitat used in greater proportion than it was available was preferred, and a habitat used proportionately less than it was available was avoided.

The relatively few feeding sites that were examined and heavy use of only two or three forages precluded an analysis of preference and avoidance of forages. However, some trends were evident upon visual examination of the data.

4. RESULTS

4.1 HABITAT STRATIFICATION

The percent availability of each habitat stratum determined by the systematic survey is presented in Table 1.

4.1.1 Lowland Habitats

Lowland habitats accounted for 49.1 percent of all habitats available. The following individual lowland strata were identified.

4.1.1.1 <u>Fen</u>. Fens were scarce (less than one percent of all habitats available), and were found in very moist or shallow water areas bordering lakes or drainage channels. Sedges (*Carex* spp.) were the dominant plant species.

4.1.1.2 <u>Tall willow</u>. The tall willow habitat was also relatively scarce (5.2%). Found along drainage channels and in other wet areas, this habitat was composed of willows (*Salix* spp.) that were mostly over 3 m tall. The dominant species were pussy willow (*Salix discolor*), *S. maccalliana*, *S. myrtillifolia*, *S. planifolia*, autumn willow (*S. serrissima*), and sandbar willow (*S. interior*).

4.1.1.3 <u>Black spruce</u>. This habitat was common (15.2%), and was characterized by dense stands of black spruce (*Picea mariana*). It developed on thick deposits of sphagnum moss (*Sphagnum* spp.), and the understory was dominated by Labrador tea (*Ledum groenlandicum*).

4.1.1.4 <u>Tamarack</u>. This habitat consisted of lightly forested stands of tamarack (*Larix laricina*) and represented 9.5 percent of the habitats that were available. Dominant shrub in the understory were *S. planifolia*, dwarf birch (*Betula glandulosa*) and Labrador tea.

Habitat Strata	Percent of Total Habitats Available
Lowland	
Fen	Tr ^a
Tall Willow	5.2
Black Spruce	15.2
Tamarack	9.5
Black Spruce-Tamarack	15.2
Other Mixedwood and Deciduous ^b	4.0
Lowland Total	49.1
Upland	
Aspen	17.6
Jack Pine	9.5
Aspen-White Spruce	10.4
Aspen-Jack Pine	7.4
Upland Shrub	1.3
Other Mixedwood, Deciduous and Coniferous	c 4.7
Upland Total	50.9

Table 1. Habitat strata present on the study area and their percent of total habitats available.

^aTrace. Less than one percent.

^bIncludes Balsam Poplar (Tr), Aspen-Black Spruce (1.7), and Balsam Poplar-Black Spruce (1.7).

^CIncludes Aspen-Balsam Poplar (Tr), Aspen-Paper Birch (1.3), Paper Birch-Jack Pine (Tr), White Spruce (Tr), and White Spruce-Jack Pine (Tr). 4.1.1.5 <u>Black spruce-tamarack</u>. Semi-open, mixed stands of black spruce and tamarack characterized this common habitat (15.2%). Labrador tea, *S. planifolia*, and swamp birch (*Betula pumila*) were often found in the understory.

4.1.1.6 <u>Other mixedwood and deciduous</u>. Other lowland habitats present in minor amounts were balsam poplar (*Populus balsamifera*), aspen (*Populus tremuloides*)-black spruce and balsam poplar-black spruce. The balsam poplar habitat was most common in the flood plains of major rivers.

4.1.2 Upland Habitats

Upland habitats accounted for 50.9 percent of all habitats. The following individual strata were identified.

4.1.2.1 <u>Aspen</u>. The aspen habitat was common (17.6%), and was characterized by pure stands of aspen. Shrubs commonly present in the understory included beaked willow (*Salix bebbiana*), saskatoon (*Amelanchier alnifolia*), prickly rose (*Rosa acicularis*), wild rose (*Rosa woodsii*), and buffalo-berry (*Shepherdia canadensis*).

4.1.2.2 <u>Jack pine</u>. This habitat was found on the very dry, sandy, uplands and represented 9.5 percent of the total habitats that were available. It was characterized by pure stands of jack pine (*Pinus banksiana*), with blueberry (*Vaccinium myrtilloides*) as the dominant understory.

4.1.2.3 <u>Aspen-white spruce</u>. The aspen-white spruce (*Picea glauca*) habitat was characterized by mixed stands of these species of trees and composed 10.4 percent of the available habitats. Shrubs commonly present included current (*Ribes triste*), prickly rose, low bush cranberry (*Viburnum edule*), and saskatoon.

4.1.2.4 <u>Aspen-jack pine</u>. This habitat, characterized by mixed stands of aspen and jack pine, composed 7.4 percent of all habitats. Common shrubs were river alder (*Alnus tenuifolia*), prickly rose, wild rose, and saskatoon.

4.1.2.5 <u>Upland shrub</u>. The upland shrub habitat was scarce (1.3%) and was found on recently disturbed areas, other than seismograph lines, where the forest overstory had been removed. Saplings in this habitat had a diameter at breast height of less than 3.8 cm. Shrubs commonly present included prickly rose, wild rose, and saskatoon.

4.1.2.6 <u>Other deciduous, mixedwood, and coniferous</u>. Other upland habitats present in minor amounts were aspen-balsam poplar, aspen-paper birch (*Betula papyrifera*), paper birch-jack pine, white spruce, and white spruce-jack pine.

4.2 MOOSE RELOCATIONS

During the fall, six mature moose (four females and two males) were relocated 95 times (Table 2). At these relocations, 117 observations of habitat use were recorded, of which 108 were verified by the presence of fresh tracks, and nine were not verified. Also, three visual observations of uncollared animals were made.

During the winter, 10 mature moose (seven females and three males) were relocated a total of 116 times. At these relocations, 140 observations of habitat use were recorded, four of which were not verified.

4.3 HABITAT UTILIZATION

4.3.1 Habitat Utilization During Fall

Observations of habitat use during the fall are presented in Table 3. The number of observations of feeding, bedding, nonfeeding-bedding, and "presence only" were 35, 46, 58, and 120, respectively.

	Moose	· · · · · · ·	Numbe	er of R	elocations
No.	Sex	Age ^a	Fall		Winter
17	M	_b	0	s	12
40	Μ	-	0		12
47	F	· · ·	0		7
75	М	5.5	11		0
79	F	3.5	0		1
81	F	9.5	0		27
83	М	5.5	0		22
85	F S	8.5	12		5
87	F	6.5	26		10
88	F	3.5	0		15
89	M L	10.5	14		0
90	F	6.5	11		0.
96	F	8.5	21		5
TOTAL			95		116

Table 2. Sex, age, and number of relocations of telemetered moose.

^aSupplied by the Ungulate Ecology project of AOSERP (TF 1.1).

^bNot presently available.

				Catego	ory of Use			
	Fee	d i ng	Bedding		Nor Feeding	Prese	nce Only	
Habitat Stratum	Fall	Winter	Fall	Winter	Fall	Winter	Fall	Winter
Lowland	2 ¹ .						· · ·	
Fen	-		-	–	6.9	-	4.2	-
Tall willow	2.9	6.0	. –	2.3	_	2.2	Tra	4.3
Black spruce	2.9	3.6		2.3	6.9	17.4	5.8	9.3
Tama r ack	_	_	10.9	-	12.1	-	8.3	-
Black spruce-tamarack	2.9	10.7	-	9.3	3.4	21.2	2.5	15.0
Balsam poplar	-	_	_	_	, – , "	2.2	-	Tr
Aspen-black spruce	. - ¹		.	_	` _	8.7	- ,	2.9
Paper birch-black spruce	×. –			-	-	2.2	-	Tr
Lowland Total	8.7	20.3	10.9	13.9	29.3	53.9	20.8	31.5
Upland								
Aspen	31.4	46.4	32.6	25.5	20.7	8.7	24.2	30.7
Jack pine	_	_	2.2		15.5	-	9.2	_
Aspen-balsam poplar	-	4.8		13.9	-	· · - ·	-	3.6
Aspen-paper birch	-	_	_	_			Tr	-
Aspen-white spruce	28.6	26.2	28.3	46.5	12.1	27.6	16.7	27.1
Aspen-jack pine	22.9	2.4	22.7		20.7	2.2	23.3	2.1
Paper birch-jack pine	5.7	-	· · <u>-</u>		3.4	-	2.5	-
White spruce-jack pine	· · · ·	-		- , ^{, , ,}	· –	8.7	-	2.9
Upland shrub	2.9	-	4.3		* 🗕	-	1.7	Tr
Upland Total	91.5	79.8	90.1	85.9	72.4	47.2	77.6	66.4
Sample Size	35	84	46	43	58	47	120	140

Table 3. Percent habitat utilization according to categories of use during fall and winter.

^aTrace; less than one percent.

Uplands were much more heavily utilized for all categories of habitat use than were lowlands. This difference was greatest for the feeding and bedding categories.

For feeding, uplands accounted for 91.5 percent of the observations, while lowlands accounted for 8.7 percent. For bedding, use of uplands was 90.1 percent, with lowlands being 10.9 percent. For non-feeding-bedding, uplands were 72.4 percent, while lowlands were 29.3 percent. When use was categorized as "presence only", uplands were 77.6 percent and lowlands were 20.8 percent.

Utilization of individual habitat strata was variable.

The aspen habitat was most heavily used for feeding, accounting for 31.4 percent of the observations. It was followed by aspen-white spruce (28.6%) and aspen-jack pine (22.9%). Also lightly used were the paper birch-jack pine habitat with 5.7 percent, and tall willow, black spruce, black spruce-tamarack, and upland shrub habitats with 2.9 percent each.

Aspen was also most heavily utilized for bedding, with 32.6 percent of the observations. Aspen-white spruce and aspenjack pine were next with 28.3 and 22.7 percent, respectively. They were followed by tamarack (10.9%), upland shrub (4.3%), and jack pine (2.2%).

For non-feeding-bedding, the aspen and aspen-jack pine were most important, both with 20.7 percent of the observations. Also used were jack pine (15.5%), tamarack (12.1%), aspen-white spruce (12.1%), black spruce (6.9%), fen (6.9%), and paper birchjack pine (3.4%).

When utilization was defined as "presence only", aspen was most important, with 24.2 percent. It was closely followed by aspen-jack pine, 23.3 percent. Also used were aspen-white spruce (16.7%), jack pine (9.2%), tamarack (8.3%), black spruce (5.8%), fen (4.2%), black spruce-tamarack (2.5%), paper birch-jack pine (2.5%), upland shrub (1.7%), tall willow (<1%), and aspen-paper birch (<1%).

Observations of rutting behavior are not presented in Table 3 because only 11 observations were recorded. Of these, nine were in aspen, and one each were in black spruce and aspen-jack pine.

4.3.2 Habitat Utilization During Winter

The number of observations of habitat use during the winter for feeding, bedding, non-feeding-bedding, and "presence only" were 84, 43, 47, and 140, respectively (Table 3).

Uplands were more heavily utilized than lowlands for all categories of use except non-feeding-bedding. In this category lowlands were used slightly more than uplands.

For feeding, uplands accounted for 79.8 percent of the observations, while lowlands accounted for 20.3 percent. For bedding, use of uplands was 85.9 percent, with lowlands being 13.9 percent. For non-feeding-bedding, uplands were 47.2 percent, while lowlands were 53.9 percent. For "presence only", uplands were 66.4 percent and lowlands were 31.5 percent.

Observations of use of individual habitats were variable.

Aspen was the most important habitat for feeding with 46.4 percent. It was followed by aspen-white spruce (26.2%), black spruce-tamarack (10.7%), tall willow (6.0%), aspen-balsam poplar (4.8%), black spruce (3.6%), and aspen-jack pine (2.4%).

Aspen-white spruce was most heavily utilized for bedding, accounting for 46.5 percent of the observations. Aspen, with 25.5 percent, was second, and was followed by aspen-balsam poplar (13.9%), black spruce-tamarack (9.3%), tall willow (2.3%), and black spruce (2.3%).

For non-feeding-bedding, aspen-white spruce was most important, with 27.6 percent. It was followed by black spruce-tamarack (21.2%), and black spruce (17.4%). Next were aspen-black spruce, aspen, and white spruce-jack pine, all with 8.7 percent. Least important were tall willow, balsam poplar, paper birch-black spruce, and aspen-jack pine, all with 2.2 percent. For the "presence only" category of use, aspen with 30.7 percent, was the most important habitat. Aspen-white spruce (27.1%) was a close second. These were followed by black-spruce tamarack (15.0%), black spruce (9.3%), tall willow (4.3%), aspen-balsam poplar (3.6%), white spruce-jack pine (2.9%), aspen-black spruce (2.9%), and aspen-jack pine (2.1%). Least important were balsam poplar, paper birch-black spruce, and upland shrub, all used less than one percent.

4.4 ENVIRONMENTAL VARIABLES

Results of snow depth measurements are presented in Table 4. Only those habitats in which at least five measurements were taken are listed.

Examination of microplot data reveals very little difference between habitats. Snow depth was greatest in the tall willow habitat (23 cm) and least in the aspen-white spruce (17 cm).

The snow course measurements that were taken over the entire study area also exhibit little difference between habitats, for either depth or density (Table 4). Depth was greatest in the tamarack (25 cm) and least in the aspen-black spruce habitat (15 cm). Density was greatest in the tall willow (0.21) and least in the jack pine habitat (0.15).

Comparisons between snow depths at microplots and at sampling points on the snow course for individual habitats also reveals little difference.

No detailed analysis was done on snow measurements because of the small differences noted above, and because it is very doubtful that the shallow depths could influence moose movements. Coady (1974) reviewed the influence of snow on behavior of moose and concluded that movements of moose were not hindered until depths reached 40 to 70 cm. However, even at these depths, movement was only slightly restricted.

	· .						· . ·	Sn	iow Cour	se			
			Depth (c	c n)		De	epth (c	:m)		De	nsity		
Habitat Stratum		X		N		X		N	•	x		N	
Lowland				. с.		F .							
Tall willow		3		5		4		20		0.21		10	
Black spruce		19		11		19		29		0.20		13	
Tamarack		_a		-		25		20		0.17		10	
Black spruce-tamara ck		21		20		21		20		0.19		10	
Aspen-black spruce		-,		- <u>-</u>		15		14		0.17		6	
Upland													
Aspen		9		37		20		55		0.20		25	
Jack pine		-		-		18		26		0.15		13	
White spruce		_		-		17		20		0.17		10	
Aspen-white spruce		17		37		18		26		0.20		13	
Aspen-jack pine		_		-		21		23		0.18		11	
Upland Shrub		-			y sh	21		6		· -,	· .	-	

Table 4. Mean depth of snow at microplots, and mean depth and density of snow at sampling points on the snow course for each habitat stratum.

^aInsufficient data.

Additional environmental information was obtained from Environment Canada, Atmospheric Environment Service, at the Fort McMurray airport (Table 5).

These data reveal that the winter of 1976-77 was extremely mild compared to long term conditions. Temperatures were well above normal for January, February, and March; snow depths were considerably below normal for December through March.

4.5 FORAGE UTILIZATION

During the fall season, 31 feeding sites were examined and 3,321 instances of browse use were recorded (Table 6).

Saskatoon was the most heavily utilized browse species, accounting for 46 percent of the observations. Second in importance was beaked willow with 20 percent. All other species were utilized less than 8 percent each.

During the winter, 46 feeding sites were examined and 5,734 instances of use recorded (Table 6).

Saskatoon was again the most heavily utilized species, with 57 percent of the observations. It was followed by small leaf willow, with 15 percent, and beaked willow with 10 percent. All other species were utilized less than 3 percent each.

4.6 PREFERENCE AND AVOIDANCE OF HABITAT STRATA

Results of the statistical analysis to determine preference and avoidance of habitat strata are presented in Tables 7, 8, and 9.

For the analysis of individual habitat strata, it was sometimes necessary to group certain strata together in order to achieve adequate sample sizes for each. This was required only when the strata were used in small amounts (usually less than 6 percent). Two approaches were employed: lightly used strata were combined with heavily used strata, if similar; or, lightly used strata were combined into an "other" classification, if all were dissimilar.

	· .		Dec.	Jan.	Feb.	Mar.
1944-70			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Mean Mean Mean	Temp. (^O C) Max. Temp. Min. Temp.	(°C) (°C)	-16.9 -12.1 -21.8	-21.5 -16.0 -27.0	-16.6 -10.3 -23.0	- 9.3 - 2.4 -16.5
1976-77						
Mean Mean Mean	Temp. (^O C) Max. Temp. Min. Temp.	(°C) (°C)	-16.8 -12.7 -21.4	-18.7 -13.2 -24.1	- 3.3 3.6 -10.2	- 5.1 1.3 -11.5
1946-72						
Mean Max.	Snow Depth Snow Depth	(cm) ^a (cm)	28 58	36 66	38 64	28 53
1977						
Snow	Depth (cm)	a	3	18	12	20

Table 5. Long-term and 1976-77 meteorological summaries from the Fort McMurray airport for December through March (provided by Environment Canada, Atmospheric Environment Service).

^aMeasured in centimetres on the last day of each month.

	Percent of		Per	cent of	Diet ^b
Species	Available Brow	vsed	Fall		Winter
Alnus crispa	ND		Tr		2
Amelanchier alnifolia	9		46		57
Betula papyrifera	*		6		0
Betula spp. ^C	10		0		3
Cornus stolonifera	Tr	2	Tr		0
Corylus cornuta	*		3		1
Populu s balsamifera	Tr		0		1
Populus tremuloides	2		7		2
Prunus pensylvanica	*		7		0
Prunus virginiana	*		0		Tr
Rosa woodsii	2		Tr		0
Rubus spp.	ND		2		Tr
Salix bebbiana	19		20		10
Salix discolor	*		3		1
Salix pla ni folia	30		3		15
Salix maccalliana	Tr	÷	0		1
Salix mackenzieana	*		2		0
Salix myrtillifolia	*		0		3
Salix serissima	Tr		Tr		Ø
Salix spp.	ND		0		Tr
Shepherdia canadensis	21		0		· 1
Viburnum edule	3		Tr		3
Number of feeding sites	examined		31		46
Total instances of use		3	,321		5,734

Table 6. Utilization of browse species during fall and winter, and availability of browse during winter.

^aSymbols: Tr = trace; ND = no data (not measured); * = not encountered. ^b Average aggregate percent (Martin et al. 1946).

^CIncludes Betula glandulosa and B. pumila.
Category	Habitat Stratum ^c	Proportion of total habitat (pi _o)	Number of observations	Expected ^a number of observations	Proportions observed in each habitat (pi)	Confidence interval on proportions observed (pi) ^b
Feeding Fall						
•	Lowland Upland	0. 491 0.509	3 <u>32</u>	17 18	0. 0 87 0.915	_a -
Winter	Lowland Upland	0.491 0.509	N=35 17 <u>67</u> N= 97	41 43	0.203 0.798	$\begin{array}{c} 0.080 \leq p_1 \leq 0.326 \\ 0.675 \leq p_2 \leq 0.921 \end{array}$
Bedding Fall			N=04			
Wintor	Lowlan d Upland	0.491 0.509	5 42	23 23	0.109 0.901	$\begin{array}{c} 0.000 \leq p_1 \leq 0.238 \\ 0.777 \leq p_2 \leq 1.000 \end{array}$
writer	Lowland Upland	0.491 0.509	N=47 6 <u>37</u> N=42	21 22	0.139 0.859	$\begin{array}{c} 0.000 \leq p_{1} \leq 0.287 \\ 0.710 \leq p_{2} \leq 1.000 \end{array}$
Non-Feeding- Fall	Bedding		N=45			
	Lowlan d Upland	0.491 0.509	17 <u>41</u> N-58	28 30	0.293 0.724	$\begin{array}{c} 0.125 \leq p_1 \leq 0.461 \\ 0.559 \leq p_2 \leq 0.890 \end{array}$
"Presence On Fall	1y''		N-30			
	Lowland Upland	0.491 0.509	26 <u>94</u>	59 61	0.208 0.776	$0.104 \le p_1 \le 0.312$ $0.669 \le p_2 \le 0.883$
Winter	Lowland Upland-	0.491 0.509	N=120 46 <u>94</u> N=1 40	69 71	0.315 0.664	$\begin{array}{r} 0.229 \leq p_1 \leq 0.401 \\ 0.552 \leq p_2 \leq 0.776 \end{array}$

Table 7.	Preference and avoidance of	f upland an	d lowland	habitats	for	different	categories	of habitat	use
	during fall and winter.								

^aCalculated by: pi_o x N. ^bCompared to corresponding pi_o to determine if hypothesis of proportional use is accepted or rejected (99% family confidence coefficient).

^CAll hypothesis of proportional use were rejected at the one percent level, except for feeding during the fall.

 $^{\rm d}{\rm Sample}$ sizes were inadequate for test of hypothesis.

Category	Habitat Stratum	Proportion of total habitat (pi _Q)	Number of Observations	Expected ^a number of observations	Proportions observed in each <u>ha</u> bitat (p1)	Confidence interval on proportions observed (pi) ^b
Feeding	Aspen	0,176	11	6	0.314	0.138 < P. <0.490 ^c
U	Aspen-white spruce [‡]	0.104	10	4	0.286	$0.115 < P_0 < 0.457$
	Aspen-jack pine	0.074	8	2	0.229	$0.070 < P_2 < 0.388$
	Other ^{g, t}	0.646	6	23	0.173	$0.000 < p_{1} < 0.365^{e}$
			N=35			<u> </u>
Bedding	Aspen	0.176	15	8	0.326	$0.171 < p_1 < 0.481$
	Aspen-white spruce	0.104	13	5	0.283	$0.117 \leq P_{2} \leq 0.449^{d}$
	Aspen-jack pine ^I	0.074	10	3	0.227	$0.089 \leq P_2 \leq 0.365$
	Other	0.646	8	30	0.174	$0.006 \leq P_{1} \leq 0.342^{e}$
			N=46			- 4 -
Non-Feeding-	Tamarack	0.095	. 7	5	0.121 _h	0.016 ≤ P ₁ ≤0.226
Non-Feeding- Bedding	Black spruce-tamarack	0.152	6	9	0.103	$0.005 \leq p_2^{\perp} \leq 0.201$
	Aspen	0.176	12	10)	0.207	$0.077 \leq p_2^2 \leq 0.337$
	Jack pine	0.095	9	5	0.155	$0.038 \leq p_{1} \leq 0.271$
	Aspen-white spruce	0.104	7	6	0.121	$0.016 \leq p_5^4 \leq 0.226$
	Aspen-jack pine ¹	0.074	12	4	0.207	$0.077 \leq p_{c} \leq 0.337$
	Other	0.304	5	1.8	0.086	$0.032 \leq p_7 \leq 0.204^{\circ}$
	F		N=58			· · · · ·
"Presence	Black spruce	0.152	7	18	0.058	$0.000 \leq P_1 \leq 0.127^{e}$
Only"	Tamarack f	0.095	10	11	0.083 _b	$0.020 \le p_2^{\perp} \le 0.146$
	Black spruce-tamarack	0.152	8	18	0.067	$0.000 \le p_3^2 \le 0.141^{\circ}$
	Aspen	0.176	29	21	0.242	$0.144 \leq p_{1}^{3} \leq 0.340$
	Jack pine	0.094	11	11	0.092	0.026 <u><</u> p ₅ <u><</u> 0.158
	Aspen-white spruce	0.104	20	12	0.167	$0.091 \leq p_6 \leq 0.243$
	Aspen-jack pine [‡]	0.074	28	9	0.233	$0.108 \leq p_7 \leq 0.358$
	Other ¹	0.153		18	0.058	$0.011 \neq p'_{g} \leq 0.127^{e}$
			N=120			0

Table 8. Preference and avoidance of habitat strata for different categories of habitat use during fall.

a Galculated by: pi x N. Compared to corresponding pi to determine if hypothesis of proportional use is accepted or rejected. 90% family confidence coefficient, unless otherwise indicated. 95% family confidence coefficient. 99% family confidence coefficient. fHypothesis of proportional use rejected at the confidence level indicated. 80bservations of use of individual habitats are listed in Table 3.

^hIncludes observations of use of fens.

Category	Habitat Stratum	Proportion of total habitat (pi ₀)	Number of Observations	Expected ^a number of observations	Proportions observed in each habitat (pi)	Confidence interval on proportions observed (pi) ^b
Feeding	Tall Willow Black Spruce-Tamarack f b	0. 0 52 0.152	5 9	4 13	0. 0 60 0.107	$\begin{array}{c} 0.000 \leq p_{1} \leq 0.120^{c} \\ 0.028 \leq p_{2} \leq 0.185 \end{array}$
	Aspen-White Spruce h	0.176 0.104	43 22	15 9	0.512 0.262	$\begin{array}{c} 0.343 \leq p_{3} \leq 0.681^{e} \\ 0.113 \leq p_{4} \leq 0.412^{e} \end{array}$
	Other ^{8,"}	0.516	<u>5</u> N=84	24	0.059	$0.000 \leq p_5 \leq 0.139^{e}$
Bedding	Black Spruce-Tamarack	0.152	4	6	0.093	$0.000 \leq p_1 \leq 0.192$
	Aspen ⁻ , h	0.176	17	8	0.395	$0.209 < p_a < 0.581^e$
	Aspen-White Spruce	0.104	20	5	0.465	$0.237 \le p_a^2 \le 0.693^e$
	Other	0.568	$\frac{2}{N=43}$	24	0.047	$0.000 \le p_4^3 \le 0.144^e$
Non-Feeding-	Black Spruce	0.152	8	7	0.174	0.053 < p <0.295
Bedding	Black Spruce-Tamarack f	0.152	10	7	0.212	$0.069 \le p_2^1 \le 0.355$
	Aspen h	0.176	5	8	0.106	$0.000 \le p_2 \le 0.214$
	Aspen-White Spruce	0.104	13	5	0.276	$0.119 < p_{1}^{3} < 0.432$
	Aspen-Black Spruce	0.017	5	1	0.106	$0.000 < p_{-}^{4} < 0.214$
	Other	0.399	$N=\frac{6}{47}$	19	0.127	$0.000 \leq p_6 \leq 0.280^e$
"Presence	Tall Willow	0.052	6	7	0.043	0.002 < p. <0.084
Only"	Black Spruce	0.152	13	21	0.093	$0.034 \le p^1 \le 0.152$
	Black Spruce-Tamarack	0.152	21	21	0.150	$0.078 \leq p_3^2 \leq 0.222$
	Aspen ,"	0.176	44	25	0.314	0.191 e
	Aspen-White Spruce	0.104	38	15	0.271	$0.153 < p^4 < 0.389^e$
	Other ⁴	0.364	$N=\frac{13}{140}$	51	0.093	$0.016 \leq p_6^5 \leq 0.170^e$

Table 9. Preference and avoidance of habitat strata for different categories of habitat use during winter.

^aCalculated by: pio x N.

^bCompared to corresponding pio to determine if hypothesis of proportional use is accepted or rejected.

C90% family confidence coefficient, unless otherwise indicated. d95% family confidence coefficient.

e99% family confidence coefficient.

^fIncludes observations of use of Aspen-Balsam Poplar and Balsam Poplar.

^gObservations of use of individual habitats are listed in Table 3.

^hHypothesis of proportional use rejected at the confidence level indicated.

All habitats grouped into the "other" classification of habitat strata were avoided (P<0.01) during both fall and winter for all categories of habitat use. However, this means little because it is impossible to assess the importance of individual habitats grouped within the "other" classification. Therefore, this avoidance will not be further discussed.

In the following results, preference or avoidance of habitats was significant at the one percent level unless otherwise specified.

4.6.1 Preference and Avoidance During Fall

During the fall, uplands were preferred and lowlands were avoided for all categories of habitat use, except feeding (Table 7). The test for the feeding category was not conducted because of inadequate sample sizes. However, by examination, it appears probable that uplands were preferred and kowlands avoided.

Preference and avoidance of individual habitat strata were variable.

The aspen-white spruce habitat appeared to be preferred for feeding, while aspen and aspen-jack pine were probably used in proportion to their availability (Table 8).

The results presented above for feeding were qualified because a portion of the constraints for sample size was not met for the statistical tests.

For bedding, both aspen-white spruce (P<0.05) and aspenjack pine (P<0.10) were preferred. Aspen was used in proportion to its availability.

Aspen-jack pine (P<0.10) was preferred for non-feedingbedding. Tamarack, black spruce-tamarack, aspen, jack pine, and aspen-white spruce were all used in proportion to their availability.

When habitat use was categorized according to "presence only", aspen-jack pine was the only stratum that was preferred. Tamarack, aspen, jack pine, and aspen-white spruce were used in proportion to their availability while black spruce and black spruce-tamarack were avoided.

4.6.2 Preference and Avoidance During Winter

During the winter upland habitats were preferred, and lowlands were avoided for feeding, bedding, and "presence only" classifications.

Preference and avoidance of individual habitats was again variable.

Both the aspen and the aspen-white spruce habitats were preferred for feeding (Table 9). Tall willow and black sprucetamarack were used in proportion to their availability.

For bedding, aspen and aspen-white spruce were probably preferred while black spruce-tamarack appeared to be used in proportion to its availability.

The results presented above for bedding were qualified because constraints for sample sizes were not entirely satisfied.

Aspen-white spruce (P<0.10) was the only habitat preferred for non-feeding-bedding. Black spruce, black spruce-tamarack, aspen, and aspen-black spruce were used in proportion to their availability.

When use was defined as "presence only", aspen and aspenwhite spruce were preferred. Tall willow, black spruce, and black spruce-tamarack were used in proportion to their availability.

4.7 PREFERENCE AND AVOIDANCE OF FORAGES

Saskatoon was probably preferred during both fall and winter. It was the most heavily utilized of all the forage species and was scarce (Table 6). Beaked willow was used in proportion to its availability during the fall as it was abundant and heavily utilized. During the winter, both beaked willow and *S. planifolia* were probably avoided. They received relatively heavy utilization, but they were also present in proportionately greater amounts than they were utilized.

DISCUSSION

5.

The data obtained allow only preliminary conclusions because constraints on sample sizes were not satisfied for all statistical tests and overall sample sizes were relatively small.

The majority of studies reporting use of habitats by moose are based upon "presence only" in a particular habitat, as are all the studies cited in the following discussion.

The upland habitats were most heavily used and were preferred during both fall and winter for all categories of habitat use except non-feeding-bedding. For the same period and categories of use, the lowlands were utilized least and were avoided.

In the non-feeding-bedding category, uplands were most heavily used and were preferred during the fall. Lowlands were least utilized and avoided. During the winter, both lowlands and uplands were used in proportion to their availability. This was the only major shift in use of uplands versus lowlands between fall and winter.

Hauge and Keith (in prep.) also found use of uplands to be greater than use of lowlands in the AOSERP study area in the fall. This was also the case for the winter months, with the exception of December, during which most observations were in lowlands.

Contrary results for the fall season were found by Keith and Frojker (in prep.). They reported that 50 percent of observations of radio-collared moose at Rochester, Alberta were in lowland muskegs during October and November. However, they also reported that 86 percent of their observations were in uplands during December through March.

Within the upland habitat strata, the aspen and aspen mixed with either white spruce or jack pine were heavily utilized for all categories of use during the fall. However, only the mixedwood stands were variously preferred. This trend is most noticeable in the feeding and bedding categories.

In the "presence only" category of habitat use, the black spruce and black spruce-tamarack habitats were used in small amounts and were also avoided.

Hauge and Keith (in prep.) reported a similar magnitude of use of aspen, aspen-white spruce, and aspen-jack pine, during the fall. However, their observations of use of the black spruce and black spruce-tamarack habitats were two to three times greater.

Contrary results were reported by Allison (1972) for the Peace-Athabasca Delta. She found that moose were primarily sighted in tall willow and tall willow-meadow habitats during the fall.

During the winter, aspen and aspen-white spruce were heavily utilized and preferred for all categories of use except non-feeding-bedding. For this category, aspen-white spruce was most heavily utilized and was preferred. Black spruce and black spruce-tamarack were also heavily utilized for this category, but they were not preferred.

Hauge and Keith (in prep.) reported the same pattern of use during February and March. However, during December they found less use of aspen and aspen-white spruce, and greater use of black spruce and willow.

Other Alberta studies of habitat use during the winter have reported heavy use of deciduous habitats, primarily aspen and balsam poplar, with little or no use of coniferous or mixed deciduous-coniferous habitats (Nowlin in prep.; Penner 1971). However, conifers were very scarce in the areas where these studies were conducted.

The most heavily used browse species during both fall and winter was saskatoon. In the fall, beaked willow was second in importance, while in winter *S. planifolia* was second and beaked willow was third. All other species were utilized in minor amounts during both fall and winter. Comparison of browse utilization with availability suggests that, of the three important species, only saskatoon was preferred.

The heavy use of saskatoon during winter appears to be an Alberta anomaly. Barrett (1972) also documented unusually high use of this species in southern Alberta. He found that it composed 56 percent of the total diet, and he believed it to be preferred. Moreover, Peek (1974), after reviewing food habits of moose in North America, stated that Barrett's level of utilization of saskatoon was the highest that had been reported.

Other studies in Alberta have discovered similar patterns of forage utilization during winter, with some additions. Nowlin (in prep.), working in central Alberta, also reported heavy use of saskatoon and believed it was preferred. Other important species were pussy willow, beaked hazelnut, and red osier dogwood. Allison (1972) reported that moose in the Peace-Athabasca Delta fed primarily on willow, red osier dogwood, paper birch, and balsam poplar. Saskatoon was uncommon on her study area, but heavily utilized where it occurred.

Food habits studies from outside of Alberta have reported some dissimilar results. In Minnesota, Peek et al. (1976) found that willows were the most important species throughout the year. However, they were most heavily used in September through December. Of the willows, pussy and beaked willow were preferred. During both fall and winter, red osier dogwood and beaked hazlenut were also heavily used. Peek (1974), in his review of food habits, also reported that balsam fir, trembling aspen, and paper birch were important for Canadian moose.

It appears that habitat use and selection during both fall and winter could be correlated to preference for saskatoon. The most important habitats were also the only habitats in which the preferred browse species was commonly found. Relationships between habitat utilization, or selection, and forage supplies have also been variously reported by Bassard et al. (1974), Kearney and Gilbert (1976), Peek et al. (1976), and Telfer (1967).

It is necessary to emphasize that this discussion of habitats and forages has been based upon data collected during a very mild winter. A winter with deeper snow and lower temperatures might influence habitat utilization and selection by forcing moose to seek shelter in dense habitats often dominated by conifers. This has been documented in other areas by Coady (1974), Krefting (1974), Peek et al. (1976), and Van Ballenberghe and Peek (1971). Moreover, the latter two papers also reported a shift in food habits corresponding to the change in habitat use.

6. RECOMMENDATIONS

The following recommendations are preliminary because of the problems with the data base that were pointed out in the discussion.

In terms of fall and winter habitat, it appears that the greatest potential impact on moose populations in the Athabasca Oil Sands would result from destruction or alteration of upland habitat strata. Moreover, within the uplands, aspen, aspen-white spruce, and aspen-jack pine are most critical during the fall, while aspen and aspen-white spruce are most important during the winter. Disturbance of these habitats would adversely affect both the supply of essential browse and the availability of suitable sites for bedding and non-feeding-bedding.

Rehabilitation of fall and winter habitat after mining should be planned to produce habitat strata which are as similar as possible to the the three mentioned above. Moreover, use of the browse species listed in Table 6 which occur in these habitats should be given priority, particularly saskatoon and beaked willow.

7. LITERATURE CITED

Allison, L. 1972. The status of moose on the Peace-Athabasca Delta. Canadian Wildl. Serv. Rep. 35 pp. Unpubl.

Barrett, M.W. 1972. A review of the diet, condition, diseases, and parasites of the Cypress Hills moose. Eighth Ann. N. Am. Moose Workshop. 27 pp.

Bassard, J.M., E. Audy, M. Crete, and P. Genier. 1974. Distribution and winter habitat of moose in Quebec. Naturaliste Can. 101:67-80.

Blood, D.A. 1973. Variation in reproduction and productivity of an enclosed herd of moose (Alces alces). XI Internat. Cong. of Game Biol., Stockholm, Sweden. 16 pp.

Carins, A.L. 1976. Distribution and food habits of moose, wapiti, deer, bison, and snowshoe hare in Elk Island National Park, Alberta. Unpubl. M.Sc. Thesis. University of Calgary. 169 pp.

Coady, J.W. 1974. Influence of snow on behavior of moose. Naturaliste Can. 101:417-436.

Cole, C.F. 1956. The pronghorn antelope--its range use and food habits in central Montana, with special reference to alfalfa. Mont. St. Coll. Agr. Ext. Tech. Bull. 516. 63 pp.

Hauge, T.M., and L.B. Keith. in prep. Dynamics of moose populations near Fort McMurray, Alberta, 1976. Prep. for the Alberta Oil Sands Environmental Research Program by the University of Wisconsin. AOSERP Project TF 1.1.

Holsworth, W.N. 1958. Interactions between moose, elk, and buffalo in Elk Island National Park, Alberta. Unpubl. M.Sc. Thesis. University of British Columbia. 93 pp.

Jacobson, J.O. 1978. Application of stratified random census procedures to the 1976 aerial moose census in the AOSERP study area. Prep. for the Alberta Oil Sands Environmental Research Program by Interdisciplinary Systems Ltd. AOSERP Project TF 7.2.1. 36 pp.

- Kearney, S.R., and F.F. Gilbert. 1976. Habitat use by whitetailed deer and moose on sympatric range. J. Wiidl. Manage. 40(4):645-657.
- Keith, L.B., and R. Frojker. in prep. Population studies of moose near Rochester, Alberta, 1976. Prep for the Alberta Oil Sands Environmental Research Program by the University of Wisconsin. AOSERP Project TF 1.1.
- Knowlton, F. 1960. Food habits, movements, and populations of moose in the Gravelly Mountains, Montana. J. Wildl. Manage. 24(2):162-170.
- Krefting, L.W. 1974. Moose distribution and habitat selection in north central North America. Naturaliste Can. 101:81-100.
- Laycock, W.A., and C.L. Batcheler. 1975. Comparison of distancemeasurement techniques for sampling tussock grassland species in New Zealand. J. Range Manage. 28(3):235-239.
- Lemmon, P.E. 1957. A new instrument for measuring forest overstory density. J. For. 55(9):667-669.
- Moss, E.H. 1959. Flora of Alberta. Univ. of Toronto Press. 546 pp.
- Neu, C.W., C.R. Byers, and J.M. Peek. 1974. A technique for analysis of utilization-availability data. J. Wildl. Manage. 38(3):541-545.
- Nowlin, R.A. in prep. Relationships between habitats, forages, and carrying capacity of moose range in northern Alberta. Part I: Moose preference for habitat strata and forages. (A final report from Ministik Lake, Alberta) Prep. for the Alberta Oil Sands Environmental Research Program by Alberta Recreation, Parks and Wildlife, Fish and Wildlife Division. 18 pp.
- Peek, J.M. 1974. A review of moose food habits studies in North America. Naturaliste Can. 101:195-215.

_____, D.L. Urich, and R.J. MacKie. 1976. Moose habitat selection and relationship to forest management in northeastern Minnesota. Wildl. Monogr. No. 48. 65 pp. Penner, D.F. 1971. Range ecology and the influence of agriculture on moose and deer range on the Smoky River breaks, Alberta. Alberta Fish and Wildl. Dev. Rep. 50 pp.

> . 1976. Preliminary baseline investigations of furbearing and ungulate mammals using lease No. 17. Envir. Res. Monogr. 1976-3. Syncrude Canada Ltd. 181 pp.

- Phillips, R.L., W.E. Berg, and D.B. Siniff. 1973. Moose movement patterns and range use in northwestern Minnesota. J. Wildl. Manage. 37(3):226-278.
- Prescott, W.H. 1974. Interrelationships of moose and deer of the genus *Odocoileus*. Naturaliste Can. 101:493-504.
- Raup, H.M. 1959. The willows of boreal western America. Contr. from the Gray Herb. of Harvard Univ. No. CLXXXV:3-96.
- Rowe, J.S. 1972. Forest regions of Canada. Dept. of Envir., Can. For. Ser. Publ. No. 1300 171 pp.
- Stringer, P.W. 1976. A preliminary vegetation survey of the Alberta Oil Sands Environmental Research Program study area. Prep. for the Alberta Oil Sands Environmental Research Program by Intraverda Plant Systems Ltd. AOSERP Report 4. 108 pp.
- Telfer, E.S. 1967. Comparison of moose and deer winter range in Nova Scotia. J. Wildl. Manage. 31(3):418-425.

Van Ballenberghe, V., and J.M. Peek. 1971. Radio telemetry studies of moose in northeastern Minnesota. J. Wildl. Manage. 35(1):63-71.

8. <u>APPENDIX</u>

This appendix includes Tables 10 to 15 which present the field data collected for this project.

癫

-

Category		Numerical code	
Habitat Stratum		1	
Tall Willow		2	
Black Spruce		2	
Black Spruce	a ser an	5	
Tamaraak		5	
Tamarack		.	
Balsam Poplar		6	
Aspen		7	
Balsam Poplar-Aspen		8	
White Spruce		9	
Aspen-White Spruce		10	
Jack Pine		11	
Aspen-Jack Pine		12	
Upland Shrub		13	
Aspen-Paper Birch		14	
Paper Birch-Jack Pine		15	
White Spruce-Jack Pine		16	
Aspen-Black Spruce		17	
Paper Birch-Black Spruce		18	
Category of Habitat Use			
Feeding		1	
Bedding		2	
Presence Only		3	
Rutting		5	
Kutting			
Position on Slope			
lop of Kidge	· · ·		
Upper 1/3 of slope		2	
Middle 1/3 of slope		3	
Lower 1/3 of slope		4	
Bottom of Valley		5	
T op ographic Undulations (m)			
		6	2 ⁵
+ 0.00 to 0.50		0	
\pm 0.51 to 1.50		/	
\pm 1.51 to 3.00		ð	

Table 10. Numerical codes for interpretation of Table 2 for habitat strata, categories of habitat use, position on slope, and topographic undulations.

Table 11. Animal number, date, time, location, habitat stratum utilized, verification, location type, category of habitat use, canopy closure, and physical factors for each microplot.

					Aeri	al Photo	:				× .						·······		
An. No.	a Men.	Day_	Time ^b	Pho Ln. ^d	to ^e No,	<u>Grid</u> X	No.f Y	Hab. Str.	g Ver. ^h	Loc. Ty.	i Hab. ^j Use	Can. ^k Cl.	51p.1	Topo Asp. ^{'m}	graphy Pos. ⁿ	Und. ⁰	Sn. ^P Dep.	Comm.	ID. ^t No.
85 85 85 85	9 9 9 9	1 1 1 1	1220 1400 1500 1625 1720	24 24 24 24 24	224 224 224 224 224 224	55.50, 54.50, 54.50, 54.50, 54.50,	58.75 60.00 60.00 60.00 60.00	5 5 5 5 5 5 5	1 1 1 1	1 1 1 1	3 3 3 3 3	- 70 70 70 70	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	_q - - - -	- - - -		1 2 3 4 5
96 96 96 96 96	9 9 9 9	12 12 12 12 13	1235 1300 1525 1650 0830	23 23 23 23 23 23	189 189 189 189 189	46.50, 46.50, 46.50, 46.50, 69.00,	61.50 61.50 61.50 61.50 61.00	12 12 12 12 12	1 1 1 1	1 1 1 1	3 3 3 1,2,3	-	0 - - -	0 - - -	0 - - -	- - -			6 7 8 9 10
85 85 85 85 85	9 9 9 9	14 14 14 14 15	1145 1530 1615 1715 0950	24 24 24 24 24	223 223 223 223 223 225	75.75, 75.00, 75.00, 76.00, 64.75,	67.00 81.00 78.50 79.00 60.25	13 10 10 10 10 11	1 1 1 1	1 1 1 1	2,3 2,3 3 3 3	- 14 34 5 9	- 0 0 0	- 0 0 0	0 0 0	- - -		2 beds	11 12 13 14 15
85 87 87 87 87	9 9 9 9	15 24 24 24 24	1045 0850 1335 1500 1620	24 24 24 24 24	225 219 219 219 219 219	64.75, 42.00, 50.00, 51.00, 49.00,	60.25 73.50 75.50 74.00 76.00	11 3 7 7 7 7	1 1 1 1	1 1 1 1 1	3 3 1,3 3 1,2,3	9 25 78 90 87	0 0 0 0 0	0 0 0 0	0 0 0 0	-			16 17 18 19 20
87 87 87 87 87	9 9 9 9	24 24 24 25 25	1620 1620 1712 0710 0750	24 24 24 24 24	219 219 219 219 219 219	49.75, 49.00, 49.50, 41.50, 49.00,	77,00 77.25 73.25 75.75 76,00	11 12 7 3 7	1 1 1 2 1	2 2 1 1 1	2,3 3 2,3 1,2,3	77 88 85 - 87	0 0 -	0 0 - 0	0 0 0 -				21 22 23 24 25
87 87 87 87 90	9 9 9 9	25 25 25 21 22	0950 1100 1155 1200 1450	24 24 24 24 23	219 219 219 219 219 189	47.25, 45.75, 46.00, 57.00, 15.00,	75.25 76.00 76.76 48.00 49.50	7 7 12 5 11	1 1 1 1	1 1 1 1	3,5 1,3 2,3 3 3	90 84 18 0 30	0 0 0 0	0 0 0 0	0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·	- - - - -	4 beds	26 27 28 29 30

Table 11. Continued.

			۰.		Aer	ial Photo ^C			· · ·	π			·			к. С	
An. ^a				Pho	to ^e	Grid No.	- Hab. ^g	. L	.oc. Hab.	j Can. ^k		Торо	graphy		Sn. ^P		ID. ^t
NO.	Men.	Day	Time	Ln.ª	No,	Y X	Str. Ver.	n	Ty. Use	C1,	Slp.	Asp. ^m	Pos. ⁿ	Und. ⁰	Dep.	Comm.	No.
90 90 90 90 89	9 9 9 9 9	22 23 23 23 23 23	1700 0850 0850 0850 0850	23 23 23 23 23 23	189 189 189 189 189	11.00, 44.00 15.75, 36.75 14.25, 36.75 14.25, 36.75 14.25, 36.75 17.00, 40.50	11 1 12 1 11 1 11 1 12 2		3 3 2 3 2 3	39 43 84 46	0 - - - -	0 - - -	0 - - - -		-		31 32 33 34 35
89 89 90 89 89	9 9 9 9	21 21 21 27 27	1000 1000 1300 1133 1350	25 25 23 22 22	261 261 188 153 153	22.25, 47.00 22.25, 47.25 38.00, 57.00 42.00, 36.25 42.00, 36.25	3 1 5 1 11 1 7 1 7 1		1,3 2 3 1 3 1 2,3,5 1 2,3,5	22 0 - 32 32	0 0 0 0 0	0 0 0 0	0 0 0 0	- - - - -		2 beds 2 beds	36 37 38 39 40
89 89 89 89 90	9 9 9 9	27 27 27 27 27 27	1440 1550 1650 1750 1540	22 22 22 22 22 22	153 153 153 153 153	42.00, 36.25 42.00, 36.25 42.00, 36.25 44.25, 37.25 33.00, 30.50	7 1 7 1 7 1 7 1 7 1 4 1	1	2,3,5 2,3,5 2,3,5 2,3,5 3 3	32 32 32 51 24	0 0 0 0 0	0 0 0 0	0 0 0 0 0	-		2 beds 2 beds 2 beds 2 beds 2 beds	41 42 43 44 45
89 89 89 89 89	9 9 9 9 9	28 28 28 28 28 28	0950 1125 1335 1500 1705	22 22 22 22 22 22	152 152 152 152 152	68.00, 38.25 68.00, 38.25 68.00, 35.24 69.75, 37.75 69.75, 37.75	5 1 5 1 4 1 10 1 10 1		1 2,3 1 2,3 1 3 1 2,3 1 2,3 1 2,3	1 1 49 74 74	0 0 0 0 0	0 0 0 0	0 0 0 0	-	-	2 beds	46 47 48 49 50
0bs. ^r 89 90 90 90	9 9 9 9	28 28 28 28 28 28	1350 1815 0950 1125 1345	22 22 22 22 22 22	152 152 152 152 152	70.00, 43.75 68.00, 38.25 69.75, 37.75 76.25, 34.25 79.50, 35.50	7 1 5 1 10 1 7 1 7 1		1 3 1 2,3 1 2,3 1 3 1 3	91 1 74 92 91	0 0 0 0 0	0 0 0 0	0 0 0 0	-		2 beds	51 52 53 54 55
90 90 89 89 0bs. ^s	9 9 9 9	28 28 28 28 28 28	1540 1705 1705 1705	22 22 22 22 22 22	152 152 152 152 152 152	80.25, 38.75 80.25, 38.75 69.25, 37.25 69.25, 37.75 71.50, 43.75	7 1 7 1 3 1 3 1 7 1		1 3 1 3 2 3,5 2 3 1 3,5	21 21 - 30 46	0 0 0 0	0 0 0 0 0	0 0 0 0 0	- - - - -		2 rut. wal.	56 57 58 59 60

Tabl	е	11.	Continued.

š.,					Aer	ial Photo ^C	;				ж т		,					
An.	Mon	Nav	Time	Pho In d	to ^e	Grid X	No.f	Hab. ^g Str Var	h Lo	oc. ⁱ Hab. ^j	Can. ^k	510	Торо	graphy Pos ⁿ	lind 0	Sn. ^p	Comm	ID. ^t
96 96 96 96 96 96	10 10 10 10 10 10	10 10 10 10 10 10	1030 1340 1535 1625 1625	23 23 23 23 23 23	188 188 188 188 188 188	70.75, 61 65.50, 63 66.50, 66 66.50, 66 66.75, 66	1.75 3.75 5.50 5.50 5.50	11 2 12 1 12 1 12 1 12 1 7 1	1 1 1 1 2	1,3 3 1,3 1,3	- 83 87 87 87 86	- 0 0 0 0 0	- 0 0 0 0	- 0 0 0 0	-	- - - - -	2	61 62 63 64 65
75 75 75 75 75	10 10 10 10 10	10 10 10 10 20	1340 1535 1625 1340 1035	23 23 23 23 23 23	189 189 189 189 189 188	28.75, 61 29.00, 63 29.00, 63 28.50, 62 73.00, 69	1.75 3.50 3.50 2.25 9.00	12 1 12 1 12 1 7 1 11 1	1 1 2 1	1,3,5 1,2,3 1,2,3 1,3,5 3	20 84 84 13 71	0 0 0 0	0 0 0 0	0 0 0 0		, - - - -		66 67 68 69 70
75 75 75 75 75 75	10 10 10 10 10	20 20 20 20 20	1330 1440 1540 1635 1700	23 23 23 23 23 23	188 188 188 188 188	81.00, 74 83.00, 77 83.00, 77 83.00, 77 82.00, 74	4.75 7.75 7.75 7.75 4.75	4 1 1 1 1 1 1 1 2 1	1 1 1 1	1,3 3 3 1,3	0 0 0 0 31	0 0 0 0 0	0 0 0 0	0 0 0 0	- - - 7	- - - - -		71 72 73 74 75
75 75 75 75 96	10 10 10 10 10	20 20 20 20 24	1700 1330 1330 1330 0945	23 23 23 23 23 23	188 188 188 188 188	82.00, 75 80.75, 74 80.75, 74 81.00, 75 84.00, 50	5.50 4.50 4.25 5.00 0.00	1 1 3 1 14 1 1 1 12 2	2 2 2 1	3 3 3 -	0 30 75 0 -	0 0 0 -	0 0 0 -	0 0 0 -	0 0 7 0 -			76 77 78 79 80
96 96 96 96 75	10 10 10 10 10	24 24 24 24 24	1220 1220 1445 1530 1025	23 23 23 23 23 23	188 188 188 188 188	79.75, 53 80.00, 54 84.75, 53 82.00, 52 81.00, 48	3.75 4.00 3.50 2.00 8.75	12 1 12 1 12 1 12 1 12 1 12 2	1 2 1 1 1	1,3 1,3 1,2,3 1,3	90 56 21 76	0 85 0 -	0 16 0 -	0 0 0 0	0 0 0 -	- - - -		81 82 83 84 85
75 Obs. 87 87 87	10 10 10 10 10	24 24 27 27 27	1220 1615 1025 1300 1350	23 23 24 24 24	188 188 218 218 218 218	81.00, 48 80.00, 50 78.00, 36 79.00, 38 79.00, 38	B.75 0.00 6.50 B.50 B.50	12 2 12 1 3 2 7 1 7 1	1 1 1 1	2,3 - 3 3	- 85 - 90 90	- - 0 0	- - 0 0	- - 0 0	- - 0 0		2 beds	86 87 88 89 90

Table 11. Continued.

Aerial Photo ^C												
An ^a				Photo	Grid No.	Hab. ^g	loc, ⁱ Hab, ^j	Can. k	Торс	ography	Sn. ^p	ID. ^t
No.	Men.	Day	Time ^b	Ln. ^d No.	Y X	Str. Ver. ^h	Ty. Use	C1.	Slp. Asp. ^m	Pos. ⁿ Und. ⁰	Dep. Comm.	No.
87 87 87 87 87	10 10 10 10 10	28 28 28 28 28 28	0850 0930 0850 1020 1125	24 21 24 21 24 21 24 21 24 21 24 21	56.50, 18.75 56.50, 18.75 56.50, 18.50 55.50, 18.50 55.50, 19.50 55.50, 19.50	10 1 10 1 7 1 10 1 10 1	1 1,3 1 1,3 2 1,3 1 1,3 1 1,3 1 1,3	77 77 82 82 82 82	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0		91 92 93 94 95
96 96 96 96 96	11 11 11 11 11	21 21 21 21 21 22	1330 1330 1435 1515 1007	23 18 23 18 23 18 23 18 23 18 23 19	80.50, 42.25 79.50, 42.50 81.50, 42.75 81.50, 42.75 81.50, 42.75 21.25, 44.50	15 1 12 1 15 1 15 1 15 1 12 1	1 1,3 2 1,3 1 1,3 1 1,3 1 1,3 1 3	76 73 87 87 38	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 6 0 6 0 0	- , - , - , - , - ,	96 97 98 99 100
96 96 96 96 96	11 11 11 11 11	22 22 22 22 22 22	1007 1145 1315 1315 1315 1430	23 19 23 19 23 19 23 19 23 19 23 19	21.75, 44.25 21.25, 44.50 22.75, 44.25 22.50, 45.00 23.75, 45.00	7 1 12 1 12 1 7 1 7 1 7 1	2 1,3 1 4 1 1,3 2 1,3 1 1,2,4	24 38 54 11 67	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 1 0	- - - - - -	101 102 103 104 105
96 96 90 85 85	11 11 11 11 11	22 22 4 19 19	1530 1530 1205 1630 1630	23 19 23 19 24 22 24 22 24 22 24 22	23.75, 45.00 23.50, 45.00 27.75, 45.75 65.25, 59.25 65.25, 69.00	7 1 13 1 7 1 12 1 11 1	1 1,2,3 2 1,2,3 1 1,3 1 3 2 3	67 0 - 81 84	0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 1 0 0 6 0 6	- - -	106 107 108 109 110
87 87 87 87 87 87	11 11 11 11 11	24 24 24 24 25	1300 1330 1350 1350 1350 1040	24 21 24 21 24 21 24 21 24 21 24 21	3 59.50, 38.00 3 55.25, 36.00 3 55.25, 36.00 3 54.75, 36.00 3 54.75, 36.00 3 54.70, 36.00 3 54.00, 40.00	10 1 10 1 10 1 10 1 10 1 10 1	1 1,2,3 1 1,3 1 1,3 2 3 1 1,2,3	73 80 80 69 75	0 0 20 255 20 255 0 0 0 0	0 0 4 0 4 0 0 0 0 0	- 3 beds - - - 3 beds	111 112 113 114 115
87 87 87 87 87	11 11 11 11 11	25 25 25 25 25	1040 1120 1315 1415 1510	24 21 24 21 24 21 24 21 24 21 24 21	28.25, 40.00 29.00, 41.75 27.75, 40.25 27.75, 40.25 27.75, 40.25 27.75, 40.25	10 1 10 1 10 1 10 1 10 1 10 1	2 3 1 1,2,3 1 1,3 1 1,3 1 1,3 1 1,3	80 85 87 87 87	0 0 20 287 30 240 30 240 30 240 30 240	5 0 0 0 0 0 0 0 0 0	- 2 beds - - -	116 117 118 119 120

Table 11. Continued.

					Aer	ial Photo ^C	•											
An ^a	1			Pho	oto ^e	Grid No.	f Hab ^g			i _{Hab} j	Can k		Торос	raphy		sn P		in t
_No.	Men.	Day	Timeb	Ln.d	No,	y x x	Str, V	ler.h	Ļ,	ly. Use	¢1.	\$1p.1	Asp. ^m	Pos. ⁿ	Und. ⁰	Dep.	Comm.	No.
87 85 85 85 85	11 12 12 12 12	25 15 15 15 15	1510 1215 1355 1535 1220	24 22 22 22 22	219 154 154 154 154	28.25, 40.00 46.25, 53.00 44.00, 57.00 41.00, 57.00 28.00, 59.50	10 3 4 3 13	1 2 2 2 2	2 1 1 1	3 - - -	80 - - -	0 - - -	0 - - -	5 - - - -	0 - - - -			121 122 123 124 125
85 79 79 79 96	12 12 12 12 12 12	16 11 11 11 18	1500 1245 1245 1245 1155	22 24 24 24 22	154 218 218 218 155	36.00, 52.00 20.25, 29.50 19.50, 19.00 20.75, 29.75 42.00, 45.50	10 2 3 1 10	1 1 1 1 1	1 1 2 2 1	1,3 1,3 3 1,2,3	54 27 24 - 84	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 6	20 - - 19		126 127 128 129 130
96 96 96 96 81	12 12 12 12 12 1	18 18 18 18 13	1330 1510 1545 1630 1430	22 22 22 22 22	155 155 155 155 91	42.00, 45.50 43.00, 45.50 43.00, 45.50 43.00, 47.00 31.00, 54.75	10 10 10 10 7	1 1 1 1	1 1 1 1	1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,3	84 64 64 53 77	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	6 6 6 0	19 18 18 21 18	2 beds	131 132 133 134 135
81 81 81 81 81	1 1 1 1	13 13 14 14 14	1510 1610 1350 1440 1400	20 20 20 20 20	91 91 91 91 91 91	31.00, 53.75 31.00, 53.75 51.00, 64.00 50.00, 64.75 50.00, 64.75	7 7 7 7 7	1 1 1 1	1 1 1 1	1,3 1,3 1,2,3 1,2,3 1,2,3 1,2,3	77 77 84 33 86	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 8 0	19 19 18 20 18		136 137 138 139 140
81 81 83 83 83	1 1 1 1 1	14 14 19 19 19	1510 1440 1500 1605 1200	20 20 22 22 22 22	91 91 153 153 153	51.00, 64.00 50.75, 64.75 42.50, 33.00 33.50, 44.75 33.50, 44.75	4 4 7 10 10	1 1 1 1	1 2 1 1 1	1,2,3 1,3 1,3 2,3 2,3	7 9 90 84 84	0 0 10 0	0 0 190 0 0	0 0 3 0	0 0 7 7	26 21 18 21 21	2 beds 2 beds	141 142 143 144 145
83 83 83 83 83 83	1 1 1 1	19 20 20 20 20	1500 1335 1435 1530 1610	22 22 22 22 22 22	153 153 153 153 153	33.75, 44.50 29.50, 67.25 29.50, 67.25 29.50, 67.25 29.50, 67.25 29.50, 67.25	16 7 7 7 7	1 1 1 1	2 1 1 1	3 1,3 1,3 1,3 1,3 1,3	79 - - - -	0 0 0 0	0 0 0 0	0 0 0 0	0 7 7 7 7	17 - - -		146 147 148 149 150

Table 11. Continued.

				A	erial Photo ^C							
م ^ع				Photo	Grid No.	F Hab 9		Can k	Topograp	hy	s. P	in t
NO.	Men.	Day	Time ^b	Ln. ^d No	, х ү	Str. Ver. ^h	Ty. Use	Cl.	Slp. ¹ Asp. ^m Po	s. ⁿ Und. ^O	Dep. Comm.	No.
17 17 17 17 17	1 1 1 1	18 20 20 20 20	1645 1310 1430 1610 1700	24 22 24 22 24 22 24 22 24 22 24 22	2 35.25, 54.50 2 28.25, 59.25 2 28.25, 59.25 2 28.25, 59.25 2 28.25, 59.25 2 28.25, 59.25	8 1 10 1 10 1 10 1 10 1	1 1,2,3 1 3 1 3 1 3 1 3 1 3	90 83 83 83 83 83	0 0 0 0 0 0 0 0 0 0	0 6 0 0 0 0 0 0 0 0	17 3 beds 17 17 17 17	151 152 153 154 155
17 17 17 17 17	1 1 1 1	21 21 21 22 22	1040 1040 1150 1030 1200	24 22 24 22 24 22 24 22 24 22 24 22	2 34.50, 58.00 2 34.00, 57.50 2 32.25, 59.50 2 27.50, 58.50 2 27.50, 58.50	7 1 18 1 10 1 10 1 10 1	1 1,2,3 2 3 1 1,2,3 1 3 1 3	91 91 22 89 89	0 0 0 0 0 0 0 0 0 0	0 7 0 0 0 6 0 0 0 0	15 15 18 13 13	156 157 158 159 160
17 17 17 87 87	1 1 1 1	22 22 22 24 24	1245 1420 1520 1245 1525	24 22 24 22 24 22 21 12 21 12	2 27.50, 58.50 2 27.50, 58.50 2 27.50, 58.50 2 32.75, 77.00 2 35.75, 33.25	10 1 10 1 10 1 17 1 4 1	1 3 1 3 1 3 1 3 1 3 1 3	89 89 89 85 23	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	13 13 13 24 20	161 162 163 164 165
87 87 87 87 87	1 1 1 1	24 24 25 25 25	1615 1650 1055 1200 1305	21 12 21 12 21 12 21 12 21 12 21 12	2 35.75, 33.25 2 38.00, 33.00 2 35.75, 33.25 2 35.75, 33.25 2 35.75, 33.25 2 35.75, 33.25	4 1 3 1 4 1 4 1 4 1	1 3 1 3 1 3 1 3 1 3	23 7 23 23 23 23	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	20 27 20 20 20	166 167 168 169 170
87 87 87 83 83	1 1 1 1	25 25 25 25 25	1350 1515 1625 1345 1500	21 12 21 12 21 12 21 12 22 15 22 15	2 36.50, 31.00 2 36.50, 31.00 2 36.50, 31.00 3 56.75, 67.50 3 56.75, 67.50	4 1 4 1 16 1 16 1	1 3 1 3 1 3 1 3 1 3	0 0 36 36	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 19 19	171 172 173 174 175
83 83 47 47 47	1 -2 2 2	25 25 11 11 11	1640 1640 1300 1420 1420	22 19 22 19 21 12 21 12 21 12 21 12	3 56.75, 67.50 3 57.50, 67.25 0 54.00, 60.00 0 52.75, 61.00 0 53.25, 60.00	16 1 12 1 7 1 10 1 7 1	1 3 1 3 1 1,3 1 1,3 1 1,2,3	36 10 - 81 68	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	19 23 	176 177 178 179 180

Table 11. Continued.

					Aer	ial Pho	oto ^C											
An. ⁶	1			Pho	toe	G	Id No.	- Hab	g	Loc	i _{Hab} , j	Can. ^k		Торо	graphy		Sn. ^p	ID. ^t
No.	Men.	Day	Time	Ln.ª	No,	X	Y	Str.	Ver. ⁿ	Тү	. Use	¢1.	\$1p.'	Asp. ^m	Pos. ⁿ	Und. ⁰	Dep. Comm.	No.
47 47 47 88 88	2 2 2 2 2 2	11 11 11 13 13	1520 1520 1625 1010 1130	21 21 21 20 20	120 120 120 90 90	51.00 51.00 52.50 82.50	59.50 58.75 58.75 18.75 18.75	8 10 8 7 7	1 1 1 1	1 2 1 1	1,2,3 1,2,3 1,3 1,3 1,3 1,3	73 83 69 87 87	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	22 21 20 20 20	181 182 183 184 185
88 88 88 88 88	2 2 2 2 2	13 12 12 12 12	1315 1215 1340 1600 1040	20 20 20 20 20	90 90 90 90 92	82.50 74.25 74.25 74.25 42.75	18.75 18.75 18.75 18.75 18.75 65.00	7 7 7 7 7	1 1 1 1 1	1 1 1 1	1,3 1,3 1,3 1,3 1,3	87 83 83 83 90	0 0 0 0 0	0 0 0 0	0 0 0 0	0 6 6 7	20 21 21 21 21 15	186 187 188 189 190
81 81 81 81 81	2 2 2 2 2	15 15 15 15 15	1200 1315 1440 1605 1040	20 20 20 20 20	92 92 92 92 92	42.75 42.75 42.75 42.75 42.75 43.25	65.00 65.00 65.00 65.00 65.00	7 7 7 7 17	1 1 1 1 1	1 1 1 2	1,3 1,3 1,3 1,3 3	90 90 90 90 89	0 0 0 0 0	0 0 0 0	0 0 0 0	7 7 7 7 6	15 15 15 15 18	191 192 193 194 195
81 81 81 81 81	2 2 2 2 2	15 16 16 16 16	1040 0945 1130 1130 1245	20 20 20 20 20	92 92 92 92 92	43.50 43.50 43.50 42.75 42.00	65.00 70.50 70.70 70.25 69.75	3 10 10 3 3	1 1 1 1 1	2 1 1 1	3 3 3 3 3	49 85 85 53 22	0 0 0 0	0 0 0 0	0 0 0 0	0 7 7 0 0	18 19 19 18 14	196 197 198 199 200
81 81 40 40 88	2 2 2 2 2	20 20 20 20 22	1015 1115 1105 1115 1330	20 20 20 20 19	92 92 92 92 56	45.75 45.50 46.00 46.00 51.00	85.75 83.50 86.25 82.00 48.75	2 4 2 2 10	1 1 1 1	1 1 1 1	1,3 3 1,3 3 1,3	0 0 0 8	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 6	22 20 23 26 22	201 202 203 204 205
88 88 88 88 88	2 2 2 2 2	22 22 22 22 22 23	1330 1430 1640 1715 1015	19 19 19 19 19 19	56 56 56 56 56	51.50 52.50 52.25 52.25 52.25 57.25	48.75 48.75 51.25 51.25 53.25	17 4 4 4 7	1 1 1 1 1	2 1 1 1	3 1,2,3 1,3 1,3 1,2,3	72 2 36 36 18	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 8	22 25 26 26 25	206 207 208 209 210

Table 11. Continued.

	,				Aer	ial Ph	oto ^C												
An.	a ,	1	·	Pho	oto ^e	G	rid No.	f - Ha	ь. ^д .		oc. ⁱ Hab. ^j	Can. ^k		Торо	raphy		Sn. ^P		ID. ^t
No.	Mcn.	Day	Time	Ln.ª	No,	X	Y	Şt	r, Ver. ⁿ		Ty. Use	C1.	Slp.	Asp. ^m	Pos. ⁿ	Und. ⁰	Dep.	Comm.	No.
88 88 88 88 88	2 2 2 2 2	23 23 23 23 23 23	1015 1055 1055 1255 1340	19 19 19 19 19 19	56 56 56 56 56	56.75 58.75 59.00 58.50 58.50	52.75 55.25 54.75 53.50 53.50	3 2 3 7 7	1 1 1 1	2 1 2 1 1	1,2,3 1,2,3 1,3 3 3	29 0 64 81 81	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 7 7	23 25 23 20 20		211 212 213 214 215
88 81 81 81 81	2 2 2 2 2	23 22 22 22 22 22	1340 0950 0950 1045 1045	19 20 20 20 20	56 93 93 93 93	58.25, 30.75, 31.25, 27.00, 27.00,	54.00 78.00 78.00 75.75 76.00	3 7 3 17 4	1 1 1 1	2 1 2 2 1	3 3 3 1,3	17 57 26 80 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 7 0 6 0	17 21 23 17 12		216 217 218 219 220
81 81 81 81 81	2 2 2 2 2	22 23 23 23 23 23	1045 0955 0955 0955 1200	20 20 20 20 20 20	93 93 93 93 93	27.25, 22.50, 22.00, 21.75, 24.25,	75.75 82.00 82.00 82.00 82.25	12 6 10 7 8		2 1 2 2 1	1,3 3 3 1,2,3	74 73 85 84 64	0 0 0 0 0	0 0 0 0	1 0 0 0 0	0 0 0 7 0	23 22 10 21 22		221 222 223 224 225
81 81 81 81 81 81	2 2 2 2 2	23 25 25 26 26	1200 1015 1100 0955 1115	20 20 20 20 20 20	93 93 93 93 93 93	23.75, 22.50, 22.50, 33.25, 33.25,	82.00 77.25 77.25 84.50 84.50	2 4 7 7	1 1 1 1	2 1 1 1	1,3 1,2,3 1,2,3 1,3 1,3 1,3	51 12 12 71 71	0 0 0 0	0 0 0 0	0 0 1 1	0 0 0 0	19 21 21 20 20		226 227 228 229 230
81 81 40 40 40	2 2 2 2 2	26 26 22 22 22	1210 1310 0950 1106 1106	20 20 20 20 20 20	93 93 93 93 93 93	33.25, 33.25, 30.25, 27.50, 27.25,	84.50 84.50 76.50 77.50 77.00	7 7 3 7 8	1 1 1 1	1 1 1 1 1	1,3 1,3 1,3 1,3 2,3	71 71 4 22 14	0 0 0 0 0	0 0 0 0 0	1 1 0 0	0 0 0 7 0	20 20 21 16 21		231 232 233 234 235
40 40 40 40 40	2 2 2 2 2	23 23 23 23 23 25	0955 0955 1150 1150 1015	20 20 20 20 20 20	93 93 93 93 93 93	21.00, 21.25, 24.25, 24.50, 24.00,	86.50 86.50 87.75 87.75 77.50	4 3 3 10 7]]]]	1 2 1 2 1	3 3 3 1,2,3	20 75 26 73 66	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 7	26 8 21 21 15		236 237 238 239 240

Table 11. Continued.

					Aer	ial Photo ^C												
۸n. No.	Men.	Dav	Time ^b	PH	noto ^e No.	<u>Grid No.</u> X Y	- Hal	b. ^g r. Ver.h	Lo	c. ⁱ Hab. ^j v. Use	Can. ^K	Sin. ¹	Topo Asn. ^m	Pos. ⁿ	Und. ⁰	Sn. ^p Dep.	Comm.	ID. ^t No.
40 40 40 40 40	2 2 2 2 2 2	25 26 26 26 26 26	1100 0955 1115 1210 1310	20 20 20 20 20 20	93 93 93 93 93 93	24.00, 77.50 33.25, 84.50 33.25, 84.50 33.25, 84.50 33.25, 84.50 33.25, 84.50	7 7 7 7 7 7 7	1 1 1 1 1	1 1 1	1,2,3 1,3 1,3 1,3 1,3 1,3	66 71 71 71 71 71	0 0 0 0 0	0 0 0 0 0 0	0 1 1 1 1	7 0 0 0 0	15 20 20 20 20 20		241 242 243 244 245
83 83 83 83 83	3 3 3 3 3	1 1 2 4	1135 1300 1405 1205 1445	22 22 22 22 22 22	152 152 152 152 152	61.00, 72.75 61.00, 72.75 61.00, 72.75 59.50, 73.73 62.25, 71.00	10 10 10 10 7	 	1 1 1 1	1,3 1,3 1,3 1,2,3 1,2,3	84 84 82 15	0 0 15 10	0 0 270 265	1 1 1 2 4	0 0 0 0	13 13 13 17 20		246 247 248 249 250
83 83 83 83 83	3 3 3 3 3	4 4 4 4	1015 1145 1220 1340 1415	22 22 22 22 22 22	152 152 152 152 152	61.00, 72.75 61.00, 72.75 61.00, 72.75 59.50, 73.75 59.50, 73.75	10 10 10 10 10	1 1 1 1	1 1 1 1	1,3 1,3 1,3 1,2,3 1,2,3	84 84 82 82	0 0 15 15	0 0 270 270	1 1 2 2	0 0 0 0	13 13 13 17 17		251 252 253 254 255
83 47 47 47 47 47	3 3 3 3 3	4 2 2 4 4	1535 1100 1100 1210 1000	22 22 22 22 22 22	152 152 152 152 152 152	59.50, 73.75 74.25, 58.25 73.75, 58.50 69.00, 54.00 67.50, 55.25	10 7 12 10 10	1 1 1 1	1 1 2 1 1	1,2,3 1,3 1,3 1,2,3 1,2,3	82 78 74 78 78	15 0 0 0	270 0 0 0 0	2 0 0 0 0	0 7 0 7 7	17 20 15 21 21	2 beds	256 257 258 259 260

^aAnimal number. ^bMountain standard time. ^CGeographical location on aerial photo (photos used were black and white and were taken on 22 August 1972, with a scale of 1:21,120).

continued

Table 11. Concluded.

d Aerial photo flight line number.

e Aerial photo number.

f X,Y coordinates read from grids overlaying aerial photos for each microplot.

49

g Habitat stratum utilized (see Table 10 for numerical codes).

h Whether or not the radio relocation was verified: 1=yes, 2=no.

i Location type: 1=primary observation, 2=secondary observation.

j Category of habitat use (see Table 10 for numerical codes).

k Canopy closure in percent.

1 Slope in percent.

m Aspect in compass degrees.

n Position on slope (see Table 10 for numerical codes).

• Rating of topographic undulations (see Table 10 for numerical codes).

p Snow depth in centimetres.

q Not obtained.

r Observation of an uncollared bull (probably two years old).

s Observation of an uncollared bull.

t Identification number for each microplot.

Table 12. Abbreviations for browse species.

Browse Species		Abbreviation
Alnus crispa	· · · · · · · · · · · · · · · · · · ·	ALCR
Amelanchier alnifolia		AMAL
Betula papyrifera		BEPA
Betula spp. ^a		BE spp
Cornus stolonifera		COST
Populus balsamifera		POBA
Populus tremuloides		POTR
Prunus pensylvanica		PRPE
Prunus virginiana		PRVI
Rosa woodsii		ROWO
Rubus spp.		RUspp.
Salix bebbiana		SABE
Salix discolor		SADI
Salix planifolia		SAPL
Salix Maccalliana		SAMA
Salix mackenzieana		SAMC
Salix myrtillifolia		SAMY
Salix serrissima		SASE
<i>Salix</i> spp.		SAspp.
Shepherdia canadensis		SHCA
Viburnum edule		VIED

^aIncludes Betula glandulosa and B. pumila.

	Nearest Clump ^b			Nearest Neighbor ^C							
ID. ^a No.	Spectes	Dist ^e	No. of Stems	Species	Dist.	No. of Stems					
132 133 130 131 134	POTR ^f POTR AMAL AMAL POTR	15 15 19 19 87	1 1 1 1	AMAL AMAL AMAL AMAL AMAL	87 87 30 30 82	1 1 1 1 1					
136 137 139 140 142	ROWO ROWO ROWO ROWO SASE	28 28 25 25 65	1 1 1 1	AMAL AMAL ROWO ROWO SASE	16 16 40 40 65						
138 141 143 144 145	SAPL SAPL AMAL AMAL AMAL	70 70 8 21 21	1 1 1 1	SAPL SAPL AMAL AMAL AMAL	60 60 50 22 22	22 22 1 1 1					
146 159 160 161 162	SABE VIED VIED VIED VIED	220 35 35 35 35 35	1 1 1 1	SABE ROWO ROWO ROWO ROWO	100 55 55 55 55	1 1 1 1 1					
163 152 153 154 155	VIED VIED VIED VIED VIED	35 120 120 120 120 120	1 1 1 1	R0W0 C0C0 C0C0 C0C0 C0C0	55 40 40 40 40	1 1 1 1 1					
151 156 157 158 164	COCO VIED SABE ROWO SHCA	22 45 25 334 42	1 1 1 1 6	VIED VIED SABE POTR SHCA	8 28 200 150 60	1 1 1 2					
172 173 165 166 168	SAPL SAPL SAPL SAPL SAPL SAPL	250 250 25 25 25	24 24 1 1 1	SAPL SAPL SAPL SAPL SAPL SAPL	80 80 155 155 155	4 5 5 5					

Table 13. Measurements taken at microplots to determine densities of browse species.

Table 13. Continued.

	Near	est Clump	b	Neare	st Neighbo	or
ID. ^a No.	Species	Dist	No. of Stems ^d	Species	Disţ.	No. of Stems
169	SAPL	25	1	SAPL	155	5
170	SAPL	25	1	SAPL	155	5
167	SABE	142	27	SAPL	150	23
174	SHCA	275	10	SHCA	300	10
175	SHCA	275	10	SHCA	300	10
176	SHCA	275	10	SHCA	300	10
177	POTR	40	1	POTR	250	1
178	AMAL	35	3	AMAL	10	1
179	ROWO	37	1	AMAL	60	1
180	AMAL	20	1	AMAL	76	1
181	POTR	15	1	SABE	45	8
182	AMAL	20	1	AMAL	20	1
183	AMAL	34	1	AMAL	14	1
184	AMAL	70	1,	AMAL	22	1
185	AMAL	70	1,	AMAL	22	1
186 187 188 189 190	AMAL AMAL AMAL AMAL VIED	70 43 43 43 20	1 1 1 1 1	AMAL AMAL AMAL AMAL VIED	22 10 10 10 10 15	
191	VIED	20	1	VIED	15	
192	VIED	20	1	VIED	15	
193	VIED	20	1	VIED	15	
194	VIED	20	1	VIED	15	
195	SHCA	25	1	SHCA	25	
196 197 198 199 200	SHCA ROWO ROWO - g -	25 48 48 -	1 1 -	SHCA ROWO ROWO - -	25 106 106 - -	1 1 1 -
201	BEspp.	30	1	BEspp.	60	7
202	BEspp.	13	1	BEspp.	13	1
203	BEspp.	45	1	BEspp.	20	1
204	BEspp.	20	1	BEspp.	15	1
205	POTR	43	1	POTR	5	1

Continued . . .

Table 13. Continued.

		Nearest C	lump ^b	Neare	st Neighbo	r ^C
ID. ^a No.	Species	Dist. ^e	No. of Stems ^d	Species	Dist.	No. of Stems
206 207 208 209 210	SABE SAPL SAPL SAPL POTR	50 33 11 11 43	3 1 1 1 1 1	SABE SAPL SAPL SAPL SHCA	60 35 10 10 80	4 1 1 1 1
211	BEspp.	30	1	BEspp.	15	1
212	SASE	55	2	SASE	40	2
213	SAMA	37	9	SAMA	35	1
214	VIED	110	1	SHCA	90	3
215	VIED	110	1	SHCA	90	3
216 217 218 219 220	POTR POTR POBA SABE BEspp.	100 25 90 20 10]]]]	BEspp. POTR BEspp. SABE BEspp.	89 110 89 25 8	14 1 1
221	SHCA	15	2	SHCA	45	3
222	BEspp.	30	3	BEspp.	25	1
223	SABE	22	4	SABE	20	1
224	VIED	10	1	AMAL	19	1
225	ROWO	45	1	ROWO	35	1
226	SAPL	50	6	SAPL	40	7
227	SAPL	25	10	SAPL	45	18
228	SAPL	25	10	SAPL	45	18
229	SABE	65	10	SHCA	55	6
230	SABE	65	10	SHCA	55	6
231	SABE	65	10	SHCA	55	6
232	SABE	65	10	SHCA	55	6
233	SHCA	105	9	SHCA	75	15
234	SHCA	42	5	SHCA	25	1
235	POBA	42	1	POBA	21	1
236	BEspp.	45	19	BEspp.	130	9
237	SABE	270	1	-	-	-
238	BEspp.	70	7	BEspp.	130	20
239	SABE	43	3	SABE	47	3
240	AMAL	24	1	AMAL	41	3

Continued . . .

		Nearest C	lump ^b	Neares	t Neighbo	r
ı _{D.} a No.	Species	Dist. ^e	No. of d Stems	Species	Dist.	No. of Stems
241 242 243 244 245	AMAL SABE SABE SABE SABE	24 65 65 65 65	1 10 10 10 10	AMAL SHCA SHCA SHCA SHCA SHCA	41 55 55 55 55	3 6 6 6 6
246 247 248 250 251	AMAL AMAL AMAL AMAL AMAL	20 20 20 20 20		AMAL AMAL AMAL AMAL AMAL	25 25 25 25 25	1 1 1 1 1
252 253 254 255 256	AMAL AMAL AMAL AMAL AMAL	20 20 28 28 28		AMAL AMAL AMAL AMAL AMAL	25 25 22 22 22 22	1 1 1 1
257 258 259 260	AMAL POTR AMAL SABE	25 113 12 47]]] 5	SHCA AMAL AMAL SABE	5 35 11 48	1 1 1 4

Tab	le 1	3. (Concl	uded.
		-		

^a Identification number of microplot where measurements were taken (see Table 11).

^bNearest clump to microplo**t** centre. ^cNearest neighboring clump to nearest clump. ^dNumber of stems in each clump.

^eDistance in centimetres.

^fAbbreviation for browse species (see Table 12). ^gNo clump of browse encountered.

ID. ^a No.	Species	Use ^b	Species	Use	Species	Use	Species	Use	Species	Use
10	PRPEC	69	POTR	12						. <u></u>
20 27 66	SABE SABE AMAL AMAL	40 77 30 16	AMAL SABE RVspp	158 16 28	COST	5	ROWO	2		
69 67	SABE SABE	33 66	POTR	4						
65 63 62	PRPE AMAL SABE	15 3 46	AMAL AMAL	4 29						
75 71 81 82	SADI SAMC AMAL SABE	50 7 13	SASE SASE POTR SADI	2 10 4	SAMC SADI PRPE	57 8 3	SABE SAPL	6 112		
83	SABE	66	AMAL	3	PRPE	5	SADI	42		
84 91 93 94 108	AMAL AMAL AMAL AMAL AMAL	5 196 136 94 231	ROWO SABE ROWO PRPE	13 18 4 12	SABE	9				
96 97 98 104	BEPA AMAL BEPA AMAI	12 9 34 10	POTR POTR POTR	6 52 42						
101	AMAL	73	POTR	6	0000	141	PRPE	1		

Table 14. Instances of use of each browse species within macroplots.

ID. ^a No.	Species	Use ^b	Species	Use	Species	Use	Species	Use	Species	Use
105 107 117 118 111	AMAL AMAL AMAL AMAL AMAL AMAL	159 164 128 246 223	PRPE ALCR ROWO VIED SABE	2 20 8 6 12	ALCR POTR SABE	6 10 17	POTR PRPE VIED	5 35 3	COCO	49
112 127 126 132 130	AMAL BEspp. AMAL AMAL AMAL	7 49 35 110 105	VIED SADI SABE SABE	1 17 6 62	SABE SASE SHCA	8 4 3	BEPA POTR	9	VIED	3
134 138 139 140 141	AMAL AMAL AMAL SAPL SAPL	43 177 7 69 142	SABE ROWO SASE SAMA	43 6 17 4	VIED POTR SAspp. SASE	1 1 2 27	POTR SAspp.	1		-
145 143 151 156 184	AMAL AMAL VIED SABE AMAL	160 118 115 38 156	POTR SABE COCO VIED	4 5 111 24	PRVI AMAL BEPA	3 24 17	ROWO	1		
187 179 180 178 181	AMAL AMAL AMAL AMAL AMAL	150 95 88 167 23	SABE SABE SABE SABE	49 25 5 2	ROWO	1				

Table 14. Continued.

Continued . . .

Table 14.	Continue d .
-----------	---------------------

ID. ^a No.	Species	Use ^b	Species	Use	Species	Use	Species	Use	Species	Use
183 182 190 201	AMAL AMAL AMAL SAMY	149 118 82 53	SABE SABE VIED SASE	21 4 10 28	POTR BEspp.	1 33				
205	ALCR	37	SABE	9	POTR	6				
207 208 210 211 212	SABE SAPL AMAL SAPL SAPL	13 163 178 50 93	SAPL SASE ALCR SAMY	31 10 21 80	SASE SAMA POTR	26 3 2				
213 229 225 226	SAMA AMAL VIED	3 120 30	SAPL AMAL	19 18	SABE SABE	11 13				
227	BEspp.	36	SAPL	41	SASE	27	SAMY	54	SAMA	9
240 221 220	AMAL AMAL SAPL	106 72 43	SABE POTR	32 4	VIED	1	SADI	18	POTR	36
234 233	AMAL SABE	140 84	SABE SAMA	19 5	POTR	6	POBA	3	SADI	3
250 246	AMAL AMAL	132 203	POTR	14						
249 257 258	AMAL AMAL AMAL	141 151 130	POTR POTR POTP	4 2 22						

				1						
ID. ^a No.	Species	Use ^b	Species	Use	Species	Use	Species	Use	Species	Use
259 260	AMAL AMAL	201 194	POTR SABE	6 5						- - - - - - - - - - - - - - - - - - -
			1 							

a bIdentification number of microplot at feeding site (see Table 11). cNumber of instances of use of each browse species. Abbreviations for browse species (see Table 12).

		Dep	De	Density		
	Jan.	Jan.	Feb.	Feb.	Jan.	Feb.
Habitat Stratum	8	23	10	2/	8	10
Tall Willow	16.00	7.00	9.50	8.00	0.13	0.32
	7.75	8.00	9.00	6.50	0.26	0.22
	11.50	8.50	11.00	8.75	0.17	0.23
	11.50	7.00	11.00	6.50	0.19	0.18
	10.00	7.50	10.00	13.00	0.18	0.20
Black Spruce	9.25	7.00	10.00	9.00	0.16	0.20
	8.25	6.50	10.00	7.50	0.18	0.25
	7.50	8.00	11.00	7.50	0.13	0.27
	9.00	6.00	7.50	7.00	0.17	0.13
	3.50	5.50	6.50	4.00	0.29	0.23
		14.00	11.50	9.50		0.32
		3.50	3.50	2.50		0.14
		7.50	11.00	8.00		0.18
Tamarack	11.00	8.25	9.00	9.00	0.18	0.22
	7.50	10.00	13.00	7.00	0.13	0.23
	16.50	9.50	11.50	7.00	0.11	0.22
	11.00	8.50	10.00	9.50	0.14	0.15
	11.00	8.00	12.00	9.00	0.18	0.17
Black Spruce-	10.00	8.00	8.50	8.50	0.13	0.18
Tamarack	8.75	6.25	9.00	9.00	0.23	0.22
	10.50	8.00	9.50	9.00	0.17	0.21
	5.50	7.25	7.50	6.50	0.18	0.13
	10.00	7.00	11.00	8.50	0.23	0.23
Apsen-Black	9.00	7.00	10.00	9.00	0.17	0.20
Spruce	2.50	4.50	7.00	4.50	0.20	0.14
	-	6.50	8.50	5.50		0.18
		3.00	7.00	5.00		0.14

Table 15. Depth and density of snow measured at sampling points on the snow course during January and February.

continued ...

9. AOSERP RESEARCH REPORTS

1.		AOSERP First Annual Report, 1975
2.	AF 4.1.1	Walleye and Goldeye Fisheries Investigations in the Peace-Athabasca Delta1975
3.	HE 1.1.1	Structure of a Traditional Baseline Data System
4.	VE 2.2	A Preliminary Vegetation Survey of the Alberta Oil
5.	HY 3.1	The Evaluation of Wastewaters from an Oil Sand Extraction Plant
6.		Housing for the NorthThe Stackwall System
7.	AF 3.1.1	A Synopsis of the Physical and Biological Limnology and Fisheries Programs within the Alberta Oil Sands Area
8.	AF 1.2.1	The Impact of Saline Waters upon Freshwater Biota (A Literature Review and Bibliography)
9.	ME 3.3	Preliminary Investigations into the Magnitude of Fog Occurrence and Associated Problems in the Oil Sands Area
10.	HE 2.1	Development of a Research Design Related to Archaeological Studies in the Athabasca Oil Sands
		Area
11.	AF 2.2.1	Life Cycles of Some Common Aquatic Insects of the
12.	ME 1.7	Very High Resolution Meteorological Satellite Study
13.	ME 2.3.1	Plume Dispersion Measurements from an Oil Sands Extraction Plant March 1976
14.	HE 2.4	Athabasca Oil Sands Historical Research Design (3 Volumes)
15.	ME 3.4	A Climatology of Low Level Air Trajectories in the Alberta Oil Sands Area
16.	ME 1.6	The Feasibility of a Weather Radar near Fort McMurray, Alberta
17.	AF 2.1.1	A Survey of Baseline Levels of Contaminants in
18		Aquatic Biota of the AOSERP Study Area
10.		1976 for the Alberta Oil Sands Environmental Research Program
19.	ME 4.1	Calculations of Annual Averaged Sulphur Dioxide Concentrations at Ground Level in the AOSERP Study Area
20.	HY 3.1.1	Characterization of Organic Constituents in Waters and Wastewaters of the Athabasca Oil Sands Mining Area
21.		AOSERP Second Annual Report, 1976-77
-----	---	--
22.	HE 2.3	Maximization of Technical Training and Involvement
	-	of Area Manpower
23.	AF 1.1.2	Acute Lethality of Mine Depressurization Water on
		Trout Perch and Rainbow Trout
24.	ME 4.2.1	Review of Dispersion Models and Possible Applications
		in the Alberta Oil Sands Area
25.	ME 3.5.1	Review of Pollutant Transformation Processes Relevant
-).		to the Alberta Oil Sands Area
26.	AF 4.5.1	Interim Report on an Intensive Study of the Fish
		Fauna of the Muskeg River Watershed of Northeastern
		Alberta
27.	ME 1.5.1	Meteorology and Air Quality Winter Field Study in
		the AOSERP Study Area. March 1976
28.	VE 2.1	Interim Report on a Soils Inventory in the Athabasca
		Oil Sands Area
29.	ME 2.2	An Inventory System for Atmospheric Emissions in the
	i e e la contra de l	AOSERP Study Area
30.	ME 2.1	Ambient Air Quality in the AOSERP Study Area, 1977
31.	VE 2.3	Ecological Habitat Mapping of the AOSERP Study Area:
	-	Phase I
32.		AOSERP Third Annual Report, 1977-78
33.	TF 1.2	Relationships Between Habitats, Forages, and Carrying
		Capacity of Moose Range in northern Alberta. Part I:
		Moose Preferences for Habitat Strata and Forages.
34.	HY 2.4	Heavy Metals in Bottom Sediments of the Mainstem
		Athabasca River System in the AOSERP Study Area
35.	AF 4.9.1	The Effects of Sedimentation on the Aquatic Biota
36.	AF 4.8.1	Fall Fisheries Investigations in the Athabasca and
		Clearwater Rivers Upstream of Fort McMurray: Volume I
37.	HE 2.2.2	Community Studies: Fort McMurray, Anzac, Fort MacKay
38.	VE 7.1.1	Techniques for the Control of Small Mammals: A Review
39.	ME 1.0	The Climatology of the Alberta Oil Sands Environmental
		Research Program Study Area
40.	VE 7.1	Interim Report on Reclamation for Afforestation by
	,	Suitable Native and Introduced Tree and Shrub Species
41.	AF 3.5.1	Acute and Chronic Toxicity of Vanadium to Fish
		the end officities toxicity of valiadium to itsh

These reports are not available upon request. For further information about availability and location of depositories, please contact:

Alberta Oil Sands Environmental Research Program 15th Floor, Oxbridge Place 9820-106 Street Edmonton, Alberta T5K 2J6

63

This material is provided under educational reproduction permissions included in Alberta Environment and Sustainable Resource Development's Copyright and Disclosure Statement, see terms at http://www.environment.alberta.ca/copyright.html. This Statement requires the following identification:

"The source of the materials is Alberta Environment and Sustainable Resource Development <u>http://www.environment.gov.ab.ca/</u>. The use of these materials by the end user is done without any affiliation with or endorsement by the Government of Alberta. Reliance upon the end user's use of these materials is at the risk of the end user.