
Asynchronous Reinforcement Learning for Real-Time

Control of Physical Robots

by

Yufeng Yuan

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Yufeng Yuan, 2021

Abstract

An oft-ignored challenge of real-world reinforcement learning is that, unlike

standard simulated environments, the real world does not pause when agents

make learning updates. As standard simulated environments do not address

this real-time aspect of learning, most available implementations of deep rein-

forcement learning algorithms process environment interactions and learning

updates sequentially. Consequently, when such implementations are deployed

in the real world, they may not act responsively and learn e�ciently. Asyn-

chronous learning has been proposed to solve this issue, but no systematic

comparison between sequential and asynchronous reinforcement learning was

conducted using real-world environments. In this thesis, we set up two vision-

based tasks with a robotic arm, implement an asynchronous learning sys-

tem that extends a previous architecture, and compare sequential and asyn-

chronous reinforcement learning across di↵erent action cycle times, sensory

data dimensions, and mini-batch sizes. Our experiments show that when the

time cost of learning updates increases, the action cycle time in sequential

implementation could grow excessively long, while the asynchronous imple-

mentation can always maintain a fixed and appropriate action cycle time.

Consequently, when learning updates are expensive, the performance of se-

quential learning diminishes and is outperformed by a substantial margin by

asynchronous learning. Our system learns in real-time to reach and track vi-

sual targets from pixels within two hours of experience and does so directly

using real robots, learning completely from scratch.

ii

Preface

Results in this thesis, including the environment setup and di↵erent learning

architectures, were submitted to CORL 2021 conference. This submission was

coauthored with my supervisor Prof. Rupam Mahmood.

iii

Acknowledgements

I am greatly grateful to my supervisor Prof. RupamMahmood. His meticulous

guidance and constant encouragement have been indispensable in my master’s

career. He persists in achieving long-term goals and sticks to rigorous research

standards, which I benefit tremendously from.

I am thankful for all the amazing people from our Robot LAIR group and

Reinforcement Learning and Artificial Intelligence Lab. I also thank Jun Luo,

Daniel Graves, and Craig Sherstan from Huawei Noah’s Ark Lab for their help

and support. I am also thankful to Kindred Inc. for their donation of the UR5

robotic arm.

I thank the University of Alberta, Alberta Machine Intelligence Institute

(Amii), the Canada CIFAR AI Chairs Program, and Huawei Noah’s Ark Lab

for funding this program.

iv

Contents

1 Introduction 1

1.1 Challenge in Real-time Reinforcement Learning 2

1.2 Asynchronous Reinforcement Learning 3

1.3 Related Works . 4

1.4 Contributions . 5

2 Background 7

2.1 Problem Setup . 7

2.2 Convolutional Neural Networks 9

2.3 The Soft Actor-Critic Algorithm 12

3 Proposed Vision-based Control Environment 14

3.1 The Physical Setup . 14

3.2 Environment Interactions Implementation 17

3.3 Environment Specifications . 19

4 Asynchronous Learning Architecture 21

4.1 The Soft Actor-Critic Implementation 21

4.2 The Sequential Learning Architecture 23

4.3 The Existing Asynchronous Learning Architecture 24

4.4 Our Proposed Asynchronous Learning Architecture 26

4.5 Computational Comparison of the Three Architectures 27

5 Experimental Setup 30

5.1 Three Experimental Settings 30

5.2 Choosing Action-Cycle Time 31

v

5.3 Experiment Methodology . 32

6 Experimental Results with The Sequential Learning Architec-

ture 34

6.1 Training Results . 34

6.2 Evaluation Results . 35

6.3 Results Analysis . 36

7 Experimental Results with The Existing Asynchronous Learn-

ing Architecture 37

7.1 Training Results . 37

7.2 Evaluation Results . 38

7.3 Results Analysis . 39

8 Experimental Results with Our Proposed Asynchronous Learn-

ing Architecture 40

8.1 Training Results . 40

8.2 Evaluation Results . 41

8.3 Results Analysis . 41

8.4 Learned Behavior . 43

8.5 Learned Representation . 43

9 Conclusion 44

References 46

vi

List of Tables

5.1 Summary of three experimental settings. 31

5.2 The computation time of each component in Seq-SAC measured

in our three experimental settings. 32

5.3 SAC Hyperparameters . 33

vii

List of Figures

2.1 Markov decision process. 8

2.2 A typical convolution neural network model with both convo-

lution layers and fully-connected layers. 10

2.3 Random cropping augmentation applied to image observations. 11

3.1 The physical setup of the environment, including the robotic

arm, the wrist-mounted camera, and the monitor. 15

3.2 The 160 ⇥ 90 image captured by the wrist-mounted camera,

where the red dot is the target. 16

3.3 The environment architecture in this work. 17

3.4 The agent-invironment interaction cycle (Sutton et al. 2018). 19

4.1 The neural network architecture used in the experiments. The

solid arrows show the directions of the forward pass, and the

dashed arrows show the directions of the backward pass. . . . 22

4.2 Overview of the sequential learning architecture. 23

4.3 Overview of the existing asynchronous learning architecture. . 25

4.4 Overview of our extended asynchronous learning architecture. 27

4.5 The computational flow over time of the three versions of SAC.

For plotting purposes, the relative length of each block may not

reflect the relative computation time. 29

6.1 The learning curves of Seq-SAC 34

6.2 The overall performance of Seq-SAC 35

6.3 The evaluation performance of Seq-SAC 35

7.1 The learning curves of Seq-SAC and Async-SAC-1. 37

viii

7.2 The overall performance of Seq-SAC and Async-SAC-1 . . . 38

7.3 The evaluation performance of Seq-SAC and Async-SAC-1 . 38

8.1 The learning curves of Async-SAC-2, Async-SAC-1, and Seq-

SAC . 40

8.2 The overall performance of Async-SAC-2, Async-SAC-1, and

Seq-SAC . 41

8.3 The evaluation performance of Async-SAC-2, Async-SAC-1, and

Seq-SAC . 42

8.4 Learned behaviors in Reaching (first row) and Tracking (second

row). 43

8.5 Coordinates captured by the spatial softmax layer. 43

ix

Chapter 1

Introduction

The utilization of robots can facilitate the automation of production and im-

prove the e�ciency of society. However, robots based on classical control

methods face di�culty when deployed in a dynamic environment. One ap-

proach to enable autonomous adaptation in robots is through deep RL, which

uses neural networks as function approximators for reinforcement learning.

Unfortunately, the potential of deep reinforcement learning has been mostly

demonstrated in simulated robotic control tasks and rarely in real-world ap-

plications.

In simulated environments, such as DeepMind Control Suite (Tassa et al.

2020), OpenAI Gym (Brockman et al. 2016), and Pybullet (Coumans et al.

2016–2021), deep reinforcement learning has made remarkable progress in com-

plex robotic control tasks (e.g., Schulman et al. 2015, Duan et al. 2016, Schul-

man et al. 2017, Haarnoja et al. 2018a). However, in real-world applications,

the current progress is far behind the above results. Such a gap between sim-

ulated results and real-world applications is usually attributed to two factors.

First, real-world environments require more physical setup, hardware tuning,

and potentially expensive devices, such as a real robotic arm. Second, the real-

world environments impose extra challenges to reinforcement learning, such as

the slow data collection, system delay from sensory inputs, high-dimensional

state space and action space, rigorous environment constraints, and partial

observability (Dulac-Arnold et al. 2020). However, one oft-ignored implicit

consequence of the imbalanced usage of simulated environments and real-world

1

environments is that most algorithms and implementations are only tested in

simulated environments. When they are deployed in real-world environments,

in which the agents need to learn and act in real-time, it is unclear whether

they can maintain the performance as they do in simulated environments.

In this thesis, we explore the challenge of real-time reinforcement learning,

investigate how order of computations a↵ects the performance of real-time

systems, evaluate asynchronous reinforcement learning as one approach to

address some of the challenges, and provide recommendations for improving

upon existing asynchronous learning architecture. All the results are obtained

using real-world, vision-based robotic tasks.

1.1 Challenge in Real-time Reinforcement Learn-

ing

Besides the challenges mentioned for real-world reinforcement learning, one

additional challenge that is often ignored is the sequential computation of

environment interactions and learning updates in most available open-source

implementations. Under this sequential computation, to sample an action at

time step t, the agent has to wait until the learning update before time step t

finishes; and to make a learning update at time step t, the agent also has to wait

until the agent-environment interactions at time step t finishes. In this case,

the minimal time interval between two consecutive actions is lower-bounded

by the time cost of learning updates. Such computational arrangement, which

is simple to implement and debug, is appropriate in simulated environments

because the simulated environments can be internally paused while agents

make learning updates. Likewise, in standard simulated environments, no

matter how long the learning updates take, the subsequent state or observation

the agent receives will always be the same. However, in the real world, time

marches on regardless of the learning updates, and the environment will keep

executing the previous action command before the learning update finishes.

Because the control frequency of a robotic system is usually on the order of

milliseconds, learning updates could take much longer than that. In this case,

2

the sequential computation could delay the execution of the next action when

learning updates are in progress, potentially prolonging the e↵ective length

of the time step or action cycle time, reducing the amount of observations

and gradient updates as well as the responsiveness of the agent. In practice,

this issue can be considerably exacerbated when high-dimensional data, such

as images, are combined with algorithms with replay bu↵ers that perform

expensive per-step updates such as Soft Actor-Critic (SAC, Haarnoja et al.

2018a or Deep Deterministic Policy Gradient (DDPG, Lillicrap et al. 2016).

However, those replay bu↵er-based algorithms are, so far, most ideal for real-

world reinforcement learning, as the utilization of replay bu↵er enables e�cient

data reuse, which copes with one of the crucial challenges, the very limited

number of samples, in real-world reinforcement learning.

1.2 Asynchronous Reinforcement Learning

When applying sequential implementations of deep RL algorithms in the real

world, the potential problem is caused by the combination of sequentially ar-

ranged computations and expensive learning updates. One approach to solving

this problem is to reduce the actual time cost of the learning updates, such

as using inexpensive incremental learning updates (A. Mahmood 2017). If

the actual time cost of learning updates can be kept similar to the control

frequency of robotic systems, it will have no negative e↵ect on the learning

agent. The other approach is to rearrange the computations by decoupling

environment interactions and learning updates so that they both can proceed

at their own pace without interfering with each other. This can be achieved

with o↵-policy algorithms and running environment interactions and learning

updates asynchronously on di↵erent threads or processes. Such asynchronous

systems, usually referred to as asynchronous reinforcement learning or dis-

tributed reinforcement learning, have been proposed and used in large-scale

experiments in simulated evironments (e.g., Nair et al. 2015, Espeholt et al.

2018, Barth-Maron et al. 2018), in the form of multiple actors interacting with

multiple instances of the environment to collect data. However, those systems

3

may not be readily applicable to real-world robotic control tasks. They usu-

ally assume a large pool of parallel instances of the environment to accelerate

data collection. At the same time, the number of robots which can be used for

experiments is usually quite limited in practice. For real-world robotic control

tasks, asynchronous learning systems have also been utilized previously, such

as (e.g., Gu et al. 2017, Haarnoja et al. 2018c, Kalashnikov et al. 2018), to

maintain appropriate action cycle time for the robotic system and accelerate

data collection. However, no systematic study of the benefits of asynchronous

learning over sequential learning has been conducted on real-world robotic

tasks.

1.3 Related Works

In this thesis, we systematically compare asynchronous reinforcement learning

and sequential reinforcement learning in real-world vision-based control tasks.

Previous works that are most relevant to this thesis are reinforcement learning

from images and real-world reinforcement learning.

Reinforcement learning from images (Mnih et al. 2013) usually needs a

prohibitively large amount of data due to the relatively sparse reward signal,

high-dimensional data, and partial-observability. To alleviate this issue, one

common approach is to add auxiliary tasks, such as self-supervised predic-

tion (Jaderberg et al. 2017), auto-encoder reconstruction (Yarats et al. 2019),

and contrastive learning (Stooke et al. 2021) to provide more training signals

to visual representations. A complimentary but highly e↵ective approach is to

add random augmentations to image input, such as random cropping proposed

in Yarats et al. (2021) and Laskin et al. (2020), to regularize representations

by learning an augmentation-invariant critic. However, most of the works

consider simulated environments with a stationary overhead camera, and in

contrast, our setting has the camera mounted at the end of a physical robotic

arm.

Reinforcement learning has also been applied to a wide variety of real-world

tasks, such as motor skills (Lange et al. 2012), grasping objects (Kalashnikov et

4

al. 2018), in-hand object manipulation (Andrychowicz et al. 2020), door open-

ing (Gu et al. 2017), and locomotion (Haarnoja et al. 2018c). To successfully

solve these tasks, di↵erent methods have been proposed to overcome the real-

world challenges, such as ensuring critical constraints are never violated (Dalal

et al. 2018), removing manual reset by learning a resetting policy (Eysenbach

et al. 2018), removing hand-engineered reward functions (Zhu et al. 2020),

utilizing prior knowledge in simulations (Peng et al. 2018), and using auxiliary

tasks (Schwab et al. 2019).

Although algorithms such as reactive SARSA (Travnik et al. 2018) already

utilize asynchronous learning to reduce the time it takes for an agent to re-

act to observation, a careful study of the di↵erence between sequential and

asynchronous learning is still missing, and few of these works make their asyn-

chronous implementation publicly available.

1.4 Contributions

The contributions of this work can be summarized in four main categories:

• We implement two vision-based tasks with a physical robotic arm that

can serve as a benchmarking environment for real-world vision-based control.

The two tasks are based on the SenseAct framework (A. R. Mahmood et al.

2018a), consisting of a UR5 robotic arm performing reaching and tracking

behaviors, a monitor displaying the target, and a wrist-mounted RGB camera

capturing images. The first task with a stationary target can be solved by a

coarse control policy, while the second task with a constantly moving target

requires a finer control policy.

• We propose an asynchronous learning architecture for e�cient learning

from images, which extends the existing architecture (Haarnoja et al. 2018c)

that runs environment interactions and learning updates in parallel. The ex-

isting architectures can be su�cient for low-dimensional data but may not be

e�cient enough when learning from high-resolution images. Thus, we extend

this architecture by separating replay bu↵er sampling and gradient updates

inside the learning update process into two parallel processes.

5

• We conduct systematic experiments to compare sequential learning and

the two variants of asynchronous learning systems across di↵erent action cycle

times, sensory data dimensions, and mini-batch sizes and give analysis to the

empirical results obtained.

• We make our implementations of the tasks and the learning system pub-

licly available to enable reproducibility and accelerate further advancement of

real-world and real-time robot learning from images. Our implementation can

be found in https://github.com/YufengYuan/ur5 async rl.

6

https://github.com/YufengYuan/ur5_async_rl

Chapter 2

Background

This chapter presents the problem setup, the model architecture, and the spe-

cific algorithm we use for our implementation and experiments. We investigate

the benefits and limitations of asynchronous reinforcement learning by formu-

lating the problem as a finite-horizon Markov decision process (MDP). As part

of the observation space is image input, we also briefly discuss the convolu-

tional neural network, which is the most commonly used model in processing

visual information. Lastly, we discuss the Soft Actor-Critic algorithm, which

is the algorithm we use throughout this thesis.

2.1 Problem Setup

In this section, we introduce our notations and the mathematical formalism

of reinforcement learning, following Kaelbling et al. (1998) and Sutton et al.

(2018). The problem of reinforcement learning is to learn a control policy

in a dynamical system, and the dynamic system can be defined as a Markov

decision process (MDP, Bellman 1958).

The finite-horizon Markov decision process can be described as a tuple

M = (S,A, p, r, �, d0), where S is the set of all states, A is the set of all

actions, which can either be discrete or continuous, p = Pr(st+1|st, at) is the

transition dynamics, which captures the probability distribution over the next

state st+1 2 S given the current state st 2 S and current action at 2 A,

r : S ⇥A! R is the reward function that maps the current state and action

to a scalar reward signal, � 2 [0, 1) is a discount factor, and d0 define the

7

initial state distribution d0(s) in this MDP.

Definitions

Andrey MarkovRichard Bellman

Figure 2.1: Markov decision process.

Specifically, in our problem setting, the finite-horizon MDP, the agent inter-

acts with the environment through episodes. For every episode, the interaction

starts from the time step t = 0 with the initial state s0 sampled from the initial

state distribution d0 and terminates at terminal state sT with time step t = T .

After an episode is terminated, the environment will reset and a new episode

will start. For every time step t in one episode, the agent receives the current

state st 2 S and use its policy ⇡, which is a probability distribution, to sample

an action at ⇠ ⇡(·|st) and execute it in the environment. In the next time step

t+1, the environment proceeds to the next state st+1 ⇠ p(·|st, at) and emits a

scalar reward signal Rt+1 = r(st, at). Then, st+1 and Rt+1 will be sent to the

agent. Such cycle repeats until the terminal state sT is reached. We denote

the value function of state under a policy ⇡ as v⇡(st), which can be defined

recursively:

v⇡(st) =
X

at

⇡(at|st)
X

st+1

p(st+1|st, at) [r(st, at) + �v⇡(st+1)] . (2.1)

Similarly, we denote the action-value function of state-action pair under a

policy ⇡ as q⇡(st, at):

q⇡(st, at) =
X

st+1

p(st+1|st, at) [r(st, at) + �v⇡(st+1)] . (2.2)

In practice, we use V⇡ and Q⇡ to estimate v⇡ and q⇡, respectively.

However, as shown in Chapter 3 in our physical task setup, image obser-

vations are involved in our problem. Then, the agent does not have access

8

to the environment state st. Instead, the agent receives a partial observation

ot, which is a function of the environmental state. The observation space is

determined by the task design, which usually attempts to incorporate enough

information about the environment. For example, in vision-based tasks for

agents to learn from pixels, multiple subsequent images are typically stacked

together. Despite such a design, instantaneous observations may not contain

enough state information about the environment. This issue can be addressed

using representation learning with recurrent networks, which we do not study

in this work.

2.2 Convolutional Neural Networks

Deep learning models are used as the function approximators in deep reinforce-

ment learning. The two most widely used types of models are fully-connected

neural networks and convolutional neural networks. When the observation

is a multi-dimensional vector, fully-connected neural networks can be used,

which are mostly composed of fully-connected layers. Fully-connected layers

are like matrices and mathematically perform vector-matrix multiplication to

the input and output a new vector. By stacking multiple fully-connected lay-

ers and non-linear activation functions applied between each layer, the model

can theoretically approximate arbitrary functions. The purpose of applying

non-linear activation functions is to prevent the stacked fully-connected layers

from reducing to linear mapping. However, when the observation exhibits a

grid pattern, such as images, convolutional neural networks need to be utilized,

which imitates the visual cortex of animals to learn hierarchical and spatial

features. A convolutional neural network is primarily composed of convolu-

tion layers, pooling layers, and fully-connected layers. The convolution layer

is the key component of a convolutional neural network, which performs the

mathematical convolution operation on grid-patterned data with a small grid

of parameters called the kernel. The pooling layer performs down-sampling

to reduce the spatial resolution of the input, which discards the spatial infor-

mation and maintains the high-level feature patterns. As before, non-linear

9

activation functions are also applied after the convolution layers. A typical

architecture of the convolutional neural network is shown in Figure 2.2

Max-Pooling Convolution Max-Pooling Fully-Connected

8@128x128
8@64x64

24@48x48
24@16x16 1x256

1x128

Figure 2.2: A typical convolution neural network model with both convolution
layers and fully-connected layers.

However, reinforcement learning from image observation, which is our task

setup shown in Chapter 3, is known to be much more challenging due to the

intrinsic di�culty of learning from images as well as the instability of reinforce-

ment learning itself. Thus, various model variants and techniques have been

proposed to resolve this issue and enable reinforcement learning from images.

In particular, we describe random augmentation and spatial softmax, which we

use in our implementation to successfully learn from image observations. For

simplicity, we use only one instance of random augmentations, yet the most ef-

fective one: random cropping (Laskin et al. 2020, Yarats et al. 2021) on image

observations. Every time an image is sampled, a large patch from it will be

cropped randomly and fed to the agent. This approach has been empirically

demonstrated to increase performance significantly and reduce overfitting. We

denote the image observation as o with height H, width W , and channel C.

In this case, o is a tensor with shape H ⇥W ⇥ C. We denote the cropped

height and width as H̄ and W̄ , in which H̄  H and W̄  W . Then, the

cropped height h can be sampled from U(0, H � H̄) and cropped width w can

be sampled from U(0,W � W̄). The random cropping augmentation can be

described with a Pythonic equation:

AUG(o) = oh:H̄+h,w:W̄+w,: (2.3)

10

However, it should be noted that such augmentation will only be applied to

sampled mini-batch for gradient update. To sample an action to interact with

the environment, h = (H � H̄)/2 and w = (W � W̄)/2 will be used to crop

the central patch from the image observation. A demonstration of random

cropping augmentation using DeepMind Control Suite (Tassa et al. 2020) is

shown in Figure 2.3

1st time sampled

2nd time sampled

ra
nd

om
 cr

op

random crop

random crop

Figure 2.3: Random cropping augmentation applied to image observations.

The spatial softmax (Finn et al. 2016) exponentiates the encoding after the

convolution layers and converts it into soft coordinates in each channel based

on the response of activations. Such operation will discard any pattern in-

formation and only maintain spatial information, which makes training easier

and it is suitable for our task setup. In spatial softmax, the latent represen-

tation is first passed to a softmax function scij = e
acij/

P
i
0
j
0 e

a
ci

0
j
0 , where a

is the input, s is the output, c is the index of channel, and (i, j) is the pixel

coordinate. The output s in each channel is a probability distribution over the

location of a feature in the image. To convert this distribution to soft coor-

11

dinates (fcx, fcy), the expected pixel position of each feature is calculated by

fcx =
P

ij
scijxij and fcy =

P
ij
scijyij, where xij and yij is the pixel coordinate

of point (i, j) in the encoding. After (fcx, fcy) is obtained, other information

in vector form, such as proprioceptive information, can be concatenated and

fed to fully-connected layers as a whole.

2.3 The Soft Actor-Critic Algorithm

The Soft Actor-Critic algorithm is proposed by Haarnoja et al. (2018a), where

the critic learns the action-value estimate with entropy bonus and the actor

minimizes the KL-divergence between the policy distribution and exponenti-

ated action-value estimate. Soft Actor-Critic is an o↵-policy, sample-e�cient,

and robust algorithm, which makes it particularly appealing to be utilized

in real-world experiments. Later on, Lan et al. (2021) proposes the repa-

rameterization policy gradient theorem, which provides an alternative way of

understanding and deriving the policy update in Soft Actor-Critic.

Soft Actor-Critic learns a parameterized soft Q-function Q✓(st, at) and a

tractable policy ⇡�(at|st) with ✓ and � being their neural network parameters,

respectively. The output of the soft Q-function is the soft Q-value estimate,

while the policy outputs the mean and variance of a Gaussian distribution of

actions. If we denote the mini-batch sampled from the replay bu↵er D as B.

The soft Q-function parameters can be trained to minimize the soft Bellman

residual:

JQ(✓) = E(st,at,Rt+1,st+1)⇠D


1

2
(Q✓(st, at)� (Rt+1 + �V✓̄(st+1)))

2

�
, (2.4)

where the soft value function is defined as:

V✓̄(st+1) = Eat+1⇠⇡ [Q✓̄(st+1, at+1)� ↵ log ⇡�(at+1|st+1)] , (2.5)

where ↵ is the temperature parameter that determines the relative importance

of the entropy term. The agent maximizes the following policy objective where

the action is reparameterized:

J⇡(�) = Est⇠D
⇥
Eat⇠⇡�

[Q✓(st, at)� ↵ log ⇡�(at|st)]
⇤
. (2.6)

12

In an earlier version of Soft Actor-Critic (Haarnoja et al. 2018a), the tempera-

ture ↵ is a constant and manually tuned across di↵erent tasks, while in a later

version (Haarnoja et al. 2018b), ↵ is automatically adjusted by approximating

dual gradient descent:

J(↵) = Est⇠D

h
Eat⇠⇡t

h
�↵ log ⇡�(at|st)� ↵Ĥ

ii
(2.7)

where the target entropy Ĥ is a tunable parameter. In our implementation,

we follow the automatic entropy adjustment approach.

The algorithm of a generic Soft Actor-Critic with automatic entropy ad-

justment is listed in Algorithm 1

Algorithm 1 Soft Actor-Critic (generic)
initialize: �, ✓, ↵ . Parameters initialization
✓̄ ✓ . Target parameters initialization
D {} . Replay bu↵er initialization
for each time step t do

at ⇠ ⇡�(·|st) . Sample action from the policy
st+1, Rt+1 ⇠ p(·|st, at) . Interact with the environment
D D [{(st, at, Rt+1, st+1)} . Add transition to replay bu↵er
B ⇠ D . Sample mini-batches
✓ ✓ � �r✓JQ(✓) . Update Q-function parameters
� �� �r�J⇡(�) . Update policy parameters
↵ ↵� �r↵J(↵) . Adjust temperature
✓̄ ⌧✓ + (1� ⌧)✓̄ . Update target parameters

end for

13

Chapter 3

Proposed Vision-based Control

Environment

In this chapter, we introduce our real-world vision-based control environment,

consisting of two tasks, Reaching and Tracking, which we use to investigate

asynchronous reinforcement learning under the real-world setting. We first

describe the physical setup of the environment and then describe how it is

implemented internally to reduce the system delay and mitigate real-world

challenges. Lastly, we describe the task specifications of the environment in

accordance with standard reinforcement learning environments.

3.1 The Physical Setup

Our vision-based control environment consists of two tasks: Reaching and

Tracking. The objective of the Reaching task is to reach arbitrary static target

positions displayed on a computer monitor by a camera mounted on the wrist

of the robotic arm using low-level control. In the Tracking task, the target is

constantly moving during an episode. The physical setup of the environment

is shown in Figure 3.1.

The physical setup of our environment consists of three devices, which

are all connected to one workstation. First, a 6-DoF robotic arm called UR5

performs the reaching or tracking behavior. We send actuation commands to

and receive proprioception from this robotic arm. The UR5 is a commercially

available industrial robot manufactured by Universal Robots. This robot has

14

Monitor

Target

Camera UR5 robotic arm

Figure 3.1: The physical setup of the environment, including the robotic arm,
the wrist-mounted camera, and the monitor.

a built-in low-level programmable controller called URControl. The robot

can be controlled with its proprietary programming language called URScript.

After a TCP/IP connection is established, the URScript programs can be

sent from the connected workstation to the robot controller as strings over

the socket. When URScript programs are running on URControl, URControl

streams status packets every 8ms, which is composed of sensory reading from

the robot, including joint angles, joint velocities, and joint accelerations. The

same 8ms is also the minimal control cycle time available on this robot. For

low-level control, if no actuation command is received after 8ms, URControl

will keep repeating the previous actuation command. Second, a computer

monitor displays the target. The monitor is connected to the workstation

through an HDMI cable and displays a red target on a white background.

The target is either static or constantly moving in Reaching and Tracking,

respectively. Third, an RGB camera captures images in front of the robotic

arm to perceive the position of the target. This camera is connected to the

workstation through a USB cable and is mounted on the wrist of the arm. An

15

image captured by the camera is shown in Figure 3.2

Figure 3.2: The 160⇥90 image captured by the wrist-mounted camera, where
the red dot is the target.

The hardware specs of our workstation are a 16cores/32threads AMD

Ryzen Threadripper 2950X, NVIDIA RTX 2080Ti with 11Gbs of RAM, and

128GBs of CPU RAM. All the results we show in the following chapters are

obtained from this workstation.

The URScript o↵ers two kinds of low-level control commands, position

control and velocity control, though another common control approach, torque

control, is not supported. We choose velocity control for UR5 as reinforcement

learning with position control is not feasible. At the initial stage of reinforce-

ment learning, the policy will generate arbitrary actions. When such actions

are position control commands, the robot will behave in a violent way, leading

to abrupt movements and even emergency stops.

To avoid collision with surrounding objects, we impose 3-dimensional Carte-

sian boundaries 0.8m ⇥ 0.7m ⇥ 0.7m to the end-e↵ector. At every time step,

URControl checks if safety boundaries are respected and computes velocity

control actuation that returns the arm back to safety in case they are not.

Additionally, to avoid the collision of the di↵erent joints of the UR5, we also

impose joint angle boundaries on each joint, which works similarly to the

Cartesian boundaries.

16

3.2 Environment Interactions Implementation

In the real world, time marches on regardless of the time cost of I/O and en-

vironment interaction computations, and thus the information received by the

learning agent is always delayed. To minimize such systematic delays, we follow

the SenseAct framework (A. R. Mahmood et al. 2018a), in which computations

regarding agent-environment interactions are ordered and distributed among

multiple concurrent processes to enable timely communication between the

agent and environment devices with reduced latency. Based on the SenseAct

framework, we initialize the three devices as three asynchronously-running pro-

cesses and distribute computations between the environment interface process

and the three device processes. Figure 3.3 depicts the architecture of our en-

vironment, which primarily consist of three components: 1) the environment

interface process, handling agent-environment interactions and exchanging in-

formation with other device processes, 2) the devices processes, responsible for

device-specific input and output, and 3) shared memory which both environ-

ment interface process and the device processes have read/write access to, to

enable faster communication and avoid memory reallocation.

Environment Interface Process

Robotic Arm Process

Sensor
Thread

Actuator
Thread

Camera Process

Sensor
Thread

Image
Array

Actuation
Array

from agent to agent
Reward, Observation, and Reset Computation

Monitor Process

Reset
Thread

Proprioception
Array Shared Memory

Actuation
Computation

Figure 3.3: The environment architecture in this work.

The robotic arm process primarily executes the received actuation com-

mand and uses two extra I/O threads to receive actuation commands and

17

send proprioceptive readings. Every 8ms, the actuator thread checks from the

shared actuation array and reads the newest actuation command. This ac-

tuation command will then be sent to URControl for execution. Meanwhile,

the sensor thread will read current sensory readings from the URControl and

write them to the shared proprioception array.

The camera process consistently captures images every 40ms and uses an

I/O thread to send the captured image to the shared image array. Every

40ms, this thread writes the captured image to the shared image array. The

monitor process displays the red target and uses an I/O thread that waits for

the resetting command after an episode terminates to randomize the target’s

location, when applicable. The purpose of using asynchronous I/O threads

and shared memory is to minimize the system delay caused by data I/O or

data transfer between di↵erent memory allocations.

The workflow of the environment interface process can be described as

the following. Every time it receives the action from the agent, it computes

the corresponding actuation command based on URScript and writes the ac-

tuation command to the shared actuation array. Then, it reads the newest

proprioception and image from the shared proprioception array and shared

image array, respectively. However, as the robotic arm process and camera

process are operating at di↵erent frequencies, 8ms and 40ms, the timestamps

attached to the two data streams will be used to synchronize proprioceptions

and images. If one of them is too old than the other, it will be discarded and

wait for new data to be written to the corresponding shared data array. After

the proprioceptions and images are obtained, the environment interface pro-

cess will compute the reward and start to reset the environment if the terminal

time step is reached. The reset function will also be executed asynchronously.

At last, the environment interface process will return the subsequent observa-

tion, the reward, and the termination signal to the agent. Such cycles repeat

until the preset training time step is reached. Additionally, there is an inter-

nal timer in the environment interface process to ensure the action cycle time

chosen is satisfied.

18

3.3 Environment Specifications

To enable agent-environment interactions shown in Figure 3.4, it is convenient

to wrap our implemented environment into a standard reinforcement learning

environment so that reinforcement learning algorithms can be evaluated. Thus,

we follow the environment interface used by OpenAI Gym (Brockman et al.

2016). The environment has a step function, which takes an action as input,

and returns observation, reward, and termination signal. Additionally, the

environment also has a reset function, which initializes a new episode.

Figure 3.4: The agent-invironment interaction cycle (Sutton et al. 2018).

The observation sent to the agent contains two components, the most recent

three frames of images following Mnih et al. (2013), where the image shape is

either 160⇥90⇥3 or 320⇥180⇥3 in di↵erent experimental settings, as well as

the proprioceptive information: current joint angles, current joint velocities,

and previous action, where the latter is added to mitigate the negative e↵ect of

the non-Markovian property of the observation. Thus, the observation space

is a tuple containing the stacked images and the proprioceptive information.

The shape of the image part is either 160⇥ 90⇥ 9 or 320⇥ 180⇥ 9 with each

element within [0, 255] and the length of the proprioceptive vector is 15.

We actuate five joints excluding the wrist for the robotics arm, and the an-

gular velocity is between [�0.7, 0.7] rad/s on the five actuated joints. Thus, the

action space is a vector with length 5, and each dimension is within [�0.7, 0.7].

The reward function is defined as:

Rt = ↵
1

hw

hX

i=0

wX

j=0

MijWij � �(|⇡ �
3X

n=1

!n|+ |

5X

n=4

!n|), (3.1)

19

where h and w are the height and width of the image in pixels, M is a 0 � 1

mask matrix with shape h⇥ w indicating whether pixels are within the color

threshold of the target, W is the weight matrix with shape h ⇥ w, in which

weights decrease quadratically from 1 to 0 from its center to edges, and !n is

the angle of nth joint. The first part of the reward function encourages the

agent to move closer to the target and keep the target at the center of the

frame, while the second part penalizes it when twisting the joints too much.

We set the coe�cients ↵ = 800 and � = 1 for all experiments.

The di↵erence between Reaching and Tracking is based on whether the

targets move during the episode. Specifically, targets in Reaching are randomly

generated at the beginning of each episode and stay static during the episode.

Targets in Tracking move consistently towards a random direction and bounce

from the edges. The episode length is 4 seconds, and the total number of time

steps in an episode varies with the chosen action cycle time. After one episode,

the environment resets by bringing the arm to a particular position in about

3 seconds.

20

Chapter 4

Asynchronous Learning

Architecture

In this chapter, we first introduce our implementation of the Soft Actor-Critic

algorithm and the neural network model architecture. Then we introduce the

sequential learning architecture utilized in most open-source implementations

and the existing asynchronous learning architecture in some works that adopt

the real-world setting. Based on the two existing architectures, we describe our

extended asynchronous learning architecture and discuss how we can achieve

the former two architectures based on our unified implementation. In our

experiments, we use our implementation to emulate the three di↵erent archi-

tectures and evaluate their performance. Lastly, we analyze the benefits of our

proposed learning architecture when learning from images in terms of learning

cycle time and action cycle time.

4.1 The Soft Actor-Critic Implementation

Our Soft Actor-Critic implementation follows Yarats et al. (2019), with two

major architectural improvements. First, we use spatial softmax (Finn et

al. 2016) to convert the encoding space into soft coordinates to track the

target more precisely and remove redundant information. Second, we apply

random cropping (Yarats et al. 2021, Laskin et al. 2020) to augment images in

mini-batches to learn more robust representations given our limited amount

of observations.

21

The neural network architecture we used is shown in Figure 4.1. The

stacked image observations are first processed by the CNN encoder and then

flattened by the spatial softmax layer. The flattened coordinate vector is

concatenated with the proprioceptive vector and fed into the actor MLP and

critic MLP, respectively. According to Yarats et al. (2019), the non-stationary

gradients from the actor loss can impede encoder learning. Thus, we prevent

the gradients from actor to update the CNN encoder and use only the critic

loss to update the CNN encoder.

Critic

CNN

Actor
Randomly cropped
images

Spatial softmax

Concatenate
proprioceptions
from UR5

Forward pass Actor loss backprop Critic loss backprop

Figure 4.1: The neural network architecture used in the experiments. The
solid arrows show the directions of the forward pass, and the dashed arrows
show the directions of the backward pass.

For the actor-critic network, we employ a similar critic architecture as used

in TD3 (Fujimoto et al. 2018), which uses double Q-networks to mitigate the

issue of over-estimation in Q-value estimation. Each critic is parametrized

as a 3-layer MLP with ReLU activations after each layer except for the last,

which outputs the Q-value. The actor is also a 3-layer MLP with ReLU as

the activation function. The actor network outputs the mean and diagonal

covariance of a Gaussian distribution, and the action is sampled from this

distribution. The hidden dimension is set to 1024 for both the critic and the

actor.

For the convolution network, we employ kernels of size 3 ⇥ 3 with 32

channels for all the four convolution layers in our encoder network. The stride

is set to 2 except for the last layer, whose stride is set to 1. The output of

22

the convolution layers is fed into a spatial softmax layer (Finn et al. 2016) and

then converted into soft coordinates as a vector of length 64. The encoder

network is shared between the actor and critic networks. However, only the

gradients from the critic are allowed to update the shared convolution layers.

The gradients from the actor are truncated before back-propagating to the

shared convolution layers. As the critical point of this model is to maintain

spatial information, max-pooling layers are not used in our model.

4.2 The Sequential Learning Architecture

Most available open-source implementations of RL algorithms process all com-

putations sequentially, usually in a single process. Such implementations are

simple and e↵ective in simulated environments. For Soft Actor-Critic, or more

generally, RL algorithms with replay bu↵ers and per-step updates, their com-

putational order is shown in Figure 4.2

Agent Process

to env from env

Gradient
update
phase:

Action
computation
phase:

Buffer
sampling
phase:

Figure 4.2: Overview of the sequential learning architecture.

After receiving the next observation from the environment, the agent needs

to finish all the three phases of computations: replay bu↵er adding and sam-

pling, gradient update, and action computation, before it can send the action

23

selected to the environment. We show our implementation sequential Soft

Actor-Critic in Algorithm 2.

Algorithm 2 Soft Actor-Critic (the sequential implementation)

initialize: �, ✓, ↵ . Parameters initialization
✓̄ ✓ . Target parameters initialization
D {} . Replay bu↵er initialization
for each time step t do

at ⇠ ⇡�(·|ot) . Sample action from the policy
ot+1, Rt+1 ⇠ p(·|ot, at) . Interact with the environment
D D [{(ot, at, Rt+1,ot+1)} . Add transition to replay bu↵er
B ⇠ D . Sample mini-batches
o AUG(o), 8o2 B . Randomly crop images
✓ ✓ � �r✓JQ(✓) . Update Q-function parameters
� �� �r�J⇡(�) . Update policy parameters
↵ ↵� �r↵J(↵) . Adjust temperature
✓̄ ⌧✓ + (1� ⌧)✓̄ . Update target parameters

end for

This computation arrangement is valid in simulated environments because

the environment will pause internally during the computation. So the sub-

sequent observation after 1ms or 1 second of computation time will remain

essentially the same. However, in real-world environments, time marches on

during these computations. For a robotic system, the total time spent during

learning updates, together with the time needed for agent-environment inter-

action, becomes the e↵ective action cycle time. Unfortunately, such action

cycle time is usually much longer than the desirable action cycle time and

potentially reduces the agent’s observations and responsiveness. One practical

way of applying such implementations in the real world is to manually find

the minimal action cycle time adequate for the computations, as we show in

Table 5.2.

4.3 The Existing Asynchronous Learning Ar-

chitecture

To decouple learning updates from agent-environment interactions, asynchronous

reinforcement learning has been proposed in (Gu et al. 2017, Yahya et al. 2017,

24

Haarnoja et al. 2018c). In Figure 4.3, we show the asynchronous learning ar-

chitecture proposed by Haarnoja et al. (2018c).

Environment Interaction Process

to env from env

Learning Update Process

Buffer
sampling
phase:

Gradient
update
phase:

Figure 4.3: Overview of the existing asynchronous learning architecture.

Such architectures are primarily composed of two asynchronously running

processes or two computers that can communicate with each other. The envi-

ronment interaction process is responsible for agent-environment interactions

and consistently sends collected transition data to the learning update process.

Meanwhile, the learning update process runs in the background, storing the

received transition data, sampling mini-batches from the replay bu↵er, per-

forming the gradient update, and synchronizing updated parameters with the

environment interaction process. The algorithm for the two processes is shown

in Algorithms 3.

The benefit of such architectures is that no learning is involved in the envi-

ronment interaction process, and the minimal action cycle time only depends

on the hardware capabilities and the time needed for policy inference and it

does not scale with the computation time. In this case, it is much easier to

choose an action cycle time that is desirable for reinforcement learning.

25

Algorithm 3 Soft Actor-Critic (the existing asynchronous learning implemen-
tation)

Process 1: Environment Interaction

for each time step t do

at ⇠ ⇡�(·|ot) . Sample action from the policy
ot+1, Rt+1 ⇠ p(·|ot, at) . Interact with the environment
Send {(ot, at, Rt+1,ot+1)} to D . Send transition to replay bu↵er

end for

Process 2: Learning Update

initialize �, ✓, ↵ . Parameters initialization
✓̄ ✓ . Target parameters initialization
D {} . Replay bu↵er initialization
while training time remains do

B ⇠ D . Sample mini-batches
o AUG(o), 8o2 B . Randomly crop images
✓ ✓ � �r✓JQ(✓) . Update Q-function parameters
� �� �r�J⇡(�) . Update policy parameters
↵ ↵� �r↵J(↵) . Adjust temperature
✓̄ ⌧✓ + (1� ⌧)✓̄ . Update target parameters

end while

4.4 Our Proposed Asynchronous Learning Ar-

chitecture

The existing asynchronous architecture runs learning updates and environment

interaction asynchronously, but inside the learning update, the replay bu↵er

sampling and gradient updates are still processed sequentially. Though this

might be su�cient when the observations are low-dimensional vectors, it may

not be e�cient enough in our tasks, especially in the high-resolution and large

mini-batch setting. We extend the existing architecture by separating the

replay bu↵er sampling and gradient updates into two processes and run them

in a semi-asynchronous way. We call it semi-asynchronous as the replay bu↵er

sampling must be prior to the gradient update, so the two processes could not

be run entirely asynchronously. However, they still run in parallel. Such semi-

asynchronous execution shortens the cycle time for learning updates from the

sum of bu↵er sampling and gradient updates times to the maximal of the two.

The increase in learning-update frequency is substantial and can be as large

26

as twice when they both take an extended and similar amount of time.

(QYLURQPHQW�,QWHUDFWLRQ�3URFHVV

*UDGLHQW�8SGDWH�3URFHVV %XIIHU�6DPSOLQJ�3URFHVV

WR�HQY IURP�HQY

Figure 4.4: Overview of our extended asynchronous learning architecture.

Our architecture consists of three processes that run in parallel: 1) the en-

vironment interaction process, which interacts with the environment interface

process, collects transition data, and stores it in the replay bu↵er, 2) the bu↵er

sampling process, which stores transition data, samples a mini-batch, converts

the mini-batch to CUDA tensors, and apply random augmentation to them,

and 3) gradient update process, which performs gradient updates and shares

policy parameters with environment interaction process. The algorithm for

the three processes is shown in Algorithms 4.

4.5 Computational Comparison of the Three

Architectures

We incorporate the three architectures in a unified implementation with three

di↵erent components. Based on this implementation, we can achieve three

di↵erent degrees of asynchronous execution. If we run all three components

sequentially, it will correspond to most open-source SAC implementations as

shown in Figure 4.2, and we call it Seq-SAC. If we only run environment in-

teractions asynchronously but run replay bu↵er sampling and gradient update

sequentially, we will get an architecture proposed previously in other work, as

shown in Figure 4.3, and we call it Async-SAC-1. If we run environment inter-

actions asynchronously and run replay bu↵er sampling and gradient update in

parallel, it will correspond to our extended asynchronous learning architecture

as shown in Figure 4.4, and we call it Async-SAC-2.

27

Algorithm 4 Soft Actor-Critic (our proposed asynchronous learning imple-
mentation)

Process 1: Environment Interaction

for each time step t do

at ⇠ ⇡�(·|ot) . Sample action from the policy
ot+1, Rt+1 ⇠ p(·|ot, at) . Interact with the environment
send {(ot, at, Rt+1,ot+1)} to D . Send transition to replay bu↵er

end for

Process 2: Bu↵er Sampling

D {} . Replay bu↵er initialization
while training time remains do

B ⇠ D . Sample mini-batches
o AUG(o), 8o2 B . Randomly crop images
send B to I . Send mini-batches to the shared queue

end while

Process 3: Gradient Update

initialize �, ✓, ↵ . Parameters initialization
✓̄ ✓ . Target parameters initialization
for every B received do

✓ ✓ � �r✓JQ(✓) . Update Q-function parameters
� �� �r�J⇡(�) . Update policy parameters
↵ ↵� �r↵J(↵) . Adjust temperature
✓̄ ⌧✓ + (1� ⌧)✓̄ . Update target parameters

end for

28

The computation flow of the three architectures and the benefit of asyn-

chronous learning in terms of shorter cycle times are shown in Figure 4.5.

 : action computation : replay buffer sampling : gradient update

 : min action cycle time : min update cycle time

Seq-SAC

Async-SAC-1

 : real time direction

Async-SAC-2

47ms

47ms2ms

45ms2ms

24ms

Figure 4.5: The computational flow over time of the three versions of SAC.
For plotting purposes, the relative length of each block may not reflect the
relative computation time.

Specifically, we show the computational time spent by action computation,

replay bu↵er sampling, and gradient update. The amount of times for these

computations given around the colored boxes are representative of real com-

putation times, as they are actual measurements in one of our experimental

settings. The measurements for all settings are given in Table 5.2. From Seq-

SAC to Async-SAC-1, the minimal action cycle time decreases substantially,

but the update cycle time almost remains the same. However, from Async-

SAC-1 to Async-SAC-2, even the update cycle time decreases significantly.

Therefore, our architecture can perform learning updates faster than the ex-

isting architecture, which can be crucial when updates are computationally

expensive.

29

Chapter 5

Experimental Setup

This chapter introduces the three di↵erent experimental settings: baseline,

high-resolution, and large mini-batch, which we use to compare sequential

and asynchronous reinforcement learning. We also illustrate how the action

cycle time is chosen for Seq-SAC, which requires di↵erent action cycle times

in di↵erent settings due to the sequentially arranged computation. Then, we

introduce some modifications to standard experiment methodology due to the

constraints of experimenting on a physical robot.

5.1 Three Experimental Settings

In our experiments, we compare sequential and asynchronous learning under

di↵erent settings with di↵erent update costs. The first setting uses relatively

cheap computations, where the mini-batch size is 128, and the image size is

160 ⇥ 90 ⇥ 3. In this setting, we would like to explore when the action cycle

time between sequential and asynchronous reinforcement learning are similar,

whether the agent will benefit from asynchronous learning updates. The next

two settings use increased computational cost. We attribute the increased

computational cost to two factors, higher-dimensional sensory input or large

mini-batch, which are both common scenarios for real-world applications. In

some situations, such as surgical robots, high-resolution image observation is

a must, while in other situations, high-resolution image observations are not

necessary, but a reinforcement learning agent can always benefit from a large

mini-batch due to the intrinsic high-variance gradients in deep reinforcement

30

Baseline High-resolution Large mini-batch
Image size 160 ⇥ 90 320 ⇥ 180 160 ⇥ 90
Mini-batch size 128 128 512

Table 5.1: Summary of three experimental settings.

learning. Thus, in the second setting, the mini-batch size is 128, and the im-

age size is 320⇥ 180⇥ 3. In the third setting, the mini-batch size is 512, and

the image size is 160⇥90⇥3. For these two settings, we would like to inves-

tigate how the performance of Seq-SAC degrade in response to the increased

computation time, as well as how the two variants of asynchronous learning

architectures would perform di↵erently. We call these three settings: baseline,

high-resolution, and large mini-batch, respectively. It should be noted that,

due to random cropping augmentation, the actual image sizes fed into the

model are 156 ⇥ 88 ⇥ 3 and 314 ⇥ 176 ⇥ 3. In Table 5.1, we show our three

experimental settings.

5.2 Choosing Action-Cycle Time

In all settings, both asynchronous learning architectures use 40ms action cycle

time as it is the default choice for reaching with UR5 in A. R. Mahmood et

al. (2018b). However, Seq-SAC needs di↵erent action cycle times in di↵erent

settings so that learning updates can fit into them. To choose the minimal

a↵ordable action cycle time for Seq-SAC, we record the time cost of each

component in our implementation, as shown in Table 5.2, and choose the

action cycle time accordingly. It should be noted that the exact time measured

is implementation and hardware-specific, but their relative length should be

applicable to algorithms with replay bu↵er and per-step updates.

As the action cycle time needs to be aligned with the hardware cycle time of

8ms of the robotic arm and the cycle time of 40ms of the camera, we use 80ms

for the baseline setting. Though it is possible to use action cycle time 40ms

for the seq-SAC in this setting, it will require a tiny mini-batch size, which is

infeasible for SAC training. For the high-resolution setting, we choose 120ms,

and for the large mini-batch setting, we choose 200ms. The episode length

31

Baseline High-resolution Large mini-batch
Action computation 2ms 3ms 2ms
Replay bu↵er sampling 21ms 44ms 86ms
Gradient update 24ms 65ms 68ms
Environment computation 5ms 6ms 5ms
Total 52ms 118ms 161ms

Table 5.2: The computation time of each component in Seq-SAC measured
in our three experimental settings.

of Reaching and Tracking are both 4 seconds. In this case, the action cycle

time of 40ms and 80ms will result in 100 and 50 time steps in one episode,

respectively.

5.3 Experiment Methodology

Because of the variable action cycle time and the constraints of a physi-

cal robot, we make the following modifications to the standard experiment

methodology. First, using di↵erent action cycle times under fixed training

time steps can lead to substantially di↵erent actual training times. To avoid

this issue, we use 2-hour wall time as the total training time, regardless of the

actual number of time steps the agent takes. Second, the e↵ective number of

time steps in one episode could be shortened due to the prolonged action cycle

time. Thus, we scale the reward proportional to the action cycle time to make

episode returns comparable. Third, running a separate evaluation phase on a

physical robot to measure the performance of the agent without exploration

can be time-consuming. Instead, we report the agent’s online performance as

an evaluation. Fourth, at the beginning of each run, there are 1000 time steps

during which the agent executes a random policy to initialize replay bu↵er.

These additional 1000 time steps are neither counted in the 2-hour training

time nor shown in the learning curve.

Hyper-parameter search on a physical robot can lead to safety issues and

damage the robot. In our experiment, we follow the hyper-parameters used

in Yarats et al. (2019), whose e↵ectiveness has been empirically demonstrated

in simulated environments. We use the same hyper-parameters across di↵erent

32

versions of SAC and di↵erent experimental settings. The complete list of

hyper-parameters used is given in Table 5.3. Actor update frequency and

critic target update frequency mean how frequent the two update with respect

to the critic update, as the critic updates at every gradient update.

Parameters Value
optimizer Adam
actor learning rate 3e-4
critic learning rate 3e-4
encoder learning rate 1e-3
temperature learning rate 1e-4
actor update frequency 2
critic target update frequency 2
critic target update ratio 0.01
encoder target update ratio 0.05
initial temperature 0.1
initial time steps 1000
discount factor 0.99
replay bu↵er size 1e5
mini-batch size {128, 512}

Table 5.3: SAC Hyperparameters

33

Chapter 6

Experimental Results with The

Sequential Learning

Architecture

In this chapter, we show the experimental results of Seq-SAC in our three

experiment settings and give analysis to the results obtained.

6.1 Training Results

Figure 6.1: The learning curves of Seq-SAC

In Figure 6.1, we show the learning curves based on undiscounted episodic

34

returns. Each learning curve is obtained with five independent runs, and each

run takes two hours. The shaded areas in the learning curves represent the

standard error. The same settings are applied in Chapter 7 and 8.

Figure 6.2: The overall performance of Seq-SAC

In Figure 6.2, we show the overall performance of Seq-SAC, which is cal-

culated by averaging returns over the whole learning period. The error bar

shows the standard error over five independent runs.

6.2 Evaluation Results

Figure 6.3: The evaluation performance of Seq-SAC

In Figure 6.3, we show the evaluation performance of Seq-SAC. The evalua-

tion performance is obtained with the learned model after two hours of training

with exploration noise turned o↵. Since we have five independent runs in each

35

setting, the result shown is the average performance of the models obtained

in the five independent runs. For each model, its performance is evaluated

with the averaged return over 10 episodes. The same settings are applied in

Chapter 7 and 8.

6.3 Results Analysis

Generally, Seq-SAC achieved satisfactory performance in both Reaching and

Tracking in the baseline setting. This indicates that when the computation

cost of learning updates is relatively low and the e↵ective action cycle time is

not significantly longer than the desirable action cycle time, implementations

with sequentially arranged computations can perform well. However, from

the baseline setting to the large mini-batch setting, the overall trend is that

the performance degraded with the increase of the computation time. This is

due to the longer action cycle time, 120ms in the high-resolution setting and

200ms in the large mini-batch setting. The excessively long action cycle time

substantially reduces the number of observations and gradient updates, which

causes performance degradation. Another interesting observation here is that,

from the baseline setting to the large mini-batch setting, the performance

declined more in Tracking than in Reaching, which is likely due to the reduced

responsiveness because of the excessively long action cycle time. In conclusion,

when the computation cost of learning updates is low, implementations with

sequentially arranged computations can perform well. However, increasing

the computation cost will increase the action cycle time proportionally, which

reduces the number of observations, gradient updates, and the responsiveness

of the agent and eventually degrades the performance.

36

Chapter 7

Experimental Results with The

Existing Asynchronous Learning

Architecture

In this chapter, we present the experimental results of Async-SAC-1 and its

analysis. Results of Seq-SAC are also shown for comparison.

7.1 Training Results

Figure 7.1: The learning curves of Seq-SAC and Async-SAC-1.

Figure 7.1 shows the learning curves of Async-SAC-1 and Figure 7.2 shows

37

the average returns over the whole learning period. It should be noted that

Async-SAC-1 could make gradient updates too frequently in the baseline set-

ting, which leads to early convergence to a sub-optimal policy. Thus, we

constraint the gradient update frequency in Async-SAC-1 to be one per one

environment interaction.

Figure 7.2: The overall performance of Seq-SAC and Async-SAC-1

7.2 Evaluation Results

In Figure 7.3, we show the evaluation performance of Seq-SAC and Async-

SAC-1. In the baseline setting, Seq-SAC and Async-SAC-1 perform similarly.

However, in the other two settings, Async-SAC-1 substantially outperforms

Seq-SAC.

Figure 7.3: The evaluation performance of Seq-SAC and Async-SAC-1

38

7.3 Results Analysis

In the baseline setting, Async-SAC-1 performed similarly to Seq-SAC. Async-

SAC-1 uses 40ms as its action cycle time while Seq-SAC uses 80ms and the

longer action cycle time reduces the number of observations and gradient up-

dates. However, even with the reduced observations and gradient updates,

the similar performance implies the importance of action repeat, which has

been used extensively in DeepMind Control Suite. In our setting, 80ms action

cycle time corresponds to 40ms action cycle time with action repeat set to 2.

However, the performance starts to diverge in the high-resolution setting, as

Async-SAC-1 essentially maintained the performance in the baseline setting,

while the performance of Seq-SAC declined substantially. This demonstrates

the benefits of asynchronous reinforcement learning, as it decouples environ-

ment interactions and learning updates so that the action cycle time can be

chosen independently from the time cost of learning updates. Unfortunately, in

the large mini-batch setting, there is a substantial degradation in performance,

which indicates some architectural deficiencies with Async-SAC-1 when the

computational cost becomes extremely high. In conclusion, the existing asyn-

chronous reinforcement architectures can maintain the performance and action

cycle time regardless of the time cost of learning updates, but certain archi-

tectural improvement is needed to improve its learning update e�ciency in

computationally extensive settings.

39

Chapter 8

Experimental Results with Our

Proposed Asynchronous

Learning Architecture

In this chapter, we present the experimental results of Async-SAC-2 and its

analysis. Results of Seq-SAC and Async-SAC-1 are also shown for comparison.

8.1 Training Results

Figure 8.1: The learning curves of Async-SAC-2, Async-SAC-1, and Seq-SAC

Figure 8.1 shows the learning curves of Async-SAC-1 and Figure ?? shows

40

the average returns over the whole learning period. Similar to Async-SAC-

1, Async-SAC-2 would also perform gradient updates too frequently in the

baseline setting, and we also constraint its update frequency to be one per

one environment interaction. However, in this case, Async-SAC-2 and Async-

SAC-1 reduce to the same. So we use the results from Async-SAC-1 in the

baseline setting for Async-SAC-2 without rerunning the experiments.

Figure 8.2: The overall performance of Async-SAC-2, Async-SAC-1, and
Seq-SAC

8.2 Evaluation Results

In Figure 8.3, we show show the evaluation performance of Seq-SAC, Async-

SAC-1, and Async-SAC-2. Async-SAC-2 largely maintained the performance

and has the smallest overall standard error di↵erent across experimental set-

tings.

8.3 Results Analysis

Async-SAC-2 performed consistently well in di↵erent settings and tasks and

performed significantly better than the other two in the large-mini-batch set-

ting, indicating that our extended architecture is more robust across di↵erent

computation costs. In general, both variants of asynchronous reinforcement

learning architectures performed substantially better than their sequential

counterparts, indicating the real-world benefits of asynchronous reinforcement

41

Figure 8.3: The evaluation performance of Async-SAC-2, Async-SAC-1, and
Seq-SAC

learning. Despite the advantages of asynchronous, one drawback of asyn-

chronous learning is that it could make learning updates faster than what

is needed and lead to problems like early convergence. A certain degree of

manual tunning on the update frequency is still needed.

Our empirical results show that sequential and asynchronous learning can

perform similarly when learning updates are relatively cheap. However, when

the learning updates become expensive due to higher resolution of images or

larger mini-batch sizes, the performance of sequential learning diminishes as

its action cycle time is prolonged excessively, which significantly reduces the

number of observations and the agent’s responsiveness. Consequentially, our

asynchronous learning system performs substantially better than sequential

learning in this case. We also show that when the mini-batches are consid-

erably large, the additional parallelization of replay bu↵er sampling and gra-

dient updates provides a significant performance improvement. Besides the

better performance, two clear advantages of asynchronous learning are illus-

trated through our experiments: 1) the minimal action cycle time achievable

by asynchronous learning can be much shorter than that of sequential learning,

which provides more flexibility when learning in the real world, and 2) unlike

sequential learning, a constant action cycle time can always be maintained by

asynchronous learning regardless of the time cost of learning updates.

42

8.4 Learned Behavior

Figure 8.4 shows the learned reaching and tracking behaviors in one episode

of Async-SAC-2 after two hours of training. As can be seen, Async-SAC-2

learned smooth and precise behaviors in both tasks.

Figure 8.4: Learned behaviors in Reaching (first row) and Tracking (second
row).

8.5 Learned Representation

In Figure 8.5, we show the coordinates captured by the spatial softmax layer

as green marks. Though there are 32 coordinates in total because we have 32

output channels, some of the coordinates are overlapping with each other.

Figure 8.5: Coordinates captured by the spatial softmax layer.

43

Chapter 9

Conclusion

In the real world, time always marches on, and an agent interacts with the en-

vironment and learns from its experience in real-time. Unfortunately, this real-

time property is not addressed in standard simulated environments. Conse-

quently, most available open-source implementations of RL algorithms process

computations sequentially, which is appropriate in simulated environments.

However, when those implementations are deployed in the real world, whether

they can maintain the performance becomes doubtful. One approach to solve

this problem is through rearranging the computational orders, running envi-

ronment interaction, and learning updates asynchronously.

In this thesis, we explored the challenge of real-time reinforcement learn-

ing, set up a vision-based robotic arm control environment, investigated how

computational orders a↵ect the performance of real-time systems, evaluated

asynchronous reinforcement learning as an approach to address this problem,

and provided potential improvement upon existing asynchronous learning ar-

chitecture. In total, we ran 80 independent runs in our experiments, which

took nearly 200 hours of usage on the robot. In most configurations, e↵ective

learning is achieved without tuning the hyper-parameters, which indicates the

reliability of the algorithm, our learning architecture, and our task setup.

We found that the critical benefits of asynchronous learning are more flex-

ibility in choosing action cycle time and better utilization of available com-

putational resources. In sequential learning, the action cycle time is bounded

by the time cost of learning updates. In contrast, in asynchronous learning,

44

the action cycle time is only constrained by the hardware capabilities. Un-

fortunately, given such flexibility, it is still unclear how to choose the action

cycle time appropriately in a task-specific manner as either too long or too

short cycle time could be detrimental to learning. Investigating the guide-

lines of choosing best-performing action cycle time in real-world reinforcement

learning remains a promising future research direction.

When learning sequentially, the computational resource is constantly al-

ternating between idle and busy mode, which causes waste in computation

time. However, in asynchronous learning, especially based on our architecture,

the gradient updates are being processed back to back so that the computa-

tion resources are fully utilized. However, when gradient update computation

is cheap, asynchronous learning can also make gradient updates excessively

faster than the environment interactions, which may lead to early convergence

or overfitting. Devising approaches to avoid this issue while fully utilizing the

computation resource is another promising research direction.

In conclusion, asynchronous reinforcement learning is a promising approach

to dealing with real-time reinforcement learning challenges. However, it also

has its intrinsic limitations. The decoupled environment interactions and

learning updates require replay-bu↵er-based o↵-policy algorithms, which are

usually both memory intensive and computationally expensive. Another ap-

proach researchers could resort to is developing more incremental and online

update rules for learning agents to reduce per-step computations and memory

usage and enable on-policy algorithms.

45

References

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pa-
chocki, J., Petron, A., Plappert, M., Powell, G., Ray, A., et al. (2020). Learn-
ing dexterous in-hand manipulation. The International Journal of Robotics

Research, 39 (1), 3–20.

Barth-Maron, G., Ho↵man, M. W., Budden, D., Dabney, W., Horgan, D., TB,
D., Muldal, A., Heess, N., & Lillicrap, T. P. (2018). Distributed distributional
deterministic policy gradients. ICLR (Poster).

Bellman, R. (1958). Dynamic programming and stochastic control processes.
Information and control, 1 (3), 228–239.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang,
J., & Zaremba, W. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

Coumans, E., & Bai, Y. (2016–2021). Pybullet, a python module for physics
simulation for games, robotics and machine learning.

Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru, C., & Tassa, Y.
(2018). Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016). Bench-
marking deep reinforcement learning for continuous control. International
conference on machine learning, 1329–1338.

Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J., Paduraru, C., Gowal,
S., & Hester, T. (2020). An empirical investigation of the challenges of real-
world reinforcement learning. arXiv preprint arXiv:2003.11881.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron,
Y., Firoiu, V., Harley, T., Dunning, I., et al. (2018). Impala: Scalable dis-
tributed deep-rl with importance weighted actor-learner architectures. Inter-
national Conference on Machine Learning, 1407–1416.

Eysenbach, B., Gu, S., Ibarz, J., & Levine, S. (2018). Leave no trace: Learning
to reset for safe and autonomous reinforcement learning. ICLR (Poster).

Finn, C., Tan, X. Y., Duan, Y., Darrell, T., Levine, S., & Abbeel, P. (2016).
Deep spatial autoencoders for visuomotor learning. 2016 IEEE International

Conference on Robotics and Automation (ICRA), 512–519.

46

Fujimoto, S., Hoof, H., & Meger, D. (2018). Addressing function approximation
error in actor-critic methods. International Conference on Machine Learning,
1587–1596.

Gu, S., Holly, E., Lillicrap, T., & Levine, S. (2017). Deep reinforcement learning
for robotic manipulation with asynchronous o↵-policy updates. 2017 IEEE

international conference on robotics and automation (ICRA), 3389–3396.

Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., & Levine, S. (2018c).
Learning to walk via deep reinforcement learning. arXiv preprint arXiv:1812.11103.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018a). Soft actor-critic:
O↵-policy maximum entropy deep reinforcement learning with a stochastic
actor. ICML, 80, 1856–1865.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar,
V., Zhu, H., Gupta, A., Abbeel, P., et al. (2018b). Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver,
D., & Kavukcuoglu, K. (2017). Reinforcement learning with unsupervised
auxiliary tasks. ICLR.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and act-
ing in partially observable stochastic domains. Artificial intelligence, 101 (1-
2), 99–134.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen,
D., Holly, E., Kalakrishnan, M., Vanhoucke, V., et al. (2018). Qt-opt: Scal-
able deep reinforcement learning for vision-based robotic manipulation. arXiv
preprint arXiv:1806.10293.

Lan, Q., & Mahmood, A. R. (2021). Model-free policy learning with reward
gradients. arXiv preprint arXiv:2103.05147.

Lange, S., Riedmiller, M., & Voigtländer, A. (2012). Autonomous reinforce-
ment learning on raw visual input data in a real world application. The 2012

international joint conference on neural networks (IJCNN), 1–8.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., & Srinivas, A. (2020).
Reinforcement learning with augmented data. NeurIPS.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
& Wierstra, D. (2016). Continuous control with deep reinforcement learning.
ICLR (Poster).

Mahmood, A. (2017). Incremental o↵-policy reinforcement learning algorithms.

Mahmood, A. R., Korenkevych, D., Komer, B. J., & Bergstra, J. (2018a). Set-
ting up a reinforcement learning task with a real-world robot. 2018 IEEE/RSJ

47

International Conference on Intelligent Robots and Systems (IROS), 4635–
4640.

Mahmood, A. R., Korenkevych, D., Vasan, G., Ma, W., & Bergstra, J. (2018b).
Benchmarking reinforcement learning algorithms on real-world robots. Con-
ference on robot learning, 561–591.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602.

Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., De Maria, A.,
Panneershelvam, V., Suleyman, M., Beattie, C., Petersen, S., et al. (2015).
Massively parallel methods for deep reinforcement learning. arXiv preprint

arXiv:1507.04296.

Peng, X. B., Andrychowicz, M., Zaremba, W., & Abbeel, P. (2018). Sim-to-
real transfer of robotic control with dynamics randomization. 2018 IEEE

international conference on robotics and automation (ICRA), 3803–3810.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust
region policy optimization. International conference on machine learning,
1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017).
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Schwab, D., Springenberg, J. T., Martins, M. F., Neunert, M., Lampe, T.,
Abdolmaleki, A., Hertweck, T., Hafner, R., Nori, F., & Riedmiller, M. A.
(2019). Simultaneously learning vision and feature-based control policies for
real-world ball-in-a-cup. Robotics: Science and Systems.

Stooke, A., Lee, K., Abbeel, P., & Laskin, M. (2021). Decoupling representation
learning from reinforcement learning. ICML, 139, 9870–9879.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.
A Bradford Book.

Tassa, Y., Tunyasuvunakool, S., Muldal, A., Doron, Y., Trochim, P., Liu, S.,
Bohez, S., Merel, J., Erez, T., Lillicrap, T., et al. (2020). Dm control: Soft-
ware and tasks for continuous control. arXiv preprint arXiv:2006.12983.

Travnik, J. B., Mathewson, K. W., Sutton, R. S., & Pilarski, P. M. (2018).
Reactive reinforcement learning in asynchronous environments. Frontiers in

Robotics and AI, 5. https://doi.org/10.3389/frobt.2018.00079.

Yahya, A., Li, A., Kalakrishnan, M., Chebotar, Y., & Levine, S. (2017). Collec-
tive robot reinforcement learning with distributed asynchronous guided pol-
icy search. 2017 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 79–86.

48

https://doi.org/10.3389/frobt.2018.00079

Yarats, D., Kostrikov, I., & Fergus, R. (2021). Image augmentation is all you
need: Regularizing deep reinforcement learning from pixels. ICLR.

Yarats, D., Zhang, A., Kostrikov, I., Amos, B., Pineau, J., & Fergus, R. (2019).
Improving sample e�ciency in model-free reinforcement learning from im-
ages. arXiv preprint arXiv:1910.01741.

Zhu, H., Yu, J., Gupta, A., Shah, D., Hartikainen, K., Singh, A., Kumar,
V., & Levine, S. (2020). The ingredients of real world robotic reinforcement
learning. ICLR.

49

	Introduction
	Challenge in Real-time Reinforcement Learning
	Asynchronous Reinforcement Learning
	Related Works
	Contributions

	Background
	Problem Setup
	Convolutional Neural Networks
	The Soft Actor-Critic Algorithm

	Proposed Vision-based Control Environment
	The Physical Setup
	Environment Interactions Implementation
	Environment Specifications

	Asynchronous Learning Architecture
	The Soft Actor-Critic Implementation
	The Sequential Learning Architecture
	The Existing Asynchronous Learning Architecture
	Our Proposed Asynchronous Learning Architecture
	Computational Comparison of the Three Architectures

	Experimental Setup
	Three Experimental Settings
	Choosing Action-Cycle Time
	Experiment Methodology

	Experimental Results with The Sequential Learning Architecture
	Training Results
	Evaluation Results
	Results Analysis

	Experimental Results with The Existing Asynchronous Learning Architecture
	Training Results
	Evaluation Results
	Results Analysis

	Experimental Results with Our Proposed Asynchronous Learning Architecture
	Training Results
	Evaluation Results
	Results Analysis
	Learned Behavior
	Learned Representation

	Conclusion
	References

