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Abstract  

Intrafractional tumour tracking is of considerable interest as a means to 

minimize the PTV in treating mobile tumours. By utilizing the intrafractional MR 

imaging feature of linac-MR, this thesis seeks to develop a direct, non-surrogate 

based intrafractional tumour tracking system, and physically demonstrate its 

feasibility by delivering highly conformal dose to a moving target undergoing 

simulated lung tumour motions.  

An autocontouring algorithm was developed to determine the shape and 

position of a lung tumour from each intrafractional MR image. Because our linac-

MR systems are equipped with low field MRI (0.2/0.5 T), the algorithm was 

initially evaluated using a lung motion phantom simulating low field MR images 

by using a single 3 T scanner. Also, an initial in-vivo study was performed to 

verify the feasibility of lung tumour autocontouring using real patient data. 

Motion prediction software was developed to compensate for the tumour 

motions during system delay (time interval between detection of current tumour 

position and beam delivery) in MRI-based tracking. Prediction accuracy was 

evaluated using 1D superior–inferior lung tumour motions of 29 lung cancer 

patients for system delays of 120 – 520 ms. 

In our prototype linac-MR, MLC motors are operated in the close 

proximity of the MRI. Due to this, we investigated (1) appropriate RF shielding 

around the motors to mitigate the negative effects of RF motor noise in MR 

images, and (2) the effect of strong external magnetic field on the functionality of 

MLC motors.  



 

Intrafractional tumour-tracked irradiation to a moving target was 

physically demonstrated using the prototype linac-MR. Two different motion 

patterns (sine and modified cosine) were used to simulate lung tumour motions. 

Comparing the film measurement results from moving target irradiation with our 

tracking system to static target irradiation, 50 % beam width revealed minimal 

differences of < 0.5 mm, while the increase in 80 % - 20 % penumbra width was 

limited to 0.4 and 1.7 mm in the sine and modified cosine patterns, respectively.  

The performance of our tracking system shown in this research illustrates 

potential dosimetric advantages of intrafractional MR tumour tracking in treating 

mobile tumours as shown for the phantom study.  
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Chapter 1: Introduction 

1.1. OVERVIEW OF THE THESIS 

As a proven method for treating and curing cancer, radiation therapy has 

been evolved for more than 100 years. Medical physicists today have many 

options to play their role in clinic to deliver the prescribed dose of radiation 

accurately, effectively and safely. Nevertheless, radiotherapy treatment of mobile 

tumours (e.g. lung tumour) that show extensive intrafractional motion with 

radiation is still a difficult task. Although various tumour tracking techniques 

have been developed to overcome this issue, all currently available tracking 

systems share their shortcomings in tracking accuracy due to the indirect nature of 

their tracking mechanisms based on internal and/or external tumour surrogates. In 

this thesis, we seek to develop a direct, non-surrogate based intrafractional tumour 

tracking system using a linac-MR, and physically demonstrate its feasibility by 

delivering highly conformal dose to a moving target undergoing simulated lung 

tumour motions. 

The structure of this thesis is as follows: Chapter 1 introduces modern 

external beam radiation therapy techniques, discusses their shortcomings in 

treating mobile tumours, and provides justification for this research. Chapter 2 

presents theories that are relevant to this research including magnetic resonance 

imaging (MRI), artificial neural networks (ANN), and particle swarm 

optimization (PSO). Chapter 3 introduces lung tumour autocontouring software 

that is compatible with MR images. A modified version of this chapter has been 
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published in Medical Physics.1 Chapter 4 presents an initial in-vivo study 

evaluating the lung tumour autocontouring software using real patient data. A 

modified version of this chapter was presented at the 54th annual meeting of the 

American Association of Physicists in Medicine (AAPM).2 Chapter 5 introduces 

tumour motion prediction software designed specifically for MRI-based tracking 

environment. A modified version of this chapter has been published in Medical 

Physics.3 Chapter 6 discusses the effect of strong external magnetic field on the 

functionality of MLC motors. A modified version of this chapter has been 

published in Medical Physics.4 Chapter 7 presents appropriate RF shielding 

around the MLC motors to mitigate the negative effects of RF motor noise in MR 

images. A modified version of this chapter has been published in Physics in 

Medicine and Biology.5 Chapter 8 describes physical demonstration of 

intrafractional tumour tracking using a prototype linac-MR. A modified version of 

this chapter has been published in Medical Physics.6 Chapter 9 is a concluding 

chapter to the thesis. 

1.2. EXTERNAL BEAM RADIATION THERAPY 

In current cancer treatment, approximately half of all patients receive 

some form of radiation treatment.7 External beam radiation therapy (XBRT) is the 

most widely used treatment method, which refers to the delivery of ionizing 

radiation beam to a tumour volume where the source of radiation is located 

outside of the patient’s body. Therapeutic radiation dose can be delivered using x-

rays (high energy photons) or charged particles (electrons, protons, heavy ions, 
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etc). In clinic, the most common source of radiation is a medical linear accelerator, 

i.e. linac, that produces high energy photon and electron beams. 

1.2.1. Target volume definition 

The ultimate goal of radiation therapy is to deliver the prescribed 

therapeutic dose of radiation to the tumour volume while minimizing the 

unnecessary dose to its surrounding normal tissues and critical structures. In 

practice, however, some amount of unwanted dose is inevitably delivered to 

surrounding tissues. This is due to the uncertainty in defining tumour region, inter 

or intrafractional tumour motion and deformation, patient positioning errors, 

and/or the geometric uncertainty of machine parameters. To account for these 

uncertainties in radiation therapy, the International Commission of Radiation 

Units and Measurements (ICRU) suggested several target volume definitions as 

shown in Fig. 1.1. 

 

Figure 1.1 Target volume definitions in radiation therapy (ICRU 50 and ICRU 62 reports). 
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Target volumes are defined in ICRU 50 and ICRU 62 reports as the 

following:8, 9 

(1) Gross tumour volume (GTV): GTV is defined as the palpable or visible extent 

of the malignant tumour, evaluated by physical exams and various imaging 

techniques. 

(2) Clinical target volume (CTV): CTV is composed of the GTV and a margin 

around the GTV to include direct, local subclinical spread of tumour. 

(3) Internal Margin (IM): A margin added to the CTV compensating for expected 

movements and variation in size, shape and position of the CTV. 

(4) Internal target volume (ITV): ITV represents the volume encompassing the 

CTV and the IM. 

(5) Set-up margin (SM): A margin added to the ITV to account specifically for 

uncertainties in patient positioning and alignment of the therapeutic beams. 

(6) Planning target volume (PTV): PTV is a geometrical concept used for 

treatment planning, which is composed of the CTV, IM and SM. The PTV is 

defined to ensure the delivery of prescribed dose to the CTV.  

(7) Organs at risk (OR): OR are normal tissues whose radiation sensitivity may 

significantly influence treatment planning and/or prescribed dose. 

(8) Planning organ at risk volume (PRV): PRV is an expansion of the OR to 

compensate for any movement of the OR and the set-up errors during treatment. 

(9) Treated volume: Volume enclosed by prescribed isodose surface. 

(10) Irradiated volume: Volume that receives a significant dose compared to 

normal tissue tolerance. 
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1.2.2. 3D conformal radiation therapy  

3D conformal radiation therapy (CRT) is a modern radiation therapy 

technique that can deliver conformal dose to the tumour, i.e. radiation beam can 

be shaped to match the target volume.10 3D CRT treatments are planned based on 

patient specific, 3D anatomical information obtained from computed tomography 

(CT) and/or MRI. Based on the 3D anatomy, treatment plans are developed to 

achieve dose distributions where higher dose regions are concentrated within the 

tumour volume while minimizing the amount of unnecessary dose to surrounding 

healthy tissues.  

1.2.3. Intensity modulated radiation therapy 

Intensity modulated radiation therapy (IMRT) is an advanced radiation 

therapy technique that is capable of (1) beam conformation as in 3D CRT, as well 

as (2) beam intensity modulation.10 In IMRT, several radiation beam orientations, 

each with its own fluence distribution, are designed. In general, multi-leaf 

collimators (MLC) and/or compensators are used to modulate beam intensity 

within each beam.  

IMRT can be used for any XBRT, delivering beams of non-uniform 

fluences to a patient from different directions. The directions and intensities of 

beams are optimized to deliver tightly bounded dose distributions to the target 

volume with steep dose gradients outside of its boundaries.  
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1.2.4. Treatment errors 

3D CRT or IMRT can deliver conformal dose to the target volume. 

However, this is beneficial only if (1) the target volume is accurately defined, and 

(2) the therapeutic dose is delivered to the target volume exactly as it is planned. 

Only in this case, the steep dose gradients achieved in both techniques will spare 

normal tissues located nearby the target volume.  

In practice, however, certain amounts of treatment errors are inevitable 

due to the following reasons:  

(1) Uncertainty in target volume definition  

Accurate definition of the CTV is a major concern in conformal beam 

delivery. Advanced imaging modalities such as CT, MRI, or positron emission 

tomography (PET) can visualize structural or physiological abnormalities, which 

might be the indication of the extent of the GTV. However, currently no imaging 

modality can directly visualize the microscopic spread of malignant tumour cells. 

Thus, defining the CTV involves certain patient population based assumptions or 

estimations to best approximate the tumour extent.  

If the CTV over or underestimates the microscopic spread of the disease, 

both 3D CRT and IMRT lose their significance of being conformal. Further, 

conformal beam delivery to the underestimated CTV may cause worse treatment 

outcomes compared to the ones using non-conformal radiation beam, due to 

seriously under dosed tumour cells.10 

(2) Organ motion 
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Inter or intrafractional organ motion is another important reason why the 

actual received dose distribution deviates from the planned dose distribution.11 

Interfractional organ motion causes the CTV changes on a daily basis, and this is 

mainly associated with the organs closely located or a part of the digestive system. 

In case of prostate, several studies have shown that the interfractional motion can 

occur up to 20 mm.11 The patient’s weight gain or loss can also affect the CTV 

location. 

Intrafractional organ motion, i.e. the organ motion occurring while the 

patient is being irradiated, is mainly due to respiratory and cardiac motions. 

Respiratory induced organ motion mainly impacts the thoracic and abdominal 

tumours. In case of liver, the peak-to-trough motion during deep breathings can be 

up to 80 mm in the superior-inferior (SI) direction.11 

(3) Patient set-up errors 

 Patient set-up errors can be inter and/or intrafractional, causing the 

difference between the intended position of the target volume and the actual one 

with respect to the treatment beam.  

The interfractional set-up error is mainly due to the patient misalignment, 

coming from several sources including mechanical (e.g. laser misalignment), 

patient related (e.g. movement of skin marks, fixation failure due to patient 

motion), and/or the variations in patient positioning among radiation therapists.12 

The intrafractional set-up error is caused by the patient’s periodic motions (e.g. 

breathing or heartbeat cycles) or random motions (e.g. passing gas) while being 

irradiated. 

 The magnitude of set-up errors varies depending on treatment sites. 
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Previous studies have reported the interfractional set-up errors, i.e. deviations 

between different fractions during a treatment series, ranging from 1.1 - 2.5 mm 

for head and neck to 1.7 – 5.8 mm for breast.12 Systematic set-up errors, i.e. the 

deviations between the planned patient position and the average patient position 

over an entire course of treatment, range from 1.6 – 4.6 mm for head and neck to 

1.0 – 4.1 mm for breast.12 These data were obtained using various kinds of 

immobilization for both sites. In breast treatment, systematic set-up errors 

increased up to 14.4 mm without immobilization.  

1.3. IMAGE-GUIDED RADIATION THERAPY 

Image-guided radiation therapy (IGRT) utilizes frequent pre- or post-

treatment session imaging in the treatment room to guide the radiation therapy. 

The main goal of IGRT is the optimal reduction of the IM and the SM shown in 

Fig. 1.1.13 These margins are added to the CTV to compensate for the organ 

movement and the patient set-up errors during the course of radiation treatment.  

Before IGRT was implemented in clinic, patient set-up was done by 

aligning the patient’s skin marks to the treatment beam. Since the skin marks are 

generated during the treatment simulation, any organ movement occurred between 

the simulation day and the actual treatment day is unknown. Also, it is unsafe to 

assume that the patient positioning between the two days would be identical, even 

if immobilization devices are used.14 Due to these reasons, large IM and SM must 

be added to the CTV.  

Using IGRT, however, the patient can be imaged during set-up procedure 

prior to the actual beam delivery in each fraction. From this, interfractional 
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variations due to daily patient positioning errors or changes in anatomy can be 

constantly monitored and minimized,15 which leads to the reduction of the SM 

required to ensure the delivery of sufficient dose to the target volume. The 

following sections provide a brief summary of imaging modalities implemented in 

current IGRT. 

1.3.1.  Portal imaging 

In current radiation therapy, the target volume is typically irradiated from 

several directions with appropriate radiation fields, i.e. radiation ports. Using 

portal imaging, 2D beam’s eye view images of the treated volume and its 

surroundings can be acquired at any beam direction while the patient is in 

treatment position. 

Portal imaging was initially performed with diagnostic quality kilovoltage 

(kV) imaging in 1958.16 In this system, a retractable x-ray source was placed 

within the head of the linac, and an image intensifier was used to acquire the 

image. Another design using kV imaging was suggested by Biggs et al. in 1985.17 

Here, the x-ray tube was mounted on the side of the linac head, and radiographic 

film was used for image acquisition. Compared to megavoltage (MV) imaging, 

kV imaging can provide better contrast using less patient dose. Despite these 

advantages, kV imaging based portal imaging was not developed further in the 

future linac designs. This might be due to the workflow issues in clinic,18 

difficulty in film registration,19 and mechanical constraints, e.g. the collimator 

rotation was blocked in Biggs’s system.17  
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Electronic portal imaging devices (EPID) are the most widely used IGRT 

technology,13 which utilize the therapy x-ray beam (MV beam) itself to create 2D 

portal images of the patient. The patient is located between the beam source (head 

of the linac) and a detector attached on the opposite side. Although radiographic 

films were used for image acquisition in the past, typical modern EPID are 

equipped with an electronic flat panel imager using thin film transistors (TFT) 

fabricated from hydrogenated amorphous silicon (a-Si:H).20 Using EPID, 2D MV 

radiographic images of the patient can be acquired on the treatment day, while the 

patient is positioned in the treatment position.  

EPID can be used for (1) localization and/or (2) verification imaging.20 In 

localization imaging, portal images are created prior to the delivery of treatment 

dose and used for patient set-up adjustments. Whereas in verification imaging, 

portal images are acquired during the actual beam delivery generating a record of 

how the treatment was performed. In this case, portal images are used to verify the 

correct dose delivery.  

Although very useful, additional radiation dose to the patient must be 

considered when using EPID, because they utilize the therapy x-ray beam for 

imaging.21 Also, MV imaging provides poor soft tissue contrast compared to kV 

imaging.21, 22 Despite the source of radiation, the image quality in projection 

imaging using flat panel detectors is further degraded due to the 2D nature of 

imaging, which overlays 3D structures onto a 2D plane. 
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1.3.2.   Cone beam CT 

The shortcoming of the projection imaging can be largely compensated by 

cone beam CT (CBCT), which can provide volumetric imaging using a 2D imager 

while the patient is in the treatment position. During CBCT, hundreds of 

projections are acquired while the linac gantry rotates around the patient with a 

rotation time ranging from 30 – 120 seconds.23 CBCT might be performed using 

MV or kV x-ray beams.24-26 However, kV CBCT was shown to be superior in 

terms of soft tissue contrast and signal-to-noise ratio (SNR).22  

More common, clinical CBCT systems are composed of a retractable kV 

x-ray source and an electronic flat panel detector that are mounted on the linac 

gantry orthogonal to the treatment beam direction. This system can produce 

patient images with sub-millimetre spatial resolution and high SNR,27 and has 

been used for patient set-up verifications.28 Compared to projection imaging, 

relatively larger radiation dose to the patient during imaging is one drawback of 

CBCT, which depends on the imaging parameters and anatomic sites.28, 29 Also, 

utilizing CBCT for set-up verifications is only possible prior to treatment, because 

the slow volumetric imaging data acquisition requires mechanical rotation that 

cannot be performed during beam delivery.13 

1.3.3. Ultrasound 

Additional radiation dose to the patient is always a concern in both portal 

imaging and CBCT, because they require ionizing radiation for imaging. 

Ultrasound (US) is an example of IGRT technique that is free of ionizing 

radiation. In US, a transducer transmits brief pulses of US waves, and the 
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reflections of the waves from different tissue interfaces are used to produce an 

image.30 US visualizes soft tissues, and has been used for daily target localizations 

mainly in prostate and upper abdominal regions.31-33 Studies have reported that 

the performance of US in target localization is functionally equivalent to CT in 

prostate.34 Also, US can be used as a useful adjunct to CT in planning partial 

breast radiotherapy.35 However, US is not suitable to image gaseous regions such 

as lung, and there exists significant inter-operator variability in the image quality 

and the patient alignment processes.33  

1.4. MANAGING INTRAFRACTIONAL TUMOUR 

MOTIONS 

IGRT has improved target localization and delivery of highly conformal 

radiation dose to the target volume.15, 23 Using IGRT, interfractional variations 

due to daily patient positioning errors or changes in anatomy can be monitored 

and minimized. However, a problem still emerges when treating tumours with 

extensive intrafractional motions, e.g. lung tumour. At present, a method of 

directly imaging and tracking tumours during actual beam delivery does not exist, 

and this presents potential limitations to accurate radiotherapy treatments. 

Currently available techniques to deal with the intrafractional tumour or organ 

motions are the following. 

1.4.1. Extra margin 

Extra margins can be added to the CTV to ensure sufficient target 

coverage despite the intrafractional tumour motions. According to the ICRU 
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target volume definition shown in Fig. 1.1, the IM should be added to the CTV to 

compensate for expected movement of the CTV. Several studies reported the 

appropriate margins for different treatment sites.36-38 This approach, however, 

may result in radiation-induced complications due to excessive normal tissue 

irradiation adjacent to the tumour.39  

1.4.2. Respiratory gating 

Respiratory motion is the major source of intrafractional tumour motions, 

especially for abdominal and thoracic tumours including lung, pancreas, kidneys, 

liver, etc.40, 41 Several techniques have been used to reduce the range of 

respiratory motion in radiotherapy, including active-breathing control (ABC) or 

forced shallow breathing with abdominal compression (FSB).42 In ABC, the 

patient must follow the breathing instructions, thus many infirm patients may 

have difficulties to comply. FSB may cause problems for the patients with 

particularly poor pulmonary function, and those with percutaneous gastrostomy 

tube. Similarly, the patients with large abdominal aortic aneurysms may not be 

suitable for FSB.43  

The respiratory gating (RG) techniques were developed to treat the above-

mentioned abdominal and thoracic tumour sites while patients are under free-

breathing, as opposed to controlled breathing as in ABC or FSB. RG requires 

some form of internal or external markers to monitor the patient’s breathing cycle 

during treatment. Among various commercial RG devices, the Varian real-time 

position management (RPM) system (Varian Medical Systems, Palo Alto, CA) 

uses an external marker block placed on the patient’s abdominal region,40 whereas 
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the real-time tumor tracking (RTRT) system (Hokkaido university, Sapporo, 

Japan) requires a gold seed implanted near the tumour.44 In RG, therapeutic 

radiation is delivered only during a particular time interval of the patient’s 

breathing cycle referred to as a gating window.41 The gating window is typically 

open when the patient’s breath is in the exhaled state where the tumour moves the 

least.40 Several clinical studies have shown the feasibility of margin reduction and 

tumour dose escalation using RG techniques in lung, liver, and breast cancer 

treatments.45-47  

Disadvantages of RG are the following: (1) treatment efficiency is low, 

typically 30 – 50 %, because the beam is on for only a portion of breathing 

cycle.41 This increases the overall treatment time of each fraction in practice. (2) 

Patients with irregular breathing cycles cannot be treated using RG.41 (3) RG 

relies on the location of surrogates to determine the beam on/off timings during 

treatment. This may cause critical errors in target localization if the correlations 

between internal tumour motion and surrogates displacement are not sufficiently 

known or change during treatment.48   

1.4.3. Intrafractional tumour tracking 

Both “Intrafractional tumour tracking” and “real-time tumour tracking” 

refer to the method to continuously track the tumour with radiation beam during 

beam delivery. This will be referred to as intrafractional tumour tracking 

hereinafter in this thesis. Two different approaches, invasive or non-invasive, 

have been proposed for target localization in intrafractional tumour tracking. 
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Non-invasive approach: 

RPM system49 is the only non-invasive target localization approach suggested for 

intrafractional tumour tracking. During treatment, the location of an external 

marker block placed on a patient’s chest is monitored by an infrared camera at 30 

Hz. This data is used to estimate the internal tumour position based on the 

correlation between the location of marker block and the tumour centroid, where 

the correlation is established prior to the treatment using planning CT images.  

 

Invasive approach: 

(1) CyberKnife (Accuray Incorporated, Sunnyvale, CA)50  uses both external and 

internal tumour surrogates to estimate tumour positions during beam delivery. 

The patient wears a customized vest that contains several external markers. 

These markers are monitored by a camera to update the external patient 

motion. Also, metallic surrogates need to be surgically inserted near the 

tumour, and these are periodically imaged by two orthogonal kV x-ray 

systems. The frequency of x-ray imaging is defined by the user. During 

treatment, the position of tumour is estimated by the assumed correlation 

between the external patient motion and the location of internal surrogates. 

This correlation is established prior to the treatment and periodically updated 

using the x-ray images.  

(2) Both RTRT system51 and VERO system (BrainLAB, Feldkirchen, Germany, 

and Mitsubishi Heavy Industries, Tokyo, Japan)52, 53 use metallic seeds as 

internal tumour surrogates. The locations of these surrogates are continuously 

monitored during beam delivery by two orthogonal diagnostic x-ray systems 
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running in fluoroscopic mode. Using these images, internal tumour positions 

are estimated. Fluoroscopic imaging adds additional dose to the patient. In 

RTRT system, the maximum skin dose was 1.37 ± 0.06 mGy/min (imaging at 

30 Hz)54 during tracking. In VERO system, the additional dose was 0.117 

mGy per pair of stereo x-ray shots.53  

(3) 4D Localization System (Calypso Medical, Seattle, WA)55, 56 using radio 

frequency (RF) tracking is the only invasive target localization method that is 

free of radiation. A cylindrical RF transponder (8 mm in length × 2 mm in 

diameter) called “Beacon” is implanted to the patient near or within the 

tumour prior to the treatment. During treatment, 3D location of the beacon is 

continuously monitored at 10 Hz by a non-contact detector array positioned 

above the patient. Using this data, internal tumour positions are estimated. 

 

Although various methods have been developed for intrafractional target 

localization, the use of MLC for intrafractional beam conformation is common. 

Previous studies have shown the feasibility of intrafractional MLC control to track 

3D translational tumour motions,57 as well as 2D rotational tumour motions with 

shape deformation.58, 59 One exception is Cyberknife, which uses a beam 

collimator called “Iris” that can generate variable sizes of approximately circular 

beam.60  

1.4.4. Current limitations of intrafractional tumour tracking 

Intrafractional tumour tracking is one of the most promising techniques in 

managing tumour or organ motions. If this technique is accurately executed, the 
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IM illustrated in Fig. 1.1 may be significantly reduced or eliminated. At present, 

however, accurate target localization remains the biggest challenge in 

intrafractional tumour tracking. Whether invasive or non-invasive, all current 

target localization methods are based on indirect tracking through the use of 

internal and/or external tumour surrogates. Reliance on surrogates, however, has 

been shown to be problematic for accurate tumour tracking for the following 

reasons:  

(1) Implanted seeds, for liver and prostate tumours,61 have been shown to 

migrate by up to 5.1 mm and 4.5 mm from their initial positions, respectively. In 

some cases, the seeds might be completely dislodged during the course of the 

radiation treatment. Imura et al., in a study of 57 patients, reported that 25 % of 

total surrogates was lost during the course of lung tumour treatments.62  

(2) Tracking using external surrogates assumes good correlations between 

internal tumour motion and external surrogate displacement, whereas mismatches 

between tumour and surrogates up to 9 mm have been shown.63, 64  

(3) Any deformation of tumour shape is completely unknown during 

tracking. Moreover, since the implanted seeds are usually placed only within the 

tumour, the motion of the nearby soft tissue and healthy organs, and their 

relationship to the tumour, are not known during tracking. 

Due to the indirect nature of surrogates based tracking mechanisms, the 

shape and position of the tumour must be inferred from the location of the 

surrogates during tracking. Therefore, to account for the uncertainty in correlation 

between tumour position and surrogates, extended regions surrounding the lesion 

must be irradiated in order to ensure sufficient target coverage.36  
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1.5. HYBRID RADIOTHERAPY-MRI SYSTEMS 

Current challenges in intrafractional tumour tracking come from the 

indirect, surrogates based tracking mechanisms. Thus, a logical solution is to 

develop a tracking system that can directly track the tumour during beam delivery 

without the need of surrogates. To achieve this, such system must be able to 

acquire intrafractional images of the tumour with (1) high enough temporal 

resolution to monitor intrafractional tumour motions, and (2) sufficient spatial 

resolution and soft tissue contrast to visualize the tumour and detect its location 

without having to rely on surrogates. MRI satisfies these imaging requirements. 

Previous studies have reported that MRI provides excellent soft tissue contrast 

and sufficient temporal and spatial resolutions to observe organ motions at various 

anatomical sites including lung, breast, prostate, etc.65-68  

As explained before, the linac is the most common source of therapeutic 

radiation in clinic, and MRI is a radiation free imaging modality suitable for 

intrafractional imaging. Thus, hybrid radiotherapy-MRI systems should be 

considered as a promising platform to realize direct, non-surrogates based 

intrafractional tumour tracking in addition to reducing patient set-up errors via 

improved tumour localization.  

Several groups have proposed hybrid radiotherapy-MRI systems.69-72 A 

common feature of these systems is the intrafractional MR imaging capability, i.e. 

MR imaging during beam delivery. A group at the University Medical Center 

Utrecht (Utrecht, Netherlands) has proposed the integration of a 1.5 T MRI 

(solenoid superconducting magnet) with a 6 MV linac.70 In this design, the 
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therapeutic x-ray beam path is perpendicular to the main magnetic field direction, 

where the beam must pass through the outer cover of the MRI including the 

cryostat. 

ViewRay (Cleveland, OH) has developed another hybrid radiotherapy-

MRI system.71, 72 Their system consists of a 0.35 T MRI (double doughnut 

superconducting magnet, Helmholtz type) coupled with a rotating gantry that 

houses three radiotherapy heads (located 120° apart) each containing its own Co-

60 source. The rotating gantry is placed in between the double donut magnet, and 

the path of therapeutic radiation beam is perpendicular to the main magnetic field 

direction.  

Our group at the Cross Cancer Institute (CCI) in Edmonton, AB, Canada 

has proposed the coupling of a 6 MV linac with a low field MRI, referred to as 

“linac-MR”. Our linac-MR design has two configurations. The first configuration 

called a perpendicular configuration is shown in Fig. 1.2. In this design, the linac 

is mounted on the side of the biplanar magnet, such that the treatment beam is 

oriented perpendicular to the main magnetic field. As shown in Fig. 1.2.b, the 

linac and MRI rotate in unison to deliver radiation from different angles.  
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Figure 1.2 Perpendicular configuration of linac-MR. 
 

A prototype linac-MR of the perpendicular configuration was installed in 

2009 at the CCI, which is composed of a 6 MV linac coupled to a 0.2 T MRI 

(biplanar permanent magnet). Using this, the CCI group demonstrated the world’s 

first MR imaging during irradiation.69  

The second configuration called a parallel configuration is shown in Fig. 

1.3. Here, the linac is mounted exterior to the biplanar magnet on the magnet’s 

symmetry axis, such that the treatment beam is oriented parallel to the main 

magnetic field. As shown in Fig. 1.3.b, the linac and MRI rotate in unison to 

deliver radiation from different angles. 

 

Figure 1.3 Parallel configuration of linac-MR. 
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There exist dosimetric advantages in the parallel configuration compared 

to the perpendicular configuration. The advantages include (1) decrease in beam 

penumbra, (2) dose increase to the PTV, (3) no lateral shift in dose distribution, 

and (4) reduction of the hot and cold spots at tissue-air interfaces.73 The CCI 

group is currently installing the parallel configuration linac-MR that is composed 

of a 6 MV linac and a 0.5 T MRI.  

1.6. RESEARCH MOTIVATION 

All currently available intrafractional tumour tracking systems share the 

same fundamental limitation, the lack of intrafractional imaging capability. This is 

the main reason why the indirect, surrogates based tracking techniques have long 

been used in clinic, despite their disadvantages mentioned in Sec. 1.4.3. 

Our linac-MR system has the potential to overcome this fundamental 

limitation by its intrafractional MR imaging feature. If this feature can be 

successfully integrated into tumour tracking processes, it will be possible to 

develop a direct, non-surrogate based intrafractional tumour tracking system that 

is free of ionizing radiation and invasive implantation of surrogates. In this 

research, our objective is to investigate the requirements to realize intrafractional 

tumour tracking using the linac-MR, and prove its feasibility through 

experimental demonstrations. Emphasis is given to lung tumours, because they 

are of special interest for tracking due to the potential for complicated, large 

ranges of intrafractional motions. 
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Chapter 2: Theory 

2.1. MAGNETIC RESONANCE IMAGING 

MRI is a powerful non-invasive imaging technique that is based on the 

principle of nuclear magnetic resonance (NMR). MRI can provide 2D, 3D, or 4D 

(3D + temporal) anatomical imaging with superb soft tissue contrast compared to 

other imaging modalities used for radiotherapy including x-ray, CT, or PET. 

Because MRI plays an important role in this thesis, a brief introduction of MRI 

concepts is provided in this chapter. 

2.1.1. Basic NMR physics 

An atomic nucleus is primarily made of protons and neutrons. Any atomic 

nucleus with an odd number of protons and/or an odd number of neutrons 

possesses non-zero spin angular momentum, S. These nuclei also possess a 

nuclear magnetic moment, µ, according to the following relationship:1 

 S      (Eq. 2.1) 

The proportionality constant γ is the gyromagnetic ratio, which is quite varied 

among nuclei. Among the nuclei that have non-zero S, if the sum of the number of 

protons and neutrons is odd (i.e. odd mass number), the nucleus possesses a half-

integer spin such as 1/2, 3/2, etc. For example, hydrogen nuclei (1H) have 1/2 spin 

with γ value of 42.6 MHz/T. Due to its relatively large γ compared to other nuclei 

and abundance in human body (~ 70 % of human body is made of water, where 

each water molecule contains two 1H), 1H is predominantly used in MRI.   
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In the absence of external magnetic field (B0 = 0), the direction of µ or 

“spins” is randomly distributed as shown in Fig. 2.1.a. Thus, the net 

magnetization (i.e. vector sum of all µ) within the given volume, M0, is zero.  

 

Figure 2.1 Spin distribution in a given volume: (a) randomly distributed spins when B0 = 0. 
In this case, net magnetization in the volume is zero. (b) In the presence of B0, the spins start 
to precess around B0. In this case, net magnetization in the volume is produced in B0 
direction. 

 

However, when a static external magnetic field B0 is applied as shown in 

Fig. 2.1.b, the spins placed near or within B0 start experiencing torque that 

attempts to align the direction of µ with the direction of B0. Due to the torque, 

spins start to precess around B0, and the rate of this precession is referred to as the 

Larmor frequency, ω0, defined by1 

 00 B      (Eq. 2.2) 

While the spins are aligning themselves with B0, two different energy 

states are created: (1) a lower energy state where the spins align parallel to B0, and 

(2) an upper energy state where the spins align anti-parallel to B0. This is because 

1H is a 1/2 spin nucleus, which was found to have two possible energy states. The 
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energy difference between the two states is referred to as Zeeman splitting energy, 

EZ, and we can induce transitions between the two states by applying an 

electromagnetic RF pulse of equal energy as EZ. 

At a given temperature T, the ratio of spin populations in the upper and 

lower energy states is governed by thermal equilibrium condition given as 

  kTEZe
N

N 



    (Eq. 2.3) 

where N+ and N- represent the spin population in the upper and lower energy 

states respectively, and k refers to the Boltzman constant (1.38 × 10-23 J/K).  

Assuming the spins are in thermal equilibrium at room temperature (300 

K), the net magnetization in a given volume is in alignment with B0 due to very 

slight excess of spins in lower energy state. For example, if 1.5 T B0 is applied, 

there are only 9 more spins aligned with B0 for every 2 million spins. Despite this 

fact, due to the abundance of water molecule in human body, there can be 6 

million billion excessive spins within 2 × 2 × 5 mm3 volume. From this, a net 

magnetization aligned with B0, M0, as shown in Fig. 2.1.b, is formed which is 

utilized to generate MR images. 

2.1.2. Excitation of the spins and signal generation 

In this thesis, the direction of B0 is defined parallel to Z axis as shown in 

Fig. 2.2.a. In general, the magnitude of B0 is several orders of magnitude greater 

than the magnitude of M0. Thus, any useful signal originated from M0 is 

overwhelmed by B0 in practice. Instead of direct investigation, M0 can be tipped 

away from its original location. As explained earlier, if an electromagnetic RF 
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pulse of energy equal to EZ is applied to 1H, transitions between the two energy 

states can occur. It was found that the frequency of this RF pulse must be equal to 

ω0 to possess the equal energy as EZ.2  

At the quantum level, if the RF pulse with ω0 is applied, 1H will absorb the 

RF energy and jump up to the higher energy level. At the macro level, as shown 

in Fig. 2.2.a, this can be observed as the net magnetization M spirals down 

towards the XY plane if the observer is in the external laboratory frame of 

reference. Or, if the observer is in rotating frame of reference that rotates at ω0 

around Z axis, M would seem to be smoothly tipped down towards X'Y' plane as 

shown in Fig. 2.2.b. Here, the electromagnetic RF pulse, B1(t), is applied 

perpendicular to B0, and its amplitude is considerably smaller than B0.  

 

Figure 2.2 Motion of net magnetization vector M observed from (a) external lab frame XY, 
and (b) rotating frame X'Y' 
 

The motion of M in rotating frame is described by the Bloch equation3 
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 1/ BMdtMd      (Eq. 2.4)  

where the tipping angle α, i.e. the angle between M before and immediately after 

the RF pulse, is determined by the duration of RF pulse shown as  

 dttBt  )()( 1    (Eq. 2.5) 

If the RF pulse is turned off after M is tipped down to the XY plane, M 

will continue to precess around B0 at ω0. This rotating magnetic field in XY plane 

is referred to as transverse magnetization, MXY, and it produces electromagnetic 

radiation. Thus, the absorbed RF energy is now being retransmitted and 

generating the NMR signal as shown in Fig. 2.3.a. The greater the magnitude of 

MXY, the greater the NMR signal. A receiving coil is used to detect the NMR 

signal. Since MXY rotates at ω0, it will produce a sinusoidal RF signal with 

frequency ω0. However, the amplitude of this RF pulse will decay with an 

exponential time constant, because the magnitude of MXY decreases as the spins 

relax back to the equilibrium position. This is referred to as free induction decay 

(FID) shown in Fig. 2.3.b.  

 

Figure 2.3 MXY after RF excitation: (a) rotating MXY retransmits RF pulse via FID (observed 
in lab frame). (b) time domain signal of FID.  
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2.1.3.  Contrast mechanisms in MRI 

MRI has three main contrast mechanisms that distinguish different tissue 

types: (1) proton density (PD), (2) spin-lattice relaxation time (T1), and (3) spin-

spin relaxation time (T2).  In general, all of these mechanisms simultaneously 

contribute to generate an MR image. In practice, however, images are usually 

acquired with one contrast mechanism that is weighted more than the others (e.g. 

T1 weighted images, T2 weighted images, etc).  

2.1.3.1. Proton density 

PD represents the number of mobile 1H per unit volume of tissue. The 

higher the number of 1H in a given tissue volume, the greater the magnitude of 

MXY, thus the brighter the signal on the PD weighted images. This mechanism can 

be used to distinguish different tissues, because the amount of available protons 

(1H in water) depends on tissue types. 

2.1.3.2. T1 relaxation 

T1 relaxation is also called longitudinal relaxation or spin-lattice relaxation, 

because it is related to the recovery of longitudinal magnetization (MZ), and this 

process occurs by exchanging the energy of the spins with its surroundings (i.e. 

lattice). The magnitude of MZ becomes zero immediately after 90° RF pulse (i.e. α 

= 90). Then, the spins start to relax back to its equilibrium state where MZ = M0. 

This recovery of MZ is shown by3  

 ))(()/1(/)( 01 tMMTdttdM ZZ   (Eq. 2.6) 
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where T1 is the longitudinal or spin-lattice time constant. After 90° RF pulse, the 

solution becomes 

 )1()( 1/
0

Tt
Z eMtM    (Eq. 2.7) 

Because T1 is unique in each tissue type, different tissues relax back to the 

equilibrium at different rates as illustrated in Fig. 2.4. 

 

Figure 2.4 T1 relaxation and MZ recovery after 90° RF pulse in two different tissue types A 
and B. Tissue B has longer T1 value, thus requires more time for the recovery of MZ. 
 

Thus, if a second 90° RF pulse is applied during relaxation, the tissue with shorter 

T1 will have MXY with greater magnitude, which will generate brighter signal on 

the T1 weighted images. 

2.1.3.3. T2 relaxation 

T2 relaxation is also called transverse relaxation or spin-spin relaxation, 

because it is related to the decay of transverse magnetization (MXY), and this 

process occurs due to the temporary and random interactions between neighboring 

excited spins. The magnitude of MXY starts to decay immediately after 90° RF 

pulse due to dephasing of the spins, which is described by3  

 2//)( TMdttdM XYXY    (Eq. 2.8) 
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where T2 is the transverse or spin-spin time constant. After 90° RF pulse, the 

solution becomes 

 2/
0)( Tt

XY eMtM    (Eq. 2.9) 

Because T2 is unique in each tissue type, signals from different tissues will 

decay at different rates as illustrated in Fig. 2.5. 

 

Figure 2.5 T2 relaxation and MXY decay after 90° RF pulse in two different tissue types A and 
B. Tissue A has longer T2 value, thus requires more time for the decay of MXY. 
 
As explained above, higher magnitude of MXY generates greater amount of signal. 

Thus, the signal from tissues with higher T2 value, meaning that its MXY will decay 

slower, will appear to be brighter on the T2 weighted images.  

In an ideal situation where B0 is perfectly uniform everywhere in a given 

volume, T2 relaxation should be the only source causing the dephasing of the 

spins, i.e. the decay of MXY, governed by Eq. 2.9. In practice, however, B0 

includes certain degree of inhomogeneity (ΔB) due to various reasons: magnetic 

materials inside or outside of the patient, technical problems, scanning at the edge 

of the magnetic field, etc. This B0 inhomogeneity causes additional dephasing of 

the spins, and this is accounted for by T2* given as 

 BTT  22 /1*/1   (Eq. 2.10) 
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where T2* is the transverse relaxation time constant including B0 inhomogeneity 

effects.  

2.1.4. MR image formation 

The spins (1H) in a given volume can be excited by applying the RF pulse 

at ω0, and the excited spins retransmit NMR signals also at ω0. Thus, if all the 

spins in the volume precess at ω0, the retransmitted signal will also have only one 

frequency, ω0. To form an MR image, however, we need to be able to 

differentiate the signals from the spins in different 3D locations within the 

scanning volume. To achieve this, we create a known change in B0 by applying a 

linear magnetic field gradient, G, across the volume that we want to image. G is 

typically zero at the center of the magnet and linearly increases or decreases with 

distance. As shown in Eq. 2.2, any changes in B0 will cause the changes in ω0. 

Hence, by applying G across the scanning volume, the spins in different 3D 

locations will retransmit NMR signals at different ω0 after excitation. These 

signals are used to form an MR image. 

MR image formation typically involves the following process: slice 

selection, phase encoding, frequency encoding, signal acquisition, k-space filling 

and inverse Fourier transform. Brief discussions of these processes follow using a 

coordinate convention shown in Fig. 2.6, where slice selection occurs in Z 

direction (superior-inferior), phase encoding occurs in Y direction (anterior-

posterior), and frequency encoding occurs in X direction (left-right). These are 

chosen for explanation purposes in this thesis. In practice, these encoding 

directions are inter-changeable and can occur along oblique vectors. 
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2.1.4.1. Slice selection 

When G is applied across the scanning volume, the resonance frequency of 

the spins starts to vary from ω0 depending on their locations within the G field. 

This is illustrated in Fig. 2.6 with GZ (linear gradient in Z direction) applied. 

 

Figure 2.6 Slice selection in the presence of linear gradient Gz 

In this figure, Ba, the external magnetic field at Za is given as 

 aZ where,  zzz0a GBBBB  (Eq. 2.11) 

Then, ωa, the resonance frequency of the spins located at Za is given as 

 )Z( a z0a GB   (Eq. 2.12) 

Thus, a transverse slice defined by Za and Zb can be selectively excited by 

applying an RF pulse that has bandwidth (BW) between ωa and ωb in the presence 

of GZ. BW refers to the range of frequencies included in the RF pulse. Likewise, a 

coronal or a sagittal slice can be selected using GY or GX, respectively. Any 

oblique plane of the volume can also be selected by using appropriate 

combination of GX, GY, and GZ. In general, M0 is tipped away from its original 

direction in the presence of slice selection gradient.  
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2.1.4.2. Phase encoding  

After slice selection, signals from the spins outside of the selected slice are 

disregarded. Assuming the thickness of selected slice is very small with respect to 

morphological structures, the issue of spatial localization of the spins in 3D 

volume now becomes a 2D problem. All slice selection gradients are turned off at 

the completion of slice selection. At this moment, all of the excited spins within 

the selected slice are in-phase and precessing at ω0, where the slab has a finite 

thickness ΔZ (ΔZ = Zb – Za from Fig. 2.6). This is described in Fig. 2.7.a 

following the same coordinate convention as in Fig. 2.6. 

 
Figure 2.7 Phase encoding process: (a) immediately after slice selection. All spins in XY 
plane are in-phase (i.e. pointing the same direction) and precessing at ω0 assuming clockwise 
direction. (b) Phase encoding result. 

 

Phase encoding (PE) further differentiates the signals from the spins 

within the slice in Y direction using a PE gradient GY. Here, Y direction is 

arbitrary chosen for explanation. If GY is applied across the slice shown in Fig. 

2.7.a (GY is zero at the middle row), the spins will be exposed to, from top to 

bottom rows, positive, zero, and negative GY. Accordingly, the spins will precess 

at faster, the same, and slower speed than ω0, as illustrated in Fig. 2.7.b. Once the 
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spin phases in the different rows are sufficiently differentiated, GY is turned off. 

This leaves all spins precessing at ω0 but with different phases in the different 

rows. Although the direction of G is different, the same relationship holds 

between the resonance frequency of the spins and gradient strength as given in 

Eqs. 2.11 - 2.12. 

2.1.4.3. Frequency encoding 

After PE, the spins within the slice can be differentiated in Y direction 

using their phase differences as illustrated in Fig. 2.8.a. 

 
Figure 2.8 Frequency encoding process: (a) immediately after phase encoding. All spins in 
each row are in-phase. (b) Frequency encoding result. 
 

Frequency encoding (FE) further differentiates the spins in X direction 

using a FE gradient GX. If GX is applied across the slice shown in Fig. 2.8.a (GX is 

zero at the middle column), the spins will be exposed to, from left to right 

columns, negative, zero, and positive GX. Accordingly, the spins precess at slower, 

the same, and faster speed as illustrated in Fig. 2.8.b.  
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2.1.4.4. Signal acquisition 

The precessing spins shown in Fig. 2.8.b retransmit RF signal, and this 

signal is acquired while the FE gradient GX is being applied. Due to GX, the spins 

in each column precess at different frequencies. Hence, three different resonance 

frequencies will be detected from the retransmitted signal, and this will provide 

the positional information of the spins in X direction with further analysis.  

Because the PE gradient GY must be turned off during signal acquisition, 

only a single GY can be applied in Y direction before each signal acquisition. Due 

to GY, a fixed, known amount of phase change is applied to the spins at specific Y 

location at each PE. In practice, PE is repeated as many times as needed before 

each signal acquisition with different gradient strength that is linearly incremented 

each time. Thus, the rate of phase change for a spin at a specific Y location is also 

linearly incremented at each PE. Because a rate of phase change is also a 

frequency, a similar concept as used in FE is used to obtain the spin locations in Y 

direction through PE. This will provide the positional information of the spins in 

Y direction with further analysis. 

2.1.4.5. The Fourier transform 

The Fourier transform (FT) is used to determine the magnitude of the 

signal at each frequency. The relationship between the two domains, frequency 

domain and time domain, is given as 

    deFFFTf 2i)())(()(   (Eq. 2.13)  

     deffFTF 2i1 )())(()(   (Eq. 2.14) 
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where F(ε) represents the received signal in time domain (ε represents time), and 

f(δ) represents the Fourier transform of F(ε) referred to as FT(F(ε)). Here, the 

Fourier space is in temporal frequency (cycles/time) represented by δ. The time 

signal F(ε) can be recovered by taking the inverse Fourier transform of f(δ) 

referred to as )).(( fFT 1  Due to their reciprocal relationship, f(δ) and F(ε) are 

referred to as a Fourier transform pair. FT plays a major role in MR image 

construction, because it can provide the frequency and corresponding magnitude 

of the received time domain signal that are directly related to the spatial location 

and density of the spins, respectively. 

2.1.4.6. K-space and MR image formation 

K-space stores the acquired MR signal prior to image formation. 

Assuming that the entire slice is excited and the signals are detected uniformly 

without T2* relaxation, the resulting MR signal, S(t), is given as4 

   rdertS ti 0 )()(   (Eq. 2.15) 

where )(r  represents the spin density as well as signal effects due to relaxation 

at location r  within the slice. Recovering )(r  from the measured MR signal is 

the goal of image formation. 

Once the gradient field GX or GY is applied, B0 changes accordingly, which 

causes ω0 to change as the following (the FE gradient GX is used as an example):  

 XGX0X     (Eq. 2.16) 
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where ωX is the resonance frequency of the spins located at X in the presence of 

GX. Then, Eq. 2.15 becomes 

   dXeXedXeXtS tXGititi X0X )()()()(    (Eq. 2.17) 

where )(X  represents the spin density and signal effects due to relaxation at 

location X within the slice. The exponential term, tie 0 , can be disregarded in 

further derivation considering the equation in the rotating frame of reference as 

explained earlier. Also, in practice, the signal at ω0 is demodulated to avoid high 

frequency components.  

 If we make a substitution by introducing a parameter kX given as4  

 



2

tG
k X

X


    (Eq. 2.18) 

where t is encoding time during which GX is applied. Then, Eq. 2.17 can be 

rewritten as 

   dXeXktS XkX2i
X

)()()()(   (Eq. 2.19) 

Here, )( Xk  and )(X  is a Fourier transform pair as shown in Eq. 2.13. This 

reciprocal Fourier space is referred to as k-space, which is in the spatial frequency 

domain (cycles/distance).  

Each row of k-space (kX) is filled with S(t) at each signal acquisition in the 

presence of GX. Eq. 2.19 is rewritten as 

 ))(()()( XFTktS X     (Eq. 2.20) 

Therefore, )(X  can be recovered from the measured signal S(t) as the following 

 ))(())(()( tSFTkFTX 1
X

1     (Eq. 2.21) 
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Equations 2.15 - 2.21 can also be applied if the PE gradient GY is applied. 

K-space is filled one row at a time during signal acquisitions, where incremental 

variation of GY determines kY. Once k-space is fully filled, a 2D inverse FT is 

applied to the entire k-space data to form a 2D MR image. 

2.1.5. Imaging sequence 

An imaging sequence is a predefined set of RF pulses and gradient fields 

applied repeatedly during an MR study, in order to excite the spins within the 

volume of interest.  

2.1.5.1. Spin echo imaging  

Spin echo (SE) imaging uses two consecutive RF excitation pulses to 

refocus the spins in XY plane. Immediately after the initial slice selection RF 

pulse that tips the magnetization by an angle α and creates a component in the XY 

plane, the excited spins start to dephase according to T2* relaxation. SE imaging 

applies a second 180° RF pulse, at time TE/2 after the first RF pulse, to reverse 

the positions of the spins in XY Plane. This effectively refocuses the spins, and 

they form a “spin echo” at the echo time, TE. This process acquires one line in k-

space, and thus the sequence is repeated at TR (repetition time) intervals with 

different values for PE gradient to fill the 2D k-space. A typical SE pulse diagram 

is shown in Fig. 2.9. 
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Figure 2.9 Spin echo imaging sequence, where α: tipping angle, GSS: slice selection gradient, 
GPE: phase encoding gradient, GFE: frequency encoding gradient, TE: echo time, TR: 
repetition time. 

 

As explained earlier, T2* accounts for the spin dephasing effect due to B0 

inhomogeneity. This can be eliminated in SE imaging due to the refocusing of the 

excited spins. However, more acquisition time is required for SE imaging because 

of the second RF pulse.  

2.1.5.2. Gradient echo imaging  

After the slice selection RF pulse is applied, gradient echo (GE) imaging 

uses a magnetic field gradient to intentionally dephase and rephase/refocus the 

spins in XY plane to form a “gradient echo.” A typical GE pulse diagram is 

shown in Fig. 2.10. 
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Figure 2.10 Gradient echo imaging sequence. 
 

The spins are dephased while the negative gradient is applied and rephased 

with the positive gradient. Signal acquisition occurs while the spins are being 

rephased. Compared to SE imaging, GE imaging is typically faster, because it 

does not require the second RF pulse. However, GE imaging is sensitive to B0 

inhomogeneity effect and the amplitude of signal decays faster following T2* 

relaxation. In both SE and GE sequences, TE and TR can be varied to obtain 

image contrast weighted with PD, T1, or T2. 

2.1.5.3. Steady state free precession imaging 

Steady state free precession (SSFP) imaging is a modification of GE 

imaging using a smaller flip angle (< 90°) and a TR shorter than T1 and T2 of the 

object. In SSFP imaging, a series of RF excitation pulses is repeatedly applied 
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every TR. If the TR is small enough, the MR signal remains constant from TR to 

TR. An example of an SSFP sequence is shown in Fig. 2.11. 

 

Figure 2.11 Steady state free precession imaging sequence. 
 

The SSFP signal is given as5 
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If TR is very short, i.e. TR << T2 < T1, Eq. 2.22 can be simplified as 
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, where TR << T2       (Eq. 2.23) 

Because of T1/ T2 term in the denominator of Eq. 2.23, SSFP imaging is said to 

have “T2/ T1” contrast weighting. 

Due to its short TR value, SSFP imaging requires relatively short imaging 

time while providing the highest possible SNR per unit time among all known 

imaging sequences.6 The high temporal resolution and SNR make SSFP imaging 
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well suited for tumour tracking applications. However, banding (a spatial region 

where signal loss occurs) is a problem in SSFP imaging occurring from B0 

inhomogeneities, and/or susceptibility effects.5 

2.2. ARTIFICIAL NEURAL NETWORK 

An artificial neural network (ANN) is a mathematical model inspired by 

biological neural networks structure. Among many types of ANNs, we used a 

multilayer feedforward ANN to develop tumour motion prediction software, 

which is an essential component of this thesis. A brief introduction of the ANN 

and learning mechanism are provided in the following chapter. 

2.2.1. Individual neuron model 

A neuron is a fundamental information-processing unit of a neural network. 

The structure of a biological neuron is illustrated in Fig. 2.12.a. The neuron 

receives chemical messages from other neurons through dendrites. The messages 

are processed within cell body, and its decision is transmitted to other neurons via 

axon and synaptic terminals.  

 

Figure 2.12 Individual neuron structure: (a) biological neuron, (b) artificial neuron model. 
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 An artificial neuron model is shown in Fig. 2.12.b. Here, each input signal 

is weighted differently through a corresponding weight parameter, and their sum 

becomes the input of an activation function as the following   

 



m

j
jkjk xwv

0

   (Eq. 2.24) 

where x0, …, xm are the inputs associated with corresponding weights w0, …, wm, 

respectively. The neuron model includes a fixed input, x0 = +1, associated with 

wk0. wk0 is also referred to as bias, bk, which has the effect of shifting the vk value. 

Since vk is the input of the activation function, a single output issue (i.e. only one 

output value is possible when all inputs are zeros) can be avoided using bk.  

The activation function   is shown in Fig. 2.13, which is a sigmoid 

function with output values between 0 and 1. 

 

Figure 2.13 Activation function  (v) = 1/(1+e-v
) 

 

Hence, the output of the neuron model is given as,  

 )( kk vy      (Eq. 2.25) 
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where yk and vk are the output and input of the activation function  , respectively. 

yk is transmitted to other neighboring neurons. 

2.2.2. Multilayer feedforward ANN 

A multilayer feedforward ANN typically consists of an input layer, one or 

more hidden layers, and an output layer. The input signal (i.e. input values) 

propagates through the ANN in a forward direction, from input layer to output 

layer, on a layer-by-layer basis. An error value is calculated from the ANN output, 

and the error signal is projected back in a backward direction on a layer-by-layer 

basis to adjust each weight within the ANN. This is illustrated in Fig. 2.14, where 

N represents each neuron model. 

 

Figure 2.14 Illustration of forward & backward directions in a multilayer feedforward ANN. 
 

2.2.3. Back-propagation algorithm 

A back-propagation (BP) algorithm is one type of ANN training method. 

The BP algorithm uses a supervised learning method, meaning that it requires a 

training data set consist of many numbers of known input/output pairs. Using the 

pairs, a given ANN learns the relationship between inputs and desired outputs 
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through many numbers of iterations. During iterative training, one epoch refers to 

one complete presentation of the entire training data set through the ANN. 

 Figure 2.15 provides detailed signal flow from a hidden neuron j, Nj, to an 

output neuron k, Nk. Depending on ANN structure, multiple neurons may exist in 

the hidden layer as well as in the output layer.  

 

Figure 2.15 Detailed signal flow from a hidden neuron Nj to an output neuron Nk 
 

An error of the ANN at the nth iteration during training (i.e. presentation of 

the nth input/output pair to the ANN) is referred to as ek(n), which is defined as  

 )()()( nxndne kkk    (Eq. 2.26) 

where dk(n) and xk(n) are the desired and actual outputs for Nk, respectively. 

Using this, a cost function for the nth input/output pair, Ψ(n), is defined as 

 



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k
k nen

1

2 )(
2

1
)(   (Eq. 2.27) 

where C is the number of neurons in the output layer. Also, a cost function for the 

entire training data set is given as 

 
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   (Eq. 2.28) 
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where N refers to the total number of input/output pairs in the training data set.  

The objective of ANN training is to find a set of weights within a given 

network that minimizes Ψavg. In the BP algorithm, the weights are updated each 

time when the input/output pair is introduced to the ANN until one epoch is 

completed. The updated weights are given as 

 www  previousupdated   (Eq. 2.29) 

where Δw is proportional to the partial derivative of Ψ(n) with respect to each 

weight within the network. Detailed explanation of Δw follows. 

2.2.3.1. Weight updating for output layer neurons 

Nk illustrated in Fig. 2.15 is one of the output layer neurons. For Nk, the 

partial derivative of Ψ(n) is given as the following using the chain rule of 

calculus7   
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 (Eq. 2.30) 

Here, vk(n) is calculated as 

 



m

j
jkjk nxnwnv

0

)()()(   (Eq. 2.31) 

where m refers to the total number of inputs, xj(n), applied to Nk except the bias. 

Also,  

 ))(()( nvnx kkk     (Eq. 2.32) 

By finding the partial derivative of Eqs. 2.27, 2.26, 2.32, and 2.31, the four terms 

in Eq. 2.30 yield, in order, the following 
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where η is a learning rate that determines the convergence rate of the BP 

algorithm. Thus, from Eqs. 2.33 and 2.34, 
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A local gradient δk(n) is defined as the following, which points to the 

required changes in weights,7 
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 ))((')( nvne kkk      (Eq. 2.36) 

Then, Eq. 2.35 can be rewritten as 

 )()()( nxnnw jkkj      (Eq. 2.37) 

Using this, each weight associated with Nk is updated by 

 )()()1( nwnwnw kjkjkj    (Eq. 2.38) 
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2.2.3.2. Weight updating for hidden layer neurons 

The weights associated with hidden layer neurons are updated in a similar 

way as for output layer neurons. In hidden layer neurons, however, the local 

gradient is calculated differently from the output layer neurons. 

The definition of local gradient is the same for both hidden and output 

layer neurons. For a hidden layer neuron Nj shown in Fig. 2.15, the local gradient 

δj(n) is defined as  
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    (Eq. 2.39) 

Where Ψ(n) is defined in Eq. 2.27. Compared to Eq. 2.36, the only difference in 

Eq. 2.39 is the index change from k to j. By using the chain rule, Eq. 2.39 is 

rewritten as 
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Here, the first partial derivative term of Eq. 2.40 is given as 
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In Fig. 2.15, ))(()()()()( nvndnxndne kkkkkk  . Thus,  
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Also, vk(n) is given in Eq. 2.31 and its partial derivative is  
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By using Eqs. 2.42 and 2.43, Eq. 2.41 is given as 
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Here, the first two terms are equivalent to the local gradient of the output layer 

neuron Nk that is previously shown in Eq. 2.36, ))((')()( nvnen kkkk   . Thus, 
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The second partial derivative term of Eq. 2.40 is given as 
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Therefore, δj(n) is given as  
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Using this result, the weights associated with Nj are updated as the following. 

 )()()( nxnnw ijji      (Eq. 2.48) 

 )()()1( nwnwnw jijiji    (Eq. 2.49) 

2.2.3.3. Summary of the BP algorithm 

The BP algorithm is used for ANN training according to the following 

steps.7  

(1) Randomly choose the initial weights for a given ANN from a uniform 

distribution, where its mean is zero and its variance is determined to make the 

standard deviation of the input for a corresponding activation function stay within 

the transition between the linear and saturated parts of the activation function.  
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(2) Present an epoch of examples, i.e. known input/output pairs within one 

complete training data set, to the ANN and update its weights for each 

input/output pair through forward and backward computations. Forward 

computation refers to the proceeding of input values through the ANN from the 

input layer to hidden and output layers as described in solid lines in Fig. 2.14. 

Backward computation includes (1) local gradients computations in a given layer 

of the ANN via Eqs. 2.36 and 2.47, and (2) updating each weight via Eqs. 2.37 - 

2.38, and Eqs. 2.48 - 2.49. 

(4) Iterate forward and backward computations and keep updating the 

weights by presenting another epoch of training data to the ANN until a user 

defined stopping criterion is satisfied. 

2.3. PARTICLE SWARM OPTIMIZATION 

The performance of ANN in a given task is strongly dependent on its 

structure (i.e. number of hidden layers, number of neurons in a given layer, 

number of inputs, etc) and initial weights (IW).8, 9 However, there exists no 

analytical solution to determine the optimal ANN structure and IW, and these are 

typically determined by a human expert through trial and error processes. To 

automate this process, the particle swarm optimization (PSO)10 was used in this 

research. A brief introduction to PSO is provided in this section. 

PSO is one type of population-based, stochastic optimization method, 

which is inspired by the social behavior of bird flocking or fish schooling when 

they search for a target; for example, food. The goal of PSO is to search and 

converge to the global optimum solution in a given multi-dimensional solution 
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space.  

PSO begins by generating a swarm of particles that are randomly 

distributed over an n-dimensional solution space with different positions and 

velocities. Each of these particles represents a potential solution to a given 

optimization problem. For example, a particle A’s position in the solution space 

indicates a current solution of the optimization problem represented by A. Also, 

A’s velocity determines its position update at next iteration, meaning that the 

current solution represented by A will be updated toward a new, more optimized 

solution at next iteration. 

The particles will “fly” through the solution space, in order to find a 

specific location where the solution at that location will produce the optimum 

result with regard to a user defined fitness function. During PSO process, each 

particle keeps track of (1) its position in the solution space and (2) its best solution 

so far achieved. Each particle’s best solution is referred to as pbest, the personal 

best solution. Also, the entire swarm’s best solution is tracked and referred to as 

gbest, the global best solution.  

As explained earlier, each particle’s position in the solution space is 

updated in each iteration. Firstly, the particle’s updated velocity is calculated as 

the following,11 assuming the iterations occur in discrete time steps.  

 )()( 2211 prevprevprevupdated PgbestrandcPpbestrandcVV   

         (Eq. 2.50) 

where, Vupdated: updated velocity a particle, c1, c2: a user defined unitless weight, 

rand1, rand2: a rational random number between 0 and 1, Vprev, Pprev: previous 
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velocity and position of a particle. In PSO, Vupdated is determined by both 

individual (pbest and Vprev) and social (gbest) components, and their contributions 

are weighted by the user defined c1, c2 values.  

After each particle’s velocity update, the particle’s updated position is 

determined as the following:11 

  TVPP updatedprevupdated     (Eq. 2.51) 

where, Pupdated: updated position of a particle. In PSO, velocity (Vupdated) is 

regarded as displacement per iteration rather than displacement per time. Thus, 

the value of T is fixed at 1. 
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Chapter 3: Evaluation of a lung tumour  

autocontouring algorithm for 

intrafractional tumour tracking 

using low-field MRI 

 
A version of this chapter has been published: J. Yun, E. Yip, K. Wachowicz, S. 

Rathee, M. Mackenzie, D. Robinson, and B. G. Fallone, "Evaluation of a lung 

tumor autocontouring algorithm for intrafractional tumor tracking using low-field 

MRI: A phantom study," Med. Phys. 39(3), 1481-1494 (2012). 

 

3.1. INTRODUCTION 

Image-guided radiotherapy (IGRT) promises improved targeting and 

delivery of highly conformal radiation dose to tumours. Using IGRT, 

interfractional variations due to daily patient positioning errors or changes in 

anatomy can be monitored and minimized.1 A problem still emerges, however, 

when treating mobile tumours such as those occurring in lung.  

Lung tumours are often difficult to treat due to their potential for 

complicated, large ranges of intrafractional motion and deformation over time. 

Various studies have shown that lung tumour may move up to 40 mm in superior–

inferior (SI), 15 mm in anterior–posterior (AP), and 10 mm in left–right (LR) 

directions during normal breathing.2-4 Volume changes up to 20 % and rotations 

up to 50 degrees with respect to each axis have also been reported.5 Unfortunately, 

a method of directly imaging and tracking lung tumours during actual radiation 
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delivery does not currently exist, and this presents potential limitations to accurate 

radiotherapy treatments.  

Currently available commercial systems deal with this problem by indirect 

tracking methods using several types of tumour surrogates. For example, the 

Varian Real-time Position Management (RPM) system (Varian Inc., Palo Alto, 

CA)6 uses a single external surrogate, whereas Cyberknife (Accuray Inc., 

Sunnyvale, CA)7 requires both internal and external surrogates. The 4D 

Localization system (Calypso Medical, Seattle, WA)8 uses electromagnetic 

transponders called “beacons” as internal surrogates, and the Real-time Tumor-

tracking Radiation Therapy (RTRT) system (Hokkaido University, Sapporo, 

Japan)9 requires internal seeds and orthogonal kV imaging to perform tumour 

tracking. In addition to these commercial systems, several groups are actively 

researching real-time (i.e. intrafractional) tumour tracking systems.10-13 

Despite the wide variety of techniques currently in use, all current tracking 

methods remain based on indirect tracking through the use of internal or external 

tumour surrogates. Reliance on surrogates, however, has been shown to be 

problematic for accurate tumour tracking for the following reasons: (1) Utilizing 

internal surrogates requires invasive procedures, and these implanted surrogates 

have been known to migrate from their initial positions during the course of the 

radiation treatment,14 and (2) Tracking with external surrogates must rely on 

ambiguous correlations between internal tumour motion and external surrogate 

displacement.15 More importantly, any deformation of tumour shape is completely 

unknown during treatment. 

Due to the indirect nature of these tracking mechanisms, the shape and 
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position of the tumour must be inferred from the location of the surrogates used. 

Therefore, extended regions surrounding the lesion must be irradiated in order to 

ensure sufficient target coverage,16 which includes the uncertainty caused by poor 

correlation between tumour position and surrogates. This approach, however, may 

result in medical complications due to excessive normal tissue irradiation adjacent 

to the tumour.17  

On-line radiotherapy-MR systems, which have been proposed by several 

groups,18-21 may overcome these difficulties by providing direct, intrafractional 

MR images of tumours without the need for surrogates. Our laboratory reported 

the first integrated radiotherapy-MR system known as a linac-MR.19 This system 

can provide 2D intrafractional MR images including a beam’s eye view depicting 

the plane of largest tumour motion.  

Time consuming, manual contouring of tumour shape would effectively 

negate the potential advantages of fast tumour imaging. Thus a rapid and reliable 

tumour autocontouring algorithm is required in order to perform useful 

intrafractional tumour tracking. This algorithm must detect tumour shape and 

position in each intrafractional MR image during treatment, thus allowing for 

appropriate intrafractional radiation beam adjustment.  

In this chapter, we investigate the feasibility of real-time autocontouring of 

tumour in MR images by means of a phantom and simulation study. This 

investigation is focused primarily on the requirements for lung tumour 

autocontouring in low field MR images, at 0.2 T and 0.5 T. The development of 

an MR compatible, lung tumour motion phantom is also presented.  
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3.2. MATERIALS AND METHODS 

An overview of intrafractional tumour tracking scheme is explained in Sec. 

3.2.1. Section 3.2.2 describes our autocontouring algorithm. Section 3.2.3 

describes the fabrication of an MR compatible motion phantom incorporating a 

lung tumour like target imbedded in lung analogue materials, which is used to 

simulate lung tumour MR images at low fields. These images are used to evaluate 

the tracking performance of our algorithm, which is detailed in Sec. 3.2.4. 

3.2.1. Overview of intrafractional tumour tracking 

Figure 3.1 shows an overview of intrafractional tumour tracking scheme 

proposed in this thesis.  

 

Figure 3.1 Intrafractional tumour tracking scheme using a linac-MR 
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Our tracking scheme is designed such that the treatment beam is always on 

during tumour tracking. In Step 1 of Fig. 3.1, an intrafractional MR image of a 

tumour/target volume and surrounding anatomy is acquired using a linac-MR. In 

Step 2, the tumour shape is automatically contoured using our in-house built 

tumour autocontouring software (presented in this chapter). In Step 3, the tumour 

position (i.e. centroid position) is calculated based on the autocontoured tumour 

shape, referred to as a current tumour position. In Step 4, a future tumour position 

is predicted based on the current and previous tumour positions using our in-

house built tumour motion prediction software (presented in Chapter 5 of this 

thesis). This step is necessary to compensate for the intrafractional tumour motion 

during the time required for MLC conformation. In Step 5, the MLC is driven in 

real-time to conform the treatment beam to the current tumour shape (from Step 

2) at the predicted tumour position (from Step 4). Steps 2 – 5 are repeated each 

time a new intrafractional image is acquired during tracking.  

3.2.2. Lung tumour autocontouring algorithm 

An autocontouring algorithm was developed to determine both the 

position and shape of a lung tumour from each intrafractional MR image. The 

algorithm was developed in accordance with the following scenario: (1) A pre-

treatment, dynamic MR scan is performed with the treatment unit (i.e. linac-MR), 

using the same MR sequence and patient set-up intended for treatment. (2) During 

treatment, the linac-MR will provide 2D intrafractional, dynamic MR imaging of 

a lung tumour. The plane of MR imaging will be selected to visualize the 

maximum tumour dimensions for the beam’s eye view. (3) MR images will be 
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acquired at an imaging rate of 3 - 4 fps. This rate is the minimum requirement for 

lung tumour tracking based on AAPM Task Group 76 report,22 which 

recommended less than 500 ms time delay (including 100 - 200 ms beam 

repositioning time) between acquisition of tumour position and beam 

repositioning in order to take clear advantage of real-time tracking over other 

tracking methods. To satisfy this, the tumour position must be updated 

approximately every 300 ms, which is the imaging rate assumed in this study. 

Figure 3.2 illustrates the step-by-step autocontouring processes. In Fig. 3.2, 

Steps 1 - 3 describe the pre-treatment processes that must occur in preparation for 

the autocontouring session during treatment (Sec. 3.2.2.1). Steps 4 - 14 describe 

the main algorithm (Sec. 3.2.2.2). Each step of the algorithm is examined using an 

example lung tumour MR image obtained from a previous study.23 This image 

was acquired at 1.5 T with a half-Fourier single-shot turbo-spin-echo sequence, 

and reprinted in Fig. 3.3 with permission from Eur. J. Radiol. 29, 152–159 (1999). 

© 1999 Elsevier 
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Figure 3.2 Flow chart for overall autocontouring processes 
 

3.2.2.1. Pre-treatment processes 

Pre-treatment processes consist of Steps 1 – 3 in Fig. 3.2. In Step 1, the 

pre-treatment processes commence with the acquisition of pre-treatment images. 

A single image is chosen from these images as an input for Steps 2 and 3. This 

image should be the one image of the series that is least impacted by motion 

artifacts, often an image at the end of an exhale period.   
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3.2.2.1.a. Algorithm initiation (Step 2) 
 

In Step 2, an expert user draws two contours on the pre-treatment image: 

(1) the lung tumour on the image, which we call a standard region of interest 

(ROIstd) as shown in Fig. 3.3.b, and (2) the region covering the maximum 

anticipated range of tumour motion, which is herein after referred to as the 

“Background” as shown in Fig. 3.3.c. This may be determined by observing the 

maximum extension tumour movement from the pre-treatment MR images over 

several breathing cycles. During autocontouring, the algorithm expects that the 

tumour will reside within the Background region of each MR image. Therefore, 

the pre-treatment image must be taken by the treatment unit (e.g. linac-MR) to 

have the most similar patient anatomy, image size, resolution as the one that will 

be acquired during the autocontouring session. A binary mask (an array of ones 

and zeros) called “Background mask” is generated as shown in Fig. 3.3.d, where 

the delineated region has a pixel value of one. 

 

Figure 3.3 Algorithm initiation (Step 2 in Fig. 3.2). (a) Pre-treatment image (b) ROIstd 
contour (c) Background contour (d) Background mask 
 

3.2.2.1.b. Parameter optimization (Step 3) 

Prior to the autocontouring session for each patient, the following five 

parameters must be chosen: (1) the scaling factor f in the histogram shifting (HS) 
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algorithm,24 (2) kernel size s in the HS algorithm,24 (3) unit matrix size u of 

smoothing filter, (4) number of smoothing operations, and (5) number of 

dilation operations. The HS algorithm24 is used for edge detection or edge 

enhancement within an image, which performs the following transformation with 

the choice of two parameters f and s: 

 )]min([,
'
, j)kernel(i,lklk XfXX    (Eq. 3.1) 

where,  

'
,lkX   : new gray level of the center pixel of a kernel at (k,l), a kernel size  

s is determined by Step 3 

lkX ,   : original gray level of the center of the kernel located at (k,l) 

 f   : scaling factor between 0 and 1, determined by Step 3 

)min( j)kernel(i,X  : minimum pixel value within the kernel jiX , (centered at k,l)  

covering all (i,j) within the size s 
  

These five parameters are optimized in Step 3. This is to determine a set of 

parameters that if the autocontouring is performed with these parameters, the 

autocontoured tumour shape will be the closest to the tumour shape contoured by 

an expert user. The parameters vary depending on the MR image characteristics 

such as signal intensity, contrast, resolution, etc. Therefore, the pre-treatment 

image used in parameter optimization must be taken by the treatment unit (e.g. 

linac-MR) to have the most similar image characteristics as the one that will be 

acquired during the autocontouring session. 

In Step 3, an ROI delineated by an expert user (ROIstd) is compared to an 

autocontoured tumour shape (ROIauto) obtained from the same MR image. Dice’s 

coefficient (D) is used as a measure of similarity, which is defined as: 
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   )()(/)(2 autostdautostd ROIAreaROIAreaROIROIAreaD   (Eq. 3.2)  

The goal of optimization is to maximize D as the following: 

(1) Autocontouring occurs with different possible combinations of the 5 

parameters from: f = 1, 0.95,…,0.5, s = 10, 15,…,30 % of ROIstd size, u = 3 × 3 or 

5 × 5, number of smoothings = 0, 1,…, 20, number of dilations = 0, 1,…, 20.  

(2) From the autocontouring process performed with each combination, an 

ROIauto is determined. A D value is calculated between the ROIauto and ROIstd.  

(3) The combination of parameters that produces the maximum D (Dmax) is 

chosen as the optimum combination. Typical Dmax values of 0.93 – 0.95 are 

achieved at the end of parameter optimization.  

3.2.2.2. Main algorithm 

After the pre-treatment processes are completed, the main algorithm (Steps 

4 – 14 in Fig. 3.2) is applied to each intrafractional MR image to contour the 

tumour. This is an automated process requiring no further input from the user.    

3.2.2.2.a. Background extraction (Steps 4 – 6) 

Step 4 describes the acquisition and reconstruction of intrafractional MR 

images by the linac-MR system. Each image will be fed into the algorithm on-line 

in Step 5. In Step 6, the algorithm extracts the Background region from the image 

input as shown in Fig. 3.4. Subsequent processing from Step 7 through 14 

assumes that the tumour will reside within the Background (Fig. 3.4.c) during 

autocontouring. 



 

 
72

 

Figure 3.4 Background extraction (Step 6 in Fig. 3.2). (a) Each MR image (b) Background 
mask from Step 2 (c) Background (extracted by multiplying each MR image and the 
Background mask) 
  

3.2.2.2.b. Determination of approximate tumour position (Steps 7 - 8) 

The Background contains a tumour as well as large amount of undesirable 

anatomy surrounding the tumour (e.g. blood vessels, normal lung parenchyma, 

etc). Steps 7 and 8 are implemented to minimize the undesirable anatomy 

presented to the subsequent steps (Steps 9 - 14), so that the interference from the 

surrounding anatomy can be minimized in determination of the tumour shape. 

Also, because the subsequent steps are applied only to the result of Step 8 that 

could be considerably smaller than the entire Background, less computing time is 

required.  

In Step 7, a Fast Normalized Cross-Correlation (FNCC)25 is applied 

between the ROIstd, i.e. a portion of Fig. 3.3.b enclosed by ROIstd contour, and the 

Background shown in Fig. 3.4.c. In Step 8, a square portion of the Background 

(Fig. 3.4.c) is extracted, where the center of the square is located at the coordinate 

of the maximum correlation coefficient. The size of this square is user adjustable, 

but calculated to match 120 % of the ROIstd size as a default. This is a 

conservative assumption based on a study by Plathow et al.5 that provides an 
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adequate coverage for tumour volume changes during autocontouring. The 

coordinate of the maximum correlation coefficient indicates an approximate 

tumour position within the Background. However, this may not be the exact 

center of the tumour, because the tumour shape in each MR image is expected to 

change during treatment, whereas the ROIstd stays the same. Hence, the coordinate 

of the maximum correlation coefficient may not always coincide with the center 

of the tumour.  

3.2.2.2.c. Determination of tumour shape (Steps 9 – 14) 

The output of Step 8 is shown in Fig. 3.5.a, which is a square portion 

(240 % of the ROIstd size) extracted from the Background. This is referred to as 

the “most probable tumour region.” In this report, 240 % is chosen for better 

visualization of the surrounding anatomy of the tumour and the results of 

subsequent steps (Fig. 3.5.b - Fig. 3.5.f). The following steps are applied to the 

output of Step 8 to determine the tumour shape:  

(1) In Step 9, the HS algorithm24 is applied to the most probable tumour 

region for edge enhancement. The result is shown in Fig. 3.5.b.  

 

Figure 3.5 (a) most probable tumour region (b) HS result with f = 1, s = 19 × 19 (c) threshold 
result (d) holes filled (e) selected tumour shape (f) final tumour contour after smoothing (u = 
5 × 5, 12 smoothings, 2 dilations) 

 

(2) In Step 10, a pixel threshold method is used to transform Fig. 3.5.b into 



 

 
74

a binary mask as shown in Fig. 3.5.c. A pixel threshold value is calculated by 

Otsu’s method,26 which finds an optimal threshold from a gray-level histogram 

that will maximize the separation between the two classes such as background and 

objects. There is no other parameter involved in this step. The result of 

thresholding undergoes a morphological closing27 operation in Step 11.  

(3) The result of Step 11 is shown in Fig. 3.5.d, which contains many 

isolated pixel clusters in addition to the tumour. In Step 12, the algorithm 

determines only the tumour shape and rejects other pixel clusters. This occurs by 

selecting the pixel cluster containing the coordinate of maximum correlation 

coefficient obtained from Step 7, which represents the most likely position of the 

tumour. The result is shown in Fig. 3.5.e. 

(4) In Step 13, a final tumour shape is determined by applying 

morphological smoothing and dilation operations.27 A unit matrix size u for the 

smoothing filter, the number of smoothing, and the number of dilation operations 

were pre-determined from Step 3.  

(5) In Step 14, the outer edge of the tumour shape is delineated by 

applying a morphological gradient operation.27 A typical result is shown in Fig. 

3.6.c for the sample image used in this report.  
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Figure 3.6 (a), (b) original tumour image (c) autocontoured tumour shape with f = 1, s = 19 × 
19, u = 5 × 5, 12 smoothings, 2 dilations. 
 

3.2.3. Simulating low field contrast-to-noise ratio of lung 

tumour in a clinical 3 T system 

To evaluate the performance of our autocontouring algorithm, phantom 

images were acquired which would best reflect the image quality characteristic of 

lung tumour MR images at low fields with special attention to contrast-to-noise 

ratio (CNR). Further, as our laboratory’s linac-MR designs are based on low field 

MR systems (0.5 T and 0.2 T), the performance of our autocontouring algorithm 

must be evaluated in these situations. Hence, a series of experiments were devised 

to image a special lung contrast phantom in a high-field clinical scanner (Achieva 

3 T, Philips Medical Systems, Andover, MA), which could then be used to 

simulate the relative signal levels and relaxation behaviors of a lung tumour and 

normal lung parenchyma at arbitrarily chosen lower fields. 

3.2.3.1. MR contrast parameters and CNR 

The ability to distinguish two different types of tissues in an image is 

largely dependent on CNR. In the case of a lung tumour, even if the contrast 

between lung tumour and normal lung parenchyma is substantial, excessive noise 
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can hamper clear distinction of the tumour. Also, even if the noise is low, it will 

be difficult to make a clear distinction of the tumour with insufficient contrast. 

In MRI, the relationship between CNR and B0 (polarizing magnetic field 

strength) is generally complex. CNR is also closely related to signal–to-noise ratio 

(SNR) as: 

  NT
NT SNRSNR

SS
CNR 





  (Eq. 3.3) 

where ST and SN refer to the MR signal of lung tumour and normal lung 

parenchyma respectively, and  is the noise measured as the standard deviation of 

a region with uniform background signal. SNRT and SNRN are the signal to noise 

ratios for the tumour and normal parenchyma, respectively. The difference 

between ST and SN arises from several factors intrinsic to tissue type, including 

NMR relaxation parameters that vary in a non-linear fashion with respect to B0.   

 One of the contributions to signal difference (i.e. contrast) in Eq. 3.3 is 

relative proton density (PD). PD for lung parenchyma is reported to be roughly 

0.2 - 0.35 relative to muscle,28 whereas PD of lung tumour is very similar to 

muscle at 1.04.29 From these values, one can infer that the lung parenchyma will 

have a relative PD to tumour of 0.19 - 0.34. This large difference contributes to 

the high inherent contrast in the imaging of solid lung tumours. Other intrinsic 

factors such as the spin-spin relaxation times (T2), spin-lattice relaxation times 

(T1), and T2* relaxation times also affect contrast to a certain extent depending on 

sequence type, chosen parameters (TE/TR), and the strength of B0.  

 Investigations into NMR relaxation times of lung tumour and normal lung 

parenchyma, and their dependencies on B0 have been published in the literature30 
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as the following: 

(1) At lower magnetic field strengths, T1 for normal lung parenchyma and 

lung tumour are expected to be 455 ± 86 ms and 372 ± 185 ms at 0.2 T (T1 of 83 

ms) respectively, compared to 599 ± 114 ms and 532 ± 271 ms at 0.5 T (T1 of 68 

ms), and 829 ± 157 ms and 826 ± 421 ms at 1.5 T(T1 of 3 ms).30 Therefore, from 

the point of view of T1 alone, the shorter T1 at lower fields offer a relative signal 

enhancement due to the more rapid recovery of longitudinal magnetization. Also, 

the greater difference in T1 between the two tissues (T1) at low fields may lead 

to more favorable tumour contrast.  

(2) T2 for normal lung parenchyma and lung tumour are quite similar, 79 ± 

29 ms and 68 ± 45 ms respectively, and have only minor dependencies on B0.
30  

(3) T2* for normal lung parenchyma is known to be significantly longer at 

lower fields31 and may lead to increased signal for some sequences. As solid lung 

tumours are less sensitive to susceptibility effects that arise from air-tissue 

interfaces, they will have a considerably higher T2* compared to lung 

parenchyma,32 and are likely to be less sensitive to change in B0. Nevertheless, 

our dynamic MR sequence of choice, balanced steady state free precession 

(bSSFP), is largely independent of T2*, so its impact will be limited.33  

 B0 affects SNR, and, by extension, the CNR in MR images (Eq. 3.3). MR 

signal is proportional to B0
2 due to two complementary factors:34 (1) the 

difference in population of the two spin states increases linearly with B0; and (2) 

the increase of Larmor frequency (B0) generates greater flux in MR coils by 

Faraday induction. However, MR noise is also known to be dependent on B0.
34 
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MR noise arises from resistance in the coils and electronics (B0
1/4), and 

resistance from the body (B0).
34 For our range of B0 (scaling down from 3 T to 

0.5 T/0.2 T), body noise (B0) is likely to be the dominant source of noise.35 

Thus, if the effects of different relaxation times can be accounted for in each 

tissue type (i.e. built into a phantom), a general assumption may be made that 

SNRT and SNRN (and therefore CNR) will vary linearly with B0.  

 Our approach was to build a lung phantom that replicates the low field 

(0.2 T and 0.5 T) T1 and T2 values of lung tumour and normal lung parenchyma in 

the 3 T environment. This phantom would also have a correct relative PD between 

tumour and normal parenchyma. As the appropriate contrast parameters were built 

into the phantom, images acquired using a 3 T MRI with this phantom will yield 

the correct low field contrast even if the MR sequence parameters (such as flip 

angle, TR/TE) are changed. Because these images have correct low field contrast, 

CNR may be scaled down to the appropriate levels at 0.2 T and 0.5 T by the 

addition of Gaussian noise. 

3.2.3.2. Phantom construction 

Our phantom and its experimental set-up are shown in Fig. 3.7. The 

phantom contains a moving lung compartment within a thorax region. A lung 

tumour model is located approximately at the center of the lung compartment, and 

this model is surrounded by simulated normal lung parenchyma. The lung 

compartment is driven by a programmable motor using a rigid aluminum rod 

(grounded to the waveguide), creating 1D motion along the axis of the cylindrical 
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lung compartment similar to the dominant superior-inferior motion of lung 

tumours.   

 

Figure 3.7 (a) Schematic diagram of the experiment set-up (b) Lung tumour motion 
phantom. 

 

The lung compartment of the phantom contains two different tissue 

equivalents, a solid lung tumour and normal lung parenchyma. The idea of 

creating a specific tissue-equivalent MR phantom is not new. Methods have been 

devised for creating MR phantoms that can simulate relaxation and dielectric 

properties of various tissues in the body at 1.5 T.36 However, building a lung 

parenchyma equivalent phantom is particularly challenging because of its low PD. 

In general, this cannot be achieved by using standard phantom materials such as 

solutions, gels and aqueous media. Our lung parenchyma equivalent requires a 

low relative PD (approximately 0.3) compared to the tumour. To achieve this, 

plastic beads (ColorFill vase fillers, ~ 2 mm diameter) that contribute no MR 

signal are mixed with porcine skin gelatin in a 70 : 30 ratio by volume. The 

resulting mixture has the relative PD similar to lung parenchyma. This is verified 

by performing a PD-weighted (short TE, long TR) scan on the phantom and 
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comparing the signal of the tumour region and parenchyma regions. T1 and T2 

relaxation parameters are modified by doping the gelatin with MR contrast agents.  

The lung tumour model is a shaped plastic container (~ 40 mm diameter, ~ 

0.3 mm wall thickness) filled with a MnCl2 and CuSO4:5H2O solution. Two 

different shapes are fabricated; an ideal, spherical tumour shape, and a more 

realistic, non-spherical tumour shape. An aqueous solution (approximately 100 % 

water) is used in this study as the solid tumour equivalent, even though a real 

tumour, similar to tissue,29 contains only ~ 75 % water.37 This will result in 

overestimation of SNRT by 33 %. Also, as previously explained, our simulated 

normal lung parenchyma has correct relative PD to the tumour. Therefore, both 

SNRT and SNRN is overestimated by 33 %, and this will be compensated by 

adding additional Gaussian noise in the post processing steps explained later in 

this report. 

 Specific concentrations of MnCl2 and CuSO4:5H2O are required to achieve 

the T1 and T2 relaxation times for 0.5 T and 0.2 T as reported by Bottomley et 

al.30 These are: (1) for lung tumour model, 0.020 g/L and 0.016 g/L of MnCl2 in 

de-ionized water to generate the equivalent 0.5 T and 0.2 T relaxation times 

respectively; and (2) for normal lung parenchyma, 0.0125 g/L MnCl2 gel/plastic 

bead mixture generating 0.5 T relaxation times, and 0.016 g/L MnCl2 + 0.06 g 

CuSO4:5H2O  gel/plastic mixture producing 0.2 T relaxation times. In addition, 

3.6 g/L NaCl is added to all solutions to simulate the electric conductivity of 

tissues.38 To simulate the "body noise," the thoracic cage is filled with substantial 

amounts of materials that have similar electric conductivity to the body. 

Approximately 12 liters of generic MR tissue phantom solution (1.25 g/L 
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CuSO4:5H2O + 3.6 g/L of NaCl) is used to simulate coil loading in realistic 

situations.38   

Relaxation times are determined from experiments in 3 T MRI as the 

following: (1) T1 times are measured with a T1 mapping algorithm using inverse 

recovery sequence (TE = 11 ms, TR = 1400 ms) with 6 different delay times (t = 

100, 200, 300, 400, 500, 600 ms), and (2) T2 relaxation times are measured with a 

32 echo multi-spin-echo sequence (TE = 6.2, 12.4, 18.6 ms…, TR = 1048 ms). In 

Table 3.1 and Table 3.2, the measured relative PD and relaxation times of our 

phantom are compared to reported values in the literature.30  

Table 3.1 MR contrast parameters for 0.2 T contrast phantom, measured at 3 T  

 Lung Tumour Normal Lung Parenchyma 

 Literature Measured Literature Measured 

T1 372 ± 18530 352 ± 4 455 ± 8630 470 ± 9 

T2 69 ± 4530 67 ± 2 79 ± 2930 83 ± 5 

Relative PD to tumour N/A N/A 0.19 - 0.3428, 29 0.27 

 
 
Table 3.2 MR contrast parameters for 0.5 T contrast phantom, measured at 3 T 

 Lung Tumour Normal Lung Parenchyma 

 Literature Measured Literature Measured 

T1 532 ± 27130 519 ± 2 599 ± 11430 604 ± 5 

T2 69 ± 4530 61 ± 2 79 ± 2930 97 ± 6 

Relative PD to tumour N/A N/A 0.19 - 0.3428, 29 0.30 

 

3.2.4. Dynamic MR study: Evaluation of autocontouring and 

tracking performance 

A series of dynamic studies were performed with the phantom to evaluate 

the autocontouring algorithm in low field images. In this study, dynamic MR 

imaging was performed with 3 T MRI replacing the role of linac-MR in Step 4 in 



 

 
82

Fig. 3.2. Also, autocontouring was performed off-line after a session of dynamic 

MR imaging was completed. 

For the 0.2 T contrast parameters, we created two separate lung 

compartments differing in tumour shape: a spherical tumour model, and another 

with an elongated, irregularly shaped tumour model. The same procedure is 

repeated with the 0.5 T contrast phantom. Hence, the study was performed with 

four different lung compartments in total. In each case, the lung compartment was 

moving inside of the thoracic cage during the scan.  

 The lung compartment was driven in accordance with four different pre-

determined motion patterns during the dynamic study. The motion patterns used 

in our dynamic studies are shown in Fig. 3.8. The first pattern is a sine wave of 40 

mm peak-to-peak amplitude and a period of 4 seconds. This pattern was created to 

simulate very large amount of regular, predictable lung tumour motion. The other 

three patterns were obtained from three different patient datasets. Suh et al.39 

analyzed thoracic and abdominal tumour motions from 42 patients using 

Cyberknife Synchrony (Accuray Incorporated, Sunnyvale, CA). This group 

provided us with clinical data containing 3D lung tumour positions that were 

estimated and recorded with a temporal frequency of 25 Hz during actual 

treatments. Because lung tumours show the largest motions in the superior-

inferior (SI) direction, we selected three lung tumour motion patterns that 

incorporated relatively large SI motions, approximately 15 mm amplitude on 

average, and with varying periods. Each study took approximately 3 minutes, and 

the patterns represent 1D motion of lung tumour in the SI direction. 
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 To provide an independent, reference measurement of tumour position, an 

optical encoder (model #: AEDR-8300-1Q2, Avago technologies, San Jose, CA) 

was attached to the thoracic cage as shown in Fig. 3.7. Paired with the encoder, a 

reflective code strip (resolution: 180 lines per inch) is attached to the moving 

compartment that contains the tumour model. Because all other parts of the 

phantom are stationary, and the tumour model is fixed in the lung compartment, 

any change in the tumour position in the SI direction is measured by the encoder 

as a change in counts (1 count ≈ 0.035 mm). 

 

Figure 3.8 Motion Patterns used to drive lung compartment. A sine pattern (upper left) and 
three lung tumour motion patterns from patient data   
 

3.2.4.1. MR imaging sequence 

For each motion pattern, we performed the following two MR scans in 

order: (1) a high resolution turbo-spin-echo (TSE) scan acquired when the tumour 



 

 
84

is stationary in its starting position, followed by (2) a dynamic bSSFP scan while 

the tumour is undergoing motion.   

 A TSE scan (FOV = 40 cm × 40 cm, voxel size = 0.4 mm × 0.4 mm × 4 

mm, 5 slices, TE = 87 ms, TR = 1798 ms) was chosen as a reference scan due to 

its high SNR, very high resolution, and minimal susceptibility to artifacts. The 

high resolution of this scan allows for visualization of the thin walls (~ 0.3 mm) of 

the tumour model, allowing the true shape of the tumour to be easily contoured. 

The middle slice that covers the largest extent of the tumour is contoured 

manually and considered as a standard shape in this study.   

 For dynamic imaging, we used a 2D bSSFP sequence acquired at ~ 4 fps 

(identical FOV to TSE scan = 40 cm × 40 cm, 3.1 mm × 3.1 mm × 20 mm, TE = 

1.1 ms, TR = 2.2 ms, Dynamic Scan Time = 275 ms) in the coronal plane. 

Imaging parameters are selected to balance between CNR and spatial resolution 

while maintaining the imaging speed requirements of ~ 4 fps. The imaging plane 

is chosen so that the tumour is near isocenter where distortion is minimized. Prior 

to each dynamic acquisition, an external synchronization pulse is sent to the 

optical encoder. Using this pulse, the optical encoder records the position of the 

tumour at the mid-point of each dynamic scan when the signal acquisition is 

occurring at the center of k-space. The first images of the dynamic scans are 

acquired prior to the commencement of motion, with the phantom in the same 

position as the reference TSE scan. These images are visually inspected to ensure 

alignment with the high-resolution TSE image.  

 MR images were acquired with a 6 channel Philips torso coil. As parallel 

imaging is not used in this experiment, noise is approximately uniform in the 
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image. Noise is measured as the standard deviation of each individual image in a 

10 × 10 pixel region in the corner of the image containing no signal. To ensure 

there is no positive noise bias, noise is measured in the real and imaginary images 

and averaged, rather than measured in the magnitude images only.   

3.2.4.2. Image post processing (CNR modification) 

Gaussian noise is added to the images acquired on the 3 T scanner in order 

to reflect the lower CNR at 0.5 T and 0.2 T. Downscaling of CNR from 3 T 

images could be achieved by amplifying the measured background noise by a 

factor of 6 and 15 for 0.5 T and 0.2 T images respectively. As mentioned 

previously, noise is increased by another 33 % to account for the difference in 

absolute PD between real solid tumours and the aqueous tumour model used in 

our phantom. Combining these two corrections, noise amplification factors of 8 

and 20 were applied to simulate the 0.5 T and 0.2 T images, respectively. 

Assuming statistical independence, the standard deviation of the added noise can 

be derived from the standard deviation of measured noise, 

 222)( addedmeasmeasN      (Eq. 3.4) 

 measadded N   12    (Eq. 3.5) 

where N is the noise amplification factor and meas and added are the standard 

deviation of the measured and added noise, respectively. Noise is independently 

measured and amplified in the real and imaginary images and combined to 

generate the magnitude image. After noise addition, the image is interpolated to a 

256 × 256 matrix prior to autocontouring. 
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3.2.4.3. CNR measurements 

At the end of each dynamic scan (~ 3 minutes), an extra set of 100 

dynamic images is acquired. This was performed when the phantom is stationary, 

located at the last position of the motion pattern. As a result, 16 different sets of 

images (2 tumour models × 2 field strengths × 4 motion patterns = 16 sets) were 

obtained, each set containing 100 images. Using these, CNR is measured for each 

set. The mean pixel values in the regions of interest within the tumour and the 

surrounding tissue were taken, as the value of ST and SN in Eq. 3.3 respectively. 

Noise is measured as the standard deviation of pixels in a 10 × 10 region in the 

corner of the real and imaginary images. This noise measurement is performed 

after noise has been added for CNR modification, but prior to the 256 × 256 

interpolation.   

3.2.4.4. Data analysis 

For each dynamic study (~ 600 images), the post-processed images are fed 

into the autocontouring algorithm offline. These images are autocontoured with 

the following parameters: (1) 0.2 T images (f = 0.6, s = 11 × 11, u = 5 × 5, 9 

smoothings, 0 dilations), (2) 0.5 T images (f = 0.7, s = 11 × 11, u = 5 × 5, 9 

smoothings, 0 dilations). There are no considerable changes in these values for 

both field strengths. The algorithm returns an autocontoured tumour shape and its 

centroid from each image, and these results were used to evaluate the 

autocontouring and tracking performance of our algorithm. The following two 

steps (Sec. 3.2.4.4.a - Sec. 3.2.4.4.b) were applied to each dynamic study. 
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3.2.4.4.a. Contour shape fidelity 

To evaluate the quality of the contours generated from the autocontouring 

algorithm, we first manually contoured the tumour in a reference TSE scan (Fig. 

3.9). From this manual contour, a binary mask was generated, and considered as a 

standard tumour shape. The optical encoder readings were used to linearly 

translate this mask, generating a standard set of masks that corresponds to the 

standard tumour shape in each dynamic image. Similarly, a set of autocontoured 

masks is produced from the autocontouring algorithm.   

 The autocontoured mask has lower resolution (256 × 256) than the 

manually contoured mask (1024 × 1024). For comparison, the low resolution 

mask is re-sampled to 1024 × 1024 resolution using the nearest neighbor method, 

which maintains the pixelated appearance of the low resolution image. We 

performed one-to-one comparison of the tumour shape between the two sets of 

masks, and their similarities are evaluated by calculating Dice’s coefficient as 

previously described in Sec. 3.2.2.1.b (Eq. 3.2). 

3.2.4.4.b. Centroid position accuracy 

We also evaluated the algorithm's ability to accurately determine and track 

the centroid position of a moving tumour. First, we determined an initial centroid 

position of the tumour from a high resolution image. This image was acquired 

when the tumour was located on its initial position of the motion pattern, and the 

tumour shape was manually contoured. The initial centroid position served as the 

reference point (i.e. zero count) for optical encoder reading. Second, the tumour 

position change during each dynamic acquisition was continuously recorded by 
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the encoder. As previously explained, the encoder reads the tumour position when 

the signal acquisition is occurring at the center of k-space. Third, the centroid 

position of the tumour in each dynamic image was determined by the 

autocontouring algorithm. Last, a one-to-one comparison of the centroid position 

of the tumour in each image was made between the encoder reading and the result 

from our algorithm.  

 Mean and standard deviation of the difference between the two (either 

positive or negative) are calculated from all the images within the motion pattern. 

Root mean square error (RMSE) is also calculated to give an indication of overall 

error as: 
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    (Eq. 3.6) 

Where yi,centroid is the centroid position of the autocontoured tumour and yi,encoder is 

the position of the tumour measured by the optical encoding device. 

3.3. RESULTS AND DISCUSSION 

3.3.1. Simulated lung tumour images with low field CNR 

A close up view of the tumour and its surrounding tissue acquired using 

TSE and post-processed bSSFP are shown in Fig. 3.9. As predicted, the thin wall 

of tumour container is visualized by the high resolution TSE scan to aid in manual 

contouring, but it is not detected in the bSSFP image to affect the autocontouring 

algorithm. 
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Figure 3.9 First row, from left to right: 1) High Resolution, static TSE scan (spherical 
tumour, middle slice) for reference. 2) Lower resolution, dynamic bSSFP scan (noise added, 
0.5 T equivalent). 3) High Resolution, static TSE scan (non-spherical tumour, middle slice). 
4) Lower resolution, dynamic bSSFP scan (noise added, 0.5 T equivalent). Second row: 
equivalent images for 0.2 T experiments.   
 

3.3.2. CNR of acquired images 

After the images are acquired at 3 T, noise is added to generate 0.2 T and 

0.5 T equivalent images (Fig. 3.10). The CNR of these images are shown in Table 

3.3. In summary, the measured CNR ranges from 10.3 - 12.3 for 0.5 T images and 

from 4.2 - 4.5 for 0.2 T images.  

 

Figure 3.10 Sample dynamic bSSFP images from the experiment, after noise addition. Image 
on the left reflects 0.5 T CNR whereas image on the right reflects 0.2 T CNR.  
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Table 3.3 CNR for spherical and non-spherical tumour models in 0.5 T and 0.2 T equivalent 
images. The standard deviation of the CNR is given in brackets. 

 0.5 T CNR 0.2 T CNR 

 
Spherical 
Tumour 

Non-Spherical 
Tumour 

Spherical 
Tumour 

Non Spherical 
Tumour 

No Motion 12.3 (0.9) 10.3 (0.8) 4.3 (0.4) 4.5 (0.4) 

Sine Pattern 12.3 (1.0) 10.5 (0.9) 4.4 (0.3) 4.4 (0.4) 

Patient Pattern 1 12.1 (1.0) 10.7 (0.8) 4.4 (0.4) 4.3 (0.3) 

Patient Pattern 2 12.1 (1.0) 11.2 (0.8) 4.4 (0.4) 4.3 (0.3) 

Patient Pattern 3 11.9 (0.9) 11.2 (0.9) 4.2 (0.4) 4.2 (0.4) 

 

3.3.3. Contour shape fidelity 

Dice’s coefficients for the phantom experiment are shown in Table 3.4. 

Dice’s coefficient of > 0.96 is achieved in the 0.5 T equivalent images, and Dice’s 

coefficient of > 0.93 is achieved in the 0.2 T equivalent images. Approximately 5 

ms was required for our algorithm to autocontour the tumour in each dynamic 

image. The algorithm was coded in LabVIEW 2011 (National Instruments, Austin, 

TX) and tested on 32 bit computer system (Windows7, Intel i7-2600k, 4 GB 

RAM). 

3.3.4. Centroid position accuracy 

Differences between the centroid positions determined by autocontouring 

and those from the encoder reading are summarized in Table 3.4. Mean and 

standard deviation represents the systematic and random errors in tumour tracking, 

while root mean square error (RMSE) is a representation of overall error. RMSE 
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of < 0.55 mm is achieved for 0.5 T equivalent images, whereas RMSE of < 0.92 

mm is achieved for 0.2 T equivalent images. 

Table 3.4 Dice's Coefficients, centroid error and RMSE in autocontouring and tracking 

 
Dice's Coefficient 

Mean(Std) 
Centroid Error (mm)

Mean(Std) 
Centroid 

RMSE (mm) 

0.5 T CNR (spherical) 

No Motion 0.965 (0.009) -0.05 (0.41) 0.41 

Sine Pattern 0.962 (0.009) 0.06 (0.46) 0.47 

Patient Pattern 1 0.966 (0.007) 0.08 (0.41) 0.42 

Patient Pattern 2 0.963 (0.009) -0.20 (0.46) 0.50 

Patient Pattern 3 0.961 (0.006) 0.29 (0.46) 0.55 

0.5 T CNR (non-spherical) 

No Motion 0.960 (0.005) 0.17 (0.31) 0.35 

Sine Pattern 0.963 (0.006) 0.01 (0.35) 0.35 

Patient Pattern 1 0.966 (0.005) 0.19 (0.36) 0.41 

Patient Pattern 2 0.966 (0.005) 0.07 (0.37) 0.38 

Patient Pattern 3 0.967 (0.004) 0.08 (0.37) 0.38 

0.2 T CNR (spherical) 

No Motion 0.953 (0.010) 0.26 (0.69) 0.74 

Sine Pattern 0.950 (0.011) 0.10 (0.74) 0.75 

Patient Pattern 1 0.953 (0.010) 0.21 (0.70) 0.73 

Patient Pattern 2 0.951 (0.011) -0.11 (0.70) 0.70 

Patient Pattern 3 0.948 (0.013) 0.23 (0.70) 0.73 

0.2 T CNR (non-spherical) 

No Motion 0.947 (0.015) -0.06 (0.65) 0.66 

Sine Pattern 0.940 (0.018) 0.10 (0.88) 0.90 

Patient Pattern 1 0.936 (0.019) 0.14 (0.88) 0.90 

Patient Pattern 2 0.939 (0.019) 0.22 (0.90) 0.92 

Patient Pattern 3 0.935 (0.021) 0.23 (0.89) 0.92 

 

3.3.5. Discussion 

Intrafractional tumour tracking, especially for lung tumour cases, is of 

considerable interest. Inspired by the current success of linac-MR systems, a 

recent study assessed the possibility of MRI-based tumour tracking.40 However, to 
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the best knowledge of the authors, this is the first study exploring the feasibility of 

intrafractional lung tumour tracking geared towards lower magnetic field 

strengths. The use of an autocontouring algorithm and an MR compatible lung 

tumour motion phantom also makes this a unique study. 

Our phantom simulates the 0.2/0.5 T relaxation properties of lung tissues 

and diseased tissues in a 3 T scanner. Using the phantom we approximated the 

CNR of lung tumour MR images acquired in the 0.2/0.5 T at 4 fps from the well 

established relationship of B0  SNR and the addition of Gaussian noise. It should 

be noted that this experiment is not designed to determine the optimal field 

strength for the linac-MR, but to determine the feasibility of lung tumour 

autocontouring with images acquired at field strengths for different linac-MR 

designs (0.2 T or 0.5 T). 

To evaluate the accuracy of our algorithm, we reported Dice's coefficient 

comparing the autocontoured tumour shapes and the standard ones. Simply 

reporting the total area of the autocontoured tumour shapes and comparing it to 

the total area of the standard ones is also a possible method of evaluation. 

However, this does not indicate whether the contours are actually overlapping, 

which is the most important criteria evaluating the autocontouring performance of 

our algorithm. We have found instances where two contours yielding a perfect 

agreement in terms of area comparisons, while not being near perfect in terms of 

contour comparisons. This may be the result of an overestimated edge in one 

region of the contour being compensated by an underestimated edge in a different 

region of the contour, which will produce misleading conclusions evaluating our 
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algorithm. As Dice's coefficient is determined primarily by the overlapping area, 

we have found that it is much more sensitive to these types of errors, and is a 

better indicator of shape fidelity. 

Our algorithm achieved high fidelity of autocontoured tumour shape, 

Dice’s coefficients > 0.96 and > 0.93 in the 0.5 T and 0.2 T equivalent images, 

respectively. Centroid tracking accuracy using our algorithm was measured in 

terms of RMSE values, which were < 0.55 mm and < 0.92 mm for the 0.5 T and 

0.2 T equivalent images, respectively. As expected, tumour tracking accuracy is 

improved by the higher CNR provided at 0.5 T. These results show that our 

autocontouring algorithm is successful in contouring the lung tumour model in 

both 0.2 T and 0.5 T equivalent images acquired at 3 T with ~ 4 fps imaging rate. 

The 0.2/0.5 T equivalent images represent an estimation, based on the best 

available information, of the achievable tumour CNR at low field scanners 

acquired at ~ 4 fps. Our results therefore suggest that autocontouring lung tumour 

will be feasible in both 0.2 T and 0.5 T MR systems. However, there will be 

inherent variances between individual patients, as well as individual MR scanners 

and coils. Therefore, patient images that will be acquired at the actual linac-MR 

may have slightly different CNRs compared to our phantom-based 0.2/0.5 T 

equivalent images acquired in 3 T. Hence, investigating the autocontouring 

performance of our algorithm with patient images acquired with the linac-MR will 

be a subject of future studies. 

 It is important to note that a very fast autocontouring speed (~ 5 ms for 

each image) is achieved in this study with a regular 32 bit computer system 

(Windows7, Intel i7-2600k, 4 GB RAM). This is an important achievement as 
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minimizing the time delay between tumour detection (i.e. imaging) and actual 

beam delivery is crucial to the success of a functional intrafractional tumour 

tracking system.   

This study involves the evaluation of our algorithm. A phantom study with 

exact knowledge of the shape and position of the tumour model is required to 

validate the algorithm. An advantage of performing this type of phantom study is 

that it allows for a "gold-standard" measurement for both tumour shape and 

position, thus permitting the quantification of the autocontouring and tracking 

capabilities of the algorithm. This is not possible in a patient study mainly due to 

inter- and intra-observer variability in contouring, and the difficulties associated 

with the exact independent determination of position of the tumour within a 

patient. After this study, patient studies can then be done. 

The use of a virtual phantom, i.e. creating new images from an original 

one with the tumour motion and deformation, was considered to evaluate our 

algorithm. However, it was felt that more conclusive results would be obtained 

with an actual phantom instead. It would be difficult to properly simulate, in a 

virtual phantom, the variations in image characteristics, such as signal intensity, 

noise, contrast, and motion artifacts that would occur in realistic dynamic MR 

imaging. Furthermore, there would be some level of subjectivity in simulating 

tumour motion and deformation which would most probably introduce unrealistic 

characteristics of the tumour (e.g. sharp edges, etc). These would be difficult to 

adjust appropriately. 

Although the real phantom study we have reported demonstrated the 

possible applicability of low field linac-MR systems for the tracking of lung 
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tumours, there still remain several issues that would need to be addressed in future 

studies:  

 (1) Our phantom is limited to 1D motion in the SI direction, while tumours 

in patient often have a 3D motion trajectory. In current linac based treatments, as 

well as in future linac-MR based treatments using our laboratory’s designs, 

radiation beams rotate around the SI axis of the patient. Hence, if intrafractional 

MR imaging is performed from the beam's eye view, the 2D imaging presented 

here may be sufficient for tumour tracking in SI and one more direction in that 

imaging plane. In this scenario, our algorithm can be used to detect in-plane 

changes in tumour position and adjust collimation accordingly.  

 However, a potential problem that can arise is through-plane tumour 

motion (motion orthogonal to the imaging plane). Tumours can potentially move 

out of the imaging plane. Although numerous studies have demonstrated that the 

largest lung tumour motions occur in the SI directions, smaller motions in 

anterior-posterior and left-right directions could contribute to the out of the 

imaging plane motion.   

 Potential solutions to this problem include adjusting the slice thickness of 

the imaging plane to ensure the tumour remains in the imaging plane. Also, our 

CNR measurements suggest that at 0.5 T, there is potentially enough CNR (10.3 - 

12.3) to allow image acceleration via various techniques such as parallel imaging. 

This opens up the possibility to perform intrafractional multi-slice or 3D imaging, 

which will be investigated in future studies.  

 (2) Other factors may arise during clinical situations that are not addressed 

in this phantom study. Tumours may potentially rotate or change shape during 
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respiratory motion. Also, during dynamic MR imaging, tumour contrast may 

fluctuate due to compression and expansion of lung between images. No current 

state of the art tumour tracking method has the ability to account for these changes.   

Nevertheless, our autocontouring algorithm deals with the possible 

deformations of the tumour shape, as well as inter-image tumour contrast changes. 

Our algorithm contours each image individually without the need of a priori 

assumptions regarding tumour shape or contrast. The algorithm’s performance for 

autocontouring solid, moving tumours in low field dynamic MR imaging is 

reasonable with Dice’s coefficients > 0.96 and > 0.93 in 0.5 T and 0.2 T 

equivalent images, respectively. However, the algorithm’s performance with 

shape deformations and contrast fluctuations in real patients’ images still requires 

further investigation. 

(3) Our contrast phantoms, imaged in a 3 T MRI, and subsequent noise 

addition, resulted in an expected CNR of 4.2 - 4.5 and of 10.3 - 12.3 from 0.2 and 

0.5 T systems, respectively. However, several factors can actually lead to an 

improvement in image quality in low field MRI. Firstly, in our experiments, the 

flip angle is limited by specific absorption rate (SAR) safety limits due to the very 

short TR required for fast imaging. SAR is proportional to the square of the main 

magnetic field,41 so the diminished SAR at low fields will allow greater freedom 

in choosing flip angles. This may enhance the CNR in bSSFP images.42 Secondly, 

banding artifacts, while not affecting the central area of the tumour in our scans, 

are clearly visible in the periphery of the image in 3 T. These banding artifacts 

will be considerably less severe in a low field MRI due to the improved local field 

homogeneity.43  



 

 
97

Geometric distortion is a potential problem for MRI-based radiation 

therapy. Our experimental protocol is set-up such that the optical encoder is 

calibrated to the reference scan. This is acquired prior to the dynamic scan, with 

the phantom located at the starting position of the dynamic scan. Because 

geometric distortion is spatially dependent, it is possible that the tumour shown in 

the MR image is misplaced from its actual position as the phantom moves. 

Nevertheless, the optical encoder reading is independent and not affected by 

geometric distortion. Therefore, any tumour positional error due to geometric 

distortion is encapsulated by our centroid error measurements reported in Sec. 

3.3.4, which is < 0.92 mm for all measurements. Geometric distortion in our 

experiments is relatively minor, mainly because the tumour model trajectory of 

our phantom is located near the isocenter of the magnet where automatic 

shimming from the MR system could eliminate most of the magnetic field 

inhomogeneity. In a patient study where the tumour could be potentially located 

far from the isocenter of the magnet, i.e. left or right periphery of lung, geometric 

distortion might be considerably larger. In this case, a more sophisticated 

geometric distortion correction method will be required.  

3.4. CONCLUSION 

We have developed a lung tumour autocontouring algorithm and evaluated 

its performance in low field MR images (0.2 and 0.5 T). In our experiments, the 

algorithm successfully contoured the shape of a moving tumour from dynamic 

MR images acquired at 275 ms intervals. Dice's coefficients of > 0.96 and > 0.93 

are achieved in 0.5 T and 0.2 T equivalent images respectively, where 
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autocontouring takes approximately 5 ms for each image. Also, the algorithm was 

able to track the tumour position during dynamic studies, with RMSE values of < 

0.55 mm and < 0.92 mm for 0.5 T and 0.2 T equivalent images respectively. 

These results demonstrate the feasibility of lung tumour autocontouring in low 

field MR images, and, by extension, intrafractional lung tumour tracking with our 

laboratory’s linac-MR systems.  
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Chapter 4: Evaluation of an autocontouring 

algorithm using in-vivo MR images 

with various contrast to noise ratios 

 
A version of this chapter was presented at the 54th annual meeting of the 

American Association of Physicists in Medicine (AAPM): E. Yip, J. Yun, Z. Gabos, 

K. Wachowicz, S. Rathee, and B. G. Fallone, "Evaluation of a real time tumour 

autocontouring algorithm using in-vivo lung MR images with various contrast to 

noise ratios," presented at the 54th Annual Meeting of the AAPM, Charlotte, NC, 

July 29 - August 2, 2012. 

 

4.1. INTRODUCTION  

In Chapter 3 of this thesis, the feasibility of lung tumour autocontouring in 

low field MR images (0.2 and 0.5 T) was investigated using a motion phantom 

scanned with 3 T MRI. Here, 0.2 and 0.5 T were chosen based on our laboratory’s 

linac-MR designs. 

This chapter presents our initial works using in-vivo data obtained from a 

single lung cancer patient. The objective of this in-vivo study is to verify the 

feasibility of lung tumour autocontouring in various low field MR images using 

real patient data.  
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4.2. METHODS 

4.2.1. Dynamic in-vivo MR imaging 

A non-small cell lung cancer (NSCLC) patient with a posterior lung 

tumour was imaged in a 3 T MRI (Achieva 3 T, Philips Medical Systems, 

Andover, MA) using a dynamic balanced steady state free precession (bSSFP) 

sequence (FOV = 40 × 40 cm2, voxel size = 3.1 × 3.1 × 20 mm3, TE = 1.1 ms, TR 

= 2.2 ms, Dynamic Scan Time = 275 ms) under free breathing for approximately 

3 minutes. A sagittal slice was chosen for our study, because it includes 

anatomical structures near the tumour making the greatest challenge to our 

autocontouring algorithm. A total of 650 dynamic images were obtained during 

the 3 minute scan. Among these, a few example images are shown in Fig. 4.1. 

 

Figure 4.1 In-vivo images of a posterior lung tumour (indicated by red arrows) acquired with 
3 T MRI: (a) a transverse view of the patient (a high resolution transverse image is shown 
here for better visualization of the sagittal imaging plane represented by the white dotted 
lines), (b) a sagittal dynamic image of the patient at the end of exhale period, (c) a sagittal 
dynamic image of the patient at the end of inhale period 
 

4.2.2. CNR measurement and modification 

Tumour CNR was calculated directly from the 3 T images in the sagittal 

plane. A region of interest was manually contoured in the lung tumour and 
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background parenchyma in 15 images (4.1 seconds are required to acquire 15 

images, which is approximately 1 breathing cycle). Tumour CNR calculated from 

each of these 15 images using Eq. 3.3 was averaged and used as the lung tumour 

CNR at 3 T in this study. 

As a first order approximation to simulate low field MR images, we 

degraded the in-vivo images acquired at 3 T to approximate the CNR values at 1.5 

– 0.2 T MR images by adding Gaussian noise. Here, linear CNR scaling factors of 

2 – 15 were applied respectively, using the approach discussed in Chapter 3 (Sec. 

3.2.3.1) of this thesis. 

4.2.3. Tumour contouring and comparison  

Additional to the 3 T images that were actually acquired, several sets of 

simulated lower field images (1.5 – 0.2 T) were generated using the above process. 

Tumour contouring was performed with these simulated image data. 

4.2.3.1. Manual tumour contouring and intra-observer variability 

A radiation oncologist manually outlined tumour contours in all 650 

images acquired at 3 T. From the manual contour in each image, a binary mask 

was generated and considered as a “standard tumour shape” in this study. Also, 

the first 100 images were re-contoured by the same physician on a different day to 

test intra-observer variability.  

4.2.3.2. Automatic tumour contouring 

Our autocontouring algorithm1 was applied to the 3 T images, as well as 

other simulated lower field images (1.5 - 0.2 T) to auto-determine the lung tumour 
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contours. From the automatically determined tumour contour in each image, a 

binary mask was generated and considered as an “autocontoured tumour shape” in 

this study. As previously explained in Chapter 3 (Sec. 3.2.2.1.b) of this thesis, the 

algorithm requires reference contours from the pre-treatment images for 

optimization of internal parameters. Because the patient was scanned only once in 

this study, the physician drawn contours from the first 20 images (out of 650 

images) were used as reference contours for the parameter optimization.  

4.2.3.3. Contour comparison and analysis  

We performed a one-to-one comparison of the two masks obtained from 

the manual and automatic contours. Here, the auto-determined tumour contours 

from the remaining 630 images (the first 20 images were used for parameter 

optimization) were compared to the standard contours, and their similarities are 

evaluated by calculating Dice’s coefficient (D) as previously described in Chapter 

3 (Sec. 3.2.2.1.b, Eq. 3.2).  

Additionally, a one-to-one comparison of the centroid position of tumour 

contour was made between the standard and automatic contours, in order to 

evaluate the algorithm's ability to track the position of a moving tumour. The 

distance between the two centroid positions (Δdcentroid) was calculated as 

  22 yxdcentroid    (Eq. 4.1) 

where Δx and Δy were the displacement between the two centroid positions in x 

(anterior-posterior) and y (superior-inferior) directions, respectively. 
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Intra-observer variability was evaluated by calculating D as well as 

Δdcentroid between the two sets of manual contours drawn on the first 100 images 

(drawn by the same physician on different days).  

4.3. RESULTS 

The in-vivo images acquired at 3 T were degraded to approximate the 

CNR values at 0.2, 0.3, 0.5, 1.0, and 1.5 T. The physician’s manual tumour 

contouring was performed only with 3 T images, whereas autocontouring was 

performed with six different sets of images (0.2 – 3 T).  

Figure 4.2 shows a single example image degraded to approximate low 

fields CNR. In this figure, autocontoured tumour shapes are outlined in green, 

which were contoured separately in each set of images. Deviation of the 

autocontour from the standard contour is indicated in red. 
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Figure 4.2 An example lung tumour image degraded to approximate low fields CNR. Top 
row (from left to right): original 3 T, simulated 1.5 T, and simulated 1 T images. Bottom row 
(from left to right): simulated 0.5 T, simulated 0.3 T, and simulated 0.2 T images. 
Autocontoured tumour shapes are shown in green. Deviation of the autocontour (contoured 
separately in each set of images) from the standard contour is shown in red. 
 
 

The result of tumour centroid tracking in superior-inferior (SI) and anterior 

posterior (AP) directions is shown in Fig. 4.3 and Fig. 4.4 for 3 T image set. Here, 

the centroid positions of standard (physician drawn) and auto-determined tumour 

contour in each image are plotted along with the error values. In Fig. 4.3 and Fig. 

4.4, the lowest y (SI direction) and x (AP direction) coordinate value of the 

autocontoured tumour centroid was set as 0 mm, respectively. The maximum 

extent of tumour motion in SI and AP directions was approximately 26 mm and 6 

mm, respectively.  
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Figure 4.3 Centroid position comparison between standard (physician drawn) and auto-
determined tumour contours in SI direction for 3 T image set (maximum motion range: 26.1 
mm).  
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Figure 4.4 Centroid position comparison between standard (physician drawn) and auto-
determined tumour contours in AP direction for 3 T image set (maximum motion range: 5.7 
mm). 
 
  Table 4.1 summarizes (1) tumour CNR calculated directly from the 3 T 

images and from the simulated lower field images, (2) the comparison between 

standard and auto-determined tumour contours in all field strengths, and (3) the 

results of the intra-observer variability test.  
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Table 4.1 A summary of tumour CNR, comparison between standard and auto-determined 
tumour contours, and intra-observer variability test. 

Dataset 
∆dcentroid (mm) 

Mean (Std) 
Dice’s coefficient (D) 

Mean (Std) 

3 T (acquired), CNR = 52 1.37 (0.70) 0.881 (0.033) 

1.5 T (simulated), CNR = 26 1.38 (0.72) 0.880 (0.034) 

1.0 T (simulated), CNR = 17 1.41 (0.72) 0.878 (0.033) 

0.5 T (simulated), CNR = 8.7 1.38 (0.69) 0.875 (0.033) 

0.3 T (simulated), CNR = 5.2 1.56 (0.83) 0.870 (0.037) 

0.2 T (simulated), CNR = 3.5 1.71 (1.15) 0.836 (0.060) 

Intra-observer variability test 0.78 (0.46) 0.920 (0.026) 

 

Table 4.2 compares the above result (in-vivo study) at 0.2 and 0.5 T to our 

previous phantom study1 discussed in Chapter 3 of this thesis. In the phantom 

study, centroid RMSE (Eq. 3.6) was calculated instead of Δdcentroid to evaluate 1D 

target tracking accuracy. Also, the standard target shape was defined more 

accurately in the phantom study by using a very high resolution (0.4 mm pixel 

width) MR imaging sequence.  

Table 4.2 Comparison between in-vivo and phantom studies at 0.2 and 0.5 T 

In-vivo study (2D motion) Phantom study (1D motion)1  

Dataset 

CNR Mean ∆dcentroid Mean D CNR Centroid RMSE  D 

0.5 T 
(simulated) 

8.7 1.38 mm 0.88  11.5 < 0.55 mm > 0.96 

0.2 T 
(simulated) 

3.5 1.71 mm 0.84  4.3 < 0.92 mm > 0.93 
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4.4. DISCUSSION 

As summarized in Table 4.1, mean Δdcentroid ranged from 1.37 – 1.71 mm 

at 3 – 0.2 T respectively, showing larger amount of displacement between the 

centroid positions as the field strength decreased. Mean D ranged from 0.836 – 

0.881 at 0.2 – 3 T respectively. Thus, more similarities between standard and 

auto-determined tumour contours were achieved as the field strength increased. 

From the intra-observer variability test using 100 images acquired at 3 T, mean 

Δdcentroid and mean D of 0.78 mm and 0.920 were achieved, respectively.  

Table 4.2 may suggest inferior performance of the autocontouring 

algorithm in this single patient in-vivo study compared to the phantom study. 

Despite the similar tumour/target CNR in both field strengths, we found ~ 9 % 

decrease in mean D as well as ~ 0.8 mm increase in mean Δdcentroid in in-vivo 

study. At current stage, however, it is difficult to make a direct comparison 

between the phantom and in-vivo studies, due to (1) significantly different 

anatomy of both tumour/target and its surroundings, (2) different amount of 

uncertainties determining standard tumour/target contours, and (3) different 

tumour/target motion path (phantom motion was 1D, whereas in-vivo tumour 

motion was 2D). Moreover, contouring uncertainty is inevitable in reality even if 

a single physician performs all manual contouring as shown in the intra-observer 

variability test in this study. This might be another reason of the increased 

autocontouring uncertainty in this in-vivo study. Thus, more in-vivo studies are 

required to make a solid conclusion regarding the performance of autocontouring 

algorithm in in-vivo tumour contouring. 
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For the particular patient scanned in this study, the maximum SI and AP 

lung tumour motion was approximately 26 mm and 6 mm, respectively. Thus, 

despite the autocontouring and tracking errors (largest at 0.2 T, where mean D = 

0.84 and mean Δdcentroid = 1.71 mm), intrafractional tumour tracking using our 

autocontouring algorithm will help to reduce unnecessary radiation dose to its 

surrounding normal tissues. 

4.5. CONCLUSION 

We performed an initial in-vivo study to verify the feasibility of lung 

tumour autocontouring in low field MR images. From the comparison between 

standard and auto-determined lung tumour contours, mean Δdcentroid (measure of 

tracking accuracy) of 1.37 – 1.71 mm as well as mean D (measure of 

autocontouring fidelity) of 0.836 – 0.881 were achieved in 3 – 0.2 T equivalent 

images, respectively. Also, mean Δdcentroid and mean D of 0.78 mm and 0.920 

were achieved from the intra-observer variability test at 3 T, respectively. 

Compared to our previous phantom study at 0.2 T,1 ~ 0.8 mm increase in mean 

Δdcentroid as well as ~ 9 % decrease in mean D were found in this in-vivo study. 

Although the errors were slightly increased, intrafractional tumour tracking using 

our autocontouring algorithm will still be helpful to decrease unnecessary normal 

tissue irradiation, especially for the patient scanned in this study having large 

range of tumour motion (6 mm and 26 mm in AP and SI directions, respectively). 
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Chapter 5: An artificial neural network (ANN)-

based lung tumour motion predictor 

for intrafractional MR tumour tracking  

 
A version of this chapter has been published: J. Yun, M. Mackenzie, S. Rathee, D. 

Robinson, and B. G. Fallone, "An artificial neural network (ANN)-based lung-

tumor motion predictor for intrafractional MR tumor tracking," Med. Phys. 39(7), 

4423-4433 (2012). 

 

5.1. INTRODUCTION 

To ensure improved targeting and delivery of highly conformal radiation 

dose to mobile tumours, several groups are actively researching intrafractional 

tumour tracking systems.1-3 Lung tumours are of special interest for tracking, due 

to their potential for large ranges of motion during treatment delivery. Studies 

have shown that lung tumours may move up to 50 mm in superior–inferior (SI) 

direction, 15 mm in anterior–posterior (AP), and 10 mm in left–right (LR) 

direction during normal breathing.4, 5 

Krauss et al.6 and Sawant et al.2 performed phantom studies demonstrating 

the feasibility of 2D intrafractional lung tumour tracking using a Siemens 160 leaf 

multi-leaf collimator (MLC) and a Varian 120 leaf MLC, respectively. In both 

studies, a tumour surrogate was driven according to a sinusoidal trajectory and its 

position was detected via a motion monitoring system developed by Calypso 

Medical Technologies (Seattle, WA).  Cho et al. suggested the simultaneous use 

of kV/MV imaging for 3D intrafractional tracking, where a gold marker was used 
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as a tumour surrogate.3 Recently, Cervino et al. conducted a feasibility study in 

regard to MRI-guided lung tumour tracking by following healthy volunteers’ lung 

vascular structures in cine-MR images.7 Our group at the Cross Cancer Institute 

has been developing an MRI-based intrafractional lung tumour tracking system by 

taking advantage of the intrafractional MR imaging feature of the linac-MR that is 

installed in our laboratory.8-10 

Although tracking mechanisms may vary, the use of on-line MLC 

controlling technique (i.e. not pre-programmed leaf motions) for intrafractional 

beam conformation is common.2, 3, 6 Ideally, intrafractional tracking would 

provide target detection and beam delivery simultaneously. However, there exists 

an inevitable system delay between the two events due to (1) the time requirement 

to drive each leaf of the MLC to its designated position and (2) 

computing/processing time. Previously reported system delays range from 160 to 

500 ms2, 3, 6 depending on tracking method. In the case of a lung tumour whose 

motion-speed is known to be in the range of 4 - 94 mm/s,11 a system delay of 500 

ms could lead to tumour localization errors of up to a maximum of 47 mm. In the 

presence of this inevitable system delay, a method of predicting tumour motion is 

highly desirable in order to reduce the localization errors. 

Various prediction algorithms have been proposed to compensate for 

tumour motion during system delay.12-14 Due to the highly non-linear nature of 

lung tumour motions which show variable speed and period, several groups have 

investigated the use of Artificial Neural Networks (ANN) for motion prediction.15, 

16 Although these studies show promising results, the following issues must be 
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addressed to implement ANN in lung tumour motion prediction for MRI-based 

tumour tracking. 

Firstly, the performance of an ANN is known to be strongly dependent on 

its structure and initial weights (IW).17, 18 As Verma et al. stated,14 ANN 

architecture must be optimized to be used in tumour motion prediction. However, 

no previous study regarding lung tumour motion prediction has investigated this 

issue. 

Secondly, previous studies assume the tumour position detection at 30 Hz 

by monitoring the position of external or internal tumour surrogates using optical 

tracking devices,15, 16 or a stereoscopic x-ray fluoroscopy system.12, 13 However, 

dynamic MR imaging to observe organ motion of lung,7 intra-thoracic tumour,19 

joint,20 etc., can typically achieve image-acquisition rates of 3 – 4 frames per 

second (fps). This rate is recommended for real-time tracking of lung tumour 

motion21 and can be achieved using our present linac-MR. Nevertheless, no 

previous study has been developed and evaluated for predicting lung tumour 

motion using MRI-based tumour tracking.  

To overcome these issues, we propose an ANN-based lung tumour motion 

predictor for MRI-based intrafractional lung tumour tracking. This chapter 

describes the ANN design and training methods, implementation of multiple-

ANNs, and optimization schemes of ANN structure and IW. The prediction 

accuracy of our predictor is evaluated using data from 29 lung cancer patients 

with various possible system delays. 
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5.2. MATERIALS AND METHODS 

5.2.1. Overview of lung tumour motion prediction 

The development of our predictor involves the following points and 

assumptions: (1) the position of a tumour may be represented by its centroid, (2) 

the position of tumour centroid in each MR image is automatically detected in 

real-time (less than 5 ms) using our autocontouring algorithm,9 (3) signal 

acquisition time for each MR image is 280 ms, and (4) the amount of system 

delay, i.e. the time interval between the detection of current tumour position and 

the beam delivery, of a given tracking system is known.  

In our present linac-MR, system delay is approximately 200 ms, which is 

the sum of : (1) one half of the acquisition time, 140 ms, contributes to system 

delay assuming the acquired image detects the tumour position at the mid-point of 

k-space, (2) ~ 35 ms for image reconstruction and processing, and (3) ~ 25 ms for 

MLC motion.  

An overview of the prediction procedure for lung tumour motion is 

described in Fig. 5.1. In Step 1 of Fig. 5.1, an ANN structure and IW are 

optimized prior to actual treatment for each patient. A patient typically undergoes 

treatment over multiple fractions, where, presumably tumour motions in two 

consecutive fractions are the most similar. During optimization, tumour motion 

data recorded from a previous fraction is used as a training pattern. We used 8 

minutes length of 1D superior-inferior (SI) lung tumour motion pattern. More 

details regarding training patterns follow in Sec. 5.2.2. 
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One epoch refers to a single passing of a training pattern (prediction 

followed by weights corrections) through the ANN during iterative trainings. In 

Step 2, the optimized ANN structure and IW are further trained for 900 epochs 

immediately prior to the actual treatment. The training set will be tumour motions 

recorded from 2 minutes of MR scan immediately prior to the treatment. In our 

computer platform, approximately 30 seconds are required to run 900 epochs.  

 

Figure 5.1 Flowchart for overall lung tumour motion prediction 
 
 

All algorithms are coded in LabVIEW 2011 (National Instruments, Austin, 

TX) and tested on a 32-bit computer system (Windows7, Intel i7-2600k, 4 GB 

RAM). 



 

 
121

5.2.2. Patient lung tumour motion data 

Our algorithm was verified using data previously reported by Suh et al.,22 

who analyzed thoracic and abdominal tumour motions obtained with a Cyberknife 

Synchrony treatment system (Accuray Incorporated, Sunnyvale, CA). During 

radiation treatment, 3D tumour positions were estimated and recorded every 40 

ms (25 Hz) by both internal and external fiducials for various tumour sites such as 

lung, liver, pancreas, retroperitoneum, etc. We selected the data from the 29 lung 

tumour patients. Each patient’s data consists of lung tumour motions recorded 

from 3 consecutive fractions (1 – 5 days apart). From each fraction, we used 8 

minutes of the 1D SI lung tumour motion pattern. 

5.2.3. ANN for lung tumour motion prediction 

General explanations regarding ANN are presented in Chapter 2 (Sec. 2.2) 

of this thesis. The following sections describe a specific type of ANN designed for 

lung tumour motion prediction in this study.  

5.2.3.1. ANN structure 

A feed-forward 4 layered ANN structure (1 input layer, 2 hidden layers, 

and 1 output layer) is developed as shown in Fig. 5.2. Input and hidden layers 

have an additional bias input of +1, which prevents a zero output when all input 

values are zero. Detailed explanations can be found in Haykin.23 Current and 

previous tumour positions are input to the ANN, which outputs a future tumour 

position. The number of hidden layers can vary, either 1 or 2, and is determined 

by ANN structure optimization as explained in Sec. 5.2.6.1.a. 
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Figure 5.2 A feed-forward 4 layered ANN structure, where 

x(t) : position of tumour at time t,  

τ  : time interval between tumour position updates, 

T : system delay of a given tracking system,  

Vcd : input to dth  activation function of layer ‘c’ (i.e.  





1m

1a
fa

ab
gfgb YwV ), 

F, G, H : activation function Ф(x)=1/(1+exp(-x)), x can be Vf1,f2,…,fm, Vg1,g2,…,gs, or Vh1, 

Ycd : output from dth activation function of layer ‘c’ (e.g. Yf1 = Ф(Vf1)), 

ab
gfw  : weight associated with the output of ath neuron in f layer to bth neuron in g layer, 

x(t + T) : ANN output (predicted tumour position). 

 

5.2.3.2. Back-propagation algorithm and adaptive learning 

We used a back-propagation (BP) algorithm23 for ANN learning, i.e. 

updating weights. Following the same notations as in Fig. 5.2, we used the 

following Eqs. 5.1 - 5.3 to update weights during training: 

 www previousnew    (Eq. 5.1) 

where, wnew : new weight, wprevious : previous weight, w : weight update 

For weights associated with output neuron, 

 gaH1
a1

hg Yδηw Δ    (Eq. 5.2) 
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where, η : learning rate, )(VΦeδ h1H1H1  , eH1 = desired output – ANN output, 

and ))Φ(V(1)Φ(VdV/dΦ)(VΦ h1h1h1h1    

For weights associated with other neurons, 

 faGb
ab

gf Yδηw Δ    (Eq. 5.3) 

where, )wδ()(VΦδ a1
hgH1

1s

1a
GbGb 




  

The BP algorithm requires a proper learning rate (η) to achieve fast 

convergence. We implemented an algorithm developed by Behera et al.,24 which 

can calculate an efficient, self-adaptive learning rate as: 
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          (Eq. 5.4) 
 

where, J


=∂(ANN output)/ w


 , μ : scaling factor, γ : small constant to prevent 

numerical instability of η when eH1 is near zero. The values of μ and γ are 

determined to achieve the lowest prediction error using training patterns, and the 

results are stated in Figs. 5.5 and 5.6. 

Adaptive learning is incorporated by continuously updating the weights 

and η of a given ANN during motion prediction. The structure of ANN does not 

change during prediction. However, the weights and η updates occur prior to each 

prediction immediately following current tumour position detection by the 

tracking system. This update involves simple matrix calculations that happen 
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almost instantaneously using our computer system; thus, this is not included in 

calculating the total system delay.  

In this way, the ANN’s learning process is not limited to the training 

sessions alone but continues during the actual tracking session. Using this ANN, 

our predictor can adapt quickly to tumour motion pattern during the actual 

tracking session, even when this pattern starts deviating from the one used in 

training sessions. 

5.2.4. ANN training for MRI-based tumour tracking 

Our tumour motion training data is acquired at 280 ms intervals from MR 

images obtained from previous treatment fractions. In reality, the system delay 

will often be different from the time intervals in the training data. To demonstrate 

that this training scheme can be applied to different system delays, we present 

ANN training simulations with 280 and 200 ms system delays. Figure 5.3 shows a 

portion of the training data from one of the 29 patients.  

 
Figure 5.3 Tumour position in SI direction in training data, Pt : tumour position at time t 
(ms), P’t : approximate tumour position at t (ms) – see text for details. 
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During ANN training, many numbers of known input/output pairs must be 

entered to allow the ANN to model the complex relationships between them. 

These input/output pairs include the previous, as well as future, tumour positions 

that have been recorded in the training data. 

As shown in Fig. 5.2, a single ANN can predict a single output for tumour 

position. However, the number of inputs to this ANN, i.e. number of previous 

tumour positions, can vary from patient to patient. Section 5.2.6 explains how our 

predictor determines the appropriate number of inputs for each patient. Here, our 

training scheme takes three inputs and is described in the following two examples.  

 (1) 280 ms system delay: Input/output pairs were generated from the 

training data described above with a system delay of 280 ms. In Fig. 5.3, P0, P280, 

P560 can be used as the ANN inputs of the 1st input/output pair. In this case, the 

output should be P840, because the time interval between P560 and P840 is the same 

amount as the system delay. Similarly, if P280, P560, P840 are used as the inputs for 

the 2nd input/output pair, P1120 will be the corresponding output. We can generate 

many numbers of input/output pairs in this way and train the ANN. The same 

training method can be used if the system delay is an exact multiple of the time 

interval between two consecutively known tumour positions in training data. 

(2) 200 ms system delay: Because the system delay for our present linac-

MR system is 200 ms, a different method is used to generate the input/output pairs. 

If P0, P280, P560 are used as the inputs, the output must be P760. However, P760 is 

unknown in our training data as shown in Fig. 5.3. Our approach is to 

approximate P760 using linear interpolation between P560 and P840, which is 
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referred to as P’760. This is a first order approximation which presumes that the 

lung tumour motion may be reasonably modeled as linear motion between two 

known tumour positions. Similarly, if P280, P560, P840 are used as the inputs, P’1040 

will be the corresponding output. Using this method, we are able to train our ANN 

for any arbitrary system delay. 

5.2.5. Implementation of multiple ANNs 

During tumour tracking, each prediction occurs immediately after a 

current tumour position is detected. This triggers MLC motion to conform the 

radiation beam to the tumour at the predicted position.  

Frequent tracking failures may occur if a single ANN is used in our 

predictor. If the time interval between two predictions is greater than the time 

required to complete the MLC motion, the MLC will stop after reaching set points, 

i.e. designated leaf positions, and wait for the next prediction to occur.  During 

this time, designated as the “MLC-off time”, the tumour will continue to move 

resulting in tracking failure. On the contrary, if the time interval between two 

predictions is smaller than the time required for the MLC to reach the predicted 

position, then the MLC will never reach the set points and miss the tumour.  

We propose to employ multiple ANNs in our predictor to reduce tracking 

failures, which, in itself, is a unique feature developed in this study. 

5.2.5.1.Tumour tracking using multiple ANNs 

We use seven ANNs, because our imaging rate is 280 ms and we want to 

predict tumour positions in a 40 ms interval that corresponds to the acquisition 
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rate of the Suh et al.22 data used to evaluate the performance of the prediction 

algorithm (the acquisition rate of the Suh et al. data is 40 ms, and 280/40 is 7).  

The seven ANNs implemented in our predictor have an identical structure. 

However, we trained them separately so that at each prediction, the predictor can 

output seven consecutive future tumour positions (40 ms apart, the first one 

corresponds to the future tumour position after the system delay). In case of 200 

ms system delay, the 1st ANN predicts a tumour position at 200 ms in the future, 

2nd ANN predicts at 240 ms in the future, 3rd ANN predicts at 280 ms in the future, 

etc. This is described in Fig. 5.4.  

 
Figure 5.4 Tumour tracking using seven ANNs, Pt : tumour position at time t (ms). 
 
 

At 0 ms, the 1st prediction occurs from seven ANNs predicting P200, P240, 

…, P440. Using these, the MLC controller triggers MLC motions conforming to 

the appropriate future tumour positions. For example, at 0 ms, the MLC begins 

conforming to P200; at 40 ms, it starts conforming to P240, etc. At 280 ms, the 2nd 

prediction occurs predicting P480, P520, …, P720, and this triggers new MLC 

motions.  

Using multiple ANNs, we can trigger MLC motions more frequently. We 

can then verify whether this approach will reduce tracking failures because (1) the 

MLC-off time between two predictions is decreased, and (2) the MLC can almost 
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always reach the set points, since the traveling distance at each motion triggering 

is decreased.  

5.2.6. Optimizing ANN structure & IW for each patient 

ANN structure and IW must be optimized for each patient to ensure the 

optimal performance of our predictor, because (1) the performance of ANN is 

known to be strongly dependent on its structure and IW,17, 18 and (2) there are 

large patient-to-patient variations in lung tumour motion patterns. 

5.2.6.1.Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is one type of population based 

stochastic optimization method, which is inspired by the social behavior of bird 

flocking or fish schooling.25 An overview of PSO is presented in Chapter 2 (Sec. 

2.3) of this thesis.  

We use an improved version of the original PSO algorithm called 

Modified Particle Swarm Optimization (MPSO)26 for both ANN structure and IW 

optimizations. Shi et al. demonstrated superior performance of MPSO in finding a 

global optimum within a reasonable number of iterations.26 This is particularly 

advantageous in clinical applications where optimization for each patient must be 

completed within a reasonable time frame.  

In MPSO, each particle’s velocity and position are updated in each 

iteration as:  

)P-(randc)P-(randcVWV prev22prev11prevupdated gbestpbest      

         (Eq. 5.5) 
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updatedprevupdated VPP            (Eq. 5.6) 

where, Vupdated, Pupdated: updated velocity and position of a particle, W: inertia 

weight, cn: a unitless weight determining the impact of an individual particle’s 

history on the entire swarm’s history in Vupdated calculation, randn: a random 

number (0 – 1), pbest : personal best solution,  gbest: global best solution, Vprev, 

Pprev: previous velocity and position of a particle. Detailed calculation methods of 

pbest and gbest follow in Sec. 5.2.6.1.a. 

We use MPSO to optimize ANN structure and IW for each patient. To 

achieve this, we must first determine the representation of a particle and a fitness 

function for each optimization problem. Detailed explanations follow.  

5.2.6.1.a. ANN structure optimization 

In ANN structure optimization, a specific ANN structure is a solution, i.e. 

particle. Therefore, each particle’s current position and velocity represents a 

current ANN structure and the degree of its modification, respectively. Our fitness 

function is an RMSE value between original and predicted tumour positions in the 

training pattern, where original tumour positions refer to the ones recorded in 

patient data.  

As shown in Fig. 5.2, we can define an ANN structure using an array of 

three integer variables designating the number of inputs, number of neurons in 1st 

hidden layer, and number of neurons in 2nd hidden layer. The number of neurons 

in an output layer is fixed at 1.  

For example, [n, m, s] indicates an ANN structure that has n number of 

inputs, m number of neurons in the 1st hidden layer, s number of neurons in the 2nd 
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hidden layer, and 1 neuron in the output layer. Hence, each particle’s position and 

velocity are both defined by a 1 × 3 integer array. Figure 5.5 shows the ANN 

structure optimization process.  
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Figure 5.5 Flow chart for ANN structure optimization. Parameters used: Step 1 (Initial 
number of inputs: 1 – 10, Initial number of neurons in each layer: 0 - 10, Initial velocity: 0 - 
10), Step 6 (µ: 0.6, ү: 0.02, see Eq. 5.4), Step 10 (Desired RMSE = 0.001 mm), Step 12 (cn = 2, 
randn: 0 – 1, Max. velocity: 10, W: 0.4, see Eq. 5.5)  
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Step 1 in Fig. 5.5 is performed only in the 1st iteration at M = 1. Here the 

position and velocity arrays of 10 particles are generated using a random number 

generator within a user defined range as stated in Fig. 5.5. In Step 2, each 

particle’s velocity array is recorded for later use. 

In Step 3, the Nth particle’s position array is read and its corresponding 

ANN is created. In Step 4, this ANN is copied 7 times to create seven ANNs that 

have identical structures. For example, if the 1st particle’s position array is [5, 8, 

6], the corresponding ANN is created containing 5 inputs, 8 and 6 neurons in the 

1st and 2nd hidden layers, and 1 output neuron. This ANN is then copied 7 times. 

In Step 5, IW are optimized for each of the seven ANNs using the 1st half 

of the training pattern. During IW optimization, each ANN is trained for a 

different amount of system delay. Detailed explanations follow in Sec. 5.2.6.1.b. 

As a result, seven sets of optimized IW are produced. 

In Step 6, the seven ANNs and a corresponding set of optimized IW are 

used to predict tumour motions in the 2nd half of the training pattern. This 

generates predicted tumour positions in 40 ms intervals as explained in Sec. 

5.2.5.1. Using this result, in Step 7, we can perform one-to-one comparisons 

between original and predicted tumour positions calculating RMSE values.  

Steps 3 – 7 are iterated with all 10 particles’ position arrays. After the Nth 

iteration, the Nth particle’s position array, optimized IW, and corresponding 

RMSE value are recorded in Step 8. From this record, the algorithm determines 

pbest and gbest in Step 9 as described in the following paragraphs.  

During optimization, each particle’s position array is updated through 

iterations. Out of the particle’s current and previous position arrays, pbest is the 
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one that achieved the lowest RMSE value in Step 7. For example, if the 1st 

particle’s position array has been updated for three iterations (see the outer loop 

through step 12) as [5, 8, 6] → [10, 18, 7] → [12, 23, 0] with corresponding 

RMSE values of 2.5 → 1.6 → 1.9, then pbest of this particle is [10, 18, 7].  

In Step 9, therefore, 10 pbest arrays are determined from 10 particles. Out 

of these, the one with the lowest RMSE value becomes gbest. Depending on the 

results from Steps 10 and 11, the algorithm either updates all particles’ position 

arrays and iteration continues, or the optimization process is terminated.  

In Step 12, we first calculate Vupdated array for each particle using Eq. 5.5 

with the parameters stated in Fig. 5.5. Each particle’s velocity, position, and pbest 

arrays are obtained from Step 2, Step 8, and Step 9, respectively. gbest is obtained 

from Step 9. 

For example, if the 1st particle’s position, velocity, pbest arrays are [P1, P2, 

P3], [V1, V2, V3], [PB1, PB2, PB3] respectively, and gbest of all particles is [GB1, 

GB2, GB3], then Vupdated is calculated as:  

Vupdated array = [Vupdated1, Vupdated2, Vupdated3] 

= W·[V1,V2, V3]+ c1·rand1·([PB1, PB2, PB3] - [P1, P2, P3]) + 

c2·rand2·([GB1, GB2, GB3] - [P1, P2, P3])  

Hence, Vupdated1 = W ·V1 + c1·rand1· (PB1 - P1) + c2·rand2· (GB1 - P1) 

  Vupdated2 = W·V2 + c1·rand1· (PB2 – P2) + c2·rand2· (GB2 – P2) 

Vupdated3 = W·V3 + c1·rand1· (PB3 – P3) + c2·rand2· (GB3 – P3) 

If any component of the Vupdated array is greater than a user defined maximum 

velocity stated in Fig. 5.5, that component is replaced with the value of maximum 

velocity. This is to avoid overly radical changes of the particle’s position in each 
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iteration. After the Vupdated array is determined, Pupdated array is calculated using Eq. 

5.6 as: 

Pupdated array = [Pupdated1, Pupdated2, Pupdated3]  

= [P1, P2, P3] + [Vupdated1, Vupdated2, Vupdated3] 

Hence, Pupdated1 = P1 + Vupdated1 

Pupdated2 = P2 + Vupdated2 

Pupdated3 = P3 + Vupdated3 

Steps 2 – 11 are iterated after all 10 particles’ position and velocity arrays 

are updated. At the end of optimization in Step 13, the algorithm outputs an ANN 

structure and IW optimized for a given patient. 

5.2.6.1.b. IW optimization (Step 5 in Fig. 5.5) 

The weights shown in Fig. 5.2 are rational numbers, and one may calculate 

the number of weights required to link two adjacent layers as: (number of neurons 

in previous layer + 1)   number of neurons in next layer, where the + 1 term is 

due to the bias input. For example, if a [n, m, s] structure is given, the total 

number of IW, referred to as Z, is calculated as:  Z = (n + 1) × m + (m + 1) × s + 

(s + 1) × 1. Hence, one set of IW for a [n, m, s] structure is defined by a 1 × Z 

rational number array.  

We have seven ANNs in our predictor, which must be trained for different 

amounts of system delay. Therefore, a group of IW becomes a solution, i.e. 

particle, in IW optimization, where this group consists of seven sets of IW. Each 

particle’s current position and velocity represents a current group of IW and the 

degree of its modification, respectively. Since a group of IW contains seven sets 
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of IW, each particle’s position and velocity are both defined by seven 1 × Z 

rational number arrays. The same fitness function is used as in ANN structure 

optimization. Figure 5.6 shows the IW optimization processes.  
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Figure 5.6 Flow chart for IW optimization. Parameters used: Step 3 (IW and initial 
velocities: random rational numbers between -1 and 1), Steps 7, 8 (µ: 0.6, ү: 0.02), Step 12 
(Desired RMSE = 0.001 mm), Step 14 (cn = 2, randn: 0 – 1, Max. velocity/W: 1.5/0.8 and 2/0.6 
for one and two hidden layered ANN, respectively) 
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In Steps 1 and 2 in Fig. 5.6, we read the ANN structure subject to IW 

optimization and calculate Z. For example, if the ANN has a [5, 8, 6] structure, Z 

= (5 + 1) 8 + (8 + 1) 6 + (6 + 1) 1 = 109. Because the seven ANNs have 

identical structures, we only need a single Z value. 

Step 3 is performed only in the 1st iteration at M = 1. We generate 10 

particles’ position and velocity arrays using a random number generator between  

-1 and 1. In Step 4, each particle’s velocity arrays are recorded for later use. 

In Steps 5 and 6, the Nth particle’s position arrays are read and 

corresponding sets of IW are created. As a result, seven sets of IW are created for 

the seven ANNs.  

In Step 7, the seven ANNs are trained using the 1st half of training pattern. 

Each ANN is trained for a different amount of system delay for 1500 epochs. The 

1st, 2nd,…,7th sets of IW are used as a starting point for training the 1st, 2nd,…,7th 

ANNs, respectively. 

In Step 8, we use the seven trained ANNs to predict tumour motions in the 

2nd half of training pattern. This generates predicted tumour positions in 40 ms 

intervals as explained in Sec. 5.2.5.1. Hence, in Step 9, we can calculate RMSE 

between the original and predicted tumour positions to evaluate the prediction 

accuracy. 

Steps 5 – 9 are iterated with all 10 particles’ position arrays. After the Nth 

iteration, the Nth particle’s position arrays and corresponding RMSE value are 

recorded in Step 10. From this record, the algorithm determines pbest and gbest in 

Step 11. This process is previously explained in Sec. 5.2.6.1.a in detail. 
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Depending on the results from Steps 12 and 13, the algorithm either updates all 

particles’ position arrays and iteration continues, or the optimization process is 

terminated. 

In Step 14, Vupdated and Pupdated arrays are calculated for each particle using 

Eqs. 5.5 and 5.6 with the parameters stated in Fig. 5.6. Detailed explanations have 

been previously given in Sec. 5.2.6.1.a. After all particles’ position and velocity 

arrays are updated, Steps 4 – 13 continue using the updated arrays. At the end of 

optimization in Step 15, the algorithm outputs the seven sets of IW represented by 

gbest as the optimized IW. 

5.2.7. Evaluation of the reduction in tracking failures using 

multiple ANNs 

We verified whether using multiple ANNs reduces tracking failures as 

described in Sec. 5.2.5. Lung tumour tracking was simulated using a Varian 52-

leaf MLC, where tumour motion was assumed to be sinusoidal (period: 4 seconds, 

amplitude: 5 cm) at the imaging plane of our present linac-MR. This tumour 

motion is sufficient to cover the possible motion range of lung tumours.4, 5 

The following two cases were tested during one minute of tumour 

tracking:  

(1) MLC motions were triggered every 280 ms, which will occur if a 

single ANN is used;  

(2) MLC motions were triggered every 40 ms, which will occur if seven 

ANNs are used.  
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In both cases, mean and standard deviation of the MLC-off time, and the 

percentage frequency of MLC failure to reach set points were calculated. 

5.2.8. Evaluation of prediction accuracy using patient data 

5.2.8.1. Presentation of patient data to ANNs 

To evaluate the prediction accuracy of our predictor in a realistic MRI-

based tumour tracking scenario, the following processes are performed with the 

original data from Suh et al.22 

Firstly, to simulate MRI-based tumour tracking that detects tumour 

positions every 280 ms, every 7th data point is chosen from the original data (40 

ms interval between data points  7 = 280 ms). This generates motion patterns 

containing lung tumour positions recorded every 280 ms. Secondly, each motion 

pattern is shifted and normalized, so that the values remain between 0 and 1. This 

is clinically feasible, and more details follow in Sec. 5.4. It is important to note 

that only these motion patterns are presented to our predictor, both in ANN 

training and the motion prediction stages.  

5.2.8.2. Prediction accuracy comparisons 

The prediction accuracy of our predictor is evaluated with 29 patient data 

sets. Each patient’s 1st fraction data is used as a training pattern for the ANN 

structure and IW optimizations. The result is used to predict tumour motions in 

the 2nd fraction data. Similarly, 2nd fraction data is used as a training pattern for 

optimizations, and this result is used to predict tumour motions in the 3rd fraction 

data.  
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 Evaluation is performed for various amounts of system delay ranging from 

120 to 520 ms in 80 ms increments, which encompasses all previously reported 

system delays in the literature.2, 3, 6 Prediction accuracy is measured by the RMSE 

(mm) between original and predicted tumour positions. 

 To demonstrate the benefit of ANN structure as well as IW optimizations 

developed in this study, prediction accuracy was compared according to the 4 

different cases shown in Table 5.1.  

Table 5.1 Cases tested for prediction accuracy investigation 

 Case 1 Case 2 Case 3 Case 4 

ANN structure optimization Yes Yes No No 

IW optimization Yes No Yes No 

  

Instead of using an optimized ANN structure for each patient, a single 

ANN structure (25 inputs, 2 neurons in a hidden layer, 1 output neuron) is 

employed for all patients in cases 3 and 4. This ANN structure was suggested by 

Murphy et al.16 for respiratory motion prediction, which is closely correlated to 

abdominal tumour motions including lung tumour.27 The IW optimization process 

is omitted for case 2 and 4. However, an additional 900 epochs training as 

described in Step 2 of Fig. 5.1 is still performed with randomly generated IW. 

 One further experiment is performed to assess the necessity of ANN 

structure optimization not only for each patient, but also for each treatment 

fraction. In this case, only 1st fraction data is used as a training pattern for ANN 

structure and IW optimizations, and the result is used to predict tumour motions in 

both 2nd and 3rd fraction data. Prediction accuracy of 3rd fraction data obtained 

from this experiment is compared to the result from Case 1, in which the 
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prediction was performed with an ANN structure specifically optimized to predict 

tumour motion in 3rd fraction data.  

5.3. RESULTS 

5.3.1. Tracking failure comparisons using a single ANN vs. 

seven ANNs 

Table 5.2 compares the MLC-off time between two consecutive 

predictions and the frequency percentage of MLC failures reaching its set points 

during one minute of tracking period. Set points are the aimed location of each 

leaf, and the failures result from MLC speed limitation.  

Table 5.2 Tracking failure comparisons using a single ANN vs. seven ANNs. 

 Single ANN Seven ANNs 

MLC motion triggering every 280 ms every 40 ms 

MLC-off time(mean ± std) 110 ± 87 ms 15 ± 9 ms 

Failure to reach set points 46 % 0 % 

 

 In the single ANN case, mean MLC-off times show that tumour tracking 

failed for 110 ms on average between two consecutive MLC triggers. More 

importantly, the MLC could not reach its set points in 46 % of the overall tracking 

period. Both of these problems are largely resolved using the seven ANNs 

approach. In this case the MLC was always able to reach its set points, and the 

mean MLC-off time was decreased by a factor of more than 7.  
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5.3.2. Prediction performance using optimized ANN and IW 

Table 5.3 shows lung tumour motion prediction results simulated from 

patient data as discussed in Sec. 5.2.8.1. Prediction is performed with optimized 

ANN structures and optimized IW for each patient and fraction. Optimizations 

and predictions were repeated 5 times for each patient and fraction. Only mean 

RMSE values are reported in Table 5.3 as very small variations in RMSE values 

(less than 0.1 mm) were observed for the 5 trials. 

For 120 – 520 ms system delays, 0.5 – 0.9 mm of mean RMSE values 

(ranges 0.0 - 2.8 mm from 29 patients) are observed, respectively. The entire 

optimization process (ANN structure and IW optimizations) requires 

approximately 2.5 hours for each treatment fraction of a given patient, which 

would need to be performed prior to treatment. 
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Table 5.3 Motion prediction results obtained with optimized ANN structure and IW for each 
patient. 

 

5.3.3. Prediction accuracy comparisons 

 
Table 5.4 compares prediction accuracies of the 4 different cases defined 

in Table 5.1. Relative mean RMSE values for the 29 patients are calculated with 

2nd fraction RMSE (mm) 3rd fraction RMSE (mm) 

System delay (ms) System delay (ms) Patient 

120 200 280 360 440 520 120 200 280 360 440 520 

1 0.7 0.9 1.1 1.2 1.3 1.4 0.8 0.9 1.1 1.3 1.5 1.7 

2 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.7 0.7 0.8 

3 0.3 0.3 0.4 0.5 0.5 0.6 0.3 0.3 0.4 0.5 0.6 0.6 

4 0.2 0.2 0.2 0.2 0.3 0.3 0.1 0.1 0.2 0.2 0.2 0.2 

5 0.5 0.6 0.7 0.8 0.9 1.1 0.4 0.6 0.7 0.7 0.8 0.9 

6 0.5 0.6 0.7 0.8 0.9 0.9 0.4 0.5 0.5 0.6 0.6 0.6 

7 0.6 0.7 0.8 1.0 1.1 1.2 0.5 0.7 0.8 0.9 1.0 1.1 

8 0.2 0.2 0.3 0.3 0.3 0.4 0.1 0.1 0.2 0.2 0.2 0.2 

9 0.2 0.3 0.4 0.5 0.5 0.6 0.3 0.4 0.4 0.5 0.6 0.7 

10 0.2 0.2 0.3 0.3 0.3 0.4 0.2 0.3 0.3 0.3 0.4 0.4 

11 0.9 1.1 1.2 1.4 1.5 1.6 1.0 1.3 1.6 1.8 2.1 2.2 

12 1.5 1.7 1.9 2.1 2.3 2.4 1.8 2.1 2.3 2.5 2.6 2.8 

13 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 

14 1.4 1.7 2.0 2.2 2.4 2.6 1.4 1.7 2.0 2.3 2.5 2.8 

15 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.7 0.9 1.0 1.0 1.1 

16 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.7 0.7 0.8 

17 0.7 0.8 0.9 1.0 1.2 1.2 0.6 0.8 0.9 1.0 1.1 1.2 

18 0.6 0.8 0.9 0.9 1.0 1.1 0.5 0.6 0.7 0.8 0.9 1.1 

19 0.4 0.5 0.6 0.7 0.8 0.9 0.7 0.9 1.1 1.2 1.4 1.6 

20 0.3 0.4 0.5 0.5 0.6 0.6 0.3 0.4 0.4 0.5 0.6 0.6 

21 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

22 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 

23 0.9 1.1 1.2 1.3 1.3 1.4 0.8 0.8 1.0 1.0 1.0 0.9 

24 0.3 0.4 0.5 0.5 0.6 0.6 0.2 0.3 0.3 0.4 0.4 0.5 

25 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.5 0.6 0.6 0.7 

26 0.3 0.4 0.5 0.5 0.5 0.6 0.5 0.6 0.7 0.8 0.9 1.0 

27 0.2 0.2 0.2 0.3 0.3 0.3 0.1 0.2 0.2 0.2 0.3 0.3 

28 1.3 1.6 1.9 2.2 2.4 2.7 0.4 0.4 0.5 0.5 0.6 0.6 

29 0.6 0.7 0.9 1.1 1.2 1.3 0.7 0.8 0.9 1.0 1.0 1.1 

Mean 0.5 0.6 0.7 0.8 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.9 
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respect to the largest mean RMSE values for each system delay and fraction. The 

largest mean RMSE values are obtained from Case 4, where no optimization is 

performed.  

Table 5.4 Relative mean RMSE values comparison 

 

By comparing the results between cases 1 and 4, a 30 - 60 % decrease in 

mean RMSE values is observed over the range of system delays tested. Both 

ANN structure and IW optimizations decrease prediction errors. Nevertheless, the 

comparison between cases 2 and 4 (more than 30 % decrease), as well as cases 3 

and 4 (10 % decrease) show that ANN structure optimization performs a more 

important role in error reduction. Detailed results from each patient are plotted in 

Fig. 5.7. 

Relative mean RMSE (2nd fraction) Relative mean RMSE (3rd fraction) 

System delay (ms) System delay (ms) Case 

120 200 280 360 440 520 120 200 280 360 440 520 

1 0.4 0.5 0.5 0.6 0.6 0.7 0.5 0.5 0.6 0.6 0.7 0.7 

2 0.5 0.6 0.6 0.6 0.7 0.7 0.5 0.6 0.6 0.6 0.7 0.7 

3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

4 1 1 1 1 1 1 1 1 1 1 1 1 
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Figure 5.7 Prediction accuracy comparisons in 4 different cases (top: 2nd fraction prediction, 
bottom: 3rd fraction prediction) 
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Figure 5.8 shows the prediction accuracy of the 3rd fraction data using 2 

different sets of ANN structure as: (1) ANN structures optimized to predict 3rd 

fraction data, and (2) ANN structures optimized to predict 2nd fraction data. 

Smaller RMSE values are observed in several patients using the ANN structures 

specifically optimized to predict the 3rd fraction. However, the mean RMSE 

values from all patients are the same for all system delays in both cases (0.5 - 0.9 

mm). 

 
Figure 5.8 Prediction accuracy of 3rd fraction data using (1) ANN structures optimized to 
predict 3rd fraction, and (2) ANN structures optimized to predict 2nd fraction 
 

5.4. DISCUSSION 

Superior performance of ANN in respiratory motion prediction over other 

methods has been reported by comparative studies,13, 28 and several studies have 

been conducted in surrogates-based tumour tracking systems.15, 16 However, we 
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believe this is the first study utilizing ANN for lung tumour motion prediction in 

an MRI-based tracking environment.    

Real-time lung tumour tracking requires an MR imaging rate of 3 – 4 

fps.21 Currently, this rate cannot be achieved in 3D real-time imaging. However, 

we proved that 2D real-time MR imaging is feasible at 3.6 fps in our previous 

study (Dynamic Scan Time = 275 ms, FOV : 40 cm × 40 cm, 3.1 mm × 3.1 mm × 

20 mm).9 Using this, tumour motion data obtained from each MR image would 

generate good training data. 

We have demonstrated the advantage of using multiple ANNs. The MR 

imaging rate is fixed at every 280 ms. The purpose of implementing multiple 

ANNs is to reduce the frequency of MLC failures during tumour tracking. The 

result shown in Table 5.2 clearly demonstrates the advantage of using seven 

ANNs over a single ANN. Using seven ANNs, MLC was always able to reach its 

set points, and the mean MLC-off time was decreased by a factor of more than 7. 

Seven ANNs are chosen in this study to evaluate the accuracy of our 

predictor using the Suh et al.22 data. However, in a real case, a larger or smaller 

number of ANNs can be easily implemented in a given tracking system depending 

on the expected MR imaging rate and the frequency of MLC motion triggering. 

The advantage of optimizing ANN structures and IW for each patient has 

been investigated. There is a 30 – 60 % decrease of mean RMSE values if ANN 

structure and IW are optimized, in comparison to motion prediction using a single 

ANN structure and randomly chosen IW. This was obtained using seven ANNs of 

an identical structure. Because each of these ANNs corresponds to a different 

amount of system delay, it may be possible to further improve the prediction 
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accuracy if we optimize each ANN structure for its specific system delay. This 

will allow ANN structure changes among the seven ANNs, which will be a 

subject of future studies. 

The entire optimization process for each treatment fraction of a given 

patient takes approximately 2.5 hours on the computer platform used, which 

would mandate calculations to be performed prior to treatment. Faster computers 

can, of course, be introduced for faster calculations. 

 The results shown in Fig. 5.8 suggest no significant advantage in 

prediction performance using fraction specific ANN structure optimization. This 

is based on the 3 consecutive fractions of motion data available in this study. 

However, further investigations are required with patient data obtained from a 

larger number of consecutive fractions.   

As explained in Sec. 5.2.8.1, after every 7th data point is chosen from the 

original tumour motion pattern, each motion pattern is shifted and normalized 

before it is presented to the ANN. This is clinically feasible as the characteristics 

of a given patient’s lung tumour motion, such as the maximum amplitude and 

mean position, can be observed just before the beam delivery through the 2.5 

minute training session as shown in Step 2 of Fig. 5.1. Thus, an appropriate 

amount of shifting and a proper normalization factor can be determined for each 

treatment fraction.  

Moreover, this should be implemented as a safety feature for motion 

prediction using ANN, because the normalization factor can be used as an upper 

limit for future tumour positions. In our ANN design shown in Fig. 5.2, the output 

value must stay between 0 and 1. Therefore, the maximum future tumour position 
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that can be predicted by our ANN is restricted by the normalization factor, even if 

the ANN starts to diverge during treatment.  

This study is focused on predicting 1D lung tumour motion in the SI 

direction. Lung tumours may, however, move up to 15 mm in anterior-posterior, 

and 10 mm in left-right directions during normal breathing.4, 5 Therefore, 

predicting future tumour positions in a realistic 3D space is an important issue in 

intrafractional MR tumour tracking. Extension of our predictor to this matter will 

be very straightforward, and will be investigated in future studies.  

5.5. CONCLUSION 

A new ANN-based lung tumour motion predictor is developed for MRI-

based intrafractional tumour tracking. The MR imaging rate was fixed at 280 ms. 

The predictive performance of the predictor was evaluated in its ability to predict 

tumour positions in 40 ms intervals that corresponded to the acquisition rate of 

independent test patient data (acquired every 40 ms) obtained elsewhere.22 

Three practical issues regarding ANN implementation in MRI-based lung 

tumour tracking, namely (1) selecting proper ANN structures and IW, (2) 

reducing tracking failures, and (3) developing ANN training methods, are 

addressed in this study. The performance-accuracy of our predictor is evaluated 

with data from 29 lung cancer patients simulating clinically realistic situations. 

 Mean RMSE values of 0.5 – 0.9 mm (ranges 0.0 - 2.8 mm from 29 

patients) are achieved by our predictor for system delays ranging from 120 – 520 

ms. The advantage of using a patient specific ANN structure and IW 

optimizations is shown by the 30 - 60 % decrease in mean RMSE values in 
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motion prediction as compared to results achieved with a single ANN structure 

and randomly chosen IW. Also, the results suggest no significant advantage in 

prediction performance from a fraction specific ANN structure optimization. 

5.6. REFERENCES 

1 M. B. Tacke, S. Nill, A. Krauss, and U. Oelfke, "Real-time tumor tracking: 

automatic compensation of target motion using the Siemens 160 MLC," 

Med. Phys. 37(2), 753-761 (2010). 
2 A. Sawant, R. L. Smith, R. B. Venkat, L. Santanam, B. C. Cho, P. Poulsen, 

H. Cattell, L. J. Newell, P. Parikh, and P. J. Keall, "Toward Submillimeter 

Accuracy in the Management of Intrafraction Motion: the Integration of 

Real-Time Internal Position Monitoring and Multileaf Collimator Target 

Tracking," Int. J. Radiat. Oncol. Biol. Phys. 74(2), 575-582 (2009). 
3 B. Cho, P. R. Poulsen, A. Sloutsky, A. Sawant, and P. J. Keall, "First 

Demonstration of Combined Kv/Mv Image-Guided Real-Time Dynamic 

Multileaf-Collimator Target Tracking," Int. J. Radiat. Oncol. Biol. Phys. 

74(3), 859-867 (2009). 
4 H. Shirato, Y. Seppenwoolde, K. Kitamura, R. Onimura, and S. Shimizu, 

"Intrafractional tumor motion: Lung and liver," Sem. Rad. Onc. 14(1), 10-

18 (2004). 
5 C. Plathow, C. Fink, S. Ley, M. Puderbach, M. Eichinger, I. Zuna, A. 

Schmahl, and H. U. Kauczor, "Measurement of tumor diameter-dependent 

mobility of lung tumors by dynamic MRI," Radiother. Oncol. 73(3), 349-

354 (2004). 
6 A. Krauss, S. Nill, M. Tacke, and U. Oelfke, "Electromagnetic Real-Time 

Tumor Position Monitoring and Dynamic Multileaf Collimator Tracking 

Using a Siemens 160 MLC: Geometric and Dosimetric Accuracy of an 

Integrated System," Int. J. Radiat. Oncol. Biol. Phys. 79(2), 579-587 

(2010). 



 

 
151

7 L. I. Cervino, J. Du, and S. B. Jiang, "MRI-guided tumor tracking in lung 

cancer radiotherapy," Phys. Med. Biol. 56(13), 3773-3785 (2011). 
8 B. G. Fallone, B. Murray, S. Rathee, T. Stanescu, S. Steciw, S. Vidakovic, 

E. Blosser, and D. Tymofichuk, "First MR images obtained during 

megavoltage photon irradiation from a prototype integrated linac-MR 

system," Med. Phys. 36(6), 2084-2088 (2009). 
9 J. Yun, E. Yip, K. Wachowicz, S. Rathee, M. Mackenzie, D. Robinson, 

and B. G. Fallone, "Evaluation of a lung tumor autocontouring algorithm 

for intrafractional tumor tracking using low-field MRI: A phantom study," 

Med. Phys. 39(3), 1481-1494 (2012). 
10 J. Yun, M. MacKenzie, D. Robinson, S. Rathee, B. Murray, and B. G. 

Fallone, "Real-Time MR Tumour Tracking Using a Linac-MR System," 

presented at the 56th Annual Meeting of the COMP, Ottawa, ON, June 16-

19, 2010. 
11 H. Shirato, K. Suzuki, G. C. Sharp, K. Fujita, R. Onimaru, M. Fujino, N. 

Kato, Y. Osaka, R. Kinoshita, H. Taguchi, S. Onodera, and K. Miyasaka, 

"Speed and amplitude of lung tumor motion precisely detected in four-

dimensional setup and in real-time tumor-tracking radiotherapy," Int. J. 

Radiat. Oncol. Biol. Phys. 64(4), 1229-1236 (2006). 
12 G. C. Sharp, S. B. Jiang, S. Shimizu, and H. Shirato, "Prediction of 

respiratory tumour motion for real-time image-guided radiotherapy," Phys. 

Med. Biol. 49(3), 425-440 (2004). 
13 A. Krauss, S. Nill, and U. Oelfke, "The comparative performance of four 

respiratory motion predictors for real-time tumour tracking," Phys. Med. 

Biol. 56(16), 5303-5317 (2011). 
14 P. S. Verma, H. M. Wu, M. P. Langer, I. J. Das, and G. Sandison, "Survey: 

Real-Time Tumor Motion Prediction for Image-Guided Radiation 

Treatment," Computing in Science & Engineering 13(5), 24-35 (2011). 
15 J. H. Goodband, O. C. L. Haas, and J. A. Mills, "A comparison of neural 

network approaches for on-line prediction in IGRT," Med. Phys. 35(3), 

1113-1122 (2008). 



 

 
152

16 M. J. Murphy and D. Pokhrel, "Optimization of an adaptive neural 

network to predict breathing," Med. Phys. 36(1), 40-47 (2009). 
17 H. R. Maier and G. C. Dandy, "The effect of internal parameters and 

geometry on the performance of back-propagation neural networks: an 

empirical study," Environmental Modelling & Software 13(2), 193-209 

(1998). 
18 L. F. A. Wessels and E. Barnard, "Avoiding false local minima by proper 

initialization of connections," IEEE Transactions on Neural Networks 3(6), 

899-905 (1992). 
19 C. Plathow, S. Ley, C. Fink, M. Puderbach, W. Hosch, A. Schmahl, J. 

Debus, and H. U. Kauczor, "Analysis of intrathoracic tumor mobility 

during whole breathing cycle by dynamic MRI," Int. J. Radiat. Oncol. Biol. 

Phys. 59(4), 952-959 (2004). 
20 P. Yen, R. W. Katzberg, M. H. Buonocore, and J. Sonico, "Dynamic MR 

Imaging of the Temporomandibular Joint Using a Balanced Steady-State 

Free Precession Sequence at 3T," AJNR Am J Neuroradiol. 34(3), E24-26 

(2013). 
21 P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. 

Jiang, J. M. Kapatoes, D. A. Low, M. J. Murphy, B. R. Murray, C. R. 

Ramsey, M. B. Van Herk, S. S. Vedam, J. W. Wong, and E. Yorke, "The 

management of respiratory motion in radiation oncology report of AAPM 

Task Group 76," Med. Phys. 33(10), 3874-3900 (2006). 
22 Y. Suh, S. Dieterich, B. Cho, and P. J. Keall, "An analysis of thoracic and 

abdominal tumour motion for stereotactic body radiotherapy patients," 

Phys. Med. Biol. 53(13), 3623-3640 (2008). 
23 S. S. Haykin, Neural networks : a comprehensive foundation, 2nd ed. 

(Prentice Hall, Upper Saddle River, NJ, 1999). 
24 L. Behera, S. Kumar, and A. Patnaik, "A novel learning algorithm for 

feedforward networks using Lyapunov function approach," in Proceedings 

of International Conference on Intelligent Sensing and Information 

Processing, Chennai, India, Jan 4-7, 2004. 



 

 
153

25 J. Kennedy and R. Eberhart, "Particle swarm optimization," in 

Proceedings of the 1995 IEEE International Conference on Neural 

Networks, Perth, Australia, Nov. 27-Dec. 1, 1995. 
26 Y. H. Shi and R. Eberhart, "A modified particle swarm optimizer," in 

Proceedings of the 1998 IEEE International Conference on Evolutionary 

Computation, Anchorage, Alaska, May 4-9, 1998. 
27 Y. Tsunashima, T. Sakae, Y. Shioyama, K. Kagei, T. Terunuma, A. 

Nohtomi, and Y. Akine, "Correlation between the respiratory waveform 

measured using a respiratory sensor and 3D tumor motion in gated 

radiotherapy," Int. J. Radiat. Oncol. Biol. Phys. 60(3), 951-958 (2004). 
28 M. J. Murphy and S. Dieterich, "Comparative performance of linear and 

nonlinear neural networks to predict irregular breathing," Phys. Med. Biol. 

51(22), 5903-5914 (2006). 
 

 



 

 
154

Chapter 6: Brushed permanent magnet DC 

MLC motor operation in an external 

magnetic field 

 
A version of this chapter has been published: J. Yun, J. St. Aubin, S. Rathee, and 

B. G. Fallone, "Brushed permanent magnet DC MLC motor operation in an 

external magnetic field," Med. Phys. 37(5), 2131-2134 (2010). 

 

6.1. INTRODUCTION 

Linac-MR hybrid systems have been proposed1, 2 as well as a cobalt-MR 

system3 in order to achieve real-time image guided radiotherapy. Using the 

magnetic resonance (MR) imager to visualize the tumour and critical structure 

locations in real-time during treatment, a more conformal treatment can be 

delivered providing dose escalation at the tumour and greater normal tissue 

sparing. Delivery of the radiotherapy treatment will be performed with the use of 

multileaf collimators (MLCs), not only allowing the execution of intensity 

modulated radiotherapy (IMRT), but also enabling intrafractional tumour 

tracking.4 Various motors have been created for use in strong magnetic fields such 

as MR environments,5 but current Varian MLC technology uses brushed 

permanent magnet DC (BPMDC) motors. The close proximity of the MLCs to the 

MR imager can create artifacts in the MR imaging volume caused by RF noise 

from the BPMDC motors, as well as motor malfunction due to the large MR 

fringe fields. Our laboratory has shown that the negative effects of RF motor noise 

in MR images are mitigated through the use of appropriate RF shielding around 
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the motors as shown in Chapter 7 of this thesis.6 Magnetic interference would be 

entirely eliminated with use of MR compatible motors.5 In this chapter, however, 

we investigate the effect of external magnetic field on the functionality of 

BPMDC motors such as those used in Varian MLC systems. The fringe magnetic 

fields from a linac-MR hybrid system will intersect the motors at various angles 

depending on the installation geometry as well as on collimator rotation. This 

chapter presents a characterization of Varian MLC BPMDC motor operation at 

various orientations in external magnetic fields.  

6.2. MATERIALS AND METHODS 

The motors were placed in the magnetic field of an EEV M4261 

electromagnet (Chelmsford, England) capable of generating magnetic fields up to 

2000 G and the field strengths were measured using a SENIS GmbH (Zurich, 

Switzerland) three-axis magnetic field transducer. The BPMDC motors 

investigated were a MicroMo Electronics (Clearwater, FL) 20 V carriage motor, a 

MicroMo Electronics 24 V leaf motor used with Varian (Palo Alto, CA) 52 leaf 

MKII MLC systems, as well as Maxon Motor (Sachseln, Switzerland) 12 V half 

leaf and 12 V full leaf motors used with Varian 120 leaf Millennium MLC 

systems. The motors were assemblies consisting of a magnetic encoder for 

positional and speed information, the permanent magnet motor itself, and a 

gearbox. All the motors were tested in three orientations with the permanent 

magnet poles of the motors aligned 1) parallel to the electromagnet poles, 2) 

antiparallel to the electromagnet poles, and 3) perpendicular to the electromagnet 

poles. The one exception is for the carriage motor, which was too large to place its 
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permanent magnet poles perpendicular to the poles of the electromagnet, so no 

experiment was possible in this configuration. The three orientations mentioned 

above were investigated due to the MLC motor orientations with respect to the 

fringe magnetic fields of our biplanar MR magnet (Fig. 6.1). At a 0° collimator 

rotation, the magnetic fringe field will be aligned either parallel or antiparallel to 

the poles of the motors, while at a 90° collimator rotation, the magnetic fringe 

field will be perpendicular to the poles of the motors. Since our MR imager and 

linac rotate in unison,1 the change in motor orientation with respect to the fringe 

field is solely caused by collimator rotation. It is expected that even the alternate 

linac-MR or cobalt-MR designs proposed,2, 3 which incorporate a collimator 

rotation, will have their MLC motors exposed to magnetic fringe fields in the 

directions being investigated. Due to axisymmetry of the magnets used in the 

other proposed designs, the fringe fields at the MLC are not expected to change 

upon azimuthal rotation of the treatment gantry with respect to the magnet. 

 

 
Figure 6.1 (a) MLC and magnetic fringe field orientation for a 0° collimator rotation. The 
poles of the permanent magnet are aligned either parallel or antiparallel to the bi-planar 
magnet poles in this orientation. (b) MLC and magnetic fringe field orientation for a 90° 
collimator rotation. The poles of the permanent magnet are aligned perpendicular to the bi-
planar magnet poles in this orientation. 
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The motors were operated continuously for a minute both in the forward 

and reverse directions for each external magnetic field strength. The motors were 

driven in magnetic fields of increasing strength until any one component of the 

motor (encoder, permanent magnet motor, or gearbox) failed, at which point the 

entire motor was considered to have failed. An encoder failure was established 

when its output motor speed differed from an independent optical tachometer. 

Permanent motor failure would indicate that more than the maximum 

manufacturer specified current was drawn. Excessive mechanical noise and wear 

was considered as gearbox failure. The motor characterization consisted of 

measuring motor speed in revolutions per minute (RPM) and current (mA) as the 

magnetic field strength increased. The changes in motor speed and current from 

those with no applied external field were measured as a function of external 

magnetic field strength. Two fixed loading scenarios were used when testing the 

motors: Motors’ self-load due to friction and gear box (i.e., no external load) and 

an equivalent external load to what the motors would experience in clinical use 

(i.e., clinical load). The clinical load was measured to cause an increase of 5 – 10 

mA in current drawn by the motors when driving a MLC leaf. All motors were 

driven using a variable voltage DC power supply. The motor speed was read from 

the motor’s encoder using National Instruments (Austin, TX) MID-7654 4 axis 

servo motor driver integrated with their LABVIEW 8.5 software, and verified 

with a model 1726 Ametek digital optical tachometer (Largo, FL). Lastly, the 

current was read from a Uni-Trend Group Ltd. (Kwun Tong, Hong Kong) UT55 

digital multimeter. 



 

 
158

6.3. RESULTS AND DISCUSSION 

In all orientations, with one exception, the magnetic encoder failed before 

the motor or gearbox when exposed to an external magnetic field. The field at 

which the encoder failed for each motor depended on the components, sensitivity, 

and orientation of the encoder in the external magnetic field. In every case, failure 

of the encoder arose when the external field strength was large enough to saturate 

the Hall sensor of the encoder used for measuring the change in magnetic field as 

the armature rotated. The motor and gearbox assembly showed no increase in 

temperature above the manufacturer’s set limits (< 85 °C) as they were cool to the 

touch, nor did the current exceed the manufacturer’s set limits in fields of up to 

2000 G. The one exception where the permanent magnet motor itself failed before 

the encoder was the Maxon Motor 12 V full leaf MLC motor, which was unable 

to maintain a consistent speed at 1500 ± 10 G with its poles perpendicular to the 

electromagnet poles. 

Considering that in normal operation the collimator can rotate the MLCs ± 

90°, the minimum field strength at which the encoder fails between the 

parallel/antiparallel orientations and the perpendicular orientation sets the limit 

before motor failure. For example, in the case of the 24 V MicroMo Electronics 

leaf motor, the encoder worked at a field of no greater than 450 G when its poles 

were perpendicular to the electromagnet poles. A ± 90° rotation would place its 

poles in either a parallel or antiparallel orientation where the motor could sustain 

up to 800 G without encoder failure. However, the limit on this motor is 450 G set 

by the perpendicular pole orientation since the motor must operate clinically in 
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either orientation. Table 6.1 illustrates the changes in current and motor speed for 

the maximum field strength after which the encoder failed. 

Table 6.1 The maximum magnetic field strength the motors could sustain before failure is 
given together with the change in current and motor speed (in RPM) for each orientation 
tested. 

 0 G 
Parallel pole 

alignment 
Antiparallel pole 

alignment 
Perpendicular 
pole alignment 

 RPM 
Current 

(mA) 

Field 
strength 
(±10 G) ∆RPM

∆Current
(mA) 

∆RPM
∆Current 

(mA) 
∆RPM 

∆Current 
(mA) 

24 V 
leaf 
motor 

 
982 

 
4.7 

 
450 

 
29±2

 
1.4±0.4

 
-14±2

 
0.7±0.4

 
32±2 

 
1.6±0.4 

20 V 
carriage 
motor 

 
148 

 
0.8 

x102 

 
2000 

 
79±2

 
1.0±0.1 

x102 

 
4±2 

 
0.3±0.1 

x102 

 
N/A 

 
N/A 

12 V 
half leaf 
motor 

 
672 

 
4.8 

 
700 

 
56±2

 
0.6±0.4

 
-15±2

 
0±1 

 
63±2 

 
11.2±0.4 

12 V 
full leaf 
motor 

 
614 

 
18.0 

 
600 

 
45±2

 
4±1 

 
-2±2 

 
0±2 

 
39±2 

 
35±1 

 

The results of the motor characterization in terms of changes in current 

and motor speed are presented in Figs. 6.2 and 6.3 for the 24 V leaf motor and 

MicroMo Electronics 20 V carriage motor, respectively, while the results for the 

Maxon Motor 12 V half leaf and full leaf motors are given in Figs. 6.4 and 6.5, 

respectively. The results were identical within measurement error when the 

motors were run in forward or reverse directions, and the motors showed no sign 

of difficulty reversing direction in any magnetic field strength or orientation 

studied. The changes in motor speed and current were found to be identical in the 

clinical load or no-load experiments due to the relatively small loading of the 

MLC leaves. The trends seen in Figs. 6.2 – 6.5 are the result of a complicated 

interaction between the changes in backward electromotive force generated by the 
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armature rotation and increases in mechanical and magnetic losses with increases 

in motor speed. 

 

Figure 6.2 The changes in current and motor speed are given for the MicroMo electronics 24 
V MLC leaf motor. 
 

 
 
Figure 6.3 The changes in current and motor speed are given for the MicroMo Electronics 
20 V MLC carriage motor. The motor was larger than the bore of the electromagnet in the 
perpendicular orientation, so no data were obtained. 
 

 

Figure 6.4 The changes in current and motor speed are given for the Maxon Motor 12 V half 
leaf MLC motor. 
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Figure 6.5 The changes in current and motor speed are given for the Maxon Motor 12 V full 
leaf MLC motor. 
 

Any changes in motor speed would translate into an increasing or 

decreasing leaf speed. For example, from Table 6.1, the maximum increase of 63 

± 2 RPM was observed for the 12 V half leaf motor which would translate into a 

0.121 ± 0.004 cm/s increase in leaf speed. In the antiparallel direction, a reduction 

of 15 ± 2 RPM was observed translating into a 0.029 ± 0.004 cm/ s reduction in 

leaf speed. The Millennium MLC system, together with Varian ECLIPSE 

treatment planning software, typically uses a maximum projected leaf speed of 2.5 

cm/s at isocenter, which translates into speed of around 1.3 cm/s at the carriage. It 

has also been shown that the motors are in fact able to drive the leaves with a 

projected speed of around 3.5 cm/s at isocenter,7 which translates into a leaf speed 

of around 1.8 cm/s at the carriage. Current MLC motor driver boards monitor 

each motor position individually through the encoder, and modify each leaf 

position individually over time, maintaining a 1.3 cm/s motor speed as well as 

accounting for motor to motor variability due to manufacturing differences and 

wear. Thus, changes in leaf speed quoted above caused by an external magnetic 

field would likely still be compensated by the MLC motor driver board. 
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As the carriage motors and MLC leaf motors work together, the allowable 

magnetic field in which the MLC system as a whole can operate is limited by the 

motor with the lowest tolerance. This means that for the Millennium MLC system, 

the full leaf motor’s field strength limit of 600 G restricts the entire system’s 

operating limit. Therefore, when a linac-MR system is designed, if the fringe 

magnetic fields at the location of the Millennium MLC system is greater than 600 

G, appropriate magnetic shielding would be required. The largest expected fringe 

field strength at the MLC motors due to a large scale 0.2 T biplanar magnet is 

1300 G. Preliminary investigations have shown that simple passive shielding can 

be designed to reduce the fringe fields from 1300 to below 600 G without altering 

the magnetic field homogeneity in the imaging volume beyond shimmable limits. 

However, detailed magnetic shielding design is beyond the scope of this work. 

The strength of the magnetic fringe field at the location of the MLCs for other 

magnets depends on the strength of magnetic field generated, their geometry, as 

well as their active shielding, but it is expected that the MLC BPMDC motors can 

still be shielded to less than 600 G. By incorporating the previously determined 

requirement for RF shielding,6 and using appropriately designed magnetic 

shielding to ensure the BPMDC motors are not subjected to a magnetic field 

larger than the determined tolerances, current off-the-shelf Varian MLC systems 

can be used in a linac-MR system. 

 

 



 

 
163

6.4. CONCLUSIONS 

Four different BPMDC motors used in Varian MLC systems were tested 

in magnetic fields of increasing strength at various orientations to determine an 

operational limit for each motor. No increase in temperature or current over the 

manufacturer’s tolerances was observed for field strengths up to 2000 G. The 

magnetic encoder was observed to fail before the permanent magnet motor or 

gearbox which set the magnetic field tolerance of the whole motor assembly. Thus, 

currently manufactured Varian MLC systems using the BPMDC motors tested 

could be used with linac-MR systems to provide intrafractional tumour tracking, 

provided the necessary steps are taken to ensure the motor RF noise is shielded 

and the motors operate in a magnetic environment whose intensity is below their 

field strength tolerances.  
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Chapter 7: Radio frequency noise from an 

MLC: a feasibility study of the use 

of an MLC for linac-MR systems 

 
A version of this chapter has been published: M. Lamey, J. Yun, S. Rathee, and B. 

G. Fallone, "Radio frequency noise from an MLC: a feasibility study of the use of 

an MLC for linac-MR systems," Phys. Med. Biol. 55(4), 981-994 (2010). 

 

7.1. INTRODUCTION 

A problem encountered in fractionated radiotherapy is the day-to-day 

patient set-up error and internal organ movement during treatment.1-4 Image-

guided radiotherapy (IGRT) aims to reduce dose to normal tissue surrounding 

tumours by reducing the margins needed to account for organ motion, thereby 

minimizing potential side effects of radiotherapy. IGRT is not a new concept; 

considerable work has been and is currently being pursued to develop imaging 

systems to guide radiotherapy.5, 6 The next significant step toward improving 

tumour-normal tissue delineation involves the use of real-time imaging during 

radiotherapy treatment. The use of magnetic resonance (MR) images with 

exquisite soft tissue contrast will enable reductions in the irradiated normal tissue 

volume around the cancerous tissue. Several groups are currently working on 

integrating MR imaging with a megavoltage teletherapy unit.7-10 Our group at the 

Cross Cancer Institute in Edmonton, Alberta, Canada, has successfully integrated 

a 0.22 T MR with a linear accelerator (linac-MR). The linac produces a 6 MV 
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photon beam irradiating objects located inside the 0.22 T bi-planar MR magnet 

through one of its openings. The goal of our linac-MR project is to enable 

acquisition of MR images of the patient prior to and during irradiation.  

Recently, we have reported on the radio frequency (RF) emissions from 

medical linear accelerators.11 Due to the deleterious effects of the extraneous RF 

noise on MR imaging systems, all possible RF sources in a linac-MR system must 

be investigated. It is common practice to use multi-leaf collimators (MLC) for 

conformal or intensity-modulated radiotherapy (IMRT) to shape dose distribution 

around the target volume. Several groups are actively studying the use of an MLC 

for real-time tumour tracking and the effects of MLC movement during 

radiotherapy.12-17 It is well known that the DC motors which drive the MLC 

leaves can produce RF noise.18, 19 Incorporation of an MLC into a linac-MR 

system could create magnetic and RF interferences; these possible interferences 

must be studied.  

This investigation reports on the results of the study on the RF interference 

mentioned above. Using commercially available electric (E) and magnetic (H) 

field probes, the frequency spectrum of the RF noise from functioning MLC 

motors was measured as a function of the magnetic field applied to the motors 

(this chapter uses the convention of H when referring to magnetic field strength 

and B when referring to the magnetic field). In addition, MR images of a phantom 

were acquired with our linac-MR system in order to study the effect of RF noise 

produced by the motors driving MLC leaves on the signal-to-noise ratio (SNR) 

and difference maps of the MR images. 
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7.2. THEORY 

 The measured RF noise from moving MLC leaves is presented as an RF 

power spectral density after subtracting background levels. Time domain signals 

from the E and H field probes were used to obtain measured spectral density, M(f), 

in each case as follows. 

 
N

fDFT
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N
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)(   (Eq. 7.1) 

 

where DFTi(f) is the discrete Fourier transform of one time domain acquisition, 

and N is the number of averages used in the estimation of M(f). 

The measured values, M(f), from the E and H probes are related to the 

corresponding field strengths by applying a performance factor PF(f). For 

example, the E field is related to the measurement as follows. 

 )()( fPFfME     (Eq. 7.2) 
 
Substitute H for E in Eq. 7.2 for the H field. A thorough analysis of the 

performance factors for the near field probes can be found in Burke et al.11 The 

approximate power spectral density (P) of the RF noise was then calculated using 

the following formula: 

 
2

HE
Pupper


    (Eq. 7.3) 

The use of this equation provides an upper limit to the measured power. The 

background levels were subtracted from the measured power with the MLC 

moving: 
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 2/)]()()()()[()( fMfMfMfMfPFfPFP HbEbHEHE    (Eq. 7.4) 

where the individual subscripts refer to the E or H fields, and the subscripts Eb 

and Hb refer to the measured background fields. The variance of the E or H field 

is related to the variances in M(f) and PF(f). The variance on the background 

subtracted power density, P(f), increases with decreasing frequency as shown 

below. Due to the uncertainty of the performance factors we assign an error of 

10% to them. Since 1000 averages were taken in estimating M(f), the error in M(f) 

was determined to be negligible compared to the error in the performance factors. 

With the estimation of a 10% error in the performance factors and neglecting 

errors in M(f), and using error propagation rules, it can be shown that the error in 

the power above background as a function of frequency is given by 

 )]()()()()[()(07.0)( fMfMfMfMfPFfPFfP HbEbHEHE       (Eq. 7.5) 

Both E and H field performance factors increase as frequency decreases. 

Therefore, the variance on the power increases at lower frequencies. 

We have investigated the emissions of RF noise from DC motors. Models 

of the emissions of RF noise from DC motors have been suggested. Suriano et 

al.18 suggest a model which consists of a monopole antenna above a ground plane. 

When interpreting our data this model was adopted. 

7.3. MATERIALS 

An EEV M4261 electromagnet (now e2v, Chelmsford, England) with a 

DCS 33-33 (Sorensen, Azusa, CA, USA) power supply was used to produce a B 

field. The MLC motors were placed in the electromagnet poles thus subjecting the 
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MLC motors to the B field. The size of the electromagnet was such that 

approximately half of the motors of one side of the Varian 52-leaf MLC were in 

the field. With one motor driving one MLC leaf the E and H fields were measured 

using a near field HZ-11 probe set (Rohde and Schwarz, Munich, Germany). The 

E probe measures the total E field strength while the H probe was used to measure 

the three individual orthogonal components of the H field strength; these three 

components were added in quadrature to obtain the total H field strength. A 

3M12-2-2-0.2T (Senis Gmbh, Zurich, Switzerland) Hall probe with a three-axis 

type C-H3A-E3D-1%-0.2T magnetic field transducer was used to measure the 

applied B field on the MLC motors under test. The RF noise from three motors 

was investigated: (1) a 24 V DC brushed motor used in a Varian 52-leaf MLC 

(Part: 886603-03, Micro MO Electronics, Clearwater, FL, USA), (2) a 24 V DC 

brushed motor used in a Varian 120 Millennium MLC (Part: 344516, Maxon 

Motor, Sachseln, Switzerland) and (3) a 48 V brushless DC fan motor (Part: 

4712KL-07W-B30, NMB Technologies Corporation, Chatsworth, CA, USA). 

One thousand DFT averages were taken for each of the Varian 52-leaf, Varian 

Millennium and brushless fan motors. The field probes were used to measure the 

power spectral densities in the following cases: (1) the background RF without 

motor movement, (2) the RF noise due to functioning motors without an applied B 

field, (3) the RF noise produced by functioning motors subjected to 50, 100 or 

500 Gauss B field and (4) the RF noise produced from 13 functioning Varian 52-

leaf motors driving 13 MLC leaves as a function of distance from the MLC with 

no applied B field. 
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The motor drive board contains 26 H-Bridge chips, which were used to 

control all motors with a 400 W power supply (SMQ400PS24-C, XP Power, Haw 

Par Technocentre, Singapore). For real-time control of many motors (on/off, 

direction), a PCI-bus control module based on field programmable gate arrays was 

used (National Instruments, Austin, TX). To program and implement motion 

patterns of the MLC, LabVIEW v.8.5 (National Instruments, Austin, TX) was 

used. 

In a separate investigation, MR images of a phantom were acquired with 

our 0.22 T linac-MR system.7 One half of a Varian 52-leaf MLC was placed near 

the MR magnet and phantom images were acquired while 13 MLC leaves were 

moved. In one case, the MLC and the associated cables were non-shielded while 

in the other case the MLC and cables were shielded. The phantom was an acrylic 

rectangular cuboid (15.95 × 15.95 × 25.4 mm3) with three holes of diameters 2.52, 

3.45 and 4.78 mm drilled into it, inserted into a 22.5 mm diameter tube and filled 

with a 10 mM solution of CuSO4. The MR console is as described by Fallone et 

al.,7 a TMX NRC (National Research Council of Canada, Institute of 

Biodiagnostics, Winnipeg, MB, Canada). The console software is based on 

Python programming language (Python Software Foundation, www.python.org), 

version 2.3.4, to allow the user full control of development and modification of 

pulse sequences. Analogic (Analogic Corporation, Peabody, MA) AN8295 

gradient coil amplifiers and AN8110 3 kW RF power amplifiers are used in the 

TMX NRC system. 
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7.4. METHODS 

The E and H field strengths were measured at distances perpendicular to 

the movement of the MLC leaves. The set-up used to measure the RF noise is 

shown in Fig. 7.1. This was done since the RF noise at the position of an MR coil 

is the quantity of interest. The time domain signal from the field probes was first 

amplified using a Rohde and Schwarz broadband preamplifier (model 7405-

907BNL), and then transferred from the oscilloscope to a PC using a Keithley 

KUSB 488 GPIB interface (Keithley Instruments Inc., Cleveland, OH). The 

software program DADiSP (DSP Development Corporation, Newton, MA) was 

then used for calculating the E and H field spectral density, as per Eq. 7.1. 
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Figure 7.1 Set-up used to measure the RF noise from a functioning MLC. A loop antenna 
was used to measure the individual magnetic field strength components while a ‘ball’ probe 
was used to measure the total electric field strength. Not shown is the electromagnet used 
when a B field was applied to the MLC motors. 
 
   

The resulting DFTs had bin widths of 50 kHz in the frequency domain. As 

mentioned previously, the number of signal averages in Eq. 7.1 was 1000 for each 

of the three motors investigated. The approximate power spectral density of the 

RF noise was then calculated using Eq. 7.3, which provides an upper limit to the 

measured power. The measured background power spectral density was 

subtracted from the RF power spectral density produced by functioning motors in 

each case. Two distinct power spectral density measurements were taken: (1) the 

RF noise from a single continuously functioning motor as a function of the 

applied B field at a distance of 50 cm and (2) the RF noise as a function of 
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distance from one half of a Varian 52-leaf system with 13 motors continuously 

moving at the distances of 50, 70 and 100 cm. For measurements near background, 

the standard deviation was estimated by measuring 20 background power 

spectrums, each of which was done with 1000 averages. The standard deviation of 

these background power spectrums at each frequency was then used as our 

estimate of the error.  

The set-up used for the imaging study is shown in Fig. 7.2. Firstly, an MR 

image was acquired with the MLC not present. Secondly, MR images were taken 

with the MLC at a specific distance from the center of the magnet, first with the 

MLC static and then with 13 leaves moving. Images were acquired with the MLC 

plus cables unshielded and shielded. 

 

Figure 7.2 Set-up used to acquire images of a phantom while 13 leaves of an MLC were 
moved continuously. Images were taken with the MLC leaves static and then moving as well 
as with the MLC motors and cables non-shielded and shielded. 
 



 

 
174

 
The shielding consisted of a copper box enclosing the motors used to drive 

the MLC leaves. A prototype rectangular MLC shielding box (8.75″ × 9.25″ × 4″) 

was fabricated which has five closed faces. Each face was manufactured using 

0.02″ thick copper sheets. A small slit was cut out from one of the faces to allow 

the MLC control cables to pass into the copper box. The MLC was inserted into 

the copper box via the open face. After insertion, the open seams between the 

MLC and RF shielding box were sealed with conductive copper tape. The ribbon 

cables used to control movement of the motors were wrapped in aluminum foil. 

Any small holes or seams were covered over with conductive copper tape or filled 

with copper wool. In this experiment 13 MLC leaves were moved at a time from a 

Varian 52-leaf system. The MLC was placed on a stand such that the approximate 

height of the leaves and motors was the same as that of the coil used to image in 

the 0.22 T MR. Images with stationary MLC leaves investigated a possible 

magnetic effect from the presence of the MLC. The distances presented herein are 

those from the face of the MLC to the center of the MR coil, which was located 

approximately at the center of the MR magnet. Images were taken in four 

different orientations of MLC and imaging coil: (1) the MLC and coil oriented as 

shown in Fig. 7.2, (2) the coil as shown in Fig. 7.2 and the MLC leaves oriented 

vertically, (3) the MLC leaves oriented vertically, and the coil and phantom 

rotated 90° toward the MLC and (4) the MLC as shown in Fig. 7.2 and the coil 

and phantom rotated 90° toward the MLC. The following settings were used in a 

gradient echo MR imaging sequence; flip angle: 60°, slice width: 5 mm, 

acquisition size: 128 (read), 128 (phase encode), FOV: 50 × 50 mm2, TR: 300 ms, 
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TE: 35 ms, 1 signal average. The resulting image quality or change in image 

quality was evaluated using the SNR and image subtraction (MLC leaves 

stationary to MLC leaves moving for the same orientation and distance). The SNR 

for each resulting image was calculated by taking the mean pixel intensity in a 

solution containing region inside the largest of the three holes in the phantom, 

divided by the standard deviation in a similar sized region of the noise near one of 

the corners of the image, thereby avoiding any possible artifact effects in the 

phase or read encode directions. 

7.5. RESULTS 

Figure 7.3 shows the measured RF noise by the E field probe in the time 

domain from a Millennium motor. The ‘spike’ shown is one of the larger spikes in 

both amplitude and duration. 
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Figure 7.3 One of the larger RF ‘spikes’ as measured by the E probe and broadband 
preamplifier from the Millennium MLC motor. These spikes were resolved by a time 
domain resolution of 0.5 ns. The measurement is taken in a clinical vault with the 
experimental set-up shown in Fig. 7.1. 
 
 

Figures 7.4 - 7.6 show the results of the RF power spectral density above 

background as a function of the applied B field for each of the three motors 

investigated at a measurement distance of 50 cm. Data have been shown in the 

frequency range 8 – 70 MHz, and these data are then useful for all linac-MR 

systems operating with an MR between 0.2 and 1.5 T. 
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Figure 7.4 Background subtracted RF noise power spectral density measured from a Varian 
52-leaf MLC motor as a function of the applied magnetic field at 50 cm. 
 
 

 
Figure 7.5 Background subtracted RF power spectral density measured from a Millennium 
MLC motor as a function of the applied magnetic field at 50 cm. 
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Figure 7.6 Background subtracted RF power spectral density as measured from a brushless 
fan motor as a function of the applied magnetic field, 50 cm from the motor. 
 
 

Figure 7.7 shows the measured power spectral density from 13 motors 

driving 13 leaves from a Varian 52-leaf MLC at the distances of 50, 70 and 100 

cm. 
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Figure 7.7 Background subtracted RF power spectral density as a function of distance from 
a Varian 52-leaf MLC with 13 leaves moving. No magnetic field was applied to the motors in 
this case. 
 
 

Figure 7.8 shows the three individually measured Cartesian magnetic field 

strength components in the range 8 – 70 MHz, clearly showing that one 

component, Hy, of the measured field dominates. In this case 13 motors from one 

bank of the Varian 52-Leaf MLC were continuously moved. The Cartesian 

orientations with respect to the MLC are shown in Fig. 7.1; specifically Hy is 

along the same direction as the MLC leaf movement or the motor axis. 
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Figure 7.8 Background subtracted individual Cartesian components of the magnetic field 
strength from the MLC, with 13 leaves moving. The Cartesian orientations with respect to 
the MLC orientation are shown in Fig. 7.1. 
 
 

The second part of the study involved imaging a phantom while 13 leaves 

of a Varian MLC system were moved (Fig. 7.2). Table 7.1 shows the results of the 

measured SNR for each of the previously described orientations used. For each 

orientation the SNR is shown with the MLC unshielded, leaves stationary and 

moving (columns 2 and 3), and then with the MLC shielded, leaves stationary and 

moving (columns 4 and 5).  
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Table 7.1 SNRs of the image of a phantom with half of a Varian 52-leaf MLC brought near 
the MR. SNRs shown are for the MLC stationary and 13 MLC leaves moving both in the 
non-shielded and shielded cases. 

No shielding With shielding 
Distance (cm) SNR MLC 

stationary 
SNR MLC 

moving 
SNR MLC 
stationary 

SNR MLC 
moving 

 
First orientation 

70 48 29 49 51 

100 46 46 52 49 

 
Second orientation 

70 46 35 52 53 

100 45 44 51 52 

 
Third orientation 

70 57 48 57 58 

100 58 56 58 58 

 
Fourth orientation 

70 56 51 58 56 

100 59 57 56 55 

 

An acquired image in the second orientation (i.e. coil as in Fig. 7.2) with 

no MLC present is shown in Fig. 7.9.  

 

Figure 7.9 MR image of a phantom acquired in the second orientation with the MLC 
away from the MRI. 
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The acquired images with the MLC at 70 cm from the MR coil for each 

unshielded and shielded case in the second orientation are shown in Fig. 7.10.  

 

Figure 7.10 Images at 70 cm obtained with the second orientation: (a) MLC unshielded and 
stationary, (b) MLC unshielded and 13 leaves moving, (c) MLC shielded and stationary and 
(d) MLC shielded and 13 leaves moving. 

 

Figure 7.11 shows the subtraction of Fig. 7.10.c and Fig. 7.10.d; this is the 

case where the MLC is shielded.  
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Figure 7.11 Subtracted image with the MLC and phantom in the second orientation. The 
MLC and cables were shielded; Fig. 7.10.c and Fig. 7.10.d were used for the subtraction. 
 
 

Figures 7.9 and 7.10.a illustrate that no difference in the SNR was 

measurable when the MLC is located 70 cm from the MRI coil compared to when 

the MLC is not present or near the MRI. 

In a separate investigation the SNR degradation of the MR image was 

determined by moving a different number of MLC leaves. With the MLC 

stationary and located at 70 cm from the MRI coil, we measured an SNR of 72 in 

the MR image. When 6, 12, 18 and 24 motors were moved at a time, the SNR in 

an acquired image dropped to 54, 42, 44 and 39 respectively. Several images were 

acquired for each scenario to determine the reproducibility of the measured SNR. 

Five images acquired with 12 motors operating produced SNRs within 42 ± 5. 

The SNR did not always decrease with increasing number of motors since some 

motors produced more noise than others. However, when 24 motors were shielded 

using the prototype box, no degradation in SNR compared to the stationary MLC 

was observed. 
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7.6. DISCUSSION 

The use of an MLC during the radiotherapy process will be important for 

linac-MR systems, which can take advantage of real-time tumour imaging and 

tracking with dynamic MLC delivery. With the close proximity to an MR unit, the 

MLC leaves and the motors used to drive them will be placed in a magnetic field. 

The motors will also produce RF noise which can degrade image quality. The RF 

power spectral density was measured from three motors as a function of the 

applied magnetic field to the motors. In the time domain, we could see small 

spikes of measured noise when the MLC motors were running. These spikes were 

more prevalent for the Millennium MLC motors. The Millennium MLC motor 

also ran faster thus contributing to the increase in visible RF noise. The difference 

in motor speed was observed while the motors from millennium MLC and 52-leaf 

MLC drove the MLC leaves simultaneously. These small spikes seen in the time 

domain are a result of arcing between the brushes and commutator bars in the 

motors resulting in the production of broadband noise.18 The spike shown in Fig. 

7.3 lasts on the order of a few microseconds. However, generally these spikes 

were on the order of a hundredth to a few tenths of microseconds. No visible RF 

noise above background was seen in the time domain when the brushless fan 

motor was operating, although in the frequency domain a small amount is visible 

(Fig. 7.6). 

Although small infrequent spikes were seen in the time domain for the 

Varian 52-leaf motor, no significant RF noise above background was seen in Fig. 

7.4. For the Millennium MLC motor (Fig. 7.5), there is a small dependence on the 
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applied B field. In the frequency range 15 – 20 MHz, the RF power reduces for 

higher applied B field. No other systematic dependence can be seen. Above 40 

MHz there seems to be no measured RF noise, and therefore our measurements 

indicate that little or no RF noise exists at the Larmor frequency for MR systems 

around or above 1 T. The function and RF noise production by a brushless fan 

was investigated since brushless motors produce less RF noise.20 Above an 

applied field of 100 G the brushless fan motor showed both audible and visible 

(slower revolutions per minute) strain; therefore, no results above 100 G are 

shown for this motor. This noticeable strain was likely due to the reduced 

magnetic shielding around the fan motor as compared to that of the MLC motors 

used. Near 15 MHz and between 30 and 55 MHz there seemed to be a dependence 

on the applied B field. The authors are uncertain as to why the measured power 

density seems to dip below that of background around 15 MHz; this effect 

requires further investigation. When the RF noise from 13 motors from a Varian 

52-leaf MLC was studied as a function of distance (Fig. 7.7), no clear dependence 

could be seen. 

The increased noise in the measured RF noise power spectral density at 

lower frequencies in Figs. 7.4, 7.6, and 7.8 is a result of the increasing 

performance factor of both the E and H probes. The variance on the measured 

power spectral density is proportional to the product of the E and H antenna 

factors (as shown above); these factors increase as frequency decreases, therefore 

leading to larger variance at lower frequencies. Near the lower frequencies shown 

in Figs. 7.4 - 7.8, the background subtracted power spectral density dips below 

zero. This does not mean that the actual power is negative, which would be 



 

 
186

unphysical; this occurred since we were trying to measure powers similar to that 

of the background power. Besides the small area near 15 MHz in Fig. 7.6, the data 

illustrate that on average we could not differentiate between the measured 

background power and that of the power emitted by the motors. The background 

was subtracted in the frequency domain since, if subtracted in the time domain, it 

would lead to misleading results near lower frequencies with all the data shown 

being positive. In such a case one would then presume an average power above 

zero existed, which is not the case. 

As previously stated, to estimate the error in our background subtracted 

power spectral densities, the standard deviation at a particular frequency was 

determined from 20 background measurements. The errors at 8, 10, 15, 20 30 and 

50 MHz are estimated as 0.8, 0.7, 0.3, 0.1, 0.07 and 0.07 nW/m2. The data shown 

in Figs. 7.4 - 7.8 become ‘noisy’ near 10 MHz and below, because the estimation 

of the error is similar to the variance in the data shown in these plots. The 

standard deviations at 1 and 2 MHz were 10 and 4 nW/m2. 

Suriano et al.18 propose a model for the emission of RF noise from a DC 

motor. The model consists of a monopole above a grounding plane with arcing 

from the brushes to commutator acting as the input source. A monopole above a 

ground plane acts as a dipole antenna; the E and H near fields are given in Balanis 

et al.21 A dipole antenna preferentially emits power perpendicular to the axis of 

the dipole, while no power is emitted by the dipole along its axis. When 

measuring the RF noise perpendicular to the direction of MLC motion (as shown 

in Fig. 7.1), the model predicts a single H field component. The data presented in 

Fig. 7.8 agree with this model and with the specific component expected to be 
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present. When data are measured along the direction of motion of the MLC leaves, 

the model predicts zero measured power. We measured the power along the MLC 

leaf movement axis and found that in the same frequency range shown (8 – 70 

MHz), the power spectral density is below 1 nW/m2. We might expect a small 

amount due to the fact that our cable system did not present a perfectly straight 

and rigid monopole. Thus, these measurements qualitatively support this 

prediction. We do not purport to say that the model by Suriano et al.18 has been 

rigorously validated, but only that our measurements of the three Cartesian 

components of the H field both perpendicular and parallel to the movement of the 

MLC leaves support the model. 

Images of the phantom were taken by placing the MLC at the distances of 

70 and 100 cm (Fig. 7.10) from the MR coil. From the SNR data presented in 

Table 7.1, we can see that when the MLC was unshielded the measured SNR was 

reduced in each of the MLC-coil orientations when the MLC was functioning. 

However, also shown in Table 7.1 is the measured SNR when the MLC motors 

and cabling were shielded. In each of the shielded orientations there was neither 

visible difference between the images nor any experimentally significant 

difference in the measured SNR obtained with and without continuous MLC 

motion. These results illustrate that we can effectively shield the RF noise 

produced by an MLC to the extent that no degradation in image quality and SNR 

occurs. In each case several images were taken and no effects of the RF noise 

produced by the shielded MLC plus cables were noticeable. Below 70 cm 

magnetic effects from the MLC casing to the MR started to become noticeable; 

therefore, the RF noise could not be studied independently of these magnetic 
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effects. When the MLC was placed at 60 cm from the center of the MR, image 

artifacts were seen even when the MLC was stationary. For our linac-MR system 

we are fabricating an MLC casing which will be constructed of non-magnetic 

materials to reduce magnetic effects. We note that an MLC positioned at 70 cm is 

further away from isocenter than current clinical systems; however, for a linac-

MR system the MLC may be placed around 70 cm from isocenter. In Table 7.1 

there is also a slight difference between the measured SNR when the MLC was 

shielded as compared to that when the MLC was not shielded (for instance even 

when the MLC was held static). This difference was due to having to re-orient the 

phantom or reposition the MLC; thus, the same image slice may not have been 

imaged. However from one static MLC image to the associated image with the 

MLC moving nothing was changed in the set-up. The parameter of interest was 

the change in SNR (or image quality) from the static MLC case to the associated 

SNR for a functioning MLC. 

Images of the phantom were subtracted from one MLC stationary case to 

the associated MLC leaves moving case. The results for the second orientation 

(Fig. 7.11) showed that when the MLC motors and cables were shielded the 

images were nearly identical. When the MLC was shielded, no visible differences 

between the MLC leaves stationary and MLC leaves moving images could be 

seen. 

When the MR image data were viewed in k-space, random noise was seen 

when the MLC was functioning and unshielded. This random noise in k-space 

leads to an overall increase in the noise of the image. After the MLC was shielded 

however, this random noise was not seen in k-space. 
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The final position of the MLC with respect to the MRI center has not been 

determined. Fallone et al.7 reported on the fringe field of our prototype system. In 

the range 50 – 70 cm from the MRI center the measured fringe fields were in the 

range of 20 – 250 Gauss. If no magnetic shield is constructed for the MLC the 

motors themselves will be subjected to these fringe fields. The operation of the 

MLCs in a magnetic field is an important consideration for linac-MR systems. 

Qualitatively during the acquisition of our measurements, the brushed MLC 

motors used in this work showed no strain or change in operation, such as motor 

speed, when subjected to a 500 Gauss field. 

7.7. CONCLUSIONS 

We have shown that the RF noise produced by a continuously functioning 

MLC can be effectively shielded. No difference can be seen in image quality 

when the shielded MLC was stationary and when the motors were used to drive 

the leaves. The currently used Varian 52-leaf MLC motors and Varian 

Millennium 120-leaf MLC motor did not show any trouble operating in up to a 

500 Gauss applied field, nor did they produce a significant change in radiated RF 

noise. If brushless motors are to be used in place of brushed motors for reduced 

RF noise production, magnetic shielding may be required. This study has shown 

that an MLC can be incorporated into a linac-MR system. 
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Chapter 8: First demonstration of 

intrafractional tumour-tracked 

irradiation using 2D phantom MR 

images on a prototype linac-MR 

 
A version of this chapter has been published: J. Yun, K. Wachowicz, M. 

Mackenzie, S. Rathee, D. Robinson, and B. G. Fallone, “First Demonstration of 

Intrafractional Tumor-Tracked Irradiation using 2D Phantom MR Images on a 

Prototype  linac-MR,” Med. Phys. 40(5), 051718 (12pp.) (2013). 

 

8.1. INTRODUCTION 

Intrafractional tracking of mobile tumours is of considerable interest. 

Several groups are actively researching intrafractional tumour tracking systems1-3 

to deliver highly conformal radiation dose to mobile tumours. Krauss et al.4 and 

Sawant et al.2 have performed phantom studies demonstrating the feasibility of 

2D intrafractional lung tumour tracking. In these studies, a tumour surrogate was 

driven according to a sinusoidal trajectory and its position was detected using a 

monitoring system developed by Calypso Medical Technologies (Seattle, WA).  

Cho et al.3 suggested the simultaneous use of kV/MV imaging for 3D 

intrafractional tracking, where a gold marker was used as a tumour surrogate. 

Also, commercial systems are available to perform intrafractional tumour 

tracking.5-7 

Despite the wide variety of tracking techniques, all current tracking 

methods utilize indirect tracking through the use of internal and/or external 
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tumour surrogates. Reliance on surrogates, however, has been shown to be 

problematic for accurate tumour tracking because (1) implanted seeds, for liver 

and prostate tumours,8 have been shown to migrate by 5.1 mm and 4.5 mm from 

their initial positions, respectively. In some cases, the seeds might be completely 

dislodged during the course of the radiation treatment. Imura et al., in a study of 

57 patients, reported that 25 % of total surrogates was lost during the course of 

lung tumour treatments;9 (2) tracking using external surrogates assumes good 

correlations between internal tumour motion and external surrogate displacement, 

whereas mismatches between tumour and surrogates up to 9 mm have been 

shown;10, 11 and (3) any deformation of tumour shape is completely unknown 

during tracking. Moreover, since the implanted seeds are usually placed only 

within the tumour, the motion of the nearby soft tissue and healthy organs, and 

their relationship to the tumour, are not known during tracking. Therefore, to 

account for the uncertainty in correlation between tumour position and surrogates, 

extended regions surrounding the lesion must be irradiated in order to ensure 

sufficient target coverage.12 

Although modern imaging systems can provide 3D or 4D anatomical 

information, all imaging systems are still surrogates to the actual tumour shape, 

size and location. In 2008, it was claimed that the imaging modalities used in 

cancer treatment must be improved by three to four orders of magnitude in terms 

of their tumour-to-background ratio, in order to make meaningful impact on 

cancer treatment.13 While the improvements of imaging systems are in progress, 

the limitations of relying on imaging in radiation treatment need to be 

acknowledged.  
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In contemporary radiation treatment process, computed tomography (CT) 

based target definition is the standard of care. However, large efforts have been 

made to incorporate magnetic resonance imaging (MRI) in target definition due to 

its superior soft tissue contrast that enables to visualize tumour extent in more 

detail.14, 15 A recent study investigated the dose calculation accuracy for different 

tumour sites (lung, prostate, brain, head and neck) from 40 patients using MRI 

data, and compared it to CT based treatment plans. Here, the target volume was 

defined on MR images and registered to the CT images. Whether the treatment 

plan was based on CT or MRI, this study showed that nearly the same number of 

monitor units  (< 1.6 % difference) were required to deliver the prescribed dose.16 

Our group at the Cross Cancer Institute reported the first integrated 

radiotherapy-MR system known as a linac-MR.17 With this system we have 

investigated the requirements for MRI-based intrafractional tumour tracking. 

These requirements include (1) characterization of multi-leaf collimator (MLC) 

motor operation in an external magnetic field,18 (2) measurement of radio 

frequency (RF) noise from MLC and shielding technique,19 (3) development of 

lung tumour autocontouring software20 compatible with MR images, and (4) 

development of lung tumour motion prediction software for MRI-based 

tracking.21  

We have focused on lung tumour tracking due to the potential for a large 

range of motion during treatment delivery. Various studies have shown that lung 

tumour may move up to 40 mm in superior–inferior (SI), 15 mm in anterior–

posterior (AP), and 10 mm in left–right (LR) directions during normal 

breathing.22-24 Volume changes up to 20 % and rotations up to 50 degrees with 
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respect to each axis have also been reported.25 Several methods have been used to 

reduce the range of respiratory motion in radiotherapy, including active-breathing 

control (ABC) or forced shallow breathing with abdominal compression (FSB).26 

In ABC, the patient must follow the breathing instructions, thus many infirm 

patients may have difficulties to comply. FSB may cause problems for the patients 

with particularly poor pulmonary function, and those with percutaneous 

gastrostomy tube. Similarly, the patients with large abdominal aortic aneurysms 

may not be suitable for FSB.27 Because it is not always possible to apply the 

methods of respiratory motion reduction, we focused on tracking lung tumour 

motions during normal breathing. 

In this chapter, we present the first physical demonstration of 

intrafractional tumour tracking using 2D MR images that is built upon our 

previous investigations.18-21 An MR compatible motion phantom was used to 

simulate tumour motion during beam delivery. We present our experimental set-

up, different tracking scenarios that we tested, and their results. 

8.2. MATERIALS AND METHODS 

8.2.1. Experimental set-up 

8.2.1.1. Linac-MR and MLC 

Figure 8.1 shows our set-up for tracking experiments. We used a prototype 

linac-MR for intrafractional MR imaging and simultaneous beam delivery. A 

Varian 52-leaf MK-II MLC was used for beam collimation during tracking, which 
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was controlled by in-house built software and electronics. In this study, 10 MLC 

leaves (5 in each carriage, MLC-L and MLC-R in Fig. 8.1) were used for tracking.  

 

Figure 8.1 Experimental set-up: A) brief diagram of entire set-up (top down view), B) 
prototype linac-MR and phantom setting with RF cage open, C) side view with RF cage 
closed 
 

All MR images were acquired using a balanced steady state free 

precession (bSSFP) technique in the beam’s eye view (BEV) plane (FOV = 256 

mm × 192 mm, 2 mm × 2 mm × 30 mm, TE = 1.3 ms, TR = 2.6 ms, Dynamic 

Scan Time = 250 ms, i.e. 4 fps). A top down view of MR imaging slice is 

indicated in Fig. 8.1.A, which is at the center of the magnet and perpendicular to 

the beam. A sample sequence used to perform tracking in this study is shown in 

Fig. 8.2. More details regarding bSSFP sequence can be found in Bernstein.28 
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Figure 8.2 Sample bSSFP sequence used to perform tracking in this study 
 

8.2.1.2. MR compatible motion phantom 

Figure 8.1 illustrates the phantom set-up during tracking experiments. A 

more detailed phantom design is shown in Fig. 8.3. Our phantom was driven by a 

programmable motor using a shaft that is both non-magnetic and non-conductive 

to create 1D motion along the axis of the RF coil as indicated in Fig. 8.3.D. This 

creates phantom motion in the direction perpendicular to the x-ray beam along the 

leaf motion direction of the MLC.  

 
Figure 8.3 Motion phantom: A) phantom parts, B) assembled phantom, C) MR image during 
tracking and beam delivery, D) phantom and RF coil placed in the linac-MR 
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This phantom is made of two symmetrical parts as shown in Fig. 8.3.A. 

Here, the central custom-shaped target represents a tumour volume, which is 

composed of 70 g/l of porcine skin gelatin containing approximately 10 mM of 

aqueous copper sulfate (CuSO4:5H2O) and 0.1 % sodium benzoate (NaC6H5CO2). 

T1 and T2 values of the target material were measured to be approximately 22 and 

16 ms, respectively. Copper sulfate was added to reduce the relaxation times of 

the gel, which allowed for better-quality T1-weighted imaging used extensively 

for scouting. Sodium benzoate was added as a preservative. Density of the target 

material was measured to be 0.99 g/ml, which is very similar to water. Because 

the target material is mostly composed of water with a small amount of skin 

gelatin, the effective atomic number of the target material should be equal to that 

of water, which is known to be 3.4.29 A small impact of this material on the dose 

delivered to the film does not influence the result of this study, because film 

comparisons are all relative. In in-vivo MR images using the bSSFP sequence, the 

lung background is darker than the tumour.30 For our phantom, the target is 

embedded in a polystyrene case that contributes no MR signal in the bSSFP 

imaging sequence generating darker background to the target, and provides a rigid 

casing to contain the target material. 

We inserted Gafchromic EBT2 film (International Specialty Products, 

Wayne, NJ) between the two cases to measure radiation exposure during tracking. 

To compare radiation exposures in different films, the following registration 

technique was used. Prior to irradiation, each film was placed and fixed on the 

case as shown in Fig. 8.3.A. Then, we visually inspected the 8 inner corners of the 
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phantom shape and manually marked them on the film using permanent ink. 

These are referred to as surrogate markers as indicated by red dots in Fig. 8.3.A.  

Figure 8.3.B shows the phantom in its assembled state. An MR image of 

this phantom acquired during the tracking experiment is shown in Fig. 8.3.C 

illustrating the MR signal from the gelatin “tumour” surrounded by background 

signal. This image was taken while the phantom and MLC were in motion during 

beam delivery. RF noise from the MLC is shielded using the method developed in 

a previous study.19 Figure 8.3.D shows the phantom and RF coil placed in the 

linac-MR. 

8.2.1.3. MLC and phantom position monitoring during tracking 

Each MLC leaf is driven by a DC servo motor located in the back of the 

carriage. Each motor has a magnetic encoder that detects rotor position, which in 

turn, provides leaf position. Hence, 10 encoders (5 in each carriage, Encoder-L 

and Encoder-R in Fig. 8.1) were used to sense and monitor leaf motions in this 

study. The DC servo motors were controlled by motor drivers programmed 

through LabVIEW scripts (LabVIEW 2011, National Instruments, Austin, TX) 

implemented on a field programmable gate arrays (FPGA) chip.  

Our motion phantom has an optical encoder (Fig. 8.1) placed on the shaft 

that measures phantom position. The optical encoder reading was primary 

feedback to a separate motor driver that was programmed to control phantom 

motions.  

During the tracking experiments, we recorded all encoder readings from 

each MLC leaf and the phantom. All encoder readings were taken at the same 



 

 
200

instance every 50 ms and time-stamped using an internal clock (millisecond 

resolution) in the LabVIEW software. 

8.2.1.4. Tumour motion simulation 

We drove our phantom following a pre-programmed motion pattern during 

the tracking experiments. The phantom was moving in the read encoding direction. 

The speed of phantom when the image was taken depends on the asynchronous 

phase of motion pattern, ranges from 0 to 3.1 cm/s. Two different motion patterns 

were used in this study to simulate tumour motions: (1) a sine pattern (period: 6.7 

s, motion range: 4 cm, max. speed: 1.8 cm/s) representing ideal, periodic tumour 

motions, and (2) a modified cosine pattern (period: 5.1 s, motion range: 4 cm, 

max. speed: 3.1 cm/s), following the form y(t) = a·cos4(t)+b, which represents 

more realistic lung tumour motions with time t  and constants a and b. Lujan et 

al.31 suggested the modified cosine pattern to model breathing motions, which is 

shown to be related to abdominal tumour motions including lung tumours.32 

These two patterns have been used in previous studies to validate surrogate based 

tracking systems.1-4 The motion range and period of these motion patterns were 

determined in reference to the previously reported lung tumour motions in the SI 

directions.22, 23 Specifically, the motion range was selected from the extreme end 

of the spectrum to challenge the tracking system. 

8.2.1.5. Beam calibration to MR images 

As shown in Fig. 8.1.A, MLC is the only beam compensator/collimator 

used in the linac-MR. The relationship between MLC leaf positions and 
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corresponding beam shape and position at the imaging slice indicated in Fig. 

8.1.A was established through film measurements. Based on this, we performed 

the following steps to calibrate the radiation beam to MR images.  

Firstly, MR images were acquired when the phantom was placed at 3 

known locations within the imaging plane: (1) at the center of the magnet (i.e. 

equilibrium position), (2) 2 cm inward from the equilibrium position along the 

motion direction in Fig. 8.1.A, and (3) 2 cm outward from the equilibrium 

position. The 2 cm displacement was chosen to encompass the potential motion 

range of the phantom used in this study.  

Secondly, we controlled the MLC to conform the radiation beam to the 

target shown in the MR images at the above 3 locations. The accurate beam shape 

concordance with MR image was confirmed with film measurements. From this, 

we established the relationship between the imaging coordinates of the MRI and 

MLC leaf positions for 3 different locations in the imaging plane.  

The MLC leaf positions for any other possible locations tracked using the 

intrafractional MR images were calculated by linear interpolation between the 3 

calibration points. 

8.2.2. Software development for intrafractional tumour 

tracking 

8.2.2.1. Autocontouring software 

An autocontouring software used in this study is based on our previously 

developed autocontouring algorithm,20 which determines both the shape and 

position (i.e. centroid) of a tumour from each intrafractional MR image in less 
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than 5 ms. The software was developed to perform with 2D MR images. There 

exist five parameters that may impact the accuracy of autocontouring within this 

software, thus the values of these parameters must be determined prior to 

autocontouring. Parameter optimization uses images that are acquired prior to 

tracking and contain the outlined target. The autocontouring software is fully 

automatic in its determination of the parameters as indicated in Sec. 3.2.2.1.b of 

this thesis (also published in Yun et al.,20 Sec. II.A.1.b) More discussions 

regarding the parameter optimization process in this study follow in Sec. 8.2.3.1 

of this thesis. 

8.2.2.2. System delay and motion prediction software 

System delay is the time interval between the detection of current tumour 

position data (i.e. image acquisition) and the beam delivery upon the MLC 

reaching the target position. In our tracking method using the linac-MR, system 

delay is comprised of image acquisition, image processing, and MLC motion 

times.  

To determine the amount of system delay, we performed tumour tracking 

without a motion prediction capability using both motion patterns. During this test, 

the positional changes of the phantom and MLC were monitored via the optical 

and magnetic encoder readings respectively, as explained in Sec. 8.2.1.3. These 

motion data were plotted as a function of time, and we calculated system delay 

from the time difference between the two curves. The result was used as input to 

our motion prediction software as shown in Step 6 in Fig. 8.4. 
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We developed motion prediction software to compensate for the tumour 

motion during system delay. Artificial neural networks (ANN) were used in this 

software to predict future tumour positions based on the previous ones. The 

performance of ANN is known to be strongly dependent on its structure and initial 

weights (IW).33, 34 That is, prediction accuracy of our software for a given 

patient’s motion pattern might be very sensitive to the ANN. In our previous 

study using the recorded data of 29 lung cancer patients, the root mean squared 

error (RMSE) in motion prediction was reduced by 30 - 60 % when using patient 

specific ANN and IW compared to a single ANN and IW.21 For this reason, ANN 

and IW are optimized and trained prior to motion prediction. More explanations 

on these processes follow in Sec. 8.2.3.1 – Sec. 8.2.3.2. As a result, we were able 

to use ANN for motion prediction, which was specifically optimized for a given 

motion pattern. Detailed software design and optimization process are presented 

in Yun et al.21 Also, it is important to clarify that the prediction performance of 

our software does not depend on any relationship between the phase of motion 

and the timing of imaging event. There was no synchronization of the imaging 

clock and motion control in our experiments.  

8.2.3. Methodology for intrafractional tracking 

Figure 8.4 describes our tracking process, which was developed in 

accordance with the following scenario:  

(1) Two sessions of pre-tracking MR scans are performed using the linac-

MR as indicated in Steps 1 and 9 in Fig. 8.4. Both of these sessions proceed with 

the same MR sequence, phantom set-up and the motion pattern that would be used 
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in the actual intrafractional tracking experiments. 

(2) During tracking, the linac-MR provides 2D intrafractional, dynamic 

MR imaging of a target (Step 14). An MR imaging slice, perpendicular to the 

beam direction, with 30 mm thickness is selected to visualize the target as shown 

in Fig. 8.3.C. No synchronization is necessary between the phase of phantom 

motion and imaging sequences (i.e. intrafractional MR imaging may begin at a 

randomly chosen time point).  

All of our software was coded in LabVIEW 2011 and executed on 32 bit 

computer system (Windows7, Intel i7-2600k, 4 GB RAM). 
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Figure 8.4 Overview of intrafractional tumour tracking 
 

8.2.3.1. Preparation 1 

In Preparation 1 (Steps 1 – 8 in Fig. 8.4), we optimize (1) parameters for 

the autocontouring software, and (2) the ANN structure and IW for motion 
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prediction software. This occurs 3 hours before tracking, which is the time 

requirement to execute Steps 1 – 8 in our computer system.  

In Step 1, a pre-tracking MR scan is performed for 2 minutes at a 4 fps 

imaging rate, acquiring 480 images. In Step 2, the parameters required for the 

autocontouring software are optimized using the images from Step 1. We chose to 

use the first 16 images (4 seconds length) in Step 2, because 4 seconds is 

sufficient to cover the peak-to-peak movement of the phantom following the 

motion patterns used in this study. The target shown in each of these 16 images is 

manually contoured, and our software searches for the parameters that can 

produce an autocontoured target shape that is the most similar to the manual one 

in each image. Due to this algorithm, the accuracy of manual contouring is an 

important factor determining autocontouring performance. The manual contouring 

should be done by an expert user (e.g. radiation oncologist) if autocontouring 

were to be applied to in-vivo images. In this study, however, accurate manual 

contouring was relatively easy due to the high contrast between the target and the 

background region. It is important to clarify that tumour contouring during the 

actual tracking session is fully automatic. Our software only uses the manual 

contours to arrive at the best parameters that will be used for autocontouring. The 

optimized parameters are stored in Step 3.  

In Step 4, all images from Step 1 are autocontoured using the parameters 

from Step 2 in conjuction with the autocontouring software. In Step 5, our 

software (1) calculates the centroid position of the target from the autocontoured 

target shape in each image, and (2) records the centroid position in each image as 

a function of time. This record is referred to as a training motion pattern as used in 
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the motion prediction software. The training pattern, and the amount of system 

delay determined in Step 6 serve as input to Step 7 for the ANN structure and IW 

optimizations. Step 6 is explained earlier in Sec. 8.2.2.2. In Step 8, an optimized 

ANN structure and IW are stored.  

8.2.3.2. Preparation 2 

In Preparation 2 (Steps 9 – 13 in Fig. 8.4), we further train the optimized 

ANN using the most recent tumour motion data. Preparation 2 occurs 

immediately prior to actual tumour tracking and takes approximately 3 minutes to 

complete.  

In Step 9, a pre-tracking MR scan is performed for 2 minutes. In Steps 10 

and 11, all images from Step 9 are autocontoured, and a training pattern is created. 

In Step 12, we train the ANN obtained from Step 8 for 1 minute using the training 

pattern and system delay from Steps 11 and 6, respectively. The ANN is trained 

for approximately 10000 epochs during 1 minute, where one epoch refers to a 

single passing of a training pattern (prediction followed by weight corrections) 

through the ANN during iterative trainings. ANN training uses the training pattern 

solely derived from the image data and does not use the phantom motion encoder 

values. A detailed training process is presented in our previous publication.21 The 

trained ANN is stored in Step 13. Table 8.1 provides the summary of time 

requirements to perform Steps 1 – 13. 
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Table 8.1 Summary of time requirements to perform Steps 1 - 13 

Process Time 

1st MR scan (Step 1) 2 min. 
Preparation 1 

ANN optimization (Step 7) ~ 3 hrs 

2nd MR scan (Step 9) 2 min. 
Preparation 2 

ANN training (Step 12) 1 min. 

Total time requirement ~ 3 hrs 

 

8.2.3.3. Intrafractional tracking 

The treatment beam is continuously on while Steps 14 – 19 are executed 

during intrafractional tracking. In Step 14, tracking begins with intrafractional 

MR imaging at 4 fps while the phantom is undergoing one of the two motion 

patterns simulating the tumour motion. Each MR image is autocontoured 

immediately after the acquisition in Step 15, using the parameters from Step 3.  

In Step 16, our software determines the centroid position of the target 

contour, i.e. a current target position. This is input to Step 17 in order to predict a 

future target position. The prediction occurs using the ANN and system delay 

from Steps 13 and 6, respectively. For example, if the system delay is 500 ms, 

Step 17 will output a target position at 500 ms in the future. 

In Step 18, the MLC conforms to the target contour at its predicted future 

position using the results from Steps 15 and 17. Here, the MLC leaf positions are 

determined as the following: (1) the leaf positions are calculated to conform the 

MLC beam shape to the autocontoured target shape from Step 15, and (2) these 

leaf positions are shifted to translate the MLC shape to a future target position (i.e. 

centroid) obtained from Step 17. Depending on the result from Step 19, Steps 15 - 

18 are iterated on each intrafractional MR image, or tracking is terminated.  
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It is important to note that Step 17, predicting the future tumour position, 

occurs at the same rate as the imaging frequency during tracking. This is because 

approximately the same amount of time (a few ms difference) is required to 

execute Steps 14 – 16 for each image. This result can be generalized to other 

imaging frequencies. Since each image was acquired at 4 fps (i.e. every 250 ms) 

in this study, the prediction occurred at the same rate, every 250 ms. If we use a 

different MR imaging rate for tracking; for example, 5 fps (i.e. every 200 ms), 

then the prediction will occur every 200 ms.  

8.2.4. Demonstration of intrafractional tracking 

We demonstrated intrafractional MR tumour tracking according to the 4 

different scenarios shown in Table 8.2. Each scenario was tested using two motion 

patterns as mentioned in Sec. 8.2.1.4 with 2 minutes beam on time (100 MU/min). 

Table 8.2 Tracking scenarios 

 Scenario 0 (S0) S1  S2 S3 S4 

Phantom motion No No Yes Yes Yes 

Beam margin None Maximum None None None 

MLC tracking No No No Yes Yes 

Motion prediction No No No No Yes 

 

Scenario 0 (S0) generates a “gold-standard” result, because radiation 

delivery to a static or moving target will be identical if we track the target 

perfectly. S0 was performed prior to each scenario, and the film exposed in other 

scenarios was registered and compared to the film from S0.  

S1 simulates the situation of applying the maximum margin around the 

target covering the full extent of target motion. Thus the wider, fixed beam will 
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irradiate the moving target and the target is expected to remain inside the beam 

portal at all times. To demonstrate S1, we would ideally fix the Gafchromic film 

to measure the beam port with maximum margin and image the moving target in 

real-time using MRI. This requires physical separation of the film from the 

moving phantom, and the registration of film image with MR images to show that 

the target is always inside the beam. However, due to our phantom design where 

the film must travel with the phantom, we fixed the phantom at its equilibrium 

position and delivered radiation with the maximum beam margin to determine the 

beam width required to cover the moving target without tracking. 

Scenarios S2 – S4 are performed with the moving phantom. In S2, the 

MLC is conformed to the equilibrium target contour and location with no beam 

margin during beam delivery, representing radiation delivery without accounting 

for tumour motion. In S3, MLC tracking is enabled without motion prediction, i.e. 

beam follows the phantom motion without motion prediction capability. In S4, the 

motion prediction feature is enabled in addition to MLC tracking. The last 

scenario represents the mode of operation envisaged for future clinical systems. 

8.2.5. Tracking accuracy evaluation 

We evaluated the tracking accuracy of each scenario using the following 

methods: 

(1) Observing encoder readings of phantom and MLC  

During tracking experiments, we recorded encoder readings from phantom 

and MLC every 50 ms. As explained earlier, there was no synchronization of the 

imaging clock and the phase of phantom motion in our experiments. Using the 
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encoder readings, we plotted the position changes of the phantom and MLC 

during tracking as a function of time, and observed the time difference between 

the two curves in each scenario. The time difference here should ideally be zero if 

the tracking is perfect.  

(2) Film measurements  

There was no difference in total time spent in generating the films for each 

of the scenarios. All films were digitized approximately 12 hrs after exposure, 

using a VIDAR VXR film digitizer (VIDAR Systems Corporation, Herndon, VA) 

at 0.36 × 0.36 mm2 resolution. The digitized optical density was converted to dose 

(cGy) using our in-house developed software.35 We then compared (1) 80 % - 

20 % penumbra width (i.e. the distance between two points receiving 80 % and 

20 % of the maximum dose), and (2) beam width at 50 % of the maximum dose in 

each scenario. These were calculated from the profiles as indicated in Fig. 8.6.  

8.3. RESULTS 

8.3.1. Encoder readings of phantom and MLC 

We monitored and recorded the positional changes of the phantom and 

each MLC leaf during tracking through encoder readings. This yielded 11 sets of 

motion data (1 from the phantom encoder, 10 from the MLC encoder). As 

explained earlier, all encoder readings were taken at the same instance every 50 

ms and time-stamped. These motion data were normalized and plotted as a 

function of time. From these, we calculated the MLC encoder reading shown in 

Fig. 8.5, which is an average of 5 encoder readings from Encoder-R in Fig. 8.1.A. 
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The averaging was performed due to the following reason. Although we tracked 

the rigid target undergoing translational motion, there exist slight motor-to-motor 

variations in encoder readings, because (1) each motor drives each MLC leaf 

conforming to the autocontoured target shape, and (2) the autocontoured target 

shape can slightly change, within 1 pixel on the edges, as the quality of 

intrafractional MR images are not identical during tracking experiments. This 

caused approximately 2 % variation in target size among the images. Nevertheless, 

because the variability of the 5 encoder readings was small (~ 3 %), we reported 

the average of 5 encoder readings to provide better representation of MLC 

motions as a whole in Fig. 8.5. 

 

Figure 8.5 Encoder reading comparisons from phantom and MLC (recorded every 50 ms 
during tracking). The readings correspond to scenarios S2 - S4 and the two motion patterns 
are shown. 
 

In S2 plots (sine and modified cosine) shown in Fig. 8.5, dotted lines 

indicate phantom motions following both motion patterns. There is no MLC 

motion in S2, therefore the encoder reading is represented as a straight line.  
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To find the amount of system delay, we performed tumour tracking 

without a motion prediction capability. S3 plots in Fig. 8.5 show the position 

changes of the phantom and MLC during this test in both motion patterns, and we 

calculated system delay from the time difference between the two curves. For 

example, in case of the sine pattern, the S3 plot shows constant lagging of MLC 

motion curve behind the phantom motion curve. The two motion curves were best 

matched when shifted by 275 ms, which is the amount of system delay. The same 

method was used to calculate 340 ms system delay in the modified cosine pattern. 

The difference in the amount of system delays is due to different target speeds 

(maximum speed of 1.8 and 3.1 cm/s in sine and modified cosine patterns 

respectively); hence, there are different time requirements for MLC tracking in 

two motion patterns. Using these system delay values, our motion prediction 

software was optimized and trained for each motion pattern prior to tracking as 

explained in Sec. 8.2.3.1.  

S4 plots show no observable time difference between the two curves, 

indicating the phantom motion during system delay is more accurately tracked by 

the MLC due to the enabling of the motion prediction feature.  

8.3.2. Film measurement 

Figure 8.6 shows the films exposed in different tracking scenarios (S0 – 

S4). S0 was performed prior to each scenario, and each film exposed in S1 – S4 

was registered to the film from S0 using surrogate markers as explained in Sec. 

8.2.1.2. All films were digitized, and their optical density values were converted 

to dose (cGy). Dose profiles were calculated along the white dashed line indicated 
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in Fig. 8.6. The open beam dose profiles are not flat due to a slight misalignment 

of the beam and the flattening filter in the linac-MR. The dose rates are similar to 

those of clinical 600 C units (50, 100, 150, 200, 250 cGy/min at isocenter) 
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Figure 8.6 Film measurement in different scenarios using the sine and modified cosine 
motion patterns. 
 

In S1, the target is fully irradiated, but much larger volume than the 

designed target in this experiment is irradiated. In S2, the amount of unnecessary 

dose is decreased. However, we cannot deliver sufficient dose to the target.  
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In S3, unnecessary dose to surrounding region is substantially decreased 

by enabling tracking feature. However, there still exist hot and cold spots, and 

general mismatch of penumbra, when comparing S0 and S3 dose profiles. This is 

due to target motions during system delay, which will be increased as the speed of 

target motion increases. Comparing S3 dose profiles from both motion patterns, 

the area of hot and cold spots and penumbra mismatch are larger when we use the 

modified cosine pattern which has a faster target speed. 

In S4, we delivered highly conformal dose to the moving target by adding 

a motion prediction feature. Dose profiles between static and moving target cases 

show good agreement in both motion patterns. It should be noted that no margin 

for target motion is included in scenarios S2 - S4. 

From visual inspection, the shape of the high dose region covering the 

target in S4 films shows the sharpest edges compared to the blurred ones shown in 

S2 and S3 films. In Table 8.3, we compared (1) beam width at 50 %, and (2) 80 % 

- 20 % penumbra width from the dose profile in each tracking scenario. Here, S0 

values are averaged from all S0 dose profiles shown in Fig. 8.6.  

Table 8.3 Beam and penumbra width in different scenarios 

Phantom motion None Sine Modified cosine 

Tracking scenario S0 S1 S2 S3 S4 S2 S3 S4 

50 % beam width (mm) 62.5 103.4 63.5 62.4 62.0 63.6 61.9 62.2 

80 % - 20 % penumbra 
width (mm) 

6.9 7.0 33.0 11.5 7.3 34.1 15.8 8.6 

 
 

The measured value of 50 % beam width stays within ± 1 mm in all 

scenarios except S1 that represents the deliberately introduced geometric margin 
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to account for the target motion. The measured value of 80 % - 20 % penumbra 

width is increased up to 27 mm in S2 and 9 mm in S3 compared to S0. In S4, 

however, the increase in penumbra width is limited to 0.4 mm and 1.7 mm in the 

sine and modified cosine patterns, respectively.  

8.4. DISCUSSION 

This study presents the first demonstration of intrafractional tumour 

tracking using 2D MR images. Using a prototype linac-MR, our tracking system 

automatically tracks the motion and delivers radiation onto the moving target. The 

MRI-guided tumour tracking study by Crijns et al.36 does not perform 

intrafractional 2D imaging of the tumour and does not address the system delay, 

discussed in Sec 8.2.2.2, introduced mainly by the MLC motion.  

The dosimetric advantage of intrafractional tracking in treating mobile 

tumours is clearly shown in Fig. 8.6. Using our tracking method, we delivered 

highly conformal dose to a moving target simulating 1D lung tumour motions in 

SI direction. Compared to static target irradiation, 50 % beam width remained 

within 0.5 mm, and the 80 % - 20 % penumbra width increased by 0.4 and 1.7 

mm in moving target irradiations using the sine and modified cosine motion 

patterns respectively. The difference in penumbra width in these two motion 

patterns arises due to the maximum target speed, 1.8 and 3.1 cm/s at maximum, 

respectively. These results are applicable to the current phantom and experimental 

situation. Further investigations are required to demonstrate the proper operation 

of our tracking system with the patient or patient-like situations. Also, for the 

same reason, it is difficult to discuss the impact of our results on an intensity-
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modulated radiation therapy (IMRT) delivery at current stage, even though 

several studies have discussed applying IMRT combined with real-time tracking 

capability.37-40 

Various prediction algorithms including using ANN have been proposed 

to compensate for tumour motion during system delay.41-44 Although it would be 

interesting to incorporate these previously developed algorithms in our tracking 

system and compare the results, the following main problem exists in reality: all 

previously developed algorithms assumed the tumour position detection at 30 Hz 

by monitoring the position of tumour surrogates using optical tracking devices, or 

a stereoscopic x-ray fluoroscopy system. However, current MR imaging can 

typically achieve image acquisition rates of 3 – 4 fps. Due to this significant 

difference in detection rates, we had to develop a new algorithm designed 

specifically for MRI-based tumour tracking. This report presents the tumour 

tracking performance achieved by using our prediction algorithm. If a new 

algorithm for MRI-based tracking is developed in future, then a comparison study 

can be performed. 

Our motion prediction algorithm functioned well in our tracking system, 

where a large amount of system delay is inevitable due to MR image acquisition 

and image processing time. We expect that our algorithm will also function for 

other non MRI-based modern tracking systems, which should have much shorter 

system delay time without having to perform MR imaging. The system delay in a 

real clinical system can be determined by either of the following two methods: (1) 

a pre-treatment MR scan will provide tumour motions in several breathing cycles. 

The phantom can then be programmed to undergo this motion pattern and the 
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system delay can be determined using the same method as described in Sec. 

8.2.2.2; (2) the system delay mainly depends on tumour speed. Thus, a lookup 

table of system delay can be created as a function of tumour speed. The patient 

specific system delay can then be looked up from this table based on the patient’s 

tumour speed obtained from the pre-treatment MR scan.  

We used the motion patterns that are stable and perfectly periodic in this 

study. However, it is unreasonable to expect such high reproducibility in patient 

breathing motions. This inevitable challenge will mainly affect the motion 

prediction performance of the tracking system. To minimize the errors in motion 

prediction due to inter- or intrafractional instability of motion patterns, the 

following two features are implemented in our motion prediction software: (1) to 

deal with interfractional motion changes, the software was designed to re-

optimize its ANN for each fraction of the treatment. In this process, the tumour 

motion data recorded from a previous fraction is used as a training motion pattern, 

presuming that tumour motions in two consecutive fractions are the most similar; 

(2) to deal with intrafractional motion changes, adaptive learning is incorporated 

in the software by continuously updating the weights and learning rate (η) of a 

given ANN during motion prediction in real-time. The weights and η represent the 

knowledge and convergence rate of ANN, respectively. More explanations can be 

found in Haykin.45 In this way, the ANN’s learning process is not limited to the 

training session alone but continues during the actual tracking session, and our 

predictor can adapt to the intrafractional changes in motion pattern to a certain 

degree.  
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Because accurate motion prediction is essential for successful 

intrafractional tracking, we evaluated the prediction performance of our software 

using realistic lung tumour motions in our previous study.21 Here, the 1D 

superior–inferior lung tumour motions of 29 lung cancer patients were used to test 

our software for various system delays of 120 – 520 ms, in increments of 80 ms. 

For 280 ms and 360 ms system delays that are more relevant to this study, mean 

RMSE values of 0.7 mm and 0.8 mm (ranges 0.1 – 2.5 mm) were observed, 

respectively. Proving these results through actual tracking experiments using 

realistic lung tumour motions will be a subject of future study. 

 We focused on tracking 1D translational motions of a rigid target in this 

study. Real tumour motion, however, includes translation, rotation, as well as 

volume changes. For example, lung tumour shows 3D displacement with volume 

changes and rotational motions during normal breathing. Hence, the next step will 

be demonstrating more realistic tumour tracking in 3D space. Currently, we can 

accomplish 2D MR imaging with 4 fps imaging rate to track lung tumour motions. 

However, a potential problem that can arise is through plane tumour motion 

(motion orthogonal to the imaging plane), even though numerous studies have 

demonstrated that the largest lung tumour motions occur in SI directions. 

Potential solutions to this problem could be adjusting the orientation and slice 

thickness of the imaging plane to capture the SI directional tumour motion and 

ensure the tumour remains in the imaging plane. 

Tumour shape deformation during beam delivery due to rotation, volume 

changes, and other reasons is another challenge. To evaluate tracking performance 

in these situations, we must develop an MRI compatible, deformable motion 
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phantom that has accurate deformation reproducibility. This requires simultaneous 

implementation of known patterns of motion and deformation. The phantom used 

in this study contains a simulated target of rigid shape in order to show 

practicality of tracking. Nevertheless, our tracking system is not limited to rigid 

body tracking. Our tracking method is based on (1) determining both the shape 

and location of the target from each MR image, and (2) reshaping and moving the 

MLC accordingly in real-time. To achieve this, our autocontouring software was 

designed to deal with possible deformations of the tumour shape, and it contours 

each image individually without the need of a priori assumptions regarding 

tumour shape or contrast. The autocontouring performance of the software used in 

this study was previously evaluated through a phantom study (circular and non-

circular tumour shapes),20 as well as an in-vivo study.46 In both studies, 

autocontoured targets/tumours were compared to standard, manual contours. Here, 

it was shown that the autocontouring accuracy decreases with lower contrast-to-

noise ratio (CNR) of the target/tumour in MR images. Nevertheless, if CNR > 5, 

autocontours have an average centroid displacement < 1 mm and < 2 mm, as well 

as Dice’s coefficient > 93 % and > 83 % compared to the standard contours in the 

phantom and in-vivo study, respectively. This might be an indication of the CNR 

level required for successful autocontouring; however, more investigation is 

needed to evaluate the software performance with deformable target shapes. This 

future study will include developing a deformable phantom.   

This study was carried out to demonstrate the technical aspect of MRI-

based tracking using a phantom. Current phantom design and target shape were 

decided considering several factors including MLC leaf width, prototype linac-
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MR geometry, and RF coil size. The phantom may represent a more suitable 

condition for contrast in the images as it does not include the susceptibility issues 

occurring at the air-tissue interface of human lung. Further studies using realistic 

phantoms, human volunteers and/or patients are required. 

8.5. CONCLUSION 

We have demonstrated intrafractional MR tumour tracking using a 

prototype linac-MR. An MR compatible motion phantom was used to simulate 

tumour motions during 2 minutes of irradiation. Different tumour tracking 

scenarios were tested with two different phantom motion patterns. 

We delivered highly conformal dose to a moving target using predictive 

tumour tracking. Compared to static target irradiation, 50 % beam width remains 

virtually unchanged, < 0.5 mm, and the increase in 80 % - 20 % penumbra width 

is less than 1.7 mm in moving target irradiation. These results illustrate potential 

dosimetric advantages of intrafractional MR tumour tracking in treating mobile 

tumours as shown for the phantom case.  
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Chapter 9: Summary and conclusions 

Intrafractional tumour tracking is of considerable interest as a means to 

minimize the PTV in treating mobile tumours. Despite the large research efforts, 

all currently available tracking systems share the same fundamental limitation, 

namely, the lack of intrafractional tumour imaging. Because the target/tumour 

cannot be seen during treatment beam delivery, these systems must rely on 

indirect tracking mechanisms using internal and/or external tumour surrogates. 

This approach has been shown to be problematic for accurate tumour tracking. 

The linac-MR system at the CCI enables intrafractional MR imaging of a 

tumour. Utilizing this novel feature, this thesis sought to develop a direct, non-

surrogate based intrafractional tumour tracking system and physically demonstrate 

its feasibility by delivering highly conformal dose to a moving target undergoing 

simulated lung tumour motions. Using linac-MR, our tracking system no longer 

suffers from the lack of tumour imaging during beam delivery. Moreover, our 

system is free of ionizing radiation and invasive implantation of surrogates.  

This thesis addressed the requirements for MRI-based intrafractional 

tumour tracking. Emphasis was given to lung tumours due to their potential for 

complicated, large ranges of intrafractional motions.  

To provide research background and motivation, Chapter 1 reviewed 

modern external beam radiation therapy techniques and discussed their 

shortcomings in treating mobile tumours. Then, justification for this research was 

stated. Chapter 2 presented theories that are relevant to this research including 



 

 
230

magnetic resonance imaging (MRI), artificial neural networks (ANN), and 

particle swarm optimization (PSO).  

Chapter 3 introduced our approach to automatic lung tumour contouring, 

which is the first step of intrafractional tumour tracking process. We developed an 

autocontouring algorithm to determine both the shape and position of a lung 

tumour from each intrafractional MR image. Our prototype linac-MR is equipped 

with 0.2 T MRI, whereas the next system will have 0.5 T MRI. Due to this, the 

autocontouring algorithm was evaluated using an in-house built lung motion 

phantom that allows simulation of MR images with the expected lung tumour 

contrast-to-noise ratio (CNR) at 0.5 and 0.2 T by using a single 3 T scanner. 

Autocontoured tumour shapes were compared to real tumour shapes, and Dice’s 

coefficients of > 0.96 and > 0.93 were achieved in 0.5 and 0.2 T equivalent 

images, respectively. Also, the position of a tumour (centroid) calculated from the 

autocontoured tumour shape was tracked and compared to the position from the 

real one, and root mean squared error (RMSE) values of < 0.55 and < 0.92 mm 

were achieved in 0.5 and 0.2 T equivalent images, respectively. A very fast 

autocontouring speed, < 5 ms per image, was also achieved, which is an essential 

feature for a functional intrafractional tumour tracking system. 

Chapter 4 presented our initial work using in-vivo data obtained from a 

single non-small cell lung cancer (NSCLC) patient. The patient was imaged in a 3 

T MRI for 3 minutes at approximately 4 fps imaging speed. These 3 T images 

were degraded to simulate lower fields MR images at 0.2 – 1.5 T by adding 

Gaussian noise, assuming linear CNR scaling with respect to the field strength. 

Using these image sets, the feasibility of lung tumour autocontouring in various 
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low field MR images was verified as the following: (1) a radiation oncologist 

manually drew tumour contours in all 3 T images, which were considered as the 

standard contours. (2) Our software auto-determined tumour contours in the 3 T 

images, as well as all other simulated lower field MR images. (3) The two 

contours (standard and auto-determined) were compared by calculating Dice’s 

coefficients (D) as well as Δdcentroid (displacement between the centroid positions 

of the two contours). From the comparison, mean D (measure of autocontouring 

fidelity) of 0.836 – 0.881 as well as mean Δdcentroid (measure of tracking accuracy) 

of 1.37 – 1.71 mm were achieved in 3 – 0.2 T equivalent images, respectively. In 

addition, we tested intra-observer variability by calculating D and Δdcentroid 

between the same physician’s contours drawn on two different days (100 images 

acquired at 3 T were used). From this, mean D and mean Δdcentroid of 0.920 and 

0.78 mm were achieved. 

Chapter 5 presented our tumour motion prediction software designed 

specifically for MRI-based tracking environment. We developed the software to 

compensate for the tumour motions during system delay (the time interval 

between the detection of current tumour position and the beam delivery upon the 

MLC reaching the target position) in MRI-based intrafractional lung tumour 

tracking. An artificial neural network (ANN) was used in our software, which was 

trained to output a future tumour position based on current and previous tumour 

positions. A method of optimizing a patient specific ANN structure and its initial 

weights (IW) was also developed. Prediction accuracy of the software was 

evaluated using the 1D superior–inferior lung tumour motions of 29 lung cancer 

patients for system delays of 120 – 520 ms, in increments of 80 ms. For these 
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system delays, mean RMSE values of 0.5 – 0.9 mm (ranges 0.0 – 2.8 mm from 29 

patients) were achieved between original and predicted tumour positions. The 

advantage of using a patient specific ANN structure and IW optimizations was 

shown by the 30 – 60 % decrease in mean RMSE values in motion prediction as 

compared to the results obtained with a single ANN structure and randomly 

chosen IW.  

Chapter 6 discussed the effect of strong external magnetic field on the 

functionality of MLC motors. This needs to be investigated, because the MLC 

would be exposed to the external fringe magnetic fields of the linac-MR systems. 

The changes in motor speed and current were measured for varying external 

magnetic field strengths up to 2000 G. These changes in motor characteristics 

were measured for three orientations of the motor in the external magnetic field, 

simulating changes in motor orientations due to installation and/or collimator 

rotations. In addition, the functionality of the associated magnetic motor encoder 

was tested. The tested motors are: (1) both half and full leaf motors used with 

Varian 120 leaf Millennium MLC, (2) a leaf motor used with Varian 52 leaf MKII 

MLC, and (3) a carriage motor. In most cases, the magnetic encoder of the motors 

failed prior to any damage to the gearbox or the permanent magnet motor itself. 

The measured limits of the external magnetic fields were found to vary by the 

motor type. The leaf motor used with a Varian 52 leaf MKII MLC system 

tolerated up to 450 ± 10 G. The carriage motor tolerated up to 2000 ± 10 G. The 

motors used with the Varian 120 leaf Millennium MLC system were found to 

tolerate a maximum of 600 ± 10 G. 
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Chapter 7 presented appropriate RF shielding around the MLC motors to 

mitigate the negative effects of RF motor noise in MR images. This must be 

studied, because MLC motors would be located in the fringe field of the linac-MR 

and create RF noise. The RF noise power spectral density from a Varian 52-leaf 

MLC motor, a Varian Millennium MLC motor and a brushless fan motor was 

measured as a function of the applied magnetic field using a near field probe set. 

Above 40 MHz there seemed to be no measured RF noise. Below 40 MHz, the 

Millennium MLC motor showed more noise than the Varian 52-leaf motor or the 

brushless fan motor. In both MLC motors, no significant change in radiated RF 

noise was found as the magnetic field increased up to 500 G. Images of a phantom 

were taken by the prototype linac-MR system with the MLC placed in close 

proximity to the magnet. Several orientations of the MLC in both shielded and 

non-shielded configurations were studied. For the case of a non-shielded MLC 

and associated cables, the signal-to-noise ratio (SNR) was reduced when 13 MLC 

leaves were in motion during imaging. When the MLC and associated cables were 

shielded, however, the measured SNR of the images with and without MLC 

motion was experimentally the same. 

Chapter 8 described the first physical demonstration of intrafractional 

tumour-tracked irradiation using a linac-MR. Our tracking system includes the 

two software components presented in Chapters 3 and 5, as well as hardware 

components (linac-MR, MLC, and a motion phantom). During tracking, treatment 

beam was delivered for 2 minutes to a moving target that was undergoing 

simulated lung tumour motions. Two different motion patterns were used in this 

study to simulate tumour motions: (1) a sine pattern (period: 6.7 s, amplitude: 4 
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cm, max. speed: 1.8 cm/s) representing ideal, periodic tumour motions, and (2) a 

modified cosine pattern (period: 5.1 s, amplitude: 4 cm, max. speed: 3.1 cm/s) 

representing more realistic lung tumour motions. The accuracy of tumour tracking 

was evaluated by (1) observing phantom and MLC motions, and (2) comparing 

radiation exposure of the target by film measurements from series of tracking 

experiments. Comparing the results from moving target irradiation with our 

tracking system to static target irradiation, 50 % beam width revealed minimal 

differences of < 0.5 mm, while the increase in 80 % - 20 % penumbra width was 

limited to 0.4 and 1.7 mm in the sine and modified cosine patterns, respectively.  

In this research, we developed software & hardware components of a 

direct, non-surrogate based tumour tracking system. We reported the first physical 

demonstration of intrafractional tumour-tracked irradiation using a prototype 

linac-MR, by delivering highly conformal treatment beam to a moving target 

undergoing lung tumour motions. The performance of our tracking system shown 

in this research illustrates potential dosimetric advantages of intrafractional MR 

tumour tracking in treating mobile tumours as shown for the phantom study.  

Several future projects can be initiated from the work presented in this 

thesis.  

(1) A human-sized 2nd linac-MR system is being installed at the CCI. Using this 

system, further investigations are required to demonstrate the proper operation 

of our tracking system with the patient or patient-like situations.  

(2) The performance of autocontouring algorithm was evaluated with lung 

phantom images, as well as the in-vivo images from a single patient. In order 
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to ensure the autocontouring capability in realistic situations, more studies 

using multiple sets of in-vivo data are required. 

(3) The accuracy of motion prediction was evaluated with 1D tumour motion 

scenario. Since lung tumour motions occur in 3D in reality, the motion 

prediction software requires further development to accommodate 3D tumour 

motion predictions. 

In an ideal radiotherapy scenario, the treatment beam would be tightly 

conformed to the tumour and continuously adapted to the tumour motion. In this 

thesis, we have demonstrated the feasibility of this scenario through a 1D motion 

phantom study using the prototype linac-MR. As the linac-MR system at the CCI 

continues to evolve, more realistic, patient-like tumour tracking experiments will 

be possible. This will lead to further improvement of our tracking system 

presented in this thesis, one more step towards its eventual clinical 

implementation. 
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