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Abstract

In this thesis, we investigate different vector step-size adaptation approaches

for continual, online prediction problems. Vanilla stochastic gradient descent

can be considerably improved by scaling the update with a vector of appro-

priately chosen step-sizes. Many methods, including AdaGrad, RMSProp,

and AMSGrad, keep statistics about the learning process to approximate a

second-order update — a vector approximation of the inverse Hessian. An-

other family of approaches uses meta-gradient descent to adapt the step-size

parameters to minimize prediction error. These meta-descent strategies are

promising for non-stationary problems, but have not been as extensively ex-

plored as quasi-second order methods. We derive a general, incremental meta-

descent algorithm, called AdaGain, designed to be applicable to a broader

range of algorithms, including those with semi-gradient updates or even those

with accelerations, such as RMSProp. We introduce an instance of AdaGain

which combines meta-descent with RMSProp — a method we call RMSGain —

which is particularly robust across several prediction problems and is compet-

itive with the state-of-the-art method on a large-scale, time-series prediction

problem on real data from a mobile robot.
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Preface

This thesis is an extension of a paper we published at the AAAI Conference

on Artificial Intelligence (Jacobsen et al. 2019a). Chapters 2, 3, and 8 are

original works. Chapters 1, 4, and 5 were composed and edited with help from

my co-authors in the published work, and then revised and extended by me

for this thesis. The experiments in Chapter 6 and Chapter 7 were conducted

by me in the original work, and were additionally reproduced and refined for

this thesis.
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I’m pretty sure you can put whatever the hell you want as your thesis quote.

– Cameron Linke, 2019.
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Chapter 1

Introduction

In this thesis, we consider continual, online prediction problems. Consider a

learning system whose objective is to learn a large collection of predictions

about an agent’s future interactions with the world. The predictions specify

the value of some signal many steps in the future, given that the agent follows

some specific course of action. There are many examples of such prediction

learning systems including Predictive State Representations (Littman et al.

2001), Observable Operator Models (Jaeger 2000), Temporal-difference Net-

works (R. S. Sutton and Tanner 2004), and General Value Functions (R. S.

Sutton et al. 2011). In our setting, the agent continually interacts with the

world, making new predictions about the future, and revising its predictions

as data is observed. Occasionally, partially due to changes in the world and

partially due to changes in the agent’s own behavior, the targets may change

and the agent must refine its predictions.

Stochastic gradient descent (SGD) is a natural choice for our setting be-

cause it is computationally efficient and allows new data to be continually in-

corporated. The performance of SGD is dependent on the step-size parameter

(scalar, vector, or matrix), which scales the gradient to mitigate sample vari-

ance and improve data efficiency. Most modern large-scale learning systems

make use of optimization algorithms that attempt to approximate stochastic

second-order gradient descent to adjust both the direction and magnitude of

the descent direction, with early work indicating the benefits of such quasi-

second order methods if used carefully in the stochastic case (Bordes et al.
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2009; N. Schraudolph et al. 2007).

Many of these algorithms attempt to approximate the diagonal of the in-

verse Hessian, which describes the curvature of the loss function, and so main-

tain a vector of step-sizes—one for each parameter. Starting from AdaGrad

(Duchi et al. 2011; McMahan and Streeter 2010), several diagonal approxima-

tions have been proposed, including RMSProp (Tieleman and Hinton 2012),

AdaDelta (Zeiler 2012), vSGD (Schaul et al. 2013), Adam (Kingma and Ba

2015) and AMSGrad (Reddi et al. 2018). Stochastic quasi-second order up-

dates have been derived specifically for temporal difference learning, with some

empirical success (Meyer et al. 2014), particularly in terms of parameter sen-

sitivity (Pan et al. 2017a; Pan et al. 2017b). On the other hand, second-order

methods generally assume the loss is fixed (or drawn from a fixed distribution

at each time step), and so non-stationary dynamics or drifting targets could

be problematic.

A related family of optimization algorithms, called meta-descent algo-

rithms, were developed for continual, online prediction problems, such as online

supervised learning (Jacobs 1988; A. R. Mahmood et al. 2012; A. Mahmood

2010; N. N. Schraudolph 1999; R. S. Sutton 1992a) and reinforcement learn-

ing (W. C. Dabney 2014; W. Dabney and Barto 2012; Kearney et al. 2018).

These algorithms perform meta-gradient descent adapting a vector of step-size

parameters to minimize the error of the base learner, instead of approximating

the Hessian.

Meta-descent applied to the step-size was first introduced for online least-

mean squares methods (Almeida et al. 1998; Jacobs 1988; A. R. Mahmood et

al. 2012; R. S. Sutton 1992a; R. S. Sutton 1992b), including the linear com-

plexity method IDBD (R. S. Sutton 1992a). IDBD was later extended to more

general losses (N. N. Schraudolph 1999) and to support (semi-gradient) tem-

poral difference methods (W. C. Dabney 2014; W. Dabney and Barto 2012;

Kearney et al. 2018). These methods are well-suited to non-stationary prob-

lems and have been shown to ignore irrelevant and noisy features (Kearney et

al. 2018; Kearney et al. 2019). The main limitation of several of these meta-

descent algorithms, however, is that the derivations are heuristic, making it
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difficult to extend to new settings beyond linear temporal difference learning.

More general approaches, like Stochastic Meta-Descent (SMD) (N. N. Schrau-

dolph 1999), require the update to be a stochastic gradient descent update

and have some issues because they are biased toward smaller step-sizes (Wu et

al. 2018). It remains an open challenge to make these meta-descent strategies

as broadly and easily applicable as the AdaGrad variants.

In this thesis we introduce a new meta-descent algorithm, called AdaGain,

that attempts to optimize the stability of the base learner, rather than con-

vergence to a fixed point. AdaGain is built on a generic derivation scheme

that allows it to be easily combined with a variety of base-learners including

SGD, (semi-gradient) temporal-difference learning and even accelerated SGD

updates, like AMSGrad.

Our goal is to investigate the utility of both meta-descent methods and the

more widely used quasi-second order optimizers in online, continual prediction

problems. We provide an extensive empirical comparison on (1) a canonical

optimization problem that is difficult to optimize, requiring the ability to raise

the step-size in some regions of the surface and lower it in others to achieve

good performance, (2) a finite Markov Decision Process with linear features

that cause conventional temporal difference learning to diverge, (3) an online,

supervised tracking problem where the optimal step-sizes can be computed,

and (4) a high-dimensional time-series prediction problem using data gener-

ated from a real mobile robot. In problems with non-stationary dynamics, the

meta-descent methods can exhibit an advantage over the quasi-second order

methods. On the difficult optimization problems, however, meta-descent meth-

ods can fail, which, retrospectively, is unsurprising given the meta-optimization

problem for stepsizes is similarly difficult to optimize.

We show that AdaGain can obtain the advantages of both families —

performing well on both optimization problems with flat regions as well as

non-stationary problems — by selecting an appropriate base learner, such as

RMSProp.

The proposed contributions of this thesis are as follows:
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1. We introduce a new meta-descent objective which enables meta-descent

to be applied to a broader class of base learners than previous methods.

We derive a new meta-descent algorithm, AdaGain, which is designed

to encourage the stability of learning updates. We provide the deriva-

tions for both the full quadratic complexity algorithm and the linear

complexity approximation. In addition, we derive the update equations

for several base learning algorithms, such as TD(λ), Least Mean Squares

updates, and provide a general-purpose finite-difference approximation

which can be used without second-order information.

2. We show that the performance of meta-descent methods can be signifi-

cantly improved by combining them with quasi second-order approaches.

We provide an instance of AdaGain which combines meta-descent with

RMSProp, called RMSGain, and find that it outperforms either of the

methods used on their own.

3. We provide an empirical comparison of quasi second-order and meta-

descent strategies. Our experiments are designed to test the stability and

efficiency of learning in both stationary and non-stationary problems.

We find that RMSGain performs significantly better than the existing

meta-descent strategies, at least as well as the state-of-the art quasi

second-order strategies such as Adam and AMSGrad, and can exhibit

lower sensitivity to the its hyperparameters than the competing methods.

This document contains eight chapters. In Chapter 2 we review the funda-

mental concepts required to understand this thesis and define our notation. In

Chapter 3, we motivate adaptive learning methods which attempt to skew the

direction and magnitude of the gradient in some meaningful way. Chapter 4

formulates our problem setting and reviews the popular instances of two fami-

lies of algorithms: quasi second-order methods and meta-descent methods. In

Chapter 5 we introduce our meta-descent algorithm, AdaGain. We then con-

tinue on to our experimental results in stationary settings and non-stationary

settings in Chapter 6 and Chapter 7 respectively. The thesis is concluded with

4



a summary of the contributions of this work and a discussion of future work

in Chapter 8.
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Chapter 2

Background and Notation

In this chapter, we review the fundamental concepts required to understand

this thesis. We begin by setting up some notation which will be used fre-

quently in this thesis, specifying broadcasting operations and element-wise

operations on vectors. We then review the basics of unconstrained numerical

optimization. Finally, we review relevant concepts and algorithms from the

reinforcement learning literature. The main purpose of this chapter is to define

the notation that we will use throughout this document. Our precise problem

formulation begins in Chapter 4.

2.1 Broadcasting Operations

Many of the algorithms in this thesis make heavy use of element-wise opera-

tions. For ease of notation, we frequently make use of broadcasting operations.

A scalar operator applied to a vector denotes applying the operator to each

of the elements of the vector. For example, for x ∈ R
d,

√
x denotes the vec-

tor z ∈ R
d with zi =

√
xi. The same is true of binary scalar operators; for

x,y ∈ R
d, we use x

y
to denote the vector z ∈ R

d with zi =
xi

yi
. We use x ◦ y

to denote element-wise multiplication, to avoid confusion with matrix-vector

products. Finally, scalars broadcast to each element of a vector when added,

so that for ǫ ∈ R and x ∈ R
d, z

def

= x + ǫ is the vector with zi = xi + ǫ. This

notation not only makes the update equations look less cluttered, but is also

closer to the actual implementation that would be used in software, as most

numerical computing libraries have these operations implemented.
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2.2 Unconstrained Optimization

Suppose we want to find the minimum of a smooth continuous function ℓ :

R
d → R. That is, we want to find an x∗ ∈ R

d such that x∗ = argminx∈Rd ℓ(x).

There are many possible directions that this problem could be approached

from, but in this thesis we will focus on the method of steepest descent, or

gradient descent.

Let ∂ℓ
∂xi

denote the partial derivative of ℓ(x) with respect to the ith compo-

nent of input vector x, and let ∇xℓ(x)
def

= [ ∂ℓ
∂x1
, . . . , ∂ℓ

∂xd
]⊤ denote the gradient of

ℓ(x) — that is, a vector containing the partial derivatives of ℓ(x) with respect

to each of the components of x. We will use ∇ in favor of ∇x in cases where it

is obvious from context what variable the gradient is being taken with respect

to. For a twice differentiable loss function ℓ(x), we denote the matrix of second

derivatives (the Hessian matrix) ∇2ℓ(x), where [∇2ℓ(x)]i,j =
∂2ℓ(x)
∂xj∂xi

.

Gradient descent approaches begin by selecting an initial input vector x0 ∈
R

d. The initial input x0 may be chosen using some prior knowledge about

the function ℓ, but is often chosen randomly. Minimizing ℓ then occurs by

iteratively updating x in the opposite direction of the negative gradient; on

each iteration t ∈ N, x is updated as

xt+1 = xt − αt∇ℓ(xt)

where αt > 0 ∈ R is a scalar step-size parameter, controlling how far the input

x is perturbed in the direction of the gradient at time t. It is common to

just select a constant αt = α for all time-steps t. Many heuristic approaches

exist for selecting αt, such as decaying an initial α0 ∈ R over time according

to some fixed schedule or via line-search methods; for a detailed discussion of

these approaches, the reader is directed to Wright and Nocedal (1999) for a

clear and engaging development of these approaches.

Oftentimes we will be interested in minimizing loss functions which are

parameterized by a vector of parameters w ∈ R
d, ℓ(x;w). For example, the

squared error of a linear predictor could be ℓ(y,x;w) = (y − x⊤w)2, where

x⊤w is a linear approximation of y. In this setting, the procedure is much

7



the same, except now we iteratively update w in the direction which decreases

ℓ(y,x;w), using the gradient ∇wℓ(y,x;w) and Hessian ∇2
wℓ(y,x;w).

2.3 Stochastic Gradient Descent

In many applications, the loss is defined in terms of an average performance

error over a dataset. For example, consider a dataset D = {(xt, yt) : xt ∈
R

d, yt ∈ R, t = 1, . . . , N}, and suppose we want to fit a linear function ŷ(xt)
def

=

x⊤
t w ≈ yt to the data. A reasonable objective would be to find the w ∈ R

d

which yields the best approximation on average

ℓ(w)
def

=
1

N

N∑

t=1

(yt − x⊤t w)2,

or more generally,

ℓ(w)
def

=
1

N

N∑

t=1

ℓ(xt, yt;w)

where ℓ(xt, yt;w) is the loss on sample (xt, yt).

In practice, however, N can be very large and thus the gradient of the

above loss can be prohibitively expensive to compute. Instead, it is common

to sample a quantity which is equal to the gradient of the true loss function

in expectation. It can be shown that using the gradient of the loss on a single

sample (xt, yt) is an unbiased estimator of the true gradient

∇ℓ(w) = E[∇ℓ(xt, yt;w)],

where the expectation is taken over the dataset D. This expectation can be

approximated using a single sample, ∇ℓ(xi, yi;w). Updatingw in the direction

of ∇ℓ(xt, yt;w) at each time step can be seen as a stochastic approximation to

the gradient descent algorithm, and thus is referred to as Stochastic Gradient

Descent (SGD).

2.4 Linear Least Mean Squares

One of the relevant problem settings in this thesis is the (online) linear Least

Mean Squares (LMS) setting. In this setting, a sample (xt, yt) is observed at

8



each discrete time step t, where xt ∈ R
d is a given input vector and yt ∈ R

is a target signal to be predicted using a linear combination of the inputs,

ŷt
def

= x⊤
t wt for parameter weights wt ∈ R

d. The goal of the learner is to

minimize the difference between yt and ŷt in expectation. The minimization

can be formulated as SGD on the loss function ℓ(wt) =
1
2
(yt−x⊤

t wt)
2, leading

to the update equation

wt+1 = wt − αt∇ℓ(wt)

= wt + αt(yt − x⊤
t wt)xt

where αt ∈ R is a scalar step-size parameter, often chosen to be constant.

2.5 Reinforcement Learning

Reinforcement Learning is a framework in which a decision maker (or the

agent) learns via repeated trial-and-error interaction with an environment over

a sequence of discrete time steps t ∈ N. The problem is often formalized as

a Markov Decision Process (MDP) 〈S,A,R, p〉, where S is the set of states,

A the set of actions, R ⊆ R the set of rewards. At each time step t ∈ N,

the agent observes the current state St and chooses an action At according to

a policy π : S × A → [0, 1] specifying the distribution over actions in each

state, π(a|s) = Pr{At = a|St = s}. As a result of the agent’s action, the

environment transitions to the next state St+1 ∈ S and the agent receives a

reward Rt+1 ∈ R. The dynamics of the MDP are specified by the function

p : S × R × S × A → [0, 1], specifying the probability of transitioning to a

state s′ and receiving reward r when taking action a in state s, p(s′, r|s, a) =
Pr{St+1 = s′, Rt+1 = r|, St = s, At = a}.

In this setting, we often want to estimate the quality of a given policy π.

This is often done by estimating the return

Gt
def

=
∞∑

k=0

γkRt+k+1

where γ ∈ [0, 1) is a discount factor controlling the degree to which immediate

rewards are valued compared to later rewards. In practice, we do not know in
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advance what the sequence of rewards will be, so the return must be estimated

by a function referred to as the value function

vπ(s)
def

= E[Gt|St = s, At:∞ ∼ π].

The value function satisfies a recursive relationship specified by the Bellman

equation vπ(s) =
∑

a∈A π(a|s)
∑

s′∈S,r∈R p(s
′, r|s, a)[r + γvπ(s

′)].

2.5.1 Value Function Approximation

In practice, it can be infeasible to approximate the value function. It is often

the case that the agent does not have access to the actual states; rather, the

agent receives on each time step an incomplete summary of the state in the

form of an feature vector xt
def

= x(St) ∈ R
d. Even if the true states of the

environment are observed, in most practical applications there are simply too

many distinct states to be able to learn vπ(s) for every single s ∈ S, so a

feature vector xt ∈ R
d with d << |S| must be used.

In situations such as these, we attempt to estimate the value function

using function approximation. Let v̂π(s;w) be a function parameterized by

w ∈ R
d which takes a state s ∈ S and produces an estimate of vπ(s). In this

thesis, our main focus is on algorithms with computational complexity linear

in the number of inputs, so we limit our discussion to linear value function

approximations, v̂(s;w)
def

= x(s)⊤w, where w ∈ R
d.

Fortunately, we have computationally efficient learning algorithms for es-

timating value functions using linear approximation, one of the most popular

being the TD(λ) algorithm. TD(λ) uses an exponentially-decaying memory

of previous observations zt — the eligibility trace — to update the parameter

weights on each step. It uses a parameter vector λ ∈ [0, 1] to control the rate

at which the trace decays. On each step, the TD(λ) algorithm updates the

parameter vector w using the following update scheme:

δt
def

= Rt+1 + γv̂π(St+1;wt)− v̂π(St;wt)

zt = λγzt−1 + xt

wt+1 = wt + αδtzt

10



where z−1 = 0 ∈ R
d, α ∈ R is a constant scalar step-size parameter, γ ∈ [0, 1)

the discount rate, and λ ∈ [0, 1] the trace decay parameter.
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the gradients are much smaller, necessitating a larger step-size to facilitate

rapid progress. On the other hand, Figure 3.2 (right) shows the trajectory

when using a larger step-size, α = 0.095. Though the larger step-size would

be more suitable along the x-axis, it is not well-suited to the y-axis, resulting

in the jittery back-and-forth trajectory depicted.

The issues above demonstrate that performing vanilla gradient descent with

a constant step-size can lead to updates which are not well-suited to all parts

of the optimization surface — the flatter regions of the surface have small-

magnitude gradients and require larger step-sizes to make significant progress,

whereas the steeper regions have high-magnitude gradients and require smaller

step-sizes to prevent large, unstable steps from being taken.

Based on this example, one might intuit that the efficiency of vanilla gra-

dient descent could be improved by a) skewing the descent direction, so as

to step more directly towards minima, and b) scale the step-size α in a way

which is suitable for the current location on the optimization surface. There is

a long history of methods which do exactly this, which we refer to as adaptive

methods. In particular, in this thesis, we refer to adaptive methods as methods

using a pre-conditioned gradient descent update:

xt+1 = xt −Ht∇ℓ(xt),

where Ht ∈ R
d×d is a pre-conditioning matrix, or preconditioner, which skews

the gradient in some desireable way. When Ht is a diagonal matrix, the above

update can equivalently be written

xt+1 = xt − ht ◦ ∇ℓ(xt),

where ht ∈ R
d is the diagonal of Ht: [ht]i = [Ht]i,i. In the following two sec-

tions, we will discuss two classes of adaptive methods which play a significant

role in this thesis: second-order and quasi second-order methods.

3.1 Second-order Methods

In the previous section, we saw that certain optimization surfaces can cause

gradient descent to take steps which are suboptimal in both direction and
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magnitude, leading to less efficient optimization. Note that both of these

effects can be explained by the surface having differences in curvature along

different axes. If a region of the surface is steeper along the y-axis than the

x-axis, for example, the gradient will be skewed in the direction of the y-axis.

If the surface has both flat and steep regions, a constant step-size will tend to

be ill-suited to at least one of those regions. If we could skew the gradient to

account for the curvature of the surface, we might be able to alleviate these

issues to some degree.

Second-order methods attempt to improve the iterative process by account-

ing for the local curvature of ℓ(x). The idea is to model ℓ(x) locally around x

as a quadratic function using a second-order taylor-series expansion

ℓ(x) ≈ ℓ(x0) +∇ℓ(x0)
⊤(x− x0) +

1

2
(x− x0)

⊤∇2ℓ(x0)(x− x0), (3.1)

where x0 is a reference point (ideally close to x) and ∇2ℓ(x0) is the Hessian of

ℓ w.r.t. x — the matrix of second derivatives, [∇2ℓ(x)]i,j =
∂2ℓ(x)
∂xi∂xj

— evaluated

at x0. We denote the quadratic approximation of ℓ(x) as ℓ̂(x). Taking the

gradient of this approximation w.r.t. x, we get:

∇ℓ̂(x) = ∇ℓ(x0) +∇2ℓ(x0)(x− x0). (3.2)

We can find the x which minimizes ℓ̂(x) by setting this gradient to 0 and

solving for the x, leading to the solution

x = x0 −∇2ℓ(x0)
−1∇ℓ(x0).

Thus, iterating this update leads to the popular second-order optimization

strategy called Newton’s method :

xt+1 = xt −∇2ℓ(xt)
−1∇ℓ(xt). (3.3)

We refer to an update of this form, using the full Hessian as a preconditioner,

as a Newton update. Newton’s method can be shown to converge quadrati-

cally under mild assumptions on the loss function (Wright and Nocedal 1999).

When the loss function is a quadratic function, Equation 3.1 is no longer an

approximation, and the solution in Equation 3.1 is exact — the minima is

found in a single step.
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3.2 Quasi Second-order Methods

In many applications, accounting for local curvature using a Newton update

(Equation 3.3) would be desirable due to the faster rates of convergence, but

is often computationally infeasible. Many real-world problems involve high-

dimensional inputs, so computing and inverting the d×d Hessian matrix can be

too expensive — especially in systems operating in real time, such as robotics.

For this reason, it is often desirable to approximate the inverse Hessian. Instead

of preconditioning with (∇2ℓ(xt))
−1, quasi second-order methods replace the

Hessian with an approximation Bt ≈ ∇2ℓ(xt)
−1

xt+1 = xt −Bt∇ℓ(xt).

Many of the successful quasi second-order methods — such as BFGS and SR1

(Wright and Nocedal 1999) — attempt to approximate the inverse Hessian

of the loss function incrementally, avoiding the explicit matrix inversion on

each iteration. However, in practice, the quadratic computation required to

maintain the approximation of the inverse Hessian can still be too expensive.

For this reason, many of the popular approaches in recent years instead use

a diagonal approximation, bt ≈ diag(∇2ℓ(xt)
−1), allowing the estimate to be

updated in linear time (Kingma and Ba 2015; Reddi et al. 2018; Tieleman and

Hinton 2012; Zeiler 2012).

3.3 Conclusion

In this chapter, we reviewed some of the basic ideas behind adaptive learning

methods. The direction of the negative gradient often does not actually point

towards the minimum of the function being minimized, which can lead to in-

efficiencies in the optimization process. Furthermore, it is often the case that

smaller step-sizes are required in some regions of the input space, and larger

step-sizes in others. Adaptive methods seek to skew the direction and magni-

tude of the negative gradient in some meaningful way using a preconditioning

matrix Ht. One such method is Newton’s method, which selects Ht to be the

inverse Hessian of the loss function. Many methods, called quasi second-order
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methods, seek to approximate the inverse Hessian incrementally. In the next

chapter, we discuss a family of quasi second-order methods which attempts to

make this approximation in linear time, using only first-order information.
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Chapter 4

Adaptive Learning Methods for
Online Prediction

In this thesis we consider continual, online prediction problems modeled as

dynamical systems. On each discrete time step t, the agent observes the

internal state of the system through an imperfect summary vector ot ∈ O ∈ R
d

for some d ∈ N, such as the sensor readings of a mobile robot. On each step,

the agent makes a prediction about a target signal Tt ∈ R. In the simplest case,

the target of the prediction is a component i of the observation vector on the

next step Tt = ot+1,i—the classic one-step prediction. In the more general case,

the target is constructed by mapping the entire future of the observation time

series to a scalar, such as the discounted sum formulation used in reinforcement

learning: Tt = E[
∑∞

k=0 γ
kot+k+1,i], where γ ∈ [0, 1) discounts the contribution

of future observations to the infinite sum. The prediction Pt ∈ R is generated

by a parametrized function, with modifiable parameter vector wt ∈ R
d.

In continual online prediction problems, the agent’s objective is to minimize

the error between the prediction Pt given by wt and the target Tt before it is

observed, over all time steps. The prediction task is performed indefinitely,

with new data being observed on each time step; the agent must learn the

predictions as the data comes in, updating its predictions (via wt) with each

new sample ot. This contrasts offline problem settings, in which data-collection

and learning happen in separate phases.

Continual online prediction problems are typically solved using stochastic

updates to adapt the parameter vector wt after each time step t to reduce
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the error (retroactively) between Pt and Tt. Generically, for stochastic update

vector ∆t ∈ R
d, the weights are modified as

wt+1 = wt +αt ◦∆t (4.1)

for a vector step-size αt, where the operator ◦ denotes element-wise multipli-

cation. Given an update vector, the goal is to select αt to reduce error, into

the future. Semi-gradient methods like temporal difference learning follow a

similar scheme, but ∆t is not the gradient of an objective function. Through-

out this chapter, we will specify learning algorithms in terms of ∆t and αt,

and assume the weights are updated according to Equation 4.1.

This setting leads to three natural restrictions on the algorithms that we

consider.

1. First, we require that the algorithms have computational complexity

linear in the number of input parameters, d ∈ N. Many problems of practical

importance have high-dimensional input spaces and a fine discretization of

time, sometimes having only milliseconds between successive inputs. In these

settings, quadratic-time algorithms are simply too expensive to be used in real

time.

2. The second restriction we impose is that the methods can be used fully

online and incrementally, processing data on a sample-by-sample basis. Of-

tentimes the stream of observations is non-stationary, or drifting over time; we

want methods which can continuously integrate new data as it is observed.

3. Finally, we restrict ourselves to step-size adaptation algorithms which

avoid decreasing the step-sizes to zero over time. As the step-sizes decay to

zero, the learning process converges to a fixed solution; this is problematic

in settings where the target signal is non-stationary, since the learner will no

longer be able to track the target as it changes over time.

Luckily, there are at least two approaches which meet these restrictions:

the meta-descent methods, and a family of quasi second-order methods derived

from the AdaGrad algorithm. In the following sections, we discuss each of these

approaches in turn, starting with the more widely-known quasi second-order

methods.
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4.1 Quasi Second-order Methods

Step-size adaptation for the stationary setting is often based on estimating

second-order updates. The idea is to estimate the loss function ℓ : R
d →

R locally around the current weights wt using a second-order Taylor series

approximation—which requires the Hessian Ht
def

= ∇2ℓ(wt). A closed-form

solution can then be obtained for the approximation, because it is a quadratic

function, giving the next candidate solution wt+1 = wt − (Ht)
−1 ∇ℓ(wt). If

instead the Hessian is approximated—such as with a diagonal approximation—

then we obtain quasi second-order updates. Taken to the extreme, with the

Hessian approximated by a scalar, asHt = α−1
t I, we obtain first-order gradient

descent with a step-size of αt. For the batch setting, the gains from second-

order methods are clear, with a convergence rate of O(1/t2), as opposed to

O(1/t) for first-order descent.

These gains are not as clear in the stochastic setting, but diagonal ap-

proximations appear to provide an effective balance between computation and

convergence rate improvements (Bordes et al. 2009). These approaches, how-

ever, still require O(d2) computation per step, making them less useful in

practice for many online prediction scenarios. For example, online predic-

tion in robotics applications often have high dimensional inputs (see Section

7.2), and the robot’s clock-cycle is often on the order of milliseconds. Mak-

ing quadratic-time parameter updates at each step is simply infeasible in such

learning systems. Instead, we focus on quasi second-order methods which

have linear time approximations. In particular, we focus on a family of quasi

second-order methods which evolved from the AdaGrad algorithm (Duchi et

al. 2011; McMahan and Streeter 2010).

4.1.1 AdaGrad

Many of the most widely-used approaches to adapting a vector of step-sizes

are descendents of AdaGrad (Duchi et al. 2011; McMahan and Streeter 2010).

The full quadratic-complexity AdaGrad algorithm updates parameters using

wt+1 = wt − ηG−1
t ∇ℓ(wt)

20



where η ∈ R is a global learning rate shared by all parameters, and Gt ∈ R
d×d

is the preconditioning matrix defined by

Gt =

√√√√
t∑

i=1

∇ℓ(wi)∇ℓ(wi)⊤.

In practice, the quadratic-time algorithm can be too computationally ex-

pensive, as it involves inverting the d×d matrix Gt on each time step. Instead,

a linear-time approximation to the AdaGrad algorithm is often used, where Gt

is approximated by its diagonal entries, allowing the inverse to be computed

in linear time. Let vt ∈ R
d be the vector [vt]i = [Gt]i,i for i = 1, . . . , d. Using

this approximation, vt can be both updated and inverted in linear time, as

desired. This leads to updates of the form

vt = vt−1 +∇ℓ(wt)
2

αt
def

=
η√

vt + ǫ

∆t
def

= −∇ℓ(wt)

where v0
def

= 0 and ǫ ∈ R is a small positive constant to prevent division by

zero.

At a high-level, AdaGrad might be seen as trying to “even out” how much

each of the features contributes to the overall learning process. In vanilla SGD,

features which are frequently active and/or often produce high-magnitude gra-

dient components disproportionately influence the learning process. This can

effectively drown out the influence of rare but otherwise informative features.

By setting the step-sizes αt to be inversely proportional to
∑t

i=1 ∇ℓ(wi)
2,

AdaGrad prevents over-active features from dominating the learning process.

4.1.2 RMSProp and AdaDelta

The step-size adaptation rule of Adagrad has some notable drawbacks: the

first is that learning rates monotonically decay to zero over time, causing

learning progress to eventually halt. This makes AdaGrad ill-suited to con-

tinual learning problems with non-stationary dynamics. The second drawback
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is that AdaGrad can be sensitive to initial conditions; parameters with large

error gradients at the beginning of training will be stuck with small learning

rates for the rest of the training.

The RMSProp algorithm (Tieleman and Hinton 2012) seeks to address

these problems by instead accumulating the squared gradients over a fixed-

size window, approximated as an exponentially decaying average of the squared

gradients vt:

vt = (1− β)vt−1 + β∇ℓ(wt)
2

αt
def

=
η√

vt + ǫ

∆t
def

= −∇ℓ(wt)

where β ∈ (0, 1) is a fixed smoothing parameter1 and v0
def

= 0.

AdaDelta (Zeiler 2012) uses the same preconditioner as RMSProp — ap-

proximating the sum of squared gradients with a exponentially decaying aver-

age — but adds an additional unit correction term, mt. The idea is that if we

assume that wt has some hypothetical units, the update αt ◦∆t applied to wt

ought to have those same units. The authors propose using an exponentially

decaying average of the update vectors ∆t to make this correction, resulting

in the update equations

vt = (1− β)vt−1 + β∇ℓ(wt)
2

αt
def

=

√
mt√

vt + ǫ

∆t
def

= −∇ℓ(wt)

mt+1 = (1− β)mt + β∆2
t .

The nice thing about this unit correction term is that it is used in place of the

parameter η in the RMSProp algorithm, resulting in one less hyperparameter

to be tuned. In practice, however, the ability to tune a global learning rate

tends to result in better performance from RMSProp.

1We use the convention that β is small (near 0, rather than near 1) throughout this thesis
for consistency. The opposite convention (as used in Kingma and Ba (2015), Tieleman and

Hinton (2012), and Zeiler (2012)) can be used by making the change of variables ρ
def

= 1− β.
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Finally, it is interesting to note the relationship between the RMSProp-

style preconditioner and local curvature of the loss function. The term vt is

an exponentially decaying average of recent squared gradients, so the precondi-

tioner αt =
η√
vt+ǫ

scales each component inversely proportional to its squared

magnitude in the local region. This is intuitively similar to the behaviour that

would result from using αt
def

= diag(∇2ℓ(wt))
−1 — each component of the gra-

dient is scaled based on how “steep” the loss function is within a local region

of wt. In fact, many works suggest that RMSProp-style preconditioners are

incremental approximations of a diagonal Hessian (Dauphin et al. 2015; Hazan

et al. 2007; Kingma and Ba 2015; Martens 2014; Pascanu and Bengio 2013).

For this reason, we consider methods which use preconditioners of this sort to

be quasi second-order methods.

4.1.3 Adam and AMSGrad

Like RMSProp, Adam (Kingma and Ba 2015) locally estimates the decay-

ing average of previous squared gradients vt, and adapts the learning rates

according to it:

vt = (1− β2)vt−1 + β2∇ℓ(wt)
2

αt
def

=
η√

vt + ǫ

for global step-size η ∈ R, decay parameter β2 ∈ (0, 1), stability constant ǫ,

and v0
def

= 0.

Unlike RMSProp and AdaDelta, Adam adds a form of momentum: in-

stead of using the error gradient ∇ℓ(wt) directly, Adam uses an exponentially

decaying average of the previous gradients.

mt = (1− β1)mt−1 + β1∇ℓ(wt)

for decay parameter β1 ∈ (0, 1), and m0
def

= 0. The two estimates vt and mt

are additionally bias-corrected to account for the fact that their initialization
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biases them towards zero.

m̂t
def

=
mt

1− (1− β1)t

v̂t
def

=
vt

1− (1− β2)t
.

Using these definitions, the update rules are then:

αt
def

=
η√

v̂t + ǫ

∆t
def

= −m̂t

where η is again a global learning rate and ǫ is a small constant added for

numerical stability.

Reddi et al. (2018) point out an issue with the convergence proof of Adam,

leading them to a slightly different preconditioner. AMSGrad uses (mostly)

the same updates as the Adam algorithm, but instead of preconditioning with

1√
vt+ǫ

they use a running estimate of the maximum vt encountered so far

ṽt = max(ṽt−1,vt)

αt
def

=
η√

ṽt + ǫ

where ṽ0 = 0.

Of the algorithms discussed so far, only AdaGrad and AMSGrad have rig-

orous convergence guarantees. However, these guarantees hold only when the

global step-size η decays to zero over time (e.g . ηt =
η√
t
). Thus, these con-

vergence results (and equivalent regret bounds) are not entirely relevant to

our continual online prediction setting, since we generally require the abil-

ity to track a non-stationary target Tt continually. We thus do not consider

convergence or regret bounds further in this thesis.

4.2 Meta-descent Methods

The meta-descent strategies directly learn step-sizes that minimize the same

objective as the base learner. A simpler set of such methods, called hypergra-

dient methods (Almeida et al. 1998; Baydin et al. 2018; Jacobs 1988), adjust
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the step-size based on its impact on the weights on a single step. Hypergra-

dient Descent (HD) (Baydin et al. 2018) takes the gradient of the loss ℓ(w)

w.r.t. a scalar step-size α > 0, to get the meta-gradient for the step-size

as ∂ℓ(wt)/∂α = −∇wℓ(wt−1)
⊤∇wℓ(wt). The update simply requires storing

the vector ∇wℓ(wt−1) and updating αt+1 = αt + η∇wℓ(wt−1)
⊤∇wℓ(wt), for

a meta step-size η > 0. More generally, meta-descent methods, like IDBD

(R. S. Sutton 1992a) and SMD (N. N. Schraudolph 1999), try to control the

loss function indirectly, using the step-sizes. The step-sizes are adapted by

optimizing a meta-objective

min
α>0

E[ℓ(wt(α))|w0].

Intuitively, the idea is that the step-sizes influence the trajectory of the param-

eters (w0, . . . ,wt), and the parameters influence the loss function, so the loss

function can be indirectly controlled using the step-sizes. The meta-objective

is optimized via SGD by considering the impact of the step-sizes back in time,

through the weights:

∂ℓ(wt(α))

∂αi

=
d∑

j

∂ℓ(wt(α))

∂wt,j

∂wt,j(α)

∂αi

, (4.2)

where wt,j(α) denotes j-th element in vector wt(α). The goal is to approx-

imate this gradient efficiently, usually using a recursive strategy. Below, we

show the derivation for the SMD algorithm for concreteness, as well as to

correct an error in the original derivation2.

4.2.1 Stochastic Meta-Descent

Our main focus for meta-descent methods is Stochastic Meta-descent (SMD)

(N. N. Schraudolph 1999), which is a generalization of many of its predecessors

(N. Schraudolph 1998; R. S. Sutton 1992a; R. S. Sutton 1992b). Given a

twice-differentiable loss function ℓ : Rd → R, SMD attempts to adapt a vector

of step-sizes α ∈ R
d using stochastic gradient descent, minimizing the loss

2The discrepency between the proposed algorithm and the SMD derivation has been
noticed in prior works (A. Mahmood 2010), but it was not shown why this discrepency is
an error; we do so by re-deriving the algorithm.
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with respect to the step-sizes. We compute the gradient of the loss function

ℓ(wt(α)), w.r.t. step-size. We derive the full quadratic-complexity algorithm

to start, and then introduce approximations to obtain a linear-complexity

algorithm. For step-size αi as the ith element in the vector α, we can write

the ith component of ∇αℓ(wt(α)) as

∂ℓ(wt(α))

∂αi

=
d∑

j

∂ℓ(wt(α))

∂wt,j

∂wt,j(α)

∂αi

.

Define the following two vectors, for wt,j the j-th element in vector wt(α),

∆t,j(wt(α))
def

= −∂ℓ(wt(α))

∂wt,j

∈ R
d the gradient update (4.3)

ψt,i

def

=
∂wt(α)

∂αi

∈ R
d. (4.4)

For notational simplicity, we supress the arguments of ∆t and wt unless rele-

vant for computing derivatives. We can obtain vector ψt,i recursively as

ψt+1,i =
∂

∂αi

(wt +α ◦∆t) =
∂wt(α)

∂αi

+α ◦ ∂∆t(wt(α))

∂αi

+

[ 0
∆t,i

0

]

= ψt,i +α ◦
∑

j

∂∆t(wt)

∂wt,j

∂wt,j(α)

∂αi

+

[ 0
∆t,i

0

]

= ψt,i −α ◦ (Htψt,i) +

[ 0
∆t,i

0

]

= (I− diag(α)Ht)ψt,i +

[ 0
∆t,i

0

]
.

The resulting generic updates for quadratic-complexity SMD, with meta step-

size η, are:

αt = αt−1 exp
(
ηαt−1 ◦Ψ⊤

t ∆t

)
(4.5)

Ht
def

= ∇2
wt
ℓ(wt)

Ψt+1 = (I− diag(αt)Ht)Ψt + diag(∆t).

where Ψ ∈ R
d×d is the matrix with [Ψt]:,i = ψt,i, ψ0,i = 0 and α0 = α0 for

some initial value α0 ∈ R.
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For the linear-complexity algorithm, we set entries (ψt,i)j = 0 for i 6= j.

Let Ht,i be the ith column of the Hessian. This results in the simplification

ψt+1,i = ψt,i −α ◦
d∑

j

Ht,j(ψt,i)j +

[ 0
∆t,i

0

]

= ψt,i −α ◦Ht,i(ψt,i)i +

[ 0
∆t,i

0

]
.

Further, since we will then assume that (ψt+1,i)j = 0 for i 6= j, we need not

compute the full vector Ht,i(ψt,i)i. Instead, we only need to compute the

ith entry, i.e., for
∂∆t,i(wt)

∂wt,i
. We can then instead define ψ̂t,i to be a scalar

approximating
∂wt,i(α)

∂αi
, with ψ̂t the vector of these, and the diagonal of the

Hessian

ĥt
def

=

[
∂2ℓ(wt)

∂w2
t,1

, . . . ,
∂2ℓ(wt)

∂w2
t,d

]
(4.6)

to define the recursion as ψ̂t+1
def

= ψ̂t − α ◦ ĥt ◦ ψ̂t + ∆t, with ψ̂0 = 0. The

gradient using this approximation, with off-diagonals zero, is:

∂ℓ(wt(α))

∂αi

=
d∑

j

∂ℓ(wt)

∂wt,j

∂wt,j(α)

∂αi

≈ ∂ℓ(wt)

∂wt,i

∂wt,i(α)

∂αi

= ψ̂t,i∆t,i.

The resulting update to the step-size is

αt = αt−1 + ηψ̂t ◦∆t (4.7)

ψ̂t+1 =
(
I−αt ◦ ĥt

)
◦ ψ̂t +∆t.

In practice, it’s common for meta-descent approaches to constrain the step-

sizes α to be an exponential function, αt = exp(βt) for βt ∈ R
d. This allows

the step-sizes to remain strictly positive, while also allowing the step-sizes α

to be updated using geometric steps. The updates are similar to the above,

except now we minimize the loss w.r.t. β

∂ℓ(wt(α(β)))

∂βi
=

d∑

j

∂ℓ(wt)

∂wt,j

∂wt,j(α)

∂αi

∂αi(β)

∂βi
. (4.8)
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making a change of variables ψ̂
′
t

def

= ψ̂t ◦α, the update to α becomes

αt = exp(βt) = exp(βt−1 + ηψ̂
′
t ◦∆t)

= exp(βt−1) exp(ηψ̂
′
t ◦∆t) = αt−1 exp(ηψ̂

′
t ◦∆t),

and ψ̂
′
t is updated by ψ̂

′
t =

(
I−αt ◦ ĥt

)
◦ ψ̂′

t + αt ◦ ∆t. After rearranging

terms in the ψ̂
′
t update, we arrive at update equations similar to the original

work (N. N. Schraudolph 1999)

αt = αt−1 ◦ exp(ηψ̂
′
t ◦∆t) (4.9)

ψ̂
′
t+1 = ψ̂

′
t +αt ◦

(
∆t − ĥt ◦ ψ̂

′
t

)
. (4.10)

Difference to original SMD algorithm: Now, surprisingly, the above

algorithm differs from the algorithm given for SMD. But, the original deriva-

tion appears to have a flaw, where the gradients of weights taken w.r.t. to a

vector of step-sizes is assumed to be a vector. Rather, with the off-diagonal

approximation we use, it should be a diagonal matrix, resulting in a diagonal

Hessian. For completeness, we include the original algorithm, which uses a

full Hessian-vector product.

αt = αt−1 exp
(
ηψ̂t ◦∆t

)

ψ̂t+1 = ψ̂t +αt ◦
(
∆t −Htψ̂t

)
.

Note that a follow-up paper that tested SMD (Wu et al. 2018) uses this update,

but does not have an error, because they use a scalar step size. In fact, in the

SMD paper, if the step size had been a scalar, then their derivation would be

correct.

4.2.2 IDBD

The IDBD algorithm (R. S. Sutton 1992a) is a special case of SMD, arising

from linear LMS updates. Recall from Section 2.4 that the loss function for

linear LMS problems is of the form ℓ(wt) = 1
2
(yt − x⊤

t wt)
2 for target signal
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yt ∈ R, input vector xt ∈ R
d, and parameter weights wt ∈ R

d. To apply

the SMD update, we compute ∆t = −∇wt
ℓ(wt) = (yt − x⊤

t wt)xt, and ĥt =

diag(∇2
wt
ℓ(wt)) = xt ◦ xt. Plugging these quantities into Equations 4.9 and

4.10 gives the updates

δt
def

= (yt − x⊤
t wt)

αt = αt−1 ◦ exp(ηδtxt ◦ ψ̂
′
t)

ψ̂
′
t+1 = ψ̂

′
t +αt ◦

(
δtxt − xt ◦ xt ◦ ψ̂

′
t

)
.

The original IDBD proposed in (R. S. Sutton 1992a) rearranges the up-

date for ψ̂′ and additionally adds positive bounding operation to give ψ̂′ the

interpretation of a decaying memory of the recent weight changes.

ψ̂
′
t+1 = ψ̂

′
t ◦max (0,1− xt ◦ xt ◦αt) + δtαt ◦ xt (4.11)

In Chapters 6 and 7, we implement IDBD using the update for ψ̂
′
in Equation

4.11.

4.2.3 TIDBD

TIDBD (Kearney et al. 2018) is the temporal-difference learning counterpart

to IDBD. Like IDBD, TIDBD can similarly be derived as a stochastic meta-

descent algorithm. The derivation proceeds using a loss function ℓ(wt) =
1
2
δ2t ,

where δt = Rt+1 + γv̂(St+1;wt)− v̂(St;wt) is the one-step TD error at time t

(see Section 2.5). The main deviation from the typical SMD derivation is the

use of a semi-gradient update, where the term v̂(St+1;wt) is treated as if it

were part of the target signal and constant w.r.t. wt, leading to ∇ℓ(wt) = δtxt.

Additionally, TIDBD updates ψ̂t using an update analogous to Equation 4.11.

The derivation then follows using steps analogous to those in Section 4.2.1,

resulting in update equations

zt = λγzt−1 + xt

αt = αt−1 exp
(
ηδtxt ◦ ψ̂

′
t

)

ψ̂
′
t+1 = ψ̂

′
t ◦max(0,1−αt ◦ xt ◦ zt) + δtαt ◦ zt.
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4.3 Conclusion

In this chapter, we introduced our problem setting — continual online predic-

tion — and two approaches to adapting a vector of step-sizes in this setting:

a family of quasi second-order methods and the meta-descent methods.

It is interesting to note that although the quasi second-order methods have

become strongly associated with supervised learning and training deep neural

networks in recent years, these methods were originally derived from an on-

line convex optimization (OCO) perspective. In the OCO setting, the agent

proposes a solution wt ∈ R at each time step. After the solution has been

proposed, a convex loss function ℓt is revealed and the agent receives a loss of

ℓt(wt). This is somewhat similar to our setting, insofar as one could imagine

that the wt proposed by the agent parameterizes some function approxima-

tion (such as ŷt
def

= x⊤
t wt), and the loss returned is an error metric, such as

ℓt(wt)
def

= (yt − ŷt)
2. Yet despite being designed for similar problem settings,

there has yet to be an in-depth empirical comparison of the meta-descent and

quasi second-order strategies presented in this chapter. We provide the first

such comparison in Chapter 6 and Chapter 7.

In our discussion of meta-descent methods, we omit various extensions to

the base algorithms. The IDBD algorithm is extended in (A. R. Mahmood

et al. 2012) to include heuristics for normalizing the step-size and avoiding

overshooting. TIDBD also has an analogous extension (Kearney et al. 2019).

However, normalization and overshooting heuristics could, in theory, be ap-

plied to any of the adaptive algorithms we’ve discussed, including the quasi

second-order methods. We omit such extensions from further consideration,

focusing instead on the base algorithms.
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Chapter 5

Adaptive Gain for Stability

Tracking — continually updating the weights with recent experience — con-

trasts the typical goal of convergence. Much of the previous algorithm devel-

opment for step-size adaptation, however, has been towards the aim of con-

vergence, with algorithms like AdaGrad and AMSGrad that decay step-sizes

over time. Assuming finite representational capacity, there may be aspects of

the problem that can never be accurately modeled or predicted by the agent.

In these partially observable problems tracking and thus treating the problem

as if it were non-stationary can improve prediction accuracy compared with

methods that converge (R. Sutton et al. 2007). In continual online prediction,

we assume the agent’s task is partially observable in this way and develop a

new step-size method that can facilitate tracking.

We treat the learning system as a dynamical system—where the weight

update is based on stochastic updates known to suitably track the targets—

and consider the choice of step-size as the inputs to the system to maintain

stability. Such a view has been previously considered under adaptive gain for

least-mean squares (LMS) (Benveniste et al. 1990, Chapter 4), where weights

are treated as state following a random drift. To generalize this idea to other

incremental algorithms, we propose a general criterion based on the magnitude

of the update vector.

A criteria for α to maintain stability in the system is to keep the norm of

the update vector ∆t small

min
α>0

E
[
‖∆t(wt(α))‖22

∣∣ w0

]
. (5.1)
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The update ∆t(wt(α)) on this time step is dependent on the step-size α

because that step-size influences the parameter weights wt and past updates.

The expected value is over all possible update vectors ∆t(wt(α)) for the given

step-size and assuming the system started with some w0. If the system is

ergodic, ∆t(wt(α)) does not depend on the initial w0, and is only driven by

the underlying state dynamics and the choice of α. The step-size can be seen

as a control input for this system, with the goal to maintain a stable dynamical

system by minimizing ‖∆t(wt(α))‖22 over time.

We derive an algorithm to estimate α for this dynamical system, which

we call AdaGain: Adaptive Gain for Stability. The algorithm is derived for a

generic update ∆t(wt(α)) that is differentiable w.r.t. the weights wt(α). To

simplify the notation, we suppress the arguments of ∆t and wt where they are

unneeded.

5.1 AdaGain with Quadratic Complexity

We derive the full quadratic-complexity algorithm to start, and then introduce

approximations to obtain a linear-complexity algorithm. To minimize (5.1),

we use stochastic gradient descent, and thus need to compute the gradient

of ‖∆t(wt(α))‖22 w.r.t. the step-size α. For step-size αi as the ith element

in the vector α, and wt,j the j-th element in vector wt, we can write the ith

component of the gradient as

1
2
∂‖∆t(wt(α))‖22

∂αi

= ∆⊤
t

∂∆t(wt(α))

∂αi

= ∆⊤
t

d∑

j

∂∆t(wt)

∂wt,j

∂wt,j(α)

∂αi

.

The key, then, is to track how a change in the weights impacts the update

and how changes in the step-size impact the weights. The first term can be

computed instantaneously on this step. For the second term, however, the

impact of the step-size on the weights goes back further to previous updates.

Let ψt,i

def

= ∂wt(α)
∂αi

∈ R
d. We show how to obtain a recursive form for this
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step-size gradient as follows:

ψt+1,i =
∂wt+1

∂αi

=
∂

∂αi

(wt +α ◦∆t)

=
∂wt(α)

∂αi

+α ◦ ∂∆t(wt(α))

∂αi

+

[ 0
∆t,i

0

]

= ψt,i +α ◦
∑

j

∂∆t(wt)

∂wt,j

∂wt,j(α)

∂αi

+

[ 0
∆t,i

0

]

= ψt,i +α ◦ (Gtψt,i) +

[ 0
∆t,i

0

]

= (I+ diag(α)Gt)ψt,i +

[ 0
∆t,i

0

]
, (5.2)

where Gt,j
def

= ∂∆t(wt)
∂wt,j

∈ R
d, Gt

def

= [Gt,1, . . . ,Gt,d] ∈ R
d×d. Therefore, ψt+1,i

represents a sum of updates, with a recursive weighting on previous ψt,i ad-

justing the weight of previous updates in the sum.

We can approximate the gradient using this recursive relationship, without

storing all previous samples. Though the above updates are exact, we obtain

an approximation when implementing such a recursive form in practice. When

using ψt−1,i computed on the last time step t − 1, this gradient estimate is

in fact w.r.t. the previous step-size αt−2, rather than αt−1. Thus, for many

steps into the past, the accumulated gradients in ψt,i are likely inaccurate. To

improve the approximation, and forget old gradients, we introduce a forgetting

parameter 0 < β < 1, which focuses the accumulation of gradients in ψt,i to a

more recent window (see Equation 5.4).

The gradient update to the step-size also needs to ensure that the step-sizes

remain positive. Similarly to IDBD, we use an exponential form for the step-

size, where α = exp(β) and β ∈ R
d is updated with (unconstrained) stochastic

gradient descent. Conveniently, we do not need to maintain this auxiliary

variable, and can simply directly update α using αt+1 = αt ◦ exp(−ηαt ◦ gt),

where all operations are taken element-wise and gt =
1
2
∂‖∆t(wt(α))‖22

∂αt
. This

update is derived in Section 5.3, along with a discussion of other possible

approaches to maintaining non-negative step-sizes.
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The resulting generic updates for quadratic-complexity AdaGain, with

meta step-size η, are

αt = αt−1 ◦ exp
(
−ηαt−1 ◦ (Ψ⊤

t G
⊤
t ∆t)

)
(5.3)

ψt+1,i = (1− β)ψt,i + β


αt ◦ (Gtψt,i) +

[ 0
∆t,i

0

]
 (5.4)

where the exponential is applied element-wise, ψ0,i = 0, α0 = α0 for some

initial value α0 ∈ R, and (Ψt):,i = ψt,i with Ψt ∈ R
d×d. For computational

efficiency to avoid matrix-matrix multiplication, the order of multiplication for

Ψ⊤
t G

⊤
t ∆t should start from the right, as Ψ⊤

t (G
⊤
t ∆t). The key complexity in

deriving an AdaGain update, then, is simply in computing the Jacobian Gt;

given this, the remainder of the algorithm is fixed. For each update ∆t(wt(α)),

the Jacobian will be different, but is straightforward to compute.

5.2 AdaGain with Linear Complexity

Maintaining the entire matrix Ψt can be prohibitively expensive. As was done

in IDBD (R. S. Sutton 1992a), one way to avoid maintaining this matrix is to

assume that
∂wt,j(α)

∂αi
= 0 for i 6= j. This heuristic reflects that αi is likely to

have the largest impact on wt,i, and less impact on the other entries in wt.

The modification above for this heuristic is straightforward, simply by set-

ting entries (ψt,i)j = 0 for i 6= j. This results in the simplification of Equation

5.2 to

ψt+1,i = ψt,i +α ◦
d∑

j

Gt,j(ψt,i)j +

[ 0
∆t,i

0

]

= ψt,i +α ◦Gt,i(ψt,i)i +

[ 0
∆t,i

0

]
.

Further, since we will then assume that (ψt+1,i)j = 0 for i 6= j, there is

no purpose in computing the full vector Gt,i(ψt,i)i. Instead, we only need

to compute the ith entry, i.e., for
∂∆t,i(wt)

∂wt,i
. We can then instead define ψ̂t,i

to be a scalar approximating
∂wt,i(α)

∂αi
, with ψ̂t the vector of these, and ĵt

def

=
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[
∂∆t,1(wt)

∂wt,1
, . . . ,

∂∆t,d(wt)

∂wt,d

]
to define the recursion as ψ̂t+1

def

= ψ̂t+α◦ ĵt ◦ ψ̂t+∆t,

with ψ̂0 = 0. The gradient using this approximation, with off-diagonals zero,

is

1
2
∂‖∆t(wt(α))‖22

∂αi

= ∆⊤
t

d∑

j

∂∆t(wt)

∂wt,j

∂wt,j(α)

∂αi

≈ ∆⊤
t

∂∆t(wt)

∂wt,i

∂wt,i(α)

∂αi

= ψ̂t,iG
⊤
t,i∆t

To compute this approximation, for all i, we still need to be able to compute

G⊤
t ∆t. In some cases this is straightforward, as is the case for linear TD

(found in Section 5.4.2). More generally, we can use R-operators (Pearlmutter

1994) to compute this Jacobian-vector product, or a simple finite difference

approximation, as we do in Section 5.4.1. Therefore, because we can compute

this Jacobian-vector product in linear time, the only approximation is to ψ̂t.

The update, with forgetting parameter β ∈ [0, 1], is

αt = αt−1 exp
(
−η αt−1 ◦ ψ̂t ◦ (G⊤

t ∆t)
)

(5.5)

ψ̂t+1 = (1− β)ψ̂t + β
(
αt ◦ ĵt ◦ ψ̂t +∆t

)
.

These approximations parallel diagonal approximations for second-order

techniques, which similarly assume off-diagonal elements are zero. Further,

Gt itself is a gradient of the update w.r.t. the weights, where this update

was already likely the gradient of the loss w.r.t. the weights. Thus, this Gt

contains similar information as the Hessian. The AdaGain update, therefore,

contains some information about curvature but allows for updates that are not

necessarily (true) gradient updates.

This AdaGain update is generic but does require computing the Jacobian

of a given update, which could be onerous in certain settings. We provide an

update based on finite differences in Section 5.4.1 which only requires differ-

ences between updates. We have found that this approach also works well in

practice.
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5.3 Maintaining Non-negative Stepsizes

One straightforward option to maintain non-negative step-sizes is to define a

constraint on the step-size. We can prevent the step-size from going below a

small threshold ǫ (e.g., ǫ = 0.001), ensuring positive step-sizes. The projec-

tion onto this constraint set after each gradient descent step simply involves

applying the operator (·)ǫ, which thresholds any values below ǫ > 0 to ǫ.

The drawback to this simple approach, however, is that it introduces another

hyperparameter to tune: the threshold value ǫ.

Another option—and the one we use in this work—is to use an exponential

form for the step-size, α = exp(β), so that it remains positive. The algo-

rithm, with or without an exponential form, remains essentially identical to

the thresholded version, because

1
2
∂‖∆t(wt(α(β)))‖22

∂βi
= ∆⊤

t

∂∆t(wt(α))

∂αi

∂αi(β)

∂βi
.

Therefore, we can still recursively estimate the gradient with the same ap-

proach, regardless of how the step-size α is constrained. For the thresholded

form, we simply use the gradient ∆⊤
t

∂∆t(wt(α))
∂αi

and then project (i.e., thresh-

old). For the exponential form, the gradient update for α is simply used within

an exponential function, as described below.

Consider directly maintaining β, which is unconstrained. For the function

form αi = exp(βi), the partial derivative
∂αi(β)
∂βi

is simply equal to αi and so the

gradient update includes an additional αi in front. This can more explicitly

be maintained, without an additional variable, by noticing that for gradient

gi = αi∆
⊤
t

∆t(wt(α))
∂αi

for βt,i, the step-size αt,i can be updated using:

αt+1,i = exp(βt+1,i)

= exp(βt,i − ηgi)

= exp(βt,i) exp(−ηgi)

= αt,i exp(−ηgi).

Therefore, we can still directly maintain α. The resulting update to α is
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simply

αt = αt−1 exp
(
−ηαt ◦ ψ̂t ◦ (G⊤

t ∆t)
)
. (5.6)

Other multiplicative updates are also possible. SMD (N. N. Schraudolph 1999)

uses an exponential update, but uses an approximation with a maximum, to

avoid the expensive computation of the exponential function. Hypergradient

descent (Baydin et al. 2018) uses a similar multiplicative update, but without

a maximum.

5.4 Specific AdaGain Updates

In this section, we provide a selection of concrete AdaGain updates. We begin

with a general-purpose finite-difference approximation which can be computed

without the matrix-vector product G⊤∆t. We then derive the update equa-

tions for a common learning algorithm: semi-gradient TD(λ). AdaGain for

LMS updates falls out of the semi-gradient TD(λ) updates as a special case.

Finally, we give concretely the update equations for a variant of AdaGain

which uses an RMSProp base learner, combining a quasi second-order update

with meta-descent.

5.4.1 Finite-difference AdaGain

One advantage of AdaGain is that it is derived generically, allowing exten-

sions to many online algorithms, unlike IDBD, and variants which are derived

specifically for the squared TD-error. To avoid requiring knowledge about

the algorithm update and its derivatives, we can provide an approximation

to the Jacobian-vector product and the diagonal of the Jacobian, using finite

differences. As long as the update function for the algorithm can be queried

multiple times, this algorithm can be easily applied to any update.

To compute the Jacobian-vector product, we use the fact that this corre-

sponds to a directional derivative. Notice thatG⊤
t ∆t corresponds to the vector

of directional derivatives for each component (function) in the update ∆t, in

the direction of u = ∆t, because the dot-product separates inG⊤
t,1u, . . . ,G

⊤
t,du.

Therefore, for update function ∆ : Rd → R
d (such as the gradient of the loss),
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we get the approximation

G⊤
t ∆t ≈

∆(w + ru)−∆(w − ru)

2r
, (5.7)

where r ∈ R is a small constant value. For the diagonal of the Jacobian, we

can again use finite differences. An efficient finite difference computation is

proposed within the simultaneous perturbation stochastic approximation al-

gorithm (Spall 1992), which uses a random perturbation vector p to compute

the centered difference (∆(w+rp)−∆(w−rp))i
2rpi

. This formula provides an approxi-

mation to the gradient of the i entry in the update ∆t with respect to weight

i; when computed for all i, this approximates the diagonal of the Jacobian

ĵt. To avoid additional computation, we can re-use the above difference with

perturbation u, rather than a random vector p. To avoid division by zero, if

u contains a zero entry, we threshold the normalization with a small constant

ǫ to give

ĵt ≈
∆(w + ru)−∆(w − ru))

2r
◦ (1/sign(u)max(ǫ, |u|)) (5.8)

where division is element-wise. Another approach would be to sample a ran-

dom direction p for this finite difference and use ∆(w+p)−∆(w), divided by

the absolute value of each element of p. We found empirically that using the

same direction as ∆t was actually more effective, and more computationally

efficient, so we use that approach.

Using these approximations, we can compute the update to the step-size

as in Equation (5.5), repeated here for easy reference:

αt = αt−1 exp
(
−ηαt−1 ◦ ψ̂t ◦ (G⊤

t ∆t)
)

ψ̂t+1 = (1− β)ψ̂t + β
(
αt ◦ ĵt ◦ ψ̂t +∆t

)
.

5.4.2 AdaGain for Linear TD(λ)

In this section, we derive the updates for a particular algorithm, namely semi-

gradient linear TD(λ). We first provide the AdaGain updates for linear TD(λ),

and then provide the derivation below. Recall from Section 2.5 that for TD(λ),
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the update is

δt
def

= rt+1 + γx⊤
t+1wt − x⊤

t wt

∆t
def

= δtzt

zt
def

= λγzt−1 + xt.

for discount rate γ, bootstrapping parameter λ, and z0
def

= 0. Using these

definitions, AdaGain for linear TD(λ) updates the step-sizes using:

αt = αt−1 exp(−η(∆⊤
t zt)αt−1 ◦ dt ◦ ψ̂t) (5.9)

ψ̂t+1 = (1− β)ψ̂t,i + β
(
αt ◦ zt ◦ dt ◦ ψ̂t +∆t

)

where ψ̂0 = 0.

To derive the update for α, we need to compute the gradients of the up-

dates, particularly ∂∆t(wt)
∂wt,i

, or for the full algorithm, the Jacobian G as follows:

∂∆t(wt)

∂wt,i

= zt
∂δt(wt)

∂wt,i

= zt
∂

∂wt,i

(rt+1 + γt+1x
⊤
t+1wt − x⊤

t wt)

= zt (γt+1xt+1 − xt)i .

Letting dt
def

= γt+1xt+1 − xt, the Jacobian is Gt = ztd
⊤
t and the diagonal

approximation is gt
def

= zt ◦dt. The quadratic complexity algorithm uses Gt as

given:

αt = αt−1 exp(−η(∆⊤
t dt)αt−1 ◦ (Ψ⊤

t zt))

ψt+1,i = (1− β)ψt,i + β


αt ◦ (ztd⊤

t ψt,i) +

[ 0
∆t,i

0

]
 .

The linear complexity algorithm uses gt to update ψ̂t, giving the step-size

update in (5.9):

αt = αt−1 exp(−η(∆⊤
t dt)αt−1 ◦ zt ◦ ψ̂t)

ψ̂t+1 = (1− β)ψ̂t,i + β
(
αt ◦ zt ◦ dt ◦ ψ̂t +∆t

)
.
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5.4.3 AdaGain for Linear LMS Updates

Another common update is the Linear Least Mean Squares update. In this

setting, ∆t = (yt − x⊤
t wt)xt for a given target signal yt ∈ R. Notice that

the LMS Update equation falls directly out of the TD(λ) update equation by

letting γ = λ = 0. Thus, the update equations for AdaGain applied to LMS

updates can be found by simply replacing λ and γ everywhere they appear.

In particular, the trace zt = λγzt−1 − xt becomes −xt, and dt = γxt+1 − xt

becomes −xt as well. The updates therefore become

αt = αt−1 exp(−η(∆⊤
t xt)αt−1 ◦ ψ̂t ◦ xt)

ψ̂t+1 = (1− β)ψ̂t,i + β
(
αt ◦ xt ◦ xt ◦ ψ̂t +∆t

)
.

5.4.4 AdaGain with RMSProp

Step-size adaptation is often desirable when working with difficult optimization

surfaces. It is often the case that the objective being optimized is sensitive

to some components of the parameter vector wt, making smaller step-sizes

desireable. Likewise, the objective may be insensitive to other components

of the parameter vector, requiring larger step-sizes in order to significantly

influence the objective. Unsurprisingly, these difficulties extend to the meta-

objective in meta-descent strategies, since these methods use the step-sizes

α to influence the weights wt, thereby indirectly influencing the objective.

Intuitively, if the objective is difficult to control directly using the parameters

wt, it will be similarly difficult to control the objective throughwt(α) using the

step-sizes. Because of this, the meta-optimization can be ineffective, resulting

in ineffective step-size adaptation.

To help alleviate these difficulties, we propose using meta-descent methods

in conjunction with quasi second-order preconditioners. The idea is that the

conditioning of AdaGain’s meta-objective can be improved by minimizing the

norm of a better-conditioned update vector. For a given base learning update

∆t, we can apply AdaGain to a preconditioned update vector ∆̃t
def

= diag(Ht)
−1◦

∆t to minimize the objective E[‖∆̃t(wt(α))‖2|w0]. In particular, using the

RMSProp preconditioner equates to applying AdaGain to an RMSProp base
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learner.

Other preconditioners are possible, of course; one could apply AdaGain

to any of the popular quasi second-order updates. However, each of the quasi

second-order updates has its own hyperparameters to tune in addition to those

of AdaGain. This would be an infeasible number of hyperparameters to thor-

oughly tune, so we constrain the quasi second-order update to share the hyper-

parameters used by AdaGain. For example, an RMSProp update has a global

step-size η and a smoothing parameter β; we constrain these values to be

the same as AdaGain’s meta step-size and forgetting parameter respectively.

In our preliminary experiments, we found that applying AdaGain to an RM-

SProp base learner generally worked better than the other quasi second-order

approaches given the constraints on hyperparameters. The update equations

for AdaGain with RMSProp, which we refer to as RMSGain, are:

vt = (1− β)vt−1 + β∆2
t

∆̃t =
∆t√
vt + ǫ

αt = αt−1 exp
(
−η αt−1 ◦ ψ̂t ◦ (G̃⊤

t ∆̃t)
)

ψ̂t+1 = (1− β)ψ̂t + β
(
αt ◦ j̃t ◦ ψ̂t + ∆̃t

)

where v0 = 0 and ǫ is a small constant to prevent division by zero. G̃t and

j̃t are the jacobian and its diagonal approximation, respectively, of ∆̃t. We do

not take the gradient through the preconditioner 1√
vt+ǫ

, treating it instead as

a constant w.r.t. wt.

5.5 Conclusion

In this chapter, we introduced a new meta-descent algorithm called AdaGain.

AdaGain is built on a generic update scheme and can be applied to a wide va-

riety of base learners. While previous meta-descent methods attempt to adapt

the step-sizes in a way that minimizes the loss function, AdaGain attempts to

adapt the step-sizes in a way which minimizes the norm of the base learner’s

stochastic update vector ∆t. In this way, AdaGain can be seen as adapting
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the step-sizes to optimize learning stability. Furthermore, this objective gave

us a principled way to combine meta-descent methods with quasi-second order

methods: one can simply apply AdaGain to a preconditioned update vector.

In particular, when using the RMSProp preconditioner, we refer to the result-

ing algorithm as RMSGain. In the following chapters, we demonstrate that

RMSGain can lead to significant performance improvements over the existing

meta-descent methods.
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Chapter 6

Experiments in Stationary
Settings

We conducted a series of experiments to investigate the performance character-

istics of quasi second-order and meta-descent methods in settings with station-

ary dynamics. We begin with two difficult stationary problems: minimizing

the Rosenbrock function, and off-policy state-value learning in a variation of

Baird’s “star” counterexample.

The goal in this chapter is to investigate the performance of each algo-

rithm on difficult stationary tasks, before moving on to non-stationary tasks

in Chapter 7. This allows us to first build intuitions about these approaches in

isolation from the additional complexities of non-stationarity. The Rosenbrock

function has both steep regions and flat regions, requiring the algorithms to

be able to efficiently raise and lower their step-sizes when in different regions

of the input space. Outside of the flat regions, the steep surfaces addition-

ally pose a challenge to learning stability, as the gradients are very large. On

the other hand, Baird’s counterexample is an off-policy state-value prediction

problem that generates notoriously unstable learning iterates in TD methods,

leading to divergence for any scalar step-size. The ability to gracefully handle

unstable learning iterates is a desirable property in continual online prediction

problems, since we expect the algorithms to run reliably for undetermined

lengths of time.
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We investigated four variants of AdaGain: 1) the linear complexity Ada-

Gain with RMSProp (RMSGain), 2) the linear finite-difference approximation

of RMSGain (ApproxRMSGain), 3) the quadratic complexity implementation

of RMSGain (QuadraticRMSGain), and 4) the linear complexity AdaGain

without RMSProp (AdaGain). For the RMSGain and its variants, the initial

learning rate α0, meta step-size η, and forgetting parameter β were each tuned

over the values {2−i : i = 0, . . . , 12}. For vanilla AdaGain, the meta step-size

η and forgetting parameter β were tuned over the same values, but the inital

step-size α0 had to be tuned over the range {2−i : i = 10, . . . , 22} in due to

instability in initial learning.

We compared the performance of AdaGain against several baselines in-

cluding SGD, AMSGrad, RMSProp, and SMD. AMSGrad has three hyperpa-

rameters, which were tuned over the same range as RMSGain’s parameters.

RMSProp and SMD’s two hyperparameters were both tuned over the range

{1.4−i : i = 1, . . . , 46}. The step-size for SGD was tuned over a linear spacing

of 2197 values in the range [2−22, 1].

The performance was measured using Equation 6.1 over 6000 optimization

steps, and averaged over 100 independent runs. On each run, we selected

the initial position on the surface (x0, y0) randomly from the set {(x, y) ∈
R

2 : x, y ∈ [−5, 5]}. The hyperparameters for each algorithm were chosen

according to the minimum area under the learning curve in order to capture

both good initial performance and final performance.

Figure 6.2 shows the learning curves for this problem. The left graph shows

a comparision of the different AdaGain variants. RMSGain, ApproxRMSGain,

and Quadratic RMSGain all perform similarly on this problem, while AdaGain

performs significantly worse on average. The right graph shows the compar-

ison of the best-performing AdaGain variant, RMSGain, and the rest of the

baselines. RMSGain and AMSGrad both learn faster on average than all other

baseline methods considered, and achieve similar final performance. Further,

two meta-descent methods, SMD and AdaGain without RMSProp perform

poorly. SMD, in particular, performs about as well as SGD in this problem;

this is because the best-performing instance of SMD on this problem is the
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scalar step-size (Baird 1995). We use a variation of the problem (Maei 2011),

depicted in Figure 6.6. The MDP consists of seven states, and two actions

available in each state: the first action leads deterministically to state 7 from

any state (depicted by the solid arrows). The second action leads to one

of states 1 − 6 with equal probability (depicted by the dashed arrows). All

transitions yield a reward of 0.

The task is an off-policy learning problem in which the agent must estimate

the value function vπ(·) with discount rate γ = 0.99 and target policy π(s) = 1

(transition to state 7) in all states s. The behaviour policy chooses actions 1

and 2 with equal probability. The value function is approximated linearly as

v̂π(s) = w⊤x(s), where w ∈ R
8 is a weight vector and x(s) ∈ R

8 is the feature

vector observed in state s (depicted to the right of each state in Figure 6.6).

The solution to this problem is simple: all transitions result in a reward of

0, so the value function under any policy π is vπ(·) = 0. Likewise, to solve the

problem we need to find a weight vector w∗ such that v̂π(s) = x(s)⊤w∗ = 0

for all states s. The feature vectors x(s) are all linearly independent, so this

is an overdetermined system of equations with infinite possible solutions. In

particular, w∗ = c[−2, 1, 1, 1, 1, 1, 1, 4] for any c ∈ R exactly estimates vπ(·).
The difficulty of this problem comes in when a bad initialization of the

weights is chosen. Initializing the weight vector as w0 = [1, 1, 1, 1, 1, 1, 1, 10]⊤,

for example, leads to pathogenic behavior in TD(λ). First, note that any

transitions to any of the states 1 − 6 result in an importance sampling ratio

ρt = 0, so w is updated only when transitioning to state 7. Suppose that

the first transition to state 7 occurs from state s ∈ {1, . . . , 6}, then the TD

error δ0 = 0+ γv̂π(7)− v̂π(s) = 0.99 · 12− 3 > 0, so weights w0 and ws will be

increased, increasing the value of v̂π(s) = w0+2ws. Note that w0 is also shared

with state 7, so v̂π(7) = 2w0 + w7 increases as well. Thus 6
7
of the transitions

result in increasing the value of v̂π(s) and v̂π(7). In fact, the only time values

are ever decreased is when transitioning from state 7 to itself, so values are

increased much more often than they are decreased, leading to unbounded

growth of the value estimates.

Suppose, however, that updates were made using a vector of step-sizes,
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Grad. Unlike Adam, AMSGrad’s preconditioner term can only decrease in

magnitude, and all of the step-sizes are quickly pushed to zero, preventing

learning1. This demonstrates that although AMSGrad has better convergence

guarantees than Adam, it may be ill-suited to continual online prediction prob-

lems, as unstable learning iterates can cause it to stop learning completely.

The results in this experiment suggest that both RMSGain and Adam are

suitable for handling problems with unstable learning iterates. RMSGain’s

meta-objective appears to enable adapting the step-sizes in a way that sta-

bilizes the learning iterates, whereas Adam’s use of momentum and the RM-

SProp preconditioner seem to “smooth out” the instabilities while keeping the

step-sizes above zero.

6.3 Conclusion

In this chapter, we performed two experiments in environments with station-

ary dynamics. The first experiment highlighted that meta-descent methods

are not robust to the shape of the optimization surface. AdaGain’s generic

update scheme enabled us to overcome this issue by applying AdaGain to a

preconditioned update vector. In particular, the combination of AdaGain and

RMSProp — an algorithm we call RMSGain — was generally more robust to

the optimization surface than previous meta-descent strategies in this experi-

ment.

In our second experiment, we considered a Markov Decision Process in

which TD methods diverge for any scalar step-size. Both RMSGain and Adam

are able to converge to low value error in this task, while all other algorithms

either diverge or learn nothing at all. The ability to stabilize the learning

process using the step-sizes suggests that both RMSGain and Adam could be

valuable algorithms in many problems of interest.

1In the original publication of our paper (Jacobsen et al. 2019a), the result for Adam
was mistakenly reported as AMSGrad due to a bug in the code. This result was updated in
the arXiv version of the paper (Jacobsen et al. 2019b) and the mistake noted in the errata.
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Chapter 7

Experiments in Non-Stationary
Settings

In this chapter, we conduct experiments in settings with non-stationary dy-

namics. The experiments in this chapter are aimed at understanding how

well each algorithm can adapt in problems where the solution is changing over

time. We begin with a simple LMS problem in which the dynamics change

every so often and the optimal step-size can be computed analytically. Our

experiments are concluded with a time-series prediction problem on real data

from a mobile robot.

The first experiment investigates whether each of the algorithms is able to

adapt the step-size in an optimal way. This experiment is additionally used

to assess whether each of the algorithms is able to remain stable during a

large number of learning iterates; the experiment is run for 3× 109 iterations,

corresponding to roughly 24 hours of operation. To achieve this an algorithm

must be robust to the many sudden changes in the distribution of the target

without becoming unstable.

In our final experiment, we compare the performance of our meta-descent

strategy and a quasi second-order strategy when applied to real data generated

from the sensor readings of a mobile robot. The task has many of the difficul-

ties of real-world problems: the targets can be very high magnitude, the data

is non-stationary, and the input is high-dimensional. The high-magnitude tar-

gets result in high-magnitude and high-variance updates, posing a threat to

learning stability. The non-stationarity requires that the algorithms be able to
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500, 000 steps of the experiment, averaged over 10 runs. The optimal step-

size is plotted as a black dashed line. RMSGain and RMSProp were the only

algorithms to optimally adapt the step-size throughout the entirety of the

experiment on all runs.

AdaGrad is unable to successfully solve this problem due to its decreasing

step-sizes. This demonstrates how methods which decrease the step-sizes to

zero over time can cause issues when an agent is faced with non-stationarity.

Interestingly, AdaDelta is also unsuccessful at solving this problem. Recall

from Section 4.1.2 that AdaDelta adds a unit correction term to the numer-

ator of the RMSProp preconditioner. In this problem setting, the parameter

updates are small on average, so the numerator term ends up pushing the

AdaDelta’s step-sizes down towards zero. Similarly, on every run of the exper-

iment IDBD pushes its step-size to near-zero at some point, and is unable to

bring it back up1. The largest number of steps IDBD performs before decay-

ing the step-size to zero is 800, 002, 275 steps — roughly a quarter of the way

through the experiment. SMD gets destabilized and diverges to infinity on step

2, 206, 527, 012 of run 4 of the experiment, roughly three quarters through the

experiment. The failure of both SMD and IDBD demonstrates the inherent

difficulty of continual, long-running tasks with non-stationary dynamics, and

the importance of optimizing for stability.

In addition to learning stability, sensitivity to parameter settings is also

important. To help better understand these methods, we constructed a pa-

rameter sensitivity graph (Figure 7.3). For each algorithm, the plot shows

a circle for each hyperparameter setting. y-axis shows the average squared

error between the algorithm’s step-size and the optimal step-size. A thresh-

old is set on the y-axis; settings which yield performance above the threshold

are grouped together at the top of the plot, and the percentage of parameter

settings that are above the threshold are shown as a percentage at the top.

The plot shows that RMSGain has a number of settings that outperform

1In our previous work (Jacobsen et al. 2019a), IDBD was implemented with a lower
bound β = max(β,−10) (see Section 4.2.2). In this work, we removed this lower bound for
better consistency between the meta-descent method implementations.
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long-running tasks; neither method was able to continue reliably performing

the task for a large number of time steps. Furthermore, despite the simplicity

of this task, both SMD and IDBD were very sensitive to their hyperparam-

eters, having only a minority of parameter settings reach an acceptable level

of performance. On the other hand, RMSProp and RMSGain both performed

reliably during the long-running continual learning task, adapting the step-size

effectively across all runs of the experiment without diverging or having the

step-sizes become unreasonably small. Both RMSProp and RMSGain were

additionally less sensitive to their hyperparameters than the rest of the algo-

rithms.

7.2 Predicting Robot Sensor Readings

In our previous experiments, we focused mainly on simple domains in which

the dynamics of the environment and the behavior of each of the algorithms

could be well understood. While these domains were useful in terms of building

understanding, they are simpler than the problem settings that we’d expect

to see in the wild. Our final experiment on poses many of the problems we

associate with online continual prediction problems. The problem uses the

sensor readings from a real mobile robot; the data is noisy, and the magni-

tudes of the predictions can be very large — in the millions — making learning

stability an issue. The input to the system is very high-dimensional, necessi-

tating linear-time algorithms. Some of the sensor readings have a slow drift

to them, requiring the ability to track carefully. Other sensors have regions in

which the distribution of the inputs and targets changes suddenly, requiring

the algorithms to aggressively revise their predictions to remain accurate.

The data was generated as a mobile robot interacted with its environment

following a fixed behavior policy. Time is discretized into time steps of 100

milliseconds, and the readings from each of the robot’s 53 sensors were recorded

at each time step. The robot’s environment was a square pen with an area of

4 squared meters and had a light source on one edge of the pen. The behavior

policy was a fixed stochastic policy which caused the robot to traverse along
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the edge of the pen in a loop, with the pen’s wall at the robot’s right side. The

data was generated over 144, 000 time steps, corresponding to approximately

3.4 hours of runtime on the robot.

We used the same tile-coding (R. S. Sutton and Barto 2018) of the sensor

inputs described in the original work, giving 6065 binary feature components

for use as a linear representation. The tile-coding strategy consists of a mixture

of joint and single tilings, where a tiling is a discretization of the output space

of a group of sensors. For example, given two sensors s(1) and s(2), a tiling

could be defined by a two-dimensional grid overlaid on the two-dimensional

space of possible joint sensor readings. If the sensor readings (s
(1)
t , s

(2)
t ) at time

t fall into cell (i, j) of the grid, then the corresponding entry in the feature

vector is set to 1. In particular, the tile-coding strategy in this experiment uses

457 such tilings, resulting in feature vectors with 457 active binary features on

each time step.

We recreate the robotic Nexting experiment (Modayil et al. 2014), using

TD(λ) to make dozens of predictions about the future values of robot sensor

readings. We formulate each prediction as estimating the discounted sum of

future sensor readings, treating each sensor as a reward signal with a discount

factor of γ = 0.9875, corresponding to approximately 8-second predictions.

We incrementally processed the sensor data on each step constructing a fea-

ture vector from the vector of sensor readings and making one prediction for

each sensor. At the end of learning, the returns G
(s)
t for each sensor s were

computed, and we measured the symmetric mean absolute percentage error

SMAPE(T, s)
def

= 1
T

∑T

t=1
|v̂(s)(St)−G

(s)
t |

|v̂(s)(St)|+|G(s)
t |

between the prediction v̂(s)(·) on sensor

s and the corresponding return G
(s)
t .

The learning curves were aggregated using the median. A small number

of the sensors in this experiment lead to high-magnitude returns, resulting in

update targets in the millions. the prediction error on these sensors is generally

much higher than the rest of the sensors. Because of this, the median across

sensors is a more representative measure of aggregate performance than the

mean.

62



For this experiment we reduced the number of algorithms, using AMSGrad

as the representative quasi second-order method and RMSGain as the repre-

sentative meta-descent algorithm. Because of the computational cost of this

experiment, the hyperparameters were tuned in two stages: first, all hyperpa-

rameters were pre-tuned on one of the robot’s light sensors. The pre-tuning

was used to identify reasonable values for each of the hyperparameters. Once

the best setting was selected, the meta step-size η of each algorithm was re-

tuned for performance across all sensors.

In the pre-tuning phase, AMSGrad’s three hyperparameters were both pre-

tuned over the values {2−i : i = 0, . . . , 12}. For RMSGain, we fixed the

initial step-size α0 = 1, and pre-tuned the decay parameter β and meta-

step-size η over the values {1.4−i : i = 1, . . . , 45}. The light-sensor data was

incrementally processed as described above, and the SMAPE was calculated.

The best performing parameter setting was selected in terms of the minimum

area under the learning curve. In the second phase of tuning, the meta step-

size η of each algorithm was re-tuned for performance over all sensors. For

each η ∈ {2.5−i : i = 0, . . . , 20}, the data for each sensor was incrementally

processed, and the resulting learning curves were aggregated using the median.

The best parameter setting was selected according to the minimum area under

the median learning curve.

As a baseline, we additionally include the performance of an optimal static

baseline, computed offline by solving a system of equations offline (as in Mo-

dayil et al. (2014)). The optimal solution makes use of only the first 40, 000

data points for each sensor, reflecting a realistic scenario of computing pre-

dictions from a limited batch of data, and later using the offline solution for

online prediction.

The median SMAPE across all 53 sensors is shown in Figure 7.4 (left). As

to be expected, the SMAPE for the offline optimal predictions is low on the

training data (first 40, 000 time steps), and much higher on later data due to

non-stationarity in the data. The learning curves also show that RMSGain and

AMSGrad perform similarly in terms of aggregate error over all predictions,

with RMSGain perfoming slightly better at the start of learning. Inspecting
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7.3 Conclusion

In this chapter, we performed two experiments in environments with non-

stationary dynamics. In the first experiment, we performed a simple stateless

tracking task in which the optimal step-size can be computed. While the

meta-descent methods could optimally adapt the step-size parameter, only

RMSGain was able to reliably perform the task for a large number of iter-

ations without issue. The experiment also suggests that the meta-descent

methods IDBD and SMD can be sensitive to their hyperparameters compared

to RMSGain, which had sensitivity similar to that of the best-performing quasi

second-order method RMSProp.

In our second experiment, we compared the performance of a meta-descent

method and a quasi second-order method making predictions about the fu-

ture sensor readings of a mobile robot. The results suggest that RMSGain

can scale up to real-world problems in which the prediction targets are high-

magnitude and high-variance, and can perform comparatively with a well-

established quasi second-order method on problems involving real data.
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Chapter 8

Conclusion and Future Work

In this work, we proposed a new general meta-descent strategy to adapt a

vector of step-sizes for continual, online prediction problems. We defined a

new meta-descent objective which enables a broader class of incremental up-

dates for the base learner, generalizing beyond work specialized to least-mean

squares, temporal difference learning, and vanilla stochastic gradient descent

updates. We derived a recursive update for the step-sizes and provide a linear-

complexity approximation.

In our first experiment, we highlighted that meta-descent strategies can be

sensitive to the shape of the optimization surface. The ability to use AdaGain

for generic updates enabled us to overcome this issue by layering AdaGain

on RMSProp, a simple quasi-second order approach. We then showed that

the combination of meta-descent and quasi second-order methods can perform

better than either method alone. Further experiments demonstrated that the

combination of AdaGain with RMSProp can have benefits in terms of learning

stability, and was less sensitive to the its hyperparameters than the competing

meta-descent and quasi second-order approaches.

The primary next steps are to better understand the generality of the

method and characterize theoretical properties. While our experiments do

provide some empirical success, it is unclear what possible regret bounds — if

any — this algorithm could have. The simplest next-step would be to analyze

the regret bounds of AdaGain in the online convex optimization setting, so

that the bounds can be compared more directly with those of AdaGrad and
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AMSGrad. Furthermore, the literature on measures of regret in non-stationary

settings is lacking; none of the methods discussed in this thesis have proven re-

gret bounds in the non-stationary setting. Yet, given the ubiquitous nature of

non-stationarity in real-world online prediction problems, investigating regret

bounds in this setting is a subject of interest for future work.

In this work, our main focus was on linear function approximation; we did

not explore the application of AdaGain to nonlinear approximators such as

neural networks. It remains to be seen what advantages optimizing for stabil-

ity in neural networks could lead to. Preliminary experiments in this regard

indicate that AdaGain can work well when applied to neural networks, but the

benefits over using existing algorithms — such as AMSGrad, for example —

are not clear. One possible direction for future work would thus be to perform

an in-depth empirical analysis of the performance of meta-descent methods

such as AdaGain when applied to neural networks.

All of the adaptive methods studied in this thesis introduce one or more ad-

ditional hyperparameters. While our experiments suggest that some methods

are less sensitive to these hyperparameters than others, they all nonetheless

required thorough tuning to attain good performance. Designing performant

parameter-free learning algorithms is a subject of interest in nearly all disci-

plines of machine learning, and is an exciting direction for future work.

Meta-descent has recently been used to adapt hyperparameters other than

the step-size, such as the discount rate γ and the bootstrapping parameter

λ in deep reinforcement learning (Xu et al. 2018). A possible direction for

future work is to investigate whether these parameters could also be leveraged

for learning stability, using an objective analogous to the objective used by

AdaGain.

Finally, we note that AdaGain is only a single, simple instance of the

idea of optimizing for stability in online prediction problems. An interest-

ing direction for future work would be to revisit the analyses that lead to

the popular quasi second-order methods, and attempt to account for sta-

bility. For example, Gupta et al. (2017) introduce a unified framework for

adaptive regularization in online learning, in which a preconditioning ma-
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trix Ht is selected at each time-step, and updates are made according to

wt+1 = wt − Ht∇wℓ(wt). The preconditioning matrix is selected by solv-

ing Ht = minH>0

{∑T

t=1 ‖∇xℓt(x)‖2H + Ψ(H)
}
, where ℓt is the loss function

revealed at iteration t, and Ψ is a parameter of the framework called the poten-

tial function. Selecting Ψ(H)
def

= trace(H−1) leads to the AdaGrad algorithm,

for example. Investigating potential functions which emphasize the stability

of learning updates could potentially be an interesting direction for exploring

adaptive learning algorithms for continual, online prediction problems.
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