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Abstract

Virtual machine environments are becoming more common due to the increased perfor-

mance of commodity hardware and the emergence of cloud computing for large scale appli-

cations. As the use of virtual machines continues to grow, performance critical applications

will require efficient mechanisms to achieve their tasks.

We introduceNahannias a mechanism for shared memory communication in virtual

machine environments. Nahanni allows virtualized applications, those running inside vir-

tual machines, to communicate through shared memory for both data movement and syn-

chronization when VMs are co-located on the same host machine. We describe the design,

implementation, and evaluation of Nahanni as part of the QEMU/KVM virtualization plat-

form.

We have modified existing communication layers to measure the performance benefit of

Nahanni. Through microbenchmarks and applications, we demonstrate that shared memory

is a useful and efficient communication mechanism in virtualized environments. Further, we

discuss how the design and implementation of Nahanni enables a new class of applications,

ones that use structured data, to benefit from the use of shared memory.
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Chapter 1

Introduction

Hardware virtualization is the ability to allow a single hardware platform, consisting of

processors (or cores), memory, and input/output (I/O) devices, to be shared concurrently

between multiple operating systems (OS). On the desktop, itmay be advantageous to run

more than one OS at the same time. For example, a Linux user might want to run the Win-

dows OS and a Windows application concurrently inside a virtual machine (VM), instead of

using a dual-boot approach. On the server, different users might need different versions of

Linux, or a combination of Linux and, say, FreeBSD. By running two concurrent OSes, both

users are able to share the same physical server, despite disparate software requirements. In

the realm of high-performance computing (HPC), VMs can provide encapsulation to easily

deploy HPC applications that may have specific library needswhile still providing good

performance [18, 36, 53]. Historically, virtualization has been part of computer systems

since IBM mainframes of the 1960s [47].

Today, hardware virtualization of servers is an important component of many cloud-

computing platforms, especially in the context of Infrastructure-as-a-Service (IaaS) providers.

Cloud computing offers remote computing resources on-demand and at a large scale that

has freed individuals and organizations from acquiring their own computing infrastructure.

Instead, users can simply rent the use of hardware from so-called cloud providersby the

hour and only pay for what they use. Since a single VM can encapsulate an OS, libraries,

and applications, they lessen the burden of running software on unfamiliar hardware and

operating systems [43]. Therefore, VMs have become the unitof resource allocation on

clouds, and VMs are convenient software encapsulation mechanisms for cloud users.

Although there are many advantages to encapsulating applications and servers inside

VMs, one disadvantage of VMs is that there is an extra degree of separation between the

processes within the VM (i.e., inside theguest) and data that lives outside the VM (i.e., on
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thehost). If the guest VM needs data that sits on the local disk of the host, then (broadly

speaking) the data must either be copied into the guest, or served to the guest, in the sense

of a file server. For some use cases (e.g., a long-running Web server), the necessary data

could be brought inside the VM once and left there for a long time, thus amortizing any

data-movement overheads. However, for other use cases, thedata is often moved inside and

then outside of the VM for each execution of the key application within the VM [57, 18, 36].

Specifically, scientific simulations can be encapsulated within a VM to make it easy

to move the application (and its dependent libraries, tool chains, etc.) from compute node

to node (e.g., [54]). But, for each simulation, the requisite input and output files must be

moved, or staged, across the guest-host barrier.

As well as moving data from a host file system into a VM, data mayneed to be moved

between processes running in different VMs in the case of a parallel computation. For ex-

ample, two co-located scientific applications may need to share data in a pipeline. Moving

data across the inter-VM barriers is likely to be more expensive than the host-guest barrier

due to the need to cross more protection domains. Furthermore, even data-intensive uses

such as map-reduce applications are being deployed using VMs (e.g., Amazon’s Elastic

MapReduce) [31]. Arguably, there is a trend towards using a VM as the unit of resource

allocation on clouds (e.g., Amazon). For some applicationson the cloud, the speed of data

movement between the host and guest and between co-located guests is a potential perfor-

mance bottleneck.

A well-explored idea to speed up interprocess communication (IPC) is to use shared-

memory (e.g., [20, 16]) and direct memory access (DMA) techniques to minimize data

copying and control transfer overheads. Within the realm ofvirtualization, previous ver-

sions of the VMware products supported shared memory between guests as part of the

Virtual Machine Communication Interface (VMCI) [59], but that functionality has been

deprecated. And, XenLoop [61] uses shared-memory ring buffers and Fido [10] for Xen

provides shared-memory network and block devices. At a pragmatic level, the work in this

thesis increases the availability of inter-VM shared memory on more platforms by provid-

ing an implementation of shared-memory IPC for the Linux Kernel-based Virtual Machine

(KVM), to complement the previous shared-memory work on Xen. But, more importantly,

at the architectural level, the work in this thesis presentsan alternate and cleaner design of

flat, shared memory as compared to alternate designs based onDMA concepts.

Admittedly, there is a school of thought that says that shared memory between het-

erogeneous processes (thus, implicitly, different Linux KVM VMs and the host) sounds
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like a good idea, but is often complicated (e.g., intrusive code changes to the OS) and not

necessarily faster than other IPC mechanisms (e.g., optimized stream-data IPC, such as

virtio [52]). We are sympathetic to many of these critiques.

As we will show, the Nahanni system for shared memory in LinuxKVM (as part of

QEMU/KVM version 0.13) is a clean extension of the existing system: the paravirtualized

PCI driver for the guest OS is approximately 250 lines of code, and the Nahanni patch for

QEMU/KVM is approximately 800 lines of code. Furthermore, Nahanni has no functional

nor performance impact on the guest VM if the paravirtualized driver is not loaded into the

guest kernel, and Nahanni is a command-line option to QEMU/KVM and can be turned off

completely.

Lastly, the potential performance benefits of shared-memory IPC using Nahanni can be

large (between 2 and 8 times faster than the next fastest mechanism, as per microbench-

marks in Section 5.3), even when compared to current best practices, such as I/O virtualiza-

tion (i.e., virtio [52]) and the 9P file system mechanisms of Linux KVM. Nahanni can also

provide up to 30% performance improvement for co-located virtual applications.

1.1 Contributions

In exploring the above points through this work, we state thecontributions of this works as:

1. Unintrusive Implementation Architecture. The design and implementation of an

unintrusive shared-memory mechanism for guest-to-host and guest-to-guest IPC, namely

Nahanni. Compared to the design alternatives and previous work, Nahanni is care-

fully crafted to involve a small number of changes (about 1,050 lines of code, none

of which change the host OS kernel), and to have no performance impact on VMs

that do not use the mechanism.

2. Low-latency, High-bandwidth Performance.A demonstration through microbench-

marks and applications that show Nahanni is the fastest mechanism for guest-to-host

and guest-to-guest data movement. Using Nahanni for transferring a file into a VM

from the host can be up to 8 times faster than the next fastest technique. Also using

shared memory for synchronization as opposed to the networkcan be an order of

magnitude faster. Finally, using Nahanni for inter-VM shared memory can result in

up to a 30% improvement in application performance for scientific applications such

as GAMESS and some benchmarks in the SPEC MPI2007 benchmarking suite.
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3. User-level Architecture: Bypass OS and bottlenecks.The particular choice of

exposing shared memory to the user-level within guests has advantages that are not

available with OS-mediated stream-data communications. In particular, Nahanni can

support storing structured data between VMs with applications like memcached [37,

63, 22]. While the kernel is involved in configuration, Nahanni allows normal access

to shared memory without involving the kernel. Thus, avoiding kernel overheads is

important in achieving the best performance and in not introducing (or aggravating)

any bottlenecks in either the guest or host OSes.

As an aside, note that Linux KVM is the common term to refer to the family of Linux

kernel-based VM systems, which (currently) includes portsfor x86 instruction set archi-

tectures (ISA) with hardware support for VMs, IBM’s S/390, and others. On the x86 ISA,

which is our platform, Linux KVM is implemented as a host kernel module and requires a

user-level QEMU process to create a VM. In fact, the command-line to run a Linux KVM

virtual machine on x86 invokes a QEMU binary. We use the term Linux KVM, or just

KVM sometimes, when referring to the hypervisor in general,and we use the term QE-

MU/KVM when describing the Nahanni code and modifications tothe hypervisor since our

modifications involve QEMU.

Although our prototype is based on Linux KVM, the combination of a small driver

in the guest and localized modifications in the hypervisor make our design a candidate for

other hypervisors as well. To be clear, we have not yet portedNahanni to other VM systems,

but we feel it is plausible for future work. Of course, we would look for implementation

guidance from the previous work in this area, such as XenLoop[61] and VMware’s Virtual

Machine Communication Interface (VMCI).

Overall, Nahanni provides a compelling investigation intothe uses of shared memory in

virtualized environments as well as the practicality of running scientific applications within

virtual machines.
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Chapter 2

Overview

Nahanni is a new mechanism for sharing memory between virtual machines (VM) and,

more specifically, the applications that are running insidethose VMs.

Operating systems (OS) have supported sharing memory between applications as a form

of interprocess communication (IPC) for decades. Shared memory is a simple and efficient

mechanism for communication between cooperating process that are running on the same

physical machine. The main benefit from using shared memory for IPC is that no un-

necessary copies of communicated data are made as other IPC mechanisms may do [9].

Extraneous copying is a well-studied source of overhead formany (IPC) mechanisms. By

being able to read and write directly to a region of memory that another application can also

access directly provides a low-overhead mechanism for datatransfer or synchronization.

Nahanni offers architectural and other advantages over previous shared-memory IPC

approaches in VM environments. Most of the recent work with inter-VM IPC over shared

memory have been based on Xen’s grant table mechanism to set up shared ring buffers [64,

28, 61]. Thus, the shared memory is not visible to applications at user-level and all data

that is transported through shared-memory IPC is in the formof stream data. In contrast,

Nahanni’s shared memory is visible to user-level code, which greatly simplifies the porting

of existing libraries [27] (Section 5.6) and supports pointer-based, non-stream data struc-

tures and mechanisms [63, 27]. The one significant exceptionfrom the Xen community

is Fido [10] which uses grant tables to set up a single, read-only address space among all

VMs. Although Fido is capable of supporting pointer-based data structures in theory (i.e.,

but not demonstrated in the original paper [10]), there are security concerns associated with

all participating VMs sharing a read-only address space. Incontrast, Nahanni can option-

ally share different regions of shared memory between different subsets of the VMs, in

accordance with whatever security and sharing policy is desired.
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As hardware virtualization grows in popularity and functionality, especially for pri-

vate [55] and public clouds [6], fast, secure, and flexible (e.g., support both pointer-based

data structures and stream data) shared-memory IPC can benefit a diverse spectrum of use-

cases from file staging (Section 5.3), to Web services [63], to computational science (Sec-

tions 5.5 and 5.6).

2.1 Nahanni

Nahanni is a new mechanism for sharing memory between VMs. Tosimplify the initial

description, we will focus on a single VM, or guest, accessing memory that is shared from

the host OS that the VM is running on.

Figure 2.1 shows the basic concept of Nahanni. A region of “POSIX Shared Memory

on the Host” is made accessible to an application running inside a VM on that host. The

guest application can write to this memory (via load and store operations) and the written

data is visible (as per hardware cache coherency protocols)to host applications or VMs that

are sharing the same region of host memory.

To enable shared memory functionality, the VM requires an interface to the memory via

its virtualized hardware. Virtual machines are similar to real hardware in that their interface

to the outside is handled by devices. A new virtual device, labelled as the “Nahanni Device”

in Figure 2.1, is created that enables the guest operating system to access the shared memory

on the host.

Once the guest operating system is able to access the shared memory, it will expose

the memory to its “Guest User Application”. If two or more guests access the same host

shared-memory region, then applications within those guests will be able to communicate

via that region of shared memory.

The detailed design and implementation of Nahanni will be described in Chapter 4.

However, Figure 2.2, which is identical to Figure 4.20, shows the key elements of the final

form of Nahanni: multiple VMs (three shown in the figure, but can be an arbitrary number)

share the POSIX shared memory via a series ofmmap() operations to the user level, with

support for inter-VM interrupts via the Linux eventfd mechanism. Before moving on to the

details of Nahanni’s implementation, the question of why shared memory is useful for VMs

will be discussed.
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Figure 2.1: The Basic Architecture of Nahanni

Shared memory on the host is shared via the Nahanni device to avirtualized application
running inside the guest VM. The shaded box indicates that the memory is shared, no

copying occurs when data is written to or read from the sharedmemory.

2.2 Motivation and Use Cases

In recent years, VMs have become a popular technology for server consolidation, desktop

virtualization, and system isolation for testing and development, to name just a few broad

categories. In scientific computation, VMs are proving useful as way to package, deploy,

and launch applications [54, 31, 18, 36]. These uses indicate trends of VM usage that

motivates this work.

VMs as unit of resource allocation: With the emergence of public cloud providers,

such as Amazon Elastic Computing Cloud (EC2) [4], Flexiant [19], and Rackspace [49],

VMs have also become a unit of resource allocation and provisioning: adding or removing

resources from a system involves adding or removing VMs. Although some cloud providers

offer VM instances of different resource sizes, many workloads and systems will likely be

designed around adding and removing entire VMs, especiallyif the goal is to scale across

many physical hosts and/or data centres. Therefore, such a system will include many host-
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Figure 2.2: Three Virtual Machines using Nahanni

With other features that will be introduced in the coming chapters, Nahanni enables
multiple VMs to share memory as illustrated above. Note thatthis figure is the same as

Figure 4.20, but is shown here to give an idea of how multiple,co-located VMs can share
memory via Nahanni.

to-guest boundaries as well as guest-to-guest transitions. Our work with Nahanni is an

attempt to optimize these data movement scenarios.

Data stage-in, stage-out scenario:For example, suppose a scientific simulation appli-

cation is encapsulated inside a VM. The simulation is mostlyused for parameter sweeps, so

it might be desirable to launch hundreds of VM instances to run independent simulations.

Each simulation instance has to load input files pertaining to the simulation. At the end of

the simulation, the output files have to be staged out. Of course, the amount of data to be

staged in and out depends on the specific simulation, and it can vary from tens of megabytes

(e.g., molecular dynamics) to gigabytes (e.g., seismic or geological simulations based on

empirical data; visualization-oriented output).

Moving data from host-to-guest (and the symmetrical case ofguest-to-host) is an im-

portant enough use case that the 9P file system was adapted andparavirtualized for Linux

KVM to handle that special case [58]. As an aside, 9P was historically available in Xen,

but has since been deprecated (noted by Hensbergen [58]). And, although there are other

tangible benefits from a file system approach, Sections 5.3 and 5.4 show that Nahanni can

be significantly faster than 9P for data staging from a pure performance point of view.
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Of course, many scientific simulations may take hours of computation within the VM

and dwarf any data stage-in and -out overheads in relative terms. However, it is still worth-

while to address an overhead that can be substantial in absolute terms, as both 9P and

Nahanni are trying to do. After all, many a computational scientist has waited impatiently

for the first simulation to load all of its data, start, and allow for a quick sanity check by the

scientist before the next batch of simulations are launched.

Inter-VM communication (e.g., pipeline, parallel application): As argued by the

authors of the Fido system [10], and consistent with the notion of VMs being a unit of

resource allocation, complex systems of the future might consist of a set of pipelined VMs,

in an analogous way to the classic Unix pipeline of separate processes.

For example, there might be a storage subsystem (e.g., implementing a custom redun-

dancy and de-duplication policy) inside a VM, connected to adata-parallel analytics engine

inside a different VM, and connected to a front-end Web interface that provides visualiza-

tions inside a VM. The analytics engine might include something as simple as a grep or

search for regular expressions, a common use for a “map” phase in a map-reduce com-

putation [14]. Or, perhaps two co-located computations need to exchange data through a

computation. The data could be exchanged through shared memory instead of over a virtual

network.

Again, the amount of data that is moved between pipeline stages or co-located com-

putational tasks (and thus VM-to-VM) varies from application to application. But, if the

overhead of moving the data is optimized well enough, the setof applications that are viable

in such a pipeline architecture would be larger. We considerthe impact of the compute-to-

data ratio of various applications in Section 5.4.

2.3 Caveats

Despite our work with Nahanni, we do not claim that shared-memory IPC and the Nahanni

architecture are the right choices for all scenarios. For example, if data movement and

sharing overheads are not the bottleneck for a given application or workload, then existing

mechanisms are likely satisfactory.

Code changes:The biggest caveat for using Nahanni is that application modifications

are required to take advantage of the new mechanism. Withoutchanges to the network

stacks of the guest(s) and (possibly) the host, as is done by XenLoop and Fido, Nahanni

cannot be used transparently. However, as with our experiments, code changes to use Na-
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hanni can be entirely at the user-level (avoiding error-prone kernel changes) and can be

hidden within user-level code libraries or behind user-level executables.

Potential Loss of Isolation: An advantage of VMs is that different VMs are isolated

from each other. Except for resource contention, and in the absence of bugs that cause a

host to crash, an isolated VM need not be affected nor affect another VM. Isolation, among

other things, allows a VM to be migrated from host-to-host tobalance load and improve

resource scheduling.

Upon first consideration, Nahanni might appear to break isolation in an irreparable way.

But, Nahanni is an optional feature and VMs that do not use thefeature continue to be as

isolated as any other VM. As well, VMs that do not turn on the Nahanni mechanism have

the exact same performance as before.

Even if a set of VMs use Nahanni, the departure of one participating VM does not affect

the use of Nahanni by the other VMs that are sharing memory at the level of the IPC mech-

anism. Of course, if the content of shared memory is left in aninconsistent state, there must

be an application-specific way to recover, but that problem has been well-studied (e.g.,

shared-disk storage systems) and even VMs that communicatevia sockets require some

kind of application-specific or protocol-specific way to handle faults. In other words, isola-

tion still remains possible for applications that do not useNahanni. And, recovering from

faults between a set of communicating applications (e.g., client-server) is an orthogonal

problem to whether Nahanni is used.

Migration: Note that VM migration, in specific circumstances, works correctly with

Nahanni, so even that feature is not necessarily broken. Forexample, a single VM using

Nahanni for host-to-guest IPC can be migrated from one host to another host under Linux

KVM. Of course, the nature and content of the IPC may change when the host changes, but

the VM instance itself and a snapshot of the shared-memory contents can be successfully

migrated and re-started. We have not yet done any performance optimizations related to

migrating shared-memory IPC (e.g., memory ballooning, iterative copying) or abstractions

that work for both shared memory and distributed memory [3],so it is premature to report on

performance, but we have successfully tested migration forcorrectness. In short, Nahanni

does not automatically break isolation or migration.
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Chapter 3

Background and Related Work

Nahanni is designed to enhance the performance and capabilities of virtualized applications

through the use of memory that is shared between virtual machines (VMs). Given these

goals, Nahanni’s design, implementation and evaluation are strongly tied to VMs and by

extension to the broader concept of hardware virtualization. Nahanni also builds upon the

large body of related work on interprocess communication (IPC), in particular IPC that is

based upon shared memory.

This chapter will discuss the necessary background concepts and related work that is

relevant to Nahanni. The concepts and previous work on virtualization will be discussed

first, followed by IPC. Finally, some additional hardware and operating system (OS) con-

cepts will be discussed that are relevant to Nahanni.

3.1 Virtualization Basics

As mentioned, virtualization and VMs are central to Nahanni. Virtualization is not a new

concept and therefore there is a fair amount of previous workthat relates to VMs and more

specifically to inter-VM IPC which is the focus of Nahanni.

3.1.1 Hardware Virtualization

Hardware virtualization is a mechanism that allows multiple OSes and their respective ap-

plications to run simultaneously on the same hardware. Hardware virtualization has been in

use for decades. In the 1960s, it was available in IBM mainframe computers [47]. The goal

of hardware virtualization is to allow two or more operatingsystems to share the hardware

such that each OS and its respective applications do not needto be modified in order to be

virtualized.

There are two basic approaches to hardware virtualization which are both illustrated in

11



Host OS

Hardware

Guest OS
#1

Guest OS
#2 Other

App'n

VMM VMM

(a) Guest VMs running on top of a Host

OS via VMMs

Hardware

Hypervisor

Guest OS
#1

Guest OS
#2

Guest OS
#3

(b) Guest VMs running on a hypervisor

Figure 3.1: Two approaches to hardware virtualization

Figure 3.1. The first approach, shown in Figure 3.1 (a) consists of one OS (called thehost)

running directly on the hardware. The host OS runs software called avirtual machine mon-

itor (VMM) for each virtualized OS (calledguests). In short, guest OSes are virtualized by

the VMM on top of the host OS. Like any application on the host,VMs are encapsulated

within a regular OS process. Well-known VMMs that use this model are VMware Work-

station, KVM and VirtualBox. The second approach, shown in Figure 3.1 (b), involves

running a layer of software directly on the hardware called ahypervisor. The hypervisor

then runs all OSes as guests (i.e., there is no host OS). The hypervisor is not a full-fledged

host OS like in the first approach. A hypervisor is a custom software layer, similar to an OS

in many respects, but specifically designed for running VMs.VMware ESX and Xen are

two examples of virtualization solutions that follow the hypervisor approach. Both of these

methods have their advantages that will be discussed in the following sections.

Despite the differences between the designs shown in Figure3.1, in recent years the

terms VMM and hypervisor have become more or less synonymous. For the remainder of

this dissertation, we will use the general termhypervisorto refer to the software that runs

the VMs in either approach shown in Figure 3.1.

3.2 The Task of the Hypervisor

The primary task of hypervisors is to multiplex or share the hardware between the virtu-

alized guest OSes. That is, the hypervisor must allow multiple guests OSes to share the

central processing units (CPU) (i.e., processors or cores), memory and hardware devices

as if each OS were running exclusively on the hardware. Hypervisors multiplex a single

hardware platform by presenting separatevirtual hardwareconsisting of virtual CPU(s),
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virtual memory and virtual devices (e.g., networks, display and disk drives) to each guest

OS. Virtual hardware becomes the interface through which the guest OS can access the real

hardware network and disks as needed.

In going beyond the basic requirement of multiplexing the hardware, Popek and Gold-

berg [47] articulated three essential characteristics of ahypervisor. Adams and Agesen [2]

summarized these characteristics as:

1. Fidelity: Software on the hypervisor executes identically to its execution on hard-

ware, barring timing effects.

2. Performance: An overwhelming majority of guest instructions are executed by the

hardware without the intervention of the hypervisor.

3. Safety: The hypervisor manages all hardware resources.

As emphasized by the “Performance” characteristic, when running a guest OS, most

instructions can and should be executed directly by the CPU.A key challenge in this regard

is what are calledprivileged instructionsthat must be executed by the guest OS kernels.

3.2.1 Privileged Instructions

Privileged instructions are specific instructions that arepart of every instruction set archi-

tecture (ISA) and are used by the OS kernel to multiplex the CPU between executing ap-

plications, and to manage the hardware. Privileged instructions can modify important CPU

registers and flags that control each application. Therefore, under normal circumstances,

privileged instructions should not be executed except whenrunning the OS kernel. For

example, a register that points to a process’ page table can only be modified by a privi-

leged instruction. These instructions are privileged to ensure that the OS kernel maintains

control of the CPU and prevents any application from corrupting the OS kernel or other

applications.

The challenge in hardware virtualization is in properly handling the privileged instruc-

tions in guest kernels because the guests run in unprivileged mode so that the host OS or

hypervisor can maintain control of the hardware resources.If guest kernels did not run in

unprivileged mode then multiple guest OS kernels could change the CPU state (without

each other knowing) by running privileged instructions, potentially corrupting each other

or the host OS.
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Only the host OS has the necessary permissions to execute privileged instructions. Host

OSes are notified when any application (including a guest VM)executes a privileged in-

struction. The notification comes from a mechanism called atrap. If an application such as

web browser, running normally in unprivileged mode, executes a privileged instruction, a

trap will occur. A trap stops the executing program and switches control to the kernel which

may kill the program that attempted to execute the privileged instruction. When running a

guest kernel on the CPU, any privileged instructions that are executed will similarly gener-

ate a trap to the host OS or hypervisor since guests run in unprivileged mode. Guest OSes

need to execute privileged instructions in order to run, butwhen they are running as a guest

OS they cannot be allowed to do so directly to ensure protection of the host OS and other

applications and VMs.

Handling privileged instructions of guest VMs is a fundamental challenge in virtualiz-

ing operating systems. One technique historically used in hypervisors to handle privileged

instructions was calledtrap-and-emulate. Hypervisors that use trap-and-emulate respond

to a guest OS trying to execute a privileged instruction by having the host OS emulate the

behaviour of the privileged instruction on behalf of the guest OS and allowing the guest to

continue at the next instruction. By emulating the effect ofthe privileged instruction, say

updating the page table pointer, the guest OS can continue toexecute and the hypervisor

maintains control (i.e., “Safety” characteristic from Popek and Goldberg [47]). While the

trap-and-emulate approach is fairly straightforward, it has a drawback in that every trapped

instruction pays a performance penalty as the host OS must:

1. take over execution from the guest OS,

2. emulate the instruction, and

3. resume execution of the guest OS.

Fortunately, privileged instructions are relatively rareand as long as the majority of

instructions can still be executed directly by the CPU, performance will remain acceptable.

3.2.2 The x86 Architecture

Since the 1980s, the Intel 8086 architecture and its descendants have increasingly domi-

nated the personal computing and server market. The x86 architecture, as it is generally

called, presents a challenge to trap-and-emulate designs.The problem is that some priv-

ileged instructions when executing in unprivileged mode donot generate traps, but rather
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the instructions are simply ignored. Therefore, the trap-and-emulate model cannot be used

with x86.

Over time,binary translationand paravirtualizationemerged as alternatives to trap-

and-emulate. Binary translation solves the trapping problem by rewriting the binary code

of the executing guest OS and replacing the privileged instructions with callouts to the

hypervisor. VMware and VirtualBox are two well-established hypervisors that used binary

translation. Binary translation has an advantage in that itcan virtualize practically any

x86-compatible operating system because privileged instructions are translated on-the-fly

at runtime. Binary translation does incur overhead as the executable of the guest OS must

be scanned for privileged instructions. Despite some drawbacks, binary translation was a

successful method that allowed the x86 architecture to be virtualized [2].

3.2.3 Paravirtualization and Xen

An alternative to binary translation isparavirtualization. The Xen project [7] is the best

known example of paravirtualization. Paravirtualizationbreaks the “Fidelity” character-

istic of Popek and Goldberg because the guest OS must be modified and recompiled and

therefore cannot execute “identically to its execution on hardware”.

Paravirtualization requires changing the source of the guest kernel to replace any priv-

ileged instructions with callouts to the hypervisor and recompilation of the kernel. Par-

avirtualization has different trade-offs to binary translation. For example, paravirtualization

requires different modifications for each guest OS (i.e., the modifications necessary for

Linux will be different than for those of FreeBSD or Solaris). Moreover, closed-source

operating systems such as Windows require the cooperation of the proprietors of the OS to

make the necessary modifications. The advantages of paravirtualization include avoiding

the overhead of translating guest instructions on-the-fly as occurs with binary translation,

and avoiding the overhead of trapping with a trap-and-emulate approach, since the instruc-

tions requiring trapping are translated ahead of time.

The release of the Xen project in 2003 was a significant achievement in paravirtualiza-

tion. Xen demonstrated that paravirtualization could achieve near-native performance on

the x86 architecture [7]. Given that Xen was open-source, italso provided a cost-effective,

high-performance solution to using virtualization at a large scale.

An illustration of Xen is shown in Figure 3.2. As mentioned previously, Xen follows

the traditional hypervisor model (see Figure 3.1 (b)) that runs a hypervisor layer specifically

designed to run guest VMs. As shown in Figure 3.2, the Xen hypervisor runs directly on
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the hardware. The Xen hypervisor is a microkernel operatingsystem [23] and involves a

much smaller code base than a fully-featured host OS (as is needed in Figure 3.1 (a)).

When booted, the Xen hypervisor createsdomainsthat run atop the hypervisor. Each

domain is a separate guest OS. The most important domain is Dom0 which manages all

other guest domains. Dom0 must be a Linux guest and is always running while the hypervi-

sor is running. Dom0 runs theControl Plane Softwarethat allows the creation of additional

domains, so-named DomUs, that can run any operating system supported by Xen. Dom0 is

also the primary conduit for DomU input/output (I/O) since all DomU I/O (e.g., network,

disk) passes through Dom0.

Dom0 manages the DomU domains and provides access to devicessuch as the network

and disk drives via virtual devices in order that the DomUs can perform I/O. Xen employs a

split-driver model for the virtual I/O devices running in the DomU guests. The split-driver

model involves splitting device drivers betweenfront-end driversthat run in the respective

DomUs and theback-end driversthat run in Dom0. DomU front-end drivers communicate

with the back-end driver when they want to use a device such asthe network card. It

is the back-end drivers that multiplex a single device such as network card across all the

DomUs that need access to the network. The effect of the split-driver model is that all

device activities need to be communicated to Dom0 and the results be transmitted back to

the front-end driver.

While the split-driver model achieves its goal of multiplexing devices between multi-

ple domains, it has some drawbacks. In particular, split drivers have a performance over-
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head [61] as all network and disk traffic must pass through Dom0. Secondly, split drivers

create a security issue. Since all network and disk traffic must travel through Dom0, the

Linux OS running in Dom0 is a possible source of attack that could compromise the net-

work or disk traffic of the DomUs.

Since its release, Xen has been widely used in both the academic and industrial commu-

nity due its high performance and support from major Linux distributions such as RedHat

Linux.

3.2.4 Redefining Paravirtualization

After the release of Xen, the term paravirtualization broadened beyond the meaning of

modifying an operating system to remove privileged instructions. Recently, the term has

expanded to include not only modified operating systems but any virtual hardware or soft-

ware (e.g., a bus or device) in a VM that has been modified or designed exclusively for

virtual environments. A paravirtualized device does not have to have an equivalent im-

plementation in real, physical hardware because it is designed to run only in VMs. Xen’s

split-driver model would be considered a paravirtualized design since its design only applies

to the Xen hypervisor.

One particular paravirtualization approach that falls into this new, broader category is

virtio [52]. Virtio is a device model that was specifically designed for VMs. Most hard-

ware devices that hypervisors emulate are based on real, common hardware devices. For

example, the well-known Intel e1000 ethernet network interface card (NIC) is emulated as a

network device in most hypervisors for the simple reason that kernel drivers already existed

for the e1000 in most OSes. However, emulating the behaviourof hardware can be ineffi-

cient. Virtio created a model to allow for simple and efficient virtual devices that could be

standardized across all hypervisors (e.g., QEMU/KVM, Xen,VMware, etc). Virtio is gen-

eral enough in its design to support a broad spectrum of devices including network, disk,

serial and other devices. Since virtio devices were a new interface, they required new guest

OS drivers to be written to support them. However, given thatthe different devices share a

common virtio transport mechanism, less code needs to be written for new virtio devices.

To date, virtio drivers have been added to the Linux kernel and Windows drivers are also

available. As will be discussed in Section 4.13.1, we had an experimental implementation

of Nahanni that built upon the virtio framework.
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3.2.5 Hardware-supported Virtualization in the x86 architecture

As the solutions of binary translation and paravirtualization allowed hardware virtualization

on the x86 ISA, the use of virtualization grew in both the desktop and server environments.

Due to the growing popularity of virtualization, the two major x86 vendors, Intel and AMD,

both announced extensions to the x86 ISA to make virtualizing x86 easier, by not requiring

binary translation or OS paravirtualization. Intel named their extensionsVirtual Machine

eXtensions(VMX) and AMD named their extensionsSecure Virtual Machine(SVM). The

respective extensions differed from one another in their design and are not compatible. The

first Intel CPUs with VMX shipped in late 2005. The first AMD CPUs with SVM shipped

in the middle of 2006. Briefly, the new instructions enable easier creation and control of

virtual machines.

At the time of writing, nearly all current x86 CPUs are shipped with hardware virtualiza-

tion support (some low-power mobile chips and low-cost server chips are the exceptions).

The addition of hardware virtualization support made implementing x86 hypervisors much

simpler by eliminating the need for binary translation or kernel paravirtualization. In 2006,

within a few months of the hardware extensions being released, new hypervisors began to

appear, such as Parallels [44], that relied on the hardware extensions. The Xen hypervisor

also added support to make use of hardware extensions as an alternative to paravirtualiza-

tion. Another project that also began in 2006 as a result of the new hardware extensions was

the Kernel-based Virtual Machine project, or KVM, which is the platform for this work.

3.3 QEMU and KVM

To understand KVM, one must first understand QEMU [8]. QEMU isa computer hardware

emulator that uses dynamic translation to execute a particular ISA on top of a different

ISA (e.g., QEMU can emulate SPARC on top of PowerPC). QEMU supports emulation of

numerous ISAs including ARM, SPARC, MIPS and many others. QEMU can be run on

a number of different ISAs such as x86, SPARC, PowerPC, MIPS,etc. QEMU is a full

system emulator in that it creates virtual CPU(s), RAM, and devices to execute a guest OS.

The emulated OS that is run on QEMU typically runs much slowerthan it would on real

hardware because of the overhead of emulation, specificallythe translation of the guest ISA

to the host ISA. QEMU is still useful despite the overheads. QEMU is commonly used for

development work when real systems are rare, low-powered ordifficult to develop for and

debug software on. For example, QEMU is used for the smartphone development emulator
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in the Google Android project.

Aside from emulating different architectures, QEMU can also be used to execute the

x86 ISA on top of x86 hosts without requiring hardware support, albeit slower than other

binary translation systems such as VMware due to overheads resulting from QEMU’s multi-

architecture emulator design.

3.3.1 The KVM Project

The Kernel-based Virtual Machine (KVM) project [29] began in 2006 to create an efficient

hypervisor based upon QEMU. As part of the KVM project, the multi-architecture emu-

lator support in QEMU was modified to accelerate the x86-on-x86 case by using the new

virtualization extensions on x86 processors. The new x86 virtualization instructions must

be issued in privileged mode (i.e., the host kernel), necessitating the addition of a kernel

module that is the significant contribution of the KVM project. Figure 3.3 illustrates the

basic architecture of QEMU/KVM when running a single guest OS. KVM follows the hy-

pervisor model illustrated in Figure 3.1 (a) and requires Linux as the host OS. The two-part

system of QEMU at user-level and KVM in the kernel is why the term QEMU/KVM is

used to describe the system as a whole, although KVM is more commonly used for brevity.

As shown in Figure 3.1, the modified QEMU communicates with the KVM module via a

device file,/dev/kvm that is created when the KVM module is loaded into the kernel.The

single KVM module can support multiple VM guests.
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QEMU/KVM VMs can be launched from the command-line. For example, the follow-

ing command-line will start a QEMU/KVM VM with 2 CPUs (-smp 2), a virtual disk that

will contain the OS and applications (-hda disk.img) and 4 GB of RAM (-m 4G).

qemu-system-x86 64 -smp 2 -hda disk.img -m 4G

The above is clearly a very simple but useful example. The command-line arguments

to QEMU are extensive and specify a wide array of devices including network devices,

graphics and USB devices.

In brief, QEMU/KVM runs a modified QEMU process at user-levelthat creates and

manages a VM in much the same way the original QEMU system did.However, instead of

emulating CPU execution, this modified QEMU relies on the KVMkernel module to run

the VM natively on the CPU. The kernel module issues the virtualization instructions to

achieve accelerated performance. It is the QEMU user-levelprocess that allocates memory

that will serve as the virtualized guest’s RAM. QEMU also creates the virtual devices that

the guest OS will use. In turn, the KVM module will setup the execution of the VM via the

x86 virtualization instructions and actually trigger the VM’s execution. The QEMU process

and KVM module will pass control back and forth as the VM executes. With the removal of

the QEMU emulation system, the majority of the guest’s x86 instructions execute directly

on the hardware leading to significant improvement in performance (i.e., “Performance”

characteristic of Popek and Goldberg [47]).

Virtual devices, including disks, display and network devices, are still managed by the

QEMU process at the user-level. When the VM accesses a device, control will pass to

QEMU to perform the particular task on the virtual device, such as sending a network

packet. Once this task is completed, QEMU will notify the KVMmodule to continue

execution and the VM will be resumed.

At the time of KVM’s release, hypervisors such as Xen and VMware ESX (Figure 3.1 (b))

that run directly on the hardware were the growing trend. TheKVM design was motivated

by the view that the task of the hypervisor is similar to the task of any operating system in

that they both provide device and resource sharing and isolation between processes/VMs.

Moreover, the design trade-offs of process creation, scheduling and memory management

are much the same in operating systems as they are in hypervisors. Therefore, building

KVM on top of Linux leveraged all the work that had been done bythe Linux community

to make Linux a solid, yet flexible, foundation. With KVM, thehost OS that manages the

guest VMs is the same Linux operating system that users and administrators are familiar

with. The only addition to a standard host kernel is the KVM kernel module. KVM VMs
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are regular Linux processes that share the CPU, memory and hardware devices with the

other processes (guest VMs or otherwise) running on the samehost OS.

Aside from virtualization, the other research topic that Nahanni explores is interprocess

communication which will be discussed in the following section.

3.4 Interprocess Communication

Interprocess communication (IPC) is a fundamental topic incomputing in addition to being

a well-studied area of research. In general, IPC encompasses the mechanisms that allow

threads and processes to exchange data and synchronize their execution. In general, there

are two kinds of IPC, stream data and shared data. The distinction between the two lies

in that stream data passes entirely from one process to another where as shared data is

simultaneously available to multiple processes. Operating systems typically support several

different IPC mechanisms including, but not limited to, pipes, sockets, shared memory

and signals. The variability in mechanisms is a result of thevariety of communication

needs that processes and threads may have. For example, communicating processes may

be geographically distant as in the case of web browsers and web servers which would

require stream data as the data may pass across the Internet.Alternatively, communicating

processes may run on the same physical machine in the case of high-performance parallel

programs which could make use of shared-data IPC. The natureof the application(s) that

requires IPC will strongly influence which mechanisms can beused and which is best suited.

The research that has investigated IPC mechanisms has explored trade-offs of differ-

ent characteristics such as latency, bandwidth, security and ease of programming. Since

Nahanni provides a shared memory IPC mechanism with a goal ofdemonstrating high-

performance, we will discuss previous research that has a similar focus.

In terms of providing high performance, identifying and eliminating extraneous copy-

ing of data during IPC has been examined in several contexts.Brustoloni and Steenkiste [9]

characterized the trade-offs in passing data between processes and the OS kernel. The

authors emphasize the effects of buffering semantics in different IPC mechanisms on per-

formance and point to unnecessary copying of data as being one source of overhead that

leads to poor performance. The insight into eliminating copying of data served as a motiva-

tion for our work to provide a shared-memory interface between co-located guest VMs that

reduces or eliminates copying of data.

Fbufs [16] are an operating system mechanism for efficient data transfer across protec-
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tion domains in shared memory systems. Fbufs use page remapping and memory sharing

to eliminate data copying and improve performance. Fbufs employ a concept oforiginator

andreceiverdomains. An originator domain allocates a series of buffersand sets permis-

sions so the intended receiver can map the same range of memory into its own address

space. Once mapped the receiver can receive objects from theoriginator domain without

incurring intermediate copies. Fbufs were implemented in the Mach microkernel. A mech-

anism like Fbufs was important for a microkernel like Mach due to the modular nature of

a microkernel that may incur numerous copies as data is transferred between cooperating

servers.

Beltway Buffers [13] are in-kernel mechanism for Linux thatuses pre-allocated, long-

lived, shared rings for data movement for all IPC mechanisms(sockets, pipes, file systems,

etc) as well as networking. By keeping all data in shared rings, data copies within the kernel

are reduced. Context switches are avoided by reusing the ring buffers to avoid continually

allocating and de-allocating kernel memory. The concept isthat once data enters the kernel,

either from an application or from a device such as a disk, that data will be placed into a ring

buffer, called a DBuf. Data is copied into the DBuf only once and is then accessed from

there by all kernel subsystems that need to access that data.Throughput and latency are

improved by eliminating copies of the data between subsystems within the kernel. Beltway

buffers reside entirely in kernel space, so their use is completely transparent to applications.

Despite reducing copies in moving data through the kernel, data must still be copied from

applications running in user-level to ensure protection ismaintained between applications

and the kernel.

Gamsaet al. [20] explored optimizing IPC in the context of a microkernelkernel archi-

tecture in which communication between client and server processes is critical to overall

performance. More specifically, they explore IPC in the context of shared-memory mul-

tiprocessors with non-uniform memory access. Their work isbased upon the Protected

Procedure Call (PPC) model that allow clients to execute procedure calls within the address

space of the servers that the clients need to communicate with. PPCs are an alternative

to message-passing systems that send stream data between client and server processes in

a microkernel OS. Executing a procedure call within the server’s address space eliminates

the need to send and receives messages to achieve the same result. Moreover, copying of

data between address spaces that requires memory-to-memory copies and locking can be

eliminated to improve performance. The specific work of Gamsa et al. was targeted for

the Hurricane operating system and did show improved PPC call overhead through various
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Figure 3.4: Architectural Layers of Inter-VM IPC Systems (adapted from Ke [26])

optimizations.

While the concept of PPCs are certainly foreign to the accepted wisdom of protected

address spaces, the motivation for them is consistent with our goal of improving inter-VM

IPC by reducing memory-to-memory copying.

Architecturally, Nahanni is a significant departure from previous shared-memory IPC

approaches for non-VM environments. For example, much of the earliest work with shared-

memory IPC was in the context of process-to-process communication [20], or user-level

process-to-kernel communication [60]. However, with traditional, non-virtualized IPC only

a single OS kernel is involved in the communication, well-known techniques such as kernel-

level blocking for synchronization can be used. But, Nahanni involves multiple, indepen-

dent, guest OS kernels in different VM instances, thereforethe traditional synchroniza-

tion mechanisms are no longer available. So far, our approach has been to use lock-free

and spin-based synchronization techniques, as well as inter-VM based mechanisms such as

virtio-serial [26]. We do not claim any improvements of Nahanni over the previous work

with process-to-process and process-to-kernel shared-memory IPC, but are merely pointing

out the architectural differences.

Now that we have highlighted IPC research related to shared memory, in the next sec-

tion we will discuss previous efforts to improve IPC betweenVM and their associated

applications.
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XenSocket Xway XenLoop Fido IVC Diakhaté Nahanni

OS mod module patch module patch module module module
Hypervisor xen xen xen xen xen kvm kvm
Hypervisor
modified

no no no yes yes yes yes

Binary
compatible

no yes yes yes no no no

MPI support no binary binary binary library library library

Data Format stream stream stream stream stream stream
stream &
structured

Details
TCP

trust
2 vm

only limit

Table 3.1: Comparison of Inter-VM High-Performance Communication Mechanisms

3.5 Inter-VM IPC

IPC between VMs, or inter-VM IPC, has been explored from several angles in previous

research. First, we can view the related work in terms of architecture and layers of ab-

straction (Figure 3.4, adapted from Ke [26]). The two major architectural trends are: First,

as represented by Nahanni, and MPI-Nahanni (Section 5.6) specifically, inter-VM IPC can

be implemented without any changes to the guest OS kernel. Second, as represented by

XenLoop [61] and other systems, the guest OS kernel can be modified with new datapaths.

On the one hand, modifying the OS kernel can potentially makethe fast IPC completely

transparent to applications. For example, XenLoop is binary compatible with existing ap-

plications, not even requiring a re-compilation. On the other hand, changing the OS kernel

is error-prone, can introduce new overheads and bottlenecks (Section 5.6) for many appli-

cations (i.e., not just applications needing fast inter-VMIPC), and the changes must be

updated as new versions of the OS kernel are released. With Nahanni and MPI-Nahanni,

updating a user-level library (if necessary) is easier thanOS kernel updates, and many ap-

plications access IPC via libraries such as MPICH2/MPI [26]and the memcached client

library [63, 22] anyways. A small device driver is needed with Nahanni, but the driver

is only used during IPC initialization (i.e., does not change any existing OS datapath for

the communication itself), and the standard kernel-to-device-driver interface changes infre-

quently, which minimizes the update/maintenance problem.

Second, we can view the related work in terms of functionality and mechanisms. Ta-

ble 3.1 summarizes the different inter-VM communication mechanisms that will be dis-

cussed below and compares them based on their supported hypervisor as well as whether

modifications are required to the hypervisor, guest OS and/or guest applications to use them.
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The row labels in Table 3.1 deserve some discussion to understand the differences be-

tween the compared mechanisms.

OS modification All systems discussed require changing the guest operatingsystem to

support the new transport mechanism. Depending on the extent of the changes nec-

essary, the changes may be contained in a single kernel module. Kernel modules are

advantageous in that they are compiled separately and so avoid recompiling and rein-

stalling the kernel. A second advantage of kernel modules isthat they can be loaded

at runtime without requiring a reboot. Mechanisms that are contained within a kernel

module are labelled asmodulein Table 3.1. If the changes are too extensive they

may require changes to multiple OS subsystems. In the later case, the changes re-

quire a patch to be applied to the kernel source, recompilation and installation of the

new kernel, significantly increasing the installation effort. Mechanisms that require

patching are labelled aspatchin Table 3.1.

Hypervisor The two open-source hypervisors that have been used to investigate inter-VM

communication are Xen and KVM.

Hypervisor Modified Some optimizations require modifying the hypervisor to support

them while others do not. For example, Xen has supported sharing pages between do-

mains for some time via a mechanism called the grant table. Mechanisms that make

use of the grant table to enable shared-memory communication do not require mod-

ifications to the Xen hypervisor. As discussed, KVM comprises two parts: QEMU

at the user-level and the KVM kernel module in the host kernel. For Nahanni, all

modifications are restricted to QEMU; the KVM kernel module is not modified.

Binary Compatible When designing an optimization, a key design choice is whether ap-

plications can take advantage of the new mechanism without any changes to the ap-

plications or libraries. An application that can use a mechanism without requiring

any modification is said to bebinary compatible(since the executable binary appli-

cation need not be changed). Applications that either require a new API or code

modifications are not binary compatible. Typically optimizations that exist entirely

in the kernel are binary compatible as user-level applications are essentially unaware

of their existence.

MPI Support MPI is the arguably the most common communication library inhigh-performance

applications. Accelerating MPI performance between VMs could benefit numerous
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HPC applications. MPI is an abstraction and typically compiled as a linked library. If

an optimization can be contained within an MPI library, an application would simply

need to be re-linked, not recompiled, to take advantage of the optimization.

Data Format Different IPC mechanisms are designed for different use cases. Stream data,

mentioned previously, is the most common communication model for IPC. Optimiza-

tions labelled asstreamonly support stream-based communication, that is basically

message passing. An alternative to stream data is structured data which requires

shared memory that is simultaneously accessible by multiple applications. Structured

data is stored in shared memory rather than just transferredacross shared memory.

Details Additional details regarding the use of particular mechanisms are mentioned.

The use of inter-VM shared memory for communicating betweenVMs has previously

been explored. The majority of inter-VM communication research has focussed on the Xen

hypervisor [7] due its having been available since 2003 and being open source. Recalling

that Xen uses the term “domain” to refer to VMs, the term “inter-domain” in the following

discussions is equivalent to “inter-VM”. To the best of our knowledge, no other research

project has explored using shared memory between host and guest applications.

XenSocket [64] is an inter-domain communication system that provides one-way com-

munication sockets between co-located Xen domains. XenSocket uses shared memory be-

tween the guest domains to transfer the data, but does not allow direct access to the shared

memory from user-level. Data is sent and received using the standardsend() andrecv()

calls typically used in Unix sockets programming. XenSocket is not binary compatible

with existing applications, that is applications must be modified, albeit minimally, to use

XenSocket. One important insight that XenSocket highlights is that the page-flipping mech-

anism that was available in Xen was not optimal for inter-VM performance even though it

reduced explicit copying. Page flipping is a mechanism for IPC that remaps pages be-

tween process address spaces (or in the case of Xen, between domains) rather than copy-

ing the data, thus saving one copy operation. The fact that XenSocket achieved improved

performance over the standard page-flipping mechanism showed that the overhead of page-

flipping is significant and may not provide the best solution.In the case of XenSocket, using

fixed shared memory between domains achieved better performance than page flipping.

XenLoop [61] used shared memory to create a high-performance loopback mechanism

to speed network communication between co-located VMs. A shared-memory region that

can be accessed by both VMs is created using a Xen-specific inter-domain shared memory
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facility. Inter-VM network FIFO channels are created between communicating VMs that

can pass messages through the channel with minimal copying.XenLoop is abstracted in

the virtual hardware of the Xen domain meaning that no changes to existing applications,

libraries or the front-end network device (recall Xen has a split device driver model) are

necessary to take advantage of XenLoop. A potential drawback of the XenLoop design

is that it does not expose shared memory to the guest OS or applications and still incurs

copying through the network stack.

Fido [10] is another shared-memory optimization for Xen. Fido relies on trust between

co-located VMs. To eliminate copies, Fido allows each guestto map all other guest do-

mains’ memory with read permission. The authors claim that in an enterprise environment

cooperative mapping of all guests’ memory is reasonable because the likelihood of a ma-

licious guest is extremely low in a private, company-controlled environment. By mapping

the sender VM’s address space into the receiver’s address space, the receiver can read data

directly from the sender’s address space, thus eliminatinga copy. Similar to XenLoop, Fido

implements a network device that uses the mappings to move data efficiently and without

requiring modification of applications or libraries. Fido was also used to implement a block

device interface.

Xway [28] is another inter-domain communication optimization for Xen. Xway chooses

to maintain binary compatibility to support legacy applications and libraries rather than ex-

pose a new API. Xway intercepts packets above the TCP networking layer and passes those

destined for co-located VMs through inter-domain shared memory without going through

the network layer. Xway requires modifying the Linux kernelto support intercepting pack-

ets and only accelerates TCP traffic.

IVC [24], also for Xen, chooses to not provide binary compatibility, but creates an

IVC user-level library that applications must be written touse. Similar to our evaluation of

Nahanni, the evaluation of IVC includes creating an IVC-aware MPI library,mvapich2-ivc,

that MPI applications can be linked against. Creating such alibrary allows MPI jobs to not

require modification, but just re-linking to take advantageof IVC. IVC’s design allows user-

level memory in one guest to be shared with other guests. As with other mechanisms, IVC

uses Xen’s grant table mechanism to achieve this. IVC focusses on stream-data benchmarks

and does not explore structured data use cases. IVC also requires that shared memory be

separately configured for each pair of peers.

As mentioned, the majority of research has focussed on Xen, but research involving the

Linux/KVM project [29, 30] is increasing. KVM is a more recent project since it builds
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upon hardware virtualization extensions in x86 architectures that were not available until

2005.

Diakhatéet al. [15] investigated an inter-VM shared-memory system for useprimarily

with MPI. The system uses a virtio-based device added to eachguest to access the shared

memory. Multiple guests for their system were created usingthe fork() system call to

facilitate easy sharing of memory. Requiring all cooperating guests to be created with

fork() eliminates the possibility of running differently configured guests. The system

achieved near native performance, but experiments were restricted to a small subset of MPI

commands. In principle, this mechanism could support host/guest shared memory, but it

was not mentioned by the authors.

VMware had a shared memory mechanism available for desktop virtualization called

VMCI [59]. VMCI allowed applications to create named shared-memory regions that are

shared between guests. For reasons that are not entirely clear, VMCI was deprecated in

favour of a socket mechanism. We are not aware of any researchinvolving VMCI shared

memory.

Given the variety of research that has been conducted on inter-VM communication it

is worth re-iterating that to the best of our knowledge no projects have explored sharing

memory to the user-level as Nahanni allows. As well, Nahanniis the only mechanism that

allows host-guest sharing since the shared memory can be accessed by applications that are

running directly on the host OS.

So far in this chapter we have focussed on hardware virtualization and IPC as they

are the two fundamental concepts that form the basis for Nahanni. However, to give a

complete picture of Nahanni’s design and function there arealso some concepts related to

the specific implementation of Nahanni as part of QEMU and theLinux kernel that must

also be discussed.

3.6 The Linux Kernel

The particular implementation of Nahanni that is presentedin this work is based upon Linux

at both the host and guest levels. To be clear, Nahanni’s design is OS agnostic at the guest

level, but for the experiments shown later Linux was used. Atthe host level, Nahanni builds

upon KVM which is a Linux-specific system, but the design of Nahanni could be ported to

other host OS/hypervisor pairings. In this section we will elaborate on the Linux-specific

elements that are part of the Nahanni design.
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3.6.1 Device Drivers

In Linux, like most modern operating systems, peripheral devices are supported by device

drivers. Device drivers are code modules the host OS uses to interact with the device.

Device drivers implement an abstraction so that the kernel can communicate easily with

devices. By encapsulating the implementation details of a peripheral within a driver, and

exposing a standard interface to the kernel, a device driverhelps to make the OS more

modular and stable.

Devices are generally separated into three broad categories: block devices, character

(called “char” for short) devices and network devices. A device driver identifies itself as

either a block, network or character device during configuration. As their name reflects,

block devices make data from their device available viablockswhich have a fixed and de-

fined size. Block devices send and receive these fixed-size blocks of data to their respective

devices. Given that block devices have a defined size they allow random access to the data

via the driver. The most common block drivers are file systemsdrivers. Character devices

differ from block devices in that they send and receive streams of bytes to their devices such

as serial ports or console devices. Since data is streamed through the device to say a display

device, and not stored, character devices typically do not support random access.

Drivers are written for a specific bus type and implement a setof functions that the

kernel will use to configure and operate a device. In the case of Linux, theprobe()andre-

move()functions are the two necessary functions provided by a device driver that configure

and deconfigure the device, respectively.

Character devices also typically implement the standard POSIX file system operations

such asread(), write(), ioctl() and so on. A device will also have a corresponding

entry in the /dev file system,/dev/foo for example. By performing file operations on/dev

/foo an application can control the device associated with the/dev/foo device file. One

supported character device operation that is of particularimportance to Nahanni ismmap()

that can allow a region of device memory to be mapped to user-level. Given Nahanni’s goal

to provide zero-copy data sharing between VMs, being able tomap the shared memory to

user-level is essential to avoid the copying of data from theuser-level to the kernel.

3.6.2 PCI and UIO

The Peripheral Component Interface (PCI) is a device bus that provides access to peripheral

devices that are plugged into a computer’s motherboard. ThePCI bus is the most commonly

used bus on desktop and server computers today giving the computer access to its graphics,
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sound and network devices.

PCI is more than simply a bus, but defines how the OS should interact with PCI de-

vices. More recently, a new standard calledPCI Expresshas been defined to provide better

performance and give more flexibility than the original PCI implementation. However, PCI

still remains a common interface for many devices.

In 2009, a new device driver model was added to the Linux Kernel called UIO and its

goal was to move as much device driver code for PCI devices into user-level applications

instead of having more code in the kernel. The observation that motivated UIO was that

there are numerous devices that have similar and straightforward behaviour. That behaviour

is reading and writing to a few registers and accessing memory on the device. Both of these

operations can be performed at user-level if the device registers and device memory are

mapped into user-level. Drivers that make use of the UIO interface still require some code

to run in a kernel module, but that code is much simpler than a traditional device driver.

The UIO design fits well with Nahanni’s design goals as it allows efficient access to

devices from user-level eliminating traps to kernel-levelwhich can be a source of overhead.

UIO does require a small amount of driver code that runs in thekernel. The purpose of

the kernel level code is to configure interrupts and enumerate memory regions that will

be mapped into user-level. Any UIO device is accessible by user-level applications via a

device file named/dev/uioN whereN is an integer beginning at 0. The device file is created

when the driver is loaded. Since the device file is part of the file system namespace, it can

be protected with the necessary file permissions to limit access to authorized applications.

As of version 2.6.37, the Linux kernel currently ships with four UIO device drivers that

are used for a variety of devices.

3.7 Concluding Remarks

This chapter has provided a background in the general concepts that are important in under-

standing Nahanni such as devices, IPC and the Linux kernel. Moreover, we have discussed

the previous research that relates to Nahanni to express what is novel in the design and

implementation of Nahanni. As much as possible we have takenthe lessons from previous

research in designing Nahanni. In the next chapter, we will provide a detailed description

of the design and implementation of Nahanni.
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Chapter 4

Design and Implementation

To this point, Nahanni has been discussed at a high level in terms of its function and goals:

Nahanni is a user-level, shared-memory interface for virtual machines (VMs) that supports

both stream data and structured data. In previous chapters,we have motivated some of the

use cases of Nahanni and discussed the previous research andconcepts that relate to it. It

is now fitting to discuss the design and implementation of Nahanni at a detailed level and

describe precisely how Nahanni allows multiple VMs to sharememory.

4.1 Design of Nahanni

In the design of Nahanni, each piece was deliberately and carefully chosen. Figure 4.1

illustrates the three major elements implementing Nahanni:

1. A POSIX shared-memory region on the host.Nahanni uses host resources, namely

POSIX shared memory as it exists in Linux, as the basis for sharing memory. No

modification is required to the host OS or any of its existing kernel modules, including

KVM.

2. A modified QEMU that supports a new Nahanni device.Nahanni requires adding

a new virtual device, named “ivshmem” for inter-VM shared memory, to QEMU/KVM.

Section 4.4 describes in detail the changes that were necessary to the user-level

QEMU to support the device. These changes have been merged into the QEMU

release as of version 0.13 from August 2010 [48, 33, 35]. Notethat ivshmem is the

virtual device implementation of Nahanni and the two terms will be used interchange-

ably in this chapter.

3. A Nahanni guest kernel driver. A new Linux kernel driver was created that can

communicate with the ivshmem device. The kernel driver creates the interface to
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the guest user-level to give applications within the VM direct access to the shared

memory. The device driver is available from a public source repository [40].

Although different approaches were possible, these three elements that implement Na-

hanni reflect our design goals in creating a shared-memory mechanism. These goals include

providing an shared-memory mechanism that provides utility to those applications that use

it while having no negative impact on applications that do not use it. With the above three

components, VMs that do wish to share memory can do so withoutonerous installation

effort. Furthermore, memory can be shared between host and guest applications or between

applications in different guest VMs.

While the final implementation that we will describe may appear to be straightforward

and obvious, in fact there were other compelling alternatives with strong advocates from the

within QEMU/KVM development community. Some of the proposed alternatives may have

provided equivalent functionality but are inferior from the point of view of orthogonality

(e.g., optional Nahanni device), flexibility (e.g., UIO compatibility) and simplicity/adapt-
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ability (e.g., raw shared memory).

In the next section, we will layout the alternatives and elaborate on the choices that were

made.

4.2 Design Alternatives

Although the final form of Nahanni is straightforward, therewere reasonable but more

complicated designs that were considered, implemented, and eventually rejected. While a

detailed discussion of related work was given in Chapter 3, here we sketch out some of the

particular design alternatives not chosen for Nahanni to better understand the choices that

were made.

First, Nahanni supports arbitrary structured data in shared memory instead of just stream

data. Unlike the XenSocket [64], XenLoop [61], and IVC [24] mechanisms based on the

Xen hypervisor, Nahanni is targeting a broader array of applications than just those that use

stream data mechanisms, such as sockets. If Nahanni were only focussed on stream data,

then the design could have abstracted Nahanni shared memoryas an in-kernel socket inter-

face, similar to XenSocket. However, such a design would notallow structured data and

would require a robust programming interface that may restrict other uses. Instead, we have

targeted low-latency, structured-data use cases as well asstream-based applications [63].

Structured-data use cases are those thatstoredata in shared memory, as opposed to stream-

based use cases that simplytransferdata across shared memory. The Fido system [10] for

Xen targets both stream data and block (aka structured) data, but, unlike Nahanni, Fido does

not currently handle storing data directly in shared memoryor synchronizing via shared

memory.

Storing data and synchronizing in shared memory can allow applications that rely on

structured data, such databases or in-memory caches, to take advantage of Nahanni. In

particular, we have explored the use of Nahanni to extend thewell-known memcached [37]

to cache key-value pairs in Nahanni memory, and then allow multiple VMs to access the

cache. As well, in Section 5.4, we show that Nahanni is up to 8 times faster than other

mechanisms for stream data, with the appropriate code changes.

Second, Nahanni uses the peripheral component interface (PCI) standard for peripheral

devices. Supporting shared-memory IPC mechanisms in QEMU/KVM has other design

alternatives. Specifically, one could build a shared-memory mechanism within the virtio

subsystem, which negates the need to use the PCI bus. In fact,on the insistence of the
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QEMU/KVM open-source community, an earlier implementation of Nahanni was based on

virtio (see Section 4.13.1). However, after a great deal of work, we (and the community)

ultimately decided that the number of changes required to virtio to support Nahanni was

too large. Therefore, we abandoned the virtio implementation in favour of the current PCI-

device-based approach to Nahanni. Designing Nahanni as a PCI device required fewer

code changes to QEMU and more easily supports use by other OSes that support PCI such

as Windows. Using PCI also allowed the guest driver to be based upon the UIO driver

framework that allows applications greater control over their use of the Nahanni device.

The failed experiment with a virtio-based implementation of Nahanni is a classic ex-

ample of how a community’s first instinct can be wrong. One theone hand, virtio was

(and still is) considered to be the future of high-speed data-transfer mechanisms within QE-

MU/KVM. That is why virtio and the related concept of vhost are key points of comparison

in Chapter 5. And, it seemed, any new mechanism that might improve data transfers should

(incorrectly) be implemented within that framework. On theother hand, virtio is based

on direct memory access (DMA) or transfer-engine-like semantics, which is fundamentally

different from the classic shared-memory semantics of Nahanni. Furthermore, given a re-

gion of Nahanni shared memory, it can be used as part of an efficient data-transfer strategy

(Section 5.3.2). But, it is not possible to efficiently sharedata if a DMA engine is all that is

available. Our lessons will be presented to the QEMU/KVM community [34].

Third, Nahanni exposes shared memory up to the user-level within VMs. Reading and

writing to Nahanni memory requires no intervention from theguest kernel or hypervisor.

This user-level design avoids crossing two protection barriers: from guest user-level to

guest kernel and from guest VM to host when accessing the shared memory. VM exits are

expensive because they result in switching control to the host OS, a sort of heavyweight

context switch. The alternative to the user-level design would hide Nahanni memory within

the guest kernel or within the virtual hardware as an inter-VM interconnect similar to Xen-

Loop. If we had chosen to hide shared memory below the guest kernel level, then guest

kernel traps would be necessary for each communication. Storing data and using synchro-

nization primitives directly in shared memory without trapping into the kernel can have a

significant performance impact. In Section 5.5, we discuss the GAMESS computational

chemistry application which uses shared memory for data sharing and for synchronization

via semaphores (see Figure 5.5). Without shared memory, GAMESS can use stream data

mechanism (i.e., sockets and the Message-Passing Interface (MPI)), but we show how using

Nahanni results in up to a 30% improvement in performance.
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Exposing shared memory to the user-level requires the application to be modified to use

it, however we are interested in exploring those modifications and the trade-offs involved.

As a research project, Nahanni is designed to allow users to explore both stream-based and

structured-data applications that may benefit from shared memory.

Now that we have explained our design decisions at greater depth, we will provide a

detailed explanation of three main components that comprise Nahanni from Figure 4.1.

4.3 Component 1: POSIX Shared Memory

Linux, like most operating systems, supports sharing memory between processes as a

method of IPC. There are two well-known interfaces that support shared memory in Linux:

POSIX and System V (SysV). Since Nahanni uses POSIX shared memory, only the POSIX

interface will be described in detail, however aside from the initial setup, POSIX and SysV

shared memory can provide the same shared-memory semantics. Our discussion will also

focus on the C library interface for POSIX shared memory since QEMU/KVM is imple-

mented in C.

A Linux process can create, modify and destroy shared memoryin much the same way

that it can disk files. We will use the phraseshared-memory objectto refer to memory that is

shared to distinguish them from memory-mapped files which can also be used for sharing.

While shared-memory objects are accessible via the file system namespace, they do not use

any stable storage for backing, so they differ in that way from traditional memory-mapped

files. For example, shared-memory objects are not persistent across reboots whereas tradi-

tional memory-mapped files are.

The C library interface for accessing POSIX shared memory issimilar to the interface

for accessing disk files. There is a difference in syntax however. POSIX shared-memory

objects are accessed viashm open() andshm close() system calls rather thanopen() and

close() calls that are used for disk files.

Figure 4.2 shows the code that was added to QEMU to open the shared-memory object

using theshm open() function on lines 3 and 10. While this code happens to be takenfrom

Nahanni, there is nothing Nahanni-specific about it. Code fragments from other programs

that use POSIX shared memory would be similar.

Another difference between shared memory and disk files is that read() andwrite()

system calls cannot be used with shared memory. Shared-memory objects are to be mapped

into the process’ address space using themmap() system call and accessed like an array or
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1 /* try opening with O EXCL and if it succeeds zero the memory
2 * by truncating to 0 */
3 if ((fd = shm open(s->shmobj, O CREAT|O RDWR|O EXCL,
4 S IRWXU|S IRWXG|S IRWXO)) > 0) {
5 /* truncate file to length PCI device’s memory */
6 if (ftruncate(fd, s->ivshmem size) != 0) {
7 fprintf(stderr, "ivshmem: could not truncate shared file\n

");
8 }
9

10 } else if ((fd = shm open(s->shmobj, O CREAT|O RDWR,
11 S IRWXU|S IRWXG|S IRWXO)) < 0) {
12 fprintf(stderr, "ivshmem: could not open shared file\n");
13 exit(-1);
14
15 }

Figure 4.2: Nahanni: Opening of the shared-memory object inQEMU

pointer-based structure (i.e. with load and store operations).

Within QEMU, after the POSIX memory object has been opened with shm open(), an

mmap() system call is used to map the memory object into the QEMU process’ address

space:

ptr = mmap(NULL, s->ivshmem size, PROT READ|PROT WRITE, MAP SHARED, fd,
0);

To help understand the above function call, we will explain the arguments. The first

argument,NULL, indicates that the memory can be mapped to any available address range

within the process’ address space. The second argument,s->ivshmem size, passes the size

of the memory to be mapped. The next two arguments tommap() specify protection modes

(PROT READ|PROT WRITE) and configuration (MAP SHARED) for the memory and are similar to

most mmap calls in general. The second last argument,fd, is a file descriptor returned from

the shm open() call that indicates the memory object to be mapped. The final parameter

is the offset into the shared memory object to map from. Nahanni always maps from the

beginning of the region, so this parameter is 0.

The abovemmap() call shows the essential mechanism of how a QEMU process gains

access to the shared-memory region on the host. If two or moreQEMU processes map the

same shared-memory object (i.e., using the same POSIX shared-memory object in the file

system namespace passed to mmap via thefd argument), those processes can communicate

and share data via loads and stores to the shared-memory region.

This section has explained in detail how POSIX shared memory, as it exists in Linux,

36



is accessed to create a shared-memory region on the host by the QEMU application. In

the next section, the additional changes made to QEMU will bedescribed to illustrate how

QEMU, via the ivshmem device, allows a guest OS to access the POSIX shared-memory

region from the host.

4.4 Component 2: A Modified QEMU

The modifications that were necessary to QEMU comprised adding a new virtual device to

the QEMU/KVM virtual hardware support. No modifications arenecessary to the KVM

kernel module and so changes are restricted to the user-level QEMU application.

QEMU/KVM, like all virtualization solutions, provides a VMthat can execute an un-

modified OS. Real computers perform input and output (I/O) via devices such as network

cards, disk drives and video displays that are controlled bykernel drivers for those devices.

Virtual hardware must perform I/O in the same way, via virtualized devices implemented

to standard interfaces (e.g., PCI), to support unmodified OSes. So in designing a shared-

memory interface between VMs, it is natural to implement it using a standard device inter-

face, such as PCI, that QEMU/KVM supports.

A major goal of this work was to have an impact on the broader QEMU/KVM com-

munity and having our changes merged into the QEMU/KVM project was key to achieving

this goal. Since our changes add a new virtual device, they pertain specifically to QEMU,

the user-level portion of QEMU/KVM that manages the hardware and memory of the VM

(see Chapter 3).

The implementation of Nahanni with respect to the code changes necessary to QEMU

can be best understood as three parts:

1. a new virtual PCI device:ivshmem

2. a new memory-allocation method for QEMU

3. a new command-line option for ivshmem

All three mechanisms require modifying the code base of QEMU. As mentioned, the

modifications total 800 new lines of code to the user-level QEMU application.

4.4.1 ivshmem: The Nahanni PCI device

Nahanni is implemented as a new device in QEMU called ivshmem. As mentioned, given

the similarity to graphics memory behaviour, an existing virtual graphics card in QEMU
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Figure 4.3: Nahanni: Theivshmem PCI device layout

The configuration space and 2 memory regions are shown. The base address registers
(BARS) within the configuration space are used to access the memory regions. BAR0

points to register memory region while BAR2 points to the shared memory region.

was used as a guideline for creating the Nahanni device. A virtual PCI device was chosen

as the mechanism for accessing the shared memory region on the host. Figure 4.3 illustrates

the important components of the ivshmem PCI device that willbe explained in this section,

namely the configuration section, register memory and shared memory of the device. PCI

supports accessing large regions of memory on devices such as graphics cards that can have

gigabytes of video RAM. As well, PCI is supported by nearly all commodity operating

systems and so could allow Nahanni to be used by other guest OSes such as Windows or

FreeBSD.

The design of QEMU is intentionally modular. All new devicesin QEMU must follow

theqdevinterface that defines a standard interface for peripheral devices that QEMU emu-

lates. Figure 4.4 shows the qdev definition of the ivshmem device. The definition consists

of a PCIDeviceInfo C structure as shown in Figure 4.4. This structure serves as adefini-

tion of the device that QEMU will use to create and control thedevice within the virtual
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1 static PCIDeviceInfo ivshmem info = {
2 .qdev.name = "ivshmem",
3 .qdev.size = sizeof(IVShmemState),
4 .qdev.reset = ivshmem reset,
5 .init = pci ivshmem init,
6 .exit = pci ivshmem uninit,
7 .qdev.props = (Property[]) {
8 DEFINE PROP CHR("chardev", IVShmemState, server chr),
9 DEFINE PROP STRING("size", IVShmemState, sizearg),

10 DEFINE PROP UINT32("vectors", IVShmemState, vectors, 1),
11 DEFINE PROP BIT("ioeventfd", IVShmemState, features, IVSHMEM

IOEVENTFD, false),
12 DEFINE PROP BIT("msi", IVShmemState, features, IVSHMEM MSI, true)

,
13 DEFINE PROP STRING("shm", IVShmemState, shmobj),
14 DEFINE PROP STRING("role", IVShmemState, role),
15 DEFINE PROP END OF LIST(),
16 }
17 };

Figure 4.4: Nahanni: The qdev PCI device structure for ivshmem in QEMU

hardware including adding the necessary command-line parameters.

The structure defines the name (line 2), the size of state required (line 3) and function

pointers to control the device at a high-level for reset (line 4), initialization (line 5) and

deallocation (line 6). The.qdev.props field (line 7) defines the command-line options for

ivshmem which will be discussed in Section 4.4.3 and Section4.6.

The initialization of the ivshmem device is performed by thefunction pci ivshmem

init(). When a QEMU VM (with or without KVM) is booted, all devices will have their

initialization functions invoked. All persistent state for the device is maintained in a single

data structure, the device structure. The device structurecontains all the state the device

needs to maintain to perform its functions. For example, a network device would need to

create buffers to handle the sending and receiving of data. The size of the device structure

must be declared in the.qdev.size field (line 3) as the qdev system will allocate the needed

space for the device (the initialization function need not allocate it explicitly).

Though the creation of the ivshmem device is QEMU-specific interms of the mecha-

nisms described above, the device that is created must follow the PCI standard in its layout

and behaviour. It is now fitting to discuss how the ivshmem device shares the POSIX mem-

ory region it mapped into QEMU (see the previous Section 4.3)with a guest OS through

the PCI device interface.
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Nahanni PCI config space

All PCI devices, virtual or real, have a 256-byte configuration space that is physically part of

the device. The configuration space is labelledConfig Spacein Figure 4.3. When a device

is connected to the PCI bus, the configuration space layout allows the OS to determine the

type of the device, the vendor that made it, and all details about its operation. By reading

the vendor and device IDs from the configuration space, the operating system can load the

correct driver for the device if the OS has it available. If nodriver is found for that particular

device, the device cannot be used.

The PCI configuration space is divided into 27 fields that contain various details about

the device. The first two fields of the configuration space are 16-bits each and specify the

device and vendor ID, respectively. The remaining fields of the configuration space specify

features of the device including interrupt behaviour and memory regions the device may

have.

QEMU virtual devices have a configuration space that is implemented as a 256-byte

array. The initialization function for a QEMU device must configure the PCI configuration

space correctly so the guest OS can read it. The QEMU code baseprovides a convenient

set of macros for setting the various fields of the config space. For example, the following

macro sets the 16-bit vendor ID for the ivshmem device. RedHat, Inc. [51] which owns

KVM, allowed its vendor ID to be used for the ivshmem device.

pci config set vendor id(pci conf, PCI VENDOR ID REDHAT QUMRANET);

An important group of fields in the PCI configuration space in regards to the ivshmem

device are the base address registers (BARs). BARs point to the regions of memory on

PCI devices that are involved in the device’s function (e.g.graphics memory on a graphics

card). A device can support up to six BARs.

On the ivshmem device, up to three bars are used: BAR0 is always used and points

to register memory for the device; BAR1 is optionally used ifmessage-signalled interrupts

(MSI) are used; BAR2 is always used and points to the shared-memory region. The Nahanni

device driver reads the three BARs to configure device accessin the guest for the regions.

In general, a PCI driver for a particular device must know which BARs are used by that

device and whether they are registers to control the device’s behaviour or simply a memory

region (as in a graphics card or ivshmem).
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Nahanni Device Memory

The Nahanni PCI device contains two memory regions that are referenced by BAR0 and

BAR2 in the ivshmem PCI configuration space. The ivshmem device contains a small

region of register memory labelled asRegister Memory(BAR0 in Figure 4.3). The register

memory is not shared between guests. The use of the register memory will be discussed in

Section 4.6.5. The POSIX shared-memory region is labelled asShared Memory (BAR2 in

Figure 4.3). Of course, the shared-memory region is shared between guests.

The above description summarizes the layout of the ivshmem device in accordance with

QEMU’s qdev device model. In the next section, we describe the modifications that were

necessary to the QEMU memory-management code to support theuse of a mapped POSIX

shared-memory object for the shared memory region of the ivshmem device.

4.4.2 Mapped Memory Allocation

Virtual devices are allocated as part of the virtual hardware of a QEMU process within

the QEMU process’ address space. Since QEMU VMs are normal Linux processes, the

QEMU process has to explicitly allocate memory for the virtual RAM of the VM and for

any device memory (such as graphics memory). Since QEMU is just a regular Linux pro-

cess, it allocates memory using the standard memory allocation methods such asmalloc().

QEMU keeps track of memory using structures called RAMblocks (despite the name, the

memory can be used for device memory, not just RAM). For example, the allocation wrap-

per function within QEMU,qemu ram alloc(), is passed an argument indicating the size

of memory to be allocated and returns a pointer to the memory.The allocated memory is

tracked in the RAMblocks structure and can be used by the QEMUhypervisor for system

RAM or device memory.

As shown in Section 4.3, the standard Linux mechanisms for sharing memory, namely

POSIX shared-memory objects and themmap() system call, can allocate a region of mem-

ory and make it accessible within a process’ address space. In order for QEMU to use this

memory for device memory (i.e, ivshmem) a method was needed to add the mapped region

of memory to the RAMblocks. Therefore, a new function namedqemu ram alloc from

ptr() was added to the QEMU memory allocation functions. The new function allowed

a QEMU device’s initialization to pass a pointer to an already allocated region of memory

and have that memory added to the RAMblocks for proper management. In the case of the

ivshmem device, a region of shared memory would be mapped into the QEMU process us-

ing mmap and then added to the memory of the running system. Figure 4.5 shows the lines
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1 ptr = mmap(0, s->ivshmem size, PROT READ|PROT WRITE, MAP SHARED, fd, 0);
2
3 s->ivshmem offset = qemu ram alloc from ptr(&s->dev.qdev,
4 "ivshmem.bar2", s->ivshmem size, ptr);

Figure 4.5: Adding memory accessed viammap() to QEMU’s memory allocation

The dynamic memory allocated by themmap() call (line 1) is added to QEMU’s memory
allocation (line 3) via the newqemu ram alloc from ptr() function. This new function is

used to add mmapped POSIX shared memory that serves as the shared-memory region
between VMs.

of code that map the memory (line 1) and then add that memory toQEMU’s RAMblock

memory-management system.

The memory region is given a helpful name (“ivshmem.bar2”) by passing a string to the

function (lines 3 and 4). Naming the region allows for easiermanagement and debugging.

The allocated region is reserved for use by the ivshmem device within QEMU. When the

call to qemu ram alloc from ptr() returns successfully, the memory can be used by the

ivshmem device to provide the shared-memory region for the device.

4.4.3 New Command-line Option

As shown in Section 3.3, QEMU/KVM VMs are launched via the command-line. Na-

hanni’s ivshmem device, like any device in QEMU/KVM, is added to a virtual machine via

a command-line argument, such as:

-device ivshmem,shm=<name>,size=<size in MB>

The above command-line switch would simply be added to the larger QEMU/KVM

command-line as shown in Figure 4.6.

qemu-system-x86 64 -smp 4 -device ivshmem,shm=nahanni shm,size=4096 -
hda karmic.img -net nic,macaddr=00:0c:29:f0:bc:30,vlan=0,model=
virtio,netdev=bar -netdev tap,ifname=vhosttap0,downscript=no,id=
bar,vhost=on -m 8g

Figure 4.6: An invocation of the QEMU hypervisor with an ivshmem device attached
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When the VM specified in Figure 4.6 boots, an ivshmem PCI device will be created

and connected to the virtual PCI bus in the guest. In the example command-line above, two

parameters to ivshmem are specified:size andshm. These parameters define the shared-

memory region to be used for the ivshmem device:

1. sizedefines the size of the shared-memory object. The size must bea power of two,

a restriction of PCI memory regions.

2. shm specifies the POSIX shared-memory object to use as the sharedmemory. The

object will be created if it does not exist and truncated to the specified size. If the

object already exists, QEMU will not resize it but will ensure the size of the object

matches the size given with the ‘size’ parameter.

There are other parameters that pertain to a more advanced Nahanni configuration that

will be described in Section 4.6.

4.5 Component 3: Guest OS Device Driver

The third and final component that is necessary for Nahanni isa device driver. Since the

ivshmem device conforms to the PCI standard for device, the device driver will make use of

Linux’s in-kernel PCI driver interface to configure the device for use. The driver that will

be described is for the Linux OS since we target Linux as our guest OS for our evaluation.

We chose to use the Linux UIO device driver framework for the ivshmem device to simplify

the implementation and minimize the amount of code that runsat kernel level.

It should be mentioned that the Nahanni ivshmem device inside QEMU is both guest

driver and guest OS agnostic. A non-UIO Linux driver could bewritten to control the

ivshmem device. In fact, the first guest driver implemented was not based on UIO. Also,

the QEMU-based ivshmem device can be supported by guest OSesother than Linux by

writing a driver for the desired OS (e.g., Windows). We are aware of at least one Nahanni

user who has written a driver for ivshmem for an operating system other than Linux.

Section 4.8 will describe how the ivshmem device is accessedfrom user-level by appli-

cations. Here, we will discuss the driver and how it configures the device.

Device drivers are the software interface that allow the kernel and applications to make

use of hardware devices. The simplicity of Nahanni’s designallows the driver to be straight-

forward as well. In short, the driver configures the ivshmem device and requests the guest

kernel to map the device memory into the kernel’s address space. The driver then enables
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1 info->mem[1].addr = pci resource start(dev, 2);
2 if (!info->mem[1].addr)
3 goto out unmap;
4 info->mem[1].internal addr = pci ioremap bar(dev, 2);
5 if (!info->mem[1].internal addr)
6 goto out unmap;
7
8 info->mem[1].size = pci resource len(dev, 2);
9 info->mem[1].memtype = UIO MEM PHYS;

Figure 4.7: Nahanni: kernel driver initialize for ivshmem device memory

The ivshmem shared-memory region is configured in the UIO driver code. Three PCI
configuration functions are called on lines 1, 4 and 8 to configure the ivshmem

shared-memory region so that the memory can be accessed fromuser-level.

the necessary functionality to allow applications to map the memory region from kernel

space into user-level.

The code section shown in Figure 4.7 is part of the ivshmem UIOdriver. While Fig-

ure 4.7 does not show the complete driver, it shows the essential part of the kernel driver that

configures the Nahanni shared-memory region. The ivshmem driver calls three PCI kernel

functions:pci resource start(), pci ioremap bar() andpci resource len(). In par-

ticular, pci ioremap bar() requests that the kernel map the device memory on BAR2 (the

shared-memory region) into the guest kernel’s virtual address space.

Once the guest kernel UIO driver for the ivshmem device has executed, the device

is configured and ready for use from the user level, includinguser-level libraries and ap-

plications. So, while the configuration may seem overly simple, all that is required is to

enumerate the memory regions in this way so that applications can access them.

In general, a Linux device driver typically makes its respective device accessible via a

file added to the/dev file system and ivshmem is no different. When the device driver is

run, a device file will be created under the/dev directory that corresponds to the device.

The device files for UIO devices all begin with “uio” followedby an integer. The first UIO

device to be initialized will be associated to the device file/dev/uio0. The second will be

associated with the device file/dev/uio1 and so on.

Applications inside the guest can access the ivshmem deviceby performing system calls

on the device file (under the/dev directory) associated with the device. UIO differs from

most device drivers in that it is designed to minimize the amount of code that runs in the
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kernel, although some code must run in the kernel for a UIO device driver such as the code

shown in Figure 4.7.

While a detailed explanation of how applications use sharedmemory is left for Sec-

tion 4.8, we give a brief example here.

As mentioned in Section 3.6.2, the UIO model allows mapping of the device-memory

regions into user-level by applications to access the memory without requiring further sys-

tem calls. When accessing a UIO device, the call tommap() looks like anmmap() call to

map a memory-mapped disk or POSIX shared-memory object (seeSection 4.3):

map region = mmap(NULL, size, PROT READ|PROT WRITE, MAP SHARED, fd, 1 *
getpagesize()));

A UIO device-memory region is mapped into user-level using the regularmmap() sys-

tem call. One small caveat to using themmap() system call is that UIO overloads the sixth

parameter of themmap() call, which is typically reserved for an offset. The offset parameter

normally indicates an offset into a file that is to be mapped. For example, mapping 1,024

bytes from a file at offset 512 would map the byte range from 512up to 1,536. With UIO

the semantics are different. With UIO devices, the offset parameter specifies the memory

region to map, by passing a multiple of the OS page size. For example, in the example call

shown above, UIO memory region 1 would we mapped.

Recall that Figure 4.7 shows the code that initialized memory region 1 (info->mem[1]).

By passing1 * getpagesize() as the offset argument, the kernel is instructed to map the

memory region indexed at 1 into the address space of the calling application. Note that the

memory region indexed at 0 will be discussed later in Section4.6.5.

4.5.1 Brief Summary

With the above three components: a shared-memory mechanism, the new ivshmem virtual

PCI device and a guest OS device driver, it is now possible to share memory between host

and guest applications as well as between guest applications running in different VMs.

Figure 4.8 shows how POSIX shared memory is exposed in two VMsrunning on the same

host machine. Shared memory is enabled by having the two VMs map thesamePOSIX

memory object on the host. The shaded box is meant to indicatethat the memory is shared

up to the user-level in both guests and no copying of data occurs when the shared memory

is accessed.

In the next section, we will augment the basic configuration just described to increase

the functionality of Nahanni by adding a shared-memory server that will support a novel in-
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Figure 4.8: Two VMs sharing the same POSIX memory region

The sharing of the same POSIX memory region allows two VMs to communicate
efficiently. While only two VMs are illustrated, Nahanni does not place a limit on the

number of VMs that can share a single shared memory object.

terrupt mechanism to increase the range of applications that can take advantage of Nahanni.

4.6 Inter-VM Notifications

The primary goal of Nahanni is to provide shared memory between the host, guest VMs,

and their associated applications. While certain applications may find sharing memory and

using load-store operations between VMs useful on its own, inevitably other applications

will require notification mechanisms to work in conjunctionwith shared memory. Noti-

fication is important if, for example, the shared memory was used between producer and

consumer processes running in separate, co-located VMs. A producer process could no-

tify the consumer, running in a different VM, that new data isavailable to be consumed by

sending a notification.

In addition to basic notifications, synchronization mechanisms such as barriers,

semaphores and mutexes may be necessary depending on the particular use-case of the
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Figure 4.9: An interrupt being sent from one guest to another

The sending guest triggers an interrupt that is delivered tothe user-level of a receiving
guest

shared memory. With the functionality described so far, Nahanni supports spinlocks that

monitor and modify a value stored in shared memory. Therefore, synchronization primitives

built upon spinlocks are inherently possible via Nahanni shared memory. However, spin-

locks have drawbacks in certain scenarios that developers may want to avoid. In particular,

when under contention, spinlocks can lead to wasted CPU cycles as the waiting process

(or processes) continually poll the variable in shared memory. Polling for long intervals is

generally undesirable and certain applications will want an alternative to spinlocks.

The general alternative to polling is blocking. Blocking mechanisms allow processes to

cease to execute, or block, while waiting for some conditionto occur to avoid the wasted

cycles that polling would incur. Mechanisms that support blocking semantics require noti-

fication that the event they are waiting upon has occurred so that any blocking process can

be unblocked. Such notifications are generally referred to as interrupts.

Figure 4.9 illustrates the basic functionality of an inter-VM interrupt. An interrupt

is triggered by a particular application, then the interrupt is transmitted and received by

an application running in a different guest. Given the utility of such a mechanism, the

next step in Nahanni’s design and implementation was to add an interrupt mechanism that

would allow applications that are using Nahanni for sharingmemory to signal each other

as illustrated in Figure 4.9. Adding such a signalling mechanism would allow for richer
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notification and synchronization mechanisms for Nahanni applications.

Providing interrupts will require four individual mechanisms to able to:

1. uniquely identify different guest VMs,

2. send a message from inside a guest VM,

3. transport a message from one VM to another, and

4. notify a guest that a message has arrived.

For each of the above mechanisms, we will seek to build upon the design decisions that

have already been made, namely the PCI standard and the UIO driver interface. Moreover,

in keeping with the QEMU/KVM design philosophy, we will use existing functionality

present in Linux as much as possible rather than re-inventing the wheel.

Considering the above four required mechanisms, we first decided that a centralized

server was the correct approach to (1) facilitate VM identification and (2) implement mes-

sage transport. While a distributed mechanism is possible (e.g., as future work), it would

be much more complicated than a centralized one. Since Nahanni is designed for a single

host, scalability issues are limited to the number of VMs that a single host could run, which

we posit to be on the order of dozens and unlikely to grow beyond a few thousand in the

near future. This centralized server that will coordinate interrupts between QEMU/KVM

VMs is simply called the Shared-Memory Server (SMS).

4.6.1 The Shared-Memory Server

The Shared-Memory Server (SMS) is a stand-alone host application external to QEMU that

will manage the sharing of resources for inter-VM communication between QEMU guests.

The SMS exists mainly to provide some convenience and to meetour current needs. Further

refinements and optimizations to the SMS would be the subjectof future work.

The SMS provides a single point of access for all resources related to Nahanni. By

design, the SMS will handle distributing communication endpoints to all guests as well

as providing access to the POSIX shared-memory object itself. Having all resources con-

trolled by the SMS reduces the chance of misconfigurations. For example, if guests only

contacted the SMS for interrupt endpoints, then guests may be able to send interrupts but

may (incorrectly) connect to different shared-memory regions via the-shm parameter. Hav-

ing the SMS handle all aspects of Nahanni reduces the likelihood of configuration errors.

Therefore, the SMS centralizes access to shared memory and the interrupt mechanisms.
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Since the SMS is a stand-alone process, the QEMU VMs must connect to it using some

form of IPC. We decided on a Unix Domain Socket (UDS) which is acommon IPC mecha-

nism supported in UNIX-like OSes including Linux. UDSs are created with a path name in

the file system namespace which will allow for easier configuration of the guests. QEMU

also supports connecting to file descriptor mechanisms via QEMU character devices (called

chardevsin QEMU), so the support within QEMU is already present to communicate with

a process like the SMS over a UDS.

Figure 4.10 shows the launching of a particular SMS. The command-line to start the

SMS must specify the size (-m) and name (-n) of the POSIX shared-memory object as

well as the UDS the SMS listens on (-p). The particular serverwhose invocation is shown

in Figure 4.10 will share a 256 MB POSIX memory region nameddynamo(the name is

arbitrary). The SMS will listen on the socket via the path/tmp/ivshmem socket for QEMU

processes to connect to it.

ivshmem server -m 256 -p /tmp/ivshmem socket -n dynamo

Figure 4.10: Launching Nahanni Shared-Memory Server (SMS)

To allow a QEMU process connect to an SMS, the QEMU command-line options for

Nahanni add an additional-chardev parameter that specifies the UDS to connect to. In

particular, to connect to the SMS launched as in Figure 4.10,a QEMU process would add

the new chardev parameter coupled with the-device ivshmem parameter (seen previously)

as follows:

-chardev socket,path=/tmp/ivshmem socket,id=foo -device ivshmem,
chardev=foo,size=256

The chardev parameter is given an identifier name, viaid=foo, that the ivshmem device

parameter associates with (viachardev=foo). The existing-device ivshmem parameter is

changed to specify achardev to communicate with rather than the name of the shared-

memory object (specified byshm=<name> as shown in Section 4.4.3). Figure 4.11 shows

the complete QEMU command-line that will connect a VM to the SMS launched as shown

in Figure 4.10.

Previous to the SMS, guest VMs shared memory by specifying the same shared-memory

object and size with the-shm <name> parameter. When using an SMS, guest VMs must

communicate to the same SMS in order to share memory. The SMS will provide access to
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qemu-system-x86 64 -smp 4 -chardev socket,path=/tmp/ivshmem socket,id=
foo -device ivshmem,chardev=foo,size=256 -hda karmic.img -net nic,
macaddr=00:0c:29:f0:bc:30,vlan=0,model=virtio,netdev=bar -netdev
tap,ifname=vhosttap0,downscript=no,id=bar,vhost=on -m 8g

Figure 4.11: Launching QEMU to communicate with an SMS

the POSIX shared-memory object. The-device parameter still requires the size of the

shared-memory object be given with thesize parameter as a sanity check for the size of

the shared memory. When the QEMU processes receives the shared memory file descriptor

from the SMS it will confirm the size is correct.

Before discussing the SMS in further detail, the next two sections will introduce the first

two items in the list in Section 4.6: (1) the VM identificationmethod and (2) the interrupt

transport mechanism, as they are fundamental to understandthe behaviour of the SMS.

4.6.2 Identifying Guest VMs

To be able to send messages between VMs, applications will need a way to identify the

recipient VM to which they intend to send a message. We require a mechanism to identify

VMs with an identifier. The identifier will need to scale to a reasonable number of VMs. A

VM must also be able to determine its own identifier as well theidentifiers of other VMs in

order to send messages to those other VMs.

As mentioned, choosing to support interrupts between multiple guest VMs motivated

the centralized control via the SMS. Centralized control means the SMS can provide distinct

identifiers to each VM when the VMs initially connect to the server. The identifier for each

VM, or VM ID, is a 16-bit unsigned integer in the range of 0 to216. Therefore, in addition

to receiving the access to the shared memory, the SMS will provide each VM a unique VM

ID.

It is also worth mentioning that while VM IDs were initially added to Nahanni to sup-

port an interrupt mechanism, they are useful for any scenario in which VMs may want to

identify each other. For example, since VM IDs are simply an integer they could be used to

statically partition the shared memory by using a VM’s VM ID as an offset into fixed-sized

buffers in the shared-memory region.

Now that VMs can be identified via their VM ID, we move on to providing an interrupt

transport mechanism.
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4.6.3 Interrupt Transport

Sending interrupts between VMs will require some form of Linux IPC since QEMU pro-

cesses are Linux processes. To support interrupts, Nahanniuses a relatively new Linux IPC

mechanism calledeventfds. Eventfds are intended to be simpler and more efficient than

other IPC mechanisms such as pipes or sockets. Eventfds are created via theeventfd()

system call which is similar to thepipe() system call for creating a pipe. Theeventfd()

system call returns a file descriptor that is the reference for the eventfd. Eventfds can be

shared between processes like any file descriptor, through forking or through passing them

to other processes.

Eventfds can be read to and written from using the standard POSIX file operations.

One important distinction is that, by design, eventfds do not provide buffer semantics. This

design is intentional to avoid the overheads that bufferingincurs [9]. Eventfds behave like a

register, storing a single value that can be overwritten. Wewill use the writing to an eventfd

as the mechanism to send an interrupt to another guest.

As mentioned, eventfds are referenced within processes by file descriptors. Similar to

the VM ID, it will be the task of the SMS to distribute file descriptors for the eventfds

when new guests join. The SMS is able to create and distributethe eventfds because Linux

processes can pass file descriptor across a UDS. In the following discussion, we will use

the phrase “interrupt endpoints” to refer to the eventfd filedescriptors, which are different

from the file descriptor for the POSIX shared-memory region.

It was decided that each VM would have a single eventfd it would listen on for interrupts

to keep the numbers of eventfds linear with respect to the number of guest VMs. Each

QEMU process will be passed an interrupt endpoint for every other VM in order that they

can send interrupts to all other guests connected to the sameSMS.

It is worth mentioning that the choice of eventfds could be easily changed to another

Linux IPC mechanism because of the abstraction that file descriptors provide. If a different

communication mechanism, say pipes, were deemed preferable to eventfds, the changes

necessary would be limited to the SMS since the QEMU processes simply receive file de-

scriptors and are otherwise agnostic to the underlying IPC mechanism.

Coordinating the sending and receiving of VM IDs and file descriptors (for the shared

memory and eventfds) requires a protocol that the QEMU VMs and SMS will follow in

order to communicate with each other. The next section we return to discussing the SMS in

detail and introduce the protocol used by Nahanni VMs to communicate with the SMS.
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4.6.4 Shared-Memory Server Protocol

In any multiprocess configuration, a protocol must be in place that the clients and server

will use. For Nahanni, a protocol for VMs to join and leave theSMS is necessary so that

VMs can acquire the necessary information from the server touse interrupts. The protocol

is simple. The VMs connect and disconnect to the SMS listening socket using a QEMU

chardev that is added to the command-line (see Figure 4.11).

The SMS is only involved when guests join the SMS and when theyleave. The actual

sending of interrupts does not involve the SMS since the guests are fully connected by their

interrupt endpoints.

In the protocol that follows there is one invariant worth mentioning: By design, guest

VMs never send data to the SMS, they only receive informationfrom the SMS. The SMS

only needs to know when guests connect or disconnect from itself and detecting connections

and disconnections does not require the sending of data.

New Guest Connections

Figure 4.12 illustrates the communication exchange with the server that will occur when

a new guest connects to the server. As was mentioned in the previous section, notice in

Figure 4.12 that the VMs only receive data from the server, they never send data to the

server.

When a guest joins the server, it will receive the following:

1. its own VM ID,

2. a file descriptor for the shared-memory region,

3. a file descriptor for its interrupt endpoint, and

4. a file descriptor/VM ID pair for each already existing guest

The first three values are sent in the first three messages after the guest connects in

Figure 4.12. Once the server has sent the new guest its own data, it must send the data for

all existing guests to the new VM. These messages (one for each existing guest) transmit

the VM IDs and interrupt endpoints for each existing guest already connected to the SMS

to the new guest. These endpoints are how the new guest will send interrupts to existing the

guests.

Once the new guest is properly configured by the above steps, the server sendsupdates

to the existing guests that a new guest has joined. This update, sent to each existing guest,
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Figure 4.12: Server-Guest communication when a new VM is launched

will consist of the new VM’s VM ID and its interrupt endpoint.With this new endpoint,

existing guests can send interrupts to the new guest.

Once all existing guests have received the update about the new guest, the VMs are now

all directly connected, each VM can send an interrupt to any other VM via an eventfd. It

is worth reiterating that the SMS is not involved in the transmission of interrupts, it is only

involved in configuration when VMs join or leave.

Guest disconnections

The other event that the SMS is involved in is a guest disconnection. Figure 4.13 illustrates

the protocol behaviour when a guest disconnects from the SMS. When a guest VM shuts

down it will disconnect from the server by closing its connection with the SMS. The SMS

detects the connection has been closed and notifies the otherVMs that the guest with the

given VM ID has disconnected. The SMS sends a disconnection update to each remaining

VM. When a VM receives the update, it closes the interrupt endpoint for that guest and

deletes its VM ID from its internal data structures.

To this point we have discussed in detail the SMS, our identification method (VM IDs)

and interrupt transport mechanism (eventfds). We have alsojust illustrated the protocol
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Figure 4.13: Server-Guest communication when a VM disconnects

when guests connect to and disconnect from the SMS. The two remaining items from the

list in Section 4.6 are: (3) The mechanism to trigger the sending of an interrupt and (4)

the mechanism to receive an interrupt. Since Nahanni sharesmemory to user-level, our

interrupts must also be able to be sent from and receive into applications running at user-

level. In the next section, we will describe Nahanni’s device registers and how the UIO

driver model allows user-level access before discussing how interrupts are sent and received.

4.6.5 Nahanni Device Registers

User-level applications inside the guest will interact with the ivshmem device through the

device driver. In particular, a guest’s VM ID must be made available to applications. Appli-

cations will also need to be able to send and receive interrupts. The functionality for these

tasks will be provided by the ivshmem device and, in particular, by reading and writing

device registers on the device.

In general, PCI devices exchange usage-specific information (such as a VM ID) with

the kernel and applications and trigger actions via PCI device registers. Registers are small

regions of memory (typically 16 or 32-bits) that can be written to or read from much like

CPU registers. Generally speaking, reading a PCI register retrieves some information from

a PCI device. Writing to a PCI register can make a PCI device perform a particular action
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1 info->mem[0].addr = pci resource start(dev, 0);
2 if (!info->mem[0].addr)
3 goto out unmap;
4 info->mem[0].internal addr = pci ioremap bar(dev, 0);
5 if (!info->mem[0].internal addr)
6 goto out unmap;
7
8 info->mem[0].size = pci resource len(dev, 0);
9 info->mem[0].memtype = UIO MEM PHYS;

Figure 4.14: Nahanni: kernel driver initialize for ivshmemregisters

such as sending a network packet in the case of a PCI network device.

For QEMU PCI devices, registers are implemented as regions of memory on the device

much like our shared-memory region. Note that the register memory region labelled as

Register Memory in Figure 4.3. To be consistent with UIO terminology, we sometimes

use the shortened phrase “register region” in this discussion. The main differences between

the register memory region and the shared memory are that theregister region will be much

smaller and will not be shared between guests. Another difference is that when a write to

a register memory occurs inside the guest, control is transferred from the guest OS to the

QEMU hypervisor and the software in QEMU can emulate the behaviour of the device.

We chose to make our registers 32 bits each to correspond to the standard size for an

integer. The ivshmem device has a 256-byte register region which allows for up to 64 32-

bit (4 byte) registers. Currently, only four registers are used with the remaining registers

available for later development.

Following with the UIO design, the register region can be mapped into user-level much

like the shared-memory region. The register region is assigned to BAR0 in the PCI config-

uration (see Figure 4.3). To allow the mapping of the registers to user-level by applications,

the registers are indexed as memory region 0 in the UIO driveras shown in Figure 4.14.

Notice on line 4 on Figure 4.14 that BAR0 is remapped viapci ioremap bar(dev, 0) to

memory region 0 (info->mem[0]).

Therefore, to map the register region into an application, avalue of 0 is passed as the

sixth argument (offset)mmap(). For example, the followingmmap() call:

int *registers = mmap(NULL, size, PROT READ|PROT WRITE, MAP SHARED, fd,
0)

will map the register region into user-level. By mmaping theNahanni device registers into
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Figure 4.15: The register layout of the ivshmem device

The register region contains up to 64 32-bit registers, of which 4 are currently used. The
values on the right side of the figure are the offsets for the individual registers. The offsets

are multiples of 32 bits or 4 bytes.

user-level as shown, applications will be able to send interrupts without trapping to the guest

kernel.

The registers are involved in sending and receiving of interrupts. The individual regis-

ters are illustrated in Figure 4.15. The first register, at anoffset of 0 bytes, is the interrupt

status register (ISR). The second register, at an offset of 4bytes, is the Interrupt Mask

Register (IMR). ISR and IMR registers are common to PCI devices that receive interrupts.

The other two registers are specific to Nahanni. The third register which is at an offset

of 8 bytes is used to store the VM ID of the guest. Finally, the fourth register is theDoorbell

register that will be used to trigger the sending of interrupts to other guests connected to the

SMS. The remaining registers are currently unused and left for future development.

4.6.6 Interrupt Transport

Now that Nahanni’s PCI register memory has been explained, as well as how an application

can map the registers, we will discuss the semantics of interrupts.

The sending and receiving of interrupts involves the QEMU hypervisor, which runs

as a user-level process on the host. When a write to and read from a PCI register occurs

inside the guest, control then passes to the QEMU hypervisor, which executes a function

to emulate the behaviour of the device in response to that register being written to or read

from. For Nahanni, a write to the Doorbell register results in code being executed in QEMU

that will write a value to the eventfd.
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Figure 4.16: An Illustration of theivshmem Doorbell register

The Doorbell register on the Nahanni ivshmem PCI device is divided into two 16-bit fields
that specify the recipient VM ID and the interrupt to trigger, respectively.

Each ivshmem device has a single Doorbell register, but possibly multiple other VMs

to send interrupts to, the value written to the Doorbell mustindicate which VM to send the

interrupt to. Nahanni also supports assigning multiple eventfds to each guest to allow for

multiple interrupt types. To deal with this complexity, we split the 32-bit doorbell register

into two 16-bit fields, one for the recipient VM and the other for the interrupt number. When

only one eventfd is assigned to each VM, the interrupt numbermust be 1. The write to a

register is a single operation, so the two 16-bit values mustbe combined into a single 32-bit

value.

4.6.7 Sending an Interrupt from User-level

Figure 4.16 illustrates the two fields of the Doorbell register. The code shown in Figure 4.17

is executed within the hypervisor in response to a write to the Doorbell register inside the

guest. The two variables on lines 6 and 7 separate the two 16-bit fields from the 32-bit value

written to the Doorbell register into the variabledest, the destination VM ID, andvector,

the vector to signal in the other guest. After various checksare made, the eventfd is written

to with a value of 1 on line 18. The value written to the eventfdby the QEMU hypervisor is

always 1. It is possible to write any 64-bit value to an eventfd. But, as mentioned, eventfd

values are not buffered so trying to communicate a value is error prone as the value may be

overwritten before it can be retrieved by the receiver.

Once the value of 1 has been written to the eventfd, the sending half of the communica-

tion is complete. Next, we will discuss the receiving half.

When a value has been written to a guest’s eventfd, the receiving VM’s QEMU hyper-

visor detects that a value is available on the eventfd’s file descriptor using the well-known

select() system call. Figure 4.18 shows the callback function that isregistered with the

eventfd is then executed to receive the interrupt. The valueof the eventfd is passed to the

callback function. Recall that the value is always 1 since that is the only value ever written
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1 static void ivshmem io writel(void *opaque, target phys addr t addr,
uint32 t val)

2 {
3 IVShmemState *s = opaque;
4
5 uint64 t write one = 1;
6 uint16 t dest = val >> 16;
7 uint16 t vector = val & 0xff;
8
9 /* check that dest VM ID is reasonable */

10 if (dest > s->max peer) {
11 IVSHMEM DPRINTF("Invalid destination VM ID (%d)\n", dest);
12 break;
13 }
14
15 /* check doorbell range */
16 if (vector < s->peers[dest].nb eventfds) {
17 IVSHMEM DPRINTF("Writing %" PRId64 " to VM %d on vector %d\n",

write one, dest, vector);
18 if (write(s->peers[dest].eventfds[vector], &(write one), 8) != 8)

{
19 IVSHMEM DPRINTF("error writing to eventfd\n");
20 }
21 }
22 }

Figure 4.17: Nahanni: QEMU code to send an interrupt via an eventfd

Thewrite() system call on line 18 writes to the eventfd which will resultin an interrupt
being triggered in the guest listening on that eventfd.
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1 static void ivshmem receive(void *opaque, const uint8 t *buf, int size)
2 {
3 IVShmemState *s = opaque;
4
5 ivshmem IntrStatus write(s, *buf);
6
7 IVSHMEM DPRINTF("ivshmem receive 0x%02x\n", *buf);
8 }
9

10 static void ivshmem IntrStatus write(IVShmemState *s, uint32 t val)
11 {
12 IVSHMEM DPRINTF("IntrStatus write(w) val = 0x%04x\n", val);
13
14 /* set the ISR */
15 s->intrstatus = val;
16
17 /* signal interrupt into guest*/
18 ivshmem update irq(s, val);
19
20 return;
21 }

Figure 4.18: Nahanni: QEMU code to receive an interrupt via eventfd

to eventfds in Nahanni. The callback function stores value in the ISR (line 15) and triggers

an interrupt inside the guest OS (line 18).

It is worthwhile to mention that Nahanni also supports message signalled interrupts

(MSI), which are part of the PCI specification and are an alternative to regular interrupts for

PCI devices. MSI allow for multiple interrupt vectors per device, so a device can receive

different kinds of interrupts. The application semantics of receiving both regular interrupts

and MSI are the same, and eventfds are the delivery mechanismfor both types of interrupts.

The MSI support could provide a richer interrupt in the future and is included for that

reason.

4.6.8 Receiving an Interrupt to User-level

When the interrupt is raised inside the guest, the device driver must handle the interrupt.

Here again, the design of UIO allows applications running atthe user-level to receive and

respond to interrupts, something usually reserved for kernel-level drivers. The method of

handling interrupts at the guest user-level level is simple. A simple block of code that will

receive an interrupt from a UIO device is shown in Figure 4.19.

Guest applications receive interrupts by performing aread() system call on the/dev
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1 int rv, buf, fd;
2
3 fd = open("/dev/uio0", O RDWR);
4
5 buf = 0;
6 rv = read(fd, &buf, sizeof(buf));

Figure 4.19: A simple example of receiving an interrupt via UIO in a guest application

Theread() call on line 6 will block until an interrupt is delivered to the Nahanni device
associated with/dev/uio0.

/uioN device file that was created for the Nahanni device. UIO uses the semantics of the

read() call to allow the application to receive an interrupt.

Under normal usage, aread() system call will block until data is available to be read.

In the case of UIO, the read call returns when an interrupt is received. The value stored in

the buffer when the read returns is a 32-bit integer that indicates the number of interrupts

the driver has received since it was loaded. The read must be 32 bits (4 bytes) in size as that

is the size of data that a UIO device always returns on a read operation.

To explain these semantics a bit further, consider a driver that is loaded into the kernel

and has not received any interrupts. After it receives the first interrupt and an application

performs a read, the application will be returned a value of 1, since one interrupt has been

received since loading. When a second interrupt is delivered and the application performs

a read, the value of 2 will be returned.

Because interrupts are received asynchronously by the device driver, it is possible that

an ivshmem device may receive more than one interrupt between reads. After reading the

values of 1 and 2 respectively as above, if two interrupts arereceived before the next read,

that read will return a value of 4, since a total of 4 interrupts have been received since the

device driver module was loaded. These interrupt semanticsare unique to UIO. Recall that

the motivating principle behind UIO is to move the majority of the driver logic code (e.g.,

handling of interrupts) to the user-level. It is entirely upto the applications that use UIO as

to the meaning of an interrupt and what should be done when oneis received.

Section 4.8 will elaborate on writing applications to access Nahanni shared memory as

well as to send and receive interrupts.
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Figure 4.20: Three Virtual Machines using Nahanni

Each VM has 3 eventfds for sending interrupts (shown as numbered boxes) and one file
descriptor for the shared-memory region (white box). All file descriptors (for both the

shared-memory object and the eventfds) were received from the Shared-Memory Server.

4.7 The Big Picture

To this point we have discussed the details of how Nahanni enables shared memory between

VMs and how interrupts between guests are supported when using the SMS. Figure 4.20

illustrates how these different pieces come together to allow multiple VM guests (in this

case, three VMs) to share memory and send interrupts betweenone another.

The small, square white box in each VM represents the file descriptor for the POSIX

shared memory itself. Notice how the white boxes appear in multiple places (e.g., user-

level, kernel, shared-memory server) to reflect the different layers and components that can

see the file descriptor. The shared-memory region is also received from SMS when the

guest VM connects to SMS on startup. The dotted lines indicate the mappings that allow

the POSIX shared object to be shared up to user-level withoutincurring any copying.

The other three shaded boxes in the SMS and in each VM in Figure4.20 represent

the interrupt endpoints (i.e., eventfds) that support interrupt delivery. In Section 4.6, we

introduced the SMS and described how it distributes interrupt endpoints to each guest VM.

Interrupts are sent by a guest by writing to the endpoint thatthe receiving guest is listening

on. Each guest stores endpoints for all other guests and listens on one particular endpoint
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Figure 4.21: Triggering an interrupt using eventfds

This figure illustrates the interrupt transport using eventfds as VM 2 writes to the eventfd
for VM 1 which triggers an interrupt into VM 1.

assigned to them.

As discussed in Section 4.6.5, Nahanni’s ivshmem device implements the sending of

interrupts by having a Doorbell register that, when writtento by an application in the guest,

triggers awrite() to the correct endpoint for the receiving guest. Consider Figure 4.21 that

illustrates the sending of an interrupt between two VMs. In the illustrationVM 2 triggers

an interrupt inVM 1 by writing to the endpoint associated withVM 1. The transmission of

the interrupt involves the four stages described above, namely:

1. Writing to the Doorbell register,

2. QEMU writing to the corresponding eventfd,

3. The receiving guest triggering an interrupt, and

4. The receiving application reading from the/dev/uio0 device.

Figure 4.21 represents a guest-to-guest interrupt, but themechanism can be used for

host-to-guest as well. Eventfds are a general Linux mechanism, they are not specific to

KVM or virtualization in general. As such, eventfds can be used by any Linux application.

An application running on the host can communicate with SMS and receive file descriptors

(just like a guest VM does) by following the protocol described in Section 4.6.4 in order
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to communicate with the VMs by writing to the POSIX shared-memory object and sending

and receiving interrupts by using the eventfds. For example, as part of our benchmarking in

Section 5.3, we will show that a user-level application can transfer a file into a VM from the

host. This application first communicates with the SMS to receive file descriptors for the

POSIX shared memory and eventfd file descriptors and then uses those values to transfer

the file into the guest.

4.7.1 Using KVM to Accelerate Interrupt Delivery

The choice to use eventfds as the signalling mechanisms for interrupts has one additional

benefit specifically related to KVM. In addition to accelerating VMs via the hardware sup-

port for virtualization, the KVM kernel module also supports a low-overhead signalling

mechanism for VMs. This mechanism consists of two parts, onefor sending and the other

for receiving interrupts in VMs. The optimized mechanism for sending an interrupt is called

iosignalfdand the receiving mechanism is called anirqfd.

Ioeventfds can improve performance by eliminating heavy-weight VM exits when reg-

ister writes occur to send interrupts. Rather than requiring a full guest exit, an ioeventfd

registers a lightweight exit case that lowers overhead by requiring less state to be saved by

the hypervisor when simply writing to an eventfd (which is what Nahanni interrupts do).

Nahanni can take advantage of ioeventfds for writing interrupts since they are triggered by

writes to the register region of the ivshmem device. Making use of ioeventfds is simple and

is enabled by addingioeventfd=on the ivshmem device command-line.

Similar to ioeventfds, irqfds allow interrupt injections into guests that can require less

overhead. Use of irqfds requires eventfds as the mechanism that triggers the interrupt.

When a write occurs to an eventfd by a guest sending an interrupt to another guest, an irqfd

bound to that eventfd will trigger an interrupt into the receiving guest. Similar to ioeventfds,

irqfds are enabled by addingioeventfd=on to the ivshmem-device parameter.

Ioeventfds and irqfds are optional accelerations support by Nahanni. They do not

change the semantics of Nahanni interrupts, only the performance. Both optimizations

can be enabled when the VM is launched, but they cannot currently be enabled when an

ivshmem device is already attached to a guest.

4.8 Accessing Nahanni Shared Memory from Applications

In this section, we will elaborate on the application programming interface (API) that ap-

plications can use to access Nahanni and all its features. Since Nahanni builds upon POSIX
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mechanisms on both the host (POSIX shared memory) and in the guest (UIO) interface),

a completely new API is not necessary. So in this discussion we will emphasize how to

access Nahanni using existing system calls. We will first discuss accessing Nahanni within

a guest VM before moving on to the host.

4.8.1 Access From Within a Guest VM

Nahanni is designed to allow access to inter-VM shared memory from guest user-level.

Moreover, the choice to use the UIO driver model greatly influences how applications ac-

cess Nahanni from within guest VMs. As mentioned, Nahanni like any UIO device, is

accessed via a file in the /dev file system. For this discussion, presume that a Nahanni de-

vice corresponds to the device file/dev/uio0 (following the naming convention for UIO

devices).

As discussed above in Section 4.4.1, the Nahanni device enumerates two memory re-

gions that can be mapped into user-level. The first, memory region 0, contains the four

registers also described in Section 4.6.5. The second UIO memory region, region 1, con-

tains the shared memory itself. Recall that while BAR2 references the shared memory in

the ivshmem PCI configuration space (see Figure reff:pciconfig), BAR2 is mapped to UIO

memory region 1 (see Figure 4.7).

A UIO device-memory region is mapped into user-level using themmap() system call.

Recall that, by design, UIO overloads theoffsetparameter of themmap() system call. In

mmap’s normal usage, theoffsetparameter normally indicates an offset into a file that is to

be mapped. For example, mapping 1,024 bytes from a file at offset 512 would map the byte

range from 512 up to 1,536. UIO uses theoffsetargument to specify the UIO region to map.

An application maps a particular memory region by passing the region number multiplied

by the kernel page size:

(memory region) #× (page size)

In Linux, the default page size is 4,096 bytes. Linux provides a function named

getpagesize() that returns the current page size in a way that avoids hard-coding the

value. Therefore, a UIO device’s memory regionn can be mapped by passing an offset of

n×getpagesize(). In the case of Nahanni, two memory regions are available to be mapped

(the registers and the shared memory itself) son must be 0 or 1.

Once the register and shared-memory regions are mapped intoan application, they may

be used by that application like any array and can be passed tofunctions or made accessible
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1 int fd;
2 int regs[4];
3 void * shmem;
4
5 fd = open("/dev/uio0", O RDWR);
6
7 regs = (int *)mmap(NULL, ...,0);
8
9 shmem = (int *)mmap(NULL, ..., 1 * getpagesize());

Figure 4.22: Mapping the Nahanni Device-Memory Regions

A simple C program that opens the/dev/uio0 device file (line 5) and then maps the
register region (line 7) and then the shared-memory region (line 9).

via a global variable.

Mapping the Register Region

The register region is used to read from and write to the four registers of the ivshmem device

described in Section 4.6.5, namely the Interrupt Status Register, Interrupt Mask Registers,

VM ID register and Doorbell register. The registers are each32 bits, so the simplest pro-

grammatic access is to access the mapped region as an array of32-bit integers. By casting

the mapped region as shown in Figure 4.22.

Once mapped to an array of integers as in Figure 4.22, the registers can then be read and

written via the different array offsets. For example, consider a case when a guest application

wants to send an interrupt to a guest with a VM ID of 4. Following the initialization in

Figure 4.22, the following code snippet will send an interrupt to VM ID 4.

int dest = 4;
int vec = 1;

regs[3] = dest << 16 | vec;

The destination VM ID value stored in the integer variabledest is shifted 16 bits (since

the upper 16 bits of Doorbell register specify the destination VM ID, see Figure 4.16)

and then bit-wise ORed with the interrupt vector. The combined value is then written to

Doorbell register at array offset 3 (12 bytes) of theregs array which mapped the register

region of the ivshmem device.

In addition to writing, ivshmem device registers can also beread. The following line

will read the VM ID of the guest VM from the VM ID register and store it in the variable
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my vmid:

int my vmid = regs[2];

Shared-Memory Region

The shared-memory region is straightforward in terms of itsuse. The shared memory can

be mapped from the host through QEMU/KVM and then mapped to user-level by the ap-

plication using themmap() system call following the UIO semantics. Line 9 of Figure 4.22

shows the mapping call that will open the shared-memory object via the UIO driver. If

the mapping is successful, the pointer returned can be used like any dynamically allocated

memory.

Unlike the register region, reads and writes to the shared-memory region do not trigger

any action by the hypervisor. The semantics of how cooperating applications use the shared

memory is completely at the discretion of those applications.

Section 4.9 will elaborate how guest applications can make use Nahanni memory in-

cluding dynamic allocation within the Nahanni memory region and sharing pointers across

guest VMs.

4.8.2 From Host Applications

The shared-memory region is a POSIX memory object on the hostthat is made available

to guest applications through Nahanni. The memory object remains accessible on the host

after Nahanni guests have accessed it. Any POSIX operationsthat are valid on memory

objects in general can be applied to the Nahanni object as well. An application running

on the host, with the appropriate permissions, can open and map the Nahanni object and

access it exactly how a guest application would. The only difference in the host case is that

the POSIX operationsshm open() andshm close() would be used to pass the name of the

memory object (the same name that was passed to QEMU/KVM at startup) instead of the

UIO interface.

Any host applications that access the shared-memory objectmust have permission to

do so. POSIX shared-memory objects are accessed via the file system and so are protected

using regular file protections.

If the SMS is being used with multiple guests, the host applications can also connect

to the SMS over the UDS if they know the file name of the socket and have appropriate

permissions. Host applications that connect to the SMS willbe treated exactly like guest

VMs. In particular, they will receive all the necessary resources (a VM ID, interrupt end-
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points and the shared-memory region file descriptor) to communicate with the VMs across

shared memory, and to send/receive interrupts. The communication endpoints are used just

as with eventfds, with their associated semantics, since noUIO interface is necessary for a

non-VM application running on the host.

In Section 5.3, we will describe a file staging application that runs on the host will use

the SMS and the signalling mechanism to stage a file into a VM via a ring buffer in shared

memory.

4.9 Nahanni Memory as Dynamic Memory

Broadly speaking, the semantics of Nahanni shared memory are similar to dynamically

allocated memory that will be accessed using pointers. One challenge is how to allocate

memory within Nahanni shared memory, that is how can cooperating applications allocate

separate regions within Nahanni? Another important question is how can concurrent appli-

cations share pointers within Nahanni since the shared-memory region may be mapped to

different virtual addresses within the respective applications. We will discuss solutions to

these two important questions in this section.

4.9.1 Dynamic Memory Allocation with Nahanni

Being able to dynamically allocate memory from the Nahanni shared-memory region is

an important task as the complexity of the applications grow. Fixed buffers could be used

in certain circumstances, but applications will inevitably require variable-sized buffers in

which to share data. Providing a mechanism to support allocating memory within the Na-

hanni shared-memory region is an important mechanism for developers building Nahanni

applications.

If co-located, virtualized applications may be allocatingmemory concurrently within

Nahanni then self-containment and thread safety are the twomost important issues for a

shared-memory manager. Self-containment requires that all data and metadata describing

the allocation must be stored within the shared memory because applications in different

VMs will need to be able to update and modify the allocation metadata. Concurrent al-

location within the same Nahanni shared memory by cooperating processes also makes

synchronization necessary to ensure metadata is kept consistent. Synchronization ensures

that concurrent processes can allocate memory with proper isolation from another.

To address the two issues above, a simple memory allocator library calledshmalloc

was written for Nahanni by Adam Wolfe Gordon that uses spinlocks for synchronization

67



and a simple allocation scheme. All metadata is stored in theshared-memory region itself

so that all guests can access and update it as allocations anddeallocations occur.

When using the shmalloc allocator all sharing guests must run an initialization step.

One guest, the master, must perform additional initialization. A small region of fixed mem-

ory at the start of the region is used for synchronizing allocation. The memory alloca-

tor provides the expected functions for memory allocation,reallocation and deallocation.

Spinlocks contained in the Nahanni memory itself are used toensure mutual exclusion

when updating metadata. The shmalloc library provides allocation functions that can be

used as drop-in replacements for the well-knownmalloc() library of C functions. By using

the shmalloc library, applications can allocate variable-size regions of memory within the

Nahanni memory region.

4.9.2 Avoiding Pointer Swizzling

At its lowest level, shared memory must be accessed using pointer-based structures, either

arrays or linked structures of some kind. As shown in Figure 4.22, shared memory is

accessed by memory mapping the Nahanni region to the applications that need access to

it. Typically, when a file is memory mapped, it can be mapped almost anywhere in the

mapping application’s address space. The location of the mapping is returned from the

mmap() system call at runtime. In general, it is difficult to predictthe address that a file will

be mapped to within an application’s virtual address space.A file can even be mapped at

different locations between different runs of the same program. The variability in mapping

locations means that applications will likely have the shared region mapped to different

virtual addresses in their respective virtual address spaces. A problem arises then if two

cooperating applications wish to communicate via shared memory using absolute memory

addresses (i.e., pointers). If the shared memory is mapped to different virtual addresses in

each application, then the virtual address within one application, may not be a valid virtual

address within the other application.

If the layout of the data to be shared is fixed in size at compiletime, the problem can be

solved by treating shared memory like a fixed structure or array. Consider an application

that shares an array of 1,000 integers. Each application cansimply assign an array pointer to

the pointer returned frommmap() and then both applications will access the array since the

offsets of the different array items are consistent. Array itemn is stored atmapaddr + n ×
〈 size of an integer〉. This approach can work because an array by design uses the concept

of offsets. An application can access the array in its address space by adding an offset to the
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address returned by themmap() function. Even if cooperating applications map the Nahanni

memory to different virtual address, the offset approach will work for both since addresses

that are used to access the array are dynamically calculatedin each application.

As mentioned, the above case only applies if the size and layout of the data can be

completely specified at compile time. But, in a case with two arrays of data to be shared

that are of arbitrary length. The first array can begin atmapaddr. However the beginning of

the second array cannot be known if the length of the first array is unknown at compile time.

A straight forward solution is to have one application, Process A, decide where to lay out the

data and then pass the layout to the other application, Process B. However, Process A cannot

simply pass a pointer to Process B because B may have mapped the shared memory at a

different virtual address and the pointer would be invalid.Using offsets can still provide a

solution in this case, Process A can pass an offset into the shared-memory region to Process

B and B can then add that offset to its map address to get a pointer to the second array

within its virtual address space.

A static data structure works well in simple cases. However,when a more compli-

cated structure, such as a linked list, is stored in the shared memory the problem becomes

much more difficult. A pointer cannot be stored in shared memory as it would be unclear

which application it applies to. A general solution would beto only store offsets in the

shared memory itself. Storing offsets will work, however doing so requires constantly cal-

culating offsets before storing pointers and calculating actual addresses after loading from

shared memory. Handling pointers from another address space is referred to aspointer

swizzling[10]. Pointer swizzling is a common challenge when using pointers to memory

that are shared between processes each with their own address space. A solution to pointer

swizzling for Nahanni exists because themmap() function is used to map the memory into

the sharing processes respective address spaces. The first parameter to themmap() function

is a pointer. If the value passed is a null pointer, then the function will map the file at any

address that is available. If a user has an allocated buffer that she wants the memory mapped

onto, that address can be passed (along with theMAP FIXED flag as the fourth parameter).

This fixed mapping specifies that if the file cannot be mapped atthe provided address then

fail. A third use of the pointer is to pass ahint address for to map the file at. The mmap

function will attempt to map at the hinted location first and then try subsequent locations if

the hinted location is not available. If all sharing guests select the same hint address, and

that address is available, then no pointer swizzling would be necessary as the memory will

be mapped to same address in all sharing guests.
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With the availability of 64-bit architectures, the virtualaddress spaces are now up to

48-bits or 256 terabytes. (At the time of writing, architectures do not support full 64-bit

addressing, but 48-bits is common). The key to selecting a hint address that is likely to

succeed is to pick an address in the virtual address space that is above the code and heap

and below the stack. Both the heap and stack should be small ifthe mapping is done early

in program execution. With a virtual address space on the order of several terabytes and by

picking ahint address that is in the middle of the address space, it is probable that address

will be available, even if several gigabytes of virtual memory are required for the shared

memory. In testing with a hint address of 0x100000000000 (256 GB), our test applications

have always succeeded. By adding a check after themmap() call to ensure the hint address

was used for the mapping, applications are able to read and write pointers for the shared-

memory region in the region itself without modification.

On systems where the possibility of hint address failure is more likely, guests could try

a sequence of addresses until an address was found that worked for all guests. The shared

memory itself could be used to coordinate what addresses were successful.

4.10 Synchronization

Cooperating applications typically require synchronization. Synchronization can be pro-

vided by message-passing or by using synchronization mechanisms such as locks, barriers

or semaphores. The synchronization requirements and mechanisms that are chosen will

vary depending on the application using shared memory.

For many applications synchronization primitives are provided by the OS kernel. How-

ever, as discussed previously in Section 3.4, since Nahanniinvolves multiple, independent

guest OS kernels in different VM instances, kernel synchronization is not available. How-

ever, user-level synchronization is possible via variables in the Nahanni shared memory and

accessible by all cooperating processes.

Given the load-store nature of using shared memory, we expect a common method of

synchronization will be to store synchronization variables within shared memory. A con-

dition variable in Nahanni needs to be able to synchronize processes that may be running

in different guests. Similar to memory allocation, all the necessary metadata for a syn-

chronization variable must be stored entirely in the sharedmemory so that separate guest

applications can access and update it.

Of course, another synchronization mechanism available within Nahanni is the sig-
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nalling mechanism described in Section 4.6. By sending and receiving interrupts cooper-

ating processes could synchronize their execution. However, given that synchronization

via the shared-memory region will undoubtedly be importantfor certain applications, we

elaborate on specific mechanisms that work across shared memory, in particular atomic

operations.

4.10.1 Atomic Operations in Assembly Language

Support for atomic operations is important for synchronization variables that are accessed

via shared memory. Atomically reading and updating a sharedvalue is crucial to imple-

menting synchronization primitives in Nahanni shared memory. For example, lock-free

data structures typically rely on atomic operations for synchronization. Atomic operations

rely on architectural support from the processor. CPU instructions such ascompare-and-

swapandfetch-and-addare two examples of atomic read-modify-write instructionsfor the

x86 architecture. Atomic operations are not widely supported in higher-level languages

like C and C++. When atomic operations are not available, assembler linkages or compiler

extensions are necessary.

Assembler linkages are typically small sections of architecture-specific assembler code

that are linked into higher-level languages like C. An example assembler-linkage that uses

atomic compare-and-swap (thecmpxchg8b instruction on line 8) is shown in Figure 4.23.

4.10.2 GCC Atomic Operations

The GNU compiler collection supports atomic operations forC through library calls that

hide the necessary assembler from the application writer. Compiler built-ins, as they are

called in GCC, are simpler to use than writing error-prone assembler code by hand and do

not require any knowledge of assembler.

For example, the GCC C language built-in for atomic fetch-and-add is

__sync_fetch_and_add(&v->counter, i);

A fetch-and-add instruction could be used for a counter variable in shared memory that is

accessed concurrently by Nahanni applications running in different VMs. GCC supports

numerous atomic built-ins for other arithmetic and logic operations. Atomic operations that

are provided by GCC extensions or implemented via assemblerlinkages work in Nahanni

shared memory without modification since they are simply memory operations and Nahanni

exports flat shared memory.
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1 /* compiling position-independent code */
2 // EBX register preserved for compliance with position-independent

code
3 // rules on IA32
4 asm volatile (
5 "pushl %%ebx\n\t"
6 "movl (%%ecx),%%ebx\n\t"
7 "movl 4(%%ecx),%%ecx\n\t"
8 "lock\n\t cmpxchg8b %1\n\t"
9 "popl %%ebx"

10 : "=A"(result), "=m"(*(int64 t *)ptr)
11 : "m"(*(int64 t *)ptr)
12 , "0"(comparand)
13 , "c"(&value)
14 : "memory", "esp"
15 #if INTEL COMPILER
16 ,"ebx"
17 #endif
18 );

Figure 4.23: Example assembler linkage for C to implement atomic compare and swap

The above assembler linkage is taken from the Intel Thread Building Block code [25].

4.11 Security

An important issue with any mechanism that allows external processes to access memory

(in a VM or otherwise) is security. Following the KVM philosophy of building upon the

mechanisms and policies of Linux, Nahanni relies on protection mechanisms provided by

the Linux operating system.

4.11.1 Host security

The first concern of security is the POSIX shared-memory object on the host. POSIX

shared memory is accessible via the host file system and so is subject to the POSIX file

system permissions. In POSIX-compliant file systems, each file and directory is protected

by an array of permission bits that are divided into the threegroups:

user Permissions for the owner of the file or directory. A file can only have a single owner

in the POSIX model.

group Permissions for the group that owns the file or directory. Each file or directory

can only have a single group owner. All users that belong to the owning group may

access the file or directory as the group permissions allow. Group permissions allow
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a restricted group of users access the file without necessarily allowing all users on the

system to access file.

other Permissions for all other users excluding the owner and users that part of the owning

group. These permissions apply to every user that is known tothe file system. These

permissions are typically more restrictive thatuser and group as they apply to all

users that are not the owner of the file or belong to the owning group.

Each of these three categories of users are granted some combination of permissions to

read, write or executethe file or directory. The same permissions described above apply

to POSIX shared-memory objects. Therefore a single user canrestrict access to their own

VMs and host applications. As well, users can also expand permissions to other users that

are in a common group with them if that user is the group owner for the POSIX shared-

memory object. A user could choose to make the shared object available to all users on the

system. In each of these three cases, the creator of the shared-memory object could also

choose to grant permissions for the group or all users to be read-only.

In general, Nahanni retains the expressiveness of the POSIXpermission model in re-

spect to sharing memory between VMs and host applications. Nahanni leaves the choice of

permissions to the user that creates the shared-memory object to increase or restrict permis-

sions as they see fit for the particular application.

The POSIX model is sometimes considered overly restrictiveby only having three lev-

els of access control. In particular, POSIX does not supportdifferent permissions for indi-

vidual users, other than the owner, or for multiple groups. Another security control mech-

anism,Access Control Lists(ACL), support a more flexible permission model by allowing

different users and groups to have separate and different permissions. If and when Linux

supports a more flexible permission model such as ACLs for files, directories and, by ex-

tension, POSIX shared-memory objects then Nahanni shared-memory objects will be able

to take advantage of that mechanism as well.

Security of the Shared-Memory Server

Using the Shared-Memory Server (SMS) does not add any additional security concerns ver-

sus the direct method, but there are some differences worth discussing. If users choose to

use the SMS, then the SMS is the only application that will be directly accessing the POSIX

shared-memory object. Guests wishing to access the shared-memory region will commu-

nicate with the SMS to gain access. When SMS is started, it will have the permissions of
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the user that started it and so will require the necessary permissions (user, group or other)

in order to open the object. The Unix domain socket used to communicate with the SMS is

subject to the same file system permission model previously discussed. Each QEMU/KVM

process that uses the server will open the socket at boot timeand the permissions of that

guest will be checked when that occurs.

The above security discussion adds an additional level of concern when requiring guest

VMs to run as root, which some of the network configurations (e.g. tap interfaces) discussed

in Chapter 5 may require. If all guests are run with root permissions, then they are able to

open any shared-memory object and so may open objects that other users did not intend

them to use. The root requirement issue for KVM is under regular scrutiny and will be

resolved in time, but until that happens certain security trade-offs will exist.

In the meantime, because Nahanni is designed to be used without requiring root permis-

sions (e.g., no need for tap interfaces) to get high-performance IPC, it does not have those

security issues.

4.12 Guest Security

In shifting the discussion to security within the guest, it is important to clarify the role of a

user. The guest OS is a completely separate OS from the host. In general, user accounts in

the guest have no relationship to user accounts on the host. Guest OSes may be configured

to match host system user accounts, but that is completely atthe discretion of the host

and guest system administrators. For the purpose of this discussion, we will refer user

accounts that exist in the guest OS asguest usersand administrators of the VM(s) asguest

administrators.

Within the VM, a guest administrator may want to restrict access to the shared memory

to certain guest users. Inside the guest, the Nahanni memoryis accessible through a device

file, typically named/dev/uioN where N is an integer greater than or equal to 0. Linux

file system protections apply in the same way to device files asthey do for regular files,

directories and POSIX shared-memory objects. Guest administrators can restrict the access

to the shared-memory region by setting the appropriate user, guest and other permissions

to the device file that is associated with the Nahanni shared memory. With the permissions

properly set, only certain users that are either the user owner or in the owner’s group can

access the/dev/uioN file. As well as restricting users, guest administrators canalso restrict

access to device file by making the device file read-only for either the user owner or group
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owner. Doing so would only allow the guest owner to map the shared memory for reading,

not writing.

In general, whatever protections are available for device access by the guest OS can be

used to restrict access to the Nahanni shared-memory region.

4.13 Discussion

As mentioned in Section 4.2, other designs for Nahanni were possible. One possible design

of particular note that was explored in great detail was using the virtio paravirtualization

framework to implement Nahanni.

4.13.1 A Virtio-based Nahanni Device

When initially approaching the QEMU community with the ideaof an inter-VM shared

memory implementation, one of the principal maintainers ofQEMU insisted that the in-

terface be implemented in the virtio paravirtualization framework discussed in Chapter 3.

As mentioned above, this design and implementation was later deemed inappropriate to the

goals of Nahanni, however it is still fruitful to discuss thedetails of that implementation.

Recalling the three components of the Nahanni implementation discussed in Section 4.1,

using virtio would impact the second and third components, namely the Nahanni device and

the guest kernel driver. The first component of the design, POSIX shared-memory objects,

were still used as the backing for shared memory in our virtioimplementation. It is also

important to state that the semantics of Nahanni would not change either by using a virtio

implementation, just the implementation within QEMU and the guest kernel.

As mentioned, virtio [52] is a standard that was establishedin 2008 as a generic, high-

performance transport for virtual devices. The virtio framework has been used to implement

a block device, a network device and serial port that are partof QEMU/KVM. The goal of

the virtio framework was to provide a standard device interface that could be used by any

data-intensive devices (e.g. block, network, graphics) that move data into or out of VMs.

Virtio was designed to behave similarly to a DMA engine in that the hypervisor would

copy the data directly from kernel memory to the device (i.e., out of the guest). Virtio, like

Nahanni, aims to minimize data copies while data is in transport. However, virtio does not

share memory between guest VMs or between guests and the hostper se. Instead virtio

leverages the fact that the QEMU hypervisor can access any part of the guest memory since

the VM is within the QEMU address space. In short, rather thancopying to and from an flat,

shared region, the guest will notify the hypervisor of the location of data to be moved via
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pre-allocated buffers calledvirtqueues. Virtqueues can be used like ring buffers. Typically

bi-directional devices, such as network cards, will employtwo virtuqueues, one for sending

data and one for receiving data. Virtqueues have a fixed number of slots that is configured

when the device is created.

Virtio virtqueues are configured by a guest-hypervisor interaction when the virtio device

driver is loaded by the guest OS. The interaction consists a series of reads and writes to the

device’s configuration space that allocate the virtqueues and then notify the hypervisor of

their location in the guest memory.

The challenge in trying to create a virtio implementation ofNahanni was to adapt the

existing virtio model to support memory regions that could be shared between guests and/or

the host.

Since virtqueues are simply regions of guest memory, similarly allocated regions could

be used as a target to map memory and have that memory shared directly between multiple

guests and the host. Instead of passing the size of a virtqueue, the device passed the size of

the memory region that was to be created in guest kernel memory. Once created, the hyper-

visor was passed the guest address of the allocated memory and the hypervisor then mapped

the host POSIX memory object at the guest memory address passed from the device.

Ultimately, the implementation was rejected by the virtio maintainers (despite their

initial insistence) because it was said to break the DMA model that was part of the virtio

design.

4.14 Concluding Remarks

This chapter has explained how the Nahanni device was designed and implemented. The

implementation involves three primary pieces including the ivshmem device, the UIO guest

device driver and the Shared-Memory Server. As well, we havehighlighted alternative

designs that were possible to help explain why we made the design choices we did.

Simplicity and flexibility are the focus in Nahanni’s design. Higher-level abstractions

may be implemented on top of Nahanni (e.g., memcached [22, 63]) that are more convenient

for particular use cases than the mechanisms described above.

At its most basic level, Nahanni can be adapted to numerous uses for virtualized appli-

cations because of the flexibility in sharing memory to the user-level which supports a load-

store interface for cooperating applications. The addition of a simple interrupt mechanism

provides an alternate technique that can replace the need for spinlocks for synchronization.
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Chapter 5

Evaluation

In the previous chapters, the background, design and implementation of Nahanni have been

presented. As mentioned, the ultimate goal of Nahanni is to provide a high-bandwidth,

low-latency shared memory mechanism that provides excellent performance and enables

applications to take advantage of that performance in both streamed data and structured

data use cases.

The experiments presented in this chapter will demonstratethat Nahanni provides higher

bandwidth (e.g., file staging and message passing) and lowerlatency (e.g. LMbench’s “hot

potato”), when compared to existing network and virtio-based mechanisms. First, we dis-

cuss a series of microbenchmarks in Section 5.3 that focus onthe speed of data movement

and synchronization that can be achieved with Nahanni shared memory. Second, small

application benchmarks will be shown in Section 5.4 that demonstrate the benefit of Na-

hanni in the context of applications which intersperse communication with computation.

Third, a full application benchmark, the General Atomic andMolecular Electronic Struc-

ture System (GAMESS), will be compared using Nahanni versususing the well-known

Message-Passing Interface (MPI) to demonstrate Nahanni’sbenefit in a full-scale scientific

application that can use shared memory for interprocess communication (IPC). In our final

benchmark, we compare the SPEC MPI2007 benchmark suite using a MPI library modified

to use Nahanni against the same MPI library using the virtualnetwork.

5.1 Experimental Methodology

All experiments were run on an 8-way (two quad-core 2.67GHz Intel X5550 Xeons) Linux

box with 48 GB of RAM. The host operating system is Fedora 11 and the guests are Ubuntu

9.10 (Karmic Koala). The guests and host both run a 2.6.37 Linux kernel. The hypervisor

is the KVM version in the Linux Kernel v2.6.37. In our defaultconfiguration, each virtual
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Figure 5.1: Comparison of inter-VM communication mechanisms for QEMU/KVM

machine (VM) is configured with 4 virtual CPUs and 8 GB of RAM for benchmarking.

It will be made clear if any benchmarks require deviating from the default configuration.

Depending on the benchmark, we may use 2, 4 or 8 VMs. We use the average of 5 runs for

all benchmarks. When error bars are shown, they are equal to 1standard deviation.

5.2 Definitions

In understanding the experiments, one should be familiar with the following terms some of

which have been introduced previously in Chapter 3:

QEMU/KVM QEMU/KVM, sometimes shortened to KVM, is a Linux-based hypervisor
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that runs VMs. QEMU/KVM is a two-part solution involving a modified QEMU [8]

user-level process and the Kernel-based Virtual Machine (KVM) that runs in the ker-

nel. The KVM part of QEMU/KVM is implemented as a Linux kernelmodule and

has been part of the mainline Linux kernel since version 2.6.20. QEMU/KVM is the

default hypervisor in the major Linux distributions Ubuntuand Red Hat Enterprise

Linux. To run a VM, a modified QEMU executable running at user-level communi-

cates with the KVM kernel module. For the remainder of this chapter we will use

KVM to refer to the QEMU/KVM hypervisor in general.

Virtio Virtio [52] is a standard for implementing paravirtual devices that provides a straight-

forward, yet high performance transport for virtual devices. Paravirtual devices are

a class of devices that are designed specifically for VMs and do not attempt to em-

ulate a real hardware device. Virtio defines an interface between guest drivers and

the hypervisor that minimizes copying of data when data moves from the guest to

an external device such as the network or virtual disk. Virtio has been used to im-

plement a virtual network card, a virtual block device and a host-guest file system,

9P. Virtio drivers for these devices have been part of the mainline Linux kernel since

version 2.6.24. With respect to Figure 5.1, virtio network devices are used for all

configurations, however they are only involved heavily in (a), (b) and (c).

Co-located VMs Co-located VMs are VMs that run on the same physical host machine.

Co-location is a requirement for using Nahanni as only machines running on the same

host can share memory. Co-location of VMs is a common practice for other reasons

than allowing shared memory such as increasing resource usage of host machines.

Note that all four configurations in Figure 5.1 show three co-located VMs running on

a single host machine.

N ×M Notation In Sections 5.5 and 5.6, we run several parallel applicationbenchmarks

to evaluate the inter-VM communication potential of Nahanni. These benchmarks

involve running multiple parallel processes across multiple, co-located VMs. To pro-

vide clarity we introduce anN × M notation to allow us to succinctly express the

number of processes and the number of VMs that are executed for each benchmark.

The notationN ×M indicates that a total ofN processes were run acrossM VMs.

The number of virtual CPUs per VM isN/M . For example, a4 × 2 configuration

runs 4 parallel processes across 2 VMs. With a4 × 2 configuration, each individual

VM has4/2, or 2, parallel processes executing within it. By contrast,a 4 × 4 con-
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figuration is comprised of 4 parallel processes running across 4 VMs with 1 parallel

process per VM. The experiments in Sections 5.5 and 5.6 involve configurations of

4× 2, 2× 2, 4× 4 and8× 8.

KVM’s networking configuration has numerous options depending on the requirements

of the VMs being run. For example, VMs can be configured to be visible on the hardware

network or can be hidden bynetwork address translation(NAT). Figure 5.1 illustrates the

different communication options available for KVM. The following description will elabo-

rate on the flexibility and trade-offs for the different networking options.

Bridged Networking Using a host network bridge is one possible setup for KVM. Fig-

ure 5.1 (a) illustrates this configuration with three VMs. Bridge networking adds

a network interface to the bridge for each guest VM via a tap interface (see Fig-

ure 5.1 (a)). Bridged VMs are visible on the hardware network(i.e., can be pinged

from a different machine) and therefore require an IP address on the network they

are bridged on to. Similar to physical machines on the network, IP addresses for the

VMs may be statically allocated or dynamically allocated using a DHCP server. One

caveat of using bridge networking with KVM is that it requires running VMs with

root permissions which opens up a variety of security concerns that are beyond the

scope of this thesis.

Vhost Vhost, illustrated in Figure 5.1 (b), is a virtio network acceleration extension for

KVM. As Figure 5.1 (b) shows, the vhost setup is similar to a bridged setup with one

tap interface per VM. The difference between vhost and regular bridged networking is

that vhost requires an additional kernel module to be loadedthat accelerates network

performance. Vhost improves performance by reducing the number of expensive VM

exits when sending or receiving data on the network. Vhost provides a substantial

increase in bandwidth and a modest reduction in latency of the network versus virtio

alone. Since vhost requires bridged networking it requiresrunning guests as root

processes. We consider vhost from a performance point of view. Vhost networking

is our main point of comparison for all network benchmarking.

VDE Virtual Distributed Ethernet (VDE) [12], illustrated in Figure 5.1 (c), is a networking

system that eliminates the need to run QEMU/KVM VMs as root toperform the

necessary network setup. VDE implements a software networkswitch that performs

NAT to allow multiple guests to share the single tap interface on the host. VMs
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running with VDE networking are not visible to the hardware network because VDE

uses only a single tap interface for all VMs. VDE is a convenient setup because

VMs need not run with root permission as is needed with bridged networking and

vhost. The convenience comes with the trade-off of poorer performance than bridged

networking. More broadly, VDE offers virtualized overlay functionality that is not

considered in this work.

Our goal in this chapter is to compare the best possible virtual network configuration to

using Nahanni, our shared memory mechanism for communicating between host and guest

VMs as well as between guest VMs. Nahanni is illustrated in Figure 5.1 (d). Nahanni does

not rely on network connectivity or the virtio subsystem as the other mechanisms do. As

described in the previous chapter, Nahanni exposes a regionof POSIX shared memory from

the host into one or more guest VMs. Host applications and guest VMs that share the same

POSIX shared memory object may communicate across it. Nahanni is not a networking

technology or optimization, but a different mechanism altogether. Nahanni requires the

writing or modification of applications and libraries specifically to use it. Figure 5.1 (d)

illustrates one possible use of Nahanni with ring buffers allocated in the shared memory for

inter-VM communication. For each benchmark we will describe precisely how Nahanni

was used and the modifications that were necessary in order touse it.

For the benchmarks in the upcoming sections, Nahanni (Figure 5.1 (d)) will be com-

pared to vhost-enabled bridged VMs (Figure 5.1 (b)) since the vhost configuration has the

best networking performance. For our application benchmark, GAMESS, in Section 5.5,

a VDE system (Figure 5.1 (c)) is also included in the comparisons, however our 30% im-

provement is relative to vhost, which is the best-case performance for MPI.

The microbenchmarks in the following sections will also compare to the virtio-based

9P file system for transferring data from host to guest as wellas the network. Note that the

solution illustrated in Figure 5.1 (a) is not evaluated because it is architecturally similar to

the solution in Figure 5.1 (b), only slower.

5.3 Microbenchmarks

Previous work has shown that shared memory should provide lower latency [60, 20] and

higher bandwidth, however we want to verify this hypothesisthrough microbenchmarks.

IPC performance is typically benchmarked in terms of latency and bandwidth, therefore

the following two sections will explore these metrics with respect to Nahanni and seek to
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answer two fundamental questions:

1. Does Nahanni have lower latency than other mechanisms?

2. Does Nahanni provide higher bandwidth than other mechanisms when moving data?

Nahanni should have two advantages over existing techniques in that it reduces memory-

to-memory copies and avoids crossing protection barriers between user-level and kernel in-

side the guest as well as between guest and host. These two advantages should improve

both latency and bandwidth versus existing methods.

5.3.1 Latency: The Hot Potato Benchmark

Our simplest microbenchmark is to compare the round-trip latency of a virtual network

versus Nahanni shared memory. We will compare two VMs communicating via the vir-

tual network as shown in Figure 5.1 (b) to two VMs communicating across Nahanni as in

Figure 5.1 (d). In this benchmark, a round-trip is the sending of a notification from an ap-

plication running in a VM to a recipient running in a co-located VM and then receiving a

notification back from that recipient. In an application, notifications may be used to transfer

control between cooperating applications. Latency shouldbe as low as possible.

We compared the well-known LMbench [32] “hot potato” test toa similar control mech-

anism in Nahanni between two co-located VMs. The “round trip” in shared memory trans-

fers control of a critical section from one process to another, similar to a semaphore that

requires the processes to strictly alternate. We did not usethe LMBench code since it is

socket-based, but wrote an application from scratch. Two applications running in different

VMs will access shared data in the Nahanni shared region thatwill constitute passing con-

trol back and forth. To be clear, no data is exchanged in the Nahanni case. The TCP and

UDP LMbench benchmarks send the smallest message possible using the virtual network

back and forth between two applications running in different VMs.

LMbench measured a UDP latency of 200 microseconds and a TCP latency of 230

microseconds for its “hot potato” test. Our Nahanni semaphore has a round trip of 0.5

microseconds to transfer control between VMs. This result demonstrates that the latency of

shared memory can be much lower since no data is copied and no protection boundaries are

crossed which is consistent with previous research [20]. The above results demonstrate an

improvement of two orders of magnitude.

The overhead in the networked case is caused by memory-to-memory copies and cross-

ing protection boundaries. The “hot potato” benchmark sends network packets which re-
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Figure 5.2: Staging a file from the host to guest

This abstracted illustration shows how an input file is copied from the host file system into
the guest via a virtual I/O device. The device could be a virtual network card, virtual file
system or a Nahanni shared memory device. The input file wouldbe staged in order to be

used by a virtualized application running inside the guest.

quire system calls on both the sender and receiver as well as the moving of the data packet,

either 1-byte for TCP or 4-bytes for UDP, across the virtual network. Using Nahanni to sig-

nal an application inside a co-located guest does not require any of the overheads that the

network packets incur since the communication is entirely contained within memory that is

shared to the user-level in both guests. Avoiding context switches and network transport is

what accounts for the much lower latency of Nahanni.

Running Nahanni in a multi-core environment is important for this latency benchmark

since it eliminates the need to context switch between VMs because the VMs run on sepa-

rate cores. Nahanni should still provide a performance advantage on a single-core system,

but the latency performance shown here is achieved due in part to the multi-core machine

the experiments were run on.

5.3.2 Bandwidth: Host-to-guest File Transfer

The other important metric of IPC performance is bandwidth,that is: being able to move

large amounts of data quickly. In high-performance computing, the movement of data files

is typically calledstaging. Figure 5.2 illustrates staging of a file from the host file sys-
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tem into the virtualized guest. For this benchmark, four different file sizes will be staged:

350MB, 700MB, 2GB and 4GB, using three of the mechanisms illustrated in Figure 5.1

(configuration (a) is excluded) as well as a paravirtualizedfile system, 9P.

Staging data efficiently is important to keep overhead low when running an application

inside of a VM instead of running natively. For example, if a virtual machine is used to

decode video, the source video must be staged into the virtual machine. As video files can

be large in size, bandwidth is an important metric for this use case. Using Nahanni shared

memory that is accessible from user-level in the guest eliminates some of the overheads that

other mechanisms impose.

Our bandwidth microbenchmark measures the time to copy a fileinto a VM using Na-

hanni versus other paravirtualized mechanisms. In particular we compare a file staging

mechanism based on Nahanni (Figure 5.1 (d)) to two well-known network-based file trans-

fer utilities. In particular, we compare a Nahanni-based mechanism that we wrote to the

netcat utility [42] and to SSH layered on top of virtual networking as shown Figure 5.1 (b).

We also introduce the paravirtualized 9P file system as a point of comparison. The 9P file

system is included in these benchmark as it is the suggested method to share host files inside

a guest VM when using KVM.

Table 5.3.2 highlights the features of each of the four transport mechanisms that are

compared. SSH, netcat and 9P all use the virtio framework fordata movement. SSH and

netcat use a virtio network device and 9P uses the virtio-9P file system support that is part

of QEMU/KVM. Vhost is enabled in the VMs for this benchmark. Briefly, we describe

each of these mechanisms to help the reader understand the trade-offs with each.

netcat Netcat [42] is a well known Unix utility for testing applications that use TCP and

UDP sockets. Netcat is commonly available on many Unix systems. By design,

netcat provides no network security in terms of authentication or encryption of data.

Netcat is a useful utility for streaming data and testing networked applications (e.g.,

clients and servers). For these benchmarks we will use it to copy data across a socket

into a VM.

SSH SSH [1] is the well-known secure shell application. For the following experiments we

use the SSH-HPN [50] patches to disable encryption of data packets so only authenti-

cation is used, to avoid the unnecessary per-byte encryption overheads. Within single

servers and private networks, encryption of data during transfer is not essential due

to the isolation already present. We leave authentication turned on as authentication
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distinguishes SSH from netcat. Two different applicationsfrom the SSH suite will be

used for benchmarking: SCP (secure copy) for staging a file and SSH (secure shell)

for streaming data.

9P 9P [58] is a paravirtualized file system that is designed for the virtio interface that

QEMU/KVM supports. 9P is a client/server file system protocol adapted from the

Plan 9 operating system [46] that has been ported to Linux. Virtio-9P was added to

QEMU/KVM as a mechanism to support accessing the host file system in the guest

so virtualized applications access a file on the host withoutthe need to explicitly

copy it into the guest. In the case of KVM, the “server” is integrated into QEMU

(therefore at user-level) and communicates with a virtio-9P device that is part of the

guest. Integrating the server reduced the need for an external server such as SAMBA

or NFS on the host. 9P also required adding a special kernel driver to Linux to support

the virtio-9P device. The 9P driver must be loaded into the guest kernels used in these

benchmarks.

Nahanni As mentioned usage of Nahanni requires applications be written specifically for

it. For these bandwidth benchmarks, sender and receiver applications were written

that create a simple producer/consumer ring buffer in shared memory. The ring buffer

consists of 16 slots with each slot being of a fixed size (16 MB). The sender and re-

ceiver applications use Nahanni’s interrupt mechanism forsignalling. Signalling is

used to notify when individual buffers in the ring have been either filled or emp-

tied. The receiver program outputs data to a disk file in the guest or to standard

out. Standard out can be redirected to/dev/null or another program (e.g. grep,

FFmpeg [17]).

The various mechanisms just described also provide different levels of security that in

turn have associated overheads. Nahanni relies on standardUnix file permissions (on the

host) to protect the POSIX shared-memory object that is shared between guests. Therefore,

guest VMs of different users cannot access the same Nahanni shared-memory region unless

explicitly permitted to. Netcat, which uses the virtual network, does not provide any secu-

rity nor is it intended to. Netcat simply listens on a IP port and copies the data sent to it.

In general, netcat could not be used in a production environment as it would introduce an

unacceptable security risk. SSH uses encryption to authenticate connections in our config-

uration. For SSH, the High-Performance Enabled version, SSH-HPN was used that allows

disabling of encryption on the data transfer (encryption isstill used for authentication). In
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mechanism network paravirtualization authentication encryption
Nahanni not required none yes unnecessary
netcat required virtio-net, vhost no no
SSH required virtio-net, vhost yes disabled
9P not required virtio-9P yes unnecessary

Table 5.1: Comparison of file staging mechanisms
The table indicates the features of each of the transport mechanisms used for file staging

and streaming.

some environments, not encrypting the transmitted data could be considered a reasonable

trade-off. Similar to Nahanni, 9P uses Unix permissions on the host to protect the data that

is exported via 9P through QEMU.

To provide an example of how the various mechanisms just described are run, we will

provide command-line examples of each. The following command-line is used to stream

data from IP port 2000 to/dev/null using netcat:

netcat -l -p 2000 > /dev/null

A similar execution of netcat on the host (not shown) will copy the input file from the

host file system to IP port 2000. For SCP, the command-line to copy a file from the host file

system into the guest is:

scp -oNoneSwitch=yes -oNoneEnabled=yes host:/local/data/inputfile /dev/

null

In the above example, the file is copied to/dev/null inside the guest. The options “-

oNoneSwitch=yes -oNoneEnabled=yes” tell the SCP application not to encrypt the data.

See Section 5.3.2 for the discussion on why encryption is disabled.

For Nahanni, our sender program, namedput file is invoked as follows on the host:

./put file /local/data/inputfile 16 1

The second parameter in the call,16, indicates the number of slots in the ring buffer and

the third parameter,1 indicates the VM ID of the VM that the receiver is running in.

Since 9P is a file system, it is mounted inside the guest VM and exposed via the file

system namespace at a mount point. Once mounted, any Unix utility could be used to

access the files. For example,

cat /mount/9P/inputfile > /dev/null

would copy the file from the mount point into/dev/null.

Figure 5.3 shows the runtime for each of the mechanisms. To isolate the speed of the
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Figure 5.3: Comparison of runtimes for staging data with different mechanisms

different transfer mechanisms, these tests are run with a warm buffer cache on the host and

the file is written to/dev/null in the guest to eliminate file system overheads.

As the results show, Nahanni is the fastest mechanism for transferring data versus the

other mechanism for all 4 file sizes. Copying data across shared memory is between 4 and

8 times faster than netcat. When transferring the 350 MB file,Nahanni completes in 0.14

seconds, where as netcat takes 0.62 seconds, and SCP and 9P both take 2.2 seconds. In

general, Nahanni completes at least 4 times faster than netcat and is an order or magnitude

faster than SCP or the 9P file system. The graphs for the other file sizes in Figure 5.4 show

that these trends continue with the larger files.

It should be mentioned that despite the slower performance,each of the other transport

mechanisms have their respective benefits. In particular, netcat and SSH/SCP offer socket

semantics such as non-blocking writes and buffering. SSH and SCP also offer network au-

thentication and can access the VM from outside the host machine if the networking allows.

9P offers file system semantics (e.g., a file hierarchy, use offile system utilities). However,

all these features come as a trade-off for absolute performance. Lowering the overhead of

transferring data will improve the overall execution of data-intensive and latency-sensitive

applications.
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Figure 5.4: Comparison of runtimes for streaming data with different mechanisms

The bars show the runtime of streaming a 700 MB to the FFmpeg and grep applications
running inside a VM. The FFmpeg application decodes the video file as it streams. The

grep application searches for a word that is not contained inthe file.

5.3.3 Summary: Microbenchmarks

Revisiting the questions we sought to ask at the beginning ofthis section, we can say that

Nahanni does provide lower latency and higher bandwidth than other techniques based on

the microbenchmark results above. Microbenchmarks demonstrate performance that could

be achieved in an ideal case. The next question to answer is whether applications will show

a tangible benefit from using Nahanni. That is, we wish to see the performance of Nahanni

in the context of being used by an application.

5.4 Benchmarks: Simple Applications

To further understand the benefits of Nahanni, we consider applications that can perform

operations on streamed data. Specifically, we consider FFmpeg [17] and the well-known

grep utility. We test Nahanni’s ability to stream data to these applications when running

them inside a VM. We show that Nahanni’s latency and bandwidth advantages, as already

demonstrated in the microbenchmarks, also improve the overall runtime of these virtualized
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applications by between 3-fold and an order of magnitude forgrep. However, for FFmpeg,

Nahanni improves performance by between 2% and 4%. The difference in relative im-

provement is an expected result. Nahanni’s performance advantage should depend on the

application’s ratio of computation to data transfer.

The results for these benchmarks are shown in Figure 5.4. ForNahanni, the same ring

buffer implementation from the previous section is used to stream the data file into the guest

(Figure 5.1 (d)). For these benchmarks, SSH replaces SCP as SSH possesses the ability to

stream data into an application whereas SCP can only copy files to and from file systems.

The purpose of staging data into a VM is so the data could be processed by a virtualized

application running in that VM. When an application is processing data, the speed of the

transfer should keep pace with the speed at which the application can process the data. If an

application can process data faster than the data can be transferred, the transport mechanism

becomes a bottleneck. This balance is called acompute-to-data ratioof the application

and it directly affects application performance. Our applications, grep and FFmpeg, were

chosen since they have different ratios which are evident intheir runtimes as shown in

Figure 5.4. While Nahanni continues to show benefit, the amount of benefit depends on the

compute-to-data ratio of the streaming application.

For this benchmark we will use the same 700MB file, a video file,that was used in

the bandwidth benchmark. The following sections will provide a brief description of each

respective benchmark as well as describing the performanceof the different transport mech-

anisms in staging data to the two applications.

5.4.1 Grep

Grep is a common Unix utility that searches for a regular expression within a file. As

mentioned, grep is less computationally intensive than FFmpeg and so the overhead of the

transport mechanism should be more apparent. For this benchmark we search a 700 MB in-

put file for a regular expression that the file does not contain, so no output is generated. The

results are shown on the right histogram of Figure 5.4. Because grep has low computational

overheads, the network is still the bottleneck.

We stream data into the grep application for this benchmark throughstdin, the standard

input stream into the application. An example command-linefor netcat VM is:

netcat -l -p 2000 | grep <word>

The netcat program receives the data from the sending program on the host and passes

the data to the grep program through a pipe (|) to the grep program which searches for
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a word that does not exist in the file. The command-lines to execute the other streaming

mechanisms are similar to the one above.

Because of the network bottleneck, Nahanni again provides the lowest runtime. With

the low compute-to-data ratio of grep, bandwidth is a bottleneck as the runtimes are only

slightly higher than from the file staging benchmarks (Figure 5.3). The grep application,

when accessing the data through Nahanni, is able to completein less than one second. The

next lowest execution is when using netcat which takes almost 2.5 seconds, followed by

SSH (4.9 s) and 9P (9.6s).

5.4.2 FFmpeg

As a benchmark that involves more computationally intensive processing we ran theFFm-

pegvideo processing application inside a VM to decode a file thatwas streamed from the

host file system. The input file is a 700MB video file. The left histogram of Figure 5.4 shows

the runtimes when using the different mechanisms. The four streaming methods from the

previous bandwidth benchmark were used, namely Nahanni, netcat, SSH and the 9P file

system, to access the video file. For Nahanni, SSH and netcat the video file is streamed

via stdin into FFmpeg. For 9P, the file is read by FFmpeg via the 9P file system. Since

FFmpeg decodes the video file inside the guest this benchmarkrepresents unidirectional

data streaming. The command-line execution to stream a file to FFmpeg from netcat is as

follows:

netcat -l -p 2000 | ffmpeg -i - <ffmpeg options>

Nahanni has the lowest runtime (51.2 s) followed by 9P (53.3 s), SSH (55.6s) and

netcat (56.1 s). FFmpeg is a useful benchmark that demonstrates a common application

that needs good performance. However, FFmpeg is a relatively computationally-intensive

application (as is video transcoding in general) and therefore Nahanni’s benefit is limited

by the computation overhead of FFmpeg.

5.4.3 Summary: Simple Applications

In this section, we have shown that both grep and FFmpeg achieved their best performance

by using Nahanni when streaming input data from the host machine. When using netcat or

SSH for staging the data transfer pathways include the networking stacks in the VM and on

the host with associated data copying and protection-domain crossing. Copying overheads

are minimized in Nahanni as the data is only copied once through shared memory. As

with the results from our microbenchmarks, it is Nahanni’s ability to minimize memory-to-
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Figure 5.5: Two configurations of GAMESS: using MPI (a) and Nahanni (b)

Illustrated are the two VM communication configurations that will be compared using the
GAMESS application as a benchmark. The MPI configuration is illustrated in (a) where

all inter-VM communication will occur over the virtual network. The Nahanni
configuration (b) will use Nahanni shared memory for inter-VM communication. Note that

some network communication still occurs in the Nahanni case(b).

memory copies and reduce crossings of protection barriers that leads to better performance.

It was also shown that the impact of Nahanni on the total runtime of an application

depends on the nature of the application, in particular the ratio of computation to commu-

nication. Nahanni’s impact was more significant for grep than it was for FFmpeg because

of the difference in the compute-to-data ratios of the two applications.

In the next section, we will explore the use of Nahanni in a more complicated scenario

than staging files or streaming data. We modify an existing scientific application, GAMESS,

to use Nahanni as its communication layer when running across multiple co-located VMs.

5.5 Application Benchmark - GAMESS: Quantum Chemistry

Following the progression from microbenchmarks to stream-based applications, we now

investigate whether Nahanni can be an effective inter-VM communication mechanism for

a high-performance, parallel application. For this application benchmark we select the

General Atomic and Molecular Electronic Structure System(GAMESS [62]).

We examine the ability of GAMESS, when run across co-locatedVMs, to take advan-

tage of Nahanni as a communication layer. GAMESS is selectedfor this evaluation because

it is a well-known, full-sized application (e.g., it is partof the SPEC CPU2006 benchmark-

ing suite), it already has both shared-memory (e.g., DDI) and message-passing (e.g., MPI)

implementations, and there is an established community of chemists who use it, including
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at the University of Alberta. Although we show that GAMESS using Nahanni (via DDI)

can be up to 30.7% faster than GAMESS using MPI, our larger conclusion is that existing

applications can be programmed to use Nahanni shared memory, which in turn can have a

performance advantage over network-based message-passing.

In this benchmark, we will compare GAMESS using the virtual network (Figure 5.1 (b))

versus Nahanni for inter-VM communication. The 9P file system is not part of these ex-

periments as GAMESS is not able to use a file system for data sharing and 9P is designed

specifically for host-to-guest data movement.

For this benchmark and the SPEC MPI2007 benchmarks following in Section 5.6, we

will use ourN × M notation introduced in Section 5.2 to describe the inter-VMconfig-

urations. All the GAMESS benchmarks in this section use a4 × 2 configuration for both

Nahanni and the virtual network configurations.

5.5.1 Benchmarking GAMESS

GAMESS is anab initio quantum chemistry simulation program that simulates a widerange

of molecular behaviour and properties. GAMESS is typicallyrun in parallel and supports a

number of communication subsystems such as sockets, MPI andshared memory. GAMESS

is designed to be run in parallel on high-performance shared-memory machines or clusters.

GAMESS can be memory-intensive and the ability to communicate efficiently is important

to overall performance. The behaviour and performance of GAMESS is dependent on the

input provided, namely the input molecule and the simulation to be performed.

The results in Figure 5.6 show the runtime of GAMESS across 4 different simulation

inputs. The four input molecules, namednic-ump2, aza-es, carbaphosandsi9h12, were

provided by a chemist and GAMESS developer from the University of Alberta.

GAMESS uses its own communication subsystem called the Distributed Data Interface

(DDI). DDI is a library that abstracts the underlying communication system (sockets, MPI,

shared memory, etc) from the computational components of GAMESS to provide a cleaner

and consistent interface between computation and communication for the GAMESS appli-

cation itself. The purpose being to minimize development efforts when porting GAMESS

to a new communication layer.

For shared memory specifically, DDI supports System V (SysV)shared memory when

a simulation is being run on a single machine. When GAMESS is run on a single server

or in a single VM, the processes exchange data through SysV shared memory. When run

across numerous machines or VMs, DDI uses either network sockets or MPI. In contrast to
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Figure 5.6: Comparison of GAMESS on4× 2 (smaller bars are better)

Note that the performance of Nahanni + VM + vhost is closest tonon-virtualized
SysV + No VM case.

the previous benchmarks, with GAMESS the communication is between guest VMs rather

than between the host and guest VMs.

We modified DDI to support communicating over Nahanni if all processes are run-

ning on the same hardware host, but in different VMs. This configuration could occur if

GAMESS were being run on a cloud provider with multiple co-located VMs running the

concurrent GAMESS processes. Figure 5.5 illustrates the GAMESS configurations that we

compared. We compare using network-based MPI (Figure 5.5 (a)) for IPC versus using

Nahanni (Figure 5.5 (b)) for IPC. It should be noted that evenwhen using Nahanni, some

network communication does occur to launch the cooperatingGAMESS processes, but the

majority of communication will be over shared memory.

The conclusion to be drawn from the results in Figure 5.6 is that Nahanni is the fastest

communication mechanism for GAMESS, in the range of 1% to 30.7% faster than the

fastest MPI-based variant. That is, the runtime is reduced by up to 30.7% by using Nahanni

instead of MPI over the virtual network.

The specific improvement of Nahanni over MPI correlates closely with the amount of
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MPI-based communication (Table 5.2). For example, the aza-es molecule for GAMESS has

the most MPI-based communication and shows the largest performance improvement of

30.7% (i.e., second vs. fourth bar). We consider an improvement of over 30% a significant

result considering the high performance of the virtual network with vhost enabled.

Figure 5.6 compares 6 different configurations of GAMESS across the 4 input molecules.

The individual bars in Figure 5.6, from left-to-right, represent the following configurations

of GAMESS:

1. running natively on the host with SysV mechanisms (SysV + No VM)

2. virtualized using Nahanni with vhost-enabled (Nahanni +VM + vhost)

3. virtualized using Nahanni without vhost-enabled (Nahanni + VM + bridge)

4. virtualized using MPI with vhost-enabled (MPI + VM + vhost)

5. virtualized using MPI without vhost-enabled (MPI + VM + bridge)

6. virtualized using MPI with VDE (MPI + VM + VDE)

We evaluate the non-vhost cases to demonstrate the performance advantage of vhost.

Recall that vhost is a network accelerator for bridge networking (Figure 5.1 (b)) that im-

proves on the performance that regular bridged networking provides.

As mentioned all runs of GAMESS use a4 × 2 configuration. The leftmost bar

(SysV + No VM) is the native execution time, which is the baseline case without any vir-

tualization or virtual network overhead since it uses host Linux processes and SysV shared

memory only. We would not normally expect any VM to be faster than the leftmost bar

since it is the non-virtualized case.

The two bars of most interest are the second (i.e., Nahanni + VM + vhost) and fourth bar

(i.e., MPI + VM + vhost). The second bar is the best Nahanni performance and the fourth

bar is the best MPI performance. Both of these configurationsare run with vhost optimiza-

tion enabled. Nahanni does not use the network nearly as muchas MPI since MPI uses the

network for all data movement and Nahanni only uses it for startup and synchronization.

Notably, the second bar is always (within the error bars) thefastest VM data points, only the

leftmost bar is faster which is the non-virtualized case. Due to the overhead of using MPI

over the virtual network (instead of Nahanni), the fourth bars show that MPI is slower than

Nahanni. Note that Nahanni and MPI both benefit from using vhost, although MPI benefits
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% reduction % exec time
in runtime spent in MPI

nic-ump2 14.4 18.1
aza-es 30.8 35.5
carbaphos 5.9 6.5
si9h12 1 3.6

Table 5.2: GAMESS: Speedup and percentage execution spent in MPI

Each row in the table shows the reduction in runtime from using Nahanni and the
percentage of execution time spent in MPI functions across the four GAMESS inputs. The
mpiP profiling tool, used within VMs, was used to determine MPI execution percentage.

more as it makes much greater use of the network, but vhost is not a deciding factor between

Nahanni and MPI.

We include the sixth bar (i.e., MPI + VM + VDE) in Figure 5.6 forcompleteness. Note

that our claimed advantages of up to 30.7% for Nahanni are notfor the much-slower VDE

cases. Although VDE is not universally used by the KVM community, it is a standard

command-line option for QEMU, and without VDE the QEMU/KVM hypervisor would

require root privileges to set up the virtual network (i.e.,vhost or network taps), as dis-

cussed earlier. Our group considers running QEMU/KVM as root in the common case to be

impractical (for security reasons), so we normally use VDE.Using vhost under root permis-

sions has similar security concerns, but we are mainly making a performance comparison

between Nahanni, vhost, and VDE.

To explore why the speedups varied between the different simulations, we used an MPI

profiling tool, mpiP [39] to profile the MPI execution. mpiP isa statistical profiling tool

for MPI that gathers data at regular intervals. mpiP measures the percentage of the total

execution time that is spent in MPI functions overall as wellas within individual MPI func-

tions. Table 5.2 shows the reduction in runtime that is gained from using Nahanni and time

spent in MPI functions for each of the simulations. The first column shows the molecule

simulated in GAMESS. The second column reports the reduction in runtime from commu-

nicating via Nahanni versus MPI over the virtual network. The third column reports the time

spent in MPI functions for as reported by the mpiP profiling tool. By comparing the sec-

ond and third columns, it is clear that the reduction in runtime gained from using Nahanni

strongly correlates with the amount of time spent in the MPI functions. This correlation

demonstrates that Nahanni saves the intercommunication overhead of MPI by allowing the
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parallel tasks to communicate efficiently through shared memory.

The GAMESS benchmark differed from the microbenchmarks andsimpler applications

discussed earlier in that making use of Nahanni required modifying the code of the appli-

cation, specifically the DDI layer that implements the IPC within GAMESS. In the next

section we will describe the changes that were necessary in order for GAMESS to make

use of Nahanni.

5.5.2 Modifying GAMESS

To enable the comparison of GAMESS using Nahanni versus MPI,it was necessary to

modify GAMESS to run across Nahanni (instead of the virtual network) when VMs (each

running GAMESS processes) are co-located. As mentioned, when running on a single OS,

GAMESS uses SysV shared memory and semaphores for IPC. We decided to convert the

single-host SysV mechanisms to use Nahanni across multipleVMs. The following is a

description of the changes necessary to DDI to maintain the SysV semantics. Retaining the

SysV semantics minimizes the changes that are necessary to the DDI code.

After describing the conversion of the individual mechanisms from SysV to Nahanni,

we will describe how these new mechanisms were integrated into the GAMESS code base.

Converting SysV mechanisms to Nahanni

As mentioned, DDI uses SysV shared memory for sharing data and SysV semaphores for

synchronization when GAMESS is being run on a single OS. SysVmechanisms are sup-

ported by the Linux kernel and therefore provide blocking semantics. In particular, SysV

semaphores can block if they cannot acquire a semaphore. Allowing processes to block re-

quires kernel support via the scheduler that will not unblock processes that are waiting for

semaphores until those semaphores are available. Having the kernel handle blocking is ad-

vantageous because the kernel is aware of all processes and their respective synchronization

mechanisms. However, since Nahanni can be simultaneously used by multiple, indepen-

dent, guest OS kernels in different VM instances (see Section 3.4) current OS schedulers

cannot be used to provide blocking semantics. When GAMESS uses Nahanni, multiple

GAMESS processes running on different kernels will be cooperating. If they require syn-

chronization, it must be contained entirely at user-level as no single kernel can control all

the cooperating processes. Therefore, Nahanni cannot relyon any kernel mechanisms and

must keep all synchronization mechanisms entirely at user-level and stored in shared mem-

ory. User-level synchronizations are not novel. For example, user-level thread libraries have
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been developed, such as GNU Portable Threads. Similarly, spinlocks are a simple mutual

exclusion mechanism that require no kernel support, but only atomic operations.

Converting GAMESS to use Nahanni requires switching GAMESS’ use of two IPC

mechanisms, SysV shared memory and semaphores, to an implementation built upon user-

level memory allocation and synchronization primitives that reside on Nahanni memory.

Dynamic Memory Allocation

The first mechanism to convert to work on top of Nahanni was memory allocation. Similar

to synchronization primitives, memory allocation is typically handled by the kernel. To

support multiple processes that are sharing memory, memoryallocation and access must

be maintained in the shared-memory region. That is, all allocated data and metadata must

reside in the shared-memory region so that all processes canallocate, share and access the

memory. Moreover, allocating memory and updating the metadata must be synchronized

so that the metadata remains consistent at all times.

Wolfe Gordon [63] created a dynamic memory allocator for Nahanni called shmalloc.

Shmalloc provides a library interface similar to the Linuxmalloc() library. Mutual exclu-

sion during updates is maintained by using spinlocks.

In the existing implementation of GAMESS, each cooperatingprocesses allocates a

SysV shared memory segment and then passes a reference to that segment to the other

GAMESS processes in an all-to-all exchange via a socket-based mechanism. By using the

shm alloc library on top Nahanni shared memory in a similar manner, the changes required

to GAMESS were not extensive.

Semaphores

The other important mechanism within GAMESS that needed to be adapted to use Nahanni

was semaphores. SysV semaphores have slightly different semantics than, say, POSIX

semaphores. SysV semaphores can be allocated in groups and allow arbitrary values to be

added and subtracted from them. When analysing the GAMESS DDI code, it became ap-

parent that the SysV semaphores were being used to implementad hoc reader/writer locks.

Reader/writer locks have more complicated semantics than basic mutual exclusion locks.

Briefly, reader/writer locks will allow multiple readers into a critical section simultaneously

as long as no writers are in the critical section. Once a writer requests access, all readers

must exit the critical section before the single writer willbe allowed to enter and given

exclusive access (from other writers and readers). Depending on the particular implementa-
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tion, reader/writer locks also offer varying guarantees offairness since there are two classes

of access (readers and writers) instead of one.

Our approach was to create reader/writer locks that could exist in shared memory. This

latter requirement means that user-level mechanisms such as spinlocks need to be used

for mutual exclusion. Just as before, no kernel primitives can be used single the readers

and writers may be in different VMs. Intel’s Thread BuildingBlocks (TBB) library [25]

have an implementation of spinlock-based reader/writer locks that, when combined with

the Nahanni memory allocator, can provide reader/writer synchronization through shared

memory. The SysV semaphores are allocated and shared via integer references similar to

the SysV shared memory segments. Within GAMESS, they are allocated separately by each

process and distributed in a second all-to-all exchange.

Integrating Nahanni into GAMESS

Once the shmalloc allocator and TBB’s reader/writer were chosen as suitable replacements

for the SysV mechanisms used by GAMESS, source-level changes were necessary to DDI

to have GAMESS use the new mechanisms.

The first change was to have GAMESS use our shmalloc library rather than SysV

shared memory. When using shared memory for communication,GAMESS processes each

allocate a region of shared memory for their respective calculations. To enable cooperating

GAMESS processes to update eachother’s shared memory, references to these regions must

be distributed to all other GAMESS processes. This distribution occurs over the network.

When SysV shared-memory regions are allocated with theshmget() function, an integer

is returned that is a reference for that particular region. For example, the following call to

shmget() stores the reference in the variableshmid:

if ((shmid = shmget(key,size,flag)) < 0)

Another process can gain access to the shared region by passing the same reference

to theshmat() function (shmat’s name is derived from “shmem attach”) as shown in this

statement:

if ((shmaddr = shmat(shmid,addr,flag)) == error)

The shmat() function returns a pointer that points to the shared-memoryregion that

can then be used like any pointer.

The challenge with converting code such as the above that is targeted for SysV to Na-

hanni is that Nahanni’s memory allocator does not return 32-bit integer references like those

returned fromshmget(), but simply 64-bit memory pointers. Since the SysV system isnot
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commonly used, it is not worthwhile to convert the shmalloc library to mimic SysV mem-

ory (i.e., to use integer references) as opposed to the much more commonmalloc() library.

Choosing to use 64-bit memory pointers as the references required more wide spread

changes as the all-to-all exchange within GAMESS describedabove is hard-coded to pass

32-bit values. Changing all necessary variables and function parameters to 64-bit values

required minor (yet numerous) changes to variables to use 64-bit values. We could have

decided to use 32-bit offsets rather than full 64-bit pointers. 32-bit values would support

Nahanni regions of upto 4 GB, but handling offsets is inconvenient compared to simply

using pointers directly. Also, using 32-bit offsets would enforce an unnecessary limitation

of 4 GB of shared memory. Given that we could avoid pointer swizzling using the tech-

nique described in Section 4.9.2, we opted to make the necessary changes to support 64-bit

pointer values for shared-memory regions. Using pointers also made the calls to the SysV

“attach” functionshmat() unnecessary since the pointers can be used directly to access

shared memory.

The adaptation of the reader/writer locks followed similarly to the shared memory

changes. In particular, 32-bit integer references had to bereplaced by 64-bit pointers. Ad-

ditional changes were required to change the semaphoredownandup functions to read-

er/writer lock andreleasecalls.

Once the shared memory and semaphores were adapted to work with Nahanni, cooper-

ating GAMESS processes communicated across Nahanni for inter-VM IPC. The network

is still used for the all-to-all exchanges for the semaphores and shared memory which is

only performed once at the start of execution. Figure 5.7 illustrates how the Nahanni shared

memory was used by GAMESS. The shmalloc metadata, semaphores and allocated arrays

are shown. The layout of the semaphores and arrays was a result of GAMESS particular

dynamic memory semantics.

It is worth restating that Nahanni memory can be used differently than it was with

GAMESS. Another application may use, say, fixed offsets withNahanni instead of the dy-

namic allocation as described above. Similarly, spinlocksor the Nahanni signalling mech-

anism could be used for synchronization. Dynamic allocation and reader/writer locks were

necessary for GAMESS due to its existing implementation. Nahanni’s flexible architecture

allows application writers to create the necessary IPC abstractions they require for their

application.
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Figure 5.7: The layout of GAMESS structures in Nahanni Shared Memory

5.5.3 Summary: GAMESS

The benchmarks presented in this section serve as an exampleof modifying an existing

application to take advantage of Nahanni. Allowing GAMESS processes to communicate

across Nahanni provided an improvement in runtime between 1% and 30% depending on

the GAMESS input. The results of this section show that directly modifying an application

to take advantage of Nahanni shared memory can be beneficial.We also detailed the mod-

ifications that were made to GAMESS to provide an understanding of the effort required

to achieve the given performance improvement. In the next section, we will explore mod-

ifying an IPC library, namely MPI, to take advantage of Nahanni shared memory and the

performance advantage that can be gained when abstracting the use of Nahanni within a

library.

5.6 SPEC MPI2007

SPEC MPI2007 is an industry standard benchmarking suite published by the SPEC corpora-

tion [56]. SPEC MPI2007 consists of several application benchmarks that are implemented

using an MPI library and typically run on a cluster connectedby a network, but can also

be run on massively multi-core servers (e.g., SGI’s Altix UV). All of the benchmarks of

SPEC MPI2007 use an MPI library for IPC between parallel processes. The purpose of

SPEC MPI2007 is to provide a consistent, application-levelbenchmark for different MPI

libraries. The applications included in SPEC MPI2007 are all open-source and are written

in either C, C++ or Fortran.

We modified an existing MPI library called MPICH2 [38] to use Nahanni for IPC be-

tween MPI processes that run in co-located VMs. We ran configurations in2 × 2, 4 × 4
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Benchmark Language Description
104.milc C Quantum Chromodynamics
107.leslie3d Fortran Computational Fluid Dynamics (CFD)
113.GemsFDTD Fortran Computational Electromagnetics (CEM)
115.fds4* C/Fortran CFD
121.pop2 C/Fortran Ocean Modeling
122.tachyon C Parallel Ray Tracing

126.lammps C++
Molecular Dynamics

Simulation
127.wrf2* C/Fortran Weather Prediction
128.GAPgeofem* C/Fortran Heat Transfer
129.tera tf* Fortran 3D Eulerian Hydrodynamics
130.socorro C/Fortran Density-Functional Theory (DFT)
132.zeusmp2 C/Fortran CFD
137.lu Fortran CFD

Table 5.3: Summary of SPEC MPI2007 benchmarks

The benchmarks that are part of the medium-size input set forSPEC MPI2007.
Astrisks (*) indicate applications that are not included inthe benchmarking due to

compilation or runtime issues unrelated to Nahanni.

and8 × 8. As a reminder, all these configurations run one MPI process per VM. As we

will see, the performance improvement in SPEC MPI2007 runtimes by using a Nahanni-

enabled MPI library is between 0% and 22% over MPI running over the virtual network.

Most benchmarks see a benefit between 1% and 10%. One application, pop2, runs 79%

faster when running over Nahanni versus the virtual networkon 8 × 8. Given the fact that

KVM’s virtual networking is optimized with vhost and considered the “best practice”, Na-

hanni’s improvements are significant. We also observe that Nahanni scales better than the

virtual network as the number of VMs increases (e.g.2 × 2, 4 × 4, 8 × 8 configurations).

As we will discuss later, Nahanni’s scalability is inherentin the scalability of the under-

lying POSIX shared memory mechanisms, whereas virtual networking approaches have

new mechanisms and components with their own scalability issues. In all SPECMPI 2007

benchmarks, we pinned the VMs to CPUs to limit thrashing of the CPU caches. On the2×2

configuration, we pin the 2 VMs to separate cores. For the4× 4 and8× 8 configurations,

we pinned half of the VMs to each respective CPU.

Overall, we have numerous motivations in benchmarking SPECMPI2007 with Na-

hanni. First, is to evaluate Nahanni as part of a well-known abstraction, namely MPI. Sec-

ond, SPEC MPI2007 benchmarks represent full application benchmarks like GAMESS,
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but whereas our GAMESS benchmarks compared Nahanni-based DDI with MPI-based

DDI, our examination of SPEC MPI2007 compares stream-basedMPI with Nahanni-based

MPI, so these experiments provide an additional data point.Recall that the motivations for

Nahanni include supporting both new or application-specific data-sharing interfaces (e.g.,

DDI), as well as existing interfaces (e.g., MPI). Finally, the SPEC MPI2007 suite bench-

marks are considered quality implementations of message-passing code, whereas GAMESS

is primarily known the quality of the computational chemistry in the application, not nec-

essarily its message-passing implementation.

5.6.1 The SPEC MPI2007 Benchmarks

Table 5.3 gives a brief overview of the SPEC MPI2007 benchmarks. The table indicates the

programming language each benchmark is implemented in and provides a brief description

of the application itself. Table 5.3 shows the benchmarks that are part of themediuminput

set. SPEC MPI2007 benchmarks are divided into two groups,mediumandlarge, depending

on the size of the data inputs that are distributed with the benchmarks. Some benchmarks in

the suite include both medium and large inputs and so are partof both benchmark sets. For

the experiments in this section we use the medium input set asthe memory usage per VM is

more reasonable and does not cause our VMs to swap. The mediumbenchmarks consist of

13 different applications. As will be discussed below, we were able to execute 9 of the 13

benchmarks. The 4 applications we were not able to benchmarkencountered compiler or

runtime problems unrelated to Nahanni. Note that from this point we will omit the 3-digit

numerical prefixes for the SPEC MPI2007 benchmark names.

The Message-Passing Interface (MPI) is a library specification for message-passing IPC

that was designed for high-performance parallel applications. The MPI specification was

created and is maintained by organizations and individualsinvolved in high-performance

computing. The latest MPI specification is currently version 2.2 which was completed

in 2008. There are several implementations of the MPI 2 specification. Running SPEC

MPI2007 necessitated modifying one of the available implementations of MPI to use Na-

hanni for inter-VM communication in order to compare the performance of MPI over

Nahanni to the performance of MPI over the virtual network. We chose to modify the

MPICH2 [38] implementation of MPI.

Xiaodi Ke, a student working on the Nahanni project, modifiedMPICH2 to use Nahanni

for inter-VM communication. MPICH2 has an optional networking layer, called achannel

in MPICH2, namedNemesisthat has optimizations that use memory-mapped shared mem-
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Mechanism
Modified MPICH2 Unmodified MPICH2

MPI-Nahanni MPI-vhost No VM
(a.k.a ‘Nah’) (a.k.a ‘vhost’) (MPI on host)

MPICH channel nahanni nemesis nemesis
VM

√ √

vhost
√ √

network bridge bridge host
Nemesis shmem inter-process
Nahanni shmem inter-VM

Network initialization
inter-VM

initialization
usage only only

Table 5.4: Benchmark configurations for SPEC MPI2007

The three benchmark configurations that are compared using SPEC MPI2007:
MPI-Nahanni, MPI-vhost and No VM. MPI-vhost uses the virtual network for all

communication and so does not either shared memory transport.

ory to accelerate IPC between MPI processes when running on the same host. Ke modified

the MPICH2-Nemesis channel to run across Nahanni between co-located VMs. We refer to

this modified implementation as MPI-Nahanni (Table 5.4).

Table 5.4 describes the differences between the MPI configurations compared in our

SPEC MPI2007 benchmarking. There is a column for each of the three configurations

we are benchmarking: modified MPICH2 using Nahanni (MPI-Nahanni) and unmodi-

fied MPICH2 using the virtual network between VMs (MPI-vhost) as well as unmodified

MPICH2 running on the host without any VMs (No VM). The rows ofthe table high-

light the similarities and differences of each configuration. The table indicates that vhost

networking (Figure 5.1 (b)) is enabled in both virtualized configurations. However, with

MPI-Nahanni, the majority of inter-VM MPI traffic will be communicated over Nahanni,

not over the virtual network. The network is used minimally in the MPI-Nahanni case for

initialization. The network is used for all inter-VM communication for MPI-vhost case.

The non-virtualized case, No VM, is able to take advantage ofthe existing shared-memory

optimizations of the MPICH2 Nemesis channel for most of the MPI communication, but

may also use the host network for initialization. Since the No VM case does not run in VMs,

vhost network acceleration and Nahanni shared memory are not available nor necessary.
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5.6.2 SPEC MPI2007 Results

In this section, we compare the runtimes of the SPEC MPI2007 medium-input benchmark

set when run on the three configurations just described (Table 5.4). To stress the inter-

VM interconnect, we run one MPI processes per VM, therefore there is only one compute-

intensive process per VM. Consequently, the number of virtual CPUs in each VM is reduced

from four to two. As per the MPI-Nahanni implementation, theVMs share two Nahanni

memory regions between all VMs that will be used for IPC [27].Both shared-memory

regions are 4 GB each.

Our results that follow in Table 5.5 will show that using Nahanni improves the run-

time performance of the benchmarks by an average of 2.2% whenrunning2 × 2, by an

average 4.3% when running4 × 4 and by an average of 5.9% when running8 × 8. We

also observe that Nahanni scales better than the virtual network as the number of VMs in-

creases. Although improvements of 2.2%, 4.3% and 5.9% are not large in absolute terms,

the improvement is proportional to the amount of time spent in MPI functions (i.e., the

bottleneck), and we observe increasing returns (as opposedto diminishing returns) as the

number of VMs is scaled.

Although we do not have the experimental platform (along with a software environment

that we control and can install Nahanni on) to test 16, 32, or 64 VMs, we speculate the trend

will continue (Figure 5.11). We also speculate that the any bottlenecks in MPI-vhost are

likely fixable but we make the case the Nahanni architecture avoids these bottlenecks en-

tirely. If the bottlenecks in MPI-vhost are the result of particular trade-offs (i.e., bandwidth

versus latency), then as the number of cores in servers (e.g., many-core systems [45]) in-

creases over time, there will continue to be limits in scalability. Lastly, as we will see,

although the average improvement across SPEC MPI2007 is notlarge, individual applica-

tions can see improvements of 17% or 22%, with an outlier example of a 79% improvement.

As mentioned, we run 9 of the 13 benchmarks (Table 5.3) in the medium benchmark

set. We were not able to execute 4 of the medium benchmarks dueto either compilation

or execution errors unrelated to Nahanni. Specifically, we were not able to successfully

compile thetera tf and wrf2 benchmarks due to a Fortran compiler error using GNU

gfortran. The other two excluded benchmarks,GAPgeofem andfds4 encountered runtime

errors. The runtime errors occur when using either Nahanni or the virtual network, and so

we expect that they are caused by issues with the MPICH2 library and not by Nahanni.

MPI-Nahanni outperforms the MPI-vhost configuration for all three configurations for
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Figure 5.8: Comparison of SPEC MPI2007 on2× 2 (smaller bars are better)

Themilc andlammps benchmarks do not have results due to not being able to run with 2
processes.
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each of the benchmarks in the suite (Figures 5.8, 5.9 and 5.10). Table 5.5 summarizes

the runtimes and shows the percent reduction in runtime (relative to MPI-vhost) for each

benchmark across all three configurations. The reduction inruntime provided by Nahanni

ranges from 0.6% to 13.9% with an outlier of 79.3% forpop2 on 8 × 8. To explain our

reporting method, we consider thepop2 outlier case. Stated as an equation, the calculation

is

|vhost time−Nah time|
vhost time

= % Improvement

As an example, consider the8 × 8 pop2 case where the MPI-vhost runtime is 11,833

seconds and the MPI-Nahanni runtime is 2,453 seconds, therefore the 79.3% improvement

is calculated as follows:

11833 − 2453

11833
=

9380

11833
= 79.3%

Stated another way, a 79.3% improvement means thatpop2 runs 4.6 times faster with

MPI-Nahanni than it does with MPI-vhost.

As a second example, the8× 8 case forsocorro, a 13.9% improvement, is calculated

as
2316 − 1994

2316
= 13.9%

Returning to overall results, Table 5.5 shows that the two virtualized configurations (MPI-

Nahanni and MPI-vhost) are slower than the No VM case except for themilc benchmark.

When running in the No VM case, themilc benchmark had a relatively large standard devi-

ation of 75 seconds, so we do not consider the difference to besignificant. We were unable

to determine the cause of the high variance in the No VM case for milc. We did not see

as large variances with either of the virtualized configurations. The other unexpected result

was thatzeusmp2 andlu experienced larger runtime overheads, 24% and 21% respectively,

when virtualized (both with MPI-Nahanni and MPI-vhost) than the other benchmarks. Sim-

ilarly, we are unsure of the cause of this overhead.

Figure 5.8 shows the performance of the three configurationswhen running2× 2. Two

applications,milc andlammps would not run with only 2 processes and so their runtimes

cannot be shown. In the2×2 case, there is not a large difference between MPI-Nahanni and

MPI-vhost for most applications.pop2 does see the largest speedup of 6.6% when running

across Nahanni. The closeness of the runtimes reflects the quality of the virtual network

implementation in that for 2 VMs, there is not a strong advantage for MPI-Nahanni over

MPI-vhost. Still, we include the2 × 2 configuration for two reasons. One, Nahanni does
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Figure 5.9: Comparison of SPEC MPI2007 on4× 4 (smaller bars are better)

show an advantage for some benchmarks and these results willhelp in establishing trends

as we move to the4× 4 and8× 8 configurations.

Figure 5.9 graphs the results of the4 × 4 configuration. MPI-Nahanni’s performance

advantage emerges as all benchmarks see improved performance from using MPI-Nahanni

in the4 × 4 configuration. The largest performance improvement is forpop at 22%. The

average improvement across all benchmarks improves from 2.2% for 2 × 2 to 4.3% on

4× 4. The improved performance can be attributed to Nahanni’s scalability as compared to

the virtual network.

We increased to 8 processes to further examine the scalability of Nahanni and the virtual

network as the level of parallelism and inter-VM communication increases. Figure 5.10

shows the performance when we increase the number of processes and VMs to eight. The

only change we make to the VM configuration is reducing the amount of RAM per VM

from 8 GB to 4 GB due to having only 48 GB of RAM on our testbed machine.

As with the4 × 4 configuration, Nahanni scales better than the virtual network. The

performance improvement of Nahanni ranges from 0% (tachyon) to 17% (socorro). There

is one outlier in this case which is thepop2 benchmark. When using MPI-vhost with 8 VMs,

pop2 runs nearly 4 times slower than when using MPI-Nahanni with 8VMs. We suspect

that the slowdown is due to a scalability issue in the virtualnetwork or vhost.
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Figure 5.10: Comparison of SPEC MPI2007 on8× 8 (smaller bars are better)

It is worth mentioning that the SPEC MPI2007 benchmarks incur a modest overhead

when running under virtualization. Some virtualization overhead is expected. As with the

4× 4 configuration,zeusmp2 andlu have slightly higher virtualization overheads than the

other benchmarks.

To help focus on the virtualized executions that compare Nahanni to the virtual network,

Table 5.5 summarizes the runtimes and percentage difference between running with MPI-

Nahanni and MPI-vhost for all 3 configurations. Table 5.5 shows that using Nahanni for

inter-VM communication improves the performance of all theSPEC MPI2007 benchmarks.

Most benchmarks also so see increasing returns from using Nahanni as the number of VM

scales.socorro, tachyon andlu do not scale in relation to the number of VMs, but they

still benefit from using Nahanni.

As the number of communicating VMs increases across the VM configurations, the

performance benefit of Nahanni also increases as shown by thepercent reduction growing

for nearly all the benchmarks. The average improvement fromusing Nahanni increases

from 2.2% (2×2) to 4.3% (4×4) to 5.9% (8×8) when the number of processes and VMs

is scaled up.
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Benchmark
2x2 4x4 8x8

Nah vhost % Nah vhost % Nah vhost %
milc n/a n/a n/a 1298 1352 3.9 985 1063 7.4
leslie3d 12493 12777 2.2 6675 6879 3.0 4093 4453 8.1
GemsFDTD 8198 8309 1.3 7568 7663 1.2 3148 3366 6.5
pop2 8498 9057 6.2 4364 5608 22.2 2453 11833 79.3
tachyon 11351 11486 1.2 5658 5733 1.3 2968 2987 0.6
lammps n/a n/a n/a 4446 4521 1.7 2544 2662 4.5
socorro 6117 6282 2.6 3264 3335 2.1 1994 2316 13.9
zeusmp2 16847 16926 0.5 7973 8055 1 3799 3930 3.3
lu 10213 10354 1.4 4869 4993 2.5 3169 3261 2.8

average 2.2 4.3 5.9*
minimum 0.5 1 0.6
median 1.4 2.1 6.5
maximum 6.2 22.2 79.3

Table 5.5: Runtimes of SPEC MPI2007 in seconds

The runtimes of the benchmarks are shown for MPI-Nahanni (Nah) and MPI-vhost (vhost)
as well as the runtime reduction for MPI-Nahanni (%). The results for2× 2, 4× 4 and

8× 8 are shown. All reported numbers are the average of five runs. (*) The average for the
8 VM case excludes the 79.3% improvement forpop2.

5.6.3 Analysis of SPEC MPI2007

We want to answer the question as to why the advantage of MPI-Nahanni increases as the

number of processors and VMs increases, that is, as we move from2× 2 to 4× 4 to 8× 8.

Upon first considering the speedup results from the previoussection, our intuition was

that their are potential scaling bottlenecks with MPI-vhost. Specifically, since MPI-vhost

exercises virtio pathways with QEMU/KVM it is highly likelyone of these pathways has

not been highly optimized for multiple, concurrent virtualmachines, large amounts of data,

frequent interactions or all of the above. There is no easy mechanism or tracing facility

to pinpoint bottlenecks in these pathways over the execution of long-running applications

like those in SPEC MPI2007, but one would expect such bottlenecks to appear as a greater

proportion of time being spent in the communication phases of the applications. Therefore,

we performed an analysis using mpiP [39] of the amount of timespent in MPI functions

(as we did with GAMESS) for the MPI-vhost case. We wanted to see if the proportion

of time spent in MPI functions grows as the number of communicating VMs grows. Of

course, by Amdahl’s Law [5] one does expect parallel applications to exhibit bottlenecks

as the number of concurrent processes/VMs increases, but weargue below that some of the
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bottlenecks we have seen go beyond Amdahl’s law.

Specifically, the experiments discussed in this section lead us to believe that there are

bottlenecks within virtio and vhost in the QEMU/KVM code base. In the previous compar-

ison of MPI-Nahanni and MPI-vhost using the SPEC MPI2007 using the MPICH2 nemesis

code base albeit with different configurations (i.e. using Nahanni or the virtual network).

The mpiP results can be found in Tables 5.6, 5.7 and 5.8 for the2× 2, 4× 4 and8× 8

benchmarks, respectively. We discuss the results below butour conclusions are as follows:

1. As we scale the number of VMs, the configuration from2 × 2 to 4 × 4 to 8 × 8 the

percentage of time spent in MPI functions, as reported by mpiP, increases.

2. The performance of MPI-Nahanni more closely tracks the performance of MPI-

Nemesis on the host.

3. As previously discussed the most dramatic performance difference ispop2 with the

8 × 8 configuration (see Figure 5.10). In light of mpiP analysis (Tables 5.6, 5.7

and 5.8) we see the performance gap correlates strongly withthe time spent in MPI

functions (21.2% with2× 2 versus 83% with8× 8).

Figure 5.11 indicates a trend in the correlation of time spent in MPI functions to the

speed up from using MPI-Nahanni instead of MPI-vhost. Figure 5.11 graphs a scatterplot

of the all the individual application benchmarks across thethree configurations. The x-axis

plots the speedup achieved from using MPI-Nahanni (versus MPI-vhost); the y-axis plots

the percentage of an application’s runtime spent in MPI functions. We have also fitted a

linear regression to the data to plot the trend. Figure 5.11 excludes the results forGemsFDTD

for both4 × 4 and8 × 8 and forpop with 8 × 8 as we consider these values outliers. For

completeness, Figure 5.12 is included which includes the outliers.

Tables 5.6, 5.7 and 5.8 summarize the results of the mpiP analysis2×2, 4×4 and8×8,

respectively. The second column shows the percentage of total application runtime spent

in MPI functions. The second and third columns show the top 2 MPI functions that had

consumed the most application runtime. There are some particularly interesting trends. For

example,pop2 is the application that sees the most performance improvement from using

MPI-Nahanni.pop2 speedups up by 6%, 22% and 79% from using MPI-Nahanni for the

2 × 2, 4 × 4 and8 × 8 configurations, respectively. The majority ofpop2’s execution on

2× 2 and4× 4 is spent in “WaitAll” functions. It is likely thatpop2 is sensitive to barrier

functions.
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Benchmark % of runtime biggest fn fn % of runtime

milc
n/a n/a n/a

n/a n/a

leslie3d
1.3 Send 0.9

Send 0.2

GemsFDTD
4.5 Sendrecv 3.9

Sendrecv 0.3

pop2
7.9 Waitall 2.8

Waitall 2.3

tachyon
0.4 Waitall 0.4

Testsome 0.0

lammps
n/a n/a n/a

n/a n/a

socorro
4.9 Allreduce 1.7

Send 1.4

zeusmp2
1.7 Waitall 0.3

Waitall 0.2

lu
3.7 Recv 1.6

Wait 1.0

Table 5.6: mpiP results for SPEC MPI2007 2x2
The applications aremilc andlammps are excluded due to runtime issues (unrelated to

Nahanni) when running with 2 processes.

pop2 on8 × 8 spends over 80% of its execution in MPI functions and we consider this

outlier along withGemsFDTD which sees high MPI execution time in4×4 and8×8 but sees

little difference between MPI-Nahanni and MPI-vhost. The mpiP analysis for these three

outliers indicate the majority of MPI time is spent in barrier functions which we believe

indicates a problem related to load-balancing. Sincepop2 does not experience this problem

on MPI-Nahanni, we posit that MPI-vhost on8× 8 exacerbates the load balancing problem

in pop2 which leads to the extreme performance degradation.

Table 5.9 presents the runtime reductions of Table 5.5 alongwith the mpiP results from

Tables 5.6, 5.7, 5.8. These pairings of runtime improvementand MPI time are plotted

as scatterplots in Figures 5.11 and 5.12. The specific valuesare shown in Table 5.9 to

indicate the trends for individual applications. In particular, pop2 andsocorro’s speedups

are within a percent or two of the MPI execution time. Other applications such asGemsFDTD

show a weaker correlation, however the trend is consistent across all applications that the

percentage of execution spent in MPI correlates to the percent reduction from using MPI-

Nahanni versus MPI-vhost.
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Benchmark % of runtime biggest fn fn % of runtime

milc
3.6 Wait 3.1

Wait 0.3

leslie3d
2.4 Send 0.6

Send 0.5

GemsFDTD
44.3 Barrier 24.9

Sendrecv 17.4

pop2
21.2 Waitall 7.6

Waitall 5.7

tachyon
0.5 Waitall 0.5

Testsome 0.0

lammps
1.7 Send 1.1

Send 0.4

socorro
2.5 Send 1.1

Allreduce 0.6

zeusmp2
3.5 Waitall 0.4

Waitall 0.3

lu
1.6 Recv 0.3

Recv 0.3

Table 5.7: mpiP results for SPECMPI 2007 for 4x4 configuration

Benchmark % of runtime biggest fn fn % of runtime

milc
15.8 Wait 8.9

Wait 4.2

leslie3d
8.9 Send 1.7

Send 1.5

GemsFDTD
30.1 Sendrecv 24.2

Sendrecv 4.9

pop2
82.22 Waitall 33.4

Waitall 32.1

tachyon
0.3 Waitall 0.3

Testsome 0.0

lammps
7.1 Send 4.1

Send 2.3

socorro
15.2 Waitany 10.0

Allreduce 1.9

zeusmp2
7.7 Waitall 0.6

Waitall* 0.5

lu
5.0 Recv 1.6

Recv 1.5

Table 5.8: mpiP results for SPECMPI 2007 for 8x8 configuration
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Figure 5.11: Scatterplot of SPEC MPI2007 with outliers removed

A scatterplot of the SPEC MPI2007 benchmarks. The y-axis plots the percentage of
execution time spent in MPI functions and the x-axis plots percentage of improvement
(i.e., runtime reduction) from using MPI-Nahanni versus MPI-vhost. We consider the

results for GemsFDTD on 4x4 and 8x8 as well as the pop2 result on 8x8 to be outliers and
so they are excluded in this graph. A linear regression is also plotted to show the trends of

the two measures.
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Figure 5.12: Scatterplot of SPEC MPI2007 with outliers included

A scatterplot of the SPEC MPI2007 benchmarks. The y-axis plots the percentage of
execution time spent in MPI functions and the x-axis plots percentage of improvement

(i.e., runtime reduction) from using MPI-Nahanni versus MPI-vhost. The 79.3%
improvement forpop2 is what causes the dramatic change in the graph. A linear regression

is also plotted to show the trends of the two measures.
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Configuration 2x2 4x4 8x8
speedup MPI time speedup MPI time speedup MPI time

(%) (%) (%) (%) (%) (%)
milc n/a n/a 3.9 3.6 7.4 15.8
leslie3d 2.2 1.3 3.0 2.4 8.1 8.9
GemsFDTD 1.3 4.5 1.2 44.3 6.5 30.1
pop2 6.2 7.9 22.2 21.2 79.3 82.2
tachyon 1.2 0.4 1.3 0.5 0.6 0.3
lammps n/a n/a 1.7 1.7 4.5 7.1
socorro 2.6 4.9 2.1 2.5 13.9 15.2
zeusmp2 0.5 1.7 1 3.5 3.3 7.7
lu 1.4 3.7 2.5 1.6 2.8 5.0

Table 5.9: SPEC MPI2007: Speedup and percentage execution spent in MPI

The runtime reductions from using Nahanni and the percentage of execution time spent in
MPI functions across the 9 SPEC MPI2007 benchmarks. The mpiPprofiling tool, used

within VMs, was used to determine MPI execution percentage.This table is a summary of
the data presented in Tables 5.5, 5.6, 5.7 and 5.8.

5.6.4 Summary: SPEC MPI2007

The conclusion we draw from these experiments is that Nahanni scales better than the vir-

tual network under the intensive use of SPEC MPI2007. We believe that Nahanni’s ability

to scale well is due to the use of POSIX shared memory as the underlying mechanism.

POSIX shared memory avoids introducing scalability bottlenecks by allowing applications

or libraries, such as MPI, to access it directly at guest user-level. Our MPICH2 implemen-

tation that uses Nahanni reduces the runtime all of the SPEC MPI2007 benchmarks versus

using the virtual network. The margin of improvement from using Nahanni increased as the

number of VMs increased from 2 to 4 to 8 showing that Nahanni also scales better than the

virtual network. Finally, these experiments show that by modifying an MPI library numer-

ous applications can benefit from Nahanni shared memory by abstracting the use Nahanni

shared memory within a library. Such an abstraction eliminates the need for modifications

at the source level as with GAMESS, but still provides the improved performance of Na-

hanni shared memory.

5.7 Other Nahanni Benchmarks

Nahanni has served as the basis for other research not discussed as part of this dissertation.

Two Master’s students in our research group, Adam Wolfe Gordon and Xiaodi Ke, have
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explored other use-cases of Nahanni shared memory.

Wolfe Gordon’s research showed that Nahanni can accelerateread accesses to a mem-

cached [37] server that is co-located with VMs that access it[63]. Memcached is a dis-

tributed in-memory key-value store that is intended to provide low-latency read and write

access to key-value pairs. Key-value pairs are a common dataabstraction in web applica-

tions. Memcached is used by sites like Facebook [41] to accelerate the access of content.

Wolfe Gordon modified the memcached client and server to cache key-value pairs in

Nahanni shared memory. Caching in shared memory allows concurrent access by the server

and multiple clients despite the fact that they are running in separate VMs. Co-located vir-

tualized clients and applications benefit from the temporallocality of accesses to key-value

pairs. Using Nahanni shared memory to cache key-value pairsreduced the read latency

by 29% over using the vhost-accelerated virtual network on the Yahoo Cloud Computing

Benchmark [11]. Without vhost enabled for the virtual network, the benefit is shown to be

as high as 45%.

Ke modified an MPI library, MPICH2, to use Nahanni for IPC between MPI processes

which are executing on co-located VMs [27]. By communicating over Nahanni, the MPI

processes avoid the overhead and any scalability limitations of the virtual network. The

results from Ke’s work demonstrated using Nahanni for IPC between co-located MPI pro-

cesses reduced latency and increased bandwidth by an order of magnitude over the virtual

network. In fact, the MPI-Nahanni implementation that runsacross VMs is able to very

nearly match the microbenchmark performance of MPI-Nemesis running on the host.

Similar to the benchmarks presented above, Xiaodi used the GAMESS benchmarks

from Section 5.5 to compare MPI over Nahanni to MPI over the virtual network. Xiaodi’s

MPICH2 Nahanni implementation was used for the SPEC MPI2007benchmarks discussed

in Section 5.6.

Ideally, we could have done a head-to-head performance comparison of MPI-Nahanni

versus the various systems based on Xen discussed in Chapter3. Indeed, that head-to-head

comparison is planned for future work. For now, to avoid the methodological complexities

of comparing two substantially different software platforms (i.e., Xen vs. KVM), we have

provided the MPI-Nemesis performance (i.e., without any VMoverheads) as a baseline.

Given the nature of MPI-Nemesis, it is unlikely that either any Xen-based or KVM-based

approach is going to be faster than MPI-Nemesis running without VMs. Furthermore, given

how closely MPI-Nahanni’s performance tracks MPI-Nemesis, we conclude it is unlikely

(short of a direct head-to-head comparison) that any Xen-based approach will be signifi-

116



cantly faster than MPI-Nahanni.

Our research group continues to explore applications and workloads that benefit from

using Nahanni. Building upon the lessons and results from current work, we are examining

the uses of Nahanni from several perspectives: inter-VM IPC, host-guest IPC, stream data,

structured data, ease of programming, programming abstractions and performance.

5.8 Concluding Remarks

In this chapter, we have demonstrated that Nahanni shared memory can provide a perfor-

mance improvement, shown by a reduction in total runtime, for both microbenchmarks and

full applications. We have also demonstrated that a benefit can be gained from using the

shared memory directly within an application (i.e., GAMESS) or by abstracting the use of

Nahanni within a library such as MPI (i.e., SPEC MPI2007). For the implementations that

use Nahanni in this chapter: file staging and streaming, DDI in GAMESS and MPICH2

for SPEC MPI2007, the ability to access shared memory from user-level was essential to

providing low-latency, high-bandwidth inter-VM communication.

Our benchmark results also show that the benefit gained from using shared memory can

vary. The GAMESS benchmarks show how the performance benefitthat a single appli-

cation can experience from using Nahanni can vary dependingon the input. In particular,

the si9h12 molecule simulation saw relatively minimal benefit from Nahanni, whereas the

aza-es molecule saw a lower runtime by 30.7% from using Nahanni instead of the virtual

network. With SPEC MPI2007, the runtime reductions of the different applications within

the benchmarks varied from negligible to over 20% (and in thecase of pop2 on8 × 8,

runtime was reduced by nearly 80%). The variance in performance is dependent on the

sensitivity of the application to the latency and bandwidthof the inter-VM communication

mechanism.

The results above serve as a guideline for understanding which applications may ben-

efit most from using shared memory between virtual machines.Using Nahanni in applica-

tions will require writing applications, or at least libraries, that specifically target it. Our

GAMESS results show that it can be worthwhile to modify a program directly. As well,

we have also shown that a modified MPI library can abstract Nahanni and enable multiple

MPI-based applications to benefit from Nahanni by simply linking a Nahanni-enabled MPI

library.

The ongoing growth of cloud computing and virtualization requires an understanding
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of virtualized workloads. Virtualized applications and their workloads will also be de-

ployed on different target systems including desktops, servers and cloud environments. The

individual needs for inter-VM and host-guest communication performance in these envi-

ronments will create a spectrum from minimal to extreme. As the scope of virtualized

workloads continues to grow, there will be workloads that are well-suited to using Nahanni

shared memory and others that see minimal or no improvement.Applications may benefit

by using Nahanni for the transport of stream data or for storing structured data directly. The

level of benefit will, of course, depend on the application itself.
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Chapter 6

Concluding Remarks

Virtual machines (VMs) have been studied as effective platforms for high-performance

computing (HPC) where performance is the most critical attribute [18, 36, 53]. The study

and deployment of VMs for HPC also led to investigations intothe performance of inter-

VM communication mechanisms [61, 10, 64, 24]. In some ways, optimized communication

mechanisms emphasize performance above all else. After all, without improved perfor-

mance, there is no reason to consider the optimizations. However, other considerations such

as architecture and flexibility are also important and may, in fact, have longer term impacts

on the theory and implementation of software systems. For example, optimizations often

(by necessity) exploit specific characteristics of the hardware to maximize performance.

Over many generations, hardware architecture might changeand some optimizations may

become eclipsed or even rescinded.

In the context of Nahanni, many of the performance benefits come from an assump-

tion that the hardware supports shared memory, that the operating system (OS) can export

shared memory to the user-level, and that the OS pathways andmechanisms are already op-

timized to share memory between processes. We feel that these assumptions are not likely to

change in the near future, but there might be an evolution or retargeting of shared memory,

OSes, and OS support for shared memory. For example, uniformmemory access (UMA)

shared memory has evolved to non-uniform memory access (NUMA), and now there have

been proposals of asymmetric distributed shared memory (ADSM) [21]. In some situa-

tions, hardware-based cache-coherent shared memory is no longer a valid assumption (e.g.

ADSM). The specific optimizations within, say, MPI-Nahanni([27], Section 5.6) and Na-

hanni Memcached [63] would likely change if cache coherencyis no longer available. In

that sense, performance optimizations can be the most sensitive to the technology context.

But, some of the architectural elements and design decisions of Nahanni are likely to
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outlive the specific optimizations presented and evaluatedin this dissertation. For exam-

ple, the design decision to implement Nahanni shared memoryas a paravirtualized pe-

ripheral device offers many advantages. First, if a guest virtual machine does not want to

use Nahanni, then the Nahanni guest device driver is omittedand no new Nahanni code

is executed in that guest VM. Architecturally, Nahanni codeis only executed to initialize

the shared memory, but not to use it. Nahanni is outside the perform-critical pathways.

In fact, if the Nahanni signalling mechanism (Section 4.6) is not used, which is true for

our SPEC MPI2007 and GAMESS benchmarks (Sections 5.5 and 5.6), then no Nahanni

code is executed for the common case of IPC. In contrast, modifications to the hypervi-

sor pathways in previous work to either provide new application programming interfaces

(APIs) (e.g., XenSocket, IVC) or optimizations (e.g., XenLoop, Fido, virtio) have new

code interleaved among the common pathways. Recall that a virtio-based version of Na-

hanni (Section 4.13.1) was implemented but ultimately rejected because interleaved code

changes required within the virtio and QEMU/KVM code base were too extensive. The

orthogonality of the current Nahanni implementation was a key reason why the Nahanni

code was accepted into the QEMU/KVM code base.

Second, as discussed in Chapter 5, introducing new OS pathways can lead to the need

to optimize and re-optimize those pathways to solve the nextbottleneck. Optimizing per-

formance as we scale the number of VM instances often requires different algorithms and

synchronization strategies, analogous to parallelizing sequential applications. In a different

dimension optimizations for large and small data transferscan result in new protocols and

the tuning of parameters such as ring buffer sizes. For systems such as virtio, XenLoop,

XenSocket these algorithms and parameters are at the hypervisor or OS level. In Nahanni,

the code changes occur in user-level libraries because architecturally Nahanni does not im-

pose any algorithm in its design, but leaves that to the application. Nahanni’s flat region

of shared memory introduces no new pathways in the hypervisor (i.e., it uses the existing

QEMU memory and PCI device mechanisms) and largely sidesteps the pathway optimiza-

tion problem noted in, say, virtio. Optimizations are exported entirely to the user-level

libraries and applications by Nahanni’s UIO interface.

Similarly, the flat region of shared memory design decision embodied by Nahanni has

flexibility advantages. The ability to port MPICH2-Nemesisto Nahanni was greatly sim-

plified by the fact that Nahanni, despite being shared memorybetween VMs instead of

between processes, looks and behaves just like the POSIX shared memory already assumed

by MPICH2-Nemesis. Furthermore, since Nahanni memory is exported fully to the user
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level, all changes to MPICH2-Nemesis, all future changes and optimizations, and all future

libraries, only involve user-level code. No guest (or host)kernel changes were specifically

needed by MPI-Nahanni. Admittedly, MPI programs have to be either recompiled or re-

linked with MPI-Nahanni, but no code changes are required. Finally, although the exposed

shared memory of Nahanni might be considered a source of extra complexity (as compared

to XenLoop or virtio, which are completely hidden from the user), that complexity can be

completely hidden behind a library (e.g., MPI-Nahanni [27], Nahanni memcached [63]).

Therefore, we have demonstrated both the performance advantages of Nahanni, which

are proportional to the opportunities for performance optimizations, and can be substantial.

But, we also wish to highlight the unique architectural contributions of Nahanni, which

were in place before the complementary work of Ke [27] and Wolfe Gordon [63] within our

research group.

Another measure of the significance of this work was its acceptance into the official

QEMU/KVM code base. Nahanni was merged into the QEMU code base for version 0.13.0.

We have received feedback from QEMU users that are experimenting with Nahanni for uses

as diverse as caching to virtualization of reflective memorydevices. Because of its inclusion

in the standard distribution of QEMU/KVM, the Nahanni ivshmem device is available as

part of the well-known Ubuntu and Fedora Linux distributions.

In revisiting the contributions laid out in Section 1.1 we are confident that Nahanni and

inter-VM shared memory in general occupy an important nicheas the use virtual environ-

ments continues to grow in desktop, server and cloud environments.

1. Unintrusive Implementation Architecture. Nahanni provides a carefully crafted

shared-memory mechanism for guest-to-host and guest-to-guest IPC. The design

choices allow Nahanni’s components, namely the ivshmem device and guest UIO

driver to be non-intrusive with no performance impact on VMsthat do not use the

mechanism. Nahanni also demonstrated scalability in its design. In particular, VMs

using Nahanni for IPC for SPEC MPI2007 demonstrated increasing returns as the

number of VMs increased.

2. Low-latency, High-bandwidth Performance. The overall performance that Na-

hanni is able to achieve against established best practicesis significant. Our bench-

marks for file staging and streaming as well as for full applications of GAMESS and

SPEC MPI2007 demonstrate the wide variety of virtualized applications that benefit

from Nahanni shared memory.
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3. User-level Architecture: Bypass OS and bottlenecks.Nahanni allows host mem-

ory to be shared directly to the user-level within guests. User-level accessibility al-

lows both stream data and structured data use cases for virtualized applications and

libraries such as MPI [27] and memcached [63]. User-level access avoids overheads

associated with kernel switches or VM exits that other kernel-level or hypervisor-

level optimizations may incur. Avoiding kernel and host overheads is important in

achieving the best possible performance.

In summary, this dissertation has explored the intersection of VM environments and

shared memory. Adapting the well-known interface of sharedmemory to the continually

growing platform of virtualization provides insight in theperformance and programming

challenges that will arise as the density of CPU cores and memory increases on the desktop,

server as well as in nascent cloud platforms. We have demonstrated the utility that well-

designed shared-memory interfaces will provide now and in the future.
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