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Abstract

Virtual machine environments are becoming more common duéd increased perfor-
mance of commodity hardware and the emergence of cloud damggdor large scale appli-
cations. As the use of virtual machines continues to grovippmance critical applications
will require efficient mechanisms to achieve their tasks.

We introduceNahannias a mechanism for shared memory communication in virtual
machine environments. Nahanni allows virtualized appitics, those running inside vir-
tual machines, to communicate through shared memory fdr data movement and syn-
chronization when VMs are co-located on the same host machife describe the design,
implementation, and evaluation of Nahanni as part of the QB M virtualization plat-
form.

We have modified existing communication layers to meas@@énformance benefit of
Nahanni. Through microbenchmarks and applications, weotstrate that shared memory
is a useful and efficient communication mechanism in viraea environments. Further, we
discuss how the design and implementation of Nahanni esabiew class of applications,

ones that use structured data, to benefit from the use ofdshaemory.
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Chapter 1

Introduction

Hardware virtualization is the ability to allow a single Hasare platform, consisting of
processors (or cores), memory, and input/output (I/O)asyito be shared concurrently
between multiple operating systems (OS). On the desktapajt be advantageous to run
more than one OS at the same time. For example, a Linux usét mant to run the Win-
dows OS and a Windows application concurrently inside ai@innachine (VM), instead of
using a dual-boot approach. On the server, different usayatmeed different versions of
Linux, or a combination of Linux and, say, FreeBSD. By rumniwo concurrent OSes, both
users are able to share the same physical server, despiteates software requirements. In
the realm of high-performance computing (HPC), VMs can gleencapsulation to easily
deploy HPC applications that may have specific library neellide still providing good
performance[[18, 36, 53]. Historically, virtualizationshbeen part of computer systems
since IBM mainframes of the 1960s [47].

Today, hardware virtualization of servers is an importashponent of many cloud-
computing platforms, especially in the context of Infrasture-as-a-Service (IaaS) providers.
Cloud computing offers remote computing resources on-denaad at a large scale that
has freed individuals and organizations from acquiringr tn computing infrastructure.
Instead, users can simply rent the use of hardware from llEdazoud providersby the
hour and only pay for what they use. Since a single VM can esdage an OS, libraries,
and applications, they lessen the burden of running softwarunfamiliar hardware and
operating systems [43]. Therefore, VMs have become theaimgsource allocation on
clouds, and VMs are convenient software encapsulation améstms for cloud users.

Although there are many advantages to encapsulating apiphs and servers inside
VMs, one disadvantage of VMs is that there is an extra degfesemaration between the

processes within the VM (i.e., inside tgees} and data that lives outside the VM (i.e., on



thehos). If the guest VM needs data that sits on the local disk of s, ithen (broadly
speaking) the data must either be copied into the guestyeedéo the guest, in the sense
of a file server. For some use cases (e.g., a long-running @febr3, the necessary data
could be brought inside the VM once and left there for a longeti thus amortizing any
data-movement overheads. However, for other use casefatthes often moved inside and
then outside of the VM for each execution of the key applazatvithin the VM [57/ 18, 36].

Specifically, scientific simulations can be encapsulatetthivia VM to make it easy
to move the application (and its dependent libraries, tbalrts, etc.) from compute node
to node (e.g.,[[54]). But, for each simulation, the regaisitput and output files must be
moved, or staged, across the guest-host barrier.

As well as moving data from a host file system into a VM, data mesd to be moved
between processes running in different VMs in the case ofalphcomputation. For ex-
ample, two co-located scientific applications may need &vesdata in a pipeline. Moving
data across the inter-VM barriers is likely to be more exjwenthan the host-guest barrier
due to the need to cross more protection domains. Furthernegen data-intensive uses
such as map-reduce applications are being deployed using (¢M., Amazon’s Elastic
MapReduce)[31]. Arguably, there is a trend towards usingvhas the unit of resource
allocation on clouds (e.g., Amazon). For some applicatmmthe cloud, the speed of data
movement between the host and guest and between co-loaaets gs a potential perfor-
mance bottleneck.

A well-explored idea to speed up interprocess communiegli®C) is to use shared-
memory (e.g.,[[20,_16]) and direct memory access (DMA) tapes to minimize data
copying and control transfer overheads. Within the realmibialization, previous ver-
sions of the VMware products supported shared memory betweests as part of the
Virtual Machine Communication Interface (VMCI) [569], butdt functionality has been
deprecated. And, XenLoop [61] uses shared-memory ringelsitind Fido[[10] for Xen
provides shared-memory network and block devices. At arpadig level, the work in this
thesis increases the availability of inter-VM shared megmmr more platforms by provid-
ing an implementation of shared-memory IPC for the Linuxnéibased Virtual Machine
(KVM), to complement the previous shared-memory work on Xgut, more importantly,
at the architectural level, the work in this thesis presantglternate and cleaner design of
flat, shared memory as compared to alternate designs baf2dlArconcepts.

Admittedly, there is a school of thought that says that shamemory between het-

erogeneous processes (thus, implicitly, different LinlNKVMs and the host) sounds



like a good idea, but is often complicated (e.g., intrusigdecchanges to the OS) and not
necessarily faster than other IPC mechanisms (e.g., gaidstream-data IPC, such as
virtio [52]). We are sympathetic to many of these critiques.

As we will show, the Nahanni system for shared memory in Liktw¥M (as part of
QEMU/KVM version 0.13) is a clean extension of the existiggtem: the paravirtualized
PCI driver for the guest OS is approximately 250 lines of ¢@ohel the Nahanni patch for
QEMU/KVM is approximately 800 lines of code. Furthermoreghdnni has no functional
nor performance impact on the guest VM if the paravirtuaidever is not loaded into the
guest kernel, and Nahanni is a command-line option to QEMWAKand can be turned off
completely.

Lastly, the potential performance benefits of shared-mgriRE using Nahanni can be
large (between 2 and 8 times faster than the next fastestanesch, as per microbench-
marks in Sectioh 5]3), even when compared to current bestigea, such as I/O virtualiza-
tion (i.e., virtio [52]) and the 9P file system mechanisms iofux KVM. Nahanni can also

provide up to 30% performance improvement for co-locatetial applications.

1.1 Contributions

In exploring the above points through this work, we statectiraributions of this works as:

1. Unintrusive Implementation Architecture. The design and implementation of an
unintrusive shared-memory mechanism for guest-to-hasgaast-to-guest IPC, namely
Nahanni. Compared to the design alternatives and previauk, Wahanni is care-
fully crafted to involve a small number of changes (aboubQ,bnes of code, none
of which change the host OS kernel), and to have no perforenanpact on VMs

that do not use the mechanism.

2. Low-latency, High-bandwidth Performance. A demonstration through microbench-
marks and applications that show Nahanni is the fastest amésain for guest-to-host
and guest-to-guest data movement. Using Nahanni for &eirgf a file into a VM
from the host can be up to 8 times faster than the next fagtelshique. Also using
shared memory for synchronization as opposed to the neteamkbe an order of
magnitude faster. Finally, using Nahanni for inter-VM sfthmemory can result in
up to a 30% improvement in application performance for sifierapplications such
as GAMESS and some benchmarks in the SPEC MPI2007 bencmmakite.



3. User-level Architecture: Bypass OS and bottlenecks.The particular choice of
exposing shared memory to the user-level within guests theangages that are not
available with OS-mediated stream-data communicatianpatticular, Nahanni can
support storing structured data between VMs with appbeegilike memcached [37,
63,[22]. While the kernel is involved in configuration, Nahaallows normal access
to shared memory without involving the kernel. Thus, avugdkernel overheads is
important in achieving the best performance and in not thtoing (or aggravating)

any bottlenecks in either the guest or host OSes.

As an aside, note that Linux KVM is the common term to referhi family of Linux
kernel-based VM systems, which (currently) includes p@wtsx86 instruction set archi-
tectures (ISA) with hardware support for VMs, IBM’s S/39@dzaothers. On the x86 ISA,
which is our platform, Linux KVM is implemented as a host kermodule and requires a
user-level QEMU process to create a VM. In fact, the commar@to run a Linux KVM
virtual machine on x86 invokes a QEMU binary. We use the teimukx. KVM, or just
KVM sometimes, when referring to the hypervisor in genesald we use the term QE-
MU/KVM when describing the Nahanni code and modificationgh®hypervisor since our
modifications involve QEMU.

Although our prototype is based on Linux KVM, the combinatiof a small driver
in the guest and localized modifications in the hypervisokenzur design a candidate for
other hypervisors as well. To be clear, we have not yet pdtegthnni to other VM systems,
but we feel it is plausible for future work. Of course, we wiblbok for implementation
guidance from the previous work in this area, such as Xenl[é@pand VMware’s Virtual
Machine Communication Interface (VMCI).

Overall, Nahanni provides a compelling investigation ithie uses of shared memory in
virtualized environments as well as the practicality ofmmg scientific applications within

virtual machines.



Chapter 2

Overview

Nahanni is a new mechanism for sharing memory between Viniaghines (VM) and,
more specifically, the applications that are running insibse VMs.

Operating systems (OS) have supported sharing memory betaaplications as a form
of interprocess communication (IPC) for decades. Sharadaneis a simple and efficient
mechanism for communication between cooperating protesgsate running on the same
physical machine. The main benefit from using shared menmmryHC is that no un-
necessary copies of communicated data are made as other éBl@anisms may do [9].
Extraneous copying is a well-studied source of overheadntamy (IPC) mechanisms. By
being able to read and write directly to a region of memory émather application can also
access directly provides a low-overhead mechanism fortdatafer or synchronization.

Nahanni offers architectural and other advantages ovetiqug shared-memory IPC
approaches in VM environments. Most of the recent work witkri-VM IPC over shared
memory have been based on Xen’s grant table mechanism tp shated ring buffers [64,
28,[61]. Thus, the shared memory is not visible to appliceatiat user-level and all data
that is transported through shared-memory IPC is in the fofrstream data. In contrast,
Nahanni’s shared memory is visible to user-level code, Wwhieatly simplifies the porting
of existing libraries[[27] (Sectioh 5.6) and supports peirfitased, non-stream data struc-
tures and mechanisms_[63,/27]. The one significant excefton the Xen community
is Fido [10] which uses grant tables to set up a single, redyl-address space among all
VMs. Although Fido is capable of supporting pointer-basathdtructures in theory (i.e.,
but not demonstrated in the original paper [10]), there aoaidgty concerns associated with
all participating VMs sharing a read-only address spaceohtrast, Nahanni can option-
ally share different regions of shared memory between rgiffesubsets of the VMs, in

accordance with whatever security and sharing policy igelés



As hardware virtualization grows in popularity and funaoidity, especially for pri-
vate [55] and public clouds [6], fast, secure, and flexiblg.(esupport both pointer-based
data structures and stream data) shared-memory IPC cafit lzedigerse spectrum of use-
cases from file staging (Sectibn b.3), to Web services [@3}pmputational science (Sec-
tions[5.5 and 516).

2.1 Nahanni

Nahanni is a new mechanism for sharing memory between VMssimplify the initial
description, we will focus on a single VM, or guest, accegsiremory that is shared from
the host OS that the VM is running on.

Figure[2.1 shows the basic concept of Nahanni. A region ofSPCShared Memory
on the Host” is made accessible to an application runninigléna VM on that host. The
guest application can write to this memory (via load andestyperations) and the written
data is visible (as per hardware cache coherency protaodig)st applications or VMs that
are sharing the same region of host memory.

To enable shared memory functionality, the VM requires dégrface to the memory via
its virtualized hardware. Virtual machines are similargalrhardware in that their interface
to the outside is handled by devices. A new virtual devidegllad as the “Nahanni Device”
in Figure[2.1, is created that enables the guest operatsigmyto access the shared memory
on the host.

Once the guest operating system is able to access the sharadnn it will expose
the memory to its “Guest User Application”. If two or more gteeaccess the same host
shared-memory region, then applications within those tgusil be able to communicate
via that region of shared memory.

The detailed design and implementation of Nahanni will bsecdbed in Chapterl4.
However, Figuré 2]2, which is identical to Figlre 4.20, shale key elements of the final
form of Nahanni: multiple VMs (three shown in the figure, bahde an arbitrary number)
share the POSIX shared memory via a seriesndp( ) operations to the user level, with
support for inter-VM interrupts via the Linux eventfd meoisam. Before moving on to the
details of Nahanni’'s implementation, the question of whgred memory is useful for VMs

will be discussed.
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Figure 2.1: The Basic Architecture of Nahanni

Shared memory on the host is shared via the Nahanni deviceittualized application
running inside the guest VM. The shaded box indicates tleatrtemory is shared, no
copying occurs when data is written to or read from the sharechory.

2.2 Motivation and Use Cases

In recent years, VMs have become a popular technology feeseonsolidation, desktop
virtualization, and system isolation for testing and depetent, to name just a few broad
categories. In scientific computation, VMs are proving ukas way to package, deploy,
and launch applications [54, 131,118,136]. These uses irelizahds of VM usage that
motivates this work.

VMs as unit of resource allocation: With the emergence of public cloud providers,
such as Amazon Elastic Computing Cloud (EC2) [4], Flexid®][ and Rackspaceé [49],
VMs have also become a unit of resource allocation and pgomiigy: adding or removing
resources from a system involves adding or removing VMsh@dlgh some cloud providers
offer VM instances of different resource sizes, many wakland systems will likely be
designed around adding and removing entire VMs, espedfale goal is to scale across

many physical hosts and/or data centres. Therefore, sugstens will include many host-
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With other features that will be introduced in the comingptieas, Nahanni enables
multiple VMs to share memory as illustrated above. Note tthiatfigure is the same as
Figure[4.20, but is shown here to give an idea of how multiptelocated VMs can share
memory via Nahanni.

to-guest boundaries as well as guest-to-guest transiti@hg work with Nahanni is an
attempt to optimize these data movement scenarios.

Data stage-in, stage-out scenarid-or example, suppose a scientific simulation appli-
cation is encapsulated inside a VM. The simulation is mastlgd for parameter sweeps, so
it might be desirable to launch hundreds of VM instances toindependent simulations.
Each simulation instance has to load input files pertaininipé simulation. At the end of
the simulation, the output files have to be staged out. Ofsspuhe amount of data to be
staged in and out depends on the specific simulation, and targ from tens of megabytes
(e.g., molecular dynamics) to gigabytes (e.g., seismicemtagical simulations based on
empirical data; visualization-oriented output).

Moving data from host-to-guest (and the symmetrical casguett-to-host) is an im-
portant enough use case that the 9P file system was adapteduawittualized for Linux
KVM to handle that special case [58]. As an aside, 9P wasiiisity available in Xen,
but has since been deprecated (noted by Hensbergen [584). akthough there are other
tangible benefits from a file system approach, Secfiods Zi&ahshow that Nahanni can

be significantly faster than 9P for data staging from a puropmance point of view.



Of course, many scientific simulations may take hours of adatpn within the VM
and dwarf any data stage-in and -out overheads in relativesteHowever, it is still worth-
while to address an overhead that can be substantial inwbs@Erms, as both 9P and
Nahanni are trying to do. After all, many a computationaéstist has waited impatiently
for the first simulation to load all of its data, start, anaallfor a quick sanity check by the
scientist before the next batch of simulations are launched

Inter-VM communication (e.g., pipeline, parallel application): As argued by the
authors of the Fido systerm [10], and consistent with theomotf VMs being a unit of
resource allocation, complex systems of the future mighsist of a set of pipelined VMs,
in an analogous way to the classic Unix pipeline of sepanaiegsses.

For example, there might be a storage subsystem (e.g.,nmepling a custom redun-
dancy and de-duplication policy) inside a VM, connected da-parallel analytics engine
inside a different VM, and connected to a front-end Web fatar that provides visualiza-
tions inside a VM. The analytics engine might include sonmgttas simple as a grep or
search for regular expressions, a common use for a “map”epima map-reduce com-
putation [14]. Or, perhaps two co-located computationsirteeexchange data through a
computation. The data could be exchanged through sharedmeaémstead of over a virtual
network.

Again, the amount of data that is moved between pipelineestag co-located com-
putational tasks (and thus VM-to-VM) varies from applicatito application. But, if the
overhead of moving the data is optimized well enough, thefsspplications that are viable
in such a pipeline architecture would be larger. We condtieimpact of the compute-to-

data ratio of various applications in Sectlon|5.4.

2.3 Caveats

Despite our work with Nahanni, we do not claim that sharednory IPC and the Nahanni
architecture are the right choices for all scenarios. Fangde, if data movement and
sharing overheads are not the bottleneck for a given apiolicar workload, then existing
mechanisms are likely satisfactory.

Code changes:The biggest caveat for using Nahanni is that applicationifivadions
are required to take advantage of the new mechanism. Wittlmnges to the network
stacks of the guest(s) and (possibly) the host, as is doneemy.d0p and Fido, Nahanni

cannot be used transparently. However, as with our expatsneode changes to use Na-



hanni can be entirely at the user-level (avoiding errompr&éernel changes) and can be
hidden within user-level code libraries or behind useel@xecutables.

Potential Loss of Isolation: An advantage of VMs is that different VMs are isolated
from each other. Except for resource contention, and in tisersce of bugs that cause a
host to crash, an isolated VM need not be affected nor affeathar VM. Isolation, among
other things, allows a VM to be migrated from host-to-hosbé&tance load and improve
resource scheduling.

Upon first consideration, Nahanni might appear to brealaismi in an irreparable way.
But, Nahanni is an optional feature and VMs that do not usddhtire continue to be as
isolated as any other VM. As well, VMs that do not turn on theh&lani mechanism have
the exact same performance as before.

Even if a set of VMs use Nahanni, the departure of one padtiicig VM does not affect
the use of Nahanni by the other VMs that are sharing memohedttel of the IPC mech-
anism. Of course, if the content of shared memory is left imaansistent state, there must
be an application-specific way to recover, but that problems heen well-studied (e.qg.,
shared-disk storage systems) and even VMs that communizat®ckets require some
kind of application-specific or protocol-specific way to dinfaults. In other words, isola-
tion still remains possible for applications that do not dedanni. And, recovering from
faults between a set of communicating applications (elgenteserver) is an orthogonal
problem to whether Nahanni is used.

Migration: Note that VM migration, in specific circumstances, worksreotly with
Nahanni, so even that feature is not necessarily brokene¥ample, a single VM using
Nahanni for host-to-guest IPC can be migrated from one lmoahbther host under Linux
KVM. Of course, the nature and content of the IPC may changenvithe host changes, but
the VM instance itself and a snapshot of the shared-memarients can be successfully
migrated and re-started. We have not yet done any perfonapttmizations related to
migrating shared-memory IPC (e.g., memory ballooningattee copying) or abstractions
that work for both shared memory and distributed memaryg@8]t is premature to report on
performance, but we have successfully tested migratioedmectness. In short, Nahanni

does not automatically break isolation or migration.
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Chapter 3

Background and Related Work

Nahanni is designed to enhance the performance and cdieahili virtualized applications
through the use of memory that is shared between virtual masi{VMs). Given these
goals, Nahanni’'s design, implementation and evaluatiensgongly tied to VMs and by
extension to the broader concept of hardware virtualinatidahanni also builds upon the
large body of related work on interprocess communicati®Cjl in particular IPC that is
based upon shared memory.

This chapter will discuss the necessary background coseemt related work that is
relevant to Nahanni. The concepts and previous work onaligation will be discussed
first, followed by IPC. Finally, some additional hardwarelaperating system (OS) con-

cepts will be discussed that are relevant to Nahanni.

3.1 Virtualization Basics

As mentioned, virtualization and VMs are central to Nahanfrtualization is not a new
concept and therefore there is a fair amount of previous wakrelates to VMs and more

specifically to inter-VM IPC which is the focus of Nahanni.

3.1.1 Hardware Virtualization

Hardware virtualization is a mechanism that allows muitiBiSes and their respective ap-
plications to run simultaneously on the same hardware. W@l virtualization has been in
use for decades. In the 1960s, it was available in IBM mamé&aomputers [47]. The goal
of hardware virtualization is to allow two or more operatsygtems to share the hardware
such that each OS and its respective applications do nottodesimodified in order to be
virtualized.

There are two basic approaches to hardware virtualizatioiohnare both illustrated in

11
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Figure 3.1: Two approaches to hardware virtualization

Figure[3.1. The first approach, shown in Figurd 3.1 (a) ctssisone OS (called thieos)
running directly on the hardware. The host OS runs softwalled avirtual machine mon-
itor (VMM) for each virtualized OS (calleduest$. In short, guest OSes are virtualized by
the VMM on top of the host OS. Like any application on the h&8¥]s are encapsulated
within a regular OS process. Well-known VMMs that use thisdelare VMware Work-
station, KVM and VirtualBox. The second approach, shown iguFe[3.1 (b), involves
running a layer of software directly on the hardware calldd/pervisor The hypervisor
then runs all OSes as guests (i.e., there is no host OS). Tde\hgor is not a full-fledged
host OS like in the first approach. A hypervisor is a custorntwgntke layer, similar to an OS
in many respects, but specifically designed for running VMBware ESX and Xen are
two examples of virtualization solutions that follow thepeyvisor approach. Both of these
methods have their advantages that will be discussed irotlosving sections.

Despite the differences between the designs shown in Fiditein recent years the
terms VMM and hypervisor have become more or less synonymensthe remainder of
this dissertation, we will use the general telgpervisorto refer to the software that runs
the VMs in either approach shown in Figlirel3.1.

3.2 The Task of the Hypervisor

The primary task of hypervisors is to multiplex or share thaedware between the virtu-
alized guest OSes. That is, the hypervisor must allow naltjuests OSes to share the
central processing units (CPU) (i.e., processors or coresnory and hardware devices
as if each OS were running exclusively on the hardware. Hygars multiplex a single

hardware platform by presenting separaittual hardware consisting of virtual CPU(s),
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virtual memory and virtual devices (e.g., networks, dig@ad disk drives) to each guest
OS. Virtual hardware becomes the interface through whielgtrest OS can access the real
hardware network and disks as needed.

In going beyond the basic requirement of multiplexing thedhere, Popek and Gold-
berg [47] articulated three essential characteristicstoffgervisor. Adams and Agesen [2]

summarized these characteristics as:

1. Fidelity: Software on the hypervisor executes identically to its aken on hard-

ware, barring timing effects.

2. Performance: An overwhelming majority of guest instructions are exedug the

hardware without the intervention of the hypervisor.

3. Safety: The hypervisor manages all hardware resources.

As emphasized by the “Performance” characteristic, whaming a guest OS, most
instructions can and should be executed directly by the @Hay challenge in this regard

is what are callegrivileged instructionghat must be executed by the guest OS kernels.

3.2.1 Privileged Instructions

Privileged instructions are specific instructions that @ag of every instruction set archi-
tecture (ISA) and are used by the OS kernel to multiplex th&) GBtween executing ap-
plications, and to manage the hardware. Privileged instms can modify important CPU
registers and flags that control each application. Theszefander normal circumstances,
privileged instructions should not be executed except wineaming the OS kernel. For
example, a register that points to a process’ page table wignbe modified by a privi-
leged instruction. These instructions are privileged tsuem that the OS kernel maintains
control of the CPU and prevents any application from coingpthe OS kernel or other
applications.

The challenge in hardware virtualization is in properly dlarg the privileged instruc-
tions in guest kernels because the guests run in unpridlegade so that the host OS or
hypervisor can maintain control of the hardware resourtfeguest kernels did not run in
unprivileged mode then multiple guest OS kernels could ghahe CPU state (without
each other knowing) by running privileged instructionstgmially corrupting each other
or the host OS.
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Only the host OS has the necessary permissions to executeged instructions. Host
OSes are notified when any application (including a guest ékfcutes a privileged in-
struction. The notification comes from a mechanism called@ If an application such as
web browser, running normally in unprivileged mode, exesu privileged instruction, a
trap will occur. A trap stops the executing program and dwagccontrol to the kernel which
may kill the program that attempted to execute the prividegestruction. When running a
guest kernel on the CPU, any privileged instructions thateaecuted will similarly gener-
ate a trap to the host OS or hypervisor since guests run invileged mode. Guest OSes
need to execute privileged instructions in order to runyhgn they are running as a guest
OS they cannot be allowed to do so directly to ensure pratectf the host OS and other
applications and VMs.

Handling privileged instructions of guest VMs is a fundama¢ichallenge in virtualiz-
ing operating systems. One technique historically used/jpetvisors to handle privileged
instructions was calletrap-and-emulate Hypervisors that use trap-and-emulate respond
to a guest OS trying to execute a privileged instruction byirigathe host OS emulate the
behaviour of the privileged instruction on behalf of the §u®S and allowing the guest to
continue at the next instruction. By emulating the effectha&f privileged instruction, say
updating the page table pointer, the guest OS can continagettute and the hypervisor
maintains control (i.e., “Safety” characteristic from lR&mnd Goldberg [47]). While the
trap-and-emulate approach is fairly straightforward as la drawback in that every trapped

instruction pays a performance penalty as the host OS must:

1. take over execution from the guest OS,
2. emulate the instruction, and

3. resume execution of the guest OS.

Fortunately, privileged instructions are relatively ramd as long as the majority of

instructions can still be executed directly by the CPU, genfance will remain acceptable.

3.2.2 The x86 Architecture

Since the 1980s, the Intel 8086 architecture and its descémdhave increasingly domi-
nated the personal computing and server market. The x8@textthre, as it is generally
called, presents a challenge to trap-and-emulate desigms.problem is that some priv-

ileged instructions when executing in unprivileged modendbgenerate traps, but rather
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the instructions are simply ignored. Therefore, the trag-amulate model cannot be used
with x86.

Over time, binary translationand paravirtualization emerged as alternatives to trap-
and-emulate. Binary translation solves the trapping gmbby rewriting the binary code
of the executing guest OS and replacing the privileged uctitns with callouts to the
hypervisor. VMware and VirtualBox are two well-establidhigypervisors that used binary
translation. Binary translation has an advantage in thaaiit virtualize practically any
x86-compatible operating system because privilegeduastms are translated on-the-fly
at runtime. Binary translation does incur overhead as tleewable of the guest OS must
be scanned for privileged instructions. Despite some daaWd) binary translation was a

successful method that allowed the x86 architecture to thealized [2].

3.2.3 Paravirtualization and Xen

An alternative to binary translation aravirtualization The Xen project[[7] is the best
known example of paravirtualization. Paravirtualizatimreaks the “Fidelity” character-
istic of Popek and Goldberg because the guest OS must be atbdifid recompiled and
therefore cannot execute “identically to its execution ardware”.

Paravirtualization requires changing the source of thestgkernel to replace any priv-
ileged instructions with callouts to the hypervisor andorapilation of the kernel. Par-
avirtualization has different trade-offs to binary tra®in. For example, paravirtualization
requires different modifications for each guest OS (i.eg, ttodifications necessary for
Linux will be different than for those of FreeBSD or Solaridfloreover, closed-source
operating systems such as Windows require the cooperdtitne proprietors of the OS to
make the necessary modifications. The advantages of pgaedization include avoiding
the overhead of translating guest instructions on-thedlpecurs with binary translation,
and avoiding the overhead of trapping with a trap-and-etawdgproach, since the instruc-
tions requiring trapping are translated ahead of time.

The release of the Xen project in 2003 was a significant aemewt in paravirtualiza-
tion. Xen demonstrated that paravirtualization could eshinear-native performance on
the x86 architecture [7]. Given that Xen was open-sourcasa provided a cost-effective,
high-performance solution to using virtualization at aytascale.

An illustration of Xen is shown in Figure_3.2. As mentionea\yiously, Xen follows
the traditional hypervisor model (see Figlrel 3.1 (b)) thasra hypervisor layer specifically
designed to run guest VMs. As shown in Figlrel 3.2, the Xen twgar runs directly on
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Figure 3.2: The Xen Paravirtualization Model

the hardware. The Xen hypervisor is a microkernel operagygiem [[23] and involves a
much smaller code base than a fully-featured host OS (a®deden Figuré_3]1 (a)).

When booted, the Xen hypervisor creatksnainsthat run atop the hypervisor. Each
domain is a separate guest OS. The most important domainrifR¢hich manages all
other guest domains. DomO must be a Linux guest and is alwaysng while the hypervi-
sor is running. DomO runs tHeontrol Plane Softwaréhat allows the creation of additional
domains, so-named DomUs, that can run any operating sysigpoged by Xen. Dom0 is
also the primary conduit for DomU input/output (1/0O) sindeomU 1/O (e.g., network,
disk) passes through DomO.

Dom0 manages the DomU domains and provides access to deuidess the network
and disk drives via virtual devices in order that the DomUs parform I/O. Xen employs a
split-driver model for the virtual I/O devices running iretbomU guests. The split-driver
model involves splitting device drivers betwekeont-end driverghat run in the respective
DomUs and théack-end drivershat run in Dom0. DomU front-end drivers communicate
with the back-end driver when they want to use a device sudhesetwork card. It
is the back-end drivers that multiplex a single device suchetwork card across all the
DomuUs that need access to the network. The effect of the-dpliér model is that all
device activities need to be communicated to DomO0 and thétsdse transmitted back to
the front-end driver.

While the split-driver model achieves its goal of multiplex devices between multi-

ple domains, it has some drawbacks. In particular, sphtedsi have a performance over-
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head[[61] as all network and disk traffic must pass through @o8econdly, split drivers
create a security issue. Since all network and disk traffistrtravel through DomO, the
Linux OS running in DomO is a possible source of attack thalcc@eompromise the net-
work or disk traffic of the DomUs.

Since its release, Xen has been widely used in both the aégadachindustrial commu-
nity due its high performance and support from major Linwstritbutions such as RedHat

Linux.

3.2.4 Redefining Paravirtualization

After the release of Xen, the term paravirtualization bmastl beyond the meaning of
modifying an operating system to remove privileged ingtans. Recently, the term has
expanded to include not only modified operating systems mywatual hardware or soft-
ware (e.g., a bus or device) in a VM that has been modified agued exclusively for
virtual environments. A paravirtualized device does notehto have an equivalent im-
plementation in real, physical hardware because it is desigo run only in VMs. Xen’s
split-driver model would be considered a paravirtualizedign since its design only applies
to the Xen hypervisor.

One patrticular paravirtualization approach that fall® ititis new, broader category is
virtio [52]. Virtio is a device model that was specifically signed for VMs. Most hard-
ware devices that hypervisors emulate are based on reamoorhardware devices. For
example, the well-known Intel e1000 ethernet network fater card (NIC) is emulated as a
network device in most hypervisors for the simple reasonkémel drivers already existed
for the e1000 in most OSes. However, emulating the behawgbhardware can be ineffi-
cient. Virtio created a model to allow for simple and efficigmtual devices that could be
standardized across all hypervisors (e.g., QEMU/KVM, XéNware, etc). Virtio is gen-
eral enough in its design to support a broad spectrum of dsvitcluding network, disk,
serial and other devices. Since virtio devices were a nesvfate, they required new guest
OS drivers to be written to support them. However, given thatdifferent devices share a
common virtio transport mechanism, less code needs to ieewfor new virtio devices.

To date, virtio drivers have been added to the Linux kernéMmdows drivers are also
available. As will be discussed in Section 4.13.1, we hadxpermental implementation

of Nahanni that built upon the virtio framework.
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3.2.5 Hardware-supported Virtualization in the x86 architecture

As the solutions of binary translation and paravirtual@agllowed hardware virtualization
on the x86 ISA, the use of virtualization grew in both the deglkand server environments.
Due to the growing popularity of virtualization, the two mak86 vendors, Intel and AMD,
both announced extensions to the x86 ISA to make virtugixB6 easier, by not requiring
binary translation or OS paravirtualization. Intel namkdilt extensiond/irtual Machine
eXtensiongVMX) and AMD named their extensiorSecure Virtual MachingSVM). The
respective extensions differed from one another in theirgieand are not compatible. The
first Intel CPUs with VMX shipped in late 2005. The first AMD CBWith SVM shipped
in the middle of 2006. Briefly, the new instructions enablsieacreation and control of
virtual machines.

At the time of writing, nearly all current x86 CPUs are shigpgth hardware virtualiza-
tion support (some low-power mobile chips and low-cost eechips are the exceptions).
The addition of hardware virtualization support made impating x86 hypervisors much
simpler by eliminating the need for binary translation omla paravirtualization. In 2006,
within a few months of the hardware extensions being retkasew hypervisors began to
appear, such as Parall€ls [44], that relied on the hardwdemsions. The Xen hypervisor
also added support to make use of hardware extensions atkeamatiVe to paravirtualiza-
tion. Another project that also began in 2006 as a resulteohw hardware extensions was

the Kernel-based Virtual Machine project, or KVM, which ietplatform for this work.

3.3 QEMU and KVM

To understand KVM, one must first understand QEMU [8]. QEME mputer hardware
emulator that uses dynamic translation to execute a pkti¢8A on top of a different
ISA (e.g., QEMU can emulate SPARC on top of PowerPC). QEMUpetup emulation of
numerous ISAs including ARM, SPARC, MIPS and many others.MQEcan be run on
a number of different ISAs such as x86, SPARC, PowerPC, M&&S, QEMU is a full
system emulator in that it creates virtual CPU(s), RAM, aadicks to execute a guest OS.
The emulated OS that is run on QEMU typically runs much slotlan it would on real
hardware because of the overhead of emulation, specifitalyranslation of the guest ISA
to the host ISA. QEMU is still useful despite the overheadEMW is commonly used for
development work when real systems are rare, low-powerekffarult to develop for and

debug software on. For example, QEMU is used for the smangphlevelopment emulator
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in the Google Android project.

Aside from emulating different architectures, QEMU carodie used to execute the
x86 ISA on top of x86 hosts without requiring hardware suppalbeit slower than other
binary translation systems such as VMware due to overhesd#ing from QEMU’s multi-

architecture emulator design.

3.3.1 The KVM Project

The Kernel-based Virtual Machine (KVM) project [29] begar?i006 to create an efficient
hypervisor based upon QEMU. As part of the KVM project, thetivarchitecture emu-
lator support in QEMU was modified to accelerate the x86-8&-ase by using the new
virtualization extensions on x86 processors. The new x86alization instructions must
be issued in privileged mode (i.e., the host kernel), nétedissg) the addition of a kernel
module that is the significant contribution of the KVM prdjedigure[3.8 illustrates the
basic architecture of QEMU/KVM when running a single gueSt ®&VM follows the hy-
pervisor model illustrated in Figufe 3.1 (a) and requiresuixias the host OS. The two-part
system of QEMU at user-level and KVM in the kernel is why themeQEMU/KVM is
used to describe the system as a whole, although KVM is maremamly used for brevity.
As shown in Figuré 3]1, the modified QEMU communicates with KM module via a
device file,/ dev/ kvmthat is created when the KVM module is loaded into the kerfibk

single KVM module can support multiple VM guests.
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QEMU/KVM VMs can be launched from the command-line. For epiemnthe follow-
ing command-line will start a QEMU/KVM VM with 2 CPUs énp 2), a virtual disk that

will contain the OS and applicationshda di sk. i ng) and 4 GB of RAM {m 4G).
genu- system x86_64 -snp 2 -hda disk.ing -m4G

The above is clearly a very simple but useful example. Thencand-line arguments
to QEMU are extensive and specify a wide array of devicesudioh network devices,
graphics and USB devices.

In brief, QEMU/KVM runs a modified QEMU process at user-letteht creates and
manages a VM in much the same way the original QEMU systemttiigiever, instead of
emulating CPU execution, this modified QEMU relies on the KX&tnel module to run
the VM natively on the CPU. The kernel module issues the aiization instructions to
achieve accelerated performance. It is the QEMU user-fawaless that allocates memory
that will serve as the virtualized guest's RAM. QEMU alsoates the virtual devices that
the guest OS will use. In turn, the KVM module will setup theextion of the VM via the
x86 virtualization instructions and actually trigger thi1'¢ execution. The QEMU process
and KVM module will pass control back and forth as the VM exesuWith the removal of
the QEMU emulation system, the majority of the guest’'s x&rirctions execute directly
on the hardware leading to significant improvement in penfoice (i.e., “Performance”
characteristic of Popek and Goldbergl[47]).

Virtual devices, including disks, display and network deg, are still managed by the
QEMU process at the user-level. When the VM accesses a dasoogrol will pass to
QEMU to perform the particular task on the virtual devicectsias sending a network
packet. Once this task is completed, QEMU will notify the KMkbdule to continue
execution and the VM will be resumed.

At the time of KVM’s release, hypervisors such as Xen and ViveABS X (Figuré 31 (b))
that run directly on the hardware were the growing trend. K¥&1 design was motivated
by the view that the task of the hypervisor is similar to thektaf any operating system in
that they both provide device and resource sharing andtisolbetween processes/VMs.
Moreover, the design trade-offs of process creation, adhmgdand memory management
are much the same in operating systems as they are in hypetvi$herefore, building
KVM on top of Linux leveraged all the work that had been dongh®sy Linux community
to make Linux a solid, yet flexible, foundation. With KVM, tiest OS that manages the
guest VMs is the same Linux operating system that users amihadrators are familiar
with. The only addition to a standard host kernel is the KVNMnig module. KVM VMs
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are regular Linux processes that share the CPU, memory addvéwe devices with the
other processes (guest VMs or otherwise) running on the sasteOS.
Aside from virtualization, the other research topic thahBiani explores is interprocess

communication which will be discussed in the following $eict

3.4 Interprocess Communication

Interprocess communication (IPC) is a fundamental topaoimputing in addition to being
a well-studied area of research. In general, IPC encompdksemechanisms that allow
threads and processes to exchange data and synchronizextpaition. In general, there
are two kinds of IPC, stream data and shared data. The disfinbetween the two lies
in that stream data passes entirely from one process to&nwathere as shared data is
simultaneously available to multiple processes. Opeayatystems typically support several
different IPC mechanisms including, but not limited to, g8p sockets, shared memory
and signals. The variability in mechanisms is a result of hgety of communication
needs that processes and threads may have. For exampleuoarating processes may
be geographically distant as in the case of web browsers afdservers which would
require stream data as the data may pass across the Inileehatively, communicating
processes may run on the same physical machine in the casghgfdrformance parallel
programs which could make use of shared-data IPC. The natuhe application(s) that
requires IPC will strongly influence which mechanisms cand®sl and which is best suited.

The research that has investigated IPC mechanisms hagexptade-offs of differ-
ent characteristics such as latency, bandwidth, secunilyemse of programming. Since
Nahanni provides a shared memory IPC mechanism with a godéminstrating high-
performance, we will discuss previous research that hasiéasifocus.

In terms of providing high performance, identifying andh@ihating extraneous copy-
ing of data during IPC has been examined in several contBxisstoloni and Steenkistgl[9]
characterized the trade-offs in passing data between ggeseand the OS kernel. The
authors emphasize the effects of buffering semantics faréifit IPC mechanisms on per-
formance and point to unnecessary copying of data as beiegaurce of overhead that
leads to poor performance. The insight into eliminatingytog of data served as a motiva-
tion for our work to provide a shared-memory interface beveo-located guest VMs that
reduces or eliminates copying of data.

Fbufs [16] are an operating system mechanism for efficietat tlansfer across protec-
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tion domains in shared memory systems. Fbufs use page rémagpd memory sharing
to eliminate data copying and improve performance. Fbufgleyra concept obriginator
andreceiverdomains. An originator domain allocates a series of bufferd sets permis-
sions so the intended receiver can map the same range of memmrits own address
space. Once mapped the receiver can receive objects froorithieator domain without
incurring intermediate copies. Fbufs were implementedhéMach microkernel. A mech-
anism like Fbufs was important for a microkernel like Macteda the modular nature of
a microkernel that may incur numerous copies as data isféraad between cooperating
servers.

Beltway Buffers[[13] are in-kernel mechanism for Linux th&es pre-allocated, long-
lived, shared rings for data movement for all IPC mechani@uoskets, pipes, file systems,
etc) as well as networking. By keeping all data in sharedsiidgta copies within the kernel
are reduced. Context switches are avoided by reusing thébtifiers to avoid continually
allocating and de-allocating kernel memory. The concefteisonce data enters the kernel,
either from an application or from a device such as a disk,data will be placed into a ring
buffer, called a DBuf. Data is copied into the DBuf only oncalas then accessed from
there by all kernel subsystems that need to access that @iataughput and latency are
improved by eliminating copies of the data between subsysigithin the kernel. Beltway
buffers reside entirely in kernel space, so their use is dei@ly transparent to applications.
Despite reducing copies in moving data through the kerragh chust still be copied from
applications running in user-level to ensure protectiomantained between applications
and the kernel.

Gamseet al. [20] explored optimizing IPC in the context of a microkerkelnel archi-
tecture in which communication between client and servecgsses is critical to overall
performance. More specifically, they explore IPC in the eghbf shared-memory mul-
tiprocessors with non-uniform memory access. Their work&ased upon the Protected
Procedure Call (PPC) model that allow clients to executeqaiare calls within the address
space of the servers that the clients need to communicakte WIPCs are an alternative
to message-passing systems that send stream data betwerdrantl server processes in
a microkernel OS. Executing a procedure call within the eesvaddress space eliminates
the need to send and receives messages to achieve the satheMeseover, copying of
data between address spaces that requires memory-to-sneomes and locking can be
eliminated to improve performance. The specific work of Gaetsal. was targeted for

the Hurricane operating system and did show improved PR®@wadhead through various
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Figure 3.4: Architectural Layers of Inter-VM IPC Systemddpted from Kel[26])

optimizations.

While the concept of PPCs are certainly foreign to the aetkptisdom of protected
address spaces, the motivation for them is consistent witlyoal of improving inter-VM
IPC by reducing memory-to-memory copying.

Architecturally, Nahanni is a significant departure frore\pous shared-memory IPC
approaches for non-VM environments. For example, mucheoéthliest work with shared-
memory IPC was in the context of process-to-process conuation [20], or user-level
process-to-kernel communication [60]. However, with itiadal, non-virtualized IPC only
a single OS kernel is involved in the communication, welbwmn techniques such as kernel-
level blocking for synchronization can be used. But, Nahamwolves multiple, indepen-
dent, guest OS kernels in different VM instances, theretbeetraditional synchroniza-
tion mechanisms are no longer available. So far, our apprbas been to use lock-free
and spin-based synchronization techniques, as well as\iiebased mechanisms such as
virtio-serial [26]. We do not claim any improvements of Nahaover the previous work
with process-to-process and process-to-kernel sharedenyd PC, but are merely pointing
out the architectural differences.

Now that we have highlighted IPC research related to shaexdary, in the next sec-
tion we will discuss previous efforts to improve IPC betweédd and their associated

applications.
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| | XenSocket] Xway | XenLoop| Fido | IVC | Diakhate| Nahanni |

OS mod module patch | module | patch | module | module module
Hypervisor xen xen xen xen xen kvm kvm
Hyp(_er_visor no no no yes yes yes yes
modified
Binary . no yes yes yes no no no
compatible
MPI support no binary binary binary | library library library
Data Format stream | stream| stream | stream| stream | stream stream &
structured

Details TCcP trust 2 vm

only limit

Table 3.1: Comparison of Inter-VM High-Performance Comioation Mechanisms

3.5 Inter-VM IPC

IPC between VMs, or inter-VM IPC, has been explored from ssvangles in previous
research. First, we can view the related work in terms ofircture and layers of ab-
straction (Figuré 314, adapted from Ke [26]). The two majmhéectural trends are: First,
as represented by Nahanni, and MPI-Nahanni (Sectidn 5eg)fagally, inter-VM IPC can
be implemented without any changes to the guest OS kernelon8gas represented by
XenLoop [61] and other systems, the guest OS kernel can bdietbdith new datapaths.

On the one hand, modifying the OS kernel can potentially nilagéast IPC completely
transparent to applications. For example, XenLoop is gicampatible with existing ap-
plications, not even requiring a re-compilation. On theeothiand, changing the OS kernel
is error-prone, can introduce new overheads and bottlengctiori 5.6) for many appli-
cations (i.e., not just applications needing fast inter-MRC), and the changes must be
updated as new versions of the OS kernel are released. Withridaand MPI-Nahanni,
updating a user-level library (if necessary) is easier f&nkernel updates, and many ap-
plications access IPC via libraries such as MPICH2/MP] [@8d the memcached client
library [63,[22] anyways. A small device driver is neededhwiitahanni, but the driver
is only used during IPC initialization (i.e., does not charaqny existing OS datapath for
the communication itself), and the standard kernel-taegedriver interface changes infre-
quently, which minimizes the update/maintenance problem.

Second, we can view the related work in terms of functiopaitd mechanisms. Ta-
ble[3.1 summarizes the different inter-VM communicationchamisms that will be dis-
cussed below and compares them based on their supportetvisgpeas well as whether

modifications are required to the hypervisor, guest OS amiest applications to use them.
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The row labels in Table 3.1 deserve some discussion to uadershe differences be-

tween the compared mechanisms.

OS modification All systems discussed require changing the guest operatisggm to
support the new transport mechanism. Depending on thetexitéime changes nec-
essary, the changes may be contained in a single kernel emadleinel modules are
advantageous in that they are compiled separately and sbraeompiling and rein-
stalling the kernel. A second advantage of kernel modulésaisthey can be loaded
at runtime without requiring a reboot. Mechanisms that argained within a kernel
module are labelled amodulein Table[3.1. If the changes are too extensive they
may require changes to multiple OS subsystems. In the lat®, ¢he changes re-
quire a patch to be applied to the kernel source, recompilatnd installation of the
new kernel, significantly increasing the installation effdlechanisms that require
patching are labelled gmatchin Table[3.1.

Hypervisor The two open-source hypervisors that have been used tdigetesinter-VM

communication are Xen and KVM.

Hypervisor Modified Some optimizations require modifying the hypervisor to @up
them while others do not. For example, Xen has supportedhshaages between do-
mains for some time via a mechanism called the grant tablehikt@sms that make
use of the grant table to enable shared-memory communicdtionot require mod-
ifications to the Xen hypervisor. As discussed, KVM commisgo parts: QEMU
at the user-level and the KVM kernel module in the host kerrk&r Nahanni, all

modifications are restricted to QEMU; the KVM kernel modidanot modified.

Binary Compatible When designing an optimization, a key design choice is wdredp-
plications can take advantage of the new mechanism withgutlanges to the ap-
plications or libraries. An application that can use a ma@m without requiring
any modification is said to bleinary compatible(since the executable binary appli-
cation need not be changed). Applications that either regainew API or code
modifications are not binary compatible. Typically optiatibns that exist entirely
in the kernel are binary compatible as user-level appboatiare essentially unaware

of their existence.

MPI Support MPI s the arguably the most common communication libratyigh-performance

applications. Accelerating MPI performance between VMsl@ddenefit numerous
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HPC applications. MPI is an abstraction and typically cdetpas a linked library. If
an optimization can be contained within an MPI library, apleation would simply

need to be re-linked, not recompiled, to take advantageeobpiimization.

Data Format Different IPC mechanisms are designed for different usesaStream data,
mentioned previously, is the most common communicationetiod IPC. Optimiza-
tions labelled astreamonly support stream-based communication, that is bagicall
message passing. An alternative to stream data is strdctat which requires
shared memory that is simultaneously accessible by meléipplications. Structured

data is stored in shared memory rather than just transfewesss shared memory.

Details Additional details regarding the use of particular mechars are mentioned.

The use of inter-VM shared memory for communicating betwegkts has previously
been explored. The majority of inter-VM communication sl has focussed on the Xen
hypervisor [7] due its having been available since 2003 aidgoopen source. Recalling
that Xen uses the term “domain” to refer to VMs, the term “firdemain” in the following
discussions is equivalent to “inter-VM”. To the best of owmolwledge, no other research
project has explored using shared memory between host &3 gpplications.

XenSocket[[64] is an inter-domain communication systemphavides one-way com-
munication sockets between co-located Xen domains. Xé@boses shared memory be-
tween the guest domains to transfer the data, but does put difect access to the shared
memory from user-level. Data is sent and received usingtredardsend() andrecv()

calls typically used in Unix sockets programming. XenSddkenot binary compatible
with existing applications, that is applications must bedified, albeit minimally, to use
XenSocket. One important insight that XenSocket highighithat the page-flipping mech-
anism that was available in Xen was not optimal for inter-Vdtfprmance even though it
reduced explicit copying. Page flipping is a mechanism fdZ tRat remaps pages be-
tween process address spaces (or in the case of Xen, beteeming) rather than copy-
ing the data, thus saving one copy operation. The fact thaSxeket achieved improved
performance over the standard page-flipping mechanismeshtvat the overhead of page-
flipping is significant and may not provide the best solutimrthe case of XenSocket, using
fixed shared memory between domains achieved better penfmerthan page flipping.

XenLoop [61] used shared memory to create a high-performapback mechanism
to speed network communication between co-located VMs. akesiimemory region that

can be accessed by both VMs is created using a Xen-specdiedaomain shared memory
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facility. Inter-VM network FIFO channels are created bedweeommunicating VMs that
can pass messages through the channel with minimal copy{egLoop is abstracted in
the virtual hardware of the Xen domain meaning that no chagexisting applications,
libraries or the front-end network device (recall Xen haglt slevice driver model) are
necessary to take advantage of XenLoop. A potential drakvbathe XenLoop design
is that it does not expose shared memory to the guest OS acaipphs and still incurs
copying through the network stack.

Fido [10] is another shared-memory optimization for Xerdd+ielies on trust between
co-located VMs. To eliminate copies, Fido allows each gteshap all other guest do-
mains’ memory with read permission. The authors claim than enterprise environment
cooperative mapping of all guests’ memory is reasonablausecthe likelihood of a ma-
licious guest is extremely low in a private, company-colfgtbenvironment. By mapping
the sender VM'’s address space into the receiver's addrese sine receiver can read data
directly from the sender’s address space, thus eliminaticgpy. Similar to XenLoop, Fido
implements a network device that uses the mappings to maeeeffeciently and without
requiring modification of applications or libraries. Fidasvalso used to implement a block
device interface.

Xway [28] is another inter-domain communication optimiaatfor Xen. Xway chooses
to maintain binary compatibility to support legacy applicas and libraries rather than ex-
pose a new API. Xway intercepts packets above the TCP neiwgplkyer and passes those
destined for co-located VMs through inter-domain sharedhorg without going through
the network layer. Xway requires modifying the Linux kertebupport intercepting pack-
ets and only accelerates TCP traffic.

IVC [24], also for Xen, chooses to not provide binary comipifity, but creates an
IVC user-level library that applications must be writterute. Similar to our evaluation of
Nahanni, the evaluation of IVC includes creating an IVC-andPI library, mvapich2-ive
that MPI applications can be linked against. Creating sudbrary allows MPI jobs to not
require modification, but just re-linking to take advantag®/C. IVC'’s design allows user-
level memory in one guest to be shared with other guests. &satler mechanisms, IVC
uses Xen's grant table mechanism to achieve this. IVC fasues stream-data benchmarks
and does not explore structured data use cases. |VC alsmagdinat shared memory be
separately configured for each pair of peers.

As mentioned, the majority of research has focussed on Xgmebearch involving the

Linux/KVM project [29,[30] is increasing. KVM is a more redeproject since it builds
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upon hardware virtualization extensions in x86 architexsithat were not available until
2005.

Diakhatéet al. [15] investigated an inter-VM shared-memory system for pramarily
with MPI. The system uses a virtio-based device added to gaekt to access the shared
memory. Multiple guests for their system were created uslieg or k() system call to
facilitate easy sharing of memory. Requiring all cooparatguests to be created with
fork() eliminates the possibility of running differently configar guests. The system
achieved near native performance, but experiments welrécted to a small subset of MPI
commands. In principle, this mechanism could support oest shared memory, but it
was not mentioned by the authors.

VMware had a shared memory mechanism available for desktapalization called
VMCI [59]. VMCI allowed applications to create named shamdmory regions that are
shared between guests. For reasons that are not entiraly ¥IRICI was deprecated in
favour of a socket mechanism. We are not aware of any res@amling VMCI shared
memory.

Given the variety of research that has been conducted on\iMecommunication it
is worth re-iterating that to the best of our knowledge ngguits have explored sharing
memory to the user-level as Nahanni allows. As well, Nah@ntiie only mechanism that
allows host-guest sharing since the shared memory can besaztby applications that are
running directly on the host OS.

So far in this chapter we have focussed on hardware viratgiz and IPC as they
are the two fundamental concepts that form the basis for NahaHowever, to give a
complete picture of Nahanni's design and function thereatse some concepts related to
the specific implementation of Nahanni as part of QEMU andLihex kernel that must

also be discussed.

3.6 The Linux Kernel

The particular implementation of Nahanni that is preseiriehlis work is based upon Linux
at both the host and guest levels. To be clear, Nahanni'glésiOS agnostic at the guest
level, but for the experiments shown later Linux was usedhAtost level, Nahanni builds
upon KVM which is a Linux-specific system, but the design ofhillani could be ported to
other host OS/hypervisor pairings. In this section we wdberate on the Linux-specific

elements that are part of the Nahanni design.
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3.6.1 Device Drivers

In Linux, like most modern operating systems, peripheraiabs are supported by device
drivers. Device drivers are code modules the host OS usesidmct with the device.

Device drivers implement an abstraction so that the kerapla®mmunicate easily with

devices. By encapsulating the implementation details aérgpperal within a driver, and

exposing a standard interface to the kernel, a device dhighrs to make the OS more
modular and stable.

Devices are generally separated into three broad categdsleck devices, character
(called “char” for short) devices and network devices. Aidewriver identifies itself as
either a block, network or character device during configoina As their name reflects,
block devices make data from their device availableblakswhich have a fixed and de-
fined size. Block devices send and receive these fixed-siokdbf data to their respective
devices. Given that block devices have a defined size they alndom access to the data
via the driver. The most common block drivers are file systdmeers. Character devices
differ from block devices in that they send and receive stieaf bytes to their devices such
as serial ports or console devices. Since data is streammjththe device to say a display
device, and not stored, character devices typically do uygpart random access.

Drivers are written for a specific bus type and implement ao$dtinctions that the
kernel will use to configure and operate a device. In the chk&ax, the probe()andre-
move()functions are the two necessary functions provided by ecdatiiver that configure
and deconfigure the device, respectively.

Character devices also typically implement the standar8IRGile system operations
such asead(), wite(),ioctl() and so on. A device will also have a corresponding
entry in the /dev file systemgdev/ f oo for example. By performing file operations ogev
/ foo an application can control the device associated with the/ f oo device file. One
supported character device operation that is of partidmaortance to Nahanni isvap()
that can allow a region of device memory to be mapped to eset:| Given Nahanni’'s goal
to provide zero-copy data sharing between VMs, being abiedp the shared memory to

user-level is essential to avoid the copying of data fromuiger-level to the kernel.

3.6.2 PClandUIO

The Peripheral Component Interface (PCI) is a device bugtioaides access to peripheral
devices that are plugged into a computer’s motherboard PQidus is the most commonly

used bus on desktop and server computers today giving thputemaccess to its graphics,
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sound and network devices.

PCl is more than simply a bus, but defines how the OS shouldarttevith PCI de-
vices. More recently, a new standard call@l Expressas been defined to provide better
performance and give more flexibility than the original P@piementation. However, PCI
still remains a common interface for many devices.

In 2009, a new device driver model was added to the Linux Keraked UIO and its
goal was to move as much device driver code for PCI deviceslser-level applications
instead of having more code in the kernel. The observatiahniotivated UIO was that
there are numerous devices that have similar and straigiafd behaviour. That behaviour
is reading and writing to a few registers and accessing mgorothe device. Both of these
operations can be performed at user-level if the devicestegi and device memory are
mapped into user-level. Drivers that make use of the UlQfate still require some code
to run in a kernel module, but that code is much simpler thaadittonal device driver.

The UIO design fits well with Nahanni's design goals as itvaficefficient access to
devices from user-level eliminating traps to kernel-levbich can be a source of overhead.
UIO does require a small amount of driver code that runs inklreel. The purpose of
the kernel level code is to configure interrupts and enuraeramory regions that will
be mapped into user-level. Any UIO device is accessible lay-level applications via a
device file nameddev/ ui oNwhereNis an integer beginning at 0. The device file is created
when the driver is loaded. Since the device file is part of leesfistem namespace, it can
be protected with the necessary file permissions to limigsgto authorized applications.

As of version 2.6.37, the Linux kernel currently ships witkuf UIO device drivers that

are used for a variety of devices.

3.7 Concluding Remarks

This chapter has provided a background in the general cttegd are important in under-
standing Nahanni such as devices, IPC and the Linux kerneled¥er, we have discussed
the previous research that relates to Nahanni to expressis/inavel in the design and
implementation of Nahanni. As much as possible we have tdielessons from previous
research in designing Nahanni. In the next chapter, we woNige a detailed description

of the design and implementation of Nahanni.
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Chapter 4

Design and Implementation

To this point, Nahanni has been discussed at a high levetrimstef its function and goals:

Nahanni is a user-level, shared-memory interface for ainachines (VMs) that supports
both stream data and structured data. In previous chaptersave motivated some of the
use cases of Nahanni and discussed the previous researcorasepts that relate to it. It
is now fitting to discuss the design and implementation ofasaih at a detailed level and

describe precisely how Nahanni allows multiple VMs to shasmory.

4.1 Design of Nahanni

In the design of Nahanni, each piece was deliberately anefutbr chosen. Figuré 411

illustrates the three major elements implementing Nahanni

1. APOSIX shared-memory region on the hostNahanni uses host resources, namely
POSIX shared memory as it exists in Linux, as the basis forirmipanemory. No
moadification is required to the host OS or any of its existiegilel modules, including
KVM.

2. A modified QEMU that supports a new Nahanni device.Nahanni requires adding
a new virtual device, named “ivshmem?” for inter-VM sharedmuoey, to QEMU/KVM.
Section[4.4 describes in detail the changes that were rayess the user-level
QEMU to support the device. These changes have been mergethan QEMU
release as of version 0.13 from August 2010 [48, 33, 35]. Mweivshmem is the
virtual device implementation of Nahanni and the two terniksbe used interchange-

ably in this chapter.

3. A Nahanni guest kernel driver. A new Linux kernel driver was created that can

communicate with the ivshmem device. The kernel driver tee#he interface to
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the guest user-level to give applications within the VM diraccess to the shared

memory. The device driver is available from a public sousgository [40].

Although different approaches were possible, these tHezeemts that implement Na-
hanni reflect our design goals in creating a shared-memochamesm. These goals include
providing an shared-memory mechanism that providesytiithose applications that use
it while having no negative impact on applications that douse it. With the above three
components, VMs that do wish to share memory can do so withoetous installation
effort. Furthermore, memory can be shared between hostwest gpplications or between
applications in different guest VMs.

While the final implementation that we will describe may aap® be straightforward
and obvious, in fact there were other compelling alterestiwith strong advocates from the
within QEMU/KVM development community. Some of the propgsdternatives may have
provided equivalent functionality but are inferior frometpoint of view of orthogonality

(e.g., optional Nahanni device), flexibility (e.g., UIO cpaitibility) and simplicity/adapt-
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ability (e.g., raw shared memory).
In the next section, we will layout the alternatives and etate on the choices that were

made.

4.2 Design Alternatives

Although the final form of Nahanni is straightforward, thevere reasonable but more
complicated designs that were considered, implementetieeentually rejected. While a
detailed discussion of related work was given in Chdptee8s we sketch out some of the
particular design alternatives not chosen for Nahanni teebenderstand the choices that
were made.

First, Nahanni supports arbitrary structured data in sharemory instead of just stream
data. Unlike the XenSocket [64], XenLodp [61], and IMCI[24¢ohanisms based on the
Xen hypervisor, Nahanni is targeting a broader array ofiagpbns than just those that use
stream data mechanisms, such as sockets. If Nahanni wgréoonksed on stream data,
then the design could have abstracted Nahanni shared memaryin-kernel socket inter-
face, similar to XenSocket. However, such a design wouldatiotv structured data and
would require a robust programming interface that mayitsither uses. Instead, we have
targeted low-latency, structured-data use cases as westlemm-based applicatioris [63].
Structured-data use cases are thosediwat data in shared memory, as opposed to stream-
based use cases that simpignsferdata across shared memory. The Fido systern [10] for
Xen targets both stream data and block (aka structured)lattaunlike Nahanni, Fido does
not currently handle storing data directly in shared menwrgynchronizing via shared
memory.

Storing data and synchronizing in shared memory can allguliGgtions that rely on
structured data, such databases or in-memory caches, dathlantage of Nahanni. In
particular, we have explored the use of Nahanni to extendvéteknown memcached [37]
to cache key-value pairs in Nahanni memory, and then alloWiptel VMs to access the
cache. As well, in Section 5.4, we show that Nahanni is up tion@g faster than other
mechanisms for stream data, with the appropriate code elsang

Second, Nahanni uses the peripheral component interf&2i¢ $andard for peripheral
devices. Supporting shared-memory IPC mechanisms in QEMM/ has other design
alternatives. Specifically, one could build a shared-mgmmoechanism within the virtio

subsystem, which negates the need to use the PCI bus. Ilrofathe insistence of the
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QEMU/KVM open-source community, an earlier implementatid Nahanni was based on
virtio (see Sectiofn 4.13.1). However, after a great deal atkwwe (and the community)
ultimately decided that the number of changes required tvio support Nahanni was
too large. Therefore, we abandoned the virtio implememtat favour of the current PCI-
device-based approach to Nahanni. Designing Nahanni asl @d¥ce required fewer
code changes to QEMU and more easily supports use by othex tB&esupport PCI such
as Windows. Using PCI also allowed the guest driver to be dagen the UIO driver
framework that allows applications greater control oveirtihse of the Nahanni device.

The failed experiment with a virtio-based implementatidrNahanni is a classic ex-
ample of how a community’s first instinct can be wrong. Onedhe hand, virtio was
(and still is) considered to be the future of high-speed-tlatasfer mechanisms within QE-
MU/KVM. That is why virtio and the related concept of vhosedey points of comparison
in Chaptetb. And, it seemed, any new mechanism that mightowepdata transfers should
(incorrectly) be implemented within that framework. On thther hand, virtio is based
on direct memory access (DMA) or transfer-engine-like saing, which is fundamentally
different from the classic shared-memory semantics of Naha-urthermore, given a re-
gion of Nahanni shared memory, it can be used as part of aieeffidata-transfer strategy
(Sectior{5.3.2). But, it is not possible to efficiently shdega if a DMA engine is all that is
available. Our lessons will be presented to the QEMU/KVM owmity [34].

Third, Nahanni exposes shared memory up to the user-leweina¢Ms. Reading and
writing to Nahanni memory requires no intervention from thest kernel or hypervisor.
This user-level design avoids crossing two protectionibarr from guest user-level to
guest kernel and from guest VM to host when accessing thedmemory. VM exits are
expensive because they result in switching control to thet B8, a sort of heavyweight
context switch. The alternative to the user-level desigaldibide Nahanni memory within
the guest kernel or within the virtual hardware as an intBt-¥iterconnect similar to Xen-
Loop. If we had chosen to hide shared memory below the guestkkevel, then guest
kernel traps would be necessary for each communicationming§tdata and using synchro-
nization primitives directly in shared memory without tpamy into the kernel can have a
significant performance impact. In Sectionl5.5, we dischesGAMESS computational
chemistry application which uses shared memory for datdrghand for synchronization
via semaphores (see Figurel5.5). Without shared memory, B3®/can use stream data
mechanism (i.e., sockets and the Message-Passing Iték)), but we show how using

Nahanni results in up to a 30% improvement in performance.
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Exposing shared memory to the user-level requires theagign to be modified to use
it, however we are interested in exploring those modificetiand the trade-offs involved.
As aresearch project, Nahanni is designed to allow usergalore both stream-based and
structured-data applications that may benefit from sharechony.

Now that we have explained our design decisions at greafghdee will provide a

detailed explanation of three main components that comd@&hanni from Figurg 4.1.

4.3 Component 1. POSIX Shared Memory

Linux, like most operating systems, supports sharing mgnh@tween processes as a
method of IPC. There are two well-known interfaces that supghared memory in Linux:
POSIX and System V (SysV). Since Nahanni uses POSIX sharetbnyeonly the POSIX
interface will be described in detail, however aside fromitiitial setup, POSIX and SysV
shared memory can provide the same shared-memory semaaticsliscussion will also
focus on the C library interface for POSIX shared memorysiQEMU/KVM is imple-
mented in C.

A Linux process can create, modify and destroy shared memanuch the same way
that it can disk files. We will use the phrasieared-memory objetd refer to memory that is
shared to distinguish them from memory-mapped files whichatso be used for sharing.
While shared-memory objects are accessible via the filesyaamespace, they do not use
any stable storage for backing, so they differ in that waynfteaditional memory-mapped
files. For example, shared-memory objects are not persiateass reboots whereas tradi-
tional memory-mapped files are.

The C library interface for accessing POSIX shared memosjnidlar to the interface
for accessing disk files. There is a difference in syntax vewePOSIX shared-memory
objects are accessed wiamopen() andshmcl ose() system calls rather tharpen() and
cl ose() calls that are used for disk files.

Figurel4.2 shows the code that was added to QEMU to open thedsheemory object
using theshmopen() function on lines 3 and 10. While this code happens to be takem
Nahanni, there is nothing Nahanni-specific about it. Codgrfrents from other programs
that use POSIX shared memory would be similar.

Another difference between shared memory and disk filesais thad() andwrite()
system calls cannot be used with shared memory. Shared-einjects are to be mapped

into the process’ address space usingrig() system call and accessed like an array or
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1 /* try opening with OEXCL and if it succeeds zero the nmenory

2 * by truncating to 0 */

3 if ((fd = shmopen(s->shnobj, OCREAT| O.RDWR OEXCL,

4 SJIRWKU S| RWKG SIRWKO ) > 0) {

5 [+ truncate file to length PCl device' s nenory */

6 if (ftruncate(fd, s->ivshnmemsize) != 0) {

7 fprintf(stderr, "ivshmem _coul d_not_truncate_shared file\n
")

8 }

9

10 } else if ((fd = shmopen(s->shnobj, OCREAT| O.RDVR,

11 SJIRWKU SIIRWKG SIRWKO ) < 0) {

12 fprintf(stderr, "ivshmem _coul d_not_open_shared_file\n");

13 exit(-1);

14

15 }

Figure 4.2: Nahanni: Opening of the shared-memory obje@&MU

pointer-based structure (i.e. with load and store operajio
Within QEMU, after the POSIX memory object has been opendH s¥imopen(), an
mrap() system call is used to map the memory object into the QEMUgsscaddress

space:

ptr = mmap(NULL, s->ivshrmemsize, PROT_READ| PROTWRI TE, MAP_SHARED, fd,
0);

To help understand the above function call, we will expldia arguments. The first
argumentNULL, indicates that the memory can be mapped to any availablessldange
within the process’ address space. The second argumefi;shnemsi ze, passes the size
of the memory to be mapped. The next two argumentsrip() specify protection modes
(PROT_READ| PROT_WRI TE) and configurationMaP_SHARED) for the memory and are similar to
most mmap calls in general. The second last argumenis a file descriptor returned from
the shmopen() call that indicates the memory object to be mapped. The fiaedmeter
is the offset into the shared memory object to map from. Nahakvays maps from the
beginning of the region, so this parameter is 0.

The abovemap() call shows the essential mechanism of how a QEMU process gain
access to the shared-memory region on the host. If two or Q&MU processes map the
same shared-memory object (i.e., using the same POSIXdshamory object in the file
system namespace passed to mmap viadreggument), those processes can communicate
and share data via loads and stores to the shared-memoonregi

This section has explained in detail how POSIX shared menasrt exists in Linux,
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is accessed to create a shared-memory region on the hose yEMU application. In
the next section, the additional changes made to QEMU witldseribed to illustrate how
QEMU, via the ivshmem device, allows a guest OS to access @& shared-memory

region from the host.

4.4 Component 2: A Modified QEMU

The modifications that were necessary to QEMU comprisechgdalnew virtual device to
the QEMU/KVM virtual hardware support. No modifications arecessary to the KVM
kernel module and so changes are restricted to the useQQ&MU application.

QEMU/KVM, like all virtualization solutions, provides a VNhat can execute an un-
modified OS. Real computers perform input and output (I/@)davices such as network
cards, disk drives and video displays that are controlleldogel drivers for those devices.
Virtual hardware must perform 1/O in the same way, via vilized devices implemented
to standard interfaces (e.g., PCI), to support unmodified0S0 in designing a shared-
memory interface between VMs, it is natural to implemensihg a standard device inter-
face, such as PCI, that QEMU/KVM supports.

A major goal of this work was to have an impact on the broadeMQEVM com-
munity and having our changes merged into the QEMU/KVM proyeas key to achieving
this goal. Since our changes add a new virtual device, thegipespecifically to QEMU,
the user-level portion of QEMU/KVM that manages the hardwamd memory of the VM
(see Chaptédr] 3).

The implementation of Nahanni with respect to the code chamgcessary to QEMU

can be best understood as three parts:
1. a new virtual PCI devicavshmem
2. anew memory-allocation method for QEMU

3. anew command-line option for ivshmem

All three mechanisms require modifying the code base of QEM&mentioned, the

modifications total 800 new lines of code to the user-leveMREapplication.

4.4.1 ivshnmem The Nahanni PCI device

Nahanni is implemented as a new device in QEMU called ivshm&smentioned, given

the similarity to graphics memory behaviour, an existingwal graphics card in QEMU
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ivshmem PCI Device
Config Space
Device ID | Vendor ID | Oh
other fields
BAR O 10h
BAR 1 14h
BAR 2 18h
BAR3 | |1ch
BAR4 | |[20n
BARS | |24n
3Ch
more config
l
Register
Memory Shared
Memory
(. J

Figure 4.3: Nahanni: ThevshmemPClI device layout

The configuration space and 2 memory regions are shown. Heeduhiress registers
(BARS) within the configuration space are used to access #mary regions. BARO
points to register memory region while BAR2 points to thersdanemory region.

was used as a guideline for creating the Nahanni device. thaliPCI device was chosen
as the mechanism for accessing the shared memory regioe bosh Figuré 413 illustrates
the important components of the ivshmem PCI device thathgikxplained in this section,
namely the configuration section, register memory and shax@mory of the device. PCI
supports accessing large regions of memory on devices sugiiaphics cards that can have
gigabytes of video RAM. As well, PCI is supported by nearlyc@mmodity operating
systems and so could allow Nahanni to be used by other guest 8h as Windows or
FreeBSD.

The design of QEMU is intentionally modular. All new devidaQEMU must follow
the qdevinterface that defines a standard interface for periphenétds that QEMU emu-
lates. Figuré 414 shows the qdev definition of the ivshmenicdev he definition consists
of aPCl Devi cel nf o C structure as shown in Figure ¥.4. This structure servesda$irai-

tion of the device that QEMU will use to create and control deeice within the virtual
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1 static PClDevicelnfo ivshneminfo = {

2 .qdev. nanme = "ivshnent,

3 .qdev. size = sizeof (|1 VShnentst at e) ,

4 .qdev.reset = ivshmemreset,

5 .init = pci_vshmeminit,

6 .exit = pci_dvshmemuninit,

7 .qdev. props = (Property[]) {

8 DEFI NE_.PROP_CHR( " char dev", |VShnmentstate, server _chr),

9 DEFI NE_.PROP_STRI N& "si ze", |VShnenttate, sizearqg),

10 DEFI NE_.PROP_UI NT32("vectors", |VShnenttate, vectors, 1),

11 DEFI NE_.PROPBI T("i oeventfd", |VShnenttate, features, |VSHVEM
| OEVENTFD, fal se),

12 DEFI NE_LPROPBI T("msi ", |VShnenttate, features, |VSHVEMMSI, true)

13 DEFI NE_.PROP_STRI NG "shn', 1VShnentt ate, shnobj),

14 DEFI NE_LPROP_STRI N& "rol e", |VShnenttate, role),

15 DEFI NE_PROP_END_OF_LI| ST(),

16 }

17}

Figure 4.4: Nahanni: The qdev PCI device structure for ivstmn QEMU

hardware including adding the necessary command-linepeteas.

The structure defines the name (line 2), the size of statereetj(line 3) and function
pointers to control the device at a high-level for resete(l#), initialization (line 5) and
deallocation (line 6). Theqdev. props field (line 7) defines the command-line options for
ivshmem which will be discussed in Section 414.3 and Sefién

The initialization of the ivshmem device is performed by fbaction pci i vshmem.
init(). When a QEMU VM (with or without K\VVM) is booted, all devices Whave their
initialization functions invoked. All persistent state the device is maintained in a single
data structure, the device structure. The device structoméains all the state the device
needs to maintain to perform its functions. For example,tvork device would need to
create buffers to handle the sending and receiving of ddta.size of the device structure
must be declared in thejdev. si ze field (line 3) as the qdev system will allocate the needed
space for the device (the initialization function need rlmtcate it explicitly).

Though the creation of the ivshmem device is QEMU-specifieims of the mecha-
nisms described above, the device that is created musiftiie PCl standard in its layout
and behaviour. It is now fitting to discuss how the ivshmeniaeshares the POSIX mem-
ory region it mapped into QEMU (see the previous Sedfioh Wi8) a guest OS through

the PCI device interface.
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Nahanni PCI config space

All PCl devices, virtual or real, have a 256-byte configumatspace that is physically part of
the device. The configuration space is labellmhfig Spacein Figure[4.8. When a device
is connected to the PCI bus, the configuration space laymtsathe OS to determine the
type of the device, the vendor that made it, and all detaitsialts operation. By reading
the vendor and device IDs from the configuration space, teeabpg system can load the
correct driver for the device if the OS has it available. Ifdnwer is found for that particular
device, the device cannot be used.

The PCI configuration space is divided into 27 fields that aiontarious details about
the device. The first two fields of the configuration space &rbits each and specify the
device and vendor ID, respectively. The remaining fieldhefdonfiguration space specify
features of the device including interrupt behaviour ananmeg regions the device may
have.

QEMU virtual devices have a configuration space that is impleted as a 256-byte
array. The initialization function for a QEMU device musndigure the PCI configuration
space correctly so the guest OS can read it. The QEMU codepbagieles a convenient
set of macros for setting the various fields of the config spRoe example, the following
macro sets the 16-bit vendor ID for the ivshmem device. Redida. [51] which owns

KVM, allowed its vendor ID to be used for the ivshmem device.
pci _.confi g_set _-vendor _i d( pci _conf, PCl -VENDOR.| D.REDHAT_QUVRANET) ;

An important group of fields in the PCI configuration spaceeigards to the ivshmem
device are the base address registers (BARs). BARSs poiflitetoeigions of memory on
PCI devices that are involved in the device’s function (gmphics memory on a graphics
card). A device can support up to six BARs.

On the ivshmem device, up to three bars are used: BARO is alwagd and points
to register memory for the device; BAR1 is optionally usethdssage-signalled interrupts
(MSI) are used; BAR2 is always used and points to the shamdary region. The Nahanni
device driver reads the three BARSs to configure device adogb® guest for the regions.
In general, a PCI driver for a particular device must knowahBARs are used by that
device and whether they are registers to control the devimehaviour or simply a memory

region (as in a graphics card or ivshmem).
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Nahanni Device Memory

The Nahanni PCI device contains two memory regions thatefezenced by BARO and
BAR2 in the ivshmem PCI configuration space. The ivshmemagegontains a small
region of register memory labelled BRegister Memory (BARO in Figurd 4.B). The register
memory is not shared between guests. The use of the registaom will be discussed in
Sectiorf4.65. The POSIX shared-memory region is labeb&thared Memory (BAR2 in
Figure[4.B). Of course, the shared-memory region is shazbuden guests.

The above description summarizes the layout of the ivshimearncel in accordance with
QEMU's qdev device model. In the next section, we descrilgentiodifications that were
necessary to the QEMU memory-management code to supparséhef a mapped POSIX

shared-memory object for the shared memory region of theriesn device.

4.4.2 Mapped Memory Allocation

Virtual devices are allocated as part of the virtual harémair a QEMU process within
the QEMU process’ address space. Since QEMU VMs are nornmaixLjprocesses, the
QEMU process has to explicitly allocate memory for the \attRAM of the VM and for
any device memory (such as graphics memory). Since QEMUstsgjuegular Linux pro-
cess, it allocates memory using the standard memory atbocatethods such asl | oc().
QEMU keeps track of memory using structures called RAMbdofdespite the name, the
memory can be used for device memory, not just RAM). For exantipe allocation wrap-
per function within QEMUgeru_r amal | oc(), is passed an argument indicating the size
of memory to be allocated and returns a pointer to the menidmg. allocated memory is
tracked in the RAMDblocks structure and can be used by the QEWérvisor for system
RAM or device memory.

As shown in Sectioh 413, the standard Linux mechanisms farirsh memory, namely
POSIX shared-memory objects and thep() system call, can allocate a region of mem-
ory and make it accessible within a process’ address spacedér for QEMU to use this
memory for device memory (i.e, ivshmem) a method was neamladd the mapped region
of memory to the RAMblocks. Therefore, a new function namesth_r amal | oc_from
ptr() was added to the QEMU memory allocation functions. The nawetfan allowed
a QEMU device’s initialization to pass a pointer to an algealfocated region of memory
and have that memory added to the RAMblocks for proper manage In the case of the
ivshmem device, a region of shared memory would be mappedhetQEMU process us-

ing mmap and then added to the memory of the running systegurdf4.b shows the lines
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1 ptr = map(0, s->ivshmemsize, PROT_READ| PROT_WRI TE, MAP_SHARED, fd, 0);
2

3 s->i vshmemof fset = genu_ramal | oc_fromptr(&s->dev. qdev,

4 "ivshmem bar2", s->i vshnemsize, ptr)

Figure 4.5: Adding memory accessed wieap() to QEMU’s memory allocation

The dynamic memory allocated by theap() call (line 1) is added to QEMU’s memory
allocation (line 3) via the newenu_r amal | oc_fromptr () function. This new function is
used to add mmapped POSIX shared memory that serves as thd-sf@mory region
between VMs.

of code that map the memory (line 1) and then add that memo@&bIU’'s RAMblock
memory-management system.

The memory region is given a helpful name (“ivshmem.bar¥’passing a string to the
function (lines 3 and 4). Naming the region allows for easmnagement and debugging.
The allocated region is reserved for use by the ivshmem devithin QEMU. When the
call to genu_ramal | oc_fromptr () returns successfully, the memory can be used by the

ivshmem device to provide the shared-memory region for éwice.

4.4.3 New Command-line Option

As shown in Section 313, QEMU/KVM VMs are launched via the coamd-line. Na-
hanni's ivshmem device, like any device in QEMU/KVM, is adde a virtual machine via
a command-line argument, such as:

-devi ce i vshmem shne<nane>, si ze=<si ze in MB>

The above command-line switch would simply be added to thgetaQEMU/KVM

command-line as shown in Figure 4.6.

genu- system x86_64 -snp 4 -device i vshnmem shmenahanni .shm si ze=4096 -
hda karmic.ing -net nic, macaddr=00: Oc: 29: f 0: bc: 30, vl an=0, nodel =
virtio, netdev=bar -netdev tap,ifname=vhosttap0, downscri pt=no,id=
bar, vhost =on -m 8g

Figure 4.6: An invocation of the QEMU hypervisor with an imsém device attached
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When the VM specified in Figurle 4.6 boots, an ivshmem PCI @ewidl be created
and connected to the virtual PCI bus in the guest. In the el@ogmmand-line above, two
parameters to ivshmem are specifiedze andshm These parameters define the shared-

memory region to be used for the ivshmem device:

1. sizedefines the size of the shared-memory object. The size muspbwer of two,

a restriction of PCl memory regions.

2. shm specifies the POSIX shared-memory object to use as the sheeetry. The
object will be created if it does not exist and truncated ® shecified size. If the
object already exists, QEMU will not resize it but will ensuthe size of the object

matches the size given with the ‘size’ parameter.

There are other parameters that pertain to a more advandehNeconfiguration that
will be described in Sectidn 4.6.

4.5 Component 3: Guest OS Device Driver

The third and final component that is necessary for Naharmmidevice driver. Since the
ivshmem device conforms to the PCI standard for device, ¢hed driver will make use of
Linux’s in-kernel PCI driver interface to configure the dewifor use. The driver that will
be described is for the Linux OS since we target Linux as oaesg®@S for our evaluation.
We chose to use the Linux UIO device driver framework for ttamem device to simplify
the implementation and minimize the amount of code that atitkernel level.

It should be mentioned that the Nahanni ivshmem device énQEMU is both guest
driver and guest OS agnostic. A non-UIO Linux driver couldviditen to control the
ivshmem device. In fact, the first guest driver implemented wot based on UIO. Also,
the QEMU-based ivshmem device can be supported by guest @sa&sthan Linux by
writing a driver for the desired OS (e.g., Windows). We areanof at least one Nahanni
user who has written a driver for ivshmem for an operatingesysother than Linux.

Sectiori 4.8 will describe how the ivshmem device is accesad user-level by appli-
cations. Here, we will discuss the driver and how it configuhe device.

Device drivers are the software interface that allow the&kand applications to make
use of hardware devices. The simplicity of Nahanni's desitpws the driver to be straight-
forward as well. In short, the driver configures the ivshmeamick and requests the guest

kernel to map the device memory into the kernel's addressespBhe driver then enables
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i nfo->nmeni 1] . addr = pci resource_start(dev, 2);
if (!info->menil1].addr)
got o out _unmap;
i nfo->nmeni 1].internal _addr = pci_i oremap_bar(dev, 2);
if ('info->menfl].internal _addr)
got o out _unmap;

i nfo->nmeni 1].size = pci _resource.l en(dev, 2);
i nfo->nmeni 1] . mentype = U O.MEMPHYS;

OO ~NOOUTDAWNPEP

Figure 4.7: Nahanni: kernel driver initialize for ivshmemvite memory

The ivshmem shared-memory region is configured in the Ul@eddode. Three PCI
configuration functions are called on lines 1, 4 and 8 to conéighe ivshmem
shared-memory region so that the memory can be accessedi$amtevel.

the necessary functionality to allow applications to mag themory region from kernel
space into user-level.

The code section shown in Figure 4.7 is part of the ivshmem dH@r. While Fig-
ure[4.7 does not show the complete driver, it shows the eabpatt of the kernel driver that
configures the Nahanni shared-memory region. The ivshmamrdralls three PCI kernel
functions: pci _resourcesstart (), pci _i oremap_bar () andpci _resource_ en(). In par-
ticular, pci _i or emap_bar () requests that the kernel map the device memory on BAR2 (the
shared-memory region) into the guest kernel’s virtual egslispace.

Once the guest kernel UIO driver for the ivshmem device haswrd, the device
is configured and ready for use from the user level, includiser-level libraries and ap-
plications. So, while the configuration may seem overly $ampll that is required is to
enumerate the memory regions in this way so that applicatian access them.

In general, a Linux device driver typically makes its regpecdevice accessible via a
file added to the dev file system and ivshmem is no different. When the device diwe
run, a device file will be created under theev directory that corresponds to the device.
The device files for UIO devices all begin with “uio” followdty an integer. The first UIO
device to be initialized will be associated to the device/fdev/ ui 00. The second will be
associated with the device filelev/ ui 01 and so on.

Applications inside the guest can access the ivshmem deyiperforming system calls
on the device file (under thiadev directory) associated with the device. UIO differs from

most device drivers in that it is designed to minimize the ami@f code that runs in the
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kernel, although some code must run in the kernel for a UlGcdedriver such as the code
shown in Figuré 4]7.

While a detailed explanation of how applications use shanedory is left for Sec-
tion[4.8, we give a brief example here.

As mentioned in Sectidn 3.6.2, the UIO model allows mappihthe device-memory
regions into user-level by applications to access the mgmdhout requiring further sys-
tem calls. When accessing a UIO device, the caltap() looks like anmap() call to

map a memory-mapped disk or POSIX shared-memory objecSsetior 4.8):
map-regi on = nmap( NULL, size, PROT_READ| PROTWRI TE, MAP_SHARED, fd, 1 =

get pagesi ze()));

A UIO device-memory region is mapped into user-level ushngregulammap() sys-
tem call. One small caveat to using theap() system call is that UIO overloads the sixth
parameter of themap() call, which is typically reserved for an offset. The offsatgmeter
normally indicates an offset into a file that is to be mappeat. éxample, mapping 1,024
bytes from a file at offset 512 would map the byte range fromd# 1,536. With UIO
the semantics are different. With UIO devices, the offseapeeter specifies the memory
region to map, by passing a multiple of the OS page size. Fangple, in the example call
shown above, UIO memory region 1 would we mapped.

Recall that Figure 417 shows the code that initialized mgmegion 1 ( nf o- >men{ 1] ).
By passingL = get pagesi ze() as the offset argument, the kernel is instructed to map the
memory region indexed at 1 into the address space of thagapplication. Note that the

memory region indexed at 0 will be discussed later in Se@i6iB.

4.5.1 Brief Summary

With the above three components: a shared-memory mechathismew ivshmem virtual
PCI device and a guest OS device driver, it is now possiblé@daoesmemory between host
and guest applications as well as between guest applisatioming in different VMs.
Figure[4.8 shows how POSIX shared memory is exposed in two iikising on the same
host machine. Shared memory is enabled by having the two Vs timlesamePOSIX
memory object on the host. The shaded box is meant to indicatéhe memory is shared
up to the user-level in both guests and no copying of datarsagben the shared memory
is accessed.

In the next section, we will augment the basic configuratisst gescribed to increase

the functionality of Nahanni by adding a shared-memoryesettvat will support a novel in-
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Figure 4.8: Two VMs sharing the same POSIX memory region

The sharing of the same POSIX memory region allows two VMotomunicate
efficiently. While only two VMs are illustrated, Nahanni doeot place a limit on the
number of VMs that can share a single shared memory object.

terrupt mechanism to increase the range of applicationis#tmetake advantage of Nahanni.

4.6 Inter-VM Notifications

The primary goal of Nahanni is to provide shared memory betwibe host, guest VMs,
and their associated applications. While certain apptinatmay find sharing memory and
using load-store operations between VMs useful on its oneyifably other applications
will require natification mechanisms to work in conjunctiwith shared memory. Noti-
fication is important if, for example, the shared memory wssdubetween producer and
consumer processes running in separate, co-located VMsoduper process could no-
tify the consumer, running in a different VM, that new datavsilable to be consumed by
sending a notification.

In addition to basic notifications, synchronization medsiais such as barriers,

semaphores and mutexes may be necessary depending on tibelgrause-case of the
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Figure 4.9: An interrupt being sent from one guest to another

The sending guest triggers an interrupt that is deliveratigauser-level of a receiving
guest

shared memory. With the functionality described so far, aat supports spinlocks that
monitor and maodify a value stored in shared memory. Theeefymchronization primitives
built upon spinlocks are inherently possible via Nahan@ireth memory. However, spin-
locks have drawbacks in certain scenarios that developaysaant to avoid. In particular,
when under contention, spinlocks can lead to wasted CPlégyas the waiting process
(or processes) continually poll the variable in shared nrgmeolling for long intervals is
generally undesirable and certain applications will wanalernative to spinlocks.

The general alternative to polling is blocking. Blockingehanisms allow processes to
cease to execute, or block, while waiting for some conditmoccur to avoid the wasted
cycles that polling would incur. Mechanisms that suppootking semantics require noti-
fication that the event they are waiting upon has occurretiaoainy blocking process can
be unblocked. Such notifications are generally referred totarrupts

Figure[4.9 illustrates the basic functionality of an intét interrupt. An interrupt
is triggered by a particular application, then the intetrigptransmitted and received by
an application running in a different guest. Given the wytibf such a mechanism, the
next step in Nahanni’'s design and implementation was to addtarrupt mechanism that
would allow applications that are using Nahanni for shanmgmory to signal each other

as illustrated in Figure 4.9. Adding such a signalling medsra would allow for richer
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notification and synchronization mechanisms for Nahanpliegtions.

Providing interrupts will require four individual mechanis to able to:

1. uniquely identify different guest VMs,
2. send a message from inside a guest VM,
3. transport a message from one VM to another, and

4. notify a guest that a message has arrived.

For each of the above mechanisms, we will seek to build uppddsign decisions that
have already been made, namely the PCI standard and the WKD itterface. Moreover,
in keeping with the QEMU/KVM design philosophy, we will usgiging functionality
present in Linux as much as possible rather than re-invgtitie wheel.

Considering the above four required mechanisms, we firstddddhat a centralized
server was the correct approach to (1) facilitate VM idegdtibn and (2) implement mes-
sage transport. While a distributed mechanism is posséite, (as future work), it would
be much more complicated than a centralized one. Since Maladesigned for a single
host, scalability issues are limited to the number of VM4 thsingle host could run, which
we posit to be on the order of dozens and unlikely to grow bdyafew thousand in the
near future. This centralized server that will coordinaiterirupts between QEMU/KVM

VMs is simply called the Shared-Memory Server (SMS).

4.6.1 The Shared-Memory Server

The Shared-Memory Server (SMS) is a stand-alone host agiplicexternal to QEMU that
will manage the sharing of resources for inter-VM commuimacabetween QEMU guests.
The SMS exists mainly to provide some convenience and to ougeurrent needs. Further
refinements and optimizations to the SMS would be the subjdature work.

The SMS provides a single point of access for all resourciegeeto Nahanni. By
design, the SMS will handle distributing communication @oidts to all guests as well
as providing access to the POSIX shared-memory object.itslalving all resources con-
trolled by the SMS reduces the chance of misconfiguratioms.ekample, if guests only
contacted the SMS for interrupt endpoints, then guests reagble to send interrupts but
may (incorrectly) connect to different shared-memoryaagivia the shmparameter. Hav-
ing the SMS handle all aspects of Nahanni reduces the lid@ditof configuration errors.

Therefore, the SMS centralizes access to shared memonrharitérrupt mechanisms.
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Since the SMS is a stand-alone process, the QEMU VMs musecbimit using some
form of IPC. We decided on a Unix Domain Socket (UDS) which é@mmon IPC mecha-
nism supported in UNIX-like OSes including Linux. UDSs areated with a path name in
the file system namespace which will allow for easier confijan of the guests. QEMU
also supports connecting to file descriptor mechanisms EislQ character devices (called
chardevan QEMU), so the support within QEMU is already present to ommicate with
a process like the SMS over a UDS.

Figure[4.10 shows the launching of a particular SMS. The camivline to start the
SMS must specify the size (-m) and name (-n) of the POSIX sharemory object as
well as the UDS the SMS listens on (-p). The particular sewlsose invocation is shown
in Figure[4.10 will share a 256 MB POSIX memory region nandgdamo(the name is
arbitrary). The SMS will listen on the socket via the pathp/ i vshmemsocket for QEMU

processes to connect to it.

i vshmemserver -m 256 -p /tnp/ivshmemsocket -n dynano

Figure 4.10: Launching Nahanni Shared-Memory Server (SMS)

To allow a QEMU process connect to an SMS, the QEMU commareddptions for
Nahanni add an additionakhar dev parameter that specifies the UDS to connect to. In
particular, to connect to the SMS launched as in Figurel 4 XPEMU process would add
the new chardev parameter coupled with-thevi ce i vshnemparameter (seen previously)

as follows:

-chardev socket, pat h=/tnp/i vshmemsocket, i d=f oo -devi ce i vshnmrem
char dev=f oo, si ze=256

The chardev parameter is given an identifier namei, ¢4d.00, that the ivshmem device
parameter associates with (wimar dev=f 0o). The existing devi ce i vshremparameter is
changed to specify anar dev to communicate with rather than the name of the shared-
memory object (specified byhne<nane> as shown in Section 4.4.3). Figure 4.11 shows
the complete QEMU command-line that will connect a VM to tihdSSlaunched as shown
in Figure[4.10.

Previous to the SMS, guest VMs shared memory by specifyiagdime shared-memory
object and size with theshm <name> parameter. When using an SMS, guest VMs must

communicate to the same SMS in order to share memory. The SM@evide access to
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genmu- system x86_64 -snp 4 -chardev socket, path=/tnp/ivshmemsocket,id=
foo -device ivshnem chardev=foo, si ze=256 -hda karmi c.ing -net nic,
macaddr =00: Oc: 29: f 0: bc: 30, vl an=0, nodel =vi rti o, net dev=bar -netdev
tap, i f nane=vhostt ap0, downscri pt =no, i d=bar, vhost =on -m 8g

Figure 4.11: Launching QEMU to communicate with an SMS

the POSIX shared-memory object. Theevi ce paranet er still requires the size of the
shared-memory object be given with thieze parameter as a sanity check for the size of
the shared memory. When the QEMU processes receives trexlgnamory file descriptor
from the SMS it will confirm the size is correct.

Before discussing the SMS in further detail, the next twaisas will introduce the first
two items in the list in Section 4.6: (1) the VM identificatiomethod and (2) the interrupt

transport mechanism, as they are fundamental to understarizehaviour of the SMS.

4.6.2 ldentifying Guest VMs

To be able to send messages between VMs, applications veitl aeway to identify the
recipient VM to which they intend to send a message. We requimechanism to identify
VMs with an identifier. The identifier will need to scale to asenable number of VMs. A
VM must also be able to determine its own identifier as wellitleatifiers of other VMs in

order to send messages to those other VMs.

As mentioned, choosing to support interrupts between pieltjuest VMs motivated
the centralized control via the SMS. Centralized contrahnsthe SMS can provide distinct
identifiers to each VM when the VMs initially connect to thevas. The identifier for each
VM, or VM ID, is a 16-bit unsigned integer in the range of @tb. Therefore, in addition
to receiving the access to the shared memory, the SMS wiliggeceach VM a unique VM
ID.

It is also worth mentioning that while VM IDs were initiallydded to Nahanni to sup-
port an interrupt mechanism, they are useful for any scenanwhich VMs may want to
identify each other. For example, since VM IDs are simplyrgader they could be used to
statically partition the shared memory by using a VM’s VM IBan offset into fixed-sized
buffers in the shared-memory region.

Now that VMs can be identified via their VM ID, we move on to piding an interrupt

transport mechanism.
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4.6.3 Interrupt Transport

Sending interrupts between VMs will require some form ofuxriPC since QEMU pro-
cesses are Linux processes. To support interrupts, Nabaesia relatively new Linux IPC
mechanism calle@ventfds Eventfds are intended to be simpler and more efficient than
other IPC mechanisms such as pipes or sockets. Eventfdseated via thevent fd()
system call which is similar to the pe() system call for creating a pipe. Theent f d()
system call returns a file descriptor that is the referencéhi® eventfd. Eventfds can be
shared between processes like any file descriptor, thraagfing or through passing them
to other processes.

Eventfds can be read to and written from using the standar8IR@le operations.
One important distinction is that, by design, eventfds dopgnovide buffer semantics. This
design is intentional to avoid the overheads that buffeimegrs [9]. Eventfds behave like a
register, storing a single value that can be overwrittenwillaise the writing to an eventfd
as the mechanism to send an interrupt to another guest.

As mentioned, eventfds are referenced within processedebgidscriptors. Similar to
the VM ID, it will be the task of the SMS to distribute file degiors for the eventfds
when new guests join. The SMS is able to create and distrtbeteventfds because Linux
processes can pass file descriptor across a UDS. In the foadvscussion, we will use
the phrase “interrupt endpoints” to refer to the eventfddiscriptors, which are different
from the file descriptor for the POSIX shared-memory region.

It was decided that each VM would have a single eventfd it @tisten on for interrupts
to keep the numbers of eventfds linear with respect to thebeurof guest VMs. Each
QEMU process will be passed an interrupt endpoint for evéingrovVM in order that they
can send interrupts to all other guests connected to the Saite

It is worth mentioning that the choice of eventfds could bsilgachanged to another
Linux IPC mechanism because of the abstraction that filerigiésrs provide. If a different
communication mechanism, say pipes, were deemed predetatdventfds, the changes
necessary would be limited to the SMS since the QEMU prosesiseply receive file de-
scriptors and are otherwise agnostic to the underlying IRChanism.

Coordinating the sending and receiving of VM IDs and file digsars (for the shared
memory and eventfds) requires a protocol that the QEMU VMs$ &S will follow in
order to communicate with each other. The next section werréd discussing the SMS in

detail and introduce the protocol used by Nahanni VMs to comioate with the SMS.
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4.6.4 Shared-Memory Server Protocol

In any multiprocess configuration, a protocol must be in @t the clients and server
will use. For Nahanni, a protocol for VMs to join and leave 8I&S is necessary so that
VMs can acquire the necessary information from the servaséointerrupts. The protocol
is simple. The VMs connect and disconnect to the SMS listesiocket using a QEMU
chardev that is added to the command-line (see Figure 4.11).

The SMS is only involved when guests join the SMS and when kb&ye. The actual
sending of interrupts does not involve the SMS since thetgues fully connected by their
interrupt endpoints.

In the protocol that follows there is one invariant worth memng: By design, guest
VMs never send data to the SMS, they only receive informdtiom the SMS. The SMS
only needs to know when guests connect or disconnect freth #isd detecting connections

and disconnections does not require the sending of data.

New Guest Connections

Figure[4.12 illustrates the communication exchange wiéhsirver that will occur when
a new guest connects to the server. As was mentioned in th@psesection, notice in

Figure[4.12 that the VMs only receive data from the serveay thever send data to the

server.

When a guest joins the server, it will receive the following:
1. itsown VM ID,

2. afile descriptor for the shared-memory region,

3. afile descriptor for its interrupt endpoint, and

4. afile descriptor/VM ID pair for each already existing gues

The first three values are sent in the first three messagestladteuest connects in
Figure[4.12. Once the server has sent the new guest its ownitdatust send the data for
all existing guests to the new VM. These messages (one for @asting guest) transmit
the VM IDs and interrupt endpoints for each existing guesgaaly connected to the SMS
to the new guest. These endpoints are how the new guest wndllisterrupts to existing the
guests.

Once the new guest is properly configured by the above stepsgrver sendgpdates

to the existing guests that a new guest has joined. This epdant to each existing guest,
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Figure 4.12: Server-Guest communication when a new VM isdhad

will consist of the new VM’s VM ID and its interrupt endpointVith this new endpoint,
existing guests can send interrupts to the new guest.

Once all existing guests have received the update aboutthgunest, the VMs are now
all directly connected, each VM can send an interrupt to ahgrovM via an eventfd. It
is worth reiterating that the SMS is not involved in the trarssion of interrupts, it is only

involved in configuration when VMs join or leave.

Guest disconnections

The other event that the SMS is involved in is a guest disactiore Figurd 4.1B illustrates
the protocol behaviour when a guest disconnects from the. S¥t#n a guest VM shuts
down it will disconnect from the server by closing its contiat with the SMS. The SMS
detects the connection has been closed and notifies the\diiethat the guest with the
given VM ID has disconnected. The SMS sends a disconnecpidate to each remaining
VM. When a VM receives the update, it closes the interruptpeird for that guest and
deletes its VM ID from its internal data structures.
To this point we have discussed in detail the SMS, our ideatifin method (VM IDs)

and interrupt transport mechanism (eventfds). We have jafgallustrated the protocol
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Figure 4.13: Server-Guest communication when a VM disccisne

when guests connect to and disconnect from the SMS. The twaining items from the
list in Section[4.6 are: (3) The mechanism to trigger the sgndf an interrupt and (4)
the mechanism to receive an interrupt. Since Nahanni stmessory to user-level, our
interrupts must also be able to be sent from and receive ppbcations running at user-
level. In the next section, we will describe Nahanni’'s deviegisters and how the UIO

driver model allows user-level access before discussimgifirrupts are sent and received.
4.6.5 Nahanni Device Registers

User-level applications inside the guest will interacthatihe ivshmem device through the
device driver. In particular, a guest's VM ID must be madeilatée to applications. Appli-
cations will also need to be able to send and receive intexrdphe functionality for these
tasks will be provided by the ivshmem device and, in pardicuby reading and writing
device registers on the device.

In general, PCI devices exchange usage-specific inform#ésioch as a VM ID) with
the kernel and applications and trigger actions via PCladekégisters. Registers are small
regions of memory (typically 16 or 32-bits) that can be ertto or read from much like
CPU registers. Generally speaking, reading a PCI registéeves some information from

a PCI device. Writing to a PCI register can make a PCI devickope a particular action
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i nfo->neni 0] . addr = pci resource_start(dev, 0);
if (!info->meni0].addr)
got o out _unmap;
i nfo->nmeni 0] .internal _addr = pci i oremap_bar(dev, 0);
if ('info->menf0].internal _addr)
got o out _unmap;

i nfo->nmeni 0].size = pci _resource. en(dev, 0);
i nfo->nmeni 0] . nentype = U O.MEMPHYS;

OO ~NOOUTDAWNPEP

Figure 4.14: Nahanni: kernel driver initialize for ivshmeegisters

such as sending a network packet in the case of a PCI netwoitede

For QEMU PCI devices, registers are implemented as regibmemory on the device
much like our shared-memory region. Note that the registemory region labelled as
Register Memory in Figure[4.8. To be consistent with UIO terminology, we stimes
use the shortened phrase “register region” in this disonsgihe main differences between
the register memory region and the shared memory are thed¢gister region will be much
smaller and will not be shared between guests. Anotherrdiifee is that when a write to
a register memory occurs inside the guest, control is tesired from the guest OS to the
QEMU hypervisor and the software in QEMU can emulate the Wieha of the device.

We chose to make our registers 32 bits each to correspona tetdhdard size for an
integer. The ivshmem device has a 256-byte register regliohaallows for up to 64 32-
bit (4 byte) registers. Currently, only four registers ased with the remaining registers
available for later development.

Following with the UIO design, the register region can be peahinto user-level much
like the shared-memaory region. The register region is assigo BARO in the PCI config-
uration (see Figurle 4.3). To allow the mapping of the regsste user-level by applications,
the registers are indexed as memory region 0 in the UIO deaseshown in Figure 4.14.
Notice on line 4 on Figure_4.14 that BARO is remappedpdeLi or emap_bar (dev, 0) to
memory region Qi(nf o- >men{ 0] ).

Therefore, to map the register region into an applicatiovelae of O is passed as the

sixth argument (offsetymap() . For example, the followingmap() call:

int *xregisters = mmap(NULL, size, PROT_READ| PROT.WRI TE, MAP_SHARED, fd,
0)

will map the register region into user-level. By mmaping Mehanni device registers into
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Figure 4.15: The register layout of the ivshmem device

The register region contains up to 64 32-bit registers, atkvh are currently used. The
values on the right side of the figure are the offsets for th&sidual registers. The offsets
are multiples of 32 bits or 4 bytes.

user-level as shown, applications will be able to sendiinps without trapping to the guest
kernel.

The registers are involved in sending and receiving of inf#s. The individual regis-
ters are illustrated in Figufe_4115. The first register, avfiset of O bytes, is the interrupt
status register (ISR). The second register, at an offset loftds, is the Interrupt Mask
Register (IMR). ISR and IMR registers are common to PCI dewithat receive interrupts.

The other two registers are specific to Nahanni. The thirgstegwhich is at an offset
of 8 bytes is used to store the VM ID of the guest. Finally, tharth register is th®oorbell
register that will be used to trigger the sending of intetsup other guests connected to the

SMS. The remaining registers are currently unused anddeftfure development.

4.6.6 Interrupt Transport

Now that Nahanni's PCI register memory has been explairedged as how an application
can map the registers, we will discuss the semantics ofruyits.

The sending and receiving of interrupts involves the QEMUdryisor, which runs
as a user-level process on the host. When a write to and read&rPClI register occurs
inside the guest, control then passes to the QEMU hypervigaich executes a function
to emulate the behaviour of the device in response to th&tezdeing written to or read
from. For Nahanni, a write to the Doorbell register resuitsdde being executed in QEMU

that will write a value to the eventfd.
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Figure 4.16: An lllustration of thevshmembDoorbell register

The Doorbell register on the Nahanni ivshmem PCI devicevisldd into two 16-bit fields
that specify the recipient VM ID and the interrupt to triggerspectively.

Each ivshmem device has a single Doorbell register, butitdgssultiple other VMs
to send interrupts to, the value written to the Doorbell modicate which VM to send the
interrupt to. Nahanni also supports assigning multiplendds to each guest to allow for
multiple interrupt types. To deal with this complexity, waisthe 32-bit doorbell register
into two 16-bit fields, one for the recipient VM and the otharthe interrupt number. When
only one eventfd is assigned to each VM, the interrupt numfugst be 1. The write to a
register is a single operation, so the two 16-bit values mesombined into a single 32-bit

value.

4.6.7 Sending an Interrupt from User-level

Figure 4.6 illustrates the two fields of the Doorbell regjisThe code shown in Figure 4117
is executed within the hypervisor in response to a write eéoDloorbell register inside the
guest. The two variables on lines 6 and 7 separate the twdt 1iétds from the 32-bit value
written to the Doorbell register into the variahlest , the destination VM ID, andect or,
the vector to signal in the other guest. After various chesksmade, the eventfd is written
to with a value of 1 on line 18. The value written to the evelydhe QEMU hypervisor is
always 1. It is possible to write any 64-bit value to an ewénBut, as mentioned, eventfd
values are not buffered so trying to communicate a valuer@ erone as the value may be
overwritten before it can be retrieved by the receiver.

Once the value of 1 has been written to the eventfd, the sgiidith of the communica-
tion is complete. Next, we will discuss the receiving half.

When a value has been written to a guest’s eventfd, the iageitM’s QEMU hyper-
visor detects that a value is available on the eventfd’s iecdptor using the well-known
sel ect () system call. Figure_4.18 shows the callback function tha¢ggstered with the
eventfd is then executed to receive the interrupt. The valube eventfd is passed to the

callback function. Recall that the value is always 1 sineg ththe only value ever written
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1 static void ivshmemiowitel (void *opaque, target_phys_addr_t addr,
uint 32t val)

| VShnentt ate *s = opaque;

uint16.t dest = val >> 16;

2

3

4

5 uint64t witeone = 1;

6

7 uint 16t vector = val & Oxff;
8

9

/* check that dest VMID is reasonable */

10 if (dest > s->nmax_peer) {

11 | VSHVEMDPRI NTF(" I nval i d_destination VM ID_ (%d)\n", dest);

12 br eak;

13 }

14

15 /+ check doorbell range */

16 if (vector < s->peers[dest].nb_eventfds) {

17 | VSHVEMDPRI NTF("Witing_% PRI d64 " _to_VM% on_vector %i\n",

writeone, dest, vector);

18 if (wite(s->peers[dest].eventfds[vector], & witeone), 8) != 8)
{

19 | VSHVEMDPRI NTF("error _writing_to_eventfd\n");

20 }

21}

22}

Figure 4.17: Nahanni: QEMU code to send an interrupt via amis

Thewite() system call on line 18 writes to the eventfd which will resalan interrupt
being triggered in the guest listening on that eventfd.
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1 static void ivshmemreceive(voi d *ropaque, const uint8t =+buf, int size)
2 {

3 | VShnentst ate *s = opaque;

4

5 ivshmemlntrStatus.wite(s, *buf);

6

7 | VSHVEMDPRI NTF("i vshnemr ecei ve_0x%02x\ n", =*buf);

8 }

9

10 static void ivshmemlntrStatuswite(lVShnenttate *s, uint32t val)
11 {

12 | VSHVEMDPRI NTF( "I ntrStatus_wite(w) val = _0x%4x\n", val);

13

14 /+ set the ISR */
15 s->intrstatus = val;

16

17 /* signal interrupt into guest=*/
18 i vshremupdate.irq(s, val);

19

20 return;

21}

Figure 4.18: Nahanni: QEMU code to receive an interrupt vienéd

to eventfds in Nahanni. The callback function stores vatuie ISR (line 15) and triggers
an interrupt inside the guest OS (line 18).

It is worthwhile to mention that Nahanni also supports mgessignalled interrupts
(MSI), which are part of the PCI specification and are anmdtive to regular interrupts for
PCI devices. MSI allow for multiple interrupt vectors pewibe, so a device can receive
different kinds of interrupts. The application semanti€seaeiving both regular interrupts
and MSI are the same, and eventfds are the delivery mechémidrath types of interrupts.
The MSI support could provide a richer interrupt in the fetand is included for that

reason.

4.6.8 Receiving an Interrupt to User-level

When the interrupt is raised inside the guest, the deviceedmust handle the interrupt.
Here again, the design of UIO allows applications runninthatuser-level to receive and
respond to interrupts, something usually reserved forekdavel drivers. The method of
handling interrupts at the guest user-level level is simplsimple block of code that will
receive an interrupt from a UIO device is shown in Figure 4.19

Guest applications receive interrupts by performing:ad() system call on theédev

59



int rv, buf, fd;
fd = open("/dev/uio0", ORDVR);

buf = 0;
rv = read(fd, &buf, sizeof(buf));

OO0, WNER

Figure 4.19: A simple example of receiving an interrupt vi®©Un a guest application

Theread() call on line 6 will block until an interrupt is delivered todiNahanni device
associated withdev/ ui 00.

/ ui oN device file that was created for the Nahanni device. UIO usesémantics of the
read() call to allow the application to receive an interrupt.

Under normal usage,raead() system call will block until data is available to be read.
In the case of UIO, the read call returns when an interruptéeived. The value stored in
the buffer when the read returns is a 32-bit integer thatcatdis the number of interrupts
the driver has received since it was loaded. The read mus? b&s3(4 bytes) in size as that
is the size of data that a UIO device always returns on a reathtipn.

To explain these semantics a bit further, consider a drhvaris loaded into the kernel
and has not received any interrupts. After it receives ti®¢ ifiterrupt and an application
performs a read, the application will be returned a value, girice one interrupt has been
received since loading. When a second interrupt is delivarel the application performs
aread, the value of 2 will be returned.

Because interrupts are received asynchronously by theaeviver, it is possible that
an ivshmem device may receive more than one interrupt betwesals. After reading the
values of 1 and 2 respectively as above, if two interruptgeceived before the next read,
that read will return a value of 4, since a total of 4 intersupave been received since the
device driver module was loaded. These interrupt semaatecsinique to UIO. Recall that
the motivating principle behind UIO is to move the majoritiytioe driver logic code (e.g.,
handling of interrupts) to the user-level. It is entirelytoghe applications that use UIO as
to the meaning of an interrupt and what should be done whersaeeeived.

Sectior 4.8 will elaborate on writing applications to aschishanni shared memory as

well as to send and receive interrupts.
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Figure 4.20: Three Virtual Machines using Nahanni

Each VM has 3 eventfds for sending interrupts (shown as noedid@oxes) and one file
descriptor for the shared-memory region (white box). Aé filescriptors (for both the
shared-memory object and the eventfds) were received fner&hared-Memory Server.

4.7 The Big Picture

To this point we have discussed the details of how Nahaniileaghared memory between
VMs and how interrupts between guests are supported wheg tls¢ SMS. Figuré 4.20
illustrates how these different pieces come together tmathultiple VM guests (in this
case, three VMSs) to share memory and send interrupts betwezanother.

The small, square white box in each VM represents the filergtsc for the POSIX
shared memory itself. Notice how the white boxes appear itiiplel places (e.g., user-
level, kernel, shared-memory server) to reflect the diffel@yers and components that can
see the file descriptor. The shared-memory region is alsgivest from SMS when the
guest VM connects to SMS on startup. The dotted lines inglitted mappings that allow
the POSIX shared object to be shared up to user-level withoutring any copying.

The other three shaded boxes in the SMS and in each VM in Figu@@® represent
the interrupt endpoints (i.e., eventfds) that supportriofe delivery. In Section 416, we
introduced the SMS and described how it distributes inremdpoints to each guest VM.
Interrupts are sent by a guest by writing to the endpointttie@teceiving guest is listening

on. Each guest stores endpoints for all other guests amadisin one particular endpoint
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Figure 4.21: Triggering an interrupt using eventfds

This figure illustrates the interrupt transport using efdsas VM 2 writes to the eventfd
for VM 1 which triggers an interrupt into VM 1.

assigned to them.

As discussed in Sectidn 4.6.5, Nahanni’'s ivshmem devicdeiments the sending of
interrupts by having a Doorbell register that, when writteiyy an application in the guest,
triggers aw i t e() to the correct endpoint for the receiving guest. Considguie[4.21 that
illustrates the sending of an interrupt between two VMs. ha itlustrationVM 2 triggers
an interrupt invVM 1 by writing to the endpoint associated wM 1. The transmission of

the interrupt involves the four stages described aboveeham

1. Writing to the Doorbell register,
2. QEMU writing to the corresponding eventfd,
3. The receiving guest triggering an interrupt, and

4. The receiving application reading from théev/ ui 00 device.

Figure[4.21 represents a guest-to-guest interrupt, bummgbehanism can be used for
host-to-guest as well. Eventfds are a general Linux meshanihey are not specific to
KVM or virtualization in general. As such, eventfds can bediby any Linux application.
An application running on the host can communicate with Sk&raceive file descriptors
(just like a guest VM does) by following the protocol desedbin Sectiori 4.614 in order
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to communicate with the VMs by writing to the POSIX sharedsmogy object and sending
and receiving interrupts by using the eventfds. For exangs@art of our benchmarking in
Sectiori 5.8, we will show that a user-level application cangfer a file into a VM from the
host. This application first communicates with the SMS tenefile descriptors for the
POSIX shared memory and eventfd file descriptors and thes these values to transfer

the file into the guest.

4.7.1 Using KVM to Accelerate Interrupt Delivery

The choice to use eventfds as the signalling mechanismsitienrupts has one additional
benefit specifically related to KVM. In addition to accel@mgtVMs via the hardware sup-
port for virtualization, the KVM kernel module also supmod low-overhead signalling
mechanism for VMs. This mechanism consists of two parts,fonsending and the other
for receiving interrupts in VMs. The optimized mechanismdending an interrupt is called
iosignalfdand the receiving mechanism is callediwyfd.

loeventfds can improve performance by eliminating heagjgit VM exits when reg-
ister writes occur to send interrupts. Rather than requiarfull guest exit, an ioeventfd
registers a lightweight exit case that lowers overhead Quirmg less state to be saved by
the hypervisor when simply writing to an eventfd (which isavitNahanni interrupts do).
Nahanni can take advantage of ioeventfds for writing inigs since they are triggered by
writes to the register region of the ivshmem device. Makigg of ioeventfds is simple and
is enabled by addingoevent f d=on the ivshmem device command-line.

Similar to ioeventfds, irgfds allow interrupt injectionstd guests that can require less
overhead. Use of irgfds requires eventfds as the mecharmaitriggers the interrupt.
When a write occurs to an eventfd by a guest sending an ipteimwanother guest, an irgfd
bound to that eventfd will trigger an interrupt into the reo®y guest. Similar to ioeventfds,
irgfds are enabled by addingevent f d=on to the ivshmem devi ce parameter.

loeventfds and irgfds are optional accelerations suppgriNahanni. They do not
change the semantics of Nahanni interrupts, only the pedoce. Both optimizations
can be enabled when the VM is launched, but they cannot diyre@ enabled when an

ivshmem device is already attached to a guest.

4.8 Accessing Nahanni Shared Memory from Applications

In this section, we will elaborate on the application progmaing interface (API) that ap-

plications can use to access Nahanni and all its featurase 8lahanni builds upon POSIX
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mechanisms on both the host (POSIX shared memory) and inudgs UIO) interface),
a completely new API is not necessary. So in this discussierwill emphasize how to
access Nahanni using existing system calls. We will firstudis accessing Nahanni within

a guest VM before moving on to the host.

4.8.1 Access From Within a Guest VM

Nahanni is designed to allow access to inter-VM shared megrfrom guest user-level.
Moreover, the choice to use the UIO driver model greatly griltes how applications ac-
cess Nahanni from within guest VMs. As mentioned, Naharka Any UIO device, is
accessed via a file in the /dev file system. For this discuspi@sume that a Nahanni de-
vice corresponds to the device filaev/ ui 00 (following the naming convention for UIO
devices).

As discussed above in Sectibn 4]4.1, the Nahanni device enaties two memory re-
gions that can be mapped into user-level. The first, memagipme0, contains the four
registers also described in Sectlon 4.6.5. The second Ul@aneregion, region 1, con-
tains the shared memory itself. Recall that while BAR2 r&fiees the shared memory in
the ivshmem PCI configuration space (see Figure reff:péighrBAR2 is mapped to UIO
memory region 1 (see Figuire 4.7).

A UIO device-memory region is mapped into user-level ushgmmap() system call.
Recall that, by design, UIO overloads th#fsetparameter of themap() system call. In
mmap’s normal usage, theffsetparameter normally indicates an offset into a file that is to
be mapped. For example, mapping 1,024 bytes from a file adt@f2 would map the byte
range from 512 up to 1,536. UIO uses tifesetargument to specify the UIO region to map.
An application maps a particular memory region by passiegrégion number multiplied

by the kernel page size:
(memory region) #x (page size)

In Linux, the default page size is 4,096 bytes. Linux proside function named
get pagesi ze() that returns the current page size in a way that avoids hadihg the
value. Therefore, a UIO device’s memory regioran be mapped by passing an offset of
n x getpagesize(). In the case of Nahanni, two memory regions are available to&pped
(the registers and the shared memory itselfsoust be 0 or 1.

Once the register and shared-memory regions are mappeahitoplication, they may

be used by that application like any array and can be pasdaddtions or made accessible
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int fd;

int regs[4];

void * shnem

fd = open("/dev/uio0", ORDVR);

regs = (int *)nmap(NULL, ...,0);

O©CoOoO~NOOOTA~,WNPE

shmem = (int *)mmap(NULL, ..., 1 * getpagesize());

Figure 4.22: Mapping the Nahanni Device-Memory Regions

A simple C program that opens theev/ ui 00 device file (line 5) and then maps the
register region (line 7) and then the shared-memory redioa 9).

via a global variable.
Mapping the Register Region

The register region is used to read from and write to the fegisters of the ivshmem device
described in Section 4.6.5, namely the Interrupt StatussiegInterrupt Mask Registers,
VM ID register and Doorbell register. The registers are e2lits, so the simplest pro-
grammatic access is to access the mapped region as an aB2ybitfintegers. By casting

the mapped region as shown in Figlre 4.22.

Once mapped to an array of integers as in Figurel 4.22, theteeglican then be read and
written via the different array offsets. For example, cdaesia case when a guest application
wants to send an interrupt to a guest with a VM ID of 4. Follogvthe initialization in
Figure[4.22, the following code snippet will send an intptrio VM ID 4.

int dest = 4;

int vec = 1;

regs[3] = dest << 16 | vec;

The destination VM ID value stored in the integer variaddet is shifted 16 bits (since
the upper 16 bits of Doorbell register specify the destomatVM ID, see Figurd 4.16)
and then bit-wise ORed with the interrupt vector. The corabtimalue is then written to
Doorbell register at array offset 3 (12 bytes) of thegys array which mapped the register
region of the ivshmem device.

In addition to writing, ivshmem device registers can alsadsd. The following line

will read the VM ID of the guest VM from the VM ID register andosg it in the variable
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my_vm d:
int myvmd = regs[2];

Shared-Memory Region

The shared-memory region is straightforward in terms ofisis. The shared memory can
be mapped from the host through QEMU/KVM and then mapped ¢o-lesel by the ap-
plication using themap() system call following the UIO semantics. Line 9 of Figlre2}.2
shows the mapping call that will open the shared-memoryobhijiaa the UIO driver. If
the mapping is successful, the pointer returned can be usedry dynamically allocated
memory.

Unlike the register region, reads and writes to the sharedhony region do not trigger
any action by the hypervisor. The semantics of how coopegatpplications use the shared
memory is completely at the discretion of those application

Section 4.D will elaborate how guest applications can maeeNahanni memory in-
cluding dynamic allocation within the Nahanni memory regimd sharing pointers across

guest VMs.

4.8.2 From Host Applications

The shared-memory region is a POSIX memory object on thethasis made available
to guest applications through Nahanni. The memory objeutnes accessible on the host
after Nahanni guests have accessed it. Any POSIX operdtiatsare valid on memory
objects in general can be applied to the Nahanni object als el application running
on the host, with the appropriate permissions, can open aplthe Nahanni object and
access it exactly how a guest application would. The onfgdifice in the host case is that
the POSIX operationshmopen() andshmcl ose() would be used to pass the name of the
memory object (the same name that was passed to QEMU/KVM#dtp) instead of the
UIO interface.

Any host applications that access the shared-memory objjast have permission to
do so. POSIX shared-memory objects are accessed via thgdiensand so are protected
using regular file protections.

If the SMS is being used with multiple guests, the host apfibttis can also connect
to the SMS over the UDS if they know the file name of the sockel lzawve appropriate
permissions. Host applications that connect to the SMSheiltreated exactly like guest

VMs. In particular, they will receive all the necessary m@ses (a VM ID, interrupt end-
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points and the shared-memory region file descriptor) to camaoate with the VMs across
shared memory, and to send/receive interrupts. The conuaionh endpoints are used just
as with eventfds, with their associated semantics, sinddl@ointerface is necessary for a
non-VM application running on the host.

In Sectior[ 5.8, we will describe a file staging applicatioatttuns on the host will use
the SMS and the signalling mechanism to stage a file into a \@awing buffer in shared

memory.

4.9 Nahanni Memory as Dynamic Memory

Broadly speaking, the semantics of Nahanni shared memergiarilar to dynamically

allocated memory that will be accessed using pointers. @a#enge is how to allocate
memory within Nahanni shared memory, that is how can codipgrapplications allocate
separate regions within Nahanni? Another important qolessi how can concurrent appli-
cations share pointers within Nahanni since the sharedangersgion may be mapped to
different virtual addresses within the respective apfitices. We will discuss solutions to

these two important questions in this section.

4.9.1 Dynamic Memory Allocation with Nahanni

Being able to dynamically allocate memory from the Nahatmaired-memory region is
an important task as the complexity of the applications gréixed buffers could be used
in certain circumstances, but applications will inevitabkquire variable-sized buffers in
which to share data. Providing a mechanism to support alf@canemory within the Na-
hanni shared-memory region is an important mechanism fegldeers building Nahanni
applications.

If co-located, virtualized applications may be allocatimgmory concurrently within
Nahanni then self-containment and thread safety are thenta&t important issues for a
shared-memory manager. Self-containment requires thdat and metadata describing
the allocation must be stored within the shared memory Isscapplications in different
VMs will need to be able to update and modify the allocatiortadata. Concurrent al-
location within the same Nahanni shared memory by coopgrairocesses also makes
synchronization necessary to ensure metadata is keptstemisi Synchronization ensures
that concurrent processes can allocate memory with prepkation from another.

To address the two issues above, a simple memory allocataryi calledshmalloc

was written for Nahanni by Adam Wolfe Gordon that uses spksdofor synchronization
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and a simple allocation scheme. All metadata is stored isliaeed-memory region itself
so that all guests can access and update it as allocatiordeatidcations occur.

When using the shmalloc allocator all sharing guests must run an initializatstep.
One guest, the master, must perform additional initiatwatA small region of fixed mem-
ory at the start of the region is used for synchronizing alfimn. The memory alloca-
tor provides the expected functions for memory allocati@allocation and deallocation.
Spinlocks contained in the Nahanni memory itself are usednsure mutual exclusion
when updating metadata. The shatfoc library provides allocation functions that can be
used as drop-in replacements for the well-knewhl oc() library of C functions. By using
the shmalloc library, applications can allocate variable-sizgioas of memory within the

Nahanni memory region.

4.9.2 Avoiding Pointer Swizzling

At its lowest level, shared memory must be accessed usingguedased structures, either
arrays or linked structures of some kind. As shown in Fiqué¥&4shared memory is
accessed by memory mapping the Nahanni region to the apptisathat need access to
it. Typically, when a file is memory mapped, it can be mappedost anywhere in the
mapping application’s address space. The location of thgping is returned from the
mrap() system call at runtime. In general, it is difficult to predioe address that a file will
be mapped to within an application’s virtual address spécéle can even be mapped at
different locations between different runs of the same gag The variability in mapping
locations means that applications will likely have the skaregion mapped to different
virtual addresses in their respective virtual addressespad problem arises then if two
cooperating applications wish to communicate via sharechong using absolute memory
addresses (i.e., pointers). If the shared memory is magppéifférent virtual addresses in
each application, then the virtual address within one appbn, may not be a valid virtual
address within the other application.

If the layout of the data to be shared is fixed in size at contpite, the problem can be
solved by treating shared memory like a fixed structure @yarConsider an application
that shares an array of 1,000 integers. Each applicatiogiogsly assign an array pointer to
the pointer returned frommap() and then both applications will access the array since the
offsets of the different array items are consistent. Artagnin is stored ainapaddr + n x
( size of an integef. This approach can work because an array by design usesrtbepto

of offsets. An application can access the array in its addspace by adding an offset to the
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address returned by theap() function. Even if cooperating applications map the Nahanni
memory to different virtual address, the offset approadhwark for both since addresses
that are used to access the array are dynamically calcutatsth application.

As mentioned, the above case only applies if the size andutaythe data can be
completely specified at compile time. But, in a case with tways of data to be shared
that are of arbitrary length. The first array can begimapaddr. However the beginning of
the second array cannot be known if the length of the firsyasranknown at compile time.
A straight forward solution is to have one application, fesxA, decide where to lay out the
data and then pass the layout to the other application, Bsd:eHowever, Process A cannot
simply pass a pointer to Process B because B may have mappastialed memory at a
different virtual address and the pointer would be invalihing offsets can still provide a
solution in this case, Process A can pass an offset into #gmedhmemory region to Process
B and B can then add that offset to its map address to get agpdimthe second array
within its virtual address space.

A static data structure works well in simple cases. Howewdren a more compli-
cated structure, such as a linked list, is stored in the dhaemory the problem becomes
much more difficult. A pointer cannot be stored in shared mgnas it would be unclear
which application it applies to. A general solution would tbeonly store offsets in the
shared memory itself. Storing offsets will work, howeveirgpso requires constantly cal-
culating offsets before storing pointers and calculatioia addresses after loading from
shared memory. Handling pointers from another addressespaeferred to apointer
swizzling[1Q]. Pointer swizzling is a common challenge when usingqfgss to memory
that are shared between processes each with their own adgir@se. A solution to pointer
swizzling for Nahanni exists because thap() function is used to map the memory into
the sharing processes respective address spaces. Thatastgter to themap() function
is a pointer. If the value passed is a null pointer, then timetion will map the file at any
address that is available. If a user has an allocated bufieshe wants the memory mapped
onto, that address can be passed (along withvitrer1 XED flag as the fourth parameter).
This fixed mapping specifies that if the file cannot be mappéadeaprovided address then
fail. A third use of the pointer is to passhint address for to map the file at. The mmap
function will attempt to map at the hinted location first ahdr try subsequent locations if
the hinted location is not available. If all sharing guestest the same hint address, and
that address is available, then no pointer swizzling woeglshécessary as the memory will

be mapped to same address in all sharing guests.
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With the availability of 64-bit architectures, the virtuadidress spaces are now up to
48-bits or 256 terabytes. (At the time of writing, architeets do not support full 64-bit
addressing, but 48-bits is common). The key to selectinghtdddress that is likely to
succeed is to pick an address in the virtual address space aove the code and heap
and below the stack. Both the heap and stack should be sntiadl ihapping is done early
in program execution. With a virtual address space on therafiseveral terabytes and by
picking ahint address that is in the middle of the address space, it is pi®liaat address
will be available, even if several gigabytes of virtual meynare required for the shared
memory. In testing with a hint address of 0x10000000000® @B), our test applications
have always succeeded. By adding a check aftemihg() call to ensure the hint address
was used for the mapping, applications are able to read aitel painters for the shared-
memory region in the region itself without modification.

On systems where the possibility of hint address failureasatikely, guests could try
a sequence of addresses until an address was found thatddorlal guests. The shared

memory itself could be used to coordinate what addresses suecessful.

4.10 Synchronization

Cooperating applications typically require synchron@at Synchronization can be pro-
vided by message-passing or by using synchronization mesha such as locks, barriers
or semaphores. The synchronization requirements and misais that are chosen will
vary depending on the application using shared memory.

For many applications synchronization primitives are pted by the OS kernel. How-
ever, as discussed previously in Secfior 3.4, since Nahavolives multiple, independent
guest OS kernels in different VM instances, kernel synclzadion is not available. How-
ever, user-level synchronization is possible via varebiehe Nahanni shared memory and
accessible by all cooperating processes.

Given the load-store nature of using shared memory, we &gesmmon method of
synchronization will be to store synchronization variagbgthin shared memory. A con-
dition variable in Nahanni needs to be able to synchronipegsses that may be running
in different guests. Similar to memory allocation, all thecassary metadata for a syn-
chronization variable must be stored entirely in the shanedhory so that separate guest
applications can access and update it.

Of course, another synchronization mechanism availabteinvNahanni is the sig-
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nalling mechanism described in Sectlon]4.6. By sending andiving interrupts cooper-
ating processes could synchronize their execution. Homvgieen that synchronization
via the shared-memory region will undoubtedly be imporfantcertain applications, we
elaborate on specific mechanisms that work across sharedmeim particular atomic

operations.

4.10.1 Atomic Operations in Assembly Language

Support for atomic operations is important for synchrotizavariables that are accessed
via shared memory. Atomically reading and updating a shaadak is crucial to imple-
menting synchronization primitives in Nahanni shared msmd-or example, lock-free
data structures typically rely on atomic operations forckyonization. Atomic operations
rely on architectural support from the processor. CPU umsitbns such asompare-and-
swapandfetch-and-addare two examples of atomic read-modify-write instructiémsthe
x86 architecture. Atomic operations are not widely summbiin higher-level languages
like C and C++. When atomic operations are not availablesrabter linkages or compiler
extensions are necessary.

Assembler linkages are typically small sections of arcites-specific assembler code
that are linked into higher-level languages like C. An exlrgssembler-linkage that uses

atomic compare-and-swap (thepxchgsb instruction on line 8) is shown in Figure 4]23.

4.10.2 GCC Atomic Operations

The GNU compiler collection supports atomic operationsGathrough library calls that
hide the necessary assembler from the application writemgiler built-ins, as they are
called in GCC, are simpler to use than writing error-proreeasler code by hand and do
not require any knowledge of assembler.

For example, the GCC C language built-in for atomic fetc-add is

__sync_fetch_and_add(&v->counter, i);

A fetch-and-add instruction could be used for a counteratéei in shared memory that is
accessed concurrently by Nahanni applications runningfierent VMs. GCC supports
numerous atomic built-ins for other arithmetic and logie@tions. Atomic operations that
are provided by GCC extensions or implemented via assertibkaiges work in Nahanni
shared memory without modification since they are simply @groperations and Nahanni

exports flat shared memory.
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/* conpiling position-independent code */
2 /1 EBX register preserved for conpliance with position-independent
code
3 /1 rules on | A32__
4 asm_ _volatile_ (
5 "pushl _®ebx\n\t"
6 "movl _ (%ecx), Webx\n\t"
7 "movl __4(%ecx), Wecx\ n\t"
8 "l ock\ n\t cnpxchg8b_%d\n\t"

9 "popl __%Webx"

10  "=A"(result), "=n'(*(int64t *)ptr)
11 " (x(int64t +)ptr)

12 , "0"(conparand)

13 , "c"(&val ue)

14 : "menory", "esp"

15 #i f __| NTEL_.COWPI LER

16 , " ebx"

17 #endi f

18 )

Figure 4.23: Example assembler linkage for C to implememnat compare and swap

The above assembler linkage is taken from the Intel ThrealdiBg Block code [25].

4.11 Security

An important issue with any mechanism that allows extermat@sses to access memory
(in a VM or otherwise) is security. Following the KVM philogby of building upon the
mechanisms and policies of Linux, Nahanni relies on praieatnechanisms provided by

the Linux operating system.

4.11.1 Host security

The first concern of security is the POSIX shared-memory ablpa the host. POSIX
shared memory is accessible via the host file system and subjiscs to the POSIX file
system permissions. In POSIX-compliant file systems, edefaffid directory is protected

by an array of permission bits that are divided into the tlymeips:

user Permissions for the owner of the file or directory. A file catydrmave a single owner
in the POSIX model.

group Permissions for the group that owns the file or directory. hEfe or directory
can only have a single group owner. All users that belongéoothining group may

access the file or directory as the group permissions alloaugpermissions allow
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a restricted group of users access the file without necgsaliawing all users on the

system to access file.

other Permissions for all other users excluding the owner andsubat part of the owning
group. These permissions apply to every user that is knowmetéile system. These
permissions are typically more restrictive theger and group as they apply to all

users that are not the owner of the file or belong to the owningm

Each of these three categories of users are granted soménatimi of permissions to
read write or executethe file or directory. The same permissions described abpply a
to POSIX shared-memory objects. Therefore a single userasirict access to their own
VMs and host applications. As well, users can also expanahigsions to other users that
are in a common group with them if that user is the group owaethHe POSIX shared-
memory object. A user could choose to make the shared objaitalale to all users on the
system. In each of these three cases, the creator of thedsima&mory object could also
choose to grant permissions for the group or all users todmtoaly.

In general, Nahanni retains the expressiveness of the PP&ixission model in re-
spect to sharing memory between VMs and host applicatioalhahhi leaves the choice of
permissions to the user that creates the shared-memorst tdjacrease or restrict permis-
sions as they see fit for the particular application.

The POSIX model is sometimes considered overly restridctivenly having three lev-
els of access control. In particular, POSIX does not supfifiedrent permissions for indi-
vidual users, other than the owner, or for multiple groupaother security control mech-
anism,Access Control ListéACL), support a more flexible permission model by allowing
different users and groups to have separate and differentiggons. If and when Linux
supports a more flexible permission model such as ACLs fas, fd@ectories and, by ex-
tension, POSIX shared-memory objects then Nahanni shmaezdery objects will be able

to take advantage of that mechanism as well.

Security of the Shared-Memory Server

Using the Shared-Memory Server (SMS) does not add any additsecurity concerns ver-
sus the direct method, but there are some differences wimthgsing. If users choose to
use the SMS, then the SMS is the only application that willibectly accessing the POSIX
shared-memory object. Guests wishing to access the shagwbry region will commu-

nicate with the SMS to gain access. When SMS is started, litwaile the permissions of
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the user that started it and so will require the necessamipsions (user, group or other)
in order to open the object. The Unix domain socket used tawonicate with the SMS is

subject to the same file system permission model previoustydsed. Each QEMU/KVM

process that uses the server will open the socket at bootandehe permissions of that
guest will be checked when that occurs.

The above security discussion adds an additional levelméem when requiring guest
VMs to run as root, which some of the network configurationg.(&p interfaces) discussed
in Chaptei b may require. If all guests are run with root pesiins, then they are able to
open any shared-memory object and so may open objects tiet wiers did not intend
them to use. The root requirement issue for KVM is under mgstrutiny and will be
resolved in time, but until that happens certain secur#geroffs will exist.

In the meantime, because Nahanni is designed to be usedawttuiring root permis-
sions (e.g., no need for tap interfaces) to get high-perdora IPC, it does not have those

security issues.

4.12 Guest Security

In shifting the discussion to security within the guestsitmportant to clarify the role of a
user. The guest OS is a completely separate OS from the Inagénkral, user accounts in
the guest have no relationship to user accounts on the hasst®Ses may be configured
to match host system user accounts, but that is completelyeatliscretion of the host
and guest system administrators. For the purpose of thisiskgon, we will refer user
accounts that exist in the guest OSgaest userand administrators of the VM(s) aglest
administrators

Within the VM, a guest administrator may want to restrictesscto the shared memory
to certain guest users. Inside the guest, the Nahanni memacgessible through a device
file, typically named dev/ ui oN where N is an integer greater than or equal to 0. Linux
file system protections apply in the same way to device filetheg do for regular files,
directories and POSIX shared-memory objects. Guest adirators can restrict the access
to the shared-memory region by setting the appropriate gsest and other permissions
to the device file that is associated with the Nahanni shamsadony. With the permissions
properly set, only certain users that are either the useepwnin the owner’s group can
access thedev/ ui oNfile. As well as restricting users, guest administratorsaiaa restrict

access to device file by making the device file read-only fibreeithe user owner or group
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owner. Doing so would only allow the guest owner to map theeshenemory for reading,
not writing.
In general, whatever protections are available for devicess by the guest OS can be

used to restrict access to the Nahanni shared-memory region

4.13 Discussion

As mentioned in Sectidn 4.2, other designs for Nahanni wessiple. One possible design
of particular note that was explored in great detail wasgigire virtio paravirtualization

framework to implement Nahanni.

4.13.1 A Virtio-based Nahanni Device

When initially approaching the QEMU community with the idefan inter-VM shared
memory implementation, one of the principal maintainer©QQ&MU insisted that the in-
terface be implemented in the virtio paravirtualizatioanfiework discussed in Chaptér 3.
As mentioned above, this design and implementation wasdatemed inappropriate to the
goals of Nahanni, however it is still fruitful to discuss tiietails of that implementation.

Recalling the three components of the Nahanni implememtaliscussed in Sectién 4.1,
using virtio would impact the second and third componerdamely the Nahanni device and
the guest kernel driver. The first component of the desigr§IR@hared-memory objects,
were still used as the backing for shared memory in our virtiplementation. It is also
important to state that the semantics of Nahanni would nahgh either by using a virtio
implementation, just the implementation within QEMU and guest kernel.

As mentioned, virtio[[52] is a standard that was establishe2D08 as a generic, high-
performance transport for virtual devices. The virtio femork has been used to implement
a block device, a network device and serial port that areqgfa@EMU/KVM. The goal of
the virtio framework was to provide a standard device imiegfthat could be used by any
data-intensive devices (e.g. block, network, graphica) thove data into or out of VMs.
Virtio was designed to behave similarly to a DMA engine intttiee hypervisor would
copy the data directly from kernel memory to the device,(oat of the guest). Virtio, like
Nahanni, aims to minimize data copies while data is in trartspHowever, virtio does not
share memory between guest VMs or between guests and thedrose. Instead virtio
leverages the fact that the QEMU hypervisor can access ahgfithe guest memory since
the VM is within the QEMU address space. In short, rather ttegoying to and from an flat,

shared region, the guest will notify the hypervisor of thealiion of data to be moved via
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pre-allocated buffers calledrtqueues Virtqueues can be used like ring buffers. Typically
bi-directional devices, such as network cards, will empiey virtuqueues, one for sending
data and one for receiving data. Virtqueues have a fixed nuoflstots that is configured
when the device is created.

Virtio virtqueues are configured by a guest-hypervisorraxton when the virtio device
driver is loaded by the guest OS. The interaction consisgsiassof reads and writes to the
device’s configuration space that allocate the virtqueweistiaen notify the hypervisor of
their location in the guest memory.

The challenge in trying to create a virtio implementatiorNathanni was to adapt the
existing virtio model to support memory regions that cowddshared between guests and/or
the host.

Since virtqueues are simply regions of guest memory, sityidlocated regions could
be used as a target to map memory and have that memory sheretllydietween multiple
guests and the host. Instead of passing the size of a virqtieeidevice passed the size of
the memory region that was to be created in guest kernel mei@oice created, the hyper-
visor was passed the guest address of the allocated menubtiyeahypervisor then mapped
the host POSIX memory object at the guest memory addressgassn the device.

Ultimately, the implementation was rejected by the virti@imainers (despite their
initial insistence) because it was said to break the DMA rhtitet was part of the virtio

design.

4.14 Concluding Remarks

This chapter has explained how the Nahanni device was dabignd implemented. The
implementation involves three primary pieces including ittshmem device, the UIO guest
device driver and the Shared-Memory Server. As well, we Haghlighted alternative
designs that were possible to help explain why we made thgrdekoices we did.

Simplicity and flexibility are the focus in Nahanni’'s desigHigher-level abstractions
may be implemented on top of Nahanni (e.g., memcached [22H68 are more convenient
for particular use cases than the mechanisms describeé.abov

At its most basic level, Nahanni can be adapted to numerassfos virtualized appli-
cations because of the flexibility in sharing memory to therdisvel which supports a load-
store interface for cooperating applications. The additba simple interrupt mechanism

provides an alternate technique that can replace the nesgifdocks for synchronization.
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Chapter 5

Evaluation

In the previous chapters, the background, design and ingsitation of Nahanni have been
presented. As mentioned, the ultimate goal of Nahanni isréwige a high-bandwidth,
low-latency shared memory mechanism that provides extetlerformance and enables
applications to take advantage of that performance in bodased data and structured
data use cases.

The experiments presented in this chapter will demonstnatéNahanni provides higher
bandwidth (e.g., file staging and message passing) and latesicy (e.g. LMbench'’s “hot
potato”), when compared to existing network and virtiodsthsnechanisms. First, we dis-
cuss a series of microbenchmarks in Sedtioh 5.3 that foctiseospeed of data movement
and synchronization that can be achieved with Nahanni dhawemory. Second, small
application benchmarks will be shown in Section] 5.4 that alestrate the benefit of Na-
hanni in the context of applications which intersperse camigation with computation.
Third, a full application benchmark, the General Atomic &hdlecular Electronic Struc-
ture System (GAMESS), will be compared using Nahanni vermisg the well-known
Message-Passing Interface (MPI) to demonstrate Nahdwerisfit in a full-scale scientific
application that can use shared memory for interprocessmomncation (IPC). In our final
benchmark, we compare the SPEC MPI12007 benchmark suitg a$itPl library modified

to use Nahanni against the same MPI library using the virtaélork.

5.1 Experimental Methodology

All experiments were run on an 8-way (two quad-core 2.67QHkel X5550 Xeons) Linux
box with 48 GB of RAM. The host operating system is Fedora kltha guests are Ubuntu
9.10 (Karmic Koala). The guests and host both run a 2.6.3déxX kernel. The hypervisor

is the KVM version in the Linux Kernel v2.6.37. In our defaatinfiguration, each virtual
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Figure 5.1: Comparison of inter-VM communication mecharisor QEMU/KVM

machine (VM) is configured with 4 virtual CPUs and 8 GB of RAM feenchmarking.
It will be made clear if any benchmarks require deviatingrfrthe default configuration.
Depending on the benchmark, we may use 2, 4 or 8 VMs. We use¢hnage of 5 runs for

all benchmarks. When error bars are shown, they are equadtanilard deviation.

5.2 Definitions

In understanding the experiments, one should be familitlr thie following terms some of

which have been introduced previously in Chapter 3:

QEMU/KVM QEMU/KVM, sometimes shortened to KVM, is a Linux-based hyjsor
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that runs VMs. QEMU/KVM is a two-part solution involving a midied QEMU [&]
user-level process and the Kernel-based Virtual Machinéd\Kthat runs in the ker-
nel. The KVM part of QEMU/KVM is implemented as a Linux kerrmabdule and
has been part of the mainline Linux kernel since versior2B.6QEMU/KVM is the
default hypervisor in the major Linux distributions Uburgnd Red Hat Enterprise
Linux. To run a VM, a modified QEMU executable running at ussel communi-
cates with the KVM kernel module. For the remainder of thiapthr we will use
KVM to refer to the QEMU/KVM hypervisor in general.

Virtio Virtio [52] is a standard for implementing paravirtual des$ that provides a straight-
forward, yet high performance transport for virtual degic®aravirtual devices are
a class of devices that are designed specifically for VMs andal attempt to em-
ulate a real hardware device. Virtio defines an interfacevbéeh guest drivers and
the hypervisor that minimizes copying of data when data mdr@m the guest to
an external device such as the network or virtual disk. &ihas been used to im-
plement a virtual network card, a virtual block device andoatiguest file system,
9P. Virtio drivers for these devices have been part of thentima Linux kernel since
version 2.6.24. With respect to Figure 5.1, virtio netwodvides are used for all

configurations, however they are only involved heavily ij (B) and (c).

Co-located VMs Co-located VMs are VMs that run on the same physical host mach
Co-location is a requirement for using Nahanni as only mahrunning on the same
host can share memory. Co-location of VMs is a common pmadticother reasons
than allowing shared memory such as increasing resourge ugahost machines.
Note that all four configurations in Figure 5.1 show thredamated VMs running on

a single host machine.

N x M Notation In Section$ 55 and 5.6, we run several parallel applicdiEmchmarks
to evaluate the inter-VM communication potential of Naharithese benchmarks
involve running multiple parallel processes across midlfipo-located VMs. To pro-
vide clarity we introduce amv x M notation to allow us to succinctly express the
number of processes and the number of VMs that are executeddh benchmark.
The notationV-x M indicates that a total aV processes were run acraks VMs.
The number of virtual CPUs per VM i&//M. For example, @ x 2 configuration
runs 4 parallel processes across 2 VMs. Withsa 2 configuration, each individual

VM has4/2, or 2, parallel processes executing within it. By contrast,x 4 con-
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figuration is comprised of 4 parallel processes runningsscdoVMs with 1 parallel
process per VM. The experiments in Sectibns 5.5[and 5.6vevobnfigurations of
4x2,2%x2,4%x4and8 x 8.

KVM'’s networking configuration has numerous options depegan the requirements
of the VMs being run. For example, VMs can be configured to bi#ka on the hardware
network or can be hidden hyetwork address translatio(NAT). Figure[5.1 illustrates the
different communication options available for KVM. Theltmling description will elabo-

rate on the flexibility and trade-offs for the different netking options.

Bridged Networking Using a host network bridge is one possible setup for KVM- Fig
ure[5.1 (a) illustrates this configuration with three VMs.idge networking adds
a network interface to the bridge for each guest VM via a tderface (see Fig-
ure[5.1 (a)). Bridged VMs are visible on the hardware netwogk, can be pinged
from a different machine) and therefore require an IP addossthe network they
are bridged on to. Similar to physical machines on the né&kwér addresses for the
VMs may be statically allocated or dynamically allocatethgsa DHCP server. One
caveat of using bridge networking with KVM is that it requraunning VMs with
root permissions which opens up a variety of security carxcénat are beyond the

scope of this thesis.

Vhost Vhost, illustrated in Figure 5.1 (b), is a virtio network at@ration extension for
KVM. As Figure[5.1 (b) shows, the vhost setup is similar toiddped setup with one
tap interface per VM. The difference between vhost and exduidged networking is
that vhost requires an additional kernel module to be lodllatdaccelerates network
performance. Vhost improves performance by reducing tingaan of expensive VM
exits when sending or receiving data on the network. Vhostides a substantial
increase in bandwidth and a modest reduction in latencyeoh#twork versus virtio
alone. Since vhost requires bridged networking it requitesing guests as root
processes. We consider vhost from a performance point af Wnost networking

is our main point of comparison for all network benchmarking

VDE Virtual Distributed Ethernet (VDE) [12], illustrated indfire[5.1 (c), is a networking
system that eliminates the need to run QEMU/KVM VMs as roop¢éoform the
necessary network setup. VDE implements a software netawitich that performs

NAT to allow multiple guests to share the single tap intezfam the host. VMs
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running with VDE networking are not visible to the hardwastwork because VDE
uses only a single tap interface for all VMs. VDE is a convaehigsetup because
VMs need not run with root permission as is needed with bddgetworking and
vhost. The convenience comes with the trade-off of poordopaance than bridged
networking. More broadly, VDE offers virtualized overlayrictionality that is not

considered in this work.

Our goal in this chapter is to compare the best possiblealirtatwork configuration to
using Nahanni, our shared memory mechanism for commungagtween host and guest
VMs as well as between guest VMs. Nahanni is illustrated gurg[5.1 (d). Nahanni does
not rely on network connectivity or the virtio subsystem las dther mechanisms do. As
described in the previous chapter, Nahanni exposes a ref§P0SIX shared memory from
the host into one or more guest VMs. Host applications angdtguiels that share the same
POSIX shared memory object may communicate across it. Néfsmot a networking
technology or optimization, but a different mechanism gdther. Nahanni requires the
writing or modification of applications and libraries sgdaxlly to use it. Figuré 5]1 (d)
illustrates one possible use of Nahanni with ring buffelscaited in the shared memory for
inter-VM communication. For each benchmark we will deserfivecisely how Nahanni
was used and the modifications that were necessary in ordeeti.

For the benchmarks in the upcoming sections, Nahanni (EGuk (d)) will be com-
pared to vhost-enabled bridged VMs (Figlrel 5.1 (b)) sineevtiost configuration has the
best networking performance. For our application benchkm@AMESS, in Section 515,
a VDE system (Figure 5.1 (c)) is also included in the compaiss however our 30% im-
provement is relative to vhost, which is the best-case padace for MPI.

The microbenchmarks in the following sections will also @amre to the virtio-based
9P file system for transferring data from host to guest as agethe network. Note that the
solution illustrated in Figure 5.1 (a) is not evaluated lhesesit is architecturally similar to

the solution in Figuré5]1 (b), only slower.

5.3 Microbenchmarks

Previous work has shown that shared memory should providerltatency [[60, 20] and
higher bandwidth, however we want to verify this hypothéki®ugh microbenchmarks.
IPC performance is typically benchmarked in terms of lagemod bandwidth, therefore

the following two sections will explore these metrics widspect to Nahanni and seek to
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answer two fundamental questions:

1. Does Nahanni have lower latency than other mechanisms?

2. Does Nahanni provide higher bandwidth than other meshanivhen moving data?

Nahanni should have two advantages over existing techsigubat it reduces memory-
to-memory copies and avoids crossing protection barrietséden user-level and kernel in-
side the guest as well as between guest and host. These taontages should improve

both latency and bandwidth versus existing methods.

5.3.1 Latency: The Hot Potato Benchmark

Our simplest microbenchmark is to compare the round-tripniey of a virtual network
versus Nahanni shared memory. We will compare two VMs conicating via the vir-
tual network as shown in Figure 5.1 (b) to two VMs communizgitacross Nahanni as in
Figure[5.1 (d). In this benchmark, a round-trip is the segdiha notification from an ap-
plication running in a VM to a recipient running in a co-loedtVM and then receiving a
notification back from that recipient. In an applicationtifications may be used to transfer
control between cooperating applications. Latency shbalds low as possible.

We compared the well-known LMbench [32] “hot potato” tesatsimilar control mech-
anism in Nahanni between two co-located VMs. The “round irigshared memory trans-
fers control of a critical section from one process to anptbienilar to a semaphore that
requires the processes to strictly alternate. We did notheséMBench code since it is
socket-based, but wrote an application from scratch. Tvpdigagions running in different
VMs will access shared data in the Nahanni shared regiomtifiatonstitute passing con-
trol back and forth. To be clear, no data is exchanged in thHeaN@i case. The TCP and
UDP LMbench benchmarks send the smallest message possibtetbe virtual network
back and forth between two applications running in difféékls.

LMbench measured a UDP latency of 200 microseconds and a a@Rcl of 230
microseconds for its “hot potato” test. Our Nahanni semaphitas a round trip of 0.5
microseconds to transfer control between VMs. This resrtahstrates that the latency of
shared memory can be much lower since no data is copied anteetion boundaries are
crossed which is consistent with previous research [20¢ dbove results demonstrate an
improvement of two orders of magnitude.

The overhead in the networked case is caused by memory+tmengecopies and cross-

ing protection boundaries. The “hot potato” benchmark semetwork packets which re-
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Figure 5.2: Staging a file from the host to guest

This abstracted illustration shows how an input file is cdgiem the host file system into
the guest via a virtual 1/0O device. The device could be a alretwork card, virtual file
system or a Nahanni shared memory device. The input file weiktaged in order to be

used by a virtualized application running inside the guest.

quire system calls on both the sender and receiver as wéleasdving of the data packet,
either 1-byte for TCP or 4-bytes for UDP, across the virtigiork. Using Nahanni to sig-
nal an application inside a co-located guest does not reguiy of the overheads that the
network packets incur since the communication is entirelytained within memory that is
shared to the user-level in both guests. Avoiding contexickes and network transport is
what accounts for the much lower latency of Nahanni.

Running Nahanni in a multi-core environment is importamttfos latency benchmark
since it eliminates the need to context switch between VMsbge the VMs run on sepa-
rate cores. Nahanni should still provide a performance radg® on a single-core system,
but the latency performance shown here is achieved due irigottte multi-core machine

the experiments were run on.

5.3.2 Bandwidth: Host-to-guest File Transfer

The other important metric of IPC performance is bandwithht is: being able to move
large amounts of data quickly. In high-performance conmgytthe movement of data files

is typically calledstaging Figure[5.2 illustrates staging of a file from the host file-sys
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tem into the virtualized guest. For this benchmark, foutedént file sizes will be staged:
350MB, 700MB, 2GB and 4GB, using three of the mechanismstitited in Figuré 511
(configuration () is excluded) as well as a paravirtualifedsystem, 9P.

Staging data efficiently is important to keep overhead lovemviunning an application
inside of a VM instead of running natively. For example, ifigual machine is used to
decode video, the source video must be staged into the Mmaehine. As video files can
be large in size, bandwidth is an important metric for this case. Using Nahanni shared
memory that is accessible from user-level in the guest elies some of the overheads that
other mechanisms impose.

Our bandwidth microbenchmark measures the time to copy afdea VM using Na-
hanni versus other paravirtualized mechanisms. In péatioue compare a file staging
mechanism based on Nahanni (Figuré 5.1 (d)) to two well-kmoatwork-based file trans-
fer utilities. In particular, we compare a Nahanni-baseameism that we wrote to the
netcat utility [42] and to SSH layered on top of virtual netking as shown Figurie 5.1 (b).
We also introduce the paravirtualized 9P file system as & pbicomparison. The 9P file
systemis included in these benchmark as it is the suggesttbohto share host files inside
a guest VM when using KVM.

Table[5.3.2 highlights the features of each of the four partsmechanisms that are
compared. SSH, netcat and 9P all use the virtio frameworkléta movement. SSH and
netcat use a virtio network device and 9P uses the virtiol@Ry¥istem support that is part
of QEMU/KVM. Vhost is enabled in the VMs for this benchmark.riély, we describe

each of these mechanisms to help the reader understanadieeaifs with each.

netcat Netcat [42] is a well known Unix utility for testing applicahs that use TCP and
UDP sockets. Netcat is commonly available on many Unix sgyste By design,
netcat provides no network security in terms of authentoabr encryption of data.
Netcat is a useful utility for streaming data and testingvwogked applications (e.g.,
clients and servers). For these benchmarks we will use tpy data across a socket
into a VM.

SSH SSH[1] is the well-known secure shell application. For wiefving experiments we
use the SSH-HPN [50] patches to disable encryption of datlegpa so only authenti-
cation is used, to avoid the unnecessary per-byte encryptierheads. Within single
servers and private networks, encryption of data duringsfex is not essential due

to the isolation already present. We leave authenticatiometl on as authentication
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distinguishes SSH from netcat. Two different applicatiosn the SSH suite will be
used for benchmarking: SCP (secure copy) for staging a fdeS8H (secure shell)

for streaming data.

9P 9P [58] is a paravirtualized file system that is designed ffier virtio interface that
QEMU/KVM supports. 9P is a client/server file system protoadapted from the
Plan 9 operating system [46] that has been ported to Linukio¥®P was added to
QEMU/KVM as a mechanism to support accessing the host filesy the guest
so0 virtualized applications access a file on the host withlbatneed to explicitly
copy it into the guest. In the case of KVM, the “server” is gnated into QEMU
(therefore at user-level) and communicates with a virffoe@vice that is part of the
guest. Integrating the server reduced the need for an extegrver such as SAMBA
or NFS on the host. 9P also required adding a special kerwerdo Linux to support
the virtio-9P device. The 9P driver must be loaded into thesgkernels used in these

benchmarks.

Nahanni As mentioned usage of Nahanni requires applications béanr#ipecifically for
it. For these bandwidth benchmarks, sender and receivdicajgns were written
that create a simple producer/consumer ring buffer in shaemory. The ring buffer
consists of 16 slots with each slot being of a fixed size (16 MBE sender and re-
ceiver applications use Nahanni's interrupt mechanisnsifgmalling. Signalling is
used to notify when individual buffers in the ring have be&hes filled or emp-
tied. The receiver program outputs data to a disk file in thesgor to standard
out. Standard out can be redirected/ tev/ nul | or another program (e.g. grep,
FFmpeg([17]).

The various mechanisms just described also provide diffdesels of security that in
turn have associated overheads. Nahanni relies on stablfexdile permissions (on the
host) to protect the POSIX shared-memory object that iseshiaetween guests. Therefore,
guest VMs of different users cannot access the same Nahaam@idsmemory region unless
explicitly permitted to. Netcat, which uses the virtualwetk, does not provide any secu-
rity nor is it intended to. Netcat simply listens on a IP pantiaopies the data sent to it.
In general, netcat could not be used in a production enviesriras it would introduce an
unacceptable security risk. SSH uses encryption to audagatconnections in our config-
uration. For SSH, the High-Performance Enabled versiof-B8N was used that allows

disabling of encryption on the data transfer (encryptiostils used for authentication). In
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mechanism network | paravirtualization| authentication| encryption
Nahanni not required none yes unnecessary
netcat required virtio-net, vhost no no

SSH required virtio-net, vhost yes disabled
9P not required virtio-9P yes unnecessary

Table 5.1: Comparison of file staging mechanisms
The table indicates the features of each of the transporhaméems used for file staging
and streaming.

some environments, not encrypting the transmitted dathddmiconsidered a reasonable
trade-off. Similar to Nahanni, 9P uses Unix permissionshenttost to protect the data that
is exported via 9P through QEMU.

To provide an example of how the various mechanisms justritbestcare run, we will
provide command-line examples of each. The following comuriéne is used to stream
data from IP port 2000 todev/ nul I using netcat:

netcat -1 -p 2000 > /dev/null

A similar execution of netcat on the host (not shown) will gape input file from the
host file system to IP port 2000. For SCP, the command-linepy a file from the host file
system into the guest is:

scp - oNoneSwi t ch=yes -oNoneEnabl ed=yes host:/local/data/inputfile /dev/
nul |

In the above example, the file is copied/tev/ nul | inside the guest. The options
oNoneSwi t ch=yes - oNoneEnabl ed=yes” tell the SCP application not to encrypt the data.
See Sectioh 5.3.2 for the discussion on why encryption ahtfsl.

For Nahanni, our sender program, nanped_fi | e is invoked as follows on the host:

./lput file /local/data/inputfile 16 1

The second parameter in the cal, indicates the number of slots in the ring buffer and
the third parameter, indicates the VM ID of the VM that the receiver is running in.

Since 9P is a file system, it is mounted inside the guest VM apdsed via the file
system namespace at a mount point. Once mounted, any Uhty abuld be used to
access the files. For example,

cat /nount/9P/inputfile > /dev/null
would copy the file from the mount point inta@ev/ nul | .

Figure[5.8 shows the runtime for each of the mechanisms. olatésthe speed of the
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Figure 5.3: Comparison of runtimes for staging data witfedént mechanisms

different transfer mechanisms, these tests are run withran\waffer cache on the host and
the file is written to dev/ nul | in the guest to eliminate file system overheads.

As the results show, Nahanni is the fastest mechanism fosfeering data versus the
other mechanism for all 4 file sizes. Copying data acroseshaemory is between 4 and
8 times faster than netcat. When transferring the 350 MB Nbkhanni completes in 0.14
seconds, where as netcat takes 0.62 seconds, and SCP anth3Bkbo2.2 seconds. In
general, Nahanni completes at least 4 times faster thaatreatd is an order or magnitude
faster than SCP or the 9P file system. The graphs for the otbeifes in Figuré 5]4 show
that these trends continue with the larger files.

It should be mentioned that despite the slower performaseeh of the other transport
mechanisms have their respective benefits. In particukdicahand SSH/SCP offer socket
semantics such as non-blocking writes and buffering. SSHSEP also offer network au-
thentication and can access the VM from outside the host imadtithe networking allows.
9P offers file system semantics (e.g., a file hierarchy, uséedystem utilities). However,
all these features come as a trade-off for absolute perfucealowering the overhead of
transferring data will improve the overall execution ofaaitensive and latency-sensitive

applications.
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Figure 5.4: Comparison of runtimes for streaming data wifeidnt mechanisms

The bars show the runtime of streaming a 700 MB to the FFmpegeap applications
running inside a VM. The FFmpeg application decodes theoille as it streams. The
grep application searches for a word that is not containeklefiile.

5.3.3 Summary: Microbenchmarks

Revisiting the questions we sought to ask at the beginningisfsection, we can say that
Nahanni does provide lower latency and higher bandwidth diher techniques based on
the microbenchmark results above. Microbenchmarks detratagerformance that could
be achieved in an ideal case. The next question to answerhatapplications will show

a tangible benefit from using Nahanni. That is, we wish to kegerformance of Nahanni

in the context of being used by an application.

5.4 Benchmarks: Simple Applications

To further understand the benefits of Nahanni, we considglications that can perform
operations on streamed data. Specifically, we consider Efiiy¥] and the well-known
grep utility. We test Nahanni's ability to stream data tosth@pplications when running
them inside a VM. We show that Nahanni’s latency and bandwadivantages, as already

demonstrated in the microbenchmarks, also improve thevantime of these virtualized
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applications by between 3-fold and an order of magnitudeyfep. However, for FFmpeg,
Nahanni improves performance by between 2% and 4%. Thediite in relative im-
provement is an expected result. Nahanni's performancaradge should depend on the
application’s ratio of computation to data transfer.

The results for these benchmarks are shown in Figute 5.4N&boanni, the same ring
buffer implementation from the previous section is usedresn the data file into the guest
(Figure[5.1 (d)). For these benchmarks, SSH replaces SCBHp&8ssesses the ability to
stream data into an application whereas SCP can only copytdilend from file systems.

The purpose of staging data into a VM is so the data could beepsed by a virtualized
application running in that VM. When an application is pregiag data, the speed of the
transfer should keep pace with the speed at which the afiplicean process the data. If an
application can process data faster than the data can Iséainad, the transport mechanism
becomes a bottleneck. This balance is calletbmpute-to-data ratiof the application
and it directly affects application performance. Our agations, grep and FFmpeg, were
chosen since they have different ratios which are eviderthéir runtimes as shown in
Figurel5.4. While Nahanni continues to show benefit, the arnoflbenefit depends on the
compute-to-data ratio of the streaming application.

For this benchmark we will use the same 700MB file, a video filet was used in
the bandwidth benchmark. The following sections will powvia brief description of each
respective benchmark as well as describing the performafiibe different transport mech-

anisms in staging data to the two applications.

5.4.1 Grep

Grep is a common Unix utility that searches for a regular esgion within a file. As
mentioned, grep is less computationally intensive than peégrand so the overhead of the
transport mechanism should be more apparent. For this ber&hwe search a 700 MB in-
put file for a regular expression that the file does not consimo output is generated. The
results are shown on the right histogram of Figuré 5.4. Bezguep has low computational
overheads, the network is still the bottleneck.

We stream data into the grep application for this benchntadughst di n, the standard
input stream into the application. An example command-aranetcat VM is:

netcat -1 -p 2000 | grep <word>

The netcat program receives the data from the sending progrethe host and passes

the data to the grep program through a pipet6 the grep program which searches for
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a word that does not exist in the file. The command-lines taw@eethe other streaming
mechanisms are similar to the one above.

Because of the network bottleneck, Nahanni again providesawest runtime. With
the low compute-to-data ratio of grep, bandwidth is a bo#tk as the runtimes are only
slightly higher than from the file staging benchmarks (Fé&dbr3). The grep application,
when accessing the data through Nahanni, is able to comipliss than one second. The
next lowest execution is when using netcat which takes dlf&sseconds, followed by
SSH (4.9 s) and 9P (9.6s).

5.4.2 FFmpeg

As a benchmark that involves more computationally intemgirocessing we ran theF-m-
pegvideo processing application inside a VM to decode a file West streamed from the
host file system. The input file is a 700MB video file. The leftthgram of Figure 5]4 shows
the runtimes when using the different mechanisms. The foaaming methods from the
previous bandwidth benchmark were used, namely Nahantiaine&SSH and the 9P file
system, to access the video file. For Nahanni, SSH and néieatideo file is streamed
via st di n into FFmpeg. For 9P, the file is read by FFmpeg via the 9P fileesys Since
FFmpeg decodes the video file inside the guest this benchreprksents unidirectional
data streaming. The command-line execution to stream afiié-tnpeg from netcat is as
follows:

netcat -1 -p 2000 | ffnpeg -i - <ffnpeg options>

Nahanni has the lowest runtime (51.2 s) followed by 9P (53.358H (55.6s) and
netcat (56.1 s). FFmpeg is a useful benchmark that demtestaacommon application
that needs good performance. However, FFmpeg is a relateshputationally-intensive
application (as is video transcoding in general) and tlreeeNahanni’'s benefit is limited

by the computation overhead of FFmpeg.

5.4.3 Summary: Simple Applications

In this section, we have shown that both grep and FFmpeg\azhtbeir best performance
by using Nahanni when streaming input data from the host machVhen using netcat or
SSH for staging the data transfer pathways include the mkimgpstacks in the VM and on
the host with associated data copying and protection-dorraissing. Copying overheads
are minimized in Nahanni as the data is only copied once fir@ahared memory. As

with the results from our microbenchmarks, it is Nahanriyigity to minimize memaory-to-
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Figure 5.5: Two configurations of GAMESS: using MPI (a) andhilani (b)

lllustrated are the two VM communication configurationstthdl be compared using the
GAMESS application as a benchmark. The MPI configuratiotiustrated in (a) where
all inter-VM communication will occur over the virtual nebnk. The Nahanni
configuration (b) will use Nahanni shared memory for intét@ommunication. Note that
some network communication still occurs in the Nahanni ¢bse

memory copies and reduce crossings of protection barhatddads to better performance.
It was also shown that the impact of Nahanni on the total matof an application
depends on the nature of the application, in particular &tie of computation to commu-
nication. Nahanni's impact was more significant for gremthiavas for FFmpeg because
of the difference in the compute-to-data ratios of the twoliaptions.
In the next section, we will explore the use of Nahanni in aer@mplicated scenario
than staging files or streaming data. We modify an existirensific application, GAMESS,

to use Nahanni as its communication layer when running acrastiple co-located VMs.

5.5 Application Benchmark - GAMESS: Quantum Chemistry

Following the progression from microbenchmarks to strémsed applications, we now
investigate whether Nahanni can be an effective inter-VMhicmnication mechanism for
a high-performance, parallel application. For this aglen benchmark we select the
General Atomic and Molecular Electronic Structure Sys(G@AMESS [62]).

We examine the ability of GAMESS, when run across co-loc&bts, to take advan-
tage of Nahanni as a communication layer. GAMESS is seldotddis evaluation because
it is a well-known, full-sized application (e.qg., it is paftthe SPEC CPU2006 benchmark-
ing suite), it already has both shared-memory (e.g., DDd) message-passing (e.g., MPI)

implementations, and there is an established communithefdsts who use it, including
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at the University of Alberta. Although we show that GAMESShgsNahanni (via DDI)
can be up to 30.7% faster than GAMESS using MPI, our largeclasion is that existing
applications can be programmed to use Nahanni shared mewitgh in turn can have a
performance advantage over network-based message-gassin

In this benchmark, we will compare GAMESS using the virtugtiwork (Figuré 5.11 (b))
versus Nahanni for inter-VM communication. The 9P file sysis not part of these ex-
periments as GAMESS is not able to use a file system for datinghend 9P is designed
specifically for host-to-guest data movement.

For this benchmark and the SPEC MPI12007 benchmarks follpwirSectiori 5.6, we
will use our N x M notation introduced in Sectidn 5.2 to describe the inter-vdfig-
urations. All the GAMESS benchmarks in this section usge>a2 configuration for both

Nahanni and the virtual network configurations.

5.5.1 Benchmarking GAMESS

GAMESS is arab initio quantum chemistry simulation program that simulates a vadge
of molecular behaviour and properties. GAMESS is typically in parallel and supports a
number of communication subsystems such as sockets, MBhamed memory. GAMESS
is designed to be run in parallel on high-performance shareghory machines or clusters.
GAMESS can be memory-intensive and the ability to commuaieéficiently is important
to overall performance. The behaviour and performance dfi&8S is dependent on the
input provided, namely the input molecule and the simutat@mbe performed.

The results in Figure 5.6 show the runtime of GAMESS acros#fdreint simulation
inputs. The four input molecules, namait-ump2 aza-es carbaphosandsi9hl12 were
provided by a chemist and GAMESS developer from the UnitierdiAlberta.

GAMESS uses its own communication subsystem called theiRistd Data Interface
(DDI). DDl is a library that abstracts the underlying comrmation system (sockets, MPI,
shared memory, etc) from the computational components dflE3S to provide a cleaner
and consistent interface between computation and comaumrcfor the GAMESS appli-
cation itself. The purpose being to minimize developmefuref when porting GAMESS
to a new communication layer.

For shared memory specifically, DDI supports System V (Syshdred memory when
a simulation is being run on a single machine. When GAMES@risan a single server
or in a single VM, the processes exchange data through Syaidimemory. When run

across numerous machines or VMs, DDI uses either netwokesoor MPI. In contrast to
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Figure 5.6: Comparison of GAMESS dnx 2 (smaller bars are better)

Note that the performance of Nahanni + VM + vhost is closestto-virtualized
SysV + No VM case.

the previous benchmarks, with GAMESS the communicatiorefesben guest VMs rather
than between the host and guest VMs.

We modified DDI to support communicating over Nahanni if albgesses are run-
ning on the same hardware host, but in different VMs. Thidfigomation could occur if
GAMESS were being run on a cloud provider with multiple codted VMs running the
concurrent GAMESS processes. Figurd 5.5 illustrates thmE3S configurations that we
compared. We compare using network-based MPI (Figure 3)5dalPC versus using
Nahanni (Figuré 515 (b)) for IPC. It should be noted that ewtaen using Nahanni, some
network communication does occur to launch the cooper&@IAYIESS processes, but the
majority of communication will be over shared memory.

The conclusion to be drawn from the results in Figuré 5.6a$ Mahanni is the fastest
communication mechanism for GAMESS, in the range of 1% td%0faster than the
fastest MPI-based variant. That is, the runtime is redugeaptio 30.7% by using Nahanni
instead of MPI over the virtual network.

The specific improvement of Nahanni over MPI correlatesadiowith the amount of
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MPI-based communication (Talile b.2). For example, theesamolecule for GAMESS has
the most MPI-based communication and shows the largesbrpgethce improvement of
30.7% (i.e., second vs. fourth bar). We consider an imprerearaf over 30% a significant
result considering the high performance of the virtual mekwith vhost enabled.

Figurel5.6 compares 6 different configurations of GAMES®s&the 4 input molecules.
The individual bars in Figure 5.6, from left-to-right, resent the following configurations
of GAMESS:

1. running natively on the host with SysV mechanisms (Sys\VoMW)

2. virtualized using Nahanni with vhost-enabled (NahankiM + vhost)

3. virtualized using Nahanni without vhost-enabled (NatanVM + bridge)
4. virtualized using MPI with vhost-enabled (MPI + VM + vhpst

5. virtualized using MPI without vhost-enabled (MPI + VM +dige)

6. virtualized using MPI with VDE (MPI + VM + VDE)

We evaluate the non-vhost cases to demonstrate the perfoenamvantage of vhost.
Recall that vhost is a network accelerator for bridge netimgr (Figure[ 5.1 (b)) that im-
proves on the performance that regular bridged networkingiges.

As mentioned all runs of GAMESS usedax 2 configuration. The leftmost bar
(SysV + No VM) is the native execution time, which is the baselcase without any vir-
tualization or virtual network overhead since it uses hastk processes and SysV shared
memory only. We would not normally expect any VM to be fastert the leftmost bar
since it is the non-virtualized case.

The two bars of most interest are the second (i.e., Nahanthl+Vhost) and fourth bar
(i.e., MPI + VM + vhost). The second bar is the best Nahannigperance and the fourth
bar is the best MPI performance. Both of these configura@masun with vhost optimiza-
tion enabled. Nahanni does not use the network nearly as asistPI since MPI uses the
network for all data movement and Nahanni only uses it fortigtaand synchronization.
Notably, the second bar is always (within the error barsjabtest VM data points, only the
leftmost bar is faster which is the non-virtualized casee Buthe overhead of using MPI
over the virtual network (instead of Nahanni), the fourtinsbghow that MPI is slower than
Nahanni. Note that Nahanni and MPI both benefit from usingtytadthough MPI benefits
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% reduction| % exec time

in runtime | spentin MPI
nic-ump2 14.4 18.1
aza-es 30.8 355
carbaphos 5.9 6.5
si9h12 1 3.6

Table 5.2: GAMESS: Speedup and percentage execution spbiRli

Each row in the table shows the reduction in runtime fromgidiahanni and the
percentage of execution time spent in MPI functions achosgdur GAMESS inputs. The
mpiP profiling tool, used within VMs, was used to determinelMicution percentage.

more as it makes much greater use of the network, but vhost &deciding factor between
Nahanni and MPI.

We include the sixth bar (i.e., MPI + VM + VDE) in Figure .6 foompleteness. Note
that our claimed advantages of up to 30.7% for Nahanni aréon¢the much-slower VDE
cases. Although VDE is not universally used by the KVM comitwrit is a standard
command-line option for QEMU, and without VDE the QEMU/KVM/pervisor would
require root privileges to set up the virtual network (ixhpst or network taps), as dis-
cussed earlier. Our group considers running QEMU/KVM as imthe common case to be
impractical (for security reasons), so we normally use VD&ing vhost under root permis-
sions has similar security concerns, but we are mainly ngaliperformance comparison
between Nahanni, vhost, and VDE.

To explore why the speedups varied between the differenilaiions, we used an MPI
profiling tool, mpiP [39] to profile the MPI execution. mpiP asstatistical profiling tool
for MPI that gathers data at regular intervals. mpiP meastire percentage of the total
execution time that is spent in MPI functions overall as waslivithin individual MPI func-
tions. Tablé 5.2 shows the reduction in runtime that is ghfnem using Nahanni and time
spent in MPI functions for each of the simulations. The fidumn shows the molecule
simulated in GAMESS. The second column reports the reduatiountime from commu-
nicating via Nahanni versus MPI over the virtual networkeThird column reports the time
spent in MPI functions for as reported by the mpiP profilingltdBy comparing the sec-
ond and third columns, it is clear that the reduction in mmetigained from using Nahanni
strongly correlates with the amount of time spent in the MPictions. This correlation

demonstrates that Nahanni saves the intercommunicatiernead of MPI by allowing the
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parallel tasks to communicate efficiently through sharechorg.

The GAMESS benchmark differed from the microbenchmarkssimgler applications
discussed earlier in that making use of Nahanni requiredifying the code of the appli-
cation, specifically the DDI layer that implements the IPGhimi GAMESS. In the next
section we will describe the changes that were necessargder for GAMESS to make

use of Nahanni.

5.5.2 Modifying GAMESS

To enable the comparison of GAMESS using Nahanni versus MRlas necessary to
modify GAMESS to run across Nahanni (instead of the virtualnork) when VMs (each
running GAMESS processes) are co-located. As mentionednwmning on a single OS,
GAMESS uses SysV shared memory and semaphores for IPC. \Wkedeo convert the
single-host SysV mechanisms to use Nahanni across mulfigle. The following is a
description of the changes necessary to DDI to maintain ys& Semantics. Retaining the
SysV semantics minimizes the changes that are necesséwy Rl code.

After describing the conversion of the individual mechargsfrom SysV to Nahanni,

we will describe how these new mechanisms were integratedhe GAMESS code base.

Converting SysV mechanisms to Nahanni

As mentioned, DDI uses SysV shared memory for sharing datéSgeV semaphores for
synchronization when GAMESS is being run on a single OS. Syg¢hanisms are sup-
ported by the Linux kernel and therefore provide blockinmaatics. In particular, SysV

semaphores can block if they cannot acquire a semaphomuiAlj processes to block re-
quires kernel support via the scheduler that will not unbklpmcesses that are waiting for
semaphores until those semaphores are available. Hawgrigethel handle blocking is ad-
vantageous because the kernel is aware of all processelseanespective synchronization
mechanisms. However, since Nahanni can be simultaneossly oy multiple, indepen-

dent, guest OS kernels in different VM instances (see Se&id) current OS schedulers
cannot be used to provide blocking semantics. When GAMES®S Nahanni, multiple

GAMESS processes running on different kernels will be coajrey. If they require syn-

chronization, it must be contained entirely at user-leweha single kernel can control all
the cooperating processes. Therefore, Nahanni cannobmedyy kernel mechanisms and
must keep all synchronization mechanisms entirely at leset-and stored in shared mem-

ory. User-level synchronizations are not novel. For exanpter-level thread libraries have
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been developed, such as GNU Portable Threads. Similaihjoskgs are a simple mutual

exclusion mechanism that require no kernel support, byt atadmic operations.
Converting GAMESS to use Nahanni requires switching GAME®® of two IPC

mechanisms, SysV shared memory and semaphores, to an iengan built upon user-

level memory allocation and synchronization primitiveattreside on Nahanni memory.

Dynamic Memory Allocation

The first mechanism to convert to work on top of Nahanni was orgrallocation. Similar

to synchronization primitives, memory allocation is tyaglg handled by the kernel. To
support multiple processes that are sharing memory, mealtwyation and access must
be maintained in the shared-memory region. That is, altatked data and metadata must
reside in the shared-memory region so that all processeallomate, share and access the
memory. Moreover, allocating memory and updating the nagtadhust be synchronized
so that the metadata remains consistent at all times.

Wolfe Gordon [63] created a dynamic memory allocator for &tahi called shrralloc.
Shmalloc provides a library interface similar to the Lino | oc() library. Mutual exclu-
sion during updates is maintained by using spinlocks.

In the existing implementation of GAMESS, each cooperapingcesses allocates a
SysV shared memory segment and then passes a reference sedhzent to the other
GAMESS processes in an all-to-all exchange via a socketeébarsechanism. By using the
shmalloc library on top Nahanni shared memory in a similar manthe changes required

to GAMESS were not extensive.

Semaphores

The other important mechanism within GAMESS that needee tadapted to use Nahanni
was semaphores. SysV semaphores have slightly differemargecs than, say, POSIX
semaphores. SysV semaphores can be allocated in groupianémbitrary values to be
added and subtracted from them. When analysing the GAMESISC D2, it became ap-
parent that the SysV semaphores were being used to impleddmdc reader/writer locks.
Reader/writer locks have more complicated semantics tharct lmutual exclusion locks.
Briefly, reader/writer locks will allow multiple readerstina critical section simultaneously
as long as no writers are in the critical section. Once a wréquests access, all readers
must exit the critical section before the single writer vii#t allowed to enter and given

exclusive access (from other writers and readers). Depgra the particular implementa-
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tion, reader/writer locks also offer varying guaranteefawhess since there are two classes
of access (readers and writers) instead of one.

Our approach was to create reader/writer locks that cou#d iexshared memory. This
latter requirement means that user-level mechanisms stigpialocks need to be used
for mutual exclusion. Just as before, no kernel primitivas be used single the readers
and writers may be in different VMs. Intel's Thread BuildiBjocks (TBB) library [25]
have an implementation of spinlock-based reader/writekddhat, when combined with
the Nahanni memory allocator, can provide reader/writeicchyonization through shared
memory. The SysV semaphores are allocated and shared efgeinteferences similar to
the SysV shared memory segments. Within GAMESS, they aveadftd separately by each

process and distributed in a second all-to-all exchange.

Integrating Nahanni into GAMESS

Once the shnalloc allocator and TBB'’s reader/writer were chosen asbletreplacements
for the SysV mechanisms used by GAMESS, source-level cisangee necessary to DDI
to have GAMESS use the new mechanisms.

The first change was to have GAMESS use our stiloc library rather than SysV
shared memory. When using shared memory for communicd&8iV ESS processes each
allocate a region of shared memory for their respectiveutations. To enable cooperating
GAMESS processes to update eachother’s shared memongmeds to these regions must
be distributed to all other GAMESS processes. This didfidbuoccurs over the network.
When SysV shared-memory regions are allocated withstnget () function, an integer
is returned that is a reference for that particular regiaor. éxample, the following call to

shnmget () stores the reference in the variableri d:
if ((shmd = shnget (key, size,flag)) < 0)

Another process can gain access to the shared region byhgaksi same reference
to theshmat () function (shmat’s name is derived from “shmem attach”) asashin this

statement:
if ((shmaddr = shmat (shnid, addr,flag)) == error)

Theshmat () function returns a pointer that points to the shared-memegyon that
can then be used like any pointer.

The challenge with converting code such as the above thatgsted for SysV to Na-
hanni is that Nahanni's memory allocator does not returbiB2iteger references like those

returned fronmshnget (), but simply 64-bit memory pointers. Since the SysV systenois
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commonly used, it is not worthwhile to convert the shftoc library to mimic SysV mem-
ory (i.e., to use integer references) as opposed to the maohcommonral | oc() library.

Choosing to use 64-bit memory pointers as the referencesregigmore wide spread
changes as the all-to-all exchange within GAMESS descrdtexe is hard-coded to pass
32-bit values. Changing all necessary variables and fomgtarameters to 64-bit values
required minor (yet numerous) changes to variables to udat6lues. We could have
decided to use 32-bit offsets rather than full 64-bit pamte32-bit values would support
Nahanni regions of upto 4 GB, but handling offsets is incomet compared to simply
using pointers directly. Also, using 32-bit offsets wouldf@ce an unnecessary limitation
of 4 GB of shared memory. Given that we could avoid pointerzgiig using the tech-
nique described in Section 4.9.2, we opted to make the regesisanges to support 64-bit
pointer values for shared-memory regions. Using pointise made the calls to the SysV
“attach” functionshmat () unnecessary since the pointers can be used directly tosacces
shared memory.

The adaptation of the reader/writer locks followed sintlaio the shared memory
changes. In particular, 32-bit integer references had t@pkaced by 64-bit pointers. Ad-
ditional changes were required to change the semaptm&s and up functions to read-
er/writerlock andreleasecalls.

Once the shared memory and semaphores were adapted to woiKatianni, cooper-
ating GAMESS processes communicated across Nahanni &\t IPC. The network
is still used for the all-to-all exchanges for the semaps@ed shared memory which is
only performed once at the start of execution. Fidguré Sustithtes how the Nahanni shared
memory was used by GAMESS. The slaitoc metadata, semaphores and allocated arrays
are shown. The layout of the semaphores and arrays was & 06 &AMESS patrticular
dynamic memory semantics.

It is worth restating that Nahanni memory can be used diffiyethan it was with
GAMESS. Another application may use, say, fixed offsets Wi#thanni instead of the dy-
namic allocation as described above. Similarly, spinlamkihe Nahanni signalling mech-
anism could be used for synchronization. Dynamic allocasind reader/writer locks were
necessary for GAMESS due to its existing implementatiorhdwai’s flexible architecture
allows application writers to create the necessary IPCrattiins they require for their

application.
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Figure 5.7: The layout of GAMESS structures in Nahanni Sthalemory

5.5.3 Summary: GAMESS

The benchmarks presented in this section serve as an exampledifying an existing
application to take advantage of Nahanni. Allowing GAMES8cesses to communicate
across Nahanni provided an improvement in runtime betwéeraid 30% depending on
the GAMESS input. The results of this section show that diyenodifying an application
to take advantage of Nahanni shared memory can be benefigahlso detailed the mod-
ifications that were made to GAMESS to provide an understendf the effort required
to achieve the given performance improvement. In the netisse we will explore mod-
ifying an IPC library, namely MPI, to take advantage of Natisshared memory and the
performance advantage that can be gained when abstrabgngsé of Nahanni within a

library.

5.6 SPEC MPI2007

SPEC MPI2007 is an industry standard benchmarking suitkselol by the SPEC corpora-
tion [56]. SPEC MPI2007 consists of several applicationchemarks that are implemented
using an MPI library and typically run on a cluster connedbgda network, but can also
be run on massively multi-core servers (e.g., SGI's Altix )JUXII of the benchmarks of
SPEC MPI2007 use an MPI library for IPC between parallel psses. The purpose of
SPEC MPI2007 is to provide a consistent, application-lderichmark for different MPI
libraries. The applications included in SPEC MPI12007 aledn-source and are written
in either C, C++ or Fortran.

We modified an existing MPI library called MPICHZ [38] to usalinni for IPC be-

tween MPI processes that run in co-located VMs. We ran cordtguns in2 x 2, 4 x 4
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Benchmark Language Description

104. mlc C Quantum Chromodynamics

107. 1 eslie3d Fortran | Computational Fluid Dynamics (CFD

113. Gemrs FDTD Fortran | Computational Electromagnetics (CEM)

115. f ds4* C/Fortran CFD

121. pop2 C/Fortran Ocean Modeling

122.tachyon C Parallel Ray Tracing
Molecular Dynamics

126. 1 ammps Crt Simulation

127. wr f 2* C/Fortran Weather Prediction

128. GAPgeof enr || C/Fortran Heat Transfer

129.teratf* Fortran 3D Eulerian Hydrodynamics

130. socorro C/Fortran Density-Functional Theory (DFT)

132. zeusnp2 C/Fortran CFD

137.1u Fortran CFD

Table 5.3: Summary of SPEC MPI12007 benchmarks

The benchmarks that are part of the medium-size input s&R&C MPI12007.
Astrisks (*) indicate applications that are not includedhe benchmarking due to
compilation or runtime issues unrelated to Nahanni.

and8 x 8. As a reminder, all these configurations run one MPI process/M. As we
will see, the performance improvement in SPEC MPI12007 mesi by using a Nahanni-
enabled MPI library is between 0% and 22% over MPI running ¢kre virtual network.
Most benchmarks see a benefit between 1% and 10%. One ajgpljgaip2, runs 79%
faster when running over Nahanni versus the virtual netveork x 8. Given the fact that
KVM'’s virtual networking is optimized with vhost and consigkd the “best practice”, Na-
hanni's improvements are significant. We also observe tladiaNni scales better than the
virtual network as the number of VMs increases (& 2, 4 x 4, 8 x 8 configurations).
As we will discuss later, Nahanni’s scalability is inher@mtthe scalability of the under-
lying POSIX shared memory mechanisms, whereas virtual avking approaches have
new mechanisms and components with their own scalabiktyes. In all SPECMPI 2007
benchmarks, we pinned the VMs to CPUs to limit thrashing ef@PU caches. On tfex 2
configuration, we pin the 2 VMs to separate cores. Fortked and8 x 8 configurations,
we pinned half of the VMs to each respective CPU.

Overall, we have numerous motivations in benchmarking SIRET2007 with Na-
hanni. First, is to evaluate Nahanni as part of a well-knobstraction, namely MPI. Sec-
ond, SPEC MPI2007 benchmarks represent full applicatiorctmmarks like GAMESS,
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but whereas our GAMESS benchmarks compared Nahanni-baBédvith MPI-based
DDI, our examination of SPEC MPI12007 compares stream-biHeldvith Nahanni-based
MPI, so these experiments provide an additional data pBiaetall that the motivations for
Nahanni include supporting both new or application-spedifita-sharing interfaces (e.qg.,
DDI), as well as existing interfaces (e.g., MPI). FinallgetSPEC MPI12007 suite bench-
marks are considered quality implementations of messagsipy code, whereas GAMESS
is primarily known the quality of the computational chemjsin the application, not nec-

essarily its message-passing implementation.

5.6.1 The SPEC MPI2007 Benchmarks

Table[5.38 gives a brief overview of the SPEC MP12007 benckmarhe table indicates the
programming language each benchmark is implemented inranitps a brief description
of the application itself. Table 5.3 shows the benchmarks dhe part of thenediuminput
set. SPEC MPI2007 benchmarks are divided into two gramesliumandlarge, depending
on the size of the data inputs that are distributed with tiebmarks. Some benchmarks in
the suite include both medium and large inputs and so arephdth benchmark sets. For
the experiments in this section we use the medium input seeasemory usage per VM is
more reasonable and does not cause our VMs to swap. The medinchmarks consist of
13 different applications. As will be discussed below, weevable to execute 9 of the 13
benchmarks. The 4 applications we were not able to bencherar@untered compiler or
runtime problems unrelated to Nahanni. Note that from tbistpwe will omit the 3-digit
numerical prefixes for the SPEC MPI12007 benchmark names.

The Message-Passing Interface (MPI) is a library spedificdbr message-passing IPC
that was designed for high-performance parallel appbosti The MPI specification was
created and is maintained by organizations and individumtsived in high-performance
computing. The latest MPI specification is currently vemsi2 which was completed
in 2008. There are several implementations of the MPI 2 fipatibn. Running SPEC
MPI12007 necessitated modifying one of the available imgetations of MPI to use Na-
hanni for inter-VM communication in order to compare thefpenance of MPI over
Nahanni to the performance of MPI over the virtual networke @hose to modify the
MPICH2 [3€] implementation of MPI.

Xiaodi Ke, a student working on the Nahanni project, modifi#felCH2 to use Nahanni
for inter-VM communication. MPICHZ2 has an optional netwiacklayer, called ahannel

in MPICH2, named\Nemesighat has optimizations that use memory-mapped shared mem-
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Mechanism Modified MPICHZ Unmodified MPICH2
MPI-Nahanni MPI-vhost No VM
(a.k.a ‘Nah’) (a.k.a ‘vhost’) | (MPI on host)
MPICH channel nahanni nenesi s nemesi s
VM Vv v
vhost vV vV
network bridge bridge host
Nemesis shmem inter-process
Nahanni shmem inter-VM
Network initialization . initialization
inter-VM
usage only only

Table 5.4: Benchmark configurations for SPEC MP12007

The three benchmark configurations that are compared usieC3/1P12007:
MPI-Nahanni, MPI-vhost and No VM. MPI-vhost uses the vitmetwork for all
communication and so does not either shared memory transpor

ory to accelerate IPC between MPI processes when runninigecseime host. Ke maodified
the MPICH2-Nemesis channel to run across Nahanni betweécated VMs. We refer to
this modified implementation as MPI-Nahanni (Tdblg 5.4).

Table[5.4 describes the differences between the MPI coafigns compared in our
SPEC MPI2007 benchmarking. There is a column for each ofhheetconfigurations
we are benchmarking: modified MPICH2 using Nahanni (MPIl-&tat) and unmodi-
fied MPICH2 using the virtual network between VMs (MPI-vhog$ well as unmodified
MPICH2 running on the host without any VMs (No VM). The rows tbk table high-
light the similarities and differences of each configunatid he table indicates that vhost
networking (Figuré 5]1 (b)) is enabled in both virtualizezhfigurations. However, with
MPI-Nahanni, the majority of inter-VM MPI traffic will be comunicated over Nahanni,
not over the virtual network. The network is used minimafithie MPI-Nahanni case for
initialization. The network is used for all inter-VM commigation for MPI-vhost case.
The non-virtualized case, No VM, is able to take advantag@egxisting shared-memory
optimizations of the MPICH2 Nemesis channel for most of thelMommunication, but
may also use the host network for initialization. Since tleeMW case does not run in VMs,

vhost network acceleration and Nahanni shared memory a@vaiable nor necessary.
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nahanni
nemesis
nemesis

5.6.2 SPEC MPI2007 Results

In this section, we compare the runtimes of the SPEC MPI208dium-input benchmark
set when run on the three configurations just described ¢T2Hl). To stress the inter-
VM interconnect, we run one MPI processes per VM, therefoeed is only one compute-
intensive process per VM. Consequently, the number ofali@PUs in each VM is reduced
from four to two. As per the MPI-Nahanni implementation, WiEls share two Nahanni
memory regions between all VMs that will be used for IRPC| [2Both shared-memory
regions are 4 GB each.

Our results that follow in Table 5.5 will show that using Nahaimproves the run-
time performance of the benchmarks by an average of 2.2% wivenng 2 x 2, by an
average 4.3% when runningx 4 and by an average of 5.9% when runni®igk 8. We
also observe that Nahanni scales better than the virtuaionketas the number of VMs in-
creases. Although improvements of 2.2%, 4.3% and 5.9% arkarge in absolute terms,
the improvement is proportional to the amount of time span¥PI functions (i.e., the
bottleneck), and we observe increasing returns (as opposgichinishing returns) as the
number of VMs is scaled.

Although we do not have the experimental platform (alondnaisoftware environment
that we control and can install Nahanni on) to test 16, 3240/@ls, we speculate the trend
will continue (Figure 5.111). We also speculate that the amiglénecks in MPI-vhost are
likely fixable but we make the case the Nahanni architectuoida these bottlenecks en-
tirely. If the bottlenecks in MPI-vhost are the result ofggarlar trade-offs (i.e., bandwidth
versus latency), then as the number of cores in servers (eagy-core systems [45]) in-
creases over time, there will continue to be limits in scititgh Lastly, as we will see,
although the average improvement across SPEC MPI2007 langet, individual applica-
tions can see improvements of 17% or 22%, with an outlier gkawf a 79% improvement.

As mentioned, we run 9 of the 13 benchmarks (Tablé 5.3) in tedimm benchmark
set. We were not able to execute 4 of the medium benchmarksodeither compilation
or execution errors unrelated to Nahanni. Specifically, veezeanot able to successfully
compile theteratf andw f2 benchmarks due to a Fortran compiler error using GNU
gfortran. The other two excluded benchmarkspgeof emandf ds4 encountered runtime
errors. The runtime errors occur when using either Nahanttieovirtual network, and so
we expect that they are caused by issues with the MPICH2ilanad not by Nahanni.

MPI-Nahanni outperforms the MPI-vhost configuration fdrthkee configurations for
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Figure 5.8: Comparison of SPEC MPI12007 i 2 (smaller bars are better)

Theni | ¢ andl anmps benchmarks do not have results due to not being able to rim2wit

processes.
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each of the benchmarks in the suite (Figdres 5.8, 5.9 and.5T#ble[5.5 summarizes
the runtimes and shows the percent reduction in runtimativel to MPI-vhost) for each
benchmark across all three configurations. The reductisaritime provided by Nahanni
ranges from 0.6% to 13.9% with an outlier of 79.3% fop2 on 8 x 8. To explain our
reporting method, we consider thep2 outlier case. Stated as an equation, the calculation
is

|vhost_time — Nah_time|
= % Improvement

vhost_time

As an example, consider tl#ex 8 pop2 case where the MPI-vhost runtime is 11,833
seconds and the MPI-Nahanni runtime is 2,453 seconds foherthe 79.3% improvement

is calculated as follows:

11833 — 2453 9380

11833~ 1is33 ~ 08”0

Stated another way, a 79.3% improvement meanspifiet runs 4.6 times faster with
MPI-Nahanni than it does with MPI-vhost.
As a second example, tlgex 8 case forsocorro, a 13.9% improvement, is calculated

as
2316 — 1994

2316
Returning to overall results, Taldle 5.5 shows that the twinalized configurations (MPI-

=13.9%

Nahanni and MPI-vhost) are slower than the No VM case exeggheni | ¢ benchmark.
When running in the No VM case, the! ¢ benchmark had a relatively large standard devi-
ation of 75 seconds, so we do not consider the difference signgficant. We were unable
to determine the cause of the high variance in the No VM caseifa:. We did not see
as large variances with either of the virtualized configarat. The other unexpected result
was thatzeusnp2 andl u experienced larger runtime overheads, 24% and 21% regplgcti
when virtualized (both with MPI-Nahanni and MPI-vhost)thhe other benchmarks. Sim-
ilarly, we are unsure of the cause of this overhead.

Figure[5.8 shows the performance of the three configuratidren running2 x 2. Two
applicationsri | ¢ andl anmps would not run with only 2 processes and so their runtimes
cannot be shown. In thex 2 case, there is not a large difference between MPI-Naharhi an
MPI-vhost for most applicationsiop2 does see the largest speedup of 6.6% when running
across Nahanni. The closeness of the runtimes reflects Hligygof the virtual network
implementation in that for 2 VMs, there is not a strong adsgatfor MPI-Nahanni over

MPI-vhost. Still, we include th@ x 2 configuration for two reasons. One, Nahanni does
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Figure 5.9: Comparison of SPEC MPI12007 ©x 4 (smaller bars are better)

show an advantage for some benchmarks and these resultselpilin establishing trends
as we move to thé x 4 and8 x 8 configurations.

Figure[5.9 graphs the results of thex 4 configuration. MPI-Nahanni’s performance
advantage emerges as all benchmarks see improved perfmrfram using MPI-Nahanni
in the4 x 4 configuration. The largest performance improvement igéprat 22%. The
average improvement across all benchmarks improves fr@# 2or 2 x 2 to 4.3% on
4 x 4. The improved performance can be attributed to Nahanralk&bdity as compared to
the virtual network.

We increased to 8 processes to further examine the scafaisiNahanni and the virtual
network as the level of parallelism and inter-VM commurimatincreases. Figuide 5.10
shows the performance when we increase the number of pescass VMs to eight. The
only change we make to the VM configuration is reducing the iarhof RAM per VM
from 8 GB to 4 GB due to having only 48 GB of RAM on our testbed hiae.

As with the4 x 4 configuration, Nahanni scales better than the virtual nekwdhe
performance improvement of Nahanni ranges from 0&oifyon) to 17% §ocor r o). There
is one outlier in this case which is thep2 benchmark. When using MPI-vhost with 8 VMs,
pop2 runs nearly 4 times slower than when using MPI-Nahanni wittMs. We suspect

that the slowdown is due to a scalability issue in the virngtivork or vhost.
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Figure 5.10: Comparison of SPEC MPI2007%mr 8 (smaller bars are better)

It is worth mentioning that the SPEC MPI12007 benchmarksrircmodest overhead

when running under virtualization. Some virtualizatioredwead is expected. As with the

4 x 4 configurationzeusmp2 andl u have slightly higher virtualization overheads than the

other benchmarks.

To help focus on the virtualized executions that compareaNahto the virtual network,

Table[5.5 summarizes the runtimes and percentage differeeisveen running with MPI-
Nahanni and MPI-vhost for all 3 configurations. Tablel 5.5vehthat using Nahanni for

inter-VM communication improves the performance of allEC MP12007 benchmarks.

Most benchmarks also so see increasing returns from usihgriviéas the number of VM

scales.socorro, tachyon andl u do not scale in relation to the number of VMs, but they

still benefit from using Nahanni.

As the number of communicating VMs increases across the VMiguarations, the

performance benefit of Nahanni also increases as shown Ipetient reduction growing

for nearly all the benchmarks. The average improvement fusmg Nahanni increases
from 2.2% @ x 2) t0 4.3% @ x 4) t0 5.9% @ x 8) when the number of processes and VMs

is scaled up.
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2x2 4x4 8x8
Nah | vhost | % | Nah | vhost| % Nah | vhost | %
milc n/a nfa | nfa| 1298 | 1352 | 3.9 | 985 | 1063 | 7.4
| eslie3d || 12493 | 12777 | 2.2 | 6675| 6879 | 3.0 | 4093 | 4453 | 8.1
CGensFDTD || 8198 | 8309 | 1.3 | 7568 | 7663 | 1.2 | 3148 | 3366 | 6.5

Benchmark

pop2 8498 | 9057 | 6.2 | 4364 | 5608 | 22.2 | 2453 | 11833| 79.3
t achyon 11351 11486 | 1.2 | 5658 | 5733 | 1.3 | 2968 | 2987 | 0.6
| ammps n/a nfa | nfa| 4446 | 4521 | 1.7 | 2544 | 2662 | 4.5

socorro 6117 | 6282 | 2.6 | 3264 | 3335 | 2.1 | 1994 | 2316 | 13.9
zeusnp2 16847| 16926| 0.5 | 7973| 8055| 1 | 3799| 3930 | 3.3

[u 10213 | 10354 | 1.4 | 4869 | 4993 | 2.5 | 3169 | 3261 | 2.8
average 2.2 4.3 5.9*
minimum 0.5 1 0.6
median 1.4 2.1 6.5
maximum 6.2 22.2 79.3

Table 5.5: Runtimes of SPEC MPI12007 in seconds

The runtimes of the benchmarks are shown for MPI-Nahannh)dad MPI-vhost (vhost)
as well as the runtime reduction for MPI-Nahanni (%). Theiltssor2 x 2, 4 x 4 and
8 x 8 are shown. All reported numbers are the average of five réipThe average for the
8 VM case excludes the 79.3% improvementfop2.

5.6.3 Analysis of SPEC MPI2007

We want to answer the question as to why the advantage of MiRkhhi increases as the
number of processors and VMs increases, that is, as we mmve2fx 2to4 x 4to 8 x 8.
Upon first considering the speedup results from the prevéegsion, our intuition was
that their are potential scaling bottlenecks with MPI-whdSpecifically, since MPI-vhost
exercises virtio pathways with QEMU/KVM it is highly likelgne of these pathways has
not been highly optimized for multiple, concurrent virtuaéchines, large amounts of data,
frequent interactions or all of the above. There is no easghamgsm or tracing facility
to pinpoint bottlenecks in these pathways over the exetcutfdong-running applications
like those in SPEC MPI2007, but one would expect such battks to appear as a greater
proportion of time being spent in the communication phasdiseoapplications. Therefore,
we performed an analysis using mpiP|[39] of the amount of tament in MPI functions
(as we did with GAMESS) for the MPI-vhost case. We wanted t® if¢he proportion
of time spent in MPI functions grows as the number of commatitig VMs grows. Of
course, by Amdahl’s Law 5] one does expect parallel appboa to exhibit bottlenecks

as the number of concurrent processes/VMs increases, bargue below that some of the
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bottlenecks we have seen go beyond Amdahl’s law.

Specifically, the experiments discussed in this sectiod leato believe that there are
bottlenecks within virtio and vhost in the QEMU/KVM code kagn the previous compar-
ison of MPI-Nahanni and MPI-vhost using the SPEC MPI200Agihe MPICH2 nemesis
code base albeit with different configurations (i.e. usirah&hni or the virtual network).

The mpiP results can be found in Talled 5.6] 5.7[and 5.8 fa2 the, 4 x 4 and8 x 8

benchmarks, respectively. We discuss the results belowurutonclusions are as follows:

1. As we scale the number of VMs, the configuration frdm 2t04 x 4to0 8 x 8 the

percentage of time spent in MPI functions, as reported byPnipcreases.

2. The performance of MPI-Nahanni more closely tracks thdopmance of MPI-

Nemesis on the host.

3. As previously discussed the most dramatic performarftereice ispop2 with the
8 x 8 configuration (see Figufe 5110). In light of mpiP analysial€s[5.6[ 5)7
and[5.8) we see the performance gap correlates stronglytigttime spent in MPI
functions (21.2% witt2 x 2 versus 83% witl8 x 8).

Figure[5.11 indicates a trend in the correlation of time spemMPI functions to the
speed up from using MPI-Nahanni instead of MPI-vhost. Fedufll graphs a scatterplot
of the all the individual application benchmarks acrossthinee configurations. The x-axis
plots the speedup achieved from using MPI-Nahanni (versB&Wiost); the y-axis plots
the percentage of an application’s runtime spent in MPI tions. We have also fitted a
linear regression to the data to plot the trend. Figurel 5xtludes the results fatens FDTD
for both4 x 4 and8 x 8 and forpop with 8 x 8 as we consider these values outliers. For
completeness, Figuke 5112 is included which includes thigeost

Tabled 5.6, 5)7 arld 5.8 summarize the results of the mpiRsisalx 2, 4 x 4 and8 x 8,
respectively. The second column shows the percentageadfapplication runtime spent
in MPI functions. The second and third columns show the topP Minctions that had
consumed the most application runtime. There are somepkanty interesting trends. For
example,pop2 is the application that sees the most performance improwefran using
MPI-Nahanni. pop2 speedups up by 6%, 22% and 79% from using MPI-Nahanni for the
2 x 2,4 x 4 and8 x 8 configurations, respectively. The majority mfp2's execution on
2 x 2 and4 x 4 is spent in “WaitAll” functions. It is likely thapop2 is sensitive to barrier

functions.
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Benchmark || % of runtime | biggest fn| fn % of runtime

. n/a n/a n/a
milc

n/a n/a
. 1.3 Send 0.9
| eslie3d Send 02
4.5 Sendrecv 3.9
GemsFDTD Sendrecv 0.3
pop2 7.9 Wa@tall 2.8
Waitall 2.3
t achyon 0.4 Waitall 0.4
Testsome 0.0
| ammps n/a n/a n/a
n/a n/a
SOCOIT O 4.9 Allreduce 1.7
Send 1.4
zeusnp2 1.7 Wa@tall 0.3
Waitall 0.2
Iy 3.7 Rec_v 1.6
Wait 1.0

Table 5.6: mpiP results for SPEC MPI12007 2x2
The applications arei | c andl ammps are excluded due to runtime issues (unrelated to

Nahanni) when running with 2 processes.

pop2 on8 x 8 spends over 80% of its execution in MPI functions and we dmrghis
outlier along withcens FDTD which sees high MPI execution timednk 4 and8 x 8 but sees
little difference between MPI-Nahanni and MPI-vhost. Theilfhanalysis for these three
outliers indicate the majority of MPI time is spent in barrfanctions which we believe
indicates a problem related to load-balancing. Spwe does not experience this problem
on MPI-Nahanni, we posit that MPI-vhost 8k 8 exacerbates the load balancing problem
in pop2 which leads to the extreme performance degradation.

Table[5.9 presents the runtime reductions of Table 5.5 alitigthe mpiP results from
Tables[5.6[ 5]7, 518. These pairings of runtime improvenagwat MPI time are plotted
as scatterplots in Figurés 511 dnd 5.12. The specific vateshown in Tablé 5.9 to
indicate the trends for individual applications. In pastar, pop2 andsocorro’s speedups
are within a percent or two of the MPI execution time. Othegl@ations such asens FDTD
show a weaker correlation, however the trend is consistenoisa all applications that the
percentage of execution spent in MPI correlates to the pereeluction from using MPI-

Nahanni versus MPI-vhost.
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Benchmark || % of runtime | biggest fn| fn % of runtime
mil e 3.6 Wa@t 3.1
Wait 0.3
. 2.4 Send 0.6
| eslie3d Send 05
44.3 Barrier 24.9
GenmsFDTD Sendrecv 17.4
pop2 21.2 Wa?tall 7.6
Waitall 5.7
t achyon 0.5 Waitall 0.5
Testsome 0.0
| anmps 1.7 Send 1.1
Send 0.4
SOCOIT O 25 Send 1.1
Allreduce 0.6
zeusnp2 3.5 Wa@tall 0.4
Waitall 0.3
Iy 1.6 Recv 0.3
Recv 0.3

Table 5.7: mpiP results for SPECMPI 2007 for 4x4 configuratio

Benchmark || % of runtime | biggest fn| fn % of runtime
mil e 15.8 Wa@t 8.9
Wait 4.2
. 8.9 Send 1.7
| eslie3d Send 15
30.1 Sendrecv 24.2
GemsFDTD Sendrecv 4.9
pop2 82.22 Wa?tall 334
Waitall 32.1
t achyon 0.3 Waitall 0.3
Testsome 0.0
| amps 7.1 Send 4.1
Send 2.3
SOCOrT o 15.2 Waitany 10.0
Allreduce 1.9
zeusmp2 7.7 Wa_litall 0.6
Waitall* 0.5
Iy 5.0 Recv 1.6
Recv 1.5

Table 5.8: mpiP results for SPECMPI 2007 for 8x8 configuratio
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Execution time in MPI, per mpiP (%)

0 ¥ X 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
MPI-Nahanni improvement over MPI-vhost (%)

Figure 5.11: Scatterplot of SPEC MPI2007 with outliers reeth

A scatterplot of the SPEC MPI12007 benchmarks. The y-axisple percentage of
execution time spent in MPI functions and the x-axis plotsgeatage of improvement
(i.e., runtime reduction) from using MPI-Nahanni versusIMRost. We consider the

results for GemsFDTD on 4x4 and 8x8 as well as the pop2 res8&8 to be outliers and
so they are excluded in this graph. A linear regression @s@listted to show the trends of
the two measures.
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Figure 5.12: Scatterplot of SPEC MPI2007 with outliers unigd

A scatterplot of the SPEC MPI12007 benchmarks. The y-axisple percentage of
execution time spent in MPI functions and the x-axis plotsgetage of improvement
(i.e., runtime reduction) from using MPI-Nahanni versusIhRost. The 79.3%
improvement fopop2 is what causes the dramatic change in the graph. A lineagssigm
is also plotted to show the trends of the two measures.
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Configuration 2x2 4x4 8x8
speedup| MPItime | speedup| MPItime | speedup| MPI time
(%) (%) (%) (%) (%) (%)
milc n/a n/a 3.9 3.6 7.4 15.8
| eslie3d 2.2 1.3 3.0 2.4 8.1 8.9
Gens FDTD 1.3 4.5 1.2 44.3 6.5 30.1
pop2 6.2 7.9 22.2 21.2 79.3 82.2
tachyon 1.2 0.4 1.3 0.5 0.6 0.3
| ammps n/a n/a 1.7 1.7 4.5 7.1
socorro 2.6 4.9 2.1 2.5 13.9 15.2
zeusnp?2 0.5 1.7 1 3.5 3.3 7.7
[ u 1.4 3.7 25 1.6 2.8 5.0

Table 5.9: SPEC MPI12007: Speedup and percentage execptohia MPI

The runtime reductions from using Nahanni and the percenvagxecution time spent in
MPI functions across the 9 SPEC MPI2007 benchmarks. The prpifiting tool, used
within VMs, was used to determine MPI execution percentddps table is a summary of

the data presented in Tables]|$.5] 5.6] 5.7[and 5.8.

5.6.4 Summary: SPEC MPI12007

The conclusion we draw from these experiments is that Nadlsmates better than the vir-
tual network under the intensive use of SPEC MPI12007. Webelihat Nahanni's ability
to scale well is due to the use of POSIX shared memory as therlynty mechanism.
POSIX shared memory avoids introducing scalability batleks by allowing applications
or libraries, such as MPI, to access it directly at guest-lesei. Our MPICHZ2 implemen-
tation that uses Nahanni reduces the runtime all of the SPBQ007 benchmarks versus
using the virtual network. The margin of improvement frormgsdNahanni increased as the
number of VMs increased from 2 to 4 to 8 showing that Naharsd atales better than the
virtual network. Finally, these experiments show that bydifyang an MPI library numer-
ous applications can benefit from Nahanni shared memory $iyaabing the use Nahanni
shared memory within a library. Such an abstraction elitemidéhe need for modifications
at the source level as with GAMESS, but still provides therowpd performance of Na-

hanni shared memory.

5.7 Other Nahanni Benchmarks

Nahanni has served as the basis for other research notskscas part of this dissertation.

Two Master's students in our research group, Adam Wolfe Gormahd Xiaodi Ke, have
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explored other use-cases of Nahanni shared memory.

Wolfe Gordon’s research showed that Nahanni can accelerateaccesses to a mem-
cached|[3]7] server that is co-located with VMs that accef83ft Memcached is a dis-
tributed in-memory key-value store that is intended to mlevow-latency read and write
access to key-value pairs. Key-value pairs are a commonatistaaction in web applica-
tions. Memcached is used by sites like Facebook [41] to acaie the access of content.

Wolfe Gordon modified the memcached client and server toecéely-value pairs in
Nahanni shared memory. Caching in shared memory allowsucent access by the server
and multiple clients despite the fact that they are runningeiparate VMs. Co-located vir-
tualized clients and applications benefit from the templolity of accesses to key-value
pairs. Using Nahanni shared memory to cache key-value pedhsced the read latency
by 29% over using the vhost-accelerated virtual networkhenYahoo Cloud Computing
Benchmarkl[111]. Without vhost enabled for the virtual netiyaghe benefit is shown to be
as high as 45%.

Ke madified an MPI library, MPICHZ2, to use Nahanni for IPC beém MPI processes
which are executing on co-located VMs [27]. By communicgtover Nahanni, the MPI
processes avoid the overhead and any scalability limitatmf the virtual network. The
results from Ke’s work demonstrated using Nahanni for IP@ben co-located MPI pro-
cesses reduced latency and increased bandwidth by an dneergoitude over the virtual
network. In fact, the MPI-Nahanni implementation that raasoss VMs is able to very
nearly match the microbenchmark performance of MPI-Nesmesining on the host.

Similar to the benchmarks presented above, Xiaodi used RIESS benchmarks
from Sectiorl 5.6 to compare MPI over Nahanni to MPI over thual network. Xiaodi's
MPICH2 Nahanni implementation was used for the SPEC MPI12@0ichmarks discussed
in Sectio{ 5.5.

Ideally, we could have done a head-to-head performance agsop of MPI-Nahanni
versus the various systems based on Xen discussed in CBajneleed, that head-to-head
comparison is planned for future work. For now, to avoid trethodological complexities
of comparing two substantially different software platfigr (i.e., Xen vs. KVM), we have
provided the MPI-Nemesis performance (i.e., without any @kérheads) as a baseline.
Given the nature of MPI-Nemesis, it is unlikely that eithay &en-based or KVM-based
approach is going to be faster than MPI-Nemesis runningowiti’Ms. Furthermore, given
how closely MPI-Nahanni's performance tracks MPI-Nemesis conclude it is unlikely

(short of a direct head-to-head comparison) that any Xeedapproach will be signifi-
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cantly faster than MPI-Nahanni.

Our research group continues to explore applications anttleaxls that benefit from
using Nahanni. Building upon the lessons and results fromentiwork, we are examining
the uses of Nahanni from several perspectives: inter-VM, liSt-guest IPC, stream data,

structured data, ease of programming, programming alistnaand performance.

5.8 Concluding Remarks

In this chapter, we have demonstrated that Nahanni sharetbrgecan provide a perfor-
mance improvement, shown by a reduction in total runtimebé&th microbenchmarks and
full applications. We have also demonstrated that a berafitoe gained from using the
shared memory directly within an application (i.e., GAMB®8by abstracting the use of
Nahanni within a library such as MPI (i.e., SPEC MPI12007)t fhe implementations that
use Nahanni in this chapter: file staging and streaming, DBBAMESS and MPICH2

for SPEC MPI12007, the ability to access shared memory froen-lesel was essential to
providing low-latency, high-bandwidth inter-VM commuaton.

Our benchmark results also show that the benefit gained feing shared memory can
vary. The GAMESS benchmarks show how the performance behafita single appli-
cation can experience from using Nahanni can vary deperatirttpe input. In particular,
the si9h12 molecule simulation saw relatively minimal degrfeom Nahanni, whereas the
aza-es molecule saw a lower runtime by 30.7% from using Nahastead of the virtual
network. With SPEC MPI2007, the runtime reductions of tHéedknt applications within
the benchmarks varied from negligible to over 20% (and indase of pop2 o x 8,
runtime was reduced by nearly 80%). The variance in perfoo®as dependent on the
sensitivity of the application to the latency and bandwidltithe inter-VM communication
mechanism.

The results above serve as a guideline for understandinghvepplications may ben-
efit most from using shared memory between virtual machibefg Nahanni in applica-
tions will require writing applications, or at least libies, that specifically target it. Our
GAMESS results show that it can be worthwhile to modify a paog directly. As well,
we have also shown that a modified MPI library can abstraceNahand enable multiple
MPI-based applications to benefit from Nahanni by simpligitig a Nahanni-enabled MPI
library.

The ongoing growth of cloud computing and virtualizatiolguees an understanding
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of virtualized workloads. Virtualized applications anceithworkloads will also be de-
ployed on different target systems including desktopsjessrand cloud environments. The
individual needs for inter-VM and host-guest communiaatgerformance in these envi-
ronments will create a spectrum from minimal to extreme. e $cope of virtualized
workloads continues to grow, there will be workloads that\waell-suited to using Nahanni
shared memory and others that see minimal or no improverdgmilications may benefit
by using Nahanni for the transport of stream data or forstpstructured data directly. The

level of benefit will, of course, depend on the applicaticelit
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Chapter 6

Concluding Remarks

Virtual machines (VMs) have been studied as effective ptatf for high-performance
computing (HPC) where performance is the most criticaltatte [18,36[ 58]. The study
and deployment of VMs for HPC also led to investigations ithte performance of inter-
VM communication mechanisms [61,/10) 64} 24]. In some wagtnozed communication
mechanisms emphasize performance above all else. Aftewiditiout improved perfor-
mance, there is no reason to consider the optimizations.eMemvother considerations such
as architecture and flexibility are also important and majact, have longer term impacts
on the theory and implementation of software systems. Fam@ke, optimizations often
(by necessity) exploit specific characteristics of the hare to maximize performance.
Over many generations, hardware architecture might changesome optimizations may
become eclipsed or even rescinded.

In the context of Nahanni, many of the performance benefitsecrom an assump-
tion that the hardware supports shared memory, that thepgrsystem (OS) can export
shared memory to the user-level, and that the OS pathwaysacldanisms are already op-
timized to share memory between processes. We feel that #dsssmptions are not likely to
change in the near future, but there might be an evolutioetargeting of shared memory,
OSes, and OS support for shared memory. For example, uniftemory access (UMA)
shared memory has evolved to non-uniform memory access (A\J&hd now there have
been proposals of asymmetric distributed shared memorySpAD[21]. In some situa-
tions, hardware-based cache-coherent shared memoryamgerla valid assumption (e.g.
ADSM). The specific optimizations within, say, MPI-Nahaiff#7], Sectioi 5.6) and Na-
hanni Memcached [63] would likely change if cache coherdaayo longer available. In
that sense, performance optimizations can be the mostigerisithe technology context.

But, some of the architectural elements and design desissbiNahanni are likely to
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outlive the specific optimizations presented and evaluatdtis dissertation. For exam-
ple, the design decision to implement Nahanni shared memsrg paravirtualized pe-
ripheral device offers many advantages. First, if a guestiali machine does not want to
use Nahanni, then the Nahanni guest device driver is omattetlno new Nahanni code
is executed in that guest VM. Architecturally, Nahanni c@glenly executed to initialize
the shared memory, but not to use it. Nahanni is outside thferpecritical pathways.
In fact, if the Nahanni signalling mechanism (Section 46hot used, which is true for
our SPEC MPI2007 and GAMESS benchmarks (Sectfions 5.5 apdtbes no Nahanni
code is executed for the common case of IPC. In contrast, fioatibns to the hypervi-
sor pathways in previous work to either provide new apphcaprogramming interfaces
(APIs) (e.g., XenSocket, IVC) or optimizations (e.g., Xeap, Fido, virtio) have new
code interleaved among the common pathways. Recall thatia-based version of Na-
hanni (Sectioh 4.1311) was implemented but ultimatelyatelg because interleaved code
changes required within the virtio and QEMU/KVM code baseem®o extensive. The
orthogonality of the current Nahanni implementation waseg keason why the Nahanni
code was accepted into the QEMU/KVM code base.

Second, as discussed in Chajter 5, introducing new OS pgshvea lead to the need
to optimize and re-optimize those pathways to solve the bettteneck. Optimizing per-
formance as we scale the number of VM instances often rexdifferent algorithms and
synchronization strategies, analogous to parallelizeguential applications. In a different
dimension optimizations for large and small data transtarsresult in new protocols and
the tuning of parameters such as ring buffer sizes. Formgsseich as virtio, XenLoop,
XenSocket these algorithms and parameters are at the liggreovr OS level. In Nahanni,
the code changes occur in user-level libraries becauséeuithially Nahanni does not im-
pose any algorithm in its design, but leaves that to the egjidin. Nahanni’s flat region
of shared memory introduces no new pathways in the hyper(iso, it uses the existing
QEMU memory and PCI device mechanisms) and largely sidesheppathway optimiza-
tion problem noted in, say, virtio. Optimizations are expdrentirely to the user-level
libraries and applications by Nahanni’s UIO interface.

Similarly, the flat region of shared memory design decisimbedied by Nahanni has
flexibility advantages. The ability to port MPICH2-NemegisNahanni was greatly sim-
plified by the fact that Nahanni, despite being shared merbetween VMs instead of
between processes, looks and behaves just like the POSidsimemory already assumed

by MPICH2-Nemesis. Furthermore, since Nahanni memory orzd fully to the user
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level, all changes to MPICH2-Nemesis, all future changesagtimizations, and all future
libraries, only involve user-level code. No guest (or héstnel changes were specifically
needed by MPI-Nahanni. Admittedly, MPI programs have to ifeee recompiled or re-
linked with MPI-Nahanni, but no code changes are requir@ully, although the exposed
shared memory of Nahanni might be considered a source @ exinplexity (as compared
to XenLoop or virtio, which are completely hidden from theer)s that complexity can be
completely hidden behind a library (e.g., MPI-Nahanni [N4dhanni memcached [63]).

Therefore, we have demonstrated both the performance tdyemof Nahanni, which
are proportional to the opportunities for performancerojations, and can be substantial.
But, we also wish to highlight the unique architectural cimottions of Nahanni, which
were in place before the complementary work of Ke [27] andfé/@lordon [63] within our
research group.

Another measure of the significance of this work was its atecege into the official
QEMU/KVM code base. Nahanni was merged into the QEMU code fmas/ersion 0.13.0.
We have received feedback from QEMU users that are expetimganith Nahanni for uses
as diverse as caching to virtualization of reflective menuayices. Because of its inclusion
in the standard distribution of QEMU/KVM, the Nahanni ivsém device is available as
part of the well-known Ubuntu and Fedora Linux distribuson

In revisiting the contributions laid out in Sectibn 1.1 we aonfident that Nahanni and
inter-VM shared memory in general occupy an important nghi¢he use virtual environ-

ments continues to grow in desktop, server and cloud envients.

1. Unintrusive Implementation Architecture. Nahanni provides a carefully crafted
shared-memory mechanism for guest-to-host and guesidstdPC. The design
choices allow Nahanni’'s components, namely the ivshmeniceeand guest UIO
driver to be non-intrusive with no performance impact on Vi¥iat do not use the
mechanism. Nahanni also demonstrated scalability in g&gde In particular, VMs
using Nahanni for IPC for SPEC MPI2007 demonstrated inangaturns as the

number of VMs increased.

2. Low-latency, High-bandwidth Performance. The overall performance that Na-
hanni is able to achieve against established best pradticggnificant. Our bench-
marks for file staging and streaming as well as for full aggilans of GAMESS and
SPEC MPI12007 demonstrate the wide variety of virtualizepliaptions that benefit

from Nahanni shared memory.

121



3. User-level Architecture: Bypass OS and bottlenecksNahanni allows host mem-
ory to be shared directly to the user-level within guestserdavel accessibility al-
lows both stream data and structured data use cases faalized applications and
libraries such as MP[[27] and memcached [63]. User-leveéss avoids overheads
associated with kernel switches or VM exits that other kieleel or hypervisor-
level optimizations may incur. Avoiding kernel and host iheads is important in

achieving the best possible performance.

In summary, this dissertation has explored the interseatioVM environments and
shared memory. Adapting the well-known interface of shamesinory to the continually
growing platform of virtualization provides insight in theerformance and programming
challenges that will arise as the density of CPU cores andangmcreases on the desktop,
server as well as in nascent cloud platforms. We have demadegdtthe utility that well-

designed shared-memory interfaces will provide now antérftiture.
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