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Abstract

Stereoscopic analysis is widely used in machine vision applications. Local and global 

methods are two main branches of stereoscopic analysis. The global methods 

typically minimize a cost function over the entire scene. Although these methods 

provide high estimation accuracy, because of its high complexity, they are not 

suitable for real-time implementation. The local methods typically use window- 

correlation approaches, and the associated complexity is generally low. However, 

the estimation accuracy is sensitive to the selected window size. In this paper, we 

propose a multistage local method that operates on image segments instead of 

traditional rectangular windows. This new approach exploits the unique 

characteristics of image segments, and reduces occlusion through a feedback system. 

Experimental results show that it is very effective for natural images. In addition, it 

has a distinct advantage to preserve depth plane boundaries.
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Chapter 1

Introduction

For centuries, stereoscopy has been an interesting topic for researchers. As a prefix, 

"stereo" means three-dimensional; the word "scope" refers to the range of one's per­

ceptions. Eyes, the human visual system, are a perfect example of stereoscopy at 

work. Combining the left eye's view with the right eye's view, a person can easily 

obtain the range information of the views and thus form a 3-D perception.

With the invention of computers and advancement in robotic technology, there 

arises the need for sophisticated machine vision methods. Indeed, a computer per­

forms better than a human where the task is too repetitive, too hazardous or too pre­

cision-oriented. Real world applications that require computer assisted range detec­

tion include, but are not limited to: satellite terrain mapping, robot intelligence and 

image rendering.

Fig. 1.1 shows the most common approaches of range detection. The active 

techniques would first project pulses of electromagnetic or sound waves, and then 

analyse the reflected pulses. The passive techniques receives optical signal without

1
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transmitting. Generally speaking, active techniques are more accurate. Yet, the pas­

sive techniques are more versatile; they may be needed when active projecting is not 

possible or not allowed. For example, laser projection may not function well on a 

satellite due to the extraordinary distance between the satellite and the earth surface. 

When there are humans involved, laser can also be hazardous to human eyes. As a 

result, passive ranging techniques are still very popular.

Range D etection

Active Passive

Local
Methods.

Lidar Single LensSonar StereoscopeRadar

Fig. 1.1 Different branches of range detection.

There are several sub-branches within passive range detection techniques. 

With a single lens camera, range information can be obtained by analyzing the opti­

cal flow from a sequence of images. Stereoscopic range detection is far more com­

mon.

For most ranging applications, the term "depth" can usually be used inter­

changeably with "range". In fact, "depth" is the norm for image-based techniques. 

Therefore, we will use the phrase "stereoscopic depth estimation" (SDE) throughout 

this thesis. The depth information for an image is called a depth map.

2
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By convention, common SDE applications have a left-right two lens setup, 

similar to human eyes. The left depth maps are regarded as the outputs of the SDE 

algorithm and are compared across different SDE algorithms.

1.1 Basic SDE Setup

In general, a stereoscopic application can have two or more cameras positioned at 

different locations. For simplicity, this thesis considers only the two-camera case, 

where they are positioned in parallel. As shown in Fig. 1.2, a mushroom is projected 

onto a pair of 2-D images via a pair of optical lenses.

lens lens

Left Image Right Image

Fig. 1.2 Basic layout of a stereoscopic system

Here, L represents the distance between the object and the center of the two 

lenses;/is the focal length of the two identical lenses, which are separated by D; d,

3
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the displacement between the object's projections on the two images, is known as 

disparity. We assume that the central axes of the two identical lenses are parallel and 

there is no skewing effect on the image planes.

It can be shown easily that the parameters L, D , f  and d in Fig. 1.2 satisfy the fol­

lowing equation:

_L = /  (1-1)
D  d

In a typical stereoscope setup, the focal length f  and the lens displacement D 

are constants. Therefore, Eq. 1.1 can be expressed as L  = C / d , where C is a constant. 

The task of determining L, essentially, becomes the estimation for the inverse of d. As 

a result, stereoscopic analysis can also be called "disparity analysis."

Note that the human visual system is slightly different from the above model. 

The "lenses" of human eyes will tilt a little bit such that both axes meet at the object. 

For objects far enough, i.e. L »  D, the difference between the two geometric models 

becomes diminishingly small. A completely revised model is needed, when the angle 

between the lenses is significant. However, this is too complex and is beyond the 

scope of our research.

1.2 The Correspondence Problem

As previously discussed, the physical world can be modeled as a 3-D composition of 

objects for most practical purposes. A natural image can be viewed as a 2-D planar 

optical projection of that 3-D scene. The projecting process is always unique and loss 

of information is unavoidable. When we observe this process closely, it is trivial that 

much of the information loss occurs in the dimension that is perpendicular to the

4
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image plane. By convention, we call that dimension either the z  axis or the d axis, 

while the 2-D image exists in the x-y space.

Fortunately, all information in that dimension is not lost. With two or more im­

ages, which are captured at different positions and yet focus on the same objects, we 

can attempt to partially recover the original 3-D composition. These images gener­

ally differ slightly, besides their strong correlations. Spatial diversities among the 

images are what we exploit in this reverse procedure.

Fig. 1.3 A typical left-right image pair and its ground truth depth map.

Fig. 1.3 shows a left-right image pair depicting a mushroom and three spheres 

and the grey level depth map corresponding to the left image. The depth map shown 

is simply the disparity values multiplied by a scalar. A darker pixel corresponds to a 

smaller disparity value, indicating a background (far) pixel. A brighter pixel corre­

sponds to a larger disparity value, indicating a foreground (near) pixel.

Humans can easily establish a correspondence between the mushroom in the 

left image and the mushroom in the right image. It is this correspondence that leads 

to the determining of disparity values. However, what is trivial for humans can be 

quite complex for a computer to handle. A computer perceives nothing but a 2-D 

array of intensity levels. It is unrealistic to expect a computer to recognize objects

Left Image Right Image Left Depth Map

5
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and make a reliable correspondence decision. Thus, SDE is also known as the corre­

spondence problem. Without object recognition capabilities, an SDE algorithm relies 

on establishing correspondence for a single pixel at a time. Sophisticated aggregation 

methods are used to eliminate spurious disparity values and thus producing an ac­

ceptable depth map.

1.3 Overview of the Thesis

This thesis is about range detection by stereoscopic means, proposing a novel multi­

stage architecture for the stereoscopic depth estimation process. The first stage de­

termines the disparity values for large and uniform image segments using well es­

tablished shift-matching algorithms. Each subsequent stage deals with smaller seg­

ments. Eventually, the entire depth map is to be completed.

This approach is quite similar to some image compression techniques, since 

low frequency signals are processed first. Each additional stage processes higher fre­

quency image details, until the improvement becomes diminishingly small. In addi­

tion, segment based matching cost aggregation and left-right consistency enforce­

ment methods are used to improve the performance further.

In chapter 2, relevant research works are reviewed. Multiple global optimiza­

tion and local estimation techniques are explained; common scenarios are discussed. 

In chapter 3, the proposed algorithms and the associated implementation are cov­

ered. The proposed method is implemented and tested in Java. The results indeed 

demonstrate substantial improvements from earlier single stage algorithms of a simi­

lar approach. In chapter 4, the testing metrics and results are presented. Chapter 5 

concludes this thesis and points to the potentials for future research.

6
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Chapter 2

Related Work

For centuries, people have known that a 3-D scene composition can be deduced from 

both eyes' views. The mapping of a 3-D scene onto a pair of images is unique, but 

the reverse is not so. Some of the range information is lost forever and cannot be re­

covered. In other words, theoretically, a left-right pair of stereoscopic images may 

not contain sufficient information to determine a unique and correct depth map. 

Such difficulties, compounded with the stereoscopic correspondence problem, pose 

a great challenge to researchers.

2.1 Fundamental Constraints

The first rigorous examination of this subject, however, is D. Marr and T. Poggio's 

1977 milestone paper [MP77]. The authors introduced the two fundamental con­

straints in stereoscopic depth estimation based on the underlying geometry. The first 

constraint is known as the uniqueness constraint, which states that any point in one 

of the images has either one or zero corresponding point in the other image. The sec-

7
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ond one is called the smoothness constraint, which states that the 3-D scene is com­

posed of piecewise smooth surfaces. Adjacent points are likely to have similar dis­

parities.

Note that the uniqueness and smoothness constraints counter balance each 

other. Good depth estimations can only be achieved when the two constraints are 

balanced. This forms the theoretical basis for most of today's stereoscopic algorithms. 

Local methods and global methods are the two major branches in stereoscopic analy­

sis. Their main differences lie between their ways of modeling the two constraints. 

Subsequent research efforts are mainly focused on either new modeling techniques 

or new computation methods for a known model.

2.2 Steps of a Generic Stereo Correspondence Algorithm

Numerous stereo correspondence algorithms have been proposed in the literature. 

Yet, most of them share the same basic steps. Fig. 2.1 depicts the flow diagram of a 

typical stereoscopic correspondence setup [SS02]

endstart Cost
Aggregation

Disparity
Computation

Disparity
Refinement

Matching Cost 
Computation

Fig. 2.1 Building blocks of the correspondence process.

As shown, a typical stereo algorithm is characterized by its matching cost defi­

nition, its cost aggregation, and its computation and refinement choices. It is defi­

nitely a generalization, since different methods put their emphasis on different com-

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ponents. However, this should be a reasonable common ground to begin with. The 

two fundamental constraints play a significant role here. The matching cost compu­

tation process is a means to address the uniqueness constraint, while the smoothness 

constraint is enforced by cost aggregation. Every step is discussed in detail in this 

section.

2.2.1 Matching Cost

In order to be familiar with the terminologies and concepts used frequently in a ste­

reo analysis, let us first look at the block matching algorithm. This method is proba­

bly the most basic in detecting the desirable d, and thus the inverse of d. Refer to Fig.

2.2. The left image is divided into multiple rectangular blocks. All pixels of the same 

block are assumed to have one uniform disparity.

^EDf!
Left Image Right Image

I dis

SSD for block B

Fig. 2.2 Block correlation search

The task is to find the matching counterpart for every block in the right image. 

According to the previous geometric analysis, if the image pair is well calibrated, the 

vertical direction is totally irrelevant here. We can find the matching blocks by shift­

ing the blocks from right to left in right image. Similarly, if we choose to divide the 

right image into blocks, we need to shift them from left to right in the left image.

9
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The search typically starts from the reference position, i.e. d = 0, and gradually 

shifts horizontally, one pixel at a time. The search is over when a preset threshold, 

which represents the maximum disparity allowed, is reached. For each position, a 

similarity check is performed. Eventually the most similar block, based on correla­

tion measures, is chosen. After proper scaling, the inverse of its disparity is then said 

to be the distance of that block. A completed depth map is obtained, after such a pro­

cedure is performed upon every pixel.

A function is always defined to quantify the degree of existing correlation. It is 

also known as the matching cost function; it serves as an essential building block of 

the correspondence process, as indicated previously in Fig. 2.1. By convention, a 

lower cost indicates higher correlation and a higher cost indicates lower correlation.

Mathematically, an image region S contains one or more pixels; each pixel has 

a scalar or vector intensity value. Let us consider the scalar case first, for simplicity. 

Note that S can be as small as one pixel, or as large as the entire image. In the case of 

block matching, S is simply a rectangular block of pixels. Designate I r ( x ,  y) as the in­

tensity function for the right image and I l ( x ,  y ) for the left image. Then, there exist 

the following frequently used matching cost functions [SS02].

Sum of Absolute Difference (SAD) The absolute value of the intensity difference of 

each corresponding pixel pair is obtained, and then the cost is summed within the 

entire block. It is equivalent to the Mean Absolute Difference (MAD), only differing 

by a scalar size factor.

X  \iR(x - d , y ) - i L{ x , y )I (2_1)
pixele S

10
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Sum of Squared Difference (SSD) The square value of the intensity difference of 

each corresponding pixel pair is obtained, and then the cost is summed within the 

entire block. It is equivalent to the Mean Squared Error (MSE), only differing by a 

scalar size factor.

X  \ h { x - d , y ) - i L{ x , y f  (2 ' 2)
pixels S

Binary Cost The absolute value of the intensity difference of each corresponding 

pixel pair is obtained and compared to a pre-defined cost threshold Tc. The cost for 

that particular pair is either 1 or -1, depending on the comparison result. Eventually, 

the cost is summed within the entire region.

X  s g n ( |^ s  {x ~ d , y ) ~ I L ( j c , y ) | - r c ) (2 ‘ 3 )
pixels S

Gradient-Based Cost The cost function operates on the image gradient map; the 

function itself can use any of the mentioned cost. This approach can reduce the inac­

curacy introduced by camera gain or bias. However, its use is not mandatory, as a 

pre-processing stage can perform an equalization procedure on the captured images.

X  f ( IR { x - d >y)>IL ( x >y))  (2"4)
pixels S

All of the mentioned matching costs assume that d is an integer, which results 

in a horizontal translation in integer pixel width. However, due to image sampling, 

while the ground-truth image is a continuous and smooth map, the resulting dispar­

ity function is actually a discrete map. S. Birchfield and C. Tomasi proposed a way of 

eliminating such a discrete effect by linearly interpolating both R and P [BT98]. Thus, 

d does not have to be an integer anymore; sub-pixel precision can be achieved at the 

cost of more computational complexity.

11
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2.2.2 Cost Aggregation

As mentioned above, a single pixel or a small homogenous region S is likely to en­

counter the aliasing problem. Spurious results are thus produced. A pixel, by defini­

tion, is really a single point with one intensity/color and has no feature inside. Thus, 

the correspondence problem is at its worst in the case of single pixel analysis—there 

may be multiple match aliases along the scan line.

Now, what if we consider a relatively large region? As the subject region grows 

larger, it is more likely that the region contains some sort of features. In the extreme 

case, when S represents the entire image, the region should have the most possible 

features. Therefore, we have to enforce the smoothness constraint, either in the form 

of summation over a larger region or in the form of minimizing an energy equation. 

This process of relating one pixel's disparity with other pixels' is called aggregation.

In the case of block matching, S is a rectangular block of pixels. The width and 

height of each block are design issue to be considered. This process of aggregating 

the costs of multiple pixels forms the second building block of the estimation proc­

ess.

The fundamental idea behind aggregation is that the disparity value of a single 

pixel can be quite unpredictable due to aliases. However, according to the continu­

ous constraint proposed by D. Marr and T. Poggio, the disparity map can be viewed 

as a piecewise-continuous surface. In other words, adjacent pixels are likely to have 

the same disparity. Thus, the aggregation process, which is essentially a low pass 

filter, can be employed to reduce spurious behaviours.

12
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2.2.3 Disparity Map Refinement

The disparity value for each pixel is subject to error, since mismatches are not un­

common for occluded or featureless regions. Refinement techniques are available to 

eliminate obvious artefacts and smooth out uneven scan lines. Various low-pass fil­

tering methods are used to reduce artefacts. 3-D surface reconstruction is very useful 

in refining the disparity map to sub-pixel levels, i.e. the disparity value of a pixel 

does not have to be rounded off to the nearest integer, as it can take on fractional 

values through surface fitting.

2.3 Common Obstacles

The shift-matching process is not always straight forward. Problems arise when a 

region is wrongly matched or has no match at all. In this section, we discuss several 

common obstacles involved in the matching process.

2.3.1 Featureless Regions and Repeating Patterns

Some typical matching costs are defined in the previous segment. Let us first check 

some extreme cases. When the subject region S contains exactly one single pixel, the 

summation is not needed. We may want to ask: why not just obtain the disparity of 

one pixel at a time, why not try to match 1 by 1 block pairs?

To answer that question, we need to consider the concept of image features. A 

single pixel, or a homogenous region, contains no features. In other words, within 

the subject area, the intensity is almost constant and its first partial derivative func­

tion is close to zero.

13
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Fig. 2.3 Mismatches that cause aliases: (a) featureless left image, (b) featureless right 

image, (c) featureless cost curve, (d) repeating pattern left image, (e) repeating pat­

tern right image, (f) repeating pattern cost curve.

Examples of featureless and repeating pattern image pairs are shown in Fig.

2.3. The top row shows a pair of featureless images (a, b). The featureless regions 

could be part of a blue sky, a blank wall, or a dark cave. When a region or the entire 

image is featureless, theoretically, there is no way to properly find its disparity. The 

matching cost curve, shown in (c), is likely to be a straight line that demonstrates 

high correlation (low cost) for all possible d values. In this case, even a human being 

would not be able to estimate the distance. The standard procedure in dealing with 

such regions is to perform a low pass filtering to fill the gaps.

The second row in Fig. 2.3 shows an image pair that contains a repeating pat­

tern and its cost curve. In general, such image pairs produce matching cost curves 

that are periodic in nature. The real match may not have the lowest matching cost. In

14
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that case, the computer algorithm would choose the alias with the lowest cost and 

thus resulting in a wrong match. The featureless situation can be viewed as a special 

case of the repeating pattern situation, where aliases exit for every increment of dis­

parity d.

2.3.2 Discontinuity

A significant limitation of block matching is that we assume there is only one dispar­

ity value within each block. Refer to Fig. 2.4. There are three depth surfaces: a bright 

foreground sphere, a dark sphere and a blank background. For simplicity reasons, 

let us assume uniform disparity within the boundary of the same object. There are 

several blocks that contain parts of more than one object. Significant errors are un­

avoidable no matter how the matching process goes.

Left Image Right Image

Fig. 2.4 Depth discontinuities within a single window.

As a rectangular block decreases in size, it would be less likely to contain more 

than one object. In the extreme case, for a block size of 1 by 1, each block is essen­

tially a pixel and it is guaranteed to have one disparity only. However, as block size 

decreases, the likelihood of featureless blocks increases. Aliases can occur; a more 

sophisticated approach is needed.

15
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2.3.3 Occlusion

As shown in Fig. 2.5, some regions in the left image do not have a match in the right 

image, because they are occluded by foreground objects. Though not shown in the 

diagram, certain regions in the right image could be occluded in the left image as 

well. This phenomenon is called occlusion. It is always difficult to find the disparity 

of the occluded regions, since it is not possible to know what exactly happens to that 

region in one of the images where it is invisible.

Right Image

Fig. 2.5 Occluded regions do not have corresponding counterparts.

For most situations, that disparity is likely to be the same as the adjacent back­

ground object. However, this assumption is not always true. For instance, if the 

background object does not have uniform disparity within its boundary, then there 

is no solution.

There is a special case of the occlusion problem. As we can see from Fig. 2.5, 

part of the largest sphere, while visible in the right image, is invisible in the left im­

age. That area is not occluded by another object; the occlusion is due to the fact that 

the area is off camera.

16
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2.4 Global Optimization

D. Marr and T. Poggio proposed to use the uniqueness and continuity criteria to par­

tially solve the correspondence problem [MP79]. Their approach only considered 

high-confidence features (mainly sharp edges), because even corresponding region 

can have highly different intensity levels due to shading distortion. After a sparse 

disparity map is obtained, the "empty" regions' disparities can be estimated using 

continuity methods, assuming that real world objects are cohesive.

Later research activities are divided into two main approaches. The first one is 

focused on the global optimization of the image disparity functions, while the sec­

ond approach is focused on processing local image features. Their main differences 

lie between their ways of modeling the two constraints. According to D. Scharstein 

and R. Szeliski [SS02], the global approaches typically define an energy function that 

depicts the balance of the uniqueness and smoothness constraints.

Most of the work is performed during the disparity computation step, while 

aggregation is less important. A typical problem formulation is defined as the mini­

mization of the energy function:

E ( d ) - E ia„ (d )+ X E m^ ( d )  (2-5)

The d value that makes E(d) be at a minimum, or at least a local minimum, is

regarded as a good disparity candidate for that particular pixel. The individual

terms are defined as:

E da,a { d ) = Y JC {x ,y ,d  {x, y)) (2-6)
(*.y)
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Emo«h(d )= Y,p(d̂ y)~d̂x+̂ y))+pid̂ y)~d(x'y+l)) ( 2 ' 7 )

(*.y)

Optimal results are obtained when the energy function is minimized. Although 

the problem formulation of global approaches is simple and elegant, there is no triv­

ial solution; the computational complexity is very high. Thus, research works in this 

area focus on improving computational techniques such as dynamic programming.

2.5 Local Methods

Although there are many obstacles, the block matching approach has its merits. First, 

it is easy to implement and fast running. Second, it provides reasonably good per­

formance for images with rich features and relatively uniform in disparity. A num­

ber of methods have been employed to improve the performance.

Thus, the second approach focused on local image information and this ap­

proach itself can be divided into two branches. The first branch is feature-based. The 

intensity levels of the pixels are not trusted, since complex lighting and shading ef­

fects can occur. However, features such as sharp edges are thought to yield more 

consistent results. Researchers focused on obtaining better feature definition meth­

ods [C86, HS88]. The resulting disparity map of this approach is unavoidably sparse. 

That is the cost of high-confidence feature matching. Various methods have been in­

vestigated to "fill" into the holes of the sparse disparity map. They all assume the 

basic idea that the disparity map should be generally continuous and smooth [DA89].

The second branch is area-based. This approach eliminated the need to "fill" 

the disparity map; it is also referred to as the dense-disparity approach. Windows 

that contain features from the left image are selected and compared to windows
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from the right image, or vice versa. There are two key issues to consider. First, win­

dow size/shape selection. The most straight forward approach is to have a fixed 

sized rectangular window and fixed location windows. However, this over­

simplification may result in either featureless windows or a window that contains 

objects with different actual depths. In order to reduce the problem, different win­

dow types have been proposed [BI99, GLY95]. They examined a shifting window 

concept. The basic idea is that, when a window is thought to contain no good fea­

tures, it is shifted horizontally or vertically until it contains a good feature.

When both M and N are as large as possible, the block is the entire image. 

Then, some questions arise. Why choose one block definition over another? Why 

choose a rectangular region at all? Other researchers proposed windows with adap­

tive size; it is also called the hierarchical approach. T. Kanade and M. Okutomi pro­

posed to vary the window size based on a statistical model of intensity and disparity 

[K094]. The end result is such that larger windows are used for featureless regions 

and smaller windows are used for regions with high-contrast boundaries or patterns.

However, all of the mentioned window-matching algorithms have a funda­

mental flaw. They only work for regular shaped objects such as a sphere; they fail 

most of the times in determining the depth of a rod-type object. In that case, no mat­

ter what the rectangular window size is, there will always be multiple significant ob­

jects of different depths within one window. Random-shaped window matching is 

the new trend, probably due to the increased ease to perform these experiments in 

recent years. The whole idea is based on the assumption that a uniform-colored re­

gion will likely have a continuous depth. While that is not entirely true, it is defi­

nitely superior to a rectangular window.
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H. Tao et al proposed to roughly estimate the depth map first and then per­

form an image-segmentation [TSK01]. Each segment (window) is then fine-tuned via 

a global optimization algorithm to minimize the effect of occlusion. Eventually, each 

segment is modeled as either a frontal-plane—a surface parallel to the x-y plane—or 

a 3-dimesional flat surface or a 3-dimensional curved surface. Smoothness and color 

similarity constraints are enforced to achieve a smooth depth map.

2.5.1 Shifting Blocks

In order to solve, or at least partially solve, the problems caused by featureless 

blocks, researchers have proposed the use of shifting blocks. The idea is that if a 

block is featureless, then it is shifted horizontally and/or vertically until it contains 

substantial features, as shown in Fig 2.6. After the block in the bottom-right comer is 

shifted towards the sphere boundary, more image features are included in the block.

Original Block

- r

Shifted Block

Fig. 2.6 Shifting blocks are used to find image features.

2.5.2 H ierarchical B locks

As shown in section 2.3.2, some blocks contain multiple significant objects. In order 

to make the disparity uniform within a single block, researchers make use of a hier­

archical block approach.
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As shown in Fig. 2.7. The image is initially divided into large blocks. The algo­

rithm then checks whether a block should have uniform disparity. If not, that block 

is divided into smaller blocks. The recursion continues until either the block is uni­

form in disparity, or when a preset lower limit of window size is reached.

N ew  D ivision

 I----

Original Blocks

Fig. 2.7 Hierarchical blocks are used to reflect depth discontinuities.

The hierarchical block approach can also be used in combination with the shift­

ing block approach. The result is a more precise and less blocky depth map.

2.5.3 Image Segmentation

Although the performance of the block matching algorithm can be improved sub­

stantially by employing rectangular blocks of various sizes and at arbitrary position, 

obstacles presented in section 2.3 are still significant. An intrinsically better approach 

is to use regions. Image segmentation techniques can be used to divide the whole 

image into regions of similar color, intensity and pattern. Each region is assumed to 

have a uniform disparity within its boundaries.

We assume that natural objects are uniform in terms of both color/intensity 

and depth. That assumption holds true for most cases. As illustrated in Fig. 2.8, the
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advantage of this approach is that the boundaries are well preserved; the resulting 

disparity map is sharper and less blocky.

Original Image Block DM Segm ent DM

Fig. 2.8 Segment boundaries naturally follow depth discontinuities.

The disadvantage is that the regions do not contain much feature within them­

selves. They can be properly analyzed only if their neighbouring regions are sub­

stantially different and thus making the boundary areas good features. Obviously, 

that cannot be guaranteed. For regions with weak features at boundary areas, which 

are common in over-segmenting, the featureless problem introduced in section 2.3.1 

can be significant.

2.6 Review Summary

In this chapter, most popular stereoscopic depth estimation approaches have been 

covered. Both the global methods and the local methods rely on the optimization of 

enforcing the uniqueness and continuity constraints. In fact, D. Scharstein and R. 

Szeliski have shown that the global methods and the local methods are equivalent in 

certain aspects [SS02]. Our subsequent proposed method is no exception. The multi­

stage segment-based architecture handles the continuity with inherent stability, thus 

resulting in an improvement of performance.
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Note that all the methods are limited to their respective context. As with any 

image processing tasks, different types of input images will most likely require dif­

ferent processing procedures and parameters. Thus, it is a researcher's task to inves­

tigate these delicate differences and make his or her method as generic as possible.
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Chapter 3

Proposed Multistage Algorithm

Many existing stereo depth estimation algorithms were surveyed in chapter 3. Obvi­

ously, there is no trivial solution to the problem. The essence of these methods is to 

find an optimal balance between two counteractive forces. With that in mind, we 

shall present our research: a multistage segment-based stereo depth estimation algo­

rithm.

The organization of this chapter is as follows. In section 3.1, the concept of the 

multistage architecture is introduced. Several basic aspects of image features are dis­

cussed in section 3.2. In section 3.3, match cost aggregation methods are examined. 

The advantage and basic design of segment-based estimation are discussed in sec­

tions 3.4 and 3.5, respectively. Section 3.6 is focused on the importance of left-right 

consistency enforcement. Section 3.7, integrates all these individual pieces together 

and presents the design in its entirety, which is followed by the chapter summary.
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3.1 The Multistage Architecture

Divide and conquer is a strategy often used in signal processing. For example, in au­

dio compression, signals are first divided into several frequency sub-bands and then 

transformed. This process is simpler and more efficient than attempting to transform 

the entire band at once.

The same idea can be applied to stereo depth estimation. For area-matching al­

gorithms, a single set of parameters do not perform well for the entire image. As 

mentioned in chapter 2, other researchers have proposed to use windows of varying 

sizes and positions to improve performance. That can be viewed as implicit ways of 

divide and conquer, since different sets of parameters are applied to different parts 

of the source image.

A more explicit and systematic approach, we assume, should improve the per­

formance further. Hence, we propose to solve the problem with a multistage struc­

ture, as shown in Fig. 3.1. In the proposed algorithm, each stage, by itself, uses 

known area-matching algorithms to estimate the depth map. The real novelty resides 

in the generic architecture.

All the stages, except the last one, share the same platform and only parameters 

are differently set. Therefore, the design is simple and the software modules are re­

usable. The multistage algorithm receives the original image pair as input. The calcu­

lated partial disparity maps from each stage are then put together to form the final 

completed disparity map.
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•isparity
Map

Input
Images

STAGE-N

STAGE-2

STAGE-1

Fig. 3.1 General structure of a multistage approach.

The basic processing procedure of a typical rectangular window matching SDE 

is depicted in Fig. 3.2 (a); the procedure of any one stage in our multistage structure 

is shown in Fig. 3.2 (b). Let us consider the first stage for example. It performs area 

matching on Io , the input image. Instead of a conventional winner-takes-all decision 

making for every match attempt, the algorithm allows a no-winner situation. For any 

pixel or area, if the best matching cost is lower than a certain threshold, the disparity 

value associated with that cost is accepted. Otherwise, that part of the image is re­

garded as undecided. Therefore, the first stage has two outputs: Di the partially 

completed disparity map and Ii the partially processed intensity image. The latter is 

also referred as the residual image.

Each pixel of the residual image, in addition to its intensity value, is also la­

belled as being either "decided" or "undecided." Then, Ii is passed from the first 

stage to the second stage as the input image of the latter. The second stage, during its 

own area defining process, will focus on "undecided" pixels only.
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Fig. 3.2 A flow chart of disparity calculation steps: (a) a typical rectangular window 

based shift-matching algorithm, (b) one stage of the proposed segment based algo­

rithm with left-right consistency enforcement and matching cost screening.

The same process repeats through the stages sequentially. Only basic parame­

ters are changed for each stage. Generally speaking, large areas with uniform intensi­

ties are processed in the first two stages and tiny details are processed later—from 

low frequency signal to high frequency signal, in a broad sense.

The last stage is different from all other stages. Being the last one in the se­

quence, it cannot leave a residual image. All undecided pixels are to be determined 

in this stage. Since all the large and easy areas are determined in earlier stages, the 

input residual image I n -i  obviously comprises a large amount high-frequency sig­

nals. The matching algorithm employed, thus, needs to be simple and robust.
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3.2 Image Segmentation

3.2.1 Image Feature Basics

In the general sense, the term "feature" means "a typical quality or an important part 

of something" [INT02]. But, in image processing, this term has a specific meaning. A 

region of an image is well featured if there is significant intensity contrast among its 

pixels. If the intensity levels are uniform, then that region is featureless. Consider an 

image pair shown in Fig. 3.3 and let us examine a few important aspects of image 

feature: size, intensity variation, boundary and direction.

Size

The more pixels there are in a region, the more likely there is significant contrast. 

Thus, a large region is more likely to be well featured.

Intensity Variation

In quantitative term s, im age feature can  be m od eled  at each p ixe l, b y  the m agn itude  

o f the gradient function  o f the im age's intensity  function  I(x,y).

ic i

Left Image Right Image

Fig. 3.3 Several aspects of image features.

(3-1)
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For example, in Fig. 3.3, block A possesses significant intensity variation; block C is 

featureless. Since most SDE algorithms consider horizontal pixel/block matching 

only, Eq. 3.1 can be simplified to Eq. 3.2. This is a special case, when the vertical par­

tial derivative is not considered.

dl(x, y)
dx

(3-2)

The intensity contrasts of block E are purely along the vertical axis, and thus it is 

considered featureless horizontally. Block D, on the other hand, is regarded as a 

good image feature.

Boundary

In Fig. 3.3, block B has good intensity contrast and thus it is well featured. However, 

it is trivial that image feature will not help when depth plane boundaries are present; 

parts of block B will unavoidably be wrongly matched. Therefore, for shift matching 

purposes, image feature is only useful when the pixels causing intensity contrast is 

on the same disparity plane. In other words, they are not on a depth boundary.

3.2.2 Segment Correlation Methods

Segment correlation is very similar to rectangular window correlation. Basically, for 

any given disparity value d, the matching cost of each pixel is summed. There is a 

minor difference though. The sum of the matching cost must be divided by the seg­

ment's size to get the average cost. Otherwise, there is no way we can compare the 

cost of a random sized segment to a constant threshold.
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Matching Cost

Let the matching cost function for a window-matching SDE algorithm can be desig­

nated as C(d). By convention, a larger cost implies a low correlation and thus a poor 

match. A smaller cost, on the other hand, implies a high correlation and a potentially 

good match.

Usually, d, the disparity variable, is bounded by predefined constants. Let us 

define d e  [dmin,dmaJ .  This greatly reduces the number of candidates for d and thus

prevents the processing time from being unnecessarily long. The optimal disparity is 

obtained when:

Segmentation's Impact on Cost Curves

Although there is always a minimum point for the cost function, there may not be a 

successful match. A failure can be caused by one or more factors. Four common sce­

narios of cost function curves are illustrated in Fig. 3.4. An analysis of their cause 

and their effect should give us more insight.

C{doP,) = mi n { C (<i): duun <d< dmia }max (3-3)

G G r G

d  0 d
Unique Match N o Match Repeating Pattern Featureless

Fig. 3.4 Scenarios of cost curves.
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A good match, by definition, should have a low matching cost. Thus, even the 

minimum point on the function curve is not acceptable, if it is not small in an abso­

lute term. In addition, a good match should also be unique. In other words, the 

minimum point ought to be the only point with such a small cost.

Let us first examine the four common scenarios of cost curve illustrated in Fig.

3.4. First, a unique match is always desirable. In this case, there is one clear global 

minimum. The resulting disparity is most likely to be accurate. Repeating patterns 

and featureless regions, on the other hand, would cause severe aliasing effects that 

make a correct decision almost impossible. When a winner-take-all algorithm is per­

formed, the final result would be dictated by random factors such as the signal noise.

The "no match" case is fairly common for partially occluded regions or image 

with a high signal noise level. Although there is no match at all, this situation is ac­

tually more desirable than aliasing instances. Knowing there is not a good solution is 

always preferable to settling on an alias disparity value. The segment-based correla­

tion method has a natural tendency of reducing the possibility of aliasing to "no 

match" status. More details can be found in the next section.

If aliasing is indeed eliminated or at least reduced, we shall concentrate on "no 

match" situations. Obviously, a simple winner-take-all selection mechanism will not 

be enough; a more sophisticated approach ought to be used. Since such situations 

are likely caused by either occlusion or signal noise, it may be theoretically not pos­

sible to find a segment's corresponding counterpart. However, it is still possible to 

assign a correct disparity value for that segment by enforcing the smoothness con­

straint. Then, the correct disparity values can propagate from "unique match" re­

gions to "no match" regions by aggregation means.
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The last diagram in Fig. 3.4 represents the cost curve of a typical featureless 

rectangular window clipped from a large featureless object. There is a fine line be­

tween a featureless window and a featureless object. The former has no FC between 

itself and its surrounding. The latter has a well-defined one, since a segment tends to 

reflect the true shape of a natural object. Therefore, the use of segmentation can ef­

fectively reduce the occurrence of featureless regions. The large featureless objects 

may fall into the "unique match" category or, if occlusion and boundary situation 

are dominating, the "no match" category.

Furthermore, a unique match is not always a correct match. A combination of 

occlusion and repeating patterns can create a single low matching cost that is actu­

ally a wrong match. Table 3.1 describes the common scenarios of feature matching. It 

is quite obvious that segments have a distinct advantage over rectangular windows, 

in reducing potential aliasing problems.
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Table 3.1

Common Matching Scenarios: Rectangular Windows vs. Segmentation

Case Left Image Right Image Depth Map Comments

0 The original image pair and the 
ground truth map of the left image.

1
C' o The window contains two regions of 

different disparities. A unique match is 
obtained. The entire w indow  is as­
signed the disparity for the dominate 
region.

2 EH The enclosed area is uniform in dis­
parity. However, the w indow  contains 
little feature. A  featureless w indow  is 
likely mismatched to an alias.

3
JO”" Cfâ ES Segmentation defines the matching 

area better than rectangular windows. 
The problems in both case 1 and case 2 
are likely to be eliminated.

4

mmmmmmmmsm

E9 When the selected object is occluded 
in the right image, a no match is likely 
reported. The resulting disparity 
value is usually w ay off the mark.

5 / X3
c

If a segment is used instead of a rec­
tangular w indow  as in case 4, there 
will be no improvement.

6
When the occlusion happens in the 
left image, a no match situation is 
again reported.

7
o t >  © - •

dy> EHIf a segment is used instead of a rec­
tangular w indow  as in case 6, the 
problem goes away. The disparity in a 
segment is uniform and thus occlusion 
is avoided.

8
• O Q  -H - EHWhen a repeating pattern is encoun­

tered, an alias may be mistakenly se­
lected.

9 '  k>C ; ,  O ' o. EHThe use of segmentation does not 
eliminate aliasing.
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3.2.3 Unique Advantages Of Segments

As mentioned in the previous chapter, most area-matching algorithms simply use 

windows—rectangular shaped areas. The size and position of a window may vary to 

improve performance, but certain limitations still apply. Image segmentation, how­

ever, can completely avoid some of these problems and reduce some others. Al­

though segmentation is not a new proposition in stereo depth estimation, there is 

still the need to elaborate on this subject. The reviewed literatures have very little 

discussion regarding the intrinsic properties of segments. Most algorithms treat tiny 

segments as basic elements in a global energy function, while we are going to per­

form area-matching with the segments.

All stages except the last one utilize a segment-correlation method. The entire 

image is segmented into multiple random-shaped and random-sized regions. Each 

region, then, undergoes a horizontal shift-match process. The total matching cost of a 

segment S can be calculated as:

Csegment(d ) = \ 7 X  C pixel i 1 R ~ d , y )  J  L{x, y))  (3-4)
™ pixels S

where Csegment is the matching cost for the entire segment, CPixei is the matching cost 

for any pixel, S represents a segment in the left image h(x,y), N  is the number of pix­

els in segment S. Since a segment can be of any size, when a threshold is concerned, 

we have to use a cost-per-pixel measure, instead of a total cost. Thus, the summed 

cost is divided by the N.
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The matching mechanism of the segment-correlation method is similar to that 

of an ordinary window-correlation method. However, there are some intrinsic dif­

ferences that shall not be overlooked.

First, a window-correlation method will have to consider situations where mul­

tiple disparity regions exist in a single rectangular window. As previously men­

tioned, there are means to lessen boundary effects, such as adjusting window sizes 

and positions.

With the segment-correlation method, a segment contour normally agrees with 

disparity boundaries. The size and position adjustments of a segment come naturally 

with a properly selected segmentation algorithm. Therefore, homogenous disparity 

can be realistically assumed within one segment.

Second, and more importantly, a traditional rectangular window is supposed 

to contain a substantial amount of feature to function properly. However, a segment 

is expected to contain little to no feature. The real features of a segment-correlation 

method exits along segment boundaries.

3.3 Implementing Segmentation and Matching Algorithms

Two segmentation algorithms are implemented: region growing and vector quanti­

zation. Experimental result has shown that the two methods are very close in per­

formance. The region growing method is chosen to be used in the final setup, be­

cause it is easier to implement and faster to run. Since our focus is not about image 

segmentation, but stereo depth estimation. The segmentation algorithms are not in­

tended to be very sophisticated; they are kept fast, simple and robust.
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3.3.1 Region Growing

Since our depth estimation algorithm is intended to be fully automatic, the region 

growing algorithm must operate with no human input also.

Seed selection

The image is scanned from left to right and from top to bottom in a "Z" shaped path. 

The first pixel encountered that is not part of an existing region is regarded as a seed.

Growing

The seed itself can be viewed as a region with only one pixel. For any region, all of 

its neighbouring pixels not yet grouped are investigated. Ones that satisfy the pre­

defined threshold are included to the region and labelled as grouped.

Threshold

A pixel can be added, or grown into, an existing adjacent segment if intensity criteria 

are met. Let T be the scalar threshold value, the relative RGB weight vector be 

w = [0.299 0.587 0.114], the intensity of the pixel be i = [r g b] and the average

intensity of the segment be i  = [r g b'] . The pixel can be included into the seg­

ment if the following two threshold criteria are met:

m a x § r - r \ , \ g - g \ , \ b - b \ ) < T  (3-5)

\ I - i \ - w T <0.87 (3-6)

During the implementation and testing, T is set to be from 9 to 13 for different stages.
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3.3.2 Vector Quantization

In vector quantization (VQ), the first step is to generate the codebook, which is a 

suitable set of N  colour vectors. In our implementation, we used N  = 9. Initially, the 

colour vectors in the codebook are set as {$,$,$}, 0< i <8 where

0r =r -A + A/2,A = 256/(V -l) (3-7)

Each pixel (r,g ,b ) in the image is assigned the colour vector with the minimum 

Euclidian distance y ^ r_ r^2^ g _ g < y where (r',g',b') is a colour in the code­

book. The vector itself is then updated to be the centroid of these assigned pixels. 

This process is executed iteratively until there is no more change in vector assign­

ment or when a preset number of updates are reached.

After the codebook is calculated, the entire image is divided into multiple seg­

ments. Each segment contains pixels corresponding to only one vector. Any two ad­

jacent segments are to be merged, if both of them correspond to the same colour vec­

tor.

3.3.3 Segment Matching

When images segments are obtained, a correlation-based matching process begins. 

Let us designate the left image as the reference and the segments are results of seg­

menting the left image. Then, the best match in the right image is to be found. Note 

that the right im age is n ot segm en ted . W e d o  n ot com pare a segm en t from  the left 

image to a segment from the right image. Instead, the segment in the left image is 

treated as a "window" and that window is applied to the right image to define the 

pixels to be compared.
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Table 3.2

Window Matching vs. Segment Matching

Region Type Left Image Right Image

Rectangular

Window

d„.

Segment

The matching cost for the entire segment at a specific disparity d is given by Eq. 

3-4. Within the searching range, from dmm to d,mx, the disparity with the smallest cost 

is returned as the top candidate. The process used to determine the searching range 

is explained in detail in section 3.7.2.

3.4 Left-Right Consistency Enforcement

Symmetric processing is very useful in local methods. Fig. 3.5 illustrates a stereo 

pair: the top left and bottom left images represent the right and the left views, re­

spectively. Segments A and B are corresponding counterparts. As shown, we can ei­

ther shift segment A rightward to match B, or shift segment B leftward to match A. 

Some window-correlation methods use this symmetric matching strategy to find a 

disparity map for each image and aggregate the results.
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Fig. 3.5 Asymmetric cost curves.

Shift Segment B

Let us designate R(x, y) and L(x, y) as the disparity maps for the right image and the 

left image, respectively. They are calculated by shift-matching algorithms discussed 

previously in section 3.3. Then, we are able to render a second right disparity map 

Ri(x,y) from L(x,y):

RL( x - L ( x , y ) , y )  = L (x ,y )  (3-8)

Similarly, the left-view rendering of the right disparity map is:

Ls (x + /?(x,y),y) = #(*,}>) (3-9)

The domain of the new disparity maps is not identical to that of their respective 

counterparts. Yet, they overlap for most areas. Ideally, where they do overlap, the 

disparity values should agree exactly. If not, then a selection algorithm must be used 

to decide which one is better.

Occlusion Handling

When occlusion is present, the cost curve is likely to be the "no match" type. In that 

case, even the aggregated result is unlikely to be correct. The combination of sym-
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metric processing and segmentation can solve some simple cases of occlusion. In Fig.

3.5, while shifting segment A rightward to match B would not yield a unique good 

match, the reverse process is much better. Being a subset of A, segment B does have 

its unique perfect match. Instead of assigning an inaccurate disparity for the entire 

segment A, now the non-occluded sub-region B can be accurate. In short, for that 

same mushroom root, R(x,y) is undefined for A and L(x,y) is correctly defined for B.

In addition, the occluded region Z is undefined for L and waits for further 

processing. Since Z is occluded, local methods will not do any good. The only solu­

tion is the enforcement of the smoothness constraint. The natural solution would be 

propagating the disparity value of segment B to Z. Such propagation would be too 

complex to implement on the basis of image segments. Instead, a much simpler, 

pixel-based algorithm is used.

Left View j Right View

translation,

O u tp u t

LnR(x,y)

Ln(x ,y )

Fig. 3.6 Feedback loop for left-right consistency enforcement.

Define n as an iteration index starting at 1. As shown in Fig. 3.6, both the left 

and the right disparity maps L„ and Rn are first transformed into the other view, fol­

lowing the rules defined by Eq. (3.3) and Eq. (3.4).
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The resulting transformed disparity maps Rni  and L„r are compared against Rn 

and L„, respectively. The two disparity maps of the same view are then merged into 

one. When inconsistency occurs, the disparity with the smaller matching cost is se­

lected. Let C(x,y) be the matching cost function. Then the following rules are used 

during merging:

During implementation, the view translation must be performed from the 

minimum disparity value, in ascending order, to the maximum disparity value. In 

the case of n—>1 correspondence, the point with a higher disparity is always closer to 

the camera and thus should be covering one with a lower disparity.

The feedback design is needed, since all the consistency enforcement cannot be 

done in one pass. A disparity value changed in one pass may themselves induce an­

other change in the next pass. On the other hand, convergence is assumed for two 

reasons. First, matching costs are always positive. Second, each disparity change will 

result in either a no-change or a decrease of the total matching cost, where the dec­

rement is always a multiple of a pre-defined constant.

Experiments have shown that, for the test images that we use, at most three 

passes are need before the depth maps are stabilized and no more changes are re­

quired.

otherwise
(3-10)

otherwise
(3-11)
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3.5 System Integration

There are three main steps in the complete process of our stereo depth estimation: 

pre-processing, matching and post-processing.

3.5.1 Image Preparation

The original input images may have significant signal noise. It is best that the source 

images are smoothed to reduce noise and thus yield a more predictable result. A 

simple edge-preserving Gaussian filter is used. The R, G and B color spaces are 

smoothed independently to obtain a smoothed color image. Let us take the R com­

ponent for example. Assuming a horizontal row of pixels has intensities [ro n  ri ■ ■ ■ 

m], that row shall be divided into two segments [ro ... rn-1] and [rn ■■■ 7>] if abs(r„- rn-i) 

>  rthreshold- This process goes on until the line segments can no longer be divided. Each 

line segment is then Gaussian smoothed by:

rn' left bound '1/4 3/4 0  ' r n - 1

rn' in between = 1/4 1 / 2 1/4 r n

r f  right bound 0 3/4 1/4 1 + 1

3.5.2 Initial Disparity Range Estimation

The test images we use typically are around 400 pixels wide. It is unrealistic to shift- 

match an image segment from 0 to 400. That would be both time inefficient and 

alias-prone. Therefore, we need to have an educated guess about the range of dispar­

ity values for the output depth map. As shown in Table 3.2, a successful matching 

process depends heavily on the proper estimation of dmm and dmax. Not only process-
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ing time can be saved, obviously wrong matching can be avoided also. An initial 

guess of dmin=0 and dmax- X / 10 is used, where X is the image width in pixels.

A simple window matching algorithm, just like the one used in die last match­

ing stage (see next section), is used. A depth map D and its corresponding matching 

cost map C are generated. The average cost Cave is calculated. All pixels with a cost 

less than 2cave are regarded as confident. A histogram function H(d), with d ranging 

from 0 to X/10, is then built on the depth value of these confident pixels. Here, let 

the threshold hr be 0.5% of the total number of pixels in the image. The range is then 

narrowed down from [0, X/10] to [dm, d„\, if m<n, H(dm)>hT, H(dn)>hT, max(H(0), H(l), 

..., H(dm-i))< hr and max(H(dn+i), H(dn+2), ..., H(X/10))</ir- The resulting estimated 

range is quite narrow and precise; more testing details will be revealed in chapter 4.

3.5.3 Segmentation and Matching

The first and second stages use region growing and vector quantization segmenta­

tion respectively. Region matching is then performed on the obtained segments. 

However, with the proposed method, these two stages will likely leave a partially 

finished image; all the residual information is then dealt in the last stage. Especially 

when the image quality is substantially poorer than expected, most pixels of the ini­

tial image will be marked as "low confidence." Thus, in the worst case, the last stage 

has to be ready to accept almost the entire initial image and leave no residue image 

after processing.

Since all the previous stages have failed to process these residue pixels, other 

types of complicated algorithms are not likely to work either. A simple, yet robust, 

method is needed. Hence, we choose the very basic window-correlation approach,
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with an absolute difference cost function and a WTA selection mechanism. This 

method is very basic. While it may not yield great results for good quality images, it 

definitely gives reasonable results for all images.

The last stage should not leave a residue image pair behind; all undecided re­

gions should be calculated here. As mentioned before, this has been a new trend in 

the depth analysis community as computer technology advances. Yet, this area is 

still new enough to have great potential. We will focus on natural images with rea­

sonable amount of texture and occlusion. Since the scope of research is determined, 

we can make reasonable assumptions to simplify the problem.

To preserve the natural edges better, circular windows are used. Experimental 

results have shown that, although the error rate of circular windows is not signifi­

cantly better than that of rectangular windows, the visual effect is indeed much bet­

ter. The diameter of the window is set to be 5 pixels, while the searching range is still 

from dmin to dmax-

In order to eliminate irregularities at object boundaries, the resulting com­

pleted depth map undergoes a smoothing algorithm. Again, circular windows with a 

diameter of 5 are used. All the pixels within the windows are assigned the cost and 

disparity value of the pixel with the least matching cost.

3.5.4 Post-Processing 

Artefact Removal

When a segment mismatch occurs due to occlusion or aliasing, there will likely be a 

significant error in its estimated disparity. Visually, a certain part of the depth map 

shows a sharp contrast of intensity levels.
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Depth estimation error can happen to segments of any size and the degree of 

error can vary. However, the term "artefact" typically refers to smaller segments 

with huge errors, as illustrated by Fig. 3.7. The artefact removal algorithms, thus, is 

based on such understandings.

Ground Truth DM Estimated DM

Fig. 3.7 Examples of artefacts.

There are three steps involved to remove artefacts: segmentation, size evalua­

tion and artefact recovery. The first step is straight forward. The depth map is di­

vided into multiple segments. Two pixels are considered to be in one segment only if 

they are adjacent and they have identical disparity values. This process should be 

rather straight forward.

The second step is to compare the size of the segment, in terms of number of 

pixels, against a pre-selected threshold T. If the segment is over the threshold, it is 

considered not an artefact. If it is correctly evaluated, no operation is needed. Oth­

erwise, it still cannot be safely removed due to its large size. The third step removes 

the previously identified artefacts from the depth map. A simple line-fitting is used 

to fill in the newly generated gaps. For each row of pixels in this empty region, the 

intensity values transients linearly from left to right.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Line Segment Smoothing Algorithm

To reflect the subtle depth transitions in a relatively smooth region, a line segment 

smoothing algorithm is used. Again, the assumption is that smoothness in intensity 

should correspond to smoothness in depth also. Each horizontal scan line is divided 

into several shorter segments, such that, for any two adjacent pixels in one line seg­

ment:

where Tune is an intensity threshold. In our implementation, it is set at 14. Once the 

lines are broken down properly, the disparity value for each pixel within a segment 

is gathered to make a histogram. Then, dmax, the disparity value with the most entries 

is regarded as the predominate value. The entire line segment is then set to dmax.

3.6 Summary

In this chapter, we have introduced the concept of a multistage stereo depth estima­

tion algorithm. After investigating multiple mismatch and occlusion scenarios, the 

theoretical advantages of multiple stages over a single stage are explained in detail. 

The image segmentation process and the segment matching algorithm are the main 

body of our proposed method. The former uses very simple region growing and vec­

tor quantization algorithms, while the latter is similar to that of a conventional rec­

tangular window's matching algorithm.

This chapter is concluded by a thorough description of the pre-processing step, 

which involves an improved Gaussian filtering, and the post-processing step, which 

involves segment-based artefact removal and line-based low-pass filtering.

(3-13)
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Chapter 4

Performance Evaluation

As we have proposed a novel multistage approach for stereoscopic depth estimation 

in the previous chapter, a thorough evaluation is needed to justify the use of this 

new algorithm. In this chapter, we will first introduce the testing method and the 

performance metrics we are going to use. The performance of the proposed method 

is then presented in terms of these metrics. Comparisons with other techniques of a 

similar genre are made to reveal the improvements. At last, qualitative merits of the 

proposed algorithm are examined by a visual evaluation of the calculated depth 

maps.

4.1 Testbed Specifications

Historically, stereoscopic depth estimation had lacked a standard numerical evalua­

tion method. Early works used visual evaluations only. In 2002, D. Scharstein and R. 

Szeliski [SS02] established a quantitative software testbed for SDE. Many researchers 

have hence adopted the evaluation mechanism and submitted their results to the
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Middlebury Stereo Vision Page. In this paper, we are going to use the same test im­

ages, test procedure and performance metrics, so that our results can be compared 

with existing algorithms directly. Our test program is implemented in Java. It has 

been thoroughly tested that its output is identical to the Middlebury results.

4.1.1 Test Images

There are four standard stereoscopic image pairs included in the test bed. These are 

the Tsukuba, Saw, Venus and Map image pairs from the Middlebury website 

[INT01].

(a ) (b)

(c) (d)

Figure 4.1 Left images of the test image pairs: (a) Tsukuba, (b) Sawtooth, (c) Venus, 

(d) Map
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All the test images are calibrated left-right pairs. In other words, only horizon­

tal disparities are considered; vertical disparities are made to be zero at all times. 

These are all color images, except that the Map pair is grey level.

The images are shown in Fig. 4.1. The Tsukuba depicts a typical laboratory 

room. It is very complex in structure, containing many natural objects of different 

depth. Both the Saw and Venus image pairs are composed of simple planar surfaces. 

However, the surfaces are complex in texture region. Map, the last image pair, is 

grey level. It depicts one road map on top of another. The image pair has very clut­

tered textures. There are substantial signal noises and occlusion areas present.

4.1.2 Disparity Value Ranges

The maximum and minimum disparity values are known for each test image. For 

example, as shown in Table 4.1, the disparity for Tsukuba is between 5 and 14 pixels. 

However, our algorithm should not take that information directly. The disparity 

range is estimated by an algorithm stated in section 3.7.2.

Table 4.1

Disparity Ranges for Test Images

Minimum Disparity Maximum Disparity

Tsukuba 5 14

Sawtooth 4 18

Venus 3 19

Map 4 28
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4.1.3 Performance Metrics

In this paper, we use the percentage of wrongly matching pixels (PWMP) as the per­

formance criterion. It is a standard established by the Middlebury test bed [INT01]. 

For a stereo image pair, we estimate the disparity for each pixel in units of pixels. Let 

the estimated disparity, and the true disparity of pixel (m,n) be denoted by de (m, n) 

and dt (m ,n) , respectively. For an image with size M x N , the PWMP is defined as:

= Z  ^ d e(m ,n ) -d t{m ,n)\> dd) ^
(m ,n)

where 1 < m < M , \ < n < N ,  and Sd is a threshold for error tolerance. In this thesis, 

we set Sd as 1 .

Note that the performance of an algorithm is sensitive to many image parame­

ters such as texture, and edges. Occluded pixels are never considered in calculation 

PWMP, as specified by the Middlebury test bed [INT01]. For a given stereo image 

pair, we calculate r) for three types of regions.

• Entire Image, known as "ALL". This provides the overall performance.

• Textureless regions, known as "TL". Here, the horizontal gradient is small.

• Depth discontinuity regions, known as "DISC". Here, the neighboring dis­

parities differ substantially.

4.1.4 Test Procedures

The definition of featureless and discontinuity regions are explained by [SS02]. For 

all practical purposes, we only need to use the mask images they have provided.

Fig. 4.2 shows mask images for the four test image pairs: Tsukuba, Sawtooth, 

Venus and Map. There are three mask images for each of the test image pairs. Each
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mask images can only take on three intensity levels 0 (black), 127 (grey) and 255 

(white). The black pixels belong to either boundaries or occluded areas; they are ig­

nored when calculating PWMP. The grey pixels belong to non-occluded areas that 

do not qualify. For example, non-boundary pixels do not qualify in the DISC mask. 

They are ignored when calculating PWMP, too. Only the white pixels are qualified 

and thus considered when calculating PWMP.

4.2 Numerical Results

Numerical measure is needed to evaluate our proposed method. By quantifying the 

results, we can then know the strength and weakness of the multistage architecture 

and how it compares to existing algorithms.

4.2.1 Advantages of Multistage

Table 4.2 reveals the performance advantage of the multistage method. No post 

processing is used, in order to magnify the gap of performance. Since stage 3 is the 

last stage, it is intended to process all residue information. Thus, stage 3 is always 

used. By itself, stage 3 is a typical single stage window matching algorithm. We can 

see a clear pattern: with the help of the segmentation stages, the percentage errors 

decrease substantially.
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i

Fig. 4.2 Mask images for evaluation purposes.
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Table 4.2

Performance (77) Improvements Using Multiple Stages

Error Rate

Stage 1 X V V
Stage 2 X X V
Stage 3 V V V

ALL 9.26 5.40 4.94

TL 16.9 8.29 6.69

DISC 13.3 1 2 .0 12.9

Since we allow a partially finished disparity map from each stage (except the 

last one), it is important to know exactly what percentage of the test images are de­

termined. Table 4.3 shows the percentage of the completion for each stage and its 

corresponding error rate. For an entry P@Q, P corresponds to the PWMP of the com­

pleted area; Q corresponds to the size of the completed area as a percentage of the 

entire image. The estimation efficiency is calculated before applying post processing. 

It is obvious that early segmentation stages are very well suited to un-textured re­

gions with a very low error rate.

Table 4.3

Performance (77) and area of determined pixels (%) for Tsukuba

Mask Image Stage 1 Stage 2 Stage 3

ALL 0.20 @ 44.6 0.21 @50.2 4.93 @ 100

TL 0.15 @ 70.1 0.13 @ 72.9 6.69 @ 100

DISC 1.61 @ 26.9 1.69 @ 35.3 12.9 @ 100
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Table 4.4 includes the results for all four test image pairs. For simplify, only the 

"ALL" results are shown. It can be observed that if the first two stages can success­

fully calculate a large percentage of pixels, the final result is likely to be better. Post 

processing is also very important; it can smooth out spurious pixels and thus greatly 

improving the overall performance.

Table 4.4

Performance (77) and area of determined pixels (%) for all test images

Test Image Stage 1 Stage 2 Stage 3 Post Processing

Tsukuba 0.20 @ 44.6 0.21 @ 50.2 4.93 @ 100 1.13 @ 100

Sawtooth 0.19 @ 38.5 0.22 @ 48.7 4.75 @ 100 1 .1 2  @ 1 0 0

Venus 0.25 @ 27.9 0.25 @ 29.1 8.17 @100 2.83 @ 100

Map N /A  @ 0 N /A  @ 0 2.64 @ 100 0.70 @ 100

4.2.2 Comparison with Other Methods

Table 4.5 compares the performance of the proposed algorithm with three other 

window-based methods: Real-Time Correlation (RTC) based method, fast variable 

window (FVW) method, and Windows-based discontinuity preserving (WDP) 

method. The performance of the RTC method was obtained from [HIG02], FVW was 

obtained from [V03] and WDP performance was obtained from [AD04]. They are 

among the best algorithms listed on the Middlebury website that are focused on 

window matching and do not minimize any energy function.

We can see that our proposed method performs much better than the other 

three methods for the Tsukuba test image pair, where each piecewise disparity sur­

face is relatively uniform in intensity. However, when the image is very cluttered, 

image processing no long works well and thus causing a relatively poor perform-
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ance. For example, the segmentation stages cannot confidently calculate the disparity 

value for any pixel in the Map pair. As shown in Table 4.3, the completion rates are 

zeroes. In other word, the result we obtain is purely from stage 3, a typical single 

stage. Since we used position varying circular windows in the third stage, the results 

should theoretically be similar to that of the compared methods. The significant gap 

could be attributed to the post-processing procedures. Our post-processing is quite 

primitive and has a lot of room for improvement.

Table 4.5

Performance (77) Comparison with Existing Techniques

Image Pixels
FVW
[V03]

WDP
[AD04]

RTC
[HIG02]

Proposed
Method

Tsukuba
ALL 2.35 1.78 4.25 1.14
TL 1.65 1 .2 2 4.47 0.30

DISC 12.17 9.71 15 6.25

Saw
ALL 1.28 1.17 1.32 1 .1 2

TL 0.23 0.08 0.35 0 .1 2

DISC 7.09 5.55 9.21 6.80

Venus
ALL 1.23 1.61 1.53 2.83
TL 1.16 2.25 1.80 5.28

DISC 13.35 9.06 12.33 3.51

Map
ALL 0.24 0.32 0.81 0.70
TL NA NA NA NA

DISC 2.9 3.33 11.4 8.39
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4.3 Visual Evaluation

We must not forget that the quantitative evaluation is performed on a simple model. 

Although it is one of the best and most commonly used, the model is not conclusive. 

The top ranking algorithms are so close in performance that even a small change in 

the model definition will result in a large variation in terms of ranking. Our results 

demonstrate outstanding handling of edges, especially those of rods. The depth 

maps generated by different stages are shown in Fig. 4.3. These depth maps are in 

grayscale, which is an integer multiple (16) of the calculated disparity values.

Fig. 4.3 "Tsukuba" output depth maps at different stages: (a) the segmentation result 

in stage 1 , (b) depth map after stage 1, (c) depth map after stage 2 , (d) depth map af­

ter stage 3, (e) final depth map, (f) ground truth depth map.
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Four "Tsukuba" depth maps generated by different SDE techniques are shown 

in Fig. 4.4. Although their PWMP values only differ slightly, the visual qualities are 

quite different. Our proposed method is the only one that properly maintains the 

shape of the lamp's two arms. We have preserved object edges much better than the 

other methods. As a result, the entire depth map looks clean and resembles the 

ground truth map the most.

(a) (b)

(c) (d)

Fig. 4.4 "Tsukuba" depth maps generated by different SDE techniques: (a) the pro­

posed method, (b) FVW [V03], (c) WDP [AD04], (d) RTC [HIG02].

The generated depth maps for Sawtooth are shown in Fig. 4.5. Same as with 

Tsukuba, the first two segment matching stages have correctly calculated most of the 

uniform areas. The final result is smooth looking. Intensity edges are preserved very 

well.
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(d) (e) (f)

Fig. 4.5 "Sawtooth" output depth maps at different stages: (a) original image, (b) 

depth map after stage 1, (c) depth map after stage 2, (d) depth map after stage 3, (e) 

final depth map, (f) ground truth depth map.
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Our PWMP performance for Venus is not as good as the listed competition 

methods, as stated in Table 4.5. From the depth maps shown in Fig. 4.6, the visual 

quality is reasonably good. The black rectangular artefact at the bottom-left comer is 

within occluded area. It was not included in the PWMP computation for ALL.

The relatively large error is mainly attributed to the segmentation process. 

When the segments are too large, there are more than one disparity levels within the 

segment, even though the transition is smooth. Therefore, assigning the entire seg­

ment one disparity value will cause error. This problem can be addressed by using a 

surface fitting algorithm. More details are given in section 5.3.2.

Fig. 4.6 "Venus" output depth maps at different stages: (a) original image, (b) depth 

map after stage 1, (c) depth map after stage 2, (d) depth map after stage 3, (e) final 

depth map, (f) ground truth depth map.
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As shown in Fig. 4.7, the segmentation stages did no useful processing to Map 

images. The images are too cluttered to be segmented reliably. The final depth map 

is essentially the result of the third stage and the post-processing. Again, the depth 

map looks reasonably good. A surface fitting algorithm can further improve its sub- 

one percent PWMP performance.

(d) (e) (f)

Fig. 4.7 "Map" output depth maps at different stages: (a) original image, (b) depth 

map after stage 1, (c) depth map after stage 2, (d) depth map after stage 3, (e) final 

depth map, (f) ground truth depth map.

4.4 Program Running Speed

The testing environment is an IBM PC running Microsoft Window XP Standard Edi­

tion. The CPU is an Intel 2.4GHz Pentium 4; memory size is 512M. All source codes 

are written in Java, and no run speed optimization is done. The compiler and run 

time environment are both from the JDK 1.4.1 package. Table 4.6 lists the time need 

to finish each step, for the Tsukuba and Sawtooth image pairs. It is obvious that the
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VQ segmentation step used the most time. We can improve the run time perform­

ance substantially, if we can use a faster segmentation algorithm.

Table 4.6

Program Running Speed: Time Spent (s) for Each Step

Time Spent 

(Seconds)

Tsukuba 

384 by 288

Sawtooth 

434 by 380

Initialization 1 0 17

RG Segmentation 14 38

VQ Segmentation 71 250

Disparity Calculation 

(all stages combined)

29 45

Consistency Enforcement 

(all stages combined)

3 7

Post-processing 17 40

Total 144 397

4.5 Summary

In this section, we have demonstrated the numerical and visual results of the pro­

posed method. In terms of PWMP performance, there is sufficient evidence that a 

multistage architecture is superior to a single stage approach. The visual results fur­

ther demonstrated the advantage of using image segments. Disparity boundaries are 

well very preserved. We have also noticed that the result is not very satisfying when 

the segmentation stages do not function well. This problem can be addressed by im­

proving the image segmentation algorithms and the post-processing algorithms. 

More will be discussed in section 5.3.
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Chapter 5

Conclusions

The major goal of this thesis work was to investigate the application of a multistage, 

segment based architecture in stereoscopic depth estimation. The major contribu­

tions of the research work are summarized in section 5.1. Future research directions 

are identified in section 5.2. The publications resulting from this research work are 

listed in 5.3.

5.1 Contributions

Stereoscopic depth estimation is a very versatile ranging technique. It is used in 

many real world applications. In this thesis, we have proposed a multistage, segment 

based architecture for SDE analysis.

The multistage architecture allows the input images to be processed in several 

passes. Starting from large and uniform segments, i.e. low frequency signals, our al­

gorithm first identifies regions of high confidence. Then, smaller segments and pixel 

level image features are processed with different sets of parameters and thresholds.
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Compared with traditional single stage methods, our proposed multistage method 

better suits the characteristics of each sub-region of the input images. The numerical 

performance evaluation shown in Table 4.2 is a strong proof of the advantages of 

multiple stages.

The use of segments, instead of rectangular windows, mitigates problems 

caused by image occlusions and featureless aliasing. The detailed analysis of the 

transitions among the four common matching scenarios, we believe, is the most 

comprehensive among recent publications. Table 3.1 is an in-depth account of how 

segments can avoid or reduce problems, where rectangular windows have failed. 

Since it is hard to quantify the performance improvement brought exclusively by the 

used of segments, we have to resort to visual evaluations. As shown in Fig. 4.4, the 

proposed method outperforms the competition at the edges, especially at the lamp's 

arm region.

The left-right consistency enforcement module significantly improves the accu­

racy in processing boundary and occluded regions. During the horizontal shift- 

matching process, if we shift from a background region (small disparity value) to a 

foreground region (large disparity value), problems are likely to occur. The disparity 

assignment for pixels close to the boundary will probably be that of the foreground 

region, thus creating a large error for the background pixels. The consistency en­

forcement makes sure that there is one shift-matching from left to right, and another 

one from right to left. The directional advantage will likely make the better match 

have a lower matching cost, thus improving the overall accuracy.
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5.2 Publications

Part of the work presented in this thesis has been published in the following journals 

and conferences:

• L. Jia, M. Mandal, and T. Sikora, "Efficient Disparity Estimation using Region 

based Segmentation and Multistage Feedback," WSEAS Transactions on Com­

munications, Vol. 5, Issue 9, pp. 1577-1584, September 2006.

• L. Jia, M. Mandal, and T. Sikora, "Efficient Disparity Estimation using Region 

based Segmentation and Multistage Feedback," Proc. of the 10th WSEAS Inter­

national Conference on Communications, pp. 582-589, Vouliagmeni, Athens, 

Greece, July 13-15,2006.

• L. Jia and M. Mandal, "Novel multistage feedback algorithm for stereo corre­

spondence," Proc. of the IEEE International Midwest Symposium on Circuits and 

Systems, Cincinnati, Ohio, USA, Aug 7-10,2005.

5.3 Future Work

No SDE algorithm is perfect, and there is always room for improvement. Our re­

search is no exception. For example, our segment based aggregation method is sup­

posed to be better than a rectangular window in terms of reducing aliases caused by 

large featureless regions. However, in some cases, the segment has grown so big that 

the entire segment can never have a low cost match, if there are some occlusions. The
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more we investigate and understand about stereoscopic depth estimation, the more 

problems surface. These problems are usually very subtle and are correlated with 

each other. In this section, three possible improvements are proposed. We hope that 

we can gain more insight into this subject, once the improvements are implemented.

5.3.1 Intelligent Segmentation

The segmentation algorithms used in our research are very basic, for simplicity. 

More sophisticated algorithms can be developed specifically for our SDE analysis. 

Here are some ideas:

• The segment size should be managed more intelligently. Extra large seg­

ments can be divided into small pieces, while ensuring each piece contains a 

reasonable amount of image features.

• The segmentation algorithm should have a feedback system. The output 

depth maps are to be evaluated after each stage. If certain types of matching 

error are predominate, then the segmentation parameters can be adjusted 

automatically and then yield better segmentation results.

• Repeating patterns are always difficult to segment, especially when they are 

small and highly featured. There is the possibility to use fractal analysis to 

reduce the patterns to uniform regions. This improvement could be signifi­

cant. But it is also very complex, and represents a large amount of research 

by itself.
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5.3.2 Surface Modeling

Compared with similar local methods, our proposed SDE algorithm performs better 

for the "Tsukuba" images, where the depth boundaries closely follow the intensity 

boundaries. However, our method is at a disadvantage, when the image is highly 

textured with a very simple ground truth depth map. Our refinement strategy, i.e. 

piecewise linear low pass filtering, does not work well with such situations. A possi­

ble solution is to incorporate surface fitting to the refinement process. In that way, 

not only spurious error spots can be eliminated, but also we can obtain a smoother 

depth map, resulting in drastically improved sub-pixel accuracy.

5.3.3 Parameter Selection

Due to the limited scope of our research, most of our algorithm parameters are ob­

tained by trail and error methods. In order to be more versatile, a training module 

can be implemented to make our algorithm choose the appropriate parameters 

automatically. The module should consider image characteristics such as noise level, 

color distribution and image size. Then, multiple (far greater than the existing four) 

pairs of test images are to be used to train the module to generate better results.
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