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Abstract

Music transcription is the process of extracting the pitch and timing of notes that occur

in an audio recording and writing the results as a music score, commonly referred to as

sheet music. Manually transcribing audio recordings is a difficult and time-consuming

process, even for experienced musicians. In response, several algorithms have been

proposed to automatically analyze and transcribe the notes sounding in an audio

recording; however, these algorithms are often general-purpose, attempting to process

any number of instruments producing any number of notes sounding simultaneously.

This work presents a transcription algorithm that is constrained to processing the

audio output of a single instrument, specifically an acoustic guitar. The transcription

system consists of a novel note pitch estimation algorithm that uses a deep belief

network and multi-label learning techniques to generate multiple pitch estimates for

each segment of the input audio signal. Using a compiled dataset of synthesized guitar

recordings for evaluation, the algorithm described in this work results in a 12% increase

in the f -measure of note transcriptions relative to a state-of-the-art algorithm in the

literature. This thesis demonstrates the effectiveness of deep, multi-label learning for

the task of guitar audio transcription.
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I am a great believer in luck.

The harder I work, the more of it I seem to have.

—Coleman Cox, 1922.
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provided. Ŷ∶i denotes the binary pitch estimates of the ith pitch across
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Chapter 1

Introduction

The task of music transcription involves the transformation of an audio signal into

a music score that informs a musician which notes to perform and how they are to

be performed. This is accomplished through the analysis of the pitch and rhythmic

properties of an acoustical waveform. In the composition or publishing process,

manually transcribing each note of a musical passage to create a music score for

other musicians is a labour-intensive procedure [40]. Manual transcription is slow

and error-prone: even notationally fluent and experienced musicians make mistakes,

require multiple passes over the audio signal, and draw upon extensive prior knowledge

to make complex decisions about the resulting transcription [7].

In response to the time-consuming process of manually transcribing music, re-

searchers in the multidisciplinary field of music information retrieval (MIR) have

summoned their knowledge of computing science, electrical engineering, music theory,

mathematics, and statistics to develop algorithms that aim to automatically tran-

scribe the notes sounding in an audio recording. The problem of automatic music

transcription is often characterized as the “holy grail in the field of music signal



2

analysis” [8]. The difficulty of the problem increases as more instruments and notes

sound simultaneously.

Although the automatic transcription of monophonic (one note sounding at a time)

music is considered a solved problem [8], the automatic transcription of polyphonic

(multiple notes sounding simultaneously) music “falls clearly behind skilled human

musicians in accuracy and flexibility” [55]. In an effort to reduce the complexity,

the transcription problem is often constrained by limiting the number of notes that

sound simultaneously, the genre of music being analyzed, or the number and type of

instruments producing sound. A constrained domain allows the transcription system

to “exploit the structure” [68] and consequently reduce the difficulty of transcription.

This parallels systems in the more mature field of speech recognition where practical

algorithms are often language, gender, or speaker dependent [47].

Automatic guitar transcription is the problem of automatic music transcription

with the constraint that the audio signal being analyzed is produced by a single electric

or acoustic guitar. Though this problem is constrained, a guitar is capable of producing

chords of six notes simultaneously, which still offers a multitude of challenges for

modern transcription algorithms. The most notable challenge is the estimation of

the pitches of notes comprising highly polyphonic chords, occurring when a guitarist

strums several strings at once.

Yet another challenge presented to guitar transcription algorithms is that a large

body of guitarists publish and share transcriptions in the form of tablature rather

than common Western music notation. Therefore, automatic guitar transcription

algorithms should also be capable of producing tablature. An example of guitar

tablature below its corresponding common Western music notation is presented in

Figure 1.1a. Guitar tablature is a symbolic music notation system with a six-line

staff representing the strings on a guitar. The top line of the system represents the
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highest pitched (smallest diameter) string and the bottom line represents the lowest

pitched (highest diameter) string, as shown in Figure 1.1b. A number on a line denotes

the guitar fret that should be depressed on the respective string.1 Modern tablature

notation does not explicitly display rhythmic information such as the duration of notes;

however, rhythmic information is often implicitly communicated using the relative

spacing between symbols on the staff. Moreover, guitar tablature does not explicitly

display the pitch of notes, but rather describes the gestures to apply to the guitar

to produce a certain pitch. As an additional note, guitar transcriptions in common

music notation are performed an octave lower than what is written.
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(a) A system of modern guitar tablature for the song “Weird Fishes” by Radiohead, complete
with common Western music notation above.

E4 1

B3 2

G3 3

D3 4

A2 5

E2 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(b) A standard guitar fretboard. Stars denote the string and fret combinations required to
perform the notes in the above music score.

Figure 1.1: An example system of music displayed in both tablature and common
Western music notation, complete with an illustration of how the tablature is realized
on a guitar fretboard.

Arranging tablature is challenging because the guitar is capable of producing

the same pitch in multiple ways. Therefore, a “good” arrangement is one that is

biomechanically easy for the musician to perform, such that transitions between notes

1Refer to Appendix A for definitions of common guitar terminology.
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do not require excessive hand movement and the performance of chords require minimal

stretching of the hand [42].

The development of an algorithm that is capable of generating reliable tablature

transcriptions from guitar recordings would have an impact on both academia and

industry. In academia, a solution to the constrained problem of automatic guitar tran-

scription would offer a template algorithm that could be applied to instruments other

than guitar. An algorithm that performs well on this task would likely perform well

on related tasks in the field of MIR such as query by humming, melody transcription,

chord recognition, and audio fingerprinting. A solution to this constrained problem

would also provide a foundation for the solution to the unconstrained problem of auto-

matic music transcription. Should future research design an algorithm that is capable

of reliably separating the audio signals produced by individual instruments amongst

a sound scape of multiple instruments performing simultaneously—a problem called

sound source separation, which mimics the natural phenomenon known as the cocktail

party effect [25]—the transcriptions of individual instruments can be combined to solve

the larger problem at hand. In industry, a solution to the problem of automatic guitar

tablature transcription is immediately commercializable in the form of a transcription

application. Existing applications include Melodyne [23], musical video games such

as Rocksmith [114], WildChords [124], GuitarBots [123], or educational guitar lesson

applications such as Yousician [125] that offer feedback to the guitarist in training.

Regarding existing guitar education software, these solutions involve knowing what

notes should be performed prior to receiving an audio signal, thus simplifying the

transcription problem.

The fact that researchers have been searching for a solution to the problem of

automatic music transcription for the last four decades lends credence to the difficulty

of this task. Although an accurate and robust transcription algorithm has yet to
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be discovered, incremental gains in transcription accuracy have been reported over

the last several decades [7]. Recently, however, the MIR research community has

collectively reached a plateau in automatic music transcription system accuracy. In

a paper addressing this issue, Benetos et al. [8] stress the importance of extracting

expressive audio features and moving towards context-specific transcription systems.

Also addressing this issue, Humphrey et al. [49, 48] propose that effort should be

focused on audio features generated by deep neural networks instead of hand-engineered

audio features, due to the success of these methods in other fields such as computer

vision [61]. The aforementioned literature provides motivation for investigating the

viability of applying deep machine learning architectures to the problem of automatic

guitar transcription.

1.1 Project Overview

With these motivations in mind, the objective of this thesis is to develop an algorithm

for automatic guitar tablature transcription using a deep belief network and evaluate

not only the quality of transcriptions produced, but also the benefits and detriments

to using such an algorithm for transcription. The hypothesis is that, analogous to

their performance in other fields, deep belief networks will outperform other proposed

machine learning or digital signal processing transcription algorithms.

To this end, an automatic guitar tablature transcription algorithm has been

implemented. A deep belief network has been trained to transform features of audio

signal segments to a list of pitches sounding during the audio waveform. A series

of HMMs then postprocess the list of pitches to determine the most probable onset

(starting time) and offset (ending time) of each note in the audio recording. An onset

detection algorithm is then used with a finer-grained time resolution to adjust the time
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of note onsets. Common Western music notation is generated from the note estimates

and performable guitar tablature is arranged using a graph-search algorithm.

Another contribution of this thesis is the compilation of a new ground-truth

dataset for training and evaluating guitar tablature transcription algorithms. The

dataset consists of guitar recordings that are synthesized from crowdsourced, manually

transcribed guitar tablature collected from www.ultimate-guitar.com. The dataset

has been made publicly available to encourage future research on automatic guitar

transcription. 2

1.2 Thesis Organization

This thesis is organized as follows: the following chapter provides a detailed literature

review of automatic music transcription and guitar tablature arrangement algorithms.

Chapter 3 presents the developed guitar tablature transcription algorithm. This is

followed by Chapter 4, which outlines the hypotheses and experiments conducted to

quantitatively evaluate the proposed guitar transcription algorithm. The results of

this evaluation are presented and discussed in Chapter 5. Chapter 6 outlines possible

threats to validity of the conducted research. Finally, Chapter 7 concludes the work

with a discussion regarding the merits of the proposed algorithm and outlines future

research directions.

2https://archive.org/details/DeepLearningIsolatedGuitarTranscriptions
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Chapter 2

Literature Review

Automatic guitar transcription algorithms aim to extract the notes being performed

by a guitar in an audio recording and write the notes in a symbolic music notation

such as common Western music notation or tablature notation. Formally, the process

of automatic guitar tablature transcription can be defined as a function that accepts

an audio recording of a guitar as input and outputs symbolic music notation. In more

detail, this function consists of two composite functions: a polyphonic transcription

function, which converts an audio recording of a guitar to a list of note events, and

a guitar tablature arrangement function, which converts the list of note events to a

sequence of string and fret combinations written as tablature. In even more detail,

the polyphonic transcription function can be further decomposed into two composite

functions: pitch estimation, which estimates the pitches of note events, and temporal

estimation, which estimates the onset (start) times and offset (end) times of notes. This

workflow is summarized in Figure 2.1. Though the majority of transcription algorithms

perform pitch estimation before temporal estimation, some work has explored the

estimation of note temporal attributes before pitch [22, 37].
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Figure 2.1: A high-level overview of the components of a guitar tablature transcription
algorithm.

This chapter will review the fundamental concepts and algorithms that are used for

the task of automatic guitar tablature transcription. The structure of this literature

review resembles the workflow presented in Figure 2.1: Section 2.2 describes algorithms

used for estimating the pitch, onset time, and duration of note events in an audio

recording. Section 2.3 provides an overview of proposed methods to arrange tablature

from a sequence of note events. Section 2.4 provides a detailed overview of the

inner-workings of deep belief networks, followed by a review of multi-label learning

algorithms in Section 2.5.

2.1 Digital Audio Preface

Before discussing algorithms used for the task of music transcription, several concepts

in the field of digital signal processing, acoustics, and psychoacoustics must be reviewed.

These terms include frequency, fundamental frequency, harmonics, pitch, onset time,

offset time, low-pass filter, high-pass filter, band-pass filter, spectrogram, and finally,

signal downsampling and decimation.

The first term to discuss is frequency. Frequency is a property of a signal that

describes how quickly it oscillates and is measured in cycles per second (Hz). Building

upon this definition, fundamental frequency f0 is defined as the lowest frequency of a

periodic waveform and is measured in cycles per second (Hz). Fundamental frequency
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is the reciprocal of the fundamental period T0, which measures the elapsed time

between cycles of an audio waveform. Further building upon this definition is the

concept of a harmonic. Harmonics fk occur at integer multiples of the fundamental

frequency, such that fk = kf0,∀ k ∈ N.

The fundamental frequency and pitch of a note are interrelated. Pitch is the

perceptual interpretation of frequency. Pitch is an attribute of sound that humans

try to associate with all incoming acoustical signals [70]. A high frequency sound is

perceived as a high pitch and a low frequency sound is perceived as a low pitch. In

Western music notation, the nomenclature for pitch is a letter from A–G, optionally

followed by an accidental (sharp or flat), that is then followed by an octave number.

An octave consists of 12 pitches, called semitones. A pitch that is one octave higher

than another is double the frequency of its counterpart. Following an equal-tempered

scale, the pitch A4 is assigned a frequency of 440Hz and taking k steps in pitch away

from A4 results in a frequency of 440 ⋅ 2k/12Hz. Specifically, equal temperament refers

to a system of tuning where consecutive pitches are separated by the same interval. To

gain perspective, the lowest pitch on an 88-key piano is A0 (27.5Hz) and the highest

pitch is C8 (4186Hz). The lowest pitch of a 24-fret guitar in standard tuning is E2

(164.8Hz) and the highest pitch is E6 (1318.5Hz). There are several other guitar

tunings that affect the range of pitches capable of being performed by a guitar that

will not be discussed here.

Pitch is not the only attribute of a note event. A note event also has temporal

attributes such as onset time and offset time. The onset time of a note event marks

the moment that the note begins, also called the attack phase of the note. Similarly,

the offset time of a note event marks the moment that the note can no longer be

heard. The duration of a note event is the difference between the offset time and the

onset time.
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Note events may occur alone, in which case they are simply called notes. A musical

passage consisting of several notes in succession is called monophonic. Note events

may also occur simultaneously, in which case they are called chords. A musical passage

containing chords is called polyphonic if there is rhythmic independence between parts,

or homophonic if there is no rhythmic independence between parts. In terms of music

theory, the term polyphony refers to music with two or more simultaneous lines in

counterpoint, which outlines chords. For the purposes of this thesis, however, the

term polyphony level will refer to the number of notes that occur simultaneously.

Polyphonic audio signals are the result of more than one instrument playing notes

at the same time or a single instrument playing a chord consisting of several notes

sounding simultaneously.

A typical audio recording consists of several notes that span a wide range of

frequencies. Filters may be applied to the audio signal in order to modify the

frequency content of the signal. A low-pass filter allows frequencies below a threshold

to pass while attenuating frequencies above the threshold. Conversely, a high-pass filter

allows frequencies above a threshold to pass while attenuating frequencies below the

threshold. Combining these concepts, a band-pass filter defines a range of frequencies

that are allowed to pass and attenuates all other frequencies.

The spectrogram of an audio signal is a standard digital signal processing analysis

tool that is used to transform a signal from the time domain to the frequency domain.

The spectrogram, often referred to as the short time Fourier transform (STFT),

partitions the input audio signal into sequential “frames” or “windows” of audio

samples, which are then converted from the time domain to the frequency domain

using the discrete Fourier transform (DFT). The purpose of this transformation is to

compute the magnitude of each frequency component of the audio signal.
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Another common digital signal processing concept is downsampling. Downsampling

is the process of removing samples from a digital audio signal. For example, if a signal

is downsampled by a factor of four, the new signal is composed of every fourth sample

of the original signal. This process directly affects the sampling rate of the digital

audio signal, which describes the number of times the corresponding analog signal is

sampled per second.

A more robust method of downsampling a signal is decimation. Decimation involves

two steps: low-pass filtering followed by downsampling. The purpose of the low-pass

filter, which allows low frequencies to pass up to a cut-off frequency, is to remove the

effects of aliasing that occur when downsampling. According to the Nyquist-Shannon

sampling theorem, the highest frequency encoded by a digital signal with sampling

rate fs Hz is fs/2 Hz, often referred to as the Nyquist frequency. Therefore, when

downsampling the audio signal by a factor of m ∈ N+, the cut-off frequency for the

low-pass filter is set to fs/2m Hz. Downsampling involves taking every mth sample of

the original signal to form the new signal.

2.2 Polyphonic Transcription

Automatic music transcription algorithms vary in complexity. Certain algorithms are

only capable of transcribing monophonic musical passages in which one instrument

plays a single note at a time, but perform with high accuracy [26, 64, 106]. Increasing

in complexity, polyphonic transcription algorithms attempt to transcribe notes from

an audio signal in which several notes sound simultaneously. Although monophonic

transcription is a subproblem of polyphonic transcription since the transcription of

a chord involves the transcription of its embedded notes, monophonic transcription

algorithms use simpler and more robust analysis techniques that exploit the property
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that only one note sounds at a time [80]. Therefore, polyphonic transcription algorithms

must employ more complex audio analysis algorithms to accommodate more complex

polyphonic audio signals.

The definition of harmonics provides insight into why the problem of polyphonic

transcription is significantly more difficult than monophonic transcription. Recall the

definition of harmonics, described in Section 2.1, which are frequencies that occur at

integer multiples of the fundamental frequency. When a maximum of one note sounds

at a time, the fundamental frequency of the note can easily be estimated by observing

the evenly spaced frequencies of the harmonics in the audio waveform and selecting

the lowest. When multiple notes sound at once, the harmonics of each fundamental

frequency overlap and it is difficult to attribute a harmonic to a specific note and

uncover the underlying fundamental frequencies.

To visualize this phenomenon, one can observe the magnitude spectrum of an audio

signal containing a single note versus a mixture of notes. According to Joseph Fourier’s

theory, any waveform can be represented by a summation of sinusoids, each having a

specific amplitude and phase. This sinusoidal decomposition of a digital audio signal

is calculated using the DFT. The magnitude spectrum displays the frequency domain

of an audio signal along the x-axis and the magnitude (weight) of each frequency

along the y-axis. The magnitude spectrum of a pluck of the note C3 on a guitar is

displayed in Figure 2.2a. Note that peaks in the spectrum occur at roughly integer

multiples of the fundamental frequency of 130.8Hz. The magnitude spectrum of a

strum of the C major chord, consisting of five notes sounding simultaneously with

the note C3 at its root, is displayed in Figure 2.2b; conversely, there is no obvious

structure in the frequency domain.

The majority of automatic music transcription systems proposed in the literature

are offline algorithms that process entire audio recordings of instruments performing.
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(a) Frequency spectrum of a pluck of the
note C3 on a guitar.
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(b) Frequency spectrum of a strum of the
C major chord on a guitar.

Figure 2.2: Comparison of the frequency spectrum of a pluck versus a strum on an
acoustic guitar with steel strings.

Due to the hardships encountered by offline transcription systems, little research has

been conducted on the more difficult problem of realtime transcription, though it

has been attempted [38]. Moreover, the majority of algorithms are causal : a signal

processing term signifying that the transcription of note events at time t0 only depends

on the prior audio signal samples x[t], ∀ t ∈ {0,1, . . . , t0}. Certainly, if an automatic

music transcription system is operating on a performance occurring in realtime, the

algorithm must be causal. On the other hand, non-causal transcription algorithms

“cheat” by considering properties of the audio signal that occur after the current point

of analysis, making realtime transcription impossible.

Given an input audio signal, polyphonic transcription algorithms output a list of

note event estimates, each having a pitch, onset time, and duration. A review of the

multitude of different algorithms developed for note pitch and temporal estimation

are provided in the following sections.
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2.2.1 Note Pitch Estimation

Algorithms for estimating the pitch of a note event are reviewed in this section. More

emphasis is placed on machine learning algorithms for pitch estimation rather than

digital signal processing algorithms in order to provide better context for the work

presented in this thesis.

2.2.1.1 Digital Signal Processing Algorithms

Of the hundreds of algorithms proposed to estimate the pitch of notes sounding in

an audio recording, the majority are digital signal processing algorithms. Digital

signal processing is a method of signal analysis or transformation that focuses on the

manipulation of a sampled analog waveform where each sample is stored as a sequence

of bits on the computer using a method known as pulse-code modulation.

Polyphonic transcription systems that use digital signal processing algorithms

operate by estimating the fundamental frequency of notes sounding in an audio record-

ing and then transforming these frequencies into pitch estimates. When algorithms

estimate the fundamental frequency of a note in an audio recording, often it does not

match the frequency of a pitch exactly. In this case, the frequency is quantized to that

of the nearest pitch, assuming an equal-tempered system. For example, a frequency of

257Hz is between the pitches B3 (246.9Hz) and C4 (261.6Hz) and is therefore assigned

a pitch of C4 because ∣257 − 261.6∣ < ∣257 − 246.9∣.

The first attempt at polyphonic transcription imposed strict constraints on the

input audio signals that could be processed [73]: the recording must have less than

three voices (layers of notes or instruments); notes must be longer than 80ms; and the

fundamental frequency of a note may not collide with the harmonics of another note.

The latter constraint addresses the fundamental problem of polyphonic transcription
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and constructs a domain without this property to ensure accurate transcription.

Nevertheless, this work was an important first step that stimulated future research in

automatic music transcription, which has since sought to alleviate these constraints.

Several approaches to the problem, outlined in the following sections, have been

proposed in the literature.

Salience Methods

Algorithms that subscribe to the salience method of pitch estimation operate by

transforming the magnitude spectrum of the input audio recording to accentuate

the fundamental frequencies through an analysis of the structure of harmonics. The

first practical instance of this method in the literature is the fundamental frequency

salience function proposed by Klapuri [57]:

s(f) =
H

∑
h=1

α(f, h)∣X(hf)∣, (2.1)

such that H is the number of harmonics to consider, α is an empirically constructed

function to weight each harmonic, and X(f) is the DFT of the input audio signal at a

specific frequency f . The salience function calculates the additive energy of harmonics

for each frequency. Fundamental frequency estimates are selected by considering

global and local maxima of this salience function.

Another technique that has gained traction in the music information retrieval

community is the development of an alternative analysis tool to the STFT called the

resonator time-frequency image (RTFI) [128]. The RTFI also offers an analysis of the

frequencies present in an audio signal over time, but allows analysis at uniformly or

logarithmically spaced frequencies. To estimate the pitch of notes, Zhou et al. [129, 130]

apply several filters to the RTFI in order to emphasize fundamental frequencies in
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audio recordings of pianos. This algorithm received the best transcription results on

piano recordings in the music information retrieval evaluation exchange (MIREX)

competition: an annual evaluation of MIR algorithms using identical datasets and

metrics.1 Since its inception, the RTFI has been used in other recent polyphonic

transcription systems [5].

Iterative and Joint Estimation

A leading method in the literature for multiple fundamental frequency estimation is

iterative estimation [55]. Iterative fundamental frequency estimation algorithms first

transform the time-domain input audio signal to the frequency domain using the DFT.

Then a predominant fundamental frequency is selected through an analysis of the

frequency domain; the magnitude spectrum of the selected fundamental frequency and

its harmonics are estimated and then subtracted from the original frequency spectrum,

essentially removing the note from the audio signal. The process repeats itself until

no fundamental frequencies remain in the residual frequency spectrum. Klapuri [57]

used the salience function presented in Equation 2.1 to estimate the predominant

fundamental frequency in audio recordings created by mixing instrument samples

of individual notes to create recordings of various polyphony levels. This iterative

estimation algorithm was considered state-of-the-art in the MIR commmunity for

quite some time, with fundamental frequency estimation errors ranging from 9% at a

polyphony level of one to 37% at a polyphony level of six when the polyphony level

was provided to the algorithm.

Klapuri [57] also proposed a joint multiple fundamental frequency algorithm. Joint

multiple fundamental frequency estimation algorithms take a more holistic approach to

pitch estimation. Fundamental frequencies are selected that, together, best account for

1www.music-ir.org/mirex
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the observed magnitude spectrum of the input acoustic signal. Fundamental frequencies

are often selected by assigning a score to combinations of fundamental frequency

candidates using the physical properties of harmonic sounds and the combination with

the highest score is selected [119, 121, 122]. In practice, the aforementioned algorithm

produces relatively accurate transcriptions, with an error rate of approximately 38%

on the MIREX polyphonic transcription piano dataset [24, 120]. However, due to

the joint estimation procedure, this method is considerably slower than iterative

estimation methods.

The previously reviewed pitch estimation algorithms consider harmonics at integer

multiples of the fundamental frequency; however, for stringed instruments this is not

exactly correct. The inharmonicity phenomenon is an acoustic phenomenon, caused

by a variety of physical factors, which results in high-frequency harmonics to be

translated upwards in frequency according to the formula

fh = hf0
√

1 + α(k2 − 1), (2.2)

such that h is the number of the harmonic, f0 is the fundamental frequency, and α is

the inharmonicity factor [39]. The estimation of pitch for stringed instruments, such

as the guitar, should account for this acoustical phenomenon.

Considering the inharmonicity phenomenon for the transcription of stringed instru-

ments, Emiya et al. [36, 37] applied a joint multiple fundamental frequency estimation

algorithm on synthesized piano recordings. The estimation algorithm outputs the

fundamental frequencies that jointly maximize the likelihood function, calculated by

considering Equation 2.2. On the MIREX polyphonic piano transcription dataset,

the algorithm noted only 2% marginal gains in transcription accuracy relative to

algorithms that did not consider the inharmonicity phenomenon.
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Human Audition Modelling

While reflecting on the current state of automatic music transcription research, Anssi

Klapuri, an expert in the field, advocated a research push towards further investigation

and modeling of the human auditory system [55]:

The problem is really not in finding fast computers but in discovering
the mechanisms and principles that humans use when listening to music.
Modeling perception is difficult because the world in which we live is
complex and because the human brain is complex [and] combines a large
number of processing principles and heuristics. We will be searching for
them for years, perhaps even decades . . .

The problem of polyphonic transcription can be recast as the problem of sound

source separation, whereby chords consisting of multiple notes are deconstructed

and individually transcribed using robust and accurate monophonic pitch estimation

algorithms. With respect to human audition, this process is referred to as auditory

scene analysis, which involves the separation of sounds that are mixed in both the

time and frequency domain into their respective sources [17]. Perhaps more widely

known, this natural phenomenon has been referred to as the cocktail party effect,

which describes the ability of humans to parse and interpret a single sound source

amongst a large body of acoustic noise [25]. Computational models of this natural

process have been implemented using clustering of harmonics while considering cues

used by humans for source separation, such as timbre identification, the inharmonicity

phenomenon (Equation 2.2), and harmonic locations [52] or through more statistical

oriented models such as a Gaussian mixture model [51, 74].2 With a transcription

accuracy error of approximately 46% on the MIREX polyphonic piano dataset, the

2Timbre refers to several attributes of an audio signal that allows humans to attribute a sound to
its source and to differentiate between a trumpet and a piano, for instance. Timbre is often referred
to as the “colour” of a sound.
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human-audition inspired transcription system proposed by Nakano et al. [74] fell

significantly behind other evaluated transcription systems.

Other human-audition inspired methods include models of the human auditory and

periphery systems that contribute to the perception of pitch, where the function of the

middle and inner ear are modelled by a set of band-pass filters [56, 71, 97]. Taking a

different approach, Davy and Godsill [30] interpret acoustic waveforms as a summation

of sinusoids plus some residual noise to form a statistical signal processing model

that mimics the function of the basilar membrane: an element of the human inner

ear responsible for interpreting acoustic waveforms and converting them to electrical

signals. However, the proposed Bayesian algorithm for estimating the parameters of

each contributing sinusoid requires searching an intractable solution space, making

the technique practically infeasible.

2.2.1.2 Machine Learning Algorithms

The evolution of algorithms for note pitch estimation parallels that of optical character

recognition. In the infancy of the problem, hand-coded logic and hand-engineered

edge detectors were the foundation of these character recognition algorithms. Ma-

chine learning algorithms later became the de facto standard, processing pixels or

other features extracted from images of characters or digits in order to classify their

contents [31]. Similarly, pitch estimation algorithms exclusively used digital signal

processing techniques but are gradually losing share to machine learning classification

algorithms. Formally, the task of classification involves the discovery of a function

f ∶ φ↦ y that maps a feature instance φ to a class label y.

Digital signal processing algorithms are still being proposed for pitch estimation

because machine learning algorithms are starved for sufficient amounts of ground-truth

data to properly classify pitches of notes. This is the primary reason why the majority



20

of available instrument transcription datasets are piano recordings, because a Yamaha

Disklavier—an acoustic piano that is mechanically operated by solenoids—is capable

of generating real acoustic recordings that are time-aligned with note annotations.

There is currently a lack of ground-truth datasets for other instruments such as the

guitar.

Machine learning algorithms approach the problem of pitch estimation as a pattern

recognition problem in which audio features are input to a classifier that labels the

pitches present in each segment of audio. Several different machine learning algorithms

have been applied to the problem of pitch estimation, presented in the following

sections.

Hidden Markov Models

A HMM is a probabilistic graphical model that estimates a sequence of hidden states

from a sequence of observations [15, 86]. In the case of note pitch estimation, the

hidden states are combinations of pitches capable of being produced by an instrument

and the observations are acoustic features of an input audio recording. Interestingly,

the state transition matrix of the underlying Markov chain acts as a musicological

model that statistically governs how notes and chords transition between each other

in music. An emission distribution defines the probability of observing the acoustic

features given that the model is in a specific state (note or chord). An insurmountable

issue with modeling the states as potential combinations of notes is that the size of

the state space becomes computationally intractable to process. The first and only

application of an HMM to pitch estimation was performed by Raphael [92], who sought

to transcribe polyphonic piano recordings. To combat the large number of states, the

level of polyphony was limited to four, the pitch range of the piano was limited from
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C2–F6, and heuristics were used to prune the search space. The algorithm yielded

61% transcription accuracy on recordings of movements from Mozart piano sonatas.

Non-negative Matrix Factorization

A currently trending approach to polyphonic transcription in the MIR research

community is non-negative matrix factorization (NMF) algorithms, which are typically

used for dimensionality reduction in other fields. NMF involves the decomposition of

a matrix X ∈ RM×N
≥0 into the product of two matrices W ∈ RM×K and H ∈ RK×N

≥0 such

that X ≈WH. The matrices W and H are trained by alternating the optimization

of each matrix with respect to an objective function that measures the difference

between X and its approximation WH [117].

In the context of polyphonic transcription, the non-negative matrix X is the

STFT of the input audio recording, such that columns of the matrix are samples

of the magnitude spectrum over time. Columns of the non-negative matrix W are

the basis or latent feature vectors that represent the magnitude spectra of each note

template. Rows of the non-negative matrix H correspond to the temporal aspects of

each note template and govern which note templates contribute to the entire audio

recording at any given time. In effect, this method is a blanket solution to both the

problem of pitch estimation and note temporal estimation. This first application of

this method to the problem of polyphonic transcription was performed by Smaragdis

and Brown [107]. Since this method was first proposed, several extensions that explore

different learning methods and constraints have been developed [32, 87, 116]. On the

MIREX polyphonic piano dataset, these algorithms received up to 62% transcription

accuracy.

A minor modification to this approach was proposed by Lee et al. [59, 60] who

modeled the matrix X in the same way as before, but H was changed from a matrix
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of temporal note activities for the entire audio signal to a matrix of weights for the

note templates (bases) for each audio analysis frame. In this way, a weighted sum

of note templates seek to match the frequency spectrum of the input audio analysis

frame. Temporal note estimation was performed afterwards as a postprocessing step

and received inferior results in comparison to the original NMF method proposed by

Smaragdis and Brown [107]. The modified approach proposed by Lee et al. [59, 60]

was later extended to accommodate note templates of multiple instruments [4, 6].

Neural Networks

A specific adaptation of neural networks have been applied to the problem of pitch

estimation [65], though this technique is less prevalent in the literature. Using multiple

neural networks, Marolt [66, 67] developed the SONIC system to transcribe polyphonic

piano recordings. The pitch estimation algorithm begins by applying a set of band-pass

filters to the input audio recording. The output of each band-pass filter is routed to an

adaptive oscillator, which aims to sync with the fundamental frequency and harmonics

present within the signal. A neural network is trained for each of the 76 adaptive

oscillators, which attempt to sync with the pitches A1–C8. The neural network has

a binary output node indicating the presence or absence of a pitch in the current

audio signal being analyzed. This transcription system was evaluated on six piano

recordings and received a transcription accuracy of approximately 86.5%. The results

indicate that this algorithm performs quite well, but it is difficult to compare with

other algorithms given that it was evaluated on a non-standard dataset.

Support Vector Machines

The problem of pitch estimation can be formulated as a classic pattern recognition task

where the input audio recording is partitioned into sequential analysis frames whose
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features are input to a classifier that predicts the presence of a pitch. Presently, pitch

estimation algorithms that formulate the problem in this way do not employ multi-

label classification techniques to predict a binary vector of pitches, which indicates

the presence or absence of each pitch in the audio segment being analyzed. Instead,

several binary one-versus-all classifiers are trained for each pitch class to accommodate

the prediction of multiple pitches sounding simultaneously. Following this technique,

Poliner and Ellis [82, 83, 84] proposed the use of 87 one-versus-all binary support

vector machine (SVM) classifiers to detect the presence of pitches in piano recordings.

The premise of a binary SVM classifier is to locate a hyperplane that separates and

maximizes the distance between training points with different class labels [27]. This

algorithm was evaluated on the MIREX polyphonic piano transcription dataset and

received relatively exceptional results, noting a transcription accuracy of 65%.

Deep Belief Networks

A deep belief network (DBN) is an algorithm that is recently trending in the field of

machine learning and has very recently permeated the field of MIR [49, 48, 75]. A

DBN is similar in structure to an artifical neural network but with a relatively large

number of layers and substantially different training method. Input to the DBN is

typically the STFT of an audio signal, though raw audio samples have been used as

well [33]; output of the DBN is a pitch class label. A detailed review of the training

and classification procedure of a DBN is provided in Section 2.4.

Though DBNs have recently been applied to other tasks in the field of MIR such as

genre recognition [41, 61], music tagging [41], prediction of subsequent notes or chords

in symbolic music notation [16], artist identification [62], music recommendation [78],

and music emotion recognition [105], there exists only one paper applying DBNs to

the task of polyphonic transcription. Nam et al. [75] proposed the use of a DBN to
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generate latent audio features that are then input into a battery of binary one-versus-

all SVMs that predict the presence of a single pitch in an audio segment, identical to

the original algorithmic structure proposed by Poliner and Ellis [82]. Latent audio

features derived by the DBN were constructed from the frequency-domain magnitude

spectrum of audio analysis frames rather than time-domain samples. Using features

derived by the DBN rather than the standard DFT features used by Poliner and

Ellis [82], a 4.8% increase in pitch estimation accuracy was noted on the same dataset

of piano recordings. The use of latent features derived by a DBN showed immediate

gains in frame-level pitch estimation accuracy.

Although frame-level pitch estimates are essential for transcription, converting

these estimates into note events with an onset time and duration is not a trivial task. In

order to determine this missing information, note temporal estimation algorithms—also

referred to as note tracking algorithms—are used.

2.2.2 Note Temporal Estimation

There are two predominantly used methods in the literature for estimating the onset

time and duration of note events occurring in an audio recording: explicit onset and

offset estimation algorithms and analysis frame-smoothing algorithms.

2.2.2.1 Onset and Offset Estimation

Onset estimation involves searching for the start time of note events in an audio

recording. In the literature, onset estimation is predominantly solved by digital signal

processing algorithms although neural networks have been applied to this task with

some success [67, 104].
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Digital signal processing algorithms for onset estimation search for transients in

the audio recording. A transient refers to a portion of a signal where the amplitude or

frequency spectrum rapidly change beyond its norm. To estimate where transients lie

in the audio recording, it is important to first understand the evolution of a single note.

The evolution of a note typically conforms to the following schema: attack, decay,

sustain, and release. Attack occurs at the point of initial excitation of the instrument,

such as the pluck of a string or the strike of a hammer, and continues until the note’s

maximal amplitude is achieved. Decay refers to the time after the attack where the

amplitude is dampened to the level at which the note sounds for its duration, referred

to as the sustain. Release refers to the section of the amplitude envelope where, in

piano terms, the key is released and the amplitude drops from the sustain level to

zero. In terms of the amplitude envelope of the audio signal, the transient typically

occurs at the attack portion of the note evolution, displayed in Figure 2.3.
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Figure 2.3: Three notes performed on a guitar with steel strings. The time domain of
the audio signal is displayed above the frequency spectrogram. The letters A, D, S,
and R annotate the attack, decay, sustain, and release portions, respectively, of each
note.

Onset estimation algorithms can be decomposed into three steps [2]. The first

optional step is preprocessing, which aims to amplify sections of the signal where
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transients occur and to attenuate other portions of the audio signal. In the literature,

this step often involves the translation of the audio signal from the time domain to

the frequency domain for analysis [54, 102], exploiting the fact that transients are

essentially noise, which have broad frequency spectra in comparison to the rest of the

audio signal [95].

The second step of onset estimation algorithms is reduction, which aims to down-

sample the preprocessed audio signal into a detection function that further emphasizes

signal transients. Techniques for the creation of a detection function are numerous,

including observation of the amplitude envelope of notes [103], observation of the first

derivative of the time-domain of an audio signal [94], observation of the high-frequency

content of an audio signal [69], and observation of spectral flux [34]. Spectral flux

measures the difference in frequency content between sequential audio analysis frames

to emphasize abrupt changes in spectral content, thus emphasizing transients. Regard-

less of the reduction technique, the result is a detection function with a significantly

coarser time domain than the original audio signal. The x-axis of the detection

function represents time and the y-axis represents the energy or probability of an

onset occurring.

The final step of onset estimation algorithms is peak-picking, which aims to search

for local maxima in the derived onset detection function. A näıve method of peak-

picking is to define a sensitivity threshold such that maxima below the threshold are

ignored and maxima above the threshold are considered. However, typically a subset of

local maxima do not necessarily correspond with onsets and so the threshold parameter

affects the number of false positives and false negatives [2]. Onset detection algorithms

have since moved on to adaptive thresholding algorithms [95] that are capable of

adjusting the onset threshold to accommodate changes in amplitude between different

musical passages, for example.
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After the onset time of a note has been estimated, an offset estimation algorithm

predicts the duration of the note event. The offset time of a note event has less per-

ceptual importance than the onset time [28] and therefore offset estimation algorithms

receive less attention in the literature. Consequently, offset estimation algorithms

are often simplistic in nature, predicting the offset of a note when subsequent audio

analysis frames have lost trace of the pitch estimate [28, 120, 129].

As a more complex note duration model, left-to-right HMMs have been proposed

to predict the evolution of notes along their amplitude envelope. To accomplish this,

the internal states of the left-to-right HMM represent the attack, decay, sustain, and

release portion of a note event. A silence state is also appended to represent the end of

a note event. The state transitions are arranged such that once the note has progressed

from the attack to decay state, for example, the Markov chain can never reach the

attack state again (Figure 2.4). The self-transition probability of a state partially

controls the length of time the Markov chain stays at a particular portion of the note

evolution. Features of the audio signal are used to create an emission distribution

for each state, which also has a hand in controlling the evolution of the note model.

Several polyphonic transcription systems have employed this method [5, 9, 24, 97].

Figure 2.4: The underlying state structure of a hidden Markov model used to predict
the duration of note events.
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2.2.2.2 Analysis Frame Smoothing

An alternative to explicitly using onset and offset estimation algorithms to estimate

the temporal attributes of note events in an audio recording is to use the technique

of analysis frame smoothing. This technique is widely used in modern polyphonic

transcription systems as a postprocessing step that “smooths” the pitch estimates

made in sequential audio analysis frames. Poliner and Ellis [84] were the first to

propose this postprocessing technique, in which an HMM is responsible for tracking

the frame-level estimates of each possible pitch. This technique allows a pitch estimate

to be contextualized amongst neighbouring pitch estimates rather than independently

estimating pitch for each analysis frame.

Each HMM is composed of two states: note ON and note OFF. The state transition

probabilities are trained using a ground-truth dataset of synthesized musical instrument

digital interface (MIDI) files. MIDI is a binary file format composed of tracks consisting

of note events, which each have an integer pitch from 0–127, a velocity value indicating

the intensity of a note, and a tick number indicating when the note event occurs. The

observations to each HMM are a sequence of binary values indicating whether the pitch

estimation algorithm found the respective pitch in the audio analysis frame. Therefore,

the time resolution of this frame-smoothing algorithm is identical to that of the

frame-level pitch estimation algorithm that precedes it. The emission distribution is a

Bernoulli distribution indicating the probability that the pitch estimation algorithm

observed a pitch given the true note state of ON or OFF. These probabilities may

be calculated by observing the true and false positives and negatives of the pitch

estimation algorithm on a training dataset or by observing the probability of a pitch

being active in an analysis frame as produced by a binary classifier [81]. The most

likely state sequence of pitch ON and OFF values is found using the Viterbi algorithm.
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2.2.3 Ensemble Methods

Automatic polyphonic transcription methods that coordinate information from multiple

sources are referred to in this thesis as ensemble methods. An example of an ensemble

method is blackboard transcription [1, 3, 68]. The blackboard problem-solving model

originated from the field of artificial intelligence [76] and refers to a group of experts in

different subdomains working together on a larger problem by writing on a blackboard.

Each expert adds or modifies information on the blackboard when they have realized

a significant contribution to the problem. For example, a blackboard polyphonic

transcription system may have a separate expert for the estimation of fundamental

frequencies, onsets, tempo, time signature, musical key, chords, and music notation.

A scheduler is responsible for organizing the contributions of experts such that they

do not overwrite each other. Although this concept seems promising, blackboard

transcription systems [1, 3, 68] do not place among the top algorithms evaluated on

the MIREX polyphonic piano dataset.

Specifically tailored towards polyphonic guitar transcription, several systems have

been proposed that integrate alternate sources of information other than the raw audio

waveform. These systems include a computer vision analysis of the guitar fretboard

as a guitarist performs [20, 21, 53, 101], a multi-modal analysis of guitar fretboard

video in conjunction with audio [46, 79, 85], as well as hyperinstruments [72], which

involves the installation of additional sensors to the guitar to aid transcription [77, 93].

The main disadvantage of these systems in terms of the commercial application

of transcription algorithms is that consumers would need to purchase, install, and

configure additional hardware in order to perform transcriptions.
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2.2.4 Summary

Regardless of the polyphonic transcription algorithm being used, the output is a list

of note event estimates. The list of note event estimates may then be written as a

music score in common Western music notation or tablature notation. In the case of

tablature notation, more processing of the note event estimates is required by a guitar

tablature arrangement algorithm.

2.3 Guitar Tablature Arrangement

Guitar tablature arrangement algorithms aim to generate tablature—a sequence of

guitar string and fret combinations—from common Western music notation. This

is a difficult task because, unlike the piano which has a one-to-one correspondence

between a key and a pitch, the guitar can generate the same pitch in several different

ways. For example, on a 24-fret guitar in standard tuning, there exists six different

string and fret combinations to generate the pitch E4, as depicted in Figure 2.5. This

property of the guitar adds more ambiguity to the transcription process [38].

E4 1

B3 2

G3 3

D3 4

A2 5

E2 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 2.5: A 24-fret guitar fretboard indicating six different string and fret combina-
tions, annotated as stars, that generate the pitch E4 when in standard tuning.

The task of guitar tablature arrangement can be formulated as a traditional search

problem in which there are several string and fret combinations for each note in a

musical passage and the goal is to find an arrangement that maximizes a metric

measuring the quality of tablature. The quality of a tablature arrangement is an
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arguably subjective measurement, since different musicians have varying styles and

preferences as to how the music should be performed.

Leading towards an objective measurement of tablature quality, Sawayama et

al. [99] propose that good tablature should be biomechanically easy to perform.

Heijink and Meulenbroek [42] propose that tablature difficulty depends on the position

of the fretting hand along the neck of the guitar as well as the amount of fret-hand

repositioning and finger spanning needed to perform a sequence of notes or chords.3

Confirming this hypothesis, a study of the fretting-hand movements of classical guitar

players indicated that guitarists favour hand positions at the beginning of the fretboard

nearest the tuning knobs and avoid arrangements that require excessive fretting-hand

movement and finger spans [42].

Using these quantitative metrics of “good” tablature, a search algorithm can be

used to traverse the domain of possible guitar string and fret combinations for each

note and find an optimal tablature arrangemen. The problem of tablature arrange-

ment is difficult because of the size of the search space, which can quickly become

computationally intractable. For a sequence of n notes being performed on a 24-fret

electric guitar in standard tuning, there is an upper bound of 6n different tablature

arrangements, assuming a maximum of six different string and fret combinations for

each note. The search space grows even larger when considering polyphonic guitar

music. A sequence of n chords each containing k notes that may be performed in

up to six different ways results in an upper bound of 6kn different tablature arrange-

ments. To search this large space of solutions, several guitar tablature arrangement

algorithms have been proposed, including graph algorithms, neural networks, and

genetic algorithms.

3The fretting hand refers to the hand that depresses frets along the neck of the guitar. For
right-handed guitarists, the left hand is used for fretting and the right hand is used for strumming.
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2.3.1 Graph Algorithms

All possible string and fret candidates for a sequence of note events can be modeled as

a directed acyclic weighted graph G = (V,E), such that V is a set of vertices and E is a

set of directed weighted edges. Each vertex represents the string and fret candidate(s)

for a note or chord in a musical passage. In the case of a note, a vertex is formed

for each string and fret candidate that generates the pitch of the note. In the case

of a chord, a vertex is formed for each combination of string and fret candidates for

each note. A sequence of two notes or chords is modeled as a directed bipartite graph,

such that each vertex for the first note or chord (source) is connected to each vertex

for the second note or chord (sink). The weight of each edge in the graph represents

the “cost” of transitioning between fingering positions. The cost of traversal should

reflect the biomechanical difficulty of performing the notes on the guitar. Figure 2.6

displays an example of a directed acyclic weighted graph of candidate string and fret

combinations for a music score consisting of four notes: G♯4, A5, B5, and C5.

Figure 2.6: A directed acyclic graph of string and fret candidates for a note and chord
followed by two more notes. Weights have been omitted for clarity.
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Several graph-based tablature arrangement algorithms have been proposed in the

literature. Sayegh [100] assigned weights to edges of the graph by increasing the cost of

traversal when the transition requires a change in hand position or string. The Viterbi

algorithm was used to search the lattice of string and fret candidates for each note.

No formal evaluation was conducted and the arrangement algorithm only processed

monophonic music scores.

Radicioni et al. [88] proposed further changes to edge weight assignments, consid-

ering both horizontal and vertical movement of the fretting hand along the neck of

the guitar. Their proposed algorithm was later extended to handle polyphonic music

scores by assessing the difficulty of biomechanically forming chords with the fretting

hand [90]. Radicioni and Lombardo [89] proposed further constraints to prune the

guitar tablature arrangement graph: a string may only sound one note at a time,

fretting-hand fingers that are further down the fretboard should depress higher fret

numbers, and the maximum spanning distance of fretting-hand fingers along the

fretboard should be considered.

Burlet and Fujinaga [19] proposed a polyphonic tablature arrangement algorithm

that considers the guitar tuning, capo position, and number of frets.4 Edge weights

were assigned by considering the fret-wise distance between consecutive notes or chords,

the fret-wise finger span required to perform a chord, and a penalty for string and

fret candidates that are high on the fretboard. The relative importance of each factor

contributing to the edge weight were assigned by hand. The shortest path through

the graph was found using Dijkstra’s algorithm.

Radisavljevic and Driessen [91] used similar factors to calculate edge weights in

the graph, but optimized the weighting of each factor by applying gradient descent to

4A capo is a device that is clipped to the guitar fretboard that raises the pitch of the instrument
(Appendix A).
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minimize the differences between the tablature output by the algorithm and published

guitar tablature. The space of string and fret candidates was searched using dynamic

programming, whereby the problem of arranging tablature for an entire music score

is decomposed into smaller subproblems that are later combined to form the global

solution. This algorithm, trained on excerpts of published classical guitar scores, was

evaluated on the same dataset yielding tablature that was 97% equivalent to the

published scores.

2.3.2 Neural Networks

Artificial neural networks have also been used to arrange guitar tablature. Tuohy and

Potter [112] proposed a three-layer neural network that sequentially processes notes in

a music score. The output layer of the neural network consists of 20 nodes indicating

the probability that the note should be performed on a certain fret from 0–19, where

the zeroth fret indicates the pluck of an open string. One drawback to the structure

of this network is that it only accommodates 19-fret guitars. A significant detriment

of this approach is that contextual information of the note is lost by processing each

note individually, making tablature arrangement difficult.

In response to this issue, Tuohy and Potter added features to the network input

that provide information about previous or subsequent notes as well as other notes in

a chord. After processing a music score, the network output is postprocessed using a

local search algorithm that determines if the tablature can be improved, according to

biomechanical constraints of the fretting hand [111]. The network was trained using a

dataset of human-arranged guitar tablature. Using the training dataset for testing,

the output tablature was 94% identical to the ground-truth tablature.
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2.3.3 Genetic Algorithms

Genetic algorithms have also been used to search for good tablature arrangements.

For tasks such as guitar tablature arrangement that quickly become intractable by ex-

haustive search algorithms that do not utilize heuristics or domain constraints, genetic

algorithms are well suited to provide adequate solutions [109]. A genetic algorithm is

a stochastic optimization algorithm that refines the population of possible solutions

through generations of breeding and mutation. A gene represents a note or chord on

the guitar. A chromosome is a sequence of genes that represent a candidate tablature

arrangement. A population is composed of many candidate tablature arrangements. A

fitness function assesses each candidate tablature arrangement and assigns it a score

based on its biomechanical ease of performance or other desirable stylistic traits. The

fitness function typically affects the probability with which two individuals within

the population mate. A compelling benefit to using a genetic algorithm for tablature

arrangement is that the input population size dictates the number of different tablature

arrangements generated. Therefore, multiple arrangements can be generated and

ranked in terms of their respective fitness.

Using this schema, Rutherford [96] proposed a guitar tablature arrangement

algorithm for monophonic musical passages, which was extended to polyphonic musical

passages [18, 109, 110, 111]. Through an analysis of guitar tablature arrangements

generated using a graph-search algorithm [19] versus a genetic algorithm [18] on the

same dataset of 75 hand-arranged tablature excerpts, it was found that the genetic

algorithm generated more difficult tablature than the graph-search algorithm, on

average. Moreover, the difficulty of tablature generated by the genetic algorithm was

more variable than tablature produced by the graph-search algorithm.
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2.4 Deep Belief Networks

The intent of deep architectures for machine learning is to form a multi-layered and

structured representation of sensory input with which a classifier or regressor can use to

make informed predictions about its environment [115]. Although “deep architectures

can in principle be more powerful than a shallow one” [11], empirical evidence has

shown that artificial neural networks with multiple hidden layers often underperform

in relation to their shallow counterparts [10, 11, 12]. Possible explanations for this

phenomenon is that the gradient-based backpropagation algorithms used to train these

networks start from a random point in the weight space and often get stuck in poor

local minima [11], or the problem of “vanishing gradients” where backpropagation

becomes less effective at passing the training signal to lower layers [13].

Recently, Hinton et al. [45] proposed a specific formulation of a multi-layered

artificial neural network called a deep belief network (DBN), which addresses the

training and performance issues arising when many hidden network layers are used.

A preliminary unsupervised training algorithm aims to set the network weights to

good initial values in a layer-by-layer fashion, followed by a more holistic supervised

fine-tuning algorithm that considers the interaction of weights in different layers with

respect to the desired network output [44].

2.4.1 Unsupervised Pretraining

In order to pretrain the network weights in an unsupervised fashion, it is necessary

to think of the network as a generative model rather than a discriminative model.

A generative model aims to form an internal model of a set of observable data

vectors, described using latent variables; the latent variables then attempt to recreate
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the observable data vectors with some degree of accuracy. On the other hand, a

discriminative model aims to set the value of its latent variables, typically used for

the task of classification or regression, without regard for recreating the input data

vectors. A discriminative model does not explicitly care how the observed data was

generated, but rather focuses on producing correct values of its latent variables.

Hinton et al. [45] proposed that a deep neural network be composed of several

restricted Boltzmann machines (RBMs) stacked on top of each other, such that the

network can be viewed as both a generative model and a discriminative model. An

RBM is an undirected bipartite graph with m visible nodes and n hidden nodes, as

depicted in Figure 2.7. Typically, the domain of the visible and hidden nodes are

binary such that v ∈ {0,1}m and h ∈ {0,1}n, respectively. A lucrative property of an

RBM is that the visible and hidden units are conditionally independent:

P (v∣h) =∏
i

P (vi∣h) and P (h∣v) =∏
j

P (hj ∣v), (2.3)

such that

P (hj = 1∣v) = 1

1 + e−Wjv
and P (vi = 1∣h) = 1

1 + e−WT
i h
, (2.4)

where W ∈ Rn×m is the matrix of weights between the visible and hidden nodes. For

simplicity, Equation 2.4 does not include bias nodes for v and h.

Each RBM in the DBN is trained sequentially from the bottom up, such that the

hidden nodes of the previous RBM are input to the subsequent RBM as an observable

data vector. The unsupervised training of a single RBM involves iteratively modifying

the model weights according to a learning signal that measures how well the generative

model reflects reality. More specifically, the objective of the generative model is to

maximize the log likelihood of the training data vectors by calculating the gradient of
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Figure 2.7: A restricted Boltzmann machine with m visible nodes and n hidden nodes.
Weights on the undirected edges have been omitted for clarity.

this objective function with respect to each edge weight [45]:

∂ lnP (v0∣Θ)
∂Wij

= E [v0i h0j ∣v0] −E [v∞i h∞j ] , (2.5)

such that Θ denotes the current model parameters and superscripts of v and h indicate

the number of times that the model has recreated an input data vector v0 through

successive sampling from the Bernoulli distributions defined in Equation 2.4. In more

detail, sampling is conducted iteratively such that

hk ∼ P (hk∣vk) and vk+1 ∼ P (vk+1∣hk). (2.6)

The learning signal presented in Equation 2.5 operates on the notion that nodes

connected with large positive weights coerce each other to have the same binary

state, while nodes connected with large negative weights force each other to have

complementary binary states, as illustrated in Equation 2.4. Therefore, an informative

learning signal involves calculating the discrepancy between E [v0i h0j ∣v0]—the expected

value of the association between an input state v0i and a connected hidden state

h0j—and E [v∞i h∞j ], which denotes the expected value of this association using samples
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from the true posterior distribution. Sampling from the true posterior (equilibrium)

distribution is possible by letting the generative model recreate the input data vector

an infinite number of times.

Though it is desirable to sample from the true posterior distribution, it is practically

infeasible to generate an infinite number of samples from the RBM. Therefore, the

latter expectation in Equation 2.5 is often approximated by sampling k times: a process

called k-step contrastive divergence [45]. Using this approximation, the gradient of

the log likelihood with respect to a single edge weight becomes

∂ lnP (v0∣Θ)
∂Wij

= E [v0i h0j ∣v0] −E [vki hkj ∣vk] (2.7)

= v0i P (h0j = 1∣v0) − vki P (hkj = 1∣vk) (2.8)

=
v0i

1 + e−Wjv0 −
vki

1 + e−Wjvk . (2.9)

Gradient descent is performed in order to minimize the negative log likelihood, such

that each edge weight is updated using the equation

Wij =Wij + η
∂ lnP (v0∣Θ)

∂Wij

, (2.10)

where η ∈ R+ is the learning rate. The training data is iterated over until the desired

convergence criterion is met.

2.4.2 Supervised Finetuning

The unsupervised pretraining of the stacked RBMs is a relatively efficient method that

sets good initial values for the network weights. However, the increased computational

efficiency comes at a price: training one layer at a time explicitly ignores the interaction
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of other layers. Moreover, in the case of a supervised learning task such as classification

or regression, the ground-truth labels for each training data vector have not yet been

considered. The supervised fine-tuning step of the DBN addresses these issues.

There are several schools of thought surrounding how to perform the supervised

DBN fine-tuning step. The work in this thesis focuses on supervised fine-tuning to

improve the discriminative quality of the network, although algorithms such as the

“up-down” algorithm [45] have been proposed to improve the generative quality of

the network. Another method of supervised fine-tuning is to add a layer of output

nodes to the network for the purposes of (logistic) regression and to perform standard

backpropagation as if the DBN was a multi-layered neural network [10]. Rather than

creating features from scratch, this fine-tuning method is responsible for modifying

the latent features in order to adjust the class boundaries [44]. Yet another method of

creating a regressor or classifier from the pretrained network is to sample the latent

variables from the last hidden layer in the network for each training data instance. The

values of these latent variables are used as features to train any number of different

regressors or classifiers, such as an SVM [75].

After fine-tuning the network, a feature vector can be fed forward through the

network and a result realized at the output layer. In the context of pitch estimation,

the feature vector represents the frequency content of an audio analysis frame and the

output layer of the network is responsible for classifying the pitches that are present.

In the case of polyphonic music, several pitches may occur in a single audio analysis

frame, and so the output layer of the network should be able to assign multiple classes

(pitches) to an input analysis frame. Multi-label classification techniques are one

solution to such a problem.
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2.5 Multi-label Classification

Multi-label learning algorithms assign a subset of labels from a finite corpus of labels

L to each input data instance. Formally, multi-label learning can be defined as a

function f ∶ φ↦ y that maps a feature vector φ ∈ Rm to a binary vector y ∈ {0, 1}∣L∣ of

length equal to the cardinality of the set of possible labels. If a label is associated

with the input data instance, the corresponding bit in y is toggled. In the context

of pitch estimation, the label cardinality ∑∣L∣
i=1 yi is equivalent to the polyphony of the

audio signal.

The most common multi-label learning technique is to learn a function c ∶ φ×y ↦ R

that outputs a real-valued number representing the confidence that a label y ∈ L is

associated with the input feature vector φ [126]. Ideally, this function should yield a

high confidence value when a ground-truth label is input into the function. In practice,

the confidence value of a label is often set as the probability of the label as output by

a binary classifier. To predict which labels should be assigned to the input feature

vector, a threshold α ∈ R is defined; if c(φ, y) > α, then the label is relevant to the

input. The sensitivity of the threshold affects the label cardinality and hence the

number of false positives and negatives.

A constant threshold is one of several strategies to select which labels are relevant

to an input data vector. Ioannou et al. [50] provide a detailed review and evaluation

of other label prediction methods, which first rank the label confidence values for each

data instance in descending order and then partition the label corpus into a set of

relevant and irrelevant labels using the following methods: RCut outputs a constant

number of labels having the highest confidence; SCut computes a different constant

threshold for each label; PCut allows a certain number of testing data instances to

belong to a specific label, which varies according to the prior probability of any training
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instance being assigned that label; MetaLabeler trains a multi-class classifier that

predicts the label cardinality for each data instance [108]; and ThresholdPrediction

sets the confidence threshold such that it minimizes the number of misclassifications

on the training dataset [35, 127]. Another thresholding strategy proposed by Largeron

et al. [58] is MCut, which orders the labels by confidence value and locates the two

labels whose confidence values differ by the greatest amount; the threshold is set to

the average of these two confidence values.

Ioannou et al. [50] performed an evaluation of these multi-label learning techniques

in the context of several different classification algorithms operating on five different

datasets. The results indicate that the performance of any technique is largely

dependent on the algorithm’s parameters and the dataset being processed. Due to its

simplicity, the authors note that the OneThreshold method is practical and performs

relatively well in the context of multiple different datasets and classifiers.

However, the OneThreshold technique, as well as the majority of other surveyed

techniques, do not allow for strict constraints on the maximum prediction label

cardinality. This is an important constraint for the task of polyphonic pitch estimation.

For example, a piano may only produce ten notes simultaneously, assuming a single

musician is performing with two hands. Similarly, a guitar with six strings may only

produce six notes simultaneously. Consequently, for the task of polyphonic guitar

transcription the binary vector y of note pitch labels should conform to the following

constraint:
∣L∣

∑
i=1

yi ≤ 6. (2.11)

One multi-label learning technique that allows this constraint to be imposed is the

MetaLabeler method [108], which trains a multi-class classifier to predict the label

cardinality.
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The preliminary work surveyed in this literature review lays the foundation for

several avenues of expansion for the task of guitar note pitch estimation. First, multi-

label learning can be used to generate a binary vector of pitch estimates for each

analysis frame to circumvent the need to train a binary classifier for each pitch, which

is the predominant method in the literature (Section 2.2). Second, DBNs have recently

permeated the field of MIR and more experiments need to be conducted to determine

their efficacy for the task of polyphonic transcription. Specifically, it is unclear whether

the DFT of an audio signal is the optimal input to a DBN in terms of transcription

accuracy; perhaps alternative audio features would be better suited to generate more

discriminative latent features. Third, the application of DBNs to polyphonic piano

transcription by Nam et al. [75] does not explore polyphony constraints that may

be imposed by a specific instrument and outsources the latent features derived in

higher network layers to a separate classifier instead of using the DBN itself for pitch

classification. The work presented in this thesis will address these open problems

within the task of pitch estimation.
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Chapter 3

Deep Belief Network Tablature

Transcription

The previous chapter surveyed a variety of algorithms for automatic polyphonic music

transcription and introduced the notion of using deep belief networks and multi-label

learning for the task of note pitch estimation in polyphonic guitar recordings. In

the current literature, machine learning algorithms for note pitch estimation train a

number of one-versus-all binary classifiers instead of a single multi-label classifier that

predicts binary vectors of pitch estimates. Moreover, for the purposes of conforming

to the constraints of an instrument, algorithms proposed in the literature offer no

solutions to restrict the cardinality (polyphony) of the set of pitch estimates at any

given time.

The novel pitch estimation algorithm presented in this chapter addresses these

shortcomings. The proposed pitch estimation algorithm is followed by a state-of-

the-art temporal estimation (note tracking) algorithm [84] that is prevalently used

in the literature to estimate the onset and offset time of each predicted note event.

Following this temporal estimation algorithm, a state-of-the-art onset estimation
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algorithm [34] with a finer time resolution is used as a note quantizer, which adjusts

the exact time of note onset estimates to be closer to their ground-truth counterparts.

Following quantization, common Western music notation is generated from the note

event estimates. Finally, the shortest-path, graph-based guitar tablature arrangement

algorithm proposed by Burlet and Fujinaga [19] converts the common music notation

to tablature notation. The workflow of this polyphonic guitar tablature transcription

algorithm is illustrated in Figure 3.1. The algorithms described in this chapter were

implemented in the Python programming language.

Figure 3.1: Workflow of the proposed polyphonic guitar tablature transcription
algorithm, which converts a guitar recording to tablature notation.
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3.1 Note Pitch Estimation

Note pitch estimation involves three steps: feature extraction, which extracts frequency-

domain features from the input audio signal; calculation of pitch and polyphony

probabilities using a DBN; and logic to cohere the pitch and polyphony probabilities

to produce a list of pitch estimates.

3.1.1 Feature Extraction

Prior to feature extraction, the input audio signal is optionally preprocessed to lower

the sampling rate using a signal-processing algorithm called decimation. The effect of

lowering the sampling rate is twofold: the number of samples to be processed by the

subsequent analysis algorithms is lowered and the frequency range of the new signal is

1/m that of the new sampling rate.

The feature extraction process begins by decomposing the input audio recording

into sequential analysis frames using a window of w ∈ N+ samples that slides h ∈ N+

samples with each iteration. Each audio analysis frame is optionally multiplied by

a Hamming window function to mitigate against leakage: a phenomenon that arises

when calculating the DFT on not exactly periodic waveforms and consequently smears

the signal energy over a wider frequency range than desired.

The desired features can then be extracted from each audio analysis frame. A

common set of audio features for pitch estimation is the power spectrum. The power

spectrum is derived from the DFT, which converts the time-domain audio samples to

the frequency domain. When the DFT is calculated for each sliding analysis window,

the process is referred to as the STFT. An example of STFT feature extraction from

an audio waveform sampled at fs = 44100 Hz is presented in Figure 3.2. The window
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and hop size used in this example are purely for illustration and are usually much

smaller in practice.
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Figure 3.2: Analysis frame decomposition and feature extraction for an audio waveform.
Window size is denoted by w and hop size is denoted by h.

The DFT of a digital audio signal x ∈ RN is defined by the function

X(k) =
N−1
∑
n=0

x[n]e−j2πkn/w, (3.1)

such that x[n] is the signal amplitude at sample n ∈ {0,1, . . . ,w − 1}, j is the elec-

trical engineering nomenclature for the imaginary number i, and k ∈ {0,1, . . . ,w − 1}

represents the kth frequency sample, kfs/w Hz, given an audio sampling rate of fs Hz.

Since the input audio signal is real-valued across the entire time domain, the range of

the DFT is mirrored about the Nyquist frequency, fs/2 Hz. Hence, for audio feature

extraction it is only necessary to retain the values of X(k) for k ∈ {0, 1, . . . , (w − 1)/2}.

Finally, the DFT is transformed to its power spectrum, which is the squared magnitude

of each frequency component.
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The selection of parameters for the sliding window feature extraction method

requires balancing the trade off between frequency resolution and temporal resolution.

A larger window size w offers a finer frequency resolution when transformed by the

DFT, at the expense of having a coarser time resolution for analysis. On the other

hand, a smaller window size w offers a finer time resolution but a coarser frequency

resolution. For example, given an audio sampling rate of fs = 11025 Hz and a window

size of w = 2048 samples, each analysis frame spans w/fs ≈ 186 ms and the frequency

resolution of a single DFT bin is fs/w ≈ 5 Hz. Raising the window size to w = 8192

samples, each analysis frame spans w/fs ≈ 743 ms and the frequency resolution of a

single DFT bin is fs/w ≈ 1 Hz.

Another frequently used set of features in the MIR community are Mel frequency

cepstral coefficients (MFCCs) [63]. MFCCs provide an extension to STFT features

by attempting to mimic how humans perceive sound as well as compressing the

dimensionality of the feature set. To calculate the MFCCs, the periodogram estimate

of the power spectrum is first calculated for each audio analysis frame using the

formula

P (k) = ∣X(k)∣2

w
. (3.2)

Then, a set of band-pass filters, which only let a range of frequencies through, are

arranged across the periodogram power spectral estimate (Equation 3.2) at logarith-

mically spaced frequencies. The filters are logarithmically spaced because humans

have difficulty discerning between closely spaced frequencies, especially in the upper

frequency range. Hence, spacing the filters in this way spreads out samples of the

signal energy across the frequency domain to better replicate this property of human

audition. The signal energy is aggregated within each filter band and the logarithm is

once again taken, since humans also perceive loudness on a logarithmic scale. Finally,



49

the discrete cosine transform of the log filter energies is computed to compress the

feature set by removing high-frequency changes in signal energy.

Regardless of the features being computed, each audio analysis frame’s features

represent a data point φ ∈ Rm that may be used as input for training or testing the

DBN pitch estimation algorithm described in the following section. Before being input

to the DBN, the features are normalized such that φ ∈ [0,1]m. Given a set of audio

recordings, the feature extraction step creates a dataset of Φ ∈ [0, 1]n×m such that n is

the number of audio analysis frames spanning the audio recordings and m is the size

of the feature set. For DFT features, m = ⌊w/2⌋ and for MFCC features, m is equal

to the number of computed coefficients.

In addition, given a set of MIDI files containing note annotations for the processed

set of audio recordings, a binary matrix of pitch annotations Y (pitch) ∈ {0,1}n×k is

computed, where k is the number of pitches being considered. The proposed polyphonic

pitch estimation algorithm considers 51 pitches from C2–D6, which spans the lowest

note capable of being produced by a guitar in Drop C tuning to the highest note

capable of being produced by a 22-fret guitar in standard tuning [118]. The matrix of

pitch labels is generated by computing the start and end time of each audio analysis

frame and, from the MIDI file corresponding to the appropriate audio file, retrieving

the pitches that occur during that time span. For each analysis frame, a one is entered

into the matrix at the positions corresponding to the sounding pitches.

An additional binary matrix of frame polyphony labels Y (poly) ∈ {0,1}n×p is com-

puted, where p is the maximum number of notes that may sound during an analysis

frame. Though a standard guitar with six strings is only capable of producing six

notes simultaneously, it may be that a chord transition occurs within an audio analysis
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frame and so the maximum polyphony increases above this bound. The equation

p = max
i

((Y (pitch)1)
i
) + 1, (3.3)

such that 1k×1 is a vector of ones, computes the maximum polyphony that the pitch

estimation model will consider. The addition of one to the maximum polyphony is to

accommodate silence where no pitches sound in an analysis frame. In terms of model

construction, this value is calculated using the training data partition only. Using

this information, the polyphony label for the ith audio analysis frame is a one-hot

binary vector such that Y
(poly)
ij = 1 for j = (Y (pitch)1)i. In other words, a binary vector

is formed for each analysis frame with a single one at the index of the polyphony level.

The aforementioned label matrices, Y (pitch) ∈ {0,1}n×k and Y (poly) ∈ {0,1}n×p, are

stacked horizontally into one matrix of feature labels, Y ∈ {0, 1}n×(k+p), to be used for

training and testing the DBN pitch estimation algorithm.

The Python bindings for the Marsyas opensource framework for audio process-

ing [113] were used to extract STFT or MFCC features from audio recordings using

the sliding window approach described in this section.

3.1.2 Deep Belief Network Structure

The structure of the proposed deep belief network for polyphonic guitar transcription

is illustrated in Figure 3.3. The input layer consumes normalized audio features

φ ∈ [0,1]m and therefore consists of m nodes. There can be any number of stochastic

binary hidden layers, each consisting of any number of nodes. Since this is a deep

network, it is assumed that the number of hidden layers is greater than one. The

output layer of the network consists of k + p nodes, where k = 51 output nodes are

allocated for pitch estimation and correspond to the range of pitches from C2–D6,
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and p (Equation 3.3) output nodes are allocated for polyphony estimation. Each

hidden and output layer node activation is transformed using the nonlinear sigmoid

activation function to induce a Bernoulli probability distribution.

Figure 3.3: Structure of the deep belief network for polyphonic pitch estimation. The
input layer accepts normalized features φ ∈ [0,1]m and the output layer estimates a
probability for each pitch and polyphony level. Weights are omitted for clarity.

Towards the end goal of computing frame-level pitch estimates, the feature vectors

Φ are fed forward through the deep belief network with parameters Θ, resulting in

a matrix of probabilities P(Ŷ ∣Φ,Θ) ∈ [0,1]k+p that is then split into a matrix of

pitch probabilities P(Ŷ (pitch)∣Φ,Θ) and polyphony probabilities P(Ŷ (poly)∣Φ,Θ). For

notation clarification, Y represents the training and testing labels, Ŷ represents the

label predictions made by the classifier, and P(Ŷ ∣Φ,Θ) denotes the probability of each

output node being activated during an audio analysis frame.
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Pitch estimation is performed using a multi-label learning technique similar to

the MetaLabeler system [108], which trains a multi-class classifier for label cardinality

estimation. Instead of using the matrix of pitch probabilities as features for a separate

polyphony classifier, increased recall was noted by training the polyphony classifier

alongside the pitch classifier using the original audio features. The polyphony of

the ith analysis frame is estimated by selecting the polyphony class with the highest

probability using the equation

ρi = argmax
j

(P(Ŷ (poly)
ij ∣Φi,Θ)) . (3.4)

Formally, the pitches sounding in the ith analysis frame are estimated by selecting

the indices of the ρi highest pitch probabilities (Equation 3.4) produced by the DBN.

With these estimates, the corresponding vector of pitch probabilities is converted to a

binary vector Ŷ
(pitch)
i ∈ {0,1}k by turning on bits that correspond to the ρi highest

pitch probabilities. Performing this step on all audio analysis frames results in a

binary matrix of pitch estimates Ŷ (pitch) ∈ {0,1}n×k.

3.1.3 Deep Belief Network Training

The network training procedure involves stacking a sequence of RBMs and pretraining

each in succession before conducting supervised fine-tuning on the network as a whole.

This training procedure is outlined in detail in Section 2.4 of the previous chapter.

The MIDI-annotated audio recordings are partitioned into two sets for training and

testing the performance of the network.
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For the supervised training fine-tuning step, the canonical error function to be

minimized for a set of separate binary classifications is the cross-entropy error function

E(Θ) = −
n

∑
i=1

k+p

∑
j=1
Yij ln P(Ŷij ∣Φi,Θ) + (1 − Yij) ln(1 −P(Ŷij ∣Φi,Θ)), (3.5)

such that Y ∈ {0,1}n×(k+p) is the binary matrix of ground-truth labels for all training

instances, P(Ŷ ∣Φ,Θ) ∈ [0,1]n×(k+p) is the matrix of label probabilities output by the

DBN for all training instances, and Θ is the current model parameters. The aim of this

objective function is to adjust the network weights to pull output node probabilities

closer to one for ground-truth label bits that are on and to pull probabilities closer to

zero for bits that are off.

Construction of the network, training, and testing were performed using the

Theanos numerical computation library for Python [14]. Theanos allows many matrix

computations to be performed in parallel on the graphics processing unit (GPU),

significantly speeding up the computation time required for training and testing.

3.2 Note Tracking

After training, an entire audio recording may be decomposed into a sequence of

analysis frame features and presented to the pitch estimation algorithm. The result is

a matrix of pitch activation estimates Ŷ (pitch) ∈ {0,1}n×k for all analysis frames. Now

it is necessary to postprocess the resulting pitch estimates to determine when note

events begin and end.

The simplest temporal estimation method is to slice the pitch estimation matrix

Ŷ (pitch) column-wise to isolate the activations of each pitch across the analysis frames

spanning the audio recording. Iterating over each analysis frame, a new note event is
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formed when the pitch estimate transitions from off to on (onset) and the note event

ends when the pitch estimate transitions from on to off (offset).

A more sophisticated method of note temporal estimation is the HMM frame-

smoothing algorithm proposed by Poliner and Ellis [84]. This algorithm is the

predominantly used method in academic transcription systems. The algorithm allows

a frame-level pitch estimate to be contextualized amongst its neighbours instead of

solely trusting the independent pitch estimates made by a classification algorithm

on individual audio analysis frames. The algorithm may extend the length of notes,

shorten the length of notes, or correct analysis frames exhibiting false negatives.

The frame-smoothing algorithm operates by training an HMM for each pitch. In

the context of the transcription algorithm proposed in this work, 51 HMMs are trained

to postprocess the frame-level activation estimates for the pitches C2–D6. Each HMM

is composed of two hidden states: NOTE ON and NOTE OFF, representing the true pitch

activation of the analysis frame. The input observations to an HMM is a binary vector

of activation estimates for the corresponding pitch over all analysis frames of an audio

recording. Hence, the discrete alphabet size of each HMM is two. The output of the

Viterbi algorithm, which searches for the optimal underlying state sequence of the

HMM, is a revised binary vector of activation estimates for a single pitch.

The transition probabilities of each HMM govern the temporal dynamics of a

note event, specifically the predisposition for a note event to arise, sustain, or cease.

Using a set of ground-truth MIDI-annotated audio recordings, the HMM transition

probabilities are trained by observing the frequency with which a pitch transitions

between and within the ON and OFF states across analysis frames. Moreover, the

initial state distribution of the HMM is trained in a similar fashion, by observing the

frequency with which an audio recording begins with the pitch being processed.
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The emission distribution of each HMM state is a Bernoulli distribution that models

the certainty of each frame-level pitch estimate. By construction, the underlying

HMM state at any analysis frame t is qt ∈ {ON,OFF} and the estimated pitch activation

(observation) at any analysis frame t is ot ∈ {ON,OFF}. If the underlying HMM

state is ON then P (ot = ON∣qt = ON) models the probability of a true positive and

P (ot = OFF∣qt = ON) models the probability of a false negative. If the underlying HMM

state is OFF then P (ot = ON∣qt = OFF) models the probability of a false positive and

P (ot = OFF∣qt = OFF) models the probability of a true negative.

These emission distributions can be estimated by calculating the percentage of true

and false positives and negatives from the output of the pitch estimation algorithm

relative to the ground-truth training labels. However, Poliner [81] discovered that a

better approach is to use the probability of a pitch being active in an analysis frame, as

computed by a machine learning classifier, as the emission distribution. In effect, this

approach leverages the certainty with which the pitch estimation algorithm believes

in its estimate. In its most basic form, the HMM emission distribution is stationary

over time; however, this approach necessitates a non-stationary emission distribution

that updates at each time step to reflect the beliefs of the pitch estimation algorithm.

Figure 3.4 illustrates the structure of each HMM as well as example input and out-

put. To summarize, each HMM frame smoother requires as input a binary observation

sequence of a single pitch across all analysis frames of an audio recording in tandem

with the probabilities of that pitch’s activation, as output by the DBN. The output

of each HMM frame smoother is a revised sequence of frame-level pitch activation

estimates. These results can be aggregated across all of the HMMs to produce a

revised matrix of pitch activation estimates Ŷ ′(pitch) ∈ {0,1}n×k.

Output of the transcription algorithm at each stage—from feature extraction to

DBN pitch estimation to HMM frame smoothing—is displayed in Figure 3.5 for a
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Figure 3.4: Structure of the 51 hidden Markov models used to smooth the frame-level
estimates for the pitches C2–D6. Example input and output is provided. Ŷ∶i denotes
the binary pitch estimates of the ith pitch across all analysis frames, while P (Ŷ∶i∣Φ,Θ)
indicates the probability of these estimates.

four-second segment of a synthesized guitar recording. The pitch probabilities output

by the DBN show that the classifier is quite certain about its estimates; there are

few grey areas indicating indecision. Note that the short, spurious notes present after

DBN pitch estimation are removed in the note tracking process.
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Figure 3.5: An overview of the transcription workflow on a four-second segment of a
synthesized guitar recording.

The HMMs described in this section were implemented using a modified version

of the hmmlearn Python library1 that was recently orphaned from the well-known

scikit-learn machine learning library.2

3.3 Onset Quantization

Revisiting the earlier discussion surrounding the impact of window size w on feature

quality, it was noted that increasing w decreases time resolution but increases frequency

resolution. On the contrary, decreasing w increases time resolution but decreases

frequency resolution. In terms of note pitch estimation, a smaller window size lowers

the chance that chord transitions occur within an analysis frame because it spans a

smaller period of time, but yields more frames to be processed by the pitch estimation

algorithm at a lower frequency resolution. Since frequency resolution is paramount

to pitch estimation because it allows nearby frequencies to be differentiated from

each other, a smaller window size is arguably undesirable. A larger window size may

capture more chord transitions within an analysis frame, which raises the frame-level

polyphony and makes pitch detection more difficult, but yields less analysis frames to

be processed by the pitch detection algorithm and offers a finer frequency resolution.

1https://github.com/hmmlearn/hmmlearn
2http://scikit-learn.org/stable
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The work in this thesis opts for a larger window size, and hence a finer frequency

resolution at the expense of a coarser time resolution. Consider a window size of

w = 2048 samples at an audio sampling rate of fs = 11025 Hz. If the HMM frame

smoothing algorithm claims a pitch arises within in an analysis frame, it could onset

at any time within the w/fs ≈ 186 ms window. The algorithm could arbitrarily place

onsets at the beginning, end, or middle of the analysis frame but that merely provides

a superficial solution to the problem.

To mitigate this issue, a state-of-the-art onset detection algorithm described by

Dixon [34] is run at a finer time resolution than the DBN pitch estimation algorithm

to pinpoint the exact time of note event onsets. This onset detection algorithm uses

spectral flux, which measures changes in spectral content between sequential audio

analysis frames, to form a detection function. A constant threshold α ∈ [0, 1] is applied

to the detection function to select local maxima that correspond to probable onsets

in the audio signal. For more detail on the operation of onset estimation algorithms,

refer to Section 2.2.2 of the previous chapter.

The list of time estimates computed by the onset detection algorithm is used

in conjunction with the revised frame-level pitch estimates of the HMM smoothing

algorithm, Ŷ ′(pitch) ∈ {0,1}n×k, to form a MIDI file that documents the note events

(pitch, onset time, and duration) occuring in the audio recording. If a pitch estimate

transitions from off to on between consecutive analysis frames, a corresponding onset

estimate is searched for that is within 2w/fs seconds of the beginning of the analysis

frame. If found, the onset time estimate is used as the time for the beginning of the

note; otherwise, the time stamp of the beginning of the analysis frame is used. The

note offset is calculated by following the pitch estimate across consecutive analysis

frames until it transitions from on to off, at which point the time stamp of the end of

this analysis frame is used.
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The Marsyas audio processing framework [113] provides an implementation of the

onset estimation algorithm described by Dixon [34], which is used to obtain onset

estimates from audio recordings. The python-midi library is used to generate MIDI

files from the note event estimates produced by the transcription algorithm proposed

in this work.3

3.4 Common Western Music Notation Generation

The MIDI file output by the note onset quantizer contains the note event (pitch, onset,

and duration) transcriptions of an audio recording. However, a MIDI file lacks certain

information necessary to write sheet music in common Western music notation such

as time signature, key signature, clef type, and the value (duration) of each note

described in divisions of a whole note.

There are several robust opensource programs that derive this missing information

from a MIDI file using logic and heuristics in order to generate common Western

music notation that is digitally encoded in the MusicXML file format.4 MusicXML is

a standardized extensible markup language (XML) definition allowing digital symbolic

music notation to be universally encoded and parsed by music applications. In this

work, the command line tools shipped with the opensource application MuseScore are

used to convert MIDI to common Western music notation encoded in the MusicXML

file format.5

3https://github.com/vishnubob/python-midi
4http://www.musicxml.com
5http://musescore.org
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3.5 Guitar Tablature Arrangement

The graph-based guitar tablature arrangement algorithm proposed by Burlet and

Fujinaga [19] is used to append a guitar string and fret combination to each note

event encoded in a MusicXML transcription file. The guitar tablature arrangement

algorithm operates by using Dijkstra’s algorithm to search for the shortest path

through a directed weighted graph, in which the vertices represent candidate string

and fret combinations for a note or chord.

The edge weights between nodes in the graph indicate the biomechanical difficulty

of transitioning between fretting-hand positions. Three biomechanical complexity

factors are aggregated to form each edge weight: the fret-wise distance required to

transition between notes or chords, the fret-wise finger span required to perform

chords, and a penalty of one if the fretting hand surpasses the seventh fret. The value

of this penalty and fret threshold number were determined through subjective analysis

of the resulting tablature arrangements. In the event that a note is followed by a

chord, the fret-wise distance is calculated by the expression

∣f − max(g) −min(g)
2

∣ , (3.6)

such that f ∈ N is the fret number used to perform the note and g is a vector of fret

numbers used to perform each note in the chord.

The source code for this guitar tablature arrangement algorithm is opensource and

available on GitHub.6 A more detailed review of graph-search algorithms for guitar

tablature arrangement can be found in Section 2.3 of the previous chapter.

6https://github.com/gburlet/astar-guitar
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3.6 Summary of Contributions

The polyphonic guitar transcription algorithm described in this chapter consists of

a novel pitch estimation algorithm that addresses three arguable shortcomings in

modern pattern recognition approaches to pitch estimation: first, the task of estimating

multiple pitches sounding simultaneously is often approached using multiple one-versus-

all binary classifiers [82, 75] in lieu of estimating the presence of multiple pitches using

a single classifier; second, there exists no standard method to impose constraints on

the polyphony of pitch estimates at any given time; and third, the discriminative

power of latent audio feature representations, as produced by deep neural networks

and autoencoders, are often overlooked in favour of more traditional features such as

the STFT. In response to these points, the pitch estimation algorithm described in

this work uses a deep belief network (DBN) in conjunction with multi-label learning

techniques to produce multiple pitch estimates for each audio analysis frame that

conform to the polyphony constraints of the input instrument.

The pitch estimates output by the DBN are then input to several existing algorithms

in the literature to produce common Western music notation. The music notation is

then input into a previously developed guitar tablature arrangement algorithm [19] to

generate tablature that may be saved, edited, or published online for the reference of

other guitarists.
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Chapter 4

Transcription Evaluation

The previous chapter presented the developed polyphonic guitar transcription algo-

rithm consisting of a novel pitch estimation algorithm followed by existing algorithms

in the literature for note temporal estimation and symbolic music notation generation.

The algorithms following the developed pitch estimation algorithm are well estab-

lished in the MIR community and formal evaluations of their output have already

been conducted. For results of these evaluations, refer to the following conference

proceedings: for note tracking [84]; for note onset estimation [34]; and for guitar

tablature arrangement [19]. Therefore, the evaluation of the implemented polyphonic

guitar transcription algorithm will focus on the primary contribution of this work: the

proposed DBN note pitch estimation algorithm.

This chapter begins with an overview of the compiled ground-truth dataset of

synthesized guitar recordings and accompanying MIDI note annotations used for

training and testing the implemented transcription algorithm. Section 4.2 provides

a description of the metrics used to evaluate the multi-label pitch estimates of the

DBN as well as metrics used to evaluate the note event estimates of the entire

polyphonic guitar transcription algorithm. Section 4.3 proposes several hypotheses
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and experiments to evaluate the influence of specific algorithm parameter values on

the accuracy of the note pitch estimates. Additionally, an experiment is outlined that

compares the accuracy of note event transcriptions made by the proposed algorithm to

a state-of-the-art, single-instrument polyphonic transcription digital signal processing

algorithm [129].

4.1 Ground-truth Dataset

Ideally, the note pitch estimation algorithm proposed in this work should be trained

and tested using recordings of acoustic or electric guitars that are subsequently hand-

annotated with the note events being performed. In practice, however, it would be

expensive to fund the compilation of such a dataset and there is a risk of annotation

error. Unlike polyphonic piano transcription datasets that are often created using

a mechanically controlled piano, such as a Yamaha Disklavier, to generate acoustic

recordings that are time aligned with note events in a MIDI file, mechanized guitars

are not widely available. Therefore, the most feasible course of action for compiling

a polyphonic guitar transcription dataset is to synthesize a set of ground-truth note

events using an acoustic model of a guitar.

Using the methodology proposed by Burlet [18, 19], a ground-truth dataset

of 45 synthesized acoustic guitar recordings paired with MIDI note-event annota-

tions was compiled. The dataset was created by harvesting the wealth of crowd-

sourced guitar tablature transcriptions uploaded in the Guitar Pro file format to

www.ultimate-guitar.com. Guitar Pro is a popular desktop application that sup-

ports symbolic music notation engraving, editing, and synthesis.1 The application

allows guitarists to input a tablature transcription of their favourite musical work,

1http://www.guitar-pro.com
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which is then saved as a digitally encoded binary file that can be shared with other

guitarists, converted to a MIDI file, or synthesized as an audio file. The encoded note

events can be synthesized using a variety of guitar models, which imitate the acoustic

properties of different guitar brands with different string types.

The songs in the ground-truth dataset were selected by using the advanced search

function on www.ultimate-guitar.com with the keyword “acoustic” and filtering the

results to only display Guitar Pro files—as opposed to transcriptions in plain text

format—that have been rated by the community as five out of five stars. Guitar Pro

song transcriptions were selected based on popularity, which was inferred using the

number of users who rated the transcription. In the end, 45 Guitar Pro transcriptions

were selected for the dataset. A detailed list of guitar tracks in the ground-truth

dataset can be found in Appendix B.

Before synthesis, several modifications were made to each Guitar Pro file to ensure

a standardized dataset. Guitar Pro does not offer any command line tools for batch

processing and the proprietary file format prevents the creation of a script that

can parse, modify, and write a revised version of the encoded symbolic music score.

Therefore, the graphical user interface of the Guitar Pro desktop application must be

used to individually process each song transcription file. The following modifications

were made to each Guitar Pro file:

i. Guitar Pro files encoding a music score often consist of multiple tracks represent-

ing the transcriptions of multiple instruments other than guitar, such as bass,

drums, piano, or vocals. All superfluous tracks other than guitar are removed.

If multiple guitar tracks are present, such as a rhythm and lead track, the tracks

are blended into one to include some rhythm and some lead riffs.2 Rhythm

2A riff is a sequence of notes or chords that are performed on a guitar (Appendix A).
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guitar tracks often consist of high-polyphony chords while lead guitar tracks

often consist of low-polyphony chords, individual notes, and solos.

ii. Bars of rests, indicating a period of silence, are removed from the beginning and

end of the remaining guitar track.

iii. Repeated bars are modified so that they are only synthesized once.

iv. The following note ornamentations are removed: dead notes, palm muting, note

let ring, harmonics, pitch bends, hammer on, hammer off, slides, tremolo, and

vibrato. See Appendix A for a description of these guitar performance techniques.

Many of these ornamentations affect the spectrogram of notes or chords, poten-

tially affecting the performance of the pitch estimation algorithm. Although

these note ornamentations often occur in real guitar recordings, they make the

problem of automatic music transcription even more difficult. Transcription algo-

rithms should be developed for notes without ornamentations before considering

more difficult extensions of the problem.

v. The gain of the guitar track is set to -2.6 decibels to avoid clipping on notes

that are to be performed loudly.

vi. The guitar model for note synthesis is set to a Martin & Co. acoustic guitar

with steel strings and no capo. The function of a guitar capo is explained in

Appendix A.

Each preprocessed Guitar Pro file, encoding a guitar transcription on a single track,

is synthesized and exported as a WAV file using the Guitar Pro desktop application.

Additionally, the Guitar Pro file is exported as a MIDI file, which contains the

ground-truth note event annotations for the synthesized guitar track. The resulting
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ground-truth dataset consists of 45 audio files and 45 MIDI files.3 The distribution of

note pitches in the dataset is displayed in Figure 4.1.
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Figure 4.1: Distribution of note pitches in the ground-truth dataset.

4.2 Evaluation Metrics

Several multi-label learning metrics are used to evaluate the DBN note pitch estimation

algorithm proposed in this work. Moreover, several information retrieval metrics are

used to evaluate the polyphonic transcription algorithm proposed in this work. The

purpose of these metrics is to determine the quality of frame-level pitch estimates and

note event estimates produced by the algorithms described in the previous chapter.

To reiterate, the note temporal estimation algorithm [84], note onset estimation

algorithm [34], and guitar tablature arrangement algorithm [19] used in this work are

not explicitly evaluated because formal evaluations of their output have already been

conducted and presented to the MIR community.

3The MIDI files in the ground-truth dataset are publicly available at https://archive.org/

details/DeepLearningIsolatedGuitarTranscriptions.
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4.2.1 Note Pitch Estimation Metrics

Given the pitch estimates output by the DBN pitch estimation algorithm for n audio

analysis frames, Ŷ (pitch) ∈ {0,1}n×k, and the corresponding ground-truth pitch label

matrix for the corresponding audio analysis frames, Y (pitch) ∈ {0,1}n×k, the following

metrics can be computed:

» Precision:

p = 1(Ŷ (pitch) & Y (pitch))1
1Ŷ (pitch)1

, (4.1)

such that the logical operator & denotes the element-wise AND of two binary

matrices and 1 indicates a vector of ones. In other words, this equation calculates

the number of correct pitch estimates divided by the number of pitches the

algorithm predicts are present across the audio analysis frames.

» Recall:

r = 1(Ŷ (pitch) & Y (pitch))1
1Y (pitch)1

, (4.2)

such that the logical operator & denotes the element-wise AND of two binary

matrices and 1 indicates a vector of ones. In other words, this equation calculates

the number of correct pitch estimates divided by the number of ground-truth

pitches that are active across the audio analysis frames.

» f -measure:

f = 2pr

p + r
, (4.3)

such that p and r is the precision and recall calculated using Equation 4.1 and

Equation 4.2, respectively. The f -measure calculated in Equation 4.3 is the

balanced f -score, which is the harmonic mean of precision and recall. In other

words, precision and recall are weighted evenly.
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» Polyphony recall:

rpoly =
∑ni=1 1{(Ŷ (pitch)1)i = (Y (pitch)1)i}

n
, (4.4)

such that 1{⋅} is an indicator function that returns 1 if the predicate is true,

and n is the number of audio analysis frames being evaluated. In other words,

this equation calculates the number of correct polyphony estimates across all

audio analysis frames divided by the number of analysis frames.

» One error: given the matrix of pitch probabilities P (Ŷ (pitch)∣Φ,Θ) ∈ [0,1]n×k

output by the DBN with model parameters Θ when processing the input audio

analysis frame features Φ, the predominant pitch of the ith audio analysis frame

is calculated using the equation

j = argmax
j

[P (Ŷ (pitch)
ij ∣Φi,Θ)] , (4.5)

which can then be used to calculate the one error:

one err =
∑ni=1 1{Y

(pitch)
ij ≠ 1}
n

, (4.6)

such that 1{⋅} is an indicator function that maps to 1 if the predicate is true. The

one error calculates the fraction of analysis frames in which the top-ranked label

is not present in the ground-truth label set. In the context of pitch estimation,

this metric provides insight into the number of audio analysis frames where the

predominant pitch—often referred to as the melody—is estimated incorrectly.

» Hamming loss:

hamming loss = 1(Ŷ (pitch) ⊕ Y (pitch))1
nk

, (4.7)
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such that n is the number of audio analysis frames, k is the cardinality of

the label set for each analysis frame, and the boolean operator ⊕ denotes the

element-wise XOR of two binary matrices. The hamming loss provides insight

into the number of false positive and false negative pitch estimates across the

audio analysis frames.

4.2.2 Polyphonic Transcription Metrics

Several information retrieval metrics are also used to evaluate the note event estimates

produced by the polyphonic transcription algorithm described in the previous chapter,

which consists of a note pitch estimation algorithm followed by a note temporal

estimation algorithm. Given an input audio recording, the polyphonic transcription

algorithm outputs a set of note event estimates in the form of a MIDI file. A

corresponding ground-truth MIDI file contains the set of true note events for the audio

recording. Each note event contains three pieces of information: pitch, onset time,

and offset time.

The MIREX, an annual evaluation of MIR algorithms, has a multiple fundamental

frequency estimation and note tracking category in which polyphonic transcription al-

gorithms are evaluated. The MIREX metrics used to evaluate polyphonic transcription

algorithms are:

» Precision:

p = ∣N̂ ∩N ∣
∣N̂ ∣

, (4.8)

such that N̂ is the set of estimated note events and N is the set of ground-truth

note events.
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» Recall:

r = ∣N̂ ∩N ∣
∣N ∣

, (4.9)

such that N̂ is the set of estimated note events and N is the set of ground-truth

note events.

» f -measure:

f = 2pr

p + r
, (4.10)

such that p and r are calculated using Equation 4.8 and Equation 4.9, respectively.

The criteria for a note event being correct, as compared to a ground-truth note

event, are as follows:

» The pitch name and octave number of the note event estimate and ground-truth

note event must be equivalent.

» The note event estimate’s onset time is within ±250ms of the ground-truth note

event’s onset time.

» Only one ground-truth note event can be associated with each note event

estimate.

The offset time of a note event is not considered in the evaluation process because

offset times exhibit less perceptual importance than note onset times [28].

Each of these evaluation metrics can also be calculated under the condition that

octave errors are ignored. Octave errors occur when the algorithm predicts the correct

pitch name but incorrectly predicts the octave number. Octave errors are prevalent

in digital signal processing fundamental frequency estimation algorithms because

high-energy harmonics can be misconstrued as a fundamental frequency, resulting in

an incorrect estimate of the octave number [64]. Reporting the evaluation metrics
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described in this section under the condition that octave errors are ignored will reveal

whether machine learning transcription algorithms also succumb to a high number of

octave errors.

4.3 Hypotheses and Experiments

The described polyphonic transcription algorithm is controlled by many parameters.

Moreover, the underlying DBN pitch estimation algorithm requires a considerable

amount of computing time to sufficiently train. Though iterating over combinations

of parameters to find an optimal configuration is desirable, this method is infeasible

due to the amount of time required for training.

Therefore, the hypotheses and experiments in this section are intended to hone in on

good parameter configurations, while discovering how the implemented transcription

algorithm operates under certain conditions. Detailed in this section, five experiments

are proposed to evaluate the DBN note pitch estimation algorithm and one experiment

is proposed to evaluate the polyphonic transcription algorithm as a whole.

There are several DBN training parameters that remain constant across each

experiment. The number of epochs (training iterations) for pretraining is set to

400; the number of epochs for network fine-tuning is set to 30000. The convergence

threshold, which ceases training if the value of the objective function between epochs

does not fluctuate more than the threshold, is set to 1E − 18 for both pretraining

and fine-tuning. The learning rate for both pretraining and fine-tuning is set to

0.05. To allow large datasets to be processed, the training data is partitioned into

batches consisting of 1000 training instances each. For pretraining, 1-step contrastive

divergence is used. These parameters were selected on the basis of preliminary tests.
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4.3.1 Note Pitch Estimation Evaluation

The following five hypotheses and experiments are concerned with the DBN note

pitch estimation algorithm whose workflow is depicted in Figure 4.2. The experiments

evaluate the frame-level pitch estimates of the DBN. For each experiment, the ground-

truth dataset (Section 4.1) is partitioned into a training and testing dataset such

that 80% of the guitar tracks are allocated for training and 20% of the guitar tracks

are allocated for testing. Features and labels are then extracted from audio analysis

frames spanning each synthesized audio signal in both the training and testing set.

The training instances are randomly shuffled before training to avoid overfitting the

model to a single guitar track.

Figure 4.2: Pitch estimation workflow that is evaluated in Experiments 1–5. Note
that this workflow only includes the pitch estimation algorithm and frame-smoothing
algorithm.

Since the HMM frame-smoothing algorithm also affects the quality of pitch es-

timates, the frame-level pitch estimates after frame smoothing are also evaluated.
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The transition matrices of the HMM frame-smoothing algorithm are computed by

observing the frequency with which a pitch transitions between and within the ON and

OFF states across analysis frames in the training dataset.

4.3.1.1 Audio Sampling Rate

Hypothesis: Increasing the audio sampling rate above 11025 Hz will not improve

pitch estimation f -measure.

Rationale: Looking at the spectrogram of the synthesized guitar track for the song

“Paranoid Android” composed by Radiohead (Figure 4.3), though there is some high-

frequency signal energy, the majority lies within the frequency range 0 Hz to 5100 Hz.

This is within the Nyquist frequency for the audio sampling rate 11025 Hz. Therefore,

the rationale is that the majority of discriminative data for pitch estimation lies within

this frequency range.
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Figure 4.3: Spectrogram for the song “Paranoid Android” by Radiohead.

Experiment 1: Table 4.1 outlines the pitch estimation algorithm variables for

Experiment 1. This experiment sets the audio sampling rate fs as the independent

variable. Values of the controlled variables were selected based on preliminary tests.

The f -measure (Equation 4.3) over all analysis frames is the dependent variable.
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Additionally, the other evaluation metrics described in Section 4.2.1 are also reported.

If the f -measure is highest for fs = 11025 Hz then the hypothesis is confirmed.

Table 4.1: Independent, controlled, and dependent variables for Experiment 1.

Variable Value

Audio sampling rate , fs (Hz)† 11025 22050 44100
Window size, w (samples) 1024 2048 4096
Hop size, h (samples) 75% of window size
Number of hidden layers 3
Number of nodes per layer `1: 250, `2: 250, `3: 1000
Features DFT power spectrum
f -measure‡

† Denotes the independent variable.
‡ Denotes the dependent variable.

Note that the window size changes with the sampling rate: when fs = 11025 Hz then

w = 1024 samples but when fs = 44100 Hz then w = 4096 samples. Although the window

size changes with the dependent variable, it is still considered a controlled variable

because it implicitly controls for frequency resolution. For example, at fs = 11025 Hz

and w = 1024 samples the frequency resolution of the DFT is ∆f = fs/w ≈ 10.7 Hz.

Multiplying both the audio sampling rate and the window size by a factor of two

results in the same frequency resolution. Frequency resolution is an important variable

to control because it impacts whether two nearby frequencies can be distinguished

and therefore influences pitch estimation.

4.3.1.2 Audio Analysis Window Size

Hypothesis: Increasing the audio analysis window size will improve pitch estimation

f -measure up to a point in which further increases to the window size will decrease

pitch estimation f -measure.
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Rationale: This hypothesis stems from the balance between STFT frequency resolu-

tion and time resolution. Increasing window size results in greater frequency resolution

but poorer time resolution, while decreasing window size results in a coarser frequency

resolution but finer time resolution. Taking this into consideration, the rationale

behind this hypothesis is that there exists a middle value for the window size that

optimizes frame-level pitch estimation f -measure.

Experiment 2: Table 4.2 outlines the pitch estimation algorithm variables for

Experiment 2. This experiment sets the window size, and hence, the frequency

resolution of the DFT, as the independent variable. Values of the controlled variables

were selected based on preliminary tests. The f -measure (Equation 4.3) over all

analysis frames is the dependent variable. Other evaluation metrics described in

Section 4.2.1 are also reported. If the f -measure increases as window size increases,

and then f -measure begins to decrease with further increases to w, then the hypothesis

is confirmed.

Table 4.2: Independent, controlled, and dependent variables for Experiment 2.

Variable Value

Audio sampling rate, fs (Hz) 22050
Window size , w (samples)† 1024, 2048, 4096
Hop size, h (samples) 75% of window size
Number of hidden layers 3
Number of nodes per layer `1: 350, `2: 350, `3: 1100
Features DFT power spectrum
f -measure‡

† Denotes the independent variable.
‡ Denotes the dependent variable.
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4.3.1.3 Network Structure

Hypothesis: Including an “associative memory” [45] before the output layer of the

DBN will increase pitch estimation f -measure relative to other common network

structures.

Rationale: In the application of a DBN to the task of MNIST handwritten digit

recognition [31], Hinton et al. [45] discovered that having a large number of nodes

in the final hidden layer results in relatively good classification accuracy. Moreover,

this layer—called the “associative memory”—plays an important role when using the

DBN as a generative model, which lies outside the scope of this work. It is reasonable

to assume that the benefits of using an “associative memory” layer will transfer from

computer vision to computer audition.

Experiment 3: Table 4.3 describes the pitch estimation algorithm variables for

Experiment 3. This experiment sets the number of nodes in each layer as the

independent variable. Three network structures are evaluated: a network with an

increasing number of nodes in each hidden layer, a network with a decreasing number

of nodes in each layer, and a network with an associative memory layer. Values of

the controlled variables were selected based on preliminary tests. The f -measure

(Equation 4.3) over all analysis frames is the dependent variable. Again, other

evaluation metrics described in Section 4.2.1 are also reported. The hypothesis is

confirmed if the network with an associative memory layer yields the highest f -measure.

4.3.1.4 Number of Network Hidden Layers

Hypothesis: Increasing the number of hidden layers in the DBN will increase pitch

estimation f -measure.
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Table 4.3: Independent, controlled, and dependent variables for Experiment 3.

Variable Value

Audio sampling rate, fs (Hz) 22050
Window size, w (samples) 2048
Hop size, h (samples) 75% of window size
Number of hidden layers 3
Number of nodes per layer † `1: 600, `2: 400, `3: 200

`1: 200, `2: 400, `3: 600
`1: 300, `2: 300, `3: 1200 (associative memory)

Features DFT power spectrum
f -measure‡

† Denotes the independent variable.
‡ Denotes the dependent variable.

Rationale: Hinton et al. [45] also noted that increasing the number of network layers

is guaranteed to improve a lower bound on the log likelihood of the training data. In

other words, the worst-case performance of the DBN is theoretically guaranteed to

improve as hidden layers are added. Furthermore, taking a step above their shallow

counterparts, deep networks provide a closer approximation to the expanse of neurons

in the human brain. From a biological perspective, a sensible assumption is that

as more layers of neurons are added to the DBN, the model further replicates the

auditory perception power of the human brain and therefore, the f -measure of the

pitch estimation algorithm should increase.

Experiment 4: Table 4.4 describes the pitch estimation algorithm variables for

Experiment 4. This experiment sets the number of hidden layers as the indepen-

dent variable, while keeping the number of nodes in each layer constant. Values of

the controlled variables were selected based on preliminary tests. The f -measure

(Equation 4.3) over all analysis frames is the dependent variable, as well as the other



78

evaluation metrics described in Section 4.2.1. The hypothesis is confirmed if the

f -measure increases as the number of hidden layers increases.

Table 4.4: Independent, controlled, and dependent variables for Experiment 4.

Variable Value

Audio sampling rate, fs (Hz) 22050
Window size, w (samples) 2048
Hop size, h (samples) 75% of window size
Number of hidden layers† 2, 3, 4
Number of nodes per layer 300
Features DFT power spectrum
f -measure‡

† Denotes the independent variable.
‡ Denotes the dependent variable.

4.3.1.5 Audio Features

Hypothesis: Inputting MFCC features to the DBN pitch estimation algorithm will

result in a higher f -measure than STFT features.

Rationale: Though the viability of DFT power spectrum features for pitch estimation

have been confirmed by Nam et al. [75], the viability of MFCC features for DBN

pitch estimation have not yet been investigated. Inputting MFCC features to a

DBN have yielded exceptional results in other audio problem domains such as speech

recognition [29, 43, 98], which labels phonemes present in acoustic features of speech.

Thus, it is reasonable to assume that MFCC features will also perform well for the

task of pitch estimation.

Experiment 5: Table 4.5 describes the pitch estimation algorithm parameters for

Experiment 5. This experiment sets the input feature set as the independent variable.

Several different numbers of MFCC coefficients are evaluated. Values of the controlled
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variables were selected based on preliminary tests. The f -measure (Equation 4.3)

over all analysis frames is the dependent variable, along with the other evaluation

metrics presented in Section 4.2.1. The hypothesis is confirmed if any of the MFCC

feature sets yield a higher f -measure than inputting STFT features to the DBN pitch

estimation algorithm.

Table 4.5: Independent, controlled, and dependent variables for Experiment 5.

Variable Value

Audio sampling rate, fs (Hz) 22050
Window size, w (samples) 2048
Hop size, h 75% of window size
Number of hidden layers 3
Number of nodes per layer `1: 350, `2: 350, `3: 1100
Features† DFT power spectrum

1024 MFCCs
512 MFCCs
256 MFCCs

f -measure‡

† Denotes the independent variable.
‡ Denotes the dependent variable.

4.3.2 Polyphonic Transcription Evaluation

The following experiment is concerned with evaluating the note event estimates

computed by the polyphonic transcription algorithm whose workflow is depicted in

Figure 4.4. Note that this workflow includes the pitch estimation algorithm, temporal

estimation algorithms, and writing to MIDI, whereas the workflow for Experiments 1–

5 only consisted of the pitch estimation algorithm and frame-smoothing algorithm.

The transition matrices of the HMM frame-smoothing algorithm are computed by

observing the frequency with which a pitch transitions between and within the ON and

OFF states across analysis frames in the training dataset.
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Figure 4.4: Polyphonic transcription workflow that is evaluated in Experiment 6.

Hypothesis: The f -measure of note event estimates made by the polyphonic tran-

scription algorithm proposed in this work will outperform that of the current state-of-

the-art, single-instrument polyphonic transcription algorithm [129].

Rationale: The rationale for this hypothesis stems from the recent advances in

polyphonic transcription made possible by machine learning algorithms [75, 84].

Machine learning algorithms are trending in the field of MIR because they often

outperform their digital signal processing counterparts [7].

Experiment 6: In this experiment, the lessons learned from previous experiments

are considered when setting the parameters of the DBN. These parameters are

revealed in the following chapter after a critical analysis of the results of the first

five experiments. The note event transcriptions made by the algorithm proposed in

this work are compared to the current state-of-the-art, single instrument polyphonic

transcription algorithm [129]. The note-event f -measure (Equation 4.10) is used to
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quantitatively evaluate the output of each transcription algorithm. If the algorithm

proposed in this thesis has a higher f -measure, then the hypothesis is confirmed.

The Zhou and Reiss polyphonic transcription algorithm [129] processes audio

signals at a sampling rate of fs = 44100 Hz and makes use of the RTFI analysis

technique [128] to estimate fundamental frequencies. A window size of w = 441 samples

and a hop size of h = 441 samples is set by the authors for optimal transcription

performance [129]. For a detailed description of the implementation details of this

algorithm, refer to [129, 130]. To evaluate this algorithm, Python bindings were

written for the opensource C++ code distributed by the authors.4 The resulting

Python application is opensource and available on GitHub.5

4http://www.vamp-plugins.org/plugin-doc/qm-vamp-plugins.html\#qm-transcription
5http://github.com/gburlet/zhoutranscription
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Chapter 5

Results and Discussion

The previous chapter introduced the dataset used for training and testing the poly-

phonic guitar transcription algorithm proposed in this work, along with metrics and

experiments to evaluate the accuracy of different components under various conditions.

This chapter presents the results of these experiments and provides a critical analysis

of the results. This is followed by a discussion of the positive and negative aspects of

the algorithm, its applicability to other instruments, and its commercial viability.

The experiments performed in this chapter were run on a machine with an Intel®

Core™ i7 3.07 GHz quad core CPU, 24 GB of RAM, and an Nvidia GeForce GTX 970

GPU with 1664 CUDA cores.
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5.1 Note Pitch Estimation Results

5.1.1 Audio Sampling Rate

Hypothesis:

Increasing the audio sampling rate above 11025 Hz will not improve pitch estimation

f -measure (Equation 4.3).

Results and Discussion:

Table 5.1 presents the results of Experiment 1. Strictly speaking, the hypothesis

is refuted because the frame-level pitch estimation f -measure is the lowest when

fs = 11025 Hz. However, the results show that as the sampling rate is increased,

there is little increase in pitch estimation f -measure. Performing a Tukey-Kramer

honest significance test on the f -measures of songs in the test dataset for each DBN

shows no significant differences between the models. This finding is also reflected in

the other frame-level pitch estimation metrics: as the audio sampling rate increases

above 11025 Hz, the one error, hamming loss, and polyphony recall show marginal

or no improvements at the expense of significant increases to network training time.

At 11025 Hz, the network took approximately 4 hours to train, while at 44100 Hz

(standard compact disc sampling rate) the network took approximately 8 hours to

train. In summary, the results suggest that 11025 Hz is an appropriate sampling rate

for polyphonic pitch estimation and if training time is not an issue, a higher sampling

rate of 22050 Hz should be used.

This result is somewhat surprising given the psychoacoustical properties of human

audition. Humans are capable of hearing frequencies from 20 Hz – 20000 Hz, and so
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Table 5.1: Results of Experiment 1.
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22050 0.655 0.601 0.627 0.219 0.042 0.455 379:57 0.24
44100 0.648 0.594 0.620 0.212 0.042 0.438 480:13 0.27
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11025 0.743 0.605 0.667 – 0.035 – – –
22050 0.754 0.615 0.678 – 0.034 – – –
44100 0.748 0.593 0.662 – 0.035 – – –

an audio sampling rate of 40000 Hz is necessary to properly encode this frequency

range, according to the Nyquist-Shannon Sampling Theorem. Since trained musicians

are capable of performing this task with some degree of accuracy [40], it makes sense

to model an algorithm that mimics the psychoacoustic processes of humans. However,

the experimental results reveal that only a subset of this frequency range (0 Hz –

5512.5 Hz) is necessary for guitar pitch discrimination. Consequently, it may be true

that the neural networks in our brain that are responsible for attributing pitch to

incoming acoustical signals only consider these frequency ranges as well.

Apart from the results pertinent to the hypothesis, another noteworthy result is the

one error. The one error reveals that the predominant pitch is incorrectly estimated

in ≈ 20% of analysis frames, which could be an indication of lack of training data. For

example, there is one song in the testing dataset that has several pitches for which

there is little to no corresponding training data. Therefore, improvements to this

metric could be accomplished with the compilation of more isolated guitar tracks to

be used as training data. Note that the one error is not reported after HMM frame

smoothing because the note tracking algorithm does not affect this evaluation metric.
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With respect to polyphony estimation, the results reveal that the ≈ 45% polyphony

recall likely hinders the frame-level f -measure of the pitch estimation algorithm. The

maximum frame-level polyphony with a window size of 2048 samples and a sampling

rate of 22050 Hz is 13. Therefore, the polyphony classifier must choose between 13

different class labels to estimate the polyphony of an analysis frame. Investigating

further, when using the ground-truth polyphony for each frame, an f -measure of

0.68 is noted before HMM smoothing when using a sampling rate of 22050 Hz. The

5% increase in f -measure reveals that the polyphony estimates are close to their

ground-truth value and that further improvements to pitch estimation f -measure are

to be accomplished with modifications to the DBN to influence the probabilities of

pitch estimates. Note that the polyphony recall is not reported after HMM frame

smoothing because the note tracking algorithm does not affect this evaluation metric.

5.1.2 Audio Analysis Window Size

Hypothesis:

Increasing the audio analysis window size will improve pitch estimation f -measure up

to a point in which further increases to the window size will decrease pitch estimation

f -measure (Equation 4.3).

Results and Discussion:

Table 5.2 presents the results of Experiment 2. The results reveal an inverse relationship

between window size and frame-level pitch estimation f -measure: as the window size

increases, the f -measure decreases. Drastic increases in polyphony recall are also seen

as the window size decreases, which is likely the cause of the increased f -measure. The

effect of smaller windows—at the expense of a coarser frequency resolution—is that less



86

note or chord transitions are likely to occur in an audio analysis frame. Consequently,

the maximum frame-level polyphony (Equation 3.3) will be lower, resulting in less

classification labels for the polyphony classifier to choose from, and hence, less chance

for errors.

Table 5.2: Results of Experiment 2.
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1024 0.671 0.615 0.642 0.198 0.038 0.520 748:33 0.34
2048 0.651 0.595 0.623 0.214 0.042 0.455 417:06 0.24
4096 0.635 0.576 0.604 0.193 0.048 0.370 257:50 0.20
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1024 0.761 0.631 0.690 – 0.031 – – –
2048 0.740 0.596 0.660 – 0.036 – – –
4096 0.745 0.592 0.660 – 0.039 – – –

However, there is a cost to pay for lowering the window size. A smaller window

size means that more analysis frames are needed to span the input audio recordings,

and thus, more training and testing instances are presented to the pitch estimation

algorithm. At a window size of 1024 samples, the network training time is roughly 12.5

hours. Moreover, with a window size of 1024 samples at a sampling rate of 22050 Hz,

the frequency resolution of each bin of the DFT is ≈ 22 Hz which is becoming quite

coarse. With these parameters the DFT is incapable of individually measuring the

energy of the fundamental frequencies of pitches that are two semitones apart in the

lower frequency range of the guitar. For example, the fundamental frequencies of the

pitches C2 and D2 are mapped to the same frequency bin of the DFT, making pitch

discrimination more difficult.
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More investigation is needed to confirm or refute the hypothesis. The pitch

estimation algorithm is trained and tested with a smaller window size of 512 samples.

Given the results (Table 5.2), an even smaller window size seems encouraging, but at

this value the frequency resolution of the DFT will drop to ≈ 43 Hz, which is becoming

very coarse in the lower pitch range of the guitar. The result before HMM smoothing

is an f -measure of 0.630, a one error of 0.271, a hamming loss of 0.038, a polyphony

recall of 0.556, and a classification time of 0.51 seconds. Setting the window size to

512 samples finally results in degraded pitch estimations due to the coarseness of the

DFT frequency resolution. Adding insult to injury, the network training time took

approximately 22 hours. From this result, the hypothesis is confirmed ; a window

size of 1024 samples is the point at which further increases to window size result in

decreased pitch estimation f -measure.

A Friedman statistical test is run on the f -measures of songs in the test dataset

for each DBN trained in this experiment in order to determine if the performance of

the models are significantly different from each other. With a p-value of 0.108, at

α = 0.05 we conclude that, although a window size of 1024 samples yielded the best

results in the experiment, it does not significantly outperform the other models. A

Tukey-Kramer honest significance test on the f -measures of songs for each model also

corroborates this finding.

5.1.3 Network Structure

Hypothesis:

Including an “associative memory” [45] before the output layer of the DBN will

increase pitch estimation f -measure (Equation 4.3) relative to other common network

structures.
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Results and Discussion:

Table 5.3 presents the results of Experiment 3. The network structures investigated in
this experiment each have three layers {`1, `2, `3} with variable numbers of nodes:

i. `1: 600 nodes, `2: 400 nodes, `3: 200 nodes

ii. `1: 200 nodes, `2: 400 nodes, `3: 600 nodes

iii. `1: 300 nodes, `2: 300 nodes, `3: 1200 nodes (associative memory)

Table 5.3: Results of Experiment 3.
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i. 0.650 0.583 0.615 0.207 0.043 0.416 555:32 0.26
ii. 0.640 0.586 0.612 0.219 0.043 0.417 493:45 0.29
iii. 0.643 0.589 0.614 0.215 0.043 0.414 574:14 0.31
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i. 0.742 0.594 0.660 – 0.036 – – –
ii. 0.732 0.607 0.664 – 0.036 – – –
iii. 0.734 0.602 0.661 – 0.036 – – –

Strictly speaking, the hypothesis is refuted because the frame-level pitch estimation

f -measure is not the highest for the associative memory network structure. Practically

speaking, the result of this experiment reveals that network structure has little impact

on the f -measure of the frame-level pitch estimates; the f -measure deviates by mere

tenths of a percent for each network structure evaluated. This is confirmed by

performing a Friedman statistical test (p-value: 0.459) and a Tukey-Kramer honest

significance test on the f -measures of songs in the test dataset for each DBN, which

shows no significant differences between the models. Hence, the associative memory
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network structure is completely viable, as well as network structures with increasing

or decreasing numbers of nodes.

Given that the network structure has little impact on the accuracy of pitch

estimates, what insights does this provide regarding the model? The results suggest

that regardless of the network structure being evaluated, the final hidden layer of

derived latent features are equally discriminative for pitch estimation. However, the

first network structure ends in 200 nodes, the second ends in 600 nodes, and the third

ends in 1200 nodes. From this we can gather that the feature set can be significantly

compressed, potentially down to 200 nodes, without seeing diminishing f -measure.

More formally, there exists a transformation of the original feature set into a lower

dimensional subspace such that the transformed feature set retains the ability to

discriminate between pitch classes.

5.1.4 Number of Network Hidden Layers

Hypothesis:

Increasing the number of hidden layers in the DBN will increase pitch estimation

f -measure (Equation 4.3).

Results and Discussion:

The hypothesis speculated that increasing the number of hidden layers, and conse-

quently the number of model parameters, would increase frame-level pitch estimation

f -measure. The rationale for this hypothesis was motivated by the mechanics of the

human brain, which consists of hundreds of thousands of connected neurons that are

responsible for auditory perception and attributing pitch to audio signals. Considering

this biological model, it is reasonable to assume that increasing the number of hidden
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layers in the deep network will yield increasingly better results; however, the results

presented in Table 5.4 provide evidence supporting the contrary.

Table 5.4: Results of Experiment 4.
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2 0.760 0.604 0.673 – 0.034 – – –
3 0.739 0.610 0.669 – 0.035 – – –
4 0.728 0.602 0.659 – 0.036 – – –

The results invalidate the hypothesis and suggest that a more complex model does

not correlate positively with model performance. Rather, the results show that the

number of hidden layers is negatively correlated with pitch estimation f -measure.

As the number of hidden network layers is increased, the precision and recall of

the frame-level note pitch estimates decrease. However, the decrease in f -measure

is quite minimal: roughly −1% f -measure for each additional layer. Confirming

how minimal these changes are, a Tukey-Kramer honest significance test on the f -

measure of songs in the test dataset for each DBN trained in this experiment shows

no significant differences between the models. Though the f -measures of each model

are not significantly different, the trend of decreasing f -measure as the number of

network layers increases is still apparent.

There are several potential causes of this result. First, increasing the complexity

of the model could have resulted in overfitting the network to the training data.

Second, the issue of “vanishing gradients” [13] could be occurring in the network
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fine-tuning training procedure, whereby the training signal passed to lower layers gets

lost in the depth of the network. Yet another potential cause of this result is that the

pretraining procedure may have found insufficient initial edge weights for networks

with increasing numbers of hidden layers. On a more general note, the machine

learning research community has yet to discover a robust method of training deep

neural networks. Pretraining involves 1-step contrastive divergence, which provides

a mediocre approximation of the gradient of the log likelihood objective function

(Equation 2.7) used to determine a good direction of change for the model parameters.

Therefore, more robust approximations of this gradient would result in better initial

parameters for the deep network.

5.1.5 Audio Features

Hypothesis:

Inputting MFCC features to the DBN pitch estimation algorithm will result in a

higher f -measure (Equation 4.3) than the power spectrum of DFT features.

Results and Discussion:

Table 5.5 presents the results of Experiment 5. The hypothesis is undoubtedly

refuted because the pitch estimation f -measure when using the power spectrum of

STFT features is significantly higher than the f -measure when using MFCC features,

regardless of how many MFCCs are considered. When training the networks that

consume MFCC features, each fine-tuning process stopped prematurely (i.e., did not

reach 30000 epochs) because the gradient descent optimization had reached a local

minima in the objective function. This differs from training networks that consume
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the power spectrum of DFT features, where the fine-tuning process halts at the set

maximum of 30000 epochs.

Confirming these results, a Friedman statistical test on the f -measures of songs

in the test dataset for each DBN trained in this experiment shows that, at α = 0.05,

the models do differ in a significant way (p-value: 0.0005). Investigating further, a

Tukey-Kramer honest significance test unsurprisingly shows that there is a significant

difference between the DBN model trained on DFT power spectrum features and each

of the DBN models trained on MFCC features.

Table 5.5: Results of Experiment 5.
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DFT 0.640 0.60 0.617 0.210 0.043 0.437 319:14 0.19
MFCC:1024 0.206 0.079 0.114 0.794 0.062 0.317 226:07 0.23
MFCC:512 0.210 0.081 0.117 0.790 0.062 0.316 195:42 0.19
MFCC:256 0.209 0.080 0.116 0.791 0.0626 0.315 145:55 0.19
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DFT 0.745 0.612 0.672 – 0.035 – – –
MFCC:1024 0.275 0.128 0.175 – 0.209 – – –
MFCC:512 0.281 0.131 0.178 – 0.203 – – –
MFCC:256 0.276 0.128 0.175 – 0.204 – – –

Neural networks are often described as “black boxes” because it is not trivial to

attribute an output network activation to a specific component of the model or a

set of model parameters. Therefore, it is difficult to troubleshoot why one network

fails to find a good set of parameters while other networks settle on weights that

yield good pitch estimates. Ultimately, the latent features composing the penultimate

layer of the deep neural network are responsible for the efficacy of pitch estimates.
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The generated latent features should exhibit enough discriminative information to

differentiate between pitch classes. The results suggest that the network training

procedure is unable to find weights that are able to transform the input MFCC features

into a set of latent features that are adequate for pitch differentiation.

The significant difference between STFT features and MFCC features is that the

measurements of signal energy at specific frequencies are logarithmically spaced in

the case of MFCCs. Furthermore, the MFCC measurements of the signal energy at

specific frequencies are also in the logarithmic domain in an attempt to mimic how

humans perceive loudness. A reduction in pitch estimation f -measure could be a

result of either of these attributes of the feature set. For instance, a finer resolution

of the high-frequency information of the audio signal could be integral to forming

discriminative features for pitch estimation. Moreover, a large measurement of signal

energy at a specific frequency is mapped to a much smaller value in the logarithmic

domain. Therefore, it may be difficult for the network to attribute peaks in the

frequency domain of the audio signal to harmonics of a fundamental frequency, and

consequently a pitch, if the peaks become smaller and blend into the other frequency

content of the signal.

5.1.6 Summary of Results

In summary, the previous five experiments provided several insights into how the model

operates and which properties of the feature set are important for pitch estimation.

First, a sampling rate of 22050 Hz, which measures the signal energy at frequencies

up to 11025 Hz, is desirable but requires a longer amount of time for model training

because there are more audio samples to process. If model training time is an issue,

a sampling rate of 11025 Hz offers slightly less discriminative information for pitch
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estimation but offers significantly faster training times. Second, a window size of

1024 samples offers the best trade off between frequency resolution and time resolution.

Lowering the window size decreases frequency resolution and starts to hinder the

f -measure of pitch estimates. Increasing the window size above 1024 samples decreases

the time resolution and hinders polyphony recall, and thus, pitch recall. Third, the

structure of the network has little effect on pitch estimates produced. A more important

discovery is that the dimensionality of the latent feature set can be reduced without

hindering the f -measure of pitch estimates. Fourth, and perhaps counterintuitively,

increasing the number of hidden layers in the network actually hinders the f -measure

of pitch estimates. Finally, modifying the power spectrum of the DFT in an attempt

to mimic how humans perceive pitch and loudness (MFCC audio features) produces

inferior pitch estimates; the power spectrum of the DFT yields far superior results.

5.2 Polyphonic Transcription Results

Table 5.6 describes the polyphonic transcription algorithm parameters for Experiment 6.

One new parameter is the onset threshold, which governs the sensitivity of selecting

note onset candidates for the onset detection algorithm; a value of 0.3 denotes that

onset candidates with more than 30% confidence are selected. This onset threshold

was selected by running the onset detection algorithm on guitar recordings in the

training dataset. The onsets output by the algorithm were sonified as short bursts

of white noise—an audio signal with a uniform distribution of frequencies—which

were superimposed over each input audio signal. The onset threshold was iteratively

adjusted until a good balance was found between false positives and false negatives.

After pretraining the DBN with the parameters outlined in Table 5.6, fine-tuning is

performed on the network. Figure 5.1 displays the value of the negative log likelihood
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Table 5.6: Independent, controlled, and dependent variables for Experiment 6.

Variable Value

Audio sampling rate, fs 22050 Hz
Window size, w 1024 samples
Hop size, h 768 samples
Number of hidden layers 2
Number of nodes per layer `1: 400, `2: 300
Features DFT power spectrum
Onset threshold 0.3
Algorithm† Burlet, Zhou and Reiss [129]
f -measure‡

† Denotes the independent variable.
‡ Denotes the dependent variable.

function of the fine-tuning step over each training epoch. Analyzing this plot uncovers

a couple of interesting conclusions. First, the negative log likelihood is stagnant over

the first 3500 traning epochs before finding an appropriate gradient with which to

modify the network weights to begin minimizing the objective function. The structure

of this plot reflects a plateau in the landscape of the objective function that then begins

descending towards a local minima. After this point there begins a steep decline in

the negative log likelihood which begins to level off around 20000 epochs. Subsequent

epochs offer comparitively little improvement in the negative log likelihood.

Before presenting the note event metrics for the polyphonic transcription algorithm

as a whole, the frame-level pitch estimation metrics are first reported in Table 5.7

for the DBN pitch estimation algorithm using the parameters described in Table 5.6.

With a frame-level f -measure of 0.70 after HMM frame smoothing, the results are

slightly improved in comparison to those seen in Experiments 1–5, where the highest

reported frame-level f -measure was 0.69.

Now that we have measurements of the frame-level f -measure for each of the

experiments, another interesting facet of analysis is plotting f -measure versus model
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Figure 5.1: Plot of the negative log likelihood for the fine-tuning step of the final
network trained for Experiment 6.

Table 5.7: Frame-level pitch estimation metrics of the DBN transcription algorithm
using the final set of parameters.
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M 0.683 0.630 0.655 0.184 0.036 0.519 312:22 0.27

A
f
t
e
r

H
M
M

0.742 0.661 0.70 – 0.031 – – –

training time (Figure 5.2). The graph also displays the Pareto frontier, which delineates

the boundary between optimal and non-optimal allocation of resources. It is desirable

to minimize model training time while maximizing model performance (f -measure).

At one end of the Pareto frontier is the model that requires the least amount of
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training time, while the other end is the model that results in the highest f -measure.

The points that lie on the frontier are the models with which improvements to one

metric, such as training time or f -measure, can not be made with hindering the other

metric. The models to the right of the frontier are dominated by the other models

and are therefore non-optimal. The model outlined in Experiment 6 (Table 5.6) is

located on the frontier.
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Figure 5.2: Pareto frontier for the six experiments, which seeks to minimize model
training time while maximizing frame-level f -measure after HMM frame smoothing.

After frame-level pitch estimation, the polyphonic transcription algorithm continues

with its note tracking procedure and writes the estimated note events as a MIDI file.

This MIDI file is compared to the ground-truth MIDI file for the corresponding guitar

recording and the precision (Equation 4.8), recall (Equation 4.9), and f -measure

(Equation 4.10) of the estimated note events are reported. The results are presented

in Table 5.8.

The result of this evaluation is an f -measure of 0.629 when considering note octave

errors and an f -measure of 0.657 when disregarding note octave errors. A less than
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Table 5.8: Precision, recall, and f -measure evaluation of note events transcribed using
the DBN transcription algorithm compared to the Zhou and Reiss [130] algorithm.

DBN Transcription
Precision Recall f-measure Runtime (s)

Octave Errors 0.808 0.548 0.629 51.36
No Octave Errors 0.844 0.572 0.657 –

Zhou and Reiss [130]
Precision Recall f-measure Runtime (s)

Octave Errors 0.679 0.438 0.503 296.10
No Octave Errors 0.755 0.488 0.561 –

3% increase in f -measure when disregarding octave errors provides evidence that the

transcription algorithm does not often mislabel the octave number of note events,

which is often a problem with digital signal processing transcription algorithms [64].

Note that the frame-level pitch estimation f -measure of 0.70 (Table 5.7) does not

translate to an equivalently high f -measure for note events because onset time is

considered as well as pitch.

Another interesting property of the transcription algorithm is its conservativeness:

the precision of the note events transcribed by the algorithm is 0.808 while the recall is

0.548, meaning that the algorithm favours false negatives over false positives. In other

words, the transcription algorithm includes a note event in the final transcription only

if it is quite certain of the note’s correctness, even if this hinders the recall of the

algorithm. Another cause of the high precision and low recall is that when several

guitar strums occur quickly in succession, the implemented transcription algorithm

often transcribes only the first chord and prescribes it a long duration. This is likely

a result of the temporally “coarse” window size of 1024 samples or a product of the

HMM frame-smoothing algorithm, which may extend the length of notes causing

them to “bleed” into each other. A remedy for this issue is to lower the window
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size to increase temporal resolution; however, this has an undesirable side-effect of

lowering the frequency resolution of the DFT which is undesirable. A subjective, aural

analysis of the guitar transcriptions reflects these results: the predominant pitches

and temporal structures of notes occurring in the input guitar recordings are more or

less maintained.1

Additionally, the guitar recordings in the testing dataset were transcribed by

the single-instrument polyphonic transcription algorithm developed by Zhou and

Reiss [130]. This algorithm was evaluated in the 2008 MIREX and attained a note

event f -measure of 0.76 on a dataset of 30 synthesized and real piano recordings [129],

which far surpassed the accuracy of other evaluated transcription algorithms.2

Evaluated on the dataset of synthesized guitar recordings compiled in this thesis,

the Zhou and Reiss algorithm [130] yielded more errant note event transcriptions

relative to the transcriptions generated by the algorithm described in this thesis

(Table 5.8). Specifically, the transcription algorithm presented in this work resulted in

a 12% increase in f -measure, or 25% relative increase in f -measure, compared to the

Zhou and Reiss transcription algorithm when evaluated on the same dataset. With a

precision of 0.679 and a recall of 0.438 when considering octave errors, the Zhou and

Reiss transcription algorithm also exhibits a significantly higher precision than recall;

in this way, it is similar to the transcription algorithm described in this work.

When disregarding octave errors, the f -measure of the Zhou and Reiss transcription

algorithm increases by approximately 6%. Therefore, this state-of-the-art digital signal

processing transcription algorithm makes two times the number of note octave errors

as the transcription algorithm described in this thesis. This result suggests that the

1MIDI transcriptions generated by this algorithm are available at http://archive.org/details/
DeepLearningIsolatedGuitarTranscriptions

2http://www.music-ir.org/mirex/wiki/2008:Multiple\_Fundamental\_Frequency\

_Estimation\_\&\_Tracking\_Results\#Piano\_Subset\_Results\_Based\_on\_Onset\_Only
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latent audio features derived by the DBN are well-suited for not only pitch name

discrimination, but also note octave discrimination.

5.3 Discussion

Although the polyphonic transcription algorithm described in this thesis significantly

outperforms the current state-of-the-art single instrument polyphonic transcription

algorithm, there are several detriments that may outweigh the benefits of the algorithm

depending on its intended use.

First, there are several benefits of the transcription algorithm:

» As previously mentioned, the accuracy of automatically generated transcriptions

surpasses the current state of the art.

» In comparison to other digital signal processing transcription algorithms, the

developed polyphonic transcription algorithm exhibits less octave errors.

» The developed polyphonic transcription algorithm can generate transcriptions

for full-length guitar recordings in the order of seconds, rather than minutes or

hours.

» Given the speed of transcription, the proposed polyphonic transcription algorithm

could be adapted for real-time transcription applications, where live performances

of guitar are automatically transcribed. This could be accomplished by buffering

the input guitar signal into analysis frames as it is performed.

» The trained network weights can be saved to disk such that future transcriptions

do not require retraining the model.
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» The size of the model is relatively small (less than 12MB) and so the network

weights can fit on a portable device or microcontroller.

» Feeding forward audio features through the DBN is a computationally inexpen-

sive task and could operate on a portable device or microcontroller.

» The developed polyphonic transcription algorithm could easily be adapted to

accommodate the transcription of other instruments. All that is required is a set

of audio files that have accompanying MIDI annotations for supervised training.

On the other hand, there are several detriments of the transcription algorithm:

» The amount of time required to properly train the model is substantial and

varies depending on several parameters such as the audio sampling rate, window

size, hop size, and network structure. In this thesis, the longest amount of time

required to train a model was 22 hours.

» To make training time reasonable, the computations should be outsourced to a

GPU that is capable of performing many calculations in parallel. Using a GPU

with less CUDA cores, or just a CPU, significantly increases the amount of time

required to train the model.

» After training ceases, either by reaching the set number of training epochs or

when the objective function stops fluctuating, it is not guaranteed that the

resulting network weights are optimal because the training algorithm may have

settled at a local minima of the objective function.

» As a consequence of the amount of time required to train the pitch estimation

algorithm, it is difficult to search for good combinations of parameters such as

audio sampling rate, window size, hop size, and network structure.
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» The underlying DBN pitch estimation algorithm is essentially a black box. After

training, it is difficult to ascertain how the model reaches a solution. This issue

is exacerbated as the depth of the network increases.

» The accuracy of polyphony estimates produced by the algorithm leaves room

for improvement.

» It is possible to overfit the model to the training dataset. When running the

fine-tuning process for another 30000 epochs, the f -measure of the transcription

algorithm began to deteriorate due to overfitting. To mitigate against overfitting,

the learning rate could be dampened as the number of training epochs increase.

Another solution involves the creation of a validation dataset, such that the

fine-tuning process stops when the f -measure of the algorithm begins to decrease

on the guitar recordings in the validation dataset. The method used in this

thesis is early stopping, where the fine-tuning process is limited to a certain

number of epochs instead of allowing the training procedure to reach a local

minima.
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Chapter 6

Threats to Validity

The previous chapter described the results of several experiments to evaluate the

implemented polyphonic guitar transcription algorithm. Although the algorithm

described in this work performs significantly better than the current state-of-the-art,

single-instrument polyphonic transcription algorithm [130], some threats to validity

exist.

First, guitar synthesis models are used in an attempt to replicate the recordings

of a real acoustic guitar. However, the frequency content of synthesized recordings

is often non-realistic due to overly simplistic instrument synthesis models. As well,

instrument synthesis models often lack variability in the sound of individual notes

or chords that are found in real guitar recordings. Therefore, it remains to be seen

whether the trained model is capable of transcribing real acoustic guitar recordings

with the same degree of accuracy. This threat to validity could be addressed by hiring

guitarists and expert musicians to double-key annotate a ground-truth dataset of real

guitar recordings. However, the amount of resources required to record and annotate

such a dataset is currently infeasible.
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Another threat to validity is the sampling methodology used to compile the

ground-truth dataset used in this thesis. By gathering acoustic guitar songs on

www.ultimate-guitar.com that are most popular in that online community leaves

an opportunity for sampling bias. It could be that the acoustic guitar songs that are

highly rated and most often viewed by individuals in that community have similar

pitch distributions, tempos, and note or chord transitions. Therefore, training and

testing the developed polyphonic transcription algorithm on these songs alone could

lead to optimistic results that do not generalize to the population of guitar songs

outside of the sample.

The final threat to validity involves the reproducibility of results. The gradient

descent approach to optimizing the highly non-convex objective function of the DBN

may result in different network weights each time the model is trained. These different

solutions reflect the multitude of local minima present in the objective function.

Therefore, slightly different results may occur when retraining a specific network,

making experiments difficult to reproduce exactly.
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Chapter 7

Conclusion

When applied to the problem of polyphonic guitar transcription, deep belief networks

outperform existing single-instrument transcription algorithms. Moreover, the devel-

oped transcription algorithm is fast: the transcription of a full-length guitar recording

occurs in the order of seconds and is therefore suitable for real-time guitar transcription.

As well, the algorithm is adaptable for the transcription of other instruments, such as

the bass guitar or piano, as long as the pitch range of the instrument is provided and

MIDI annotated audio recordings are available for training.

The polyphonic transcription algorithm described in this thesis is capable of

forming discriminative, latent audio features that are suitable for quickly transcribing

guitar recordings. The algorithm workflow consists of audio signal preprocessing,

feature extraction, a novel pitch estimation algorithm that uses multi-label learning

techniques to enforce polyphony constraints, frame smoothing, and onset quantization.

The generated note event transcriptions are digitally encoded as a MIDI file, that is

processed further to create a MusicXML file that encodes the corresponding guitar

tablature notation.
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An evaluation of the frame-level pitch estimates generated by the deep belief

network on a dataset of synthesized guitar recordings resulted in an f -measure of

0.70 after frame smoothing. An evaluation of the note events output by the entire

transcription algorithm resulted in an f -measure of 0.629, which is 12% higher

than the f -measure reported by a state-of-the-art, single-instrument transcription

algorithm [130] on the same dataset.

The results of this work encourage the use of deep architectures such as belief

networks or autoencoders to form alternative representations of industry-standard

audio features for the purposes of instrument transcription. Moreover, this work

demonstrates the effectiveness of multi-label learning for pitch estimation, specifically

when an upper bound on polyphony exists.

7.1 Future Work

There are several directions of future work to improve the accuracy of transcriptions.

First, there are substantial variations in the distribution of pitches across songs, and

so the compilation of more training data is expected to improve the accuracy of

frame-level pitch estimates made by the DBN. Second, alternate methods could be

explored to raise the accuracy of frame-level polyphony estimates, such as training

a separate classifier for predicting polyphony on potentially different audio features.

Third, an alternate frame-smoothing algorithm that jointly considers the probabilities

of other pitch estimates across analysis frames could further increase pitch estimation

f -measure relative to the HMM method [82], which smooths the estimates of one pitch

across the audio analysis frames. Finally, it would be beneficial to investigate whether

the latent audio features derived for transcribing one instrument are transferable to

the transcription of other instruments.
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In the end, the big picture is a self-sufficient guitar tablature transcription al-

gorithm that is capable of feeding itself data to improve its transcriptions. There

are many guitarists that share manual tablature transcriptions online that would

personally benefit from having an automated system capable of generating transcrip-

tions that are almost correct and can subsequently be corrected manually. There

is incentive to manually correct the output transcriptions because this method is

significantly faster than performing a transcription from scratch, depending on the

quality of the automated transcription and the difficulty of the song. The result is

a crowdsourcing model that is capable of producing large ground-truth datasets for

polyphonic transcription that can then be used to further improve the polyphonic

transcription algorithm. Not only would this improve the accuracy of the developed

polyphonic transcription algorithm, but it would also provide a centralized repository

of ground-truth guitar transcriptions for MIR researchers to train and test future

state-of-the-art transcription algorithms.
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Appendix A

Guitar Terminology

This appendix defines guitar-specific terminology introduced in this thesis. The

following definitions include physical attributes of the guitar, guitar accessories, note

ornamentations, and other words that are commonly used in the guitar community.

Frets

Metal dividers embedded in the fretboard on the neck of the guitar. Pressing a

string over a specific fret changes the length of the string that is permitted to

oscillate, and thus, changing the resulting pitch.

Tuning Knobs

Also called tuning pegs or tuning keys, these knobs are located on the head of

the guitar at the tip of the neck. Each guitar string is wound around a tuning

knob, which can be turned to increase or decrease the string tension.

Capo

A device that is clipped onto the fretboard and raises the pitches of the open

strings of the guitar.
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Riff

A commonly used word that refers to a sequence of notes or chords performed

on a guitar. The sequence is often repeated throughout the song.

Dead Note

A type of note ornamentation that instructs the guitarist to touch a string with

the fretting hand above a fret in order to create a more percussive sound with

little to no discernable pitch.

Palm Muting

A type of note ornamentation that instructs the guitarist to rest the palm of

their strumming hand against the strings, resulting in a dampened sound.

Let Ring

A type of note ornamentation that instructs the guitarist to not use their palm

to stop the sounding of a note, but rather let it ring indefinitely.

Harmonics

A type of note ornamentation that instructs the guitarist to lightly touch a

string above a fret to create a high-pitched note that is difficult or impossible to

create using frets.

Bend

A type of note ornamentation that instructs the guitarist to drag a pressed string

vertically along the fretboard, which continuously raises the sounding pitch.

Hammer On, Pull Off

A type of note ornamentation that instructs the guitarist to quickly press or

depress a fret without exciting the string with a pluck.
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Slide

A type of note ornamentation that instructs the guitarist to gradually move

their finger between two fret positions along a string, resulting in a gradual

increase or decrease in pitch.

Tremolo

A type of note ornamentation that instructs the guitarist to very rapidly and

continuously pluck a string, such that there are many note attacks in a vert

short period of time.

Vibrato

A type of note ornamentation that instructs the guitarist to quickly twist

their wrist while pressing a fret. Consequently, the string bends slightly and

periodically changes the pitch.
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Appendix B

Dataset Details

This appendix provides a detailed list (Table B.1) of the songs in the ground-truth

dataset used for training and testing the polyphonic transcription algorithm described

in this thesis. The average polyphony for each track is calculated by dividing the

number of note events by the number of chords plus the number of individual notes.

Therefore, an average polyphony of one describes a music score consisting of several

individual notes, while an average polyphony of six describes a music score consisting

of several six-note chords.

The dataset is publicly distributed as 45 musical instrument digital interface (MIDI)

files describing the note events occurring in the guitar tracks.1 The synthesized audio

is not distributed with the ground-truth annotations due to copyright issues. Should

the audio be desired, the guitar tracks may be synthesized using the Guitar Pro

desktop application or using standard MIDI synthesis.2

The intended use of the dataset is primarily to further research in automatic guitar

transcription. The dataset may be used to train and test machine learning transcription

algorithms or to evaluate digital signal processing transcription algorithms.

1https://archive.org/details/DeepLearningIsolatedGuitarTranscriptions.
2http://www.guitar-pro.com
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Table B.1: Ground-truth polyphonic guitar transcription dataset consisting of 45
popular songs performed on an acoustic guitar.

Artist Title L
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3 Doors Down Here Without You 2:05 145 822 1.67
3 Doors Down Kryptonite 2:38 100 860 1.75
Alice and Chains Down in a Hole 2:16 95 681 2.06
Alice in Chains Nutshell 3:08 58 1172 2.78
Beatles Blackbird 1:56 93 604 1.32
Beatles Here Comes the Sun 2:11 132 790 1.89
Beatles Hey Jude 3:21 80 1538 3.08
Beatles Norwegian Wood 1:08 95 1146 3.86
Beatles While My Guitar Gently Weeps 2:15 112 1556 4.25
Beatles Yesterday 1:42 80 370 1.50
Billy Talent Pins and Needles 2:36 75 946 1.95
Black Keys Little Black Submarines 2:29 77 1306 2.93
Chris Cornell Black Hole Sun 1:57 112 527 1.81
Creed One Last Breath 2:49 120 879 1.82
Death Cab for Cutie I Will Follow You Into the Dark 1:50 156 679 1.33
Eric Clapton Layla 1:32 120 692 2.60
Eric Clapton Tears in Heaven 2:43 78 601 1.61
Eric Clapton Wonderful Tonight 2:46 85 545 1.23
Fleetwood Mac Landslide 2:38 74 710 1.14
Green Day Good Riddance Time of Your Life 1:34 150 1512 4.82
Incubus Drive 1:52 90 688 2.34
James Taylor Fire and Rain 1:52 77 927 2.59
Kansas Dust in the Wind 2:02 96 787 1.17
Kinks Lola 2:06 76 1945 4.04
Led Zeppelin Babe I’m Gonna Leave You 2:48 134 1813 2.77
Led Zeppelin Over the Hills and Far Way 2:07 90 1686 3.27
Led Zeppelin Stairway to Heaven 2:52 75 947 2.52
Maroon 5 She Will Be Loved 1:37 106 950 4.66
Metallica Fade To Black 1:57 112 693 1.80
Metallica Nothing Else Matters 3:24 69 748 1.59
Muse Starlight 2:01 120 902 2.03
Neil Young Old Man 1:56 138 1106 2.24
Nickelback How You Remind Me 2:24 83 970 2.68
Nirvana Come as You Are 1:51 120 562 1.63
Oasis Wonderwall 2:25 88 1420 2.59
Pink Floyd Brain Damage 3:08 131 798 1.44
Plain White Tees Hey There Delilah 1:38 100 456 1.49
Radiohead Creep 2:15 92 702 2.22
Radiohead Karma Police 2:37 76 1207 2.34

Continued on next page
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Table B.1 – Continued from previous page

Artist Title L
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Radiohead Paranoid Android 2:57 85 1750 2.73
Red Hot Chili Peppers Californication 2:55 96 1447 3.31
Red Hot Chili Peppers Under the Bridge 3:03 69 1470 3.06
Simon and Garfunkel The Boxer 1:47 170 585 1.06
The Fray How to Save a Life 2:12 118 1302 3.03
U2 With or Without You 2:14 114 639 1.24

Averages 2:18 101 987 2.34
Totals 103:56 – 44436 –
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[35] A. Elisseeff and J. Weston. A kernel method for mutli-labelled classification.
(14):681–687, 2002.

[36] V. Emiya, R. Badeau, and B. David. Multipitch estimation of inharmonic sounds
in colored noise. In Proceedings of the International Conference of Digital Audio
Effects, pages 93–98, Bordeaux, France, 2007.

[37] V. Emiya, R. Badeau, and B. David. Automatic transcription of piano music
based on HMM tracking of jointly-estimated pitches. In Proceedings of the
European Signal Processing Conference, Lausanne, Switzerland, 2008.

[38] X. Fiss and A. Kwasinski. Automatic real-time electric guitar audio transcription.
In Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 373–376, Prague, Czech Republic, 2011.

[39] N. F. Fletcher and T. D. Rossing. The physics of musical instruments, 2nd ed.
Springer, New York, 1998.

[40] S. W. Hainsworth and M. D. Macleod. The automated music transcription
problem. Technical report, Department of Engineering, University of Cambridge,
2003.

[41] P. Hamel and D. Eck. Learning features from music audio with deep belief
networks. In Proceedings of the International Society for Music Information
Retrieval, pages 339–344, Utrecht, Netherlands, 2010.

[42] H. Heijink and R. G. J. Meulenbroek. On the complexity of classical guitar
playing: Functional adaptations to task constraints. Journal of Motor Behavior,
34(4):339–351, 2002.

[43] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural
networks for acoustic modeling in speech recognition. IEEE Signal Processing
Magazine, 29(6):82–97, 2012.

[44] G. E. Hinton. Learning multiple layers of representation. Trends in Cognitive
Sciences, 11(10):428–434, 2007.

[45] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18(7):1527–1554, 2006.



118

[46] Alex Hrybyk and Youngmoo Kim. Combined audio and video analysis for
guitar chord identification. In Proceedings of the International Society for Music
Information Retrieval Conference, pages 159–164, Utrecht, Netherlands, 2010.

[47] X. Huang, A. Acero, and H. Hon. Spoken Language Processing: A guide to
theory, algorithm, and system development. Prentice Hall, Upper Saddle River,
NJ, 2001.

[48] E. Humphrey, J. Bello, and Y. LeCun. Moving beyond feature design: Deep
architectures and automatic feature learning in music informatics. In Proceedings
of the International Society for Music Information Retrieval, pages 403–408,
Porto, Portugal, 2012.

[49] E. Humphrey, J. Bello, and Y. LeCun. Feature learning and deep architectures:
New directions for music informatics. Journal of Intelligent Systems, 41(3):461–
481, 2013.

[50] M. Ioannou, G. Sakkas, G. Tsoumakas, and L. Vlahavas. Obtaining bipartitions
from score vectors for multi-label classification. In IEEE International Conference
on Tools with Artificial Intelligence, volume 1, pages 409–416, 2010.

[51] H. Kameoka, T. Nishimoto, and S. Sagayama. A multipitch analyzer based on
harmonic temporal structured clustering. IEEE Transaction on Audio, Speech,
and Language Processing, 15(3):982–994, 2007.

[52] K. Kashino and H. Tanaka. A sound source separation system with the ability of
automatic tone modeling. In Proceedings of the International Computer Music
Conference, pages 248–255, Tokyo, Japan, 1993.

[53] C. Kerdvibulvech and H. Saito. Guitarist fingertip tracking by integrating a
Bayesian classifier into particle filters. Advances in Human-Computer Interaction,
2008:1–10, 2008.

[54] A. Klapuri. Sound onset detection by applying psychoacoustic knowledge. In
Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, pages 115–118, Phoenix, AZ, 1999.

[55] A. Klapuri. Automatic music transcription as we know it today. Journal of New
Music Research, 33(3):269–282, 2004.

[56] A. Klapuri. A perceptually motivated multiple-F0 estimation method. In
Proceedings of the IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, pages 291–294, New Paltz, NY, 2005.

[57] A. Klapuri. Multiple fundamental frequency estimation by summing harmonic
amplitudes. In Proceedings of the International Society for Music Information
Retrieval Conference, pages 216–221, Victoria, BC, 2006.



119

[58] C. Largeron, C. Moulin, and M. Gry. Mcut: A thresholding strategy for multi-
label classification. Lecture Notes in Computer Science, 7619:172–183, 2012.

[59] C. Lee, Y. Yang, and H. Chen. Automatic transcription of piano music by sparse
representation of magnitude spectra. In Proceedings of the IEEE International
Conference on Multimedia and Expo, pages 1–6, 2011.

[60] C. Lee, Y. Yang, K. Lin, and H. Chen. Multiple fundamental frequency es-
timation of piano signals via sparse representation of Fourier coefficients. In
Music Information Retrieval Evaluation eXchange, http://www.music-ir.org/
mirex/abstracts/2010/AR1.pdf, 2010.

[61] H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations. In Proceedings
of the International Conference on Machine Learning, pages 609–616, Montréal,
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