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Abstract

In this thesis, we discuss the video game design concept of orthogonality and provide

its operationalization. Our focus is on combinatorial puzzle games—puzzle games

in which each puzzle, i.e. level, is composed of object types that are reused across

puzzles. For example, in the puzzle game Portal 2, object types include light bridges,

lasers and turrets. Given a new object type, orthogonality asks the following: Com-

pared to the existing game and its levels, does the new object type add quality, novel

and diverse levels in terms of their gameplay?

Our focus in this thesis is on the popular combinatorial puzzle game The Witness.

We use our measure of orthogonality to analyze the existing game of The Witness,

and in addition, we use the measure to generate a new type of object in the game.

Furthermore, we provide a general definition of orthogonality for combinatorial puzzle

games. Our discussion and operationalization of orthogonality builds upon related

game design ideas and concepts developed and used in the puzzle game community.
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Chapter 1

Introduction

What makes a video game “good”—that is, what is the criteria by which the quality

of a game is determined? Firstly, it should be noted that individuals have their

own subjective preferences, and that game designers have their own design goals and

objectives that they pursue in development. Thus, everyone has their own idea of

what makes a game of high quality. In addition, every proposed criteria for the

quality of a game is bound to be challenged with counter-example video games that

are considered excellent by some, but that do not align with the given criteria. In

short, games are diverse, and there exists no universally applicable criteria of game

quality that addresses that diversity.

Instead of presupposing a universal criteria of game quality that designers must

strive to meet, we recognize that there exist many different qualities and proper-

ties that designers might want in their games. For example, a designer might want

their game to be difficult, balanced or fun. However, these qualities are often only

intuitively understood, with different designers having dissimilar interpretations of

such qualities. Recently, researchers and designers have explored how to formalize

and measure certain game qualities—that is, they have created functions that return

scalar values representing the degree to which a game is a certain quality. We view

such formal measures as lenses [1]; each formal measure provides a certain perspec-

tive or lens on a game. Each lens asks some question about a game, and the answer
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to the question is meant to provide insight into a game. This means that a formal

measure of some game quality is not meant to be prescriptive—not all games need

to be difficult, balanced or even fun. Additionally, a measure may not be applicable

to every game; a measure can make assumptions that restrict the games that the

measure can be used on, such as a game having to be single-player.

In this thesis, we introduce and formalize the game quality of orthogonality. This

is not a new term in the game design community; instead, we are building on ideas that

have been discussed in the game design community, in particular by game designers

Jonathan Blow and Marc Ten Bosch [2]. Overall, orthogonality has not been heavily

discussed in academic papers, and instead most of the work on orthogonality comes

from game conferences, such as the Game Developers Conference (GDC), blogs and

Youtube videos. This does not mean that orthogonality is not related to qualities

and concepts that have been discussed by the academic community (see Related

Work), but that the notion of orthogonality that this developed in this thesis largely

comes from non-academic sources. These non-academic sources of knowledge are

important; we use them to develop our notion of orthogonality and they will inform

design decisions for our measure of orthogonality. But what is orthogonality exactly?

Orthogonality, as we develop it in this thesis, comes from a game aesthetic1 introduced

by Jonathan Blow and Marc Ten Bosch in their IndieCade 2011 presentation. Their

aesthetic emphasizes that designers should try to create the richest space possible

and then explore it completely, where richness implies that designers can create a lot

of levels that players find engaging. For example, consider the popular puzzle game

Sokoban, which requires the player to push crates into target locations. There is an

abundance of Sokoban levels that can be found alone, and there exists a dedicated

community that creates and play those levels.

The concept of orthogonality that we introduce in this thesis is applicable when

1We use the term aesthetic to refer to some qualities or properties that a designer might want to
pursue in their game.
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we are changing a game. For example, in Sokoban, we can add a new object that

the person can be on top of, but only once, and if the person is on top of the block

more than once, the player loses the puzzle. Our notion of orthogonality that we

formalize in this thesis asks the following: Compared to the existing game and

its space of levels, does the object type add quality, novel and diverse

levels? Essentially, we want many, different levels that are potentially enjoyable and

which are different from existing levels.

Why quality, novelty and diversity? We believe that these characterize orthogo-

nality based on existing ideas discussed in the puzzle game community. However, we

note that this definition of orthogonality is a working definition, and other compo-

nents could be added.

Is orthogonality not just captured by other concepts like fun [3], balance [4] or diffi-

culty [5]? We believe that orthogonality represents something different from existing

concepts that have been developed. In particular, our focus on analyzing a space of

levels to evaluate a game in our measure is distinctive.

In this thesis, in order to evaluate diversity and novelty, we will examine the

similarity of levels by looking at their solutions: levels are considered different if they

have different solutions, i.e. different sequences of actions that complete a level. In

order to calculate orthogonality, we need to be able to select—that is, generate—levels

from a space of levels. This can be done using procedural content generation (PCG)

methods, which focus on the algorithmic generation of game content, including levels.

The concept of orthogonality developed in this thesis is for games similar to Sokoban,

in which each individual level is assembled out of objects that are reused across levels.

Such games are called combinatorial games [6].

Our focus in this thesis is not on Sokoban, but another popular combinatorial

puzzle game, The Witness. In this thesis, we have the following contributions. We

introduce a way to measure the orthogonality of object types in The Witness. We

create a space of object types in The Witness, which we use to generate a new object
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type that we analyze, including by conducting an expert evaluation. In addition, we

provide an analysis of the existing object types in The Witness using our measure of

orthogonality.

The thesis is structured as follows. In the next chapter, we cover the background

material needed to understand this thesis, including game design background, proce-

dural content generation, and we describe the game The Witness. In Chapter 3, we

cover orthogonality in full; we describe what orthogonality is and how we concretely

measure it. We then discuss experimental results. Finally, we cover related work, and

end with future work and a conclusion.
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Chapter 2

Background

This chapter covers the necessary background information needed to understand this

thesis. In particular, we cover the following three topics: (1) game design terminology

and concepts, (2) procedural content generation (PCG), and (3) the puzzle game The

Witness.

2.1 Game Design

This section covers game design terminology and concepts. Specifically, we discuss the

following topics: (1) game elements, such as levels and mechanics, (2) combinatorial

games, and (3) the aesthetics of combinatorial games.

2.1.1 Game Elements

What are the various parts of a video game? Video games are multifaceted—designers

must simultaneously consider the visuals, audio, narrative, levels, gameplay and other

facets of a game in its creation [7]. In order to make it easier to describe and analyze

video games, game designers and researchers have attempted to formalize aspects of

game design [8]; approaches have looked at defining game elements [9, 10] and classi-

fying game elements [11, 12]. Similarly, we will elaborate on the game elements that

we refer to throughout this thesis to familiarize readers with such terminology. The

game elements that we detail are, in order, objects, levels, mechanics, goals, and game-
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play. Note that the game elements we discuss are not meant to be comprehensive—for

example, we do not discuss narrative—instead, we discuss what we believe is needed

to understand this thesis. We use Super Mario Bros. as a running example, since it

is well-known.

Objects:

Game objects refer to the constituent pieces that are used to create levels. For

example, in Super Mario Bros., game objects include the Goombas and ground tiles

that compose the levels in the game. Objects do not need to be singular; instead,

objects can share a type (see Figure 2.1 for an example of object types in Super Mario

Maker). In addition, objects can possess attributes that hold information about the

object; for example, the location of objects in Super Mario Bros..

Figure 2.1: Some of the object types available in Super Mario Maker for designers to
create levels. In Super Mario Maker, players can create and share their own levels.

Levels:

A level (also sometimes called a world or map) refers to a specific configuration of

objects and potentially other variables that defines a particular spatial problem for

players. Levels often segment a game into distinct parts [13]. For example, Super

6



Mario Bros. is split into distinct levels.

Mechanics:

There exist many definitions of mechanics in the literature, with these definitions

having both overlapping and distinct parts [14]. We use the term mechanics to refer

to how a level evolves according to player action. In particular, we assume that

mechanics specify how objects interact and change over time, both with input by

the player and when the player does not input anything. The implementation for

the mechanics associated with an object can be quite complex; for example, in Super

Mario Bros. there must be code that handles Mario’s collisions, physics, how he

collects coins, and the exact way his jumping works.

Goals:

Besides mechanics, designers often speak of what needs to be done in a level, i.e the

goals. Although there are other types of goals, our focus in this thesis is on just

completing a level [15]. In particular, we assume that the goal of a level is to satisfy

a win-condition; for example, in Super Mario Bros., the win-condition for a level may

be to reach a flag pole. Levels may allow for additional goals [16]. In Super Mario

Bros., the player might try to collect coins. We do not focus on additional goals that

can be pursued in a level, and instead we focus only on what is essential to completing

a level.

Gameplay:

Gameplay refers to the interaction between players and the game. It may include the

strategies that a player uses to complete the game, and the other things that the player

has learned that helps them play the game. However, in this thesis, gameplay refers

to what the player does–the actions they take—in a level in pursuit of completing

the goals of a level. If a level has a unique solution that means there is only one way
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for the player to complete the level (that is, there is a single sequence of actions that

will result in the goals being met).

2.1.2 Combinatorial Games

In this thesis, we largely consider combinatorial single-player video games (in short,

combinatorial games). In particular, we focus on combinatorial games that could also

be considered puzzle games. To better understand combinatorial games, we discuss

the related notion of heterogeneous games [6].

Heterogeneous:

Heterogeneous games are video games in which each problem (i.e. level) is distinct;

each level can have its own mechanics, goals and objects that are never used in other

levels. Examples of heterogeneous games include Myst, and titles in the Professor

Layton and WarioWare series. In Figure 2.2, we show some example levels (puzzles)

from the heterogeneous game Professor Layton and the Curious Village.

Combinatorial:

Combinatorial games are games in which each level is constructed from a common set

of objects, and each level has the same mechanics and goals. For example, in the game

Sokoban, each level is made up of walls, crates, target blocks and avatars (see Figure

2.4 for the objects). In each level, the avatar can push a block one space forward

if there is an open space in front of it, and the goal of each level is to have a crate

on every target block. In Figure 2.3, we show three Sokoban levels. However, these

three Sokoban levels do not represent every single Sokoban level imaginable; instead,

there is an infinite space of Sokoban levels if levels are allowed to be of any size. This

space comes from arranging objects in different configurations, and from the fact the

mechanics (and the goals) are defined in terms of the object types and are consistent

across levels [17]. In general, a combinatorial game gives rise to a (possibly infinite)

1https://strategywiki.org/wiki/Professor Layton and the Curious Village/Puzzles 1-25
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Figure 2.2: Four individual puzzles from Professor Layton and the Curious Village.
Each puzzle is distinct, and would require us to specify the objects, mechanics and
goals of each puzzle to have a playable puzzle.1

space of levels; Cook describes this as the possibility space of a game.2 This space

of levels represents every imaginable level that one could create for a combinatorial

game, even levels that are not solvable.3 Other examples of combinatorial games

include Super Mario Bros., Portal 2, and The Witness, along with Japanese logic

puzzles such as Sudoku [18].

In addition to particular games, there exist languages and tools that can help

designers and researchers create combinatorial games. PuzzleScript, a popular puzzle

2https://www.possibilityspace.org/tutorial-generative-possibility-space/index.html
3When are two implementations of the same combinatorial game actually the same? Hobby-

ists and researchers have often re-implemented combinatorial games, including Sokoban. However,
these implementations can often differ in edge-case levels. For example, in some implementations of
Sokoban, if there are multiple avatars in a level, then applying an action results in all the avatars be-
ing moved in that direction, while other implementations result in only a single avatar being moved.
See https://www.puzzlescript.net/editor.html?hack=f9a5d9ca2ceb1c68906c47c53a4d8865 for an ex-
ample of the former, and https://rlbrush.app/ for an example of the latter.

4https://www.sokobanonline.com/play/web-archive/david-w-skinner/microban
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Figure 2.3: Three Sokoban levels.4

game engine and language, provides sections for designers to specify mechanics (rules)

and goals (win conditions) that apply to each level [19], along with a section to specify

which particular levels appear in a game. The distinction between the generic aspects

of a game (the object types, mechanics and goals), and the specific problem instances

(levels) that can created from those generic aspects is seen in other languages [20, 21],

including the Planning Domain Definition Language (PDDL) [22] in which the generic

aspects are specified in a domain file, and multiple problem files can be created using

the same domain file.

When we are talking about a combinatorial game, we will use the term domain to

refer to the generic aspects of a combinatorial game—its object types, mechanics and

goals. Given a combinatorial game domain, designers can create levels for the game

domain.

In this thesis, we assume that changes to a domain are of the following type: a

new type of object and its defined attributes are added to the domain, along with

adjusting the mechanics and goals (the win condition) to include the new object type.

For example, in Sokoban, we could add colored crates and target locations that

have a color attribute, along with the usual location attributes. We could define the

mechanics for the colored crates to be the same as normal crates; they can be pushed

forward as long as there is an open space, while the win condition of each level is
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to have each colored target location have a corresponding crate of the same color on

top.

Wall Empty

Avatar on Target

Target

Filled Target Avatar Crate

Figure 2.4: The different objects that can make up a Sokoban level. Note that some
of these objects represent when two objects are in the same place (like the “Filled
Target” and “Avatar on Target”), and the “Empty” object represents clear space.

2.1.3 Aesthetics of Combinatorial Games

There are no universal qualities that make a game “good” and instead designers and

players have particular aesthetic ideals that they may want a game to satisfy [23].

For example, the creators of Soma, a game with heterogeneous puzzles, emphasize an

aesthetic that prioritizes the narrative and contextualizing puzzles within the world

[24]. We detail an aesthetic that can be applied to combinatorial games that was

initially described by game designers Jonathan Blow and Marc Ten Bosch.

Before we detail their game aesthetic, we discuss some benefits of combinatorial

games.5 Since combinatorial games rely on mechanics and goals that are defined not

per-level but are applied across levels, players need to learn only general rules rather

a bunch of special case rules for each level. This makes planning and solving levels at

least somewhat simpler since players only need to learn general rules that they can

apply to new levels once the mechanics (rules) have been learned. In addition, players

can learn strategies that can be applied across levels; i.e. players can generalize from

5See https://emshort.blog/2013/01/24/making-of-counterfeit-monkey-puzzles-and-toys/ and
https://www.youtube.com/watch?v=iUi2vMZajco&t=0s for a similar discussion of the benefits of
combinatorial games.
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one level to another.

In their 2011 IndieCade presentation, Jonathan Blow and Marc Ten Bosch intro-

duced a design aesthetic that can be applied to combinatorial games, although it can

also be used for other types of games. Their aesthetic focuses on creating a (com-

binatorial) game domain that is as rich as possible and then trying to explore it as

completely as possible using the levels in the game. Their design aesthetic consists

of the following points [2]:

• Orthogonality

• Compatibility of Mechanics

• Generosity

• Strength of Boundary

• Richness

• Completeness

• Surprise

• Lightest Contrivance

Game designer Elyot Grant states that the puzzle designer Thomas Snyder used

the term capacity of a combinatorial puzzle game to refer to how many puzzles (levels)

a designer could create before the puzzles start becoming too similar or to how many

levels a player or designer would want to solve for a particular combinatorial game

domain [25]. A rich level space is one with a high capacity; designers should be able

to create many different levels that players find engaging. Grant gives the following

values for the capacity of different combinatorial games (these values are based on

Grant’s intuition):

• 2D Mazes: 1
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• Portal gun (from Portal and Portal 2 ): 10

• Sudoku: 100

• The Witness : 1000

• Go problems: 10000+

However, creating a combinatorial game domain that is rich is not sufficient. A

designer must balance the richness of the space of levels associated with the game

domain (the capacity of the game) with the complexity of the domain [26]—that is,

with how many different object types there are in a game domain. If a designer

wanted to increase the capacity of a game domain, they could just add an additional

object types (new blocks, enemies, etc.) to the game domain. If a designer wants

to add something new to a game domain such as an object type, then that object

type should add as many new gameplay experiences as possible compared to what

already exists. Game designer Anna Anthropy notes that games should try not to

have orphaned verbs, meaning that a designer should not introduce an new action

and mechanic such as jumping if the player is only going to use it a few times in the

game [27]. This also applies to object types (see Figure 2.5 for an example).

Figure 2.5: In Tombed II, players can use their shovel to make blocks of the same
color disappear (right side). Suppose the designer wants to add a switch that opens
a door when the player strikes it (left side). It is possible to implement a switch and
door using the existing blocks and mechanics as shown on the right side. Anthropy
encourages designers in this example to not add the switch and door [27].
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Orthogonality

Blow and Ten Bosch state that orthogonality answers the following question:

Does the potential mechanic add enough new interesting consequences,

or are the consequences already mostly contained in the mechanics that

are already there.

As stated in the introduction, we view orthogonality as the answer to the question:

Compared to the existing game and its levels, does the new object type add quality,

novel and diverse levels in terms of their gameplay? We can see this is similar to the

definition given by Blow and Ten Bosch, but our focus is on the addition of a new

object type to a game domain. But like them, we look at whether there is enough

(diverse), new (novel), and interesting (quality) levels that can be created by using

the new object type. We examine the different parts of the definition.

Novelty: Novelty has to do with how different some content is from existing

content. We assume that we can compare levels. The notion of novelty that we

develop in this thesis has to do with how different the solutions for one level are from

the solutions for some other levels. Koster in his theory of fun emphasizes that having

fun is predicated on learning new things [3]—with this often being operationalized as

a dissimilarity function on levels [28].

Diversity: Diversity looks at the dissimilarity of content within a set. A set of

content is diverse if none of the elements of the set are like each other. Again, we will

look at this in terms of gameplay experiences (solutions to a level).

Quality: Quality is a measure of how good an individual level is by itself. For

example, we may look at if the level is solvable or if it has a unique solution.

Blow and Ten Bosch’s notion of orthogonality is similar to what game designer

Harvey Smith calls Orthogonal Unit Differentiation—a design aesthetic that empha-

sizes creating game entities, such as enemies or units in strategy games, that serve

different roles and have different mechanics [29]. Similarly, game designer George Fan
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Figure 2.6: A diagram showing how Orthogonal Unit Differentiation can be applied
to the enemies in Doom.6

emphasizes that game entities, such as enemies, should be mechanically different such

that the player has to tackle the entities in different ways [30]. In Figure 2.6, we

show the enemy types of the game Doom in terms of their behavior—notice, that the

enemies are not clustered but are spread around in terms projectile versus hitscan and

stay back versus charging. Designers should try to make enemies that are as different

as possible, but also make it so that when enemies are combined together in combat

setups that they work together nicely, i.e. they complement each other. Thus, like

how cards in collectible card games or heroes in hero shooters may synergize with

each other, we want object types in combinatorial games to work well together in

games. This was illustrated by game designer Brett Taylor using colors as seen in

Figure 2.7.

Designers have created systematic ways to create levels that deeply explore a

space.7 This has been especially true for platformers and puzzle games. The ba-

sic idea is the following: try to combine each object type with every other object

type. We discuss one particular method used by game designer Brett Taylor. Taylor

introduced a visualization technique to help designers think about the level possibil-

6https://www.youtube.com/watch?v=BEF4GVNzkUw&t=2106s
7https://cwpat.me/misc/puzzle-level-idea-strategies/
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+ =

+ =
Figure 2.7: Having orthogonal object types can lead to more interesting levels if they
are as different as possible. If we think of object types as colors, two objects are not
that orthogonal if their colors are similar, while two objects are orthogonal if their
colors are very different.

ity space associated with a game domain in terms of pairs of game object types in a

level 8. Game designers pick a cell and try to create a level (or multiple levels) that

primarily uses the two object types that define that cell.

How is this method related to orthogonality? Suppose we were to add a new

type of object to a game. As stated previously, the new object type should add try

to maximize quality, novelty and diversity. When we add this new object type, we

would want the following: (1) does the interaction between the new object type and

each existing object type lead to quality levels; (2) when the new object type interacts

with each existing object type, does it lead to novel levels or are the levels too similar

to what is already possible with the existing object types; and (3) does the interaction

between the new object type and old object type lead to diverse levels.

Another way to view orthogonality is as additional capacity. A new object type

has high orthogonality if it increases the capacity of the game domain by a lot.

2.2 Procedural Content Generation

Procedural content generation (PCG) refers to the generation of game content—

including mechanics and levels—using algorithmic means [31]. PCG has been used in

games such as Minecraft to generate worlds, and games in the rogue-like genre heavily

8https://www.youtube.com/watch?v=B36 OL1ZXVM
9https://www.youtube.com/watch?v=akeVPZLZejY&t=233s
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Figure 2.8: A matrix of object type combinations. This can help designers create
levels in a systematic way. This matrix was used by game designer Mark Brown for
his puzzle game Mind Over Magnet.9

rely on PCG as part of their game. Beyond the use of PCG in games as part of their

design [32], PCG can be used during the design of a game to assist designers, even

if the released game itself does not use PCG when players interact with the game.

Khaled et al. suggest design metaphors—such as tool, material, designer and domain

expert—for understanding the relationships between designers and PCG [33]. This

thesis focuses on how PCG can be used to understand (combinatorial) game domains

and to generate object types and their associated mechanics.

While there exist many PCG methods, we focus on search-based PCG (SBPCG).

In their textbook, Shaker et al. provide a taxonomy of SBPCG approaches, which

include the following methods [31]:

• Evolutionary search algorithms

• Exhaustive search

• Solver-based methods
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We provide an overview of SBPCG approaches. In SBPCG approaches, a game

content generator Gen consists of at least the following components:

• A possibility space P

• An evaluator E

• A search procedure S

At a high-level, the possibility space represents the content that is going to be

considered by the generator, the evaluator is meant to evaluate content from the

possibility space, and the search procedure is the algorithm responsible for exactly

how content is generated from the possibility space and evaluated content using the

evaluator.

Possibility
Space

Evaluator

Search 
Procedure 

Figure 2.9: The basic components of a SBPCG generator: possibility space, evaluator
and search procedure

For combinatorial games, we could imagine that the possibility space is the level

possibility space associated with the game domain or a subset of that space. The

evaluator could check for solvability or quantify the difficulty of a level. Finally,

the search procedure could be any of the previously mentioned methods (such as

evolutionary search or solver-based methods).

Exhaustive PCG

In exhaustive PCG (EPCG), all content from a finite possibility space is evaluated

using the evaluator [34]. The exact search procedure does not matter too much as
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long as the search procedure is able to methodically generate all content from the

possibility space. Thus, EPCG can be used to enumerate and evaluate content.

SBPCG approaches often serve to filter the possibility space. For example, in

solver-based methods like answer-set programming (ASP), the possibility space is

constructed using choice rules and content is filtered using integrity constraints that

specify the properties content should and should not have. Similarly, EPCG can

be used to filter a possibility space if the evaluator is a boolean function—either it

accepts the content or it rejects it. As an example, the evaluator could check if a level

has a single solution.

Recently, researchers have explored generating diverse (and still high quality) sets

of levels that vary in their characteristics (such as what objects are in a level) using

methods such as quality-diversity search algorithms [35]. Although we do not use

such quality-diversity algorithms, we use EPCG in a similar manner. Firstly, EPCG

can be used to enumerate all content from a space, which can be used to filter that

space down to a smaller set. This gives a space of content that can be examined and

analyzed instead of a single optimized piece of content. Secondly, we use EPCG to

generate content from different possibility spaces (different characteristics); that is,

we run EPCG multiple times on different spaces.

Multiple Generators

An important aspect with such generators, although it is not specific to search-based

PCG, is how to integrate multiple generators, especially generators that generate

different types of content, such as mechanics and levels [7]. For example, suppose

we have two generators Gen1 and Gen2. How could these interact? It could be that

they are done sequentially where the output of Gen1 is used as input to Gen2 or they

could be structured in a nested fashion where Gen1 uses Gen2 as part of its evaluator.

In this thesis, our mechanic generator has a nested level generator that it uses to

evaluate mechanics.
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2.3 The Witness Domain

The Witness is a puzzle video game released in 2016 that was developed by Thekla,

Inc. and designed by Jonathan Blow. In the game, the player explores an island from

a first-person perspective. The island contains a number of puzzles that the player

can complete. These puzzles can be divided into two broad categories: panel puzzles

and environmental puzzles.

Environmental puzzles involve the player having to view some scene from a certain

perspective in order to draw a path from a starting point (see Figure 2.10).

Figure 2.10: Three environmental puzzles from The Witness The player must draw
a line in the dotted area starting from the circular part.10

In this thesis, we focus on panel puzzles which are played on panels scattered

around the island. Figure 2.11 shows an example of panel puzzles found in the game.

In Figure 2.12, we show more panel puzzles found in The Witness. Unlike the

panel puzzles shown in Figure 2.11, the puzzles shown in Figure 2.12 cannot be

solved by just solving looking at the individual panel puzzles. Instead, the panel

puzzles must be solved by looking for visual clues in the environment or by listening

to sounds present in the environment. In this thesis, we consider only panel puzzles

that can be solved by only considering the panel puzzles themselves. In addition, in

The Witness, there are panel puzzles that are played on non-rectangular grids. We

focus only on rectangular grid panel puzzles in this thesis.

We now give a detailed description of panel puzzles and how they are played. Since

10https://www.ign.com/wikis/the-witness/River Obelisk
11https://www.ign.com/wikis/the-witness/Entry Area
12https://www.ign.com/wikis/the-witness/Puzzle Solutions

20

https://www.ign.com/wikis/the-witness/River_Obelisk


Figure 2.11: Panel puzzles from an early part of the game. These panel puzzles have
been solved. 11

Figure 2.12: Four panel puzzles that cannot be solved by just looking at the panels
only. 12

we only consider panel puzzles in this thesis, we will refer to panel puzzles as simply

puzzles or levels. In order to specify the The Witness domain, we need to specify

the game object types, the space of levels, the mechanics and the goals. We begin by

discussing the mechanics and goals.

We explain the basics of The Witness puzzles with a small, simple level. Figure

2.13 shows a level played on a 2× 2 grid with two other parts: a start location (the

circular part) and an end location (the line that protrudes out from the grid).

In The Witness, the goal of the player is to draw a path from the start location to

the end location. From the initial state shown in Figure 2.13, there is one applicable
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start

end

Figure 2.13: A basic level with a start location and an end location.

action: select the start location. From the state that results from selecting the start

location, the player has two actions: go up or go right. Figure 2.14 visualizes the

mentioned states and actions.

Figure 2.14: A tree with nodes representing states and edges representing states
connected by actions. Note that player are able to undo actions; if the player goes
up, then they can undo their action by going down.

The player can always extend their path as long as there is free space in the

direction they want to extend their path. For example, in Figure 2.14 for both of the

right-most states, it is possible to move up. Importantly, the player can never have

the path cross itself. Figure 2.15 shows an example state where the player cannot go

left, since that would result in a path that crosses itself. For the 2× 2 example level

from Figure 2.13, there are a total of 12 possible solutions to the level. The solutions

are shown in Figure 2.16. Note that those 12 solutions are all the self-avoiding walks
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on a 2× 2 grid with the start location on the bottom-left and the end location on the

top-right. 13

Figure 2.15: The player cannot have the path cross itself. Thus, they have no actions
available to them, except to undo their last move (go right).

Figure 2.16: All possible solutions to the 2× 2 empty level with the start location on
the bottom-left and end location on the top-right.

We so far have assumed that there exists a single start location and a single end

location, but in The Witness, it is possible to have levels with multiple start locations

and end locations. The player can select any start location, and the puzzle is solved

if they reach any end location. As in the case of levels with a single start and end

location, the path cannot cross itself. In this thesis, we only focus on levels with a

single start location and end location. In particular, the start location will be on the

bottom-left and the end location will be on the top-right.

13See mathworld.wolfram.com/Self-AvoidingWalk.html for a brief introduction to self-avoiding
walks.
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(a) (b)

Figure 2.17: We only focus on levels like (a) that have a single start location on the
bottom-left and single end location on the top-right. We do not consider levels like
(b) that have multiple start and end locations.

When the player draws a path that goes from a start location to an end location

that goes not self-intersect, the grid is divided into regions by the path. Each region

consists of the grid cells that the region covers. For example, in Figure 2.18 there

are two regions, A and B, that consist of a single cell and three cells respectively.

A

B

Figure 2.18: The above level has been divided into two regions, A and B. Any self-
avoiding path that goes from a start location to an end location will partition the
cells of the grid.

We have discussed levels from The Witness that have the following parts: a rect-

angular grid, a set of start locations, and a set of end locations. From just these

parts, we have an infinite space of possible levels of different sizes, and with different

starting and end locations. However, The Witness does not just include levels from

this space of levels, it includes levels that contain other objects. In particular, lev-

els can have region constraints. A region constraint is an object that can be placed
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inside the cell of a grid. There are 4 types of region constraints that we discuss in

this thesis: separation, star, tetris and triangle. 14 In this thesis, we consider the set

of constraint types K = {separation, star, tetris, triangle}, and all of the levels

from The Witness we consider in this thesis can be created by using constraint types

from K. We do not consider the start and end locations as object types in K, since

we will keep these always fixed in a level (the start location in the bottom-left and

the end location in the top-right). Note that constraint types have attributes such

as color and an additional parameter. We refer to a constraint type with a set color

and parameter as a constraint. When we refer to a constraint in a level, we will use

the term constraint piece.

We start by discussing the separation constraint type, which is the first region

constraint type introduced in The Witness.

Separation Constraint Type

Figure 2.19 shows an example level with only separation constraints. The initial

state of the level is shown in (a) and the unique solution to the level is shown in (b).

Note that for the solution in (b), each region partitioned by the solution path with a

separation constraint piece only contains separation constraint pieces of the same color

within the region. For the example level, there are three regions with two regions only

having black separation constraint pieces, and a single region having blue separation

constraint pieces. A separation constraint can have a color (in the example level,

blue and black) and the rules of the separation constraint are the following: given a

path that partitions the grid into regions, for any two separation constraint pieces in

the same region, they must have the same color. If two separation constraint pieces

are in the same region and have different colors, then we say that those separation

constraint pieces are unsatisfied; otherwise, they are satisfied. A level with separation

14There is are also other region constraints in The Witness, such as the negative tetris and eraser/e-
limination constraints. We do not consider those region constraints. There are also path constraints
that can be placed on the paths of a grid. We do not consider path constraints.
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constraints is solvable if there exists a self-avoiding path from a start location to an

end location such that all separation constraint pieces are satisfied. In Figure 2.20,

we show a self-avoiding path that does not solve the level.

(a) (b)

Figure 2.19: An example level with only separation constraints. Figure (a) shows the
initial state of the level, while (b) shows the unique solution to the level.

Figure 2.20: A self-avoiding path that does not solve the example level. The cells
with a separation constraint and a green circle in the corner means that the constraint
piece is satisfied, while a red circle means that the constraint piece is not satisfied.

We now discuss the remaining three region constraint types. They behave similarly

to the separation constraint type: given a path that partitions the cells of the grid,

the rules of the constraint type specify whether or not a constraint piece is satisfied

in the level. A level with region constraints is solvable if there exists a self-avoiding

path from a start location to an end location such that all region constraint pieces

are satisfied by the path.

Star Constraint Type

A star constraint, like a separation constraint, has a set color. A star constraint piece

with color c in a region is satisfied if that region contains exactly one other constraint
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piece with the same color as it in the region. We show an example level and solution

in Figure 2.21. Note that the other constraint piece does not have be a star constraint

piece (it could, for example, be a separation constraint piece).

(a) (b)

Figure 2.21: An example level with only star constraints. Figure (a) shows the initial
state of the level, while (b) shows the unique solution to the level.

Tetris Constraint Type

A tetris constraint also has a color; however, we assume that a tetris constraint always

has a special color that no other region constraint can have. A tetris has an additional

parameter that determines its shape; the shape should be a polyomino 15. Given a

region with tetris constraint pieces inside the region, all the tetris constraint pieces

in that region are satisfied if there exists a way to place the shapes of the tetris

constraint pieces in such a way that the following holds: (1) every shape of a tetris

constraint piece is used, (2) no shapes overlap with each other, and (3) the shapes

fill the region. Note that when checking if the three conditions hold, other region

constraint pieces are ignored. In addition, note that the player does not actually

place any shapes; instead, this a mental check that must be done by the player. If

there exists no satisfying configuration of the shapes for the tetris constraint pieces

in a region then the tetris constraint pieces are unsatisfied. Figure 2.22 shows an

example level with its initial state and its unique solution.

15https://en.wikipedia.org/wiki/Polyomino

27



(a) (b) (c)

Figure 2.22: An example level with only tetris constraints. Figure (a) shows the initial
state of the level, while (b) shows the unique solution to the level, and (c) shows how
the tetris shapes can be arranged so that the tetris constraints are satisfied.

Triangle Constraint Type

The last constraint type from The Witness that we consider in this thesis is the

triangle constraint type. Like a tetris constraint, a triangle constraint can have a color

but we assume that a triangle constraint will always have a unique color attached to

it. A triangle constraint type has an additional parameter that can take on the values

1, 2 and 3. The rules of the triangle constraint specify that it is satisfied if and only

if the the number of grid edges adjacent to the cell with the triangle constraints that

have a path going through them is equal to the additional parameter of the triangle

constraint. Figure 2.23 shows an example level with only triangle constraints.

(a) (b)

Figure 2.23: An example level with only triangle constraints. Figure (a) shows the
initial state of the level, while (b) shows the unique solution to the level.

Terminology

We use the term solution paths to refer to self-avoiding paths/walks in a level.
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Chapter 3

Defining Orthogonality

In this chapter, we define orthogonality—both specifically for The Witness and gen-

erally for combinatorial games. Note that our orthogonality measure for The Witness

is just one particular implementation, and we could have made other design deci-

sions that would have lead to a different measure. Wherever possible, we discuss why

a certain design decision was made regarding our measure of orthogonality for The

Witness.

3.1 Analyzing a Single Object Type by Itself

Terminology: A constraint type refers to a particular type of constraint, such

as the separation constraint type. A constraint refers to a constraint type that has

its non-location attributes set to some values. For example, we can have a black

separation constraint. A constraint piece refers to a particular constraint in a level.

For example, we could have a black separation constraint piece in the bottom-left cell

of a level. We will use object type interchangeably with constraint type.

In this section, we explore finite sets of levels from The Witness that contain

only a single constraint type. For example, we could consider sets that only contain

separation constraints or only star constraints. Suppose we have some game domain

D with n object types K = {K1, K2, . . . , Kn}, and let L be the possibly infinite set

of levels that can be created using object types K. For example, for The Witness, we
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have K = {separation, star, tetris, triangle}. We will use the notation L(K) to

refer to the possibly infinite set of levels that contain only objects of type K, where

K ∈ K. For example, L(separation) would refer to all levels that contain only

separation constraints—along with empty constraints—and where each separation

constraint in a level can be any color. However, in this thesis, we will often focus

on particular object types in a level; for example, we will only focus on separation

constraints that can be of two colors, black and blue. For every constraint type K, we

have a set of constraints Con(K) that we will consider. We will consider the following

constraints for each constraint type:

• separation: Con(separation) = {black and blue separation constraints}

• star: Con(star) = {black and blue star constraints}

• tetris: Con(tetris) = {tetris constraints with parameter of 1, 2 and 3}

• triangle: Con(triangle) = {triangle constraints with parameter of 1, 2 and

3}

In this thesis, Con(K) will be fixed for every constraint type. For example, we

will always consider separation constraints that have a color of either black or blue.

We will use the notation L(Con(K)) to refer to the possibly infinite set of levels that

contain only constraints from Con(K). Since the set L(Con(K)) is possibly infinite,

we need to be able to consider finite subsets from this space. We use the notation

LR×C(K, i) to refer the set of all levels that are played on a grid of size R×C that con-

tain exactly i constraint pieces from the set of constraints Con(K). Note that for each

level in the set, there is a single start location on the bottom-left and a single end loca-

tion at the top-right. In Figure 3.1, we show the set L2×2(separation, 4)—again note

that Con(separation) will always contain only black and blue separation constraints.

The set contains exactly 16 levels. Finally, we use the notation LR×C(K, i → j) to

refer to the following union of sets: ∪j
t=iLR×C(K, t).
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Figure 3.1: All 16 levels that comprise L2×2(separation, 4).

We will now show how we can use a notion of orthogonality to analyze L(K). First,

we restrict ourselves to analyzing L(Con(K)) for a given, fixed set of constraints

Con(K). Previously, we stated that orthogonality is the answer to the following

question:

Compared to the existing game and its levels, does the new object type

add quality, novel and diverse levels in terms of their gameplay?

Suppose that the existing game domain of The Witness that we consider has no

constraint types defined yet, and the only levels that exist are the levels with an

empty grid. The game is playable, but we consider what happens when we add a

new—and only—constraint type to The Witness game domain. For example, what

happens when we add the separation constraint type to The Witness when no other

constraint types exist yet. We will show how we can create a measure of orthogonality

for the case when we are adding a single constraint type to the game, and no other

constraint types exist. Essentially, we are trying to analyze a single constraint type

by itself in terms of orthogonality.

How can this be done? Remember that orthogonality consists of the following

parts: quality, diversity and novelty. We begin by discussing quality.

Quality refers to any function that takes a level L from a finite set of levels L

and returns a scalar value—that is, quality : L → R. In particular, we assume that

quality(·) is boolean; the function returns either 1 or 0. Thus, we can think of quality(·)
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as a filter. For some set of levels L, we can form the set of levels quality(L) .
= {L ∈ L :

quality(L)} ⊆ L. In the thesis, the quality(·) function that we use checks if a level has

a unique solution. Why check if a level has a unique solution? We use this quality(·)

function for two reasons:

• A level with a unique solution is more likely to communicate a specific idea to the

player. Sturtevant notes that levels with many solutions can be uninteresting

since they are less likely to require the player to have a specific understanding

of the level and what it is trying to teach [36].

• If a level has a unique solution, then we can map that level to a single sequence

of actions instead of a set of solution paths. This simplifies comparing two

levels. We just check if they have the same unique solution path.

We note that our choice of looking at solution uniqueness is nevertheless arbitrary—

we could have looked at if a level is solvable and has at most two solutions, if a level

has a unique solution and the solution is at least 10 actions long, or if the level is

solvable and the placement of constraint pieces is symmetric.

So far, we have discussed what quality(·) function we will use, but not how we will

use it. We will use the quality(·) function as an evaluation function in an EPCG pro-

cedure. In the EPCG procedure, we will use a generator that systemically enumerates

sets of the form LR×C(K, i), where the generator takes as input row size R, column

size C, constraint type K, and constraint piece count i. We use the EPCG generator

given by Sturtevant [36] to enumerate the set. As an example, we can use EPCG to

enumerate the set L2×2(separation, 4)—the set of 2 × 2 levels that contain exactly

four separation constraints which can be either black or blue—and then filter down

the set to the levels with a unique solution. In Figure 3.2, we show the four levels

from L2×2(separation, 4) that have a unique solution.

So far, we have discussed the quality part of orthogonality. We will now discuss

diversity. Diversity looks at how different each level is from each other in a set. We
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A B C D

Figure 3.2: The 4 levels from L2×2(separation, 4) that have a unique solution.

will do this by comparing the gameplay of different levels, in particular, the sequences

of actions needed to complete a level. Given a level L from a finite set of levels L,

let S(L) be the set of solution paths to the level L. Instead of focusing on all levels,

we focus only on levels that pass the quality(·) function; in this case, if the level has a

unique solution. For levels with a unique solution, S(L) returns a single solution path.

Given the set of levels from L with a unique solution, quality(L), we can construct the

set D(L) .
= {S(L) : L ∈ quality(L)}, the distinct solution paths of levels with a unique

solution. In Figure 3.3, we show the two solution paths from D(L2×2(separation, 4)).

Looking back at Figure 3.2, for the four levels in L2×2(separation, 4) that have a

unique solution, there are only two distinct solution paths: levels A and B share the

same solution path, and C and D share the same solution path. Also note that levels

A and B are practically the same levels except that the colors have been swapped,

and similarly for levels C and D. Thus, we were able to go from four levels to only

two solution paths.

Figure 3.3: The two solution paths that comprise D(L2×2(separation, 4)).The first
solution is RURU and the second solution is URUR.
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Given the set of paths D(L), we can determine how diverse it is by taking its

cardinality, |D(L)|; in the above example, we have a value of 2. For different size grids,

there are different numbers of total possible solution paths (self-avoiding walks) on

an empty grid (see Table 3.1). We use P(R,C) to refer to the number of self-avoiding

walks on an empty grid of size R×C, with a single start location on the bottom-left

and a single end location on the top-right.

height R width C count P(R,C)

2 2 12

3 2 38

3 3 184

4 3 976

4 4 8,512

Table 3.1: The total number of self-avoiding paths for different sizes of empty grids.
These numbers also represent the total number of solutions for different sizes of empty
grids.

We can divide D(LR×C(K, i)) by P(R,C) to make sure that the number we get is

between 0 and 1. In the previous example, we would have 2
12

because on the 2 × 2

grid there are a total of 12 solution paths possible, and we were able to get two paths

from D(L2×2(separation, 4)). Instead of taking the cardinality of the set, we could

determine how different each solution path is from each other—that is, we could de-

termine
∑︁

S, S′∈D(L) dpath(S, S
′) if we had a way to compare solution paths dpath(S, S

′).

Currently, we use the cardinality of the set to determine its diversity, because of the

simplicity of the approach. We have shown how to determine the diversity of a set of

levels by first filtering down to quality levels using a quality(·) function, then convert-

ing that set into a set of solution paths, and taking its cardinality and normalizing

the value.

So far, we have discussed quality and diversity, and in particular, how we can
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use a notion of quality in our calculation for diversity. We will now discuss the

final part of orthogonality, novelty. In Figure 3.2, we show the four levels from

L2×2(separation, 3) that have a unique solution. Note that L2×2(separation, 1) and

L2×2(separation, 2) do not contain any levels with unique solutions. From Figure

3.2 and 3.4, we can see the following:

A′ B′ C ′ D′

Figure 3.4: The four levels from L2×2(separation, 3) that have a unique solution.

• Levels A and A′ share the same solution path, and the difference between levels

A and A′ is that level A contains an additional black separation constraint. We

see the same relationships for the other pairs of levels.

• Since L2×2(separation, 1) and L2×2(separation, 2) do not have any levels with

unique solutions, the levels in Figure 3.4 are the simplest levels (i.e levels with

the fewest constraint pieces) from the set L2×2(separation, 1 → 4) that have

unique solutions.

Novelty looks at how different one set is from another set. Again, similar to what

we did for diversity, we will compare levels by looking at their solution paths. Suppose

we have a collection of T sets of levels L1:T
.
= {L1,L2, . . . ,LT}. Assume that these

sets are ordered in some way; in particular, assume that there exists a strict partial

order < over L1:T . We can consider the novelty of a set L ∈ L1:T relative to all the

sets that precede it—that is, the set
⋃︁
{L′ ∈ L1:T : L′ < L }. For example, given the

collection of tmax sets {LR×C(K, i)}tmax
i=1 , we can order the sets by the total number of

pieces in a level. Let <# be the strict total order over the set {LR×C(K, i)}tmax
i=1 where
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LR×C(K, i) <# LR×C(K, j) if and only if i < j. Then we can calculate the novelty

of LR×C(K, i) with respect to the union of all the sets that precede it in the order:

LR×C(K, 1 → i− 1) for i ≥ 1; define LR×C(K, 1 → 0) as the empty set. Like how we

incorporated quality into our calculations for diversity, we can incorporate what we

did for diversity into novelty. In order to calculate novelty, we get the set of paths

D(LR×C(K, i)) as we did for diversity. We also get the set of paths D(LR×C(K, 1 →

i−1)). Note that D(LR×C(K, 1 → i−1)) =
⋃︁i−1

t=1 D(LR×C(K, t)). Then we define the

following: P(LR×C(K, i))
.
= D(LR×C(K, i))−D(LR×C(K, 1 → i− 1)) (we are taking

the set difference of two sets). The set P(LR×C(K, i)) represents all the solution paths

that can achieved in levels with a unique solution that have i constraint pieces but

that are not possible with strictly fewer than i constraint pieces of only type K. In

Figure 3.5, we show the sets P(L2×2(separation, i)) for 1 ≤ i ≤ 4 for the collection

of sets {L2×2(separation, i)}4i=1

separation type

1 2 3 4

Figure 3.5: The diagram shows the sets P(L2×2(separation, i)) for 1 ≤ i ≤ 4.

What do we notice from Figure 3.5? First, we see that with one and two separation

constraints, we are not able to get any unique solution paths. With three separation

constraints, we are able to get two unique solution paths. And with four separation

constraints, we are not able to get any new unique paths.

We note that there are several properties that hold for {P(LR×C(K, i))}tmax
i=1 :

• The path sets are disjoint. That is
⋂︁tmax

i=1 P(LR×C(K, i)) = ∅. This also means

that if we see a solution path p ∈ P(LR×C(K, i)) for some i, then there cannot

exist a number of constraint pieces i′ < i such that p ∈ P(LR×C(K, i′))
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• The size of the union of path sets cannot be more than P(R,C). That is

|
⋃︁tmax

i=1 P(LR×C(K, i))| ≤ P(R,C).

We now look at grids of size 3 × 3. In Figure 3.6, we plot the cardinalities of

P(LR×C(separation, i)) for 1 ≤ i ≤ 9 where the separation constraint can be either

black or blue. In Figure 3.7, we show it for star constraints (again black and blue).

We say a constraint type K expresses a solution path p with i constraint pieces if

p ∈ P(LR×C(K, i)), and we say a solution path p is expressible if p ∈ P(LR×C(K, i))

for some 1 ≤ i ≤ RC. We see the following:

• The star constraint is not very expressive by itself—meaning that it cannot

express many solution paths. A level with only star constraints can only have

a unique solution starting with eight pieces, and even then it is only able to

express eight different paths with 8 pieces on the grid.

• The separation constraint is more expressive than the star constraint. Although

is not shown in the plots because we only show the cardinalities of the path sets,

every path expressible by the star constraint with eight pieces is also expressible

with the separation constraint type with strictly fewer pieces.
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Figure 3.6: The cardinalities of P(L3×3(separation, i)) for 1 ≤ i ≤ 9. The separation
constraint can be either black or blue.
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Figure 3.7: The cardinalities of P(L3×3(star, i)) for 1 ≤ i ≤ 9. The star constraint
can be either black or blue.

We define the orthogonality of a constraint type K by itself on a R×C grid as the

following:
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|
⋃︁tmax

i=1 P(LR×C(K, i))|
P(R,C)

This is equivalent to the summation of the y components in Figure 3.6 and Figure

3.7.

We have shown how we can define orthogonality by specifying quality, diversity

and novelty. Novelty relies on diversity, which itself relies on quality.

Questions:

Why use EPCG to generate levels? One of the benefits of using EPCG is that we

are guaranteed to not miss any level. For example, because we are using EPCG we

know that if we are able to express a solution path p with five constraint pieces of a

single constraint type then there is no level that has the same unique solution path

as path p. This is because we exhaustively generated all levels with fewer than five

pieces of the same, single constraint type. In addition, because we use EPCG, we are

not going to miss a level that might contribute to the orthogonality of the constraint

type.

3.2 Analyzing Two Object Types Together

In the previous section, we showed how we can analyze an object type by itself in

levels in terms of orthogonality. In this section, we examine how we can analyze how

two object types work together in levels in terms of orthogonality.

Suppose we have some game domain D with n object types K = {K1, K2, . . . , Kn},

and let L be the possibly infinite set of levels that can be created using object types

K. We will use the notation L(K,K ′) to refer to the possibly infinite set of levels

that contain only objects of type K and K ′, such that K,K ′ ∈ K. We use the

notation LR×C(K,K ′, i) to refer the set of all levels that are played on a grid of size

R × C that contain exactly i constraint pieces from the set of constraints Con(K) ∪
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Con(K ′). Note that for each level in the set, there is a single start location on

the bottom-left and a single end location at the top-right. As an example, the set

L2×2(separation, star, 4) would contain all levels that contain a total of exactly four

separation and star constraint pieces. Let LR×C(K,K ′, i → j) refer to the following

union of sets: ∪j
t=iLR×C(K,K ′, t).

We will show how we can use a notion of orthogonality to analyze L(K,K ′). We use

ideas of quality and diversity that we discussed in the previous section. That means

we are going to only look at levels with a unique solution, and we will examine the

diversity of a set of levels by looking at what solution paths are uniquely expressible

by levels in the set. More specifically, we have the following (where S(L) is the set of

solutions to the level L):

D(LR×C(K,K ′, i))
.
= {S(L) : L ∈ quality(LR×C(K,K ′, i))}

We will now discuss how we can define novelty for the case when we have two

types of objects in levels. Suppose we have the following three collections of sets of

levels: {LR×C(K,K ′, i)}tmax
i=1 , {LR×C(K, i)}tmax

i=1 , and {LR×C(K
′, i)}tmax

i=1 . Furthermore,

suppose we have the following strict partial order < over the union of the three

collections of sets of levels: For all i ≥ 1, we have the following: LR×C(K, i) <

LR×C(K, j), LR×C(K
′, i) < LR×C(K

′, j), and LR×C(K,K ′i) < LR×C(K,K ′, j) if and

only if i < j. In addition, we have that for all i ≥ 1, LR×C(K, i) < LR×C(K,K ′, i)

and LR×C(K
′, i) < LR×C(K,K ′, i).

Then for each set of levels L in the collection of sets {LR×C(K,K ′, i)}tmax
i=1 , we can

determine the novelty of L with respect to all the sets of levels that precede it in the

three collections of sets of levels. We define the following:

E(LR×C(K,K ′, i))
.
= D(LR×C(K,K ′, i))−D(LR×C(K,K ′, 1 → i− 1))

−D(LR×C(K, 1 → i))−D(LR×C(K
′, 1 → i))
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In Figure 3.8, we plot the cardinalities for E(L3×3(separation, star, i)) for 1 ≤

i ≤ 9.
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Figure 3.8: The cardinalities of E(L3×3(separation, star, i)) for 1 ≤ i ≤ 9
.

What does E(LR×C(K,K ′, i)) intuitively measure? Essentially, a path p lies in

E(LR×C(K,K ′, i)) for two reasons:

• The path p does not exist in D(LR×C(K, i)) or D(LR×C(K
′, i)) for any 1 ≤

i ≤ tmax—that is, the path p is only uniquely expressible using both constraint

types K and K ′ together in levels, and not any number of constraint pieces of

type K and K ′ alone. See Figure 3.9 for example levels and paths.

• The path p does exist in D(LR×C(K, i′)) or D(LR×C(K
′, i′)) for some 1 ≤ i′ ≤

tmax but i′ > i—that is, the path p can be more efficiently expressed (i.e. fewer

constraint pieces to get unique solution) using both constraint types K and K ′

together in levels compared only using constraint pieces of type K and K ′ alone

in levels. See Figure 3.10 for example levels and paths.

We define the following for constraint types K and K ′ on a R× C grid:

41



(a) (b) (c)

Figure 3.9: Level (a) only contains separation constraints, while level (b) only contains
star constraints. Level (c) contains both separation and star constraints, and the
unique solution to the level (the dark blue path) is not expressible by any level with
only separation or star constraints alone.

(a) (b) (c)

Figure 3.10: All three levels have the same unique solution path. Level (a) contains
only 5 separation constraint pieces, while level (b) only contains 8 star constraint
pieces. Level (c) contains both separation and star constraints, and is able to the
same unique solution path as the other two levels, but now with only four constraint
pieces.

express(K,K ′)
.
=

|
⋃︁tmax

i=1 E(LR×C(K,K ′, i))|
P(R,C)

It represents how well the two constraint types work together—either entirely new

solutions are expressible or they can be expressed with fewer pieces. When the ex-

isting game has only a single constraint type K, and we add K ′, then we define the

orthogonality to be the same as express(K,K ′).

3.3 Complete Orthogonality Function

In the previous sections, we defined what orthogonality is when there are no constraint

types and a single, new constraint type is added, and we defined what orthogonality
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K A set of object types

K ∈ K An object type

express(K,K ′) How well object types K and K ′ work

together compared to by themselves

D(·) A set of paths

Table 3.2: Table of Notation for Orthogonality

is when there is a single constraint type and a single new object type is added. We

now examine the more general case where there are n existing constraint types, and

a single new object type is added to the game. Suppose we have some game domain

D with n object types K = {K1, K2, . . . , Kn}, and let L be the possibly infinite set of

levels that can be created using object types K. Suppose we add a new object type

K∗ to the game domain D.

We consider how three object types interact together in levels. Suppose we have

three object types K, K ′ and K ′′, we can want to understand if K ′ and K interact

differently from K ′ and K ′′. We define the following:

d((K ′, K), (K ′, K ′′))
.
=

⃓⃓ tmax⋃︂
i=1

D(LR×C(K
′, K, i))−D(LR×C(K

′, K, 1 → i− 1))

−D(LR×C(K
′, K ′′, 1 → i))

⃓⃓
/P(R,C)

Notice that this very similar to how express(K,K ′) is defined; it is high if either

new paths can be expressed or if paths can be expressed more efficiently.

We define the orthogonality of object types K∗ and K ′ as, where K is a set of other

object types:

o(K∗, K
′,K) = express(K∗, K

′) ∗ diff(K∗, K
′,K)

where diff(K,K ′,K) = minK′′∈K−K′ d((K ′, K), (K ′, K ′′))
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The orthogonality of a new object type K∗ and a set of existing object types K is

the average of the orthogonality between K∗ and each object type in K:

o(K∗,K) =

∑︁
K′∈K o(K∗, K

′,K)

|K|

We visualize what express(·) and diff(·) are in the below figures. The light blue

cells refer to sets of levels that we are comparing against (all these cells represent sets

of levels with only old object types), and the dark cells are the sets of levels with the

new object type K∗.

Figure 3.11: When calculating orthogonality, we look at how K∗ interacts with each
existing constraint in K and see if the existing object type and K∗ result in new
solution paths not possible with either alone. This diagram is for express(·)

Figure 3.12: When calculating orthogonality, we look at how K∗ interacts with each
existing constraint in K and see if the interaction is unique. This diagram is for
diff(·)

Questions:

Why only look at pairs of object types together in levels? The first reason is that

many levels in The Witness only contain constraint pieces of two types. The second
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reason is that puzzle designers often create levels which contain only two types of

objects.1 The last reason is that it is a simple approach that could be extended

further; we could look at a trio of object types in levels or we could look at multi-sets

of constraints in levels.

3.4 General Definition

In the previous sections, we developed a specific measure of orthogonality for The

Witness. In this section, we discuss a general definition of orthogonality.

Previously, we stated that orthogonality is the answer to the following question:

Compared to the existing game and its levels, does the new object type

add quality, novel and diverse levels in terms of their gameplay?

We restrict our discussion of orthogonality to (single-player) combinatorial games,

in which we examine what happens when we add a new object type to a game

domain. More formally, suppose we have a game domain D with n object types

K = {K1, . . . , Kn} and set of levels L that can be constructed from K and another

game domain D′ with n + 1 object types K′ = {K1, . . . , Kn, K∗} and set of levels L′

such that K ⊆ K′ and L ⊆ L′. Thus, game domains D and D′ are the same except

D′ now has levels that contain the new object type K∗. Note that L and L′ are both

possibly an infinite set of levels—they represent all possible levels that could be cre-

ated for game domains D and D′ respectively. In order to calculate orthogonality, we

need to have finite sets of levels. Suppose that we have the finite sets of levels L ⊆ L

and L′ ⊆ L′, then orthogonality is a function that takes in those two finite sets of

levels and returns a scalar value; the higher the number the higher the orthogonality.

So far, we have not discussed the exact details of what a measure of orthogonality

must calculate.

In general, an orthogonality measure must look at the following:

1https://cwpat.me/misc/puzzle-level-idea-strategies/
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• Quality: Are the levels in each set high quality? Here, quality refers to any

property that can be calculated by just looking at each level by itself, and

not other levels in a set. We could see if the level is solvable, has a unique

solution, has symmetric placement of objects or any other property we might

want to consider. Thus, one design choice that must be made is what levels are

considered quality in a given orthogonality measure.

• Diversity: How different are the levels in each set from each other? Again,

this a design choice that must be made in terms of how exactly levels with be

differentiated from each other.

• Novelty: How different are the sets from each other? Similar to diversity, but

across sets instead of within a set.
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Chapter 4

Experimental Results

In this chapter, we answer a series of questions about the orthogonality measure for

The Witness that we detailed in the previous chapter. Broadly, we examine the

orthogonality measure in the following ways:

• We create a space of constraint types that includes the separation and star

constraint types.

• We examine this space in two ways: (1) we exhaustively evaluate the space

of constraint types in order to understand the space as a whole, and (2) we

examine the constraint type with the highest orthogonality.

• We manually create a curriculum for the constraint type with the highest or-

thogonality, and then perform an expert evaluation with Patrick Traynor, a

puzzle game designer. We also discuss the limitations of our expert evaluation.

• We look at alternative ways to define orthogonality. In particular, we show the

importance of defining orthogonality on the gameplay afforded by constraint

types, rather than the form of a constraint type.

• We examine how we can use the orthogonality measure to understand the ex-

isting constraint types in The Witness.

• Finally, we discuss alternatives to looking at solution paths.
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4.1 Space of Constraint Types

The space of constraint types that we specify in this section generalizes the separation

and star constraint types. Thus, all constraint types in this space have to do with color

and counting. We call a constraint type from this space a generalized constraint

type. Each constraint type in the space is represented as a tuple ⟨ X, Comp, Num

⟩ where X is a non-empty subset of the set {00, 01, 10, 11}, Comp is from the set

{all, None,==,≥}, and Num is from the set {1, 2, None}. Num is None if and only

if Comp is all or None. Each generalized constraint type can have a color, just like

separation and star constraints.

The interpretation of a generalized constraint type ⟨ X, Comp, Num ⟩ is as follows.

Suppose we have a level and a self-avoiding walk that segments the grid of the level

into regions. We will detail what determines whether or not a generalized constraint

piece in a region R is satisfied. Remember that the player has solved a level if all the

constraint pieces in a level are satisfied by the self-avoiding walk. For each generalized

constraint piece c1 in a level within the region R, we look at its relationship to all

other non-empty constraint pieces in the same region R—including itself and other

generalized constraint pieces. In particular, for a generalized constraint piece c1 and

a non-empty constraint piece c2—both from the region R—we see if they have the

same type and the same color. For example, if constraint pieces c1 and c2 have the

same type and color, we associate the pair of constraint pieces with the string 11 and

if they have the same type, but not the same color, then we associate them with the

string 10. We then check if this string is in the set X. We repeat this for all the

other non-empty constraint pieces in the region R. We count the number of times

this occurs within the region R for the generalized constraint piece c1. We denote

this quantity by the term countX(c1, R). We compare countX(c1, R) to Comp and Num.

For example, if Comp is all, then countX(c1, R) must equal the number of non-empty

constraint in R for c1 to be satisfied, and if Comp is == and Num is 2, then countX(c1, R)
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must be equal to 2 for c1 to be satisfied.

The separation constraint type has the tuple ⟨{11, 01, 00}, all, None⟩ and the star

constraint type can be represented as the tuple ⟨{01, 11},==, 2}⟩. We exhaustively

enumerate all possible legal combinations of X, Comp and Num to get the space of

constraint types. The total size of this space of constraint types is 96.

4.2 Evaluating the Space of Constraint Types

Using the enumerated space of constraint types and our orthogonality measure, we

calculated the following orthogonality value for each generalized constraint type K∗:

o(K∗, {separation, star) where every generalized, separation and star constraint can

be of two colors, black and blue, the size of each level is 3× 3, and tmax is 5. It took

roughly two hours to evaluate the orthogonality value for all constraint types in our

space of 96 constraint types using a 2017 Macbook Pro (2.8 GHz Quad-Core Intel

Core i7 with 16GB RAM). We do not believe that it is that important that it took

two hours, because it could have also taken all day, but that is fine since speed of

evaluation is not our main concern when we are using EPCG (although obviously it

should still finish in a reasonable time).

It is useful to analyze the entirety of our space of constraint types. In Table 4.1,

we count the number of different orthogonality numbers we see in our space of 96

constraint types. For example, in the table we can see that almost 60 of the 96

constraint types had an orthogonality of 0. The two highest scoring constraint type

in Table 4.1 both have == 1 in their definition. This would suggest that future

iterations of our system should focus on creating a space of constraint types that

all have to do with the constraint being “alone.” It also suggests that our space of

constraint types is limited, since most constraint types have zero orthogonality.
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Orthogonality Count

0.0 58

0.0006 2

0.0017 1

0.0026 5

0.0031 1

0.0035 8

0.0043 10

0.0046 4

0.0064 4

0.0078 1

0.0099 1

0.013 1

Table 4.1: The count of constraint types in our space of constraint types with a given
orthogonality.

4.3 Most Orthogonal Constraint Type

The optimal new constraint type from our space of constraint types is the following:

a new constraint piece in a region must be unique, meaning that no other constraint

piece in the same region can share its color or type. The tuple representation of the

new constraint type is ⟨{01, 10, 11},==, 1⟩. We call this constraint type the singleton

constraint type, and represent it visually as a hexagon. The singleton constraint type

is able to express solution paths that are not possible with the star or separation

constraint, either alone or together. Note however that this does not mean that these

solution paths are entirely new; instead, they come from being more efficient—that

is, it requires fewer pieces in a level to get the solution path as a unique solution to a

level. Specifically, the singleton and separation constraints with five pieces on the grid

can express 8 new solution paths more efficiently. The singleton and star constraints
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with five pieces on the grid can express 16 new solutions paths more efficiently. The

new solution paths look similar to solution path 56 shown in Figure 4.1: there is one

large region with smaller regions of size 1 or 2.

Figure 4.1: All levels with five singleton and star constraints that have a unique
solution that is solution path 56.

Figure 4.2: Solution path 56 is expressible by the tetris and triangle constraints with
only four constraint pieces in either case.

We note that the singleton constraint type combines in a similar way with both

the star and separation constraint types, with the new solutions expressible with the

separation constraint type being a subset of those expressible with the star constraint
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type. This may suggest that in levels with the singleton constraint type, that the

other constraint types are not equally contributing to the unique solution path, and

that instead the solution path is mostly determined by the singleton constraint types.

We can see this in Figure 4.1, where for each level, there is only two star constraints

and both of them have the same color. This means that we know they must be in

the same region. For the separation and singleton constraint types, we often see the

same thing: new solution paths can be expressed with levels where each separation

constraint is a single color. However, we later show in our expert evaluation that

we can create interesting levels with combinations of object types for hand-designed

levels.

In addition, we find that the triangle and tetris constraint types can represent the

same unique solution paths as the singleton constraint type can with the separation

and star constraint types, but more efficiently—that is, with less constraint pieces in

a level (see Figure 4.2).

4.4 Expert Evaluation

In the previous section, we discussed the object type with the highest orthogonality,

the single constraint type. We want to understand if this constraint type could be

added to The Witness, and if the singleton constraint type is interesting. There is

no reason to believe that just because the singleton constraint type had the highest

orthogonality that it should be interesting. In order to answer these questions, we

performed an expert evaluation with Patrick Traynor, a game designer who created

the puzzle game Patrick’s Parabox, which released on March 29, 2022 and as of

February 2024 has over 2,000 reviews with 99% being positive. We manually designed

a curriculum of levels that introduced the singleton constraint, along with how it

combines with the separation and star constraints, and presented it to Traynor to

play (see the appendix for the curriculum). A curriculum of levels in our case is a

finite chain of levels where upon the completion of a level the player moves onto the
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single next level. The curriculum was designed informally based on our intuitions

about what makes a good curriculum, and before we sent the puzzles to Traynor, we

tested the levels ourselves. In general, we started with what we thought were easy

levels and increased the perceived difficulty as the curriculum progressed, with the

hardest levels being at the end. We created a website that allowed Traynor to play

the levels one by one. There was no way to skip levels, and Traynor was required to

finish the current level to get the next level. Traynor was not told how the singleton

constraint type works; but he was able to figure this out by himself. Traynor recorded

himself playing the curriculum which he sent to us. It took him roughly 20 minutes

to complete the curriculum, and he verbalized his thinking while he played. We asked

the question: “Do you think the new constraint adds something new to the game?”

He also gave a written response.

Traynor enjoyed the puzzles, and found that they would fit well in The Wit-

ness. Specifically, he stated that “the combination puzzles with hexagon+squares

and hexagon+stars are both good, and promising!”

However, he believed that the singleton constraint was too close to the star con-

straint, since they both have to do with group counting (2 for star, and 1 for singleton),

and they both interact with the color of constraints of different types. Traynor states

that “if we were actually making The Witness here, I think there would be a consid-

eration to maybe cut either the star or the hexagon.” We believe the issue is because

of our limited space of constraint types, which we derived by generalizing the star

and separation constraints. Future work could look at how to support designers in

creating large object type spaces that cover many object types.

Limitations of Expert Evaluation

We discuss limitations of our expert evaluation. Our expert evaluation had Patrick

Traynor, a game designer, play a hand-crafted curriculum of levels. However, there

are some problems with this form of evaluation. The supervisor of this thesis knows
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Traynor, which means that his feedback may not be fully truthful. In addition, we

only had a single expert evaluate our singleton constraint. It would be beneficial to

have more people play our curriculum, especially puzzle game designers or people

who play a lot of puzzle games. Also, it is not clear whether or not the issues

Traynor had with the singleton constraint could be solved by giving a different and

perhaps improved curriculum of levels. Also, it would be beneficial to try to create

a curriculum of levels for a constraint type with low, but non-zero, orthogonality so

we could compare the experiences of the low orthogonality constraint type and the

singleton constraint type.

4.5 Orthogonality Function using Form of Con-

straint Types

An important question that could be asked is why we do not define orthogonality

on the form of the constraint types; that is, in terms of the representation of the

constraint types as a tuple ⟨·, ·, ·⟩. We could do this for the space of generalized

constraint types we created for The Witness. Let oform(K∗,K) = minK′∈Kd(K∗, K
′)

where d is defined on the representation of K as a tuple ⟨X, Comp, Num⟩ (we calculate

the fraction of elements that two generalized constraint type tuples share). For the

following examples and results, we assume K consists of the separation and star

constraints.

Defining orthogonality in terms of the form of constraint types is problematic

for two reasons. Firstly, there may be multiple way to write down a generalized

constraint type as a tuple. For example, the separation constraint can be written as

⟨{11, 01, 00}, all, None⟩, but it can also be written as ⟨{10}, None, None⟩. Even though

the constraint type tuples are the same in terms of its how they would work in a level,

there is non-zero orthogonality. Secondly, there may be constraint types that are dif-

ferent from the existing constraint types in terms of their form, but the constraint

type itself is undesirable. For example, the constraint ⟨{11, 01, 00, 10}, None, None⟩
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can never be satisfied, and thus is an undesirable object type, but defining orthogo-

nality in terms of the form of a mechanic would give it a non-zero orthogonality. In

Table 4.2 , we show how many constraint types have a specific orthogonality. For

example, 2 constraint types had an orthogonality of 0 (the separation and star con-

straint, defined as ⟨{11, 01, 00}, all, None⟩ and ⟨{01, 11},==, 2⟩ respectively). From

the graph, we can see that using this form measure of orthogonality results in all

object types, except the two object types representing the star and separation, hav-

ing non-zero orthogonality. However, as we previously stated, there should be more

object types with an orthogonality of 0. The constraint type ⟨{11, 01, 00, 10}, >=, 1⟩

has an orthogonality of 1, but it represents a constraint type which is always satisfied.

Orthogonality 0 1/3 2/3 1

Count 2 33 47 14

Table 4.2: The count of constraint types in our space of constraint types with a certain
orthogonality. This is for the orthogonality measure based on the tuple representation
of a generalized constraint type.

4.6 Understanding Existing Constraint Types

We explore how orthogonal the existing constraint types are in The Witness are, in

particular, we focus on the separation, star, triangle and tetris constraints. We are

going back to our normal notion of orthogonality, and not the notion of orthogonality

defined in terms of the form of a constraint type.

We examine what the best constraint is by itself—that is, we want to determine

what constraint by itself can express the most unique solution paths. We use the fol-

lowing expressivity (orthogonality when there is only one constraint type) evaluation

function for object type K:

e(K) =
|
⋃︁tmax

i=1 P(LR×C(K, i))|
P(R,C)
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We evaluated the existing constraints on a grid size R = 3 and C = 2, with

tmax = 6. Separation and star constraints are allowed two colors, while triangle is

allowed all parameters, and tetris is allowed to be the first three shapes (1x1 block,

1x2 block, and 2x1 block). We have the following results: e(separation) = 0.21 (it

can express 8/38 solution paths, e(star) = 0, e(triangle) = 0.97 (it can express all

but one solution path uniquely), and e(tetris) = 0.26.

The triangle constraint is very expressive by itself, with all of its unique solu-

tion paths coming from levels with only 2 and 3 constraints in a level. This makes

it difficult to extend triangle constraints with other constraints (that is, o(K,K =

{triangle} will be low). We see this in The Witness itself, where the triangle con-

straint does not get its own area in the game world, and where its interactions with

other constraint types are not exhaustively explored. The star constraint has 0 ex-

pressivity by itself, thus it is a good constraint to combine with other constraints

(it combines well with the separation constraint to give new unique solution paths).

Again, we see this in the game where the star constraint area has levels with the star

and separation constraints, along with the star and tetris constraints. The separation

and tetris constraints have similar expressivity, but the separation constraint has all

of its unique solution paths being expressed with four and five constraints in a level,

while for the tetris constraint, it is instead 1, 2 and 3 constraints in a level.

4.7 Understanding Gameplay Representations

Finally, we show a few circumstances where the unique solution path obscures dif-

ferences in the underlying reasoning done by players. In Figure 4.3, we show two

similar levels with the same unique solution path. Level X is deduced by the fact

that there should be a line between two adjacent separation constraints of different

colors. In Level Y , the unique solution occurs because the star constraints must be

paired together (pairing with the separation constraint will leave a star constraint by

itself), and that you cannot have all three constraints in the same region (since the
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separation constraint is the same color as the star constraints in this level).

X Y

Figure 4.3: Two levels with the same unique solution path. However, the reasoning
is a bit different.

We note that for a 2 × 2 grid, the path sets P2×2(separation, i)

and P2×2(separation, star, i), where the separation and star constraint types can

be black and blue, are the same for all 1 ≤ i ≤ 4. That is, when we consider both

the separation and star constraint types together in levels, we get the same plot as

in Figure 3.5. Put differently, the star and separation constraint types are not more

expressive together in 2×2 levels. However, as we showed in previous examples, when

the grid size increases to 3×3, we are able to a see substantial difference between the

path sets when we consider only the separation constraint type and when we consider

both separation and star constraint types. That is, the star and separation constraint

types are more expressive together in 3×3 levels, while this is not true for 2×2 levels.

Thus, while looking at only paths may ignore the reasoning required to solve a level,

by looking at larger boards, we are able to see differences between constraint types

that we were not able to make on smaller grids.

This brings up a bigger question: what exactly does it mean for two levels to be

different. Clearly, comparing sets of solutions does not consider how players solve

levels. In addition, there can be trivial changes to a level that change the solution

set but do not make a meaningful change to actual gameplay. For example, we could

rotate the level X by 90 degrees and the set of solutions would change, but clearly

the level is practically the same.
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Currently, we attribute the entirety of a level to the set of solutions, but clearly

some actions are made based on only a subset of objects in a level. For example, in

level X in Figure 4.3, the solution starts with right and then up. Conditional on hav-

ing moved right, the player must move up because of the two separation constraints.

We note that methods to explain why certain actions were taken and attribute the

action to a subset of the objects in the level may help researchers understand levels

in a more nuanced manner [37].

An important property that future work can look at is trying to define a way to

compare levels that is cognitively grounded. Farrell has examined this for stories

using a cognitive model, but in general there is a need for methods that allow for

detailed comparisons between puzzle levels [38]. Another important thing to look at

is how integral an object is to a level. In levels with only two object types, we want

both object types to contribute equally to creating the gameplay experience, and not

one type of object largely contributing to the gameplay experience while the other

object types do not do much to contribute to the gameplay experience.
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Chapter 5

Related Work

In this chapter, we cover related work. In particular, we focus on automated game

design and game evaluation.

5.1 Automated Game Design

Automated game design (AGD) refers to the autonomous generation of games, with

most systems focusing on rule (mechanic) generation [39]. Many AGD systems rely

on search using a fitness function to quantify the quality of a game. Browne’s Ludi

system uses evolutionary search to generate two-player combinatorial games [40]. For

single–player games, Nielsen et al. generate games for the Video Game Description

Language (VGDL) [41], but evaluate a game using a randomly generated non-crashing

level [42]. Lim and Harrel generate games in PuzzleScript, a puzzle game engine,

but evaluate the game using pre-authored levels [43]. The Mechanic Miner system

generates mechanics for a puzzle platform game and levels that utilize the generated

mechanic, but the process is sequential: a mechanic is generated using a sample level,

and then once a mechanic is found, levels that use the mechanic are generated [44].

Our work is related to the previous work in that it is also an example of AGD, but the

previous work apply it to other types of games (two-player games) or when they apply

it to single-player games they do not consider multiple levels in their evaluation of a

single mechanic or object type. However, note that work by Guzdial and Riedl does
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consider multiple levels in their evaluation, but not using a notion of orthogonality

[45].

All the previously mentioned AGD systems rely on a fitness function to guide the

search process, but not all AGD systems work in this manner. Some systems rely on

designers sculpting a space of games using constraints. Smith and Mateas generate

rules in their game Variations Forever using answer-set programming (ASP) to con-

strain a space of mini-games [46]. Zook and Riedl created a system designers can use

to prototype game mechanics from a variety of genres that meet design requirements

and playability requirements [47]. Their system could be used to evaluate a game

mechanic on a set of pre-authored levels, but their system itself does not integrate

level generation as our orthogonality measure does.

Some systems do not generate games or game mechanics, but instead focus on

refining a game or generating variations on a game. Isaksen et al. generate variants

of the game Flappy Bird that play differently as possible [48]. Although we generate

a new mechanic, it is really a variation on a theme of mechanics.

Finally, we note that previous work has looked at generating game objects. But-

ler et al. generate Mega-man-like bosses that meet design requirements [49], while

Sorochan and Guzdial use search to generate game units in a real-time strategy game

[50]. Unlike the previous work, we generate object types and their mechanics for a

combinatorial game.

Cicero is a system built to help designers create games in VGDL [51], with the

system providing a variety of tools, including Pitako, a recommendation system for

game mechanics [52].

5.2 Game Evaluation

In the PCG community, there has been a need to quantify the quality of games, for

example, for use in AGD systems. Many of these evaluations look at how deep a

game is. Lantz et al. introduce their strategy ladder model, designed in particular
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for two-player games [53]. In their model, they look at how the performance of

optimal strategies change as computational resources increase—that is, they look at

the shape of the resulting graph as a way to determine a game’s depth. A game with

high strategic depth should be easy to learn, but hard to master.

For single-player games, many level evaluations function have been explored—

including difficulty evaluations [54] and game-specific evaluations [55]. In addition,

there exist measures of strategic depth for single-player games [56, 57], but these

measures equate the depth of a game with the depth of a single level from a game.

There exist attempts to quantify the quality of a space of levels for a single-player

game. Expressive range analysis (ERA) can be used to understand a space of content

[58], in particular, for levels. In ERA, metrics must be defined to evaluate the quality

of each level, which can be visualized using 2D histograms, where the axes are defined

by the different values of the metrics. There has been work on analyzing phase

transitions [59], and deriving maximal values for a space of content. For example, for

9×9 Sudoku it is known that it takes a minimum of 17 clues in a level to have a unique

solution [60]. Orthogonality provides a different way to look at a space of content that

could complement ERA and these methods. Note that our notion of orthogonality

that incorporates novelty, diversity and quality is similar to how researchers evaluate

PCG systems, especially ones that train on data (see plagiarism, self-similarity, and

playability) [61].

Beyond trying to understand single-player combinatorial game domains, there has

been work on trying to understand emergent narratives [62], cellular automata [63],

and spaces of two-player games [64]. We share similar concerns as these researchers

in that we are trying to understand and analyze complex systems where it is not

obvious to designers what things are possible in that space.

Finally, we note that the ideas of orthogonality and the aesthetics of Jonathan

Blow and Marc Ten Bosch have similarities to ideas such as open-endedness [65]

and emergence [66]. In particular, like the other ideas, orthogonality has a focus on
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the ability for a system (a combinatorial game domain) to produce many novel and

interesting things (in our case, levels).
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Chapter 6

Future Work

Our system was made for the The Witness, and the orthogonality evaluation function

is geared towards it. However, future work could look at generalizing our work to other

games. In particular, future work could look at Japanese logic puzzles, for example,

Sudoku. We could look at generating variants of Sudoku. This has been previously

explored by Browne, who generated Ludoku, a simpler variant of Sudoku [67]. Popular

variants of Sudoku often allow initial board configurations that previously did not

have a unique solution to now have a unique solution. For example, a video solving

The Miracle Sudoku by Mitchell Lee has over 3 millions views where the initial board

configuration only has two numbers on it.1 Our current approach looks only at

which object types are in a level, the unique solution path, and the number of non-

empty constraints. For Sudoku, we would need to look at levels in more detail—

that is, we would need to look at the location of object types and the initial board

configuration (the level itself). We could also extend Sudoku by coming up with new

variants that place new entities in the initial level configuration (for example, with

the thermometers constraint).

We could also extend the work to games like Sokoban (and in general to games

written in PuzzleScript). However, unlike in Japanese logic puzzles and The Witness,

most Sokoban levels do not have a unique solution. Looking at the movement of the

boxes only and not the movement of the person gives fewer solutions, but most levels

1https://www.youtube.com/watch?v=yKf9aUIxdb4&t=400s
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still permit multiple solutions. For Sokoban, we need a way to determine if there

are multiple, qualitatively different solutions to a single level. That is, we want to

characterize a level by the main idea it is trying to get across to players. Approaches

could look at defining a distance function on solutions [68], clustering player solutions

[69], or requiring that certain concepts be thought and that there exist no shortcuts

[70]. Online versions of Sokoban extend the game with new game objects, such as ice

blocks, and extensions of our work could look at generating new types of entities.2

Sokoban is an important game to extend our work on orthogonality, because it is

popular and there are many games similar to it (games in which you are pushing

blocks or other items).

Finally, we note that our notion of orthogonality is based on game objects that

can be placed in levels. However, many mechanics are actions that the player can

take (verbs). We could look at whether or not action mechanics when combined

together interfere with each other (for example, in the game VVVVVV there is a

gravity inversion mechanic, but what would happen to levels if normal jumping was

also allowed).

In this thesis, we have largely discussed puzzle games (while also sometimes dis-

cussing other types of games like platformers). We believe that we could extend the

notion of orthogonality introduced in this thesis by looking towards other types of

games. For example, in genres like role-playing games (RPGs) and immersive sims,

mechanics allow the player to be complete a level or problem in multiple different

ways; the addition of new mechanics opens up new avenues of play. In an RPG,

stealth mechanics encourage the player to take new paths through a level. In this

thesis, we focused entirely on solving the win-condition of a level. But games often

have other objectives that players can choose to optimize for. For example, in Super

Mario Bros., collecting coins is not necessary to completing a level, but it does affect

2See https://www.sokobanonline.com/play/tutorials for an online version of Sokoban that con-
tains new object types not seen in classic Sokoban.
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how the player experiences the game. Further development of orthogonality could

incorporate goals that do not need to be met to solve a level.

We note that orthogonality has to do fundamentally with adding content to a

game so that new gameplay experiences arise. This process of adding novel content

that changes up the gameplay experience of a game is central to live-service games

that continually get updated in order to be fresh. It would be interesting to look at

orthogonality in terms of other things, like characters in a hero shooter or cards in a

digital collectible card game.

Finally, future work could look at building mixed-initiatives systems in which a

computational system and a human designer work together to create orthogonal me-

chanics or explore the orthogonality of some new mechanic.
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Chapter 7

Conclusion

In this thesis, we explored the concept of orthogonality. We showed how it could

be applied to combinatorial puzzle games, in particular The Witness. Using The

Witness, we showed how a measure of orthogonality can be used to analyze a game

and also generate game content. We detailed limitations of our approach and possible

improvements and future work.
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Appendix A: Curriculum

The curriculum of levels presented to Patrick Traynor. The curriculum is ordered from

top left to bottom right. Traynor was not told the rules of the singleton constraint,

and had to learn it from the curriculum. Note that not all levels in the curriculum

have a unique solution.
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