INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600



T N



University of Alberta

PI/OT: A Template Approach to Parallel /O

by

Ian Scott Parsons ©‘

-

A thesis submitted to the Facuity of Graduate Studies and Research in partial fulfillment of

the requirements for the degree of Doctor of Philosophy

Department of Computing Science
Edmonton, Alberta

Fall 1997



i~l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
Otiw OV K1A 0N Oftiwa ON_ K14 oNe
Canada Canada
Your fle Votre référence
Our fie Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électromque.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

droit d’autsur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-230554

Canada



e,

University of Alberta

Library Release Form

Name of Author: Ian Scott Parsons

Title of Thesis: PI/OT: A Template Approach To Parallel I/O
Degree: Doctor of Philosophy

Year this Degree Granted: 1997

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly, or scientific
research purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hereinbefore provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.
b]
%—éﬁ?f/

6703-187 Street
Edmonton, Alberta
Canada

T5T 2N1

VIR, b

"JDaxe



Lk ochaie e SO TR

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled PI/OT: A Template Approach to
Parallel I/O submitted by Ian Scott Parsons in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computing Science.

Jonathan Schaeffér

Duane Szafron

Vo /

Ron Unrau

‘—QA‘*‘-U@_Q%

Janelle Harms

o Clt

Bruce Cockbum

_ Merelhony

Alok N. Choudhary y

s’ 20 /57

7 Dae 7



to Edith



Abstract

Paralle! Input/Output Templates, PV/OT, is a novel, top-down, high-level approach to
parallelizing file I/O. Each parallel file descriptor is annotated with a high-level specifica-
tion, or template, of the expected parallel behaviour. The annotations are external to and
independent of the source code. At run-time, all I/O using a parallel file descriptor adheres
to the semantics of the selected template. By separating the parallel I/O specifications from
the code, a user can quickly change the I/O behaviour without rewriting the code. Tem-
plates can be composed hierarchically to construct complex access patterns.

While other approaches explicitly differentiate between parallel and sequential /O in the
source code, the P/OT model is based on the familiar standard stream I/O (stdio) function-
ality. The current P/OT model contains five templates that can be composed to express
more complicated I/O patterns. A set of attributes for each template provides more ex-
pressibility for these basic template descriptions. The PI/OT model is intended to be imbed-
ded into a parallel programming system (pPS). The Enterprise PPs was used to implement
the P/OT model.

Four sets of experiments test the performance, useability, and composability of these
templates. The first set of experiments examines the performance of this top-down ap-
proach against versions implemented in an existing parallel I/O system (Pious). Two appli-
cations are used. These applications share the same parent-child computational parallelism,
but have different I/O requirements. The first, based on a molecular docking application, is
fine-grained and contains variable-sized objects which in turn contain other variable-size
objects. The other application is a coarse-grained version of disk-based matrix multiplica-

tion. The experiments show that the performance of P/OT is at least as good as PIOUS.



SR ATV TTTIN SRR rpe s r VPR Aty o e b

AR WV e L i

The second set of experiments examines the useability of the PVOT model. The run-time
behaviours of two applications was changed by modifying the parallel specifications with-
out recompiling the applications.

The third set of experiments examines the effect of the complexity of the dynamic seg-
mentation function on performance. The molecular docking application was used. With
sufficient computational granularity, the complexity of the segmentation function does not
have a significant impact on the application.

The fourth set of experiments takes the lessons learned in this work and creates a more
complicated parallel version of the fine-grained docking application that has better perform-
ance than the simpler computational version.

These sample applications demonstrate the benefits of p/OT model, both from the per-

formance and the software engineering points of view.



Acknowledgements
Enterprise is a large team project and very little of this could be accomplished without
the efforts of many graduate students and researchers. I would specifically like to thank
Diego Novillo, Steve MacDonald, Randal Kornelsen, and Paul Iglinski for their contribu-
tions to this project. As well, I would like to thank Steve Moyer for his advice on the PIOUS
implementations and discussions on the test results.

I would like to thank my two supervisors, Jonathan Schaeffer and Duane Szafron for
their guidance and direction, as well, my unofficial supervisor, Ron Unrau, for his con-
structive comments while developing and documenting this research. I wish to thank Rod
Johnson from Instructional Support Services for allowing me access to the undergraduate
laboratory for some of the experimental work. This research was supported by research
grants from NSERC and a grant from IBM Canada.

Finally, to my wife Edith and my three children Matthew, Ellen and Emily: I thank you
for allowing me the freedom and opportunity to go back to university.



Contents

L Intro@UOtion. .cuceaeeeeereiiiiiicrinnrocccoconsrnnncccessssosrssssctcsascsccsssossoscnnsenssssnssse 1
1.1 A Simple Example. eoeeeeeceeseccsemseesecnseneeeanennaeaneann e eanaas 3
1.2 Contributions. ereereroenenaas w7
1.3 DOCUMENT SITUCTUTE. ............eeeeeerreeeermrnseresernreererrocsrsssmssssnsssssnsnsnssssresssnssssssnssosssesnsssnssssnsmnsnns 7
2. The Current State of Parallel I/O........cceiennnoerrintaeeratececcncancrercescsoccasoncsonns 8
2.1 Terminology eeeemeraseeeacaasan s e e s e e es s esne 8
2.2 Parallel I/O Characterization eteemssmeesnesceoneesmsesensanen 10
23 Parallel O INETTACES. .............ooeeeeceereeeerrereeerenrseeneonsransnrssesesssnssssssmssnsssssssenosssannsssnnnsnnsnsnns 11
PG B - (0 1§ L S U 12
P T Y |- B (o T U 12
233 CUBIXIO...........c..e...... eeeeeeeeessesesessseseessssesssssesssscestssssesssessmeereessssesenneennenennenen 13
PN et i . | U 14
2.4 Paralle] File SYSIBIMS. .......ooieeeiieieeieeeeeeeeeeeeeeeetecemeneesssmn e snsseesesrreesenssns e nnseennsasesnnneeernnen 15
2.5 Object-oriented Parallel IO ............ooeueeeoeenoeieeeeeeeeeerereeveeesasneessanessenssasaseaserossnsonassssnemssans 16
2.6 Parallel Programming SYSIEIMS. .......u.uceeeeeereenerencermrremenreeeesssesmensssesrsennsensnssmennseessemansnsnsenssnn 16
2T FOUTISSUES ... oo ieeceeeieeeceeceececeeeeeereernnsrsrasenamsrnrrssssnn s rssssrsssassssnnnnssnns o nnsremnnn s asnnen 18
2.8 Chapter SUIMMAIY ......ccooieieiecenrcanecerrersserreerseessecrssnssrsssassenssnsssssesssensesnsemsmsnommnnnsnssaesncnns 19
3. Parallel /O Model........ccveieeininnneincnceniececcconceserescocesmansrasssasnssssessscscnses 20
3.1 Description of Parallel /O Templates .............. eeemererseeneeesoenseeenenesereaenernnes 20
3.1.1 PROOCOPY «.coemeeencmeneeeeereeeeeeeeecenenas eeeseetessememecesmaseeeemntenneomaaensanoaenennanasnane 21
L2 NEWSPAPET ... eneeeeeeecceeteereeeereeearaesseesee s san s soseesenasanssesaesesmones e msnsesnnasansnnnsannens 21
Bil3 REPOTL ..ot eceeeoeeesemss st esss e ssnsn s saen s bes e assenesssnnnnansnn oo msaonnnenesnnnn 22
il MEOUING. ..ttt e ereeee e eaeae s eeea e e e meeeasas e aeaaeemaae s em e am e emenon s omoonn 22
KT B T RO 23
3.2 Read and WTHIE AUITDULES . .........ooeeeeeeceeeeeee et e e e eee e eeeee e e e e e e smmeese s aem e ne e e meemeemeememneenen 23
3.3 Composing TeMPIALES ......ccccoeemreeeeiceeeeeeieeeeeeeeieesoeeesseeeomeeasessesaseeseoansaeesonsneannsasmnnenanennane 25
34 External INfOIMNAtiON. ........coomvnueneoieieoooteeeeeeteeeeeeeeeeeeeeeeeeee eeeeeeeseaeeeeeemem e enm e s an e em e eoeeaeaemnen 26
3.5 Chapter SUIMIMATY .....ccooomirmreieeeeeereemeeeceeeteeen s someeneeeeeeeemmm s seseasesmanseneesnen e somsmneaeeannenn 30
4. Implementation ..........coiiiirirntninaeececiieeearencncnceeensasensoncsassosessssssnsessreses 31
4.1 P/OT Minimal REQUITEIMENLS ............ueeeeeeeceeeeoeeeeeeceneeeeeoemeneneeeeoeemesesoesosonmesesessennasaemsnnssnene 31
4.2 PI/OT IMPIeMENtAtiON ISSUES......oon.ueeemeneeoeeneeeemeeeeceeeeeeeeeseee e eesssennsen s ssnssnnnsmsenesanennns 32
4.2.1 Determining Order and I/O Managers..............eeeeeeemeememeeeeeeoeeeeeeeeoeeaeeememossmamassssmmaaessmmanseee 34
4.2.2 GrantiNG ACCESS......o..ovriermneeereeeeeomeeeeenseeeeeeameeaeeneeenneeemseeeeesesessmnnsessnsennssnnesnomnsnnenes 36
4.2.3 Creating a Parallel File DeSCTIPIOL. ........ccoooeeeeeemeeemeieeeeeieeeeeeeeesneeseereesosesemamsosesnenneasaesaes 37
4.2.4 Closing a Paralle] File DESCIIPLON.............oooueeeeeremeemeeeeeeeeeeeseeereeeeeesememsnmaeeesesaosmsasonensens 39
4.2.5 Using a Parallel File DESCHPOT .......occeeceeererereiereereeeneeceeeseneereeneseessseessseseneeernsesesnsnns 40
4.3 PI/OT Template Implementation ISSUES. ...........evecreeeeeeeeeeeeeeeaeeeeemaeeeseesesessssssnnnnsssresessssasennnes 43
4.3.1 PhotocopY TEMPIALE...........ccooeveeeiieeeceeeeeeeeeeeeeeeceeeeeeeeeeeeeseeeeeememe s meeeee e mmemnmemanenee 43
4.3.2 GIODAl TEMPIAES ..........eeeeeeceeeeeeeeeceereeeeeeeeeneneseeseseesesmnnsemeemeesesseeemeeemmeessmeessesmmmneeens 43
4.3.3 Segmented TEMPIALES.............veverereeecioieoteeeeeeeeeeeoeoeeeeeaeemaneee e aseassesssssssssssenenessnnnssasseees 43
4 APHOT and ENEIPLISE ..........eeeeeeeeeeeeeeeeeeeeeeeeeeeeeemeneeeeeeeeemem e eeeseeseees e s e eee e e eee e ee e 46
4.4.1 Graph File MOIICAUONS ...........uveneeeeeeooooeeeeeeeeeoeereeeereeessenneseesessssssssssrsssemsnnsesesessssnnenes 47
4.4.2 Static Analysis AQQIUONS. .......o..eeeeemeeeeeeooeeereeeeeeeceeeemneeesenesmeseeeseessesesmnnneaesssnsmnnns 49
443 RUN-GME LIBLAGIES «.oeeeeeeceetteeeeeeeeeeeeeeeeeee et ee e e e e e s e e e 50

4.5 DeAUIOCK PrEVEMHON ...c.eueeeereieieeeeeeeeeeeeeeeeee e eeeeeeeseeaemeess s ees e e e e e e e e s e e e s oo 53



4.5.1 PVOT Deadlock Prevention In EREIPIISE. ........nveemimrieieeminiieorentiireaencniaes st eaeneeaene e 54

4.6 Chapter Summary eeceeeeeeeceeesesseaemeemecasoebesar. rmenbonneberatrranesnnnnn 55
5. PerfOrmMANCE. ...ccoovrieereirrrrrorecnviocsssosssonssscsssscsoscesesresoresscresssassssnsssosonss 56
5.1 FIDC-ERANEA WO eeeoeeeeemeemeemeemeememeoeemssesmsmasassssemasesesseeseeseen s sasasinsesesanssece ....57
5.1.1 Data File Layout eeeesreeseseeesstreneararssreesrreesnnenrtereernenrrnnns 58
5.1.2 Parallel Design Considerations...........coeeveermerrmeeresenreeeosmmeasmmeemerneeeeesasesaeeasssmesconsmassesasens 59
513 Template /O in EDEIPLISE......coocccoooooeeeccertteeneneeretcermererrereseerresseesasrersernrsnsemnsrmnnnnansases 59
5.1.4 Pious Implementation 61
5.1.5 Fine-grained I/O PEMfOIMANCE. ........cocoveeeeumeemmerrrrrinesreerrsosmesessesssemnressmssssnsessmsessssssasnmnnnnas 63
5.2 Coarse-grained I/O . 65
5.2.1 Parallel Design Considerations. eeeemeooecessoeaoecameesemscetrastenebeteresbnrreeesseaa b s rnennrenssran 66
5.2.2 Enterprise Implementation temeeeresrenranesonsanranna e 67
5.2.3 PIOUS IMPIEMENIALION.......oucoeeerreeeoeeeoeeenemneeeerrecensenerenssrores s e s nsssnn s s snessenansenerenanenrrnns 68
5.2.4 Coarse-grained I/O PETfOIMANCE. ...........ucrreeceimmmmierenenrinrieeesreernmsensrsrsre s snnsesresrnnnnsenes 68
5.3 Useability and Composability .............ooeeemuommmomeeeeeeeeemeee et e cce e eere e s ceene e oeene 70
5.3.1 Heterogeneous ChIldren.........cooo . eeveeeroeommcoieineeeceiesresener s eseemes e e remm e srrarar e sens s rrrneaess 70
5.3.2 Heterogeneous Children PerfOrmance. ..........ccooevmuvcrrecommicmcrerureerioneressrersesrsnnrennensssssnssees 73
5.3.3 Extended Pipeline Example ... eemeemsmecmeoeteereeeaeeememeteeaeececesenanboresietsneraae b aresentesasaans 75
5.3.4 Extended Pipeline Performance..........c.e eeeemcmioeciiieremieeeeieenesnsesernrrecneseese s renee s eseenens 78
5.3.5 Useability and Composability SUMMArY........ccc.comemmmmemmmeieieemee e rerieecersceeseeeeee e oenaens 80
5.4 Dynamic SEEMENATION ... ...ou.eeeememeacremceceenonserrsrrosesessnssrressscrsnsnsrsosnssmsnsesemssessrenssesneonsseas 81
5.4.1 Segmentation FUNCHONS ......ocooor e eceecccireceteiciececmer e ereerenseersr e s essersersnnnsesnsoanneenas 81
5.4.2 Dynamic Segmentation Performance. ..........c.voveeuimeeimmenirmreinremecnererenerneesenreieeancnearsneneece 83
5.4.3 Dynamic Segmentation SUMIMATY ...ccoc.cccreeeeeemneomeaecmarcersoresacrmemsarsesrssonsnsnrsrrssssrsnsnssesnns 85
5.5 Complex I/O PatlernS....occ.coennnueeioemeceemceoecenccnacrerestesetnnseensssresersarnsssssssnssnsssesessnnnnrmsnsssanansnes 85
5.5.1 An Additional Segmentation FUNCHON. ......cou.ereeeemiemeeieeeeseeeaoearececrrensnssreeeesassenareesenarnnes 86
5.5.2 Complex /O PerfOIMANCE..........coveeneeemmeromccteesreocnenromcesaseeesesarssnessrsrresssransersrsnsnnsesasses 88
5.5.3 Complex IO SUMMATY ...........ooeiimmartactcnirrisirtsiassrsrsmrnsssrssrsassansnrasnnsssnrsnssmsnassnsnrense 89
5.6 Chapter SUMMATY ....ccvnnmieieeeieeioemeocrscceear e ssreesrsossseresaenessssnesassrbanerarsorssnnrersrssssssnssnsnsses 89
6. CoONCIUSIOMS coouvuierriinnrroiretacsnscsceescscesesccnsssossssccsssssessrsonsrsscssrssssoncsoncns 91
6.1 Extensions and Future ReSearch..........coo oo ouomomoinieciicoiieceircvtcrcerrne e reencres s snbee sanenes 91
6.1.1 Deadlock PTEVENUON -......ooooeeiamermrerenreremcmm e comomceaneecoereneerasman e saeeee st reassennsessmesssesass 92
6.1.2 Static ANalySiS SUPPOTT......cooomeerneieireeenectecterer e e o cereeeoce e serareesaressn s ce s e senenaans s sannes 93
6.1.3 Run-time IMPrOVEMENLS .......oooenierieicereeeeeecteocreeoceeoomeeeneraeneoeaeernearnenrsnseasacrssmsmsrnnsnssnnes 94
6.1.4 Extensions and Future Work SUMMATY........coceceeeeererrrremnnreermeemeeeenereennreneeseeeseseareressneesnens 94
6.2 Contributions.........o.coememmneicreencnnncaece eeeeeeceeemeeeanesneeseneenamseasesasssnnenenn b e narane 94
6.3 SUMIMATY .o cceeeecererereeceesnasenensnsrsnesmnsanesmsomssamsomsonsomssnenneasenassnnesoneaosnesareseen 95
BibliOBraP Y ccueiriiiiiiiiiiirciettiiittiesionectsssorseroracecsnasseassossssasonstonsasesssrrens 95
A. Enterprise Parallel Programming SyStem..........c.ccieieimrecnnniracenrrreriecersnnones 102
A.1 Enterprise Programming MOdEL..........c.cooueoemeermmmeceeecacreeeecneeeanneeeecssmsomteminasssesisssnsoness 102
A.2 Enterprise IMPIEMENtation ...........coovereeermrerrereecmemneeeaoeocenenssmeoacaressemsersesonsenssrsnenmenensnsrsmranse 104
A2 1 TREGraph FRle..............oieeeereieiieeeevereereesrneeeesesessrnensessenassrsmsnnsensessnnsnnrennsnnnmenennas 104
A.2.2 The Precompiler and Static ANalySis ..........ccceeeocmmermemennereeemeremeenmensresenonsemsoresenserenermanens 105
A23 The Run-time LIBraries. ........c.oo...ooeemom i eeeceeeeeceeeeeeeeeneeaesessseseecemnnenasanes 106
B. PIOUS Test APPlICAtion Codes .....ccucuveveerrnenrereercercncrscecsscsscsesssssosonsnansoses 107
B.1 Small-Grained I/O EXample PrOZram..........cccccueememeerieenrmmemremreeererennsscesessessessseessesssesoesssnnen 107
B.2 Coarse-Grained /O EXample................coveeeecennceeeeeeeienreeeeeneeeneeneeesennenssnnesrssnesaseeneessnnnsnsees 109
B.2.1 Source code fOr PATENE.C ........ccocereienereneieeerntiieeeremeeneenearsesnseessnseesasnssnssnssmssonsasnnsnesasanes 109

B.2.2 S0UTTE COAE fOT CRIIA.C ..o.eeeeeeeeeeeeeeeeeeee et ee e eeeee e s eeeaeseemme e e e enemness e asestasenssaesnaaanenaas 112



Tables

Table 5-1 — Elapsed times in seconds for P/OT and PIOUS (PSP, SSP and GSP). PIOUS import and export

times are not included. Sequential user times in seconds were: 1916 (buffered), 1914

(standard stream), and 1932 (IOW-IEVEL). .....onemreeeeeeeemcereeceneemeeroeerreesrersrreeneerrananraens 63
Table 5-2 — Disk-based matrix multiply elapsed times in seconds for 2000 by 2000 matrix of doubles

(reals) using PYOT and PIOUS (input and export times not included). Sequential user times

are 2214 seconds for buffered stream /O, 2352 seconds for stream I/O anJd 2308 seconds for

JOW-IBVEL /O ... oeeeeeeerctecictecsecnncoeeessnsecesosneneassssnserensnsessnosnsnssonssemnnssnosesns 69
Table 5-3 — Elapsed time (seconds) for three different parallel I/O template combinations, three granu-

larity levels of computation, and two replication factors for heterogeneous children exam-

o LU U SO OS 74
Table 54 — Elapsed times for different combinations of parallel /O behaviours and early release using

the computational pattern shown in Figure 5-18a. Sequential user time is 173 seconds...... 78
Table 5-5 — Elapsed times for different combinations of parallel I/O behaviours and early release using

the computational pattern shown in Figure 5-18b. Sequential user time is 173 seconds...... 79
Table 5-6 — Elapsed times for different combinations of parailel I/O behaviours and early release using

the computational pattern shown in Figure 5-18c. Sequential user time is 173 seconds...... 80
Table 5-7 — Elapsed times for different combinations of parallel I/O behaviours and early release using

the computational pattern shown in Figure 5-18d. Sequential user time is 173 seconds...... 80
Table 5-8 — Elapsed time (seconds) using three different segmentation functions, four replication factors

for the Child process, and four computational granularities for the fine-grained /O exam-

2 (- USSR 83
Table 5-9 — Elapsed time in seconds for a more complex computation on a heterogeneous and a homo-

geneous network of workstations. A total of ten processes are allocated to execute the

Child and CEDE fUNCHONS. ......eemceeiemeeeeeeeeeceeteeeeeeemeensoseennassnnanseneemnsnnaemnnnrsenenannn 88




ISR LRI e s e

Figures

Figure I-1 — An example program with sample sequential input and output files...............cc.cccvveneeee.. 4
Figure 1-2 — A parallel version of the example sequential code.............cccoeeeeeurmmmeeeecmereeeerireeennen. 5
Figure 2-1 — Example for CUBIX J/O........cocormmmmreimeeirneiimeieacereencnneenorsseeaoasennacsseessmnseesensnsnnsnnns 14
Figure 3-1 — Parallel I/O behaviour hierarchy. ..........co.eeeoomionniceciceeceecereeee e eee e 21
Figure 3-2 — Sample code for VO attributes. eeromecenrenennesaean 24
Figure 3-3 — CompoSing With PI/OT...........ecureeeeeecmeencemeeeererereecernereesessessssssasssssssssssessesssenee 25
Figure 3-4 — Examples of connection patterns for a pipeline of three process types. .27
Figure 3-5 — Additional IO communication connections needed for synchronization and coordination

of file access for global or segmented parallel /0. ................ccovreecereeenremeeeereeeencnennen. 27

Figure 3-6 — Possible connection patterns using a pipeline of three process types. The character 1
(one) indicates a single instance of a process type while the character n indicates more
than one process instance. The boxed pairs indicate that the contents of the box are rep-

licated as a single unit. eeeeerreeeotasereeeesenereessnrnstenaraenrastn e nanseeranenenens 28
Figure 3-7 — Overview of the P/OT model in a parallel programming system. .............ccocevemeeeeceeen... 29
Figure 4-1 — Standard C stream I/O library function signatures. ............c.cceeeemmeeernnrmeeeeeesenennennnne. 33
Figure 4-2 — Identifying I/O managers and call OFdering. .........ceeeeeemeemoeiieoooeoreeeeeeeeeeeeeeeeeeemeene 34
Figure 4-3 — Two approaches to selecting an I/O Manager..........c.cooeeeeeereeeeeeemveereeveoreoeeemeeeeonennne 35
Figure 4-4 — Granting access using PUOT......... - eeeeereener s en e 36
Figure 4-5 — Three entry points for stream IO .......... oo eeeieioinoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenemeesanen 37
Figure 4-6 — Wrapper code for a parallel fOPen....... ... .coeoeoreeeieemieeiciieieeceeeeeeeeeereereeeeaneenees 38
Figure 4-7 — Two alternative signatures for freOPEN. ......cceeeeeereieereeeeeeeieeeeeeeceeeeeeeeeeeeeeeneeeeenees 38
Figure 4-8 — Wrapper code for parallel fClose. ......ooomoeemmemmmeinnnieeeeeeeeeeeeeeeeeeeeeeeee e 39
Figure 49 — Wrapper code for parallel fread............oo.ooomoiiiiiinrieiecieeeeeceeeeeeeeee e e e 40
Figure 4-10 — Wrapper code for parallel fscanf. eeeemereenreerrernbebrbbbanetareenen s essnenonnraraanerean 41
Figure 4-11 — Wrapper code for paralle] fprintf. ...........ooooiiiiiiieieei oot eeeeane 42
Figure 4-12 — Wrapper code for parallel fSEeK.. ... . ... .ueevmieieomreeoeemomiomeeeeeeeeeeeeeeeeeeeseeeesemesmnmeeeees 42
Figure 4-13 — An example of a PV/OT segmentation fUnCoN. ...........ccoovveeeeieeeeeeeeeeeeereaeeeeraeaannes 44
Figure 4-14 — Another example of a PVOT segmentation function. ...............coeeeceeeeneceeeeeecoveeeenenenes 44
Figure 4-15 — Format of a PI/OT entry for an Enterprise graph file............occceeeveveeeoeemeeeeeeeeeeeeeenen.. 48
Figure 4-16 — An Enterprise graph file with PVOT eXtENSIONS............cooveeeeeeeiereeeeoeeneeeeecoreererenees 48
Figure 4-17 — The signature of an Enterprise parallel fopen function..............cceeeoeeeememeeemeeennen. 50
Figure 4-18 — The different /O events for ENteIprise. ...oceeernvereeenreeeeeeneeeeeeeeeeeeeeeeoeeeeeeoeeeeemmeones 52
Figure 5-1 — Sequential code for fine-grained /O teSt PrOZIAML. ........ccumeiemeeeeeeeeeeeemeeeeeeeeeeeeemeennn 58
Figure 5-2 — Layout of an input data file for the fine-grained I/O experiment. ..............ccccoeeueveeeeenn.. 58
Figure 5-3 -— Modifications to sequential code for ENterprise. ...........coooeeooeeeeeemeeeeeeeeeeeeeeeeeneeens 60
Figure 5-4 — Modifications necessary to the Enterprise graph file for fine-grained U/O........................ 60
Figure 5-5 — An example I/O segmentation function for fine-grained /O test program....................... 61
Figure 5-6 — An example of an /O segmentation function for dynamic output records....................... 61
Figure 5-7 — Sequential source code for matrix multiply main (Parent.c). ............eeeceeeeeemeeeemeeeeeenn. 65
Figure 5-8 — Sequential source code for matrix multiply Child (Child.C).......ceueeemneeerereeenieeeeeenennennes 66
Figure 5-9 — Enterprise code modifications to parallelize disk matrix multiplication.......................... 67
Figure 5-10 — Modifications to the Enterprise graph file for coarse grained I/O exampie. ..................... 68
Figure 5-11 — Heterogeneous children and extended pipeline parallel computation configurations........... 70
Figure 5-12 — Source code for the heterogeneous children example. ............c.ooeeeeueeeeeeeeeeeeeeeeeeenns 71
Figure 5-13 — Four computation configurations used for heterogeneous children example. ................... 72
Figure 5-14 — Source code for the first stage of the three-stage pipeline example, Stagel...................... 76
Figure 5-15 — Source code for the second stage of the three-stage pipeline example, Stagell. ................ 76
Figure 5-16 — Source code for the third stage of the three-stage pipeline example, StagelllL. .................. 77
Figure 5-17 — Stagell asset code modified to check fUtUres. .............oeeeeeeeereeceeeeeeeeeeeeeeeeeeeeeenn 77
Figure 5-18 — Four computation configurations for three stage pipeline example .............cccocoevn......... 78

Figure 5-19 — Segmentation function for fine-grained example that reads the entire record..................... 82



SR A

Figure 5-20 — Segmentation function for fine-grained example that has the size of the record embedded
intothedata file. ..o ettt e e e e e se s e non e eeeenenmnn s 82
Figure 5-21 — Constant segmentation function for fine-grained VO example.......................__............. 83
Figure 5-22 — Elapsed time versus computational granularity using constant (a), full read (b), and em-
bedded read (c) segmentation for fine-grained I/O example at four replication levels.
Elapsed time versus computation granularity of the three segmentation functions using a

replication factor of fifteen (d).........eueemoi oot e e 84
Figure 5-23 — Source code for the CEDE function for the more complex I/O example based on the fine-
grained VO example. 86
Figure 5-24 — The computational parallelisin for original (a) and more complex (b) version of the fine-
grained /O example. .86
Figure 5-25 — Modified source code for the Child function reflecting the changes necessary for the more
complex fine-grained I/O example...........oooomeooooo i ee e e e oac e eaeeen 87
Figure 5-26 — Segmentation function for CEDE parallel /O requirements. .........coce.ceereecrnecneemeecencens 87
Figure A-1 — Annotated graph file entry for oOn€ asset .........ccooe ouennereieieimeeeicieecececceeceeeeenenens 104

Figure A-2 — An example graph file. ........oco.oireeimire e eecceeeeeece e eeeeee e e e narnees 105



Chapter 1

1. Introduction

The development of parallel applications has focused on computational parallelism.
Consequently, the corresponding growth in parallel input and output (/O) implementation
techniques has not kept pace. If an application is to perform parallel I/O operations, a user
must explicitly differentiate between parallel and sequential I/O streams at the source code
level, and often import or export files into or from specialized file systems. As well, the
computational parallelism may have to be re-implemented to work with the communication
system used to build the parallel I/O library. This results in a lack of portability between
different operating systems, architectures, and even changes in the physical layout of the
files.

Ideally, all of this should not be of concern to the user. A user would type in the com-
mand cc -par Mycode.c. The compiler analyses the code and creates the resultant bi-
nary, a.out. When a user runs the application, it adapts to the run-time environment. Al-
though this is not feasible yet, the user can currently specify what needs to be done. With
this information, how the requirements are accomplished can be the concern of the parallel
programming system (PpS) and the physical resources controlled by the various operating
systems. It should be possible to enter the command cc -par WhatIWant Mycode.c to
create a parallel-aware binary file and to get the resuits by entering the command a.out
-par WhatIWant. The parallel behaviour specifications are associated with the What IWwant
parameter.

This dissertation proposes a design for implementing parallel /O requirements using
high-level behavioural specifications (or templates) within the auspices of a parallel pro-
gramming system. One of the advantages of a Pps is to shield a user from the low-level
details of implementing parallel requirements. Several examples of these systems (with
varying degrees of sophistication) can be found in [2, 4, 6, 10, 25, 28, 33, 46, 70, 83].
A pps could use these parallel JO specifications, along with its own model for describing
the parallel computation, to implement the desired parallel behaviour. The Pps integrates all
components for developing, compiling, running, debugging, and evaluating the perform-
ance of a parallel application. That is, the implementation of the parallelism is handled by
the PPs. A user chooses the computational and I/O templates that give the best perform-
ance.

Current approaches to parallel I/O favour the use of parallel I/O libraries. These librar-
ies offer an improvement over implementing the desired functionality using low-level func-
tions offered by operating systems. The parallel I/O requirements are specified using a
package of specially designed parallel /O library calls (typically highly tuned to one or a
few architectures). Usually, these libraries force the user to differentiate between sequen-
tial and parallel /O streams and to specify how the data is to be subdivided, synchronized,
and merged. There are a number of these libraries available that are designed for object-
oriented, data-parallel, and parallel file implementations (for example, [7, 9, 15, 17, 20,
21, 24, 31, 34, 35, 37, 40, 42, 47, 48, 54-56, S8, 59, 63, 66, 75, 79, 82]).

When this library-of-functions approach is taken, it is important to note that the parallel
behaviour is still directly coded into the program by a user. Any changes to the O or the
parallel computation behaviour are reflected by modifications to the code. Thus, something
as simple as integrating a new release of the J/O library could introduce errors. Since a
user’s code is implemented for a particular I/O library, if a decision is made to use another
/O library (possibly due to moving the code to a different system), modification of the



source code is required even though the parallel behaviour has remained the same. As a
side effect of experimenting with different parallel /O access patterns or behaviours. many
lines of code must be rewritten.

An alternative to embedding the parallel behaviour directly into the application is a high-
level abstraction, or template, that separates the parallel behaviour from the code. Tem-
plates are intended to work within the framework of a parallel programming system. Ide-
ally, one would designate an I/O stream as having a specific parallel behaviour and the pps
would correctly parallelize all the sequential I/O calls that use that stream. This abstraction
mechanism is beneficial since:

e Parallel I/O and computational behaviours are encapsulated into an easy to under-

stand set of templates.

e The user specifies what parallelism is needed while the template determines how
the parallel behaviour is implemented. This can result in different solutions for the
same parallel behaviour, depending on the underlying architecture or low-level
software libraries.

Parallel behaviour can be changed with minimal or no changes to the user code.

Because the computational and I/O templates are integrated, optimizations between
the different parallel behaviours are possible at both compile and run time.

e Templates provide a quick first-draft of a solution that can be incrementally refined,
depending on a user's expertise.

¢ Correct parallel behaviour and implementation for the template are guaranteed.
The performance of templates can be comparable to hand-coded solutions.

[ ]

The programmer uses the PPS to produce a parallel application by supplying the sequen-
tial code for the parallel algorithm. The parallelism is described by selecting templates of
predefined parallel behaviours for parallel computation and I/O and associating specific
functions or variables to different templates. The pps stores these templates separate from
the user’s code. The templates and the user’s code are then processed by the PPS to gener-
ate code to perform the parallel behaviour. This machine-generated code is linked with the
necessary run-time support libraries to generate an executable for a specific target architec-
ture. This is repeated if more than one type of architecture is being used (different I/O im-
plementations could be used that are transparent to the program). At run-time, the pPs is
responsible for starting, monitoring, and terminating the parallel application.

For example, consider an application that has one of its I/O descriptors annotated to use
a particular parallel I/O behaviour. The pps analyses the source code for instances of the
parallel file descriptor and modifies any code necessary to ensure the correct parallel VO
semantics (as defined by the template). If a user wishes to change the parallel /O behav-
iour, a different template is specified and the pps regenerates the code to implement the new
behaviour. The strength of this approach is that different parallel /O behaviours are speci-
fied by changing templates — not user code.

Szafron and Schaeffer examined the useability of several parallel programming sys-
tems [73]. They found that using computational templates to create parallel applications is
beneficial. The user code is significantly reduced and the application is up and running
much sooner since the templates are correctly implemented for the selected paraliel behav-
iour. The drawback to templates is that there can be a slight performance penalty (i.e. less
speedup). The work presented in this dissertation extends these results from computational
templates to I/O templates and provides experimental validation.

_ There are two perceived disadvantages to using such a high-level abstraction mecha-
nism. First, there is the loss of direct control by the user since a high-level abstraction is
supposed to shield a user from many of the low-level details. Second, the performance of



Caaas R ST L - -

the application might not be as good as the hand-crafted application since the abstraction
deals with the general rather than the specific details of the problem.

This first point is resolved by creating a base set of templates with user-adjustable at-
tributes that can be composed into more complex behaviours. If more hands-on control is
required, a user can change the attributes of the template (but not the code) to customize the
application. The combination of simple base behaviours and adjustable attributes, coupled
with the ability to be composed to build more intricate behaviours for greater complexity,
provides a rich set of specifications for most parallel applications. The simple program-
ming model, the short time to draft a working application, and the independence from im-
plementation details typically outweigh the restrictions imposed by working within a tem-
plate framework.

The second concem is more serious since, to many people, performance is the only
evaluation metric. While this dissertation primarily addresses the software engineering
benefits of template I/O, the performance of this system is shown to be comparable to
hand-coded, tuned implementations. Since template I/O offers significant software engi-
neering benefits, users should only consider hand-coded solutions if they are convinced
that additional performance gains are possible. The possible performance gains may be
offset by the cost of the additional effort required to implement, debug, and test their cus-
tom solution. An alternative approach for the advanced user could be to tune and modify
the code generated by the PPs since many PPSs use source-to-source translation.

The system proposed in this dissertation is called Parallel Input/Qutput Templates
(pv/oT, pronounced pilot). It introduces a high-level, top-down approach to parallel /O. A
user is able to separate the parallel behaviour from the physical I/O specifications. Changes
to either the parallel computations or the parallel I/O are not embedded in the user’s source
code. A source-to-source translation tool (precompiler) takes the specifications and creates
the necessary modifications to the source code to create the required parallel behaviours. At
run-time, P/OT implements the parallel behaviours. Since P/oT is intended to be integrated
with the parallel computations, optimizations such as prefetching, declustering of data, or
replications of data files can be done dynamically.

The rest of this chapter is as follows: Section 1.1 presents an example that illustrates
some of the complexities of parallelizing I/O. Section 1.2 lists the contributions of this
work to Computing Science. Section 1.3 describes the layout of this thesis.

1.1 A Simple Example

This section presents a simple example that illustrates some of the obstacles fundamen-
tal to parallelizing sequential I/O. The parallel program that is derived in this section is not
an example of how the parallelization would be accomplished using templates. The exam-
ple is intended to show the kind of code a user would need to provide if the parallelization
was done by hand. Alternatively, it shows what kind of code must be generated if tem-
plates are used.

Figure 1-1 shows the sequential C code for this example along with a sample input file
and the corresponding output file. The sequential program opens two files, one for reading
and one for writing. The program reads integers from the input file, and for each integer,
outputs a line to the output file that contains multiple copies of that integer. The input file
consists of a series of ASCII character representations of integers, separated by new-line
characters and terminated by an end-of-file marker. The output file can be viewed as a se-
ries of variable length character records separated by new-line characters.

This example is a simple one but it illustrates that the following basic considerations
must be made when converting from sequential to parallel I/O:

® When a file is opened by multiple processes, an access mechanism must be speci-
fied. The three common access mechanisms are: independent, shared, or se g-



eerym R e e T R

#include <stdio.h>

Parent( int argc, char **argv )
{
FILE *fin, *fout ;
fin = fopen( argvill, *“r* ) ;
fout = fopen( argv(2], "“w* ) ;
while ( ! feof( fin ) )} (
Child( £in, fout ) ;
}
fclose( fin )} ;
fclose( fout ) ;
}

Child( FILE *fin, FILE *fout )

{
int i, num ;
fscanf( fin, “%d”, &num ) ;
for (i =0; i <num; i++ ) {

fporintf( fout, *%d *, num ) ;

}
fprintf( fout, “\n* )

}

Sample input £file:

3
6
12
9

Sequential output file:

333

666666

12 12 12 12 12 12 12 12 12 12 12 12
999999999

Figure 1-1 — An example program with sample sequential input and output files.

mented [23]. Independent access requires that each process have its own inde-
pendent file pointer without any synchronization between processes. Shared ac-
cess means that movement of the file pointer by one process affects the file pointers
of the other processes. Segmented access implies that the processes access mutu-
ally exclusive regions of the file with their own file pointers. The user’s code must
be changed so that the access mechanism is explicit when a file is opened.

® For each parallel access mechanism, there are different criteria for checking the end-
of-file condition and different actions must be taken to close the parallel file. These
differences must be reflected in the user’s code.

® Access synchronization must be specified. For example, to prevent unwanted in-
terleaving of I/O operations by different processes, blocks of I/O statements must
be identified in the code and would be considered as an indivisible or atemic O
transaction. In addition, some synchronization may be necessary between transac-
tions.

® The format of a file may need to be changed to support a particular parallel access
mechanism.




These considerations are not intended to be exhaustive. They are given here to show that
even a simple program requires extensive modifications when its I/O is parallelized. The
goal is to generate these modifications automatically, using parallel I/O templates.

A natural parallelization of the program in Figure 1-1 has the Parent function and mul-
tiple copies of the function named child each executed by its own process. Figure 1-2
shows a parallel version of the code that accomplishes this. A boldface font is used to
identify changes to the code. (For clarity and brevity, the code for spawning remote proc-
esses, marshalling and demarshalling of parameters and explicit process communication is
not shown.) Only two constraints are placed on the parallelization. The input file may only
be read once by the user’s code to avoid the duplication of work. The output of each
Child function may not be interleaved with the output from any other. For example, it is
not necessary for the 3s to be printed before the 6s. However, the 3s must appear on a
separate line from the 6s.

The parent process opens the input and output files using a generic parallel library
function par_fopen. The extra parameters indicate the parallel access mode of the file
(parMode) and the processes that will collectively share this parallel file (parGroup).
These grouped processes that share this parallel file may be composed of subgroups within
some hierarchy. This would reflect the synchronization and coherency restrictions imposed
by the computational parallelism.

The par_feof function uses the parallel access mode set in the par_fopen function to
determine whether the end-of-file condition has been met. For example, if shared file ac-
cess was selected, then par_feof will be true whenever any child process encounters an
end-of-file condition. If independent file access was selected, then par_feof will be true

T EERER R TR TR T TR TR R TR T R AER R A R T

#include <stdio.h>

Parent( int argc, char **argv )
{
par_PILE *fin, *fout ;
fin = par_fopen( argv{l], “r*, parMode, parGroup ) ;
fout = par_fopen( argv(2], *w*, parMode, parGroup ) ;
while ( ! par_feof( fin ) ) (
/’
* Wrapper function to send a message to remote process
* executing Child
*/
par_Child( fin, fout ) ;
}
par_£fclose( fin ) ;
par_£fclose( fout ) ;
}

Child( par_PFILR *fin, par_FILE *fout )
{
int i, num ;
par_fscanf( fin, "%d”, &num ) ;
par_Iostart( fout ) ; /* Start /O transaction */
for ( i = 0; i < mum; i++ )
par_£fprintf( fout, *%4d *, num ) ;
}
par_fprintf( fout, *“\n" ) ;
par_Ioend( fout ) ; /* Stop I/0 transaction */

Figure 1-2 — A parallel version of the example sequential code.




only when the parent's file pointer reaches the end-of-file mark. In this program, that will
never occur since the parent never moves its file pointer. If segmented access is selected,
parent moves its own file pointer forward one segment at a time as it calls its children. In
this program, par_feof will be true when it passes the Iast segment to a child.

The “glue” function, par_child, contacts a remote process to execute the child func-
tions. This function passes the appropriate parallel file descriptors to the remote child
processes. Finally, the par_fclose function closes the file using the correct parallel ac-
cess mode to dispose of the appropriate file pointers. Closing a parallel file blocks the exe-
cution of parent until all outstanding child processes have finished with the file.

The fundamental problem of parallel I/O programming is that multiple processes share a
common resource. One of the consequences of this is that a user cannot assume a consis-
tent I/O state between successive operations unless accesses are synchronized. Even using
a parallel /O library, a series of output operations would be interleaved unless the I/O L-
brary is informed that a succession of I/O actions are to be done as one transaction. The
output operations in the child function are a perfect example of this situation since the user
wants all of the 3s to be output together on a line with all of the 6s on a different line.
There are four approaches to solving this transaction problem. In each case, the assump-
tion is made that a single parallel /O operation is atomic and it is necessary to build these
into larger atomic transactions.

In the first approach, each line is printed in a single /O statement. However, since the
number of output operations for each line is variable, each /O operation will explicitly
write to a memory buffer each time through the for loop and then explicitly write the buffer
to the file at the end of the loop. That is, each process prints to a buffer using sprintf in-
side the loop (advancing the start of the buffer pointer over the previous /O statement) and
then put the memory buffer to disk using fprint£ outside the loop to write the entire line.

In the second approach, an atomic block of output operations is explicitly identified to
the parallel I/O system. This choice is presented in Figure 1-2 by the par_rostart and
par_IOend functions around the atomic I/O operation.

In the third approach, each remote process gets a block of the file to which it has exclu-
sive access. Each process can then concurrently write its output without fear of interfer-
ence. However, this approach is complicated if variable-length output records are needed,
unless the block size can be easily determined in advance of using the block (either by static
analysis or dynamically).

In the fourth approach, each remote process writes to a local scratch file; after the trans-
action is finished, the file contents are returned to the parent to be integrated into the master
file. This approach is similar to the first approach, except that it is intended to be managed
by a parallel I/O system instead of being the explicit responsibility of the user.

In addition to a mechanism to delimit atomic I/O transactions, it is often necessary to
specify the synchronization of /O primitives themselves. For example, the par_fclose
function cannot actually close the file until all chi1d functions have finished with the file.
Code must be written in the par_fclose function to perform this synchronization.

Sometimes the structure of files must be changed to support a parallel access mode.
For example, if segmented access to the input file is desired for the program in Figure 1-2,
then fixed length records would be easiest to support. One way to do this would be to
store the integers in binary format instead of Asc format. Alternately, if ascn format is
necessary, then a fixed number of characters must be specified for each integer. This has
the disadvantage of restricting the range of the input data, say from -999 to 9999, if four
characters are used. Similarly, if segmented access to the output file is used, a fixed size
line for the output file would be required as it is difficult to predetermine the size of a par-



SOMESEATE M LIS e s e

B e A

ticular line or file segment. Consequently, the file would be padded with blank or null
characters.

It is clear that even a very simple program requires extensive modifications to parallelize
the /O operations. As Chapters 3 and 4 will show, templates provide a good mechanism
for generating much of this tedious code automatically, while Chapter 5 demonstrates that
the template approach can provide reasonable performance.

1.2 Contributions

This thesis makes the following research contributions:

e This work demonstrates that parallel /O specifications can be separated from the
sequential functions. That is, P/OT keeps the standard sequential interface used for
invoking any /O operations in the user’s code and describes, independent of the
user’s code, what parallel I/O behaviour(s) are needed. At compile and at run-time
these specifications are used to identify and implement how the parallel behaviours
will interact with the application and its environment.

¢ By separating the I/O and computational parallelism from the sequential code, it is
possible to support optimizations and adaptive behaviours by using the captured
knowledge of all the parallel behaviours, both at compile time and at run-time.

e This work demonstrates that there are significant software engineering benefits to
I/O templates including: less code, rapid prototyping, and fewer errors. As well, it
demonstrates that /O templates can generate code whose performance is compara-
ble to hand-coded parallel I/O.

e By identifying the components that interact between the computational and I/O par-
allel behaviours, this work shows how optimization and run-time characteristics are
handled in a more automatic and efficient manner.

e This work provides a contribution towards automatic parallelization by the success-
ful separation and integration of the various parallel behaviours.

1.3 Document Structure

This chapter outlines the motives for this research and describes the goals and scope of
the thesis. The example (Section 1.1) illustrates the complexity of parallelizing the compu-
tational and I/O aspects of even a simple application. Chapter 2 provides a summary of the
related work used to develop the model presented in this dissertation. Chapter 3 presents
the parallel /O model used for pP/OT. Chapter 4 discusses the implementation of the model
in general terms as well as a specific implementation within the Enterprise parallel pro-
gramming system. Chapter S compares the performance of the Enterprise version of P/or
against the equivalent implementations using PIOUS [57], a low-level parallel I/O system.
This chapter also explores the composability and useability of the templates to construct
more complex I/O patterns with two different parallel computational models. Chapter 6
describes some user and system optimizations and extensions that are possible, along with
future research directions. Finally, Chapter 6 summarizes the contributions of this work
and presents conclusions.



Chapter 2

2. The Current State of Parallel 1/0

This chapter presents a summary of the body of work that was used to inspire the spe-
cific approach to parallel O proposed in this thesis. In Section 2.1, some of the specific
terminology used in this dissertation is defined. The balance of this chapter presents a re-
view of the current state of parallel I/O research as it relates to this dissertation.

The current state of parallel I/O research can be divided into three parts: characteriza-
tion, actual parallel /O systems, and integration with a parallel programming system. A
problem must be characterized and studied before any solutions can be examined. Parallel
I/O systems are derived from the results of characterizing problems. How are these I/O
systems integrated into the computational mechanism? Or, are they stand-alone parallel file
systems? If a given system has chosen to ignore the UNIX interface and sequential file
system, what must the user do in order to cross the boundary between parallel and sequen-
tial /O? Parallel I/O solutions need to be integrated into the existing parallel computational
solution. That is, /O and computation must be considered in tandem. How easy is it for a
user to make changes to either the computational or I/O parallelism without making signifi-
cant changes to the other? This is an important question if the system is to react dynami-
cally to changes in the network, processors, and file-systems.

Section 2.1 introduces specific definitions to some of the terms used in this work. De-
pending on the reader’s background, a specific term may have different meanings. The
intent of this section is clarify understanding by providing a single definition. Section 2.2
summarizes the characterization of parallel I/O as well as some attempts to parallelize the
I/O in various real applications. Section 2.3 characterizes the current state of parallel I/O
libraries. Section 2.4 discusses the use of a separate file system to efficiently implement a
desired parallel behaviour. However, utilizing the existing sequential file system by coor-
dinating access may be equally efficient and has the added benefit of not requiring the du-
plication of files or pre- and post-processing of the data files. Section 2.5 examines the
object-oriented approach to parallel I/O. Section 2.6 describes the current state of paraliel
programming systems. The complexity of implementing parallel I/O implies that there must
be cooperation with parallel computational systems. How these existing parallel computa-
tional systems support parallel I/O is examined. Section 2.7 presents four issues for par-
allel I/O. Finally, Section 2.8 provides a summary of this chapter.

2.1 Terminology

Templates have been used to express parallelism in many parallel programming systems
(pps). For example, templates have been used to express the computational parallelism in
Enterprise [70], HeNCE [5], and P°L [3] and to define data parallelism in High Perform-
ance Fortran (HPF) [41]. Templates are pre-defined behaviours with a well-defined inter-
face that allow the user to express to the pPs what is needed while the pps can determine
how to implement the behaviours. Typically, templates are used to express simple behav-
iours that can often be composed to represent the complex behaviours of an application.
The well-defined interface allows the PPS to interact with the different templates to deter-
mine how exactly the complex behaviour is implemented.

Parallel templates should not be confused with C++ templates. Although TPIE [82] and
Mentat [33] use C++ templates to express parallel behaviours, in this thesis, templates do
not imply a C++ language binding unless explicitly noted.



D Al Pt e ST o

I/O and computations are inextricably tied in an application. The traditional view of the
temporal ordering of data input, computation, and data output must still be respected when
entering the parallel domain. This ordering may be necessary for program correctness. To
a user, the order in which statements are executed often determines whether the program
performs correctly. If the I/O operations in a parallel program must occur in exactly the
same order as the equivalent sequential program, the I/O is defined to be in sequential or-
der.

However, in parallel programs, users may specify several levels of acceptable behav-
iour depending on the application’s requirements. These levels are due to the degree of
concurrency now available to the application. Recall the example program given in Sec-
tion 1.1. The sequential version of the program opened an input and an output file, then
repeatedly read in integers and output variable length character strings until the input file
was exhausted (EOF was reached). When the application was parallelized, one of the con-
straints was that the entire output line for a given input was to be considered as one atomic
I/O operation even though muitiple I/O operations were needed to create it (the for loop).
However, the order of the lines themselves was not important. In this case, the sequential
ordering was relaxed to a serialized order in which atomic blocks could be output in an ar-
bitrary order.

The input file had the constraint that the data must be read once, regardless of how
many processes accessed the file. By segmenting the file, many processes could independ-
ently read different parts of the input file concurrently. Such input is called chaotic as no
process ordering is needed to access a file segment.

All of these input and output access patterns are correct according to the user con-
straints. However, the implementation of these patterns is complicated by the computa-
tional parallelism and the run-time environment. For example, the number of cooperating
processes and the physical location of the data files will affect the overall performance.
From a parallel /O viewpoint, the access patterns (chaotic, serial, and sequential) can be
viewed as a level of “correctness” since they define progressive restrictions on /O behav-
iour.

Sequential correctness is the most restrictive access pattern with /O operations pro-
ceeding in the same order as the sequential application. Significant synchronization is re-
quired, with a corresponding reduction in concurrency. Serial correctness implies that
there are blocks of work to be done but that the order of the blocks is not important. How-
ever, each block of work has its own internal view of correctness that is irrelevant outside
the block. For example, some blocks may be sequential and others might be serialized.
The chaotic level is a complete relaxation of ordering where the program executes with
minimal (if any) synchronization.

Regardless of the level of correctness, multiple concurrently executing processes re-
quire a user (or some intelligent agent) to implement synchronization mechanisms to ensure
correct parallel behaviour. Example mechanisms are: barriers to ensure all processes
complete a certain task; rendezvous to coordinate senders and receivers; and sema-
phores to indicate exclusive access. The user is responsible for specifying the desired
parallel behaviour and the level of correctness for the application. However, the PPS is re-
sponsible for implementing the synchronization. The pps resolves the different parallel re-
quirements of the application to produce an overall parallel behaviour. These requirements
include the computation, the I/O, and any global or shared memory.

From a parallel VO perspective, there are two aspects to an application’s parallel be-
haviour — static and dynamic. The static (or compile-time) component identifies all possi-
ble cases where a parallel file pointer is used, determines which virtual processes share the
file, and resolves the boundaries defining a given I/O transaction. The dynamic (or run-
time) component decides which physical processes share the parallel file, how much opti-



mization (for example, prefetching or caching) can be done, and exactly how much of the
file is shared, locked, or modified.

Computational parallelism has an effect on the I/O behaviours. This can be seen in the
simple case where an application stays in a loop that inputs data, performs a computation
and outputs data until some exit condition is met. If the loop is parallelized to use concur-
rent processes, a user may want to avoid reading the same input data more than once and
may demand no interleaving of output lines. Synchronization and coordination of the input
and output streams are needed. If an application splits a computation into several parts all
running concurrently, the layout of the data in the file may require the user to impose barri-
ers to prevent the application from reading or writing to the wrong part of the file.

Changing the parallelization behaviour of the I/O can also affect the efficiency of the
computational parallelization. Whether these effects are positive or negative, they cannot be
ignored. If the parallelization details can be separated from the computational requirements,
the parallel details can be separated from the sequential I/O calls. The overall motive is to
ensure that positive results are possible.

2.2 Parallel I/0 Characterization

The basic types of parallel /O are still the same as when Crockett [23] characterized
them — global, segmented, and independent. However, optimizations for specific archi-
tectures and algorithms can be used to create specialized solutions (for example, strided in-
terfaces, and disk striping). Nevertheless, integration of the parallel computation, run-time
support libraries, architecture, and network characteristics are essential to provide a good
general parallel /O solution. A clearer understanding of these relationships permits the
programmer to create efficient parallel applications.

Various papers have discussed the optimization of an application’s /O. Most of these
papers concentrate on specialized architectures (such as Hypercube, CM-5, and SP-2) and
their associated custom I/O software. The network configuration is largely ignored except
to note that it should be as fast as possible, dedicated only to the application, and that fully
connected processors are desirable. The capacity and speed of the communication network
are perhaps the dominant considerations in determining the best solution for a given appli-
cation. That is, a slower network solution can trade the speed of locally cached data files
against the complexity of ensuring cache coherency. Alternatively, a large number of con-
current processes sharing access to a given file can make the cache coherency solution too
expensive.

I/O optimization can be approached from several directions. One way is to examine
traces of “real” applications running on existing systems [22, 60, 67, 76, 77]. From these
traces, a file system designed to optimize parallel I/O can be developed or tuned for the
given system and application suite. Another approach is to create a set of test applications
to characterize the best I/O configuration for a given machine [32]. The user can then en-
gineer the application to take advantage of a particular configuration. A more general ap-
proach takes an algorithm and documents the steps necessary to maximize throughput, irre-
spective of the architectural platform.

There are three problems with these approaches. The first is to get all of the users to
cooperate with the study. If a computational platform allows users to run their applications
concurrently, uncooperative users could contaminate the traces by consuming some of the
platform’s capacity in an unknown fashion. The second is to ensure that there is enough
variety in the applications to draw useful generalizations from the study. The third is to
determine whether the stability of the machine(s) and software available impose constraints
on the potential solutions. Typically, the “best” solution is a compromise between the ex-
isting software and hardware and the amount of the programmer’s time available to develop
an acceptable solution. As well, the run-time environment may indicate that the optimal

10



algorithmic solution with the system under heavy load is not optimal when the system is
lightly loaded.

For example, Nieuwejaar and Kotz [60] studied traces of existing applications on vari-
ous parallel systems. From their data, they determined that regular steps or strides through
data are common. Consequently, they have developed strided and nested-strided inter-
faces [58] which have led to the Galley File System [61] and the disk-directed /O pro-
posal for parallel /O [47]. :

Womble et al. [85] examine the LU decomposition algorithm executing on a Paragon
and an nCube. One of their conclusions is that having background I/O to overlap computa-
tions is an important component of a parallel file system. As well, a partitioned file system
is important for high-performance.

Acharya et al. [1] chronicles the steps needed to parallelize the I/O in four applications
that have overall I/O requirements of between 7SMB and 200GB on an SP-2 with a high-
capacity VO system. Three of the applications were tuned to get much better throughput.
They found that complicated /O interfaces, such as strided I/O requests, were not always
the best answer. The need to modify code, to use local disk storage where possible
(avoiding congestion on the network), and to have the knowledge of future I/O requests
(when to prefetch) are sufficient to give significant improvement to throughput and
speedup.

These four applications were tuned using the Jovian-2 parallel I/O system which, unlike
its predecessor Jovian [7], is a multi-threaded client-server system with a simplified inter-
face similar to the POSIX 1io-1listio interface [43]. This allows muitiple /O requests to
be issued with one call. The rewrite of Jovian was indicated after the collective I/O inter-
face did not work well with real applications.

Different researchers have drawn different conclusions from their characterization ef-
forts. Conclusions differ according to the extent of the modifications to the user’s code
necessary to “simplify” the parallelism and according to the nature of the applications being
parallelized. Simplifications are certainly useful, but at what cost to developing real appli-
cations?

Characterizing well-understood parallel applications and algorithms under controlled
conditions facilitates development of optimization techniques. However, the study of the
/O complexity of a task requires that many components be held constant. For example,
having a homogeneous architecture and network, or generating the parallelism with explicit
knowledge of future requests, is not always possible. Parallel programming systems try to
shield some of this heterogeneity from the user. Can the abstraction techniques used by
these Ppss be utilized by parallel I/O templates?

2.3 Parallel I/0 Interfaces

Parallel I/O interfaces can be roughly divided into two groups: virtual parallel file sys-
tems (which are addressed in this section) or real parallel file systems (Section 2.4). Vir-
tual parallel file-systems reside within the conventional UNIX file system. Within these
divisions, there is the library approach of separate function calls (as discussed here) and the
object-oriented approach (Section 2.5). Many systems leave the user to specify the desired
parallelism and to coordinate the synchronization. This puts the user in the position of en-
coding the /O parallelism directly into the application. Changes to either the computational
or /O parallelism may then require extensive code modifications.

Four representative virtual parallel file systems using this library-of-functions approach
are presented in the following sub-sections. They are PIOUS, MPI-IO, CUBIX, and CHIMP.

11



2.3.1 pious

Parallel Input/OUtput System (pious) [57] provides parallel /O operations for proc-
esses using PVM communication primitives. The basic principles of PIOuS are that it uses an
asynchronous model with independent individual servers, data declustering for scaleable
performance, and network transport and native file system independence to enhance port-
ability. Each client uses a special library of functions to translate file operations into service
requests with the various PIOUS data servers.

PIOUS has a single service coordinator that initiates major system events such as opening
a file by a client. The service coordinator deals with the meta-data and not the actual file
access. Each processor involved in the declustering of the data files has a data server that
acts independent of all others, enhancing scalability. Ideally, the servers access local files
on disks physically connected to the processor, but a network file system does not pose a
problem. The server does not interpret the byte stream, but leaves that up to the user. Se-
quential UNIX files must be imported into the PioUs system before any of the parallel /O
functions can work with the data. Similarly, after the application is finished, the piouUs file
must be exported back to the sequential UNIX file system before processing by non-pious
applications.

The parallel VO operations are done as transactions to provide sequential consistency
for the user. There are two different transaction types: stable and volatile. Stable transac-
tions guarantee that coherency is preserved in the case of a system crash. Volatile transac-
tions do not guarantee coherency if a system crash occurs, but they do provide high per-
formance.

PIOUS is based on a parallel access object, parafile. Each parafile is logically one
file, but it is composed of physically distinct segments. The segments are set at the time of
creation and cannot be changed. The parafile is globally named within the PioUs system.
PIOUS only supports an uninterpreted byte stream. Where the I/O is done in an environment
consisting of heterogeneous computers, the files must be stored in universal data represen-
tation (UDR) format. Work is being done on storing record formats for these types of files.

An VO operation is usually considered as one transaction. For more complicated trans-
actions, the user can explicitly start, end, and abort a transaction composed of multiple /O
operations.

There is a clear separation of parallel and sequential IO in pious. The user must explic-
itly encode all the parallelism into the code. This is consistent with the pvM philosophy of
providing a basic set of tools for the user to construct parallel applications. A drawback to
this library-of-functions approach is that changes to the computational parallelism in the
PVM application are not recognized by PIOUS.

2.3.2 MPI-IO

MPI-IO [20] started as a separate entity from MPI [83] but has since been integrated into
the MPI-2 [53] proposal. The MPI-10 working group decided to provide a complex interface
consisting of more than 45 I/O related functions. This complexity reflects the desire of the
group to keep each function simple and focused on one parallel I/O task. Initially however,
this plethora of choices appears daunting to the user.

The MPI-i0 system supports two kinds of parallel /O operations — independent and
collective. The coordination of a file is limited to the members of the communication group
used to open the file. An independent VO operation does not coordinate with any other
members of the communication group. However, if the user selects a collective I/O opera-
tion, all members of the communication group must participate. The completion of the call
by one process does not mean all processes have started or completed the call. Each proc-
ess is free to intermix individual or collective /O operations.

12



o A A A A A A A AL bt A A adehdadn b e A A

The MPI-[O system maintains two file pointers. One file pointer is local to the process.
The other is global and is shared between all members of the communication group. There
is a collection of /O routines which use the shared file pointer. Use of the shared file
pointer leads to the serialization of multiple calls with non-deterministic results.

In MPI-10, the contents of a file are specified by an MpI derived datatype — an etype
list. The etype list is a description of the fields of data stored at specified offsets. Thus,
“holes” in the data stream are possible. When opening a file, the user specifies an absolute
displacement in bytes from the beginning of the file. Subsequent access is defined by the
two etype lists: filetype and buftype. The filetype describes the disk layout of the
file either partly or completely. The buftype list describes the layout in the application’s
memory buffer for each read and write operation. The displacement, filetype, and
etype can be changed later to access different parts of the file. This may appear confusing,
but it makes sense from a parallel programming viewpoint. A user defines different /O
behaviours or data views within the code. There is no support for the concept of transac-
tions in MPI-I0. Each /O function is considered atomic. A developer is expected to use the
general MPI system to synchronize if an I/O operation takes more than one function to com-
plete. It is considered an error if a file is opened for shared or collective operations by in-
dividual processes using different disk layouts.

At the time of writing, there are two alpha releases' of MPI-10 but they are incomplete
and are based on earlier releases of the design document. It is not clear when a more robust
and complete version of MpI-10 will be released, especially since it is now being integrated
with MpI-2.

The main drawback of MPI-O is that it is attempting to create a standard that encom-
passes C, C++, FORTRAN, and FORTRAN 90 language bindings. Each of these lan-
guages approach VO differently. C views I/O as a stream of bytes and imposes structure
from within the application. FORTRAN has fixed or random sized records. C++ (object-
oriented) has each object interpret a stream of bytes. Normally, complex objects tell their
sub-objects to read in data from the disk. This leads to the I/O being distributed throughout
the code and having finer granularity. By trying to create a standard for all, it is likely that
only a common unsatisfactory subset will emerge. It is not clear that leading research by
developing a standard is the best approach at this point. Clearly, a standard will be useful
— eventually. However, this area of research is still in a state of flux and standards at this
time would likely inhibit the introduction of alternate solutions.

2.3.3 cusix /O

The cuBix IO model [29, 69] defines two types of streams. The first is the traditional
single stream mode while the second addresses the concurrency found in parallel applica-
tions. The user can explicitly switch a file stream between single and multiple mode.
The cuBix model is based on loose synchronicity and rank ordering of the processors.
This ranking provides an access ordering to the file. There are two access methods. In
single mode, all clients execute the same file function with identical data and only one ar-
bitrarily selected client’s data is transferred. The multiple mode occurs when all clients
execute the same file function with differing amounts of data. The order of transfer to or
from the file is determined by the node identifier ranking (lowest to highest).

One limitation of the cuix /O model is that all processes must execute the same /O
functions at the same time and block until a lower ranked node has released the stream to
proceed. Reordering of the data file may be required. The example shown in Figure 2-1
illustrates this point.

' IBM: hutp://www research.ibm.com/people/p/prost/sections/mpiio.html and
NAS: http:/flovelace.nas.nasa.gov/MPI-IO/pmpio/pmpio.html.

13



ParFunc( ) Seguential Parallel
{ (4 processes)

int i, 3 ; i 5 i h]

scanf( *%d~, &i ) ; 1 2 1 5

scanf( “%d~, &j ) : 3 4 2 6

} 5 6 3 7

7 8 4 8

Input: 12345678
Figure 2-1 — Example for cusix I/O.

In this example, the function, ParFunc, is replicated four times (i.e. there are four
processors executing ParFunc concurrently). In the sequential version, this function is
called four times. The table shows the values of the variables i and j, depending on
whether the function is run concurrently using cUBIX I/O or not. All four processes execute
the first scanf and, once done, all four do the second scanf. To get sequential results in
the parallel version either the data file must be reorganized to reflect the parallelism, or the
two read statements must be consolidated into one read operation.

Express [27] uses the cuBix model to help the user partition data files [63]. There are
three I/O abstractions: one process for multiple channels, multiple processes for multiple
channels, and multiple processes for a single channel. Express depends on the user to ex-
plicitly insert additional I/O function calls for the parallel behaviours. The user defines how
a group of processes will partition the data file. By using the Express functions to define
the partitioning, the I/O subsystem re-aligns itself with the processor mapping. The end
result is that the user’s conventional I/O calls operate normally.

LaMm [62] is a distributed memory, multiple-instruction-multiple-data (MIMD) pro-
gramming and operating environment for a network of heterogeneous UNIX workstations.
It is a subset of the TROLLIUS [11] system that provides parallel support for dedicated proc-
essor systems. LAM supports parallel I/O based on the cuBix file access model. LaM dif-
ferentiates I/O insofar as there are separate I/O functions for cuBIX and non-cuBix (UNIX)
operations. The UNIX version has each process write directly to an /O stream with no
synchronization. The LAM system supports MPI, PVM, and its local message passing func-
tions. The user is still expected to write parallel code by using the low-level library func-
tions.

2.3.4 cHIMP

Common High-level Interface to Message Passing (CHIMP) [18] is a parallel pro-
gramming environment similar to LAM. The Parallel Utilities Libraries (puL) [10] are built
on the CHIMP base. Two of the relevant libraries support parallel I/O and parallel data man-
agement. There are two PUL utilities for parallel /O operations and two for parallel data
management.

The first utility is a Global File utility, PUL-GF [13], which provides access arbitration
for a group of processes with a common shared file. GF provides the C stdio functionality
of structured and unstructured access to shared files. There are four modes of access.
Two modes, single and multi, behave similarly to the cuBix [63] model discussed in the
previous section. The random mode allows processes to independently access arbitrary
data using a global file pointer. The independent mode gives the processes a local file
pointer. Modes can be changed dynamically. The current implementation is a client-server
architecture providing non-blocking I/O operations that let computations overlap with the
/O operations.

The second parallel I/O utility is PUL-PF [15], or Parallel File system. PF is intended to
provide a transparent, efficient, and portable interface to parallel disks. The developers of

14



htmaud adiel bdanl

o T AT TR AT EeTa ) e

PUL-PF feel that the conventional UNIX byte stream model is obsolete. An application data
structure is used to control file access operations. The distribution of the file data is done at
a user-defined record level using an /O atom of possibly variable length. There are data
distribution strategies available to the user that permit the optimization of I/O depending on
the problem and architecture available.

PUL provides parallel data management that addresses the performance of applications
with regular local operations over large data sets, such as computational fluid dynamics or
seismic data processing. Data is distributed and processed according to the owner com-
putes rule. That is, the owner is responsible for boundary data consistency. The puL-
RD [14], or Regular Domain decomposition utility, has operator stencils (similar to tem-
plates) to calculate the inter-process communications between boundary updates. The user
has the option of blocking on I/O or overlapping computation with I/O operations. The
PUL-SM [80], or Static Meshing utility, supports irregular mesh-based problems that suffer
from load imbalance and need dynamic reconfiguration. The sM utility supports two and
three dimensional meshes, ensures consistency of data boundaries, and provides data mi-
gration.

CHIMP and PUL are based on MPI. It is interesting to note that a user can abstract applica-
tion requirements by assigning parallel templates or meshes to data sets. However, the
user’s code still contains the explicit parallelism. As well, the developers have abandoned
the traditional UNIX byte stream model. This forces a user to redesign an application be-
fore using this system if the application used UNIX semantics. There is also the differen-
tiation between a general network file system and a specialized parallel file system. Cross-
ing this boundary is neither transparent nor trivial.

2.4 Parallel File Systems

Section 2.3 looked at I/O libraries that provide a virtual parallel file system. However,
a real parallel file system is another alternative. Five representive systems are presented
here. The last of these systems is more than a parallel I/O library but less like a parallel file
system.

VESTA [21, 26] uses a two-dimensional file layout and a client-server structure to con-
trol accesses to parallel files. It defines a basic striping unit (BSU) with IO processes
managing multiple BSUs. By managing access to stripes, concurrency of /O operations
provides improved throughput.

The GALLEY file system [59] enhances the VESTA approach by providing a three-
dimensional view of parallel files. A parallel file is divided into a series of distributed sub-
files where each subfile is further subdivided into a number of forks. A fork is similar to
a familiar sequential UNIX file. This is well suited to dynamic record sizes and applica-
tion-specific clustering of data. GALLEY provides three access mechanisms to the data: a
simple striding, nested striding, and an unstructured interface.

The Portable Parallel File System (pPfs) [42] provides a portable parallel /O library to
allow a user to control file caching, prefetching, data layout, and coherence policies. It
provides a number of predefined policies but does allow a user to define layout, access-
patterns or new prefetching policies.

The Vlrtual Parallel File System (vIP-Fs) [35, 36] is a layered approach to parallel I/O.
The local file systems are connected by I/O processes that cooperate with the Virtual Paral-
lel File (veF) layer to provide a single file image to the interface. A user can access files by
conventional UNIX calls such as open and 1seek. Each process in the distributed parallel
application has complete access to the file. A user is responsible for coordinating file ac-
cess. Alternatively, the parallel file can be partitioned and mapped to the various distributed
processes using the specialized vip-Fs function calls.

15



The Panda parallel /O system [17] is designed for single-program-multiple-data
(SPMD) scientific applications. It uses an HPF distribution schema for the data arrays with
a server-directed VO architecture. This server-directed approach allows a more controlled
gathering of data chunks to take advantage of the lower cost of larger I/O operations.

To summarize, all of these systems have a separately defined interface for parallel I/O.
Some of the systems provide an interface that permits the user to work with the familiar
UNIX I/O functions to access data. However, to stripe or distribute the data requires ex-
plicit calls to specific parallel file system functions.

2.5 Object-oriented Parallel I/0

Many object-oriented applications could benefit from parallel I/O. Object-oriented ap-
plications do not necessarily have the same I/O characteristics as a traditional high perform-
ance computing (HPC) application (like computational fluid dynamics or systems of equa-
tions). Typically, objects define their own I/O so that complex objects rely on the /O op-
erations of internal objects. This decentralization of /O requires more synchronization and
coordination between processes and the file system(s). For example, one approach could
cache I/O blocks into local memory to amortize the cost of the smaller I/O operations. The
task of the Pps is to identify and extract or merge the correct data block.

Three representative object-oriented parallel I/O systems are presented.

The Mentat group [33] has implemented the ExtendibLe File System (ELFS) [34].
ELFS is designed so that a user implements a file system optimized on a class by class basis.
Prefetching and caching strategies, as well as striping and partitioning across multiple
physical devices, are supported. The consistency semantics for a given class may be re-
laxed from the strict UNIX semantics of immediate visibility after a write operation. It is
both an advantage and a disadvantage of ELFs that a user must define and extend the parallel
I/O behaviours.

A Transparent Parallel I/O Environment, TPIE [82], uses C++ to implement parallel /O
access patterns. A user builds a stream of data stored on disk. Various access patterns are
pre-defined for a user to associate with a file. The intent of TPIE is to abstract the /O de-
tails, leaving a user to specify only the required I/O behaviour.

The Hurricane File System (HFs) [48] is the parallel file system for the Hurricane dis-
tributed operating system [81]. This custom file system allows a user to build hierarchies
of data objects that reside in memory or on disk. Because HFs is designed to work with a
supportive distributed operating system, many of the data management routines (such as
cache management) are part of the operating system. This leaves a user free to concentrate
on higher level parallel I/O concepts.

These systems still require a user to encode the parallelism into the application using
explicit parallel functions. Also, the specialized operating system providing support for the
file system is intended for research and is not widely available.

2.6 Parallel Programming Systems

Parallel programming systems (pps) are essential for developing parallel applications.
Since I/O is an integral part of any application, some means of integrating and coordinating
I/O and computational parallelism is needed. This section looks at several high-level ppss
and several lower-level communication libraries used to develop parallel applications. Of-
ten, a PPS or an VO library has developed parallel I/O systems based on an underlying
communication or parallel computational model.

Parallel programming systems can be divided into two groups. The first group uses
some form of abstraction to allow the user to specify the parallelism at a high level.
PAMS [6], HeNCE (4], Mentat [33], Enterprise [70], and High Performance Fortran

16



(HPF) [41] are examples of these systems. Typically, these systems use a compiler tool
that processes a user’s source code along with the selected abstractions to produce a parallel
binary.

HeNCE and Enterprise use a graphical interface to let the user describe the parailelism
by means of templates or pre-defined behaviours. There has been no direct effort to sup-
port parallel I/O in either system. HPF has compiler directives to distribute the data. PAMS
requires the user to define the parallelism by means of structured comments. This hides
annotations from a conventional compiler so it can build sequential applications with the
same code. Mentat extends the C++ language through added key words. The user defines
mentat parallel classes. By taking advantage of inheritance in C++, Mentat implements
parallel communication with the marshalling of data handled automatically.

The Parallel And Scalable Software for Input-Output (PASSION) system [75] is a
compiler and run-time library for HPF applications. A user provides directives about data
distribution, and the compiler manipulates and transforms the source code to map the out-
of-core data to disk. Because all the information about the parallel computations and VO
requirements are available, techniques such as prefetching and collective /O operations can
be efficiently implemented. This system does not address the problem of file access per se
but it does show the effectiveness of having sufficient information to make informed op-
timizations.

A data-parallel I/O system, Stream* [55], lets the user keep a parallel programing view
(C* [38, 78]) and familiar C file routines. Hints are placed in the source code to distribute
the /O by specifing a shape (a physical file layout) for the I/O and identifying parallel vari-
ables using that shape. These hints enable the system to partition a file for data-parallel
SIMD and MIMD computations. The parallel files have an associated meta-file that de-
scribes the /O parallelism. While this system is intended for data-parallel computations
using a specific parallel programming language, it does maintain standard I/O system calls.
It gives hints to the run-time system about the desired parallelism while still giving reason-
able performance.

The second group of parallel programming systems provides libraries of “primitive”
functions to let the user encode the explicit parallelism into the application. MPI [83],
PVM [30], p4 [12], and LAM [11] are examples of these systems. The user is responsible
for all aspects of the parallelism including launch, communication, and shut-down. Typi-
cally, the user writes code using a library of supplied functions and adds the appropriate
library at link-time.

The library-of-functions approach is complicated since a user is responsible for using
the library correctly. A user not only needs to develop a parallel computational framework
but also to define a parallel /O model and to integrate the framework and model in the run-
time code. A user ends up developing a series of “glue” functions that use the parallel
computation information to implement the desired /O behaviours. The disadvantages are
the potential for error and the cost of learning the system.

The systems that use a compiler to process the user’s code could be modified to provide
the necessary analysis of the user’s code for parallel /O behaviours. While this is fine for
static analysis, each system would need to develop a parallel run-time /O behaviour and
integrate it with the parallel computational behaviour. This is typically a one-time cost.

With the exception of Enterprise, the above systems differentiate between the parallel
and sequential behaviours explicitly in the source code. None of the systems use templates
to express parallel I/O behaviour separate from the I/O function calls. That is, none of them
allow a user to develop an application using the familiar sequential I/O functions and spec-
ify the parallelism separately.

17



2.7 Four Issues

Despite the apparent simplicity of the computational parallelism found in the example
application in Chapter 1.1, there are four issues for the application I/O that a user must ad-
dress when moving to the parallel domain. These issues are not the superficial ones from
the example of opening or closing of a file, sharing file pointers, and atomicity of /O re-
quests, but are a deeper and more fundamental set of issues.

The first issue is a physical or operating system (OS) issue. The support offered by
conventional mainstream operating systems is for distributed or single process applications,
not parallel applications. There is a difference between a distributed application and a par-
allel one. An airline reservation system is an example of a distributed application while the
example in Chapter 1.1 is a parallel application. These operating systems, while providing
VO tools to aid a parallel programmer, do not directly support parallel applications.

A user submits an I/O request to the OS as a function call. There is no direct contact
between the process and the disk. Typically, many processes are active on a given proces-
sor. These processes are themselves sharing an OS kernel data buffer consisting of several
pages of the physical file. If many processors are accessing the same external data object
(for example, a distributed or parallel application), all these distinct and independent kernel
buffers must be coordinated and synchronized. If the OS does support parallel files di-
rectly, the Pps or user must explicitly supply the coordination and synchronization function-
ality before allowing the OS to complete the /O operation. This may mean that the process
that issues the I/O request may not be the same process that actually does the I/O operation.

The second issue is the matching of the application to the parallel I/O model. A number
of papers have studied parallel I/O characteristics. One approach is to have a typical appli-
cation suite tuned to an existing architecture and file system through analysis of physical
traces of the I/O calls. Another approach is to document the steps necessary to parallelize
the I/O for a series of applications to run on a particular system. From these studies, op-
timizations such as disk-striping, prefetching, and strided interfaces have been developed.

The third issue is matching the computational parallelism and /O parallelism. A sig-
nificant collection of parallel programming systems exist that abstract the parallelism to a
lesser or greater extent. If a parallel I/O operation is to successfully take place, a number of
unknowns must be determined. The number of cooperating processes, which processes
are actually doing the I/O, how the data is mapped to the physical file layout (overlapping
or adjacent page boundaries), and what data is needed in the near future at a given process
(prefetching) are just some of the information that can be supplied to optimize parallel /O
operations.

The fourth issue is the approach taken to parallelizing I/O. The consensus appears to be
that it is preferable to have a separately defined parallel I/O interface with a distinct applica-
tion program interface. This implies that the parallelism is now embedded in the applica-
tion. This is a poor choice from a software engineering viewpoint since there are many dif-
ferent parallel I/O interfaces. With a distinct parallel I/O interface, changes to the VO run-
time environment or switching to a different library may require user intervention. This
intervention does not reflect any changes to the underlying parallel /O behaviours but ad-
dresses only the mechanics of how to implement the desired behaviours.

The approach of differentiating between parallel and sequential /O streams both com-
plicates and simplifies the programmer’s coding strategy. It simplifies the problem since
only the parallel /O is converted. The complication arises because a user must choose
which files to parallelize and then decides on the parallel /O model and its implementation
(library) before starting to write code. Templates would allow the user to switch between
sequential and parallel /O at any time, independent of the code. This leads to more port-
able and maintainable code.

18



ST R TR ATTTR T WA envay

A template approach can use any low-level parallel I/O implementation that supports the
expressed paralle] behaviour of the template. The basic types of parallel I/O are still global,
segmented, and independent. How they are implemented, either as a library for a special-
ized file system, as an operating system module, or even as hardware, is strictly a matter of
efficiency. The interface to the user must be simple but flexible enough to express what
parallel behaviour is desired for a specific application.

2.8 Chapter Summary

At present, the idea of separating the description of paralle]l I/O behaviour from its se-
quential counterpart has not been exploited. Rather, all approaches to date have involved
the development of a separate interface to exclusively handle the parallel I/O. The user is
required to explicitly encode the desired parallel behaviour into the application. Some work
has been done to separate the computational parallel behaviour from the sequential code.
This allows a user to easily change or test different parallel versions without major code
revisions. This chapter outlined the motives for extending this separation technique to the
I/O component of a parallel application.

19



e AW RAATML YT S ra Pty e e

Chapter 3
3. Parallel 1/0 Model

In Chapter 2, various approaches to parallelizing I/O were outlined. This chapter pres-
ents the parallel /O model central to this dissertation. The purpose of this model is to sepa-
rate the /O parallelism from the physical I/O. That is, a user specifies what needs to be
done using these templates but not how to accomplish the task. The model is implemented
as a series of templates representing parallel I/O behaviours. By modifying attributes of the
template behaviour, the user is able to customize the template to the application in a code
independent manner. As well, more complex I/O behaviours can be created by inheriting a
caller’s I/O constraints and imposing them on top of the current I/O behaviour.

The I/O model is only one part of the overall parallel programming system. While par-
allel I/O does have special needs, it must be recognized that there exists an interdependence
with the computational parallelism and the physical system running the application. Sepa-
rating the definition of the parallel behaviour from the source code allows the IO and com-
putational behaviours to be defined in an abstract manner. This definition allows a global
optimization of all parallel behaviours of an application rather than a local optimization of a
specific parallel behaviour.

Because of the interdependence between the parallel behaviours of /O and computa-
tion, /O templates will need external information about the computational parallelism and
the run-time environment to efficiently perform their task. For example, the definition of
an I/O block is important. Other elements of information needed (and why) are: which
processes are participating in the file access (coherency and synchronization), what func-
tion each process will perform (program ordering), and what work remains to be done
(prefetching and clustering). Architectural information such as locations of physical file
systems, processor types, and other run-time information (like network and processor
loading) is also required. The I/O templates are intended to be integrated into the parailel
programming system. The PPs collects and manages this information for the templates at
both compile-time and run-time.

Section 3.1 describes the proposed parallel I/O templates. Section 3.2 presents the read
and write attributes of the model that are used to enhance performance and tune the model
for a given application. Section 3.3 uses an example to show how templates can be used to
compose more complex parallel I/O access patterns. Section 3.4 discusses what external
E;irall;l computation information is needed for these I/O templates. Section 3.5 summarizes

s chapter.

3.1 Description of Parallel I/O Templates

The model currently contains five parallel VO templates. The tree (Figure 3-1) is a class
hierarchy diagram for these templates. The templates are similar to Crockett's proposal of
independent, segmented, and global file I/O [23]. Sequential I/O class behaviour is the
root of the tree. Sequential /O has no parallel behaviour. With Independent I/O be-
haviour, each participating process has its own file pointer that it can move independently.
There is the potential for each process to synchronize at the beginning (starting point) and at
the end using the file pointer if the file is modified. With Segmented I/O each of these
independent file pointers is restricted to its own file segment. With Global I/O, each of
the sequential file pointers is synchronized with a single global file pointer. Each of the
shaded parallel templates in Figure 3-1 adds synchronization constraints to these basic ab-
stract parallel behaviours.

20



Ratana S Thekin o ad et adiod

T TR R R ERTT TN IEVA YWY MR e s ) A

Sequential
170

Independent
VO

Segmented

This collection of templates is not complete. As applications using the templates are
developed, the set can be extended if new behaviours are needed. However, it has not
proved necessary to add new behaviours to the set at this point. One reason that new tem-
plates have not been necessary is that the current simple behaviours can be composed to-
gether to represent more complex I/O access patterns.

The next five sections briefly describe the proposed templates. Each section contains a
description of the parallel behaviour and any special characteristics of the parallel behav-
iours. It is important that users can easily understand the semantics of each template.
Analogies are provided to illustrate the meanings of the templates. The templates are in-
tended to be integrated with parallel computational templates to create a parallel application.

3.1.1 Photocopy

A familiar situation arises when an author distributes copies of a paper for review. After
the reviewers have made their comments on their private copies, the author integrates all or
some of the changes back into the original document. This may take several iterations. A
photocopy template is intended for independent file access.

Knowing that a file is a photocopy opens up the possibilities for exploiting this infor-
mation to some /O optimizations. For example, since multiple processes read the same
file, one optimization is to selectively replicate the file so that the /O operations become
local VO instead of networked /O. However, a photocopy has the property that any
write operation must be verified by the owner or controller of the file before becoming visi-
ble to any other processes.

3.1.2 Newspaper

A newspaper is composed of sections that can be read (or written) independently. The
newspaper template is a way to segment a file into independent pieces with no overlap.
Each process gets exclusive access to a portion of the file. Any process that reaches the
end of the segment has reached its version of the end-of-file. It is an error to exceed the
segment boundaries. A newspaper file segment always knows its starting point (base)
in the file and size of the segment (extent).

21



The extent is determined at run-time by a user-supplied function or constant value. In
the special case that the size cannot be determined in advance of using the segment, the
segment is said to be unknown. Unknown segments are denoted by a size of zero. The
file manager determines what, if anything, will need updating after a process is finished
using an unknown segment. If an unknown segment is modified, the file manager ap-
pends it to the file, based on some user-defined ordering attribute. The base of the seg-
ment is not used after the first append. However, if the unknown file segment is unmodi-
fied, the file manager advances the file pointer to the current position returned by this un-
known segment based on a user-defined ordering attribute.

The drawback to an unknown segment is that any process not in its group will block at
the next VO statement that uses this file pointer until all the outstanding I/O by the group is
received by its file manager. However, if the system can determine that a given /O state-
ment does not access the unknown section of the file, it does not need to block. Although
unknown segments require more complicated synchronization, they are supported be-
cause of the variable length C stream /O operations. It is only after the printf or scanf
completes that the user can determine the new file position.

3.1.3 Report

Having a group write a report usually involves the members collectively reading several
other sections prior, during, or after writing their own sections. As well, comments may
be written to other sections of the report which may or may not be incorporated into these
remote sections. A report template has both global and segmented file properties. The
global property is that only one process is allowed access to a particular file segment at a
time but there is a mechanism for sharing access. The segmented property means that the
file can be divided into “independent” segments. However, two processes can exchange
segment ownership if necessary. That is, no segment has a fixed owner. A process must
obtain read or write permissions for the desired segment from a file manager (parent).
This behaviour provides a protocol so that multiple processes are able to concurrently ac-
cess overlapping regions of a file.

With this template, if a process exceeds its local segment boundary limits, it is not im-
mediately considered an error. Rather, it is a signal to the Pps that one segment is to be ex-
changed for another. An error that is reported back to the user occurs if the file pointer is
moved to point before the base of the first file segment or past the extent of the last seg-
ment. If the pps determines that exceeding the limits is not to be an error, the process asks
the manager of the report file pointer for the appropriate permissions (read or write) to ac-
cess the file at the new location. There is a hierarchical structure so that if a given manager
cannot resolve the permissions because they are outside of the current manager’s bounda-
ries, the manager will ask its file manager to resolve the request.

Like the newspaper template, the extent of a given segment is determined at run-time
by a user-supplied function or constant. Similarly, an unknown segment size is resolved
after the process returns the segment to the process’s file manager. However, unlike the
newspaper template, modified segments are not appended to each other. The segments
are overlaid based on a user-specified ordering attribute. All processes not participating in
this unknown report group are restricted from using the report file pointer until the en-
tire group is finished and the file state is resolved. Again, if the system can determine safe
access to portions of the file, this restriction can be relaxed.

3.1.4 Meeting

The analogy comes from a meeting where only one person has control of the floor at a
time. The meeting template uses a global file pointer and all processes using it must syn-
chronize and coordinate access to the file. A meeting has both global read and write capa-
bilities. However, only the process that has control of the file may read or write at any
time.

22



DR AL ottt

If more than one giobal file pointer is passed to a process (e.g. an input and an output
file pointer with global semantics), there may be a problem of deadlock. Therefore, to pre-
vent deadlock, when a process asks for control of one global file pointer, the process must
receive control of all the other global file pointers involved in the transaction. For example,
suppose two processes, P, and P, are sharing two file pointers, f, and f,. P, asks for ac-
cess to f, and gets control of f,. Because of program flow, P, first asks for access to f,
and receives control of f,. Now, if P, asks for control of f, or P, asks for control of f,,
deadlock occurs unless either process first releases the file pointers that the process cur-
rently controls. This release may not always be immediately possible.

3.1.5 Log

The analogy is with maintaining a record of events. Once an event has been recorded, it
is never modified. The log template uses a global file pointer with the added restriction
that all write activity takes place at the end of the file. After a write takes place, the file
pointer is left at the end of the file. However, any read or seek operation is free to proceed
without synchronization because the data is always consistent. The global end-of-file (EOF)
marker is moved only when the process with the current access permission updates the
global data structure. All other processes are limited to the last known value of the global
EOF.

3.2 Read and Write Attributes

In addition to a template’s base semantics, each template can have several attributes
which refine its behaviour. One attribute of all the parallel /O templates presented here is
the ordering of I/O operations. Read and write operations can have separately defined or-
dering. That is, the order in which a collection of processes communicate with each other
defines both the access sequence and when updates become visible. There are three possi-
bilities: ordered, relaxed, and chaotic. These correspond to the three levels of program
correctness for I/O— sequential, serial, and chaotic — defined in Chapter 2.

For example, the source code in Figure 3-2 performs blocks of I/O in the order: o, o,

o, By By, By, using the two loops. Both a1pha and Beta are remotely executed functions.
For the moment, assume that there are six separate processes that are concurrently execut-
ing three copies of Alpha and three copies of Beta. For convenience, each process is
identified as: o, ot , &y, By, By, B,

The ordered I/O attribute means the I/O using this file pointer will be done in sequen-
tial order. If fp is a global file pointer, the ordering attribute will sequentialize the I/O. If
£p is an independent file pointer, all changes to the master file are recorded in program or-
der. That is, a write by a, is seen by subsequent file accesses by the other processes.
However, changes to the file by o, are not seen by oy, even if o finishes before a;. At the
end of the computations, the file contains only the output of B, as all the processes start at
the same location in the file and only the last modification will remain. If £p is a segmented
file pointer, all six pieces of work will be sent out to execute concurrently as independence
is ensured by enforcement of the boundary conditions of each segment. In this case, the
file will look like oy, a;, oy, By, B,. B, regardless of the order in which the individual proc-
esses finish. If the length of each segment is unknown at the time of the remote function
invocation, the ordered attribute ensures that the modified segments are appended to the
file in sequential order.

If the template has both global and segmented characteristics (a report), the ordered
attribute ensures that the requests for access to other segments are processed in sequential
order. That is, the process accessing segment o, that now needs to access the segment o,
must first surrender segment o, to the file manager. Then, the process that just surrendered
o, waits until the process doing o, is finished or indicates it needs no further access to

23



AlphaBeta ( FILE *fp )
{

int j :
for (J=0; 3 <3 ; j++ ) (

Alpha ( fp ) /* The Alpha I/O dome in parallel */
}
for (§=0; 3 <3 ; 3+ ) (

Beta ( fp ) /* The Beta I/O done in parallel */
}
fclose( fp ) ; /* Close the file after all the work is done */

Figure 3-2 — Sample code for I/O attributes.

segment a,. If unknown segments are used, the file manager updates the master file
based on program order with the end result of the file containing B,. Read access to the
shared segment is not normally blocked. However, if a process modifies the segment, the
modifications are not immediately visible until the master file processes the modified seg-
ments. During this processing, all processes are denied access to this segment. For modi-
fied segments, the segments are merged instead of appended. This reflects the global na-
ture of the report template. The position of the last segment file pointer sent out is used
for the new master file pointer. If the segment was read only, the position of the master file
pointer is updated based on the return status of the last segment sent out.

Using the relaxed I/O attribute, the ordering is eased somewhat. Now, the a; /O op-
erations are serialized followed by the serialized B, I/O operations. If tp is a global file
pointer, all the o; I/O blocks must be finished before any 8, I/O block is allowed to proceed.
The o I/0 blocks can occur in any order and will be followed by the B, I/O blocks in any
order. For example, one possible result is that the file is accessed in the following order:
oy, 0, @y, By, By, B,- An independent file pointer will see any «; changes as they are sub-
mitted to the master file controller but B; I/O operations will see the changes only after all
the a; changes have been recorded in the master file. This does not mean the processes
doing the B; blocks are blocked. Rather, these processes proceed using the older version of
the file data. This means, as well, that changes to the file by any B, must wait until after all
the o; changes have been recorded. For example, depending on the order in which the
various processes updated their contents tc the master file controller, the file could be left
containing the output of B, when the application exits instead of B,, as seen using the or-
dered attribute.

Pure segmented file pointers will see little difference between the ordered and re-
laxed attribute unless the segment length is unknown at the time of the remote function
invocation. In this case, the relaxed attribute requires that the modified segments are ap-
pended as-received, subject to all o; segments being appended, followed by the appending
of the B; segments. That is, the file again could be left in the state: oy, o, @, B,, Bps B;- A
report file pointer with an unknown segment length merges the o segments on an as-
received basis and will merge the p segments only after the o blocks are all merged. For
example, using the above ordering, the file would be left in the state B,.

For report file pointers with a known segment size, any process accessing the o, seg-
ment which then determines it needs to access segment o, can proceed to request access for
the o segment. Permission is granted based on a first-in-first-out ordering amongst the o
processes. However, any B; process that needs to access an o; segment must block until all
a segments have been released before proceeding. The run-time system has to determine
when all a processes are finished before the request by a B process type can be granted.
However, the file will be left in the same state as the pure segmented file pointer.

24



e A M

With chaetic I/O, the ordering is completely relaxed so that any process can have ac-
cess to the file at any time, subject to the parallel behaviour. The global template still means
that only one process has exclusive access at a time. However, program order is ignored at
run-time. For example, the file could be accessed in the following order: ay, B,, ., B,, B,
«,. The independent file pointer allows any update to the master file to be immediately
visible to all other processes sharing this file. In this case, the updated file is left containing
a,, which was the last process to update the file.

Pure segmented file pointers with a positive non-zero extent are not affected by re-
laxed ordering as the segments are determined by the program ordering and are consumed
in that order. The file will remain in the same state as the ordered I/O attribute: o, ot,, o,
Bo» B,» B,- The request for access to another segment by a report file pointer is handled on
a first-in-first-out basis. However, there is no blocking based on process type (e.g. Alpha
and Beta). Any pure segmented file pointers with unknown length segments are merged
in as-received order, regardless of type. For example, the file could be accessed in the
following fashion: o, B,, a;, a,, By, B,- For report file pointers, the last segment received
indicates the size of the segment used in subsequent I/O operations. In this case, the file
contents were left in the state g,, which was the last update of the file.

The ordering attribute does not modify the base behaviour unless some synchronization
was required in the template. The ordering attribute does affect the way a file is accessed
and modified. Depending on the type of parallelism chosen, a process may or may not
have to give up access or wait for access to a given file descriptor.

3.3 Composing Templates

One of the benefits of using templates lies in the fact that they can be arbitrarily com-
posed to support more complex /O behaviours. Figure 3-3 shows an example which
benefits from composition. In this example, a file is segmented so that concurrent proc-
esses access different portions of the file. A pipeline model of computation could require
such an access pattern.

The file is divided into three segments using a newspaper template. Within a given
segment, a portion of that segment is independently read by several other processes. Each
segment is treated as a meeting (global file) until a particular portion of the segment is
reached. At that point, several processes are granted independent access as photocopies.
After the independent operations are finished, the file access reverts back to a meeting (the
global file pointer forms a barrier).

Newspaper

Figure 3-3 — Composing with P/OT.

25



If the user tries to code all of this by hand, the amount of specialized code increases at
each level, along with the chances of introducing errors. If the computational parallelism
changes, the restructuring of the code to reflect the changes is a potential source of errors.
For example, suppose this pipeline has sufficient granularity to run efficiently on a shared-
memory multiprocessor system. If the code is then ported to run on a network of worksta-
tions, the coarser granularity required to run efficiently may mean that one stage of the
pipeline should be collapsed. The photocopy template, along with the parallel computa-
tional behaviour of that associated stage of the pipeline, could be dropped. The system
should be able to compensate for the loss of parallel I/O behaviour at that stage by integrat-
ing the code into the earlier or later portion of the pipeline. The strength of a template ap-
proach for both the computational and I/O parallelism is that any changes, either by the user
or by the pps, are quickly and correctly implemented.

3.4 External Information

The I/O templates presented in this dissertation do not exist in a vacuum. They are in-
tended to exist and cooperate with the computational parallelism and the physical system the
application will be running on, using the pps as the management tool. External informa-
tion, either explicitly supplied by the user or implicitly acquired by the parallel program-
ming system, is needed to efficiently implement the desired I/O behaviours. The model
must be able to withstand contact with the real world.

The external information can be divided into two parts: the semantic content of the pro-
gram (program flow) and the physical domain used to execute the parallel application
(network, file systems, and processors). Both have static and dynamic components.

The first piece of semantic information required is the definition of an I/O transaction.
A transaction is two or more I/O statements that must be considered as one I/O block. IO
rarely occurs as a single operation; instead, several /O operations are clustered as one
block. For example, a seek is followed by a read or write operation. Although they are
two sequential I/O statements, this is often considered as one I/O operation in the parallel
domain (some systems provide an atomic seek—-and-read function or equivalent to solve
this e.g. [53, 57, 61]). As well, a variable length record is often read or written in two or
more steps. The first operation determines the number of elements; subsequent operations
read or write the elements. Alternatively, the list of elements is read or written until termi-
nated by a special end-of-record character. Particularly in the parallel domain where con-
current processes will share access to a common resource, the definition of I/O transactions
is critical.

The user can recode the application so that individual VO steps use a temporary file or
memory buffer. The parallel I/O is then done as a single operation per process. However,
this does not remove the necessity of identifying the /O blocks, since it makes the pro-
grammer identify a transaction and explicitly provide the synchronization.

Once the I/O transactions are identified, the second piece of semantic information is the
program flow, as it pertains to parallel [/O. The necessary information includes both the
temporal and collective constraints. From the source code found in Figure 3-2, the read
and write attributes will benefit from knowledge such as which of the a /O blocks must be
finished before any B I/O block can start. As a second example, realizing that all the I/O for
a matrix will be done at the same time by a group of processes allows the PpPs to optimize
both fetch and merge operations.

Program flow can be determined at both compile-time and run-time. Prefetching deci-
sions are easier to schedule if the program flow is known. Static program analysis allows
the system to determine the program ordering for different classes of processes. Consider
the case of a computational pipeline consisting of three process types, I1,, I1,, and I1,
(Figure 3-4a) that share a file. At run-time, there can be one or more instances created of
each process type. Figure 3-4 shows some possible connection configurations.

26



Process
Type
m O

n ©
ne ® (b) (c) @ e)

()

(m)

®
Figure 3-4 — Examples of connection patterns for a pipeline of three process types.

Each instance of the process types shares or manages its I/O information with one or
more of the instances of any of the process types. Depending on the relationship between
process instances (determined by the connection patterns), either a particular instance is a
recipient or a maintainer of the information. To make good decisions and efficiently man-
age the I/O information, the configuration of the computational parallelism is needed. In
addition there are three questions that must be addressed. How are the different process
types related to one another? How are the instances connected? How do the parallel 'O
requirements affect this connection pattern?

In the connection pattern shown in Figure 3-4d, there are three independent pipelines
sharing access to a single file. If a segmented or global parallel I/O behaviour is defined for
the shared file, the computational connection pattern is insufficient for the I/O parallelism as
the I, processes must now coordinate I/O access. Figure 3-5 shows the new connections
that must be made to all the IT, processes to ensure synchronization and coordination of file
access. Depending on the implementation, a new manager process may be needed too.

In the connection patterns shown in Figure 3-4 for a simple pipeline computational
model, an instance of process type I1, may need to share global I/O information with the
other I1, instances. This same instance will need to distribute I/O information to a group of
IT, instances, and will need to synchronize the returned I/O information from this group. A
group can contain one, some, or all of the various process type instances. An instance of a
[T, process receives I/O information from a I1, process and eventually returns to it the up-
dated I/O information. This I, instance also distributes /O information to a set of I1, in-
stances. The I1, instances receive I/O information from a specific I1, process and will re-
turn the modified I/O information. Relying on static information is insufficient since it is
possible that the actual number of instances for each process type are determinable only at

=

Figure 3-5 — Additional I/O communication connections needed for synchronization and
coordination of file access for global or segmented parallel I/O.

27



- ——Y—

e omver iy

run-time. It is also possible that the connection pattern can change at run-time. This could
happen if a process is able to run more than one process type, depending on directives from
the pps.

The types and number of process interconnections are important since these determine
how the file is to be shared. For example, in the case of a two stage pipeline, there are
eight ways of connecting the process instances that are of concern to parallel I/O. They are:
one-to-one, many-to-one, one-to-many, many-to-many, and replication of the previous
four cases. This last step takes one of the previous four patterns and creates n replicas.
The data file is now shared by not just two process types, I1, and I1,, but by n(i+j) proc-
esses where i is the number of I1, processes and j is the number of IT, processes.

When a pipeline is increased by one to three process types, the number of possible
combinations grows to thirty two (Figure 3-6). The boxed pairs indicate that the contents
of the box are replicated as one unit. Figure 3-4 clarifies the connection patterns for some
of the combinations given in Figure 3-6. The shaded areas in Figure 3-6 correspond to the
figures in a left to right fashion and down each block to each configuration in Figure 3-4.
For example, using a value of three for both n and the replication factor of the boxes, the
entry in the second block, first row, and third column is represented by Figure 3-4j while
the first block, second row, second column in Figure 3-6 corresponds to Figure 3-4f.

It is clear that handling all cases by hand is a difficult task. Even with a simple pro-
gramming model, the growth of possibilities is exponential. However, breaking down the
problem into simple pieces and having a simple set of rules to create more complex /'O
models is an approach that works well for source-to-source compilers. At run-time, these
rules are useful when the application performance is not predictable or irregular.

Dynamic work allocation or process scheduling can compensate for an irregular load
distribution. A slower or heavier loaded processor could do n blocks of work in a given
period of time while a faster or lightly loaded processor could do greater than m blocks.
Alternatively, using homogeneous processors, the work load per I/O block may not be
constant. Since this performance information is not always available at compile-time, run-
time information is beneficial in making more intelligent prefetching, segmenting, or syn-
chronization decisions.

The /O templates need to determine the number of distinct concurrent processes that
will collectively share access to a particular file. This grouping may contain subgroups of
processes and the membership can be dynamic. For example, global or segmented I/O par-

tE el | L |
ikl A S O | - n n L
-1 D . ; el
n L |, g 1 1
f’ THEF L : :i','l‘ n n n
gl T oo b Il T 1
" n n n B 1 1 1
e < B
. o ™
“n .| n n -.n n n n
R [I 1 1 - n n n
n"‘ n T n N n % n

Figure 3-6 — Possible connection patterns using a pipeline of three process types. The
character 1 (one) indicates a single instance of a process type while the
character n indicates more than one process instance. The boxed pairs indi-
cate that the contents of the box are replicated as a single unit.

28



allelism needs to know how many processes are involved so that there are effective imple-
mentations of these parallel /O behaviours. A global behaviour needs to know which
process will get access so that it can update all the others; a segmented behaviour may di-
vide the file based on the number of processes or tune the prefetching algorithm; an inde-
pendent behaviour can use the number and location of processes to determine if replication
and local caching of the data file would be more efficient.

Physical information is not only important for determining the performance of a given
template, it is also critical for computational performance. In the sequential domain, I/O is
often buffered for efficient operation so that the expensive physical I/O operations are de-
ferred until necessary. This efficiency is actually a hindrance when concurrency is added.
In order to avoid overlap, a process (P,) needs to realize the scope of another process’s
(P,) /O operation before performing P,’s /O. The only contact between the two proc-
esses is the physical file through the two local file pointers. Deferring the physical update
for the sake of the efficiency of the P, process can detrimentally affect the overall efficiency
of the application since P, may have to wait. Of course, the P, process can use deferred
output but the operating system cannot be relied upon to update the physical file in a time-
critical manner for other processes. Rather, the Pps must ensure that the physical update is
done when accurate information is needed by the other processes sharing this resource.

Figure 3-7 gives an overall view of the p/OT model and demonstrates how it fits into a
parallel programming system. The parallel compiler modifies a sequential file pointer that
has been given parallel characteristics and creates a parallel file pointer. The parallel com-
piler, using the parallel I/O and computational specifications, creates a parallel application.
When the user runs the parallel application, the dynamic information is collected by the run-
time system; using the parallel specifications, the run-time system coordinates access be-
tween the parallel application and the physical files.

Both static and dynamic analysis will benefit from physical information such as: the
amount of local disk space available for caching; the physical location of the file systems on

Parallel I/0 Specifications

Template Atributes Segmentation
Meeting Ordered Function
Sequential + Log Relaxed Constant — Parallel
File Pointer Report Chaotic == | File Pointer
Newspaper

Photocopy

Source Code Parallel Specifications External Information

Parallel Run-time
System

Parallel Compiler Physical Files

| Parallel Application '

Figure 3-7 — Overview of the P/OT model in a parallel programming system.

29



MR A M

the network in relation to the compute processes; the type of file system — general or spe-
cialized; the network bandwidth available for I/O either to minimize the impact of the appli-
cation on other users or to maximize the performance of the application; the heterogeneity
of the processors — architecture and speed; and the distribution of the processors over the
network. Whether these physical details can be compensated for or effectively utilized de-
pends on the implementation. However, they will all have an impact on the overall per-
formance of the application.

3.5 Chapter Summary

Five parallel /O templates have been presented, each encapsulating a simple parallel
behaviour. An analogy is provided for each template to make it easier to understand. Read
and write ordering attributes permit tuning of the application without changing the original
source code. Complex /O patterns can be built by composing the simple behaviour of the
templates. The computational parallelism and I/O parallelism can be combined to create ar-
bitrarily complex access patterns that are still modifiable without requiring changes to the
user’s source code.

External information about the application and run-time environment is necessary to en-
sure correct /O behaviours and performance optimizations. Compile-time analysis of the
user’s application (using the supplied parallel I/O specifications) inserts hints to the run-
time system about the needed parallel /O behaviours and the start and finish of any VO
transactions. At run-time, the PPs uses these hints and, based the program’s dynamic envi-
ronment and computational behaviours, implements the parallel I/O requirements. By re-
quiring the PPs to either supply or determine the necessary external information, a user has
minimal impact on how the parallel behaviours are implemented. A user selects what par-
allel behaviour is required. As well, the Pps is able to tune the performance of the entire
application based on all of the user-supplied requirements and the run-time environment.

Chapter 4 explains how the parallel /O templates are intended to be implemented in
general and explicitly deals with one particular parallel programming system.

30



Chapter 4

4. Implementation

An implementation is needed to validate and to demonstrate the usefulness of the paral-
lel /O model presented in Chapter 3. To be considered successful (other than providing
the correct behaviour), the implementation should give reasonable performance for minimal
effort on the part of the user and ensure that changes to the parallel /O behaviour be as
simple as changing the template. The user should not need to differentiate at the code level
between sequential and parallel I/O calls.

The parallel I/0O model proposed in this work requires information regarding the parallel
computations and the state of the underlying communication libraries. There are static and
dynamic components to the implementation. The static or compile-time portion consists of
defining the parallel behaviour and integrating it with the corresponding static component of
the parallel computational behaviours. The dynamic component of parallel I/O consists of
the process states of the parallel application. This includes both the relationships and the
dependencies between computational processes as well as the process-processor mappings.
This information, managed by the run-time component of the parallel programming system
(pps), determines the degree of parallelism and the dynamic behaviours of the running ap-
plication.

There are two basic premises for implementing P/OT. The first is that a user does not
identify any parallel /O in the source code. The parallel specifications are stored separate
from the code. Second, PVOT does not roll back I/O operations or computations. Deadlock
prevention rather than deadlock detection is the approach used when implementing PI/OT.

This chapter describes the implementation of P/OT. It is divided into three main parts.
The minimal PYOT requirements are presented in Section 4.1. These are the minimal system
(user-interface, compile, and run-time) requirements for any general PPS implementing
P/OT. Section 4.2 describes how the PYOT programming model is intended to be imple-
mented from an I/O functionality viewpoint. Section 4.3 describes the P/OT model imple-
mentation from a template viewpoint. Section 4.4 describes the specific modifications
made to the Enterprise pps (user-interface, compile, and run-time) for pI/OT. Section 4.5
describes the current deadlock prevention mechanism. Section 4.6 gives a summary of
this chapter.

4.1 PI/OT Minimal Requirements

There are a number of conditions that must be met prior to implementing PVOT in a
given parallel programming system. The primary requirement is the ability to send, poll
for, and receive asynchronous messages of arbitrary size between distinct processes in a
reliable manner. The distinct processes requirement does not necessarily imply traditional
heavy-weight UNIX processes; a thread would qualify as well. Inter-process messages are
needed for synchronization and coordination of a data file with the parallel application. The
application views a file as a single global entity regardless how it is physically stored.

The pPs run-time system is also responsible for providing unique process identifiers so
that PI/OT can use the communication system to send a message to, poll for a message from,
or receive a message from any specified or arbitrary process in the parallel application
without blocking. This implies that the user or the pps has divided the application up into
concurrent computational tasks.

31



SEETATR P IV AT . v

The p/oT implementation has to be able to intercept and substitute data in messages for
these computational tasks that contain file pointers. Modifications are made both at the time
of sending and at the time of receiving the messages in order to insert or extract the PVOT
information. Substitutions are made in addition to the other PI/OT messages necessary to
implement the various parallel I/O behaviours. pr/OT does not force the user to learn a sepa-
rate set of parallel I/O functions. Rather, the user writes code using the familiar UNIX
stdio interface (or low-level I/O interface). A source-to-source translator (precompiler)
identifies the user-specified parallel /O file handles. The precompiler needs to create the
necessary hooks to integrate any user-supplied segmentation functions into the PY/OT run-
time environment. The P/OT run-time system is responsible for sending, processing, and
returning the dynamic state of an I/O object between cooperating processes.

All tasks in the parallel application are classified by both their computational and parallel
VO functionality. The PPS run-time system is responsible for mapping tasks and files to
processes and processors. It must also support queries to specific processes or tasks by
the p/OT implementation. For P/OT, a user identifies the parallel file descriptors and their
parallel behaviour for each task classification. For example, a given file descriptor is des-
ignated as having global I/O semantics for a particular task. Another class of tasks desig-
nates a file descriptor with segmented I/O semantics. At run-time, the two file descriptors
are joined by the first task passing the global file descriptor to the second and linking the
two together (a remote function invocation). The P/OT run-time system must resolve the
apparently different behaviours.

It remains the responsibility of the user to define what the computational and /O speci-
fications are, and leave the precompiler and PYOT component of the PPS run-time system to
define how to implement them.

In summary, PI/OT requires a message passing system that can poll, send, and receive
messages of arbitrary length in a reliable fashion. Parallel tasks must be identified and
mapped to processes in some fashion available to PIYOT. The parallel I/O is identified on a
per-task basis. Any messages sending a file-descriptor must be identified and have the /O
component replaced with the parallel I/O configuration for that component. Similarly, a
message containing a parallel /O data structure must be converted into a conventional se-
quential file pointer for the user’s code. This is best done using a mixture of compiler and
run-time support. Finally, the PPs run-time system must be able to spawn tasks (either as a
thread or heavy-weight process) when necessary.

4.2 PI/OT Implementation Issues

This section describes how the parallel /O templates are intended to be implemented.
Users of the templates do not need to know about a given implementation and alternate im-
plementations can be used without affecting user programs. The PV/OT templates are in-
tended to parallelize the standard C stream I/O library. Figure 4-1 gives a listing of the
various standard stream functions and their signatures. However, there is no reason why
the templates could not be implemented to replace low-level I/O calls (open, close, write,
read, lseek).

Each process maintains a list of the local parallel file pointers it uses. This list is called
the ParlO list. Each list element contains information such as the template type, the cur-
rent file state, whether access is permitted, the communication handle of the local process
and the manager process.

A run-time list of active and outstanding outgoing parallel I/O requests is maintained,
either on a per-process basis or on a per-thread basis if the process is multi-threaded. This
list is referred to as the call-chain. Each list element contains information such as the par-
allel /O template, the current file state, whether access is permitted, and the communication
handle of the caller and callee. There is a corresponding list, called the pending list,

32



st Lialal TIng ol

#include <stdio.h>

/* Opening streams */

FILE *fopen( const char *filename, const char *type ) ;

FILE *freopen( const char *filename, const char *type, FILE *stream )
FILE *fdopen( int filedescriptor, const char *type ) ;

/* Closing streams */

int fclose( FILE *stream ) ;

/* Flushing streams to or from disk */

int £flush( FILE *stream ) ;

/* Moving the file pointer in a stream */

int fseek( FILE *stream, long offset, int ptrmame )

void rewind( FILE *stream ) ;

long ftell( FILE *stream ) ;

/* Testing file stream for end-of-file */

int feof( FILE *stream ) ;

/* Reading from a stream */

int scanf( const char *format, ... ) ;

int fscanf( FILE *stream, const char *format, ... ) ;

size_t fread( void *ptr, size_t size, size_t nitems, FILE *stream ) ;
/* Writing to a stream */

int printf( const char *format, ... ) ;

int fprintf( FILE *stream, const char *format, ... ) ;

size_t fwrite( const void *ptr, size_t size, size_t nitems, FILE *stream )
/* Get a character, word, or variable length character string from a stream */
int getc( FILE *stream ) ;

int getchar( void ) ;

int fgetc( FILE *stream } ;

int getw( FILE *stream ) ;

char *gets( char *s ) ;

char *fgets( char *s, int n, FILE *stream ) ;

/* Put a character back into the stream */

int ungetc( int ¢, FILE *stream ) ;

/* Put a character, word, or variable length character string to a stream */
int putc( int c, FILE *stream ) ;

int putchar( int ¢ ) ;

int fputc( int ¢, FILE *stream ) ;

int putw( int w, FILE *stream ) ;

int puts( const char *s ) ;

int fputs( const char *s, FILE *stream ) ;

Figure 4-1 — Standard C stream I/O library function signatures.

which is maintained for I/O messages from other processes. For example, a process may
require access to a global file or it may be returning access permissions for a given file
segment. The receiving process may not be able to process the message right away and it
is queued in pending for later processing. Another process has the access permission and
will return it at some point in the future. When an access permission message is received,
the pending list will be processed for any requests that can be satisfied.

It is important for the call-chain and pending lists to be consumed in an order that
preserves program correctness. If a task does not consume the call-chain list, the out-
standing calls will need to be cancelled. (This happens if there is an error condition that
ends the task’s work or a task is generating speculative work and any answer is sufficient
to end the task.) Similarly, any pending requests will need to be cancelled and the calling
processes will have to take any necessary actions to recover. (Normally, the /O function
returns a failure.) Note that the computational component of the pps will need to end any
outstanding computational tasks at this time as well.

33




The parallel file pointers are not explicitly differentiated from the sequential ones in the
source code. What is the minimal amount of information necessary to determine if a file
variable has parallel behaviours? All I/O functions, except those of the open variety, re-
quire either an explicit or implicit file handle passed as one of the parameters (for example,
fprintf or print£). Since all VO handles are associated with a unique number that is as-
signed by the operating system, looking up the file number in a list can obtain the indicated
parallel behaviour. This implies that multiple paralle] behaviours are not permitted on a
single file descriptor. However, multiple file descriptors (and thus paralle! behaviours) can
be associated with a single file.

Inter-process communication uses this unique file descriptor to match a parallel] file de-
scriptor from a remote process with a local file descriptor. P/OT manages two data struc-
tures which are used to match a parallel file descriptor from a remote process to a corre-
sponding local one. The first data structure contains the local information of the parallel file
descriptor. Included in this information is the unique system file descriptor which is
passed to the user’s code. The second data structure, stored either in the call-chain or
pending list, contains the remote parallel file pointer information and the same unique
system file descriptor. A message received from another process contains the remote proc-
ess’s parallel file information. Depending on the message type, the receiver matches the
remote information in either the call-chain or pending list. The unique file descriptor is
extracted and the local process parallel file structure is located.

The balance of this section is divided into five subsections. First, determining program
order and instantiating the I/O managers are addressed. Second, how to grant access to a
file is defined. The final three subsections discuss the run-time details of creating, closing,
and using a parallel file descriptor.

4.2.1 Determining Order and I/O Managers

The I/O templates are intended to work within a hierarchy of remote message sends.
Any process that makes a remote call to another process creates a hierarchy. In Figure 4-2,
process A makes a remote call to process B, which in turns calls process C, which then
calls B and so on. The order in which the calls are dynamically made forms the call
chain which the I/O templates use to implement the correct parallel I/O behaviour. That is,
the run-time behaviour of the application is taken into account for the parallel /O behav-
tours. (The IO managers will be defined later in this section.)

The I/O templates are implemented using a client-server model that is distinct from the
computational model used. If the remote call includes a file pointer, the file pointer is
treated as a parallel file pointer by the pps. The user must specify the parallel behaviour of
the passed file pointer. Another way a parallel I/O object is identified by PVOT happens
when a file is collectively opened by a group of processes. In either case, the user must
identify to the pps the intended parallel behaviour for the /O object. Otherwise, p/oT
would either consider the call illegal or impose some sort of default behaviour.

I/O Manager

0 /O Branch Manager

I/O Branch Manager e
Figure 4-2 — Identifying I/O managers and call ordering.

34



/0 /0
Manager Manager

(a) (b)

Figure 4-3 — Two approaches to selecting an /O manager.

With improved compiler technology, P/OT may someday be able to automatically de-
termine the appropriate parallel behaviour. For example, if a remote procedure call is gen-
erated in a loop and contains a file pointer as a parameter, attempting a segmented I/O be-
haviour may be an appropriate choice if maximum concurrency is desired. This will neces-
sitate a preliminary estimate of the segmenting factor for the remote process. Alternatively,
after examining the remote function code and finding only one I/O call using the pointer,
the file pointer could be designated as a shared file pointer. The remote function code could
be modified to release the file back to the pool of waiting processes after completion of the
I/O functions.

Every parallel I/O transaction has a manager (server) that is responsible for coordi-
nating and enforcing the parallel behaviour of the group of processes (clients) that share
the I/O object(s) composing a transaction. This happens regardless of the parallel template
chosen for an individual file pointer. Normally, the process that creates and passes the /O
transaction to another process is considered the manager. The process that opens a file is
considered the owner. The manager’s duties range from disseminating control informa-
tion to merging data. In the case of multiple or replicated processes concurrently opening
the same file descriptor, the PI/OT run-time system designates one process as the /O man-
ager. The I/O manager process does not necessarily have to be implemented as a separate
heavy-weight process. It can be collapsed as a thread into an already existing computa-
tional parallel process.

Figure 4-3 shows two approaches for selecting an I/O manager for the collective open
case. (Selection of one approach is left to the implementor of PVOT.) All of the A proc-
esses in the figure try to open the same file. The PYOT run-time system decides which one
of them will contain the manager task. In Figure 4-3a, A, takes on the /O manager duties
because it was the first one to request the open. All the other A processes become clients
for VO purposes only. As an alternative, PYOT could request that the PPS spawn a new
manager process. In Figure 4-3b, the M, process is created exclusively for managing the
/O for the A, processes. Finally, the user could indicate to P/OT that an /O manager proc-
ess must be placed on a specific processor (for example, if the disk file is local to a par-
ticular processor). In this case, all the A processes become clients for I/O purposes.

It is important to realize that a client becomes a branch /O manager when the user’s
process (which contains the I/O client) in turn makes remote calls to other processes. In
Figure 4-2, the A process is also the /O manager for the call to B. However, when B
passes its file pointer to C, C considers B as its /O manager. Then, C becomes the VO
manager for the recursive call back to B, and so on. If information is needed, the request
flows up the call chain until the appropriate manager can provide the information.

35



W e e B

4.2.2 Granting Access

All template /O operations involve several processes — one or more clients and the
manager. The manager is responsible for synchronizing access and merging results. The
client must recognize when access permissions are required, execute the user’s code, and
end the I/O transactions properly. Figure 4-4 shows some of the steps needed to exchange
access permissions between two client processes and a manager.

If the file pointer is intended for sequential I/O, the I/O operation proceeds normally and
control is returned to the user’s code when the I/O operation finishes. If the file pointer is
parallel, the client determines if it has access to the file. If it does not, the manager of the
/O object is sent a message requesting access. In Figure 4-4, both clients A and B send
simultaneous requests to the [/O manager (step 1).

When the manager receives a request for access, it searches its call-chain list to de-
termine if access can be granted. This list is populated in two ways. First, the manager
process is informed by the computational component of the pps that remote messages con-
taining I/O objects are being sent. Second, collective /O requests are received from client
processes. For example, a collective open may be done using a segmented file. Each client
open will receive its own segment or an error. The manager must segment the file and syn-
chronize the merging (if necessary) of the segments after the client is finished processing.

Each entry in the call-chain list contains information such as the caller and callee
identifiers, the parallel file pointer data structure, transaction identifier, and a time stamp.
From this list, the manager can determine who collectively accesses the file pointer and in
what order access is permitted at run-time. At this point, the manager determines if there is
any potential for deadlock in the various transactions and prevents it from happening. An-
other important function of the I/O manager is to inform the caller process that it is safe to
perform another I/O operation. In the example given in Chapter 1.1, all child processes
would share the same I/O manager. However, as Parent opened the file and is considered
the owner of the entire file, Parent is not considered a client of this manager even though
the manager process could be a thread in the Parent process. As Parent initiates remote
VO calls in child processes, it must query the /O manager process before executing
par_£fclose. ’

The access permissions for an I/O descriptor are determined by the ordering attributes
of its template. If access is not allowed at this point, the request is added to the pending
list of the manager until the request can be satisfied. If access can be granted, the manager
marks the request in the call-chain list as active, updates the parallel I/O data structure,
and sends a message containing the access permission along with any new global informa-
tion to the client. When the client receives the manager’s message, the client’s file data
structure is updated to reflect the new global information.

When access is granted to the client process (Figure 4-4, steps 2 and 4), the I/O opera-
tion is verified so that it will not violate any of the parallel template constraints. For exam-
ple, it may not exceed the local segment’s boundaries. Then, the /O operation is executed
and the parallel file data structure is locally updated.

Message ordering
1. Request Access
2. Grant Access

3. Retum Access

: E I . 4. Grant Access
1/O Client A /O Client B S. Retum Access

Figure 4-4 — Granting access using PI/OT.

36



If the atomicity of the parallel I/O operations is set to be a single I/O operation, the client
must temporarily surrender control after completion of the local I/O operation. This is ac-
complished by sending the manager a message that the client is temporarily surrendering
access. This message includes the updated global information for that parallel I/O object.
The client records that its local parallel file pointer has been denied access and continues
processing until the file pointer is needed again. At this point, the client petitions the man-
ager for access permission.

If the I/O operation takes place within an identified transaction, control is retained until
the transaction is finished (Figure 4-4, steps 3 and 5). The client sends a permanent sur-
render message and the updated parallel file pointer information to the manager. Finally,
the client process returns to the user’s code.

When the manager receives the access surrender message from the client, the manager
searches the call-chain list for the active /O object. It updates its own local parallel VO
data structure for this pointer. It then removes the /O object from the call-chain list (if
the surrender is permanent) or simply deactivates it. In either case, the manager then
searches the pending list for the next I/O request that can be satisfied.

4.2.3 Creating a Parallel File Descriptor

The user’s entry points into the stream I/O library are the fopen, freopen, and fdopen
functions. Their signatures are given in Figure 4-5. After determining that one of these
open requests is for a parallel stream, PVOT must instantiate the parallel behaviour for the
given file and add the resultant parallel file descriptor to its internal list (ParIO list) of par-
allel I/O objects. The typical user entry point is fopen. In this case, how will the pv/oOT
run-time system know about parallel behaviours? Since the parallel computation tasks are
already identified by the Pps, any file opened by a parallel task may exhibit a parallel /O
behaviour. Adding the task identifier allows the run-time system to know how to search
for parallel information.

#include <stdio.h>

FILE *fopen(const char *filename, const char *type) ;

FILE *freopen(const char *filename, const char *type, FILE *stream) ;
FILE *fdopen(int fildes, const char *type) ;

Figure 4-5 — Three entry points for stream I/O.

A given task can have several file pointers, each with different parallel behaviours.
Thus, the name of the variable assigned to the file pointer is passed to the P/OT run-time
system, ensuring that the correct parallel I/O object in the right parallel task is properly up-
dated. Figure 4-6 shows the parallel version of fopen and its new signature. This signa-
ture modification can be done at compile time since both the variable name (fpName) and
parallel task type (parTask) are known.

The PYOT run-time system searches the ParIO list of the process to see if the variable
and task name tuple are associated with a user-defined parallel /O description. Note that
this search method is different from the previously discussed way of identifying parallel file
pointers by using the unique system file handle. Since the unique I/O file handle does not
yet exist, an alternate way is needed to determine a unique paralle] /O description.

If the tuple can be associated with a user-defined parallel I/O behaviour, the PYOT run-
time system will determine how to best open the parallel file. What is best could range
from selecting the I/O manager, to making a copy of the file local to improve performance,
or to simply opening the file. The parallel open updates the ParlO list with the new name
of the file and the file descriptor value. If the file fails to open properly, the update is not
performed and a NULL file pointer is returned to the user.

37




it b

S LT RYT O UIE RGO AT T TERTE N T T R R T T e

FILE *Pilot_fopen( const char *filename, const char *type,
const char *fpName, const char *parTask )
{

FILE *fp ;

if ( Pilot_isParallel( fpName, parTask ) ) { /* Parallel /O */
fp = Pllot_open( filename, type, fpName, parTask ) ;

} else ( /* Sequential /O */

fp = fopen( filename, type ) ;
}
return £fp ;
}

Figure 4-6 — Wrapper code for a parallel fopen.

The parallel open also takes into account whether the process is trying to collectively
open the file. As pointed out in Section 4.2.1, if an open is done in a collective manner,
the results are similar except that the access and access coordination are generated by the
newly appointed or created I/O manager.

While fopen is the usual approach to opening a stream data structure, reopening a file
causes the argument stream to be closed, regardless of whether it can be re-opened or not.
Therefore the return stream will point to the new file or NULL. Because of the semantics
of £recpen, there are two alternatives to its parallel implementation (Figure 4-7).

Figure 4-7a shows the signature of the first implementation. This version relies on the
fact that the passed file pointer has already been identified and defined for the parallel be-
haviour. Since a freopen statement is dealing with a previously opened file, only the
physical file that is connected to the file pointer changes. The returned file pointer exhibits
the same parallel behaviour as the passed file pointer. In this case, no modification to the
signature of freopen is needed.

Figure 4-7b shows a second alternative which does require the signature of £reopen to
change. As the existing stream is closed regardless whether the opening of the new stream
is successful or not, the new variable can be associated with a new parallel behaviour. In
this case, both the parallel behaviour and the physical file can change. By passing similar
information as was previously done with fopen, the appropriate parallel behaviour is asso-
ciated with the new file descriptor and the existing file pointer (parallel or not) can be
closed. If the second implementation is chosen, the function modification can be done at
compile time along with the fopen modifications. Since this second method can also be
done by a combination of the fclose statement followed by the fopen statement, the first
choice of implementation should be Figure 4-7a.

The fdopen function associates a stream interface with a low-level file descriptor (for
example, a pipe or a device). If the original file descriptor is opened, taking into account
possible parallel semantics, £dopen will require no modifications because the look-up table
has been properly updated. If the low-level open is not capable of associating a parallel
behaviour with a file descriptor, the £dopen would be modified in a manner similar to the
freopen and fopen functions.

As part of their parallel functionality, all three of these functions will update the look-up
table of defined parallel I/O structures for the process (the ParlIO list). Because the func-

a) FILE *Pilot_freopen(const char *filename, const char *type, FILE *stream )
b) FILE *Piloc_freopen(const char *filename, const char *type, FILE *stream,
const char *fpName, const char *parTask )

Figure 4-7 — Two alternative signatures for freopen.

38




ton signatures can change depending on the defined computational parallelism and the
user’s specifications, using compiler technology to add the additional information would be
the most efficient and transparent approach.

It should be noted that this does not preclude the possibility of having multiple file
pointers pointing to the same file object nor will PYOT hinder the user from doing this.
Resolution of the outcome of such behaviour is undefined. PY/OT does not coordinate be-
haviour between different file pointers, it manages the parallel behaviour of a single system
file pointer.

4.2.4 Closing a Parallel File Descriptor

Closing a parallel file descriptor will create different actions depending on where or
when the fclose function is called. Figure 4-8 shows the wrapper code fora parallel close
function. If the file descriptor has a parallel behaviour (Pilot_isParallel), the run-time
system tries to gain access to the file pointer (Pilot_resolveAccess). If the process that
opens the file then attempts to close it, this function should cause the process to wait until
all child processes are finished. This can be seen in the simple example given in Chap-
ter 1.1. The Parent process must wait until all child processes are finished before clos-
ing the file. Any I/O requests in the call-chain or pending list that involve the same file
descriptor will block the parent process. The actual close is done by Pilot_close. The
parallel close operation merges file segments into the master file (this may involve blocking
depending on the ordering constraints), flushes data to disk, cleans up any temporary buff-
ers and files, and removes the file name and file descriptor from the look-up list of parallel
I/O objects in the manager process.

int par_fclose( FILE *stream )
{
int status ;
if ( Pilot_isParallel( stream ) ) ( /* Parallel /O */
Pilot_resolveAccess( stream ) ;
status = Pilot_close( stream ) ;
} else { /* Sequential /O */
status = fclose( stream ) ;
}
return status ;
}

Figure 4-8 — Wrapper code for parallel fclose.

Things become more interesting if the close operation is called from a client process.
After determining if the file pointer has a parallel behaviour (Pilot_isParallel) and re-
solving access permissions (Pilot_resolveAccess), the parallel close function is called.
Recall that access is only granted to the client if the client’s own call-chain and pending
lists are empty of requests for the file pointer. However, for the client, the functionality of
Pilot_close is different. The file is closed only after consultation with the manager of the
parallel file pointer.

With global file descriptors (meeting and log), there is only one active process ac-
cessing the file, which removes any race conditions. Any inactive /O work requests are
marked as closed (i.e. the file pointer is set to the NULL pointer) from the manager’s call-
chain list. These are I/O requests that have not yet been assigned to a remote process.
Note that the /O requests are not removed, as would be the case if the computation ended.

The manager’s pending list requests are processed in two ways, depending on the
order-stamp associated with both the request and close events. (Think of an order-stamp
as a variant of a time-stamp.) The events maintained by the manager’s call-chain and

39



pending contain an order-stamp which corresponds to the order in which the /O transac-
tions were generated. For the close event, the order-stamp is the same as the one for the
file descriptor assigned in the call-chain that was passed to the client process.

First, if the order-stamp of an entry on the pending list is less than that of the fclose,
the request will be granted. That is, the work is allowed to proceed as if the file has not
been closed. Second, if the close has the earlier order-stamp, the request is returned indi-
cating that the file is closed. The client process is responsible for terminating the computa-
tion task and generating a request for new work from the manager process. It behooves the
user to routinely check return codes for any I/O operation.

Independent templates (photocopy) inform the parent process about the close opera-
tion. The uncommitted /O work requests using the affected file descriptor in the call-
chain list are marked as closed. As the work is consumed, the pending requests will find
the file closed.

If the file descriptor is segmented, the client will contact the manager process and in-
form it about the close action. All outstanding work is allowed to proceed but any uncom-
mitted work with this file descriptor is marked as closed in the call-chain list. While the
manager’s response to the close request is proceeding, the client process closes the file
segment normally and continues execution.

4.2.5 Using a Parallel File Descriptor

There are four ways to use a parallel file descriptor. They consist of reading or writing
fixed length records, reading unknown length records, writing unknown length records,
and movement of the file pointer within the file. While Chapter 3.1.2 and Chapter 3.1.3
discuss unknown file segments in more detail, unknown length records mean that the
?ctuali sdxze of the record read or written is known only after the individual I/O function is

inished.

For each of these different types of I/O functions, there is a corresponding modification
to the way the function behaves. In all cases, the first decision is to test if the file pointer
supplied is considered a parallel or sequential file descriptor. If the file pointer does not
have parallel behaviour, the sequential function is executed and the results are returned to
the user.

In the case of reading or writing fixed length records, since the size is already known,
the run-time system can verify that there is sufficient space available for the operation.
Figure 4-9 shows the pseudo code for a parallel £read. The file pointer must first be de-
termined to have a parallel behaviour (Pilot_resolveaccess). Then, sufficient space
must be available to do the I/O operation (Pilot_preVerifyFP).

While exceeding the boundary is an error for newspapers, exceeding the boundary

int par_fread( char *ptr, int size, int nitems, FILE *stream )
{
int status ;
if ( Pilot_isParallel( stream ) ) ( /* Parallel /0 */
Pilot_resolveAccess( stream ) ;
Pilot_preVerifyfP( stream, size * nitems ) ;
status = Pilot_g£read( ptr, size, nitems, stream ) ;
Pilot_postVerifyPP( stream ) ;
} else ( /* Sequential /O */
status = fread( ptr, size, nitems, stream ) ;
}
return status ;
}

Figure 4-9 — Wrapper code for parallel fread.

40




for a report normally involves getting access permissions for the new segment. (The two
exceptions for the report template occur when the new location is less than the value of the
base of the first segment or the extent of the last segment is exceeded.) After performing
the actual I/0 operation (in the case of the report, this may consist of a read or write op-
eration for each segment), the run-time system verifies that the file pointer is left in a con-
sistent and valid state for the parallel template constraints, and that the file is updated in a
consistent and reliable fashion (Pilot_postverify). That is, temporary files or memory
buffers are flushed to the master file on disk.

When the length of a read operation is not known until after the operation completes,
two approaches are used to determine if the post-read state of the file is legal. Using
£scanf (Figure 4-10) as an example, the I/O operation is allowed to proceed after access is
permitted (Pilot_resolveAccess) but the post-I/O check (Pilot_postverifyrp) will
confirm that the IO operation has been completed within the limits described by the /O
template. For global and independent /O templates, this causes few problems. End-of-file
(EOF) conditions will apply normaily.

int par_fscanf( FILE *stream, char *fmtString, va_arg )
{
/* The term va_arg indicates variable numbers of arguments. */
int status ;
if ( Pilot_isParallel( stream ) ) { /* Parallel VO */
Pilot_resolveAccess( stream ) ;
status = Pilot_vfscanf( stream, fmtString, va_arg } ;
Pilot_postVerifyPP( stream ) ;
} else { /* Sequential VO */
/* viscanf is the va_arg equivalent of fscanf */
status = viscanf( stream, fmtString, va_axg ) ;
}
return status ;
}

Figure 4-10 — Wrapper code for parallel £scant.

Unfortunately, post-read state check is an unsatisfactory solution for segmented tem-
plates since memory locations can potentially be modified when they should not be. An
example of this would be where a read operation crosses the segment boundaries and gets
data from the neighbouring segment. This could happen if PVOT segments the file logically
but not physically. The read should either read up to the segment boundary or fail com-
pletely because the exclusive access condition has been violated. By replicating a known
length I/O segment locally, the EOF condition is exploited for the newspaper template and
a solution is derived. Unknown segment lengths do not have this problem since they can
use the conventional EOF to determine the limits on the file.

For report templates, the end-of-segment (E0s) condition is not the same as the EOF
condition. An alternate solution is to parse the format string and test each read operation
separately — a pre-read operation. If a pre-read operation crosses the segment boundary,
the run-time system will need to exchange the segments with the file manager. However,
the actual read operation will not fail or notice the exchange. The drawback to this system
is the necessity of two read operations: one from disk and one from memory.

If a write operation does not provide a length until after the operation completes, there
is a “simple” solution. Figure 4-11 shows the pseudo code for a parallel fprint. Afier
access permissions have been resolved (Pilot_resolveAccess) for the parallel fprintf,

the output is redirected to a temporary buffer (tmpstream). This could be a temporary
scratch file or a memory buffer. Its length will be checked by the verify operation

41




et e L

I e

int par_fprintf( FILE *stream, char *fmtString, va_arg )
{
/* The term va_arg indicates variable numbers of arguments. */
int status ;
if ( Pilot_isParallel( stream ) ) ( /* Parallel /O */
PILE * tmpStream ;
Pilot_resolveAccess( stream ) ;
tmpStream = Pilot_tempStream( stream ) ;
status = Pilot_veprintf( tmpStream, fmtString, va_arg ) ;
Pilot_postVerifyPP( stream ) ;
} else ( /* Sequential 1/Q0 %/
/* viprintf is the va_arg equivalent of fprintf */
status = vifprintf( stream, fmtString, va_arg ) ;
}
return status ;

Figure 4-11 — Wrapper code for parallel fprintf.

(Pilot_postVerifyFP) and committed to the physical disk as necessary. If the parallel
behaviour is global or independent, the memory stream returned is the actual stream. For a
newspaper behaviour, if the buffer exceeds the segment size, the I/O operation is com-
pleted up to the boundary (if known) or normally (if unknown). Otherwise, the report
behaviour causes a segment swap and the new file segment is updated with the remainder
of the memory buffer.

Finally, there are the control I/O operations such as £seek (Figure 4-12). These func-
tions change the location pointed to by the file pointer. In this case, after the access per-
missions have been resolved (Pilot_resolveaccess) the parallel seek (Pilot_fseek) is
performed. The alternative f£seek is necessary since the user sees and addresses a global
or unified file. A segmented file must have the offset values modified to fit within the
physical constraints of the file segment.

A post condition check (Pilot_postverifyFp) will confirm that the file pointer is cor-
rectly updated. Seeking outside the fixed limits of a segment for a newspaper template is
considered an error. Unknown file segments are only a problem if the file pointer is
moved to a position less than the base value of the segment. This is considered an error
condition similar to when a user attempts to sequentially access data before the beginning of
a file. For report behaviours, exceeding the segment boundaries will cause the appropri-
ate segments to be exchanged with the file manager except for the starting segment and the
segment containing the EOF. In the case of the starting segment, it is an error to seek before
the base value and seeking past the EOF only extends the segment if the length is unknown.

int par_fseek( FILE * stream, long offset, int mode )
{
int status ;
if ( Pilot_isParallel( stream ) ) ( /* Parallel /O %/
Pilot_resolveAccess( stream ) ;
status = Pilot_fseek( stream, offset, mode ) ;
Pilot_postVerifyFP( stream ) ;
} else ( /* Sequential /O */
status = fseek( stream, offset, mode ) ;
}
return status ;
}

Figure 4-12 — Wrapper code for parallel £seek.

42




4.3 PI/OT Template Implementation Issues

The previous section looked at the implementation issues from the viewpoint of the
functions that are parallelized. This section examines the concerns of implementing the five
template abstractions. There are three subsections that present specific implementation is-
sues of the independent photocopy template, the three global templates (log, meeting,
and report), and the two segmented I/O templates (newspaper and report).

4.3.1 Photocopy Template

The independent template, photocopy, treats files similarly to sequential stream VO
except that write operations are visible only to the local client. When the client is finished
processing the file, the manager gets the updated file. The user-specified order of the write
operations determines when changes to the manager’s file become visible to the collective.
If a process closes, opens, or reopens a file, the manager will only be informed when the
client is finished processing. This can affect future usage of the file pointer for any inac-
tive entries in the call-chain list, as they have not yet been sent to a remote process.
However, this will not affect any of the active entries as they are executing concurrently.

4.3.2 Global Templates

The global file pointer templates (meeting, log, and report) have I/O stream behav-
iour similar to the sequential behaviour. There are differences when fclose and freopen
are done by a client or when a group fopen occurs. Closing a file on the client side causes
the manager to invalidate all remaining non-active I/O requests left on the call-chain list
for that particular /O object. Reopening the file resuits in all subsequent I/O access
through the new file. As discussed earlier, when a collective fopen is done, one process is
designated the manager to control access to the file pointer. The ordering attribute for the
template (Chapter 3.2) defines which process gets access to the file next.

4.3.3 Segmented Templates

The segmented file pointer templates (report and newspaper) differ in that a client re-
ceives access permissions for a file pointer that lies within a range specified by the base (or
starting point) in the file and the extent (or the number of bytes) that define the limit of the
segment. At run-time, the base and extent for the client are determined by the manager,
either through a user-supplied constant or a call-back segmentation function. The manager
advances its file descriptor to point to the next byte after the end of the client’s segment.

The segmentation function has a specific signature defined for it. Figure 4-13 shows
an example function where a variable length record consists of an entry defining the num-
ber of elements followed by the elements. The first parameter is the parallel file stream
(stream). A user assumes that the file pointer is set to the start of the record. The three
remaining parameters are the minimum (min), maximum (max), and current (current)
number of processes sharing access to this parallel I/O object. The P/OT run-time system
will invoke this function automatically. The PI/OT user-interface needs to ensure that this
signature is used.

Note that the user writes this segmentation function using the standard stream I/O func-
tions. The user is not permitted to write to the file in the segmentation function, but read
and seek operations are permitted. The reason for this is that the segmentation function is
only intended to examine the file, not modify it. The return value is the number of bytes
composing the record. The usual parallel constraints still apply to the file descriptor used
for segmenting. For example, access permission to the file must be granted; the file pointer
must staydwithin the specified boundaries of its segment. (Recall that a segment can be
segmented.)

43



#include <stdio.h>
#include <myTypeDefs._h>
unsigned long segmentFcen( FILE * stream, int min, int max, int current )
{
unsigned long offset ;
int nElements, status ;

/* The number of elements composing this record */
status = fread( &nElements, sizeof(int), 1, stream ) ;
if ( status !=1 ) /* The read has failed */

return (unsigned long)-1 ;

/* Calculate the number of bytes in this record */
offset = sizeof(int) + nElements * sizeof(Element_typedef) ;

return offset ; /* Return the number of bytes in this record */

Figure 4-13 — An example of a P/OT segmentation function.

In the example depicted in Figure 4-13, the function reads in the number of elements
(nElements) found in the record. If there is an error in the read (no more data), the func-
tion returns the equivalent of negative one (-1) to the run-time system, indicating that an
error has occurred. Otherwise, the size of the record is calculated and returned to the run-
time system. The user does not have to restore or move the location of the file pointer prior
to returning, as this is the responsibility of the P/OT run-time system.

An alternate way of segmenting a file would be to have a record consisting of data on
three lines (i.e. every third new-1line character delimits a record). Figure 4-14 shows an
example of such a segmentation function for pP/OT. The drawback to this approach to seg-
menting is that the data file is effectively read twice, once by the segmenting process and
once by the client process.

The client uses a local copy of the segment if the file is opened in write or update mode.
This local copy is not necessary if the file is opened using read-only mode. However,
checking that the boundary conditions are not violated will require extra care if variable
length read operations are used. If fixed-length records are specified, only the modified
segments need to be returned to the manager for updating the master file. If the segment
has not been modified, it does not need to be updated.

If a newspaper template that uses a defined-length extent (a value greater than zero)

is selected, each process must stay between the two limits base and base + extent.
Defined-length segments do not mean constant-length records. Rather, the extent is de-

#include <stdio.h>

unsigned long segmentFen( FILE * stream, int min, int max, int current )
{
/* A record is composed of three lines of data (delimiter character ‘“\n”) */
unsigned long offset = 0;
int count = 0, status ;

while ( ! feof( stream ) && count < 3 ) { /* Three line feeds or EOF */
if ( (status = fgetc( stream ) ) == *\n’ )
count++ ; /* Another line feed encountered */
offset++ ; /* Another byte offset */
}
return offset ; /* Return the new file segment extent */

Y
Figure 4-14 — Another example of a PI/OT segmentation function.

44




termined in advance of the remote process using the file pointer. Currently, the file is seg-
mented either by a user-supplied constant or by a call-back segmentation function at run-
time. An extension of this work would have the precompiler derive the segment size by
analyzing the code. The user specifies unknown-length records by defining an extent
of zero (0).

The unknown-length record size is useful when the file is opened using write-only
mode. The processes write in distinct file-segments that are reintegrated into the file in
consecutive segments. In read-only mode, the processes share the same base and, when all
the processes have finished, the maximum of all the extents is used to update the parallel
file pointer.

In update mode, the situation is more complicated. The approach taken is to have the
processes read from the file and write to a local temporary file segment with the appropriate
synchronization mechanisms. Reintegration depends on the ordering attribute. Concate-
nating separate segments, as is done with the write-only mode, is not appropriate. The in-
tent of the update mode in either sequential or parallel applications is to modify existing
data. Overlaying the segments in a user-specified manner (ordered, relaxed, or cha-
otic) respects this intent. However, if one process is reading from the file while another
process is updating the file, the result of the read operation is indeterminate.

There are two solutions that avoid this non-determinism. The first is that any write op-
eration must require the writing process to get an exclusive write lock on the portion of the
file affected, prior to proceeding. The other processes can grant the write lock when they
are able. This approach works adequately if the read-to-write ratio is large. However, get-
ting permissions for every write operation is expensive.

The second solution defers the permissions phase until a process is finished with the
file segment. The processes would read from the master file and write to a temporary file.
All updates are made to the local copy. When the process is finished, it returns the updated
segment to the manager. The manager then seeks the appropriate permissions from all the
processes sharing this file pointer prior to updating the file with the modified segment.
This is trivial when using ordered updates in that the process update order has been prede-
fined. With relaxed or chaotic ordering, the update permission must be acquired from
all participating processes. Depending on the application, the non-determinism inherent in
this delayed update approach may not be acceptable.

One side effect of using unknown-length extents is that both testing for end-of-file
or any read/write operation by anyone other than the owner(s) of the segment will block
until the outstanding segments have been processed and reassembled in the file.

The order attribute indicates how the file will be reassembled when a client is finished
with a segment. For example, if ordered /O is specified, the segments are integrated as
specified by the call ordering. If relaxed I/O is used, segments representing similar work
(o type in Figure 3-2) are assembled in an as-received order with the other segments (B type
in Figure 3-2) blocked from being committed to disk until all « segments are finished.
Chaotic I/O allows any segment to be re-integrated into the manager’s file in an as-
received fashion.

When a report I/O operation crosses a segment boundary (either less than base or
greater than base + extent), the client requests permission from the manager to access the
new segment. The manager waits until the requested segment is free or it asks the process
that currently has the requested segment to temporarily give the requested read or write
permission for the segment to the client. If the segment is free, the manager passes the new
segment on to the client. To prevent deadlock, the client gives up its current segment be-
fore receiving the new segment. The solutions proposed for newspaper templates with
unknown-length extents are equally relevant for report templates.

_ To ensure that multiple processes do not have access to the same segment, the manager
is responsible for preventing the client or calling process from attempting to move the file

45



pointer into areas of the file still controlled by active segments in the call-chain list.
Similarly, the manager will block the calling process on an fclose until all the outstanding
segments are consumed. Client processes closing segmented files would not block but
may have side-effects on the application. That is, closing a file will invalidate all non-active
work left in the call-chain list for that file descriptor. If the work is invalidated, the next
client process would be required to open a new file and have the manager re-segment it.
There is no requirement to segment the new file at this point for every remaining element
using this c{ilo: in the call-chain; as the remaining elements are processed, they would be re-
segmented.

The freopen does not affect processes currently working on an active segment but any
outstanding segments waiting for a process are modified to use the new file. Again, the
new file would be segmented upon request.

When a client finishes with a file segment, it sends a message to the manager that it is
done. If the segment has been modified, the message also contains the modified segment.
The manager processes the client’s message and updates its file appropriately.

4.4 PI/OT and Enterprise

This section presents the specific details about the modifications made to the Enterprise
PPS to support the P/OT parallel programming model. Enterprise meets the minimum re-
quirements needed to implement P/OT as defined in Section 4.1. Enterprise has a well-
defined graphical interface (Gul) for defining relationships between distinct computational
tasks. A source-to-source translator (precompiler) is used to generate wrapper code for
remote function invocation, synchronization points, and maintenance of futures. (A fu-
ture [16] is defined as a memory location that is promised a value in the future. The proc-
ess is allowed to continue processing until that memory location is accessed. If the value
has not been received, the process blocks until the value is received.) The run-time system
is responsible for spawning processes, ensuring messages are reliably sent between proc-
esses, marshalling and demarshalling data for remote function invocation.

The Enterprise Gul is used to maintain an external file that describes the parallelism for
the application. In this file, the parallel tasks are identified and the relationships to the dif-
ferent tasks are defined. An Enterprise parallel task or asset corresponds to a function.
Parallelism is realized when muiltiple invocations of a function are running concurrently,
using several processes. The Enterprise pps does not require the user to learn a new library
for parallel behaviours, nor does it extend the sequential programming language (C). En-
terprise is responsible for marshalling and demarshalling the parameters of asynchronous
remote function calls and identifying futures or synchronization points in the user’s code.
These responsibilities are accomplished by a combination of compile-time analysis which
identifies futures and remote function invocations; run-time libraries deal with the dynamic
nature of the application. For more details about the Enterprise programming model as it
pertains to this dissertation, see Appendix A. Detailed discussions about different compo-
nents of Enterprise are found in [44, 45, 49-52, 64, 65, 70, 72, 73, 84].

There are three areas that required intervention or modification to the Enterprise PPS to
support parallel I/O. They are the graph file, the source-to-source translator (precom-
piler), and the run-time library. Section 4.4.1 describes the changes to the graph file;
Section 4.4.2 documents the modifications to the precompiler and associated scripts for the
static analysis; Section 4.4.3 provides details about the modifications to the run-time li-
braries to support PI/OT.

There are a number of limitations to the current Enterprise implementation of PI/OT.

1. No direct advantage is taken of any physical parallelization of files (for example,

Starling or declustering). Rather, all files are treated as having a unified single logi-
cal image.

46



2. Enterprise uses the scope of a parallel function (asset) to define the lowest form of
parallel activity. The definition of an I/O transaction is bound by this same scope.
That is, arbitrarily sized atomic I/O statements are not supported.

3. The report template is not implemented yet. Neither is the merging of photocopy
template writes. The deadlock prevention mechanism is not sophisticated enough to
support these templates. More work is needed in the compiler portion of P/OT to
ensure deadlock does not happen.

4. For reasons similar to those given in 3, the collective open is not fully implemented.
Deadlock prevention requires more compiler support to ensure a general solution.

5. There is no check if the user has multiple file pointers opening the same file. If the
user opens the same file using file pointer £a with a global behaviour and a second
file pointer £t with segmented parallel behaviour, the implementation does not link
the two separate file pointers to the same physical file. Undefined results are ex-
pected.

6. The Enterprise precompiler examines only the source code files of the different as-
sets that compose the parallel computations. The non-asset user source files or li-
braries are not yet searched by the precompiler to modify any fopen statements.
Consequently, it is illegal to open a parallel file pointer in anything but a parallel
function source file. The definition of parallel file descriptors and their behaviours
is not yet resolved for non-asset user code. One solution is to query the process to
find out which parallel task is being currently run. Extending the tuple information
to include the sequential function as well as the variable name and current parallel
task to identify the parallel /O object may be one approach.

7. There is no parallelization of the fdopen function because the original low-level
open function does not take into account possible parallel semantics. The two
functions, sscanf and sprintf are not parallelized since they modify memory lo-
cations, not physical files. A block of shared memory would be considered the
same as a file for these two functions. There is no reason why they cannot support
parallel I/O semantics. When Enterprise supports distributed shared memory, a re-
evaluation of the parallel behaviours possible for these two functions is needed.

4.4.1 Graph File Modifications

Each Enterprise asset type has its own parallel designation. The parallel /O model
needs to understand its own parallel requirements and the assets it will call to have the cor-
rect behaviour. In the Enterprise graph file, each asset definition contains a field that, for
historical reasons, is unused. PI/OT uses this previously unused field, EXTERNAL, to define
parallel I/O for each asset as a series of tuples. Modifications to the parsing of the graph
file reflecting this change were made in the precompiler and run-time system. For now, the
Gui was not modified as it is not used by p/OT. Normaliy, the graph file data would not be
written by the user. Rather, the Gur would create the text file based on all the information
supplied by the user. For other ppss, there must be some way of integrating the parallel
task definitions with the parallel I/O requirements. Figure 4-15 shows the general outline
of a P/OT tuple’s format for an Enterprise graph file.

Each tuple consists of the variable name of the file pointer used in the asset (varName).
Following it is the parallel mode of the file pointer (parMode). There are currently five ac-
ceptable choices. The template read and write ordering attributes (readorder and write-
Order) can be optionally defined for the parallel mode. For read ordering, they are ro
(ordered read), rr (relaxed read), and rc (chaotic read). Similar attributes are specified for
write ordering. The remaining mandatory entry defines whether the I/O transaction size
(BlockFactor) is either a per-1/O statement (atomic) which is currently ignored, or a per-

47



At L ar b

varName parMode readOrder writeOrder BlockFactor [assetName=segmentSize]

where:

varName := character string

parMode := {MEETING | LOG | PHOTOCOPY | NEWSPAPER | REPORT}
readOrder := (ro | rr | el

writeOrder = (wo | wr jwe}

BlockFactor := (a | b}

assetName := character string

segmentSize == {0 | >0 | functionName}

functionName := character string

Figure 4-15 — Format of a PI/OT entry for an Enterprise graph file.

asset (block). Since Enterprise does not permit missing entries, all of these mandatory
entries must be present.

If the parallel mode chosen is segmented (NEWSPAPER Or REPORT), there must be a seg-
mentation function or constant (segmentsize) defined for every asset that gets passed the
file pointer. The segmentation of a file is based on the requirements of the different com-
putational blocks that access it. If there are different types of computational blocks, each
type could require different amounts of data. If the asset is replicated and it invokes an
fopen, freopen, or fclose function (collective behaviour), there must be a segmentation
value specified for the asset. The value is either a zero for an unknown length segment, a
positive integer representing the size of the extent in bytes, or a user-defined function that
the run-time system will call to determine the extent whenever the file is opened or passed
in a remote asset call. This function may also return the value of -1 (or its equivalent as an
unsigned long), which indicates to the P/OT run-time system that an error has occurred.
The current action upon encountering a segmentation function error is to ask the pps to re-
port the error and shut down the parallel application.

To clarify the use of the p/OT tuple in Enterprise, an example graph file is provided in
Figure 4-16. The graph file is based on the example first discussed in Chapter 1.I. How
this example has been “Enterprised” is explained in Appendix A.2.1. There are two paral-
lel file pointers defined in the Parent asset stanza. The first one, £in, is to be treated as a
segmented parallel file (newspaper) while the second one, fout, is a global write append
parallel file (log). The granularity of atomic /O operations is at the function block level
rather than at the atomic statement level.

The read and write aitributes are ordered for £in. This is the default case and there is
no need to change this as fin is opened read-only. However, the write ordering of fout
can be relaxed since it was determined that the order of output was irrelevant as long as
transactions did not overlap each another. In this case, chaotic writes would be equally ac-
ceptable since only child processes access the file.

Parent line 1 1 1 ORDERED NODERUG NOPTINIZE

CFLAGS

EXTERMAL fin NENSPAPER ro wo b Child=4 fout LOG rr wr b
INCLUDE sherwoodpk

EXCLUDE maligne-lk

Child individual 3 4 UNORDERED NODEBUG NOPTIMIZE

CFLAGS

EXTERNAL

INCLUDE

EXCLUDE sherwoodpk

Figure 4-16 — An Enterprise graph file with P/OT extensions.

48




The parent process opens the file. Since it cannot be replicated (a property of being
the first asset) there is no need for a definition of a segmentation value. However, Parent
does pass the two file pointers to child. In this case, the user chose to limit each segment
size to a constant value of four bytes and the definition is child=4. An alternative would
be to define a function (Segment4) that returns the value 4. In that case, the definition
would be: child=segment4. There is no need to specify the segmentation functions in a
particular order, nor to specify any unused segmentation functions.

4.4.2 Static Analysis Additions

The Enterprise source-to-source translator (precompiler) uses the graph file to modify
only certain parts of the user’s source code for the parallel computational behaviour — the
asset source files. However, PI/OT needs to replace all the stream I/O functions except for
fopen in both the asset code and non-asset source (sequential) code. Enterprise does not
examine sequential code because there is no control parallelism located there. Because this
deficiency (from P/OT’s viewpoint) of the current Enterprise precompiler not examining all
the source code, a sed” script is used to search the user’s sequential code and replace the
I/O statements. One limitation of the sed script is that non-asset code cannot open a file
using a parallel behaviour since the signature of the fopen is not changed. Because the
precompiler looks only at the asset source code, only the asset code has the fopen function
calls modified.

PV/OT replaces the standard stream I/O functions with a corresponding parallel I/O stub
function, ENT_xxx, where the xxx is replaced with the name of the corresponding I/O
stream function or macro. This replacement is done before the source code is preprocessed
either by the Enterprise precompiler or by the conventional compiler (cc). These compilers
process any macros such as feof or getc. Each time the file pointer variable is passed in
the I/O function invocation, the stub I/O function examines the pointer to determine if the
variable is a parallel file pointer.

The lookup list (ParlIO) for identifying parallel I/O descriptors is created and main-
tained by the PI/OT run-time system for each asset object controlled by a process. A query
from the stub I/O function asks the run-time system for the asset currently in control. This
asset is then asked to search its ParlO list to determine if the file pointer has a parallel be-
haviour.

The interesting part of modifying the source code is found in the entry points into the
stream I/O. The two entry points are the freopen and fopen functions. As discussed in
Section 4.2.3, there are two possible implementations of the parallel £reopen. The first
method, where the physical file is changed but the parallel I/O behaviour remains the same,
was chosen. The freopen function signature is not modified and the sed script is suffi-
cient to search and replace for the appropriate P/OT stub function. This method allows the
luisclelr g) reopen a file in the sequential code as the parallel behaviour has already been estab-

shed.

The other user entry point is fopen. Figure 4-17 shows the modified function signa-
ture. In this case, the file pointer has not been initialized nor has the file been identified as a
parallel file. The run-time system needs to couple parallel behaviours to files. Recall that a
parallel computation task is already identified by Enterprise as an asset. Consequently, any
file opened by an asset may exhibit parallel behaviours. Adding the asset name allows the
run-time system to know where to search for parallel information. However, a given asset
can have several file pointers, each with different parallel behaviours. The name of the ac-
tual variable that is being assigned is passed to the run-time system to ensure that the cor-
rect parallel I/0 object is updated.

* sed (stream editor) is a standard UNIX program that applies a series of editor commands to a file.

49



S T REEE T TR TR WA T AT TR T TR W T AR AR TITTY T NARE R W TOTVAT LW BasT e e 7 T

FILE * ENT_FOPEN( char *fileName, char *mode, char *variableName, char *assetName )

Figure 4-17 — The signature of an Enterprise parallel fopen function.

The Enterprise precompiler was modified to search the asset code files for occurrences
of fopen. The precompiler then adds two text strings to the fopen parameter list. The first
text string contains the name of the assigned variable in the fopen statement. The second
text string contains the name of the asset which identifies the transaction type. All fopen
functions in asset source files are modified, regardless of whether they are designated par-
allel or not. If a file pointer is not designated as having a paralle]l behaviour, the pointer is
treated as having a sequential behaviour. Thus, a user need only modify, add, or delete file
pointers in the graph file and rerun the application again to test a new parallel /O behav-
iour.

It is important for the paralle] fopen function to return a normal stream I/O variable. A
user calls sequential functions using the file pointer. If a parallel file pointer is passed to
sequential functions, the correct parallel behaviour is still performed, as all the /O func-
tions in the source code have been replaced with parallel equivalents. A possible improve-
ment would be to replace the sequential I/O library with a parallel version. This parallel
library would only be linked if the application has been properly preprocessed to reflect the
modified parallel I/O function signatures.

The Enterprise precompiler also modifies the stub or wrapper functions it generates for
each type of asset invocation and the corresponding return variable so that the /O variables
are identified and declared properly. When a remote function is invoked, the parameters
are sent to the process that will execute the function. If the message contains file pointers,
PI/OT replaces those file pointers with the correct parallel I/O data structures. Upon receipt
of the message, the remote function would create the parallel file pointers before invoking
the function. When the remote function returns, the modified file pointer is intercepted and
the appropriate parallel I/O data is sent.

The precompiler also adds the names and addresses of the segmentation functions for
each asset into a global vector so the run-time code can look up a given function by name
and then invoke it. Some work has been done to search the symbol table of the executable
so that this global vector is unnecessary. However, if the executable is stripped (i.e. the
symbol information is removed), such a search does not work.

4.4.3 Run-time Libraries

The p/OT run-time I/O library, while based on Enterprise functionality, is not dependent
on Enterprise. The ability to send and receive messages and retrieve parallel computational
information is all that is required. There is some intervention in the Enterprise run-time
code to include the parallel I/O functionality which occurs in five places: the asset graph
(parallel VO data management), the remote function invocation (file pointer marshalling),
processing (file pointer demarshalling), the remote function return (updating and integration
of file), and parallel /O event generation. The actual parallel I/O code was kept separate
from the existing run-time library as much as possible.

The Enterprise implementation of PYOT has modified the graph file to store the static
parallel VO information. At run-time, the graph file is converted into an asset graph.
This graph contains both dynamic (the number of processes for a given parallel type, which
process manages the group) and static information (type of parallel behaviour, constraints
about process location) for each parallel computational type. For parallel I/O, each parallel
object (or asset) maintains the two parallel /O lists, call-chain and pending, plus a de-
ficri)ption and current status for each parallel I/O object assigned to the asset (the ParlO

st).

50




Each entry in the call-chain and pending list contains sufficient information to de-
scribe and construct a parallel I/O object. Each entry contains the address of the manager of
the /O descriptor, the type of parallel I/O behaviour, the name of the file currently attached
to this descriptor, the base and extent (if segmented), the access permission, ordering
information, and the internal stream file pointers.

In some cases, the parallel behaviour requires two separate file descriptors — one for
use by the application and one for any temporary files or memory buffers. Temporary files
are located by default in the directory /tmp to minimize the impact on the network. This
default value is ovemrridden if the user sets the shell environment variable,
ENTERPRISE_YOTEMP, to indicate some other location. For example, setting the environ-
ment variable to tmp10 will locate any temporary files in the directory tmp1o which is lo-
cated relative to the current working directory of the application.

All stream VO functions have parallel counterparts except for sscanf, sprintf, and
fdopen. This makes the checking for parallel behaviours simple and consistent for the
system. The actual check is a minor cost compared to doing the I/O. When the user in-
vokes an /O function, the parallel function determines if the I/O operation is for a parallel
or sequential file pointer. If the file pointer is sequential, it is passed to the appropriate se-
quential J/O function and the return code is passed back to the user. If the file pointer is
parallel, its asset is queried for the current state of the parallel object. Depending on the
actual I/O operation, the currently defined parallel /O behaviour, and the state of the asset,
a number of messages are generated to prepare for the I/O operation. The run-time system
checks the I/0 operation to confirm it can be safely done within the constraints of the par-
allel template and then performs the I/O operation. Afterwards, the return code of the VO
function is passed back to the user.

Each invocation of a remote function call that includes a file descriptor in the formal ar-
guments passes the current state of the parallel I/O object. This state is stored in the call-
chain. The Enterprise marshalling code was modified to detect the file descriptor parame-
ter. The Enterprise precompiler modified the stub codes. The run-time system searches for
a file pointer in the asset’s ParIO list. The parallel IO object is updated and flattened into
an ASCII stream suitable for sending to the remote process. If the parallel behaviour is
segmented, the /O segmentation function associated with this parallel I/O object and the
called asset is invoked to determine the extent of the segment.

Each function invocation is assigned a unique (per process) identifier which doubles as
the transaction identifier. The call-chain list controls the sequence or progression of /O
operations for the application. As the remote assets (client) reach the point where they
need to update or gain access to a particular I/O object, the caller asset (manager) regulates
which process gets access to the file or file segment.

When a client receives a parallel file object, it creates a new I/O object based on the data
stream received. Since a client can have multiple assets, the /O object must contain the
name of the asset it is associated with. The client then matches the object’s asset type to
one of the assets it manages. The matched asset then searches in its ParIO list for the par-
allel /O object. The asset’s I/O object is updated and the file is opened appropriately. If
the run-time system fails to find the correct asset and the correct VO object, the application
is shutdown. When the asset parameters are completely processed, the computational
function assigned by the user to the asset is called. When the file pointer is accessed in the
user’s code, the access permissions are required from the caller asset prior to performing
the I/O. A message is sent to the I/O manager to request access which blocks the client as-
set from further processing until the manager returns.

The caller asset may receive many such requests and saves the ones it cannot satisfy in
the pending list. For example, if a request is received out of order (this depends on the
ordering attribute) or the caller does not currently have access permission, the request is

51



queued. The caller asset periodically checks through the pending list to see if it can re-
solve any outstanding I/O requests.

As each asset finishes with its file pointer, it updates the parallel file data structure,
closes the file pointer, and returns the modified file pointer to the caller. Upon receipt, the
caller searches its call-chain list and deletes the corresponding object after updating its
own parallel file object in the ParlQ list, if necessary. This is different from the Enterprise
model of parameter passing which allows parameters to be considered as one of three types
— IN, OUT, Or INOUT. IN parameters are not returned to the calling asset and consequently
do not generate futures. oUT parameters are only returned to the calling assets and are not
passed to the remote asset. INOUT parameters are passed in and returned back. The last
two parameter types always generate a future. All I/O objects are considered as being
INouT parameters and will always generate a return message containing data. However,
I/O objects do not generate a future in the Enterprise sense. The checking of the current /O
state by the parallel /O stub functions replaces the generic future checking done by Enter-
prise. The marshalling code reflects this approach regardless of any attempt by the user to
override (e.g. using the Enterprise IN or ouT marshalling macros).

In addition to the parallel I/O objects contained in ParlO, each asset definition is asso-
ciated with a parallel /O behaviour — single, managed, or replicated. Depending on
the behaviour, the I/O is performed differently. For example, if a parallel fopen call occurs
in an asset that has a replicated I/O behaviour, the asset would request its I/O manager to
coordinate the open. Alternatively, a managed asset is a specialized system object that
contains no user code. Its purpose is to synchronize and coordinate access to a file. These
behaviours are based on the asset’s replication factor and whether the asset is defined to be
a manager or worker type by the Enterprise runtime system.

As a tool for performance monitoring and debugging, Enterprise generates event mes-
sages for parallel activities. These messages are generated and collected when debugging
the application or analysing for performance bottlenecks. Since IO can have a significant
effect on the performance of a parallel application, a set of I/O events was made available to
the Enterprise interface. A list of the current I/O events is found in Figure 4-18. They are
typically in pairs.

An I/O transaction starts when the I/O manager sends a message (sentIOMsg) and the
client receives it (rcvdioMsg). When the client actually starts the transaction, the event,
processIOMsg, is generated. If the client is finished using a given parallel file pointer be-
fore the overall I/O transaction is finished, the doneIOMsg event is generated. This indi-
cates that the client has no further use for this file pointer but does not necessarily indicate
that the I/O transaction is completed. That is, the run-time system can determine (or be
prompted by the user) that the indicated parallel file descriptor will not be used any more in

#sentIMsg manager client msgTag time IOState
#rcvdIMsg client manager msgTag time IOState

#processIMsg client manager msgTag time IOState

#doneItMsg client manager msgTag time IOState
#sentIOReply client manager msgTag time IOState
#rcvdIOReply manager client msgTag time IOState

#IO0AccessSurrender client manager msgTag time IOState
#I0AccessGained manager client msgTag time IOState

#IOAccessRequest client manager msgTag time IOState
#I0AccessGranted manager client msgTag time IOState

#performIO process IOTYpe msgTag time IOState
Figure 4-18 — The different I/O events for Enterprise.

52




g

g s,

the transaction. This early release can improve concurrency. Currently, the early release
mechanism is inserted by hand. Future research with the static analysis should do this
automatically. The manager processing the reply generates the rcvdroreply event. The
end of an /O transaction generates two events — the client indicates it is done
(sentIOReply) and the manager processes the reply (rcvdIOReply).

If a client surrenders the access permission of a given file pointer to its [/O manager, the
IOAccessSurrender event is generated with the corresponding manager’s IOAccess-
Gained event. The I0AccessRequest event is sent by the client to the manager for per-
mission to access the requested file descriptor. Both giobal and report templates can gen-
erate this request. When access is granted, the manager generates the I0AccessGranted
event. The manager generates a rcvdTOReply event upon processing the early-release.

The format of the message for any of these paired events is the same. The message
consists of a tag identifying the event, a parallel task identifier of the event generator (this is
unique for the application), the parallel task identifier of the I/O operation recipient (again
unique for the application), a per-process unique message tag, a time stamp vector (for or-
dering of events), and the current state information of the parallel file pointer.

For the one unpaired event, performro, the format of the message consists of the event
tag identifying the event, the unique parallel task identifier of the event generator, the name
of I/O function performed (for example, £seek), a per-process unique message tag, a time
stamp vector (for ordering of events), and the current state information of the parallel file
pointer.

4.5 Deadlock Prevention

A p/OT implementation must address the issue of deadlock [19, 39, 68, 71, 74]). With
the sharing and coordination of multiple file pointers tied together by remote function invo-
cation or by collective open statements, there is a significant component of any implemen-
tation that is concerned with deadlock prevention. The P/OT run-time system must deter-
mine if a request for a given file pointer is safe or deadlock-free.

First, the four necessary conditions for deadlock are listed. The P/OT constructs asso-
ciated with each condition are identified. Second, measures to avoid or eliminate the con-
ditions for creating deadlock are described. Finally, the current state of deadlock preven-
tion in the Enterprise implementation of PI/OT is presented.

There are four necessary conditions for deadlock [19]. They are:

1. Mutual Exclusion. The global parallel /O behaviours (meeting, log, and re-
port) satisfy this condition since only one process can access a file or file-segment
at a time. This condition cannot be completely eliminated.

2. Hold and Wait. This condition occurs if a process holds a lock and is waiting
for exclusive access to another file that is locked by another process. If a transac-
tion requests all its locks prior to execution, this condition is avoided. However,
utilization will drop if all the locks are not needed immediately. To increase the
concurrency in a P/OT transaction, the locks are not all sought after at once. Rather,
asking for exclusive access or a file lock is delayed until the first /O access in the
function. If the order of requesting file locks is not consistent, this condition will
be satisfied. The relaxed and chaotic ordering attributes of P/OT templates ensure
that this condition cannot be avoided without committing to exclusive access for all
the other global file pointers in the transaction.

3. No Preemption. A process with exclusive access cannot have access taken away
until it has finished all the /O with that file pointer. /O access is asked for when
needed. A premise of PI/OT is that I/O cannot be rolled back. This condition for
deadlock cannot be eliminated.

53



S T T T R AT TR T A A e T e R T R SR TR R T O T O T

4. Circular Wait. There exists a cycle of processes each waiting for a resource the
next process holds and will not release. This case is similar to the situation in Con-
dition 2. Transactions are identified by the remote file pointer variables. Cycles
could inadvertently be created if some unique method of identification of a file
pointer is not used. The current deadlock prevention implementation uses the
unique per-machine, low-level operating system file number to identify parallel file
pointers rather than the name or address of the file pointer structure in order to
avoid this aliasing problem.

When is deadlock prevention not needed in P/OT? If there are no global /O behaviours
in the transaction, the application avoids the first deadlock condition. Having only one
global file pointer per transaction avoids the second and fourth deadlock conditions. If the
read and write attributes for all global file pointers are defined as ordered, there is no
deadlock. The order of access to the file has been pre-defined and any out-of-order re-
quests will be held until needed. Relaxing the ordering attribute of any one of the global
file pointers (relaxed or chaetic) can lead to deadlock.

4.5.1 PI/OT Deadlock Prevention In Enterprise

The Enterprise view of the scope of a transaction is defined as the scope of a remotely
executed function. However, a transaction does not start until a remote process actually
uses one of the parallel file pointers. When a process requests access to a global file
pointer, the entire transaction that the remote process is using is examined and all global file
pointers contained in the transaction are then committed to that process. This ensures that
the hold and wait condition is not possible. All the necessary file pointers will eventually
be accessed. This is a first step to eliminating the potential for deadlock. However, the
ordering attributes can create a condition where deadlock is possible.

When a process is seeking exclusive access to a particular file pointer, the current
deadlock prevention algorithm first determines the overall ordering of the transaction that
includes the file pointer. This is based on all the global file pointers in the transaction. The
run-time system identifies the critical file pointer which could cause a deadlock condition.
If this is not done, deadlock can occur.

Consider two global file pointers, £ and g. /O operations with £ are defined as or-
dered while with g the ordering is relaxed or chaotic. If a process, P,, generates three
of these transactions, the pending list would contain the following entries (f, g,, f,, g,, f;,
g,) where the subscript indicates the transaction identifier and italicized entries indicate that
access is available to be granted.

If P, grants a requesting process, P,, access to g, (a property of the ordering semantics
of g), the transaction tuple is marked as owned by P,. The pending list looks like (f,%, g,°,
g, 5, g,) where the superscript entries indicate the identifier of the process that now owns
the ransaction. The bolded entries indicate that this process currently has access. How-
:,lver, (tlhis is incorrect as £, should not be granted to P, since access to £ is defined as or-

ered.

The current solution defines an overall transaction ordering attribute based on the most
conservative value of the attributes of the parallel file objects. Using the first example, the
request from P, for g would not be granted as the ordered attribute indicates that only P,
has the correct tag in order to grant access to £,. When any file pointer of a marked trans-
action is ready to grant access, the permission is sent to the marked process which may or
may not be blocked waiting for it. Still, other processes waiting on the file pointer are
blocked until the marked process relinquishes the access permission.

Part of the conditions for granting access is validating the file pointers. To show the
necessity of this, consider three file pointers, £,, £,, and £, that are connected to three dif-
ferent files. The three file pointers are managed by one process and are used in two differ-

54



ent transaction types. The first transaction definition contains £, and £, while the second
transaction contains £, and £,. With a chaotic ordering defined for £, a process of the
second transaction type could ask for access to £, and inadvertently be granted a transaction
of the first type. This results in an error.

The current solution to deadlock prevention limits the expressibility of the ordering at-
tributes. More work is needed in this area. As seen later on in Chapter 5.3, an early re-
lease mechanism can be used to avoid the need for deadlock prevention and subsequently
improve performance. Future work with static analysis can automatically insert early re-
lease functionality into the user’s code.

4.6 Chapter Summary

This chapter outlined how the PYVOT programming model should be implemented in
general and how PY/OT has been implemented in the Enterprise parallel programming sys-
tem. Itis important to note that only minimal intrusion into the pps is necessary to imple-
ment this system. This minimal intrusion bodes well for transferring P/OT to other paraliel
programming systems. The efficiency of the Enterprise implementation is dealt with in
Chapter 5. :

There are few changes to the standard stream interface. Only the fopen function has
had its signature changed and the changes can be handled automatically by a source-to-
source translator. The various I/O macros, such as getc or feo£, have been replaced with
functions to allow a test for parallel behaviours. The user specifies what computational
and IO parallel behaviours are required, separate from the source code. The compiler then
uses this information to determine how to modify the source code in order to implement
the parallel behaviours. The run-time system takes the dynamic information and determines
how to perform the I/O efficiently.

For the Enterprise implementation of pi/oT, the precompiler replaces the stream IO
functions with matching wrapper functions in the asset source code and, in the case of
fopen, adds two variables to the parameter list. For the non-parallel source code, a sed
script was used which does not modify any function signatures. This last step means that
only the asset source code can open a parallel file descriptor.

There are five identified areas where the run-time library of the PPs interacts with the
P/OT run-time library. They are: the asset graph (parallel /O data management), the remote
function invocation (file pointer marshalling), processing (file pointer demarshalling), re-
mote function return (updating and integration of file), and parallel I/O event generation.

The only non-standard user-level feature of this implementation is the use of call-back
functions for the dynamic segmentation of the file. Later implementations may try to have
the compiler provide this information. For static segmentation, the user can specify a con-
stant value in the external specifications. Changing the value does not force a recompilation
of the code because Enterprise reads the parallel specifications at run-time. Since the com-
piler modifies all the /O statements, the only time an application needs to be recompiled is
when the segmentation function is changed. Otherwise, adding, modifying or deleting par-
allel templates is a run-time operation. This makes for rapid prototyping of the application.

If more than one file pointer is shared between the various processes, deadlock preven-
tion is needed. The scope of a transaction is the scope of the remote function. Conse-
quently, the first parallel file pointer used will set the ownership of the entire transaction.
The ordering attributes of individual file pointers can cause deadlock. However, deter-
mining an overall ordering attribute for the transaction based on the most conservative or-
dering will avoid this potential for deadlock. The cost of deadlock prevention is seen in the
lack of expressibility of the ordering attributes and the subsequent reduction in concurrency
of the application. If it is not safe to grant access, the remote process is blocked.

55



Chapter 5

S. Performance

The description of the model (Chapter 3) and the implementation (Chapter 4) have
been presented. This chapter describes the attempts to justify the claims that this top-down
model] to parallelizing I/O is simple and effective to use while providing a reasonable per-
formance when compared with the current hand-coded approaches.

Five experiments are presented. The first two address performance comparisons be-
tween a hand-coded approach using pious and the high-level p/oT approach. The two ap-
plications display a similar computational parallelism but have quite different /O require-
ments which stress the /O system(s). The first has fine-grained IO and the second has
coarse-grained I/O.

The first performance experiment (Section 5.1) is drawn from a molecular docking ap-
plication at the University of Alberta. The original application looks at placement and
alignment of a protein fragment onto a larger protein molecule (the smaller fragment
“docks™ at the larger molecule). The application used in this experiment consists of read-
ing, processing, and writing blocks of data (molecules) on disk. These blocks consist of
objects within objects within objects. Each object can be of variable length on disk. Each
individual I/O operation is quite small, consisting of four to several hundred bytes within a
single record. The second performance experiment (Section 5.2) consists of coarse-
grained I/O — disk-based matrix multiply. The application processes a large (1.3 gi-
gabytes) amount of data and quickly saturates the network.

The third set of experiments, Section 5.3, examines the useability and composability of
PI/OT as discussed in Chapter 3.2. This experiment consists of two parallel computational
approaches (heterogeneous children, Sections 5.3.1 and 5.3.2, and a pipeline, Sec-
tions 5.3.3 and 5.3.4). Synchronization between different types of child processes is re-
quired and is based on the run-time invocation behaviour (the call-chain, Chapter 4.2).
As well, the inheritance of the caller’s I/O constraints modify the child’s subsequent use of
the file pointer in any remote procedure call. Both the performance and useability of some
of the different combinations of the PYOT /O model and the Enterprise parallel program-
ming model are presented.

By specifying the paralle] computational and I/O requirements separate from the source
code, no recompilation is required when the /O templates are changed. The effects of in-
creasing process replication factors or changing the I/O model are examined. The Enter-
prise programming model does require recompilation if parallel computational tasks are
changed. That is, if two separate task types that were specified as parallel are now consid-
ered as one, or if one task type is split into two, the wrapper functions must be re-
implemented by the Enterprise precompiler. Another part of this third set of experiments
examines the potential gain in concurrency (if any) by the timely release of file access per-
missions. Currently, the insertion of the release mechanism is done by hand. However,
future work will look at the insertion of the release mechanism by compiler tools.

The fourth experiment, Section 5.4, revisits the molecular docking problem first pre-
sented in Section 5.1. This time, the effect of dynamic segmentation, where the size of
each file segment is determined at run-time by using a call-back function, is examined. The
performances of three different segmentation approaches are examined using four levels of
computational granularity.

In the fifth experiment, Section 5.5, the lessons leamed in the previous experiments
are applied to the fine-grained example first seen in Section 5.1 The effect on performance

56



is examined when a more complex parallel computational and I/O version is created. The
ease of integrating the additional parallel I/O requirements with the new computational par-
allelism is shown. Performance results indicate that this more complex application can
yield better performance than the simpler versions discussed in Section 5.1 and Section
5.4 when using a heterogeneous workstation cluster instead of the alternative homogeneous
workstation network. Section 5.6 presents a summary of this chapter.

The Enterprise parallel programming system [70] was used to implement p/oT. The
pious parallel I/0 system [57] was used for performance and coding comparisons. The
choice of PIOUs was made for three reasons. First, the MPI-I0 implementations which had
just been released at the time of testing were alpha implementations based on a changing
“standard™. It would be difficult to draw meaningful comparisons and conclusions about
the performance of either system. Second, PIOUS has been available for over a year and
seems relatively stable. The third and primary reason for using both Enterprise and pious
for these experiments is that these two systems both use pvM [30] as the underlying com-
munication system.

Previous work [65] examined the performance of Enterprise and PVM as it relates to the
cost of communication and templated computational parallelism. The simple parent-child
computational parallelism of both performance experiments provides similar performance
with either Enterprise or PvM. This provides a comparison point to ensure that the current
implementations of Enterprise and the hand-coded PIOUS applications are performing ade-
quately. By keeping the hardware and the communications software constant, more
meaningful comparisons can be drawn about the I/O.

Comparing PloUs with template I/O is not intended as a critique of PIOUS or of any other
parallel I/O system. Rather, it is intended as an experiment to see if parallel IO templates
are viable. It is assumed that low-level libraries and special parallel file systems like Gal-
ley [61] would be integrated with the high-level templates in a fashion similar to what En-
terprise has demonstrated with computational parallelism.

For all of these experiments, the parallel times given are the elapsed times or clock-on-
the-wall times. The sequential times, unless otherwise noted, are the user times as deter-
mined by the getrusage system function and represent the actual time spent by the appli-
cation using the processor.

5.1 Fine-grained 1/0

This section examines in detail the parallelization of a real problem in order to illustrate
that template I/O can realize little or no loss of performance in comparison to the imple-
mentation in PIOUS. The program is derived from a molecular docking problem in bio-
chemistry at the University of Alberta. The original application looks at placement and
alignment of a protein fragment onto a larger protein molecule (the smaller fragment
“docks” at the larger molecule). Each molecule and fragment is stored as a series of nested
objects on disk. That is, one object contains other objects which in turn contain other ob-
jects. Each object is has a variable size. '

For this experiment, the biochemistry component was removed and replaced with a
function that simulated the computational time spent on each sub-object. This allowed
more control and flexibility when changing the computational granularity. The reading and
writing of objects is dispersed throughout the computations and is fine-grained in nature
(four to several hundred bytes).

In Figure 5-1 the application specifics have been abstracted out, leaving the high-level
/O view of the program. The code looks similar to the example given in Chapter 1.1, but
tt}g Child function is different. As well, the rewind introduces new synchronization con-
siderations.

57



T PR AR A TN WETES IR AT R WETR TR T ERD AT N T Fea TR

#include <stdio.h>
main( int argc, char **argv )
{

FILE *fin, *fout ; /* Input and output file descriptors */
fin = fopen( argv(il]l, *x" ) : /* Open the input file */
fout = fopen( argv(2], “w+" ) ; /* Open the output file */
while ( ! feof( fin )} ) ( /* Until end of file, work */
Child( fin, fout ) ;

}

fclose( fin ) ; /* Close the input file */
rewind( fout ) ; /* Rewind the output file to the beginning */
Stats( fout ) ; /* Perform summary statistics on output */
fclose( fout ) ; /* Close the output file */
return 0 ;

Figure 5-1 — Sequential code for fine-grained I/O test program.

In the sequential version, the child reads data from a file (£in) and performs calcula-
tions, with the results going to an output file (fout). Once the input is exhausted, the main
program rereads the output file to analyze the results (stats).

5.1.1 Data File Layout

The input and output files contain data objects within data objects within data objects.
Each object has its own specific read and write functions and knows how many immediate
sub-objects it contains. All VO is spread throughout the code and is quite fine-grained
(four to several hundred bytes at most for any individual I/O operation). In the real appli-
cation, the data objects are all variable length. In order to make it easier to compare per-
formance with PIOUS, the objects were fixed in size with the resultant input records set to a
constant length of 352,108 bytes, creating output records 18,050 bytes in length.

The format of the input file is such that an arbitrary number of child records are stored
consecutively. Only by reaching the end of the file does the application know how many
Child records are in the file.

A child input record (Figure 5-2) starts with a four byte integer, n, indicating the
number of CEDE record blocks. A ceDE block (shaded) consists of one ¢ block, one E data
block, one D data block and one E data block. The n CEDE record blocks follow. After
these data blocks, a single E record block (shaded) indicates the end of the child record.

Beginning of file

C |I[E| D |E 090!} CIEID]| E child Record 1
C| E |DJE QOO |CIEI D |E chila Record 2
o
o
_mnon — Broo WS
End of file

Figure 5-2 — Layout of an input data file for the fine-grained I/O experiment.

58




T TR TR AT W I

AT

A c and D record block have similar formats on disk. They consist of a four byte integer
which indicates the size of the two vectors that compose the balance of the record block.

There is first an integer vector followed by a character vector. An E record block is similar
to the ¢ and D record blocks except that the order of the two vectors is reversed (i.e. a char-
acter vector followed by an integer vector).

The output file consists of a number of child output records. The actual number de-
pends on the number of input records processed. The output file of a child record starts
with a single character indicating the type of record block, followed by a four byte integer
indicating the number of CEDE output data blocks that follow. Each cepe data block is
composed of a ¢, E, D, and E record block. These records have the same format, consist-
ing of a single character indicating the type of record, a four byte integer for the number of
elements used, and a constant sized vector of doubles (eight byte real numbers). A single
E record block indicates the end of the child output record. The size of a child output
record is dependent on the number of CEDE records read in from the input file.

5.1.2 Parallel Design Considerations

Since the chi1d tasks are independent of each other, multiple child processes can run
concurrently. They need only coordinate reading from the input file and writing to the out-
put file. There is no need to preserve the correlation between the input file order and the
output file order.

Coordination of the input file must guarantee that each input datum is processed pre-
cisely once. Since it does not matter which child does which piece of work, segmenting
the input file avoids the inefficiency of having to synchronize file access. Each child
process reads a contiguous interval in the file. The program has been set to use an input
segment size of 352,108 bytes. Output file access also needs to be synchronized. The se-
quential program appends to the end of the output file. However, since the output data is a
fixed size for each piece of input data, the output file can also be segmented.

Segmenting both the input and output files eliminates the need for child processes to
synchronize their concurrent activities. However, they must synchronize before the se-
quential stats function can be called. A barrier is necessary to guarantee that all the results
are in the output file. The barrier is found in the rewind function since this function puts
the parent’s file pointer in a position that potentially allows two processes access to the
same segment. stats does a sequential read of the output file, summarizing each record.
If the parallel application is created by hand, a parallel programmer must be careful with the
output file, since the chiid function will need to treat it as parallel I/O, while stats will
treat it as sequential I/O.

Since there are few constraints on the ordering of input and output, it allows experi-
mentation with a variety of parallel I/O implementations.

5.1.3 Template I/O in Enterprise

Using the graphical interface, the programmer specifies that one process, called par-
ent, can call multiple instances of the child process. To have this program run correctly
under Enterprise, the user must make a number of small changes (modifying the child pa-
rameter list and renaming the main function), as shown in Figure 5-3. The changes to the
user code are Enterprise-specific (either for data marshalling purposes or identifying paral-
lel tasks) and have nothing to do with parallel I/O. In the implementation generated by En-
terprise, each call to child is translated into a message sent to a remote process. The En-
terprise run-time system takes care of the spawning of processes, communication (sending,
receiving, marshaling/demarshalling of data), synchronization, and program termination.

59



#include <stdio.h>

Parent( int argc, char **argv ) /* Identify this as a parallel task */
{
FILE *fin, *fout ; /* Input and output file descriptors */
fin = fopen( argv{l], *r* ) ; /* Open the input file */
fout = fopen( argv(2], “w+" )} ; /* Open the output file */
while ( ! feof( fin ) ) ( /* Until end of file, work */
Child( £in, 1, fout, 1) ; /* Data marshalling of pointers */
}
fclose( fin } /* Close the input file */
rewind( fout ) ; /* Rewind the output file to the beginning */
Stats( fout ) ; /* Perform summary statistics on output */
fclose( fout ) ; /* Close the output file */
return 0;

Figure 5-3 — Modifications to sequential code for Enterprise.

The application parallelism is specified graphically in Enterprise and is saved in a file
separate from the sequential source code (the graph file). Enterprise uses a source-to-
source translation tool (precompiler) to insert the correct code to do message communi-
cation and synchronization. The translator has been modified to look for parallel I/O file
descriptors (as identified in the graph file) and replace them with calls to parallel I/O func-
tions. The machine-generated source code is then conventionally compiled and linked for a
particular target architecture. The Enterprise run-time library uses the graph file and run-
time computational behaviors to implement the parallel I/O operations. Since the IO be-
havior is interpreted at run-time, the user can change the I/O templates without having to
recompile the program.

For this example, Figure 5-4 shows the additions necessary to the Enterprise graph file
to specify the newspaper template for the Parent process. This change reflects the fixed
size input and output file segmentation used for comparison between the pious and pI/OT
implementations. The P/OT modifications to the Enterprise precompiler ensure that all oc-
currences of these file pointers in Parent and child will have the appropriate parallel /O
semantics enforced.

fin NEWSPAPER 0 wo b Child=352108 fout xc wc b NEWSPAPER Child=18050.
Figure 5-4 — Modifications necessary to the Enterprise graph file for fine-grained I/O.

A newspaper (segmented file) requires a segment size. Figure 5-5 shows an example
of a segmentation function appropriate for the input file pointer for this application. Ide-
ally, this consideration should be transparent to the user but, unfortunately, it is difficult to
automatically choose a good segment size since the user knows best how the /O is to be
accessed. For segmented files, P/OT allows the user to provide a call-back function that
specifies the segment offsets. In this example, the fine-grained nature of the file is clearly
illustrated. Each object contains a header that provides sufficient information for the user to
calculate the offset into the file for the next object. The total offset for the child segment is
returned to the run-time system.

Figure 5-6 shows an example of an /O segmentation function for dynamic output rec-
ords that relies on the newspaper semantics to append the unknown sized segments in
the output file. Using a report instead would result in the merger of the unknown file
segments, which is unacceptable since all the output data is needed, not just one record.

60




kel 2o

faeatl Rl o o

#define IC ( sizeof(int) + sizeof(char) )

#define I sizeof(int)

unsigned long InputSegSize ( FILE * fp, int min, int max, int current )

(
unsigned long offset : /* Size of this segment */
int CD, C, D, E, i ;

i = fread( &CD, I, 1, £p ) /* How many CEDE records are there */

-y

if (i t=1) /* End of file or file error return error */
return (unsigned long)-1 ;
offset = I ; /* The record includes the size of CD */
for (i =0; i<CD; i++ ) ( /* Loop reading the CEDE records */
fread( &C, I. 1, fp ) : /* Elements in this C record */
fseek( £fp, C * IC, SEEK_CUR ) ; /* Skip over the C record */
offset += I + C * IC ; /* The size of this C record */
fread( &E, I. 1, fp ) : /* Elements in this E record */
fseek( fp, E * IC, SEEK_CUR ) ; /* Skip over the E record */
offset += I + E * IC ; /* The size of this E record */
fread( &b, I, 1, fp ) /* Elements in this D record */
fseek( fp. D * IC, SEEK_ CUR ) ; /* Skip over the D record */
offset += I + D * IC ; /* The size of this D record */ -
fread( &E, I, 1, fp ) : /* Elements in this E record */
fseek( £p, E * IC, SEEK_CUR ) /* Skip over the E record */
cffset += I + E * IC ; /* The size of this E record */
} /* End of loop reading in the CEDE records */
fread( &E, I, 1, fo ) : /* Elements in this E record */
offset += I + E * IC ; /* The size of trailing E record */
return offset ; /* Return the extent for this segment */
}
#undef IC
#undef I

Figure 5-5 — An example I/O segmentation function for fine-grained I/O test program.

One of the advantages of the PYOT approach is the ease with which a different IO par-
allelism can be selected for the application. For example, the parallel template for £in can
be changed from newspaper to meeting and the program immediately re-run without
recompilation. As well, £in could be converted back to sequential /O without any addi-
tional effort by the user. This makes it easy for the user to experiment with different types
of /O (and computational) parallelism. Note that in any other system, changing the IO
behavior would usually necessitate many changes to the source code.

unsigned long OutputSegSize( FILE * fp, int min, int max, int current )
{

return (unsigned long)0 ;
}

Figure 5-6 — An example of an I/O segmentation function for dynamic output records.

5.1.4 rious Implementation

Three classes of Pious implementations were built. All PIOUS applications must import a
file into the PIOUS file system before the file can be accessed using the PIOUSs library routines.
Similarly, the output file must be exported back to the regular file system. A user needs to
write these conversion routines.

The first PloUs implementation class used global file pointers. Because ordering of the
input and output file is not required for this application, the input and output files could be

61




- et

treated as globally shared resources. Globally shared files effectively have one global file
descriptor, for which all processes have to synchronize their access. (This is similar to the
meeting or log templates.) The program retrieved an entire data segment as one single
block I/O operation and cached the block on local disk storage (default is /tmp). The lo-
cally cached data was processed using the conventional stream I/O with the output again
going to local disk storage. The child source code was not modified. After each child
function finished processing, the results were added to the pious output file as another sin-
gle block I/O operation. When the end of the input file was reached, each child process
notified the parent. When all the children had reported in, the Parent continued on to the
sequential part of the computation.

This approach proved to be the easiest to implement since most of the explicit parallel-
ism was hidden by the global shared file synchronization. It allowed minimal impact on the
existing user’s code by using the standard I/O operations to read the local file and then cre-
ate the output data segment.

A second implementation class involved importing the input file into PIOUS as a list of
segments and creating a corresponding list of empty output file segments. (This is similar
to the newspaper or report templates.) The user had to write additional code to distrib-
ute the input segments as they were requested by idle child processes. Initially, the Par-
ent process allocated one segment to each child, but as a child completed its work, the
Parent was responsible for allocating it a new segment.

Each chi1d process opened the appropriate input and output file segments, copied the
local segment of work to a temporary file in one I/O operation, opened the temporary out-
put file, performed the work, and then exported the local output file back to the parallel
output file (again in one operation). This repeated until all segments were distributed. The
Parent process was then informed and the chiid process exited after cleaning up the tem-
porary files. The advantage of this method is that the output is in the same order as the se-
quential version. Again, the child code was not touched.

The final implementation class was to write a pure PIOUS application using the PIOUS
segmented file capabilities. However, instead of importing or exporting a block of work to
local storage, all parallel I/O operations were identified and replaced with the appropriate
pious function calls. This was the most intrusive solution as significant portions of the
child code needed modifications.

Each of the three classes required a significant amount of new code. This would also
be true when using any other low-level parallel I/O library. The first implementation class
which cached data blocks locally using the global file pointers is given in Appendix B.I.
(Note that much of the implementation has been abstracted into subroutines that, for brev-
ity. are not included.) The original sequential version is about 530 lines of code; the paral-
lel version is approximately 350 lines longer. Any changes in the /O functionality of the
program must be reflected in the source code. For example, if the user wants to do the
equivalent of changing from a mewspaper to a meeting, a considerable number of
changes have to be made to the source code, with the resulting overhead of testing and de-
bugging the changes.

Within the first two implementation classes, three versions were developed. The first
version used the standard stream I/O functions without any changes. The second version
modified the standard I/O stream to use large buffers (using the setbuf function). The
third version replaced the standard I/O stream functions with low-level I/O functions (read
and write instead of fread or fwrite). The third implementation class had only one ver-
sion — all pious calls.

62



o T TR R R PR AR A TR R T R AR T e TR e TR TR TN et v "

5.1.5 Fine-grained I/0 Performance

The testing configuration consisted of one Sun Sparc 4 (SS4), two Sun Classics, four
Sun ELCs, and four Sun SLCs processors connected by a 10Mbps Ethernet. All proces-
sors had a local disk used for temporary files and swap. In addition, one Classic and the
SS4 provided NFS file systems to the other processors. Unless otherwise stated, there
was only one compute process per processor and all processes were assigned to the fastest
available processor. The processing power of these different processors relative to the
slowest processor type (SLC) is as follows: the SS4 is 3.0 times faster, the Classic is 2.4
times faster, and the ELC is about 1.7 times faster when running the same application.
This is an approximation based on the performance of the applications presented in this
chapter.

Three sequential versions were created. The first used standard VO functions. The
second version used low-level /O functions to see if there is any performance improve-
ment. The third version increased the stdio system buffer space (using setbuf) to see if
there is any performance gain. The sequential user times when running on the fastest proc-
essor (SS4) using the local disk are given as: 1914 (standard), 1932 (low-level), and 1916
(buffered) seconds. The poorer performance of the low-level /O can be attributed to the
fine granularity of the read and write operations. Similarly, the performance of the buff-
ered I/O is not significantly different from the standard I/O because of the fine granularity
of the I/O operations.

A total of seven PIOUS versions were developed as described in Section 5.1.4. They
are presented along with the segmented I/O (newspaper) Enterprise version. In most
cases, little or no added benefit was seen for the extra programming effort.

The first PioUs class uses global file semantics with local file caching of file segments
(Global Stream PIOUS, or GsP for short). That is, a large pious I/O operation is done and the
resulting block is cached on a local disk. The user's code reads from this local file while
writing to another local file. After the work is finished for this segment, the local output
file is read in and written to the PIOUS file in one operation. The second class uses a similar
approach to the first class except that the files are segmented by PioUS rather than by the
user (Stream Segmented PIOUS, sSP). However, the user is responsible for distributing ac-
cess permissions to the remote processes for each segment. In the third class, all the IO is
done in a segmented file system using Pious function calls, without any caching (Pure
Segmented PIOUS, PSP). From the programming perspective, this version required the most
number of code changes.

Table 5-1 contains the results for the fine-grained I/O tests. For both systems, the time
for starting PVM and for spawning the remote processes is ignored. The cost of the PioUs
import operation (30-60 seconds depending on the segmentation factor) is ignored as this
could be considered a one-time cost if the input file was generated in situ. Similarly, the
costs of creating and exporting the output file back to the network file system are ignored
(5-10 seconds).

PIOUS
Child PU/OT Global Stream Stream Segmented Pure
Processes (GsP) ~(SSP) Segmented
Buffer | Stream | Low | Buffer | Stream]| Low (PSP)
2 1484 1315 1322 1276 1294 1409 1284 1917
5 813 703 699 705 737 704 705 1040
10 513 509 505 510 519 509 511 799

Table 5-1 — Elapsed times in seconds for PVOT and PIOUS (PSP, SsP and GSP). PIOUS import
and export times are not included. Sequential user times in seconds were:
1916 (buffered), 1914 (standard stream), and 1932 (low-level).

63



The parallel times presented are the best elapsed times of at least five runs. The proces-
sors and network used for this set of experiments were unavailable for exclusive use. The
runs were collected over several weeks during times of quiescence but significant variance
was seen. Automatic system functions such as backup operations appeared to cause sig-
nificant interference.

Enterprise has one version that gives acceptable parallel I/O performance: both the input
and output files are segmented using the newspaper template. Another version uses the
newspaper template for the input and the log template for the output. This did not give
good performance because the output file was locked until all the write operations for a
given child process were finished. As the write operations pervade the entire child com-
putation block, the other child processes were quickly blocked waiting for access. The
times for this inferior version are not shown.

The results show the effect of using two separate file systems for the physical storage
of the global data files. (Recall that temporary files are stored on the local disk attached to
each processor.) PIOUS is able to use two (or more) physical file systems to improve per-
formance and concurrency. In the case of Enterprise, the input file was on one file system
and the output file was on the other file system. pioUs always distributed files between the
two file systems. Wherever possible, the effect of the network was minimized. The num-
ber of processors used was one more than the number of children to account for the par-
ent process. No processor ran more than one process (Child or Parent).

The GsP version using global file pointers shows little difference from the ssp version.
The psp implementation uses PIOUS to perform a significant number of fine-grained I/O op-
erations. This is very expensive as each I/O operation is converted to a message. This ap-
proach does show a performance gain over the sequential version but the gain is not as
much as in the other implementations.

The pr/oT performance, although faster than the sequential version, was ten to sixteen
percent inferior to the GsP and ssP versions. Even though it used a similar design in its im-
plementation, the cost of using templates to abstract the parallel /O diminished only with a
larger replication of the workers. A likely reason for equality between the two systems is
that the capacity of the network imposes an overall limiting factor. Ten processes asking
for separate data blocks create a theoretical demand of three megabytes on a ten megabit
network. As well, the file servers must get the data block on and off the physical disk for
each requesting process.

Another factor for the poorer Enterprise implementation is that it checks every /O op-
eration if the file pointer has parallel behaviour. If there are many I/O operations, this cost
becomes more significant. Clearly, for this example, there is a performance cost to using
templates. Still, the Enterprise application shows improved performance compared with
the sequential time. Future work on optimization using prefetching and compiler code
analysis to order I/O operations should improve the template performance.

The benefits of templates are seen in the amount of modification to the user’s code and
the ease of changing parallel behaviours. Each pious version took several hours to modify
and debug. For the Enterprise version, the changes to the sequential code, as specified in
Section 5.1.3, were done and the application was generated. This took about twenty min-
utes from starting with the sequential code until the first test run. The application was first
tested using a meeting template for £in and a log template for fout. Performance runs
were generated in newspaper mode simply by changing the parallel behaviour type for
both file descriptors and making no changes to the code! No recompilation was necessary
as the segmentation function was a constant size. Any performance penalty for using tem-
plates should be weighed against the potential benefits of quickly getting the parallel appli-
cation up and running.

64



L TG BT

It is interesting that by using the global synchronization offered by Pious with the
caching of input and output segments to allow stream I/O operations, this application
shows the best performance. However, would this be the case if the application only does
coarse-grained I/O?

5.2 Coarse-grained I/0

Disk-based matrix multiplication was chosen as the coarse-grained /O application.
This application is simple to code and can be done using coarse-grained VO operations.
The A and C matrices were segmented into user-specified stripes with the B matrix inde-
pendently read by each processor. The B matrix was transposed on disk to improve data
processing.

The sequential program (the source code for main is found in Figure 5-7) takes as
command line arguments (argv) the names of the three files, the number of elements per
row of the matrices and the number of rows per computational block. For simplicity, all
three matrices are assumed to have the same rank. The main function opens the three files
and until the end-of-file marker is encountered in the A file, it calls child in a loop. The
file pointer for the B matrix file is rewound after every call to child. After the loop exits,
main closes all three files.

#include <stdio.h>
main( int argc, char **argv )
(

int NumberElements ; /* Number of elements per row */
int BlockSize ; /* Number of rows per block */
FILE *fA, *fb *fC ; /* Input and output file descriptors */
fA = fopen( argvii], *“r” ) ; /* Open the A matrix file */
fB = fopen( argv(2], *“r” ) ; /* Open the B matrix file */
fC = fopen( argv(3], “w+* } ; /* Open the C matrix file */
/* These two variables are used to partition the matrix into stripes */
NumberElements = atoi( argv(4] )} ; /* Convert from string to integer */
BlockSize = atoi( argvI5] ) :
while ( ! feof( £a ) ) ( /* Until end of file, work */
Child( £a, fB, fC, NumberElements, BlockSize ) ;
rewind( £fB ) ; /* Rewind to the start of the B matrix file */
}
fclose( fA ) ; /* Close the A matrix file */
fclose( fB ) ; /* Close the B matrix file */
fclose( fC ) ; /* Close the C matrix file */
return § ;

}
Figure 5-7 — Sequential source code for matrix multiply main (Parent.c).

The function, child (the source code is found in Figure 5-8), reads in the user-
specified block of the A matrix as one read operation. The B matrix must be read in its en-
tirety and is done so in a loop using stripes similar in size to those used to read the A ma-
trix. The same sized stripes were used for programming simplicity. Each A and B stripe
is multiplied together and stored in the appropriate location in the C matrix stripe. After the
B matrix file is exhausted, the completed C matrix stripe is written to disk in one operation.

A benefit of using large I/O blocks sequentially is seen if non-blocking I/O is used to
overlap I/O and computations; however, the code complexity increases. In this case, there
is little benefit to using asynchronous /O as the I/O buffer is needed immediately after the
I/O call (the B matrix) and the size of the B matrix precludes it from being cached in mem-

65




aal il LTSS R]

void Child( FILE *fa, FILE *fb, FILE *fc, int nelems, int nblocks )

{
double *A, *B, *C ; /* The A, B, and C matrices */
int k, n, j, status ;
/* Allocate memory for each block of A, B, and C */
A = (double *)malloc( nblocks * sizeof( double ) * nelems )
B (double *)malloc( nblocks * sizeof( double ) * nelems )
c (double *)malloc( nblocks * sizeof( double )} * nelems )
/* Read in the block of A for this call to Child */
status = fread( A, sizeof( double ), nelems * nblocks, fa ) ;

LTI TR

(LI}

if ( status < nelems * nblocks } ( /* End of file */
return ;

} else { /* Do some work with the data */
k=0;
while ( 1) {( /* Loop forever */

/* Read in, one block at a time, all of B until the read fails */
status = fread( B, sizeof( double ), nelems * nblocks, fb ) ;
if ( status < nelems * nblocks ) break ; /* All done here */
for ( n = 0; n < nblocks ; n++ ) /* Do the striped matrix multiply */
for { j = 0 ; j < nblocks; j++ )
C[ n*nelems+k+j ] = DotProduct( &A[i*nelems], &B{j*nelems], nelems ) ;
k += nblocks ;
3 /* End of while loop */
/* Write out the completed block of C */
fwrite( C, sizeof( double ), nelems * nblocks, fc ) :
} /* End if not end-of-file encountered */
free( A ) /* Free allocated memory */
free( B )
free( C )
return ;
}

Figure 5-8 — Sequential source code for matrix muitiply chi1d (Child.c).

S oWy wy

ory at the processor. If double buffering is used, the overall in-memory capacity of the ap-
plication is reduced by one quarter assuming that only the B matrix stripe is doubled up.

5.2.1 Parallel Design Considerations

The same computational parallelism used by the fine-grained I/O application in Chap-
ter 1.1 and Section 5.1 was used. One of the differences is that this application has three
parallel file pointers (the A , B, and C matrix data files) each with different behaviours.
The A file pointer is treated as a segmented input file with each child process getting one
segment or stripe of the matrix to read. The C file pointer is also segmented so each child
process can write the corresponding answer stripe. The user or system must coordinate
and preserve the relationship between A and C segments as an out-of-order C matrix is
incorrect. The B file pointer is independent but is distributed to the child processes.

The other difference in this coarse-grained application is that I/O operations are few and
can be quite large. In fact, with large numbers of processors and/or large matrices, the
network will become the bottleneck depending on the physical disk layout in relation to the
processors. This application will stress the network and file systems.

Observing the stress generated by this application is important if networks of general-
purpose workstations are used instead of specialized hardware platforms or dedicated net-
work farms. If parallel I/O is to be made easy-to-use by the “general” programming popu-
:;tllton, resource allocation and sharing become important — especially to system adminis-

ors.

66




5.2.2 Enterprise Implementation

Figure 5-9 shows the small number of modifications to the source code needed by the
Enterprise version. The main function is renamed to Parent, extra parameters are added to
invoke child, and the rewind statement is removed. The rewind statement is not neces-
sary in the parallel case as this function does not move the file pointer. The two file point-
ers £A and fc are segmented and need to have a segmentation function written for them.
Note, in this case, one segmentation function can be used for both file pointers. The other
file pointer, £B, is needed by all the child processes but is considered independent as it
does not require any synchronization.

#include <stdio.h>

static int NumberElements ; /* Number of elements per row */
static int BlockSize ; /* Number of rows per block */
Parent( int argc, char **argv ) /* Identify the paralilel task */
{
FILE *fA, *fB *fC ; /* Input and output file descriptors */
fa = fopen( argv(l], *r” ) ; /* Open the A matrix file */
£B = fopen( argv[2]l, “r” ) ; /* Open the B matrix file */
fC = fopen( argvi{3], “w+~ } ; /* Open the C matrix file */
/* These two variables are used to partition the matrix into stripes */
NumberElements = atoi( argv(4] ) ; /* Convert from string to integer */
BlockSize = atoi( argv(5] )} ;
while ( ! feof( £A ) ) ( /* Until end of file, work */
Child( fa, 1, £fB, 1, fC, 1, NumberElements, BlockingFactor } ;
/* rewind( £B ) ; */ /*This is not necessary in parallel */
}
fclose( fA ) ; /* Close the A matrix file */
fclose( £B ) ; /* Close the B matrix file */
fclose( £C ) ; /* Close the C matrix file */
return 0 ;

}
unsigned long AlIMyIO( FILE *fp, int min, int max, int current)
(
/* In all cases, return the same segment size */
return (unsigned long) ( NumberOfElements * BlockSize * sizeof (double) ) ;
}

Figure 5-9 — Enterprise code modifications to parallelize disk matrix multiplication.

The important modification to notice is the movement of the declaration of the two vari-
ables NumberElements and BlockingFactor from within the scope of Parent to being
global only within the scope of the file (the static declaration). This permits the segmen-
tation function to be declared in the file containing the Parent source code to permit dy-
namic segmentation of the data stripes. Of course, these two variables could have been de-
clared global without the static limitation (a “free” global). Then, a separate file containing
the segmentation function could have been used. However, creating a free global is not
always possible or desirable in legacy code. As both stripes are equivalent in size and are
the only file pointers to be segmented, the segmentation function simply returns the number
of bytes composing one stripe.

To identify the three parallel file pointers in Parent to the Enterprise implementation, a
number of changes are made to the graph file. A single line is added. While three lines are
used for clarity in Figure 5-10, the graph file entry consists of only one line. The entry in-
dicates that two of the file pointers (£a and £c) are to use the newspaper parallel behav-
iour (segmented) and the file segment size for both file pointers is determined by using the

67




£A NEWSPAPER rc wo b Child=AllNMyIO
£83 PHOTOCOPY rc we b
£C NMEWSPAPER ro wo b ChildsAllMyIO

Figure 5-10 — Modifications to the Enterprise graph file for coarse grained I/O example.

segmentation function, a11mMyIo. The file pointer, £B, is considered to be independent
(photocopy).

5.2.3 prous Implementation

The PioUS version (the code is found in Appendix B.2) took about 375 extra lines of
code to implement both the computational and I/O parallelism. The framework of the code
is similar to the code needed for the fine-grained parallelism because the computational par-
allel behaviour is the same. The changes occur in the way the parallel /O is handled. This
implementation was quite intrusive and required modifications to the child source code.

The reading of an A stripe and the writing of a C stripe are single I/O operations in the
child function. Converting them directly to pIoUs read and write functions saves the
wrapper code from reading a stripe, caching it to local disk and then having child re-read
the local file. This is different from the fine-grained example where caching was beneficial.
As well, the independent B matrix file is too large to cache locally. So, as PlOUS code
would have to be inserted to read the B matrix anyway, replacing the UNIX read function
for an A stripe and exchanging the UNIX write function of a C stripe operation for the
equivalent PIOUS code is a minor addition.

An additional responsibility for the Parent is that now it must handle the coordination
between the input and output file segments. The pParent process now manages the order in
which segments are dispatched to the idle child processes rather than letting the file sys-
tem determine the order. Each child works on one input and one output stripe. When no
more stripes are available for processing, the child process receives the no-more-work
message (segment=-1) and then gracefully exits.

This application did not lend itself to any variations in the /O parallelization strategies,
as shown in the fine-grained example. Caching was not available and using global file
pointers required synchronization between the input and output files. To do so results in a
loss of computational concurrency.

In summary, this application was intrusive in respect to code modification for the par-
allel /O in the user’s source code. The user is responsible for coordinating access between
corresponding segments as well as the import and export of file. However, the code
framework for computational parallelism remained, for the most part, the same as the fine-
grained example.

5.2.4 Coarse-grained I/0 Performance

_ The testing configuration was the same as that of the fine-grained example in Sec-
tion 5.1. The configuration consisted of one Sparc 4 (SS4), two Sun Classics, four Sun
ELCs, and four Sun SLCs processors connected by a 10Mbps Ethernet. All processors
had a local disk used for temporary files and swap. One Classic and the SS4 provided
NFS file systems to the other processors. The processing power of these different proces-
sors is relative to the slowest processor type (SLC); the SS4 is 3.0 times faster, the Classic
is 2.4 times faster, and the ELC is about 1.7 times faster when running the same applica-
tion. This is an estimate based on several applications.

The parallel times presented are the best elapsed times of at least five runs. The proces-
sors and network used for this set of experiments were unavailable for exclusive use. The
runs were collected over several weeks during times of quiescence but significant variance

68




was seen. The automatic system functions, such as backup operations, caused significant
interference.

Three sequential versions were created. The first one used the standard stream I/O.
The second version used a buffered stream I/O. This buffering is done by using the set-
buf function to direct the stdio system to create a single buffer that is large enough for the
one data stripe. The third version used the low-level IO functions instead of the stream
Io.

All three sequential versions had similar performance and were all within approximately
six percent of each other. These experiments were run using the fastest processor and a
local disk. The size of the I/O blocks was the same as in the parallel version. Not surpris-
ingly, the buffered I/O (2214 user seconds and 125 system seconds) outperformed the
other two versions. The low-level I/O version (2308 user seconds and 127 system sec-
onds) was slightly better than the standard stream I/O (2352 user seconds and 142 system
seconds). The high system time values for the standard stream I/O are the cost of the de-
fault buffer being two small which caused the system to thrash when transferring large
blocks. To get the best performance, the program should either use no buffering or have
sufficient buffer space to balance the cost of using it.

Table 5-2 shows the results for Enterprise and a purely pious implementation multiply-
ing two matrices of doubles (reals) stored in binary format and using a striping factor of
50 rows. Again, startup and the cost of importing and exporting the files into and out of
PIOUS (180 seconds) is not included in the test results. Preliminary experiments with the
2000 by 2000 matrix showed that using a striping factor of 50 rows gave better perform-
ance than using 100 or 25 rows per stripe. The better performance is due to the ratio of
work to message size and the different CPU speeds for the given network configuration.

The Enterprise results are better than those of pious when using fewer child processes.
This was unexpected but one explanation is offered. PIOUS uses direct process-to-process
TCP/IP message-passing for parallel I/O, by-passing the PvM daemons. On the other hand,
Enterprise uses both the network file system (on-demand messages) and default routing
through the pPvM daemons to communicate messages and file information. The performance
differences can be attributed to the cost of using the TCP/IP instead of the UDP network
protocols to transport data across the network. These differences are magnified by the
amount of data being accessed (1,344 Mbytes). When the child process is replicated ten
times, PIOUS and PI/OT give comparable results. This is likely due to the network becoming
saturated (measurements showed the network to be between 81% and 87% of maximum
utilization).

These results point out that neither of these two parallel /O systems can be considered
as the best overall solution. Just because Enterprise uses the network file system, which in
turn uses a different protocol for transmitting data, Enterprise performs better for this par-
ticular example. In contrast, the previous example shows that PIOUS performs somewhat
better than Enterprise. The observed performance has little to do with the actual imple-
mentation of the I/O templates in Enterprise, but depends rather on the implementation of

Child 50 rows per stripe
Processes PL/OT PIOUS
2 2225 2684
b} 1473 1662
10 1598 1580

Table 5-2 — Disk-based matrix multiply elapsed times in seconds for 2000 by 2000 matrix
of doubles (reals) using PYOT and plous (input and export times not in-
cluded). Sequential user times are 2214 seconds for buffered stream I/O,
2352 seconds for stream I/O and 2308 seconds for low-level I/O.

69



T T TPRTERT AT TR R L T T e T

the network file system. Nevertheless, templates once again yield comparable perform-
ance.

Ultimately, it is the network availability and capacity that determine the effect of /O on
the overall performance of a parallel application. By using different access patterns for the
I/O, the requirements made upon the network and the file servers change the performance
of the application. The ability to experiment with different parallel behaviours gives more
flexibility in tuning an application to a specific network, processor, and data set. Templates
offer this flexibility at little cost.

5.3 Useability and Composability

The two previous sections presented the performance advantages of the PVOT program-
ming model for a pair of applications that use the same simple computational model but
have different I/O characteristics. The possible choices for parallel /O were limited by per-
formance considerations. This section examines the claims of the flexibility and software
engineering advantages of pv/otT (Chapters 3) when more complex computational applica-
tions are developed. A pair of applications is presented. The first application parallelizes
the I/O shared by a process and its heterogeneous children. (The heterogeneity is not found
in processor differences but rather in the process differences.) The second application par-
allelises the /O in a pipeline computation.

A heterogeneous child application occurs when one process type calls two or more
processes types (Figure 5-11a). For example, a nrocess of type A calls both B and C
process types. There are an arbitrary number of the A, B, and C processes.

Process

Type 8
A O
B O
ce @ o
Figure 5-11 — Heterogeneous children and extended pipeline parallel computation con-

figurations.

A pipeline application is used to demonstrate the composability of the I/O templates. In
this case, A calls B which, in turn, calls C (Figure 5-11b). As each stage of the pipeline is
encountered, different I/O abstractions can be imposed on the shared file pointer. Subject
to constraints from earlier /O decisions, more complex I/O descriptions are constructed and
tested. As the computational parallelism is modified, the parallel /O component adapts to
the changes without intervention by the user.

For both of the applications presented in this section, the advantages of early release of
VO streams are examined. While this decision where to insert the early release is currently
done by hand, future work with the source-to-source code translator would insert this re-
lease mechanism after analyzing the user’s code.

5.3.1 Heterogeneous Children

If file pointers are shared between all processes, an I/O transaction is created and stored
in the call-chain of the parent process as each remote process call is made. Parallel /O
may or may not require synchronization but coordination between processes is needed to
access the file properly. If a global file pointer is shared, whichever process is active must
have acquired a current and up-to-date version of the file pointer. With a segmented I/O file
pointer, each process has clearly defined limits guaranteeing it exclusive access. Since the
order of access to a file is not determined until run-time, the parallel I/O behaviour interacts
with the parallel computational behaviour to coordinate access.

70



Depending on the I/O ordering attributes, synchronization of file access may be needed.
In this case, the parallel I/O system is given a file access ordering and must block processes
where necessary to preserve the ordering. Synchronization of file access forces a given
process to wait until its predetermined (from the call-chain ordering) turn with the file. In
general, this may reduce the level of concurrency available to the user’s computations.

With the heterogeneous child parallel computational behaviour, an A process distributes
work to the B and C processes. Figure 5-12 shows the source code for one such applica-
tion. Parent corresponds to A, Brother corresponds to B, and sister corresponds to C
in Figure 5-11. The code is in the format suitable for an Enterprise asset code. The par-
ent process will open the input and output files. A step size, n, is supplied as a command
line parameter by the user to segment the input file. The Parent process calls the remotely
executed Brother function n times followed by a similar number of calls to the remotely
executed sister function. This pattern repeats until the input file is exhausted. The pa-
rameters to Brother and Sister are similar: a number representing the record tag being
worked on, followed by two file pointers for the input and output files.

The Enterprise description of the computational parallelism is that Parent is a depart-
ment asset containing two individual assets, Brother and sister. Appendix A contains
more details about the Enterprise nomenclature and programming model.

The program flow in the parent source code reflects the structure of the input file
which consists of n pieces of work for Brother processes followed by n pieces of work
for the sister processes. Using a B or an S to represent blocks of data on disk for a
Brother Or a Sister process respectively, input patterns such as BSBSBSBS,
BBSSBBSS, BBBBSSSS, and so on, could be created. Depending on the input pat-
tern and the computational load for each piece of work, different ordering attributes will
provide different output patterns and different levels of concurrency. Depending on the
user’s requirements, the output ordering may be more important than maximizing the con-
currency.

include <stdio.h> int Brother ( int N, FILE *bin, int nin,
Parent( int argc, char ** argv ) FILE *bout, int nout )
{ {
FILE *fin, *fout ; int input, i, j;
int i, j, step ; if ( feof( bin ) } returm 1 ;
fin = fopen( argv(i}]., *r* ) ; i = fscanf( bin, "%d”, &input ) ;
fout = fopen( argv(2], “w+" ) ; if (i '=1) return 1 ;
n = atoi( argv(3] ) ; /* Early release of bin inserted here */
i=20;: Compute ( input ) ;
while ( ! feof( fin ) ) ( PrintBRecord( bout, N, input ) ;
for ( j=0; J<n; j+s+ ) { return 0 ;
Brother( i+j, fin, 1, fout, 1) ; }
} int Sister ( int N, FILE *sin, int nin,
for (j=0; j<n; j+ ) ( FILE *sout, int nout )
8istexr( i+j, £fin, 1, fout, 1) ; {
} int input, i, j;
i+=n ; if ( feof( sin ) ) return 1 ;
} i = fscanf( sin, "“%d", &input ) ;
fclose ( fin ) ; if (i '=1) recurn 1 ;
fclose ( fout ) ; /* Early release of sin inserted here */
return ; Compute( input )} ;
} PrintSRecord( sout, N, input )} ;
return 0 ;

}
Figure 5-12 — Source code for the heterogeneous children example.

71




o BRI TRERATIRTE TR T VTR WA TR TR TR T FTART R AW RETNNTT VR R TRIVTARRR ST Ak s e e 4

Equally relevant to improving the level of concurrency is the number of processes
available to execute Brother or Sister as remote functions. Increasing the replication
factor for either remote function should improve the computational concurrency. The num-
ber of consecutive B and S blocks make up the distribution pattern in the disk file. Figure
5-13 shows four possible connection patterns that could satisfy the parallel computational
requirements.

The selection of a parallel /O behaviour and ordering attribute is important since some
choices can affect the computational concurrency by creating barriers in the code. Note the
implied barrier in the parent code (Figure 5-12) where the input file is tested if it is ex-
hausted (feof (£in)). Imposing global file semantics on the input file pointer creates such
a barrier whereas using segmented file semantics does not. Specifying ordered read attrib-
utes for the input file pointer imposes additional constraints on the potential concurrency
since the application must proceed in the order of invocation rather than in the order of
availability.

In Figure 5-13a, there is only one of each process type. The I/O requirements could be
achieved by global semantics for the input and output. Unfortunately, using this approach
is going to limit concurrency between the two child processes as each one will be waiting
for the other to finish before returning both file pointers. However, inserting a function to
release the input file pointer early allows the other process to read in the data and start com-
puting. The code for both the functions Brother and sister in Figure 5-12 has been
commented to indicate the location in the code where an early release function for the input
file pointers (bin and sin) could be safely inserted. If the input data is in the form
BSBSBS, this will improve the overall concurrency. With only one of each process type
available, other data patterns (for example, BBSS or BBBSSS) will not see much of an
improvement except at the boundary conditions of the different data types.

The output file pointers do not benefit by an early release, as both functions return to
the parent immediately after calling the I/O function. Improved concurrency for the output
file could be achieved if the order of output can be relaxed. Relaxing the ordering of the
output file will see an improvement if the file pointer is locked until later on in the computa-
tions. [f the computations have irregular granularities, the first process finished should be
able to acquire the file lock. However, the current deadlock prevention mechanism com-
mits both the input and output file pointers at the same time.

Segmenting the input or output file does not at first seem to be an appropriate step.
However, the elimination of the barrier when checking for end-of-file in Parent allows
several clusters of work to be generated. Using global semantics imposed a barrier with
the Parent waiting until a single cluster of work is done before generating the next cluster.
As well, prefetching of input data can improve the performance. Local caching of the data
segment lessens the network demand for I/O. As seen earlier in Section 5.1, a large net-
work /O request followed by many small locally cached I/O requests is more efficient than
many small network I/O requests. Early release of the input file will not affect concurrency
much since both processes will be given distinct file segments and will consequently pro-
ceed independent of each other. However, early release could spread the network require-
tlfllents for the update of written segments instead of having all updates occur at the end of

e transaction.

Process

v IN e BN Sen
Parent O \ )
Sister O

Brother @ (a) (b) ) d)

Figure 5-13 — Four computation configurations used for heterogeneous children example.

72



For the example application, segmented semantics on the output file pointer lead to the
problem that the size needed for each output segment is indeterminable prior to the child
processes starting their computations. One approach is to have the file segment set to some
arbitrary maximum. This maximum size is dependent on the amount of temporary disk
space available. Using some default value potentially leaves the output file with a series of
holes. Alternatively, by using the unknown file segmentation, the file fragment could be
merged back according to some predefined ordering attribute.

In Figure 5-13b, both the child processes (Brother and sister) are replicated. Using
global file pointers does not permit the extra processes to act in a concurrent fashion. In
this case, early release of the input file will improve concurrency for data files with the
format of BBSSBBSS or BBBSSS. Relaxing the ordering of the output file can now be
done, either by clustering similar types of output data blocks in an as-received order instead
of in an as-generated order, or by allowing chaotic ordering of the output by any process
ready to write to the file. Using segmented I/O, the input file is divided up and each file
fragment is prefetched as each computational process is assigned a given block of work.

Figure 5-13c and Figure 5-13d are mirror images of each other. All of the work can be
done by one process type in a given time period, while replication of the other process type
is needed to finish its work in the same time period. In these cases, using segmented file
semantics for input is appropriate since all the replicated processes can start working.
Eventually all the single process woik is finished and the application will wait for the repli-
cated processes to finish. Using global file semantics for the input with early release is ap-
propriate for the replicated processes but it is not always appropriate for a single process
type, except at the data borders. If the replicated processes access the file first, leaving the
single process sufficient time to consume all of its work, this approach may work.

As seen, there are a number of choices the user has to make each time an application is
run. If the data files are sufficiently varied, different versions of the application will be
needed to efficiently process all the data sets. Specifying the parallelism separately allows
the user to adapt the application to the data rather than having multiple applications.

5.3.2 Heterogeneous Children Performance

An example application using this computational model based on the code in Figure 5-
12 was constructed. The two child process types, Brother and Sister, were run using
three levels of computational granularity - fine, medium, and coarse. Both process types
had the same computational granularity. The machines used in this experiment are all Sun4
ELC'’s with 12 megabytes of memory and a local disk for swap and temporary files. These
machines are connected by a 10Mbps Ethernet network. All parallel runs reported are the
average of five runs. The input data file consisted of 16 pieces of work laid out in the for-
mat BBBBSSSSBBBBSSSS. Sequentially, the application took 29, 79, and 232 user
seconds to process the input file for each granularity level respectively. Thus, the average
granularity for each block of work is approximately two (fine), five (medium), or fifteen
(coarse) seconds of CPU time. This application is not I/O bound but the I/O does require
synchronization.

Table 5-3 shows the results of a pair of experiments. The Brother and Sister proc-
esses were each replicated either two or four times, resulting in a total of five or nine proc-
esses for the computations (see Figure 5-13b). There were sufficient processors to ensure
that there was only one computational process per processor. The shaded headings in the
table indicate the type of template used for the input and output files. The application was
com%ilgld only once. All the parallel combinations were done by modifying the Enterprise
graph file.

__Within the range of values shown between different ordering attributes, there is little
difference. The lack of difference can be atwibuted to the current deadlock prevention
mechanism (Chapter 4.5) that limits concurrency. This mechanism uses the most conser-

73



File Pointers Fine granulari Medium granulari Coarse granularity |
Ingut | Outgut Normal | Earl Normal i Earl§ Normal i Early
- Sequentiali i - .3 29 79 232
- I lgoeho: and sistexr each reglicated two times
Chaotic Chaotic 50 27 102 49 265 130
Relaxed Relaxed 51 32 104 58 266 141
Ordered Ordered 51 32 104 58 266 140
Chaotic Chaotic 43 19 95 43 257 118
Relaxed Relaxed 43 18 94 42 257 118
‘ Ordered Ordered 44 18 95 43 258 118
' Newspaper-|- Newipaper -
Chaotic Chaotic 18 42 118
Relaxed Relaxed 18 43 118
Ordered Ordered 18 43 119
Brother and Sisterxr each _reglicated four times
_Meeting. | ‘Meetiiig -
Chaotic Chaotic 50 24 102 33 263 79
Relaxed Relaxed 50 26 103 37 264 84
Ordered Ordered 50 26 102 38 263 84
Meeting | Newspaper
Chaotic Chaotic 43 11 95 22 256 60
Relaxed Relaxed 43 9 95 22 256 59
Ordered Ordered 44 10 95 22 256 60
Newspaper | Newspaper
Chaotic Chaotic 9 22 59
Relaxed Relaxed 10 22 60
Ordered Onrdered 10 22 60

Table 5-3 — Elapsed time (seconds) for three different parallel /O template combinations,
three granularity levels of computation, and two replication factors for hetero-
geneous children example.

vative ordering attribute of all the file pointers involved in the transaction. Consequently,
when the input global file pointer is granted access permission, the output global file
pointer is either granted permission or is promised access permission in an orderly fashion
that avoids the potential deadlock. Both file pointers are released at the end of the entire
transaction, not when the last I/O operation is completed. As a result, concurrency is un-
necessarily limited.

A smarter compiler should be able to detect this independence and insert an early release
for the file pointer. Now that the early release divides the transaction into two independent
subtransactions, deadlock prevention is not needed. As well, asking for control of the first
file pointer would not assign the second file pointer at the same time. This would lead to
greater variety in the performance results and in the contents of the output file.

Part of this experiment examines the effect of an early release of a global file pointer.
Early release is defined as safely releasing the file pointer when it is not needed any more in
the calculations. The normal situation has all the file pointers released when the remote
function completes its calculations. That is, release is done when the function returns.
Using early release shows an overall improvement since concurrent computations are pos-

74



sible instead of waiting for the entire transaction to finish. However, the output file pointer
is still committed at the same time as the input file pointer. The larger increase in perform-
ance using the chaotic ordering with early release is attributed to the removal of the restric-
tion that all the Brother processes must finish before the sister processes can proceed.
Clearly, early release is beneficial to this application. However, the deadlock prevention
mechanism hides any performance differences with the ordering attributes.

As the order of asking for the global file pointers does not change in this application
and all global file pointers are guaranteed to be asked for, deadlock cannot happen. Future
research in compiler support is necessary to analyse the user’s code to determine if dead-
lock prevention is required at all. This static analysis could then advise the run-time system
whether or not to invoke the deadlock prevention algorithm. The consequence of the cur-
rent conservative and general approach to deadlock prevention is the observed reduction in
concurrency and the uniformity of performance.

For this application, early release does not directly affect a segmented input file pointer
as permission is already granted to access the file fragment and the file is not modified by
the remote processes. However, if the file fragment had been modified, the reintegration of
the remote segments into the master file could be affected depending on the defined write
ordering attribute. Early release has the potential to even out the demand on the network by
spreading out I/O messages instead of clustering them at the end of the computations of the
remote function.

Segmented I/O for both input and output streams gives the best performance. The
mixed case of global input and segmented output shows comparable performance to the
segmented I/O only when the early release is used. Considering the ratio of the time spent
reading in the data and the time spent computing, the early release result is not unexpected.

5.3.3 Extended Pipeline Example

The composability of the pI/OT templates is explored through a pipeline computation.
The number of combinations available using a multi-stage pipeline grows rapidly. Con-
sider that for each parallel file pointer there are the choices of five templates, three ordering
attributes for read operations, and three ordering attributes for write operations. Currently,
that gives the user forty-five (45) different combinations per file pointer. At each stage of
the pipeline, except for the last one, all the paralle] file pointers can be redefined. Obvi-
ously, not all these choices will make sense but the number of appropriate choices is still
quite large. This exponential growth provides a rich set of choices for the user.

To clarify this growth, consider a two-stage pipeline that shares two paralle] file point-
ers. The number of possible combinations for different I/O is 45 x 45 = 2,025. Adding an
extra stage to the pipeline and sharing the file pointers in all stages increases the possible
combinations to over four million. Altematively, adding another parallel file pointer in-
creases the two-stage pipeline parallel I/O combinations to 91,125 and the three-stage pipe-
line to over eight billion choices.

This section analyses the effects of parallelising the I/O for a three-stage pipeline mode.
All three stages share a common input and output file pointer. Coordination and synchro-
nization are needed at each level of the pipeline. Clearly, not all the /O combinations will
be presented here. Three pairs of parallel I/O behaviours are examined. A pair is defined
as the parallel /O behaviour assigned to the input file pointer and the parallel behaviour as-
signed to the output file pointer. Five different replication factors for the pipeline are stud-
ied using these three pairs. As well, the effect of early release of the input pointer in the
last two computation stages is examined.

The first stage of the pipeline, stage (Figure 5-14), opens the input and output files.
Then, until the input file is exhausted, it calls the second stage of the pipeline, stagerr,
passing the current state of the two file pointers. After the input file is exhausted, stageT

75



StageIl ( int argc, char ** argv )
{

FILE *fin, *fout ; /* The input and output file pointers */
int i ; /* A counter */
fin = fopen( argv(l], *r* ) ; /* Open the input file */
fout = fopen( argv(2], "w+" ) ; /* Open the output file */
i=0:;
while ( ! feof( £in ) ) ( /* While there is still data, generate */
StageIX( i++, fin, 1, fout, 1) ; /* work for the second stage */
}
fclose ( f£fin ) ; /* Close the input file */
fclose ( fout )} ; /* Close the output file */
return ; .

}
Figure 5-14 —Source code for the first stage of the three-stage pipeline example, stagelI.

closes the input and output files and exits normally. stager does not do any computations
nor are any of the return values from the second stage used.

The second stage of the pipeline, stage1I (Figure 5-15), checks if the input file has
some data left to process. The output header is written to the output file. The function
does some computations (ComputeStageII) and then enters a loop calling the stageIIr
function. This loop exits if either the end-of-file is reached for the input file or WORKBLOCK
calls are made. The latter condition was added to permit investigating the effects of early
release of the input file pointer, sin. The return value of stagerII is ignored. After the
loop exits, the comment indicates the location where the early release of the input file
pointer can be placed. Currently, the function that releases the file pointer is inserted by
hand. Future work will have the function inserted by the precompiler. The stageIT func-
tion then writes to the output file and returns to stageI.

int StageIXI ( int N, FILE *sin, int nin, FILE *sout, int nout )

{
int j, WORKBLOCK = 4; /* A counter and the maximum number of blocks */

if ( feof( sin ) ) return 1 ; /* No data, return error */
PrintHeader( sout ) ; /* Print header information */
ComputeStageIIl() ; /* Do the computations */
j=0; /* Zero the counter */
while ( ! feof(sin) && j < WORKBLOCK ) ( /* Generate work for the */

StageIII( N, j++, sin, nin, sout, nout ) ; /* third stage */

}
/* Early release of sin inserted here */
PrintTrailer( sout ) ; /* Print trailer information */
return 0 ;
}

Figure 5-15 —Source code for the second stage of the three-stage pipeline example,
StageIlI.

The third stage of the pipeline, stagerr1 (Figure 5-16), reads a value from the input
file. If there is a problem, it returns an error value to stagerr which currently ignores the
value. Again, the location of the early release code for the input file pointer, tin, is indi-
cated by a comment. stageIII completes its computation by writing to the output file us-
ing the file pointer tout.

76




hnd it A A S T AL

i bt AR DA G o d e SR ahAt |

int StageIII ( int N, int K, FILE *tin, int nin, FILE *tout, int nout )
{

int input, status ; /* Data input variable and status variable */
if ( feof( tin ) ) return 1 ; /* No data, return error */
status = fscanf( tin, "%d", &input ) ; /* Read in the data */
if ( status i=1) returmm 1 ; /* There is a problem */
/* Early release of tin inserted here */

ComputeStageIII{ input ) ; /* Compute the data */
PrintRecord( tout, N, K, imput ) ; /* Write the output */
return 0 ; /* Return to the second stage */

}

Figure 5-16 —Source code for the third stage of the three-stage pipeline example,
StageIIl.

An alternate method which avoids the end-of-file check of the input file pointer (sin) is
given for stageIr (Figure 5-17). This approach has the stageI1 function wait for a non-
zero return from Stagerrr. The stageIIT assetcode is written so that if it fails on a read
(typically, an end-of-file), it returns a one. This approach fails to achieve added concur-
rency because of the future created in StageIT on the return variable of stageIzI.

Figure 5-17 shows an Enterprise technique used to increase computational concur-
rency. The return variable is converted into a vector and an additional loop, to check on
the vector’s contents, is added. Aside from being somewhat convoluted and counter-
intuitive, this method is less flexible when the I/O behaviour is changed. If the global file
semantics are changed to segmented semantics, the extra blocks of work will cause the file
pointer to point past the end-of-file when constant segmentation is used.

The segmentation function will have to be carefully constructed when it encounters the
end-of-file. Returning an error value (-1) causes the run-time system to attempt to recover
from the error. (Currently, the recovery attempt is to abort the application.) Returning a
zero causes the run-time system to assume the file segment is of unknown size. This ap-
proach creates one extra piece of work for stagerrr. However, this extra work is insig-
nificant since the stageIIz process does no work as the function immediately returns upon

#define WORKBURST 4
int StageII ( int N, FILE *sin, int nin, FILE *sout, int nout }
{

int j, returnvVal [WORKBURST] ; /* Counter and return variable array */
if ( feof( sin ) ) return 1 ; /* No data, return error */
PrintHeader( sout ) ; /* Print header information */
ComputeStageII() ; /* Do the computations */

for ( j = 0 ; j < WORKBURST ; j++ ) { /* Generate a burst of work */
returnVal{j] = StageIII( N, j, sin, nin, sout, nout ) ;
}
for ( j =0 ; j < WORKBURST ; j++ ) ( /* Consume the futures */
if ( returnval(j] == 1)
break ; /* First failure indicates the input file is exhausted */
} /* End of checking the bursts of work */
/* Early release of sin inserted here */
PrintTrailer( sout ) ; /* Print trailer information */
return 0 ; /* Return to first stage process */
}
#undef WORKBURST

Figure 5-17 — stage11 asset code modified to check futures.

77




FrNe = e s e

S T T T VTN AR WAt prasminy. A& oW

detecting the end-of-file.

If the asset is configured as unordered (see Appendix A for more details) from a com-
putational viewpoint, these futures are resolved on an as-received basis instead of on an as-
generated basis. At first glance, this looks as if an error in the application is possible, since
an out—of-sequence value aborts the work loop prematurely. However, any access to the
output file pointer, sout, by stagerr will block until all the outstanding stagerIr proc-
esses have released their claim on the output file.

5.3.4 Extended Pipeline Performance

The experiments presented for the pipeline performance used the same input file. The
file consists of 16 pieces of work. The machines used are all Sun4 ELC’s with 12 mega-
bytes of memory and a local disk for swap and temporary files. They are connected by a
10Mbps Ethernet network. The sequential time (user time) was 173 seconds which gives a
computational granularity of approximately 11 seconds per piece of work. All parallel runs
reported are the average of five runs.

A number of combinations are possible for the process interconnection pattern for this
example. Recalling the example presented in Chapter 3.4 and Figure 3-6, Figure 5-18
shows the four combinations selected for this experiment.

Process
Type
Stagel O
Stagell O
® (© d)

Stagelll @ (a)
Figure 5-18 — Four computation configurations for three stage pipeline example

The first configuration, Figure 5-18a, is a simple pipeline consisting of three processes.
Segmenting the input and output files at all stages will maximize the overall concurrency of
the application. However, global file behaviours should not be dismissed. Table 5-4
shows the results of using three combinations of global and segmented /O behaviours.
There are four choices for early release of the input file pointer. The exclamation mark (!)
indicates that early release was not done. For example, the column labeled !TI&!III
means that both the stageII and stageIII processes did not release the input file pointer
early.

The global input file pointer, £in, blocks the first stage, stager, when the loop checks
for EOF of the input file. Appropriately, only one stageII process can be active. This
same check on the input file pointer, sin, blocks the stageI1 function when it checks for
the EOF. Again, since only one stageIII process is active, this is acceptable. Unless the
input file is released early, the stageII and stageI processes are blocked waiting for ac-
cess after generating one piece of work. However, since there is only one process per

File pointer names Early Release
sin sout tin tout &I | O&IT §| &N | tH&ITT
Meeting . | - Meeting I -Meeting. .}:Meeting-- 193 193 193 193
| _Mecting. ..[-.Newspaper | .- Meeting...|: Newspaper] 188 188 188 188
Newspaper-| Newspaper. |’ Newspaper:|: Newspaper-] 185 184 184 184

Table 5-4 — Elapsed times for dlfferent combinations of parallel I/O behaviours and early
release using the computational pattern shown in Figure 5-18a. Sequential
user time is 173 seconds.

78



stage, early release does not show any benefit. The segmented approach does not show
superior performance over global behaviours.

The output file pointer does not benefit from early release as the function returns imme-
diately after the last access with it. If the output file pointer is defined as having global be-
haviour, only one process can be active in the file at a time. Since all the computations are
done, the output should be completed quickly to allow the next waiting process to access
the file. Segmenting the output file is somewhat difficult as the record size is not known
until after the record is written. Using unknown segment sizes is appropriate for this ap-
plication.

None of the combinations showed performance better than the sequential version. The
lower the demand for synchronization (changing from global to segmented parallel behav-
iours), the better the performance. P/OT limits the concurrency between stages by imposing
barriers at each stage which now cause a process to wait for its child process to return /O
information. Effectively, only one process at a time is allowed to progress. The cost of
messages further reduces the application performance.

The second process configuration, Figure 5-18b, attempts to improve the performance.
The configuration replicates the second stage three times and leaves the third stage as a sin-
gle process. The changes to the computational parallelism are made to the graph file-and
leave the I/O parallelism unchanged. No recompilation is necessary. The stageIII proc-
ess performs the bulk of the computations (number of invocations) and is rapidly over-
whelmed with requests for work from the three stageIr processes. The data in Table 5-5
show that the parallel performance is comparable to the previous configuration (Figure 5-
18a) but uses more processors. Even with the early release of the input file pointer, sin,
there is not much concurrency available since there is only the one stageIII process.
Using a global behaviour for the input file pointer with early release and segmented behav-
iour for the output file pointer yields the best performance of this configuration. Segment-
ing the input file increases the concurrency but again, the stageII processes overwhelm
the single stageIII process. Unless the cost of computing the second stage is signifi-
cantly more than the third stage, this configuration of processes is not that successful.

File Pointer Variables Early Release
sin sout tin tout &N | &I | &I | (I&IHT
Meeting | Meeting | Meeting .| Meeting | 193 172 192 192

__Moeting | Newspaper 1 -Meeting - |- Newspaper § 188 166 | 187 188
| Newspaper | Newspaper | Newspaper | Newspaper | 168 168 | 167 167
Table 5-5 — Elapsed times for different combinations of parallel I/O behaviours and early
release using the computational pattern shown in Figure 5-18b. Sequential
user time is 173 seconds.

The third process configuration, Figure S-18c, has the last stage replicated three times.
Since the bulk of the computations are done in the last stage, replicating the last stage
should yield a better result than the previous two attempts. Using global behaviours, the
one StageII process would wait for a StageIIT process to return control in order to pro-
ceed. The mixture of global input and segmented output file pointers would not show a
significant improvement since each of the stageIII processes would wait for access to the
global input pointer. However, using early release of the input file pointer for this stage in
the pipeline, the three stageIII processes will become fully utilized. Performance should
approach the performance of the fully segmented file pointer test.

The results of using three different P/OT template combinations and invoking early re-
lease of the input file pointer, shown in Table 5-6, indicate that early release of the input file
pointer in the stageIII processes does permit more overlapping concurrency. The pure

79



segmented behaviour fills the pipeline and shows the best performance. The mixture of
global and segmented file pointers shows only slight improvement over the global behav-
iour. The effect of adding early release to the last stage significantly improves the applica-
tion’s performance over its sequential performance.

File Pointer Variables Early Release

| &I | T&!T | !S&IIE
- 111 194 112
f.." ECUl 109 188 109
; T 104 105 105

Table 5-6 — Elapsed times for different combinations of parallel I/O behaviours and early
release using the computational pattern shown in Figure 5-18c. Sequential
user time is 173 seconds.

The fourth process configuration, Figure S-18d, has both the second and third stages
replicated three times. Using only global behaviours with early release should show better
results since more of the second stage processes would be concurrently utilized. With the
second and third stages replicated, the early release of the input file pointer is beneficial
only if either the third stage or both the second and third stages are involved. This is obvi-
ous since early release of the second stage relies on the third stage releasing the input file
pointer first. The purely segmented approach would show no effect using early release
since the input file segment is not modified. The data in Table 5-7 confirms these predic-
tions.

File Pointer Variables Early Release
sin | sout | tin | tout MI&N | N&IN | N&N | &I
Using a replication factor of three fqr both StageIT and StageIII Processes

Mecting | Meeting" | Meeting - | -Meeting 193 90 192 110

Meeting | Newspaper | Meeting |'Newspaper | 189 73 189 108

Newspaper |- Newspeper:|-Newspapér:f Newspaper- | ___67 67 67 67
Using a replication factor of three StageII and six for StageIII Processes

Meeting | Meeting | Meeting:: | -Meeting ] 193 62 192 83

Meeting | Newspaper | _Meeting >}:Newspaper § 189 44 188 71

[ Newspaper | Newspaper | Newspéper- | Newspaper] 39 37 37 38

Table 5-7 — Elapsed times for different combinations of parallel /O behaviours and early
release using the computational pattern shown in Figure 5-18d. Sequential
user time is 173 seconds.

The fifth configuration is similar to the fourth configuration except that the replication
factor for the third stage is increased to six for a total of eleven processes. When the repli-
cation factor of the last stage was increased to six, the segmented performance continued to
improve®. As well, the mixed behaviour version using early release continued to show an
improvement as more of the StageIII processes were utilized.

5.3.5 Useability and Composability Summary

The pi/OT model offers many choices for parallelizing the I/O. The two example appli-
cations, while containing relatively simple computational parallelism, show how more

> When repeating this experiment on the heterogeneous network used in the first two experiments
(Section 5.1 and Section 5.2). increasing the replication factor of the last stage actually degraded per-
formance. This happened since it is more likely that a slower processor would be selected by the compu-
tational manager.

80



NV T RN e

CA AR il o e L Ak b0 LR L IR T IS

complex /O patterns are easily created by composing these simple parallel behaviours. The
ease of developing the parallel applications without any dependencies on specialized library
functions or by explicitly encoding the parallelism into the application is a positive feature
of this approach to parallel I/O. These two examples also show that parallelizing /O for
more complex applications does not readily show the speed up that the computational par-
allelism suggests is possible. - Granularity of the computations must be increased to balance
the cost of the synchronization and coordination of the parallel YO model. The current
deadlock prevention mechanism does not permit as much flexibility as desired with the read
and write attributes. The more I/O pointers involved in a transaction, the less flexibility is
shown. More work is needed to improve the deadlock prevention algorithm to gain tangi-
ble proof of the benefits of three levels of ordering.

5.4 Dynamic Segmentation

Strided interfaces or pre-defining access structures for regular data structures appears to
be the current approach to segmenting a file. This is acceptable for regular data structures
like dense matrices. Irregular sized data structures are not as easily manipulated by a prede-
fined or regular segmentation approach and consequently, show poor parallel performance.

An irregular data structure is typically represented in a file as a header element indicat-
ing either the size or number of elements — a description of what follows. The actual ele-
ments follow the header element. This two step implementation is often nested. While per-
forming two read or write operations works well with sequential applications, a two stage
read or write technique is difficult to manage for parallel applications because the concur-
rency introduces synchronization problems. Another approach to interpreting an irregular
data record is to use a special character indicating the end of record. For example, the seg-
mentation function in Figure 4-14 uses the knowledge that every third line feed character
indicates the end of a data record to segment a file.

Sequentially, a file is treated as a stream of bytes. No structure is imposed on the disk
file. In parallel applications, this lack of structure causes problems. Segmenting a file not
based on meta-information regarding the size and composition of data blocks could be inef-
ficient. Sequentially, this information is found by performing two reads or double writing
a complex object. Double writing means that the object is written to a temporary buffer
(disk or memory), the record length determined, and the record is copied to disk along with
the length. When importing a sequential file into a parallel I/O system, a user should be
given a chance to cache segmentation information for a specific data file. This could be
done either by creating a meta-file or by modifying the contents of the actual data file. This
last step is not done casually since it effects the user’s code.

During the parailel computation, the meta-information about the file structure is used to
segment the file. Export of the file from the parallel file system back to the sequential file
system uses this meta-information to reassemble the parallel file. Both the import and ex-
port steps should be taken into account when determining overall processing time for the
files. In effect, the application reads the file twice — once for the meta-information and
once for the actual data. Since there is little chance of avoiding this double read, a seg-
mentation function that does this as the application progresses through the file is proposed.

Earlier in Section S.1, a fine-grained I/O application was used to compare the perform-
ance of PY/OT and PioUS. That particular comparison used a constant segmentation factor.
This section looks at the cost of using a dynamic segmentation function.

5.4.1 Segmentation Functions

Three segmentation functions were tested. These three form a spectrum of segmenta-
tion functions. They range from a complete reading of a data record to a single small (4
byte) read to establish the size of the record to no read (a constant). From this spectrum,
the effect of the approach to segmenting a file is studied.

81



TR T AT w e

The first approach is a complete read of the entire record (Figure 5-19). Instead of us-
ing the version shown in Figure 5-5 which seeks over the elements of a subcomponent, the
function reads the size of a subcomponent. The function then reads in the elements to ad-
vance the file pointer to the start of the next subcomponent. Since the size of the data is
known or computable, reading into a buffer is acceptable. Of the three segmentation func-
tions tested, this function should have the largest impact on performance. The segmenta-
tion function effectively reads the entire segment using a number of small I/O operations.

#define IC ( sizeof(int) + sizeof(char) )
#define I sizeof(int)
unsigned long ReadSegmentation ( FILE * fp, int min, int max, int current )

{
unsigned long offset ; /* Extent of this record */
int b, C, b, E, i ; /* Record header variables and a counter */
char buffer[ 4096 1 : /* The maximum size of a record on disk*/
i = fread( &CD, I, 1, fp ) /* How many CEDE objects are there */
if (i!1=1) /* End of file or file error, return error */
return (unsigned long)-1l ;
offset = I ; /* The record includes the size of CD */
for (i =0; 1i<CD; i+v+ ) { /* Loop reading the CEDE records */
fread( &C, I, 1. fp ) /* Elements in this C record */
fread( buffer, sizeof(char), C * IC, fp ) /* Read C data block */
offset += I + C * IC ; /* Increment size of record */
fread( &E, I, 1, fp ) : /* Elements in this E record */
fread( buffer, sizeof(char), E * IC, fp) : /* Read E data block */
offset += I + E * IC ; /* Increment size of record */
fread( &D, I, 1, fp ) : /* Elements in this D record */
fread( buffer, sizeof(char), D * IC, fp ) : /* Read D data block */
offset += I + D * IC ; /* Increment size of record */
fread( &E, I, 1, £fp ) : /* Elements in this E record */
fread( buffer, sizeof(char), E * IC, fp ) : /* Read E data block */
offset += I + E * IC ; /* Increment size of record */
} /* End of loop reading in the CEDE records */
fread( &E, I, 1, fp ) /* Elements in this E record */
offset += I + E * IC ; /* Increment size of record */
return offset ; /* Return the size of the Child record */
}
#undef IC
#undef I

Figure 5-19 —Segmentation function for fine-grained example that reads the entire record.

The second function, EmbeddedSegmentation (Figure 5-20), requires modifications to
the sequential and parallel applications. The internal structure of the file must be modified

unsigned long EmbeddedSegmentation ( FILE * fp, int min, int max, int current )
{

int size, i ;

i = fread( &size, sizeof(int), 1, fp ) ; /* How big is this record */

if (1 t=1) /* End of file or file error, return error */

return {(unsigned long)-1 ;

/* Return the size (in bytes) of this record plus the header size */

return (unsigned long) (size + sizeof(int);
}

Figure 5-20 —Segmentation function for fine-grained example that has the size of the rec-
ord embedded into the data file.

82




to include a header before each child data block indicating how many bytes the block
coantains. The function reads in the value and returns the offset. This intrusive approach
should have a smaller impact on performance than that of the full read version because there
is only one small read operation.

The third function, constantSegmentation (Figure 5-21), is intended to have the
least impact on performance. It simply returns a constant value with no access to the disk.
However, this constant size trades knowledge for flexibility. If the records are smaller than
this constant size, holes will exist in the file. If the data records are larger than the stated
size, data is lost. As well, the program is corrupted due to reading past segment bounda-
ries or the file is corrupted by writing past segment boundaries.

unsigned long ConstantSegmentation ( FILE * fp, int min, int max, int current )
{

/* Return the size (in bytes) of this record */

return (unsigned long) 352108 ;
}

Figure 5-21 — Constant segmentation function for fine-grained I/O example.

5.4.2 Dynamic Segmentation Performance

The two read segmentation functions and the constant value function were used to ex-
amine the effect of increasing computational granularity against increasing the replication
factor. The application was run using four different computational granularities consisting
of approximately 0, 10, 37 and 147 seconds per data record (Table 5-8).

This granularity is based on the computational part of the application, not the cost of
segmenting the record. Each computational granularity was tested using four different rep-

lication factors of 2, 5, 10, and 15 child processes for each segmentation function. All
parallel runs reported are the average of five runs. The data indicates that until a certain

Replication CPU_granularities (seconds)
Factor 0 10 37 147
Sequential 16 479 1853 7339
Full Read Segmentation
2 239 512 1361 4875
168 251 535 1824
137 187 324 1062
15 138 148 255 679
: . Embedded Read- Segineéntation
2 210 505 1361 4870
5 127 225 534 1825
10 119 160 332 1069
15 118 147 1 266 697
o 2 U ConstanE -Segmentation - U
2 208 505 1372 4869
123 220 531 1824
115 155 330 1067
115 142 264 695

Table 5-8 — Elapsed time (seconds) using three different segmentation functions, four
replication factors for the child process, and four computational granulari-
ties for the fine-grained I/O example.

83




threshold of computational granularity is reached, the application is better off being run se-
quentially. There appears to be little difference in performance to determine which seg-
mentation function is best to use.

A maximum of sixteen processors are used in this set of experiments. Fourteen are
Sun4 ELCs while the other two were slower Sun4 IPCs. When using the IPCs. any ad-
ministrative processes (e.g. the Enterprise root process*) or a process that did not have a
large CPU requirement were placed on the slower machines. Where possible, the fastest
processors were used first. All processors have a local disk for swap and temporary files
and are connected by a 10Mbps Ethernet network.

Figure 5-22 (a), (b), and (c) shows the performance of the three segmentation functions
with increasing replication factors for the child processes. These figures show that there

Replication Factor _ Replication Factor

8000 8000
[] [ ]
'g 70001 —m—2 g 7000
S 6000 5 8 6000
a . H
=s5000{ — 10 < 5000 -
£ 4000 ; g 4000 {
" 3000 - " 3000 -
B o
@ 2000 1 @ 2000
a a
2 1000 o 1000 :
0 . 0 X v .
0 50 100 150 0 50 100 150
Granularity (seconds) Granularity (seconds)
(a) (b)
8000 Replication Fact?r 200 - Segmentation Function
~ 7000 —@—Sequential - —&—Fuil Read
o { —=.— © 4
c 2 e 60 Embedded
o
o 6000 - 5 (1] 500 o
3 ® -Constant
25004 10 A
400 4
® 000 15 ®
,§ _§ 300
= 3000 4 = //'/;
h -] b -] 200
8 1000 - I//J g 100 5~
w — w
0 ey v . 0 v v '
0 50 100 150 0 50 100 150
Granularity (seconds) Granularity (seconds)

(c) (d)

Figure 5-22 — Elapsed time versus computational granularity using constant (a), full read
(b), and embedded read (c) segmentation for fine-grained I/O example at
four replication levels. Elapsed time versus computation granularity of the
three segmentation functions using a replication factor of fifteen (d).

* See Appendix A for more details.

84



are diminishing returns by increasing the replication factor. This diminishment can be at-
tributed to the Parent process becoming a bottleneck for distribution of the input file seg-
ments and integrating the output file segments. The computational interactions limit the
scalability of this implementation of pr/oT. The difference between the three different seg-
mentation functions using a replication factor of 15 is seen in Figure 5-22(d). Unless the
computational granularity is low, there is no significant difference between the three ap-
proaches to segmentation.

At low granularity or replication factor, the constant function and the embedded read
function show definite performance improvements over the full read segmentation function.
The cost of fully reading the record twice is noticeable but small. However, once there was
sufficient computational granularity (10 seconds), all the segmentation functions gave
similar performance. The full read version gave slightly better performance with the higher
granularities and replication factors.

The performance improvement can be attributed to the overlapping /O and computa-
tions. As well, the /O has been prefetched and is still likely to be either in the disk cache
or resident in memory at the file server. Clearly, the costs of segmentation are hidden
when there is sufficient computational granularity. For this application, the parent proc-
ess continues to segment the file after all the child processes are busy. The overlap of the
I/O and computations is beneficial.

5.4.3 Dynamic Segmentation Summary

Three segmentation functions were examined for their relative performance in a parallel
application. As the granularity of the computation rose, the choice of a segmentation func-
tion became moot. Clearly, the least interference with the original data file is most desir-
able.

The performance of the simple parallel configuration is acceptable (in that a speedup is
seen). The next section looks at a more complicated computational pattern along with an
increase in the complexity of the parallel /O requirements. The intent is to examine
whether improved performance can be extracted for the application and to determine the
costs of creating the application.

5.5 Complex 1I/0 Patterns

If there is sufficient computational granularity, experimentation with the configuration
of a parallel application may yield better performance. The fine-grained example used in
Section 5.1 and 5.4 was modified to change the computational parallelism in order to seek
better performance on the two computational platforms.

The child data record (Section 5.1.1) consists of n(CEDE) data blocks followed by
a trailing E data block. With increasing computational granularity, computing a subset of
the CEDE blocks could be parallelized with the potential for an increase in performance.
However, the /O requirements have now been changed. What modifications are necessary
to implement these changes?

A new function, CEDE, was developed to run in parallel (Figure 5-23). This function
assumes that what is left in the input file is a collection of ceDE records. This approach
takes advantage of the P/OT segmented I/O semantics in which the end-of-file is the same as
end-of-segment for the newspaper template. An alternate approach has the actual number
of records in the segment block passed as a parameter to the function. However, in either
case, the parallel I/O implementation must leave the input file pointer located at the start of
the trailing E record for the child process after all the calls to CEDE.

The computational parallelism is straightforward to modify. The computation becomes
a three-stage pipeline consisting of Parent as the first stage, chi1d as the second and CEDE

85



int CEDE( FILE "cdin, int nin, FILE *cdout, int nout ) {

if ( cdin == NULL )} return 1 ; /* No file is defined! */

while ( ! feof(cdin) )} {/* Assume the file contains only CEDE blocks */
ComputeC( cdin, cdout ) ; /* Compute the C record */
ComputeE( cdin, cdout )} ; /* Compute the E record */
ComputeD( cdin, cdout ) ; /* Compute the D record */
CamputeE( cdin, cdout ) ; /* Compute the E record */

}

fflush( cdout } ; /* Ensure output has gone to disk */

return 0 ; /* Return to Child function */

}

Figure 5-23 —Source code for the cepE function for the more complex I/O example based
on the fine-grained I/O example.

as the third. The second and third stages are replicated. The original computational con-
figuration is seen in Figure 5-24a while Figure 5-24b shows the new configuration.

For performance comparison, the number of actual processes is kept the same. A
Child process still receives an input file segment from the Parent process. child is now
responsible for distributing the sub-segments of its segment to the cepe function. The
Child process must also collect the output from these client processes and merge the output
before returning its output segment to Parent.

P'li‘ocess
ype E'\
Parent O C/
(a)
(b)

Chitd O
CEDE ©

Figure 5-24 — The computational parallelism for original (a) and more complex (b) version
of the fine-grained I/O example.

The chilaq function required some modification (Figure 5-25) in order to implement
this new parallel computational behaviour. The loop counter where the CEDE blocks were
computed was changed to increment by a specified number of blocks. Inside the loop, the
number of CEDE elements per block was monitored to ensure that only CEDE blocks
were distributed. After the loop finished, the trailing E record was computed. The child
process then waited until all the outstanding cEDE work requests were completed and re-
turned their output before returning to the Parent process.

The only p/oT modification is that an additional segmentation function must be created
to segment the CEDE record blocks. The next section documents the creation of this addi-
tional segmentation function.

5.5.1 An Additional Segmentation Function

A new segmentation function (Figure 5-26) was created for the new computational
stage, CEDE. One problem arose when developing the sequential code. If a constant block
of CEDE records is used, there is a good possibility that the last block will contain more
than just CEDE records. For example, suppose there were 101 CEDE records in the
child segment and the blocking factor was ten. The last file segment should only contain
one CEDE record but it will contain additional information that the cepe function will
misinterpret and corrupt the rest of the calculations. Since the interface between the call-
back function and run-time system is already defined, an altemate approach is needed.

86




TRADTYTETIE R ST TSRS LS L.t -7

B L S o A

#define StartingCEDEBlock 10
int CEDE_BLOCKSIZE = StartingCEDEBlock ;/* Used by segmenation function */

int Child( FILE *bin, int nin, FILE *bout, int nout ) {

int Cdelem, I; /* Number of records to process and a counter */
char type='B’'; /* Record type */
i = fread( &CDelem, sizeof(int), 1, bin ) ; /* Number of CEDE records */
if (i==0) return 1 ; /* Read failed, nothing to do */
if (! feof( bin ) ) ( /* Not end of record */

OutputBHeader( bout, CDelem }; /* Output the B record header */

CEDE_BLOCKSIZE = StartingCEDEBlock ; /* Compute a CEDE block */

for ( 1 = 0; i < CDelem; i += CEDE_BLOCKSIZE ) {/* Distribute blocks */
/* Don’t exceed the number of records ! */
if ( i + CEDE_BLOCKSIZE > CDelem ) CEDE_BLOCKSIZE = CDelem - i ;

CEDE( bin, 1, bout, 1 }; /* Compute the CEDE bleck */
}
ComputeE( bin, bout ); /* Compute the trailing E record */
}
fflush( bout ) ; /* Ensure output has gone to disk */
return status ; /* Return status of this function to Parent */

Figure 5-25 —Modified source code for the chiid function reflecting the changes neces-
sary for the more complex fine-grained /O example.

One solution is to use a global variable. The child process knows the number of
CEDE blocks prior to invoking the cepe function. It was a simple matter to insert a test in
the child distribution loop to test and, if necessary, limit the number of CEDE blocks
distributed. This global variable could be declared static and effectively shielded from

extern int CEDE_BLOCKSIZE ; /* How many CEDE blocks to read */
#define IC ( sizeof(int) + sizeof(char) )
#define I sizeof(int)
unsigned long segCEDE( FILE *fp, int curr, int min, int max ) (
unsigned long offset = 0 ;
int 1, C, D, E ;

char buffer{4096] ; /* Maximum size of a record on disk */
for ( i = 0 ; i < CEDE_BLOCKSIZE ; i++ ) { /* Determine the block size */
fread( &C, I, 1, £p ) : /* Elements in this C record */
fread( buffer, sizeof(char), C * IC, fp ) : /* Skip over C record */
offset += I + C * IC ; /* Increment the size counter */
fread( &E, I, 1, fp ) ; /* Elements in this E record */
fread( buffer, sizeof(char), E * IC, fp ) ; /* Skip over E record */
offset += I + E * IC ; /* Increment the size counter */
fread( &D, I, 1, fp ) ; /* Elements in this D record */
fread( buffer, sizeof(char), D * IC, fp ) : /* Skip over D record */
offset += I + D * IC ; /* Increment the size counter */
fread( &E, I, 1, fp ) : /* Elements in this E record */
fread( buffer, sizeof(char), E * IC, fp ) ; /* Skip over E record */
offset += I + E * IC ; /* Increment the size counter */
}
return offset ; /* Return the size of this CEDE record block */
}
#undef IC
#undef I

Figure 5-26 — Segmentation function for CEDE parallel I/O requirements.

87




the rest of the code if the asset code and the segmentation function share the same file.
5.5.2 Complex I/O Performance

The number of CEDE blocks per segment sent to a remote cEDE function was set to a
default value of ten. Three replication combinations using ten processes were tested. Two
different computational platforms were used. The same operating system was used on both
platforms — SunOS 4.1.4. All the processors communicate with each other using a
10Mbps Ethernet connection.

The first platform is heterogeneous in processor capacity. It is similar to the configura-
tion used in the first two experiments (Section 5.1 and Section 5.2) except that the Sparc 4
(SS4) and one of the Sun ELCs is now replaced by a Sparc 10 (SS10) dual processor unit
and a Sun SLC. The SS10 is about 4.5 times faster than the SLC. The other processor
ratios are found in Section 5.1.5. The configuration consisted of the following processors
(and memory): one SS10 (96 megabytes), two Sund Classics (32 megabytes), five Sun
ELCs (32 megabytes), and five Sun SLCs (16 megabytes). All processors have local disk
for swap and temporary file space. The second configuration is the homogeneous platform
that was used for the third (Section 5.3) and fourth (Section 5.4) experiments, and con-
sists of thirteen Sun ELCs with 12 megabytes of memory and local disk for swap and tem-
porary file space.

This problem contained fifty child records with each chiid record containing one
hundred CEDE records. As the number of child processes increases, the CEDE processes
become the bottleneck. For the data file used, each time a child process receives a work
request from Parent, Child generates ten CEDE calls. For these experiments, the sequen-
tial time needed to process one child record was set to be about 85 seconds on the fastest
processor that runs a child process in the heterogeneous case. That same setting corre-
sponds to 147 seconds with the homogeneous process cluster. The average computational
cost for a cEDE call is approximately 9 (heterogeneous) or 15 (homogeneous) seconds.
With eight ceDE processes, the twenty requests are quickly handled. As the number of
work requests increases, the reduced number of CEDE processes, which do the majority of
the computations, inhibits performance on the homogeneous processor cluster. However,
using the heterogeneous process cluster, the slower processors were specifically selected to
run the child processes, leaving the CEDE processes to the faster processors. Conse-
quently, there should a noticeable improvement to the performance of the application.

The chiid file fragment was further segmented for each block of ceDE records. There
is little impact on the network for I/O activity as all the chiid processes segment their local
copy of the larger file fragment. Similarly, the child processes reassemble the output of
the CEDE processes before returning their larger segment to the parent process. As the
Child and CEDE processes do not know in advance the size of their respective output rec-
ord, an unknown segment size was used for both process types.

Given the same number of processes, Table 5-9 shows that the performance is better

Replication Elapsed Time (seconds) CEDE
Child | CEDE Hetero‘eneous Homo‘eneous Requests
10 0 1538 1062 0
2 8 1448 * 1023 20
3 7 1516 1158 30
4 6 1630 1344 40

Table 5-9 — Elapsed time in seconds for a more complex computation on a heterogeneous
and a homogeneous network of workstations. A total of ten processes are

allocated to execute the child and ceDE functions.

88



I ELRRRARTTTT T AT AR TR TR T TSR T R e e

- Rl e o B

than in the simpler pipeline example. The shaded row corresponds to the elapsed time for
the simpler two-stage pipeline approach. There is about a six percent increase in the per-
formance on the heterogeneous processor cluster using the more complicated parallel de-
sign. This performance improvement deteriorates as the number of child processes in-
creased. This is due to the inability of the faster processors to keep up to the increased
number of work requests from the child processes. The homogeneous computational
platform showed very little performance gain and, as the number of chiid processes in-
creased, performance degraded quickly.

5.5.3 Complex I/0 Summary

The benefits of a template approach over a hand-coded library approach are highlighted
in this experiment. With a minor change to the source code, the performance is incremen-
tally improved for the heterogeneous network. Adapting to the change involved a modifi-
cation to the computational parallelism and corresponding adaptation to the I/O parallelism.
The p/oT and Enterprise modifications took about an hour to design and implement. The
application needed to be recompiled by Enterprise to reflect the changes in the computa-
tional parallelism (creating the new wrapper function for cepe). Creating this same appli-
cation by integrating and embedding both the computational and I/O parallelism into the
code, for example using pvM and pious, would take considerably more time and would be
prone to errors. Clearly, while POT does not parallelize the application, this model of /O
provides the abstractions necessary to allow the user to specify what is needed while
leaving how to implement requirements to the run-time system.

5.6 Chapter Summary

Five sets of experiments examined the performance and useability of the pi/oT model
and implementation. The first two experiments compared the performance aspect of the
Enterprise implementation of P/OT and a more low-level parallel file system, pious. Both
experiments had the same computational parallelism — a simple parent-child behaviour.
Enterprise and Pious both use PvM as the underlying communication system. The difference
is that Enterprise uses computational templates to express the parallelism while the pious
version relies on the user to hand-code the necessary parallel communications to develop
the parent-child behaviour. The computational behaviour was straightforward to implement
in either system. However, the parallel I/O requirements were quite different.

The first experiment (Section 5.1) has fine-grained I/O requirements spread throughout
the application. The first experiment had one input and one output file, each segmented.
Each segment of work consisted of many small I/O calls involving from four to several
hundred bytes. Only one Enterprise version gave acceptable performance.

The hand-coded approach using pious permitted seven different implementions of the
same application. The user could use the PiOUs system calls to treat the files as either seg-
mented or globally shared, and cache segments to a local disk or not. The local processes
used buffered or standard I/O streams, or low-level I/O calls on these local cached copies.
Each of the pious versions developed took several hours to code and debug. The child
process needed no modifications to the original source code for the child except in one case
where all I/O was replaced with the pious I/O calls.

The second experiment (Section 5.2) had a few coarse-grained /O operations spread
over three file pointers. The application did not provide the same variety of choices as did
the fine-grained I/O when using the low-level parallel file system. In fact, there was only
one way of implementing it in each parallel I/O system to get acceptable performance.

The third experiment (Section 5.3) examined the useability and composability of the
P/OT paralle] /O model. Changing the external parallel /O requirements did not require a

89



recompilation (or re-writing) of the sequential source code. Early release of file pointers
shows the improved concurrency for a given application.

Early release is only one part of the potential of using static analysis to improve /O per-
formance. The compiler can determine the scope of a file pointer’s use in a function. The
early release mechanism can be inserted when the file pointer is no longer needed. Static
analysis can also determine if it can safely rearrange code to cluster the I/O statements to
improve the effect of early release. This analysis can also be used to provide hints to the
run-time system indicating that, for a given transaction type, deadlock prevention is not
necessary. However, static analysis can only provide hints. Since the parallel /O behav-
iour can be changed without requiring the recompilation of the application, the run-time
system must make the final decision about deadlock prevention.

The fourth experiment (Section 5.4) examined the performance of three different seg-
mentation functions, as proposed for the dynamic segmentation contribution of p/oT. The
performance of segmentation functions is not as much of a concern when there is some
computational granularity. The exact point when the segmentation function has a signifi-
cant impact on the performance depends on the size of the computational granularity, the
amount of I/O needed, and the complexity of calculating the size of the extent.

The fifth experiment (Section 5.5) revisited the first application, the fine-grained /O.
The lessons learned in the first four experiments were applied to see if the earlier perform-
ance could be improved. The application was modified for a more complex computational
pattern and a different parallel I/O behaviour. This resulted in a six per cent increase when
working with a heterogeneous mix of processors. This same pattern showed little or no
gain when running the same application with a homogeneous processor mix. Modifica-
tions were needed to the computational parallelism but the only additional code required for
the new parallel I/O behaviour was a new segmentation function. The functions using IO
did not need any modifications for the new parallel /O behaviour. The advantages of a
templated approach to the computations and I/O parallelism are seen in the flexibility to ex-
periment and test to seek the best performance for a given computational platform.

90



A e A St o i e Rt te S i it e e Aot el el ANt L anl L

Chapter 6

6. Conclusions

The feasibility of a top-down approach to parallelizing the /'O components of an appli-
cation has been presented. The current approaches are bottom-up with specialized libraries
of functions differentiating between parallel and sequential streams. Synchronization and
coordination between different I/O streams are left as the responsibility of the user. Trans-
action support is rudimentary. All the parallelism is explicitly inserted into the application
code. If either the computational or /O parallelism is changed, a new version of the appli-
cation must be created. pPI/OT eliminates these problems by using /O templates and cooper-
ating with the computational templates. However, given the desire for high performance in
parallel applications, the above advantages can easily be negated if the run-time perform-
ance of PVOT is poor. While the current implementation is not complete, the results reported
here validate the claim that the performance is acceptable.

In fact, there are two claims made in this thesis. The first claim (Chapter 3 and 4) is
that parallel /O behaviours in an application can be specified separately from the source
code. The work presented here extends the template approach which is shown to be bene-
ficial for computational parallelism by Szafron and Schaeffer [73]. The user code is sig-
nificantly reduced in comparison to the hand-coded versions and the application is com-
pleted much sooner since the templates are correctly implemented for the selected parallel
behaviour. There are no new parallel I/O function libraries to learn and no language exten-
sions. All /O is performed using the familiar standard stream interface. The separation of
the parallel I/O behaviours from the source code, coupled with a corresponding separation
of parallel computation behaviours, can be combined to produce a more responsive and
“better” tuned application. This corresponds to the idea that the user specifies what paral-
lel behaviours should be used while the parallel programming system determines how to
implement the behaviours.

The second claim (developed in Chapter 5) is that the software engineering advantages
of such an approach do not necessarily incur a significant loss of performance. This claim
agrees with the conclusions of Szafron and Schaeffer that only a small performance penalty
is paid for using computational templates.

A number of extensions and future research possibilities arise from this work. Sec-
tion 6.1 documents some of the compile-time and run-time extensions that would lead to
further improvements. Section 6.2 lists the contributions of this dissertation. Section 6.3
summarizes the work presented in this document.

6.1 Extensions and Future Research

Not all of the lessons learned from developing this PV/OT prototype are integrated into
the current solution. Rather than adding the missing portions (the report template, wri-
table photocopies, a more intelligent deadlock prevention mechanism, and support for
atomic /O statements) in an ad-hoc fashion, the current implementation would benefit from
a complete rewrite.

The Enterprise Pps needs modifications to the precompiler and run-time system to fully
support the different /O templates. Primarily, this involves providing hints for deadlock
prevention and prefetching. Enterprise is intended to be a complete parallel programming
environment. The Enterprise graphical user interface should be modified to support
graphical PY/OT templates. Currently, the graph file is modified by hand. PYVOT generates

91



events about parallel I/O operations which are intended for use by the Enterprise parallel
debugger and performance monitor. Both of these components need modification in order
to use this information.

A second area of future work is to implement P/OT within another parallel programming
system. The decision to use Enterprise for the prototype was easy to make. The Enterprise
source code and, more importantly, the people who developed Enterprise were available for
consultation when it came time to implement p/oT. The I/O model presented here is inde-
pendent of the implementation platform. However, proof of this independence would be
demonstrated by a successful implementation in another parallel programming system. In-
dependence could also be validated by implementing PVOT using a specialized parallel VO
library. This top-down approach to parallel /O should be able to take advantage of the op-
timizations offered by these tools.

As well, Enterprise only supports certain computational models. Mesh and peer-to-
peer models, for example, are not supported. The reason for this is that computational
deadlock is difficult to detect or prevent for such templates. Implementing P/OT in a Pps that
allows the user to develop such a computational application would test the current deadlock
prevention mechanism. The work done so far has identified the minimal requirements for a
parallel computational system needed to implement P/OT.

All this work has been done on a network of workstations (NOW), but shared memory
processors (SMP) are a popular competitive alternative. As well, distributed shared mem-
ory systems (DSM) can provide adequate performance if the network provides sufficient
bandwidth and message latency for a particular application. Can shared memory and par-
allel /O co-exist? Consider a file pointer that is placed in shared memory. Unless there is
operating system support for such a strategy, problems will develop. In particular, if dis-
tributed shared memory is used, a file pointer created by one processor and used on a dif-
ferent processor is not likely to work. In addition, shared memory would also require the
memory stream (sprintf and sscanf) functions to be made parallel-aware. /O templates
would work with the shared memory model and the computational parallelism to provide an
appropriate solution. Therefore, a Pps that supports a shared memory model would need
compiler and run-time modifications to identify and support shared parallel I/O objects.

The five templates presented here should not be considered complete. Future work is
needed to examine whether additional templates or attributes are appropriate and to deter-
mine their relationships. For example, the log template can be treated as a specialization of
the meeting template while the report template can be considered a generalization of the
newspaper template. However, these two specialized templates are useful to specify
common parallel behaviours.

An important area for future work is the development of a more sophisticated deadlock
prevention mechanism. This will require compiler and run-time support. The conservative
approach of the current implementation restricts concurrency and the expressiveness of the
attributes. Section 6.1.1 addresses this problem in more detail.

The rest of this section describes in more detail where static and run-time extensions
should be beneficial. Section 6.1.1 looks at extensions to the deadlock prevention with the
PI/OT model. Section 6.1.2 discusses some of the issues that static analysis should address
to integrate /O and computation parallelism. Section 6.1.3 discusses some extensions of
the run-time support. Section 6.1.4 summarizes the future research directions of the work
presented in this dissertation.

6.1.1 Deadlock Prevention

As discussed in Chapters 3, 4, and 5, deadlock prevention is needed. Deadlock detec-
tion after the fact is not appropriate since resolution will likely involve a rollback of com-
putations and I/O operations. This is difficult and costly to do correctly in the general case
(if it can be done at all). Deadlock prevention does not require rollback. The price of this

92



prevention is the limitation of some of the potential concurrency. Static analysis of the
source code, along with run-time analysis of the transaction and template attributes, can
ensure deadlock prevention is activated only when needed.

For example, transactions that make all access requests in the same sequence do not
need deadlock prevention. If static analysis can detect this pattern, or better, safely re-
organize the code to ensure this pattern, deadlock prevention can be avoided. This assumes
that the access permission is surrendered back to the pool of processes competing for ac-
cess only when the transaction has no more need for the file pointer.

There are two areas where deadlock prevention can be extended. The first is in the
definition of the transaction by a process. Currently, the definition of a transaction lies in
the formal parameters of the remote function invocation. The creation of a transaction in-
stance occurs when the remote process is passed a collection of file pointers. The scope of
a transaction consists of the first access by any of the file pointers composing the transac-
tion and the return of the remote function. Identification of any sub-transactions which
would eliminate coupling between global file pointers reduces the need for deadlock pre-
vention. Having only one global file pointer in a transaction eliminates the second condi-
tion for deadlock (Chapter 4.5). _

The second extension for deadlock prevention occurs when a collective /O operation
takes place. The collective open must be taken into account by the deadlock prevention
mechanism in the context of the current transaction of the process. PI/OT is designed to use
a client-server model. Introducing a third process as the manager of the collective open
(Chapter 4.2.1) complicates the deadlock prevention mechanism.

If there are any global file pointers in the current transaction, other than the one cur-
rently being collectively opened, the client process cannot request the open until access for
the other pointers is confirmed. Since the process that is the manager of the collective open
is not necessarily the same process that produced the current transaction, there are now
three processes involved with the collective open. The client process (P), the process that
generated the transaction (P;), and the collective manager process (P,,) must cooperate to
prevent deadlock.

P cannot proceed to ask P,, for participation in the collective open until it has been
granted access to the global file pointers in the transaction by P,. If the access to these file
pointers has not been sought yet, which one should P, use to ask for access? Recall that
the client will be blocked until the access permission arrives. As well, P,, must ensure that
it does not grant access to several client processes when more than one file is collectively
opened. For example, two file pointers, f and g, with global semantics are collectively
opened by processes P, and P,. If P, is allowed to open f, the manager process (P,,)
must ensure that P, opens g before P,’s requests for f or g can be granted. Otherwise,
deadlock occurs.

Static analysis can be used to determine the scope of transactions. The transaction is
currently defined by the scope of the remote function. However, within the function, sub-
transactions can be defined (as evident by the effect of the early release function in Chap-
ter 5.3). This subdivision must be kept under the control of the user since the user’s algo-
rithm can couple the two file pointers together despite the static analysis determining they
are independent of one another.

6.1.2 Static Analysis Support

To solve the deadlock problems pointed out in the previous section and to increase the
potential for concurrency, static analysis of the source code should provide hints to the run-
time system. Also, this static analysis provides the chance to safely move I/O code within
an application to reduce the length of time a transaction needs to run. Consider the case
where a function reads in some data, computes, reads in some more data, computes, and
then writes out the results. If it can be determined that the read and write operations are

93



independent of one another, the static analysis could recommend that an early release be
inserted after the second read operation. A further refinement of this transaction has the
two read operations consolidated or clustered together at the beginning of the computations
(if possible). After the read operations are completed, the file pointer is released. This al-
lows another blocked process to read and start processing the data. The overall concur-
rency has been increased over the original solution. The first process to finish computing
can then request access to the output file.

While the scope of a transaction is being defined in the remote function by the compiler,
static analysis could be done in an attempt to automatically derive a segmentation function
or constant.

6.1.3 Run-time Improvements

The run-time system makes decisions to grant access based on the current process con-
figuration, the static analysis hints, and the call-chain list containing the current pending
transactions. With more hints provided by the static analysis, concurrency could be safely
improved.

One possible area of investigation is to examine the effectiveness of using on-demand
paging for the cached file segments. In particular, when unknown segment sizes or a
writable photocopy template are used, the current implementation reads from the starting
point in the file to the end-of-file and sends that block of data as the cache. Instead, on-
demand paging could cache only the parts that the remote process actually needs. The run-
time system would need support from the operating system (or the run-time system would
have to implement an equivalent paging system) to ensure that any meta-information asso-
ciated with each page and the overall file is properly retrieved and updated. Possibly, a
Journal file approach would allow the original file to be updated as a series of /O opera-
tions recorded by the remote process instead of overwriting the file or file segment by each
returning process.

Using the append mode when opening a file gives the system the knowledge that there
are no modifications to any existing data and that seeking backwards will not affect future
changes. However, the file pointer still needs coordination and synchronization for writ-
ing. This leads to the situation where there are different views as to the location of the end-
of-file, although reading and seeking backwards into the file will not need to be coordi-
nated.

6.1.4 Extensions and Future Work Summary

Based on this prototype implementation of P/OT, a number of future research directions
have been suggested. The most important research direction involves static analysis of the
application’s source code. This analysis of the user’s source code would identify sub-
transactions, thus reducing the dependency on deadlock prevention and increasing the
available concurrency for the application. Static analysis can be used to safely rearrange the
code to optimize I/O access. In addition, hints for the run-time system to prefetch data can
be introduced. Run-time refinements can take advantage of this improved knowledge base
as well as using dynamic information such as opening a file using read-only or append
mode to improve performance.

6.2 Contributions

Chapter 1.2 listed the proposed contributions of this work. The first contribution is to
separate the parallel I/O specifications from the sequential functions using templates. That
is, the goal was to keep the standard sequential interface for invoking I/O operations in the
user’s code and to describe what parallel /O behaviour(s) are needed independent of the
code. At compile and at run-time these specifications are used to identify and implement
how the parallel behaviours will interact with the application and its environment.

94



The separation of parallel I/O specifications from the interface was accomplished by the
five templates presented in Chapter 3. These simple behaviours can be composed to yield
more complex I/O patterns. The composition of the simple behaviours, along with the read
and write ordering attributes, allows the user greater flexibility in expressing the exact be-
haviour needed.

The second contribution of this work lies in the fact that by separating the /O and com-
putational parallelism from the sequential code, optimizations and adaptive behaviours at
compile and run-time are possible. Developed in Chapters 3 and 4 and demonstrated in
Chapter 5, the run-time system for I/O queries and cooperates with the computational par-
allelism to produce a concurrent application. When an application changes the I/O behav-
iour of a particular task type, the computational behaviour is not affected. However, the
overall performance can be affected.

The third contribution is a validation that /O templates do not necessarily imply a per-
formance penalty. This claim is developed in Chapter 5. The software engineering ad-
vantages of templated I/0 do not necessarily incur a corresponding loss of performance.

As a fourth contribution, this work identifies the components that interact between the
computational and I/O parallel behaviours. There are three areas where interactions oc-
curred when implementing p/OT in Enterprise (Chapter 4.4). The first set of interactions
defines a transaction by identifying parallel file pointers and determining the scope of these
file descriptors using remote procedure call arguments (the computational parallelism) or
collective opens (replication factors). In the second set of interactions, this defined trans-
action is used by the source-to-source translator to identify and modify I/O objects to reflect
the desired parallel behaviours. Analysis will determine if deadlock prevention is needed.
The third set of interactions is found in the run-time environment. When a transaction is
activated, the run-time environment determines how the behaviours will be implemented.
The location of file servers and processes, the number of processes participating in the
transaction, and how the computational parallelism is implemented all have an effect on
how the I/O parallelism is implemented.

The fifth and final contribution rests in the fact that this parallel /O model is a step to-
wards automatic parallelization. The abstraction mechanism for both the computational and
/O parallelism creates the opportunity for the user to specify what is wanted for the paral-
lelism. Depending on the supplied code, the compiler can create a framework that at run-
time can determine the best way (or how) to implement the parallelism.

6.3 Summary

This dissertation describes an attempt to define and implement a top-down model for
parallel I/O. A user specifies what computational and /O parallelism is wanted for an ap-
plication. Static analysis and run-time support allows the application to determine how to
implement the parallel behaviours. The central assumption is that the user develops code
using standard C and the supplied standard stream interface (stdio). No new library of
functions is needed to differentiate the parallel from sequential /O operations. The cost of
this approach does not mean significant loss of performance. Some compiler support is
required to supply transaction information to the run-time system. This static analysis can
be used to improve the concurrency through the insertion of an early release mechanism of
file descriptors within a transaction and by determining if the deadlock prevention mecha-
nism is necessary for a given transaction. The PV/OT parallel VO model relies on an abstrac-
tion of the paralle! computational model. Information is shared so that computational par-
allll_elism and I/O parallelism cooperatively work together to produce an efficient parallel ap-
plication.



Bibliography

(11

(2l

31

[4]

(5]

[6]

(7]

(8]

91

[10]

(11]

[12]

A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon, J. Hollingsworth,
J. Saltz, and A. Sussman, “Tuning the Performance of I/O -Intensive Parallel
Applications,” In proceedings of Fourth Annual Workshop on I/O in Parallel and
Distributed Systems, pp. 15-27, Philadelphia, PA, 1996.

O. Babaoglu, L. Alvisi, A. Amoroso, and R. Davoli, “Paralex: An Environment for
Parallel Programming in Distributed Systems,” University of Bologna, Italy,
Technical Report UP-LCS-91-01, February 1991.

B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi, “P3L: A
Structured High-level Parallel Language, and its Structured Support,” Concurrency:
Practice and Experiences, 7(3), pp- 225-255, 1995.

A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and K. Moore, “HeNCE: A
Heterogeneous Network Computing Environment,” University of Tennessee,
Technical Report CS-93-205, August 1993. Available using anonymous ftp from
netlib2.cs.utk.edu in /pub/hence/hence.ps.

A. Beguelin, J. Dongarra, A. Geist, and V. Sunderam, “Visualization and
Debugging in a Heterogeneous Environment,” Computer, 26(6), pp. 88-95, 1993.

M. Beltrametti, K. Bobey, R. Manson, M. Walker, and D. Wilson, “PAMS/SPS-2
System Overview,” In proceedings of Supercomputer Symposium, pp. 63-71,
Ontario, Canada, 1989.

R. Bennett, K. Bryant, A. Sussman, R. Das, and J. Saltz, “Jovian: A Framework
for Optimizing Parallel I/O,” In proceedings of Scalable Parallel Libraries
Conference, pp. 10-20, Mississippi State, Mississippi, 1994.

F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Narayana, S. Srinivas, and B.
Winnicka, “Sage++: An Object-Oriented Toolkit and Class Library for Building
FORTRAN and C++ Restructuring Tools,” In proceedings of OONSKI'94,
Oregon, 1994.

R. Bordawaekar and A. Choudhary, “Language and Compiler Support for Parallel
I/O,” In proceedings of IFIP WG 10.3 Programming Environments for Massively
Parallel Distributed Systems, pp. 26.1-26.8, Monte Verita, Ascona, Switzerland,
1994.

R. Bruce, S. Chapple, N. MacDonald, and A. Trew, “CHIMP and PUL.: Support
for Portable Parallel Computing,” Edinburgh Parallel Computing Centre, The
University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh, EH9
3JZ, U.K,, Technical Report EPCC-TR93-07, March 1993. Presented at the
Fourth Annual Conference of the Meiko User Society, University of Southampton,
April 15—16, 1993.

G. D. Bums, “A Local Area Multicomputer,” In proceedings of Fourth Conference
on Hypercubes, Concurrent Computers, and Applications, Los Altos, CA, 1989.
Also available at ftp://ftp.osc.edw/pub/lam.

R. M. Butler and E. L. Lusk, “Monitors, Messages, and Clusters: The p4 Parallel
Programming System,” Parallel Computing, 20(4), pp. 547-564, 1994.

96



(13]

(14]

(15]

[16]

(17

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

S. Chapple, “PUL-GF Prototype User Guide,” Edinburgh Parallel Computing
Centre, University of Edinburgh, Technical Report EPCC-KTP-PUL-GF-PROT-
UG, 1992.

S. Chapple, “PUL-RD Prototype User Guide,” Edinburgh Parallel Computing
Centre, University of Edinburgh, Technical Report EPCC-KTP-PUL-RD-PROT-
UG, 1992.

S. Chapple and R. Fletcher, “PUL-PF prototype functional specification,”
Edinburgh Parallel Computing Centre, University of Edinburgh, Technical Report
EPCC-KTP-PUL-PF-PROT-UG, 1993.

A. Chatterjee, “Futures: A Mechanism for Concurrency Among Objects,” In
proceedings of Supercomputing '89, pp. 562-567, Reno Nevada, USA, 1989.

Y. Chen, M. Winslett, K. E. Seamons, S. Kuo, Y. Cho, and M. Subramaniam,
“Scalable Message Passing in Panda,” In proceedings of Fourth Annual Workshop
on I/O in Parallel and Distributed Systems, pp. 109-121, Philadelphia, PA, 1996.

L. Clarke, R. Fletcher, S. Trewin, R. Alasdair, A. Bruce, A. Smith, and S.
Chapple, “Reuse, Portability and Parallel Libraries,” In proceedings of IFIP WG
10.3 Programming Environments for Massively Parallel Distributed Systems, pp.
17.1-17.12, Monte Verita, Ascona, Switzerland, 1994.

E. G. Coffman Jr., M. J. Elphick, and A. Shoshani, “System Deadlocks,”
Computing Surveys, 3(2), pp. 67-78, 1971.

P. Corbett, D. Feitelson, Y. Hsu, J.-P. Prost, M. Snir, S. Fineberg, B. Nitzberg,
B. Traversat, and P. Wong, “Overview of the MPI-IO Paralle! I/O Interface,” In
proceedings of Third Annual Workshop on Input/Output in Parallel Distributed
Systems, pp. 1-15, Santa Barbara, California, 1995.

P.F. Corbett, S. J. Baylor, and D. G. Feitelson, “Overview of the Vesta Parallel
File System,” In proceedings of IPPS '93 Workshop on Input/Output in Parallel
Computer Systems, pp. 1-16, Newport Beach, CA, 1993.

P.E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed, “Input/Output
Characteristics of Scalable Parallel Applications,” In proceedings of
Supercomputing'95, San Diego, CA, 1995. Available at
hutp://www.supercomp.org/sc95/proceedings/

613-DREE/SC95.ps.

T. W. Crockett, “File Concepts For Parallel I/O,” In proceedings of
Supercomputing'89, pp. 574-579, Reno Nevada, USA, 1989.

P. Dibble and M. Scott, “Beyond Striping: The Bridge Multiprocessor File
System,” Computer Architecture News, 17(5), pp. 32-39, 1989.

D. L. Eager and J. Zahorjan, “Chores: Enhanced Run-time Support for Shared
Memory Parallel Computing,” ACM Transactions on Computer Systems, 11(1),
pp. 1-32, 1993.

D. G. Feitelson, P. F. Corbet, and J.-P. Prost, “Performance of the Vesta Parallel
File System,” In proceedings of Ninth International Parallel Processing
Symposium, pp. 150-158, Santa Barbara, CA, 1995.

J. Flower and A. Kolawa, “Express is not just a message passing system: Current
and future directions in Express,” Parallel Computing, 20(4), pp. 597-614, 1994,

97



HARER AL .

(28]

[29]

[30]

[31]

(32]

[33]
[34]

[35]

[36]

(37]
(38]
[39]

[40]

[41]

(42]

L. Foster, C. Kesselman, and S. Tuecke, “Nexus: Runtime Support for Task
Parallel Programming Languages,” Argonne National Laboratory, Technical Report
ANL/MCS T™ 2085, February 1995.

G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W.
Walker, Solving Problems on Concurrent Processors. Englewood Cliffs, New
Jersey 07632: Prentice Hall, 1988.

G. Geist and V. Sunderam, “Network-Based Concurrent Computing on the PVM
System,” Concurrency: Practice and Experience, 44), pp. 293-311, 1992.

K. Goldman, M. Anderson, and B. Swaminathan, “The Programmers'
Playground: I/O Abstraction for Heterogeneous Distributed Systems,” Department
of Computer Science, Washington University, Saint Louis, MO 63130-4899,
Technical Report WUCS-93-29, June 1993.

J. Gotwals, S. Srinivas, and S. Yang, “Parallel /O from the User’s Perspective,”
In proceedings of Frontiers'95 (The Frontiers of Massively Parallel Computations),
pp- 129-137, McLean, Virginia, 1995.

A. S. Grimshaw, “Easy-to-Use Object-Oriented Parallel Processing with Mentat,”
Computer, 26(5), pp. 39-51, 1993.

A. S. Grimshaw and E. C. Loyot Jr., “ELFS: Object-Oriented Extensible File
Systems,” University of Virginia, Computer Science Report TR-91-14, July 1991.

M. Harry, J. M. del Rosario, and A. Choudhary, “The Design of VIP-FS: A
Virtual, Parallel File System for High Performance Parallel and Distributed
Computing,” Operating Systems Review, 23(3), pp. 35-48, 1995.

M. Harry, J. M. del Rosario, and A. Choudhary, “VIP-FS: A VIrtual Parallel File
System for High Performance Parallel and Distributed Computing,” In proceedings
of Ninth International Parallel Processing Symposium, pp. 159-164, Santa
Barbara, CA, 1995.

J. H. Hartman and J. K. Ousterhout, “The Zebra Striped Network File System,”
ACM Transactions on Computer Systems, 13(3), pp- 274-310, 1995.

P. J. Hatcher and M. J. Quinn, Data-Parallel Programming on MIMD Computers.
Cambridge, Massachusetts: The MIT Press, 1991.

J. W. Havender, “Avoiding deadlock in multitasking systems,” IBM Systems
Journal, 7(2), pp. 74-84, 1968.

M. Henderson, B. Nickless, and R. Stevens, “A Scalable High-performance I/O
System,” In proceedings of Scalable High-Performance Computing Conference,
pp- 79-86, Knoxville, Tennessee, 1994. Also in proceedings of 1994 Scalable
gl;ghzl’scfc;gngl:nce Computing Conference (SHPCC'94), Knoxville Tennessee, May

High Performance Fortran Forum, “High Performance Fortran Language
Specifications Version 1.1,” Center for Reserach on Parallel Computation, Rice
University, Houston, Texas, Technical Report CRPC-TR92225, November 10
1994. Available at ftp://'www.softlib.rice.edu/pub/HPF/hpf-v11.ps.gz.

J. V. Huber Jr.,, C. L. Elford, D. A. Reed, A. A. Chien, and D. S. Blunenthal,
“PPFS: A High Performance Portable Parallel File System,” In proceedings of 9th

98



[43]
[44]

[45]

[46]

(47]

(48]

[49]

[50]

[51]

(52]

[53]

[54]

[55]

(561

ACM International Conference on Supercomputing, pp. 385-394, Barcelona,
Spain, 1995.

[EEE, “IEEE Std 1003.1b-1993,” Section 6.7.4, 1993.

P. Iglinski, “An Execution Replay Facility and Event-Based Debugger for the
Enterprise Parallel Programming System,” MSc. thesis, Department of Computing
Science, University of Alberta, Edmonton, AB, 1994.

P. Iglinski, S. MacDonald, C. Morrow, D. Novillo, I. Parsons, J. Schaeffer, D.
Szafron, and D. Woloschuk, “Enterprise User’s Manual Version 2.4,” Department
of Computing Science, University of Alberta, Edmonton, Alberta, Technical Report
TR 95-02, January 1995.

V. Karamcheti and A. Chien, “Concert - Efficient Runtime Support for Concurrent
Object Oriented Programming Languages on Stock Hardware,” In proceedings of
Supercomputing'93, pp. 598-607, Portland, Oregon, 1993.

D. Kotz, “Interfaces for Disk-Directed I/O,” Department of Computer Science,
Dartmouth College, Hanover, NH 03755-3510, Technical Report PCS-TR95-270,
September 1995.

O. Krieger and M. Stumm, “HFS: A Performance-Oriented Flexible File System
Based on Building-Block Compositions,” In proceedings of Fourth Annual
Workshop on I/O in Parallel and Distributed Systems, pp. 95-108, Philadelphia,
PA, 1996.

G. Lobe, “The Enterprise User Interface and Program Animation Components,”
MSc. thesis, Department of Computing Science, University of Alberta, Edmonton,
AB, 1993.

G. Lobe, D. Szafron, and J. Schaeffer, “The Enterprise User Interface,” In
proceedings of TOOLS (Technology of Object-Oriented Languages and Systems),
pp- 215-219, Santa Barbara, CA, 1993.

S. MacDonald, “An Object-Oriented Run-Time System for Parallel Programming,”
lgsgcg thesis, Department of Computing Science, University of Alberta, Edmonton,

S. MacDonald, D. Szafron, and J. Schaeffer, “An Object-Oriented Run-Time
System for Parallel Applications,” In proceedings of Technology of Object-Oriented
Languages and Systems (TOOLS) '96, Santa Barbara, CA, USA, 1996.

Message Passing Interface Forum, “MPI-2: Extensions to the Message-Passing
Interface,” University of Tennessee, Knoxville, Tennessee, USA, Draft June 3
1996. Available from http://www.mcs.anl.gov/Projects/mpi/mpi2/mpi2.html.

E. L. Miller and R. H. Katz, “RAMA: An Easy-To-Use, High-Performance
Parallel File System,” Parallel Computing, 23(4-5), pp. 419-446, 1997.

J. A. Moore, P. J. Hatcher, and M. J. Quinn, “Stream*: Fast, Flexible, Data-
Parallel I/O,” In proceedings of Parallel Computing: State of the Art and
Perspectives (Proceedings of Parallel Computing 95), pp. 287-294, 1995.

J. A. Moore, P. J. Hatcher, and M. J. Quinn, “Efficient Data-Parallel Files via
Automatic Mode Detection,” In proceedings of Fourth Annual Workshop on I/O in
Parallel and Distributed Systems, pp. 1-14, Philadelphia, PA, 1996.

99



(571

(58]

(591

[60]

(61]

(62]
[63]
[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

S. A. Moyer and V. S. Sunderam, “Scalable Concurrency Control for Parallel File
Systems,” In proceedings of Third Annual Workshop on Input/Output in Parallel
and Distributed Systems, pp. 90-106, Santa Barbara, CA, 1995.

N. Nieuwejaar and D. Kotz, “Low-level Interfaces for High-level Parallel I/O,” In
proceedings of Third Annual Workshop in Input/Output in Paralle] and Distributed
Systems, pp. 47-62, Santa Barbara, CA., 1995.

N. Nieuwejaar and D. Kotz, “Performance of the Galley File System,” In
proceedings of Fourth Annual Workshop on I/O in Parallel and Distributed
Systems, pp. 83-94, Philadelphia, PA, 1996.

N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Schlatter Ellis, and M. Best, “File-
Access Characteristics of Parallel Scientific Workloads,” IEEE Transactions on
Parallel and Distributed Systems, 3(1), pp- 51-60, 1995.

N. A. Nieuwejaar, “Galley: A New Parallel File System For Scientific
Applications,” PhD thesis, Department of Computer Science, Dartmouth College,
Hanover, NH, 1996.

Ohio Supercomputer Center, “LAM for C Programmers,” The Ohio State
University, 1224 Kinnear Road, Columbus, OH, 43212 March 1994.

Parasoft Corporation, “Cubix Release 1.0,” Parasoft Corporation, 27415 Trabuco
Circle, Mission Vieja, CA 1988.

L. Parsons, “An Appraisal of the Enterprise Model,” MSc. thesis, Department of
Computing Science, University of Alberta, Edmonton, AB, 1993.

I. Parsons, “An Evaluation of Distributed Communication Systems,” In
proceedings of CASCON'93, pp. 956-970, Toronto, Ontario, 1993.

A. Purakayastha, C. Schlatter Ellis, and D. Kotz, “ENWRICH: A Compute-
Processor Write Caching Scheme for Parallel File Systems,” In proceedings of
Fourth Annual Workshop on I/O in Parallel and Distributed Systems, pp. 55-68,
Philadelphia, PA, 1996.

A. Purakayastha, C. Schlatter Ellis, D. Kotz, N. Nieuwejaar, and M. Best,
*“Characterizing Parallel File-Access Patterns on a Large-Scale Multiprocessor,” In
proceedings of Ninth International Parallel Processing Symposium, pp. 165-172,
Santa Barbara, CA, 1995.

M. J. Quinn, Parallel Computing Theory and Practice, Second ed. Toronto:
McGraw-Hill, Inc., 1994.

J. Salmon, “CUBIX: Programming Hypercubes without Programming Hosts,” In
proceedings of Proceedings of the Second Conference on Hypercube
Multiprocessors, pp. 3-9, , 1986.

J. Schaeffer, D. Szafron, G. Lobe, and L. Parsons, “The Enterprise Model for
Developing Distributed Applications,” IEEE Parallel & Distributed Technology,
1(3), pp. 85-96, 1993.

A. Silberschatz, J. L. Peterson, and P. B. Galvin, Operating System Concepts,
Third ed. Don Mills, Ontario: Addison Wesley, 1991.

D. Szafron and J. Schaeffer, “Experimentally assessing the Usability of Parallel
Programming Systems,” In proceedings of IFIP WG10.3 Programming

100



ATV TR RR ST TR TRE L TR AR T T an L el T

D A A A i Sl Dt & AR it &

[73]

(74]
[75]

[76]

(771

(78]
(791

(80]

(81]

(82]

[83]

{84]

(85]

Environments for Massively Parallel Distributed Systems, pp. 19.1-19.7, Monte
Verita, Ascona, Switzerland, 1994.

D. Szafron and J. Schaeffer, “An Experiment to Measure the Usability of Parallel
Programming Systems,” Concurrency: Practice and Experience, 8(2), pp. 147-166,
1996.

A. S. Tanenbaum, Modern Operating Systems. Toronto: Prentice-Hall, 1992.

R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy, and T. Singh,
“PASSION Runtime Library for Parallel I/O,” In proceedings of Scalable Parallel
Libraries Conference, pp. 119-128, Mississippi State, Mississippi, 1994.

R. Thakur, W. Gropp, and E. Lusk, “An Experimental Evaluation of the Parallel
I/O Systems of the IBM SP and Intel Paragon using a Production Application,”
Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439, USA, Technical Report MCS-P569-0296, February 1996.

R. Thakur, E. Lusk, and W. Gropp, “I/O Characterization of a Portable
Astrophysics Application on the IBM SP and Intel Paragon,” Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, IL, Technical
Report MCS-P534-0895, August 1995.

Thinking Machines Corporation, “C* Programming Guide,” June 1991.

S. Toledo and F. G. Gustavson, “The Design and Implementation of SOLAR, a
Portable Library for Scalable Out-of-Core Linear Algebra Computation,” In
proceedings of Fourth Annual Workshop on I/O in Parallel and Distributed
Systems, pp. 28-40, Philadelphia, PA, 1996.

S. Trewin, “PUL-SM prototype user guide,” Edinburgh Parallel Computing
Centre, University of Edinburgh, Technical Report EPCC-KTP-PUL-SM-PROT-
UG, 1992.

R. C. Unrau, O. Krieger, B. Gamsa, and M. Stumm, “Hierachical Clustering: A
Structure for Scalable Multiprocessor Operating System Design,” Journal of
Supercomputing, 9(1/2), pp. 105-134, 1995.

D. E. Vengroff and J. S. Vitter, “I/O-Efficient Scientific Computation Using
TPIE,” In proceedings of 1995 IEEE Symposium on Parallel and Distributed
Processing, pp. 74-77, San Antonio, TX, 1995.

D. W. Walker, “The Design Of A Standard Message Passing Interface For
6D71§trﬂl);;ed Memory Concurrent Computers,” Parallel Computing, 20(4), pp. 657-
, 1994,

D. Woloschuk, “Analysis and Display of Parallel Program Performance
Information within Enterprise,” MSc. thesis, Department of Computing Science,
University of Alberta, Edmonton, 1995.

D. E. Womble, D. S. Greenberg, R. E. Riesen, and S. R. Wheat, “Out of Core,
Out of Mind: Practical Parallel I/O,” In proceedings of Scalable Libraries
Conference, pp. 10-16, Mississippi State University, 1993.

101



Appendix A

A. Enterprise Parallel Programming System

The Enterprise pps [70] uses an analogical approach to help users develop their
programs. It has successfully abstracted several parallelizing techniques so that the user
code is written in conventional C and no special library functions are needed by the user.
Enterprise does not analyze the code in order to parallelize it. Rather, by using the
directions provided by the user, it inserts the necessary parallelizing code fragments
according to predefined templates. Enterprise uses asynchronous message-passing where a
message is defined by the formal parameter list of a user-defined asset. Analyzing the
user’s code identifies any synchronization points or futures.

The advantage of Enterprise is that the user has portable code, both from an
architectural and a communication subsystem point of view. An Enterprise program
provides similar behaviour regardless of the processor combination. Of course,
performance will likely be different.

Appendix A.1 introduces the Enterprise programming model and explains how the user
interacts with this Pps to create a working parallel application. A more detailed discussion
is found in the Enterprise User’s Manual [45]. What is presented here is pared down and
is only sufficient for the parallel IO discussion. More information about the different
aspects of the Enterprise system can be found in [44, 49, 51, 64, 84]. Appendix A.2
examines the run-time libraries used by Enterprise to create the parallel computational
behaviours. These libraries were completely redesigned and re-implemented in an object-
oriented manner [51]. Because of this redesign, the implementation of parallel /O in
Enterprise was simplified.

A.1 Enterprise Programming Model

Enterprise seeks to separate the parallel implementation details from the user’s source
code. By means of compiler technology, the source code and the specifications for
parallelism are blended to produce machine-generated source code reflecting the parallelism
desired. The user has no special libraries of functions to learn; all user code is written in
standard C. A graphical user interface allows the user to express the parallelism in an
intuitive, visual fashion.

Enterprise uses a business analogy to represent the different parallel behaviours. A
business is a naturally paraliel object and can be viewed as containing assets that represent
functions that can be remotely and concurrently executed. There is a corresponding well-
defined chain of command progressing from the top to the bottom of the organization.

Starting with the initial program icon, the user modifies the asset type to represent a
specific type of parallel behaviour. The choices of asset types are available from a menu.
The assets are connected by a series of arcs to form the control-flow diagram for the
parallelism in the application. The arcs joining these icons represent the communication
paths for messages and control flow data. Each asset is associated with a user-defined
function. To communicate over a given arc, the asset at the start of the arc invokes the
function associated with the asset at the end of the arc. One of the current drawbacks to
this model is the inability of the user to express peer-to-peer communication.

The assets have simple parallel behaviours and can be nested within one another to
create more complex parallel behaviours. Currently, the available assets are: individual,
service, line, department, and division. An individual asset corresponding to an individual

102



WA AER Pt L IR e

worker consists of a sequential function. There is no special parallel behaviour associated
with an individual other than indicating to the pps that this function can be executed
remotely. A service is similar to an individual except that a service cannot initiate remote
calls to other assets and it is fully connected to all assets.

Next are composite assets: line, department and division. A composite asset contains
other assets and has a specified parallel behaviour associated with it. A line asset
represents the assembly-line in a business. Each worker does some work and then passes
the partially completed work on to the next worker in the line. The starting worker in a line
is considered the receptionist. All other workers initiate work requests through this
worker.

A deparmtment has a receptionist who directs incoming calls to the most appropriate
asset. The receptionist could also divide the work into heterogeneous portions and
distributes it to all or some of its workers to execute concurrently.

The division is an attempt to represent the parallelism in divide-and-conquer problems.
Every worker or representative in a division does the same job. By splitting the work into
smaller chunks, eventually a particular representative will not make a remote call but will
recursively perform the work itself. For a division, there is also a special manager asset
whose purpose is to forward work to a representative. The user is not responsible for
writing the code for this generic asset but should be aware of its existence at run-time.

Each asset has a collection of five attributes. First, and most important, each asset has
some user-defined, sequential function associated with it. The name of the asset
corresponds to the name of the function. Second, an asset has a replication factor.
This is defined as a maximum number of replicas and a minimum number of replicas. If
the asset is considered a composite asset, all the assets contained within this composite
asset are replicated as well.

Third, an asset can have ordered or unordered parallel behaviour. Ordered
behaviour tells the Enterprise run-time system that when multiple calls are made to one
asset and a return reply is indicated, the order in which the calls were initiated is the same
order in which the corresponding replies will be processed. Unordered behaviour tells the
run-time system to process whichever reply is available to the caller.

Fourth, an asset can be optimized and/or debugged. To optimize an asset currently
means the conventional compiler will use the -02 compiler flag. In the future, the source-
to-source compiler will reorganize the user’s code to optimize the parallelism. This could
be done by loop reorganization, moving code to ensure more overlap of concurrent
computations. If an asset has the debug attribute set, this currently means the conventional
compiler will use the -g compiler flag. This debug attribute provides only the process level
of debugging in the parallel environment.

Parallel debugging is a run-time option. When this option is enabled, event
monitoring is done for all or some of the processes. Event monitoring generates trace
files containing significant events in the parallel application: messages sent, received,
processes being spawned and the like. The user can replay the application using these trace
files to debug individual processes. Trace files are also used to visualize and debug
application performance.

Fifth, the user defines sets of processors either the asset must be run on or cannot be
run on as another attribute pair of the asset. The user can specify a mutually exclusive sub-
set of the machine list for either attribute. When running the application, the run-time
system tries first to place the process running the asset on the desired processor list. If this
list is not specified, a processor is selected from the sub-list composed of the available
machine names with the unacceptable machine names removed. Otherwise, the Enterprise
run-time system will use the entire machine list. In all cases, the processor chosen will be
the machine with the lightest load. The load for a processor is determined by the Enterprise

103



run-time library and may require more information than just the number of active processes
on a given processor. This could include information such as: the amount of network
activity flowing to and from a processor, the level of /O activity (network or local), the
type of users (interactive, batch, or owner).

The interface of the first asset is predefined to have the same arguments as the main
function in a sequential C program. This allows the user to utilize the command-line
argzment list to pass data to the application. As well, the first asset is not permitted to be
replicated.

A.2 Enterprise Implementation

The Enterprise implementation is presented as three distinct components: the graph file,
the pre-compiler, and the run-time system. Each component has been modified to
implement the parallel /O templates. What is being presented is sufficient for the parallel
/O model but is not complete as to the full capabilities of Enterprise.

A.2.1 The Graph File

The graph file is the heart of the Enterprise system. It is the textual representation or
definition of the assets, their parallel behaviour and attributes. The graphical interface
generates this file for the user. The pre-compiler and the run-time system use this file to
generate the user-specified behaviours. Figure A-1 shows the generic layout for one asset
with the bolded text being comments added to clarify and classify the actual text. The
bolded text is not included in the actual graph file.

Five lines are used to represent a given asset. Lines two through five are always treated
the same way, regardless of the asset type selected. However, the definition of the first
line is dependent on the asset type selected. The first line is the same only for the first two
entries. They are: the name of the function associated with the asset template (assetName),
and the parallel behaviour associated with the function (assetType). The assetType can
be one of six values: 1ine, department, division, individual, representative, and
service. Depending on the selection of the asset type, the balance of the line is different.

Composite assets (line, department, Or division) have the number of internal
assets defined. For all assets other than the service asset, the minimum and maximum
replication factors are then defined. The first line is completed by all assets defining if
ordering (ORDERED or NORDERED), debugging (DEBUG, or NDEBUG) and optimization
(oPTIMIZE or NOPTIMZE) are enabled or disabled.

Figure A-2 shows an actual graph file with two entries. Sub-assets are defined in a
depth-first fashion with service assets being appended to the end of the file. This layout is

All Assets:
assetName assetType
Composite Assets (line, department, division):
numberOfSubassets minReplication maxReplication Order Debug Optimize
Individual Assets (individual, representative):
minReplication maxPeplication Order Debug Optimize
Other Asset (service):
Order Debug Optimize
All Assets:
CFLAGS
EXTERNAL
INCLUDE
EXCLUDE

Figure A-1 — Annotated graph file entry for one asset

104



different from the user manual and reflects the changes made in the redesigned system.

Recalling the example given in Chapter 1.1, the parallel behaviour of a parent-child
relationship is easy to implement in the graph file. Figure A-2 shows the resultant graph
file. It describes the computational parallelism of the application. The first asset is a
composite asset called parent and contains the function parent. The signature for
Parent is: int, char *+. This is to conform with the sequential C interface to the user
found in the function, main. Parent makes at least one call to its sub-asset, the asset
Child, to execute some work. Otherwise, a compile-time error will occur. Parent is not
replicated (nor is it allowed to replicate since it is the first asset). This asset is to be treated
as having ordered behaviour with no debugging information needed, nor is the asset to be
optimized. When run, the asset is to be run on the processor called sherwoodpk (if
available) and cannot be run on the processor known as maligne-lk.

Parent line 1 1 1 ORDERED NDEBUG NOPTIMIZE
CFLAGS

EXTERNAL

INCLUDE sherwoodpk

EXCLUDE maligne-lk

Child individual 3 4 NORDERED NODEBUG NOPTIMIZE
CFLAGS

EXTERNAL

INCLUDE

EXCLUDE sherwoodpk

Figure A-2 — An example graph file.

Child asset is an individual asset that will be run as a separate process. It can only
be called by the asset known as Parent. The function, child, will be replicated starting
with a minimum of three but expandable to a maximum of four processes. Successive
return values from child do not have to be processed in the original call order but rather
whenever work is received by rarent. No debugging information is needed nor is the
asset to be optimized. No child asset process is allowed to run on the processor called
sherwoodpk.

A.2.2 The Precompiler and Static Analysis

The Sage++ tool kit [8] is used to build the source-to-source compiler or precompiler,
for Enterprise. Each asset is stored in a separate file. The precompiler examines each asset
source file. It searches for function calls to other assets as defined in the graph file. It
replaces the function call with a call to the wrapper function or stub that will pack the
message containing the function parameters and send it to the remote process.

The precompiler identifies futures (variables that will be modified by a reply message)
and inserts Enterprise-specific code fragments to ensure that futures are resolved prior to
using them. Currently, any user source code that is not explicitly defined to be parallelized
is not examined by this tool.

This wrapper code crosses the boundary from the user’s code written in the standard C
language into the run-time system which is written in C++. This stub function is a small
function that contains sufficient information about each of the formal parameters of the
remote function that permit the runtime libraries to marshal the formal parameters into a
single message, identify the appropriate process, send the data over to the remote process
for processing, add to the futures list when necessary, demarshal return values, and resolve
any futures when a return message is received from a remote process.

105



S S YD Ty

A.2.3 The Run-time Libraries

MacDonald [51] completely redesigned and re-implemented the run-time system using
C++. One of the significant changes was the use of behaviour classes to determine the
parallel action appropriate for the asset. There are single, worker, manager and root
asset class behaviours. During program execution, a process running an asset can exhibit
different behaviours. For example, a process could be initialized as a single asset. Later
on, a need develops for several copies of the asset running. The process promotes itself to
manager of this asset and spawns the necessary number of worker assets. When the
task is finished, the worker assets are dismissed and the manager demotes itself to
become the single asset again. The roet asset is responsible for user-interface and run-
time system interactions.

The graph file is read and transformed into the asset graph. Recalling that the graph
file is considered the heart of the Enterprise system, the asset graph should be considered
the brains of the Enterprise parallel run-time system. It maintains both the static
information contained in the graph file as well as the dynamic information acquired at run-
time. By asking the graph, a process can determine what asset it is supposed to represent,
the current, minimum, and maximum replication factors, what asset can call it and more
importantly, what asset it can call, which process to send the message to, and what futures
are outstanding.

The asset graph consists of the different components that make up a parallel program.
This includes the user’s asset definitions as well as the extra generic assets that are
necessary to run the parallel application. These generic assets are the root and manager
assets.

The root asset is responsible for being the interface between the GUI and the run-time
system. The root asset is responsible for starting up and shutting down the parallel
application. It spawns and starts the first asset by packing the command line arguments
and sending it the resultant message. If event monitoring is needed, it collects events from
all processes and either forwards them on to the GUI for real-time monitoring or stores
them in a file for post-run analysis. It is responsible for coordinating the debugging of the
entire application at the event level. Because of its responsibilities, the root asset is always
a standalone process.

The other generic asset, the manager asset, uses a simple store-and-forward process
to ensure even workload distribution. It is responsible for recruiting and disposing of new
worker assets. One optimization of this asset is that it can be collapsed so that a single
process contains more than one asset: one user-defined and one or more managers.
Typically, this happens when there is only one caller of a replicated asset. The intent is to
save one or two network messages. There are two situations when this manager asset
cannot be collapsed. This occurs when more than one asset calls a replicated asset or when
an asset is a division.

106



Appendix B
B. PIOUS Test Application Codes

This appendix contains the PvM/PIOUS implementation for the various test applications
discussed in the dissertation. Appendix B.1 contains the PloUs code for the fine-grained
example used in Chapter 5.1. Appendix B.2 contains the Pous code for the coarse-grained
I/O example used in Chapter 5.2.

B.1 Small-Grained I/O Example Program.

From the original sequential code, there is a significant amount of new code that needs
to be written. The original version is about 530 lines of code. Converting to parallel
increases the program size by approximately 350 lines. The bold lines in the code represent
the original code that the user had to write. For this example, the sequential code for child
did not have to be modified. As much as possible, the PvM code for the computational
parallelism has been hidden away.

There are several functions that the parent process calls to create
(CreateFileInPIOUS), import files into (ImportFileToPIOUS), or export files from
(ExportFileFrompPIOus) the PIOUS files system. These are tuned to the application
granularity of an I/O segment and are specific to the application.

The parent spawns all the child processes (CreatePvMChildren) and waits for all
the child processes to finish (WaitForChildrenToFinish) before proceeding with the
summary statistics (Stats). In the case of the segmented VO, the Parent must also
coordinate the access of the segments by the child processes to ensure that all the
segments are read and written only once. Note the distinction between the parallel and
sequential I/O for the same file.

A child process opens the global input and output files, copies the local segment of
work (in one operation) to a temporary file, opens the temporary output file, performs the
work and then exports the local output file back to the parallel output file (again one
operation). This repeats until the global input file is exhausted. The parent process is
then informed and the chi1d process gracefully exits after cleaning up the temporary files.

#include <pvm3.h>

#include <piousl.h>

#include <stdio.h>

#define GROUP “iog”

#define MYMESSAGE 1234

#define MAXPATHLEN 1024

#define INBUFSIZE 352108

#define QUTBUFSIZE 18050

#define REGMODE ( (pious_modet) ( PIOUS_IRUSR | PIQUS__IWUSR |
PIOUS_IRGRP | PIQUS_IROTH ) )

main( int argec, char *rargv )

(

int myTID ; /* My PVM handle */
int myParentTID ; /* My parent’s PVM handle */
int *childTIiD ; /* List of children’s PVM handles */
int dsent ; /* PIOUS handle */
int nchild ; /* Number of children wanted */
int infd, outfd ; /* The parallel file descriptors */

107



int i ; /* A counter
int bufid, status; /* PVM buffer handie and status
FILE *fp ; /* Local segment’s input file handle
FILE *ofp : /* Local segment’s output file handie
char ibuffer( INBUFSIZE ] : /* Input buffer
char cbuffer( OUTBUFSIZE ] ; /* Output buffer
char inFile[ MAXPATHLEN ] ; /* Global input and
char outFile[ MAXPATHLEN ] ; /* Qutput file path
char myTmpInFile[ MAXPATHLEN ] ; /* Temporary input and
char myTmpOutFile[ MAXPATHLEN ] ; /* Output file paths
if ( ( myParentTID = pvm parent() ) == PumNoParent )} (
/ L 3
* Parent -- spawn child processes
* argv(0]: process name argv[l]): input file name
* argv[2]): output filename argv(3): Number of child processes
*/
nchild = atoi( axrgv(3] ) ; /* How many child processes are wanted

ImportFileToPIOUS( argvil] ) /* Import the UNIX file into PIOUS
CreateFileInPIOUS( argvi2] ) /* Create the output file in PIOUS
childTID = (int *)malloc( nchild * sizeof( int ) ) ; /* Allocate handle vector

vy

CreatePVMChildren( childTID, arxgc, argv ) ; /* Spawn all the child processes
WaitForChildrenToFinish( nchild )} ; /* Wait for them to finshed processing
free( childTID ) ; /* Free up child handle vector
ExportFileFromPIOUS( argv([2] ) ; /* Export the output file back to UNIX
fp = fopen( argv(2], *r* } : /* Open sequential file
Stats( fp ) : /* Calculate the totals
pvm_exit() ; /* Leave PVM
} else { /* I'm a child process

/* Child process -- wait for names of files to open */
bufid = pvm_recv( myParentTID, MYMESSAGE ) ;
status = pvm_upkstr( inFile ) ; /* The input file
status = pvm _upkstr( outFile ) ; /* The output file
dsent = pious_sysinfo( PIOUS_DS_DFLT )} ; /* Ask for PIOUS default information
/* Open the PIOUS input and output files */
infd = pious_popen( GROUP, inFile, PIOUS_GLOBAL, INBUFSIZE.
PIOUS_VOLATILE, PIOUS_RDONLY, PIOUS_IRUSR, dscnt )
if ( infd < 0 )
printError( status, “Opening input file: child~ ) ;
outfd = pious_popen( GROUP, outFile, PIOUS_GLOBAL, OUTBUFSIZE,
PIOUS_VOLATILE, PIOUS _RDWR | PIOCUS_CREATE |
PIOUS_TRUNC, REGMODE, dscnt )
if ( outfd < 0 )
printError( status, “Opening output file: child~” ) ;
/* Create local copy of input/output files for this segment */
sprintf( myTmpInFile, “/tmp/in.%x”, pvm_mytid() ) ;
sprintf( myTmpOutFile, */tmp/out.%x*, pvm mytid() ) ;

while (1) (

status = pious_read( infd, ibuffer, INBUFSIZE ) ; /* Read the mnext block

if ( status < 0 ) ¢ /* Error
printError( status, “Reading input: child” ) ;

} else if ( status == 0 ) ( /* All done
break ;

} else if ( status > 0 ) ( /* Normal situation
fp = fopen( myTmpInFile, "w+" ) ; /* Open local input file
fwrite( ibuffer, sizeof(char), INBUFSIZE, fp ) ; /* Fill it uwp
rewind( fp ) ; /* Get it ready for the user’s code
ofp = fopen( myTmpOutFile, “w+* ) ; /* Open the local output file
Child( fp, ofp ) ; /* Call user’s code

108

*/
*/
*/
*/
*/
*/
*/
*/
*/
=/

*/
*/
s/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/

*/

*/
*/
*/
*/
*/
*/



}

rewind( ofp ) ; /* Export the local output file to the global file
status fread( obuffer, sizeof(char), OUTBUFSIZE, ofp ) ;

status = pious_write( ocutfd, obuffer. status * sizeof(char) ) ;

fclose( £p ) /* Close the local input and output files

’

fclose( ofp ) ;

}

}
/* Shutdown this child and let the parent know */

bufid = pvm_initsend( PvmDataRaw ); /* A buffer please
status = pvm_send( myParentTID, MYMESSAGE ) /* Tell parent
status = pious_close( infd ) ; /* Close PIOUS input file
status = pious_close( outfd ) ; /* Close PIOUS output file
pvm_exit() ; /* Exit PVM
unlink ( myTmpInFile ) ; /* Remove the local input file
unlink ( myTmpOutFile ) ; /* Remove the local output file

return 0 ;

}

B.2 Coarse-Grained I/0 Example

From the original sequential code in Figure 5-7, it can be seen that there is a significant
amount of new code that needs to be written. The sequential version is about 225 lines of
code. Converting to parallel increases the program size by approximately 350 lines. The
code shown has been clarified and shortened by removing the timing and resource
utilization code.
In this application, the sequential code for child (Figure 5-8) did have to be modified.
The file pointers were changed to pious file handles and the UNIX read and write functions
were converted to PIOUS read and write functions. It is inefficient to cache the striped data
to local disk and the re-read the local file into memory. As well, the B matrix file was too
large to cache locally.

B.2.1 Source code for Parent.c

#include <pvm3.h>

#include <piousl.h>

#include <stdio.h>

#define GROUP "iog*

#define MYMESSAGE 1234

#define MOREWORK 4321

#define MAXPATHLEN 1024

#define REGMODE ((pious_modet)( PIOUS_IRUSR | PIOCUS_IWUSR | \
PIOUS_IRGRP | PIOUS_IROTH ) )

int Child( int, int, int, int, inc ) ; /* Note the change in parameter type

main( int argc, char **argv )

{

int myTID; /* The PVM tid for this process
int myParencTID ; /* The process who spawned me
int *childTiD ; /* A vector of children tids
int dsent ; /* The default PIOUS configuration
int segment ; /* The current file segment to work on
int nsegments ; /* Number of segments in a file
int tid, length, msgTag ; /* The tid, length and tag for a message
int nelemems, rowsPerBlock ; /* The number of elements per row and rows/block
int IOBUFFERSIZE ; /* The size of the I/O buffer
int nchild, numbt ; /* The number of child processes
int infd, outfd : /* The parallel file descriptors
int ainfd, binfd, coutfd ; /* Child parallel file descriptors

109

*/

*/

*/
*/
*/
*/
*/
*/
*/

*f

*/
*/
*f
*/
*/
*/
*f
*/
*/
*/
*/
*/



TITREES R T = =g

FITTEER BT TUWST IR TN

ST T T TR ATEAAT Ry W e T TR TR AT

int i,3, k ; /* Counters
int inputNumber ;

int bufid, status ; /* Message handles and status variable
FILE *fp ; /* UNIX file descriptor to import and export files
char ainFile[ MAXPATHLEN ] ; /* The A matrix input file name
char binFile[ MAXPATHLEN ] ; /* The B matrix input file name
char coutFile[ MAXPATHLEN ] ; /* The C matrix output file name
char *iobuffer ;
if ( ( myParentTID = pvm _parent() ) == PuvmNoParent ) (
[ 3
* Parent -- spawn child processes
* argvi0]: Process name
* argv(l]: Matrix A input file name
* argv[2]: Matrix B input file name
* argv(3]: Matrix C output (filename
* argvi4]: Number of elements per row
* argv[5]: Number of rows per block (segments)
|

./

nelemems = atoi( argv(4l ) ;

argv[6]: Number of child processes

/* Number of Elements per row

rowsPerBlock = atoi( argv(5] ) - /* Rows per block

nchild = atoi( argv[6] ) :

/* Number of child processes

nsegments = nelemems / rowsPerBlock ; /* Precalculate number of segments
IOCBUFFERSIZE = nelemems * rowsPerBlock * sizeof(double) ;

iobuffer = (char *)malloc( IOBUFFERSIZE ) ;

/* Now, create the PIQUS files from the UNIX files */

dscnt = pious_sysinfo(PIOUS_DS_DFLT) ; /* Get default PIOUS configuration
/* Open the A matrix file and import it into PIOUS */

infd = pious_popen( GROUP, argv(l], PIOUS_GLOBAL, IOBUFFERSIZE,

fp

while ( ! feof( fp ) ) (

b S
3

}

status = pious_close( infd ) ;

PIOUS_VOLATILE, PIOUS_RDWR | PIOUS_CREAT | PIOUS_TRUNC,

REGMODE, nsegments ) ;

= fopen( argv(l], "r"*) ; /* Open the UNIX file
/* Read in until EOF is encountered
fread( iobuffer, sizeof( char ), IOBUFFERSIZE, fp ) ; /* Read a block
pious_write( infd, iobuffer, i ) ; /* Export a block
/* Written the whole file out
/* Closing the PIOUS file

fclose( fp ) : /* Close the UNIX file
/* Open the B matrix file and import it into pious */
infd = pious_popen( GROUP, argv{2], PIOUS_GLOBAL, ICBUFFERSIZE,

fp
i
i
}

status = pious_close( infd ) ;

= fopen( argv(2], *r") ;
while ( ! feof( fp ) ) (

PIOUS_VOLATILE, PIOUS_RDWR [ PIOUS_CREAT I PIOUS_TRUNC,
REGMODE, dscnt ) ;
/* Open the UNIX file
/* Read in until EOF is encountered
fread( iobuffer, sizeof( char ), IOBUFFERSIZE, fp ) : /* Read block
pious_write( infd, icbuffer, i ) ; /* Export block
/* Written the whole file out
/* Closing the PIOUS file

fclose( fp ) ; /* Close the UNIX file
/* Open and create the C Matrix output file */

for (1 =0 ; i < nsegments; i++ ) {

/* Create each segment

outfd = pious_popen( GROUP, argv([3], PIOUS SEGMENTED, i, PIOUS_VOLATILE,

PIOUS_RDWR [ PIOUS_CREAT | PIOUS_TRUNC, REGMODE,
nsegments ) ;

status = prous_close( outfd ) ;

}

numbt = SpawnWorkers( argv[0], &childTID, nchild ) : /* Spawn the workers
/* Broadcast to all child processes a startup message */

110

*/

*/
*/

*/
*/

*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*f
*/
*/

*/

*



PR R S AT

bufid = pvm_initsend( PvmbDataRaw ) ; /* A buffer please
status = pvm_pkstr( argv(l] ) ; /* PIOUS A matrix FILE
status = pvm_pkstr( argv[2] ) ; /* PIOUS B matrix FILE
status = pvm_pkstr( argv{3] )} ; /* PIOUS C matrix FILE
status = pvm pkint( &nelemems, 1, 1) ; /* The elements per row
status = pvm_pkint( &rowsPerBlock, 1, 1 ) : /* The rows per block
status = pvm _pkint( &nsegments, 1, 1) ; /* Total segments
status = pvm _mcast( childTID, nchild, MYMESSAGE ) ; /* Send to all children
status = pvm_freebuf( bufid ); /* Clean up
/ *

* There are nsegments of work to be done.

* There are nchild processes to do the work

* Each child process asks for work, gets segment to work on, does work

* until there is no more in segment then repeats the process

* Each request for work (nsegments) each child process told to die (nchild)
* Total: nsegments + nchild messages out

=/

for (i =0 ; i < nsegments; i++ ) {

bufid = pvm_recv( -1, MOREWORK ) ; /* Request for work
status = pvm_bufinfo( bufid, &length, &msgTag, &tid ) ; /* Who from ?
status = pvm_freebuf( bufid ) ; /* Clean up
status = pvm_initsend( PvmDataRaw ) ; /* New buffer please
status = pvm_pkint( &i, 1, 1) ; /* Remaining work
status = pvm_send( tid, MOREWORK ) ; /* Tell child segment to work on
status = pvm_freebuf( bufid ) ; /* Clean up

}

k= -1; /* No more work to be done tell all children

for ( i =0 ; i < nchild; i++ ) ¢(

bufid = pvm_recv( -1, MOREWORK ) ; /* Request for work
status = pvm_bufinfo( bufid, &length, &amsgTag, &tid } /* Who from ?
status = pvm_freebuf( bufid ) ; /* Clean up
status = pvm_initsend( PvmDataRaw j ; /* New buffer please
status = pvm pkint( &k, 1, 1) /* No more work
status = pvm_send( tid, MOREWORK ) ; /* Tell child that
status = pvm_freebuf( bufid ) ; /* Clean up

}

for ( i =0 ; i < nchild; i++ )} { /* Receive the die message from each child
bufid = pvm_recv( -1, MYMESSAGE ) ; /* From anybody
status = pvm_freebuf( bufid ) ; /* Clean up

}

free( childTiD ); /* Free the children handles

/* Open the output file in global mode and reread it for export */
outfd = pious_popen( GROUP, argv({3], pious_GLORAL, IOBUFFERSIZE,
PIOUS_VOLATILE, PIOUS_RDONLY, REGMODE, nsegments ) ;

if ( outfd >= 0 ) { /* If the output file exists
fp = fopen( argv{3}, "w+"); /* Open the UNIX file
while (1) ( /* Until done
status = pious_read( ocutfd, iocbuffer, IOBUFFERSIZE ) ; /* Read a block
if ( status == 0 ) break ; /* All done
status = fwrite( iobuffer, sizeof(char), IOBUFFERSIZE, fp ) ; /* Write it

}
status = pious_close( outfd ) ; /* Close the output file
fclose( fp ) ; /* Close the UNIX file

status = pious_unlink( argv(3] ); /* Remove the C matrix file from PIOUS
}

status = pious_unlink( argvi2] ): /* Remove the B matrix file from PIOUS
status = pious_unlink( argv{l] ); /* Remove the A matrix file from PIOUS
pvm_exit() ; /* Gracefully leave PVM

111

*f
*/
*/
s/
*/
*/
*/
*/
*f

*f
*/
*/
*/
*/
*
*/

*

*f
*/
*
*/
*
*/
*/

*/
*/
*/

*/

*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/



IS TR L ey WY RN T DT AT Ty T T oy 0

} else ( /* I'm a child process */
/* CHILD process -- wait for file names in order to open */
bufid = pvm_recv( myParentTID, MYMESSAGE ) ; /* Get a message from my parent */
status = pvm_upkstr( ainFile ) ; /* The A matrix file name */
status = pvm_upkstr( binFile } ; /* The B matrix file name */
status = pvm_upkstr( coutFile ) ; /* The C matrix file name */
status = pvim_upkint( &nelemems, 1, 1 ) ; /* The elements per row */
status = pvm_upkint( &rowsPerBlock, 1, 1) ; /* The rows per segment®/
status = pvm_upkint( &nsegments, 1, 1) ; /* The total segments */
IOBUFFERSIZE = nelemems * rowsPerBlock * sizeof(double) ;
dsent = pious_sysinfo(erous_DS_DFLT) ;
binfd = pious_popen( GROUP, binFile, PIOUS_INDEPENDENT, IOBUFFERSIZE,
PIOUS_VOLATILE, PIOUS_RDONLY , REGMODE, dscnt )
while ( 1 ) (
bufid = pvm_initsend( PvmbataRaw ) ; /* Buffer please */
status = pvm_send( myParentTID, MOREWORK ) ; /* Ask parent for some work */
status = pvm_freebuf( bufid ) ; /* Clean up */
bufid = pvm_recv( myParentTID, MOREWORK ) ; /* Get some work */
status = pvm_upkint( &segment, 1, 1 ) ; /* Which segment to work on */
status = pvm_£freebuf( bufid ) ; /* Clean up */
if ( segment == -1 } break /* All done */
ainfd = pious_popen( GROUP, ainFile, PIOUS_SEGMENTED, segment,
PIOUS_VOLATILE, PIOUS_RDONLY, REGMODE, nsegments ) ;
coutfd = pious_popen( GROUP, coutFile, PIOUS_SEGMENTED, segment,
PIOUS_VOLATILE, PIOUS_WRONLY, REGMODE, nsegments ) ;
while (1) ¢ /* Read until done */
status = Child( ainfd, binfd, coutfd, nelemems, rowsPerBlock ) :
if ( status < 1 ) break ;
}
status = pious_close( ainfd ) ; /* Close the A segmented input file */
status = pious_close( outfd ) ; /* Close the C segmented output file */
}
status = pious_close( binfd ) ; /* Close the independent B input file */
bufid = pvm_initsend( PvmDataRaw ):; /* A buffer please */
status = pvm_send( myParentTID, MYMESSAGE ) ; /* Tell my parent */
pvm_exitc() ; /* Gracefully exit PVM */
} /* End of if child or parent process */
exit(0) ; /* End of matrix multiply */
}
B.2.2 Source code for Child.c
int Child( int fa, int fb, imt fc, int nelems, int nblocks )
{
double *a, *B, *C ; /* Pointer to the three matrices */

int k, n, j, status ;
/* Allocate space for each block of A, B, and C */

A = (double *)malloc( nblocks * sizeof( double ) * nelems ) ;
B = (double *)malloc( nblocks * sizeof( double ) * nelems )} ;
C = (double *)malloc{ nblocks * sizeof( double ) * nelems ) ;

/* Read in the block of A for this call to Child */
status = pious_zead( fa, A, sizeof( double ) * nelems * nblocks ) ;
if ( status < 1 ) return status:
k=0;
while ( 1) (
/* Read in all of B, one block at a time, until the read fails */
status = plous_read( fb, B, sizeof( double ) * nelems * nblocks ) ;
if ( status < 0 )
return status ;

112

/* End of file or problems*/

/* Problems abort */



else if ( status == 0 ) /* All done reading B */
break
for (n = 0; n < nblocks ; n++ ) ( /* Compute the C matrix */
for ( =0 ; j < nblocks: j++ ) (
C[ n*nelems+k+j ] = DotProduct( &A(i*nelems]}, &B[j*nelems], nelems ) :
}
}
k += nblocks ;
}
/* Write out the completed block of C */
status = pious_write( fc, C, sizeof( double ) * nelems * nblocks ) ;
free( A ) /* Free up the allocated memory */
free( B )
free( C )
return status ;

v W

113



