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Abstract

This thesis develops foundations for the development of dependable, scalable reinforcement
learning algorithms with strong connections to game theory. I present a version of rational-
ity for learning—one grounded in the learner’s experience and connected with the rationality
concepts of optimality and equilibrium—that demands resiliency to uncertainty, environmen-
tal changes, and adversarial pressures. This notion of hindsight rationality is based on regret,
a well-known concept for evaluating a sequence of decisions with unilateral deviations. I
show that in sequential decision-making tasks, there are many natural deviation sets with
critical practical differences beyond those previously studied. I design and implement three
extensions to the counterfactual regret minimization (CFR) algorithm, one that is observably
sequentially hindsight rational for any given subset of deviations within a broad class; a sec-
ond that generalizes regression CFR; and a third that applies to continuing Markov decision
processes and robust optimization tasks.

The first part develops hindsight rationality and the partially observable history process
(POHP) formalism for concisely describing multi-agent sequential decision-making from a
single agent’s perspective. The second part develops the foundations of defining, analyzing,
and using deviations in finite-horizon POHPs to develop efficient hindsight rational algo-
rithms, and the practical consequences of designing algorithms around different deviation
sets. The third and final part describes experimental applications of these foundations that
use function approximation and condensed domain representations to effectively play games

and learn cautious behavior in safety challenges.
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Preface

This thesis is original work by Dustin Morrill. It contains work from seven conference papers,

five published at top conferences:

e the proceedings of the AAAI conference on artificial intelligence (Morrill, D’Orazio,

Sarfati, Lanctot, Wright, A. R. Greenwald, et al. 2021),
e the international joint conference on artificial intelligence (Lockhart et al. 2019a),

e the international conference on autonomous agents and multiagent systems (D’Orazio,

Morrill, et al. 2020; Hennes et al. 2020), and

e the international conference on machine learning (Morrill, D’Orazio, Lanctot, Wright,

Bowling, and A. R. Greenwald 2021).

One (Morrill, A. R. Greenwald, et al. 2022) appears at the AAAI-22 reinforcement learning
and games workshop and another (Mohammedalamen et al. 2021) is publicly available on
arXiv.org. I am a first author on five of these works (D’Orazio, Morrill, et al. 2020; Hennes
et al. 2020; Morrill, D’Orazio, Lanctot, Wright, Bowling, and A. R. Greenwald 2021; Morrill,
D’Orazio, Sarfati, Lanctot, Wright, A. R. Greenwald, et al. 2021; Morrill, A. R. Greenwald,
et al. 2022).

My specific contributions to each paper are outlined here.

e Morrill, D’Orazio, Lanctot, Wright, Bowling, and A. R. Greenwald (2021): I developed
all the theoretical and experimental results in consultation with my advisors. My

theoretical work built on early work that Ryan and I did together, but the final result
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is very different from and much more general than that initial work. Aside from small

edits, all of the writing is mine.

Morrill, D’Orazio, Sarfati, Lanctot, Wright, A. R. Greenwald, et al. (2021): I developed
all of the theoretical results and game counterexamples, except the extended Shapley’s
game, in consultation with my advisors. Aside from small edits, all of the writing is

mine.

D’Orazio, Morrill, et al. (2020): I provided the vision for the paper and theory, devel-

oped the experiments, and wrote roughly half the text of the paper.

Hennes et al. (2020): I independently developed the NeuRD algorithm at the same time
as my coauthors before we consolidated our work into a single paper. I developed the
online learning and extensive-form game analysis of NeuRD, and ran tabular NeuRD
experiments. I developed the motivating example where Hedge/NeuRD succeeds where
softmax policy gradient fails. I wrote sections of the paper corresponding to these

contributions.

Lockhart et al. (2019a): I proved and wrote Lemma 2, wrote about two variations
of TabularED in the “Imperfect Information Games” section, wrote Appendix A, and

edited the paper.

Morrill, A. R. Greenwald, et al. (2022): I developed all of the paper in consultation

with my advisors.

Mohammedalamen et al. (2021): I developed all of the theoretical results in consultation
with Michael Bowling. I provided the initial idea for the experiments and designed the
final version of the experiments together with coauthors. I wrote the code for the
driving gridworld environment, with some help from undergraduate Fatima Davelouis
Gallardo. I completed preliminary experiments with approximate inference and k-of-N

CFR that encouraged us to use neural network ensembles to form beliefs. I advised
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Montaser and Alex on the development of the code and on running experiments. I

wrote nearly all of the paper and appendix.

Morrill, D’Orazio, Sarfati, Lanctot, Wright, A. R. Greenwald, et al. (2021) and Morrill,
D’Orazio, Lanctot, Wright, Bowling, and A. R. Greenwald (2021) have corrections regard-
ing statements of deviation strength for the counterfactual and partial sequence deviations.
MacQueen (2022) provides a counterexample with a beneficial external deviation in a coun-
terfactual correlated equilibrium. Corrected versions of these papers are publicly available on
arXiv.org (Morrill, D’Orazio, Lanctot, Wright, Bowling, and A. Greenwald 2021; Morrill,
D’Orazio, Sarfati, Lanctot, Wright, A. Greenwald, et al. 2022).

Not every paper has its own chapter as some contributions in separate papers are grouped
to create a more cohesive thesis and to limit redundancy. There are also some enhancements
to contributions that were not previously published elsewhere. The hindsight rationality view
of learning and agent design presented in Chapter 3 is from Morrill, D’Orazio, Sarfati, Lanc-
tot, Wright, A. R. Greenwald, et al. (2021) while the motivating experiment (Section 3.3) is
from Hennes et al. (2020). The remainder of my contributions to Morrill, D’Orazio, Sarfati,
Lanctot, Wright, A. R. Greenwald, et al. (2021) are found in Sections 6.2 and 6.4 to 6.8,
and those of Hennes et al. (2020) are found in Section 10.4. Equilibrium counterexample
games involving behavioral deviations in Section 6.5 are entirely new contributions. Mor-
rill, A. R. Greenwald, et al. (2022) is self-contained in Chapter 4, though this chapter also
includes Theorem 6 from Morrill, D’Orazio, Lanctot, Wright, Bowling, and A. Greenwald
(2021). The rest of Morrill, D’Orazio, Lanctot, Wright, Bowling, and A. R. Greenwald
(2021) is spread throughout Part II in Sections 6.2 and 6.8 and Chapter 7. The regret bound
presented for EFR in Section 7.4.4 is a new contribution based on an improved analysis in
Section 7.2. D’Orazio, Morrill, et al. (2020) is presented in Chapter 10 minus Section 10.4.
Mohammedalamen et al. (2021) is presented in Chapter 9 and my primary contribution to

Lockhart et al. (2019a) is Lemma 8, which is presented in the same chapter.



What is play? Play is action done for its own sake. It’s in a way the very paradigm of
freedom because . . . action done for its own sake is what freedom really consists of. Play

and freedom are ultimately the same thing.

— David Graeber (2019)
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Chapter 1

Introduction

The world is filled with agents who are independent, perceptive decision-makers with their
own incentives and abilities. To successfully navigate the world and fulfill their goals, an
agent must recognize their limitations; that their perception of the world is imperfect and
that parts of the world are out of their control. They must consider how to pursue their goals
in spite of interference by other agents, either incidental or intentional. The complexity and
dynamism of the world necessitates continual learning and adaptation, not towards any fixed
behavioral plan, but to become better suited for current environmental conditions.

The field of reinforcement learning (RL) studies how to develop autonomous agents that
refine their behavior over time in pursuit of a reward signal in complex decision-making
settings. The field of game theory is the complementary study of multi-agent interactions
and equilibrium behavior where each self-interested agent vies for their own payoff. In order
to make progress in game theoretic analyses, it is common to add assumptions about the
environment or the other agents. For example, it is typical to assume that each agent is
rational, in the sense that they will optimize their own return given their beliefs about
each of the other agents. This line of reasoning leads to the idea of equiltbrium, which is
an assignment of behavior to each agent where no agent has any incentive to deviate from
their assignment. Another common assumption is that the environment contains exactly two
agents and that their payoffs sum to zero, which drastically simplifies the space of equilibria
and gives equilibria greater power as a prescriptive concept.

If our goal is to construct automated systems that win two-player, zero-sum games against
any unknown opponent, then that system should naturally attempt to approximate a “max-
imin strategy”, which is behavior that maximizes its minimum payoff under a worst-case
opponent. However, if we want systems to play multi-player, general-sum games, then max-
imin strategies are unrealistically pessimistic because they optimize for the unlikely scenario
where all of the other players ignore their own payoffs and collude specifically to minimize

a single player’s payoff. The Nash equilibrium concept is meant to be a more reasonable



model of player behavior, however, strategies from Nash equilibria are risky to deploy in
multi-player, general-sum games when the strategies of the other players are unknown. Nash
equilibria are not interchangeable in these games, so players can play their parts of different
Nash equilibria and not be in equilibrium together, and the payoff for a Nash equilibrium
strategy could be the minimum payoff. These deficiencies leave us wanting for an objective
that is better suited to the goal of designing algorithms for playing multi-player, general-sum
games than Nash equilibrium or maximin strategies.

In addition, the reliance on assumptions and the inherently static nature of equilibrium
ostensibly puts game theory in conflict with RL ideals. As its name suggests, RL is primarily
focused on learning, which is inherently a dynamic process of change and adaptation. Ideally,
an RL agent would learn everything they need to maximize their cumulative reward from
contextual clues provided by the environment and the reward signal itself, without any prior
knowledge. Assuming any given environment is filled with a particular number of agents
and perhaps additionally assuming properties of their incentives does indeed seem to strain,
if not entirely violate, the RL ethos. However, it is also true that much of the theoretical
development of RL assumes that there is in fact a single agent in the environment, thereby
violating this ethos as well.

This thesis develops foundations for the development of dependable, scalable RL algo-
rithms with strong connections to game theory and a focus on the rationality of behavior
during learning without relying on assumptions about other agents, or the absence of other

agents, in the environment. Specifically, it attempts to answer the following questions:

In sequential decision-making settings and with minimal assumptions, how can
we define rationality in a learning context and how can computationally restricted
learning agents utilize their own experience to strive toward this notion of ratio-

nality?

Of particular interest in this thesis are algorithms that perform self-evaluation based on the
idea of regret to achieve resiliency in the face of environment non-stationarity and interference
from other agents. These methods carefully update the agent’s behavior to avoid both chasing
fleeting rewards and sluggishly responding to opportunities for improvement. They also do
not presuppose the existence of universally optimal behavior that will always be effective,
regardless of how the environment or other agents change over time. Counterfactual regret
minimization (CFR; Zinkevich, Johanson, et al. 2007) is an example of such an algorithm, and
it has been extremely successful as a foundation for constructing solutions and expert players
for human-scale games (Bowling et al. 2015; Brown and Sandholm 2018, 2019; Moravéik et
al. 2017; Schmid, Moravéik, et al. 2021).

Part I introduces novel perspectives on foundations of RL in non-stationary and multi-



agent environments. [ present the idea of hindsight rationality as a notion of rationality
for learning based on regret, a well-known concept for evaluating a sequence of decisions
with unilateral deviations. I further examine the role of equilibria and their relation to
hindsight rationality in the RL context, and establish a new formalism for modeling RL
problems. Part II contains the theoretical and algorithmic developments that culminate in
the extensive-form regret minimization (EFR) algorithm, a flexible generalization of CFR
for a broad and natural set of deviations in sequential decision-making settings. Finally,
Part III presents examples of how the ideas in previous chapters can be extended and scaled.
Specifically, it shows how CFR can be adapted to a class of infinite-horizon problems, how
this version of CFR can be used to automatically learn caution in the face of uncertainty,
and how regression CFR (RCFR; Waugh, Morrill, et al. 2015) can be generalized to utilize
alternative link functions and deviation sets.

This thesis presents the following specific contributions:

e hindsight rationality, an RL objective based on regret and intimately connected with
game theory (Chapter 3, parts originally published in Morrill, D’Orazio, Sarfati, Lanc-
tot, Wright, A. R. Greenwald, et al. 2021 and Hennes et al. 2020');

e the partially observable history process (POHP), a formalism for describing complex,
non-stationary, multi-agent environments from a single agent’s perspective (Chapter 4,
originally published in Morrill, A. R. Greenwald, et al. 2022);

e the behavioral deviations, a broad and natural class of deviations in POHPs, in addition
to a thorough examination of the relationships between behavioral deviation subsets
and equilibrium concepts (Chapter 6, parts originally published in Morrill, D’Orazio,
Sarfati, Lanctot, Wright, A. R. Greenwald, et al. 2021 and Morrill, D’Orazio, Lanctot,
Wright, Bowling, and A. R. Greenwald 2021);

e the EFR algorithm that generalizes CFR to any behavioral deviation subset, and time
selection regret matching, a complementary regret minimizing algorithm (Chapter 7,
parts originally published in Morrill, D’Orazio, Lanctot, Wright, Bowling, and A. R.
Greenwald 2021 and Morrill, A. R. Greenwald, et al. 2022);

e the theory and procedure for practical versions of CFR and k-of-N CFR (K. Chen
et al. 2012) that apply to continuing Markov decision processes (MDPs) with uncertain
reward functions, as well as a procedure using k-of-N CFR that learns to behave

cautiously in new situations (Chapter 9, contains work in Mohammedalamen et al.
2021 and published in Lockhart et al. 2019);

T share first-authorship of Hennes et al. (2020).



e the f-RCFR generalization of RCFR and the neural replicator dynamics (NeuRD)
instantiation thereof that represents a minimal conversion of the softmax policy gra-
dient algorithm into one that strives for hindsight rationality (Chapter 10, originally
published in D’Orazio, Morrill, et al. 2020 and Hennes et al. 2020?).

In summary, this thesis presents new perspectives on traditional concepts in artificial
intelligence, a more complete understanding of equilibria in sequential decision-making en-
vironments, and new scalable learning algorithms with strong performance in multi-agent,
sequential decision-making environments. Part I uses the small agent—complex environment
idea that is central to RL as a lens to reveal new insights in traditional ideas. No-regret
learning and the extensive-form game (EFG) formalism refracted through this lens become
hindsight rationality and the POHP formalism, respectively. Part II enriches our under-
standing of deviations and equilibria in sequential decision-making settings, and reaps the
benefits of this new understanding with algorithmic advances and empirical performance im-
provements. Part III shows that the ideas presented in the previous parts are extensible, and

lays out a path toward further extensions and practical applications.
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Chapter 2

Background

2.1 Introduction

This thesis draws on problem settings and algorithms from three distinct fields: RL, game
theory, and online learning. This chapter introduces the basic aspects of game theory and
online learning, as well as elementary RL and online learning algorithms that are relevant to
discussions in later chapters.

Rather than developing a traditional RL formalism here, such as the Markov decision pro-
cess (MDP), this thesis introduces a new formalism, the partially observable history process
(POHP; pronounced “pop”). The POHP model generalizes the MDP model, as well as vari-
ous models that account for the presence of multiple agents and imperfect information. The
development of the POHP formalism is deferred to Chapter 4.

The background in this chapter is all that is required for Part I, but additional background

is introduced at the start of each subsequent Part.

2.2 Games

A game is an N player interaction where each player simultaneously chooses a strategy and
immediately receives a payoff from a utility function (Neumann et al. 1947). There may also
be an extra “chance player”, denoted ¢, who “decides” random events like die rolls. The
payoff for each player is determined by the strategies of each player, and we assume that the
payoffs are bounded. A game described in this way is called a normal-form game (NFG).
Each player, i € PU{c}, is assigned a set of pure strategies, X;, where P = {j}}_, is the set
of real players. For simplicity, we assume that each set of pure strategies is finite, though we
will allow chance’s strategy set to be continuous when we later discuss robustness measures.

A joint selection of pure strategies from each real player, zp = (z; € &;)icp, is called a



pure strategy profile.! A pure strategy profile and a chance strategy together determines the
game’s outcome.

Each player i receives the payoff v;(zp,z.) € [—-U,U]. While the real players choose
their strategies (presumably to achieve a large payoff), chance’s strategy is sampled ac-
cording to the mized strategy m. € A(X.), where A(X.) is the probability simplex over

2 We overload v; : zp

X., and this strategy is given as part of the game definition.
E[vi(zp, X.)] as the expected payoff for player i over pure chance strategies X. ~ m. and
Vi(Tp) = Exp=(xj~m),ep [Vi(Xp)] over mized strategy profile mp = (m; € A(X;))iep. We
drop the subscript on the utility function when it is called as a function of player i’s strat-
egy, m;, parameterized by the strategies for the other players, ¢ = 7_; = (ﬂ'j)jep\{i}, i.e.,
v(m; o) = vi(Tp).

An optimal strategy or best response for player i is a strategy that achieves the best response
value max,,cx, v(z;;0) given mixed strategies for the other players, . A Nash equilibrium
is a mixed strategy profile where all players are playing best responses simultaneously. Said
another way, a Nash equilibrium requires that no player can benefit from a unilateral deviation
to a different strategy. There are games for which no pure-strategy Nash equilibria exist, e.g.,
rock-paper-scissors, where the game’s three pure strategies have an intransitive dominance
relationship. Randomization is sufficient to guarantee the existence of at least one Nash

equilibrium expressed as a mixed strategy profile in finite games (Nash 1951).

2.2.1 Nash Equilibria and Maximin Strategies

We can characterize a strategy profile’s distance to a Nash equilibrium with the concept of
approximate Nash equilibrium. A mixed strategy profile, 7p = (m;);ep, is an e-(approximate)
Nash equilibrium if no player can gain more than ¢ in expectation by unilaterally deviating
to another strategy, i.e., for each player i, max +ca(x,) v(7*;0) < vi(7p) + €, where o0 = m_;.
If e =0, mp is an exact Nash equilibrium.

A Nash equilibrium models jointly rational play that is factored in that players act entirely
independently from one another: each chooses a single mixed strategy and sample from it
independently. A more pessimistic assumption is that all but one of the players collude to
minimize the payoff of the remaining player. A maximin strategy for player i, m, maximizes

their minimum expected payoff against colluding opponents, i.e.,

min ~_ v(m o) = ;""" = max min _ v(7*;0").
o €Xjep\qiy 1L T €A(IL) o*EXjepy iy 1L

!Since the influence of chance will often be marginalized away in this work, we do not include chance’s
strategy in the definition of a strategy profile, as done in some other works.
2A pure strategy can also be represented as a point-mass mixed strategy.



Maximin strategies are also said to be minimax optimal since they minimize the maximum

MXMN __
(2

loss under negated payoffs, and a strategy = with bounded minimax optimality gap v
Ming-ex . 11, V(7 07) < € is e-minimax.

Proposition 1. In a two-player, zero-sum game, an e-Nash equilibrium, wp, is a pair of
2e-mazimin strategies.

Proof. Let m = m and ¢ = my. We begin by proving that player one’s strategy is 2e-
maximin. Since 7p is a Nash equilibrium, ve(mp) > max,«ca(a,) v(0*;7) —e. Since the game

is zero-sum, this inequality can be negated to yield

—vz(mp) = vi(mp) (2.1)
< _ *. 2.2
< U*gl&ag;@v(a )+ (22)
< ' o ) 2.3
_a*énAl(IiQ)U(ﬂ'O')—i—g (2.3)

Again, since 7p is a Nash equilibrium,

o) —e < o) < i 0"+ ¢ 2.4

7r*1r€rlfn(})<(1)v(7r o) <w(mo) < U*IglAl(I/}vz)U(ﬂ' o) + (2.4)

min  v(m;0") > max v(r*;0) — 2 (2.5)
a*EA(X2) T EA(X1)

> v — 2, (2.6)

which proves player one’s strategy is within 2¢ of minimax optimality and is therefore 2¢-
maximin.
Repeating the same argument for player two with the roles of player one and two exchanged

proves that player two’s strategy is also 2e-maximin, which proves the initial claim. O

The minimax optimality gap is often called exploitability in two-player, zero-sum games
since it quantifies the extent to which weaknesses in a given strategy can be exploited by the
opponent. We can see this by negating and rearranging Eq. (2.6):

— min v(m o) < 2 — v}
O'*GA(XQ)

max v(o*;m) < 2e + vy
o*€A(X3)

max v(o™;m) — vy < 2e.
O'*GA(XQ)

The exploitability of a strategy profile is the average exploitability of its component strategies.
In a two-player, zero-sum game, the sum of exploitabilities simplifies to the sum of best

respomnse values as

max v(o™;7m) — o3+ max v(r*; o) — o™
O’*GA(XQ) ﬂ*GA(Xl)
= max v(c";7)+ max v(r% o)+ vy — vy
O’*GA(XQ) W*GA(Xl)



The exploitability of an e-Nash in two-player, zero-sum games is therefore at most ¢, since

1
9 2.
5 (Lm0 + ma vt @
0
1 p A .
= 7| e vl + max v(o%im) — (i) + vx(me)) (2.8)
1
< §(€+€) =e€. (29)
The function
= —i) —U; 2.1
P Zﬂrggg)vﬂ ;) — vi(7p) (2.10)

generalizes Eq. (2.8) beyond two-player, zero-sum games into a measure of how close a given
strategy profile is to Nash equilibrium, and we call this measure Nash convergence (Nash-
Conv). A strategy profile with a NashConv of ¢ could be improved by &, which implies this

profile is an e-Nash equilibrium.

2.2.2 Correlated Equilibria

The correlated equilibrium concept is a generalization of the Nash equilibrium concept to
correlated play.® Play in a correlated equilibrium is correlated rather than factored because
a correlated equilibrium is a distribution over pure strategy profiles. We can imagine that
strategies are jointly sampled from the correlated equilibrium and given to the players to
play by a neutral mediator. This scenario is helpful in thinking about how a given correlated
equilibrium could be evaluated or executed, but it is worth highlighting that an explicit me-
diator is not required to implement the behavior of a correlated equilibrium or to explicitly
construct one. As the players are given their strategies from the mediator, pure strategy
profiles sampled in this manner are called recommendations and the mediator’s distribution
is then a recommendation distribution. The equilibrium condition for recommendation distri-
butions is that there is no unilateral deviation from the recommendations that would benefit
any player in expectation.

It is common for “deviation” to refer to a switch from one strategy to another, as we saw

in the definition of Nash equilibrium. However, in a correlated equilibrium, a player could

3In the work this chapter is based on (Morrill, D’Orazio, Lanctot, Wright, Bowling, and A. R. Greenwald
2021; Morrill, D’Orazio, Sarfati, Lanctot, Wright, A. R. Greenwald, et al. 2021), the correlated equilibrium
concept was called “mediated equilibrium” to distinguish it from Aumann (1974)’s specific equilibrium type,
which is the original example of a correlated equilibrium and has the same name. However, the term “medi-
ated equilibrium” perhaps suggests that an explicit mediator is required to implement such an equilibrium
when in fact play can be correlated without a non-player mediator or without the players even knowing
anything about each other.



be recommended to play many different strategies, each one in the support of the recom-
mendation distribution. Therefore, the concept of a deviation here is generalized to pure
strategy transformation functions. Formally, the benefit to player ¢ of deviating from rec-
ommendations (X;, X ;) ~ pu sampled from p € A(Xj <p ;) according to deviation function
¢ X — X is E[u(o(Xi); Xoi) — v(Xy; X)), An e-correlated equilibrium with respect to
a deviation set profile (®;);ep, where each deviation set is a subset of all possible strategy
transformations, is a recommendation distribution where the most any player can gain by
unilaterally deviating is e, i.e., max;ep gea, E[U((X;); X_;) — v(X;; X)) <e.

Deviation sets constrain the extent to which individual strategy modifications can con-
dition on input strategies, thereby providing a mechanism for varying the strength and
character of equilibrium rationality constraints. The set of constant or external deviations,
P = {97 : Xi = w}eex,, captures the set of deviations to a fixed strategy, which is used
in the definition of best response, i.e., A oo’ ety v(¢7% (x);2-;) = maxyer, v(2';2_;) for
all strategy profiles (x,z_;). Consequently, the definitions of Nash equilibrium and minimax
optimality are also based on competitions between a player’s actual behavior and the set of
external deviations. The set of all pure strategy transformations, ®% = {¢ : &; — A3}, is
called the set of swap deviations and a correlated equilibrium with respect to swap deviations
is called an Aumann-correlated equilibrium (Aumann 1974). The internal deviations (Foster
et al. 1999), O = {727 | o7 (2) = 2/ if T = x else j}x,z’eXi’

that is much smaller than the set of swap deviations (|®% | = |X;]?) but it nevertheless sub-

is a special set of deviations

sumes the set of swap deviations strategically. That is, if a player has no beneficial internal
deviations, then they do not have a beneficial swap deviation either, and a correlated equilib-
rium with respect to internal deviations is an Aumann-correlated equilibrium (A. Greenwald,
Jafari, et al. 2003). In contrast, the external deviations do not have this property; a player
may have a beneficial internal or swap deviation even if they do not have a beneficial external
deviation. A correlated equilibrium with respect to external deviations is called a coarse-
correlated equilibrium (Moulin et al. 1978) and the set of such equilibria is larger than the

set of Aumann-correlated equilibria.

2.3 Online Decision Processes

In an online decision process (ODP), an agent repeatedly chooses from a compact decision
set. In this thesis, we always assume that the decision set is a finite set of pure strategies, X.
On each round ¢, the agent chooses a mixed strategy 7 € A(X') and samples a pure strategy
X! ~ 7t to play. The agent’s sampled strategy is evaluated by a round-dependent, bounded
utility function, v* : X — [~U,U]. The agent receives v’ at the end of the round to learn

from but the utility function on the next round can be arbitrarily different, within the payoft
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bounds. This is the full monitoring version of the ODP model and it is the default ODP
setting assumed in this work. The bandit setting is an ODP model only provides the agent
with the payoff for the pure strategy they sampled rather than the entire utility function,
and it will also be mentioned occasionally.

In an ODP, the agent’s goal is to accumulate a larger payoff over time than any deviation
from a pre-defined subset of swap deviations, ® C ®5". In this thesis, we typically consider
the agent’s performance in expectation, which motivates overloading v*(7) = Ex..[v*(X)]
as the expected payoff under mixed strategy 7 and ¢(w) € A(X) as the mixed strategy
generated by applying deviation ¢ to 7. ¢(m) is formally defined as the pushforward measure
defined by accumulating the probability of each pre-transformation decision that could be
sampled from 7, i.e., the probability of decision X’ under the deviation distribution ¢()
is [om](X') = Y xeg1(xn T(X), where ot X' — {X | ¢(X) = X'} is the pre-image of
deviation ¢.

The expected benefit to the agent of deviation function ¢ on round t is the instantaneous
(expected) regret, p(¢,m';0t) = vl (p(n')) — vi(x'). When the sequence of strategies and
utility functions is clear, we write pt7(¢) = S21_ p(¢, 7'; v') as shorthand for the cumulative
(expected) regret of ¢. If the positive part of the maximum average (expected) regret over
time vanishes, i.e., maxyeo lilrnT_wo%[pl:T(gb)}Jr = 0, where []; = max{-,0} is the ramp
function function, then the agent (equivalently, the sequence of mixed strategies (7%)°,) is

no-regret with respect to ®. We would equivalently say that the agent is no-®-regret.

2.3.1 Approximating Correlated Equilibria

We can use the ODP formalism to study learning in a repeated game and make a connection
with correlated equilibrium by considering N ODPs, each derived from a particular player’s
perspective. Set each player i’s ODP decision set to their set of pure strategies, i.e., X = A;.
On round ¢ of a repeated game, each player i selects a mixed strategy, wf, and samples a
pure strategy, X! ~ 7l. For a given player 7, the tuple o' = (W;-)jep\{i}
strategies of the other players and a sample D! ~ ¢! is a tuple of independent samples from

aggregates the mixed

each mixed strategy, i.e., D' = (X] ~ 7%);ep\yi3- Player i’s ODP utility function is then
naturally v*(-) = v(; D'). To show the influence of the other players’ strategies on regret,
we parameterize the p function by their strategies, i.e., p(¢, -; D') = p(¢, -;v(-; DY)).

After T rounds, the players have generated T mixed strategy profiles that form their

empirical distribution of play,



Proposition 2. If each player in a repeated game has a maximum cumulative regret no more

than f(T) > 0 after T' rounds with respect to a set of deviations ® in their derived ODP,

T

then the players’ empirical distribution of play, u', is an f(T)/T-correlated equilibrium in that

game. Furthermore, if each player is no-®-regret, then f(T)/T — 0 in the limit as T — co.

t

Proof. Consider player i’s ODP, denoting 7t = 7!, X! ~ 7!, o' = (ﬂ-j)jep\{i}’ and D' ~ o'

for each round t. Evaluating the benefit of a deviation ¢ € ® under pu”, we can see that

E(x.p)~pur [0(0(X); D) — v(X; D) (2.11)

= Epvmi(ryy_E[v(0(X"); DY) — v(X'; DY) (2.12)

= Eumis(yz_ [(0. 75 07)] (2.13)
| T

= f;[)@,ﬂt;at% (2.14)

where Unif ({#'}]_,) is the uniform distribution over the set {¢'}}_,. By assumption, the max-
imum cumulative regret for player ¢ after 7" rounds is f(T), i.e., maxyeo Zthl p(o,tot) <

f(T), so according to Eq. (2.14), the maximum benefit of any deviation from p? is

f(T)
Iggg Ex.p)~ur[0(9(X); D) —v(X; D)] < T
Since this holds for each player ¢, u” is an f(T)/r-correlated equilibrium, as claimed. Further-

more, if each player is no-®-regret, then limy_,., /(T)/7 = 0. [

2.3.2 Approximating Nash Equilibria
In a two-player, zero-sum game, no-regret learning can be used to construct e-Nash equilibria.

Proposition 3. Folk theorem. If both players in a repeated two-player, zero-sum game have
a mazimum cumulative external regret (regret with respect to the external deviations) of f(T')
after T' rounds in their derived ODPs, then their average strategy profile, (ﬁzT € A(Xi>)?:p
where 7l (x;) = %ZtT:l wi(x;) for all players i and pure strategies x; € X;, is a 2/(T)/7-Nash
equilibrium in that game. Furthermore, if both players are no-external-regret, then (ﬁT)le

(2

approaches an exact Nash equilibrium in the limit as T — oo.

Proof. Let player one’s strategy on round ¢ be n* = #t and let player two’s be of = 7.
Player two’s regret bound implies that player two performs nearly as well as each deviation

¢ € ®F; in hindsight, that is,

T

> w(ehr) =) u(galot);wt) = F(T). (2.15)

t=1 t=1
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Player one also achieves this with respect to each deviation ¢; € ®5. Negating Eq. (2.15)

and utilizing the zero-sum property of v, we see that

!
!

Zv(ﬂ't;at) < () =) v(ga(ah); ). (2.16)

yields

> w(n(')io') +v(ga(eh); ') < 2£(T). (2.17)

For each player i where ' = 7! and o' = 7', we can marginalize the other player’s

—1

strategy since ¢; and ¢, are external.

T T
1 1
max — v(gi(r'); 0") = max — E E o' (d)v(z*;d 2.18
¢i€<b'j§‘i thzl: ( ( ) ) zrex; T =1 dex.; ( ) ( ) ( )
L I
_ E : *, _E : t
= ?gﬁ P .U(.I' ,d)T — g (d) (2.19)

T
*, 1 t
= ;ng/%(U(:v T ;0 (d)), (2.20)

where the first and last step just apply our overloading of v to return expected payoff when
parameterized by a mixed strategy.
Maximizing Eq. (2.17) over deviations, dividing by 7', applying Eq. (2.20), and using the

definitions of 77 and 71 yields

] o 24(T)
max v(xy; ) + mex s m) < =

J

(2.21)

~
The NashConv of (77)2

i=1"
Eq. (2.21) shows that (77)2, has a NashConv no larger than 2/(T)/r, which implies that

this strategy profile is a 2/(T)/r-Nash equilibrium, as claimed. Furthermore, if all players are

T

no-regret, then limy_,, /(T)/7 = 0. Therefore, in the limit as T — oo, (7! )2, approaches an

exact Nash equilibrium. O

2.3.3 Approximating an Optimal Strategy

Regret minimization can be used to approximate an optimal strategy in a static environment

where the utility function on each round is the same single utility function, v.
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Proposition 4. In a static environment, the average mized strateqy, ™' = %Zthl 7t €
A(X), is an e-optimal strategy, where € = maxg—scqrx % Zle p(o™*, 7t U)] . Thus, if the
+

agent is no-external-regret, then © approaches an optimal decision in the limit as T — oo.

Proof. In a static environment, the average external regret with respect to 7% : - — X € X

after T rounds simplifies to

%Z v(z) —v(rh) = v(z) — %Z v(rt) = v(z) — (@), (2.22)

where the second equality follows from Jensen’s inequality, which is satisfied with equality

because the utility function is linear. Thus,

<
mag) —vE) < mag 7

Z ¢~>Z . ] 7 (223)

=1

as claimed. Furthermore, if the agent is no-external-regret, then the positive part of their
maximum average regret goes to zero as T — 00, so the optimality gap of 77 also approaches

Zero. O

One notable consequence of Proposition 4 is that if an ODP represents player i’s perspec-
tive of a game where the strategies of all the other players are fixed, then a no-external-regret

algorithm can be used to approximate a best response to those fixed strategies.

2.3.4 Time Selection

An online time selection decision process (OTSDP; Lehrer 2003; Blum et al. 2007) generalizes
ODPs to weighted utility functions. A time selection function w maps each round ¢ to a
weight w' € [0,1] so that on round ¢, the utility function is weighted by w’. The agent is
given a finite set of time selection functions and their goal is to minimize regret with respect
to all deviation—time-selection function pairs simultaneously. Formally, a finite set of time

selection functions, W = {t = w} € [0,1]}}2;, 1 < m < oo, is given, and the cumulative

1
regret with respect to deviation ¢ € & C P%Y XJ and time selection function w € W(¢) after T
rounds is 3., w'p(¢, 75 vt). A no-(®, W)-regret algorithm in this setting ensures that the
positive part of the average regret, maximizing over deviations and time selection functions,
vanishes, i.e.,

T
e [$ono]

weWw +
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2.4 Regret Matching

Regret matching is a learning algorithm framework based on updating a vector of cumulative
regrets, ptt = [pU () = ST) p(¢, ;0] sea, one element for each deviation in a given
subset of swap deviations ® C ®%". Regret matching selects the strategy on each round
that is a fixed point of the convex combination of deviations across ® according to deviation
preferences generated by passing regrets through a non-negative link function, f : RI®l — R'f'.
The preferences evaluate each deviation’s performance across all past rounds so we can think
about the combined deviation, g_bt, as the best average deviation in hindsight given these
preferences. We represent each deviation ¢ as a |X| x |X| matrix and mixed strategy = as
a |X|-length probability vector where the transformation ¢(m) is the matrix—vector product
¢m € Al*l. On round t, preferences are generated as y' = f(p"*~') and the best average

deviation in hindsight is

1
PO TR > oea Ypd i (1,45 >0

I 0.W.,

(2.24)

where I is the identity matrix. The strategy 7t is then selected as a fixed point of the linear
transformation ¢, i.e., ¢ wt = xt.4

In general, we can compute a fixed point of ;ﬁt with a linear system solver or approximate
it with power iteration (A. Greenwald, Z. Li, and Schudy 2008). A special case where a fixed
point can be found very quickly is if each column of q?)t is identical, e.g., when ® contains
only external deviations. In that case, each column of gBt is a fixed point, so we can simply
set 7! to be its first column, @tl If ® is the full set of external deviations, then this special

case simplifies to

(2.25)
T 0.W.,
where 7 is an arbitrary mixed strategy like uniform random.

Regret bounds for regret matching algorithms are based on Blackwell approachabil-
ity (Blackwell 1956). The first step is choosing the link function to be f = ag for some
a > 0, where g is part of a Gordon triple (Gordon 2005), (G,g,v), where a Gordon
triple consists of a potential function, G' : R® — R, a scaled link function g : R" — R7,
and a size function, v : R®™ — R,, that satisfy the generalized smoothness condition
Gz +2) <G(z)+ 2 - g(x) +v(2) for any z,2" € R". By applying the potential function
to the cumulative regret, we can unroll the recursive bound to get a simple bound on the

cumulative regret itself.

4Since every strategy is a fixed point of the identity matrix, setting the average deviation to the identity
matrix when the learner has no preferences implies that the learner can choose any strategy on those rounds.
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2.4.1 Example Instantiations

Softmax regret matching (that is, regret matching with the exponential or softmax link
function) is the Hedge (Freund et al. 1997) algorithm or the ezponential weighted average
forecaster (Cesa-Bianchi et al. 2006). Representing the utility function as a vector, Hedge

on the external deviations chooses the mixed strategy

ot exp >k 1” “)
(1, exp (7 >k U “))
on each round ¢, where 7° > 0 is a temperature parameter. The regret matching analysis

of this algorithm (D’Orazio and R. Huang 2021; Freund et al. 1997; A. Greenwald, Z. Li,
and Marks 2006a) leads to optimal regret bounds (with respect to the number of rounds and

deviations) when temperature parameters are chosen appropriately (e.g., increasing with
V).

Theorem 1 (Theorem 15 of A. Greenwald, Z. Li, and Marks (2006a) for expected cumulative
regret and payoff magnitude U). Softmaz regret matching (Hedge) with constant temperature
7 > 0 ensures that expected cumulative regret after T rounds for any deviation ¢ € & C Y

18 upper bounded as

P (¢) < UTIn|X| + %T.

See A. Greenwald, Z. Li, and Marks (ibid.) for a proof.

The original regret matching algorithm, described by Hart et al. (2000) and implied by
Blackwell (1956), is defined with the ramp link function, [-]; = max{-,0}. The usual Gordon
triple for this link function is v : z — L||z3, G : © = y([z]4), and g(-) = [+, which leads to
the following regret bound.

Theorem 2 (Theorem 11 of A. Greenwald, Z. Li, and Marks (2006a) for p = 2, expected
cumulative regret, and payoff magnitude U). Ramp regret matching ensures that expected

cumulative regret after T rounds for any deviation ¢ € ® C %Y is upper bounded as p*T (¢) <
U\ a(®)T, where a®) = maxzex ) y4eq 1{d(x) # x} is the mazimal activation of ®.

See A. Greenwald, Z. Li, and Marks (ibid.) for a proof.

Ramp regret matching has a suboptimal dependence on the number of deviations, but it
is often exceptionally effective in practice (see, e.g., Burch (2017) and Waugh and Bagnell
(2015)) without parameter tuning.

2.4.2 Extensions

Three notable extensions are regret matching™, optimistic regret matching, and approximate

regret matching.
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Instead of the cumulative regrets, regret matching®™ updates a vector of pseudo regrets,
"' = [¢"" 4+ p' = p', where p' = [p(¢, 7" 0")]4eo is the next vector of instantaneous
regrets (Tammelin 2014; Tammelin et al. 2015). If we assume a positive invariant potential
function where G([z + 2']+) < G(x + 2’), then the same regret bounds follow from the same
arguments used in the analysis of ordinary regret matching D’Orazio (2020). Note that this
condition is satisfied with equality for the quadratic ramp potential G : z — 1|[z]|]3.

Optimistic regret matching augments its link inputs by adding a prediction of the in-
stantaneous regret on the next round, i.e., m! = p’. If the predictions are accurate then the
algorithm’s cumulative regret will be very small. This is a direct application of optimistic La-
grangian Hedging (D’Orazio and R. Huang 2021) to ®-regret. The general approach of adding
predictions to improve the performance of regret minimizers originates with Rakhlin et al.
(2013) and Syrgkanis et al. (2015) and has also been adapted for external regret matching by
Farina, Kroer, and Sandholm (2021). D’Orazio and R. Huang (2021)’s analysis requires that
G and g satisfy G(2') > G(z) + (g(x), 2’ — x), which is achieved, for example, if G is convex
and ¢ is a subgradient of G. Hart et al. (2000)’s regret matching satisfies this condition
because the ramp function is the gradient of the quadratic ramp potential, and this potential
function is convex (A. Greenwald, Z. Li, and Marks 2006a).

Approximate regret matching is regret matching with approximate cumulative regrets,
ptit=l &~ ptt=1 (Waugh, Morrill, et al. 2015) or pseudo regrets, g1~ ~ ¢**~! (D’Orazio 2020;
Morrill 2016). The regret of approximate regret matching depends on its approximation
accuracy and motivates the use of function approximation when it is impractical to store
and update the regret for each deviation individually. The regret bound for this algorithm is
presented in the background for Part III as Theorem 17. Only approximate external regret
matching with the ramp link function was studied prior to the work in Chapter 10, where
we generalize this approach and analysis. Section 7.4.3 also provides a unified analysis for

regret matching in the time selection setting with regret approximations and predictions.

2.5 Policy Gradient

The current predominant approach to construct reward-seeking agents in the field of RL is
to design algorithms that approach an optimal strategy (though in this field, a strategy is
typically called a policy). In order for this motivation to be coherent, the environment must
be sufficiently static for an optimal policy to exist, which is potentially limiting. However, RL
algorithms are typically designed to be incrementally updated, so this limitation is usually
conceptual rather than procedural.

Policy gradient (R. S. Sutton et al. 2000; Williams 1992) is a foundational RL method

and follows this pattern closely. This algorithm uses a parameterized differentiable function
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to generate the agent’s policy, and updates the policy parameters in the direction of steepest
payoff increase, i.e., the gradient of the utility function.

Policy architectures are generally composed of at least two layers, the first generating
parameters that encapsulates the preference the agent has for each action and the second
that constructs a distribution over actions from the output of the first layer.> If the set of
actions is finite, the first layer typically outputs a preference for each action and the conven-
tional distribution layer is a softmax function that simply exponentiates and normalizes each
preference.

As long as the utility function is static and the update step size decreases appropriately,
e.g., at a O(1/t) rate, this method converges towards a policy where there are no unilateral
parameter changes that could improve the policy (a “local maximum”; R. S. Sutton et al.
2000). If the policy architecture is sufficiently expressive, this algorithm is even guaranteed to
converge toward an optimal policy, although the convergence rate with a softmax distribution
layer can be unreasonbly slow (Mei et al. 2020). Section 3.3 shows that softmax policy
gradient also behaves poorly to environmental non-stationarity.

The underlying idea of gradient ascent is sound even in adversarial environments where the
utility function is constantly changing (Zinkevich 2003). However, the agent’s payoff must
be a concave function of their parameters for policy gradient to inherit this soundness. The
softmax distribution layer in particular ensures that agent’s payoff is not a concave function

of their parameters, regardless of the rest of the policy’s architecture.
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Chapter 3

Hindsight Rationality

Philosophy is perfectly right in saying
that life must be understood
backwards. But then one forgets the
other clause—that it must be lived
forwards.

Sgren Kierkegaard!

3.1 Introduction

What does it mean for an Al system to be “intelligent” or to “behave intelligently”? One
intuitive description is that we want Al systems to make good decisions in service of our
goals or at least those we instill within them. At a technical level, we can equate intelligence
with rationality, and rationality with optimal behavior, which in our context translates to
payoff maximization. In stationary RL environments, it is natural that an intelligent system
would achieve the maximum expected payoff by following an optimal policy.

Environments containing multiple dynamic agents, however, are non-stationary from a
given agent A’s perspective. Whenever A’s behavior changes, the observations that the other
agents make change as well. While A can play a best response to any set of strategies
employed by the other agents, A may not know what strategies the others will play or the
other agents may change their strategies over time. In general, there is no universal optimal
policy that A can use to maximize their payoff in multi-agent environments. How then should
we design intelligent agents for multi-agent settings?

If there are only two agents in the environment and their incentives conflict exactly (a two-
player, zero-sum game), then one reasonable choice is to have A play a maximin strategy.

Agent A could do better by tailoring their strategy to the other agent’s particular strategy,

'Recounted in a collection of Kierkegaard’s journals and papers (1967).
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but a maximin strategy sacrifices this potential advantage in exchange for robustness. In
addition, since it is in the best interest of each agent to exploit the other’s weaknesses, such
pessimism is warranted.

However, pessimism is less useful in general-sum games or those with more than two players
because minimizing A’s payoff may not be in the best interest of each of the other players
and it may not even be possible for them to coordinate perfectly. An alternative ostensibly
reasonable proposal is for A to play a strategy from a Nash equilibrium. Here, rational
play is that where no player can improve by unilaterally deviating to a different strategy. A
nice feature of this definition is that in two-player, zero-sum games, every Nash equilibrium
strategy is a maximin strategy. However, a critical problem is Nash equilibrium selection;
different Nash equilibria may assign different payoffs to each player and Nash equilibrium
strategies are not interchangeable outside of two-player, zero-sum games. Thus, if A plays
a strategy from a Nash equilibrium, it is possible to unilaterally improve by changing to a
different strategy even if all the other agents play parts of a different Nash equilibrium!

A key limitation shared by all of these behavior proposals (optimal policy, maximin strat-
egy, and Nash equilibrium strategy) is that they suggest that the agent should play a single
strategy and forgo the agent’s potential to tailor their behavior to changing conditions. The
only role that learning can play under these proposals is to produce a static artifact repre-
senting a strategy with the requisite properties. Perhaps the problem of designing agents to
behave intelligently in complex domains filled with dynamic agents likewise generally requires

a dynamic solution concept. I propose hindsight rationality as just such a solution concept.

3.2 The Rationality of Regret Minimization

We have already seen an objective that evaluates a sequence of decisions or an entire learning
algorithm: regret. Every time a learning agent A updates their behavior, the new behavior
can be characterized by a strategy. After after T" updates, A has generated T strategies,
(ﬂt)thl. Regret compares A’s performance across these T' updates with alternative behavior
generated by a deviation function, ¢, based on the actual utility functions that A observed
while learning. Thus, a regret evaluation takes place in hindsight and requires no assumptions
about the environment’s future dynamics. If A chooses strategies so that their regret is zero,
for all deviations in a set ®, A is optimal with respect to ® and their own experience; they
are optimal in hindsight. In this way, regret expresses a parameterized form of rationality
for learning algorithms grounded in the learning agent’s actual experience, and we call this
hindsight rationality.

Of course, exact optimality in a learning context where A is unable to predict the future

is generally impossible. It is thus natural to allow for some mistakes where the total value
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of those mistakes becomes negligible over time. This intuition corresponds to the no-regret
objective where regret is guaranteed to grow sublinearly. The interpretation of regret mini-
mization as rationality in hindsight leads us to say that A is hindsight rational with respect
to a given deviation set ® if they are no-regret with respect to ®.

Static solution concepts are useful in the design of algorithms in scenarios where they
confer a practical guarantee about the payoff the algorithm will achieve when deployed, e.g.,
in stationary environments or in two-player, zero-sum games. For example, an optimal policy
achieves the maximum payoff in its target environment, and we know this by virtue of its
optimality before the policy is actually deployed, which motivates the computation and sub-
sequent deployment of optimal policies. Hindsight rationality does not directly tell us how
successful an algorithm will be when deployed and instead makes a claim about how well that
algorithm will adapt to its experience. Rationality in hindsight can, of course, only be eval-
uated after agent A has already made their choices, but since A’s future eventually becomes
their past, hindsight rationality ensures that A is prepared to adapt to any eventuality.

Hindsight rationality actually subsumes optimal policy rationality. In a static environment
with reward function v, an agent that is hindsight rational for the external deviations learns

to achieve essentially the same expected reward as an optimal policy, 7%, i.e.,

T2 u() < 7 30 u(e) o(1) = vle) — o{1),

t=1 t=1

el

where the agent chooses strategies (7%)L_;. Additionally, hindsight rationality is connected
to static notions of rationality via Propositions 2 to 4. In contrast to the prescriptive nature
of the regret minimization objective, these connections represent descriptions of hindsight
rational behavior in special scenarios. Of particular importance is Proposition 2, which
shows that hindsight rationality subsumes the rationality of correlated equilibria in general,
and that a society of such agents will learn to optimally correlate with each other (with

respect to unilateral deviations).

3.3 Hindsight Rationality Versus Incremental Opti-
mization

Does it really matter if an agent is hindsight rational in terms of the payoff they accumulate
over time, or is it enough that the agent incrementally improves? Softmax policy gradient
(SPG; see Section 2.5) is an elementary example of the latter type of incremental optimization
algorithm that does not in general boast a no-regret property. Hedge (see Section 2.4.1)
is a very similar algorithm procedurally to SPG (applied to an ODP), but Hedge is no-

regret. These two algorithms are ideal avatars to experimentally compare the incremental
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optimization paradigm with that of hindsight rationality.

3.3.1 The Similarities and Differences of Hedge and SPG

To begin, let us examine the similarities and differences between full monitoring ODP imple-
mentations of SPG and Hedge on the external deviations, both instantiated with constant
parameters.

On round ¢, Hedge, with temperature 7 > 0, chooses the strategy 7" oc exp(#') where
Hedge’s preference vector 6% = 2 11 1k € RMI and o* is the utility function on round k
treated as a vector. Since the exponential function is shift invariant, we could also set Hedge’s

t 1
preference vector to 6° = L

,0 without changing its strategies.
On round ¢, SPG, with step size ; and a single parameter for each pure strategy, chooses
its mixed strategy in the same way as Hedge except that it uses the preference vector 6% =

22;11 LVUF(r*). We can see more precisely the difference between the SPG and Hedge
Ak (k)
0%

preferences if we evaluate the payoff gradients. Vo*(7*) = [

derivatives are, by Section 2.8 of R. Sutton et al. (2018),

] where the partial
reX

o (k) _ Z Uk(x,)awk(ac’) (3.1)

00k 06k

z’eXx
=) V@) @) (z = 2} — 7 () (3.2)

z’eX
= 7" (z)v*(z) (1 — 7" (z)) — 7" () Z 7 (2" ) ok () (3.3)

z'#x
= ( (x)ok () = ) Wk(x')vk(:c')> (3.4)
z'#x
( k(ﬂf’)vk(l")> (3.5)
T EX

D)6, 7ot (3.6)
Therefore, the SPG preferences simplify to 0 = Z, 11 Lzk © pF, where 7" is treated as a

vector and © is the elementwise product operation.

Now we can see that the only difference between the SPG and Hedge preferences is that
SPG accumulates the elementwise product 7% ® p* instead of p* or v* alone. The problem
that this can cause for SPG is that elements of 7% can be close to zero, which prevents the
SPG preferences from changing quickly if a historically bad strategy becomes good after a
change in the environment. In contrast, it is easy to see that Hedge requires exactly as

strong a utility signal to “unlearn” a behavior as it does to learn that behavior initially since
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the Hedge accumulates utility vectors with the same weight on each round, e.g., Hedge’s

preference on round ¢ for strategy x is equal to that on round ¢ + 2 if v'(x) = —v'(z).

3.3.2 A Non-Stationary Matching Pennies Experiment

Consider matching pennies, a symmetric, two-player zero-sum game with two pure strategies,
HEADS and TAILS. The EVEN player receives a payoff of 1 if both players choose the same
pure strategy and —1 otherwise. The ODD player receives the negative of the EVEN player’s
payoff, but the ODD player’s payoff incentive does not matter for this experiment because
their strategy is going to be pre-determined. Across a pre-established number of rounds T,
the oDD player is going to choose HEADS for the first 40% of the rounds and TAILS for the
remaining 60%. The oDD player only changes their strategy once and the 40%-60% split is
tuned to cause difficulties for SPG. The EVEN player’s perspective forms an ODP where the
utility function is v'(z) = 1 if = HEADS and —1 otherwise for ¢ < 0.47 and its negation
vt = —v! afterward (¢t > 0.47).

This experiment tests SPG and Hedge in the EVEN player’s ODP and illustrates their per-
formance as T increases. Their step size and temperature parameters are set to constants and
tuned to a given T for simplicity and ease of comparison. Since this particular environment
has two long stationary phases, Hedge performs better in this particular environment as the
temperature is driven to zero, but the Hedge agent should be hindsight rational. Therefore,

we use the temperature 7 = which is the best choice in a worst-case environment

T
InJAJ’
according to the Hedge analysis of A. Greenwald, Z. Li, and Marks (2006a). To ensure a
charitable evaluation for SPG, its step size is empirically tuned to this particular environment

for each given horizon length. See Section 3.A for information about the step size tuning.

3.3.3 Results

Figure 3.1 (left) shows the average payoff of SPG, Hedge, and always TAILS as the horizon
length, T, increases, evaluated with T € {10°}¢_,. SPG and Hedge perform similarly, but
remember that SPG’s performance here is with step sizes that are precisely tuned to each
T. Hedge, in contrast, uses a temperature for each 7' that is only best in a worst-case
environment. In fact, Hedge’s average payoff approaches 0.2—% as its temperature approaches
zero, so Hedge’s performance in this environment could be substantially improved for small
T with tuning.

SPG performs reasonably well in this environment because it only has two pure strategies
to choose from, HEADS or TAILS. Even if the probability of playing TAILS is small after 40%
of the rounds, the SPG strategy quickly decreases the probability of playing TAILS because
the preferences for HEADS decreases quickly. The SPG update to the HEADS preference is
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Figure 3.1: The average expected payoff of SPG, Hedge, and always TAILS in repeated
matching pennies against fixed ODD player behavior (HEADS for the first 40% of the rounds
and TAILS for the remaining 60%) across various horizon lengths. (left) Without FORFEIT.
(right) With FORFEIT.

large because the probability SPG plays HEADS is large and all probability mass taken away
from HEADS must go to TAILS.

Figure 3.1 (right) shows the average payoff of SPG, Hedge, and always TAILS again, but
this time, the pure strategy set includes an a third strategy: FORFEIT. This strategy sim-
ply forfeits the round to the oDD player, giving the EVEN player —1. In this case, SPG’s
performance is drastically reduced while Hedge is nearly unaffected. With three actions,
the probability mass moved from HEADS after 40% of the rounds is split between TAILS and
FORFEIT, which ensures that FORFEIT is played much more often than is beneficial. SPG’s
average payoff approaches —0.15 < +0.2 as T increases so its regret grows linearly in this

environment.

3.4 Conclusion

An intelligent system must respond well in complex domains inhabited by dynamic agents
each with their own incentives, capabilities, and perspectives. Perhaps unsurprisingly, a
static solution like an optimal policy or an equilibrium, is generally unsatisfactory when
no assumptions can be made about the behavior of the other agents. Learning online and
analyzing agent behavior in hindsight is a dynamic alternative. The hindsight rationality
perspective suggests that agents ought to reduce their regret for deviations in hindsight
and in doing so, their behavior approaches rationally in hindsight. Rationality in hindsight
measures an agent’s performance according to its actual behavior and experience rather than
the hypothetical future scenarios of equilibrium rationality. However, hindsight rationality
does not discard the concept of equilibrium entirely. Instead, an equilibrium merely describes

the behavior of long running interactions between hindsight rational agents. The hindsight
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rationality perspective thus returns equilibria to a descriptive role, as originally introduced
within the field of game theory, rather than the prescriptive role it often holds in the field of
artificial intelligence. As our motivating example shows, the difference in lifetime performance
between a hindsight rational algorithm and an optimization algorithm can be stark because

of the hindsight rational algorithm’s greater resiliency to environmental changes.
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3.A SPG Step-Size Tuning in Non-Stationary Match-
ing Pennies Experiment
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Figure 3.A.2: The average expected payoff of SPG in the non-stationary matching pennies
environment without FORFEIT for a given horizon length 7' across step sizes evaluated in
linear and logarithmic grid searches.

To find good step sizes for SPG in the non-stationary matching pennies environment with
each horizon length T', two uniform grid searches were completed for each T € {107}%_,.
One search was done in the linear scale and the other in the logarithmic scale and both grid
searches evaluated 10,000 step sizes for each T

The smallest step size tested was 107 and the largest was 10. For the linear search, this

results in an increment of A = (10—107%)/(10,000—1) ~ 0.01 and step sizes {1076 +iA}92P.

10
10-6

{1075m }92%. After removing duplicates between the two grid searches, 19,986 unique step

For the logarithmic search, this results in a factor of m = %% ~ 1.0018 and step sizes
sizes were evaluated.

Figure 3.A.2 shows the performance of SPG across step sizes without FORFEIT and
Fig. 3.A.3 is the same with FORFEIT. Table 3.1 lists the best step sizes found for each T
along with the average payoff and cumulative regret achieved. The full experiment took 1
hour and 45 minutes using two cores from a 3.40GHz Intel@®) Core™ i5-3570K CPU with 8
GB of memory.
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Table 3.1: The Hedge and best SPG performance achieved for each horizon length in the
non-stationary matching pennies environment with and without FORFEIT (to two significant
digits).

T % % Zthl vi(rt)  max, ptT(z)
10t 0.26 —0.053 2.5
102 0.083 +0.11 9.4
103 0.026 +0.17 28

Hedge
104 0.0083 +0.19 85
10° 0.0026 4+0.2 2.6-10%
_ 106 0.00083 +0.2 8.3-10?

without FORFEIT
101 1-1076 —1.5-1077 2
102 0.88 +0.094 11
103 1.6 +0.18 16
SPG

10* 1.9 +0.2 21
10° 2.3 +0.2 27
106 1.4 +0.2 32
10! 0.33 —0.18 3.8
102 0.1 +0.08 12
103 0.033 +0.17 35

Hedge
104 0.01 +0.19 1.1-10?
10° 0.0033 +0.2 3.3-10?
. 106 0.001 +0.2 1-103

with FORFEIT
10t 0.38 —0.28 4.8
102 0.1 —0.18 38
103 0.014 —-0.15 3.5-10%
SPG

104 0.0015 —-0.15 3.5-103
10° 0.00015 —0.15 3.5-104
106 1.5-107° —0.15 3.5-10°
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Figure 3.A.3: The average expected payoff of SPG in the non-stationary matching pennies
environment with FORFEIT for a given horizon length T across step sizes evaluated in linear
and logarithmic grid searches.

31



Chapter 4

The Partially Observable History
Process

4.1 Introduction

We develop the partially observable history process (POHP) that embodies the philosophical
aspects of RL. That is, the formalism codifies principle tenets of RL; for example, that the
agent is responsible for managing their own representation of an environment that is, by
default, massively more complicated than themselves, and that the agent is capable of evalu-
ating their own progress towards goals established by their designer or themself. The POHP
formalism is built on a small number of elementary mechanisms to be easy to understand and
to use without sacrificing generality. A POHP accurately models reward-driven sequential
decision-making with multiple-agents, information asymmetry, and stochasticity, specifically
from a single agent’s perspective. In contrast to other general models with similar capabil-
ities, a POHP model abstracts away any other agents into a fictional aggregate entity (a
“daimon”), which facilitates streamlined analyses of single-agent RL algorithms. The POHP
formalism is precisely tuned for the analysis and development of algorithms that are agnostic
to the number of other agents in the environment.

The individual components of the POHP formalism are taken from two sequential decision-
making frameworks, the extensive-form game (EFG; Kuhn 1953) and the partially observable
Markov decision process (POMDP; Smallwood et al. 1973), along with a repeated game
framework, the online decision process (see, e.g., A. Greenwald, Z. Li, and Marks (2006a)).
The result is a sequential decision-making formalism that is both conceptually simpler and
more general than either of its two sequential decision-making progenitors. Other general
formalisms with nearly the same expressiveness such as the partially observable Markov game
(POMG; Hansen et al. 2004), the turn-taking POMG (TT-POMG; A. Greenwald, J. Li, et
al. 2017), and the factored observation stochastic game (FOSG; Kovaiik et al. 2019) bring

with them unnecessary complications for agent-centric RL. The sequential decision-making
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setting presented by Farina, Kroer, and Sandholm (2019) shares spiritual similarities but it
represents a less radical departure from the EFG model. And while the POHP model deviates
substantially from the EFG model, Srinivasan et al. (2018)’s presentation of the EFG model
using RL and Markov decision process (MDP) terminology provided substantial inspiration
for the POHP model’s development.

The POHP model is not meant to replace any of these established formalisms, but rather
to fill a particular niche. Consider using a POHP over an MDP or POMDP when there may
be more than one in the agent in the environment or when the environment is non-stationary.
Consider a POHP over an EFG if the environment to model is naturally a continuing process,
if rewards are naturally provided to agents incrementally as they choose actions rather than
all at once upon termination, or if explicitly reasoning about more than one agent as an
individual is unnecessary. Consider a POHP over a POMG, TT-POMG of FOSG when the
Markovian state assumption is unnecessary or unrealistic, or if explicitly reasoning about
more than one agent as an individual is unnecessary.

A convenient emergent feature of the POHP model is how it lends itself to a recursive
analysis. A POHP can often be decomposed into smaller “sub-POHPs” that are themselves
well-defined POHPs. This allows us to conveniently describe sequential rationality (Kreps et
al. 1982) for POHPs and define a new variation thereof called observable sequential rationality,
which incorporates the correlated behavior between multiple agents that naturally arises in

hindsight evaluation.

4.2 Partially Observable History Process

We begin from the premise that an agent observes and influences an environment. We are
principally concerned with the design of the agent and how well they navigate the environ-
ment. The environment may change without the agent’s input and we attribute these changes
to a daimon. Inspired by depictions in Greek mythology, our daimon is an inexplicable force
that partially determines the evolution of the environment and shapes the agent’s learning.
The concept of a daimon is flexible enough that it can represent an adversary, a teammate,

a teacher, chance, or any combination thereof.

4.2.1 The Environment and Daimon

The environment dynamics follow a simple continuing history model. History in this model
refers to a simple ledger that permanently records actions. Given history h from the set of
possible histories, H, and action a from the set of legal actions, A(h), the next history is
always ha € H. The daimon and the agent take turns choosing actions until the process

terminates, which divides the set of histories into the active histories, H 4, where it is the
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Figure 4.1: The evolution of a POHP environment and agent, steered by a daimon through
its strategy, o.

agent’s turn to act, and the passive histories, Ho, where it is the daimon’s turn to act (and
where the agent waits for an observation). Histories are partially ordered action strings so
we use h C ' to denote that h is a predecessor of 1, |h| to denote the length of h, and use
subscripts to reference substrings, e.g., h; is the i*® action in h (counting from 1) and h<,, are
the first n actions of h. If the process begins from the empty history, &, we assume without
loss of generality that the daimon acts first so that the length of the history determines if
the agent is acting or waiting, i.e., H4 = {h | |h| mod 2 =1} and Hp = {h | |h| mod 2 = 0}.
Although, a POHP need not begin at the empty history; instead, one can be sampled from
a probability distribution over histories £ : H — [0, 1].

The agent receives limited information about the daimon’s actions through observations
from a set O, generated by an observation function, w : H — O, while the daimon may
observe the agent’s actions directly. The agent knows exactly the action they choose when
they choose it, so we set the observation of each passive history to the special symbol WAIT €
O, which indicates that the agent needs to wait for the daimon to act before the agent can
receive a proper observation and act.

The history process continues or terminates probabilistically according to v : H — [0, 1].
~(h) is the probability that the process continues beyond history h and 1 — y(h) is the
complementary probability that the process terminates at h. Without loss of generality,
we assume that the process only terminates after daimon actions so that the agent always
receives at least one observation after each agent action.

The daimon behaves according to a behavioral strategy (also called a policy), o, that
assigns a probability distribution over legal actions to each passive history. In passive history
h, the daimon chooses action B ~ o¢(h) and the history advances to hB, at which point the
process continues only if I' = 1 where I' ~ y(hB). We do not ascribe any a priori motivation

or perceptual limitations to the daimon, though these constraints could be added as extra
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assumptions for a specific application.

4.2.2 An Abstract POHP Agent

The agent in a POHP is decoupled from the history process by the observation and action
interfaces, and as such, could be designed in various ways. The agent architecture we assume
in this thesis has three conceptual modules: a state of mind, a behavior plan, and goals. The
agent pursues their goals by choosing different actions depending on their state of mind. For-
mally, the agent is defined by a tuple, (Sg, u4, uo, T, 7), where the components are described
as follows.

State of mind. A snapshot of the agent’s state of mind is given a concrete form in their
agent state, which is initialized to sy at the beginning of the POHP.! The agent’s state evolves
according to update functions uy and ue, which describe how actions and observations are
“remembered” (encoded in the next agent state), respectively.? At the start of the POHP, the
agent receives an observation, either of WAIT if the agent must wait for the daimon to act or
a proper observation o related to the daimon’s previous action. Eventually, the agent receives
a proper observation o, at which point the agent updates their agent state to s’ = up(s, o).
The agent then chooses an action a and updates their agent state to u4(s’,a) to begin the
observation—action cycle again. Ultimately, each history hgh, composed of an initial history
prefix hy and a postfix h, yields an agent state, so we recursively define a unified update

function,

Sy lf h =g
(V2 hgh — UA(u(h@h<|h|),h@h‘h|) if h@h<‘h‘ € HA
U (u(hgh<‘h|),W(hgh)) 0.W.

Each agent state corresponds to an information set, I(s) = {h | u(h) = s}, which is the
set of histories the environment could be in, given the agent’s state is s. We denote the set
of agent states that could ever be generated as &, and we partition them into the passive

agent states where the agent awaits an observation, Sp, and the active agent states where

In the work that this chapter is based on (Morrill, A. R. Greenwald, et al. 2022), the agent state concept
was originally called “information state” to make connections with previous work (e.g., Srinivasan et al. 2018
and D’Orazio, Morrill, et al. 2020) and the concept of information sets from extensive-form games. However,
calling this concept “information state” makes discussing states and information sets as separate concepts
difficult, and alienates those who are unfamiliar with the extensive-form game notion of information sets. The
term “agent state” that this thesis uses also has the benefit that it is already used within the RL community
to reference the same concept (e.g., Dong et al. 2021).

2Splitting agent state updates into action and observation specific updates has a couple benefits: it allows
us to refer to the agent’s state of mind immediately after choosing an action, which we make use of in our
reduction to Markov decision processes and in intermediate proof steps, and it allows the agent to forget
the action they just chose without waiting for an observation, which could be useful in some applications
involving asynchronous processing.
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the agent acts, S4. We overload Sa(s,a) = {uo(ua(s,a),w(hab))}rer(s), beana) as the set of
child active agent states following s and action a, allowing the daimon to choose any action
b in passive history ha.

Behavior. The agent acts by sampling actions from a behavioral strategy (also called
a policy), m € II, where probability distributions over legal actions are assigned to agent
states. At active history h € I(s) associated with agent state s, the agent chooses an action
by sampling from their immediate strategy at s, n(s) € A(A(h)), where A(A(h)) is the
probability simplex over A(h). We assume that the agent can always determine the legal
actions from their agent state so we overload A(s) = A(h) for all s € S and h € I(s).

Goals. A bounded reward function, r : O — [—U, U], provides quantitative feedback to
the agent about their progress toward their goals. The return (cumulative reward) that the
agent acquires from active history h € H4 is Gu(m;0) = 3.2, Yir(w(H;)), where the initial
history in the trajectory is H; = h, the agent’s action on each step is A; ~ W(U(Hi)), the
daimon’s action on each step is B; ~ o(H;A;), the history is updated as the concatenation
H;iy = H;A;B;, and the continuation indicator is the product Y;;; = Y;I'; € {0,1} with
Yi=1and I'; ~ v(H;).

Generally, the agent’s goal is to maximize their return. The fact that the daimon’s strat-
egy is unknown and their actions are only partially observed prevents us from immediately
formulating this goal as an optimization problem. Neither can an equilibrium concept be
proposed as a solution concept without presupposing incentives and a level of rationality for
the daimon. Hindsight rationality, in contrast, is well suited as a solution concept for POHPs
as it focuses on self-improvement grounded in experience and requires no assumptions about
the daimon.

Repetition is a key requirement of hindsight rationality, and while no history may ever
repeat within a POHP, this is not a problem in a repeated POHP. Before each round ¢ begins,
the agent chooses strategy n' and the daimon chooses strategy of. The POHP plays out
according to these strategies, after which the agent receives reward information. The agent
can then compare the returns they achieved with 7' with those they could have achieved

with alternative behavior.?

A repeated POHP is a well defined online decision process as
long as the POHP terminates almost surely so that the agent is unlikely to be stuck in a
single round forever. In a repeated POHP, learning occurs across rounds rather than across

actions within a single POHP evaluation.*

3The agent may estimate the returns for alternative behavior using importance corrections if this infor-
mation is not provided explicitly at the end of each round, similarly to how reward functions are estimated
in adversarial bandit contexts (see, e.g., Lattimore et al. (2020)).

4Though it ought to be possible to construct a hindsight rationality objective within a single POHP
evaluation since the agent need only encounter the same or similar agent states repeatedly.
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4.2.3 Reach Probabilities

Consider random history H generated according to agent strategy 7, daimon strategy o, and
continuation function . The probability that history A is a prefix of H follows from the
chain rule of probability, Pr,[h T H] = [T/, Pr.o[hi | hei] where

. . if B
Pﬂ_’o_[hi | h<l] _ '/T(h;l | u(h<l)) 1 h<l € %A
O'(hl | h<i)’}/(h<i,1) 0. W.
We denote P, ,[h] = P, ,[h © H] and refer to this quantity as h’s reach probability. We can
decompose P, ,[h] = P,[h]P,[h] by grouping alternating terms
|h|
Pl =[] w(hilu(ha))
=1, he;€EH A
|h|
Pohl = J] ohilha)y(hein).
i=1,h;€Ho

P.[h] represents the probability that the agent plays to reach h and P,[h] represents the joint
probability that the daimon plays to reach h and that the history process continues long
enough to reach h.

The conditional probability
P.o[h C H K C H|

Proh]

is the probability that history A" C H given h C H. If A’ and h are unrelated in that
h' L h i B, then it is not possible for H to realize both, so the joint probability P, ,[h, '] = 0,
and consequently P, ,[h'|h] = 0. If B’ C h then H always realizes b’ when h is realized, then
Prolh,h'] = Pr,[h] and P, [0 | h] = 1. The last case is h C k', where P, ,[h/, h] = P, ,[}]
so that

Proll/ | h] =

Prolh]
P7r,a [h] ‘

P.ollh | h] =

4.3 Representing Traditional Models

The POHP model generalizes many traditional models. Here we describe reductions to game

and Markov models.

4.3.1 Games

A game is an N player interaction where each player simultaneously chooses a strategy and

immediately receives a payoff from a bounded utility function (Neumann et al. 1947). There
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Algorithm 1 The procedure for playing an N player game in POHP-form. The input
to this algorithm is either a pre-constructed POHP-form game or an EFG from which the
POHP-form.

1: Input: turn function p: H — {c} U {i},,

2:  legal actions function A,

3:  terminal histories Z C H

4:  or continuation function v : H — A{0,1},
5. information partitions {L}ie{c}u{j};v:l
6
7
8
9

or observation functions {w; : H — Si}ie{c}u{j}jyzla
. and utility functions {v; : Z — [-U, U]} Y,.
: for i € {c} U{j}}L, do
: wi(h) < I for h € I € Z; if w; undefined
10: v <= h — 1{h ¢ Z} if ~ undefined
11: H<+ @
12: '+ 1
13: while I' do
14: send w;(H) to player p(H)
15: receive A € A(H) from player p(H)
16: H<+— HA
17: sample I' ~ ~(H)
18: fori=1,2,...,N do
19: send w;(H) = (H,v;(H)) to player i

may also be an extra “chance player”, denoted ¢, who “decides” chance events like die rolls
with strategy m.. A game described in this way is called a normal-form game (NFG).

For any given player, 7, we can represent i’s view of the game with a POHP, G;, where the
agent represents ¢ and the daimon represents the other N —1 players and chance in aggregate.
We can also represent chance’s view of the game with a POHP where the chance agent’s
strategy is fixed to m.. The histories, action sets, and continuation function across all N + 1
of these POHPs are shared but the first turn indicator and observation functions are specific
to each player. The reward functions for each player must also reflect the game’s payoffs.
After each player chooses an agent strategy for their POHP, all the POHPs are evaluated
together, sharing the same history, and each player receives a return in their POHP that
equals their payoff in the game.

Together, the set of POHPs, {gi}ie{c}u{j}ﬁl, represents what we could call a POHP-form
game. In each G;, the daimon’s strategy, o;, must reflect those of the other players. If the
game is defined with a turn function p : H — {c} U {j}}_, that determines which player
acts after a given history h, we can set ¢; to conform to the agent strategies from the other
POHPs as 0;(h) = mpn) (upm) (h)).

A turn-based game described with histories is called an extensive-form game (EFG; Kuhn
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1953). Any NFG can be converted into extensive form by serializing each decision. In the
process, of course, players who act later are not allowed to observe previous actions, and
this is traditionally specified through information partitions. Each player, 7, is assigned an
information partition, denoted Z;, constructed by partitioning all of player i’s active histories
into information sets. Typically, EFGs also define a set of terminal histories, Z C H, which
is constructed so that every history eventually terminates. As in a NFG, players receive
payoffs upon termination.

Since the POHP and EFG share the same history-based progression, representing an EFG
in POHP-form simply requires that information partitions, terminal histories, and utility
functions are faithfully reconstructed in the POHP. To reconstruct information partitions,
we must construct the POHP for each player i so that each history h € I’ € Z; yields an
active agent state s = w(h) where the POHP information set I(s) = I’ matches the EFG
information set. We can complete this reconstruction by showing player ¢ their EFG infor-
mation set through their observations, e.g., w;(h) = I, and by setting player i’s observation
update function to up : s,0 +— o. We can add terminal histories to a POHP by setting the
continuation function to 7y : h — 1{h ¢ Z}. To respect the EFG’s utility function for each
player i, v; : Z — [—U, U], we set player ¢’s rewards in the POHP to zero except those on a
terminal history, z, at which point 7;(w;(2)) = v;(z).

See Algorithm 1 for a programmatic description of how a game, given in either POHP or

extensive form, can be played out in POHP form.

4.3.2 Markov Models

The POHP model has extremely simple dynamics, the next action is merely appended to
the current history, but this leads to a constantly expanding, extremely complex history
set. To manage this complexity, agents can construct their own abstractions through agent
state, which operates in the opposite way; the agent state dynamics may be mechanically
complicated but they can produce compact agent state sets. Instead of proposing a complex
but mechanically simple environment, the popular class of Markov models build complicated
dynamics into the environment to make them more compact and to allow agents to take
advantage of this structure.

In a Markov model, the environment has a state S that evolves according to the actions of
agents and a transition distribution. In a general partially observable Markov game (POMG;
Hansen et al. 2004), all of the agents in a Markovian environment choose an action, and
the combination of these actions, (A4;)Y ;, determines the distribution over next environment

states given the current environment state, P[-| S, (4;)Y,].> The next state is then sampled

5A Markov game is also often called a “stochastic game”, but a core feature of this model is Markovian
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according to P[] S, (4;)Y,] and the cycle repeats. The environment is Markovian because
the next state distribution is conditionally independent of all previous states and actions.

To reproduce a POMG with a POHP-form game, we must construct a Markovian environ-
ment state and each player’s observations must depend only on the environment state rather
than the underlying action history. Agent states in a POHP may not satisfy the Markov
property even if the daimon’s strategy is fixed because the daimon’s strategy may depend on
the underlying action history. However, we can easily reproduce a Markovian environment
state with the passive agent states of the chance player in a POHP-form game.

At each of chance’s passive histories h, each non-chance player chooses an action in turn,
which advances the history to A’ = ha;...ax where chance updates their agent state to
s = uc(h') € S.a. Since each player acts in turns rather than simultaneously, we are
technically constructing a turn-taking POMG (TT-POMG; A. Greenwald, J. Li, et al. 2017),
though a TT-POMG is functionally equivalent to a simultaneous action POMG. Chance then
chooses which of their passive agent states is next by sampling A. from m.(s), resulting in
a transition to spa, = u.(h'A.) € S.0. A Markovian transition between s;, and s; 4, can be
enforced by constructing chance’s observation function so that w.(ha . ..ay) = w.(ha; . .. ay)
for all joint player actions a; ...ay and histories h € I(s;), which, e.g., is satisfied by the
simple observation function w.(ha; ...ay) = a; ...ay. Enforcing this constraint for each pair

of histories h, h ensures that if u.(h) = s, then, given joint player actions a; ...ay,

uc(ﬁal c.anA) = uC,A(uc,o(uc(ﬁ), wc(ﬁal co.an)), Ae)
— U’C,A(UC,O(Sh7 wc(hal ce CLN)), Ac)

= SpA,

with transition probability P[- | sy, a1 ...an] = 7.(Ac | sp).

To complete the reduction, we must construct each player’s observation function so that it
only depends on chance’s passive agent state. For each player ¢ and active history h € H 4,
set w;(h) = wi(u.(h)), where w} is player i’'s POMG observation function. The POMG model
is also typically presented as a continuing process with discounting, which we can replicate by
setting the continuation probability v(h) to the POMG discount factor for each of chance’s
passive histories h and (k') = 1 for all other histories A'.

Providing full observability to player ¢ in a POHP-form POMG is simply a matter of
revealing chance’s passive agent state to player i, i.e., set w;(h) = u.(h) for each active
history h € H,;. If all players are granted full observability, then a POMG becomes,
naturally, a Markov game (L. S. Shapley 1953). Furthermore, a single-player Markov game or
POMG reduces to a Markov decision process (MDP) or partially observable MDP (POMDP;

transitions, not stochasticity. This leads us to prefer the term “Markov game”.
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( 1\

chance “agent”
Se~ P[] Se, (4:)i,] is computed as,

1 S ueo(Se (A)N)
2: Ac ~ 7.‘-C(Sé)
3: Sc — uc,A(Sé7 AC)

, Y we(H) = (4)Y, 1 A=A, ; \
player 1 player N

1: G <—G1+T1<Ol) ‘Olzwl(H) Y ON:CUN(HZ 1: GN<—GN+7’N(ON)

2. 5! + uyo(S1,01) ) %aie% lzstory ) 2. S + uno(Sy, Ox)

3: Al ~ 71'1(51) A = A1 g - A= AN 3: AN ~ WN(S;V)

4: Sy uy 4(S], Ay) * 4: Sy — un (S, An)

Figure 4.2: An N-player, POHP-form game where the agents for players 2 through N — 1
are not shown. (POMG) If O; for each player i only depends on S, (Markovian), then the
POHP-form game reproduces a POMG where S, is the POMG state. (Markov game) If
N > 1 and O; = S. for each player ¢, then it reproduces a Markov game where S, is the
Markov game state. (POMDP) If N = 1 and the POHP is Markovian, then it reproduces a
POMDP where S, is the POMDP state. (MDP) If N =1 and O; = S, then it reproduces
an MDP where S, is the MDP state. (EFG) If v(H) = 1{H ¢ Z} and r;(w;(H)) = v;(H)
if H € Z and 0 otherwise, then the POHP-form game reproduces an EFG with terminal
histories Z and payoff functions (v;)l .

Smallwood et al. 1973), respectively, and this is true when the model is represented in either
canonical or POHP-form.
Figure 4.2 visualizes a POHP-form game and summarizes all of the reductions to tradi-

tional models.

4.4 The Sub-POHP

For the rest of this chapter, we consider finite-horizon POHPs with timed update functions.
A POHP has a finite horizon if every history eventually terminates deterministically. We
enforce this condition by selecting a subset of histories, Z C H where 7(z) = 0 for all
z € Z. The agent’s updates are timed as long as the agent’s action update function records
the number of actions the agent has taken. A finite horizon and timed updates ensure that
the number of histories in each information set is finite and the same agent state is never
encountered twice before termination. Thus, the agent states are partially ordered and we

can write s < s’ to denote that agent state s is a predecessor of s'.
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We now describe how sub-POHPs can be constructed in finite-horizon POHPs with timed
updates and show how observable sequential rationality is naturally defined in terms of sub-
POHPs. This exploration will provide the base for the development and analysis of the
extensive-form regret minimization (EFR) algorithm for finite-horizon POHPs with perfect-

recall updates in Chapter 7.

4.4.1 Beliefs and Realization Weights

Given that the agent’s state is s, how likely is it that the agent is in a particular history
h € 1(s)? Traditionally, this is called the agent’s belief (about which history they are in) at s.
According to Bayes’ rule, Py ,[h | s] = Pro[s| h|Pxo[h]/Pxo[s]. Since h € I(s), Pr,[s|h] = 1.
The agent’s belief at s is then {77 : h +— Py, [h]/Pr »[5].

To evaluate P, ,[s], consider that the agent’s state is s only if the random history H lands
in I(s), so we can describe the event of realizing s as the union of history realization events.
Since we assume the agent’s updates are timed, there is at most one prefix of H in I(s),
which means that each h C H event for h € I(s) is disjoint. The probability of their union

is thus the sum

Prols| =Pro| |J REH| = ) Prolh].
)

hel(s) hel(s

An assignment of beliefs to each agent state is called a system of beliefs. A problem that
arises in defining a complete system of beliefs from a given m—o pair is that some agent states
may be unrealizable (P, ,[s] = 0). Motivated by a desire to describe how rational players
would play games or to deploy strong static artifacts, various rationality assumptions have
been studied that complete belief systems in different ways and lead to different equilibrium
concepts (see, e.g., Breitmoser et al. (2010), Dekel et al. (2015), and Kreps et al. (1982)).
However, from a hindsight rationality perspective, only realizable agent states could have
been observed by the agent, and only behavior in realizable states could have impacted the
agent’s return. Thus, beliefs at unreachable agent states are naturally left undefined.

As a consequence, agent state realization probabilities hold special significance in hindsight
analysis, as they determine whether or not a state is observable. More generally, they provide
a measure of importance to each agent state. Let J be the (possibly infinite) random step a
trajectory of active histories { H;}5°, where s is realized at history H;, i.e., u(H;) = s. The

return from H; can be split as

G, (mo) =) i< J}Yir(w(Hi))J%—EL{i > J}Yir(w(H,)).

. N >
i=1

NV
Return before s. Return after s.
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Setting H; ~ & to be an initial history and taking the expectation,

E[Gy, (m:0)] Zl{z < JYYir(w(H:)) | + Pro[s]Ex,mere G, (73 0)].

We define the realization-weighted expected return from s,
Vs(m;0) = Prols|Epgaero |[Gr(m; o)), (4.1)

where vy(7;0) is naturally zero if {™7 is undefined, to summarize s’s contribution to the

agent’s expected return.

4.4.2 QObservable Sequential Rationality

Here we capitalize on the generality of our POHP definition. An agent belief can be used
as a distribution over initial histories to define a POHP, which in this context we call a
sub-POHP. Thus, every realizable agent state s admits a sub-POHP with the initial history
distribution £(h) = €77(h) if h € I(s) and zero otherwise.

Sequential rationality can then be defined as optimal behavior within every sub-POHP
with respect to an assignment of beliefs to unrealizable agent states. This definition is equiv-
alent to sequential rationality in a single-player EFG (Kreps et al. 1982). Our new extension,
observable sequential rationality (OSR), merely drops the requirement that play must be ra-
tional at unrealizable (and therefore unobservable) agent states. OSR is a weaker condition
than any previous form of sequential rationality, including that of weak sequential equilib-
rium (Hillas 1987; Myerson 1997), because OSR can be achieved while choosing dominated
actions at unobservable agent states. Nonetheless, OSR is indistinguishable from sequential
rationality under Bayesian beliefs according to all outcomes that could be observed by the
agent given a daimon strategy, which makes it a natural refinement of hindsight rationality.

We can generalize the idea of OSR to samples from a joint distribution of agent strategy—
daimon strategy pairs (traditionally called a recommendation distribution) and deviations,
which we use to construct a general definition of OSR in a POHP. The key value determining
OSR is in fact Eq. (4.1), the realization-weighted expected return. The OSR condition can

thus be written in terms of a generalized full regret.

Definition 1. Define the full regret from agent state s as the difference in realization-
weighted expected return under ¢ compared with ¢, ie., ps(p,m0) = vs(o(m);0) —
vs(p<s(m); 0), where ¢ is the deviation that applies ¢ only before s, i.e., [p<sx](S) = [px](5)

if s <'s and x(3) otherwise.

Definition 2. A recommendation distribution, u € A(X x D), where X and D are the sets

of pure strategies for the agent and daimon, respectively, is OSR for the agent with respect to
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a set of deviations, ® C O, if the maximum benefit for every deviation, ¢ € @, according

to the realization-weighted expected return from every agent state, s € S, is non-positive,

Ewayoulps(0,2:d)] < 0.
The hindsight analogue to Definition 2 follows.

Definition 3. An agent is observably sequentially (OS) hindsight rational if they are a no-
full-regret learner in every realizable agent state within a given POHP with respect to ® C
O%Y. That is, the agent generates for any T > 0 a sequence of strategies, (w')L,, where
limp o0 % ZtT:l ps(o, 7t 0t) < 0 at each s for each ¢ € ® under any sequence of daimon
strategies (o)L_,. The positive part of the agent’s mazimum average full regret across active

agent states is their OSR gap.

The discussion that Myerson (1997) has at the start of Section 4.4 is illustrative of the
difference between the equilibrium and hindsight rationality perspectives on sequential ra-
tionality. Myerson (ibid.) explains that it is insufficient to consider how sequentially-rational
play is only at agent states that are observed in equilibrium play because equilibrium play
may only be motivated under particular behavior at unobserved agent states. One way to
resolve this issue is to assign arbitrary beliefs to each unobservable agent state and ensure
sequential rationality at each agent state, i.e., weak sequential rationality. Observable se-
quential equilibrium shows that, at least in a learning context, a more natural approach is
to consider the play at observable rather than the observed agent states, the difference being
that observable states could be observed under a deviation by the agent, without assigning
beliefs at unobservable states.

On each round, the daimon fixes their strategy, thereby constraining which agent states
are observable by the agent. After this round, the agent can look back on their behavior and
potential deviations at each observable agent state to improve upon their strategy. If the
daimon knows that the agent’s strategy is poor in particular sub-POHPs, then the daimon
can play to those sub-POHPs and exploit the agent’s weakness. The agent states in these
sub-POHPs become observable on the next round and the agent learns to improve their play
there. If the daimon never leads the agent to an agent state, then there is no reward-based
motivation for the agent to even consider how they would play in that state, which would

presumably require time and an allocation of computational resources.

4.4.3 An Attempt at Local Learning

Consider a local learning problem in a repeated finite-horizon POHP with timed updates

based on the realization-weighted expected return at each active agent state s. Given a set of
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deviations, ® C &%, we can construct a set of truncated deviations, @< = {¢<;}seca, Where
each deviation in ¢, applies a deviation from ® until after an action has been taken in s, at
which point the rest of the strategy is left unmodified. Each truncated deviation represents
a way that the agent could play to and in s so a natural local learning problem is for the
agent to choose their actions at s so that there is no beneficial truncated deviation.

To apply deviations to the agent’s behavioral strategies, notice that sampling an action
for each agent state under timed updates yields a pure strategy. Thus, a behavioral strategy
defines a probability distribution over the set of pure strategies, X. We overload 7 : X —
A(X) to return the probability of a given pure strategy under behavioral strategy 7 € II.
From this perspective, m may be called a mized strategy. The transformation of m by deviation
¢ is the pushforward measure ¢(m) defined pointwise by [¢7](z') = >_, 411, 7(2) for all
' € X, where ¢! : 2/ — {z | ¢(z) = 2’} is the pre-image of ¢.

The immediate regret at agent state s for not employing truncated deviation ¢ is a

difference in realization-weighted expected return under 5? <a(m.e,

ps(¢js> Up U) = 'Us(¢js (W); U) - ’Us(¢-<s<7r); U)
= P¢<S(W),0[S]E[GH(¢js(7T)§ U) - GH(W U)]-

Intuitively, it is the advantage that ¢<4(7) has over 7 in s assuming that the agent plays to s
according to ¢,(7).% Sadly, it can be impossible to prevent agent state s’s immediate regret

with respect to @<, from growing linearly in a repeated POHP.

Theorem 3. An agent with timed updates cannot generally prevent immediate regret from

growing linearly in a finite-horizon repeated POHP.

Proof. Consider a two action, two agent state POHP where agent state s transitions to s’
where the reward is +1 if the agent chooses the same action in both s and s, and —1
otherwise. The two external (constant) deviations, ¢—' and ¢2, that choose the same
actions in both agent states always achieve a value of +1. At s’, the agent has to choose
between achieving value with respect to the play of ¢! or ¢~2 in s. If the agent chooses
action #1, then vs(¢Z}(7);0) = +1 but vs(¢pZ2(7);0) = —1, and vice-versa if they choose
action #2. Therefore, the agent minimizes their maximum regret by always playing uniform

random and suffering an expected regret of +1 on every round. O]

Since timed updates are insufficient to guarantee the existence of no-immediate-regret

algorithms, we will use a stronger property: perfect recall.

5The term “advantage” here is chosen deliberately as immediate regret is analogous to advantage in
MDPs (Baird 1994), with respect to a given, rather than optimal, policy (see, e.g., Kakade (2003)).
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4.5 General Immediate Regret Minimization with Per-
fect Recall

Perfect recall requires that every bit of information from every action and observation is
encoded in the agent state, e.g., update functions that concatenate the previous agent state
with the given action or observation. As the terminology suggests, agents with perfect recall
“remember” each of their actions and observations. This ensures that each agent state s’ is
either the initial agent state or has a single parent agent state s, i.e., u(h<p) = s for each
history h € I(s’). As a result, perfect recall requires that there is a unique sequence of agent
states leading up to each agent state s € S, i.e., (u(ﬁ))ﬁgh = (u(ﬁ’))}?[h/ for each pair of
histories h, h' € I(s). -

Denote the sequence of active history prefixes of history h as my,(h) = (h<2i)£ﬂ/ 2l and
the sequence of agent actions as n4(h) = (hzz)ffl'/ 21 As long as the agent always remembers
their own actions, which a prerequisite for perfect recall, there is a unique sequence of agent
actions that leads to s and we can overload 7n4(s) = na(h) where h € I(s) is arbitrary.
Consequently, a perfect recall agent can only play to reach each history in s equally, i.e.,
P.[h] = P,[l] for all h,h' € I(s). If we define P,[s] = P, [Uhel(s) h}, then perfect recall
implies that P,[s] = P.[h'] for any history A’ € I(s).

Therefore, under perfect recall, the probability of realizing s simplifies to

= D_ Pl 51 D Paln

hel(s) hel(s)
The belief about any history h € I(s) then simplifies to

P [h]P.[h] Po[h]
Pels] Cnerto Palhl — Chero Polh]
The realization-weighted expected return simplifies to

vs(m; o) Z P,[RE[G(m;0)] . (4.2)

hEI (s)

&7 (h) =

TV
v§F (o)

We can recognize the sum denoted v"(7;0) as the counterfactual value of s, which does

not depend on 7’s play at s’s predecessors. General immediate regret becomes weighted

immediate counterfactual regret,

ps(P=s, 5 0) = Py (m sl (v (¢s(); ) — v(" (75 0)).

Since the counterfactual value function does not depend on the agent’s play at s’s predeces-
sors, perfect recall avoids the problem that leads to Theorem 3 under updates that are only

timed, where no algorithm can ensure sublinear growth of cumulative immediate regret.
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Perfect recall allows immediate regret minimization via a reduction to online time selection
decision processes (OTSDPs; Section 2.3.4).

Theorem 4. If the agent has perfect-recall in a repeated, finite-horizon POHP and there is
no deviation ¢ € & C Y for which the deviation reach-probability of active agent state s,
Ps_.(m 5], depends on the agent’s immediate strategy at s, w(s), then the problem of minimiz-
ing immediate regret with respect to ® at s reduces to that of minimizing regret with respect
to action transformations @5 = {¢s}pea in an OTSDP.

Proof. In a repeated POHP where the agent and daimon choose 7t € II and o' € ¥ on
each round ¢ the (round dependent) counterfactual value function ¢ — v$"(+; o) fills the role
of the OTSDP reward function, the set of (round dependent) reach probability functions
{wsg it Py s} sco flls the role of the set of time selection functions, and the set of
action transformations that could be made at s, ®,, fills the role of OTSDP deviations. An
OTSDP requires giving the agent all weights on time ¢, i.e., {w} ;}4ca, before they must
choose a strategy. Since we assume that Py__(x+)[s] does not depend on 7*(s), each weight

w; 4 can be computed at the start of each OTSDP round, which completes the reduction. [

With perfect recall, we can also give a bound on full regret as a function of immediate
regret. This result is achieved by decomposing full regret into the sum of immediate re-
grets across active agent states and generalizes Zinkevich, Johanson, et al. (2007b)’s original

counterfactual regret decomposition (Lemma 5) so that it applies to any deviation.

Lemma 1. In a finite-horizon POHP, the realization-weighted expected return of active agent

state s under perfect recall recursively decomposes as

vs(m;0) = Py[s]rs(m; o) + Z vy (5 0).

§'€Uqe a(s) SA(s,a)

Proof. Multiplying the decomposed counterfactual value (see Lemma 3) by the reach weight,

vs(m;0) = Prlslro(mo) + Y Palslm(a|s)vg 0 (5 0)
a€A(s)

= PW[S]TS(T‘-; U) + Z Vy 4 (s,a) (ﬂ-; 0-)' (43)
a€A(s)
Furthermore,

Uiy (s,0) (T3 0) :Z Zl{u(h) = §'}Pr o [RE[Gh(T; 0)]

s'€S(s,a) h€u4(s,a)

=37 Y P lWIEGK(m o). (4.4)

s'eSa(s,a) M eI(s)

J/

~
vy (m50)

Substituting Eq. (4.4) into Eq. (4.3) completes the proof. O
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Lemma 2. In a finite-horizon POHP, the full regret with respect to ¢ € ®% under perfect

recall at active agent state s recursively decomposes as

ps(¢,ﬂ;0) ¢<S77T U Z Ps ¢ U U

s eUaeA () Sa(s,a)

Proof.
2
po(@,7;0) = 0,(6(7); 0) — v4(62s(7); 0) + v4(D2(7); @) — v, (62(7); 0)
ps(P=s,m;0)
= ps(¢=s,m50)
+ F¢(ﬂ) [s]rs(m;0) — Py_.(m) [s]rs(m; O’Z
0
+ ) Uy (s.0)(9(7); 0) _UuAsa)(¢js(7T);U)J'
a€A() Pu g (o, (HT50)
Applying Eq. (4.4) to sum over active agent states,
= ps(6=ssmi0)+ Y ve(9(m);0) —va(dow(m);0). O

s'€Uqca(s) Sals,a) P (;{ﬂ;o)

Theorem 5. If an agent with perfect recall chooses their strategy in a repeated finite-horizon
sub-POHP rooted at agent state s on each round t so that after T rounds, their immediate
regret with respect to ® C O3 is upper bounded by f(T) > 0, f(T) € o(T), then the
agent’s full regret at s is sublinear, upper bounded according to ptT(¢) = Zthl ps(o, 7t ot) <
|Ss, 4l f(T), where Ss 4 = {s' € Sa | s < '} is the number of active agent states in s’s sub-
POHP. Following this procedure every agent state thus guarantees OS hindsight rationality
with respect to P.

Proof. Working from each terminal agent state where the full and immediate regret are equal
toward s, we recursively bound the cumulative full regret at every agent state according to
Lemma 2. Every active agent state adds at most f(7') to the cumulative full regret at s and
there are |S; 4| active agent states in s’s sub-POHP so the cumulative full regret at s is no
more than |Ss 4| f(T). O

The fact that the procedure described by Theorem 5 is OS hindsight rational is critical as

OSR can elevate the strength of a special class of deviation type.

Definition 4. The set of single-target deviations generated from an arbitrary set of devia-
tions ® C O is

<o = {¢" | Vz, [¢'2](5) = [92](5) if § = 5 and z(5) 0.w.}ca, sesu-
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b s the set of deviations constructed from ® that only deviate along a single sequence of
agent states up to a “target” agent state and behave identically to the input strategy at all

other agent states.

The set of single-target deviations is special because it captures all of the ways that the
input strategy could be modified along any sequence of agent states without including the
combinations of these modifications across multiple sequences. The set of single-target devi-
ations can therefore be much smaller than its generating set while preserving the generating
set’s capacity to express different behavior modifications.

The next result formalizes the intuition that the set of single-target deviations preserves
the essential expressive capacity of its generating set by proving that there is no beneficial

deviation in an arbitrary set of deviations ® if OSR is achieved with respect to ®<q.

Theorem 6. If a perfect-recall agent’s full regret at each active agent state s with respect
to each single-target deviation ¢ € P<q, is ds(@)f(T) > 0, where ds(¢) is the number of
non-identity action transformations ¢ applies from s to the end of the finite-horizon POHP,
then that agent’s OSR gap with respect to <o and © C O is no more than |S4|f(T).

Proof. First, establish a simple fact about single-target deviations. At each active agent state
s, the full regret with respect to each single-target deviation ¢<, that transforms each action
up to and at s, and then immediately re-correlates is no more than f(7") since dg(¢<s) = 1.

Formally, denote this value as

P (6=0) = D peld<e, 75 0") < F(T). (4.5)

Next, consider the terminal or height 1 active agent states for player ¢, i.e., those without
successors. The maximum full regret with respect to ® <, is the positive part of the maximum
full regret with respect to ® at each terminal active agent state s; either the single-target
deviation can change the action at s or it can re-correlate. Therefore, the theorem is proved
if all active agent states are terminal as d < |S4|. This serves as the base case of a proof by
induction.

For the induction step, assume that the maximum full regret of a deviation in ® and a
single-target deviation in @< at active agent state s is upper bounded at each immediate
successor s € S(s,a) by (d —1)f(T), where d is the height of s (d — 1 agent actions leads

to a terminal active agent state). The full regret of deviation ¢ € ® decomposes as

prT(0) = pi" (d<e) + > pi"(9). (4.6)

S'EUQEA(S) Sa(s,a)
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according to Lemma 2. We can bound the full regret at each s’ by the induction assumption,

P (9) < pi" (9<s) +18als, a)l(d — 1) F(T). (4.7)

We can then bound the maximum immediate regret at s by Eq. (4.5),
P () < J(T) +18als, a)|(d = 1) F(T) (4.8)
< [SAlF(T), (4.9)

where the last inequality follows from the fact that (d —1)|S4(s,a)| < |Sa|—1 under perfect
recall. Equation (4.9) completes the proof. ]

One important contribution of Part II is an investigation into the use of single-target

deviations with OSR in the design of deviation types and algorithms.

4.6 Conclusion

This chapter introduced the POHP formalism for modeling complex, multi-agent RL envi-
ronments from a single agent’s perspective. The POHP formalism provides a mechanically
simple alternative to a more complicated general formalism like the POMG, EFG or POMDP,
and in fact generalizes all of these models. In contrast to the MDP formalism, the POHP
formalism achieves this mechanical simplicity without sacrificing the ability to accurately
model multi-agent interactions and partial observability.

A POHP model is also recursive in that sub-POHPs can naturally be constructed from
the agent’s states. Using this property, we showed how OSR can be formulated using the
sub-POHP concept. We also showed that updates which are merely timed prevent efficient
agent-state-local learning as such updates are insufficient to guarantee that the agent can
minimize immediate regret. However, with perfect-recall updates, we showed that immediate
regret minimization is possible and that it leads to full regret minimization via a generalized
regret decomposition. Furthermore, we showed how OSR elevates the strength of single-target
deviations, which is a key result that Part II will build on.

The generality and simplicity of the POHP formalism suggests that it may be useful in
modeling continual learning problems where environments are expansive, unpredictable, and
dynamic. Good performance in such environments demands that the agent continually learns,
adapts, and re-evaluates their assumptions. Perhaps hindsight rationality could serve as the
learning objective for such problems if it could be formulated for a single agent lifetime rather
than over a repeated POHP.

The POHP formalism allows agents to determine their own representation of the environ-
ment, which opens the way to direct discussions and comparisons of agent state representa-

tions. One particular direction that is made natural by the POHP model’s action—observation
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interface is predictive state representations (PSRs; S. Singh et al.; S. P. Singh et al. 2012;
2003). While PSRs were developed to model Markovian dynamical systems with at most one

controller, the POHP model could facilitate an extension to multi-agent settings.
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Chapter 5

Background

5.1 Introduction

The external, internal, and swap deviations are natural in normal-form games, but what
deviation types and equilibrium concepts are natural in perfect-recall extensive-form games
and POHPs? What learning algorithms already exist for perfect-recall POHPs? This chap-
ter describes background relevant to these questions before answering them in the following
chapter. To build up to new deviation types and a new algorithm for achieving hindsight
rationality in perfect-recall POHPs, this chapter presents the necessary background on pre-

viously studied deviation types and algorithms.

5.2 The Deviation Player and Extensive-Form Corre-
lated Equilibrium

Eztensive-form correlated equilibrium (EFCE) is defined by Definition 2.2 of von Stengel
et al. (2008) as a correlated equilibrium with respect to deviations that are constructed
according to the play of a deviation player. At the beginning of the game, the mediator
samples a pure strategy profile (strategy recommendations), {z;}¥,, and the game plays out
according to this profile until it is player ¢’s turn to act. Player i’s decision at their active
agent state s is determined by the deviation player who observes the action recommendation
for player i, namely z;(s), which is the action recommended to player ¢ by the mediator
at s, and then chooses an action by either following this recommendation or deviating to a
different action. After choosing an action and waiting for the other players to act according
to their recommended strategies, the deviation player arrives at player i’s next active agent
state. Knowing the actions that were previously recommended to player ¢, the deviation
player again chooses to follow the next recommendation or to deviate from it. This process

continues until the game ends. If the deviation player cannot achieve a better value than
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that of player ¢, for each player ¢ in the game, then the recommendation distribution is an
EFCE.

Let n4 = maxpey | A(h)| denote the maximum number of possible agent actions and
duny = [|h]/2] be the depth, i.e., the number of agent actions, of the agent state at active
history h € H4 under perfect recall.! The number of different states that the deviation
player’s memory could be in upon reaching agent state s at depth d; is (n4)%, corresponding
to the number of action combinations across s’s predecessors. This exponential growth is
computationally problematic.

One way to avoid this exponential growth is to assume that recommended strategies are
in reduced form. A reduced strategy does not assign actions to agent states that could not be
reached according to actions assigned to previous agent states. If a reduced recommended
strategy x plays action a in agent state s and the deviation plays action a’ there instead,
every agent state s’ = s that the deviation player encounters thereafter would never have been
encountered if the recommended strategy had been followed. Therefore, x(s") is undefined for
all s’ = s and the deviation player does not even have the opportunity to observe any more
actions from the recommended strategy; the recommended strategy never set them to begin
with. A deviation player can reach a given agent state s by deviating at any predecessor s < s
or not deviating at all, which means that the number of possible memory states associated
with s grows linearly with depth.

This reduced strategy assumption effectively forces the deviation player to behave accord-
ing to an informed causal deviation (Dudik et al. 2009; Gordon et al. 2008) defined by a
trigger action and trigger agent-state pair, along with a strategy to play after triggering.
Defining EFCE as a correlated equilibrium with respect to informed causal deviations allows
them to be computed efficiently, which has led to this becoming the conventional definition
of EFCE.

An agent-form correlated equilibrium (AFCE) is a different type of equilibrium introduced
by Forges (1986) based on Selten (1974)’s agent normal-form of a game where we imagine
that a different agent determines the action for each player at each agent state. Then there
is a different deviation player for each agent state, not just each actual player, and they can
only deviate from the recommendation at their own agent state.

von Stengel et al. (2008) shows that under the reduced strategy assumption, EFCE and
AFCE are equivalent; a reduced strategy EFCE is a reduced strategy AFCE and wice-versa.
In addition, a full strategy EFCE is a reduced strategy EFCE as well as an AFCE in both
full and reduced strategies. One important contribution of this chapter is an analysis of the
relative strength of reduced strategy EFCE and full strategy AFCE, two deviations which

had not previously been compared.

!The depth is the length of the history divided by 2 to exclude the daimon actions from the count.
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5.3 Counterfactual Regret Minimization

Counterfactual regret minimization performs external regret minimization locally at each
active agent state where the reward function is counterfactual value (Zinkevich, Johanson,
et al. 2007b). Given a strategy profile, (7, o), and assuming perfect recall, the counterfactual
value for taking action a in agent state s is the agent’s expected return assuming they play

to reach s and play a before playing 7 thereafter, i.e.,

V(@7 (m);0) = Y Po[HE[Gh(;" (7); o)), (5.1)

hel(s)

where we overload the action transformation ¢’ to a strategy transformation that changes

the strategy only at s to play a. The learner’s performance is then measured at each

agent state in isolation according to immediate counterfactual regret, which is the extra

counterfactual value achieved by choosing a given action instead of following 7 at s, i.e.,
(o7 mo) = v (¢ (m);0) — v (m; o).

CFR is the application of a no-external-regret algorithm to ensure that cumulative im-
mediate counterfactual regret, pETMWEF (pe) = ST 50F(ge 7t o) with respect to each
action transformation ¢;“ at each active agent state s, grows sublinearly with 7. The
following result from Zinkevich, Johanson, et al. (ibid.) shows that minimizing immediate

counterfactual regret everywhere actually minimizes external regret.

Theorem 7. Cumualtive external regret cannot be larger than a sum of the positive part of cu-
mulative immediate counterfactual regrets across active agent states. Let the cumulative regret
with respect to external deviation ¢ to pure strategy x be ptT(¢p7%) = Zthl p(o™* 7t at),

then the maximum cumulative external regret is upper bounded as

1T/ 11—z 1:T,IMM,CF [ | —ra
max p (¢ < E max  p; T (@

Consequently, a no-regret algorithm such as ramp regret matching can be deployed at each

active agent state so that together they minimize external regret.

Theorem 8. If the agent selects actions according to ramp regret matching trained to choose
from the external action transformations according to the counterfactual value function, then

the agent’s maximum cumulative immediate counterfactual regret is upper bounded as

max piTll\IM ,CF Qbs_m) < Ud* /nAT,

where d, = maxses, ds is the mazimal depth of any agent state. Therefore, by Theorem 7,

max p' L (¢7") < Ud,|Sa|/nAT.

¢*>‘T G(PE)\
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Theorem 7 (and by extension Theorem 8) follows directly from an elementary decomposi-

tion relationship consisting of the following three lemmas.

Lemma 3. In a finite-horizon POHP, the counterfactual value of active agent state s under

perfect recall recursively decomposes as
v (m0) =r(m; o) + E[“SZ(S,A)(W 0)]

where 15(m50) = 34 p(s) PolME[r(w(RAB))], and expectations are taken over actions A ~
7(s) and B ~ o(hA).

Proof.
v (m0) = Y Po[ME[r(w(hAB)) + TGpap(m;0)]
hel(s)
=rs(m o) +E| Z P, [hAb|Ghap(; 0)]
hel(s),be A(hA)
=ry(m; o)+ E[USZ(S,A) (m;0)],
where I' ~ v(h). O

Lemma 4. Define the full counterfactual regret with respect to pure strategy x as
ps(¢7" m0) = v (¢ (m); 0) — v (3 0).

If x uses action a in s, then its full counterfactual regret decomposes as

P (@7 ma) = pM (@) mo) + D p (67w 0),

s'€S A(s,a)

Proof.

= v (97" (m); 0) — v (75 0). (5.3)
Decompose into immediate and future value:

=ry(¢7%(m)i0) — oS (o) + Y v (x0). (5.4)

s'eSa(s,a)

Add and subtract > s, (50 Vs (T50):

— rs(py¢(m);0) + Z vy (m;0) —vd(m; 0)

s'eSa(s,a)

S/

~
Value from a assuming 7 is played thereafter, v$F(¢5>%(7);0).

+ > v (w50) — v (m0). (5.5)

s'eSA(s,a)

J/

~-
Suboptimality after a, ZS/ESA(S o) P (677 mi0).

=7 ma)+ Y pS (¢ o). (5.6)

s'eSa(s,a)
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[]

Lemma 5. (Zinkevich, Johanson, et al. 2007a, Equation 13, Lemma 5) Denote the cu-
mulative full counterfactual regret at s of deviation ¢ as piTFUILF (¢) = Zthl S (o, 7t 0t).
The mazimum cumulative full counterfactual regret at s over the external deviations is upper

bounded as

1:T,FULL,CF [ | —X
max
¢—>$2(I>FX p (¢ )
< max pl ‘T, IMM, CF<¢—)a) + max § : max 'piTFULL CF(¢—)$)
d)—ﬂleé‘}z( CLEA( ) ¢—>J)€(I>H)\
(=) s'eSa(s,a)

Proof. Sum across rounds on both sides of Lemma 4. Take the maximum over ®%° on both
sides and split the maximum on the right-hand-side into three separate maximizations over
Ps): Als), and PF. O

5.4 Internal CFR

Celli et al. (2020) adapts CFR so that its empirical distribution of play in self-play converges
to a (reduced strategy) EFCE almost surely. They accomplish this by swapping out imme-
diate counterfactual regret for laminar subtree regret, a form of immediate regret similar to
cumulative immediate counterfactual regret except that instantaneous counterfactual regret
terms are conditionally dropped from the sum across rounds. A “trigger condition” is defined
by a predecessor active agent state s' and an action o', and is satisfied only if the agent plays
to s' and plays @' once there. Terms from the cumulative immediate counterfactual regret
sum are dropped unless the trigger condition is met.

Assume that on each round ¢ of a repeated finite-horizon POHP, a perfect recall agent
chooses a mixed strategy 7! and samples a pure strategy X* ~ 7f. The laminar subtree regret
for not choosing action a at agent state s triggering on (s',a') accumulated after T rounds
2

is
T

Zl{s!js,Xt( =a'}pS" (¢, X' 0').

t=1
Laminar subtree regret can be controlled throughout the POHP by a set of no-regret
learners at each agent state. Conceptually, there is one for each trigger, (s',a'). A learner

only activates if the trigger condition is met, otherwise they are “asleep” and do not produce

2Celli et al. (2020) works from the EFG formalism and purifies the strategies of all non-chance players in
their definition of laminar subtree regret but take the expectation over chance events. Since a POHP presents
the view of a game from a single player’s perspective and abstracts away the other players and chance into the
daimon, our definition of laminar subtree regret allows but does not require that the daimon use a partially
purified strategy that conforms with Celli et al. (ibid.)’s definition.
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an immediate strategy or update their internal state. Given a sampling of actions leading up
to a given agent state s, only one learner is awake, so the next action can be sampled from
this learner’s immediate strategy. All but one of these learners at s are no-external-regret
learners. The single no-internal-regret learner is shared across all triggers where s' = 5. Celli
et al. (2020) call this algorithm internal CFR (ICFR) and they prove that

Theorem 9. When all players play according to ICFR, their empirical distribution of play
converges almost surely to a (reduced strateqy) EFCE.

Since actions are sampled in each agent state, ICFR can be recognized as an extension
to pure CFR (Gibson 2014). Pure CFR performs CFR except that counterfactual regrets
are computed with respect to a purified agent strategy where an action was sampled at each

agent state according to the local no-external-regret learner’s immediate strategy.

5.5 Policy Gradient Policy Iteration

If we apply gradient ascent to the expected return from a POHP’s root agent states, we
arrive at a policy gradient algorithm for POHPs. The policy gradient strategy is a behavioral
strategy 7 determined by parameters learned with gradient ascent on the agent’s expected
return function. In a finite-horizon POHP with timed updates, the capability of a single
action probability at a single agent state s to change the root expected return depends on
how often 7 plays to s and the strategy’s behavior after s. Adding up all the contributions to
the change in the root expected return across each agent state and action yields the partial
derivative for a given gradient ascent parameter.

Restating a result from Srinivasan et al. (2018)’s Appendix E, if PGPI is tabular, i.e.,
there is a single parameter, 0;,, for each action a in each active agent state s, then each
active agent state has its own local gradient. The partial derivative of the expected return
with respect to 0, is then the realization-weighted expected return assuming that action a

is chosen in s multiplied by the partial derivative of the strategy with respect to 0;,, i.e.,

6EHN€[GH(7T; O’)] . aPmJ[S]EH,\{va [GH(W; 0’)]

90, , = 26.., (5.7)
B 0Gy(m;o)| on(a|s)
- P7r,a [S] EHNE;T’U [ 87’(’(& | S) :| 805@ (58)
or(als
= PW,U[S]EHr\/f;T’U[GHa(ﬂ';O')]a(H—H. (59)

Eq. (5.8) shows that we can implement tabular PGPI with a set of policy gradient in-
stances, each localized to a particular agent state. The policy gradient instance for active

agent state s trains on the realization-weighted expected return (as a function of the action
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taken in s) from s as its utility function and it produces the immediate strategy at s. As
noted by Srinivasan et al. (2018), this procedure resembles CFR except for two differences:

the local utility functions in PGPI are

a— PWU[ ]EH §7TU[GHCL Ue U Z P7r0' Gha 7T U) (510)
hel(s)
rather than
arr Y Po[hE[Gha(m;0)] (5.11)
hel(s)

in CFR, and PGPI uses policy gradient as its local learner rather than a no-regret learner.?

The only difference between Eq. (5.10) and Eq. (5.11) is that the former (PGPI) uses the joint
reach probability P, ,[h] that includes the agent’s reach probability contribution, while the
latter (CFR), uses P,[h], which only includes the daimon’s reach probability contribution.
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Chapter 6

Behavioral Deviations

6.1 Introduction

In this chapter, the behavioral deviations, a broad and natural class of deviation functions for
finite-horizon POHPs with perfect recall, are developed. They are inspired by von Stengel
et al. (2008)’s deviation player that forms the basis of the EFCE concept. von Stengel
et al. (ibid.), as well as subsequent works (Celli et al. 2020; Dudik et al. 2009; Farina,
Bianchi, et al. 2020; Farina, Ling, et al. 2019; Gordon et al. 2008; W. Huang 2011), add
assumptions to restrict deviations that a deviation player could express in order to construct
efficient algorithms. The behavioral deviations provide a unified mechanism for selecting
subsets to replicate all previously studied deviation player restrictions and for creating new
restrictions. The new partial sequence deviation restriction introduced in this chapter yields
more powerful deviation types, when combined with observable sequential rationality (OSR),
than those previously studied without substantially increasing complexity.

This chapter also explores some of the tradeoffs between different behavioral deviation
subsets. Different subsets have different strategic strengths and weaknesses, as well as differ-
ent computational requirements. Elementary strategic differences between deviation types

are illustrated with game examples.

6.2 Definition

It does not appear to be feasible, in general, to compete with von Stengel et al. (2008)’s
deviation player at full strength. Thus, it is conventional to weaken the deviation player
by forcing strategy recommendations to be in reduced form, thereby limiting the amount
of information the deviation player can use to construct beneficial deviations. Instead of
restricting the information in the strategy recommendations, what if we intentionally hide

information from the deviation player?
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Assuming full pure strategy recommendations (e.g., in normal or behavioral form), we
now provide the deviation player with a subset of three options at each agent state, s: (i)
commit to following the (pure) action recommendation at s, z(s), before seeing z(s); (ii)
choose a new action without ever seeing x(s); or (iii) observe z(s) and then choose a possibly
different action. Option (iii) is traditionally the only option provided to the deviation player
and it does in fact dominate the other two. However, in our construction, Option (iii) need
not be available to the deviation player in every, or possibly any, agent state.

The deviation player’s behavior at agent state s can be modeled as an action transformation
¢s = A(s) — A(s). We can then implement controls on the deviation player’s options by
allowing or prohibiting particular action transformations. The deviation player is allowed
Option (i) if they are allowed to choose the identity transformation, ¢' : a — a. They are
allowed Option (ii) at s if they are allowed to choose an external transformations from s
Finally, they are allowed Option (iii) if they are allowed to choose an internal transformation
from @2{(3).1

The action transformation that the deviation player chooses does not merely represent
their behavior, it also reflects the information that the deviation player observes during play.
Each internal transformation (including the identity transformation) must “observe” the
recommended action in order to return the appropriate transformed action, therefore, if the
deviation player uses one of these transformations, they also observe the recommended action.
Since each external transformation is a constant function, executing such a transformation
does not require observing the recommended action, and therefore, if the deviation player
uses an external transformation, they do not observe the recommended action.

Let A, = |, Sa A(s) denote the union of the agent’s action sets. We can describe the

deviation player’s memory state, A € G C ({*} U A,)%

, as a string that begins empty and
gains a character after each of the agent’s actions. The recommendation, z(s), at agent state
s is hidden from or revealed to the deviation player depending on which action transformation
the deviation player employs at s. The choice of this action transformation can naturally
depend on the deviation player’s memory state at s. The deviation player observes the
recommendation with an internal transformation (including the identity transformation),
so z(s) would be appended to A in that case. The deviation player does not observe the
recommendation with an external transformation, so “x” would be appended to A in that
case.

Limiting the action transformations available to the deviation player thus restricts the set

of memory states that they can realize. Given a memory state A, there is only one realizable

While an internal transformation can only swap one action particular with another, there is no loss in
generality because every multi-action swap can be a represented as the combination of single swaps (Dudik
et al. 2009; A. Greenwald, Jafari, et al. 2003). Thus, any strategy sequence that can be improved upon by a
swap transformation can also be improved upon by at least one internal transformation.
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child memory state at the next agent state if the deviation player is allowed either the identity
transformation (Az(s)) or any set of external transformations (A%). If both of these options
are allowed, then naturally there are two possible child memory states, Az(s) and Ax. The
internal transformation from action a to a’ leads to memory state A\a’ at each agent state
following both action a and a’, as well Aa at each agent state following each other action a. If
the deviation player is allowed the union of the external and internal transformations, then
there are |A(s)| + 1 child memory states at each child agent state following each action a,
one for each action that could be transformed into a plus “x”.

A complete strategy for the deviation player can then be represented as a complete as-
signment of action transformations to each active agent state and realizable memory state.
We call such an assignment a behavioral deviation in analogy with behavioral strategies,
and denote the full set of behavioral deviations as 3" since they are a natural analog of
the swap transformations for POHPs.2 Any strategy that von Stengel et al. (2008)’s devi-
ation player could employ can be implemented by a behavioral deviation. The behavioral
deviations therefore allow us to disambiguate between full and reduced strategy EFCE by
referring to full strategy EFCE as behavioral correlated equilibrium (BCE) and referring to
reduced strategy EFCE simply as EFCE. The latter terminology is already the norm in Al
literature (Celli et al. 2020; Dudik et al. 2009; Farina, Bianchi, et al. 2020; Farina, Ling,
et al. 2019; Gordon et al. 2008).

As we see next, previously studied deviation types are actually captured by behavioral

deviation subsets.

6.3 Reductions to Previously Studied Deviation Types

As discussed in Section 5.2, von Stengel et al. (2008) introduce two restrictions to their
deviation player. Here we show how both of the resulting deviation sets can be defined as
behavioral deviation subsets.

Causal deviations. An informed causal deviation is traditionally defined by a trigger
agent state s', a trigger action o', and a strategy 7. The following behavioral deviation
reproduces any such deviation: assign (i) the internal transformation ¢ to the sole
memory state at s', (ii) external transformations to all successors s’ = s' where a' is in the

deviation player’s memory to reproduce 7', and (iii) identity transformations to every memory

2In Morrill, D’Orazio, Lanctot, Wright, Bowling, and A. R. Greenwald (2021), behavioral deviations were
previously labeled as ®§, to make a connection with the internal transformations. However, since we want
to be able to assign external transformations to agent states, not just internal transformations, it is better to
denote them as @?Z. Regardless, it is still sufficient to achieve hindsight rationality with respect to the full
set of behavioral deviations by achieving hindsight rationality with respect to the set of behavioral deviations
that only use internal transformations. This latter set ought to be denoted @, .
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state in every other agent state. The analogous blind causal deviation (Farina, Bianchi, et al.
2020) always triggers in s', which is reproduced with the same behavioral deviation except
that the external transformation qb_’”'(s!) is assigned to s

Action deviations. An agent-form equilibrium deviation can only change a single action
at a single agent state, so we naturally call it an action deviation. Precisely, an action
deviation modifies the immediate strategy at s', m;(s'), only, either conditioning on 7;(s') (an
informed action deviation) or not (a blind action deviation). Any informed or blind action
deviation is reproduced by assigning either an internal or external transformation to the sole

memory state at s', respectively, and identity transformations elsewhere.

6.4 Counterfactual Deviations

A causal deviation modifies strategies from a particular agent state to the end of the game.
What if we instead modify strategies at agent states leading up to a particular agent state?
That is, we define a target agent state, s©, and assign external transformations at the sole
memory state of each predecessor s < s® that play to reach s®. At the sole “**. ..*7
memory state at s© we can assign an arbitrary action transformation and we assign identity
transformations everywhere else. I call this a counterfactual deviation due to its connection
with CFR, which will be described in Section 6.6.2, and because its distinguishing feature is
that it plays to reach a given agent state, even if that agent state would never be reached by
the strategy under transformation. Just like causal and action deviations, we can distinguish
between a blind counterfactual deviation that assigns an external transformation to s and
an informed counterfactual deviation that assigns an internal transformation there instead.
Section 6.6 makes a connection between these new counterfactual deviations and the CFR

algorithm.

Definition 5. Let a:“"/ € A(s) be the unique action that must be played in active agent state
s to reach agent state s’ = s under perfect recall. A blind counterfactual deviation, ¢, is
determined by a pair, (s©,a®), where s© € Sy is a target agent state that the deviation plays
to reach deterministically from the start of the POHP and a® is the action taken at s®. The

deviation leaves the input strategy, x € X, unmodified at every other agent state. Formally,

—5O
¢s if s < 8¢
¢ =19 ¢s € DUy | b5 = ¢ 97 if s = s®

1
) 0.W. seSa

Definition 6. An informed counterfactual deviation, ¢, is defined by a triple, (s©,a’,a®),

where s© € Sy is a target agent state that the deviation plays to reach deterministically from
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the start of the POHP. If a' is the input strategy’s action at s©, then a® is played at s©,
otherwise the input strategy is followed at s©. The deviation leaves the input strateqy, v € X,

unmodified at every other agent state. Formally,

—s0
b5 if s < s©
¢ = (bs € q)ilvzs) | (bs = Q&glﬁa@ ZfS = S®

1
) 0.W. seSa

Every counterfactual deviation where the target agent state is at the start of the POHP
is an action deviation, just as every causal deviation that triggers at a terminal agent state
is an action deviation. Unlike the set of action deviations, however, the set of counterfactual
deviations is more like the external deviations since terminal agent states can be chosen as
targets. In fact, the set of counterfactual deviations is the set of single-target deviations
(Definition 4) generated from the external deviations.

Naturally, an equilibrium with respect to counterfactual deviations is a counterfactual
correlated equilibrium (CFCE) or a counterfactual coarse-correlated equilibrium (CFCCE)
depending on whether the equilibrium is with respect to informed or blind counterfactual

deviations, respectively. Formally:

Definition 7. A recommendation distribution is a counterfactual coarse-correlated equilibria
(CFCCE) if there are no beneficial blind counterfactual deviations.

Definition 8. A recommendation distribution is a counterfactual correlated equilibria

(CFCE) if there are no beneficial informed counterfactual deviations.

In a depth-two POHP with a single root agent state (where depth here is measured in
sequential agent actions), the set of behavioral deviations is actually the union of the counter-
factual and causal deviations. The set of action deviations is the set of behavioral deviations
minus the external deviations and the counterfactual deviations that target a terminal agent

state. These facts are important for understanding the examples that follow.

6.5 Practical Relationships Between Elementary Devi-
ation Types

I now illustrate some practical differences between the six elementary deviation types dis-
cussed so far: swap, external, behavioral, causal, action, and counterfactual. These differ-
ences are important because algorithms tied to more limited deviation types may not achieve
as much reward as ones using stronger deviation types, and the types of mistakes an algo-

rithm makes can depend on the structure of its associated deviation type. Moreover, even
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if an algorithm is not designed with a deviation type in mind, it may implicitly use one.
For example, “on-policy” RL algorithms like PGPI and Monte Carlo approximations thereof
(i.e., standard formulations of policy gradient) are implicitly tied to action deviations, as we
later discuss. Thus, these results have substantial generality and widespread impact.

I use a two-player game as the basis for a series of examples. In this game, player one
acts twice and player two acts once, but player two’s recommendations are the same for
each example. The only difference between each example is the player one recommendations.

Each recommendation distribution is uniform random over a pair of strategy profiles.

+2 -2

Figure 6.1: An extended matching pennies game with payoffs defined for player one. Dashed
lines indicate that each of player two’s histories are in the same information set.

The game is matching pennies with an additional gambling action for player one before
the matching pennies game starts. Player one privately chooses whether or not to pay $1.
If player one pays (chooses the —$1 action), then losing matching pennies has no additional
cost and winning refunds their $1. If player one does not pay (chooses the —$0 action), then
they play matching pennies for $2. The game is visualized in Fig. 6.1. The recommendation
distribution of each example is uniform random over two pure strategy profiles: player one is
assigned strategies specific to that example and player two is assigned heads (H) in the first
strategy profile and tails (T) in the second.

Example #1: BCE that is not a CE. If the recommendations for player one are
{-%0; T|—%0;H|—$1} and {—$0;T|—$0; T |—$1}, then player one achieves an expected
value of zero. The only way to improve on this value is to switch T to H given —$0 only in
the first recommendation. However, the only difference between the two recommendations
for player one is the action given —$1 and behavioral deviations cannot correlate the behavior
after —$0 with the action recommendation after —$1. Thus, there is no behavioral devia-
tion that achieves more than zero and the recommendation distribution is a BCE. There is,
however, a swap deviation that does correlate the behavior after —$0 with the action recom-
mendation after —$1 and achieves +2. Therefore, the recommendation distribution is not a
CE. These recommendations and notable deviations are visualized in Fig. 6.2. Nearly all de-
viations are visualized in Fig. 6.A.11 in this chapter’s appendix for completeness, only some

uninteresting swap deviations are omitted for brevity. To the best of my knowledge, this is
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behavior recommendation 1: T

BCE ‘$0/Q $1
HCCT ‘H/O T
+2 0 ~1

external
deviation

blind
causal
deviation

blind CF

deviation

swap
deviation

-$0 -$1 +2

Figure 6.2: A gambling matching pennies example that is a BCE but not a CE. Recom-
mendations are shown in the first row, the next three rows are three of the best behavioral
deviations. The first is an external deviation, the second is a blind causal deviation, and the
third is a blind counterfactual deviation. These blind causal and blind counterfactual devi-
ations are both blind action deviations. The bottom row shows a beneficial swap deviation
that is not a behavioral deviation.

the first example to show directly how the swap deviations are stronger than the behavioral
deviations.

Example #2: AFCE that is not a CCE. If the recommendations for player one are
{—$1;T|-%0;H|—%$1} and {—$1;H|—%0,H|—$1}, then player one achieves an expected
value of —0.5. Achieving a greater value requires transforming two actions in separate agent
states (the root agent state and the one following —$0). Since an action deviation can only
transform the action for a single agent state, there is no beneficial action deviation and
this recommendation distribution is an AFCE. There is, however, an external deviation that
always plays {—3%0; H| —$0; H| —3$1} and achieves a better value of 0. This recommendation
distribution is therefore not a CCE. These recommendations and notable deviations are
visualized in Fig. 6.3 and more deviations are visualized in Fig. 6.B.12. von Stengel et al.
(2008) provided a similar example in their In-or-Out game so the example here is merely
provided for completeness.

Example #3: CFCE that is not an EFCCE or an AFCCE. If the recommenda-
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behavior recommendation 1: }I@T recommendation 2: H% EV

AFCE -$0 -$1 —-0.5
H T T
+2 -2 -1
blind -$0 -$1 —-0.5
causal H T 0 T
deviation *
blind CF 0
deviation T
-1
external 0
deviation T
-1

Figure 6.3: A gambling matching pennies example that is an AFCE but not a CCE.

behavior recommendation 1: t recommendation 2: H% EV
CFCE +0.5
T
-1
external 0
deviation T
—1
blind CF 0
deviation T
-1
blind +1
causal T
deviation ~

Figure 6.4: A gambling matching pennies example that is a CFCE but not an EFCCE or an
AFCCE.

tions for player one are {—$0; H|—$0; H|—$1} and {—$1; H| —$0; H| —$1}, then player one
achieves an expected value of +0.5. Achieving a greater value requires choosing T after —$1
without deviating from the recommendation at the root. A counterfactual deviation can only
deviate from the recommendation after —$1 if it deviates to a fixed action at the root, making

the recommendation distribution a CFCE. A blind causal or blind action deviation, however,
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can follow the recommendations at the root and trigger after —$1 to always choose T there
and achieve a value of +1. This recommendation distribution is therefore not an EFCCE or
an AFCCE. These recommendations and notable deviations are visualized in Fig. 6.4 and
more deviations are visualized in Fig. 6.C.13. To the best of my knowledge, this example
is the first to show directly how a blind causal or blind action deviation can outperform all
external deviations (except for a different but analogous example I presented in work leading
up to this thesis).

Example #4: EFCE that is not an AFCCE or a CFCCE. If the recommenda-

behavior recommendation 1: ?@T recommendation 2: H@\r£ EV

EFCE ~$0 $1 0
T H O\
-1 -2 -1
external A$/O 0
deviation T /O T
~1 +2 -1
blind -$0 -$1 0
causal T /O T
deviation ) Yo 1 Oﬁ
blind CF %0 $1 +2
deviation /O

T Oy) HO\
~1 —2 -1

Figure 6.5: A gambling matching pennies example that is an EFCE but not an AFCCE or
a CFCCE.

tions for player one are {—$1; H| —$0; H| —$1} and {—$1; T | —$0; T | —$1}, then player one
achieves an expected value of zero. Achieving a greater value requires always choosing —$0
and following the recommendation after —$0. A causal deviation must either follow the
recommendation at the root agent state and trigger afterward or trigger in the root agent
state, making the recommendation distribution an EFCE. A blind action deviation, however,
can choose —$0 and follow the subsequent action recommendation to achieve a value of +2.
This recommendation distribution is therefore not an AFCCE. These recommendations and
notable deviations are visualized in Fig. 6.5 and more deviations are visualized in Fig. 6.D.14.

This example appears to contradict von Stengel et al. (2008)’s statement that “in gen-
eral extensive-form games, any EFCE is an AFCE, by giving arbitrary recommendations at
unreachable agent states that in an EFCE are left unspecified.” The confusion stems from
the fact that here von Stengel et al. (ibid.) uses a definition of EFCE based on behavioral
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external 0
deviation
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external L R +2
deviation 1 L R
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Figure 6.6: A beneficial external deviation for player one in a CFCE in MacQueen (2022)’s
counterexample. Black lines denote recommendations, red lines denote deviations from un-
observed recommendations, and grey lines mark actions that are not recommended or used
by the deviation.

deviations rather than the informed causal deviations, and as mentioned before, the informed
causal deviation definition of EFCE has become standard in the Al literature (see, for ex-
ample, Celli et al. (2020), Dudik et al. (2009), Farina, Bianchi, et al. (2020), Farina, Ling,
et al. (2019), and Gordon et al. (2008)). Now that the BCE concept has been defined, we
could state this more clearly and concisely as: in general extensive-form games, any BCE is
an AFCE. Conveniently, this statement follows immediately from the definition of the set of
informed action deviations as a restricted set of behavioral deviations.

In addition to resolving confusion around the definition of EFCE, this example is an
important contribution because it shows that blind action and blind counterfactual deviations
can actually outperform informed causal deviations. Each of these three deviation types have
distinct strengths and weaknesses, which further means that there are no strict domination
relationships between them or their equilibrium concepts.

Example #5: CFCE that is not a CCE. This example uses a different game from
the previous examples and comes from MacQueen (2022). Player one first chooses between
actions Left (L) and Right (R). If they choose L, the game ends and they receive +1. If they
choose R, player two publicly chooses between L. and R, and player one ends up in one of
two active agent states with identical payoffs. If player one’s second action is L, they receive

—2, if they choose R, they receive +2.
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J implies - | CE CCE EF AF | BCE CF OS-CCE OS-CF
CE
CCE
EF
AF
BCE
CF
OS-CCE
OS-CF

Table 6.1: Equilibrium class relationships. The relationships between the coarse-correlated
and correlated versions of each EFG equilibrium concept are the same, e.g., the table is
identical if “EF” is replaced with “EFCE” or “EFCCE”. Cyan cells highlight where the row
concept implies the column concept (e.g., EF C CCE) either by equality (=) or by definition
(v'). Otherwise, the cell is colored red and references one of the counterexamples illustrated
by Figs. 6.2 to 6.5, e.g., EF € AF according to example #4 illustrated by Fig. 6.5. Bold
entries were previously unknown or unclear e.g., EF 4 AF and CF % EF.Dividers separate
previously defined equilibrium concepts from those formalized in this thesis.

The CFCE recommendations are for player one to always choose L and for player two
to switch between L and R: [{(L, L|R L, L|R R), (L)}, {(L, L|R L, L|R R), (R)}]. Player
one achieves a value of +1 averaged across these two strategy profiles since they always end
the game before the other player can act. We know that these recommendations are a CFCE
because the counterfactual deviations either leave the recommendations unmodified or they
play the R action in the root active agent state and then play R in exactly one of the two
successor active agent states. Making any such modification ensures that player one achieves
+2 under one recommendation and —2 under the other, resulting in an average value of 0.
According to Definitions 5 and 6, counterfactual deviations can only modify strategies along
a single path, so there is no counterfactual deviation that plays R in both of the successor
active agent states.

However, the external deviation that always plays R achieves a value of +2 averaged across
these two strategy profiles. Thus, we have a beneficial external deviation in a CFCE. The
recommendations and the beneficial external deviation are visualized in Fig. 6.6

Summary. The relationships revealed by these examples are summarized in a table of
relationships between equilibrium concepts (Table 6.1). The bottom row and the rightmost

column references observable sequential (OS) counterfactual equilibria, which will later be
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connected with CFR. An example separating OS-CCE and OS-CFCCE from CE will also be

presented then.

6.6 A Refined Analysis of CFR

The CFR algorithm was originally designed to solve two-player, zero-sum games by minimiz-
ing external regret, which it accomplishes through local no-external-regret learning at each
agent state. This locality resembles the locality inherent to action deviations, so does CFR
also happen to minimize action deviation regret? For that matter, could CFR happen to

minimize causal deviation regret as well?

6.6.1 Failure on Causal and Action Deviations

We present an extension of Shapley’s game (L. Shapley 1964) where CFR fails to behave
according to an EFCCE or an AFCCE and therefore does not necessarily eliminate incentives

for causal or action deviations.

-1, -1 14 g, -1

Figure 6.7: An extended Shapley’s game where the first player privately predicts whether
or not their opponent will play Rock, denoted R? and —R? respectively. Rock, Paper, and
Scissors are denoted by R, P, and S, respectively. Dashed lines indicate that each of player
two’s histories are in the same information set.

In Shapley’s game, both players simultaneously choose between Rock, Paper, and Scissors.
Rock beats Scissors, Scissors beats Paper, and Paper beats Rock, but both players lose if
they choose the same item. A winning player gets +1 while losing players get —1. Our
extension is that player one privately predicts whether or not player two will choose Rock
after choosing their action. If they accurately predict a Rock play, they receive a bonus, b, in

addition to their usual reward, and if they accurately predict that they will not play Rock,
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Figure 6.8: The gap between CFR’s self-play empirical distribution and an extensive-form
or agent-form (C)CE (E/AF(C)CE) in the extended Shapley’s game with b = 0.003. (Left)
simultaneous-update CFR. (Right) alternating-update (Burch, Moravcik, et al. 2019) CFR.

they receive a smaller bonus, b/3. There is no cost for inaccurate predictions, and the second
player’s decisions and payoffs are unchanged. The game can be found in OpenSpiel (Lanctot,
Lockhart, et al. 2019) under the name extended_shapleys.efg. The game’s extensive-form
is drawn in Fig. 6.7.

Figure 6.8 shows the gap between the expected payoff achieved by CFR’s self-play empir-
ical distribution (summed across players) and an optimal causal or action deviation across
iterations. In this experiment, the causal and action deviations that maximize the expected
payoff across CFR’s self-play empirical distribution achieve the same payoff. The E/AFCE
lines correspond to the gap between CFR’s payoff and the payoff of the best informed devia-
tion (the E/AFCE gap). The E/AFCCE lines are the same except that CFR’s performance
is compared to the best blind deviation (the E/AFCCE gap). In all figures, the gap does not
continue to decrease over time as we would expect if CFR were to minimize causal or action

regret.

6.6.2 CFR and Counterfactual Deviations

Here we show that conventional CFR with no-external-regret learners at each agent state is
observably sequentially (OS) hindsight rational for blind counterfactual deviations and that
CFR with no-internal-regret learners is OS hindsight rational for informed counterfactual
deviations. CFR’s behavior in self-play therefore conforms to OS-CFCCE or OS-CFCE.
The full counterfactual regret decomposition, Lemma 4, provides a one-step recursive con-
nection between full counterfactual regret and immediate counterfactual regret. When we
unroll this recursion completely from the start of the game, we arrive at Theorem 8. But
what if instead we unroll this recursion a fixed number of steps? This intermediate coun-
terfactual regret is exactly the benefit of a counterfactual deviation from a given agent state

and intermediate counterfactual regret can be exactly decomposed into a sum of immediate
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counterfactual regrets.

Definition 9. Under perfect recall, a counterfactual deviation, ¢, encounters a sequence of
n active agent states, (sj)?:_ol where s; < sj11, on the path to target agent state s, within the
POHP rooted at active agent state sy. The expected return of this deviation by virtue of the

fact that it is a counterfactual deviation is the intermediate counterfactual value

—_

n—

—az o
Vg (0(m);0) =] (¢, (T);0) + )7, (ds; 7 (m);0).
N——— —
Ezpected return from sg. N =0 _

TV
Intermediate counterfactual value.

The full counterfactual regret of counterfactual deviation ¢ is the intermediate counterfactual

regret  plF(o(m),m0) = v (B(m); o) — o (o).
N s - g
Full counterfactual regret of ¢. Intermediate cou‘gterfactual regret.

Lemma 6. n-step intermediate counterfactual regret decomposes exactly into immediate
counterfactual regret as pS (¢(), m0) = Yo PS5 (¢s,(T), T 0), where ¢ is a counterfac-

tual deviation that plays to target agent state s,, from root agent state so through the sequence

n—1

of intermediate active agent states (s;)j_, .

Proof. If n = 0, p(o(m),m0) = por(¢s(m),m;0) and the statement is trivially true.
If n > 0, the action transformation at sy is external so the proof of Lemma 4
shows that pZH(0(m),m0) = P (6n(1).710) + Tyesyuouee) P (0(T), m0).  Since
¢ applies the identity transformation at all s’ except for s;, we can simplify this to
P (p(m), m0) = pSt (¢sy (), 750) 4 S (¢(7), 75 0). Applying this logic recursively yields the
sum por (p(m), w5 0) = D1 par (¢s, (), m; 0), which completes the proof. O

Since CFR minimizes immediate counterfactual regret at each agent state, Lemma 6 shows
that it also minimizes intermediate counterfactual regret. Therefore, by Lemma 6 and Defi-

nitions 3 and 7 to 9:

Theorem 10. CFR is OS hindsight rational with respect to blind counterfactual deviations
i a finite-horizon POHP with perfect recall updates. If the cumulative external immediate
counterfactual regret at each agent state s is upper bounded by f(T) > 0, f(T) € o(T) after T
rounds, then CFR’s blind counterfactual regret from s (i.e., full regret with respect to any blind
counterfactual deviation ¢) is upper bounded according to 3, p<F (¢, w5 0t) < |SealF(T),
where S5 4 = {s' € Sa | s 2 &'} is the active agent states in the sub-POHP rooted at s. CFR’s
empirical play approaches exact rationality at the same rate as its average blind counterfactual

regret vanishes.
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Theorem 11. CFR instantiated with no-internal-regret learners is OS hindsight rational
with respect to informed counterfactual deviations in a finite-horizon POHP with perfect
recall updates. If the cumulative internal immediate counterfactual regret at each agent state
s is upper bounded by f(T) > 0, f(T) € o(T) after T rounds, then CFR’s full regret from
s with respect to any informed counterfactual deviation ¢ is upper bounded according to
Zthl pSE(p, mhs ot) < |Ssal f(T). This algorithm’s empirical play approaches exact rationality

at the same rate as its average informed counterfactual regret vanishes.

Theorem 12. CFR in self-play converges to an OS-CFCCE at the same rate as its aver-
age blind counterfactual regret vanishes. CFR with no-internal-regret learners converges to
an OS-CFCE at the same rate as its average informed counterfactual regret vanishes. See
Theorems 10 and 11 for both of these rates.

Theorems 10 to 12 provide the most thorough characterization of CFR’s behavior, both
for a single player and in self-play, to date. See the OS-CF row and column in Table 6.1
for a summary of how observable sequential counterfactual equilibria relate to the other
equilibrium concepts.

Example #6: CE that is not an OS-CCE. To show how observable sequential ratio-
nality differs from ordinary rationality in practice, we now examine an example where a CE
is not an OS-CCE. If the recommendations for player one are {—$0;H|—$0; T |—$1} and

Figure 6.9: A gambling matching pennies example that is a CE but not an OS-CCE.

{—%$0; T | —$0; H| —$1}, then player one achieves an expected value of +2 at the root but an
expected value of —1 after —$1. There is no swap deviation that can improve the root value
so this recommendation distribution is a CE. However, deviating to always choose either H
or T after —$1 increases the payoff after —$1 by +0.5. This improvement could be achieved
by an external deviation, and therefore, this is not an observable sequential CCE. Of course,
always playing —$1 and always choosing either H or T thereafter is also a blind counterfac-
tual deviation that improves on the expected return following —$1, so this recommendation
distribution is also not an OS-CFCCE. The recommendations for this example are visualized

in Fig. 6.9 and deviations are visualized in Fig. 6.E.15.
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6.7 CFR for Action Deviations

We showed that CFR does not behave according to an EFCCE or AFCCE, but could we
modify CFR to do so? Modifying CFR to address causal deviations requires recently devel-
oped non-trivial modifications (Celli et al. 2020), but we can easily modify CFR for action
deviations by weighting counterfactual regrets by reach probabilities.

Since by definition an action deviation applies an action transformation at a single trigger
agent state, the benefit of such a deviation is simply the average reach-probability-weighted
immediate regret, no decomposition required. Therefore, employing no-regret learners on the
reach-probability-weighted counterfactual value functions in each agent state ensures that the

average reach-probability-weighted immediate regret vanishes.

Theorem 13. The CFR-like algorithm that trains a no-regret learner at each agent
state on the reach-probability-weighted counterfactual value functions, ¥.(-) : a
Pri[s]ut (957 (n');0") = P7rt7ot[3]EHN€;r
respect to action deviations. If the learners minimize external regret, then the algorithm

t ot [Gra(mh; 0b)], is no-regret/hindsight rational with

minimizes blind action deviation regret, and if the learners minimize internal regret, then the
algorithm minimizes informed action deviation regret. At all times, the algorithm’s action

deviation regret cannot be more than the mazimum regret suffered by any single learner.

Celli et al. (ibid.)’s algorithm is also no-regret with respect to informed action deviations
because it uses no-internal-regret learners trained on reach-probability-weighted immediate
counterfactual values. Theorem 13 gives an algorithm that is weaker in that it does not
minimize causal, counterfactual, or external regret, but it does not require action sampling,
nor does it require multiple learners at every agent state.

Notice that the local utility functions for CFR for action deviations is exactly PGPI’s
local utility functions defined by Eq. (5.10). Thus, Theorem 13 establishes a new connection
between CFR and reinforcement learning algorithms via action deviations and PGPI. The
primary difference between CFR for action deviations and PGPI is that CFR requires its

local learners to be no regret while PGPI’s may not be (see Section 5.5 for a discussion).

6.8 Partial Sequence Deviations

Representing the causal, action, and counterfactual deviation types as behavioral deviations
allows us to identify complexity differences between these deviation types by counting the
number of realizable memory states they admit. Across all action or counterfactual devia-
tions, there is always exactly one memory state at each agent state to which a non-identity

transformation is assigned. Thus, a hindsight rational algorithm need only ensure its strategy
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cannot be improved by applying a single action transformation at each agent state. Under
the causal deviations, in contrast, the number of realizable memory states at agent state s is
at least the number of s’s predecessors since there is at least one causal deviation that triggers
at each of them and plays to s. Causal deviations are therefore more costly to compete with
and gives them strategic power, though notably not enough to subsume either the action or
counterfactual deviations, as we saw in Section 6.5. Are there sets of behavioral deviations
that subsume the causal, action, and counterfactual deviations without being much more
costly than the causal deviations?

Looking at Fig. 6.10, we can see that the causal, action, and counterfactual deviations are
composed of contiguous blocks of the same type of action transformation. For causal and
action, the first block is made of identity transformations while for counterfactual it is made
of external transformations. For causal, the second block is made of external transformations,
separated from the first block by a single internal transformation in the informed case. For
counterfactual and action, the second block is made of identity transformations, separated
from the first by an external or internal transformation in the blind and informed cases,
respectively.

Building on this observation, we can understand these deviations as having distinct phases.
The correlation phase is an initial sequence of identity transformations, where “correlation”
references the fact that the identity transformation preserves any correlation that player i’s
behavior has with those of the other players. There are causal and action deviations with
a correlation phase, but no counterfactual deviation exhibits such behavior. All of these
deviation types permit a de-correlation phase that modifies the input strategy with exter-
nal transformations, breaking correlation. Finally, the re-correlation phase is where identity
transformations follow a de-correlation phase, but it is only present in action and counter-
factual deviations. The informed variant of each deviation type separates these phases with
a single internal transformation, which both modifies the strategy and preserves correlation.
The action deviation type is the only one that permits all three phases, but the de-correlation
phase is limited to a single action transformation.

Why not permit all three phases at arbitrary lengths to subsume the causal, action, and
counterfactual deviations? We now introduce four types of partial sequence deviations based
on exactly this idea, where each phase spans a “partial sequence” through the game.

The blind partial sequence (BPS) deviation has all three phases and lacks any internal
transformations. The set of BPS deviations is also the set of single-target deviations gener-
ated from the blind causal deviations. Just as there are exponentially fewer counterfactual
deviations than external deviations, there are exponentially fewer BPS deviations than blind

causal deviations.> There are d.n4|S4| BPS deviations compared with O(nf““||8 4|) blind

3The complexity referred to here is that of directly competing with a deviation set in general, which
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causal deviations. Combined with OSR via Theorem 6, the BPS deviations capture the same
strategic power with an exponential reduction in complexity. Even better, the set of BPS
deviations includes the sets of blind action and blind counterfactual deviations. The empir-
ical distribution of hindsight rational play for BPS deviations thus converges toward what
we call a BPS correlated equilibrium. An OS BPS correlated equilibrium (OS-BPSCE) is in
the intersection of the OS versions of three equilibrium sets: extensive-form coarse-correlated
equilibrium (EFCCE) (Farina, Bianchi, et al. 2020), agent-form coarse-correlated equilibrium
(AFCCE) (Morrill, D’Orazio, Sarfati, Lanctot, Wright, A. R. Greenwald, et al. 2021), and
counterfactual coarse-correlated equilibrium (CFCCE) (ibid.).

In general, re-correlation is strategically useful and adding it to a deviation type (trans-
forming it into a single-target deviation type) decreases its complexity! While this observation
may be new in its generality, Zinkevich, Johanson, et al. (2007b) implicitly uses this property
of deviations in EFGs and specifically the fact that the set of blind counterfactual deviations
is the set of single-target deviations generated from the set of external deviations.

There are three versions of informed partial sequence deviations due to the asymmetry
between informed causal and informed counterfactual deviations. A causal partial sequence
(CSPS) deviation uses an internal transformation at the end of the correlation phase while
a counterfactual partial sequence (CFPS) deviation uses an internal transformation at the
start of the re-correlation phase. A twice informed partial sequence (TIPS) deviation uses
internal transformations at both positions, making it the strongest of our partial sequence
deviation types.

The set of CSPS deviations is the set of single-target deviations generated from the set
of informed causal deviations, and therefore subsumes the informed causal deviations, when
used with OSR, while being exponentially smaller. TIPS achieves our initial goal as it
subsumes the informed causal, informed action, and informed counterfactual deviations at
the cost of an ny factor compared to CSPS or CFPS, when used with OSR. Each type of
informed partial sequence deviation corresponds to a new equilibrium concept and a new OS
equilibrium concept in the intersection of previously studied equilibrium concepts.

Table 7.1 gives a formal definition of each deviation type derived from behavioral devia-
tions, Fig. 6.10 gives a visualization of each type along with their relationships, and Table 6.3

summarizes the complexity of each type.

is determined by the number of such deviations. Algorithms may be less complex than the deviation sets
they minimize regret for, either by utilizing the structure of the environment and the deviation set (e.g., by
representing pure strategies in sequence-form), or by directly competing with a stronger but less complex set of
deviations. For example, CFR’s complexity is linear in the number of agent states and is hindsight rational for
the external deviations even though the number of external deviations grows exponentially with the number
of agent states since CFR directly competes with the less numerous blind counterfactual deviations.
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Table 6.2: Formal definition of the strategy generated by a deviation of each type given pure

strategy x € X at each active agent state s € S4.

Vs', 3al,, d.,,
single-target {a; if W5 =5,0(5) =al
behavioral

z(s) ow.
3s'.d', 5%, a%, a®,
a® if s=59,2(s9)=a®',
TIPS #(s)=a’
a7 il
ZL‘(S) o0.W
3s',a', 59, a®,
a® if s=5,2(s")=a'
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Figure 6.10: A summary of the deviation landscape in finite-horizon POHPs under perfect
recall. Each pictogram is an abstract prototypical deviation representing a named set of devi-
ations (a deviation type). Games play out from top to bottom. Straight lines represent action
transformations, zigzags are transformation sequences, and triangles are transformations of
entire decision trees. Identity transformations are colored black; internal transformations
have a cyan component representing the trigger action or strategy and a red component
representing the deviation action or strategy; and external transformations only have a red
component. Arrows denote ordering from a stronger to a weaker deviation type (and therefore
a subset to superset equilibrium relationship), the dashed arrow denotes that this relationship
holds only under observable sequential rationality.
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Table 6.3: A rough accounting of (i) realizable memory states, (ii) action transformations,
and (iii) the total number of deviations showing dominant terms. Columns (i) and (ii) are
with respect to a single agent state.

type G) ) ()

internal N/A N/A ni“s““'
single-target behavioral ni‘* n% nfl4*+2 1S4l
TIPS dina n%  dn|Sal
CSPS ding nal d*ni]SA\
CFPS d n?%  d.n%|Sal
BPS dy ng din4|S 4l
informed causal d N/A nleIH 1S4l
informed action 1 n%  n?|S4l
informed CF 1 n%  n?|S4l
blind causal d N/A nlj““l 1S4l
blind action 1 nA na|Sal
blind CF 1 nq na|Sal
external N/A N/A nlj““ |

T One memory state at each agent state is associated with the set of internal transformations
which contains O(na) transformations, but this is dominated by the number of external trans-
formations associated with every other memory state in non-root agent states.
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6.9 Conclusion

The correlated equilibrium and deviation landscapes of POHPs are particularly rich because
there is substantial space for deviation types that have intermediate power and computational
requirements between external and internal deviations. To develop these deviation and equi-
librium types, we re-examined causal and action deviations along with their corresponding
equilibrium concepts, extensive-form and agent-form equilibria. We showed how action de-
viations can outperform causal deviations, which dispels a common misunderstanding that
an EFCE is always an AFCE.

We showed that CFR’s empirical play does not converge toward an EFCCE or AFCCE in
self-play and thus CFR is not hindsight rational for causal or action deviations. Instead, we
defined blind and informed counterfactual deviations to more precisely characterize CFR’s
behavior. CFR is OS hindsight rational with respect to blind counterfactual deviations and
CFR with internal learners has the same property with respect to informed counterfactual
deviations. In self-play, these algorithms converge toward OS-CFCCEs or OS-CFCEs, re-
spectively.

Table 6.1 summarizes all of the equilibrium relationships investigated in this chapter.

In the next chapter, CFR is modified to handle any subset of the behavioral deviations

and the practical benefits of this new algorithm are illustrated.
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6.A Example #1: BCE That Is Not a CE

behavior recommendation 1: r recommendation 2: H@\ll EV
BCE ‘$/O -$1 %0 81 0
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+2 0
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wap 50 % 50 O 1 +1
eviation
48 /O T HQOT H O{

—2 -1 -2 -1 0

Figure 6.A.11: A gambling matching pennies example where a BCE is not a CE. Only eight
of the highest value swap deviations are shown for brevity.
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behavior recommendation 1: (2);, recommendation 2: H@\ll EV
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Figure 6.A.11 (Cont.): All external deviations in the gambling matching pennies example of
a BCE that is not a CE.
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behavior recommendation 1: H/@T recommendation 2: H@\ll EV
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Figure 6.A.11 (Cont.): All non-external blind causal deviations in the gambling matching
pennies example of a BCE that is not a CE.
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behavior recommendation 1: ‘H/C@T recommendation 2: H@\ll EV
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Figure 6.A.11 (Cont.): All blind counterfactual deviations in the gambling matching pennies
example of a BCE that is not a CE.
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6.B Example #2: AFCE That Is Not a CCE
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deviation

43 HOT HQOT HOT HOT
-2 0 -1 -2 -1 0

ZwaPt_ 50 _O_-$1 ‘$0/O -$1 +2
#era ot nOT HOT H O{ H O{
-2 0 -1 -2 -1 0

Zwa-pt- -$0 O\$i ‘$o/O -$1 +1
#egla o HOT  BOT HOZ  LOT
+2 -2 —1 —2 -1 0

zwa_pt -$0 O\$i ;$O/O -$1 +1
;gla o HOT HO.T HOT AH/C) T
+2 -2 -1 -2 -1 0

Zwa-p " -850 O._-$1 -$0 -$1 +1
#6;13 o nOT BHOT LOT  HOI

-2 0 -1 -2 42 -1

swap 50 Os1 ‘$0/O 51 1
deviation
H T H T H O
#8
+2 -2 —1 —2

Figure 6.B.12: A gambling matching pennies example where an AFCE is not a CCE. Only
eight of the highest value swap deviations are shown for brevity.
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behavior recommendation 1: ‘H/C@T recommendation 2: H@\ll EV
AFCE -$0 $1 -$0 ()\$i —0.5
HOT HO.T AH/O T T

+2 -2 -1 -2 42 0
external ~$0 $1 _‘$0/O $1 0
deviation H O“T HO T HOT ‘H/O T
#1 -2 0 -1 +2 -1 0
external 30 O g1 -$0 $1 0
deviation H O“T HO T H O“T ‘H/O T
#2 +2 0 -1 -2 -1 0
external -$0 $1 ‘$0/O $1 0
deviation H O“T HOLT H O“T H O\r{
#3 -2 0 -1 +2 -1 0
external ~$0 $1 ‘$0/O $1 0
deviation 1 O H C)\TA H C)\11 H C)\11
# +2 0 ~1 —2 — 0
external -$0 $1 80 $1 -0.5
deviation AI—I/O T 2O T ‘H/O T O T
#5 2 -2 —1 2 42 0
external ~$0 $1 -0 $1 —0.5
deviation HO'T O T H C)\11 O T
4o SN, 27
external _$0 $1 —0.5
deviation HO'T TOL T
# 7% %
external _$0 O\$1 —0.5
deviation HO'T O T
#8

Figure 6.B.12 (Cont.): All external deviations in the gambling matching pennies example of

an AFCE that is not a CCE.
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behavior recommendation 1: ?@DT recommendation 2: H@\rll EV

AFCE -$0 $1 -$0 Q}ﬂ —0.5
o

H T
-1

blind -$0 -$1 —0.5
causal H 0
deviation O\ ) 4
#1
blind _$0 Q}$ -0.5
causal T H
deviation /O 2 _‘Q/O
#2
blind -$0 -$1 —-0.5
causal H T H
deviation 5
#3
blind %0 $1 —0.5
causal T H
deviation /O * @/O _1 5
#4
blind _$0 $1 -0.5
causal H H
deviation O\ ) 5
#5
blind -$0 -$1 —-0.5
causal H T BOLT H
deviation 49 O\:2 § i
#6
blind -$0 -$1 %0 $1 —0.5
causal HOT HOLT HO'T HOLT
deviation ‘/O
+2 -2 0 -2 42 -1
#7
blind -$0 -$1 -$0 -$1 —0.5
causal HQTr  HOT HQT  BOT
deviation O\
48 +2 -2 0 ~2 +2 -1

Figure 6.B.12 (Cont.): All non-external blind causal deviations in the gambling matching
pennies example of an AFCE that is not a CCE.
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behavior recommendation 1: ?@T EV
AFCE -$0 -$1 —0.5
H T T

+2 -2 -1
blind CF 50 O ¢1 0
deviation H O“T HO T
71 -2 0 -1
blind CF ;30/0 $1 0
deviation H O“T HO T
#2 +2 0 -1
blind CF -$0 -$1 -0.5
deviation HOLT T
#3 +2 -2 -1
blind CF %0 $1 —0.5
deviation HOLT 2O T
#4
blind CF —0.5
deviation
#5
blind CF —9
deviation
#6

Figure 6.B.12 (Cont.): All blind counterfactual deviations in the gambling matching pennies
example of an AFCE that is not a CCE.
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6.C Example #3: AFCE and CFCE That Is Not an
EFCCE

behavior recommendation 1: }I%Z)T recommendation 2: H@\r‘i EV

CFCE ;$0/Q “$1 -$0 O}$1 +0.5
(O.T

HTT }O T HOT

-2 0 —1 0
Zwa,pt, 50 O -$1 +2
#elwa 1011 H . T ‘H/O T T

-2 0 -1 0
Swap -$0 -$1 +2
deviation
49 HOT HOT T

-2 0 —1 0
swap -$0 -$1 +2
deviation 0O LT -
#3

-2 0 -1 0
Swap -$0 -$1 +2
deviation
44 HOT HQOT T

-2 0 -1 0
Swap -$0 -$1 +1
deviati
Jg’ ko ‘H/O T HOT HOT HOT

-2 0 ~1 -2 +2 -1 [0]
swap -$0 -$1 -30 _$1 +1
deviation
46 O HOT H QT HOT

-2 0 -1 -2 42 -1
swap $0 -$1 -80 $1 +1
deviation
27 HOT HQOT HQOT H

-2 0 —1 -2 42 -1
Swap 50 O$1 +1
deviation

H H

48 /O T T T

+2 =2 —1 0

Figure 6.C.13: A gambling matching pennies example where a CFCE is not an EFCCE. Only
eight of the highest value swap deviations are shown for brevity.
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behavior recommendation 1: (2);, recommendation 2: H@\ll EV
CFCE -$0 O\$i +0.5
T AH/O T T
-1 -2 42 0
external _‘$0/O $1 _‘$0/O %1 0
deviation H O“T HO T HOT ‘H/O T
#1 -2 0 -1 +2 -1 0
external 30 O g1 -$0 $1 0
deviation H O“T HO T H O“T ‘H/O T
#2 +2 0 -1 -2 -1 0
external -$0 $1 ‘$0/O $1 0
deviation H O“T HOLT H O“T H O\r{
#3 -2 0 -1 +2 -1 0
external ~$0 $1 ‘$0/O $1 0
deviation 1 O H C)\TA H C)\11 H C)\11
# +2 0 ~1 —2 — 0
external -$0 $1 80 $1 -0.5
deviation AI—I/O T 2O T ‘H/O T O T
#5 2 -2 —1 2 42 0
external ~$0 $1 -0 $1 —0.5
deviation HO'T O T H C)\11 O T
4o SN, 27
external _$0 $1 —0.5
deviation HO'T TOL T
# 7% %
external _$0 O\$1 —0.5
deviation HO'T O T
#8

Figure 6.C.13 (Cont.): All external deviations in the gambling matching pennies example of
a CFCE that is not an EFCCE.

94



behavior recommendation 1: H/@T recommendation 2: H@\rl; EV
CFCE

50 (O$1 +0.5

-$0 -$1
HT ‘H/OT ‘H/OT (O.T
-2 0 -1 -2 42 [-1] o0
-$0 ,

blind
causal
deviation
#1

blind
causal
deviation
#2

blind
causal
deviation
#3

blind
causal
deviation
#4

blind
causal
deviation
#5

blind
causal
deviation
#6

blind
causal
deviation
H#7

blind
causal
deviation

#8

Figure 6.C.13 (Cont.): All non-external blind causal deviations in the gambling matching
pennies example of a CFCE that is not an EFCCE.

$1 -$0 $1 +1

+1

+0.5

+0.5

+0.5

—1.5

—-1.5
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behavior recommendation 1: ?@T recommendation 2: H% EV

CFCE 50 0O _$1 +0.5
HO.T H
0 —1 -2
blind CF $0_O._$1 50 O -s1 0
deviation HOT HEOT HST HOT
#1 9 0 1 +2 -1 0
blind CF $0 O _$1 $0 O _$1 0
deviation 1 O“T HOT sOT HO.T
#2 -2 0 -1 +2 -1 0
blind CF $0 O %1 V -$1 0
deviation 0 O HOT H O{ ‘H/O T
#3 +2 0 -1 -2 -1 0
blind CF -$0 -$1 -$0 -$1 —0.5
deviation AH/O T BT HO'T HOT
#i +2 —2 ~1 -2 +2 0
blind CF %0 $1 _80 $1 —0.5
deviation II/Q T HOT }O T HO.T
#5 +2 —2 -1 —2 +2 0
blind CF 0 Q81 50 O\$i —0.5
deviation

HOT HQOT HOT HOT
#6
+2 -2 0 -2 +2 -1

Figure 6.C.13 (Cont.): All blind counterfactual deviations in the gambling matching pennies
example of a CFCE that is not an EFCCE.
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6.D Example #4: EFCE That Is Not an AFCCE or
CFCCE

behavior recommendation 1: ?@T recommendation 2: H% EV

EFCE -$0 O}ﬂ -$0 -$1 0
/O T H O\;
-2 —1 +2 -1
€ev1atlon
41 HOT AH/C) T H . T
-2 0 -1 -2 —1 0
Zwa,pt, -$0 81 fyO $1 +2
€Vv1atlon
149 HOT H O{ HQOT H O{
-2 0 —1 —2 — 0
(Siwa‘pt‘ ‘$/O -$0 $1 +2
eviation
43 H O\ O ‘H/O T
2 -2 10
ZwaPt, ‘$0/O -$1 50O 81 +1
€Vv1atlon
14 HOT AH/C) H O{ H QT
-2 0 - -2 +2 -1
(Siwaﬂpt, 50 _O-s1 50 O -$1 +1
€Vv1atlon
5 /O T H OT HOT
—2 -1 —2 —1 0
Zwa.p ; 50 O -s1 50 Os1 +1
€viatlon
46 AH/C) T AH/C) T HOT
-2 0 ~1 -2 +2 -1
. 0 Os1 -$ $1 +1
€Vv1atlon
a7 /O T @/O /O T
-2 -1
(Siwa_pt_ 50 _O_-$1 $1 +1
eviation
48 T H O{ H O\ H
+2| -2 0 - ~1

Figure 6.D.14: A gambling matching pennies example where an EFCE is not a CFCCE. Only
eight of the highest value swap deviations are shown for brevity.
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behavior recommendation 1: r recommendation 2: H% EV
EFCE -$0 O}$1 -$0 -$1 0
HOT T H O\
+2 -2 -1 -1
external 30 O g1 -$0 $1 0
# -2 0 ~1 +2 -1 0
external $0 O g1 ‘$/O $1 0
deviation
HOT HOT T
#2 +2 0 -1 -2 —A1/O
external ~$0 $1 ~$0 $1 0
deviation
H T H T T T
#3 -2 0 -1 /O +2 -1 O\o
external 30 O g1 ‘$/O 0
deviation
H O H T H
#4 +2 0 -1 -2 —1 O\
external ~$0 $1 -0 $1 —0.5
deviation
HOT HOT HOT HO.T
#5 +{O —2 -1 —{O +2 0
external -$0 $1 _$0 $1 —0.5
deviation
H T H T H T HO.T
46 o
+2 -2 -1 -2 42 0
external s0 O g1 _$0 $1 —0.5
deviation
HOT HOT HOT HOT
# Y2 -2 0 —A2/O 2 -1 O\@
external ~$0 $1 %0 $1 —0.5
deviation
H T H T H T H T
48 X X POy POl
+2 2 0 2 +2 -1 0]

Figure 6.D.14 (Cont.): All external deviations in the gambling matching pennies example of

an EFCE that is not a CFCCE.
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behavior recommendation 1: ?@T recommendation 2: H% EV

EFCE -$0 _$1 -$0 $1 0
‘H/O T T HCOT HQOT
+2 -2 -1 —2 +2 -1
blind -$0 -$1 -$0 -$1 0
causal T T HOT  BOT
deviation ‘/O B 4 b 1
#1
blind $1 0
causal H g H
deviation O\ 5
#2
blind -$0 -$1 —0.5
causal T H
deviation /O 2 @/O X 5
#3
blind -$0 -$1 —0.5
causal H T B T H
deviation /O O\ O\
444 +2 -2 0 -2
blind -$0 O\$. —0.5
causal ‘/O T H
deviation iy @/O ) 5
#5
blind -$0 -$1 —0.5
causal H H
deviation O\ ) 5
#6
blind -$0 -$1 -$0 -$1 —0.5
causal LOT  HOIX HOT  BOT
if; |Hon 5 9 g 2 42 -1 [0]
blind -$0 -$1 -$0 -$1 —0.5
causal HOT  BOT HOT  H
deviation O\ ‘i
8 +2 -2 0 -2 42 -1

Figure 6.D.14 (Cont.): All non-external blind causal deviations in the gambling matching
pennies example of an EFCE that is not a CFCCE.
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behavior recommendation 1: ?@T recommendation 2: H% EV

EFCE -$0 -$1 -$0 -$1 0

‘H/O T T HOT H(OT

+2 =2 ~1

blind CF $0_O_ 81 +2
deviation HO“T HOT T
#1 2 o/O 1 0
blind CF $0 Q1 0
deviation HO'T T HOT HOT
72 +{O -2 -1 -2 +2 -1
blind CF ‘$o/o $1 $0_O_-$1 0
deviation 1 O HOT HOT H T
#3 -2 0 -1 +2 -1 0
blind CF $0 O _$1 ;$0/O -$1 0
deviation H O“T HOT u OoT H O{
i +2 0o -1 -2 -t 0
blind CF 50 O 81 50 O .81 —05
deviation AH/O T T H Q{ 0O T
#5 +2 -2 -1 -2 +2 0
blind CF 0 Q1 $0 O\$1 —0.5
deviation HOT BEO.T H Q{ H O\T.
#6 +2 -2 0 -2 42 - 0]

Figure 6.D.14 (Cont.): All blind counterfactual deviations in the gambling matching pennies
example of an EFCE that is not a CFCCE.
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6.E Example #6: CE That Is Not an Observable Se-
quential CCE

behavior recommendation 1: #DT recommendation 2: H% EV
CE -$ -$1 Ero/O -$1 +2
H O\ H ‘H/O T
—2 ~1 0
swap ‘$/O -$0 $1 +2
deviation /O -

41 QT HO\

-2 1
Zwa,p ; $0 -$1 -$0 $1 +1
eviatlon
H T
149 OT  HOJZ H O\
-2 0 ~1 ~1

swap 30 O\$A _$ $1 +1
deviation
#3 /O T @/O . /O T

-2 +2 -1

swap 50 %1
deviation

A '\i
swap 50 $1 i ) +1
iéegnatlon /O - o AT/O ! O\TA

—2 @/O -1 —2 -1

+1

Z"Va?t. ;$0/O $1 50 O$1 +1
#fg ration vLOT AH/C) T H O{ HQOT

-2 0 -1 -2 42 -1
Z"VaP ; -80 81 -$0 $1 +1
7;; fation HOT H O{ A/O T T

-2 0 -1 +2 -1
swap 50 _O._-$1 50 Os1 +1
deviation

48 LOT AH/C)T AH/C)T H QT
-2 0 -1 -2 42 -1

Figure 6.E.15: A gambling matching pennies example where a CE is not an observable
sequential CCE. Only eight of the highest value swap deviations are shown for brevity.
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behavior recommendation 1: (2);, recommendation 2: H@\ll EV

CE $0_O_ 81 -‘$0/O -$1 +2
HOT H O ;O T

0 -1 —2 -1 0
external _‘$0/O -$1 -$0 -$1 0
deviation 1 O HOT HOT HOT
#1 -2 0 -1 +2 -1 0
external -$0 O -1 ‘$0/O -$1 0
deviation " O“T HOT H O a0 T
#2 +2 0 -1 -2 -1 0
external -$0 -$1 -$0 -$1 0
deviation 1 O“T HO.T HO“T HO.T
#3 -2 0 -1 +2 -1 0
external -$0 -$1 ‘$O/O -$1 0
deviation H O H O{ H O T HO.T
# +2 0 -1 -2 -1 0
external -$0 -$1 -$0 -$1 —0.5
deviation AH/O T B0 T HO'T HO T
#5 +2 -2 1 -2 42 0
external -$0 -$1 -$0 -$1 —0.5
deviation HO'T B0 T H O\r{ HO. T
4o SN, £
external _$0 $1 —0.5
deviation HO'T gO.T
1 2 42 1 O\@
external _$0 O\$1 —0.5
deviation HOT BEO.T
78 -2 42 -1

Figure 6.E.15 (Cont.): All external deviations in the gambling matching pennies example of
a CE is not an observable sequential CCE.
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behavior recommendation 1: H/@T recommendation 2: H@\ll EV

CE -$0 -$1 ‘$(O -$1 +2
HT H O{

H
-2 0 -1 +2] —1 0

blind -$0 $1 +2
causal HO“T T T
deviation /O 0
#1
blind _EFO/O -$1 +2
causal T 1O H T
deviation ) 5 et O\*O
#2
blind M -$1 0
causal T 1 O“T H T
deviation
-1 —2 2 -1
3 2] + 0
blind ;$0/O -$1 0
causal T /O T
deviation ) 5 4
#4
blind _$ $1 0
causal T T
deviation X 49 _‘1/0
#5
blind y) $1 0
causal T /O T
deviation ) 5 1
#6
blind -$0 $1 0
causal T 1 O“T H
deviation * o O\
H#7
blind ‘$O/Q $1 0
causal T H O\
deviation ) 5 et
#8

Figure 6.E.15 (Cont.): All non-external blind causal deviations in the gambling matching
pennies example of an CE that is not a observable sequential CCE.
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behavior recommendation 1: t recommendation 2: H% EV

CE -$1 +2

2
H O }C)T
-2 [+2] -1 0

blind CF

deviation

#1
blind CF

deviation

#2
blind CF

deviation

#3
blind CF

deviation

#4
blind CF

deviation

#5
blind CF

deviation

#6

+2

—0.5

—0.5

Figure 6.E.15 (Cont.): All blind counterfactual deviations in the gambling matching pennies
example of an CE that is not a observable sequential CCE.
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Chapter 7

Extensive-Form Regret Minimization

7.1 Introduction

This chapter develops the extensive-form regret minimization (EFR), a general and exten-
sible algorithm that is observably sequentially (OS) hindsight rational for any given set of
behavioral deviations. Its computational requirements and regret bound scale closely with
the number of realizable memory states (see Table 6.3).

The key insight that leads to EFR is that each of the deviation player’s memory states
at a given active agent state s corresponds to a different weighting scheme of the rewards
accumulated from s and its successors, and the weights of this scheme change on every round.
Weighted regrets can be accumulated for each memory state to summarize the incentives that
each deviation has to play through s. If immediate strategies are chosen so that all of these
incentives decrease on average, then the total benefit for any deviation also decreases on
average, which is the OS hindsight rationality condition. In this way, we reduce the problem
of achieving OS hindsight rationality to minimizing immediate regret across each memory
state and active agent state simultaneously, which we further reduce to time selection regret

minimization (Section 2.3.4).

7.2 Immediate Regret Minimization for Behavioral De-
viations

Section 4.5 shows that the growth of cumulative immediate and full regret can be controlled,
in principle. However, if the deviation set ® is insufficiently constrained, this procedure may
be intractable because of circular dependencies between immediate strategies at different
agent states or because the number of time selection functions grows exponentially with the
number of agent states. This challenge motivates the development of an efficient procedure for

competing with behavioral deviations specifically. The behavioral deviations are the ideal
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target for designing a general hindsight rationality algorithm in POHPs because they are
just restrictive enough to rule out the possibility of circular dependencies between immediate
strategies at different agent states.

For behavioral deviations, we can generate time selection functions that correspond to
deviations and memory states. Each time selection function captures the joint probability of
reaching an agent state with a particular memory state.

Imagine that a POHP agent declares a behavioral strategy m but a deviation player,
executing behavioral deviation ¢, actually plays actions for the agent. At each agent state
s, the agent samples an action A from 7(s) and the deviation player transforms A into
another action A’ and plays A’ on the agent’s behalf. The action transformation that the
deviation player uses, ¢, \, depends on their memory state, A, and s. If ¢, is external, i.e.,
psa(a) = a for some @’ € A(s) and all a € A(s), then the deviation player appends a “*”
character to their memory state and otherwise appends A. Formally, the deviation player
partially observes the action through the function

i {* if 3o/, Vag,(a) = o’
a o.w.
so that the next memory state is A" = Aw"™(A4; ¢ 2.

Since action transformations are deterministic, the probability of a deviation player
observation b given an action a, memory state A, and agent state s is Py ,[b]a,\,s] =
1{b =w"(a;¢s)}. The product Py.[b,a|N s] = 1{b=w""(a;¢sr)}m(a|s) is the
corresponding joint probability. By the chain rule of probability, Pg.[A\b,s,a] =
Psrlb,a| A, 5Pyl 5]

Under perfect recall, the joint probability of A and s where |A| = |n4(s)| is the product of
the joint probabilities along the path to s, i.e., Py [, 5] = H'Al Porl i, na(s)i | A1, 12, (5)il,
where Ao = @. Py [\, s] is the memory probability of X at s. Under pure strategies, the

memory probability expresses memory state realizability. We overload
Q¢(s) = {)\ €eg | dr € X,qu,’x[)\, 8] = 1}
as the set of memory states that ¢ can realize at s and Go(s) = U eq Go(s) is the set of all
memory states that all deviations in & C &g .
Conditioned on memory state A\, we can define the counterfactual value that behavioral
deviation ¢ achieves from agent state s as

veh (¢ Z Py [RIE[Gh(ds<ac(m); o)),

hel(s)

!There are non-behavioral deviations that do not induce such circular dependencies, but they rely on
arbitrary asymmetries. The action transformation at agent state s can depend on play at s’ A s but the
action transformation at s’ cannot depend on play at s or that at any other agent state 5 that informs the
action transformation at s.
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where ¢s<ac is the deviation that applies ¢ only at s and its successors with mem-
ory states that are prefixed by M. This deviation’s counterfactual value across
memory states is naturally the expected memory-state specific counterfactual value
v (d(m);0) = Eanpy 19 [0S4(0();0)], where Py[-|s] @ A = Py, s]/Pymls] is the
conditional distribution over memory states. The counterfactual regret is likewise the

expected memory-specific counterfactual regret

ps (¢, m0) = Encpy (]3] \[US,FA(qb(W); o) — v (m;0)] .

=0 A(dw o)

The realization weighted expected return of behavioral deviation ¢ is therefore the sum

of realization weighted conditional returns across memory states. That is, starting from
Eq. (4.2),

vs(@(7); ) = Pymy[s]vg” (o(T); 0)
=Pyimls] D PoxlMslud5(e(n);0)

AEG4(s)

= > PoxlA slugi(0(m); o).

AEGy (s )

_vs )\( (ﬂ') U)

Consequently, full regret can also be written as the sum of memory-state-specific full regrets

ps(¢77r;0-) :Us( ( ) ) _’Us(’iT' U) (71)
Z Z’ 10) = Vs A(P<sea(m); 0) - (7.2)
il —ps,xv(d;ﬂf;a)

Furthermore, immediate regret is a special case of full regret so we can write

ps(d<s,m50) = > peald<sorimi0). (7.3)

AEG4(s)

Can we use Eq. (7.3) to design an algorithm for minimizing immediate regret with respect
to a strictly truncated behavioral deviation ¢-,? Yes, by reducing the problem to time
selection regret minimization. If we define time selection functions with memory probabilities

as Wy(¢) = {wn 1 t = Py e[, s]}aeg,(s) = Wsl(¢<s) where 7* is the strategy that the agent
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plays on round ¢, then instantaneous immediate regret can be written as

(b= o) = Y Pyl sl (053 (d=aca(m); 0f) — 0S5 (75 0)) (7.4)
A€Gy 4 (5)
= Y L = ol (05471 0") — v (7' 0h)) (7.5)

wyEWs ((z)—<s)7
PEP A(s)

= > e, = puatuwhpi (8l 7 of). (7.6)
w)\GWs((b-@)v
PLED 4(s)

Since we do not know which set of action transformations will yield the best truncated
behavioral deviation in hindsight, we must minimize weighted counterfactual regret with
respect to all valid pairs of time selection functions and action transformations simultaneously.

That is, consider splitting the best truncated deviation in hindsight similarly to Eq. (7.6) as

T

t. /o t CF / t, t
(;E%Zps(cbjsm,a _ﬁi}éz Y el = byl (¢ 7ot (7.7)
N t=1 t= 1'IUA€W5(¢<S),

PEP 4(s)
T

=max >, max 3 wfpli(¢l o) (7.8)
T nEWs (<) AT SER g

for any set of behavioral deviations ® C ®%". Finally, if we overload W;(®) = .4 Ws(9),
D\ = {5} e, and O, = U/\e%(s) D, \, then we can further bound

T
max max wipsh (¢ x, T 0" 7.9
ooed Z [ dorea AP ,\( A ) (7.9)
wkews(¢<&) t=1
= 1{¢, € LA t 1
max > max1{g € sx}zwww a') (7.10)
AEWS(¢<S)
< S e 0 [ uhi >] . 710
w)\EWs(‘b) +

Eq. (7.11) completes the formal reduction to time selection regret minimization. This is a
slightly more onerous condition than the basic OTSDP objective as performance is measured
by the sum of positive regrets across time selection functions rather than the maximum regret
on any single one. Given a bound on this maximum, we could of course bound the sum by
multiplying by the maximum number of time selection functions. However, time selection
regret matching, the algorithm developed in Section 7.4, directly bounds Eq. (7.11), leading
to a sublinear dependence on the number of time selection functions associated with any

single action transformation!
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7.3 Extensive-Form Regret Minimization

The extensive-form regret minimization (EFR) algorithm takes a set of behavioral deviations,
¢ C @YY, as an argument, and chooses its immediate strategy at each agent state on each
round so as to minimize Eq. (7.11) with respect to consolidated action transformation sets
{®s}.cs,- Aslong as a sublinear bound on Eq. (7.11) is achieved with respect to the round
number, then Theorem 5 implies a full-regret bound at each agent state and observable
sequential rationality with respect to ®.

Notice that as a matter of practical implementation, EFR only requires @5, W;(®), and
predicates {1{¢s € P2} }o.ca,, xeda(s) connecting the two for all active agent states s € S,
which are often easier to specify than & itself. Table 7.1 shows how to set these parameters for
a range of deviation types. In addition to implementation simplicity, this feature ensures that
EFR always implicitly transforms deviations from its nominal deviation set, ®, into single-
target deviations that re-correlate. This both potentially improves EFR’s performance and
ensures that learning is efficient even for some exponentially large deviation sets, like the
external, blind causal, and informed causal deviations.

For example, it is equivalent to instantiate EFR with the blind causal deviations or the
BPS deviations. Likewise for the informed causal deviations and the CSPS deviations, where
EFR reduces to a variation of ICFR (Celli et al. 2020). To be precise, ICFR is pure EFR
(analogous to pure CFR) instantiated with the CSPS deviations except that the external
and internal action transformation learners at separate memory states within an agent state
are sampled and updated independently in ICFR. EFR therefore improves on this algorithm
(beyond its generality) because EFR’s action transformation learners share all experience,
potentially leading to faster learning, and EFR enjoys a deterministic finite time regret bound.

Crucially, EFR’s generality does not come at a computational cost. EFR reduces to the
CFR algorithms previously described to handle counterfactual and action deviations (Morrill,
D’Orazio, Sarfati, Lanctot, Wright, A. R. Greenwald, et al. 2021; Zinkevich, Johanson, et al.
2007b). Furthermore, EFR inherits CFR’s flexibility as it can be used with Monte Carlo
sampling (Burch, Lanctot, et al. 2012; Gibson et al. 2012; Johanson, Bard, Lanctot, et al.
2012; Lanctot, Waugh, et al. 2009), function approximation (Brown, Lerer, et al. 2019;
D’Orazio 2020; D’Orazio, Morrill, et al. 2020; Morrill 2016; Steinberger et al. 2020; Waugh,
Morrill, et al. 2015), variance reduction (Davis et al. 2020; Schmid, Burch, et al. 2019), and
predictions (D’Orazio and R. Huang 2021; Farina, Kroer, Brown, et al. 2019; Farina, Kroer,
and Sandholm 2021; Rakhlin et al. 2013).
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Table 7.1: EFR parameters and regret bound constants for different deviation

types. We use <I>IN\1 = O 11 to denote the non-identity internal transfor-
y A(s) A(s)
mations.
1 Qbs € q)s,)\
type s W(2) fo{r each } a(P)
for each sesy4 for each ses4
$s€Ds, \EGa (s)
{t = 1}U
BHV @j(\sl) {t > Hﬁs, 7t(as | 3) } 1 ni{‘ (nil —n4)
5/<s,Vs=5 ,as€A(3)
{t — 1}U d
* 1
TIPS O [t Pefsir(al | ) I g+
s'<s,a'eA(sh) Ng—na
¢s € (I)ii](sy
CSPS / RS S A= als)
_ LRy vl {te Pulsrt(at]s)) b e i) dnati—2)
in. causa s'<s,al€A(s!) +1{ s A(s)v}
A #14(8)
{t = 1}U
N\1 | (d* + 1)
CFPS D 1) {t — P [jl}s 1 (n? - n4)
{t = 1}U
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7.4 Time Selection Regret Matching

We now consider a time selection regret minimization algorithm for EFR.

7.4.1 A Failed Attempt: Regret Matching+-+

Kash et al. (2020) presents the regret matching++ algorithm and claims that it is no-external-
regret. This algorithm’s proposed regret bound implies a sublinear bound on cumulative
positive regret, which would further imply that it has the same bound with respect to all
possible time selection functions. The surprising aspect of this result is that the algorithm
does not require any information about any of the possible time selection functions and
requires no more computation or storage than basic regret matching. However, here we show
that there is actually no algorithm that can achieve a sublinear bound on cumulative positive

regret. This result proves that regret matching++ cannot be no-external-regret as claimed.

Theorem 14. The worst-case mazimum cumulative positive regret over T' rounds,

T
T _ t t(t
Q" = mag D [0'e) — ().
of any algorithm that chooses mized strategy © € A(X) in an ODP where payoffs are in
[0,1], is at least T/4.

Proof. Without loss of generality, consider a two pure strategy environment, X = (z, '), and
any learning algorithm that deterministically chooses a distribution, 7 € A(X'), over them
on each round ¢. The environment gets to see the agent’s strategy before presenting a utility
function. If the agent weights one pure strategy more than the other, the environment gives
a payoff of zero for the pure strategy with the larger weight and one to the pure strategy
with the smaller weight. Formally, if 7*(z) > 0.5, then v'(x) = 0, v'(2’) = 1, and vice-versa
otherwise.

Let Z1oy = @' if 7'(x) > 0.5 and x14y = 2 otherwise. The positive regrets on any round
t are [1 — ' (Z1ow)]+ > 0.5 and [0 — (1 — 7" (210w))] . = 0. So the agent is forced to suffer at
least 0.5 positive regret on each round for one of the pure strategies. Since there are only two
pure strategies, then over T rounds one of the strategies must have accumulated a regret of
0.5 on at least 7'/2 rounds. The cumulative positive regret for this pure strategy must then
be T'/4. Therefore, the maximum cumulative positive regret of any deterministic algorithm
in this environment must be at least 7'/4.

To extend this result to include algorithms that stochastically choose 7*, we simply need
to consider the expected cumulative positive regret and notice that the ramp function is

convex. By Jensen’s inequality and the fact that the max of an expectation is no larger than
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the expectation of the max, the expected cumulative positive regret is lower bounded by
the cumulative positive regret under the agent’s expected distributions, E[rf], i.e., E[QT] >
max,cx S, [vH(z) — v (E[r'])], > T/4. Since E[r'] is a mixed strategy, we have reduced
the stochastic case to the deterministic case, thereby showing they have the same regret

lower-bound. O

I now identify the mistake in the regret matching++ external regret bound proof.
Define the cumulative positive regret of pure strategy x € X after T rounds as
QT =7 [p(¢~", 7% vh)] ;. Kash et al. (2020) bounds

(max Qf)? < Z QT2 =D (QI " + [p(o7 s 0)]4)

zeX

They then state that

QT+ [p(¢~", 7T 0T)] 1) < (QT71 + p(¢7", 775 07))” + (2U)2,

where U is the maximum payoff magnitude. This is false in general:

2

(@1 + (oo, " 0", (7.12)
= (I )+ (pw ,wT,vT>)2+2QT To(e~" 70" (7.13)
< (Q“) (p(¢7*, m ,UT)) +2QT (o7, T;UT)+2Q3*1(2U) (7.14)
— (QT + p(¢7*, 73 07))* +2QT1(2U), (7.15)

where 2QT-1(2U) > (2U)? if QT > (2U)/2. There are scenarios where Eq. (7.15) is tight

so it is unclear how this bound could be improved. Attempting the rest of the proof, we get

_ - 2 12 _
(@ lple7m w0 L) < XU+ Y (@) +220) )@
Unrolling the recursion exactly is messy, but the extra 2(2U) Y. QI ! term ensures that the
bound will be no smaller than 3. QT + [p(¢~*, n7;07)], < 22|X|"= (2U)7.

7.4.2 Time Selection Regret Matching

To give EFR the same implementation flexibility as CFR (which we will see is a special
case of EFR) we develop regret matching for time selection in full generality. Namely,
our time selection regret matching algorithm allows us to use a link function that leads
to hyperparameter-free learning, and it allows regret approximations and predictions.

This section defines time selection functions in an OTSDP for each deviation individually,
i.e., W(¢) is the finite set of time selection functions for deviation ¢. I overload W =

Ugeca W(¢) and work with |®[ x [W| matrices where entries corresponding to incompatible
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(¢, w)-pairs (i.e., w & W(¢)) are always zero. I refer to instantaneous regrets with the matrix
pt € RI®XMWI where 0y = w'p(¢, ' o), cumulative regrets with p!'" = S pt, and regret
matching™ pseudo regrets with ¢'“7 = [¢*T 14 pT], where ¢ = 0. An algorithm is no-regret
for all time selection functions in W as long as every entry of p*? grows sublinearly with 7.

The first step in the usual regret matching procedure is to construct non-negative pref-
erences for each deviation by applying a link function to each cumulative regret or pseudo
regret. This is actually the only step we need to modify to generalize regret matching to
the time selection setting. The preferences in our algorithm are constructed by passing each
cumulative weighted regret or pseudo regret through the link function as usual, but now the
link outputs are weighted by time selection weights on the current round and summed across
the time selection function dimension. From here, we apply the remainder of the regret
matching procedure without modification. Treating each deviation as a matrix, we construct
the average deviation matrix according to the normalized preferences and play a strategy
that is a fixed point under this average deviation.

Our algorithm is a generalization of optimistic regret matching (D’Orazio and R. Huang
2021) that, after + — 1 rounds, uses preferences ys = >,y W' f(25,, + mg,,), Where

L=l or 2t = ¢¥~! for regret matching® with ! = 0, and m! is a matrix of

either ! = p
arbitrary predictions or approximation errors. For the rest of our analysis, we assume the
ramp link function but the arguments involved in all proofs apply more generally to link
functions that are subgradients of convex potential functions.? Only the final bounds would
change. Notice that ' +m! can be generated from a function approximator instead of storing
either term in a table. Denoting the weighted sum of the preferences as 2! = ) ped y; and
representing each deviation as an X x X matrix, the average deviation is constructed as usual:
q?ﬁt = Z—lt Z¢e¢ yé)gb Time selection regret matching chooses 7 € A(X) to be a fixed point
of the linear transformation Ebt DT &Stw, where 7 is represented as a |X|-length column
vector. If 2! is zero so that {bt is undefined, then there are no positive regrets and an arbitrary
strategy can be played.

Note that if all deviations are external, then g?ﬁt is a matrix where each column is identical
and forms a probability distribution. This distribution is a fixed point of g_bt, so the next

strategy 7! can be chosen as the first column of q_bt to avoid any extra computation.

2For regret matching® to be no-regret, the potential function must also be positive invariant.
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7.4.3 Analysis

Theorem 15. After T rounds, (W, ®, [-],)-optimistic regret matching or regret matching™

ensures that

for every deviation ¢ € ® C O and time selection function w € W.

Proof. Let M., = [My ,]seca for any matrix M € RI®*M! and time selection function w € W.
The quadratic potential function, G(-) = 1||[]+|3 is convex, positive invariant (with equality),
its gradient, VG(-) = [-], is the ramp function, and G is smooth with respect to v(-) = 3||||3.
Altogether, these properties imply that

(ot + 0],

:G<[xt +m!, + o', —m! ]+) (7.16)
=G(a!, +ml, +pl, —mt,) (7.17)
< G(al, +mb,) + (pl, —ml,, 2, + miwL) + (0 —mly,). (7.18)

By convexity, G(a) — G(b) < (VG(a), a — b), for any vectors a and b, so we substitute

— ot t ot
a=uz,+m, and b=z, to bound

G(J‘{w + miw) - <mt [l{w + mt w]—i—) < G(‘rt,w)

Therefore,
([t + 7))
<Gl )+ {pl s [l +ml L] )+ (0, — my) (7.19)
= G([28],) + (0 [l + ] )+ (6 = ml). (7.20)

Summing the potentials across time selection functions,

< 3 G([etu],) + s [t ml] )+ (e = ). (7.21)
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With some algebra, we can rewrite the sum of inner products:

2 (P [l tminle) = 3 D whpl@im', oY [l +miu], (7:22)

weW wEW ¢ped
= p(tswtol) D wlal, +mh,], (7.23)
ped weW(¢)
=> pler', o)y, (7.24)
PP

Since the strategy 7' is the fixed point of g?ﬁt generated from preferences 1!, the Blackwell
condition »_ sed p(o; mt, Jt)yé) < 0 is satisfied with equality. For proof, see, for example, A.
Greenwald, Z. Li, and Marks (2006a). The sum of potential functions after 7' rounds are

then bounded as

Z G([x?w + pTwL) < Z G([:L’TwL) +7(pl, —ml,). (7.25)

weWw weWw

Expanding the definition of ~,

S|t | < S a(n)) v 5 X Sk -ml) ()

weWw —— weyy Svia
2751
W +
1 2
= > (W)L) +5 X (e -mhn)” (7.27)
weWw bED,
weW(¢)

Unrolling this potential function recursion across rounds,

> ([ )_22 S (P — ) (7.28)

weWw t=1 ¢cd,
weW(e)

We lower bound

ZG( T+1] ) ZZ( T+41] ) (7.29)

wew wEWd)ECD
1 T+1 2
> 5 max ([73],) (7:30)
weW(e)
so that
T
1 [T+1] 2<lz (t ot )2 (731>
5 gle%x Tow |, <3 Pow = M) - .
weW($) t=1

PED,
weW(¢)
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Multiplying both sides by two, taking the square root, and applying p}7, < [ngﬂl]Jr, we
arrive at the final bound,
T
Tmax P < Z Z (Pé,w—mé,w)? (7.32)
weW(9) t=1  ¢co,
weW(¢)

Since the bound is true of the worst-case ¢ € ® and w € W, it is true of each pair, thereby

proving the claim. O]

Let the size of the largest time selection function set be m* = maxgee m(¢). If all of the
predictions m! are zero, then we arrive at a simple bound as a function of m* for ordinary

regret matching.

Corollary 1. (W, ®,[-],)-regret matching or regret matching® ensures that pil, <
2U\/m*a(P)T for any deviation ¢ € & C Y and time selection function w € W, where
a(P) = max,ex Zd)eq) {p(x) # x} is the maximal activation of ®.

Proof. Since m! = 0 on every round ¢, we know from Theorem 15 that

WS D D (@p(¢wtat) (7.33)

1
Py
t=1 P ED,
\ weEW(¢')

— \ Z > (p(¢, 7t 0t) 7 2y (@) (7.34)

Since 0 < ' < 1,

;MTUS\m ZZ (¢/, 7t 0t))”. (7.35)

Since ) cq(p(¢', 7' 0° )2 < (2U)20(®) (see A. Greenwald, Z. Li, and Marks (2006a)),

piT < /m QU VPa(@)T (7.36)
=2U/m*a(P)T. (7.37)
This result completes the argument. O

The predictions m! can alternatively be interpreted as errors in approximating the exact
link inputs 2! for ordinary regret matching. In this case, Theorem 15 shows that as long as
these errors are small or appear similar to the regret on the next round, then an approximate
regret matching algorithm will have small regret. This is an alternative to the more compli-
cated approximate regret matching bounds given by D’Orazio (2020) and D’Orazio, Morrill,
et al. (2020).
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Algorithm 2 EFR update for player ¢ with exact regret matching.

1: Input: agent strategy, =* € II,

2:  daimon strategy, o € X, and

3:  behavioral deviations, ® C 3.

4: initialize table p"°(-) = 0.

5: > Update cumulative immediate regrets:

6: for s € Su, @5 € P, wy € W;(P) do

T pA(0s) < p N (0s) + L{os € Dy tuwiplt (¢, T o)
8: > Construct w'*! with regret matching:

9: for s € S, from the start of the game to the end do
10: for ¢, € ®, do

11: > w1 need only be defined at 5 < s for wi“ to be well-defined.
1 1 :
. Yo > wew, (@) L{9s € D\ Jwit [Pi,tx(fbs)h
1
R D,
4 0, e A Y e, Ui s i 2T > O else ]
15 wl(s) + a fixed point of ¢

return 7tt!

7.4.4 Use in EFR

When exact time selection regret matching with the ramp link function is applied to EFR,

we arrive at the following concrete regret bound:

Theorem 16. Instantiate EFR with exact ramp regret matching and a set of behavioral

deviations ® C @%‘Z. Owerload

a:d— relax a(®r) wkg\;[(qs) 1{ps € D, }
as the maximal activation for behavioral deviations. FEFR’s cumulative full regret at any
active agent state after T rounds with respect to ® and the set of single-target deviations
generated from ©, <o, is no more than Qd*U|SA|W. In addition, this implies that
EFR is OS hindsight rational with respect to ® U <.

Proof. EFR’s immediate strategies at each agent state s on each round are chosen according
to time selection regret matching on the cumulative memory-state-specific immediate regrets
and memory state probabilities there. The number of time selection functions for a given
action transformation ¢ at s is 3-, <y (@) 1{®s € ®sa} so the maximal activation of @,
a(®P), is the largest product of mia(®;) across all agent states s. Exact ramp regret matching
thus ensures that cumulative immediate regret is no larger than 2U \/W according to
Corollary 1 and Egs. (7.8) and (7.11). Cumulative full regret is therefore no larger than
2d,U|S4]1/a(®)T according to Theorem 5. O
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See Table 7.1 for the maximal activation value for each deviation type. Algorithm 2

provides an implementation of EFR with exact regret matching.

7.5 Experiments

Our theoretical results show that EFR variants utilizing more powerful deviation types are
pushed to accumulate higher payoffs during learning in worst-case environments. Do these
deviation types make a practical difference outside of the worst case?

We investigate the performance of EFR with different deviation types in nine benchmark
game instances from OpenSpiel (Lanctot, Lockhart, et al. 2019). We evaluate each EFR
variant by the expected payoffs accumulated over the course of playing each game in each
seat over 1000 rounds under two different regimes for selecting the other players. In the “fixed
regime” | other players play their parts of the fixed sequence of strategy profiles generated with
self-play before the start of the experiment using one of the EFR variants under evaluation.
In the “simultaneous regime”, the other players are EFR instances themselves. In games
with more than two players, all other players share the same EFR variant and we only
record the score for the solo EFR instance. The fixed regime provides a test of how well
each EFR variant adapts when the other players are gradually changing in an oblivious way
where comparison is simple, while the simultaneous regime is a possibly more realistic test
of dynamic adaptation where it is more difficult to draw definitive conclusions about relative
effectiveness.

Since we evaluate expected payoff, use expected EFR updates, and use exact regret match-
ing, all results are deterministic and hyperparameter-free. To compute the regret matching
fixed point when internal transformations are used, we solve a linear system with the Ja-
cobi singular value algorithm implemented by the jacobiSvd method from the Eigen C++
library (Guennebaud et al. 2010). Experimental data and code for generating both the data
and final results are available on GitHub.? Experiments took roughly 20 hours to complete
on a 2.10GHz Intel®) Xeon® CPU E5-2683 v4 processor with 10 GB of RAM.

Section 7.C hosts the full set of results but a representative summary from two variants of
imperfect information goofspiel (Lanctot 2013; Ross 1971) (a two-player and a three-player
version denoted as go, 5 1+ and gs 4 4, respectively, both zero-sum) and Sheriff (two-player,
non-zero-sum) is presented in Table 7.2. See Section 7.A for descriptions of all games.

Stronger deviations consistently lead to better performance in both the fixed and the
simultaneous regime. The behavioral deviations (BHV) and the informed action deviations
(ACT\y) often lead to the best and worst performance, respectively, and this is true of each

scenario in Table 7.2. In many cases however, TIPS or CSPS yield similar performance

3https://github.com/dmorrill10/hr_edl_experiments
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Table 7.2: The payoff of each EFR instance averaged across both 1000 rounds and each
instance pairing (eight pairs in total) in two-player and three-player goofspiel (measured in
win frequency between zero and one), and Sheriff (measured in points between —6 and +6).
The top group of algorithms use weak deviation types (ACT;y — informed action deviations,
CF — blind counterfactual, and CF;y — informed counterfactual) and the middle group use
partial sequence deviation types. The BHV instance uses the full set of behavioral deviations.

fixed simultaneous

g2, 5 1 £3,4, 1 Sheriff g2.5 1 83,4, TT Sheriff

ACTy 0.51 0.48 0.28 0.45 0.86 0.00
CF 0.56 0.51 0.48 0.50 0.88 0.34
CFin 0.57 0.51 0.60 0.50 0.92 0.37
BPS 0.58 0.51 0.58 0.50 0.85 0.34
CF 0.58 0.52 0.70 0.51 0.84 0.37
CSPS 0.59 0.52 0.61 0.51 0.91 0.37
TIPS 0.60 0.53 0.82 0.51 0.87 0.38
BHV 0.63 0.53 0.91 0.51 0.92 0.38

T In three-player goofspiel, players who tend to play the same actions perform worse. Since the
game is symmetric across player seats, two players who use the same (deterministic) algorithm
will always employ the same strategies and often play the same actions, giving the third player
a substantial advantage. The win percentage for all variants in the simultaneous regime tends
to be high because we only record the score for each variant when they are instantiated in a
single seat. The relative comparison is still informative.

to BHV. A notable outlier from the scenarios in Table 7.2 is three-player goofspiel with a
descending point deck. Here, blind counterfactual (CF) and BPS deviations lead to better
performance in the first few rounds before all variants quickly converge to play that achieves

essentially the same payoff (see Figs. 7.C.1 to 7.C.4).

7.6 Conclusion

[ introduced EFR, an algorithm that is OS hindsight rational for any given set of behavioral
deviations. While the full set of behavioral deviations leads to generally intractable com-
putational requirements, the four partial sequence deviation types are both tractable and
powerful in games with moderate lengths when combined with OSR.

An important tradeoff within EFR is that using stronger deviation types generally leads

to slower strategy updates, demonstrated by Figs. 7.C.5 and 7.C.6 where learning curves
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are plotted according to runtime. Often in a tournament setting, the number of rounds and
computational budget may be fixed so that running faster cannot lead to more reward for
the learner, but it can be beneficial to have faster updates in other scenarios. Quantifying
the potential benefit of using a stronger deviation type in particular games could aid in
navigating this tradeoff.

Alternatively, one could hope that the learner could navigate this tradeoff on their own.
Algorithms like the fixed-share forecaster (Herbster et al. 1998) or context tree weight-
ing (Willems et al. 1993) efficiently minimize regret across large structured sets of experts,
effectively avoiding a similar tradeoff. Unfortunately, this efficiency is entirely dependent on
multiplicative weight updates that cannot be applied to time selection.

A second tradeoff is that stronger deviation types lead to EFR regret bounds with larger
constant factors even if the best deviation is part of a “simpler” class, e.g., the regret bound
that TIPS EFR has with respect to counterfactual deviations is larger than that of CFR
even though a TIPS EFR instance might often accumulate more reward in order to compete
with the larger TIPS deviations. A simple case of this can be studied in NFGs where regret
matching on internal regret has a worse external regret bound than regret matching on
external regret. Perhaps an EFR variant can be designed that would compete with large sets
of behavioral deviations, but its regret bound would scale with the “complexity” (in a sense
that has yet to be rigorously defined) of the best deviation rather than the size of the whole
deviation set.

My analysis of general immediate regret minimization for POHPs in Section 4.5 and the
impossibility result of Theorem 3 brings up questions about how far this procedure can be
generalized. The EFR regret decomposition is based on a perfect-recall and a realization-
weighted variant of Kakade (2003)’s performance difference lemma (Lemma 5.2.1). This
observation is used in Chapter 9 to show how CFR can be applied to continuing, discounted
MDPs with reward uncertainty, but it is less clear how deviations other than the counterfac-
tual and action deviations could be used in this setting. The POHP formalism can perhaps
allow us to better understand how and when EFR can be applied without perfect recall by
considering Lanctot, Burch, et al. (2012)’s well-formed-game conditions allowing efficient full
counterfactual regret minimization in imperfect recall EFGs together with the analysis from
Chapter 9.
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7.A Games

The OpenSpiel (Lanctot, Lockhart, et al. 2019) implementation of each game is used for

experiments.

7.A.1 Leduc Hold’em Poker

Leduc hold’em poker (Southey et al. 2005) is a two-player poker game with a deck of six
cards (two suits and three ranks). At the start of the game, both players ante one chip and
receive one private card. There are two betting rounds and there is a maximum of two raises
on each round. Bet sizes are limited to two chips in the first round and four in the second. If
one player folds, the other wins. At the start of the second round, a public card is revealed.
A showdown occurs at the end of the second round if no player folds. The strongest hand in a
showdown is a pair (using the public card), and if no player pairs, players compare the ranks
of their private cards. The player with the stronger hand takes all chips in the pot or players
split the pot if their hands have the same strength. Payoffs are reported in milli-big blinds
(mbb) (where the ante is considered a big blind) for consistency with the way performance

is reported in other poker games.

7.A.2 Imperfect Information Goofspiel

Imperfect information goofspiel (Lanctot 2013; Ross 1971) is a bidding game for N players.
Each player is given a hand of n ranks that they play to bid on n point cards. On each round,
one point card is revealed and each player simultaneously bids on the point card. The point
cards might be sorted in ascending order (1), descending order (| ), or they might be shuffled
(R). If there is one bid that is greater than all the others, the player who made that bid wins
the point card. If there is a draw, the bid card is instead discarded. The player with the

most points wins so payoffs are reported in win percentage. We use five goofspiel variants:

e two-player, 5-ranks, ascending (goofspiel(5, T, N = 2), denoted as gs 5 + in the main
paper),

two-player, 5-ranks, descending (goofspiel(5, |, N = 2)),

two-player, 4-ranks, random (goofspiel(4, R, N = 2)),

three-player, 4-ranks, ascending (goofspiel(4,1, N = 3), denoted as g3 4 + in the main
paper), and

three-player, 4-ranks, descending (goofspiel(4, |, N = 3)).
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7.A.3 Sheriff

Sheriff is a two-player, non-zero-sum negotiation game resembling the Sheriff of Nottingham
board game and it was introduced by Farina, Ling, et al. (2019). At the beginning of the
game, the “smuggler” player chooses zero or more illegal items (maximum of three) to add
to their cargo. The rest of the game proceeds over four rounds.

At the beginning of each round, the smuggler signals how much they would be willing to
pay the “sheriff” player to bribe them into not inspecting the smuggler’s cargo, between zero
and three. The sheriff responds by signalling whether or not they would inspect the cargo.
On the last round, the bribe amount chosen by the smuggler and the sherift’s decision about
whether or not to inspect the cargo are binding.

If the cargo is not inspected, then the smuggler receives a payoff equal to the number of
illegal items included within, minus their bribe amount, and the sheriff receives the bribe
amount. Otherwise, the sheriff inspects the cargo. If the sheriff finds an illegal item, then
the sheriff forces the smuggler to pay them two times the number of illegal items. Otherwise,

the sheriff compensates the smuggler by paying them three.

7.A.4 Tiny Bridge

A miniature version of bridge created by Edward Lockhart, inspired by a research project at
University of Alberta by Michael Bowling, Kate Davison, and Nathan Sturtevant. We use
the smaller two-player rather than the full four-player version. See the implementation from
Lanctot, Lockhart, et al. (2019) for more details.

7.A.5 Tiny Hanabi

A miniature two-player version of Hanabi described by J. Foerster, Song, et al. (2019). The
game is fully cooperative and the optimal score is ten. Both players take only one action so

all EFR instances collapse except when they differ in their choice of ®;.

7.B Alternative ®; Choices

When implementing EFR for deviations that set the action transformations at each agent
state to the internal transformations, we have the option of implementing these variants by
using the union of the internal and external transformations without substantially changing
the variant’s theoretical properties. We test how this impacts practical performance within
EFR variants for informed counterfactual deviations, CFPS deviations, and TIPS deviations.

These variants have an “EX+ IN” subscript.
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7.C Results

We present four sets of figures to summarize the performance of each EFR variant in the
fixed and simultaneous regimes described in Section 7.

The first three sets of figures illustrate how each variant performs on average in each
round individually. Figs. 7.C.1 and 7.C.3 show the running average expected payoff of each
variant over rounds, averaged over play with all EFR variants (including itself). These figures
summarize the progress that each variant makes over rounds to adapt to and correlate with
its companion variant, on average. Figs. 7.C.2 and 7.C.4 show the instantaneous expected
payoff of each variant over rounds, averaged over play with all EFR variants. Figs. 7.C.5
and 7.C.6 show the same data as in Figs. 7.C.1 and 7.C.3 except according to runtime rather
than rounds. Tiny Hanabi is omitted because it is too small to make meaningful runtime
comparisons between EFR variants.

Fig. 7.C.7 show the average expected payoff of each variant paired with each other variant
(including itself) after 1000 rounds. These figures summarize how well each variant works

with each other variant.
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Figure 7.C.1: The expected payoff accumulated by each EFR variant over rounds
averaged over play with all EFR variants in each game in the fixed regime.

126



? —
2 5164 Leduc hold’em(N = 2)
=
= -1615 ’
S - BPS - TIPS
< -869.5 - ACTiy — CFix CFPS - BHV CFPS ~ TIPS
= ~CF = CFexax - CSPS — CFPSpxony — TIPSexsi
b'o /
z 5T 0 500 1000 0 500 1000 0 500 1000
1 goofspiel(5, |, N = 2)
SN ‘ ‘
2595 AL AR A )
= s A il
2046.81 —ACT ~ CFix CFPS — BHV CFP. ~ TIPS
= ~CF - CFgxax — CSPS — CFPSgxix — TIPSgxanx
.2 0 500 1000 0 500 1000 0 500 1000
80,7 goofspiel(5, T, N = 2)
b\o )
=261.6 8 AT T s i
= K i —BPS - TIPS W W OIS
2042.6] — ACTiy — CFiy CFPS - BHV CFPS  — TIPS
z —~CF = CFexun — CSPS — CFPSgx v — TIPSgx i
235
235 0 500 1000 0 500 1000 0 500 1000

goofspiel(4, R, N = 2)

i
- BPS — TIP

7. CFPS — BHV CFPS ~ TIPS
— CSPS — CFPSgx4ix — TIPSgx41x
101 0 500 1000 0 500 1000 0 500 1000
<0 goofspiel(4, [, N = 3)
S - ACTyy — CFiy - BPS - TIPS CFPS ~ TIPS
2544 —CF = CFexsix CFPS — BHV — CFPSpx4iv — TIPSpx4v
= - CSPS k
20H0.8
Sl Ir
47.2
0 500 1000 0 500 1000 0 500 1000
33 goofspiel(4, 1, N = 3)
x — ACTpy — CFix - BPS - TIPS CFPS ~ TIPS
2558 —CF = CFpxsy CFPS — BHY — CFPSexsix — TIPSExs1x
£ N, ~ CSPS
6048.3 ey T WWWW
40.7
0 500 1000 0 500 1000 0 500 1000
r Sheriff(N = 2)
& |- ACTy — CFix | 4
% 0.91 —CF — CFex4iy I AT 1l J
=, N [y ‘ r\ = BPS — TIPS |WA '
eb 0.1 W\] A ﬂ' CFPS - BHV CFPS ~ TIPS
% — CSPS — CFPSgx4in — TIPSgx 41N
06 0 500 1000 0 500 1000 0 500 1000
- tiny bridge(N = 2)
& A — ACTpy — CFiy - BPS - TIPS CFPS ~ TIPS
=103 ~CF = CFpxsny CFPS — BHV — CFPSpxaix — TIPSgx iy
8, - CSPS
ep -1.9
z
-14.0
0 500 1000 0 500 1000 0 500 1000
) . round round
0.4 tiny Hanabi(N = 2)
% . —CF = CFgxqx
=74 CFix
a,
e0b.4
z
39 0 500 1000
round

Figure 7.C.2: The instantaneous payoff achieved by each EFR variant on each round
averaged over play with all EFR variants in each game in the fixed regime.
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Figure 7.C.3: The expected payoff accumulated by each EFR variant over rounds
averaged over play with all EFR variants in each game in the simultaneous regime.
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Figure 7.C.4: The instantaneous payoff achieved by each EFR variant on each round
averaged over play with all EFR variants in each game in the simultaneous regime.
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Figure 7.C.5: The expected payoff accumulated by each EFR variant over runtime

averaged over play with all EFR variants in each game in the fixed regime.
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Figure 7.C.6: The expected payoff accumulated by each EFR variant over runtime
averaged over play with all EFR variants in each game in the simultaneous regime.
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Figure 7.C.7: (1 / 2) The average expected payoff accumulated by each EFR variant
(listed by row) from playing with each other EFR variant (listed by column) in each
game after 1000 rounds where a — ACT\, b — CF, ¢ — CF, d = CFuxi, € —
BPS, f — CFPS, g — CFPSyxsm, h — CSPS, i — TIPS, j — TIPSgxsm, k — BHV.
The bottom rows and farthest right columns represent the column and row averages,

respectively.
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game after 1000 rounds where a — ACTy, b — CF, ¢ — CFyy, d - CFuxyn, € —
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respectively.
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Part 111

Extensions



Chapter 8

Background

8.1 Introduction

This Part of the thesis presents two extensions of the ideas developed in the previous chapters,
one on applying regret minimization algorithms to solve robust optimization and Al safety
problems in POHPs, and another analyzing CFR with alternative function approximation
parameterizations. The background for this Part introduces basic concepts related to learning
with function approximation in a POHP, the regression CFR (RCFR) framework for using
CFR with function approximation, and k-of-N CFR for robust policy optimization.

8.2 Learning with Function Approximation

POHP models for games that humans are interested in playing, or for problems of practical
importance, typically generate an immense number of agent states under perfect recall. In
these cases, relationships between environment elements like symmetries and redundancies
can be utilized to make the POHP more manageable. To automatically detect such relation-
ships, we look to the field of supervised learning, which specializes in algorithms for learning
generalized mappings from input—output pairs.

Supervised learning is “supervised” because training examples are labeled, i.e., every input
example has an associated target output value. After completing the training procedure, a
supervised learning algorithm returns a function approximator that maps the space of inputs
to the space of outputs. The goal is not to naively reproduce the input—output pattern from
the training data, but to generalize to unseen testing data, effectively predicting the results
of the target generating process. The inputs of supervised learning applied to POHPs can
represent agent state features, thereby forming the basis of compact mappings from agent
states to task-specific values that can generalize across states. Such functions are useful for

dealing with large POHPs because these functions allow experience from one part of the
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POHP to improve decisions in a separate but related part of the POHP.

When the input space is complicated, e.g., agent states, we can define a feature function,
¢ : S — R% d > 0, that maps inputs to feature vectors. A feature vector lists salient elements
of the input that may be important in capturing the mechanics of the target generating
process. We will only study “regression problems”, where the output is a continuous real

value.

8.2.1 Regression CFR

Regression CFR (RCFR; Waugh, Morrill, et al. 2015) uses a function approximator to esti-
mate cumulative counterfactual regrets at each agent state and generates immediate strate-
gies with a normalized ramp transformation to approximate ramp regret matching. That
is, if plit—bnner ¢ RIAGI g a vector of cumulative immediate counterfactual regrets for the
external action transformations at agent state s, then RCFR’s function approximator maps

s to approximate regrets, pLt—LMMCF ¢ RO which generate’s RCFR’s immediate strategy

[ﬁl t—1,IMM, CP] /<1 [ﬁl :t—1,IMM,CF

estimates are positive. Fig. 8.1 provides an illustration of the RCFR pipeline from agent

at s as 7'(s) = |+) or uniform random if none of the regret
state to immediate strategy.

RCFR function approximators are usually trained with regression to one of three types of
targets at each agent state s: (i) exact targets, (ii) estimated targets, or (iii) bootstrapped
targets. To implement method (i), immediate counterfactual regrets are accumulated exactly
in a table and the RCFR function approximator is trained to minimize a loss like the mean-
squared error (MSE) ||pttcr — pLEIMMCE) 2 - Nethod (ii) is implemented by constructing
unbiased estimates of the cumulative immediate counterfactual regrets, pr™" ¢ RM()
e.g., by keeping a reservoir buffer (Vitter 1985) of instantaneous regrets, and minimizing
a loss like MSE with respect to these estimated targets. Finally, method (iii) constructs
an estimate of the next cumulative immediate counterfactual regrets by bootstrapping off
of the current function approximator predictions, i.e., after ¢ rounds, the RCFR function
approximator is trained to minimize ||pL*= MM 4 pC ( ,h ot) — plibIMMLCE)2,

The overall RCFR regression objective is the sum or average of agent-state local regression
objectives, so any one of these three methods can, in principle, be applied to each agent-state
independently. Typically, however, the same method is applied to each agent state. Method
(i) is typically only applied to each agent state in small test games since it requires an exact
table of regrets spanning the entire agent-state space, in addition to the RCFR function
approximator. Method (ii) can be applied practically to each agent state, though the reservoir
buffer may have to be large to accurately reproduce the true cumulative regrets and perform

well. Method (iii) is the simplest approach as it does not require a supplementary table or
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buffer, but it places a heavy burden on the expressive power of the function approximator
since RCFR can perform poorly if the cumulative regrets are not accurately estimated on
each and every round.

To give a bound on the regret of RCFR, Waugh, Morrill, et al. (2015) and my M.Sc. the-
sis (Morrill 2016) first provide an external regret bound for regression regret matching where
a function approximator estimates regrets for each action in a stateless ODP setting. Then
we apply Theorem 8 to give an external regret bound when regression regret matching is
used at each agent state within CFR, and this is exactly the RCFR algorithm. In both cases,
the bound gets smaller as the function approximator more closely approximates the exact

cumulative immediate counterfactual regrets.

Theorem 17 (Morrill (ibid., Theorem 3.0.4)). Ramp regression regret matching is an ODP
algorithm that chooses an arbitrary strategy on the first round and, on each subsequent round

t, chooses mt o< [ptt!]

+ according to regret estimates ptt=t € R This algorithm ensures
that, after T rounds, the cumulative regret with respect to each external deviation ¢ € O is

upper bounded as

T
pHT(0) <20 | TIX|+4UVIX] Y _llo™ s = (3% 4l (8.1)
t=2

J/

Vv
Slack induced by approximation errors.

Corollary 2 (Morrill (ibid., Corollary 3.0.5)). RCFR is CFR with ramp regression regret
matching as its local learning algorithm so that its strateqy at active agent state s € Sy is
mi(s) o [pY71(s)]y on round t. Denote the cumulative approximation error in s as €. =
ST Y(s)] e = [PY ()] |l After T rounds, this algorithm guarantees that cumulative

regret with respect to each external deviation ¢ € P is upper bounded as

PT(0) < 3 20 TIAGs) |+ AU VTAG)|er (32)

seESA
< 2U[Sa| [Inal + AU/ |nale® ) (8.3)
—_——
Slack induced by approximation errors.

where € = maxses, €. .

The ramp regression regret matching bound of Eq. (8.1) differs from that of exact ramp
regret matching only by an additive cumulative approximation error term.! The bound of

8.3 likewise differs from CFR’s in the same way.

With the exception that T'(]A| — 1) has been replaced with T|.A| since Morrill (2016) did not use the
analysis of A. Greenwald, Z. Li, and Marks (2006a).
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Training objective

p N
Minimize
le:t,lMI\r{,CF _ ﬁlzt,ll\'ll\'1701“||% (exact)
s s
or
©(s) Function A (1P — Gt CE |2 (estimated)
approximator it cF or
s Hﬁi:tfl,lMM,CF + ng('aﬂ-t; Ut) _ ﬁi:t,H\H\LCF”%
ﬂ (bootstrapped).
L J

H T (s)

Figure 8.1: The RCFR pipeline from agent state to immediate strategy.

The RCFR training objectives presented in this section require exact instantaneous regrets
to be computed on each round to construct targets, even if those targets are estimates of
the cumulative regret. Another reasonable approach is to compute Monte Carlo estimates of
instantaneous regrets and construct RCFR targets on these estimates. Brown, Lerer, et al.

(2019), for example, uses a reservoir buffer with Monte Carlo instantaneous regrets.

8.3 Policy Gradient in a POHP

Function approximation has been an integrated into policy gradient since its inception (R. S.
Sutton et al. 2000; Williams 1992). With function approximation, policy gradient is an end-
to-end learning procedure where function parameters determine action preference outputs
and these parameters are trained with backpropagated gradients of accumulated rewards
(see Fig. 8.2). Various popular deep reinforcement learning algorithms are based on policy
gradient (Espeholt et al. 2018; Lillicrap et al. 2015; Mnih et al. 2016; Schulman, Levine,
et al. 2015; Schulman, Wolski, et al. 2017). Policy gradient is also popular as a multi-agent
learning algorithm (e.g., Baker et al. (2019), Bansal et al. (2018), J. Foerster, R. Y. Chen,

w(s) Function

= approximator 92 7 (s) o L

= ﬂ ﬂ Training objective
= .

= m [Maximize v (mt; o’t)-]
] H H

]

L]

Figure 8.2: The softmax policy gradient pipeline from agent state to immediate strategy in
a finite-horizon POHP with timed updates.
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et al. (2018), J. N. Foerster et al. (2018), and Lowe et al. (2017)).
In Section 10.4, softmax policy gradient is compared algorithmically and experimentally

with a version of RCFR that also uses a softmax policy.

8.4 Uncertain MDPs and Robust Optimization

An uncertain MDP or MDP with parameter uncertainty (see, e.g., K. Chen et al. (2012)) is
an MDP where the reward function or the transition probability distribution (or both) is a
priori unknown to the agent. Model-free reinforcement learning control (see, e.g., R. Sutton
et al. (2018)) addresses this problem by having the agent learn a good policy gradually from
direct experience with the MDP. If it is difficult for the agent to gain experience in the MDP,
e.g., if mistakes from trial and error are costly or dangerous, as in the autonomous driving or
medical treatment domains, then such an approach may be infeasible or at least insufficient.

Instead, robust policy optimization constructs policies that are likely to be effective in
the MDP without a perfect simulator. The idea is to characterize a belief (probability
distribution) about how likely each possible parameterization accurately reproduces the real
MDP. Each candidate parameterization can be simulated so we can construct a policy that
is effective across this belief. The more likely the true parameterization is under the belief,
the more confidence we can have that the policy will also be effective in the real MDP.

To account for belief weight on incorrect parameterizations, robust policy optimization
requires a risk measure to induce robustness. For example, the risk measure might dictate
that the policy should maximize its performance on the bottom 10% of parameterizations.
That is, the policy should perform well on the most challenging 10% of parameterizations
sampled from the belief and selected by an adversary.

We can represent an uncertain MDP with a POHP-form MDP except that at the start of
the POHP, the (non-chance player’s) daimon chooses the parameters that determine the rest
of the MDP simulation.

8.5 k-of-N CFR

The k-of-N CFR algorithm computes an approximate fiory-robust policy, which is a policy
that approximately minimizes the k-of-N risk measure, pgor.ny (K. Chen et al. 2012). This
Bayesian risk measure is closely related to the classic conditional value at risk (CVaR) mea-
sure. By tuning the £ > 0 and N > k parameters, the algorithm designer can set a desired
robustness level between worst-case (k = 1 and N large) and average-case (k = N). As N is
increases, por.n approximates the CVaR measure at the k/N percentile. See K. Chen et al.

(ibid.) for more details on this risk measure.
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k-of-N CFR works by iteratively sampling N parameterizations from a belief and updat-
ing the current policy to improve its value under the k-worst reward functions. Here we
presuppose that the daimon’s expected return is the negative of the agent’s so they are in-
centivized to choose a parameterization on each round that is difficult for the agent’s current
policy to handle. At the beginning of each round, N parameterizations are sampled from
the belief. Then the daimon chooses k of these parameterizations that maximize their value
and minimize the agent’s. Finally, a single parameterization is sampled uniformly from the
k chosen by the daimon to determine the rest of the simulation for this round. The agent
cannot observe these preliminary actions. The result is the following optimality guarantee
for k-of-N CFR with perfect-recall updates:

Theorem 18. With probability 1 —p for 0 < p < 1, a uniformly sampled policy from (w*)L_,

k-of-N CFR is an (T, p)-approximation to a py..pn-robust policy where

2 na
e(T,p)=8(1+— |d.U|S —.
(1) = 5(1+ 22 ) 1Sl /22

If there is only reward function uncertainty and non-zero rewards are only provided to the
agent at terminal agent states, then only timed updates are required. In both this specific

case and in the general case, the k-of-N CFR algorithm is limited by CFR’s restriction to
finite-horizon POHPs.
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Chapter 9

k-of-N CFR in a Discounted,
Continuing MDP

9.1 Introduction

This chapter shows how the k-of-N CFR procedure can be efficiently applied to discounted,
continuing MDPs with reward uncertainty. This version of k-of-N CFR does not require a
finite horizon and operates in stationary-policy space so its memory requirements and regret
bound scale with the number of MDP states rather than the number of agent states under
perfect-recall or timed updates. I then show how this procedure can be used to construct
policies that automatically behave cautiously in previously unseen agent states in various

elementary safety problems.

9.2 Breaking the Limitations of K. Chen et al. (2012)

The key property of CFR is that regret is minimized across all agent states jointly even
though CFR only directly minimizes regret at each agent state in isolation (Zinkevich, Jo-
hanson, et al. 2007b). K. Chen et al. (2012) prove as a consequence that if the state transition
distribution and reward function on each round of a repeated MDP are sampled uniformly
from the k-worst of N candidates sampled from a belief, then CFR approximates an optimal
policy under the k-of-N robustness measure with respect to that belief. However, the CFR
procedure generally requires a finite POHP and perfect-recall updates. K. Chen et al. (ibid.)
argue that as long as there is no transition uncertainty (so there may still be reward uncer-
tainty), then it is safe to instead use only timed updates. While this allows for a reduction in
the number of necessary agent states, timed updates still lead to an inflation in the number
of agent states compared to the number of nominal MDP states (which need not be timed)
and all histories must still deterministically terminate.

The first step in avoiding these requirements is to define and examine realization-weighted
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expected returns for counterfactual deviations in a POHP-form MDP with a finite number
of states and an uncertain reward function. Since only the reward function is uncertain, the
daimon’s only freedom is in their choice of reward function at the beginning of the POHP.
In addition, recall that in a POHP-form MDP, the agent’s active agent states match the
nominal MDP states one-to-one by construction. Thus, we replace the daimon’s strategy o
with the reward function chosen by the daimon, r, and the nominal MDP’s state transition
distribution, P[s'| s, a], as a function of active agent states s’, s € Sy and action a € A(s).
The expected return from every history associated with an active agent state given reward
function r (provided these expectations exist) are all equal since each active agent state is
Markovian. This is the traditional state value used in RL literature (e.g., see R. Sutton
et al. (2018)). Rather than defining a separate action value function, we use the state value
function of transformed policies to capture the same information, i.e., the value of action a
from state s is the state value of policy ¢.%(7) at s. We denote the state value function of
policy 7 with reward function r as ¢s(m;r) = E[G},(7; )] for an arbitrary history h € I(s).
The Markovian assumption can be used to construct reach probabilities without the finite
history or timed update assumptions. The probability of reaching a given agent state s can

be defined by marginalizing the probability of transitioning to s in k actions, i.e.,!

ZZPN k| 5] Prpl5] 50 (9.1)

sESk 0

~~
Prpls|s]

The realization-weighted expected return from each realizable active agent state s is well

defined as long as the state value from s is well defined, u.e.,

P.plh
vs(m o) =Prpls] D 5 ’P[[s]] gs(m;7) (9.2)
hel(s) ™F
(m57) > Paplh (9.3)
hel(s)
N————
Pﬂ',P[S]
= P p[s|gs(m; 7). (9.4)

Without perfect-recall, there may not be a unique counterfactual value because there could be
many ways to play to reach a given agent state, each with their own transition probabilities,
that lead to a different realization weight for each counterfactual deviation. However, the
cumulative regret for each counterfactual deviation can be simultaneously minimized by

ignoring these realization weights, thanks to the fact that states are Markovian.

!The k-step transition distribution is derived from the agent’s policy and the state transition distribution.
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Theorem 19. Let pi(p, ;1) = qs(p(m); 1) — qs(m; 7). be the advantage (alternatively, regret
with respect to the state value function) of deviation ¢ over policy © under reward function
r at state s in an MDP. The cumulative advantage of action transformation ¢g € @fm) mn a
repeated uncertain reward MDP upper bounds the cumulative regret of every counterfactual
deviation that plays to reach state s and employs ¢, there with respect to the realization-
weighted expected return from s. Formally, ptT(¢7%) < ptT9(¢,) for each counterfactual
deviation ¢—° where ¢;° = ¢5. Consequently, if an agent is hindsight rational for a set of
action transformations ®, C CDA(S) with respect to the state value function in each state s,

then the agent is hindsight rational for the set of ®4-counterfactual deviations.

Proof. Let ¢7° be a counterfactual deviation that plays to reach s and employs ¢, once
there. A counterfactual deviation is constructed with external transformations leading to
s, which implies that every policy is transformed in the same way leading up to s, i.e.,
[p22m)(5) = [¢Z27'](5) for all pairs of policies m, 7" and active predecessors s < s. This
fact further implies that ¢7*(7w) and ¢ *(n’) share the same probability of reaching s, i.e.,

Ps—s(r)pls] = Pyos(rypls]. The cumulative full regret of ¢—* from s is therefore

(o) = Z Po—s () p[8165 (05 (1°); 77) — Pmvs ety p[] s (75 77) (9.5)
T
= Pgs(m) Z qs( — qs(7"; th (9.6)
=t pe(¢s, Trt ;rt)
T
Z Pl¢s '51") = piT9(8,). (9.7)

The right-hand-size of Eq. (9.7) is exactly the cumulative advantage of action transformation

¢s, which proves the claim. ]

Theorem 19 motivates a definition of CFR for continuing MDPs where a learner is deployed
at each state to enforce hindsight rationality under the state value function with respect to
action transformations, which guarantees hindsight rationality with respect to counterfactual
deviations. The next step is to show that there is an analog to the counterfactual deviation
specialization of Lemma 1 in uncertain reward MDPs so that CFR is still hindsight rational
for the external deviations. Because CFR in this setting is learning with state values, we can
see that the undiscounted half of Kakade (2003)’s performance difference lemma (Lemma
5.2.1) is actually an analog of the counterfactual deviation specialization of Lemma 1 for
finite-horizon MDPs with reward uncertainty. The other half of the performance difference
lemma provides an analogous statement for discounted continuing MDPs. Even-Dar et al.

(2005) uses an average reward version of the performance difference lemma to describe and
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analyze what is effectively CFR for the average reward objective in continuing MDPs.? Our
analysis instead considers the discounted return objective and directly addresses the regret
and robustness of k-of-N CFR in specific.?

Define

ds:s;m— (1—79)E Zvil{Si:S’HSO:s )
i=0

where A; ~ 7(S;—1) and S; ~ P[-|S;_1, A;] for i > 1, to be the 7-discounted future state
distribution induced by 7 from initial state s. Kakade (2003)’s performance difference lemma

for this setting is:

Lemma 7 (Kakade (ibid.)’s performance difference lemma (discounted)). The regret of ex-
ternal deviation ¢=™ and policy T from state s in a y-discounted MDP under reward function
T 1S

1 o

PO i) = T B |05 i)

From Lemma 7, we derive a new regret and optimality bound for CFR and k-of-N
CFR, respectively, in continuing discounted MDPs with reward uncertainty. Given a se-
quence of reward functions, (r*)L;, CFR produces a sequence of policies, (7!)L,, and en-
sures that the cumulative advantage of each action a at each state s grows sublinearly, i.e.,
S pi(o7 () rt) < f(T) € oT) for bound f(T') that depends on the state-local learning
algorithm used. For example, using ramp regret matching yields f(7') = 2% \/W
The % factor comes from the fact that rewards have a maximum magnitude of U and the
unnormalized expected return can be magnified by a factor of ﬁ according to y-discounting.

Combining this with Lemma 7, we arrive at CFR’s cumulative external regret bound

Theorem 20. CFR bounds the cumulative regret of each external deviation ¢~7 as
1T —m\ f(T)
Proof. Let S ~ dg(-;7) and A ~ 7(S). By Lemma 7, the linearity of expectation, and CFR’s

2 Actually, since Even-Dar et al. (2005) predates the original CFR work (Zinkevich, Johanson, et al. 2007b),
one could say that CFR is a modification of Even-Dar et al.’s MDP experts algorithm to extensive-form games.
3The similarity between CFR for the discounted return objective which we analyze here and Even-Dar
et al. (2005) analysis for the average reward objective also implies that our analysis of k-of-N CFR algorithm
could easily be repeated for the average reward objective, achieving similar regret and robustness guarantees.
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definition, the cumulative advantage from each active agent state s is

S CRO D R T (9.8)
= ﬁELZ;p%( ?A,ﬂt;rt)] (9.9)

1 f(T)
< mE[f(T)] =1 (9.10)

Since this bound holds for all states simultaneously, it holds from the root state sy. The
advantage in the root state of playing 7 is equal to the full regret for not playing x, i.e.,
pela(¢p=™) = ptT(¢~™), which completes the argument. O

Taking into account Monte Carlo reward function sampling, k-of-N CFR inherits the

following regret bound from Monte Carlo CFR.
Theorem 21. With probability 1 —p, p > 0, k-of-N CFR’s regret of each external deviation

¢~ is upper bounded as

1:T(¢—>7r) < f(T) + 4U /2T log p
P > 1—~ .

Proof. Let the reward function distribution be R. On each iteration, ¢, of the k-of-N CFR

algorithm, N reward functions, (R} ~ R)Y

are sampled and the worst k reward functions
for the algorithm’s current policy, ¢, are mixed into R’ : 0 — %Z?zl Rf j)(o) for observation
o € O where Rl(" ;) 18 the j*"-worst reward function. The k-element average reward function R
is a sample from R according to the k-of-N probability measure, py.orn (see Proposition 1
of K. Chen et al. (2012) for a formal description of this measure’s density) where the reward
functions are ranked with respect to t.

Let pip-of.n (-3 7") denote the k-of-N reward function distribution with respect to policy .
The expected return of 7 under the k-of-N robustness objective is then just the expectation

of its return under R’ ~ Pieot-n (55 7), i€, E[gs, (75 Rt)]. Then,

PT(077) = D Elgss (w3 )] — Elge, (s ) (9.11)
=D Elgso(m R) — g, (n'; R)), (9.12)

p(¢— 7wt RY)
The rest of the proof largely follows the proof of Farina, Kroer, and Sandholm (2020)’s
Proposition 1. Since E[p(¢™™, 7f; Rt)] is the expectation of p(¢~™, 7'; Rt), the sequence of

differences,
T

(E[pto™m. 7" BY)] = plo~m, a5 )

t=1
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is a martingale difference sequence. Furthermore,

Elp(o~7, v B)] — (677, 75 R)| < -
-7
since a difference in regret can only be four times as large as the largest return and returns
are bounded by the largest reward divided by 1 — 7.
The probability that the cumulative regret, p***(¢~™), is bounded by the cumulative sam-
pled regret plus slack 7 > 0 is bounded according to the Azuma-Hoeffding inequality (Propo-
sition 5 in Section 9.A):

Pl (¢7™) = ple™" 7' BY) + 7 (9.13)
=P [Z Elp(¢7", 7"s R)] — p(¢7 ™, 7" R') < T] (9.14)

[i Elp(¢™", 75 R")] Tt RY) > T] (9.15)
<1—exp (9.16)

Setting 7 = \/2T log(1/p) ensures that
o AU
o) < S o)+ A T
—1 v

with probability 1 — p. Since Zthl p(¢o~™ 7 R < f(T)/(1 —~),

T) 4+ 4U+/2T log Y/p
1

-

: e f(
P <
with probability 1 — p, as required. O]

To achieve an optimality approximation bound, we first provide a general result about

no-external-regret learning in an arbitrary ODP with an optimal, adversarial daimon:*

Lemma 8. The best strategy in sequence (7')I_, with external regret of (T) when the daimon
plays a strategy on each round that minimizes the agent’s expected return is an £(T)-maximin

strategy.

4T originally presented this as Lemma 2 in the work of Lockhart et al. (2019a,b).
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Proof. Let o™ be the daimon strategy that minimizes the expected return for agent strategy

. Then the average difference between the payoff of a maximin strategy, m, and that of

(Wt)thl is

Vs, (5 07™) — % Z Vs, <7rt; a“t> (9.17)

- = (i o (i07) = 3 (=" a”t)> (9.18)
% évse (7r; U”t) — ;USE, <7Tt; Uﬂt>> (9.19)
e(

). (9.20)

IN

Comparing this to the payoff of one of the best strategies in the sequence, 7' €

t
arg Max; << Us, (7rt; o" ), we can see that

T ]‘ t. _mt
e(T) > v, (m;0™) — T ;vsg (7r ol ) (9.21)
> Vg, (m507) — v, (Wt* ; cr”t*). (9.22)
Rearranging, we conclude that
Vs, <7Tt*; a”t*> > v, (m;0™) —e(T), (9.23)
which completes the proof. O

Finally, our theoretical inquiry culminates in the following optimality approximation
bound for k-of-N CFR policies:

Theorem 22. With probability 1 — p, p > 0, the best policy in the sequence of policies
generated by k-of-N CFR, ('), is an e(T)-approzimation to a pu_op n-robust policy where

o _ 1) +4U/2Tog s
(1) = (1—yT

and with probability at least (1 — p)(1 — q), ¢ > 0, a randomly sampled policy from this

sequence is an £(T)/q-approximation to a py_.pn-robust policy.

Proof. The first half of the proof is essentially that of Lemma 8 except that the daimon can
only probabilistically choose a reward function that minimizes the agent’s expected payoff.
In this case, a maximin policy is a fig.ofny-robust policy.

Let R' ~ fiotn (3 ) and let R™ ~ pyopn(-;m) for any given policy m. Define ¢, =

«
0 *

max,« E[gs, (7*; R" )] to be the return of a gt y-robust policy, 7*. Since the competitor
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term of the regret does not depend on the iteration number, we can rewrite the average regret

as
1 T
T)>q,——Y E LR 24
e(T) = ¢z, T 2 (45 (75 R)] (9.24)
> — t R ,
> G5, — max Elgs, (15 R, (9.25)

where the last inequality holds with probability 1 — p according to Theorem 21. Rearranging
terms, we see that

t. pt *
. > _
max Elgs, (7 B)] 2 q;, — e(T).

Thus, the best policy in the sequence achieves the optimal k-of-N value minus &(7T") with
probability 1 — p, as required.

The last half of this proof is essentially that of Johanson, Bard, Burch, et al. (2012)’s
Theorem 4.

Let @ ~ Unif({n'}1,) be the random variable representing a uniformly sampled policy.
Then,

o(T) 2 a2, — 7 D Elawe (' ) (9.26)
= E[q2, — Elg., (7 R)]], (9.27)

with probability 1 — p according to Theorem 21.
Let X = ¢;, — E[gs, (7; R")] > 0. By Markov’s inequality (Proposition 6 in Section 9.A),

e(T) e(T)
E[X] > TF{X > =2 [ElX] < a(T)}.
Since ¢(T") > 0,
g>P [X > ) ey < 5(T)] (9.28)
—1-P {X < ? |E[X] < E(T)} (9.29)

and thus P [X <D EX] <¢

q

T)] > 1 — ¢. Finally,

T T
P [E[X] <e(T),X < L] —p {X <D gx) < 5(T)1 P[E[X] < £(T)] (9.30)
q q
=(1=q)(1-p), (9.31)
proving that 7 is an @—approximation to a fior. n-robust policy with probability (1 —p)(1—
q)- O

Theorem 22 shows that k-of-N CFR with no-external-regret local learners, e.g., ramp

regret matching instances, generates a .o y-robust policy with high probability.
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digits (familiar) fashion (novel) letter (novel)

Figure 9.1: From left to right, image of the numbers five and zero from the MNIST digit
dataset, an ankle boot from the MNIST fashion dataset, and a capital “M” from the EMNIST
letters dataset. In our motivating example, the two images on the left are similar to the ones
you have seen before while the two on the right are novel.

9.3 Learning to Be Cautious

9.3.1 A Motivating Example

Consider a decision-making task where you are shown an image and must choose one of eleven
actions. The images are hand-drawn digits from MNIST (LeCun et al. 1998, e.g., Fig. 9.1a
and b) and you observe a reward of +1 for selecting the action with the index matching the
portrayed digit and zero otherwise, except for the eleventh action, which always yields a small
reward, +0.25. Now, what do you do when the image is not of a familiar digit but is instead
a novel image of a piece of clothing from MNIST fashion (Xiao et al. 2017, e.g., Fig. 9.1¢c) or
a letter from EMNIST letters (Cohen et al. 2017, e.g., Fig. 9.1d)? A natural choice is action
eleven, which has always given a reward regardless of the image, while every other action
often gave no reward at all. But is this choice common for current Al algorithms?

One obvious approach for choosing the next action is to guess what reward each action
will yield with the new image and choose the action with the largest estimate. For example,
a nearest-neighbor approach would select a previous image that resembles the new image in
some way and use the rewards from the previous image as the reward estimates, effectively
extrapolating from familiar to novel images. Considering that the new image looks very dif-
ferent from all the previous ones, an extrapolative approach relies on a questionable premise.
Algorithms like this are unlikely to choose action eleven, since its reward was always small
and only one of the ten other extrapolations need to look promising for action eleven to be
overlooked.

A conventional RL approach like Q-learning (Watkins 1989) or policy gradient (R. S.
Sutton et al. 2000; Williams 1992) with function approximation also employs extrapolative

guessing and fails to behave cautiously in this task. After training on MNIST digits, a greedy
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policy with respect to a single neural network model of the reward function (effectively Q-
learning) chooses action eleven less than 2% of the time when presented images from MNIST
fashion.

A common approach to achieve caution is to provide prior knowledge about what behav-
iors are safe. For example, we could designate action eleven as a “safe action” and encourage
the agent to choose it when observing a non-digit image or when the agent has no strong
preference for any other action. Thomas et al. (2019) outlines a general methodology for algo-
rithms of this sort and Kahn et al. (2017) provides a more sophisticated example. Embedding
prior knowledge about safety into an algorithm would be easy and effective in this particular
task but it is problematic as a general approach because safety is highly task-specific and the
design burden becomes worse for complicated tasks where safety guarantees would be most
useful. In this vein, we present variations on our MNIST task such that cautious behavior
becomes increasingly non-obvious.

An alternative to explicitly specifying cautious behavior or safety incentives is risk-sensitive
RL. Broadly, these methods characterize an agent’s uncertainty about future rewards of
different behaviors, and then choose robust behaviors, i.e., those that maximize the agent’s
reward assuming unfavorable conditions (often with a formal risk measure). There are two
types of uncertainty that might be present in a decision-making task, (i) aleatoric uncertainty
that is stochasticity inherent in the environment, e.g., the agent may be uncertain about the
the number that a die will show before it is rolled, and (ii) epistemic uncertainty that stems
from the agent’s lack of certainty about the specific environment, e.g., the agent may be
uncertain about a die’s probability distribution, not just its outcome.

There are various methods for learning policies that are robust to aleatoric uncer-
tainty (Chow, Ghavamzadeh, et al. 2017; Clements et al. 2019; Tang et al. 2020), but since
the mapping from images and actions to rewards is deterministic in our MNIST example
task, there is no aleatoric uncertainty to be robust to. Consequently, these methods do not
behave differently from extrapolative systems in tasks like this.

Alternatively, if the agent is certain about action eleven’s reward and less certain about the
rewards of the other actions, then a robust policy would choose action eleven, provided the
level of uncertainty is great enough. Thus, epistemic uncertainty has the potential to induce
caution.” In this case, the agent’s beliefs are crafted with the domain in mind to achieve
the desired behavior in much the same way as the previously discussed prior knowledge
approaches. There are many more sophisticated variations on this idea (Chow, Tamar, et al.
2015; Ghavamzadeh et al. 2016; Petrik et al. 2014; Rigter et al. 2021; Zahavy et al. 2020),

5One might be tempted to think that cautious behavior and robustness to epistemic uncertainty are the
same. However, as noted, whether robust policies produce cautious behavior is critically dependent on the
uncertainty distribution.
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but they share similar downsides as prior knowledge approaches.

Our approach, that we detail for the remainder of the chapter, uses robust optimization
with a learned belief without imposing any task-specific safety information into either com-
ponent to automatically construct cautious policies. This algorithm learns autonomously to
identify and choose cautious behavior that is unique to each task. We evaluate in a sequence
of tasks where cautious behavior is increasingly complex. This sequence begins with the
MNIST example task described here and escalates to a gridworld driving task that requires

sequential decision-making.

9.3.2 The Problem Setting

An agent that interacts with the world and learns from experience will inevitably encounter
both familiar and novel situations. We believe that such agents can and should use their
previous experience to automatically respond cautiously in novel situations. Our tasks use a
simplified formulation of the learning-to-be-cautious problem. The agent’s world is separated
into the familiar and the novel, each represented as a discounted MDP with a finite set of
states.

Extrapolation. Since we are primarily interested in examining the agent’s behavior in
novel situations about which they have never received feedback, we do not define a reward
function for the novel MDP. We assess the agent’s behavior in the novel MDP qualitatively.
Here we focus on only reward uncertainty; investigating caution with transition uncertainty
needs further investigation both theoretically and practically.

A straightforward approach for the agent to formulate goals for the novel MDP is to
extrapolate the familiar reward function. Ordinary RL planning algorithms can then be
applied to generate a policy that will perform well if the novel and familiar MDPs are very
similar. Extrapolation can be done with conventional regression methods, e.g., we can model
the reward function as a neural network and train its parameters by applying an optimization
algorithm like stochastic gradient descent to minimize the network’s mean squared error. A
natural approach, given an extrapolated reward function model, 7, is then to behave according
to an optimal policy, e.g., in each state s, set 7OPt™(")(q|s) = 1, where action a is the first
action (under an arbitrary ordering) that maximizes g,(-, 7°P%™(): 7). This approach will
represent a simple non-cautious baseline in our experiments.

Inference. A fundamental problem with extrapolation is that there are typically multiple
reward models that match the familiar reward function but differ in novel situations from
the novel MDP (i.e., state, action, next state triples not present in the familiar MDP),
even within a restricted model class. To address this issue, we can infer a posterior belief

(a probability distribution) about which reward models are more reasonable, given a prior
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belief that describes what it means for a reward model to be “reasonable”. Exact Bayesian
inference is typically intractable for high dimensional data, but a convenient approximation
is to train an ensemble of neural networks, each with unique initialization parameters and
trained on independently shuffled familiar examples. Each neural network acts like a sample
from a posterior with an implicit prior so that the entire ensemble implicitly characterizes a
posterior-like belief. Various previous works (e.g., Heskes et al. (1997), Lakshminarayanan et
al. (2017), Lu et al. (2017), Osband et al. (2019), Pearce et al. (2018), and Tibshirani (1996))
have used neural networks in similar ways to characterize uncertainty with connections to
proper Bayesian inference.

Robust Optimization. An inference approach characterizes the agent’s uncertainty
about what reward functions are reasonable in the novel MDP given the familiar MDP, but
ordinary RL algorithms cannot make use of this information beyond optimizing for a single
reward function generated from the belief (e.g., a sample, the expected posterior, or the
maximum a posteriori reward function). Robust policy optimization algorithms however, are
designed to learn policies that are robust to such uncertainty.

As described in Section 9.3.1, it is critical to pair robust optimization with an appropriate
belief for cautious behavior to emerge. Often this is achieved by manually tailoring the belief
to specific aspects of a task, but can we instead use a generic neural network ensemble to
induce caution? Consider the belief that such an ensemble would learn from training data
where the reward for one action is a constant, as in the example from Section 9.3.1. If]
as is common, the training procedure has any preference for neural networks with small
weights, then all of the last layer weights corresponding to the constant reward action in all
of the neural networks will converge toward zero and their bias terms will converge toward
the constant. Since all neural networks agree about the reward for this action in all states,
the ensemble belief is always nearly certain about the reward of this action. Uncertainty
about the rewards for other actions caused by disagreement between neural networks in the
ensemble pushes a robust policy into choosing the constant reward action.

The experiments in the next section show that k-of-N CFR under a neural network en-

semble belief can effectively learn to be cautious in various tasks.

9.3.3 Experiments

We now present a sequence of tasks that require agents to automatically learn cautious
behavior. Tasks vary in difficulty from one that requires no sequential reasoning and includes

a universal cautious action, to one that requires sequential reasoning and where the return

50ther algorithms that are robust to epistemic uncertainty, e.g., Chow, Tamar, et al. (2015), Ghavamzadeh
et al. (2016), Petrik et al. (2014), and Zahavy et al. (2020) could potentially be used instead of k-of-N CFR.

153



from each action is context dependent, with a natural progression in-between. Experimental
design details and hyperparameters for the algorithms tested are provided in Section 9.B.

Learning to Ask for Help. Our first task is the previously described decision making
task with MNIST images. The familiar states are the 60,000 training images in the MNIST
digit dataset, where the initial state and each next state is sampled uniformly at random.
Ten of the actions correspond to a digit label and a reward of +1 is given when the label
matches the image and zero otherwise. The eleventh action can be thought of as an “ask for
help” option that always receives a reward of +0.25. All action labels are solely to aid our
discussion whereas the agent only observes action indices. The discount factor is zero so the
agent’s return is simply their reward, making this a contextual bandit task.

The k-of-N CFR procedure iteratively improves an approximately robust policy by eval-
uating it on N samples from a belief updating the policy according to the k-worst samples.
Thus, for T iterations, we need to train NT neural networks. We train 2000 reward models
on the familiar MDP so that we can run 100 CFR iterations with a maximum N = 20.
These models also provide the basis for the Optim() baseline, where each neural network
in the ensemble represents an extrapolated reward model, 7. We set N = 20 k = 1 for the
most robustness, N = 10 k£ = 1 for moderate robustness, and N = 10 k£ = 5 for marginal
robustness. We represent each k-of-N CFR instance with the last policy generated after 100
iterations.

We construct novel MDPs with 10,000 images from the MNIST fashion (Xiao et al. 2017)
test set and 20,800 images from EMNIST letters (Cohen et al. 2017) test set (lower and
uppercase). Using the set of images as a set of states, we construct two novel MDPs with two
different state distribution schemes representing two evaluation scenarios. The first scenario
replicates the dynamics of the familiar MDP in that each image is always sampled uniformly.
This describes a task where the agent must come up with a policy that works well on all
novel images, without emphasizing the performance given any particular one. Our second
scenario uses a point-mass initial state distribution and identity transition distribution. This
scenario corresponds to a decision-making task where a single crucial novel state is given
instead of a distribution over multiple possible novel states. In this scenario, the impact
of robustness is exaggerated because the k-of-N CFR policy trains on the k-worst reward
functions specifically targeted to a single state rather than the k-worst averaged across many
states. Fig. 9.2a shows the results of both experiments.

In both state distribution regimes, the classification accuracy of all policies, including the
most robust k-of-N policies, on the 10,000 images in the MNIST digit test set, ranges from
96% to 99%. The two most robust policies, 1-0f-20 and 1-o0f-10, choose the help action 2%
and 1% of the time respectively in the single-image regime, but the rest of the policies across

both regimes almost never choose the help action. This uniformity in behavior is caused
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(b) Average action index chosen in (left) the all-images regime and (right) the
single-image regime.

Figure 9.2: Results for the “learning to ask for help” and “discovering non-obvious cautious
actions” tasks in each novel environment (“f” for fashion and “a” for letters).

by the fact that our neural networks effectively generalize to all MNIST digit test images,
making the ensemble belief accurate and confident on these images.

The “all fashion images” scenario replicates our motivating example and shows that the
help action is utilized more on the fashion images by k-of-N policies as k is decreased (i.e.,
with more risk aversion), up to 29% of the time for 1-of-20. The Optim(r) baseline is the
least likely to use the help action on each novel dataset, and this propensity does not change
substantially with the dataset. Decreasing the k/N ratio causes the k-of-IN policies to increase
the help action frequency on the letter images from 3% to 6%.

In the single-image regime, 1-0f-20 selects the help action 89% of the time on the fashion
images and 68% on the letter images—46 and 69 times more often, respectively, than the
Optim(7) baseline. And when 1-0f-20 does not select the help action with the letter images,
it does so for letters that resemble digits, e.g., o, s, i, 1, j, and z resemble 0, 5, 1, and 2. See
Section 9.B for more details, including confusion matrices of selected actions.

Discovering Non-Obvious Cautious Actions. Our next task is to discover non-
obvious cautious actions where the value of each action is input-dependent. This time, there
are only ten actions and the reward for action indexed as a € {0,...,9} is (a + 1) if a
is the correct label for a given digit image or —(a+2)/9 otherwise. The reward for a correct
classification scales with the action index, but so does the cost of misclassification. This
reward function also ensures that always choosing action zero has the same expected value
as guessing the digit at uniform random assuming a balanced distribution of digit images.

Thus, policies that choose lower index actions are more cautious.
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Figure 9.3: Average action index and help action frequency chosen by each method in each
novel environment in the “ask for help only when it is available” task. (top row) Help
is available, (bottom row) help is unavailable, (left column) the all-images regime, (right
column) the single-image regime. All methods essentially never choose the help action when
help is unavailable.

Again, we evaluate our approach in two regimes, one where the set of novel states is an
MNIST test set and another where evaluation is done on each of these images individually.
Fig. 9.2b shows the average action index chosen by each algorithm in each novel environment.

Again, all polices correctly label nearly all test digit images. In both regimes, evaluating
on the fashion images, we see that 1-of-20 and 1-of-10 systematically choose smaller actions
at lower indices than non-robust algorithms, and 5-of-10 is intermediate between 1-of-20 and
10-0f-10 along this metric. The differences are smaller on the letter images in the all-images
regime, likely due to many similarities between letter and digit images, but the ordering of
methods according to robustness is preserved in both regimes.

Ask for Help Only When it is Available. In the previous scenarios, cautious actions
could be identified without taking features of the input into account. Here we modify the
previous task where lower index actions are generally more cautious to have an extra action,
as in the “learning to ask for help” task, but the value of this action changes depending on
an input feature. This feature is a signal that help is available, in which case the “ask for
help” action receives a reward of +1!/20. The “ask for help” action is therefore better than
any incorrect classification and worse than correctly classifying even the least valuable digit
(zero) if there is help available. If help is unavailable, the “ask for help” action is the worst
action as it always receives a reward of —11/9. Fig. 9.3 show the results for each method in
the all-images and single-image regimes (left and right, respectively).

Evaluating on fashion images, we see that the robust methods with & < N select the

help action much more than the non-robust methods when help is available. When help
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Figure 9.4: The average frequency of the help action in each novel environment on the
“learning to ask for help” task with perturbed rewards, where reward models are trained
on only 1%, 10%, or 100% of the digit dataset. (left) The all-images regime, (right) the

single-image regime.

is unavailable, these methods never select the help action and instead choose actions with
smaller indices. The average action index decreases much more when help becomes available
because policies switch from choosing actions with high indices to choosing the help action.

How Caution Depends on the Extent of Training Data. Do the k-of-N policies
really learn to be cautious? Here we investigate how cautious algorithms behave depending
on the extent of training data. We repeat the “learning to ask for help” task except that
rewards are perturbed by white noise (with standard deviation 0.1) once before neural net-
work training, and the neural network training data varies between 1%, 10%, and 100% of
the full digit dataset. Noise is added so that it takes more than a single training example to
learn that the expected reward of the help action is constant across training images. Results
are shown in Fig. 9.4.

When reward models are trained with 1% of the digit images, we observe that decreasing
k to increase robustness does not induce caution. Effectively, the neural network ensemble
belief has not seen enough data to infer that the “ask for help” action yields a small but
consistent reward. Increasing the training set size to 10%, the correlation between robustness
and caution returns and is even stronger than when the full digit dataset is used for training.
This shows that caution requires enough training data for the agent to accurately infer the
training reward function, and once achieved, the robust agents find cautious behavior.

Driving Gridworld. For a sequential decision making task, we introduce a gridworld
driving environment (see Fig. 9.5 for an example frame) in the spirit of the Al safety grid-
worlds (Leike et al. 2017). A state is a five column image, where the first and second columns
represent a two-lane road, the outer two columns represent a ditch, and the last column rep-
resents a speedometer. The agent’s car is on the bottom row of the image and the world shifts
down as the car drives forward. The height of the image represents how far ahead the driver
can see. An obstacle randomly appears on the new parts of the road revealed when the car
moves forward. To keep the number of states in the gridworld small, only one obstacle can

be present on both the left and right halves of the gridworld at a time, and we use a vision
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Figure 9.5: Left: a frame from the driving gridworld environment. The cyan square is the
car, the red squares are obstacles, and the rightmost column is the car’s speedometer. Right:
normalized y-discounted safety statistics for each algorithm in the driving gridworld.

range of two. The car’s speed limit is the vision range plus one so that they can “overdrive”
their vision by one unit.

The agent has five actions: change lane left, change lane right, accelerate, brake, and
cruise. Accelerate and brake increases or decreases the car’s speed by one unit, respectively.
The car always moves according to its current speed, so the impact of accelerating or braking
on the distance the car travels is only felt in later time steps. The car changes lanes one
space at a time and changing lanes requires momentum so the car must not be stopped and
it travels forward by one fewer space than it would otherwise. The car’s speed and lane does
not change if the agent chooses to cruise.

The agent’s goal is to drive as far from their starting location as possible. As there is no
fixed destination, the task is naturally represented as a continuing MDP. The agent receives
a reward of +1 for each space it moves forward, —2 for each ditch space it moves over, and
—2 times the current speed of the car when it drives over an obstacle.

We investigate how our algorithm reacts to novel situations by restricting obstacles to the
two ditches in the familiar MDP and allowing them to appear on the road in the novel MDP.
We build our ensemble belief by training 2000 neural networks to mimic the familiar MDP’s
reward function and each k-of-N CFR instance (where k € {1,2,4,5,10,20} and N = 20) is
represented by the last policy generated after 100 iterations.

Fig. 9.5 shows that the more robust policies drive slower, and drive over obstacles both
less frequently and at slower speeds in the novel MDP, reflecting intuitively cautious driving
behavior. The non-robust policies in contrast almost always drive at full speed.

Why do we see this difference? Since obstacles are never observed on the road in the
familiar MDP, there is no clear signal that driving over these obstacles will cause a bad
outcome. There is a clear signal however that driving fast on the road yields larger rewards,
so the non-robust policies optimize their behavior around this signal, which is reflected in
the belief’s average reward function. The robust policies instead take the belief’s uncertainty
about what could happen when the car drives over an obstacle on the road into account.
Since some of the reward functions in the ensemble belief generalize from collisions in the

ditch to those on the road, the agent learns to avoid collisions altogether in the novel MDP.

158



9.4 Conclusion

This chapter showed how CFR and k-of-N CFR can be applied to continuing MDPs with
uncertain rewards without expanding the MDP state space. This extension allows k-of-N
CFR to be applied in more complex robust optimization tasks than previously feasible. We
showed how this extension could be utilized in Al safety problems to construct an algorithm
that learns to be cautious in unforeseen circumstances.

Our proof of concept algorithm based on a neural network ensemble and k-of-N CFR shows
that algorithms can learn to be cautious. Our testbeds are simple, they capture key aspects
of Al safety, and they facilitate experimental comparisons. Our hope is that algorithms that
learn to be cautious can improve the safety of, and our confidence in, deployed Al systems.
However, this level of automated safety is meant to enhance, not replace, human judgement
and safety planning.

Transition certainty is a strong assumption that will need to be relaxed for most practical
applications of these ideas. The increased difficulty of computing robust policies or even
minimizing regret with transition uncertainty is discussed by K. Chen et al. (2012) and
Even-Dar et al. (2005). It appears an algorithm must search through policies that condition
on the entire state history to be sound, which makes policies infeasibly complex in typical
environments. Both theoretical and experimental work is required to overcome this hurdle.

Critical limitations of our k-of-N CFR implementation are that it is tabular and requires
exact policy evaluation on each iteration to determine the worst-k reward functions. CFR has
been used with function approximation (Brown, Lerer, et al. 2019; D’Orazio 2020; D’Orazio,
Morrill, et al. 2020; Morrill 2016; Steinberger et al. 2020; Waugh, Morrill, et al. 2015) and
approximate worst-case policy evaluation (Davis 2015), so applying these enhancements can

allow our approach to scale to more complicated environments.
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9.A Elementary Supplementary Propositions

We make use of the Azuma-Hoeffding inequality in the k-of-N CFR regret bound so it is

restated here for completeness:

Proposition 5 (Azuma-Hoeffding inequality). For constants (c')L_,, martingale difference

sequence (Y')I_, where |Y| < ¢ for each t, and 7 > 0,

T 2
Z Y > 7] <2exp —7 = |
t=1 2> i (d)?
For proof, see that of Theorem 3.14 by McDiarmid (1998).
The k-of-N CFR optimality bound makes use of another elementary result, Markov’s

P

inequality:

Proposition 6 (Markov’s inequality). The probability that non-negative random variable
X >0 is at least a > 0 is upper bounded by X ’s expectation divided by a, i.e., P[X > a] <
E[X]/a.

Proof. By the law of total expectation,

E[X] =E[E[X | X < d]] (9.32)
=P[X <d]E[X | X <a]+P[X > a]E[X | X > qa]. (9.33)
Since X is non-negative and that E[X | X > a| conditions on X being no-smaller than a,
> P[X <a]0+P[X > dla (9.34)
= P[X > dla. (9.35)
Dividing both sides by a yields the desired statement. O

9.B Supplementary Experimental Details and Results

In all experiments, k-of-N CFR is implemented with regret matching (Hart et al. 2000), which
is deterministic and hyperparameter-free. However, since k-of-N CFR requires sampling N
reward functions, its output policy is random. FEach of the 2000 trained neural network
reward function models represents a single sample from an implicit belief, so sampling N of
them consists of pulling N of these reward function models out of a queue. To account for
the random variation caused by the ordering of the reward function models in the queue, we
run multiple repetitions of k-of-N CFR by shuffling the order of the reward function models
in the queue before the start of each run. We run ten repetitions in each MNIST experiment

and five in the driving gridworld experiment.
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Table 9.1: The batch size and number of epochs used to train the neural network reward mod-
els for each setting in the “how caution depends on the extent of training data” experiment.
All other MNIST experiments use the same settings as in the 100% case.

training data fraction batch size # of epochs

1% 64 10,000
10% 128 1,000
100% 012 100

The progress of each k-of-N CFR policy, measured in terms of expected return on the
N reward functions used on each CFR iteration, is given for each MNIST experiment in
Figs. 9.B.6, 9.B.9, 9.B.12 and 9.B.16 to 9.B.18. The progress of k-of-N CFR in the driving
gridworld is similar. The value always plateaus relatively quickly with little variation between
runs, indicating that running more iterations or more repetitions would not change the results
substantially. Because each run uses different sets of N reward functions on each iteration by
design, the value would still show some variation even if the policies for different runs were
identical.

PyTorch (Paszke et al. 2019) is used to build and train all neural networks.

MNIST Experiments. For MNIST experiments, we tested three neural network ar-
chitectures. One used four fully connected layers separated by ramp/rectified linear unit
(ReLU) activations and a second used two convolutional layers each with one output channel
followed by two fully connected layers. These architectures were outperformed by one that
begins with two convolutional layers and ends three fully connected layers, all separated by
ReLU activations. The first convolutional layer has a single input channel and 64 output
channels with 4 x 4 kernel followed by 2 x 2 max-pooling. The second convolutional layer is
the same except it has only 16 output channels. The fully connected layers have 50, 15, and
10 outputs, respectively. All results use this architecture.

Networks are trained to minimize the mean-squared error (MSE) between reward predic-
tions and target rewards with the Adam optimizer Kingma et al. 2014 using a learning rate
of 0.0016 (we also try 0.01, and 0.001). The remaining parameters for Adam in PyTorch
(B1, B2, €, and weight decay) are set to their defaults (0.9, 0.999, 107%, 0) without the AMS-
Grad (Reddi et al. 2018) modification. In the “discovering non-obvious cautious actions” and
“ask for help only when it is available” experiment, we weight the loss on each output index
a € {0,...,9} according to 1/(a + 1)® and weight the help action by one. See Table 9.1 for
the batch sizes and the number of epochs run in each MNIST experiment.

For all MNIST experiments, we used an NVIDIA Tesla V100 GPU and a 2.2GHz Intel®)
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Figure 9.B.6: Expected return of each k-of-N policy on each iteration ¢ given the sampled
k-of-N reward function, 7!, in the “learning to ask for help” task. A single bold line shows
the average across all ten runs while the values from individual runs are given by thinner
lines. (top row) All-images regime, (bottom row) single-image regime, (left column) digits,
(middle column) fashion, (right column) letter.

Xeon®) CPU with 100 GB memory. Since we use a neural network ensemble with 2,000
models for each experiment it takes about 50 GPU hours for each experiment, which makes
a total of 300 GPU hours for all of our MNIST experiments.

The heatmaps Figs. 9.B.8, 9.B.11, 9.B.15, 9.B.19, 9.B.23 and 9.B.24 show where policies
reasonably conflate some letters with digits.

The most cautious policy (1-0f-20) in the all-images regime selects the help action upon
observing most letters except for those similar to digits (e.g., I/i, L/1, O/o, S/s and Z/z)
as shown in Fig. 9.B.8. The effect is exaggerated in the single-image regime where 1-0f-20
selects the help action with very high probability except for letters similar to digits. The
baseline Optim(7) does not select the help action at all.

The most cautious policy (1-0f-20) in the all-images regime picks the help action when help
is available and otherwise selects less risky actions with small indices upon observing most
letters except for those similar to digits, as shown in Fig. 9.B.15. The effect is exaggerated
in the single-image regime.

The Driving Gridworld Experiment. For the driving gridworld experiment, the train-
ing data for our neural networks are generated by enumerating all of the (state, next state,
reward)-tuples in the familiar driving gridworld where obstacles can only appear in either
of the two ditch lanes on the far left or far right column. The action is omitted because
the familiar driving gridworld’s reward function depends only on the initial and next state.

Each driving gridworld state image is pre-processed into a four channel image where each
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Figure 9.B.7: Action distribution of each k-of-INV policy and baseline in the “learning to ask
for help” task. (top row) All-images regime, (bottom row) single-image regime, (left column)
fashion, (right column) letter.
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Figure 9.B.8: The average frequency of each action on each letter, averaged over lowercase
and uppercase images, in the “learning to ask for help” task. (left) 1-of-20 all-images regime,
(middle) 1-0f-20 single-image regime, (right) Optim(7").
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Figure 9.B.9: Expected return of each k-of-N policy on each iteration ¢ given the sampled
k-of-N reward function, 7, in the “discovering non-obvious cautious actions” task. (top row)
All-images regime, (bottom row) single-image regime, (left column) digits, (middle column)
fashion, (right column) letter.
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Figure 9.B.10: Action distribution of each k-of-N policy and baseline in the “discovering non-
obvious cautious actions” task, dotted lines represent average action taken by each policy.
(top row) All-images regime, (bottom row) single-image regime, (left column) fashion, (right
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Figure 9.B.11: The average frequency of each action on each letter, averaged over lowercase
and uppercase images, in the “discovering non-obvious cautious actions” task. (left) 1-of-20
all-images regime, (middle) 1-0f-20 single-image regime, (right) Optim(7).
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Figure 9.B.12: Expected return of each k-of-N policy on each iteration ¢ given the sampled
k-of-N reward function, 7, in the “ask for help only when it is available” task. (top row)
All-images regime, (bottom row) single-image regime, (left column) digits, (middle column)
fashion, (right column) letter.
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Figure 9.B.13: Actions distribution for each k-of-N policy and baseline in the “ask for help
only when it is available” task in case that help is available. dotted lines represent average
action taken by each policy. (top row) All-images regime, (bottom row) single-image regime,
(left column) fashion, (right column) letter.
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Figure 9.B.14: Actions distribution for each k-of-INV policy and baseline in the “ask for help
only when it is available” task in case that help is unavailable. dotted lines represent
average action taken by each policy. (top row) All-images regime, (bottom row) single-image
regime, (left column) fashion, (right column) letter.
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Table 9.2: Frequency of the correct label action index and the help action across the 10,000
MNIST test images in the “ask for help only when it is available” all-images regime.

1-0f-20 1-o0f-10 5-0f-10 10-0f-10 Optim(7)

help is correct 97.50+3.11 98.574+1.00 99.274+0.01 99.274+0.01 89.43+4.16
available o1 0394048 0.1440.02  0.094£0.00  0.07£0.00  1.160.00

helpis  correct 97.64+3.05 98.67+0.99 99.3240.01 99.3140.01 94.9644.01
unavailabley, o1 0 0040.00  0.0040.00  0.004£0.00  0.004£0.00  0.23+3.87

Table 9.3: Frequency of the correct label action index and the help action across the 10,000
MNIST test images in the “ask for help only when it is available” single-image regime.

1-0f-20 1-0f-10 5-0f-10 10-0f-10 Optim(7)

helpis  correct 84.13+1.07 90.68+1.54 98.80+0.01 99.28+0.01 89.43+4.16
available o1y 10424051 3254047 0.05£0.01  0.0740.01  1.16:0.00

helpis  correct 88.54+1.14 92184159 99.06+0.02 99.3140.01 94.96+4.01
unavailablep o, 0. 0040.00  0.0040.00  0.00+0.00  0.0040.00  0.2343.87

Table 9.4: Frequency of the correct label action index and the help action across the 10,000
MNIST test images in the “learning to ask for help” task with perturbed rewards in the all-
images regime, where reward models are trained on 1%, 10%, or 100% of the digit dataset.

1-0f-20 1-0f-10 5-0f-10 10-0f-10 Optim(7)
L% correct 95.81+0.14 95.824+0.18 95.97£0.08 96.10+0.06 89.43+4.16
0
help 0.39£0.03  0.41£0.07  0.34£0.02  0.30+0.03  1.16%+0.93
L0% correct 98.63+0.07 98.62+£0.08 98.67£0.04 98.67+0.03 94.96£4.01
0
help 0.13+£0.01  0.12+0.01  0.12£0.01  0.10£0.01  0.23£3.87
100% correct 99.34+0.04 99.36+£0.04 99.38+0.02 99.384+0.02 98.23£3.57
0

help 0.04£0.00  0.03x0.01  0.03£0.00  0.02+0.00  0.08+0.73
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Figure 9.B.15: The average frequency of each action on each letter, averaged over lowercase
and uppercase images, in the “ask for help only when it is available” task. (top row) Help is
available, (bottom row) help is unavailable. (Left column) 1-0f-20 all-images regime, (middle
column) 1-of-20 single-image regime, (right column) Optim(7).
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Table 9.5: Frequency of the correct label action index and the help action across the 10,000
MNIST test images in the “learning to ask for help” task with perturbed rewards in the
single-image regime, where reward models are trained on 1%, 10%, or 100% of the digit
dataset.

1-0f-20 1-0f-10 5-0f-10 10-0f-10 Optim(7)
L% correct 86.96+0.41 89.754+0.34 94.56+£0.12 96.11+0.06 89.43+4.16
0
help 5.80+0.26  4.49+0.26  1.614+0.06  0.29+0.02  1.16+0.93
L0% correct 88.784+0.16 92.51+0.13 97.50£0.06 98.68+0.03 94.96+4.0
0
help 9.08+0.10  6.61+0.09  1.16£0.02 0.11+£0.01  0.23£3.87
100% correct  96.61+0.07 97.67+0.06 99.07+0.03 99.37+0.02 98.23+3.57
0
help 2.4740.02  1.52£0.03  0.36£0.01  0.02+0.00  0.08+0.73
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Figure 9.B.16: Expected return of each k-of-V policy on each iteration ¢ given the sampled k-
of-N reward function, 7, in the “learning to ask for help” task with perturbed rewards, where
reward models are trained on 1% of the digit dataset. (top row) All-images regime, (bottom
row) single-image regime, (left column) digits, (middle column) fashion, (right column) letter.
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Figure 9.B.17: Expected return of each k-of-N policy on each iteration t given the sampled k-
of-N reward function, 7, in the “learning to ask for help” task with perturbed rewards, where
reward models are trained on 10% of the digit dataset. (top row) All-images regime, (bottom
row) single-image regime, (left column) digits, (middle column) fashion, (right column) letter.
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Figure 9.B.18: Expected return of each k-of-NN policy on each iteration ¢ given the sampled k-
of-N reward function, 7, in the “learning to ask for help” task with perturbed rewards, where
reward models are trained on 100% of the digit dataset. (top row) All-images regime, (bottom
row) single-image regime, (left column) digits, (middle column) fashion, (right column) letter.
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Figure 9.B.19: The average frequency of each action on each letter, averaged over lower-
case and uppercase images, in the “learning to ask for help” task with perturbed rewards,
where reward models are trained on 1% of the digit dataset. (left) 1-of-20 all-images regime,
(middle) 1-0f-20 single-image regime, (right) Optim(7").
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Figure 9.B.20: Action distribution of each k-of-N policy and baseline in the “learning to
ask for help” task with perturbed rewards, where reward models are trained on 1% of the
digit dataset. (top row) All-images regime, (bottom row) single-image regime, (left column)
fashion, (right column) letter.

174



s 1-0f-20 1-0f-10 B 5-0f-10 10-o0f-10 s Optim(r)

@ |
qi_-:O.Z I
0'0--III|III -lll llll III | |

q

e
o
o

~ 0.2 |
OO I l- ] I ] I l--I | | -
"0 1 2 3 45 6 7 8 9help 0 1 2 3 4 5 6 7 8 9help
action action

Figure 9.B.21: Action distribution of each k-of-N policy and baseline in the “learning to
ask for help” task with perturbed rewards, where reward models are trained on 10% of the
digit dataset. (top row) All-images regime, (bottom row) single-image regime, (left column)
fashion, (right column) letter.
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Figure 9.B.22: Action distribution of each k-of-N policy and baseline in the “learning to
ask for help” task with perturbed rewards, where reward models are trained on 100% of the
digit dataset. (top row) All-images regime, (bottom row) single-image regime, (left column)
fashion, (right column) letter.
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Figure 9.B.23: The average frequency of each action on each letter, averaged over lowercase
and uppercase images, in the “learning to ask for help” task with perturbed rewards, where
reward models are trained on 10% of the digit dataset. (left) 1-of-20 all-images regime,
(middle) 1-of-20 single-image regime, (right) Optim(7).
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Figure 9.B.24: The average frequency of each action on each letter, averaged over lowercase
and uppercase images, in the “learning to ask for help” task with perturbed rewards, where
reward models are trained on 100% of the digit dataset. (left) 1-of-20 all-images regime,
(middle) 1-0f-20 single-image regime, (right) Optim(7").
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channel encodes the positions of different aspects of the environment: pavement, ditch, car,
and obstacle.

Our networks have two parallel convolutional layers with four output channels and 2 x 2
filters, each followed by a ReLLU transformation. The outputs from these layers are flattened,
concatenated together, and that result is concatenated with a one-hot encoding of the car’s
speed in the next state. Next, we apply two fully connected layers separated by a ReLLU
function, the first with 32 outputs and the second with a single output, respectively. For
each possible speed the car could have in the initial state, we manage a different pair of fully
connected layers with the same shapes. To compute the expected reward for a given action
in a given state, we query the neural network with every possible state that could follow
from the given action and use the transition probabilities to combine these state—next state
reward estimates.

Networks are trained over 51,200 epochs using a batch size of 800 to minimize the MSE
using Adam with a learning rate of 0.0001 and weight decay of 107°. The remaining param-
eters for Adam in PyTorch (83, B2, and €) are set to their defaults (0.9, 0.999, 10~8) without
the AMSGrad (Reddi et al. 2018) modification.

Policies are evaluated by iterative dynamic programming according with the Bellman
operator. An approximation of the v-discounted expected return function is updated simul-
taneously for each state and action until the maximum absolute change is smaller than 107°.
We use a discount factor of v = 0.99. On every k-of-N CFR iteration, this process is run
N times given the current CFR policy to evaluate it under each of the N reward functions
sampled at the start of the iteration.”

This experiment was run on a 3.60GHz Intel® Core™ i9-9900K CPU with 7.7 GB of
memory without a GPU. Model training took roughly 25 minutes per random initialization,
so 833 CPU hours for all 2000 models. 100 iterations of k-of-N CFR took roughly three
minutes, so for all six settings of k£ and /N, and all five random repetitions, it took about 100

minutes. In total, our experiment used about 835 CPU hours of computation.

" Alternatively, the successor representation (Dayan 1993) could be used to fully characterize the current
CFR policy for essentially the same cost as a single policy evaluation. Given this information, computing
the expected return given a reward function can be computed with a single pass over each state and action,
thereby reducing the amount of computation that scales with N.
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Chapter 10

Alternative Function Approximation
Parameterizations for RCFR

10.1 Introduction

The RCFR algorithm incorporates function approximation into CFR but both the theory
and experiments for RCFR were originally specific to the ramp link function or a normalized
ramp policy parameterization. In contrast, many algorithms like Hedge and softmax policy
gradient, use a softmax link function/parameterization. In the case of Hedge (i.e., softmax
regret matching), this parameterization even gives it a better regret bound than that known
for ramp regret matching with respect to the number of actions.

This chapter presents regret bounds for RCFR with the softmax and polynomial link func-
tions, and examines their performance differences in small two-player, zero-sum, imperfect-
information games from OpenSpiel (Lanctot, Lockhart, et al. 2019). These regret bounds
are derived from a generic analysis of f-RCFR parameterized by link function f, and ap-
proximate (@, f)-regret matching, which is additionally parameterized by a deviation set ®.
Notably, the softmax link function retains its theoretical advantage in approximate regret
matching and that approximation errors impact the bound differently than for polynomial
link functions. In experiments with f-RCFR, the softmax link function exhibits better per-
formance when approximation errors are large, suggesting that softmax RCFR may scale
better than ramp RCFR.

Softmax RCFR is not just superficially similar to softmax policy gradient; by choosing
a particular training setup using “bootstrapped targets” (Morrill 2016), softmax RCFR be-
comes a “one line change” of softmax policy gradient. This algorithm is neural replicator
dynamics (NeuRD) as it can also be derived as a discrete, approximate version of the repli-
cator dynamics of evolutionary game theory. Experiments show that NeuRD outperforms

softmax policy gradient in games and non-stationary environments.
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10.2 Approximate (¢, f)-Regret Matching

A (P, f)-regret matching algorithm is an ODP algorithm that chooses the strategy on round
t that is a fixed point of the best average of the deviations ® C ®5" in hindsight, q_bt7 defined
by Eq. (2.24). The (®, f)-regret matching theory is based on reasoning about the growth
of a potential function, G : R — R, applied to cumulative regrets. The key relationship
between f and G is that there is a function g : R* — R’ where g(-) = cf(-) for a positive
scaling factor ¢ > 0 such that G(x +2') < G(x) + (g(z), 2’) +v(a') for any z, 2z’ € R", where
v : R" — R,. Together, (G,g,7) is called a Gordon triple. The function g is present to
utilize the scale invariance of g_bt. Since each g?ﬁt is normalized by the sum of link outputs from
the cumulative regret vector, i.e., (1, f(p"*~1)), all link functions that are proportional to f
produce the same strategies. This allows us to reason about link function g o< f instead of f
when convenient.

Our new approximate (®, f)-regret matching extension provides an analogous framework

for agents who use an approximate average deviation in hindsight,

1
p m2¢e¢%¢ if (1, 7) >0

1 0.W.,

(10.1)

where 7* = f(p'*!) are the link outputs of approximate cumulative regrets p**~* € RI®l and

I is the identity matrix.

Theorem 23. Given Gordon triple (G,g,7), an approzimate (®,g)-regret-matching algo-

rithm has, after T rounds, a bounded regret potential

T

G(pHT) < GO)+ D () + 20]lg(p" ™) = 9(7 )],

t=1

~
Slack induced by approxzimation errors.

Proof. Starting from the Gordon triple smoothness condition,

G(p™) < G + (g™ 1), p7) + (") (10.2)
—_—
=GP+ (g™, 1) = (g, 1) +(pT) (10.3)
=G + (g™ =g, o) ("), (10.4)
Applying Cauchy-Schwarz and using the payoff bound,
G(p"") <G + |lgl" ) = g O], 10", + (") (10.5)
<G + 20 ||g(p" ) = g(pE Y|, + (") (10.6)
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Unrolling the recursion where pI:0 = 0, we arrive at the desired result,

G(p"" +Zv ) +2U[g(p"*Y) = g(p" )|, (10.7)

]

Theorem 23 differs from the exact (P, g)-regret-matching bound (A. Greenwald, Z. Li, and
Marks 2006a, Corollary 7) only by an additive error term.

Theorem 23 leads to the following bounds for polynomial and exponential link functions.

Theorem 24. Let A be binary minimum, i.e., v Ay = min{z,y}, and V be binary mazimum,

i.e., v Vy = max{z,y}. The polynomial link function with power p—1, p > 1 s f(-) = []5".
Define the scaled link function g pointwise as g;(x) =0 if z; < 0 and g;(z) = M%xp !

otherwise. Approximate (®, f)-regret matching ensures that, for each deviation ¢ € ®, after

T rounds,

0) < 20/al®) "} (0= DV VT + g Zug Li-t) — g 1)

Proof. Let G(-) = ||[~]+||£A2 and v(-) = ((p — 1) V 1)[|-[[**. Lemma 10 and 12 of A. Green-
wald, Z. Li, and Marks (2006b) show that (G, g,~) is a Gordon triple. Since G(0) = 0
Theorem 23 becomes

PA2

<Z =)V DA + 20 [g(p" ) = 9(p™ ), (10.8)

< ((p—1) v HRUPZaPP(@)T + 20 ) ||g(p™ ") — g(3*)|,, (10.9)

where the second inequality results from the application of Lemma 9 from A. Greenwald,
Z. Li, and Marks (ibid.) and the payoff magnitude bound.

PpA2

The polynomial potential upper bounds the cumulative regret as H[pl:T} n >
P
A2
H [phT]Jr P > [pliT(¢)]’r2 for each deviation ¢ € ®. Therefore,
P (¢) < [p1:T<¢)L_ (10.10)
< H[pl:TLrH (10.11)
p
T
< 73 (= )V 1)EUP2(@)@2T 20 3 lg(p) = g, (1012)
t=1

<20/ a(®) "y DVOT + 5 W/p ZHQ HE) = g(pt Y, (10.13)
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as desired. ]

Theorem 25. The exponential link function with temperature T > 0 is f(-) = exp(Z:).
Define the scaled link function g as g(-) = f(-)/(1, f(-)). Approximate (®, f)-regret matching

ensures that, for each deviation ¢ € ®, after T rounds,

T
, T e b
P (0) < Thnf@] + 20— +20 Y flg(p™ ") — 97N,
t=1

Proof. Let G(-) = 7In(1, f(-)) and 7(-) = 5=[]-[|%. Lemma 14 of A. Greenwald, Z. Li,
and Marks (2006b) shows that (G, g,v) is a Gordon triple. The logsumexp potential upper
bounds the cumulative regret as 7In(1, f(p"?)) > p'T(¢) for each deviation ¢ € & and
G(0) = 7 In|®|, so Theorem 23 becomes

p'T(¢) <7TIn(1, f(p'T)) (10.14)
T
1 - s
<@+ el + 20 |g(0" ) = 92, (10.15)
t=1
T T
< Thnf@]+ 207~ +20) [la(o™ ") — 9", (10.16)
t=1
as desired. O

See D’Orazio, Morrill, et al. (2019, Appendix B) for proofs. Note that the polynomial link
function with p = 2 yields Waugh, Morrill, et al. (2015)’s original regression regret matching
algorithm, while the exponential link function yields an approximate version of Hedge.

Theorem 24 improves upon Corollary 3.0.5 of Morrill (2016) by removing the v/X-term in
the approximation error, due to the use of Theorem B.1 of D’Orazio, Morrill, et al. (2019),
which is an improved version of Theorem 3.0.3 from Morrill (2016). Theorem 24 also replaces
|X| with |X| — 1 since a(P5°) = |X| — 1.

10.3 f-RCFR

Thanks to our new analysis of approximate regret matching, we can use various link func-
tions and deviation sets to construct different forms of RCFR. The f-RCFR strategy for
player i given functional regret estimator p**~1 is 7'(s) o< f(p¥*~1(s)) or it is arbitrary when
ptt=1(s) < 0, for each agent state, s € S4. Since the input to any link function in an
approximate regret matching algorithm is simply an estimate of the counterfactual regret,
we can reuse all of the techniques previously developed for RCFR-like methods to train re-

gret estimators (Brown, Lerer, et al. 2019; H. Li et al. 2019; Morrill 2016; Steinberger 2019;
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Training objective

( 2
Minimize
le :t,IMM,CF pl :t,IMM,CF ||2 (eXaCt)
or

o(s) Function | || LT FLEINMCE ) 2 (astimated )
approximator ﬁl:t,IMM,CF or
s let 1,1MM, CF+p ( 7Tt o ) pltIMMCFHQ
ﬂ (bootstrapped).
. J

H T (s)

Figure 10.1: The f-RCFR pipeline from agent state to immediate strategy. The only dif-
ference from Fig. 8.1 is the application of a general link function f rather than the specific
ramp link function.

Steinberger et al. 2020; Waugh, Morrill, et al. 2015). See Fig. 10.1 for a visualization of the
f-RCFR architecture.

Since Theorem 5 is parameterized by an immediate regret bound, the improvements to
Theorem 24 over the original regression regret matching bound carry over to improvements
over the original RCFR bound. We also achieve a new bound for the softmax parame-
terization/exponential link function with a better dependence on the number of immediate

deviations according to Theorem 25.

Corollary 3. Given a finite-horizon POHP and perfect-recall updates with mazimum
depth d,, instantiate EFR with the blind counterfactual deviations and approrimate
regret matching with the (p — 1)-power polynomial link function. Denote cumulative
regret estimates at each agent state s on each round t as pttT! € RMOI This is
an instance of f-RCFR where the maximum cumulative link approximation error is

C T = maxees, Yo |lg(ptY) — g(BE)||, where g is defined pointwise as gi(x) = 0 if
z; < 0 and gi(z) = Wﬁ_l otherwise. The full blind counterfactual and external

regret after T rounds of this instance of f-RCFR is no more than

1
20 (s =<

2d,U|S 4| "Vna— 1 w\2/(<p — 1)V 1T +

Corollary 4. Instantiate EFR with the blind counterfactual deviations and approz-
imate regret matching with the T-exponential link function.  Denote cumulative re-
gret estimates at each agent state s on each tound t as pitT! € RMGI This is
an instance of f-RCFR where the maximum cumulative link approximation error is

1,
€: T — maxees, SopqllglpE=1) — g(ED); 9() = (1?%&;». The full blind counterfactual

182



and external regret after T rounds of this instance of f-RCFR is no more than

T
1S4l (7‘ Inng +2(d.U)*= + Qd*Ue(T)) .
T

10.3.1 Experiments

To examine the impact of the link function, choices for their parameters, and the interaction
between link function and function approximation, we test f-RCFR in two games commonly
used as research testbeds, two-player Leduc hold’em poker (Southey et al. 2005) and two-
player imperfect information goofspiel (Lanctot 2013) with linear function approximation.
See Sections 7.A.1 and 7.A.2 for game details. Our experiments use the OpenSpiel (Lanctot,
Lockhart, et al. 2019) implementations of these games.

The payoffs in each game are reported so that they have similar scales; milli-big blinds
(mbb) for Leduc hold’em and milli-utils (mu) for goofspiel, where one “util” is the payoff for
winning a game of goofspiel. The perfect-recall representation of Leduc hold’em contains 936
active agent states across both players. We use two variants of goofspiel: one with a shuffled
point deck and four ranks that we call “random goofspiel” and a second with a sorted point
deck in decreasing order but five ranks that we call “goofspiel”. This five rank version of
goofspiel is roughly twice as large as Leduc hold’em at 2124 perfect-recall active agent states,
while random goofspiel is larger still at 3608 perfect-recall active agent states.

These games are zero-sum, so a natural way to evaluate f-RCFR is to observe the ex-

ploitability of its average strategy profile generated during self-play.

Algorithm Implementation

Our regret estimators are independent linear function approximators for each player, ¢ €
{1,2}, and action a € UseSM A(s). Our features are based on tug-of-war hashing fea-
tures (Bellemare et al. 2012).

For each action, we randomly partition the agent states that share that action into m-
buckets and repeat this n-times to generate n-sparse indicator features of length m. The sign
of each feature is randomly assigned to reduce bias introduced by hash collisions (sampled
independently). The expected feature value over all agent states that share a non-zero entry
in their feature vectors is, by design, zero. We use the number of partitions, n, to control the
severity of approximation in our experiments; the larger n is, the more precisely agent states
can be discriminated between, at the cost of more weights in the function approximator.

More formally, consider n random hash functions from a universal family. Each such
hash function maps an agent state to indices, i.e., {G; : S; 4 = {1,...,m}};_,. The feature

representation ¢(s) € R™" is an n-sparse vector with non-zero entries at the indices selected
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by the hash functions, i.e., {¢i(s), m + (a(s),2m + (3(s),...,m(n — 1) + (,(s)}. The value
of the non-zero entries are all either +1 or —1, determined by n additional random hash
functions {¢; : S;a — {—1 —1—1}}1 a+1- This gives us the following feature vector, ¢(s) =
Yoy Coti(S)€ii—1)m+ci(s), where e; is the unit vector in direction j.

We do ridge regression on instantaneous counterfactual regret targets to update our regret
estimators. After the first iteration, we simply add this new vector of weights to our previous
weights. Since the instantaneous counterfactual regrets are computed for each agent state—
action sequence on every iteration, the same feature matrix is used in the regression after each
iteration. Therefore, the ridge regression solution for predicting the cumulative counterfactual
regrets is just the sum of ridge regression solutions for predicting each of the instantaneous
counterfactual regrets. Beyond computing the weights at the end of each iteration, the regrets
do not need to be saved or reprocessed.

Since we are most interested in comparing the performance of f-RCFR with different link
functions and parameters, we track the average strategies for each instance exactly in a table.
While this is less practical than other approaches, such as learning the average strategies from
data, it removes another variable from the analysis and allows us to examine the impact of
different link functions in relative isolation. Equivalently, we could have saved copies of the
regret estimator weights across all iterations and computed the average policy on demand as

suggested by Steinberger (2019).

Parameters

The appearance of function approximation error within the f-RCFR regret bounds (Corol-
laries 3 and 4) appear in different forms depending on the link function f. For the polynomial
link function, the bounds vary with the p parameter and similarly the exponential link with
the 7 parameter. We test the polynomial link function with p € {1.1,1.5,2,2.5,3} to test
values around the conventional p = 2 setting. The exponential link function is tested with
7 € {0.01,0.05,0.1,0.5,1} in Leduc hold’em and random goofspiel, and 7 € {0.1,0.5,1, 5,10}
in goofspiel.

To examine the relationships between a link function, link function specific parameters,
and function approximation error, we examine the empirical exploitability of f-RCFR with
different levels of approximation. The degree of approximation is adjusted via the quality
of the features. In particular, we vary the number of partitions, n. Increasing n increases
discriminative power and reduces approximation error (Fig. 10.2).

The number of buckets in each partition is fixed at m = 10. If the number of agent
states that share an action is not evenly divisible by ten, a subset of the buckets are assigned
one more agent state than the others. Thus, adding a partition adds ten features. Only

one feature per partition is non-zero for any given agent state, so the prediction cost grows
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terfactual regret estimation error
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linearly with the number of partitions. The ridge regression update cost however, grows

quadratically with the total number of features.

Results and Analysis

Figure 10.4 shows the average exploitability of the best link function and hyper-parameter
configuration during learning (top) and after 100k-iterations (bottom), where an iteration
is a round for each player. Players are updated in an alternating pattern, i.e., player one
is updated given player two’s strategy and then player two is updated according to player
one’s updated strategy (Burch, Moravécik, et al. 2019; Tammelin 2014). The best parame-
terization was selected according to the average final exploitability after 100k-iterations over
5-runs. The exploitability of the average strategy profile decreases as the number of parti-
tions increases, as predicted by the f-RCFR exploitability bounds given the decrease in the
prediction error associated with increasing the number of partitions (Fig. 10.2).

The exponential link function achieves a lower exploitability than the polynomial link

function when a moderate number of partitions (30 or 40) are used in Leduc hold’em including
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Figure 10.4: (top) The exploitability of the average strategy profile of tabular CFR and f-
RCFR instances during the first 100k-iterations in Leduc hold’em (top left), goofspiel (top
center), and random goofspiel (top right). For each setting of the number of partitions, we
show the performance of the f-RCFR instance with the link function and parameter that
achieves the lowest average final exploitability over 5-runs. The mean exploitability and the
individual runs are plotted for the chosen instances as lines and dots respectively. (bottom)
The final average exploitability after 100k-iterations for the best exponential and polynomial
link function instances in Leduc hold’em (left), goofspiel (center), and random goofspiel
(right).

the original RCFR (polynomial link with p = 2; Fig. 10.3, top). The same occurs in random
goofspiel with 60 or 90-partitions (Fig. 10.3, bottom). These feature parameters correspond to
a moderate amount of function approximation error. This performance difference is noticeable
across most configurations of the exponential and polynomial link in Leduc hold’em. Both
link functions perform similarly in goofspiel with 40 or 50-partitions (Fig. 10.3, center).

The exponential link function does not outperform the polynomial link function in goofspiel
or when the number of partitions is large, however (Fig. 10.3, center, and Fig. 10.4, bottom).
Thus, the relative performance of different link functions is dependent on the game and the
degree of function approximation error.

Among the different choices of p for the polynomial link function, p = 2 (RCFR) performs
well with respect to the other polynomial instances across all partition numbers and in all
three games (Fig. 10.4 (bottom)). It is outperformed only by p = 1.1 and p = 1.5 in random

goofspiel with many partitions, n = 90 and n = 120 respectively.
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10.4 Neural Replicator Dynamics

Applying the softmax link function to f-RCFR yields a version of CFR with Hedge at each
agent state where action transformation preferences are generated by a function approximator
rather than a table. As we saw in Section 3.3.1, Hedge and softmax policy gradient (SPG) in
an ODP setting are procedurally similar, so what relationship does softmax RCFR have with
SPG in the POHP setting? To answer this question, we examine an online softmax RCFR

update using bootstrapped targets and compare this update procedure with that of SPG.

10.4.1 The Neural Replicator Dynamics Update

On each round ¢, f-RCFR generates action transformation preferences p'*~* = j5(s; 6%) € RI®!

. . . . . ~1
for a given agent state s, determined by d function approximation parameters § € R, A
bootstrapped RCFR update target is an estimate of the cumulative regret vector generated

from the current function approximator parameters plus the next instantaneous regret, i.e.,

~- ~1- . ~t+1 .
pit = ptt=l 4 pt ~ pl  If the vector 6""" is chosen on each round ¢ so that the squared
Euclidean distance between pLt and p(s; 0"+ is zero, i.e., ||[ptt — p(s;07)||2 = 0, then

p(s;0%1) = plt. In this case, softmax RCFR exactly reproduces CFR with Hedge.

Rather than trying to ensure that this distance is always zero, which may not be possible
according to the structure of p, a natural approximation is to update p**=1(s; #) so that it is
more like plt after each round. Taking a single step of size % in the direction of the gradient
of the distance results in the online update 0™ = 6" + V|| [p~"] — p(s; 0")||> at agent state
s, where [-] is the “stop gradient” operator. This update simplifies to

1 _ ~ _
o =0+ Y o607 + ol — Do (530" Vapy, (5:6") (10.17)
Ps €D
1 _
=0+ — > 0y, Vobo. (s;0"). (10.18)
¢s€ds

Using this approach, p generates approximations of cumulative regrets, and thus, ap-
proximations of the Hedge preferences, with fast incremental updates and without storing
instantaneous regrets from previous rounds. Softmax RCFR using this particular update
methodology has been dubbed neural replicator dynamics (NeuRD) for its connection with
the replicator dynamics, which is described next. See Fig. 10.5 for a depiction of the NeuRD

pipeline from active agent state to immediate strategy.

10.4.2 Connection with Replicator Dynamics

The replicator dynamics describe the continuous time evolution of a population via selection
and mutation pressures (J. Hofbauer et al. 1998; Taylor 1979; Taylor and Jonker 1978;
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15 4 pSF (ot o) = pa(5 07713
. (for counterfactual dev1at10ns)
o(s) Function .t —

. or
approximator "~ ;41
= ps(507) 15571+ ps (s 0t) = ps (107713
ﬂ (for action dev1at10ns)
- J

i
exp(-) ﬂ
(1, exp(-))

Figure 10.5: The NeuRD pipeline from agent state to immediate strategy.

Zeeman 1980, 1981). If there is a finite set of different species in a population, X', where the
relative proportion of each species is described by a distribution 7 € A(X) and the fitness
of each species within the population is described by a bounded function v : X x A(X) —
[—U, U], then the replicator dynamic of species z is defined by the differential equation

7(z) = m(z)(v(z;m) — Exn[v(X;m)]). (10.19)

That is, the time derivative of the prevalence of a species x in the replicator dynamics is
proportional to the difference in z’s fitness within the current population and the average
fitness of the whole population. For asymmetric games where a daimon chooses strategy o,
the replicator dynamics becomes 7(x) = m(z)p(¢ ", m;0). Solving this differential equation

T

gives an exponential form, 7' oc exp fo (7%, 7t ot)dt), for weights after a duration of

T'. Discretizing fo (¢p7*, 7t; ot)dt with dlscrete rounds yields the incremental update 6

~T— T
b+ Lp(p7®, 7l 0Tl = Lot where 9’ = 0, that results in the policy, 77 o ¢/ =

exp(lp1 =1 "which is Hedge. The replicator equation Eq. (10.19) can likewise be obtained
by taking the continuous time limit of the Hedge algorithm as the step size is driven to
zero (see Section 3.1 of Krichene (2016) for details). Through this connection, we can see
that since NeuRD is a function approximation generalization of Hedge, it is also that for the

replicator dynamics.

10.4.3 Comparison with Softmax Policy Gradient

Recall the SPG algorithm from Sections 2.5 and 8.3. In a finite-horizon POHP with timed
updates, the partial derivative of the expected return of the policy composed of immedi-

ate strategies 7'(s) o exp(g(s; ")) for each active agent state s, generated with function
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approximator g and parameters §' € R?, with respect to parameter 0! is

du(nt;ot) Z Ovg(mt; o)

541 56 (10.20)

seES A
The same variable’s partial derivative of the counterfactual value function at active agent
state s is

vy (m'; o) ar'(a) Oga(s;0")
= s —. 10.21
aef acA(s) e anA Ogar (s Ht aef (10.21)
By Section 2.8 of R. Sutton et al. (2018),
Ovg(rt; o . / o Ogu(5: 0"
—(aet ) > wle(wh);0h) D wi(a)(1a Za}—ﬁt(a))%. (10.22)

acA(s) a’€A(s)
Swapping the order of the summations and repeating the reasoning described in Section 3.3.1
leads SPG to reduce to Eq. (3.6) in the ODP setting,

Ovg(mt; ot . 0ga(s; 0
—(aet ) > 'lals)ps(ey mt;at)—gm ) (10.23)
v a€A(s) ¢
The SPG update at s is therefore
1 o 0ga(s; 0"
R S L R~ Ui AR CTEY)

a€A(s) Omitted in Eq. (10.18).

The NeuRD update, Eq. (10.18), on the external action transformations differs from that
of SPG, Eq. (10.24), only in that NeuRD does not multiply the action deviation regret of
action a by 7'(a|s).

I contribute Corollaries 3.1 and 3.2 of Omidshafiei et al. (2019), giving regret and equilib-
rium approximation guarantees for applying tabular NeuRD (i.e., Hedge) as the local learner
in CFR, which are restated here.

Corollary 5. Tabular NeuRD on the blind counterfactual deviations, i.e., prt = plt=t 4+
P (-, ot) and p(s; 07TY) = pltMCr e CFR with local Hedge learners and setting the

step size in active agent state s to = = /2In(|A(s)])T~! on each round in a finite-horizon

POHP with perfect-recall updates, ensures that NeuRD has a cumulative blind counterfactual
and external deviation regret upper bound of 2Ud.|Ss|v2Inn T after T rounds.

Proof. This follows from the definitions of NeuRD, blind counterfactual deviations, CFR,
and Hedge, and by substituting the Hedge regret bound (Cesa-Bianchi et al. 2006; Freund
et al. 1997) into CFR’s abstract regret bounds (Theorem 10 and Lemma 5). O

Corollary 6. In a two-player, zero-sum game, tabular NeuRD on the blind counterfactual
deviations in self-play generates an average strategy that is an e-Nash equilibrium, with € no

larger than the sum over players of the average (collected over iterations) external regret.
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Figure 10.6: a NASHCONV of the average NeuRD and SPG policies in biased rock-paper-
scissors (roshambo) (see Section 10.A.1). b Average policy NASHCONV in Leduc hold’em.
Algorithms are tabular NeuRD on the blind counterfactual deviations and CFR, using SPG
as a local learner (basically, SPG on the blind counterfactual deviations).

Proof. Corollary 5 and Proposition 3. O

In addition, my coauthors derive non-obvious connections to SPG and natural policy
gradient (Kakade 2002). See Omidshafiei et al. (2019, Appendices A.3 and A.4) for proofs.

Theorem 26. Setting the NeuRD difference function to be the Kullback-Leibler divergence
instead of the squared Fuclidean distance converts NeuRD into SPG.

Theorem 27. The NeuRD update rule (Eq. (10.18)), is a naturalized policy gradient rule,
in the sense that NeuRD applies a natural gradient only at the policy output level of softmax

function over preferences, and backpropagates the standard gradient otherwise.

10.4.4 Experiments

How does NeuRD compare to SPG in practice? Figure 10.6 shows that tabular NeuRD
on the blind counterfactual deviations reduces NASHCONV substantially faster and more
consistently than CFR using SPG as its local learning algorithm (basically, SPG on the
counterfactual deviations) in games with and without sequential decision-making. Figure 10.7
compares scalable versions of NeuRD on the blind action deviations and SPG with deep neural
network function approximation, outcome sampling, variance reduction, and entropy reward
bonuses in non-stationary versions of three sequential imperfect-information card games. See
Section 10.A for more experiment details. In these cases as well, NeuRD more quickly reaches
better equilibrium approximations than SPG, and more gracefully adapts to utility function

changes.
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Figure 10.7: The NASHCONV (top) and average NASHCONV across all iterations (bottom)
of the current policies of outcome sampled NeuRD on the blind action deviations and SPG
with entropy reward bonuses (Perolat et al. 2021), across non-stationary modifications of
Kuhn poker (see Section 10.A.1), Leduc hold’em, and goofspiel. The vertical dashed lines
show where the utility function is negated. The first and third phases of each game have the
same utility functions. These results summarize forty independent runs. (top) The averages
across forty independent runs are shown as solid lines and the shaded region depicts the 95%
confidence interval.

10.5 Conclusion

In this chapter, regression regret matching theory was generalized in two dimensions, the
link function to include the polynomial and exponential link functions and deviation func-
tions to include external and internal regret. The generalization to different link functions
allowed us to construct regret bounds for a general f-RCFR algorithm. This chapter showed
how f-RCFR is observably sequentially hindsight rational for the blind counterfactual devi-
ations with the polynomial and exponential link functions as long its function approximator
accurately reproduces tabular cumulative counterfactual regrets.

The performance of f-RCFR was presented with the polynomial and exponential link
functions under different hyper-parameter choices and different levels of function approxi-
mation error in Leduc hold’em poker and imperfect information goofspiel. f-RCFR with
the polynomial link function and p = 2 often achieved an exploitability competitive with
or lower than other choices, but the exponential link function outperformed all polynomial

parameters when the functional regret estimator had a moderate degree of approximation.
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Generalizing RCFR to allow for the use of the softmax link function reveals connections be-
tween RCFR and traditional online learning, evolutionary game theory, and RL algorithms.
This chapter showed how softmax RCFR with online gradient updates and bootstrapped
targets results in the NeuRD algorithm, a generalization of Hedge and replicator dynamics,
as well as a minimal change of the SPG algorithm. NeuRD is a theoretically grounded al-
gorithm for achieving hindsight rationality and is implemented almost identically to SPG.
Experiments compared the performance of NeuRD and SPG in games and non-stationary
environments, which showed that NeuRD substantially outperforms SPG in these environ-

ments.
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10.A NeuRD Experiments
10.A.1 Additional Games

Table 10.1: Player one’s biased rock-paper-scissors payoffs.

R P S
R| 0 -1 20
Pl 1 0 -1
20010

Biased rock-paper-scissors uses the familiar rock-paper-scissors payoff matrix, except the
reward for winning by playing scissors is twenty instead of one (see Table 10.1).

Kuhn poker is a one round poker game with a three card deck, each with a different rank.
Both players ante a single chip into the pot before the round begins and are then dealt a
single private card. In turn, the players can choose to bet or call the opponent’s bet with
another chip. Players facing a bet can also fold and forfeit their ante. If no player bets or
the player facing a bet calls, their cards are revealed and the player with the highest ranking

card wins the pot. This game has 12 perfect-recall active agent states.

10.A.2 Parameters and Training Regimes

For the tabular CFR experiments in Leduc hold’em displayed in Fig. 10.6b, the set of
constant step sizes/inverse temperatures tried were the same for both algorithms: « €
{0.5,0.9,1,1.5,2,2.5,3,3.5,4}. The shaded area corresponds to the 95% interval that would
result from a uniform sampling of the step size from this set. An “iteration” consists of one
(full tree walk) alternating CFR update for both players (Burch, Moravéik, et al. 2019).

Neural network experiments displayed in Fig. 10.7 were completed by coauthors and use
two-layer neural networks with 128 hidden units initialized randomly. A conditional expected
action value function with the same architecture is used to reduce variance. The action value
network updates from batches of four on-policy sampled trajectories with trajectory lengths
of five for Kuhn poker, and eight for Leduc hold’em and goofspiel, and a learning rate of
0.01. The policy network is updated once every four updates of the action value network with
batches of 256 on-policy sampled trajectories and a learning rate of 0.002. An “iteration”
consists then of four action value network updates and a single policy network update.

The reward function of each game is negated after every 1/3x 10 iterations to split learning
into three phases, as denoted by red dashed lines in Fig. 10.7 (top). The policy and action

value networks are not reset when the reward functions are negated.
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Chapter 11

Conclusion

This thesis has presented a critique of the common approach to designing and analyzing
RL algorithms for policy optimization in Markov decision processes with the expectation
that they will perform well in multi-agent and non-stationary environments. The hindsight
rationality objective and the POHP formalism form an alternative framework for designing
and analyzing RL algorithms specifically to be effective in multi-agent and non-stationary
environments. Chapter 3 and Sections 9.3 and 10.4 show that these alternatives have various
benefits in formulating principled goals for complex tasks, tackling new problems in Al safety,
and improving reward accumulation performance. Algorithms designed to achieve hindsight
rationality goals can perform better in environments with other agents, imperfect information,
and non-stationary dynamics, compared to procedurally similar algorithms that are only
designed to approximate optimal policies.

This thesis also presented a critique of the dichotomy between single-agent and multi-
agent RL algorithms. EFR breaks down this binary by achieving multi-agent RL goals
without performing explicit multi-agent reasoning. Explicitly searching joint strategy spaces
or explicitly modeling other agents is often computationally difficult. Bard et al. (2013)
shows that in the context of opponent modeling, it can be both computationally practical
and empirically effective to “implicitly model” other agents with a bandit algorithm to select
between various potential counter-strategies. In a similar way, EFR adapts to the play of
other agents implicitly with a no-regret algorithm that competes with various deviations,
which allows EFR to avoid expensive multi-agent reasoning.

The POHP formalism facilitates the analysis and development of single-agent RL algo-
rithms like EFR that achieve multi-agent goals. Traditionally, algorithms like EFR would be
analyzed in the extensive-form game (EFG) formalism, which causes friction for discussing
algorithm properties in single-agent tasks, or those where the number of agents is unknown
or changing. The EFG formalism also uses different objects and mechanisms to describe

multi-agent interactions than traditional RL models like Markov decision processes or par-
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tially observable Markov games, which prevents algorithms from being straightforwardly
compared, and prevents advances designed in one formalism from being shared to another.
Work in this thesis, particularly the analysis of correlated equilibria and behavioral deviations
(Chapter 6), the analysis and application of CFR in uncertain reward MDPs (Chapter 9), and
the comparison between NeuRD and SPG (Section 10.4), shows that the POHP formalism
can bridge these differences and serve as a common language for algorithmic game theory,
single-agent RL, and multi-agent RL.

In the field of game theory, the causal deviations and their equilibria (EFCCE and EFCE)
are the focus of most investigations into equilibria in sequential decision-making settings.
Part II shows that there is nothing particularly special about the causal deviations. They
are efficient to work with, but are more computationally expensive than counterfactual or
action deviations without being clearly stronger than either. Chapter 6 suggests that perhaps
the partial sequence deviations are more interesting because they have roughly the same
computational cost as the causal deviations and do actually subsume the counterfactual and
action deviations under observable sequential rationality. Regardless, Chapter 6 shows that
exclusively focusing on any one class of deviations and equilibria is ultimately unjustified and
limiting because of the computation—strength tradeoffs spread through the deviation space
in sequential decision-making settings.

f-RCFR and NeuRD show that the hindsight rationality approach can be utilized along
with the same function approximation architectures and similar training procedures as those
used by policy optimization algorithms. In addition to the experiment depicted in Fig. 10.7,
various works show that CFR and RCFR can also be used with Monte-Carlo sampling (see,
e.g., Brown, Lerer, et al. (2019), Davis et al. (2020), Lanctot, Waugh, et al. (2009), Schmid,
Burch, et al. (2019), Steinberger et al. (2020), and Zinkevich, Johanson, et al. (2007b)).
There is no technical barrier preventing the application of function approximation, Monte-
Carlo sampling, and variance reduction in EFR, enabling EFR to be applied in substantially
more complex settings than those investigated in this thesis.

The primary challenge in scaling EFR is to consistently generalize well across agent states
and enable fast learning with generalization. The time selection regret matching theory
(Theorem 15) rewards generalization as long the estimated cumulative regrets happen to be
more like the cumulative regrets after observing the nezt utility function. Unfortunately,
this theory does not suggest an obvious method to achieve such “predictive generalization”.
Perhaps a step in this direction would be to have an algorithm that begins learning by
aggressively generalizing to minimize regret quickly if nearly all agent states are in fact
strategically identical, and gradually differentiating between different agent states that are
unlikely to be strategically similar.

Hindsight rationality is an appealing objective for Al systems that are continually learn-
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ing and adapting in complex environments because it requires few assumptions about the
environment. However, hindsight rationality does require the imposition of discrete rounds,
which leads to two independent dimensions representing time in a repeated POHP: time
steps within the POHP and the round number (the number of times the POHP has been
executed). This artificial partitioning of time is unnatural and untenable in continual learn-
ing tasks where there is no clear notion of rounds. Formulating hindsight rationality without
imposing artificial round boundaries, perhaps by allowing agents to recover a sense of rep-
etition from similarity between agent states or constructing a fixed-length, incrementally
advancing horizon, is a promising research direction that would enable us to import all of

the algorithmic tools developed for CFR and EFR into continual learning tasks.
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