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Abstract 

 

With increasing demand for physical therapy in recent years, robotic systems have been 

proved to have great potential in improving the level of the delivered rehabilitation services 

both in quality and quantity and also providing huge savings in labor costs of. In this project 

a new cable-driven robotic cell for rehabilitation of human limbs is proposed and developed. 

This system has several advantages over the commercialized therapy robots, including 

reconfigurability and ability of handling redundancies. In this framework, the first challenge 

is to determine the number and configuration of the cables which guarantee the equilibrium 

of the system against an arbitrary force. The necessary and sufficient number of cables for 

single rigid body systems is well-known in the literature. However, since the human arm is a 

multibody system, a new theory was developed to determine the minimum total number of 

cables for a multibody as well as their possible distributions among the links of the 

multibody. In the second step, a method was proposed to obtain the boundaries of the 

workspace of the robot by Lagrangian formulation of dynamics of the multibody. Having the 

workspace, the final part of the thesis is on designing the control loop and its real-time 

implementation on a mechanical model of the human upper extremity. The control logic was 

designed in two levels: position control and compliance control. Position control is utilized 

for following a specified trajectory (representing an exercise for the patient's arm), while 

compliance control provides flexibility for deviating from that trajectory. The compliance 

control method used is impedance control in which the robot acts similar to a mass-spring-

damper system. To achieve the exact stiffness required by impedance control, the inherent 

stiffness of the cable robot is formulated and taken into account by extending the theories 

proposed in the literature for stiffness of rigid-body cable robots for multibodies. Using 



impedance control enables us to perform different scenarios for training including 

teaching/playback and assistive/resistive exercising. The experimental results prove the 

effectiveness of the theories developed for dynamics and control of the multibody cable-

driven robots. 
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Chapter 1   Introduction 

 

Technology-based solutions have become increasingly popular to assist the elderly 

population and the ones with disabilities. The increase of life expectancy in industrialized 

countries from one side, and decrease of birth rate from the other, will soon lead to a 

shortage of human specialists for assisting the aforementioned groups of people. In the 

demography provided in [1] (originally from [2]) in seven selected countries, the percentage 

of handicapped people ranges from 7.1 to 20 and of the elderly from 12.4 to 36.0. From these 

statistics one can conclude that new methods of rehabilitation aids are to be utilized for the 

rising number of people in need. The creation and growth of the field of rehabilitation 

robotics is a response to this rapidly increasing demand. 

A class of robotic systems that has been a topic of interest in past years is cable-driven 

parallel mechanisms or cable robots. Cable robots have several advantages over the 

conventional robots. Higher payloads, reconfigurability, low-mass moving parts which in 

turn allows reaching higher speeds and accelerations, the possibility of working in large 

workspaces, and the ability for working in dangerous and hazardous environments have 

made them a thriving area of study in the field of robotics.  

The goal of this thesis is to utilize the advantages of cable robots for development of a new 

robotic system for rehabilitation of the human limbs. The structure of the robot is a new 

form of cable robot and as a result, new problems in analysis of the robot have to be 

addressed and solved. 

 

1.1 Problem Statement and Motivations 

Due to the rising need for robotic therapy a lot of robotic systems have been proposed in 

past years. The majority of these systems can be categorized into two major groups: end-

effector based systems and exoskeletons. 
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In end-effector based systems the contact of the robot with the patient is solely through its 

end-effector. However, since human limbs have more than six DoF (Degrees of Freedom), the 

end-effector based systems cannot control all DoF of the limbs, and as a result, redundant 

motions may occur during the exercise. 

The other group of therapeutic robots are exoskeletons. In exoskeletons the problem of 

redundant motions has been solved; but in the cost of another problem: that the weight of 

the integrated actuators in the structure of the exoskeleton has to be compensated, which is 

often a not a simple task. 

Another limitation from which both of these types of robots suffer from is their fixed 

configuration. In other words, they are designed for and restricted to performing a single 

task. Indeed, a robotic system that can be readily reconfigured for different tasks will be of 

considerable advantages in terms of cost, space, and usage simplicity. 

Cable driven robots can be a good solution for the three problems stated above. They are 

parallel mechanisms and thus the DoF that they can control is unlimited. Furthermore, in 

cable robots the weight of the actuators does not cause any difficulty, as they are stationary 

and placed away from the driven object. Finally, one of the most important characteristics of 

cable robots is their ability to be easily reconfigured and reinstalled, making them an ideal 

candidate for applications such as physical therapy in which the ability of performing a 

variety of tasks is desirable. 

From the characteristics of cable robots, they can be considered a good potential solution for 

the main limitations of the conventional therapeutic robots.  In this thesis, the development 

of a cable-driven robotic system from concept to control is discussed and new theories 

necessary for this application are developed. 

 

1.2 Challenges and Contributions 

From dynamics point of view, human limbs are multibodies. Therefore, a cable robot for this 

application will be a “multibody cable-driven robot”. In other words, the object being driven 

by the robot instead of a simple rigid body is itself a mechanism. The fact that almost all of 

the studies and analyses performed for cable robots have been on single rigid body cable-

driven mechanisms1 makes the proposed project not only a new system in the field of 

                                                                    
1. For the sake of simplicity, hereafter “single rigid body cable-driven mechanisms” are referred to “rigid body 

cable-driven mechanisms”. 
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rehabilitation robotics, but also a new type of cable robot. As a result, all of the theories 

developed for rigid body cable-driven robots have to be extended to the case of multibodies. 

Since cables can only pull, in a cable robot it must always be guaranteed that the cables are 

in tension. The minimum necessary number of cables that can guarantee the existence of 

such a configuration has been studied widely in the case of rigid body cable-driven 

mechanisms. However, for multibodies this is a new problem and the number of cables that 

can guarantee positive tensions against an arbitrary external load, and the distribution of 

these cables among the links of the multibody have to be studied. 

The number of cables and their possible distributions guarantee that at least in a manifold in 

the workspace, the system can maintain tensile forces in the cables. Since obviously this 

manifold is the part of the workspace that the system can work in, the next problem is 

finding the boundaries of this subspace. Again, this problem has been widely studied for 

rigid bodies, but it is required that these theories to be extended for the case of multibodies. 

The last step of the thesis is to control the robot. The control of cable-driven robots is 

essentially similar to conventional robots. The only difference is that due to the nature of 

cable robots, the structural stiffness of the conventional robots is usually higher. This 

difference becomes important in impedance control which is a standard approach in 

applications involving interaction of the robot with humans. Therefore, the stiffness of 

multibody cable driven robots should be formulated and considered in the design of 

impedance control for the present application. 

 

1.3 Structure of the Thesis 

In chapter 2 of this thesis, rehabilitation robotic systems and their trends and challenges are 

reviewed and discussed. After that, the cable-driven mechanisms are introduced and the 

proposed concept is presented. In the last part of this chapter, the fabricated robot and the 

mechanical system developed for the control task are depicted and discussed. 

Chapter 3 presents the developed theory for the necessary and sufficient number of cables 

and their possible distributions to guarantee positive tensions in the cables. In this way, first 

the necessary conditions for the number of cables for general multibodies is presented and 

then the sufficiency of these conditions are discussed for the case of two- and three-link 

multibodies. Finally, using the theories developed, the possible number of cables for the 

system developed is investigated and obtained. 
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In chapter 4 a method is suggested for the workspace analysis of multibody cable-driven 

robots. In this way, first the dynamics of cable robots is reformulated using Lagrange’s 

method to obtain a framework for the workspace analysis. The boundaries of the workspace 

are obtained using two different (but equivalent) methods, namely null-space approach and 

separating/supporting hyperplane approach. Several case studies are presented for 

illustrating the method for simple multibodies. The final part is applying the developed 

theories for the workspace analysis of the developed system to determine the subspace in 

which the robot can work. 

Chapter 5 presents the control design and the experiments performed. The robot is 

controlled using both position control and impedance control. For impedance control, as 

discussed before, the structural stiffness of the multibody cable-driven robots is formulated 

and incorporated in the control design. Having designed the control logic, in the last part of 

this chapter the controllers are implemented and the experimental results are presented and 

discussed. 

Finally, chapter 6 summarizes the contributions and results of the present thesis and 

provides guidelines, ideas, and suggestions for extension and future continuation of this 

work. 
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Chapter 2   Basics of Rehabilitation Robotics and 

the System Proposed 

 

In this chapter the system proposed and designed is presented and discussed. But before 

that, to establish the basics required for the proposed system, the rehabilitation robotic 

systems and the cable-driven mechanisms are introduced and reviewed. 

 

2.1 Rehabilitation Robotics 

In [1], rehabilitation robots are divided into two groups: assistance robots and therapy 

robots. The taxonomy provided by Tejima in [3] is somewhat different in that he divided 

these robots to four groups. However, three of these four groups, i.e. augmentative 

manipulation, augmentative mobility, and robots for helping care-givers fall in the first 

category of [1] taxonomy. These types of robots (assistive robots), although they have found 

many applications in recent years (wheelchairs, feeders, walking supports, etc.), are not the 

subject of this thesis. Therefore, we take a deeper look at the second category, i.e. therapy 

robots. 

2.1.1 Commercialized Therapy Robots 

Each year in the US, there are more than 300,000 individuals who need physical 

rehabilitation for motor recovery after stroke [4,5]. The direct cost of these services exceeds 

five billion dollars per year [5]. Due to the increasing number of disabilities caused by stroke 

and also spinal cord injuries in developed countries and the high cost and labor imposed on 

the health care sector, taking advantage of technological potentials for automation of the 

rehabilitation process is inevitable. Furthermore, there are numerous other advantages for 

the robotic systems; some of them which are listed in [1] are: 1) ability of working in long 

periods without becoming tired, 2) ability of measuring the patient’s progress by robot’s 

sensors, and 3) ability of working in different therapy modes with precision that cannot be 

provided by human therapists. To these benefits one can add the possibility of remote 
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exercising of the patient by a therapist, mirroring the motion of the healthy limb of the 

patient by the injured limb, teaching the therapy students, and using computerized visual 

aids for more exciting exercises. All of these factors demonstrate the huge potential for 

research in the field of therapy robotics. 

The advent of assistive robots almost returns to the early robotics times, 1950’s and 1960’s 

[1]. But therapy robots have a much younger history. The first therapy robot was probably 

BioDex [6] which was developed in mid 1980’s. It was a single-axis force-controlled and 

programmable robot which could assist patients in performing simple exercises. The second 

attempt was made by Khalili and Zomlefer [7] at Santa Clara University where they 

introduced the first multi-axis concept for therapy automation. This was followed by the 

work of Erlandson and his group at the Wayne State University [8] who provided the first 

tested system [1] on a 6-DoF UMI RTX robotic arm with visual aids for upper extremity 

exercises. 

In early 1990’s the start of MIT-MANUS project by Hogan et al. [9] at MIT made a landmark 

in the history of therapy robots. As can be seen in Figure 2.1, MIT-MANUS has a planar 

module with 2 degrees of freedom (DoF) and a 1-DoF vertical module for arm therapy. A 3-

DoF wrist module can be also added to provide the ability of hand therapy. MIT-MANUS has 

been the subject of many different studies to demonstrate the satisfactory performance of 

this robotic system compared to the conventional therapy and improve the exercises and 

control system of the robot. 

Another important achievement in the field of therapy robotics was the Mirror Image 

Movement Enhancer (MIME) system which was developed at Stanford University [11]. This 

system uses a conventional Puma-560 robotic arm for providing upper limb therapy. 

Compared to MIT-MANUS, as a result of its 6 DoF, this system can provide more realistic 

movements. However, unlike MIT-MANUS force measurement is necessary for this robot [1]. 

A simple robot that gave interesting results in terms of improvement of movement ability 

compared to tabletop therapies is Bi-Manu-Track [12]. This system works on the basis of 

bilateral passive or active movement of the combination of forearm pronation/supination 

and wrist flexion/extension. As mentioned above, the comparison between tabletop therapy 

and robot exercises shows a significant improvement in mobility of the robot-trained group. 

In the 66-point range of Fugl-Meyer standard, robot-trained patients show 15 points 

superior motion improvement compared to the other group [12]. 

Gait training, due to its labor-intensive nature for the therapists [1] has been another target 

for development of robotic systems. Most of the efforts were based on body-weight 
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supported treadmill (BWSTT) [1] because of the fact that automation is easier on a 

stationary setup. Some of the commercialized gait training systems are: GT-I [13], Lokomat 

[14], and AutoAmbulator [15]. 

 

 

2.1.2 Examples of Therapy Robots under Development 

The success of the abovementioned commercialized therapy robots has inspired a lot of 

research all around the world. A good example is ARMin family (ARMin I to IV) which has a 

semi-exoskeleton structure and provides 6 DoF’s for natural movement of the upper limb 

[16] (Figure 2-2).  The idea of this system is important in that it gives an alternative to the 

conventional end-effector-based systems and through that the ability of moving in more 

degrees of freedom than six (which is the limitation of end-effector-based systems) is 

provided. This is very useful, considering the fact that the human arm is usually modeled 

with more than six degrees of freedom. 

HWARD [18] and RUPERT [19] are two other exoskeleton type systems which utilized 

pneumatic actuation. HWARD is a 3-DoF system which helps the patients in repetitive 

grasping and releasing tasks. RUPERT has 5 DoF and can help in therapy of the whole arm. 

Two systems which took advantage of cables for driving motion are MACARM [5] (Figure 2-

3) and MariBot [20] (Figure 2-4) and.  As can be seen in Figure 2-4 Maribot has five DoF, two 

of which from the linkage part and three from the cable part. MACARM on the other hand has 

Figure 2-1 MIT-MANUS [10] 
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standard form of cable robots for driving rigid bodies. The rigid body here is the handle 

which can have spatial motion and help the patient’s arm in following the specified path. 

Thus in fact the handle can be considered as the classic concept of end-effector therapy 

which in this case is manipulated by the cables. 

 

 

 

 

 

Figure 2-3. Structure of MACARM [21] 

Figure 2-2. ARMin structure [17] 
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Figure 2-4. MariBot [20] 

 

Another system proposed very recently is CAREX, developed at University of Delaware [22]. 

The structure of CAREX is very similar to MACARM in that it consists of the winches installed 

on a fixed supporting frame. But CAREX is basically an exoskeleton based robot and the 

cables move an exoskeleton worn by the patient. As a result of this, the design of CAREX 

eliminates the drawbacks of both end-effector based robots (redundancy) and exoskeletons 

(heavy actuators). However, although simplifying design and calibration, by positioning the 

spools around the shoulder the workspace of the cable robot becomes very small and to 

increase the size of the workspace additional actuators will be necessary. 

 

2.2 Cable-Driven Robotic Systems 

Since their popularity, right after Stewart’s famous paper [23], parallel mechanisms have 

become a good alternative for the conventional serial robots. Their better precision and less 

inertia make them convenient for many different tasks such as accurate positioning, 

manipulating heavy loads, and/or reaching high speeds. 

By Merlet’s definition [24]: “A parallel robot is made up of an end-effector with n degrees of 

freedom, and of a fixed base, linked together by at least two independent kinematic chains. 

Actuation takes place through n simple actuators”. Therefore cable driven mechanisms, in 
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which the end-effector is connected to the fixed base by cables and the lengths of cables are 

controlled by the winches set up on the frame, are considered as a subset of parallel robots 

by this definition and thus they have the inherent advantages of the parallel mechanisms. 

More than these advantages, cable driven mechanisms have other benefits, too. Since in this 

type of parallel mechanisms, the links are the cables, they are practically massless. This 

makes the mechanism convenient for reaching high speeds. Furthermore, the cables are 

much cheaper than link-joint systems and also are easily reconfigurable. Moreover, the 

possibility of using long cables makes them suitable for hazardous environment as well as 

large workspaces without imposing high costs or materials. 

The difficulty of using cable-driven mechanisms arises from the fact that cables can only 

“pull”. Therefore for stability of the mechanism, the configuration of the cables must be 

designed such that all cables are in tension. The subspace of the workspace in which, with a 

selected configuration, all of the cables can be held in tension is called the tensionable 

workspace. 

MACARM, which was introduced before, is an example of standard cable-driven robots in 

which the end-effector is manipulated by the motion of the cables generated from stationary 

winches installed on a frame. There are many other proposed cable robots with design 

variations and with other applications. Some examples are NIST ROBOCRANE [25], 

McDonnell Douglas Charlotte [26], FALCON [27], and DeltaBot [28]. 

 

2.3 Structure of the Proposed System 

Figure 2-5 depicts a schematic of the proposed robotic system for rehabilitation of human 

limbs. 

As can be seen from this figure, the structure of the robot is like MACARM in that the 

winches are installed on a fixed frame. The difference is that instead of a handle, the cables 

are directly connected to the patient’s limb through a special interface (which can be an 

exoskeleton similar to CAREX [22]). 

A picture of the fabricated robot is shown in Figure 2-6.  As can be seen from the photograph, 

beside the 12 edges of the cubic frame, there are 10 other members (two on each side face, 

one at the top face, and one at the bottom face of the cube) on which the winches can be set 

up. Since these members can move on the face that they have been installed on, the winches 
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can be positioned anywhere on the six faces of the cube, depending on the optimal locations 

found for them for the specified task. 

 

 

 

 

The winches, as can be seen in Figure 2-7, consist of an electromotor rotating a spool for 

pulling or releasing the cable. The cable passes around a small pulley so that its speed and 

force can be measured via an external encoder and load cell attached to the pulley. Hereby 

one can measure these variables more accurately compared to the ones obtained from the 

motor sensors which are subject to the errors of cables slippage and changes in effective 

spool diameter (due to winding of cable around it). After passing through a guide, which can 

freely rotate, the cable with a fitting is connected to the end-effector. The type of the fitting is 

varied according to the application. 

The motors are driven by SERVOSTAR-CD drivers and the drivers are controlled from 

Labview® environment through PXI cards. The drivers can be set in different operation 

modes including torque mode, position mode and velocity mode.  

 

Figure 2-5. Schematic of the proposed robotic system 
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For the scope of this thesis, the studies on dynamics, workspace analysis, and control of the 

proposed robotic system are performed on an anthropomorphic arm mechanism with four 

DoF (three for shoulder and one for flexion/extension of the elbow), as shown in Figure 2-8. 

The spherical joint connects the arm to a beam which has been fixed to the frame using bolts. 

The locations of the winches on the frame are selected according to the application and the 

required task. The placement and calibration of the winches and also details of the arm 

mechanism can be found in Ghasemalizadeh’s thesis [29]. 

Figure 2-6. The fabricated robot 
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Figure 2-8. The mechanical arm mechanism used for analyses and experiments [29] 

Figure 2-7. Winches 

Motor 
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External Encoder 

 Load Cell 
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2.4 Summary 

In this chapter the concept and design of the proposed system was presented and discussed. 

The concept of using cable robots for therapy has been proposed as a solution for the major 

drawbacks of the two groups of therapy robots, i.e. end-effector based robots and 

exoskeletons. The system was designed and fabricated in standard form of the cable-driven 

mechanisms and an anthropomorphic arm mechanism was used to simulate the patient’s 

upper limb for the analysis and control design which will be presented in the next three 

chapters. 
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Chapter 3   Tensionability of Multibody Cable-

Driven Mechanisms 

 

The main challenge in cable-driven manipulators is ensuring their ability to develop tensile 

forces in all cables to maintain equilibrium against any arbitrary external load. For this aim, 

the number and configuration of the cables have to satisfy specific conditions.  This area is 

well-investigated for rigid bodies, but very little studied for multibodies. Since in the present 

application the object driven by the cables (i.e. the human limb) is a multibody, in this 

chapter these conditions are studied and theorized for the multibodies. 

 

3.1 Introduction and Literature Review 

“Tensionability” of a cable-driven mechanism is defined as the ability of the mechanism to 

resist against an arbitrary external load with positive cable tensions. In the literature of 

cable-driven mechanisms, tensionability and terms such as “wrench closure” and “force 

closure” are equivalent. From the fact that tensionability has been defined for an arbitrary 

external load, it can be concluded that this property does not depend on the dynamics of the 

system and only depends on the kinematics and geometrical aspects of the mechanism. 

It has been proven that for a rigid body cable-driven manipulator, i.e. a single moving 

platform suspended and driven by several cables, one redundant cable can guarantee the 

tensionability of the system [27]. The idea of the proof comes from Nguyen’s works on 

grasping robots [30,31] which in turn is based on the mathematical concept of “vector 

closure” in convex cones theory [32]. However, in a multibody driven by cables, although the 

necessity of one redundant cable is almost obvious, there is no solid result reported in the 

literature for the sufficient number of the redundant cables guaranteeing tensionability. 

Knowing the minimum necessary and sufficient number of cables is important both for 

lowering the cost, and reducing the risk of cable interference.  

The first endeavors to address the tensionability problem for multibodies returns to the 

research performed for controllability of tendon-driven manipulators, i.e. the multibodies 
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whose joints were driven by cables [33]. The conditions derived in this work for the total 

number of cables and possible distributions have been a good basis for future studies. 

However this study is merely a special case of the general problem, limited to a serial 

multibody having only revolute joints with one link fixed to the ground and a particular 

arrangement of the cables on the links. Hence for addressing the general case of driving a 

multibody using cables, a more sophisticated approach is required. In a work by Kino et al. 

[34], the general case is tackled. However, their method which is based on transferring the 

effects of the cables of one link to the next one using a single force is incomplete and does not 

provide all the conditions affecting the tensionability of the system. As a result of this 

assumption, they concluded that for tensionability, each link of the multibody requires at 

least one cable, which (as will be shown and exemplified later in this chapter) is not 

necessary. 

In a very recently published research [35] Mustafa and Agrawal used screw theory to 

formulate the tensionability of multibodies and through that they proved that for the 

conditions considered, the multibody will be tensionable with at least one redundant cable. 

However they did not address the problem of how to distribute these cables among the links 

of the multibody. 

In this chapter, first the tensionability conditions of rigid bodies and two-link multibodies 

are completed by considering cable-wrench condition. Then the theory is extended to 

investigating the tensionability of three-link serial multibodies which are much more 

complicated due to possible dependencies among the constraints of the middle link. For all 

cases, the minimum number of cables and the corresponding conditions that are required to 

build a tensionable multibody cable-driven mechanism is determined through rigorous 

proofs.     

As reviewed by Gouttefarde [36], there are three approaches proposed for tensionability 

analysis of rigid body cable-driven mechanisms: 1) Null space characterization, 2) 

separating/supporting planes, and 3) convex hull analysis. Although all of these approaches 

have been proved to be equivalent for a cable-driven rigid body [36] (and it is 

straightforward to extend this argument to serial multibodies), for deriving the conditions of 

tensionability of multibodies in this chapter, the first approach (i.e. null space 

characterization) is adopted. This is due to the closer relation between this characterization 

and the geometrical aspects of the system, together with simpler formulation of the 

constraints in this approach. 
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3.2 Tensionability of A Rigid Body Cable-Driven Mechanism 

Figure 3-1 depicts a schematic of a rigid body driven by cables. Each cable is pulled by a 

motorized winch which is considered fixed to the ground in the present study.  

One can write the equilibrium equations of this rigid body as: 

bAτ =                                                                          (3.1) 

where: 
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is called structure matrix, ui is the unit vector in the direction of the ith cable pointing 

towards the corresponding winch, and ri is the corresponding moment arm. n is the 

dimension of the motion space (3 for planar and 6 for spatial motions) and m is the number 

of cables. τ is a column vector containing the tensions of the cables: 

[ ]Tmm ttt ...211 =×τ                                                            (3.3) 

where a positive ti indicates a tensile force in the cable. The right hand side of Eq. (3.1), b, is 

the summation of all external forces and moments including weight and inertial forces and 

moments. 
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 Figure 3-1.  Schematic of a cable-driven rigid body 
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In general, for maintaining equilibrium, we need to have m ≥ n [37]. With this condition 

satisfied, one can write the general solution of Eq. (3.1) as: 

AnbAτ κ+= +
                                                                 (3.4) 

Here A+ is the Moore-Penrose pseudo-inverse of matrix A. It is easy to perceive that if m=n 

and A is full-rank, the pseudo-inverse will become the normal matrix inverse. Also it is clear 

that if A is rank-deficient it will have no inverse and hence Eq. (3.4) has no solution, implying 

that the equilibrium is impossible. nA is an arbitrary unit vector in the kernel of this matrix, 

and κ is an arbitrary real number.  

The first term in the right hand side of Eq. (3.4) is fixed once the structure of the mechanism 

(i.e. A) and the external load (i.e. b) are determined. Therefore the resulting cable forces 

from A+b may be negative. However, the second term, κnA, may raise the cable tensions to 

positive values only if all components of nA (nA,i’s) are nonzero and of the same sign. In such 

a case, one can take κ sufficiently large such that all components of τ become positive [38]. 

Therefore the tensionability is guaranteed if and only if the following two conditions are 

satisfied: 

1. A is full-rank (rank or equilibrium condition), and 

2. There is a vector in the kernel of A with all components of the same sign (null space 

condition). 

Hence the problem is to design the winch locations and cable connection points such that the 

two above conditions are satisfied. For this, throughout this chapter, we assume that there is 

no geometrical limitation on the positions of the winches or connecting the cables.  

It can be shown that without geometrical limitations the null space condition can be 

simplified as: “There is a vector in the kernel of A without any zero components”. To prove, 

one should note that by reversing the direction of a cable at a specific position, its 

corresponding column in A will switch sign. Using this, one can reverse those cable 

directions whose corresponding components in n are negative. This can be shown in the 

following equations: 
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i.e. inversing the direction of the cable makes the corresponding null space component 

switch sign. 

As it was mentioned before, the minimum necessary number of cables for a tensionable 

cable-driven mechanism is n+1. It can be shown that n+1 is sufficient, too; meaning that if 

there are no constraints on the direction and position of the cables, a tensionable 

configuration can be obtained by n+1 cables. To show the sufficiency, let m = n+1. Assuming 

there is no constraints on the directions and positions of the cables, one can select the 

configuration of the first n cables to obtain n linearly independent cable wrenches which fill 

the first n columns of A. The n+1st column of A is sufficient to be a complete linear 

combination of the other n columns: 

0     , 
111

1 ≠








×
=









× ∑
=++

+
i

n

i ii

i

i

nn

n µµ
ur

u

ur

u
                                         (3.6) 

Then one can show that the kernel of A is spanned by: 
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where: 

[ ] 1... 21 nt µµµµ −−−=
 

and all components of nA are nonzero. Note that if any component of nA in Eq. (3.7) is 

negative, the direction of the corresponding cable can be reversed as discussed above to 

change that component to a positive one. This method has been discussed in [32] under the 

title of vector closure and later used in [27] to obtain the tensionability conditions of cable-

driven rigid bodies. However, an important point which seems to be overlooked in the above 

works is that the n+1st vector designed by Eq. (3.6) does not necessarily represent a cable 

wrench. For a cable wrench w, in spatial case, we have: 
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��� = � �� × ��                                                          (3.8) 

Since � ⊥ �� × ��, for w to be a cable wrench, it is required to have:                             ���	��	�	� ∙ ��
	��	��� = 0. Furthermore, the force part cannot be zero.  Any 6-D vector 

satisfying these two conditions can be realized by a cable. In planar case, since the moment is 
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reduced to a scalar, it is sufficient to have a nonzero force for a wrench to have an equivalent 

cable. 

Applying these conditions to the n+1st wrench of Eq. (3.6), we have: 

i.                                                ���� = ∑  !�!�!"� ≠ $ 

ii.                                              ����. ����� × ����� = $ 

The first condition is equivalent to: 

∑  !�!�&� ≠ 0�!"� 			' = 1, or	2, or	3                                               (3.9) 

where ui 
(j) is the jth component of ui. For this condition to be satisfied, Eq. (3.9) states that 

μi’s can be anywhere in ℝ� except on the intersection of the three hyperplanes expressed in 

Eq. (3.9). This still leaves infinite possible selections for μi’s that satisfy condition (i). 

For the planar case, condition (ii) is automatically satisfied. This is because the moment part 

of the wrench is a scalar and already perpendicular to the plane of motion. In spatial 

systems, there are countless examples of tensionable spatial rigid bodies driven by seven 

cables which show that seven cables are indeed sufficient. However, the authors could not 

find a rigorous mathematical proof (such as what stated above) for this in the literature. 

To summarize, for a rigid body driven by cables to be tensionable, it is necessary and 

sufficient to have n+1 cables. In other words, using one redundant cable: 1) A can be built to 

be full-rank, and 2) the null space can be formed to be spanned by a positive vector (i.e. all  of 

its components are positive). 

 

3.3 Tensionability of Two-Link Multibodies 

In this section the procedure of obtaining tensionability conditions for a rigid body is 

extended to a two-link multibody. For this purpose, similar to the rigid body case, it will be 

shown that satisfying the same conditions (i.e. rank condition and null-space condition) 

ensures the tensionability for a two-link mechanism. Then the procedure to obtain a 

tensionable configuration is also presented.  

We consider the following assumptions on the multibody cable-driven mechanisms:  

1. The multibody has a serial kinematics and the constraints are holonomic;  

2. Each cable is attached from one end to a link and pulled from the other end by a 

stationary winch;  
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3. There is no geometrical constraint on the directions and locations of the cables. 

3.3.1 Formulation of the Equilibrium for a Two-Link Multibody 

Figure 3-2 depicts a schematic of a two-link multibody in an n-dimensional motion space 

(n=3 for planar and n=6 for spatial motion). The kinematic joint between the two links has 

n–k12 DoF.  

Similar to a single link cable-driven mechanism, the free body diagram is considered for each 

link and the joint constraint is represented by k12 independent wrenches. Therefore, the 

equilibrium equations of link l can be written as: 

[ ] 2,1, == lllll bτCA                                                      (3.10) 

 

 

 

Figure 3-2.  Schematic of a two-link cable-driven multibody 
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1. Throughout this chapter, superscripts are always used to show indexes and never represent power. 
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τl contains the forces of the cables and constraint wrenches: 
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where ti
l’s are the cable forces (positive for tensile) and /�, … , /123  are such that 45�/� 	…		/123�6 gives the constraint wrenches on the lth link. C1 = –C2 due to the Newton’s 

third law of motion. Also note that C1 and C2 consist of k12 (< n) linearly independent 

columns. 

By combining the two equations of Eq. (3.10) corresponding to the two links of the 

multibody, one can obtain: 

ttt bτA =                                                               (3.13) 

in which: 
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and: 
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and C = C1 = –C2.  

The solution of Eq. (3.13) is similar to Eq. (3.1). Thus for tensionability, one must satisfy the 

similar two conditions;  

1. At should be full-rank (rank condition), and 

2. There should be a vector in the kernel of At in which all of the components 

corresponding to the cables are nonzero (null-space condition). 

The given formulation and conditions for tensionability are general and can be extended to 

any number of links. However, they do not indicate the minimum sufficient number of 

cables. In the following sections, we investigate these conditions in planar mechanisms to 

determine the necessary and sufficient number of cables for tensionability. This will be done 
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by looking at the two abovementioned conditions (rank and null space conditions) 

separately. 

3.3.2 Rank of the Structure Matrix for a Planar Two-Link Multibody 

In this section we show that the minimum necessary number of cables is also sufficient, if 

used properly, to ensure the rank condition for any two-link planar1 mechanism.  

As mentioned before, in planar systems, an arbitrary wrench is a cable wrench if and only if 

its force component is not zero, i.e. a cable wrench cannot be a pure moment. Considering 

such wrenches as column vectors (as in our formulations) the first and second components 

should not be simultaneously zero. Therefore, as long as any moment arm is geometrically 

feasible and the above condition is satisfied, one can always design a cable for any arbitrary 

wrench.  

In order for At in Eq. (3.13) to be full-rank, it is required that: 

nkmm 2
1221

≥++                                                                 (3.17) 

which states that the total number of wrenches (cables and constraints) restraining the 

multibody should be at least equal to the total dimension of the motion space. Therefore, on 

the total number of cables, we should have: 

1221
2 knmm −≥+                                                                  (3.18) 

The same statement can be made for each link. Thus: 

2,1,
12
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                                                           (3.19) 

In other words, each link needs at least n–k12 cables that along with the constraint wrenches 

form a full-rank wrench set (otherwise equilibrium of that link becomes impossible). These 

cables are called base cables of that link. However, if we only assign base cables to the links, 

it is easily seen that the condition on the total number of cables (Eq. (3.18)) will not be 

satisfied. Therefore, there should be more cables on each link. These cables form second sets 

of cables which are called extra cables. From Eq. (3.18) the total number of these cables is 

equal or more than k12 for each link. 

                                                                    
1. Although for planar motion n = 3, throughout this chapter the general case is addressed to provide a 

framework for extension to higher dimensions. In fact, the only condition that limits the analysis to the planar case 

is cable-wrench condition which, as mentioned before, has not been considered in the previous studies of cable 

robots. 
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Eq. (3.19) can also be obtained using the form of At, expressed in Eq. (3.14). From the 

properties of rank of partitioned matrices, if rank{At}=2n,  then each of the two sets of rows 

in At must be of rank n. i.e. rank{[A1 C]} = rank{[–C A2]} = n. This requires Eq. (3.19) to be 

satisfied; otherwise, the number of independent columns in [A1 C] and [–C A2] will be less 

than n. Consequently, if rl is the number of extra cables on the lth link, then: 

0)( 12 ≥−−= knmr ll
                                                           (3.20) 

One can notice that r1 and r2 are also the dimensions of the null spaces pertaining to [A1 C] 

and [–C A2], respectively.  

Next, we need to show that as long as the conditions on the number of cables set out in Eq. 

(3.18) and Eq. (3.19) are satisfied, the base and extra cables can be designed to give a full-

rank At.  

The existence of n – k12 base cables for each link is almost obvious. For this purpose, one 

needs to form a basis using the k12 (predefined) constraint wrenches along with n – k12 

arbitrary wrenches as long as they are all linearly independent. Now if any of the wrenches 

does not satisfy the cable wrench condition (i.e. its force components are both zero), then it 

is sufficient to add arbitrary force components to that wrench. This will change that wrench 

to a cable wrench without violating the independency of the wrenches. 

In order to find out how many extra cables are required and how they should be selected, we 

need to further investigate the structure matrix At. Note that At is full-rank if and only if the 

only possible nA for equation: 

0nA A =t
                                                                (3.21) 

is nA= 0. By breaking the 2n equations of Eq. (3.21) into two sets of n equations we will have: 
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[ ]
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n0CA
                                                     (3.22) 

Since k12 < n, and because columns of C are assumed to be linearly independent, one can 

attach n–k12 base cables to each link, with corresponding columns 7��, … , 7�8123�  in A1 and 7��, … , 7�8123�  in A2, such that, [A1 C] is spanned by: 

]...[
11

11 12
Cvv∆ kn−=                                                       (3.23) 

and [–C A2] by: 
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]...[
22

12 12kn−= vvC∆                                                       (3.24) 

In other words Δ1 and Δ2 provide basis for wrench space of each link. These bases can be 

used to expand the wrenches of the extra cables. Hence, for the lth link, the extra cable wi 

(i=1, 2,…, rl) can be expressed as: 
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in which (βi 
j)l represents the projection of the ith extra cable wrench of the lth link on the jth 

constraint wrench (if  j ≤ k12), or on the ( j – k12)th base cable wrench (if  j > k12). 

An extra cable wrench is not feasible if its force component is zero. This happens only if the 

following two conditions hold true simultaneously: 
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where C(p) and [vj
l](p) represent the pth row of the corresponding  matrices.  One can see that 

in the space of   (βi 
j)l’s, each of Eqs. (3.26) and (3.27) defines a plane that passes through the 

origin. The normal vectors corresponding to these planes for link l are defined by the first 

and second rows of the bases, i.e. Δl
(1) and Δl

(1). These planes cannot be identical; otherwise 

two rows of matrix Δl will be identical and thus Δl will not be a basis. Hence the intersection 

of these two planes is a line that passes through the origin in the 3-D wrench space of planar 

systems (n = 3). The points on this line (except the origin) represent unfeasible cable 

wrenches (zero force but nonzero moment). As a result, each point on this line corresponds 

to a set of β’s that results in an unfeasible cable wrench. Let us represent the direction of 

these two lines by unit vector p1 and p2 for links 1 and 2, respectively. As a result, any 

arbitrary wrench for link l can be implemented by a cable through a unique set of β’s in Eq. 

(3.25) as long as it is not a multiple of 95  . 
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Let us arrange the columns of A1 and A2 as: 

             :5 = ;7�5 … 7�81235 ��5 … �<=5 >                                         (3.28)
 
 

where the base cables are followed by the extra ones. Using Eq. (3.25), one can verify that 

the kernel of [Al C] is swept by linear combinations of the columns of the following matrix: 
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Next, let us divide the components of nA (in Eq. (3.22)) into three parts, corresponding to A1, 

C, and A2, respectively:  
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It results from Eq. (3.22) that: 
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The first equation indicates that 
TTT

][ 1 Cnn  belongs to the null space of [A1 C] and thus can 

be expanded in terms of the columns of E1 in Eq. (3.29): 
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Similarly for l = 2 in Eq. (3.29): 
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∃@2 ∈ ℝB+D2
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Since nC is common between Eqs. (3.32) and (3.33), by using the corresponding parts in E1 

and E2 one can write: 
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Or: 
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                          (3.35) 

Matrix D, as defined in Eq. (3.35), is named First Dependency Matrix. As can be seen from Eqs. 

(3.35) and (3.25), the columns of D are the projections of the extra cable wrenches on the 

constraints. Hence this matrix depends on the constraints and extra cables, but not on the 

base cables. 

Theorem 3.1. In a two-link multibody, At is full-rank if and only if each link has a set of base 

cables and the first dependency matrix, D, is full-rank. 

Proof. If D is full-rank, then from Eq. (3.35), x1= 0 and x2= 0. Now, in Eqs. (3.32) and (3.33), 

independent from E1 and E2 which are found from the base cables, we will have nC = 0, n1 = 0, 

and n2 = 0. This implies that At does not have any nonzero vector in its null space or in other 

words, it is full-rank. 

To prove the other side of the theorem, assume At is full-rank. If D is not full-rank then there 

is some solution x ≠ 0 for Eq. (3.35). Thus, either x1 ≠ 0 or x2 ≠ 0. Without loss of generality, 

let us assume x1 ≠ 0 which results E1x1 ≠ 0 since the columns of E1 are linearly independent. 

Consequently and according to Eq. (3.32), n1≠ 0 and therefore At has a nonzero vector in its 

null space which indicates it is not full-rank.▲ 

Theorem 3.1 shows how the base and extra cables determine the rank of At through the first 

dependency matrix D. The compact form of D can now be used to show that the minimum 

necessary number of cables is also sufficient to satisfy the rank condition, too.  

Theorem 3.2. The structure matrix of a 2-link mechanism can be made full-rank if and only 

if the number of cables satisfies the conditions of Eqs. (3.18) and (3.19). 
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Proof. The necessity of these conditions is already shown. For the sufficiency, first note that 

Eq. (3.19) ensures that the base cables exist for each link. Now we show that D can be 

formed by the design of extra cables to be full-rank and then apply Theorem 3.1. For this 

purpose, one needs to notice that in fact any desired D can be obtained by the design of the 

extra cables (their directions and connection points on the links). This is due to the fact that 

the columns of D are projections of the extra cable wrenches onto the constraints.  

For the design of D and the associated extra cables, one can start with an arbitrary full-rank 

D. For each column of D, an associated extra cable will be shown to exist. To determine an 

extra cable, one needs to find E!�	to	E!� according to Eq. (3.25). Note that E!�	to	E!123  are 

already determined by the columns of D. The remaining coefficients of the ith extra cable (i.e. E!123��	to	E!� ) are determined by their projections on the base cables (remember that there 

is at least one base cable on each link in a 2-link mechanism). Now let us take arbitrary 

values for E!123��	to	E!�8�. The last coefficient, E!�, needs to be selected such that the resulting 

extra cable be a feasible cable wrench. However, it is easy to show that there is at most one 

value for E!� which satisfie both Eqs. (3.26) and (3.27). For this purpose, note that at least 

one of the parameters �7�81235 ���� or �7�81235 ���� in Eqs. (3.26) and (3.27) is nonzero; 

otherwise 7�81235  is not a cable wrench. Thus, for the nonzero component of 7�81235 , there is a 

unique solution for E!� in the corresponding equation. As a result, there cannot be more than 

one solution for E!� to satisfy both Eqs. (3.26) and (3.27). Any other value for E!� results in a 

feasible cable wrench and consequently D and the structure matrix will be full-rank. ▲  

To summarize, with the cable numbers obtained from Eqs. (3.18) and (3.19) and provided 

that there is no geometrical limitation on the cable directions and locations, for any 

configuration of the multibody, one can always find a configuration of the cables that results 

in a full-rank At. This implies that the equilibrium of the system can be obtained under 

arbitrary external loading only if the cables could push as well as pull. However, we know 

that the cables cannot push and therefore redundant cables are necessary. In the next step, 

we show under what conditions one redundant cable can make the system tensionable. This 

requires us to show that the null space condition can also be satisfied with a number and 

distribution of cables that comply with Eqs. (3.18) and (3.19). 

3.3.3 Null Space Condition for a Two-Link Multibody 

For the null space condition to be satisfied, it was shown to be necessary that the number of 

cables be at least one more than the DoF: 
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12 1221 +−≥+ knmm                                                         (3.36) 

and similarly, in each link, since there must be at least one cable attached, it is necessary to 

have: 

2,1,112 =+−≥ jknm j
                                                    (3.37) 

Now, we consider the minimum necessary cables, which is nDoF+1, or r1+r2 = k12+1 for the 

whole mechanism and show this number is sufficient to satisfy the null space condition.  

Theorem 3.3. In an arbitrary two-link mechanism, a tensionable configuration with 

minimum necessary cables is obtained if and only if m1+m2 = 2n–k12+1, m1 ≥ n–k12+1, and m2 

≥ n–k12+1. 

Proof. The theorem simply states that with the minimum necessary number of cables, there 

is at least one configuration of cables that satisfies both rank and null space conditions. 

Remember that when the null space is one dimensional, the null space condition requires the 

components of the null space spanning vector that correspond to the cables be all nonzero. 

Note that other components of the null space vector that correspond to the constraint 

wrenches can have any value. Using our notation in the previous section, this is equivalent to 

ensure that n1 and n2 of Eq. (3.30) are strictly nonzero (i.e. do not have any zero 

components).  

For this purpose, let us partition n1 and n2 as: 
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where G5H   and n″l correspond to the base and extra cables, respectively. We will show how 

the cables can be configured to have G5H  and n″l strictly nonzero.  

First, consider n″1 and n″2. It results from Eqs. (3.32) and (3.33) that:  

2 ,1        ==−=′′ llll xIxn                                                            (3.39) 

This is because the middle set of rows in E1 and E2 are in the form of identity matrices.  

As a result of Eq. (3.39), x must be strictly nonzero to have n″1 and n″2 strictly nonzero. This 

can be ensured by the design of D, remembering that x belongs to the null space of D (in Eq. 

(3.35)). Knowing that all columns of D (i.e. (βi
j)l’s) can be arbitrarily chosen by appropriate 

selection of the corresponding cable wrenches, we follow an approach similar to the rigid 
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body case presented in Eq. (3.7). The first k12 columns of D are built to be linearly 

independent. This ensures that D is full-rank which in turn according to Theorem 3.1 

guarantees that At is full-rank, and thus the equilibrium condition is satisfied. The last 

column in D (column k12+1) is set as a nonzero linear combination of all other k12 columns. 

Similar to Eq. (3.7), this ensures that, there is a strictly nonzero solution x for Eq. (3.35). 

Consequently, n″l will have nonzero components.  

The remaining part is to ensure that G�H  and G�H  are strictly nonzero. According to Eqs. (3.32), 

(3.33), and (3.38), we have: 
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                            (3.40) 

where Gl is the first set of rows in El and corresponds to the projections of extra cables on the 

base cables. Remember that xl is determined and known from the first part of the proof. It 

remains to select the elements of Gl such that there is no zero in G5H  as well as ensuring that 

the resulting extra cable wrenches are feasible.  

To obtain such Gl’s, first it should be pointed out that according to Eq. (3.37), there is at least 

one extra cable on each link. Therefore, G1 and G2 will have at least one column. A procedure 

is suggested here for constructing the columns of Gl’s. For this purpose, all columns but the 

last one are designed using the results of Theorem 3.2 and the last column is then found 

separately. Note that when D and Gl’s are found, the extra cables can be determined using Eq. 

(3.25). 

The first rl–1 columns of Gl are found such that the corresponding extra cable wrenches will 

be feasible. In the proof of Theorem 3.2, it was shown that this is always possible. By this 

fact, any arbitrary selection for E!123��	to	E!�8� (the ith column of Gl) results in at most one 

value for E!� that satisfies both Eqs. (3.26) and (3.27) and hence should be avoided.  

Next, for the last column and to have the desired G5H , one needs to notice that having set 

columns 1 to (rl – 1), the jth component of G5H  becomes zero according to Eq. (3.40) only if : 

�E<=123�I�5 = − ∑ �KLM23NO�=P=LQ=R2LS2 P=Q=                                                (3.41) 

where T5!  is the ith component of xl. 
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From Eq. (3.41), it can be perceived that for each component of the last column of Gl there is 

a single value that must be avoided. Obviously, for the last component of the last column, E<=� , 

there is a second value to be avoided found from the cable wrench feasibility condition 

applied to this column (as applied to all other columns before). However, there are still 

infinite selections for the components of the last columns. This completes the proof.▲ 

From the above proof, one can summarize the steps towards finding a tensionable 

configuration for a two-link multibody in a given state as follows: 

1. Select the base cables, i.e. n–k12 cables for each link such that they form a full-rank 

wrench set along with the constraint wrenches.  

2. Select matrix D, to be full-rank and have a one-dimensional null space spanned by a 

strictly nonzero vector. 

3. Pick a possible distribution of cables according to Eqs. (3.36) and (3.37). 

4. Obtain x from Eq. (3.35) and partition it into x1 and x2. 

5. Select G1 and G2 according to the method explained in the proof of Theorem 3.3 

using Eqs. (3.26), (3.27), and (3.41). 

6. Obtain the extra cable wrenches from Eq. (3.25). 

The following examples elaborate on the above steps. 

3.3.4 Example of a Two-Link Mechanism 

Example 3.1. Take n=3 (planar motion) and k12=2. A realization of such mechanism is a two-

link with a revolute joint. Let us consider a Cartesian coordinate frame and take constraint 

matrix C as: 
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which represents a revolute joint (1 DoF, two constraint forces, no constraint moment). 

Step 1: The base cables can be taken as: 
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which along with the constraint wrenches form a full-rank wrench set on each link. 

Obviously they satisfy cable wrench condition. 

Step 2: Since D is 32× , we take it as: 
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in which the first two columns are linearly independent and the last one is a nonzero 

combination of the first two. 

Steps 3 and 4: From Eq. (3.35), one obtains: 
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in which, there is no zero component due to the way D was constructed. 

We know that the minimum number of the extra cables is found from:  

311221 =+=+ krr  

Let us take r1 = 1 and r2 = 2. (Since rl ≥1, the only other distribution is r1 = 2 and r2 = 1). Then: 
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Step 5: Considering the size of G1 and G2, they can generally be considered as: 

[ ]32211 , βββ == GG
 

Then, according to Eq. (3.25), the extra cables can be written as: 
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Therefore, the two hyperplanes of Eqs. (3.26) and (3.27) for the first extra cable will be 

β1+1=0 and 0=0. Thus for satisfying the cable wrench condition for this extra cable, the only 

situation that a wrench cannot be a cable occurs when E� = −1. For the second and third 

extra cables, because their second components are always nonzero, the intersection of the 

two hyperplanes is empty and all points of the space satisfy the wrench condition. 

For having no zero component in G′�, since there is only one column pertaining to link 1: 

V�@W = −EW ≠ 0 

And for G′�, according to Eq. (3.41): 

EX ≠ −�EY��−1��−1� = −EY 

Having these conditions, we take: 

[ ]01,2 21 −=−= GG  

by which Eq. (3.41) (the hyperplane) is not satisfied and therefore is an acceptable selection. 

Step 6: Now by using Eq. (3.25) the wrench of the extra cables can be obtained: 
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And, At is obtained as: 
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which is full-rank and its null space is spanned by: 

[ ]T
1110112 −=An  

The only zero element in nA corresponds to a constraint wrench and does not violate 

tensionability. The negative element also corresponds to the other constraint and is not 

important in tensionability. However, as explained before, if there was a negative component 

pertaining to a cable, one could still switch the sign by reversing the cable direction (the 

associated winch was to be relocated). This verifies that for this example a tensionable 

configuration has been found. Figure 3-3 shows a schematic of the obtained arrangement. □ 

 

 

 
Figure 3-3.  A schematic of a the cable arrangement obtained from Example 3.1 

 

 

3.4 Tensionability of Three-Link Multibodies 

Similar to two-link systems, it is assumed that the mechanism has a serial kinematics with 

holonomic constraints. Cables are attached from one end to one of the links and pulled from 

the other end by a stationary winch. Furthermore, there is no limitation on the directions 

and locations of the cables. 
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3.4.1 Formulation of the Equilibrium 

Figure 3-4 depicts a typical three-link multibody driven by cables.  

The equilibrium equations of the system can be written in the same format as in Eq. (3.13). 

However, for this case At has the following form: 
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323
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3232121 mkmkmn

t

++++×
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


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−=

AC000

0CAC0

000CA

A                  (3.42) 

where �:I��×ZO , similar to the previous case, contains the cable wrenches on the jth link and 

Cij represents the constraints between links i and j. Also, kij is the number of constraint 

wrenches due to the joint between links i and j.  Using the same logic as in the two previous 

cases, we convert the tensionability problem to satisfaction of rank condition and null space 

condition. The following sections detail the procedure for satisfying these conditions. 

 

 

Figure 3-4.  Schematic of a three-link cable-driven serial multibody 

 

3.4.2 Rank of the Structure Matrix 

For having rank{At}=3n, we need the number of its columns to be at least equal to the 

number of the rows. Assuming this, the total number of the cables will be: 

2312321 3 kknmmm −−=++                                                    (3.43) 
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For obtaining the dependency matrix, similar to the two-link case, the concept of base cables 

and extra cables are applied. The numbers of base cables for the first and third links are 

obviously n–k12 and n–k23, respectively. However, the number of base cables for the middle 

link is not as clear. Let us consider the equilibrium of the middle link: 

[ ] 223212 bτ0CAC0 =− t                                                  (3.44) 

or: 

[ ] 2222 bτCA =                                                                (3.45) 

where C2 = [–C12 C23] and τ2 and b2 contain the components of cable forces and external 

loads applied on the middle link. Although each of matrices C12 and C23 consists of linearly 

independent columns, when combined in C2, there may exist linear dependency among the 

columns. Note that this is only true when the equilibrium equations of the middle link are 

considered (the other two links have only one set of constraints). Also note that even if C2 

has dependent columns, the total constraint wrenches, i.e.:  
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are still linearly independent due to the assumption and thus there is no redundancy in the 

columns of At pertaining to the constraints. 

Let rank{C2}= k12+ k23–s2 ≤ n where, 0 ≤ s2 ≤ min{k12, k23} < n; s2 represents the degree of 

redundancy when C12 and C23 are combined. As a result, the number of base cables on the 

middle link will be n – k12– k23+s2 which can be zero (but not negative, since rank{C2} ≤ n). 

Therefore in this case the total number of extra cables will be: 

22312

223122312321321
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skk
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                (3.46) 

Similar to Eq. (3.22), we can break the 3n equilibrium equations of the whole mechanism 

down to three sets of n equations: 
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Also, the null space vector, nA , can be partitioned as: 
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One can perceive that since the first and third links have the same conditions as the links of a 

two-link multibody (being connected to only one other link), E1 and E3 will be similar to the 

two-link case given by Eq. (3.29) (El is a matrix whose columns form a base for the null space 

of [Al  Cl]) : 
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where kl is the total number of constraints on link l,  

l

ik

jijl )()( 12 += βG ,     i = 1,…,n – kl,   j = 1,…,rl 

which in general contains the projections of the extra cables on the base cable wrenches, 

and, 

l

i

jijl )()( β=R ,    i = 1,…, kl,   j = 1,…,rl 

includes the projections of the extra cables on the constraint wrenches. 

For detailed definitions of βj
i refer to Eq. (3.25). 

For E2, first remember that E2 is different from E1 and E3 in that its columns do not totally 

come from the extra cables. Instead, due to the possible redundancy among the constraint 

wrenches in C2 (as discussed before, this redundancy is of order s2) there will be s2 columns 

in E2, originating from the constraints, C12 and C23. To simplify the formulation, assume that 

the s2 dependent constraint wrenches of C2 merely belong to C12. For this aim, it is sufficient 

to take C12 and C23 such that the columns (constraint wrenches) of each matrix are 

orthogonal and all of the k12 – s2 + k23 remaining linearly independent vectors are orthogonal 

as well.  Noting that s2 ≤ k12, it is straightforward to show that the kernel of the middle link is 

swept by the columns of a matrix of the following form: 
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As can be seen in Eq. (3.50), E2 is partitioned into two sets of s2 and r2 columns. The left s2 

columns correspond to the dimensions of the null space coming from the linear dependency 

among the constraints, and the right ones correspond to the dimensions resulted from 

adding the extra cables. Similarly, the rows of E2 are partitioned into five sets corresponding 

to k12–s2 independent constraints between links 1 and 2, s2 dependent constraints (between 

links 1 and 2), the base cables, the extra cables, and the constraints between links 2 and 3, 

respectively. Thereby, H2 will be the projection of s2 dependent constraint wrenches coming 

from C12 on the k23 constraint wrenches of the C23.  F2, G2, and R2 are the projections of the 

extra cable wrenches on the k12–s2 independent constraint wrenches between links 1 and 2, 

on the base cable wrenches, and on the wrenches of the constraints between links 2 and 3, 

respectively. I represents the identity matrix. 

Now, similar to Eqs. (3.32) and (3.33): 
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Next, by enforcing the third Newton’s law on the constraints working between the two links, 

Eqs. (3.49) and (3.50) result: 
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Rewriting these equations in matrix form, the first dependency matrix is obtained: 
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Theorem 3.4. In a three-link multibody, At is full-rank if and only if each link has a set of 

base cables and the first dependency matrix, D, is full-rank. 

Proof. The proof is almost identical to Theorem 3.1 and hence is not repeated.▲ 

Now, to further simplify the dependency matrix, we introduce another matrix named Second 

Dependency Matrix which has a similar property; i.e. it is full-rank if and only if the first 

dependency matrix is full-rank or equivalently At is full-rank. To obtain this equivalent 

matrix, first we partition R1 as: 
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 Then, by a corresponding change of variables: 
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From Eq. (3.53) one can derive:  
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12 yRxRz ==                                                           (3.56) 

Now, using Eqs. (3.55) and (3.56), and substituting them in Eq. (3.53), one can obtain: 
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[′ is the second dependency matrix. 

Theorem 3.5. The second dependency matrix, [′, is full-rank, if and only if the dependency 

matrix, D, is full-rank. 

Proof. It is easily resulted from Eqs. (3.53) to (3.57).▲ 
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As a result of Theorem 3.5, if the cables are designed such that each link has the minimum 

required base cables and [′ is full-rank, then At will be full-rank, too. 

Looking back at Eq. (3.57), one can see that:  

1) The only matrix which is set by the inherent characteristics of the multibody is H2. 

The elements of all other matrices in [′ are determined by design of the cable 

wrenches. 

2) [′ becomes structurally rank-deficient1 if one of the following happens: 

233 kr >                                                                    (3.58) 

121 kr >                                                                   (3.59) 

If the condition of Eq. (3.58) is satisfied, then �\	�13]×<]  will have more columns than rows 

and hence [′ will have redundant columns. If Eq. (3.59) is not satisfied, one can see from D 

in Eq. (3.53) that �\W�123×<2  will have more columns than rows and therefore D will have 

redundant columns. In both cases, according to Theorems 3.4 and 3.5, At will not be full-

rank.  

In order to show how the rank condition on At can be satisfied by the minimum necessary 

cables, the following two Lemmas are required. 

 Lemma 3.1. A matrix of the form:  
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can be made full-rank by appropriate selection of M1 and M2, provided that rank{Q} ≥ t–p 

and the matrix is not structurally rank-deficient. 

Proof. It is easy to see that the matrix is structurally rank-deficient if and only if p > t. 

Therefore and due to the assumption of the Lemma we must have p ≤ t which will be used 

later in the proof. Let us assume that the matrix is rank deficient, i.e. for some vectors f1 and 

f2: 
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1. By “structurally rank-deficient” we mean the structure of matrix is such that by any choice of its entries it 

remains rank-deficient. 
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which implies: 

0fM =11  

Suppose that the kernel of M1 is swept by the linearly independent columns of some matrix 

N. Then, there will be vector d such that: 

1)()(1 ×−−×= ptptt dNf                                                          (3.61) 

Thereby, Eq. (3.60) is simplified to: 
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Since M2 is arbitrary and the number of its columns is less than or equal to the number of its 

rows (p ≤ t), it can be designed to have independent columns. Now it is sufficient to design N 

such that QN provides (t–p) linearly independent columns. If this can be done, then the only 

solution of Eq. (3.62) is a zero vector and the proof will be complete. 

By assumption, rank{Q} ≥ t–p, and since N is arbitrary (because M1 is arbitrary) with t–p 

columns, N can always be chosen such that rank{QN}= t–p. ▲ 

Lemma 3.2. Columns of H2 as defined in Eq. (3.50) are linearly independent. 

Proof. Let C1
s be the s2 redundant columns of C12 in the wrench set of [ ]2312

CC , as explained 

before. Then, from Eqs. (3.50) and (3.51), and by the definition of H2 (see Eq. (3.50)) we 

have: 

s

12

23
CHC =                                                               (3.63) 

If columns of H2 are not linearly independent, there is some vector g such that H2g = 0. Then 

from Eq. (3.63), C1
sg = 0. This is contradictory, since the columns of C12 are assumed to be 

linearly independent. Thus columns of H2 are linearly independent as well.▲ 

Theorem 3.6. In a three-link multibody, if each link has the minimum required number of 

base cables and the number of the extra cables satisfy the distribution conditions which are: 
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then there is a configuration of the cables that makes [′ full-rank and consequently D, and At 

will be full-rank as well. 

Proof. Using Lemmas 3.1 and 3.2, one can easily conclude that R1
1, R1

2, and R3 can be selected 

such that the matrix: 










3

2

12

1

1

RRH

0R  

has linearly independent columns. Note that since G1 and G3 are nonempty (since there is at 

least one extra cables for links 1 and 3) the wrench condition can be satisfied by these 

matrices, and thereby R1
1, R1

2, and R3 remain arbitrary. 

Next, if G2 is nonempty, similarly the elements of the matrix 









2

2

R

F  are entirely arbitrary and 

they can be chosen such that the whole matrix D′  becomes full-rank. Consequently D and At 

are full-rank as well. 

If G2 is empty (i.e. there is no extra cable on link 2), F2 and R2 must be selected such that the 

wrench condition for link 2 is met. For this aim, the elements of these matrices are not 

entirely arbitrary and for each column (i.e. each extra cable of link 2) the wrench must not be 

on the intersection of two hyperplanes similar to Eqs. (3.26) and (3.27). ▲ 

As a summary, it was proved for a three-link serial multibody with total number of cables 

equal to the number of degrees of freedom of multibody, and with a distribution of cables 

satisfying Eqs. (3.58) and (3.59), one can always find a configuration that makes At full-rank. 

3.4.3 Forming the Null Space of the Structure Matrix 

After proving that the structure matrix with given conditions can be made full-rank, it 

remains to prove that the null space condition can be also met and hence the mechanism is 

tensionable. This, as discussed before, is equivalent to the fact that the vector spanning the 

one dimensional null space has no zero components corresponding to the cables. 

For this purpose, first, the system needs multiple solutions for the equilibrium equations 

which is equivalent to at least one redundant cable: 

122312321 +−+≥++ skkrrr  

In addition, similar to rigid body and two-link systems, it will be shown that null-space can 

be designed through the proper selection of the cables such that in the spanning vector of 



43 

 

the kernel, the components that correspond to the cable tensions be nonzero. In other 

words, there should be no zero in n1, n2, and n3 (as in Eq. (3.48)). 

As mentioned before, the first link and the third link are similar to the links of a two-link 

system, meaning that they are subjected to independent constraint wrenches. Therefore, 

similar to the two-link multibody case, we partition n1 and n3 as:  
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For the middle link, from Eqs. (3.48), (3.50), and (3.51), n2 is found as: 
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Since links 1 and 3 need at least one extra cable, conditions of Eqs. (3.58) and (3.59) change 

as follows: 

2331 kr ≤≤                                                              (3.66) 

1211 kr ≤≤                                                              (3.67) 

As for the middle link, if the number of base cables is nonzero then, similar to the other links, 

we need to have r2 ≥ 1. Otherwise, i.e. if the number of base cables is zero, then we should 

have r2 ≥ 0 since there is no cable force to be made positive. 

Theorem 3.7. In a three-link serial multibody, if the necessary conditions on rl’s mentioned 

above are satisfied (the cable distribution conditions), and if ^� +^� +^	 ≥ 3B − `�� −`�	 + 1 (i.e. the total number of cables must be at least one more than DoF) or equivalently D� + D� + D	 ≥ `�� + `�	 − a� + 1, then there exist a configuration of cables to make the 

system tensionable. 

Proof. First we assume the base cables are selected as explained in the previous section to 

satisfy the rank condition. Next, we show how the extra cables should be designed to both 

satisfy the rank and null space conditions. 

Let us partition n1, n2, and n3, as in Eqs. (3.64) and (3.65). Now we show separately how n″l 

and G5H  can be determined through designing cable wrenches to have no zero components.  

For n″l, using Eqs. (3.53) and (3.55), and similar to Eq. (3.39), one can write: 
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3,2,1   , =−=′′ lll yn                                                    (3.68) 

Therefore for n″l to have no zero components, we need to have all elements of yl’s to be 

nonzero. For this, D′ in Eq. (3.57) should be designed such that the result for yl’s has the 

desired form (i.e. having no zero component) while satisfying the wrench condition for the 

resulted extra cables. Due to the assumption of the theorem, the number of cables is at least 

one more than the number that is necessary to make D′ full-rank, and due to Eq. (3.66) r3 ≥ 1. 

Therefore, by excluding one extra cable from link three, the conditions of Theorem 3.6 are 

still held. As a result, D′ can still be designed to be full-rank. Now remember that r3 ≤ k23 and 

thus r1+r2 ≥ k12–s2+1. Hence, matrix  �\�� 		b���1238c3�×�<2�<3�	 has a null space. In selection of 

R1
1 and F2 in Theorem 3.6, one needs to choose them such that there is a vector in kernel of 

[R1
1 F2] with all of its elements being nonzero. Let us call this vector 
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the eliminated column of R3 as: 
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2
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where \dX is obtained by removing the column corresponding the last extra cable from R3: 

�\X�13]×<] = �\dX eX� 
and fg	 consists of arbitrary nonzero numbers, adding the vector of Eq. (3.69) ensures that all 

yl’s (which are equal to fg5 ’s) have nonzero elements. Consequently n″l’s consist of nonzero 

components. 

For the other part of nl, i.e. n′l, the only remaining matrices, Gl’s, are to be selected. Similar to 

Eq. (3.40) we have: 

lll yGn =′                                                               (3.70) 

Since G1 and G3 are always nonempty, the procedure of Theorem 3.3 can be applied to obtain 

G’s for this case as well. Note that the case in which G2 is empty (i.e. there is no extra cable 

for the second link) has been addressed in Theorem 3.6. 

Following the procedure above, nl will not have any zero component.▲ 

Theorem 3.7 guarantees a tensionable configuration, if the conditions of the theorem are 

satisfied. However, note that unlike the two-link multibody, it does not state that by only one 

redundant cable, the tensionability can be reached. It is due to the fact that there might be 

simply no distribution to satisfy the conditions of the theorem. This is further elaborated in 
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the following examples; but before that, let us summarize the steps to design a tensionable 

configuration for a three-link serial mechanism: 

1. Pick a possible distribution of the cables to satisfy necessary conditions of Theorem 

3.7. Since there is no guarantee that with one cable more than DoF all of the 

inequalities are satisfied, it might be necessary to increase the total number of 

cables. 

2. Investigate the dependency of constraints on the middle link, and obtain H2. 

3. Select the base cables.  

4. Exclude one of the extra cables from link 3 and, select matrix D′ for the remaining 

system to be full-rank and satisfying the conditions mentioned in Theorem 3.6 and 

Theorem 3.7. 

5. Obtain x from Eq. (3.53) and partition it according to Eq. (3.55). 

6. Obtain ρ3 from Eq. (3.69). 

7. Select G1, G2, and G3 similar to the two-link case, to satisfy the cable wrench 

conditions and nonzero null space components. 

8. Obtain the extra cable wrenches. 

 

3.4.4. Examples of Three-Link Mechanisms 

Example 3.2. Let n = 3 (planar) and k12=k23=s2=1. An example of such mechanism is a three-

link serial mechanism with planar joints, i.e. allowing motion in x and y directions but 

constraining the rotation. This can be realized by two prismatic joints with perpendicular 

axes. For this mechanism, using one redundant cable, we will have: 

2122312321 =+−+=++ skkrrr
 

However, from Eqs. (3.66) and (3.67) we must have r1 ≥ 1 and r3 ≥ 1, and since the number of 

base cables on the second link is 2>0, we must have r2 ≥ 1 as well (every link that has a base 

cable needs at least one extra cable). Thus, D� + D� + D	 ≥ 3, which contradicts the above 

equation. Hence it is not possible to satisfy the necessary conditions of Theorem 3.7 by 

having only one redundant cable. In other words, there is no feasible distribution to satisfy 

the necessary conditions of Theorem 3.7. However, with two redundant cables (i.e. the total 

number of cables will be 9), D� + D� + D	 = 3 and [m1, m2, m3] = [3, 3, 3] is a distribution (and 

the only distribution) which satisfies the necessary conditions of cable distribution. This 

demonstrates that unlike rigid bodies, one redundant cable does not guarantee the existence 

of a tensionable configuration and one may require increasing the number of cables in order 
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to achieve tensionability. Note that the procedure for obtaining the cable wrenches with two 

redundant cables is very similar to one redundant cable (expressed in the previous section), 

except that matrix D′ in step 4 instead of being a square matrix, will have one column more 

than its rows. This gives more freedom in the selection of extra cables. □  

Example 3.2 proves the importance of the distribution of the cables. As a result of not 

considering this, study of Mustafa and Agrawal [35] and stating that a cable-driven 

mechanism can be made tensionable by nDoF + 1 cables is incomplete. 

Example 3.3. Consider a three-link multibody with planar motion and k12=k23=2 and s2=1. A 

possible realization is a three-link with revolute joints between the successive links. The 

number of base cables on links one, two and three are 1, 0, and 1, respectively. With 

conditions expressed in Theorem 3.7: 

4122312321 =+−+=++ skkrrr
 

there are several possible distributions satisfying conditions of Theorem 3.7 and thus 

making the system tensionable. An interesting one is: 

�D�, D�, D	� = �2, 0, 2� 
in which no cable (neither base cable nor extra cable) is connected to the second link, but 

according to Theorem 3.7, it satisfies the tensionability conditions. 

Suppose that the constraints are shown by the following matrices:  

4WY = h−1 00 11 0i     and    4YX = h−1 12 1−1 1i 
Note that although each of  C12 and C23 are full-rank, there will be one dependent column 

when they are combined in C2=[C12 C23]. As mentioned before, we assume the dependent 

columns to be presented by C1
s which should come from 4WY. In this example, C1

s is the 

second column of C12. One can see that the columns in each matrix are orthogonal and the 

columns of the linearly independent vectors remaining after removing C1
s are orthogonal as 

well. Thus from Eq. (3.50): 

jY = k1/31/3m 
The first step towards the design of a tensionable configuration is to select the base cables 

for links 1 and 3. Let us choose the base cable wrenches as: 
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Now according to Theorem 3.7, the next step is to design the second dependency matrix to 

be full-rank without using the last extra cable of the third link. 

Since there is no cable attached to link 2, matrices F2 and R2 vanish. Thus the form of the 

second dependency matrix (without the last extra cable) will be: 









=′

3

2

12

1

1

ˆ
ˆ

RRH

0R
D

 

Let us take: 

\� = �1 −13 3 � 
⟹				\�� = �1 −1�,			\�� = �3 3� 

Then the null space of R1
1 (as in Eq. (3.61)) will be: 

o = �11� 
in which there is no zero and thus satisfies the condition mentioned in the proof of Theorem 

3.7. From Eq. (3.62): 

po = jY\WYo = �22� 
Thus taking: 

\d	 = � 1−1� 
makes matrix �po \dX� full-rank. The second dependency matrix will become: 

[d H = h1 −1 01 1 11 1 −1i 
Adding the last cable using Eq. (3.69), and noting that fg� = o and fg� is empty, and 

taking	fg	 = 1: 

e	 = −qk1/31/3m �3 3� �11� + $ + � 1−1� �1�r = �−3−1� 
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Thereby: 

[H = h1 −1 0 01 1 1 −31 1 −1 −1i 
Then the null space of D′ in Eq. (3.57) will be: 

f = s1111t 		⟹ 			 f� = f	 = �11� 
Now, considering the sizes of G1 and G3, they can be parametrically considered as: 

V� = �E� E��				and				V	 = �E	 E
� 
Thereby the extra cable wrenches will become: 

��� = h−1 00 11 0i �13� + E� h151i = h E� − 15E� + 3E� + 1 i 
��� = h−1 00 11 0i �−13 � + E� h151i = h5E� + 1E� + 3E� − 1i 
��	 = h−1 12 1−1 1i � 1−1� + E	 h221i = h2E	 − 22E	 + 1E	 − 2 i 
��	 = h−1 12 1−1 1i �−3−1� + E
 h221i = h2E
 + 22E
 − 7E
 + 2 i 

The hyperplane conditions (for ensuring the force part of the wrench is nonzero and thus the 

wrench can be a cable wrench) are obtained as follows: 

z{|
{} 	���:				E� = 1		�B�			E� = −3/5				 ⟹ 					 E� = ∅									���	���:				E� = −1	�B�			E� = −3/5				 ⟹			 E� = ∅									������	:				E	 = 1		�B�			E	 = −1/2				 ⟹ 					 E	 = ∅								�������	:				E
 = −1		�B�			E
 = 7/2				 ⟹						 E
 = ∅									��7�

� 
The other two conditions come from the fact that G′� and G′	 should have nonzero 

components: 

� G′� = V�f� = E� + E� 			⟹ 			 E� + E� = 0			�7�
G′	 = V	f	 = E	 + E
 			⟹ 			 E	 + E
 = 0			�7��� 
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Considering conditions (i) to (vi) (all of which must be avoided to obtain a tensionable 

configuration of cables) we take: 

β1 = 0,  β2 = –1,  β3 = –1,  β4 = 0 

Then the extra cable wrenches will be: 

��� = h−131 i , ��� = h 0−2−2i , ��	 = h−4−1−3i , ��	 = h 2−72 i		 
And finally the structure matrix and its null space become: 

:� =
��
���
���
�2 −1 −1 −1 0 0 0 0 0 02 3 1 0 1 0 0 0 0 01 1 −2 1 0 0 0 0 0 00 0 0 1 0 −1 1 0 0 00 0 0 0 −1 2 1 0 0 00 0 0 −1 0 −1 1 0 0 00 0 0 0 0 1 −1 2 −4 20 0 0 0 0 −2 −1 2 −1 −70 0 0 0 0 1 −1 1 −3 2 
�

���
���
�
 

and: 

G: = �1 1 1 −7 0 −2 −2 1 1 1�6 

As can be seen, the components of the null space vector corresponding to the cables are all 

positive (and equal) and satisfy the conditions for tensionability of the system. The resulted 

mechanism is depicted in Figure 3-5. □ 

 

 

Figure 3-5.  A schematic of a the cable arrangement obtained from Example 3.3 
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Example 3.3 proves that a tensionable configuration can be obtained even if the middle link 

has no cable attached. Thus the assumption made by Kino et al. [34] in that each link of the 

multibody have to have at least one cable attached to it is not correct. 

 

3.5 Higher Number of Links 

The complete study of extending the method developed for two- and three-link multibodies 

(based on using dependency matrices) to higher number of links and obtaining the 

necessary and sufficient conditions of tensionability is outside the scope of this thesis. 

However, in this section a brief study of necessary conditions on the cable numbers and their 

distribution is presented. For more complete discussion of the subject see [39]. 

Through dynamic formulation (similar to Eqs. (3.14) and (3.42)) the structure matrix for an 

arbitrary multibody can be obtained1. Since the number of the rows of the structure matrix is B �̂ , and because for tensionability a necessary condition is that the structure matrix must 

have null space (i.e. more columns than rows), the condition on the total number of the 

cables will be: 

∑^! ≥ B� − ` + 1 = B��� + 1                                            (3.71) 

which is not a surprising result. 

For a multibody to be in equilibrium against some arbitrary load, all of the subsystems of it 

must be in equilibrium, as well. By “subsystems” of a multibody we mean all single and 

connected sets of links (which are rigid bodies) of the multibody. Therefore, since for having 

equilibrium by using of cables we always need at least one cable more than DoF, each 

subsystem which has at least one cable must satisfy: 

∑^! ≥ B�′ − `′ + 1                                                         (3.72) 

where �′ is the number of links of the subsystem and `′ is the total number of constraints on 

the subsystem. Note that Eq. (3.72) for the special case of a 3-link multibody is equivalent to 

Eqs. (3.66) and (3.67). If B�′ = `′, then the subsystem can be in equilibrium without any 

cable, provided that the other necessary conditions (cable numbers for other subsystems) 

are satisfied. 

                                                                    
1. Also look at chapter 4 of this thesis.  
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Note that these necessary conditions are not limited to serial multibodies and are applicable 

to any multibody. For proof of the above statements (based the dynamic equations of the 

system and form of the structure matrix) see [39]. 

 

3.6 Tensionability of the Fabricated Arm Mechanism 

The arm mechanism explained in chapter 2 for simulating a human arm is a 4-DoF two-link 

multibody. The difference with the systems discussed in this chapter is that a spherical joint 

connects the arm to the ground, whereas the two- and three-link systems studied are not 

connected to the ground and are float in the space. 

This problem can be resolved by considering the system as three-link mechanism where the 

first link is the ground. Thereby, the conditions of the tensionability of the 3-link 

mechanisms obtained in section 3.4 can be applied here as well. The only difference is that 

the arm mechanism is a spatial mechanism whereas the considered two- and three-link 

mechanisms have been assumed to be planar. However, as mentioned before, the only part 

of the methods suggested in sections 3.3 and 3.4 which limits the analysis to the planar case 

is the condition of cable wrenches discussed in section 3.2, i.e. ���	��	�	� ∙ ��
	��	��� = 0. 

As shown before, in case of planar mechanisms this condition is simplified to equations of 

hyperplanes (Eqs. (3.26) and (3.27)), whereas for spatial mechanisms it leads to nonlinear 

equations of hypersurfaces. However, since these hypersurfaces exclude only lower-

dimension manifolds of the space, it is always possible to design the system without 

considering them, and then check for the conditions. In fact, as mentioned earlier in this 

chapter, before the present work, this condition had not been considered for rigid bodies 

and the well-known proof of tensionability for rigid body cable-driven mechanisms has been 

without considering the cable wrench condition. 

Since the arm mechanism is a 4-DoF multibody, at least 5 cables are required for 

tensionability. On the first link (upper arm) there are 3+5=8 total constraints, out of which 

only 6 constraints can be independent. On the second link (forearm) there are only 5 

constraints of the revolute elbow joint. Hence there are four possible distributions of the five 

cables: {0,5}, {1,4}, {2,3}, and {3,2}. The distribution selected is {3,2} due to the fact that it 

minimizes the forces of the elbow constraints. In a distribution such as {0,5} the control of 

the first link is merely done using the constraint forces of the elbow and therefore it 

maximizes the force on the joint. For the synthesis and placement of the winches see [29]. In 

the next chapter we show that the synthesized system of [29] is indeed tensionable. 
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3.7 Summary 

In this chapter conditions on the tensionability of cable-driven mechanisms were studied. 

The study started with the review of rigid body systems from the literature. It has been 

shown that although the study of tensionability of the rigid bodies is a classic subject, the 

cable wrench condition has not been considered in the previous researches and the 

existence of a set of wrenches that satisfy the condition of being a cable wrench has been 

assumed trivial. Although it is not difficult for rigid bodies to obtain wrenches satisfying 

cable wrench conditions, it has been shown that for multibodies it is not an easy task. As a 

result and for this study, the cable wrench condition was considered merely for planar cases.  

Based on this, the conditions of tensionability were investigated for two- and three-link 

multibodies. It was proved that in 2-link mechanisms, the minimum necessary number of 

cables (one redundant cable) is also sufficient to build a tensionable configuration as long as 

there is no constraint on the location of the winches. 

In the case of 3-link mechanisms, it was shown that in some cases one redundant cable is not 

sufficient since there is no acceptable distribution of cables. As a result, more than one 

redundant cable may be required. It was proved that with the minimum cable number and a 

valid distribution, there is always a configuration of cables which provides a tensionable 

mechanism. 

 The proposed method is algorithmic in the sense that it provides an algorithm to design the 

cable configurations to ensure the tensionability. The algorithm is based on transferring the 

structure matrix of the multibody, At, to simpler forms, named the dependency matrices, and 

utilizing these matrices to find equivalent conditions on the cable wrenches for equilibrium 

and tensionability of the multibody. Using the dependency matrices is easier than the 

structure matrix due to their compact forms and clear connection to the wrenches of the 

cables and constraints. 

The study of multibodies was applied to the fabricated arm mechanism to obtain the number 

and distribution of the cables guaranteeing the tensionability. In the next chapter it is shown 

that the system with this configuration is indeed tensionable and the boundaries of the 

tensionable workspace are obtained. 
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Chapter 4   Workspace Analysis1 

 

As it is renowned in the literature of cable-driven mechanisms, having a sufficient number of 

cables attached to the mechanism does not guarantee the tensionability of the system at all 

points of the reachable workspace of the robot. In other words, the system will merely be 

tensionable in certain poses of the mechanism. Hence, it is required to determine the regions 

in the workspace in which the cable-driven mechanism is tensionable. In this thesis, the 

subspace of the reachable workspace in which the system is tensionable is named 

tensionable workspace, and the procedure leading to obtaining these regions is referred to as 

workspace analysis. 

It is noteworthy that in some other researches, other definitions and terminologies have 

been used. Verhoeven and Hiller [40] used “controllable workspace” and defined it as “the 

set of poses in which the robot can maintain equilibrium against all external wrenches”. 

Some other works contributed to analyzing the set of all poses that the robot can attain static 

equilibrium (i.e. in the absence of motions and external loads) [41,42]. This workspace was 

referred to as static equilibrium workspace (SEW) in [43]. Accordingly, “dynamic workspace” 

was defined as the set of all attainable poses with a specific acceleration, by positive cable 

tensions [44]. A more practical workspace definition is wrench feasible workspace (WFW) 

which is the set of all poses in which a specified range of external wrenches can be generated 

using a limited range of cable tensions [43,45,46]. Wrench closure workspace (WCW) is a 

special case of WFW when both cable tension and the wrench sets are unbounded [45,46]. 

One can see that WCW, tensionable workspace, and controllable workspace are equivalent. 

They are merely dependent on the kinematics of the manipulator rather than the external 

loading, static or dynamic equilibrium or cable properties. 

Due to the complexity of the workspace analysis problem, most of the works in the literature 

are based on numerical methods [47,48]. The basic method for numerical estimation of the 

workspace consists of point-to-point examination of the workspace. This examination can be 

done in several different ways (as reviewed by Gouttefarde [36]). However, especially when 

the number of the redundant cables is more than one, most of these methods encounter 

                                                                    
1. A version of this chapter has been published in ASME Journal of Mechanisms and Robotics, 3(2), Art. No. 021005, 

2011 
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computational difficulties. In [49,50], other more efficient methods for checking the 

workspace are proposed. 

Another approach to workspace analysis which has become a topic of interest in the recent 

years is using interval analysis [51,52]. The main advantage of interval analysis over the 

point-to-point search is that the search is continuous and the information at the 

“intermediate” points is not lost. 

There are also a few studies that tackled the workspace problem analytically. Properties of 

the constant-orientation workspace of planar cable robots with one redundant cable are 

discussed in [45]. Later, in [46], the authors extended their method to more than one 

redundant cable. In [43] and [53], similar problem is addressed with different viewpoints. In 

both researches, the analytical descriptions for the boundaries of the tensionable workspace 

were found. The main difference in the two approaches is that in [43] the focus has been on 

obtaining WFW, whereas in [53] the method which was based on methods of checking 

positive tensions of the cables at a particular point of the workspace.  Some other examples 

of analytical studies on the workspace exist on robots with particular geometries. In [54], it 

was shown that the tensionable workspace for a particular cable-driven robot is the same as 

the reachable workspace. Their geometrical procedure has been adopted in [55] for 

obtaining the workspace of a similar robot.  

The aim of this chapter is to develop a framework to: 1) extend the concept of tensionable 

workspace (defined so far for a single rigid body) to multibody systems; 2) obtain the 

tensionable workspace analytically by finding its boundaries; 3) analyze the obtained 

workspace and compare the inherent differences with a similar single rigid body cable-

driven robot; and 4) obtain the workspace of the robotic system designed and fabricated. 

 

4.1 Formulation of Dynamics of Cable-Driven Multibodies – General Case 

4.1.1 General Formulation 

Figure 4-1 depicts a schematic of a serial multibody system. Similar to the previous chapter, 

the cables are connected to one and only one of the links from one end and pulled from the 

other end by a stationary motorized winch.  Also, (again as in the previous chapter) the 

joints connecting the links are binary with holonomic constraints. 
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Similar to rigid bodies and the simple multibodies studied in the previous chapter, the 

equilibrium equations of a serial multibody system with M links, m cables and k constraints 

in Cartesian space leads to an equation of the following form: 

( ) ( ) ( )
1)(1)()()( ××++× =

nMtkmtkmnMt bτA                                                    (4.1) 

Using the same approach of the previous chapter, for a general M-link serial multibody 

system these matrices take the following form: 
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Figure 4-1.  A typical cable-driven serial multibody system 
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where �̂  and �̀ are the total number of cables and total number of constraints for the 

multibody system, respectively, mi is the total number of cables on the i’th link, and ki is the 

number of constraints between links i and i+1. 

Evaluation of tensionability in a cable-driven multibody system requires the analysis of the 

rank and null space of matrix At which is also called structure matrix of the multibody. From 

Eq. (4.1), it is seen that the size of this matrix grows rapidly with the number of links and 

cables. For instance, in a 3-link spatial mechanism, At has 18 rows and at least 19 columns. 

Analysis of such matrices can easily lead to numerical complexities. In the next section, we 

apply Lagrange’s method to minimize the size of the structure matrix. 

4.1.2 Tensionability Formulation Using Generalized Forces 

The large size of At is mostly due to the Newtonian formulation of the dynamics which leads 

to the presence of internal reaction forces/moments. As long as the multibody system is a 

serial kinematic chain, using Lagrange’s approach and the notion of generalized forces 

eliminates all the internal unknown forces/moments from the dynamic equations. Thereby, 

one can reduce the number of the equilibrium equations and simplify the tensionability 

analysis. 

The general form of Lagrange’s equation -if the Lagrangian can be expressed in terms of a 

minimal set of generalized coordinates- is: 

      DoF,...,1  , niQ
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dt

d
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where L is the Lagrangian, nDoF is the degrees of freedom of the multibody system, and αi`s 

and Qi`s are the generalized coordinates and generalized forces, respectively.  

In a cable-driven mechanism, the contribution of cables to the dynamics is modeled as point 

forces applied to the links (i.e. the inertia and elastic stiffness of the cables are neglected). 

Therefore, Qi`s in Eq. (4.5) are divided into two parts: r

i

c

ii QQQ += , where Qi
c is the part 

pertaining to the cable forces, and Qi
r includes all other generalized external 

forces/moments. The latter part together with the terms in the left hand side of Lagrange’s 

equation can be incorporated in a vector named bL: 
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In order to use the Lagrange’s formulation, the cable forces need to be presented in 

generalized coordinates. Suppose that tjuj is a cable force and rj is the position vector of the 

connection point of the cable to the multibody, both expressed in the fixed Cartesian frame. 

According to Lagrange’s method, one can express Qi
c in terms of the cables forces as: 
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which can be then arranged in matrix form as: 
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or: 
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Now, AL and τL are defined according to Eq. (4.9) as: 

mn
n

m
m

n

m
m

DoF ×




































∂

∂














∂

∂










∂

∂









∂
∂

=

DoFDoF

 .... .

 .... .

1
1

11

1
1

L

αα

αα

r
u

r
u

r
u

r
u

A MOM                                       (4.10) 

and: 

[ ]Tmtt ...1L =τ                                                              (4.11) 

Consequently, the dynamic equations of the system given in Eq. (4.9), can be written in the 

following form: 
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LLL bτA =                                                                    (4.12) 

where bL was defined in Eq. (4.6) and includes all the external forces (other than cable 

forces) as well as the inertia effects. Note that the left side of Eq. (4.12) is a linear 

combination of the columns of AL by the cable tensions. The columns of AL, according to Eq. 

(4.10), can be perceived as the cable wrenches expressed in the space of generalized 

coordinates.   

Note that due to the omission of the internal forces, the dimension of the problem has been 

significantly reduced. For instance in a planar double pendulum (nDoF = 2) driven by 3 cables, 

At will be 6×7, whereas AL is a 2×3 which is much preferred for computational purposes. 

 

4.2 Boundaries of the Tensionable Workspace 

4.2.1 Methods for Checking Tensionability 

As discussed in the previous chapter, a rigid body cable-driven mechanism is tensionable if 

and only if the following conditions are satisfied: 

1. The structure matrix is full-rank, and 

2. There is a vector in the null space of the structure matrix such that all of its 

components are of the same sign. 

The second condition requires the null space of A to be analyzed which may become 

cumbersome, especially when the number of redundant cables is more than one (multi-

dimensional null space). An alternative approach which has attracted a lot of attention is 

using the concept of supporting and separating hyperplanes [36,53]. Let us consider a matrix 

such as Π with its columns πi: 

 [ ]mmn πππΠ ...21=×                                              (4.13) 

A separating hyperplane H for Π is a hyperplane in the n-dimensional span of Π passing 

through the origin and having at least one of vectors πi (i=1,2,…, m) on each side. 

Mathematically, for a separating hyperplane with normal vector h, there exists two vectors 

πj and πk where πj.h > 0 and πk.h < 0.  A hyperplane which passes through the origin and is 

not a separating hyperplane is a supporting hyperplane. 

For analysis of tensionability, the following theorem provides the conditions in terms of 

separating and supporting hyperplanes [36]: 
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Theorem 4.1. A cable-driven rigid body system is tensionable if and only if all hyperplanes 

passing through the origin are separating hyperplanes for the structure matrix A. 

For tensionability investigation using Theorem 1, an infinite number of hyperplanes are 

required to be assessed. Since this is not practical, a refinement of Theorem 1 has been 

proposed as follows [36]: 

Theorem 4.2. A cable-driven rigid body system is tensionable if and only if all of the 

hyperplanes passing through the origin and spanned by n – 1 linearly independent columns 

of A are separating hyperplanes. 

Using Theorem 4.2, one can analyze the tensionability of a system by investigating a limited 

number of hyperplanes. Each of these hyperplanes is generated by a selection of n–1 linearly 

independent columns from matrix A. As a result, there are � ^B − 1� such hyperplanes to 

check. If (and only if) they are all separating planes, then the mechanism is tensionable.   

In the previous chapter the study of the tensionability of the multibodies was based on a 

Newtonian structure matrix. This was due to the fact that the constraints would affect the 

analysis of cable numbers. However, for checking tensionability at a given pose of the 

mechanism, there is no need for the constraint wrenches, and as a result of the above 

discussions, using Lagrange’s formulation is preferred. Note that by use of this approach all 

of the constraint wrenches are eliminated from the formulation and only the cable wrenches 

will be present. Thus the analysis of the system will become essentially the same as an 

unconstrained rigid body; i.e. a rigid body in the space of the generalized coordinates [56]. 

Now, using Eqs. (4.10) to (4.12), one can determine whether a given configuration of a cable-

driven multibody system is tensionable. This can be performed either using the concept of 

null space or supporting/separating hyperplanes. However, it is usually desired to obtain a 

description of the whole tensionable workspace. For instance, in design or operation of such 

systems, knowing the boundaries of the tensionable workspace is critical to make sure the 

task requirements can be met. The most available solution would be to search the whole 

configuration space for tensionable points. This can be done by either discretization of the 

space which compromises the accuracy or using the interval analysis method which is 

computationally intensive. 

Another method is to determine the boundaries of the tensionable workspace and 

investigate the regions surrounded by these boundaries. In the followings, the boundaries of 

the tensionable workspace are found based on the formulation given in section 4.1. 
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4.2.2 One Redundant Cable – Null Space Approach 

The solution of Eq. (4.12), similar to rigid body case, is:  

AnbAτ += +
LLL                                                                (4.14) 

where AL
+ is the pseudo-inverse of AL and nA is a vector in the kernel of AL. 

By a similar argument as the one discussed in the previous chapter, one can conclude that 

the multibody is tensionable if and only if:  

1. AL is full rank (rank condition),  

2. There is a vector in the null space of AL with all of its components of the same sign 

(null space condition).  

Note that for a full rank AL, the dimension of the null space is �̂ − B��� which is the number 

of the redundant cables. In case of one redundant cable ( �̂ − B��� = 1), the null space of AL 

is one-dimensional and spanned by a single vector such as nA.  This vector can be analytically 

found and used to determine the boundaries of the tensionable workspace. In order to find 

nA, first let di be the ith column of AL which is the column that pertains to the ith cable. As a 

result, we have: 

[ ]11L DoF
... += nddA

                                                 
 (4.15) 

Now let matrix S be formed by the first nDoF columns of AL: 

[ ]
DoF

...1 nddS =                                                         (4.16) 

For a full rank AL, one can assume S to be full rank too (it may only require changing the 

orders of columns in AL). Therefore, it will be easy to show that nL, as defined below, spans 

the null space of AL: 
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n                                     (4.17) 

where S* is the adjoint matrix of S.  

In case of a singular S (i.e. AL is not full-rank), the definition of nL given in Eq. (4.17) will 

involve a division-by-zero. In order to avoid this, one can consider a scaled version of nL, 

named nA, as: 
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                                                         (4.18) 

in which, as long as the elements of S are finite, there will be no chance of singularity. 

In order to find the boundaries of the tensionable workspace, the two conditions (rank and 

null space) are revisited here. The null space condition states that all components of the 

spanning vector of the null space, as given in Eq. (4.18), should be of the same sign. Since the 

components of nA are continuous functions of the generalized coordinates, a sign change 

occurs if and only if one of the components becomes zero. Therefore, the boundaries of the 

regions that satisfy the null space condition is determined by solving for the roots of each 

component of nA: 

1,...,1  , 0 DoF, +== nin iA                                                     (4.19) 

where nA,i is the ith component of nA and a function of the generalized coordinates. Therefore, 

Eq. (4.19) results in a set of hypersurfaces in the generalized coordinate space. Each 

hypersurface divides the space into two regions with different signs for a particular 

component of nA. On each hypersurface, the corresponding component of the null space 

vector is zero. This is an extension of the method proposed in [45], [46], and [53] for finding 

workspace of constant-orientation rigid bodies driven by cables. 

For the first condition of tensionability, note that if AL is rank deficient, then |S|= 0. From Eq. 

(4.18) since |S| is the last component of nA, one can notice that in such a case, at least one 

component of nA must be zero. Therefore, the first condition of tensionability may be 

violated only on the boundaries of the regions found for the null space condition in Eq. 

(4.19). As a result, the inside of the regions -where all the components of nA are nonzero- 

satisfy the first condition as well. Therefore, if in a region surrounded by the 

abovementioned hypersurfaces the components of the null space vector are all of the same 

sign, the region will be a region of tensionability. This is, as mentioned before, due to the fact 

that the first tensionability condition can only be violated on the boundaries of a region and 

not inside of it. Furthermore, note that since the signs of the components of the null space 

vector do not change inside a region, it is sufficient to check the sign of only one of the points 

in a region; all of the other points in that region will have the same sign. 
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4.2.3 Multiple Redundant Cables 

With more than one redundant cable, the null space of AL will be multi-dimensional. This 

complicates the assessment of the null space condition. Alternatively, the method of 

supporting/separating planes can be used as detailed here.  

As mentioned in Theorem 2, the necessary and sufficient condition for tensionability is that 

all of the hyperplanes formed by nDoF – 1 columns of AL be separating hyperplanes. This can 

be easily applied to determine whether a given configuration of a multibody cable-driven 

mechanism is tensionable. However, it is much preferred to have a description of the 

tensionable workspace boundaries.  This is detailed in the following. 

In the notion of separating/supporting hyperplanes, a configuration of the mechanism is on 

the boundary of the tensionable workspace if and only if a separating hyperplane is on the 

verge of becoming a supporting one. Remember that as long as there is at least one column 

of AL on each side of a hyperplane, it is still a separating one. Therefore, in view of Theorem 

2, at a boundary configuration, there will be a hyperplane with at least n columns of AL on it 

(nDoF –1 columns that form the hyperplane plus at least one extra column lying on it) and all 

other columns on one side. This can be used to detect the configurations of the mechanism 

that are on the boundary of the tensionable workspace. Such configurations will satisfy the 

following two conditions: 

1. There is a set of nDoF columns in AL with a rank of nDoF – 1, and 

2. The hyperplane formed by these columns is a supporting hyperplane. 

Note that each of the two above items is a necessary condition for a boundary configuration. 

Therefore, one way to identify these boundaries is to determine all hypersurfaces in the 

generalized coordinate space that satisfy the first condition and then identify those that 

satisfy the second one too. Let us consider AL with its columns: 

[ ]mdddA ...21L =
                                                      

 (4.20) 

and let 
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be an nDoF-combination of {1,2,…, m }. Now the following hypersurfaces indicate the 

configurations where there is a set of nDoF linearly dependent columns in AL: 
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From these hypersurfaces, only those that pertain to a supporting hyperplane determine the 

boundaries of the tensionable regions. Note that in some of the hypersurfaces of Eq. (4.22), 

the corresponding columns of AL may not be of rank nDoF –1 and hence do not form any 

hyperplane. Also, in some cases, the hyperplane may still be a separating one. Therefore, 

from the hypersurfaces obtained from Eq. (4.22), only the ones that satisfy both conditions 

of the boundary configurations should be identified which form the tensionable regions of 

the workspace. Also note that for a particular hypersurface, the conditions mentioned above 

must be examined for every single point on that hypersurface. In other words, only some 

sections of a hypersurface might be part of the boundary of the tensionable workspace.  

The approach of separating/supporting hyperplanes is also applicable to the special case of 

one redundant cable. Note than in such case ( 1DoF += nm ), the number of equations that 

should be solved from Eq. (4.22) is: 
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This corresponds to nDoF+1 equations for the roots of the null space vector components 

discussed in the previous section (Eq. (4.19)). However, in the hyperplane method the 

number of determinants to be evaluated (in Eq. (4.22)) is 1DoF

DoF

+=







n

n

m
; whereas in the null 

space method there is only one determinant (|S| in Eq. (4.18)) for evaluation and the other 

equations are obtained by matrix multiplication (i.e. 1

*

DoF+
− ndS ). This shows that the null 

space method is advantageous in terms of the cost of computation. Hence for the one 

redundant cable case this method has been selected in this work.  

In the followings case studies, the tensionable workspaces of one- and two-DoF multibody 

systems driven by cables with different arrangements of cables are analyzed. The 

boundaries of the tensionable workspace are determined by analyzing the null space vector 

for one redundant cable and hyperplanes for two redundant cables, and some design 

guidelines are obtained. We start with a 1-DoF planar system and then extend to a 2-DoF 

mechanism. Note that in multibody cable-driven mechanisms, both the number of cables and 

their distribution among the links of the mechanism affect the boundaries of the tensionable 

workspace. Therefore, we have examined two possible cable distributions for the 2-DoF 

mechanism with one redundant cable. Moreover, the method is applied to a two-redundant-
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cable mechanism and its tensionable workspace is compared with one-redundant-cable 

mechanisms. 

 

4.3 Case Studies 

4.3.1 Tensionable Workspace of a 1-DoF Cable-Driven System 

We start with a simple mechanism shown in Figure 4-2, which is a 1-DoF planar mechanism. 

In this mechanism, a rigid body is connected to the ground by a revolute joint and is being 

driven by two cables. For simplicity and reducing the number of parameters, the cables are 

assumed to be attached along the central line of the rigid body (the line connecting the joint 

and the center of mass). Note that the extension to general case can be done by adding a 

constant parameter indicating the connection position of each cable with respect to the 

central line and it does not affect the concepts discussed in the following. 

 

 

According to Eq. (4.10) AL is 1×2: 

T
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where xi, and yi are the coordinates of the ith winch, and di is the distance of the point of 

connection of the ith cable to the body from the joint (origin). Then the null space spanning 

vector will be found from Eq. (4.18): 

 

Figure 4-2. A schematic of a 1-DoF rigid body driven by two cables 



65 

 










−+−−

−−−
=

θθθθ
θθθθ

cos)sin(sin)cos(

cos)sin(sin)cos(

111111

222222

ddyddx

ddyddx
An

                            
 (4.25) 

And by setting the components of nA equal to zero, one obtains the following curves: 
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The mechanism is tensionable if and only if the left-hand-side of both equations are nonzero 

and of the same sign. From this, it is easy to conclude that this will be satisfied either if: 

 0sincos  and  0sincos 2211 <−>− θθθθ xyxy                                 (4.27) 

or  

0sincos  and  0sincos 2211 >−<− θθθθ xyxy
                             

 (4.28) 

The geometrical interpretation of the above inequalities is that the cables are required to be 

in two different sides of the link, which was intuitively known due to the simplicity of the 

mechanism. The boundaries of the tensionable workspace can be also expressed from       

Eqs. (4.27) and (4.28) as tan � = ��/T� = tan �� and tan � = ��/T� = tan ��, which indicate 

the points at which one of the cables and the link are aligned. 

4.3.2 Tensionable Workspace of a 2-DoF Planar Multibody System with {1,2} Cable Distribution 

Figures 4.3 and 4.4 depict a schematic of a two-link multibody system. It is a planar double 

pendulum driven by three cables as shown in the figure. It can be shown that there are two 

possible distributions for the cables in such a multibody system: {1,2} and {0,3}. The first one 

is shown in Figures 4.3 and 4.4, and is considered here. 

Since the mechanism has 2 DoF and three cables, AL will be 2×3. The null space of AL is 

spanned by the vector (nA)3×1  which can be found symbolically using Eq. (4.18) in terms of 

the joint variables, θ1 and θ2:   

( ) [ ]TAAA nnn ),(),(),( 213,212,211,13
θθθθθθ=×An

                            
 (4.29) 

Finding the roots of each component of the null space vector provides three equations: 

3,2,1  , 0),( 21, == in iA θθ                                                          (4.30) 
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Note that the equations presented in Eq. (4.30) are nonlinear and therefore may have 

multiple solutions. For instance, in the present case, the three equations of Eq. (4.30) result 

in four curves in the plane of θ1 and θ2. The first one can be expressed as: 

         ππ
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where l1 is the length of link 1. Note that Eq. (4.31) is a set of curves separated by a multiple 

of π. On each of these curves the second component of the null space, n2(θ1,θ2), becomes 

zero. Also, the sign of this component changes as one crosses these curves.  Similarly, the 

first and third sets of curves can be expressed as: 
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and: 
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The fourth set of curves is also periodic (as the other three ones). However, its symbolic 

expression is too long and hence is not presented here1. 

The third set of curves (Eq. (4.33)) occurs when cable 1 becomes aligned with link 1. Similar 

to the 1-DoF mechanism, at such configurations, the cable cannot apply any moment to link 1 

(generally cable 1 can only apply moment to link 1) and as a result, the first column of AL 

becomes zero. Thus in this case: B�,����, ��� = B�,	���, ��� = 0. 

The first two sets of curves given by Eqs. (4.31) and (4.32) represent conditions where one 

of the cables 1 or 2 becomes aligned with link 2. Therefore they will not be able to apply 

moment to link 2. Hence they become linearly dependent with column 1. Mathematically, in 

these cases, the second component of column 2 or 3 (for Eq. (4.32) or (4.31), respectively) 

becomes zero. Thus: nA,3(θ1,θ2) = 0 or nA,2(θ1,θ2) = 0. 

Finally, the fourth set of curves comes from the dependency between columns 2 and 3 which 

corresponds to nA,1(θ1,θ2) = 0. 

All curves are shown in Figure 4-5. For this purpose, some typical values were used for the 

parameters of the mechanisms as shown in Table 4-1. 

                                                                    
1. The expression can be provided upon request. 
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Table 4-1.    Parameter values for the 2-link mechanism (all in meters) 

Length of 

link 1 
d1 d2 d3 

Location of 

winch 1 

Location of 

winch 2 

Location 

of winch 3 

1 0.6 0.3 0.8 [1.2,5.6] [3.2,–0.8] [5.1,4.3] 

 

 

Figure 4-4.  The angular positions of the winches of the 

system of Figure 4-3 

 

Figure 4-3.  Schematic of a 2-DoF 2-link multibody system 

driven by three cables having {1,2} distribution 
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These curves have partitioned the configuration space into several regions. As shown before, 

as long as the configuration of the robot falls inside any of these regions, AL is full rank which 

satisfies the first condition of tensionability. The signs of the components of nA are also 

shown for each region in Figure 4-5 by a string of pluses and minuses, respectively. For 

instance, + – + indicates that the first and the last components of nA are positive while the 

second one is negative. 

From this figure one can distinguish nine separate regions in which the components of the 

null space vector have the same sign and the system is tensionable. However, since the 

angular coordinates are periodic, some of these regions are in fact connected. For example, 

regions I and II are two parts of the same region. From this argument, the nine 

abovementioned regions will form four continuous regions which are shown by a darker 

pattern in the same figure. It is noteworthy that the tensionable workspace of such 

mechanism is not connected. As a result, one cannot move the mechanism from one 

tensionable configuration to any other one along a tensionable path. Also it is seen from 

Figure 4-5 that the tensionable regions are not necessarily convex. Therefore, if two 

 

Figure 4-5.  Regions of configuration space for a two-link mechanism with 

{1,2} cable distribution: 

       Curve set 1:                               Curve set 2:  

       Curve set 3:                               Curve set 4:  
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configurations are tensionable, one cannot expect that any configuration in between the two 

will be tensionable as well. 

4.3.3 Improving the Tensionable Workspace 

In section 3.2 it was shown that changing the sign of a null space component (say nA,i) is 

possible by changing the sign of the corresponding column of the structure matrix via 

relocating the winches. As a result of this, any point in the workspace can be changed into a 

tensionable one as long as the cable directions can be reversed. In other words, one can 

choose a region of interest from Figure 4-5 and change it to a tensionable region by 

relocating the appropriate winches. 

As an example, suppose that region III from Figure 4-5 is the range in which the system is 

required to be tensionable. Since the components of the null space are of different signs, 

currently the system is not tensionable in this region. From the above discussion one can 

notice that the third cable can be reversed in order to make this region tensionable. Note 

that the method for relocating winches and changing the sign of the corresponding null 

space component is valid only for one point in the workspace. As Figure 4-6 shows, as 

mechanism moves from (θ1,θ2) to (θ′1,θ′2), the relocated winch is not at the exact 

symmetrically inverted point along cable 3, and as a result, the boundaries of the tensionable 

workspace change. However, since normally the cable lengths (i.e. the distance of winches 

from the multibody) are much larger than the size of the multibody, one can expect that the 

changes are not significant. Thereby, it is reasonable to relocate the winch at a point in the 

middle of this region to have minimum change in the boundaries. 

From the above argument we relocate winch 3 at ���, ��� = ��, �/2�, which is a point in the 

middle of this region. This results in the new location of (-7.1,-2.7) for winch 3. The new 

tensionable workspace plot is depicted in Figure 4-7. Compared with Figure 4-5, it is 

observed that although the boundaries are different, the change is not considerable and still 

the similarity of the two workspaces is easily noticed. Note that this relocation makes five 

other regions tensionable as well, and the currently tensionable regions change to 

untensionable regions. The new tensionable regions are hatched.  
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Figure 4-6.  Cable 3 at positions (θ1,θ2) and (θ′1,θ′2), as winch 3 is relocated with respect to 

the connection point at (θ1,θ2)    

 

 

 

 

Figure 4-7.  Regions of configuration space for the {1,2} cable distribution and relocated 

winch 3 

             Curve set 1:                                                        Curve set 2:                   

             Curve set 3:                                                        Curve set 4: 
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4.3.4 Tensionable Workspace of a Two-Link Planar Multibody System with {0,3} Cable 

Distribution 

As mentioned before, multiple distributions of cables may exist for driving a multibody 

system. For instance, the two-link mechanism of the previous section can be also driven by 

all three cables attached to the second link as shown in Figure 4-8. Figure 4-9 depicts the 

configuration space and the regions for this mechanism which is obtained by following the 

null space method similar to the previous section. However, the main difference here is that 

there are only three sets of curves (instead of four) to determine the boundaries of the 

regions.  

 

 

 

According to Figure 4-9, for these particular numeric values (Table 4-1), most of the 

boundary curves correspond to the situations where two links are more or less inline. In 

other words, when the two links are far from being inline, none of the curves is crossed.  This 

has left relatively larger empty regions in between the curves (as numbered I, II, III and IV) 

which are not tensionable in the current configuration. However, as discussed before, note 

that one can still change the signs of the null space components by relocating the winches. 

For example, by reversing the direction of the 3rd cable, one can make regions I, II, III, and IV 

tensionable. The resultant mechanism is shown in Figure 4-10. It is interesting to note that 

this significant improvement of the tensionable workspace is not intuitively apparent from 

Figure 4-8; i.e. the configuration of the cables (unlike rigid bodies) do not easily show 

whether the system is tensionable. 

 

Figure 4-8.  Schematic of a 2-DoF 2-link multibody system driven by 

three cables having the distribution {0,3} 
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Figure 4-10.  The modified design for {0,3} cable distribution 

 

Figure 4-9.  Workspace analysis of a two-link mechanism driven 

by three cables attached to the second link 

      Curve set 1:                              Curve set 2:                    

      Curve set 3:                   
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4.3.5 Tensionable Workspace of a Two-Link Planar Multibody System with Multiple Redundant 

Cables 

The same mechanism is considered again using two redundant cables (total of 4 cables). 

Figure 4-11 shows a schematic for this example. 

The fourth winch is located at [–2,–9], and d4 = 0.5. 

 

 

In this case, there are two redundant cables. Thus the null space is two-dimensional and, as 

mentioned before, the use of the hyperplane method is preferred. The number of the 

equations required to be solved for this system (Eq. (4.22)) is 6
2

4
=








. Solving these 

equations, the candidate hypersurfaces (which are curves in this 2-D system) are obtained. 

Since there will be too many curves in this case, for the sake of clarity, the curves which are 

not the boundary of the tensionable workspace are eliminated. For this purpose, the second 

condition of the separating/supporting hyperplanes method, explained in section 4.2.3 is 

applied. According to this condition, when a set of nDoF columns of AL becomes linearly 

dependent, the hyperplane defined by those columns can be separating or supporting. Thus, 

in the next step the points where the abovementioned hyperplane is a supporting 

hyperplane (and not a separating one) are detected. Such points are on the boundary of the 

tensionable workspace. 

 

Figure 4-11.  Schematic of a 2-DoF 2-link multibody system 

driven by four cables having the distribution {1,3} 
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The results of the tensionable workspace analysis are shown in Figure 4-12, which can be 

compared with Figures 4-5, 4-7, and 4-9 which are primarily the same mechanisms but with 

one less cable1. It is interesting to observe that by adding one cable, the majority of the 

reachable workspace has become tensionable. Only four relatively small regions (named as 

regions I-IV) are not tensionable, which compared to the previous mechanism demonstrates 

a significant improvement. 

Although the given formulation for the boundaries of the tensionable workspace obtained 

using this formulation are valid for any DoF, the examples are limited to two-DoF multibody 

systems. The reason is that for such systems the two-dimensional tensionable space can be 

conveniently presented graphically. For systems of higher DoF, either some degrees of 

freedom of the system should be fixed (for example a “constant orientation” planar rigid 

                                                                    
1. Compared with the {1,2} design, the extra cable of this case has been attached to link 2, and compared with 

{0,3} design, the extra cables has been attached to link 1. 

 

Figure 4-12.  Workspace analysis of a two-link mechanism driven by the 

distribution {1,3} 

           Curve set 1:                                    Curve set 2:                    
           Curve set 3: 
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body as in [45]), or numeric analyses should be used to determine the subsections of the 

tensionable workspace formed by the obtained boundaries. 

 

4.4 Workspace Analysis of the Designed Arm Mechanism 

Figure 4-13 depicts a schematic of the designed arm, which was discussed in section 2.3. 

 

3-DoF Shoulder

1-DoF Elbow

θ

φ

ψ

η

x

z

y

 

Figure 4-13. Schematic of the designed arm 

 

As can be seen in the figure, θ, φ, ψ, and η are the four generalized coordinates considered 

for this system. For the first link, taking θ, φ, and ψ as Euler angles, one can write the 

corresponding rotation matrices as: 

\� = hcos � − sin � 0sin � cos � 00 0 1i                                                 (4.34) 

\� = h cos � 0 sin�0 1 0−sin� 0 cos �i                                                (4.35) 

\� = h1 0 00 cos� − sin�0 sin � cos� i                                                (4.36) 

Thus for a point on the arm initially at: 
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��,� = ���,� �� cos � �� sin ��6                                                     (4.37) 

where da,1 is the distance of the point from yz plane and pa and σ are polar coordinates of the 

point at that section of the arm. Subscript “,1” means that the point belongs to link 1, i.e. the 

upper arm. The coordinates of the point with respect to the fixed frame (with origin at the 

center of the spherical joint) after these three rotations will be: 

�I,� = \�\�\���,�                                                          (4.38) 

This is the general description of a point on link 1, subject to the three rotations by Euler angles. 

Since this point can also be a connection point of a cable, it can be used for calculation of the 

Lagrangian structure matrix of Eq. (4.10). 

For the second link, one can write the rotation of elbow joint as: 

\  = hcos � − sin � 0sin � cos � 00 0 1i                                                (4.39) 

Then for a point initially at: 

��,� = ���,� �� cos � �� sin ��6                                           (4.40) 

where da,2 is the normal distance of the center of the section of the arm containing the point 

from the elbow joint, the final position is obtained as: 

�I,� = \�\�\� ¡\ ��,� + h¢�,�00 i£                                       (4.41) 

where la,1 is the length of the first link. 

Using Eqs. (4.38), (4.41), and (4.10) one can obtain the Lagrangian structure matrix of the 

multibody cable-driven robot. The numeric values of the parameters required for numerically 

obtaining the structure matrix have been listed in Table 4-2. The length of the first link, la,1 is 

372.4 mm. As mentioned before, the distribution considered is {3,2}. For the procedure of 

selecting the locations of the winches and the cable connection points see [29]. 

Using these parameters, AL can be obtained as a function of the generalized coordinates. Next, 

using the methods suggested for workspace analysis of the multibody cable-driven robots, one can 

obtain the analytical expressions of the boundaries of the tensionable workspace. Due to 

complexity of the expressions, the boundaries were obtained using Maple
®
.  
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For representation of the tensionable workspace, since the system is 4-D, it is impossible to depict 

it in all of the system’s DoF at once. Therefore, the two dimensional plots of the workspace were 

generated by assuming the other two generalized coordinates (angles) are fixed at zero. Thereby 

six workspace plots are obtained, which have been depicted in Figures 4-14 to 4-19, in which the 

tensionable regions have been highlighted by numbers. The method used is separating/supporting 

hyperplanes, and similar to Figure 4-12, the curves which were not the boundaries were not 

shown. The figures prove that with the given configuration, the system is indeed tensionable 

around its starting point (i.e. around [0,0,0,0]).  

Table 4-2. Parameters of the designed robot 

Winch 

No. 
Winch Location (mm) da,1 (mm) da,2 (mm) 

pa (mm) σ (deg.) 

1 [-595.6, -325.0, -1.2] 284.5 _ 28.4 -90 

2 [389.9, -918.5, 127.6] 254.0 _ 28.4 90 

3 [-105.9, 596.5, -799.7] 254.0 _ 28.4 -60 

4 [-481.9, 895.6, 111.5] _ 79.9 28.4 90 

5 [1277.2, -438.0, 63.7] _ 260.9 28.4 180 

 

 

 

Figure 4-14. Tensionable workspace in θ-φ plane 

I 

II 
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Figure 4-15. Tensionable workspace in θ-ψ plane 

 

 

Figure 4-16. Tensionable workspace in θ-η plane 

 

 

Note that in this analysis the physical limitations of the mechanism have been considered, too. For 

example because of the presence of the beam connecting the arm to the ground, φ cannot be 

negative; or the spherical joint maximum angle of 33° limits φ and ψ. The spherical joint 

limitation is especially notable in Figure 4-17 in a combination of change of the angles φ and ψ. 

I 

II 

III 
IV 

I 

II III 

IV 
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Figure 4-17. Tensionable workspace in φ-ψ plane 

 

 

Figure 4-18. Tensionable workspace in φ-η plane 

 

I 

I 

II 
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Figure 4-19. Tensionable workspace in ψ-η plane 

 

 

4.5 Summary 

A systematic approach for analytical or numerical determination of the tensionable 

workspace of the cable-driven multibody systems is presented. The method is based on the 

Lagrange’s formulation in order to eliminate the internal forces of the multibody. As a result, 

a structure matrix is found for the mechanism whose numbers of rows and columns are 

degrees of freedom and the number of cables, respectively. This matrix can be used to 

investigate tensionability. Two methods are detailed to detect the tensionable workspace 

boundaries: null space and supporting/separating hyperplanes. For one redundant cable, 

(which is the minimum necessary number of cables for tensionability), it has been shown 

that both of these methods work. However, the computational cost of the null space 

approach is less. In the case of multiple redundant cables, applying the null space method is 

difficult, and thus the hyperplane method is preferred. 

Having the boundaries of the tensionable workspace is not only beneficial for investigating 

the tensionability of the system in different configurations, but also it can be used to improve 

the tensionable workspace. Since the analytical expression of the boundaries is in hand, one 

can change, reshape, and/or move them by changing the appropriate parameters of the 

system, such as the location of the winches. The examples provided, demonstrate the usage 

of this method in obtaining the workspace, changing it, and comparing the different designs 

I 

II 
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of a system both in the number of the redundant cables and in distribution of the cables 

among the links of the multibody. 

Using this approach the designed multibody cable-driven robotic system was investigated 

and the analytical boundaries of the tensionable workspace in terms of the generalized 

coordinates were determined. This analysis proves that the system with the cable 

distribution suggested in chapter 3 is indeed tensionable in a region around the origin and 

thus can be controlled in that region. In the next chapter, the control design and 

implementation on the proposed system will be studied. 
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Chapter 5   Control of the Multibody Cable-Driven 

Robot 

 

In the previous chapter the boundaries of the tensionable workspace were obtained. Since 

outside of them there is no guarantee for equilibrium of the multibody cable-driven 

mechanism against an arbitrary external load, these boundaries set the limit for the motion 

range of the robot. Having this range, the last step of this project is to control the robot 

within its tensionable workspace. In this chapter, the control laws suited for the 

rehabilitation purpose are discussed and designed, and then the implementation of the 

proposed control logics and the experimental results are presented. 

 

5.1 Control of Rehabilitation Robotic Systems 

Along with the extensive research on proposing novel designs for rehabilitation robots, a lot 

of efforts have been put into developing new strategies for control of these systems. In fact, 

one can perceive that what makes a robot like MIT-MANUS a rehabilitation robot is 

essentially the control algorithm. Hence design of appropriate control strategies is one of the 

most crucial steps in the development of rehabilitation robots. 

In their review of the control strategies suggested for the robotic systems used for 

neurologic injuries, Marchal-Crespo and Reinkensmeyer divide the control approaches into 

four groups: assisting, challenge-based, simulating normal tasks, and non-contact coaching 

[57]. 

In the assisting control paradigm, the robot moves the patient’s injured limb in a predefined 

direction (trajectory) to stretch the limb’s muscle [58-61], to induce brain plasticity [62,63], 

and to help the motor system rebuild the unassisted motor skills [64,65]. The first and most 

common method for this approach is impedance control [57]. Impedance control (which will 

be discussed in more detail later in this chapter) allows following the specified trajectory 

with some deviation, depending on the impedance gains. Other methods include assistance 

by passive and/or active counterbalancing to support the patient’s motion [66-68], and 
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EMG-based assistance, for supporting the desired motion detected by the EMG signals read 

from the muscles [69,70]. 

The challenge-based controllers are those that provide resistance against the movements of 

the patient in order to strengthen the muscles. The most common types of these controllers 

are “resistive controllers” [71,72] which apply forces to oppose the movement of the patient, 

and “error-amplification controllers” which tend to increase the error of following a 

specified trajectory [57]. One can see that this is the exact opposite of assisting controllers 

which tend to help the patient to minimize the error. 

The third approach is based on simulating the every-day activities of real-life using haptic 

interfaces to provide a safer training tool before doing them in real-life [73,74]. And finally, 

the fourth approach uses the robot for directing and encouraging the exercises performed by 

the patients. The reason for using a robot instead of a simple computerized system is that the 

research has proved that patients respond better to a “physical embodiment” of the 

intelligence [75]. 

Another problem in control of rehabilitation robots that Marchal-Crespo and Reinkensmeyer 

reviewed is trajectory planning [57]. Defining the desired trajectory is important in that it is 

required in most of the rehabilitation control paradigms mentioned above. In fact, among the 

methods of the first two paradigms (which are more relevant to the present research), only 

the resistive controller algorithm does not require a defined desired trajectory. Various 

methods have been suggested for determining the desired trajectory, including the use of 

pre-recorded trajectories from healthy subjects [76,77], using pre-recorded trajectories 

from therapist’s teaching [74,78], mathematical model of human movements using 

minimum-jerk algorithm [79], and several other algorithms reviewed in [57].  

Marchal-Crespo and Reinkensmeyer have based their review on high-level concept of robot 

control; i.e. on how the control algorithm can assists in motor therapy. However, these high-

level control approaches are always implemented by using low-level control of the robotic 

systems, i.e. position control, force control, etc.  

As mentioned earlier, among the four control paradigms mentioned above, the proposed 

robotic system is more related to the first and second paradigms. From the above review one 

can immediately conclude that for trajectory following methods two low-level control 

approaches which are necessary to investigate are position control and impedance control. 

For resistive control which is a non-trajectory-based controller, it will be shown that it can 

be derived as a special case of impedance control. 

These low-level control methods are investigated in the following sections. 
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5.2 Control of Cable-Driven Robotic Systems 

For a simplified model of cables, assuming they are rigid elements, the control design of 

cable-driven robots is essentially the same as conventional robots, and almost all control 

methods of conventional robots reported in literature can be applied to the cable robots. 

With this simplified model, the only problem is resolving the redundancy, or in other words, 

distributing the tensions among the cables to achieve a specified resultant force requested 

by control logic. 

Early researches by Agrawal et. al. [80,81] are examples of this basic approach. In [80] they 

investigated two standard robotic controllers, namely Lyapunov-based controller and 

feedback linearization controller, for position control of cable robots. Further, in [82] they 

extended their Lyapunov-based method to incorporate the tension limits. 

Another step in control of cable robots is to consider the robot stiffness. This is especially 

necessary for implementation of compliance and force control methods. In [83], Khosravi 

and Taghirad considered the elasticity of cables as part of the model used for their proposed 

Lyapunov-based control design. However, as Behzadipour and Khajepour showed [84], cable 

elasticity contributes only one part of the total stiffness of the cable-driven robots. A more 

sophisticated model was proposed by Yu et. al. [85] for the purpose of simultaneous position 

and stiffness control of the robot. In their work, the position controller was designed using 

the abovementioned methods and then they took advantage of the redundancy such that by 

changing the antagonistic force in the cables through an optimization algorithm, it achieving 

a desired stiffness became possible. 

For the rehabilitation application, as discussed earlier, impedance control is one of the most 

important control approaches. However, almost no impedance control logic proposed 

specifically for cable-driven robotic systems (considering stiffness, etc.) has been reported in 

literature. In the following sections of this chapter, the stiffness of multibody cable robots is 

formulated, and then position control and impedance control are designed and 

implemented. 

 

5.3 Stiffness of Multibody Cable-Driven Robots 

The formulation of the stiffness of multibody cable-driven robots is based on Behzadipour 

and Khajepour’s method for obtaining stiffness of rigid-body cable robots [84]. Rewriting Eq. 

(4.12): 

:¤¥¤ = ¦¤                                                                          (5.1) 
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for a set of generalized coordinates α, the stiffness matrix K can be obtained by taking 

derivative of the external wrench with respect to α: 

§ = ¨¦©¨ª = :¤ ¨¥©¨ª + ¨:©¨ª ¥¤                                                         (5.2) 

But since 

¨¥©¨ª = ¨«©¨¬ ¨¬¨ª = ¨¥©¨¬ :¤6                                                               (5.3) 

in which ¬ = �¢�, … , ¢Z� �6 is the vector of cable lengths, we have: 

§ = :¤ ¨­©¨¬ :¤6 + ¨:©¨ª ¥¤                                                             (5.4) 

The term 
¨¥©¨¬   can be substituted by: 

¨¥©¨¬ = ® = diag�`�, … , `Z� �                                                         (5.5) 

where ki’s represent the total stiffness along the cable resulted from cable elasticity in series 

with the closed-loop control. 

Finally, K can be expressed as: 

§ = :¤®:¤6 + ¨:©¨ª ¥¤                                                              (5.6) 

Indeed, due to the dependence of AL on position, the stiffness matrix is not constant and it 

changes with the generalized coordinates, as well as with the cable forces set by control 

algorithm. 

The extra term in right hand side of Eq. (5.6) compared to the renowned formulation of 

stiffness proposed by Salisbury for the purpose of stiffness control [86] is what Li et. al. 

called “the changes in geometry through the differential Jacobian matrix, and externally 

applied forces” [87]. In other words, the stiffness matrix cannot be transformed from one 

space to another (in this case from actuator space to generalized coordinate space) merely 

by Jacobian multiplication, and a second term (which depends on forces) is required. 

 

5.4 Position Control 

5.4.1 Actuator Model 

The first step for position control design is to obtain a dynamic model of the actuators. The 

electrical motors used for the robot are DC brushless motors. Neglecting the dynamics of the 

electrical part (due to the fact that it is much faster compared to the mechanical part), a first 

order linear model can be used: 
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^°±²° + ³°±° + °́aµ¶B�±°� = ·°                                                    (5.7) 

where mm and bm are the equivalent mass and linear damping coefficient, fm is Coulomb 

friction force, and um and vm (i.e. input and output) are the motor torque and velocity, 

respectively. 

The parameters mm, bm, and fm are unknown and are to be determined. For this purpose, a 

parameter estimation procedure using least squares has been performed. Pulses with 

different amplitudes were chosen as inputs in order to identify the nonlinearity of the 

system more accurately. The input signal is depicted in Figure 5-1 and the estimated 

parameters are listed in Table 5-1. Note that the parameters are converted from rotational to 

the equivalent translational values.  

Figure 5-2 shows the measured output (velocity) together with the response of the 

estimated system. As seen from the figure, the error in transient response of the model is 

very small, whereas the steady state error in some cases is relatively large. This can be 

explained by the fact that the transient response is resulted from the linear part of the 

dynamics, i.e. from the linear damping. On the other hand, the steady state response of the 

system is heavily dependent on the Coulomb friction, which has been considered constant 

here, but the experiments have proven that due to different mechanical effects it changes 

considerably. The other source of error is that the motors selected, their inertia (Table 5-1), 

and their gear ratio of 10:1 (which causes the motor-side shaft inertia multiplied by 100) are 

all significantly larger than what is suitable for this application. In other words, the motors 

are for heavy-duty purposes, not for the tasks demanding high precision.  

 

Table 5-1. The estimated parameters of the actuators 

Parameter Estimated Value Unit 

mm 25.23 kg 

bm 175.56 Ns/m 

fm 11.13 N 
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Figure 5-1 Input waveform used for parameter estimation of the actuator 

 

 

Figure 5-2 Comparison of measured data and output of the estimated model of the actuator 

 

5.4.2 Dynamics 

The Lagrangian dynamics of the arm (Eq. (5.1)) can be reformulated as: 

j¸�ª�ª¹ + 4¸�ª, ª² � = :¤¥¤                                                         (5.8) 

where Ha is the inertia matrix and Ca includes gravity and other velocity-related terms. 

For the ith actuator, using Eq. (5.7) one can write the dynamic equation as: 

^°¢ ¹! + ³°¢ ²! + °́aµ¶Bº¢²!» = ·! − ¼!                                                  (5.9) 

where we used ±° = ¢²! .  
Now using duality: 
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:¤6ª² = ¬²                                                                                   (5.10) 

Substituting Eq. (5.10) in Eq. (5.9) and writing in matrix form: 

^°:¤6ª¹ + ;^°:² ¤6ª² + ³°:¤6ª² + °́aµ¶Bº:¤6ª² »> = � − ¥¤                        (5.11) 

Substituting ¥¤ in Eq. (5.8): 

;j¸�ª� + ^°:¤:¤6>ª¹ + ;4¸�ª, ª² � + ^°:¤:² ¤6ª² + ³°:¤:¤6ª² + °́:¤aµ¶Bº:¤6ª² »> = :¤�  

(5.12) 

By taking 

j = j¸�ª� + ^°:¤:¤6                                                            (5.13) 

and 

4 = 4¸�ª, ª² � + ^°:¤:² ¤6ª² + ³°:¤:¤6ª² + °́:¤aµ¶Bº:¤6ª² »                            (5.14) 

the Eq. (5.8) becomes: 

j�ª�ª¹ + 4�ª, ª² � = �¤                                                         (5.15) 

Eq. (5.15) is in the standard form of robotic system dynamics for the control design. In the 

following section, this equation is used to propose a control law for the position control task. 

Henceforth �¤ = :¤� is referred to as the resultant control input. 

5.4.3 Control Design 

The control design problem for position control is essentially the problem of tracking a 

desired trajectory in the generalized coordinate space, αd. Although they are nonlinear, the 

special from of the dynamic equations of the robotic systems (Eq. (5.15)) enables us to use 

feedback linearization method [88] to design control for a globally linearized system and 

apply it to the nonlinear system. In this method (which is a classic approach for control of 

robotic systems [89], and has also been used for control of cable robots [80]), a nonlinear 

feedback is used to globally linearize the system dynamics. For this aim, first we write the 

resultant control input, uL, as a function of the states of the system: 

�¤ = :¤� = j�ª�½ + 4�ª, ª² �                                                 (5.16) 

Assuming an exact model, one can conclude that: 

ª¹ = ½                                                                          (5.17) 

which is the linearized dynamics of the system. The control law usually used for Eq. (5.17) is 

a simple PD control: 
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 ½ = ª¹ ¨ + §¾�ª¨ − ª� + §��ª² ¨ − ª² �                                      (5.18) 

Substituting in Eq. (5.17): 

�ª¹ ¨ − ª¹ � + §¾�ª¨ − ª� + §��ª² ¨ − ª² � = $                                    (5.19) 

From the form of Eq. (5.18) it is evident that taking KP and KD as diagonal matrices with 

positive entries, nDoF decoupled equations are obtained, each of which asymptotically stable. 

For the present application, the tests have proved that an integral term is also required to 

compensate the steady state error resulting from parameter uncertainties and unmodeled 

dynamics. In this case, Eq. (5.18) is extended to the following form: 

½ = ª¹ ¨ + §¾�ª¨ − ª� + §��ª² ¨ − ª² � + §¿ À�ª¨ − ª��¼                      (5.20) 

Note that in Eq. (5.20), choosing positive-definite matrix coefficients is not sufficient to 

guarantee stability. However, by taking KP, KD, and KI to be diagonal matrices, one can obtain 

decoupled third-order equations, and then choose the matrix components such that each 

equation becomes stable. 

From Eqs. (5.16) and (5.20) the resultant control input is obtained as: 

�¤ = j�ª��ª¹ ¨ + §¾�ª¨ − ª� + §��ª² ¨ − ª² � + §¿ À�ª¨ − ª��¼� + 4�ª, ª² �          (5.21) 

The last step is to obtain the control input of the actuators, u. Since �¤ = :¤�: 

� = :¤��¤ + ÁG:                                                               (5.22) 

where κ should be selected such that the tensions in all of the cables be in a desired range. (If 

the tension is too high there will be risk of snapping, and if the tension is too low, the cables 

might become slack). 

Due to the existence of antagonistic forces, normally the total forces in the cables are much 

larger than the dynamic forces. Therefore, the desired range for ui’s can be approximated by 

the range given for ti’s, [tmin,tmax]. As a result, for each actuator there will be a κmax,i that 

results in ·! = ¼°¸Â and a κmin,i that gives ·! = ¼°ÃÄ: 

Á°ÃÄ,! = ÅÆÇÈ8:©,LN �©�É,L 	,					µ = 1, … , B���                                      (5.23) 

Á°¸Â,! = ÅÆÊË8:©,LN �©�É,L ,					µ = 1, … , B���                                       (5.24) 

where :¤,!�  represents the i’th row of :¤�. 

The selected κ must satisfy two sets of conditions: Á > Á°ÃÄ,! 	 and Á < Á°¸Â,! . In this work, we 

select κ according to the following equation: 
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Á = °¸ÂL�ÎÆÇÈ,L��°ÃÄL�ÎÆÊË,L�� 	                                                   (5.25) 

When the system is within the tensionable workspace boundaries, but there is no κ that can 

satisfy the above set of conditions, the robot is stopped. This occurs when the system has 

gone too close to the boundaries, and the risk of instability is high. 

The block diagram of the proposed control law is depicted in Figure 5-3. 

 

 

 

Figure 5-3 Block diagram of the proposed position control logic 

 

 

5.5 Impedance Control 

5.5.1 History and Formulation 

In many robotic tasks the end-effector is required to physically interact with its 

environment. This interaction can be in the form of kinematic constraints that the 

environment imposes on the robot motion, or in the form of dynamic contact between robot 

and environment. To apply position control for such tasks, a very accurate model of the 

interaction is required, which in turn demands an accurate modeling of the physical 

environment. It is not hard to conclude that this approach is not practical. 

To solve this problem, interaction control methods have been introduced. The goal of these 

methods is to provide some compliance in the interaction between the robot and the 

environment. One way to achieve this compliance is to use flexible materials in the structure 
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of the robot by designing soft robot links and elastic joints. This method is called passive 

interaction control, and since there is no need for force and torque sensors, they are 

considered economical. However, as compliance is not being controlled in this method and 

the mechanical behavior of the manipulator is fixed, this approach suits only a limited class 

of applications. Indeed, when a specific compliant behavior is expected from the robot, 

controlling the compliance becomes inevitable. This approach is called active interaction 

control and it usually requires the measurement of the interaction force with the 

environment to modify/generate the desired trajectory of the robot. 

Impedance control is a type of interaction controllers proposed by Hogan [90] as a 

generalization of stiffness control method developed by Salisbury [86]. In stiffness control 

the static response of the robot to its interaction with the environment is controlled such 

that the robot acts similar to a mechanical spring, while in impedance control the dynamics 

of the robot is controlled such that its response to the interaction simulates a mass-spring-

damper system. In other words in impedance control the control law ensures that the 

following equation is satisfied: 

Ïºª¹ − ª�¹ » + Ðºª² − ª�² » + Ñ�ª − ª�� = ÒÓ                                        (5.26) 

where ª� is the “equilibrium” trajectory, fe is the environment generalized force applied to 

the robot, and Λ, Ψ, and Γ are inertia, damping, and stiffness matrices, respectively. 

The simplest way to achieve this formulation is to take the control input as: 

� = −ÒÓ = Ï�ª¹ ¨ − ª¹ � + Ð�ª² ¨ − ª² � + Ñ�ª¨ − ª�                             (5.27) 

in which the equilibrium trajectory has been taken the same as the desired trajectory. In 

practice, usually Λ is taken to be zero [91], and the resulted controller (spring-damper) will 

be very similar to a PD controller. 

Note that for the control law of Eq. (5.27) there is no need for environment force 

measurement. Although the control law is very simple, it works with acceptable 

performance in a large class of applications, where the robot inherent impedance and the 

friction are negligible compared to the desired impedance and the interaction forces. 

In human-robot interaction problems, usually the desired impedance is preferred to be low. 

One way to achieve this is to design low-impedance robots with backdrivable actuators. 

However, development of such robots involves many problems both in design and in 

manufacturing. Therefore, it is desirable to improve the control logic such that the 

conventional robots can be used in such applications. 

The first solution for this problem is to use force sensors to take a feedback from the 

environment forces. Having the exact interaction force applied to the robot’s end-effector 
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improves the controller by making the system less sensitive to the robot impedance and 

frictions. However, as shown in [91], using force feedback tends to make the system non-

passive which leads to instability in interaction with some environments.  

A method proposed for solving the problem of loss of passivity in using of force feedback is 

position-based impedance control or admittance control [92]. The main idea in this method is 

that the position control loop, in the normal way used in robotic control, is utilized here, but 

with the difference that the input trajectory to the position control loop is not the desired 

trajectory. Instead, the input trajectory of the position control loop is set by an outer control 

loop. The outer loop determines the “new” trajectory that the position control loop is to 

follow using the desired impedance and feedback of the force sensor. Hence the outer loop 

can be named “impedance loop”. A schematic of this control scheme is depicted in Figure 5-4. 

In this figure, αe is the new desired position set by impedance loop and is obtained from Eq. 

(5-26) by setting ª� = ª¨ and ª = ªÓ. 

Due to benefits of admittance control, this is the approach taken in this work for interaction 

control of the robot with humans. 

 

 

Figure 5-4 Admittance control scheme 

 

 

5.5.2 Impedance Control of the Multibody Cable-Driven Robot 

At this point, we are able to combine what was discussed in the previous sections to design 

an impedance control for the robot. The impedance control proposed for this application is 

essentially the two-loop control logic of Figure 5-4, where the position control loop is 

embedded from the diagram of Figure 5-3. Naturally, in the case of cable robots, there are 

two specific problems (compared to the general scheme of Figure 5-4) that should be 

addressed. The first problem is ensuring positive cable tensions and resolving redundancy 
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which has already been considered in the position control law proposed. The second 

problem, as mentioned before, is the inherent stiffness of the structure of the cable robot 

which may interfere with the stiffness controlled by the impedance control loop. This is due 

to the fact that the position feedback for the position control loop is taken from the outlet 

points of the winches, and not from the end-effector. In other words, even if the cable spools 

of the winches are fixed (or equivalently: the position control loop responses instantly) the 

position of end-effector can be changed by applying external forces. This displacement is due 

to finite stiffness of the robot, which was obtained in Eq. (5.6): 

δª = §8WδÒÓ                                                           (5.28) 

This stiffness is in series with the stiffness of impedance control. Thus the total stiffness Γt 

the user feels will be: 

Ñ�8W = §8W + Ñ8W                                                         (5.29) 

Therefore, from Eq. (5.29) one can conclude that by taking: 

Ñ8W = Ñ̈ ÓÕ8W − §8W                                                         (5.29) 

the effect of the inherent stiffness of the cable robot can be eliminated. Note that normally 

the stiffness of the robot is larger than the desired stiffness of impedance control and thus Γ 

will be positive. 

The final variable required for impedance control is the environment force fe. The 

environment force in the case of this application is the patient’s or operator’s muscle force 

trying to move the robot in a specific direction. This force can be obtained in generalized 

coordinates using the dynamic equation of the arm (Eq. (5.8)) and the kinematic formulation 

of section 4.4. In the presence of an external force Eq. (5.8) becomes: 

j¸�ª�ª¹ + 4¸�ª, ª² � = :¤¥¤ + ÒÓ                                               (5.30) 

Considering that all the other terms in Eq. (5.30) can be measured and calculated, fe can be 

obtained from this equation. Note that since the velocities and accelerations in this 

application are normally low, in practice the system can be approximated by a quasi-static 

system. This has the advantage of eliminating the acceleration term (which is usually too 

noisy to be usable) as well as the arm inertia matrix which varies from one person to the 

other. 

From what was discussed above and in the previous sections, the block diagram of the 

impedance control logic proposed for the cable robot is depicted in Figure 5-5. 
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Figure 5-5 Block diagram of implemented impedance control 

 

5.5.3 Teaching-Playback and Resistive Controller Schemes 

In many robotic applications it is desirable that the robot can be “taught” by a human 

operator, and then replicate the learned task. This method is very common for conventional 

robots and for applications such as spray painting where the desired trajectory is much 

easier to be given by a human operator instead of being defined mathematically [93]. It is 

essential for the robots used in this method to need low guiding force, so that the operator 

can handle them easily. 

In the case of cable robots, the major difference compared to conventional robots is that 

even in the teaching phase the cables must remain in tension. One way to overcome this 

issue is to set the cable tensions to be comprised merely of the antagonistic part (i.e. ¥¤ = ÁG:). In this scheme, the cable forces at any position will cancel out each other and the 

resultant force on the arm will be the operator’s force. However, note that this approach is 

basically an open-loop control scheme and has the major drawback of being highly sensitive 

to the measurement errors (in this case position measurement which leads to error in nA). 

Furthermore, normally the antagonistic forces tend to be much larger than the operator’s 

force and thus in the presence of error, the difference between the resultant force and the 

operator’s force (due to measurement errors) can be significant. 

Another way which will be used in this project and does not have the drawbacks of the 

previous method is using the admittance control scheme. The main idea is the same: to use 

the feedback from the operator’s force for enforcing a prescribed behavior to the robot. The 
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difference from the general impedance control is that in this case the robot should not have 

any stiffness and as the operator releases the robot, it does not move back to the equilibrium 

position. In other words: Ñ = $. The essential term here is the damping matrix Ψ, which 

determines the velocity of the system against a specific external force. The other gain matrix, 

Λ, can also be set to zero, unless feeling a “sense of inertia” of the system for the operator is 

desirable. 

What was discussed above for the teaching phase of the teaching-playback scheme is also 

applicable to the concept of resistive force controller. As explained before, in the case of 

resistive force controller, the robot resists against any motion that the patient applies. 

Similar to the teaching phase, this resistance can be generated by impedance control and 

specifically the damping term. As the damping coefficients (elements of Ψ) increase, the 

resistance against the motion of the patient’s limb will be amplified. Note that there is no 

desired trajectory for this scheme. 

 

5.6 Experimental Results 

Having designed control logics for position and impedance control of the robot, the next step 

will be implementation of the control in real-time. 

The system is controlled via Labview® Real-Time Module with a host PC (CPU: AMD 

AthlonTM 64, 2.20 GHz - RAM: 1.00 GB) operating on Windows and a target National 

Instrument PXI-1042Q computer (CPU: Intel CoreTM 2, 2.16 GHz - RAM: 512 MB) running 

Labview RT operating system. The two computers are connected using a crossover cable. 

The Labview model is created in the host computer and then uploaded to the target 

computer to perform data-acquisition and real-time control tasks through its integrated PXI 

cards. The sampling rate of the system is 50 Hz. 

5.6.1 Position Control Experiment 

Naturally, for any experiment, the motion of the robot must be kept within the boundaries of 

the tensionable workspace. As a result, for position control task the desired positions have to 

be defined considering the boundaries of the tensionable workspace obtained by use of the 

methods suggested in the previous chapter. Since the tensionable workspaces were 

presented in 2-D plots, the same approach is taken here and each position control 

experiment is designed in 2-D within the tensionable workspaces obtained in Chapter 4. 

Indeed, maintaining a certain distance from the boundaries of the tensionable workspace is 

compulsory. As noted in the previous chapter, in the regions close to the boundaries at least 
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one of the components of the null space vector becomes very small. Thus, in order to 

maintain the positive tensions, the tension of the other cables must be increased. Naturally, 

the high actuator forces tend to make the system unstable. To improve the stability, the 

control gains have to be reduced, which in turn affects the transient response of the system. 

Therefore, there is a trade-off between the transient response and the size of the subspace of 

the tensionable workspace in which the controller remains stable. 

With regard to the above discussion, the position control tests are designed as: 1) starting 

from the zero position;  2) passing through three via-points which are chosen as close as 

possible to the boundary;  3) returning to the zero point. The 2-D results are shown in 

Figures 5-6 to 5-11 and the corresponding 3-D path of the end point of the arm are depicted 

in Figures 5-12 to 5-17. The controller gains have been chosen as (with α in radians): 

§Ö = diag�350,500,2200,800� 
§� = diag�45,25,50,35� 
§¿ = diag�60,45,200,50� 

It can be seen in Figures 5-6 to 5-8 that the tracking error is much larger compared to those 

of Figures 5-9 to 5-11. In all cases of the first set of figures (i.e. Figures 5-6 to 5-8) one of the 

angles is θ. This leads us to assume that θ is “the most difficult” direction to control. Also, the 

fact that in each 2-D experiment, θ is the dimension with more tracking error (especially in 

Figure 5-6 where error of φ is much smaller than θ) supports this assumption. To prove this, 

we calculate the singular values of the MIMO (Multi-Input Multi-Output) system using 

Singular Value Decomposition (SVD) method. The dynamic model of the robot (Eq. 5.15)) 

was linearized and the singular values in different frequencies were obtained and plotted in 

Figure 5-18. The output directions corresponding to the singular values confirm that the 

smallest singular value correspond to the θ direction. For example at ω = 1 rad/s: 

Ù = diag���, ��, �	, �
� = diag�0.46,0.97,9.15,1.71�	 
ÛÙ = s 0.974 0.163−0.124		 0.952 		0.047 −0.1530.025 0.232−0.036 −0.0380.183 −0.229 0.997 0.037−0.032		 0.907t 

where Σ is the matrix of singular values and σi is the i’th singular value. UΣ is the matrix of 

output directions. 
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Figure 5-6. Position Control in coordinates θ and φ.  Top: θ vs. time, center: φ vs. time, 

bottom: motion in θ-φ plane: boundaries (solid), desired (dashed), real (dotted) 
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Figure 5-7. Position Control in coordinates θ and ψ.  Top: θ vs. time, center: ψ vs. time, 

bottom: motion in θ-ψ plane: boundaries (solid), desired (dashed), real (dotted) 
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Figure 5-8. Position Control in coordinates θ and η.  Top: θ vs. time, center: η vs. time, 

bottom: motion in θ-η plane: boundaries (solid), desired (dashed), real (dotted) 
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Figure 5-9. Position Control in coordinates φ and ψ.  Top: φ vs. time, center: ψ vs. time, 

bottom: motion in φ -ψ plane: boundaries (solid), desired (dashed), real (dotted) 
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Figure 5-10. Position Control in coordinates φ and η.  Top: φ vs. time, center: η vs. time, 

bottom: motion in φ -η plane: boundaries (solid), desired (dashed), real (dotted) 
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Figure 5-11. Position Control in coordinates ψ and η.  Top: ψ vs. time, center: η vs. time, 

bottom: motion in ψ-η plane: boundaries (solid), desired (dashed), real (dotted) 
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Figure 5-12. 3-D path of the end point of the arm in θ-φ experiment 

 

 

 

Figure 5-13. 3-D path of the end point of the arm in θ-ψ experiment 
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Figure 5-14. 3-D path of the end point of the arm in θ-η experiment 

 

 

 

Figure 5-15. 3-D path of the end point of the arm in φ-ψ experiment 

 



105 

 

 

 

 

Figure 5-16. 3-D path of the end point of the arm in φ-η experiment 

 

 

 

Figure 5-17. 3-D path of the end point of the arm in ψ-η experiment 
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A useful parameter that is usually used as a measure of controllability of the MIMO system in 

different directions is called “condition number” and is the ratio of the largest singular value 

(which in this case is in the ψ direction) to the smallest one (which is in θ direction). 

Condition number of the present system in terms of frequency has been depicted in Figure 5-

19. As can be seen from the figure, the minimum condition number is 19.2, which is 

considerably large. As a result, the system is ill-conditioned. In order to improve the 

performance in θ direction, it is suggested to change the locations of the winches. 

 

Figure 5-18. Singular values at the starting point of the robot 

 

 

Figure 5-19. Condition number corresponding to the singular values at the starting point of 

the robot 
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5.6.2 Impedance Control Experiment 

Impedance control law, as proposed in section 5.5, is based on the estimation of the external 

force and controlling the motion of the robot accordingly. To verify that the motion of the 

robot against an external force is equal to what is expected from impedance control, a force 

sensor was attached to the arm and the operator’s force was applied through this sensor 

(Figure 5-20). Using this method, the external force can be measured and compared with the 

force according to the desired impedance, which is calculated from:                                     Ï�ª¹ ¨ − ª¹ � + Ð�ª² ¨ − ª² � + Ñ�ª¨ − ª�. 
To perform the experiment, the arm is moved from the starting position by the force applied 

to the sensor and then is released. The stiffness part of the impedance control (provided that 

it is large enough to overcome the Coulomb friction) will move the system back to the 

original position. 

 

 

Figure 5-20. Impedance control experimental set-up 

 

The impedance gains have been selected as: Ð = Ñ = diag�1200,1350,600,700�, and Ï = $. 

(As mentioned before, because of the high level of measurement noise on the acceleration 

signal, usually the impedance inertia matrix is taken to be zero). The results are shown in 

Figures 5-21 to 5-23. The experiment was not done for ψ direction, as the moment arm is too 
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small and applying an external force not having projection on any of the three other 

generalized coordinates is very difficult. 

 

 

 

As can be seen from all three tests, the motion starts after the magnitude of the external 

forces reaches a certain value. This value is in fact a deadband set to prevent the vibration of 

the system as a result of presence of noises and errors. As soon as the force is removed, the 

system goes back to the original position with acceleration and velocity set by ψ and Γ. 

The high level of oscillations in the “calculated” forces is partly due to the velocity 

measurement noise, and partly (and more significantly) because the beam to which the arm 

is connected is not completely fixed and can have small rotations. Due to high length of the 

beam, these small rotations result in rather large deflections in the connecting point of the 

 

 

Figure 5-21. Impedance control in θ direction.  Top: response of the robot; bottom: 

comparison of measured applied force and the force calculated from the desired impedance 
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arm, which in turn appears as the oscillations in position measurements. However, 

neglecting these inaccuracies, one can see that the measured force and the calculated 

impedance force have the same trend and close magnitudes. This proves the functionality of 

the designed impedance control logic. 

 

 

 

 

Figure 5-22. Impedance control in φ direction.  Top: response of the robot; bottom: 

comparison of measured applied force and the force calculated from the desired impedance 
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5.6.3 Teaching-Playback Experiment 

As discussed before, in teaching-playback scheme, the teaching phase can be considered as a 

special case of impedance control where Ñ = $, and the playback phase is essentially the 

same as position control. 

The teaching-playback experiments were done using the same procedure performed for 

impedance control. The results are depicted in Figures 5-24 to 5-26. Since in this case the 

unfiltered calculated force is too noisy to be informative, the filtered signal is plotted as well. 

As can be seen from the figures, (except for θ due to the small singular value, as discussed 

before), the position error (playback vs. teaching) is close to zero, which proves the good 

performance of the position control loop. As for impedance control, the error in position 

control of θ also affects the performance of the impedance control, as the difference between 

measured force and the calculated impedance force is the largest in the case of θ. This is not 

 

 

Figure 5-23. Impedance control in η direction.  Top: response of the robot; bottom: 

comparison of measured applied force and the force calculated from the desired impedance 
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the only source of error, as in the other two coordinates, although the difference is smaller, it 

is still significant. The other source of error is that the generalized coordinates are calculated 

from kinematics and based on the measurement of cable length changes, which in turn are 

obtained from the motor resolvers. As discussed before, the measurement of the cable 

lengths using the resolvers has much less accuracy compared to the proposed external 

encoder mechanism. The inaccuracy in length measurement is amplified by the high 

sensitivity of the system. The sensitivity to this error can be obtained by calculating dl/dα, 

which are the elements of the transpose of the structure matrix. For example, at the start 

position: 

d¬dª = :6 = ���
�� −93.12 17.38−249.84 −22.85 −9.29														 0					27.93												 0				312.39 −49.44147.97 198.94−314.89 −52.68

−19.61 55.183.21 								0−2.36 −115.67 
��
��
 

 

 

 

 

Figure 5-24. Teaching-playback in θ direction.  Top: comparison of the positions; bottom: 

comparison of measured applied force and the force calculated from the desired impedance 

(unfiltered and filtered) 
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As can be seen, the sensitivity in θ direction is small. But in other directions, and especially 

for ψ, the sensitivity seems large. Numerically, using pseudo-inverse of AT for calculation of 

four angles from five cable length measurements, Ü¢� = 1	cm (i.e. 1 cm of error in l1) will 

result in: 

ÞÜ�ÜßÜ�Ü�à = �:6�� ���
��100000 
��

�� = s−0.01820.0131−0.2867−0.0380t 

or an error of 16.4° in calculation of ψ. This relatively high sensitivity to the error will cause 

inaccuracies in the calculation of the generalized coordinates, and as a result to the 

estimation of the operator’s force. 

 

 

 

 

 

Figure 5-25. Teaching-playback in φ direction.  Top: comparison of the positions; bottom: 

comparison of measured applied force and the force calculated from the desired impedance 
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5.7 Summary 

In this chapter, rehabilitation-oriented control algorithms for the designed multibody cable-

driven robot were discussed. The first control method was position control in which, using 

the Lagrangian dynamic formulation proposed in the previous chapter, the standard 

feedback linearization control for the robotic systems was utilized and applied. Next, 

because of the importance of compliance in the control of the robots interacting with 

humans, a position-based impedance control was proposed, in which the inherent stiffness 

of the multibody cable-driven robots was formulated and considered. The experimental 

results of the proposed control methods prove the effective functionality of the control laws. 

The position control, except in one of the four generalized coordinates, is with very low 

error, and the impedance control, although with some error in magnitude, shows a correct 

 

 

Figure 5-26. Teaching-playback in η direction.  Top: comparison of the positions; bottom: 

comparison of measured applied force and the force calculated from the desired impedance 

(unfiltered and filtered) 
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trend in simulating the response to the operator’s force by a mechanical impedance. The 

main source of errors in the results is from the hardware, specifically from the vibrations of 

the beam connecting the arm to the ground, and from the measurement of the cable lengths 

from the motor resolvers (instead of the external encoders). Fixing these problems will 

eliminate most of the associated errors.  
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Chapter 6   Summary, Discussion, and Future 

Works 

 

In this thesis, a novel rehabilitation robotic system was proposed and various problems 

accompanying its development were studied and investigated. The two groups of the 

therapeutic robots, namely end-effector based robots and exoskeletons, each has specific 

limitations. The proposed system is an attempt to overcome these drawbacks. 

This chapter presents a brief summary of the steps taken to develop the new robotic system. 

Moreover, the results obtained during this research will be discussed and some guidelines 

for future works will be suggested. 

 

6.1 Summary 

Along with advantages such as reconfigurability and ability of working for multipurpose 

tasks, one of the main motivations of using cable-driven robots for rehabilitation aids was 

their ability in driving a mechanism by stationary actuators. Thereby, they can manipulate 

any DoF without adding any inertia to the driven mechanism. This makes cable robots an 

ideal choice for the therapy of human limbs. 

The major problem of cable-driven mechanism is guaranteeing their tensionability. The 

conditions of tensionability were well-investigated for the rigid body cable-driven 

mechanisms; but this has not the case for the multibodies. Since the human limbs are 

multibodies, the theories of tensionability had to be reviewed and extended. In this way, the 

necessary conditions for the cable number and distribution of the cables over the links of a 

general multibody were investigated and a set of conditions that have to be satisfied so that 

the system can potentially be made tensionable was provided. The sufficiency of these 

conditions is a much more complex problem, and it was studied for two- and three-link 

multibodies and the sufficient conditions for these mechanisms were proved. Using this 

study the necessary number of cables and distribution of them for tensionability of the 

proposed mechanism was obtained. 
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Having the number and distribution of the cables, and a suggested design for locations of 

winches and the cable connection points, the next step was to determine the tensionable 

workspace of the robot. For this part, again, the theory of the rigid bodies was extended to 

multibodies. A Lagrangian formulation of the multibody was suggested to minimize the size 

of the structure matrix. This formulation was used for obtaining the boundaries of the 

tensionable workspace and thereby, determining the tensionable regions. The study of the 

proposed design proved that the system is tensionable in a region around the starting point. 

The tensionable region determines the “safe region” for motion of the robot. In other words, 

theoretically the robot can move within this region without risk of collapsing. Having 

determined this region, the next step was controlling the robot. The first control method 

applied was position control for which feedback linearization algorithm was used. Another 

control method which was used due to the rehabilitation application of the robot was 

impedance control. For better accuracy in impedance control the inherent stiffness of the 

cable robot was required, and it was formulated by the extension of the rigid body theories. 

Impedance control was also used for a useful therapy scenario; namely teaching/playback, in 

which the robot “learns” the motion instructed by the therapist and repeats it. 

As the last part of the thesis, the designed controllers were implemented and tested in real-

time. The results show effective performance of the controllers in all three scenarios: 

position control, impedance control, and teaching/playback. 

 

6.2 Discussion and Future Works 

In this thesis it was tried to build the theoretical and practical basis for the concept of using a 

cable robot as a rehabilitation tool. Although much effort was spent on covering all the 

necessary steps for development of an as-complete-as-possible foundation for the 

theoretical and practical aspects of the robot, still many topics remained outside of the scope 

of this thesis. In the following, a brief discussion on what have been accomplished and what 

can complete this work will be presented. 

6.2.1 Design of the Robot 

As the first phase of implementation of the project, instead of the human upper extremity, 

the tests were done on a mechanical arm. Since eventually the robot is expected to work 

with a human subject, the next step will be defining the concept and designing the interface 

through which the cables will be driving the patient’s limbs. The major issue is that the 
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system must be such that no force is applied in the “constrained” directions of the human’s 

joints. In other words the constraint forces have to be very small or zero. One way to satisfy 

this condition is considering seven actuators for each link of the multibody and controlling 

the links as separate rigid bodies. Another way, which seems more practical, is to design an 

interface which is connected to the ground (possibly through the patient’s chair) and 

thereby the constraint forces are not transmitted to the patient’s body. 

Another necessary development is design of the chair. Beside the issue discussed above, the 

importance of the chair is fixing the “zero point” of the mechanism. In other words, in order 

for the robot to “know” the pose of the mechanism, either the patient’s body (or at least the 

part being exercised) must be fixed to the chair, or the displacement of the patient on the 

chair sensed and the new location of the limb is fed to the control system. 

6.2.2 Safety 

According to International Organization for Standardization (ISO) about safety of industrial 

robots (ISO 10218), industrial robots must be isolated from humans and when for any 

reason it is not possible, the robot must be turned off [94]. However, in application such as 

rehabilitation robotics, where the function of the robot is essentially defined for interaction 

with humans, this safety standard is not applicable. Due to the obvious importance of the 

consideration of this subject in rehabilitation robots, several approaches for studying safety 

and reducing the risks of rehabilitation robots have been proposed. Basic methods for 

increasing safety are designing the robot such that mechanically it is incapable of moving to 

positions which may injure the user, using redundant sensors for identifying malfunction of 

other sensors, watchdog timers for checking the controlling computer, and so on [1].  In [95], 

the authors proposed two “fail-safe components”, namely a reflex mechanism and a fail-safe 

sensor for increasing safety of rehabilitation robots. In [96] a method for measurement of 

the threshold of human pain was suggested and used in development of a robotic system 

which can stop the system as necessary. In [97] a risk assessment approach was proposed 

for defining a safety strategy of the robot. In [98] a quantitative method was proposed to 

measure the safety of rehabilitation robots. 

Since the test of the robot on human subjects was out of the scope of this thesis, the safety 

issue was not studied and was not considered in the development of the present system. 

However, for the next stages of development of the robot, defining a safety strategy is 

essential. As the first step, a portable switch can be added such that in the case of any 

abnormal function, the user would be able to turn off the system. The cable connection 

fittings can be selected such that against a certain force they fail and do not apply the force to 
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the user. As briefly reviewed in the above, this subject of safety is new and there is a great 

potential for new methods and strategies to be proposed, especially for a novel system like 

the developed cable-driven robot. 

6.2.3 Number of Cables and Tensionability Conditions 

The study performed in chapter 3 obtained the necessary conditions for a general multibody. 

However, due to complexity of the problem, the sufficiency was proved only for two- and 

three-link multibodies. Extension of the sufficiency to multibodies with more links (and 

possibly the general case) is an interesting topic. The framework suggested which was based 

on using dependency matrices seems very promising for this purpose. 

Also, the cable wrench condition was only considered for planar cases. Considering this 

condition for spatial case can be another challenge for analysis of tensionability of multibody 

cable-driven robots. 

6.2.4 Workspace Analysis 

The formulation developed for analysis of tensionable workspace was general and 

applicable for all multibodies. The challenge here is in solving the complex parametric 

equations for obtaining the expressions of tensionable boundaries. As discussed in chapter 4, 

even for simple multibodies the expressions become so long that they cannot be directly 

shown and used. For higher-order systems, and as the number of parameters increases, 

solving the equations will be a problem, too. 

Another issue in this subject is the application and representation of the obtained 

workspace. In this thesis the workspaces were limited to 2-D, as graphical presentation of 3-

D workspaces is difficult and more than that is impossible. Limiting the workspace to 2-D is 

normally what is done in rigid bodies as well (for example see [46] for “constant-orientation 

workspace”), but motion in more than two DoF especially for the present application is not 

rare, and thus the boundaries of the workspace for such applications must be determined, 

too. 

Designing the configuration of the robot (i.e. locations of winches and cable connection 

points) is another interesting problem that can be studied. As mentioned before, the 

configuration of the robot for this work was based on study of Ghasemalizadeh [29] by use of 

a numerical method for maximizing the size of the workspace. As shown in chapter 5, 

another important factor in selection of robot configuration is the singular values and 

controllability of the robot as a MIMO system. Development of a systematic way for 
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synthesizing cable-driven robots based on various factors affecting their performance can be 

a very interesting subject of research. 

6.2.5 Control 

The first issue in control of the robot is its hardware. As shown in chapter 5, the inertia and 

friction of the motors are considerably high and not suitable for this application. The high 

inertia and friction, beside making the system heavy and slow-response, increase the effect 

of parameter uncertainty and unmodeled dynamics, and thereby decrease the accuracy of 

the system and increase the risk of instability. 

Another hardware issue is use of external encoders. In this work, since the high-speed 

interface of the encoders was not available, the resolvers of the motors were used for 

position measurement. Use of external encoders is much more beneficial both in terms of the 

measurement noise and the error caused by cables winding around the spool. 

Although the implemented position control is accurate enough in other directions, the 

motions involving θ were accompanied by relatively high errors. This was proved to occur 

due to the system being ill-conditioned and required to be redesigned. However, study of 

other multivariable control methods may result in better performance of the controlled 

system. 

Impedance control is essentially a tool to control the interaction of the robot with the 

environment. One of the main topics of research in impedance control is study on the 

passivity of the controlled system, which is an interesting subject for the present robot. Also 

calibration of impedance control gains for different modes of exercise and different 

scenarios of therapy can be another subject of future research. 

Finally, the estimation of the interaction force was based on quasi-static equilibrium of the 

robot. A more sophisticated approach can be estimating the force using a state observer. The 

method proposed in [99] for estimation of force disturbance seems a well-suited approach 

for this purpose. The Nonlinear Disturbance Observer (NDO) suggested is capable of 

estimating the disturbance force without measuring the acceleration. However, the 

formulation in [99] is for a 2-DoF system, and is required to be reformulated for the present 

robot. This also requires having the dynamic parameters (mass, etc.) of the patient, which 

vary from one person to another. A solution is using adaptive methods for feedback 

linearization control of robots, such as the ones suggested in [100-102]. 
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