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Abstract

Packet forwarding is a fundamental task for an Internet router. A routing lookup table 

(LUT) is used to decide where to forward a packet at each router. The routing lookup is a 

rather complicated and slow process and the lookup delay is a bottleneck in high throughput 

routers. An effective strategy to speed up routing lookup is to use a cache to store recent 

routing results for reuse. This thesis proposes an efficient forwarding mechanism with a 

hardware-based LUT and a Multizone Pipelined Cache.

The LUT is implemented with a pipelined TCAM (Ternary Content Addressable Mem­

ory). Our TCAM employs a novel Hardware-based Longest Prefix Matching (HLPM) to 

completely eliminate table management requirements and to reduce the power consump­

tion for short matching prefixes. The cache is a multizone non-blocking pipelined cache 

for IP routing lookup that achieves lower miss rates compared to previously reported IP 

caches and reduces the effective miss penalty by using a very small non-blocking buffer. 

The simulation results of our forwarding mechanism, based on real traffic, demonstrate the 

efficiency of the design.
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Chapter 1

Introduction

With increasing use of the Internet, a more robust, fast, reliable and secure backbone net­

work is required. Some applications such as Voice over IP or QoS, generate huge amount 

of complexity as well. The backbone network is required to transfer and process Internet 

data as fast as possible. Internet routing is one of the fundamental tasks done in a Network. 

Routers receive a packet of data and decide where to forward it. Since this routing process 

is done at each router the packet visits from its source to its destination, the routing speed 

is an important parameter of the whole network performance.

In this thesis a high throughput-power efficient forwarding mechanism is proposed, dis­

cussed and simulated. The forwarding mechanism includes a routing lookup table and a 

routing cache. Content Addressable Memory (CAM) is desirable for the cache and the 

lookup table implementations. The CAM based devices are desirable due to their high 

speed (they can perform a parallel search for a specific pattern, in all entries in a single 

memory access), but are disadvantageous in terms of power consumption and area require­

ments. The hardware presented in this thesis, both for the main lookup table and for the 

cache, saves power through smart search operations. The lookup table is implemented with 

a pipelined Ternary CAM (TCAM). It resolves the Longest Matching Prefix with no table 

management and requires less area compared to other TCAM-based lookup tables. The 

lookup table saves power for short matching prefixes as well as for non matching prefixes.

1
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The other part of the design is the routing cache which is a half-prefix half full address 

cache. Our cache is a Multizone Pipelined Cache (MPC) which has lower miss rates com­

pared to a full address cache and requires less table expansion compared to a full prefix 

cache. We propose two novel table expansion methods in order to reduce the table size 

as well as to increase the locality of the data stored in the cache. Short Prefix Expansion 

(SPE), fully expands the table for short prefixes. MPC uses SPE for table expansion. Also, 

we propose an Expansion Free (EF) method for software based lookup tables to generate 

cacheable prefixes during lookups and forward those prefixes to the cache. The EF method 

fully eliminates table expansion requirements for prefix caches with software based lookup 

tables. MPC also employs a very small non-blocking buffer and reduces the effective cache 

miss penalty.

This thesis dissertation is organized as follows. A brief background on IP forwarding 

and Internet router architectures is given in Chapter 2. Also the motivations for designing 

a more efficient forwarding mechanism are discussed. Chapter 3 relates to CAM based 

solutions for fast routing lookups. The main CAM functionality is explained and a brief 

description of several previously reported low power CAM designs is given. Chapter 4 

describes the novel hardware solution proposed in this thesis for a high throughput routing 

lookup. Chapter 5 describes the novel cache design used in our forwarding mechanism. 

The complexities of routing caches and their impact on routing table implementations are 

discussed in detail. The simulation and evaluation results of our forwarding mechanism are 

given in Chapter 6. Finally Chapter 7 concludes the thesis dissertation and presents future 

research directions.

2
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Chapter 2 

Background and Motivation

The Internet has become a part of everyday life for many people since the early 1990s. The 

Internet mainly provides information exchange and communication services such as web 

browsing and e-mail, from one point to another. The backbone network is built of high 

capacity transmission, multiplexing and signal switching facilities to provide transmission 

paths for logical connectivity and requirements for all Internet services. Figure 2.1 depicts 

an example of an Internet network. Internet routers are responsible to route packets from 

their sources to their destinations. The backbone routers (core routers) are responsible 

for routing the aggregated traffic of all users connected to the network. The increase in 

Internet traffic over the last decade has necessitated faster and faster backbone networks. 

First generation routers could support up to 0.5-Gbps. Currently, 160-Gbps to 20-Tbps 

routers are in development [5]. An OC-48 (Optical Carrier) backbone network can support 

up to 2.5-Gbps of aggregated data. Each light-path could be formed as 4 OC-48s to carry 

an 192c (10-Gbps aggregation of traffic) [6]. Enterprise routers (edge routers) aggregate 

the local user traffic (e.g. a LAN of a Company). Internet Service Providers (ISP) are the 

connection points of users to the high capacity backbone network. Routers closer to the 

backbone require higher capacity, are more complex and more expensive.

The data is carried in the form of packets routed across the network. The most popular 

inter-network transport protocol is the Internet Protocol (IP). An IP packet consists of a

3
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Fig. 2.1. An Example of a Network

header part and a payload part. The header format of IP version 4 (IPv4) is shown in 

Figure 2.2(a). Each host connected to any public Network has a unique IP address. All IPv4 

addresses are 32 bits long and are used in the Source Address and Destination Address fields 

of the header of IP packets. Usually IPv4 addresses are broken into 4 groups, 8 bits each, 

represented as four decimal numbers separated by dots {e.g. 129.128.0.0). Each IP address 

is composed of a Class identifier, a Network number and a Host number. IPv4 addresses 

have three main classes (Classes A, B and C). The class of an address is coded in the Most 

Significant Bits (MSB) of the address and represents the size of a Network. Network size 

is determined by the number of bits used to represent the network and host parts. Thus, 

networks of class A, B, or C consist of an 8, 16, or 24-bit network part and a corresponding 

24, 16, or 8-bit host part. Thus, the decimal presentation, as explained above, is suitable 

for presenting addresses in all classes. With this addressing scheme, known as Classjul 

Addressing, Internet routing is simply a two-level hierarchy with three possible network 

sizes. All the hosts connected to a single network share the same Network Number in 

their IP address. This hierarchy in IP addresses allows Internet Protocol to interconnect 

networks.

With the exponential growth in the number of hosts and networks, classful addressing

4
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Version IHL Type of Service Total Length

Identification Fragment Offset

Time to Live Protocol f Header Checksum

Source Address

Destination Address

Optional (0 or more words)

(a) IPv4 

32 bits

Version Priority Flow Lablc

Payload Length Next Header Hop Limit

Source Address (128 bits)

Destination Address (128 bits)

(b) IPv6

Fig. 2.2. Internet Protocol Header format.

appears to be very inefficient. Since only three network sizes are allowed (Classes A, B 

and C), IP addresses are not used efficiently. Even the smallest network size allowed might 

be too large for a network. Thus there might be many IP addresses that are assigned to a 

network that cannot be assigned to any other host but are not used at all. It was observed 

that Internet Protocol was running out of IP addresses, even though only a small fraction of 

allocated addresses were actually used. Also, routing tables stored in routers were getting 

very large. This is due to an exponential increase in the number of networks. Classless 

Inter Domain Routing (CIDR) has since been introduced to allow more efficient use of 

IP addresses and slow down the growth of backbone forwarding tables [7]. In CIDR the

5
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network size can be variable to match with a network. Assume a network requires 156 

addresses. In classful addressing scheme, a class C with 256 addresses must be assigned 

to this network. CIDR assigns a subset of 128 addresses and a subset of 32 addresses 

to this network, providing 160 addresses. Thus CIDR uses IP addresses more efficiently. 

To provide more IP addresses, IP version 6 (IPv6) has been adopted. It can support a lot 

more addresses even with inefficient space allocations using a 128-bit addressing scheme. 

Figure 2.2(b) depicts the IPv6 header. A detailed description of other parts of the header 

is given in [8]. However, CIDR allows address aggregation at several levels. The address 

aggregation reduces the number of entries in the router forwarding tables as explained in 

detail in Section 2.1.

Internet routers receive a packet from an input line, extract the destination address, 

perform packet processing (e.g. packet forwarding and classification) and finally, forward 

the packet to its destination. Figure 2.3(a) depicts the architecture of a general bus-based 

router. In this example, Packet 1 (PI) and Packet 2 (P2) arrive at the first port from the left. 

PI is forwarded to the third port and P2 is forwarded to the second port.

Packet forwarding is a fundamental task in routing IP traffic. Routers lookup the desti­

nation address of each packet in their Look Up Table (LUT) and resolve which interface the 

packet should be forwarded to. Routers either store LUT information in the main memory 

and use a software method to perform the lookup or use dedicated hardware. More details 

on routing lookup are given in Section 2.1.

However, the routing lookup is a rather complicated and slow process. An effective 

strategy to speed up routing lookup is to use a cache to store recent routing results for 

reuse. Figure 2.3(b) describes the cache impact on forwarding. Assume that the cache on 

the first port stores the forwarding information of P I. When PI arrives at the first port, it hits 

the cache. The forwarding information (the output port identifier) is fetched from the cache 

and the packet is directly forwarded to its output port (third interface). Since the cache does 

not have the forwarding information for P2, it misses the cache. The processor fetches the 

missing information from the lookup table (either by software methods or hardware) and 

then, updates the cache and forwards packet 2 to its output interface.

6
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Fig. 2.3. A General Description of an Internet Router, (a) depicts an example of the IP 

forwarding in a router in general, and (b) depicts the impact of the routing cache on 

IP forwarding.

Clearly, the cache hit ratio and the main lookup speed directly impact the packet for­

warding efficiency. Thus it is quite beneficial to design efficient and fast lookup methods 

and to improve the cache hit ratio at the same time. In this Thesis, the lookup process and 

the previous implementations of routing caches and routing lookup tables are investigated. 

Finally, an efficient forwarding mechanism is designed, studied and simulated.

2.1 Routing Lookup

An Internet router performs a routing lookup in a Look Up Table (LUT) to forward a packet 

to its next hop to get it closer to its destination. The routing table stores routing prefixes 

rather than full destination addresses, in order to reduce the table size. A routing prefix 

corresponds to a number of Most Significant Bits (MSB) of an IP address followed by 

don V cares. For example, a Classful IPv4 prefix is comprised of the Class Number and 

the Network Number of a network followed by don’t cares. Thus the address of all the

7
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hosts of that network are covered by a single prefix. An address is searched in the LUT and 

the matching prefix is found. The corresponding forwarding information is fetched from 

the table. As mentioned before, in classful addressing architectures, the prefixes represent 

the networks. Prefixes in the forwarding table are organized in three separate tables and an 

exact match of the class part of an IP address resolves which table to access. With Classless 

Inter-Domain Routing (CIDR), routing prefixes (Network sizes) may have variable lengths. 

In the case where multiple prefixes match with an address, the longest matching prefix is the 

correct result. Consequently, routers must perform Longest Prefix Matching (LPM) when 

searching the routing table. For example, consider the networks represented by the network 

numbers from 208.12.16/24 through 208.12.31/24. 208.12.16/24 represents a prefix of size 

24 bits. This prefix covers all the addresses from 208.12.16.0 to 208.12.16.255. Suppose 

that all these network addresses are reachable through the same router. From the binary 

representation we can see that the leftmost 20 bits of all the addresses in this range are the 

same (11010000 00001100 0001). Thus, these 16 networks can be aggregated into one 

supemet represented by a 20-bit prefix of 208.12.16/20. While a great deal of aggregation 

can be achieved if addresses are carefully assigned, in some situations a few networks can 

interfere with the process of aggregation. For example, suppose now a customer owning the 

network 208.12.21/24 changes its service provider and does not want to renumber its net­

work. In this situation, either 16 prefixes (representing 208.12.16/24 to 208.12.31/24) must 

be stored in the lookup table or these prefixes could be aggregated in spite of the exception 

networks and additionally storing entries for the exception networks. In our example, this 

will result in only two entries in the forwarding table: 208.12.16/20 and 208.12.21/24. In 

this case, some addresses match with both prefixes because prefixes overlap. In order to 

always make the correct forwarding decision, routers need to find the most specific match, 

which is the longest matching prefix [7]. Since LPM is performed in every router along a 

packet’s path from source to destination, routers require a fast mechanism to perform the 

lookup in order to maintain high throughput and low latency under load.

A simple example of a LUT for a 4-bit addressing scheme is given in Figure 2.4(a). The 

lookup result for address 1001 is prefix I and the corresponding port ID is port A. Address

8
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Prefix Port ID CD
Prefix I (lxxx) Port A
Prefix II (11 Ox) Port B
Prefix III (01 xx) Port A

Prefix I 
(port A)

Prefix II n 3 
(port B) ^

(a) (b)

Fig. 2.4. An Example of Longest Matching Prefix

1101 matches with both Prefixes I and II. Since prefix II is the LPM, the port ID is port 

B. Figure 2.4(b) depicts the LUT organized as a trie. A trie presentation of a lookup table 

is a tree-based scheme where the root of the trie corresponds to the most significant bit of 

the address. Branching right indicates that a bit is 1, while branching left indicates that a 

bit is 0. A complete trie enumerates every possible address. In order to reduce the space 

requirement of the trie, only the nodes required to form a path to each prefix are stored. 

Nodes are sequentially numbered from top to bottom and from left to right. Gray nodes 

represent prefixes stored in the lookup table.

The key elements in routing lookup efficiency other than the lookup speed include 

routing table update delay, power consumption and routing table memory footprint. Several 

lookup methods have been proposed to increase the efficiency of routing lookup [7]. In 

general, schemes that achieve high lookup speed or smaller memory footprint size, require 

more complicated implementations and suffer from slower routing table updates. Software 

solutions are slow (at least 4 to 6 memory accesses required for a lookup) compared to 

hardware solutions and do not easily scale up to 10-Gbps processing. Content Addressable 

Memory (CAM) is one of the available hardware solutions for IP lookup. A CAM is a fully 

associative binary memory capable of matching a specific pattern of data (a key) against 

all its entries in parallel. A TCAM can store and search for don’t care values as well

9

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



as Os and Is. A don’t care matches with both Os and Is during a search process. CAM 

based solutions are desirable due to their high speed (a single memory access resolves the 

lookup) but are not efficient in terms of power consumption and on-chip area compared 

to RAM. On the other hand to find the LPM of multiple matching prefixes, complicated 

table maintenance or management is required in CAM-based lookup tables. The details of 

CAM-based lookup table designs are discussed in Chapter 3.

2.2 Routing Cache

Caching forwarding information for IP addresses is an effective method to speed up IP 

forwarding in Internet routers. However, the performance of the cache depends on the 

characteristics of the IP traffic, such as its temporal and its spatial locality. Greater temporal 

locality increases the probability that destination addresses are frequently used, and thus 

increases the utility of a cached address. Spatial locality means referencing addresses in 

the same numerical range. When prefixes are cached, a single cache entry can cover a 

large number of destination addresses in the same numerical range. Therefore, the spatial 

locality in the traffic stream is converted to temporal locality in the cache access stream.

Figue 2.5 depicts a functional description of a routing cache designed by Berube et 

al. [ I ]. IP addresses or prefixes are stored in a Destination Address Array (DAA). Next hop 

information is stored in the Next Hop Array (NHA). The DAA and NHA are co-indexed, 

with one entry in the NHA corresponding to a single entry in the DAA. The NHA is im­

plemented using standard SRAM technology. The DAA is implemented using a CAM or a 

TCAM if prefixes are cached.

A routing cache searches for an IP address in all entries of the DAA in parallel. If the 

address is found, a cache hit occurs. The Next Hop identifier (output port) is read from 

the NHA, and the packet is directly forwarded to the output port. If no entry in the DAA 

matches the IP address, a cache miss occurs. In this case, a lookup in the full routing table 

is performed (a software or a hardware lookup) and the cache is updated with the new 

destination address/next hop pair.
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Fig. 2.5. A Functional View of A Routing Cache [1]

Generally the cache impact on the total performance of a system is directly dependent 

on the miss rate and the miss penalty of the cache. The lower the miss rate the better is the 

total performance. Several designs have been proposed to reduce the miss rate of routing 

caches. The next section briefly describes the related work to routing cache design.

2.2.1 Related Work

Many researchers have addressed the efficiency of routing caches. Some studied existing 

locality in IP traffic [9-11]. Others designed more efficient caches for IP routing [12-15]. 

In 1988, Feldmeier demonstrated that a routing-table cache could reduce the lookup time 

in network gateways by 65% [9]. He believed that a fully associative cache provides the 

best performance and ran his simulations for a fully associative cache. He also observed 

that a packet from host A to B is very likely to be followed by a packet from B to A. Thus 

he suggested two different schemes of storing data: Destination/Source or only Destination 

addresses and demonstrated his observation was correct.

Chiueh et al. designed a CPU style IP caching scheme and demonstrated that general- 

purpose processors can serve as a powerful platform for high performance IP routing [13].
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However, the data streams presented to the network processors have very different char­

acteristics than the streams accessed by general-purpose CPUs. Thus, the cache design 

must be considerably different and the cache coverage must be improved to achieve ac­

ceptable performance [16]. This study shows that although enough temporal locality exists 

(based on real packet traces), the cache coverage should be improved to achieve acceptable 

performance such as caching address ranges rather than individual addresses. Also they 

demonstrate, due to very poor spatial locality cache block sizes should be small, preferably 

one entry. Talbot et al. [11] demonstrate that caching IP destination addresses is an effec­

tive speedup for IP lookup in high speed routing. They also show the lowest bits of the IP 

addresses are the most random suitable for indexing their CPU style cache. Shyu et al. [ 10] 

also analyze the temporal locality in IP addresses and observe strong locality in backbone 

routers.

Liu [14] completes the idea of caching address ranges instead of caching full destination 

addresses (e.g. 32-bit destination address for IPv4) by using the term IP Prefix Caching and 

demonstrates higher locality in prefixes resulting in lower miss ratio for IP Prefix caching 

compared to full IP caching. One potential problem with this scheme is multiple prefix hits. 

The choice of what routing prefix to return is critical because if only one of those matches 

is cached wrong lookup results may occur. Thus an algorithm must be applied to the table 

to make sure this problem is avoided. Liu suggests 3 different possible algorithms of which 

one of them increases the size of the lookup table dramatically by expanding the lookup 

tree completely. His second solution simply looks like the conventional IP full address 

caching and the third is a hybrid of the two. The details of his method are further discussed 

in Chapter 5, Section 5.2.

Improving the Replacement Policy of an IP cache is another way to reduce the miss 

rate [10,17], Feldmeier demonstrated that FIFO (First Input First Output) performance is 

almost as good as LRU (Least Recently Used) when large caches are used. But FIFO is very 

poor for small caches [9]. An LFU (Least Frequently Used) replacement policy is found to 

outperform FIFO and LRU [10]. H. Liu presents the multi-segment LRU (mLRU) replace­

ment policy applied to prefix caches. mLRU aims to combine LRU and LFU together but
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it is complicated to implement and maintain [17].

2.2.2 Multizone Cache

A cache naturally exploits temporal locality. However, routers manage traffic from a large 

number of hosts. In some cases, only part of the traffic has high locality. In a router with 

a single cache, low-locality traffic pollutes the cache with low-utility entries. These entries 

reduce the effectiveness of the cache for all traffic, and may cause thrashing. However, if 

the cache is split then the cache performance is improved [12,15]. One portion of a split 

cache stores addresses or prefixes associated with shorter routing prefixes, and the other 

portion caches the addresses of prefixes associated with the longer routing prefixes. Such 

a multizone cache prevents the lack of locality in one portion of the traffic from polluting 

the locality in the rest of the traffic. The new cache design in [12] shows miss ratios 

approximately one-half those of conventional caches.

2.2.3 Cache Miss Penalty

IP caches have very large miss penalties because a miss requires a rather slow main table 

lookup. Complicated lookup techniques can be applied to the main table to increase the 

lookup speed. However, these techniques dramatically increase the table updating delays. 

Thus, improving the cache miss ratio could compensate for the large cache miss penalty 

and allow a simple main lookup table to provide fast table updates.

Non-blocking general purpose processor caches hide memory latency by overlapping 

the processor computations with memory data accesses [18], Special registers are used 

to hold information about each cache miss. The processor can then overlap the service 

of a cache read miss with the execution of subsequent instructions [19,20]. Bhuyan et 

tf/.used execution-driven simulation to study the impact of instruction level parallelism 

(ILP) and cache architectures on the performance of routers [21]. They observed up to 

37% improvement for their traces due to multiple issues, out of order execution and non- 

blocking loads.
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2.3 The Proposed Forwarding Architecture

In this thesis an efficient forwarding mechanism for Internet routers is designed, studied 

and simulated. Our design goals are to: (1) reduce the cache miss rate; (2) reduce the 

effective cache miss penalty; (3) provide simple and fast table updates; (4) lower the power 

consumption and (5) decrease the storage area requirements. Our design has two main 

parts:

1. An efficient lookup table (Figure 2.6(a)). We propose a pipelined TCAM with a novel 

Hardware-based Longest Prefix Matching (HLPM) technique to provide an efficient 

and fast hardware solution for routing tables. Chapter 4 describes our HLPM in 

detail.

2. An efficient forwarding cache (Figure 2.6(b)). We propose MPC, a Multizone, non- 

blocking, Pipelined Cache. MPC uses prefix caching in multiple zone caches to 

improve cache miss ratio. MPC adopts a non-blocking buffer to reduce the effective 

cache miss penalty. A pipelined design implements a novel search and reduces power 

consumption. The details of the MPC architecture and features are further described 

in Chapter 5.

2.4 Summary

In this chapter, the background on Internet routing has been discussed. The high speed re­

quirements of Internet Routers motivates us to design an efficient forwarding mechanism in 

terms of throughput, power consumption and are requirements. The next chapter describes 

the basics of a Content Addressable Memory (CAM) which is used in several parts of an 

Internet router. The most important disadvantages of a CAM, the high power consumption 

and the management requirements, are described and a variety of existing solutions are 

presented in detail.
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Chapter 3

Content Addressable Memory

3.1 Overview

A Content Addressable Memory (CAM) is a binary memory device that accelerates any ap­

plication requiring fast searches of a pattern (or key) in a database or list such as database 

machines, voice or image recognition, fully associative caches or computer and commu­

nication networks. Specifically, a CAM is suitable for routing lookup implementations 

due to its fast and simple searching operations. Ternary CAM (TCAM) is capable of stor­

ing a third value as well as zeros and ones. This third value is a don’t care value which 

matches with both zeros and ones during a search process. However, CAM-based design is 

challenging due to the high power consumption, cost and on-chip area requirements. This 

chapter gives a brief description of a CAM and its challenging design issues. Also, some 

previously reported low power CAM designs are discussed. Complications of applying a 

TCAM to CIDR lookups are explained as well, later in this chapter.

3.2 Content Addressable Memory (CAM) Architecture

Figure 3.1 compares a CAM to a RAM. A RAM provides the data stored in the location 

of the address given to the RAM. A CAM receives data (key or pattern) and provides the
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address of the location where data is found or generates a non-matching signal in case data 

does not match with any entry in the CAM.

A CAM performs a write and a read similar to a RAM, but it allows parallel searching 

for a specific pattern in all its entries as well. The pattern (key) is stored in a comparand reg­

ister and is compared with the data stored in the CAM bit by bit. All entries are searched in 

parallel. During a search, if all the bits of an entry in the CAM match with the correspond­

ing bits of the key, a match flag is set. An encoder generates the address of the location of 

the matching data. In a Ternary CAM, multiple different entries might match with a key, 

simply because don 7 care bits match with everything. In this case, a priority encoder is 

used to resolve the matching entry. Thus, a CAM/TCAM gets the content and produces the 

location.

Figure 3.2(a) depicts a block of CAM cells. The peripheral circuits of a CAM or a 

TCAM are similar to RAM as well. Bit Line Prechargers and Bit Line Sense Amplifiers 

are used to write or read a data to or from a CAM. The position of the entry to be written 

into or read from is selected by the Address Decoder. After each search operation, the 

Word Match Sense Amplifiers, detect the matching entry and the Address Priority Encoder 

generates the address of the matching entry.

A CAM cell is implemented by modifying a RAM cell. There are both static and 

dynamic CAM cells. A standard static CAM cell is depicted in Figure 3.2(b). The cross-
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coupled inverters form a latch to store data statically. A CAM uses the pass transistors (W1 

and W2) to perform read and write operations identically to those in a static RAM [22]. To 

write in a CAM entry, the location is selected by an address bus or data is simply written 

to the first empty entry. To write a new value in each cell, the value is asserted on the 

complementary bit lines (Bit 0 and Bit 1) while the Word Select Signal is raised. To read 

a data from a cell, the bit lines are precharged, then the Word Select Signal is raised and 

finally the Bit Line Sense Amplifiers detect a discharge on one of the bit lines, representing 

either a one or a zero value stored in the cell.

A CAM performs a search operation with an exclusive OR comparator formed by two 

pass transistors (PI and P2) and a pull-down transistor (M). The value to be searched (key) 

is asserted on the Bit Lines and the Match Line is precharged. If the key and the data stored 

in the cell do not match, a path from the Match Line to ground is created and the Match Line 

discharges. When a pattern is searched in a row of memory cells (word line), the Match 

Line discharges to ground if one or more cells do not match with their corresponding bits
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in the pattern. If a Match Line of a row, does not discharge at the end of a search operation, 

the Match Sense Amplifiers sense a Match and the priority Encoder generates the location 

address of the match. A priority encoder is used to resolve the match in case more than 

one entry matches with the data. This is specifically useful for Longest Prefix Matching in 

CIDR, where multiple prefixes might match with an IP address. The priority encoder can 

easily resolve the longest matching prefix, if the prefixes are sorted based on their lengths.

As described in Figure 3.2(b), a standard 9-transistor CAM static memory cell is 50% 

larger than a standard 6-transistor SRAM cell (9 vs. 6). Charging and precharging long 

memory lines (the Bit Lines and the Match Lines) of all entries results in high power 

consumption of a CAM compared to a RAM. Note that when a pattern is searched, the 

precharged match lines of all non-matching entries discharge to ground. Only one (or pos­

sibly a few more) entry actually matches with the pattern. Thus, a lot of power is wasted 

for non-matching entries. Also when the Match Line is prechaiged before a search opera­

tion, the Bit Lines should be discharged to ground. All these transitions on long memory 

lines with laige capacitances, consume a lot of power. Thus, although CAM devices are 

desirable due to the parallel searching of a pattern in all CAM entries, high power con­

sumption, cost and area requirements are serious limiting issues. These problems worsen 

when Temary-CAM (TCAM) is used.

Although the first binary CAM, brought to market in the early 1990s, suffered from var­

ious performance limitations such as high power consumption, high cost and slow search 

rate, now many vendors claim their product employs techniques to lower power consump­

tion with veiy fast search rates. CAM based search hardware has become increasingly 

attractive due to fast table look-ups and being well suited for high-speed applications. 

TCAM with three states per cell (0, 1, X (dont care)) opened new possibilities, particu­

larly for longest prefix match problems. Also, TCAM devices prioritize search results in 

such a way that multiple search matches, corresponding to different prefix lengths, could be 

resolved in accordance with Classless Inter Domain Routing (CIDR) requirements. TCAM 

technology is rapidly being adopted by networking equipment vendors.

Figure 3.3 depicts a conventional static TCAM cell with 15 transistors. Two SRAM
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cells (Cell 1 and Cell 2 in Figure 3.3) provide four different storage states. These states 

are presented with a two-bit binary value. One bit represents the data stored in point A and 

the other bit represents point B. If cell 1 stores a zero at point A and Cell 2 stores a zero 

at point B, both pass transistors (PI and P2) are always closed. Thus no matter what is 

applied to the bit lines (Bit 00 and Bit 11) during a search operation, the match line does 

not discharge. This state is the don’t care state of the TCAM cell. The cell provides a zero 

and a one state by storing a 01 or a 10 in AB. Note that the fourth possible state ( I I  in AB) is 

not desirable at all, because this state always keeps both pass transistors open. This means 

that the entry always mismatches with the data. Thus three states are easily provided with 

this TCAM cell. Note that the complementary values of A and B also exist in the cell.

A TCAM cell is even larger than a CAM cell (66% with a conventional 9-transistor 

CAM and a 15-transistor TCAM cell). Although more complicated designs reduce the 

number of transistors down to 12 transistors in each cell [23], a TCAM cell is much larger 

than a RAM cell and consumes more power. Beside the power consumed during the search 

operations in a TCAM, the larger memory cells require longer memory lines with larger 

capacitances, which results in higher power consumption. Thus in a TCAM cell, the power
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consumption is a limiting issue. Several low power methods have been proposed to de­

crease the power consumption in a CAM based device. In the next Section, some of those 

methods are presented.

3.3 Low Power CAM Design

Since power consumption is a challenging issue in CAM-based circuits, this section specif­

ically describes and analyses previously reported low power CAM solutions. The first step 

to design a low power CAM is to find the sources of power consumption. Hsiao et al. 

model the power consumption of a standard CAM [24]. The power models are originated 

from the fC V 2 formula. The main sources of power consumption are (1) the Evaluation 

power which is the power consumed on the match lines, (2) Input Transition power and 

(3) Clocking power. Each of these sources of power consumption are modeled based on 

the architecture of a CAM. To decrease the power consumption, designers reduce fC V 2. 

This is achieved through either (1) fewer transitions on memory lines, (2) less capacitance 

or (3) lower power supply. Some low power CAM architectures modify each cell to save 

power. Some designs use the standard cell but apply modification to the whole system 

to avoid unnecessary power consuming tasks. Since all power consumption models are 

linearly dependent on the number of entries searched during a search process, some low 

power CAM devices save power by reducing the effective number of entries. This can be 

achieved through smart search operations. In this section some of the previously reported 

low power CAM architectures are discussed.

3.3.1 Power Savings in a CAM Cell

To perform a search operation in a CAM cell (See Figure 3.2(b)), the Match Line (ML) is 

precharged to VDD and discharged to ground (in case of a mismatch) through transistor 

M. One simple way of saving power is to reduce the voltage swing on ML. An Active Low 

match line connected to VDD instead of the ground, reduces the voltage swing to VDD VT  ri­
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Note that an active low match line requires a pre-discharge circuit instead of a precharge 

circuit [25]. If transistor M is replaced with a PMOS transistor, the voltage swing on 

ML is reduced to VDD VTp  with the same Active High method [26]. If transistor M is 

connected to an Active High / Active Low (AHAL) Signal (is switched on alternate cycles to 

identify the activity of ML), the switching activity on ML is reduced by half [25]. This cell 

modification is depicted in Figure 3.4(a). However, in the standard CAM cell both bit lines 

must be discharged to ground during the precharge phase of a search. A Controlling pass 

transistor can disconnect ML from ground during the precharge phase [27]. This modified 

cell is depicted in Figure 3.4(b).

One of the sources of power consumption is Input power. The transitions on bit lines 

dissipate a lot of power due to their large capacitances. For every search operation in a 

standard CAM, the key is applied to bit lines (See Figure 3.2(b)). Thus bit line transitions 

are unavoidable. Figure 3.5 depicts a CAM cell which avoids bit line transitions by adopt­

ing two extra transistors and Data Lines (DLO and DL1) [28]. During the precharge phase 

of a search, the DLO and DL1 are set to ground. Thus transistor A/3 and M4 are turned off. 

During the evaluation phase of the search, the data (key) is applied to the Data Lines (DLO
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and DL1). The use of separate bit line pairs (bit lines and data lines) reduces the load on 

bit lines and thus, lowers the Input power [24]. These Lines are also called Search Lines 

(SLO and SL1).

In the standard implementation of a CAM, NOR type comparison circuits are used. 

Two transitions occur on ML during a search in a non-matching entry (precharging during 

the precharge phase and discharging during the evaluation phase). The fact that very few 

entries might actually match with the key, results in excessive power dissipation. A smart 

design of a low power CAM would use the power only for matching entries. One easy 

solution is to use NAND type of comparison circuits compared to conventional XOR ones. 

In a NAND type match line, the precharging path is cut down if any non-matching bit is 

found anywhere in the word [29]. Thus the match line is precharged only if it is a matching 

entry. Figure 3.6(a) depicts a CAM cell with a NAND type match line and Figure 3.6(b) 

depicts a CAM entry (Word Line). NOR type match lines, provide parallel and fast search 

operations while NAND type match lines perform a serial and slow search. The word line 

can be divided in half to allow faster search operations [29]. However, NOR type match
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lines are preferred when the search speed is considered. Some CAM designs are based on a 

combination of serial and parallel search choices such as [30]. In this serial-parallel CAM, 

the first few bits of each entry are searched with the corresponding bits of the key serially. 

If those match, the rest of the bits are searched in parallel. However, this serial-parallel 

CAM is 25% slower than a conventional parallel CAM with NOR type match lines [30].

In order to allow parallel and fast search operations on the ML as well as save power 

for non-matching entries, a mismatch dependent power allocation technique is designed 

in [2]. The sensing circuit in [2] is combined with the precharging circuit through pos-
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itive feedback. Figure 3.7 depicts the design in [2]. Before a search starts, the ML is 

precharged to ground. When the search operation starts, the Voltage Controlled Current 

Source precharges the ML. If the entry matches with the key, the ML is precharged very 

fast. A higher voltage on the ML, pushes the Voltage Controlled Current Source to generate 

more current and the positive feedback loop is closed. If there is at least one non-matching 

bit in the word line, a path from ML to ground is created and the ML does not precharge 

a lot. This positive feedback results in higher voltage on the ML of matching entries and 

lower voltage on non-matching MLs. Thus power is mostly used for matching entries. 

Note that a matching entry has no path from ML to ground. Thus it is precharged faster. A 

Threshold voltage can be defined based on a dummy matching entry (all don’t care values). 

If an entry reaches the threshold voltage the search operation stops. Thus the maximum 

voltage swing is the threshold voltage which is less than vdd- A 60% power saving is 

reported in [2] compared to a CAM with conventional sensing circuits.

The large capacitance on the match line results in high power consumption through 

search operations. A recent low power TCAM design reduces the effective capacitance on 

the ML by providing a dual Match Line [31]. In this design, every TCAM cell is made of 

two SRAM cells and two comparison circuits. Each SRAM cell is connected to one Match
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Line (ML1 and ML2). The data applied to each TCAM cell is a two bit data to provide 

three states (one, zero and don’t care). The search operation is a two step function. One 

bit of the data (key) is applied to one SRAM cell. If it matches, the second bit is applied 

to the second SRAM cell. Since fewer transistors are connected to each match line the 

effective capacitance is reduced in half. On the other if the first ML proves a mismatch, the 

second match line is disabled. Thus no power is used for the second one. Up to 43% power 

reduction with 4% penalty in the total search speed is reported in [31].

3.3.2 Systematic Power Savings

Beside cell improvements, systematic improvements can play an important role in saving 

power in CAM based devices. Some low power CAM designs use an adiabatic switching 

technique which uses an AC power source instead of a DC power source. An Adiabatic 

CAM recycles the charge stored in the Match Line capacitance. The AC power supply’s 

slow transitions help to reduce the energy dissipation [32].

Some systematic power saving is achieved through smart search operations which avoid 

unnecessary searches. The power consumption in a CAM device is reduced if fewer entries 

or fewer bits in each entry are searched. A Selective precharge scheme precharges some of 

the bits of an entry and performs a search operation on those bits [3]. In case they match 

with the corresponding bit of the data (the key), the rest of that entry is precharged and
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searched. If the few first bits do not match with the corresponding bits of the key, there 

is no need to search for the rest of the entry. Although there might exist some matching 

entries in the first few bits that mismatch in total, the most power is actually used for the 

matching entries. Figure 3.8 depicts a CAM entry of n bits with the selective precharge 

scheme. In the first Step, the first k bits are searched. MLO is precharged through the 

PMOS transistor controlled with SI signal. The Dt values come from each memory cell. 

During the evaluation phase, if any of the first k bits do not match with the corresponding 

bit of the key, the Dt equals to one for that memory cell. Thus the match line (ML 0) 

discharged to ground. If all first k bits match, then in the next step, the second match line 

(ML 1) is precharged and searched for the rest of the key (bit k to bit n-1) during the second 

evaluation phase. Note that ML1 does not precharge at all if MLO senses a mismatch.

A selective precharge scheme can be used in a pipelined CAM [33]. If each CAM entiy 

is divided into two or more sections, these sections can form the stages of a pipeline. In each 

stage, the entries that match with the data in their previous stage are searched. If one part 

of an entry does not match with the corresponding bits of the key, it is clear that the entry 

is not matching with the whole key. Thus there is no need for further searches. Figure 3.9 

depicts an example of a four stage pipelined CAM/TCAM applied to IPv6 addresses. In 

the first stage, the Most Significant Bits (MSB) of the address are searched with all entries
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in parallel. Assume this results in three matching entries (entry 1,3 and 4). It is clear that 

those entries that mismatch the key in this stage (e.g. entry 2), do not match with the key. 

Thus, in the second stage only entries 1, 3 and 4 are searched with the key. Thus, at each 

stage only matching entries of the previous stage are searched with the corresponding bits 

of the key. After the last stage the matching entry is found. Pipelined CAM devices save 

power by avoiding unnecessary search operations.

A pre-computational CAM is designed with the purpose of avoiding unnecessary search 

operations [34]. Figure 3.10 depicts an example of a pre-computational CAM. Each entry 

has a corresponding parameter section, Vr  stored for the data, Data,. The design in [34] 

uses a one count function as the parameter extractor. With an n bit data length, there are 

n+1 possibilities for ones count (from 0 ones count to n ones count) and an extra case must 

be dedicated to clarify the availability of the stored data. Thus, a 30-bit entry has a 5-bit 

parameter. During a search operation, the parameter of an Input datum is extracted and 

searched will all parameters in the CAM. If any parameter mismatches with the parameter 

of the input, that entry mismatches with the input as well. Thus there is no need to perform
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a full search on entries that do not match in their parameter part.

3.3.3 Numerical Examples of Power Consumption

To clarify why power consumption is a critical issue in a CAM design, a numerical example 

is given based on previously reported low power CAM designs. The energy consumption 

per bit per search for some of these designs are given in Table 3.1. Note that the energy 

consumption value for [33] is only for the Match line and the Search line. The clocking 

power is not considered. Also consider that the CAM presented in Serial [30] is 25% 

slower than a fully parallel CAM. To give a fair example, assume a CAM consumes 10 

fj/bit/search energy (a rough example based on Table 3.1) and has 10k entries, 128 bits 

wide each (suitable for IPv6). The size of the CAM represents the number of prefixes in 

the LUT. The core routers require larger lookup tables. Recently, tables with up to 150,000 

prefixes are reported in [35]. However, we chose a rather small LUT with approximately 

10,000 prefixes for the numerical example (10K entry CAM), based on our real traces as 

described later in Chapter 6. If the CAM is required to perform a search every 10 ns (for 

100 Mpps processing), Iw power is consumed. With larger CAM sizes or faster searches 

(e.g.2 ns as in [2]), the power consumption increases dramatically. Note that a TCAM cell 

is inherently larger than a CAM cell. This would generate more capacitance on memory 

lines and result in higher power consumption. Thus it is very important to consider low 

power consumption for a CAM-based design.

3.4 Longest Prefix Matching in Ternary CAM

Since CAM based devices can perform a parallel search for a key in all their entries, they 

are suitable for lookup table implementations. Routing lookup tables store routing prefixes 

which are comprised of ones and zeros followed by don’t cares. Thus a Ternary CAM 

(TCAM) is required for routing lookup implementations. Since CIDR requires a routing 

lookup to return the Longest Matching Prefix, the TCAM must resolve which of those
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TABLE 3.1

Comparison of Previously Reported CAM Energy Consumption.
/J/bit/search

[29] 83.0

[36] 97.7

Serial [30] 3.1

Parallel [30] 7.5

[24] 45.5

[37] 13.9

[33] 4.5

matching entries is the longest matching entry, in the case of multiple matching entries.

Usually, finding the longest prefix match (LPM) during TCAM lookups requires main­

taining the prefixes in a sorted length order which makes worst case updates very slow. For 

example, an insertion of a new entry in a TCAM storing N prefixes might result in moving 

(shifting) 0(N) TCAM entries to create an empty space for the new insertion. This slow 

update is undesirable due to possibility of 100s to 1000s of updates per second in today’s 

forwarding tables [38].

The routing table update delay is one of the key elements of routing lookup efficiency 

beside the lookup speed, power consumption and memory footprint. Several solutions 

have been proposed to decrease the routing table update delay such as reserving some 

empty entries between sets of different length prefixes. Figure 3.11(a) depicts a TCAM 

with some empty entries reserved between each set of prefixes with the same length. If 

the TCAM is required to insert a new prefix of size n, it will simply add this new entry 

to the reserved space. If all the reserved spaces are full, then 0(N) shifts are required for 

the worst case. While some of these reserved entries might be used up very fast, some 

entries might remain untouched. This leads to under-utilization of the TCAM space while 

the worst case complexity of updates remains the same. Since there is no need to sort the
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Fig. 3.11. TCAM Space Management, (a) reserves some space between sets of prefix 

lengths, and (b) reserves the extra space in the middle only.

prefixes in a segment, the TCAM can reserve some empty space in the middle. Then an 

empty space can be provided anywhere with no more than L/2 shifts (L represents possible 

prefix lengths (e.g. L = 32 for IPv4 prefixes) [39]. Figure 3.11(b) depicts a TCAM with 

empty entries reserved only the middle of all entries.

The TCAM space management overhead and non-uniform update delays reduce the 

TCAM efficiency. These problems worsen with 128-bit IPv6 due to the much longer possi­

ble prefix lengths. Some applications avoid TCAM sorting requirements by manipulating 

the data before storing it. For example, in IP prefix caches implemented by TCAMs, the 

LUT is fully expanded to avoid multiple matches for correct cache results [14]. But not all 

applications have such a convenient solution to the problem. Many TCAM vendors employ 

a simple sorting technique and live with an 0(N) worst-case update time solution.

31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

0816



Vertical OR

10XXX
< -

1010X

1001 1
Horizontal

10100

1 1 000

i i i 10

->

LPM
— >

11110
Prefix Column Mask Column

Fig. 3.12. Binary CAM with mask features presented in [4].

A TCAM can store the prefix lengths as well as the prefixes and use them to find the 

LPM. This is a simple and fast solution for LPM but it results in at least a 70% increase 

in the TCAM memory requirement [40]. Power consumption also increases because more 

search operations are required. However, binary CAMs, with no built-in mask circuits, can 

use this extra information to mask data as well as finding the LPM [4]. Faster updates are 

obtained at the cost of slower search times and lower memory density. Figure 3.12 depicts 

an example of searching 10100 in the table using the design in [4] for a 5-bit addressing 

scheme. A prefix (comprised of zeros and ones followed by don’t cares) is represented by 

a binary prefix entry and a binary mask entry. Mask entries are sequences of ones followed 

by zeros, such that the number of consecutive ones represent the length of the prefix and 

zeros stand for don’t cares. Horizontal AND circuits mask each prefix entry and vertical OR 

circuits in the mask column find the longest length among all matching entries. A second 

search of the longest length in the mask column resolves the position of the LPM.

All existing LPM solutions: (1) have long worst-case update delays, (2) slow down the 

lookup speed, (3) need complicated table management and maintenance or (4) require a
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great amount of extra area. Thus, in a TCAM based lookup table design, the update delays 

and the table management complexities must be optimized as well as the look up speed, 

power consumption and memory footprint.

3.5 Summary

Although CAM based search engines are desirable due to their high speed, their high power 

consumption is an important disadvantage. Several solutions have been proposed to de­

crease the power consumption in a CAM device. Pipelined CAM devices avoid unneces­

sary search operations and provide high throughput. The Hardware-based Longest Prefix 

Matching (HLPM) technique proposed in this thesis provides a simple, fast and scalable 

LPM solution with very small increase in area as well as potentially reducing the power 

consumption. In the next Chapter HLPM is discussed in detail.
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Chapter 4 

Hardware-Based Longest Prefix 

Matching (HLPM)

4.1 Overview

As one major part of our forwarding mechanism, we adopt a pipelined TCAM as the main 

lookup table implementation, because TCAM based lookup tables perform parallel and fast 

search operations. As mentioned in Chapter 2, the main lookup delay directly impacts the 

cache miss penalty. The TCAM stores routing prefixes in its entries. When a lookup for 

an IP address is performed, the TCAM searches all prefixes in parallel. However a TCAM 

must be able to find the Longest Matching Prefix if multiple prefixes match with the IP 

address. As explained in Chapter 3, finding the longest matching prefix is a complicated 

task in a TCAM. In this Chapter a novel technique, Hardware-based Longest Prefix Match­

ing (HLPM), is proposed for TCAM based lookup tables to resolve the LPM with no table 

management requirements as well as to maintain high search speeds and reasonable power 

consumption levels.
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Fig. 4.1. The Proposed Four-Stage Pipelined TCAM.

4.2 HLPM

This Section describes our proposed HLPM for a four stage pipelined TCAM applicable 

to IPv6, but the technique is scalable to any pipelined TCAM. Later in Chapter 5 we scale 

HLPM to our two stage pipelined TCAM to store 32 bit IPv4 prefixes.

Figure 4.1 shows our four-stage pipelined TCAM with an extra SRAM stage named: 

Length Column. Every entry in each stage is 32-bits wide to provide the 128 bits required 

by IPv6 prefixes. HLPM stores the binary coded lengths of prefixes in their ending stages 

in the Length Column. Thus, 5 extra storage bits per entry are required for IPv6 prefixes 

(in a four-stage pipeline, 32 bits each). For example 00011 is stored in the corresponding 

Length Column entry of a prefix with size 35, because the prefix ends in the second stage, 

and there are only 3 bits in that stage. The same value will be stored for 3, 67 and 99 

bit prefixes, because they all have 3 bits in their ending stages. However, with no sorting 

requirement for the prefixes, new prefixes can be inserted in any TCAM entry, regardless 

of the prefix length. Note that if the number of stages with the same length increases, the 

number of bits in the Length Column does not increase. Thus HLPM is easily scalable to 

any size or length.

As described in Section 3.4 Pipelined TCAM devices save power by lowering the power
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consumption for non-matching entries. However, TCAM searches consume fixed power 

for different length matching prefixes. In CIDR prefixes can vary in size from 0 to 127 

(IPv6) and many prefixes might match with an address. On the other hand, since short 

prefixes cover more addresses, there is higher probability of searching for a short prefix 

in a LUT than a long one. The HLPM technique saves power not only on non-matching 

entries through pipelining, but also on short prefixes which are more likely to be searched. 

The following sections describe search and update operations.

4.2.1 TCAM Search Operation

IP prefixes are formed as sequences of data bits (either Os or Is) followed by don’t care 

bits (the number of Is and Os represents the length of each prefix). Since don’t cares match 

with both zeros and ones, a TCAM search may result in multiple matching entries with 

an address. Figure 4.1 shows an example of multiple matching entries. Entries I,II and 

III are three matching prefixes with different lengths for a given address. Searching the 

IP address in the first stage results in matches in all those entries. These matches lead to 

further searching of the IP address in the following stages of the pipeline in those three 

entries. There is no need to search the rest of entry II, simply because the rest of the bits of 

that entry are don’t cares and will always match. Thus, if the last bit of an entry in one stage 

of the pipeline stores a don’t care value, there is no need to search the rest of the entry in 

the following stages. In our example, second stage searches are necessary only for entries 

I and III. On the other hand, after the fourth stage of the pipeline, it is clear that entry II is 

not the longest matching prefix due to the fact that prefix II ended in the first stage of the 

pipeline. These observations lead us to simplify the LPM in our TCAM. However, several 

matching prefixes might end in the same stage and a Second Level Search is necessary to 

find the LPM from those entries (e.g. entry I and III in Figure 4.1), by using the information 

stored in the Length Column.

Thus the TCAM search operation is similar to any pipelined TCAM with one differ­

ence. During a search, an IP address is compared with every TCAM entry in parallel, stage
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TABLE 4.1

Entry Evaluation in One Stage.
Entry Matches 

with the IP Address?

Entry has a don 7 care 

in the Last Cell?

Search the Entry

in the Next Stage?

Yes No Yes

Yes Yes No

No — No

by stage (one prefix is stored in each entry). This means if the corresponding bits of the IP 

address do not match with the corresponding bits of a prefix (an entry) in one stage, that 

entry of the TCAM is not searched in the following stages of the pipeline. That entry is 

definitely a mismatch, no matter what is stored in the last bit of the entry in the current 

stage. If an entry matches with the corresponding bits of the IP address in one stage, the 

entry might match with the IP address at the end of the pipeline. Thus the entry must be 

searched in the following stages of the pipeline as well. However, if the entry has a don 7 

care bit in its last cell, the entry is not searched in the following stages. This is because 

the rest of the entry are don 7 cares and definitely match with the IP address. This is the 

difference between conventional pipelined TCAMs and an HLPM-based pipelined TCAM. 

This entry evaluation per stage is given in Table 4.1.

Note that unnecessary searches are avoided for short matching prefixes as well as for 

non-matching prefixes. However, a two-level search is required to find the longest pre­

fix amongst all matching prefixes. If multiple entries match with an IP address and those 

entries end in different stages of the pipeline, the LPM is simply found at the end of the 

pipeline search operation {First Level Search) as described before. In case multiple match­

ing prefixes end in one common stage of the pipeline, the Second Level Search resolves the 

LPM. Section 4.2.3 describes the Second Level Search in detail. However, in order to find 

out if a prefix ends in one stage of the pipeline or not, the last cell of the TCAM in each 

stage should be modified. This modification is described in Section 4.2.2.

Since an HLPM-based pipelined TCAM avoids unnecessary searches for short match-

37

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Precharge-Control Precharge
Circuit

Match Line (ML)
MLx F n

Precharge-Control

i
TCAM

cell
S TCAM

cell

M l

h HUH H
SLO SL1 )| SLO SL1

M 2l[-
•  •  •  r- 11

y
{ >

Output

fo r  the 
Next Stage

Sensing
Circuit

Jh HL
r  SLO SLI 1

Fig. 4.2. A Modified TCAM Entry.

Local Match,

Final Match 
 >

clk^

ing prefixes, the power consumption is reduced in comparison with previously reported 

pipelined TCAMs [33]. Meanwhile, since not ail matching prefixes require the second 

level search (e.g. entry II), we achieve further power saving compared to previous designs 

such as [4].

4.2.2 TCAM Entry Modification

Figure 4.2 shows a TCAM entry in one stage of the pipeline. The last cell is modified 

by adding two extra transistors (Ml and M2) which are controlled by the complementary 

bits of the data stored in the cell. Each TCAM cell can store three states (zero, one and 

don’t care). A two-bit binary state, Ox Q2, represents these three states. A 01 or a 10 state 

represents a one or a zero and 00 represents a don’t care. If a cell stores a don’t care, its 

paths from ML to ground are closed. If the last cell stores a don’t care, the path from MLx 

to ground is open, because Ml and M2 are controlled with the complementary values of 

Qx and Q2.

At each stage, the Precharge-Control Signal comes from the evaluation results of the 

entry in the previous stage. The Precharge-Control signal of the first stage comes from 

the valid bit of the entry. A normal search operation of the entry includes searching for 

a don’t care in the last cell in parallel with the conventional searching for a match or a 

miss-match between the data stored in the entry and the input pattern. The extra circuits 

for the last cell, including the precharging circuit and the sensing circuit, are similar to the
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normal search circuits. A very short match line, shown by MLx in Figure 4.2, is precharged 

to logic high in the precharge state. In the evaluation phase, the last cell searches for a 

don’t care which corresponds to storing 00 in the last TCAM cell. If the cell stores a don’t 

care, the paths from ML to ground are closed but the path from MLx to ground is open. 

MLx discharges, and the Output senses a logic high. Although search operations of ML 

and MLx are similar, MLx evaluation is much faster, consumes less power, and does not 

require complicated sensing circuits due to the very short length of MLx. Besides, the MLx 

evaluations or sensing circuits are actually independent of the circuits used for the whole 

entry. This allows the system to use complicated sensing circuits for the whole entiy to 

optimize the power consumption while a very simple sensing circuit is used for the last 

cell. Smart sensing and precharging circuits such as [2], precharge the ML/MLx only for 

matching entries, resulting in further power savings. However, after the search operation 

is complete at each stage, the pipeline decides whether search the rest of each entry in the 

next stage or not. As mentioned before, if one entry does not match the data at one stage, 

the rest of that entry is not searched in the next stage of the pipeline. In our pipeline, one 

entry is not searched in the next stage not only if it mismatches the data at the previous 

stage, but also if it ends with a don’t care. As depicted in Figure 4.2, the Local Match 

signal is the result of the entry evaluation in each stage. If the entry does not match with 

the corresponding bits of the address in one stage, the Local Match signal senses a logic 

zero and the Precharge-Control signal notifies the next stage not to perform a search any 

more. However, if the entry matches with the address and stores a don’t care in its last cell, 

the Final Match signal declares a matching prefix and the rest of that entry is not further 

searched in the following stages of the pipeline. The general evaluation of the entry is 

described in Table 4.2 Note that this change in the architecture not only saves power for 

short matching prefixes, but also resolves the first level search of our HLPM.
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TABLE 4.2

Entry Evaluation.
ML Output Search the Next Stage?

High Low Yes

Low High No

High High No

Low Low No

4.2.3 Second Level Search

The second level search resolves the LPM for multiple matching prefixes ending in one 

common stage. Figure 4.3 depicts the length column in detail. The Second Search Signal(O) 

is the result of the last stage of the pipelined TCAM. SSS(O) is set only for matching 

prefixes requiring a second level search. In the example given in Figure 4.1, the second 

search signal is set only for entries I and III. Since the length column stores the binary 

lengths of prefixes in their ending stages (5 bits long), the entry storing the max value is the 

longest matching prefix. As depicted in Figure 4.3(a), we adopted a 5-stage pipelined Bit- 

Serial approach to find the max length. At each stage if a second search is required (SSS(i) 

= /), one bit of the data in the corresponding entry of the Length Column is evaluated. If 

there is only one data equal to ’ 1’ among all entries, that entry is the max of all. But if 

no entry has a ’1’ or more than one entries store Is, those entries should be searched in 

their next stages as well. Thus the SSS signal for the next stage of those entries will be 

set (SSS(i+l) = /). Figure 4.3(b) depicts the logic required for the Second Level Search at 

each stage of the Length Column.

However, the simple length-column pipeline can be clocked faster (e.g. it can be sen­

sitive to rising and falling edges of the clock) than the TCAM pipeline or a digit serial 

approach can be used to provide short latency.
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Fig. 4.3. Length Column.
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4.2.4 HLPM Advantages

The HLPM architecture has the following advantages:

1. HLPM saves power for short matching prefixes. HLPM does not search the rest of 

a matching entry, which has a don7 care in its last cell in the current stage. This is 

important because all the bits of that entry are don 7 cares in the following stages and 

there is no need to perform a search on an entry full of don 7 cares. The details of the 

HLPM power savings is given in Chapter 6.

2. HLPM resolves the LPM without requiring LUT management or maintenance or 

sorting of the entries in the TCAM. Table updates require a single update operation.

3. HLPM is simple and scalable with TCAM width. The second level search does 

not change if the TCAM has more or less 32-bit stages. The first level search, as 

described in 4.2.1, is also independent of the TCAM size. Thus, the extra area and 

the complexity of HLPM remains the same if the TCAM size is scaled.

4. HLPM is efficient in extra storage area requirements. For example, a conventional 

TCAM needs 100x128 bits of extra storage to reserve only one empty entry for only 

100 different IPv6 prefixes. This area is equal to the storage area of the 5 th stage (5 bit 

entries) for a 5K entry TCAM with the proposed HLPM. Since the Length Column 

requires only 5 SRAM bit per entry SRAM rather than 32 CAM bit per entry, the 

total area of our TCAM is approximately 20% less than comparable designs [4],

4.3 Summary

A novel Hardware-based Longest Prefix Matching (HLPM) scheme for TCAM-based lookup 

tables is proposed in this Chapter. This technique is applied to pipelined TCAMs and aims 

at further decreasing power consumption compared to previously reported pipelined TCAM 

designs, by saving power for matching short prefixes. The HLPM is a two level search. The 

first level resolves the LPM of prefixes ending in different stages by searching for a don 7
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care in the last bit of each stage. A very simple cell modification is presented in this chapter 

to perform the first level search. The second level resolves the LPM of multiple prefixes 

ending in one common stage of the pipeline by finding the max value of the coded lengths 

of prefixes in the last stage of the pipeline. In the next Chapter, a novel routing cache with 

an HLPM-based LUT are described in detail.
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Chapter 5

IP Forwarding Architecture: The Cache 

and the Look Up Table

5.1 Overview

A routing cache stores recent routing results for reuse. The higher locality in the traffic 

results in lower cache miss rates. This means if packets with identical destination addresses 

arrive at the router, they are forwarded to their next hop by referencing the cache only. Since 

performing a lookup in the main lookup table is much slower than referencing a cache, the 

miss penalty is rather large. A missing address must be carried to the LUT, a full lookup 

must be performed and the lookup result must be sent back to the cache and at the end, 

the cache must be updated. The packets whose next hop information is not in the cache, 

must be buffered until the lookup is done. Thus the miss penalty delay directly delays the 

forwarding of packets to their destinations. As a result, a routing cache with very small 

miss rates can improve the forwarding mechanism efficiency. The choice of what to store 

in the cache is an important part of a routing cache design. This is explained in detail in 

Section 5.2. When an IP address misses the cache, the cache must be updated. The main 

lookup table is accessed to resolve what the cache must be updated with. An entry in the 

cache is replaced with the new update result. The entry is selected based on the replacement
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policy of the cache. Later in this Chapter a routing cache is designed with the main goal of 

reducing both the cache miss rate as well as the effective cache miss penalty. A software 

and a hardware based LUT are also proposed in this Chapter. The novel software solution 

requires no table expansion and the novel hardware solution employs HLPM to resolve the 

LPM and to save power.

5.2 What to Store in a Routing Cache?

A routing cache stores IP addresses and their forwarding information (output port ID). 

If an IP address exists in the cache, the packet can be easily forwarded to the output port. 

However, many IP addresses covered with a common prefix in the LUT might be forwarded 

to the same output port. Thus, if the prefix is cached instead of individual IP addresses 

covered by it, more IP addresses hit the cache. Thus caching prefixes reduces the cache 

miss rate because a stronger locality exists among prefixes.

However, routers are required to provide Longest Matching Prefix routing. If multiple 

prefixes match an address, a situation may arise where the longest matching prefix is not 

present in the cache, but a shorter matching prefix is in the cache. This short matching 

prefix will produce a cache hit, leading to an incorrect routing decision. In our previous 

example given in Figure 2.4 (repeated in Figure 5.1), if Prefix I is cached, it will match with 

IP addresses whose longest matching prefix in the trie is Prefix II (e.g. address 1101). An 

IP address matching Prefix II could then be incorrectly matched by Prefix I and forwarded 

to port A. The prefix in node 2 (prefix I) is said to encompasses the prefix in node 13 

(prefix II), because node 2 is on the path from the root to node 13. Encompassing prefixes 

are non-cacheable. Thus prefix caching is not as simple as caching full IP addresses and 

correct cache results must be ensured somehow. One simple solution is to cache the full IP 

addresses when the lookup results are non-cacheable prefixes. In this example, the prefix at 

node 4 (prefix III) is cacheable because it does not encompass any other prefix. As a result, 

the choice of what to update the cache with, becomes a critical issue. This is explained in 

the next section.

45

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Prefix Port ID
Prefix I (lxxx) 
Prefix II (llOx) 
Prefix III (Olxx)

Port A 
Port B 
Port A

Prefix IIIU . 
(port A ) 

Prefix II 
(port B)

(a) (b)

Fig. 5.1. An Example of Longest Matching Prefix

5.2.1 What to Update a Routing Cache With?

A cache miss eventually results in a cache update. In a full address cache, where full 

IP addresses {e.g. 32 binary bits for IPv4) and their corresponding output ports are stored, 

the cache must be updated with the full missing address. The missing output port must 

be resolved through main table access. The longest matching prefix with the missing IP 

address is found in the main table and the corresponding output port is read from the table. 

Then an entry in the cache is replaced with the full missing IP address and the output port. 

As mentioned before, the replacement policy of the cache decides which entry is selected 

to be replaced.

On the other hand, a prefix cache can be updated with a prefix or an IP address. If the 

Longest Matching Prefix of a missing IP address is a cacheable prefix, the cache is updated 

with that prefix. If the Longest Matching Prefix of the IP address is not cacheable, then 

the full IP address (e.g. 32 bits for IPv4) is stored in the cache. However, if non-cacheable 

prefixes are common lookup results, then a prefix cache degrades into a full-address cache. 

A prefix cache requires a TCAM, while a full IP cache is implemented with a binary CAM. 

Thus the prefix cache full of 32 bit IP addresses is not efficient in terms of area and power 

consumption. Note that for the main lookup table to return correct results to the cache (the
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prefix or the full address), the lookup scheme must decide if a prefix is cacheable or not. 

This complicates the table look ups and table updates and requires more storage area. Note 

that a cacheable prefix might be no longer cacheable after the table is updated with a new 

prefix which is covered with the old cacheable prefix.

It is important to see how often the non-cacheable prefixes are the results of the lookups. 

Our simulation results, given in Chapter 6, show that the LPM of a large portion of IP 

addresses (up to 46%) correspond to non-cacheable prefixes. Thus it is essential to increase 

the number of cacheable prefixes, if a prefix cache is to be used.

5.2.2 Prefix Caching and Table Expansion

To increase the locality of data stored in a forwarding cache, full prefix caching is preferred 

where all the prefixes are cacheable (leaves of the trie). This requires a full LUT expansion. 

Figure 5.2(b) shows a complete expansion of the trie for our example in Figure 5.2(a). 

Prefix I is expanded by appending 0 to form prefix 1-1 in node 5, and by appending 11 to 

form prefix 1-2 in node 14 and the forwarding information (port A) is copied in both nodes 

5 and 14. Thus full table expansion means replacing any non-cacheable prefix with a set 

of new cacheable prefixes (with the same output port ID). The new prefixes ensure that all 

IP addresses covered with the old non-cacheable prefix, are covered with the set of these 

new prefixes. Thus all addresses whose longest matching prefix was the old non-cacheable 

prefix, are now matched with a cacheable prefix and are forwarded to the correct output 

port.

However, note that the number of valid prefixes increases and the lookup table gets 

larger. Liu reports up to an 118% increase in table size [14]. Routing table expansion is 

unfavorable due to memory area limitations, power consumption and cost. On the other 

hand, table expansion pushes prefixes lower in the trie, increasing the search time for Soft­

ware searches. Also, updates in a fully expanded table are challenging, since all prefixes 

remaining in the table after an update, must be cacheable. Note that an expanded prefix no 

longer exists and the update must find the prefixes created by expansion.
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Fig. 5.2. Trie presentation of a small lookup table.

A partial LUT expansion can be adopted to increase the locality as well as to keep 

the LUT small. Figure 5.2(c) depicts the partial expansion in [14] where non-cacheable 

prefixes are expanded only to their first level of expansion. This partial expansion means 

for every non-cacheable prefix, only one new cacheable prefix is added to the table. The 

new prefix is formed by adding either a 0 or a 1 to the non-cacheable prefix. Note that 

the non-cacheable prefix is not removed from the table and the new prefix is added only if 

it is cacheable. The goal of this expansion method is to increase the chance that longest 

matching prefix of more IP addresses, is cacheable. If the new prefix (either by adding 

a 0 or a 1) is cacheable, half of the IP addresses covered with the non-cacheable prefix 

are covered with this new prefix. The longest matching prefix of these addresses are now
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this new cacheable prefix. In the previous example, Prefix 1-1 is added to the trie at node 

5 with the same forwarding information as prefix I. In the original trie, the LPM of all 

the IP addresses covered by node 5 and 14, is prefix I (node 2). Since prefix I is not 

cacheable, those IP addresses must be cached in full. After addition of Prefix 1-1 to the trie 

(See Figure 5.2(c)), the LPM of all IP addresses covered by node 5, is prefix 1-1 which is 

cacheable. Caching Prefix 1-1 instead of IP addresses increases the locality of the cache 

and results in lower miss rates. Note that the table size after this partial expansion is less 

than the fully expanded table.

However, the level one expansion method is not useful for some non-cacheable prefixes 

which remain non-cacheable by adding either a 0 or a 1. This is especially important be­

cause the short prefixes on top of the trie, which cover most of the IP addresses, encompass 

many other prefixes and level one expansion is most likely to be useless. Moreover, the 

lookup scheme must still decide if a prefix is cacheable or not.

5.23  Short Prefix Expansion (SPE)

Short prefixes cover more IP addresses than longer prefixes. Thus higher locality exists 

in short prefixes. Although there are fewer short prefixes in a routing table, short prefixes 

might be referenced more often [41,42]. Short Prefix Expansion (SPE) fully expands the 

trie for the prefixes less than 17 bits long (short prefixes). SPE ensures that any prefix 

less than or equal to 16 bits is fully expanded and thus, cacheable. A short prefix covers a 

large number of addresses. If short prefixes are cached, better cache hit rates are expected. 

On the other hand, most prefixes stored in lookup tables are between 16 to 24 bits long 

and there are many cacheable 16 bit prefixes as well [15]. Thus, SPE performs the table 

expansion for fewer number of prefixes compared to a full table expansion and provides 

the most coverage of IP addresses with cacheable prefixes.

An example of SPE for a 5 bit addressing scheme is given in Figure 5.3 which expands 

prefixes of size 3 or less. The original trie depicted in Figure 5.3(a) is similar to our previous 

example bus has one more non-cacheable prefix of size 3 (Prefix II at node 7). As depicted

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Prefix II

(a) Original Trie

Prefix I-l^ i 
(port A)

$) Prefix 1-2 
(port A)

Prefix II-1

(b) Trie with SPE 

Fig. 5.3. SPE: The Proposed Partial Table Expansion.

in Figure 5.3(b), SPE fully expands short prefixes (whose sizes are less than or equal to 3) 

by pushing them down the trie until they either become leaf nodes (cacheable), or become 

4 bits long. In this example, Prefix I is completely expanded by Prefix 1-1 and Prefix 1-2. 

But Prefix II is only pushed down to node 15 and is replaced with prefix II-1. In a 32 bit 

addressing scheme applicable to IPv4, SPE pushes the short prefixes down the trie until 

they either become leaf nodes (cacheable), or become 17 bits long. Thus all short prefixes 

are cacheable. This table transformation (SPE) has the following advantages:

1. Routing table expansion is limited to those prefixes that provide the greatest coverage
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of the IP address space. This is the important difference between SPE and the full 

expansion. The increase in the table size is much less than a fully expanded table (See 

Chapter 6) while the non-cacheable prefixes with the most coverage are replaced with 

cacheable prefixes.

2. All short prefixes are cacheable and a length check is sufficient to determine if a 

prefix is cacheable or non-cacheable.

3. Table updates are simpler compared to a fully expanded trie. In a fully expanded trie, 

if a new prefix matches with an other prefix (either shorter or longer), several extra 

new prefixes must be added to the table, no matter what size these two prefixes are. 

In table with SPE, if the new prefix and old matching prefix are both longer than 16 

bits, no table modification is required and the new prefix can be simply added to the 

table.

If the LUT is implemented in a two stage pipelined TCAM, our HLPM technique can 

be employed to easily find the longest cacheable prefix on a cache miss. This hardware- 

based LUT implementation is described in detail in Section 5.3. Section 5.4 describes a 

Multizone Pipelined Cache (MPC) based on the SPE table expansion.

5.2.4 Expansion-Free (EF) Software Lookups

Lookups may be implemented in hardware or software. A software lookup walks down the 

trie to find the longest matching prefix for an IP address [7]. The search ends when there 

are no more branches to take. The longest matching prefix is the last prefix encountered 

in the trie. Some of these longest matching prefixes might not be cacheable in a non­

expanded table. We propose a new Expansion-Free (EF) method to generate cacheable 

prefixes using a simple and inexpensive mechanism during a software lookup. EF forwards 

the generated cacheable prefixes to the cache but does not store them in the lookup table, 

thus eliminating problems associated with table expansion. Figure 5.4 illustrates the EF 

method on the example of Figure 5.2. Let n be the last node visited during a traversal of
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Fig. 5.4. Expansion Free Transformation.

the trie for an IP address, and let p  be the last node visited containing a prefix during the 

traversal. EF has three rules.

1. If p  =  n is a leaf node in the trie, then the prefix in p  is cacheable and can be 

forwarded to the prefix cache. For example, for IP addresses covered by node 4, 

p  =  n =  4. Thus the prefix in node 4 is cacheable and is forwarded to the cache as 

the lookup result.

2. If p =  n is not a leaf node in the trie, p is not cacheable. In Figure 5.4, assume an IP 

address matches node 5, n =  p  — 2. A cacheable prefix can be produced by adding 

the next bit in the address (in this case a 0) to the path followed to encounter p. This 

generated cacheable prefix is forwarded to the cache.

3. I f p ^  n, the prefix in p  is not cacheable. In Figure 5.4, assume an IP address matches 

node 14 in the trie. For this IP address, p = 2 and n =  6. A cacheable prefix is 

produced by adding the next bit in the address (in this case a I) to the path traversed 

to find n. This generated cacheable prefix is forwarded to the cache.

5.3 HLPM-based LUT for SPE Implementation

In this section we employ an HLPM-based pipelined TCAM to implement the LUT. The 

general description of HLPM is given in Chapter 4. We scale and modify HLPM to be
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applicable to our cache in our forwarding system. Note that the design presented in this 

section is a demonstration of the fact that HLPM is easily scalable to any application. 

Figure 5.5(a) depicts the two stage pipelined TCAM which stores 32 bit IPv4 prefixes. 

The first stage stores the 17 Most Significant Bits (MSB) of prefixes and the second stage 

stores the 15 Least Significant Bits (LSB). The Length Column records for each entry, as a 

4-bit binary coded value, the number of non-don’t-care bits stored in the second stage. For 

example 0000 is stored in the corresponding Length Column entry of a prefix with size 17 

(or less), because there is no non-don’t-care bit in the second stage before the don’t care 

bits. 0111 and 0001 are stored for prefixes of length 24 and 18, respectively.

When an IP address misses the cache, it is searched in the LUT. This search is done in 

two steps in our two-stage pipelined TCAM. In step one, the MSBs (bits 31 to 15) of the 

IP address are applied to the first half of the TCAM (all entries are searched in parallel). If 

the IP address matches with any entry that has a don’t care value in its last cell (the \ l ,h 

bit), it means that the IP address matches with a prefix of length less than 17. SPE ensures 

that this prefix is cacheable and is the LPM (See Section 5.2.3). Thus the search ends and 

the second stage of the pipeline is a No-Operation task for that IP address. For example, in 

Figure 5.5(a), if an IP address matches with prefix II, this prefix and corresponding output 

port can be forwarded to the cache. The required TCAM entry modifications are depicted 

in Figure 4.2 in Chapter 4.

However, if the search in the first stage results in a matching entry with no don’t care in 

the last cell, it means the LPM is more than 16 bits long and a second step search is required. 

For example, assume an IP address matches with prefix I in Figure 5.5(a). In the second 

stage, the LSB of the IP address (bits 14 to 0) are applied to the second part of the matching 

entry in the first stage (entry I). If a prefix matches with the IP address in the second stage 

as well, the matching prefix is found. The full IP address and the corresponding output port 

can be forwarded to the cache. However, multiple long prefixes might match with an IP 

address after the second stage. For example, an IP might match with both Prefix I and III 

as shown in Figure 5.5(a). In this case, the data in the Length Column resolves the LPM as 

explained in the general description of HLPM presented in Section 4.2.3. The modification
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required for the Length Column is depicted in Figure 5.5(b).

5.4 Multizone Pipelined Cache (MPC) Architecture

This Section describes the Multizone Pipelined Cache (MPC) [43]. Figure 5.6 presents a 

structural description of MPC. The DAA is divided into two parts horizontally. The two 

parts form the two zones of the cache, and have independent sizes. The upper Prefix Zone 

stores short IP prefixes, which are 16 or fewer bits long. The lower Full Address Zone stores 

full 32-bit IPv4 destination addresses. The Full Address Zone is further divided vertically, 

with each entry split in half. The most significant 16 bits of the address are stored in CAM1, 

while the least significant 16 bits are stored in CAM2. A TCAM is used for the Prefix Zone 

implementations. A binary CAM is used to implement the Full Address Zone of MPC.

MPC searches all entries of the DAA in parallel for an IP address. If the MPC finds the 

address in the DAA, a cache hit occurs, and the corresponding next hop is read from the 

NHA and returned to the processor. If no entry in the DAA matches the IP address, a cache 

miss occurs. In this case, a lookup in the full routing table is performed and the cache is 

updated with the new destination address/next hop pair.
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5.4.1 Cache Functionality

Breaking the DAA into three pieces allows cache lookups to be pipelined. The pipeline 

has three stages: (1) a lookup in CAM1; (2) a lookup in either CAM2 or the Prefix Zone, as 

required by the results of the first stage; (3) an access to the NHA RAM (on a hit) to return 

the lookup result (forwarding information or cache miss indication). In stage 1 the most 

significant 16 bits of the address are applied to CAM1. If there are any matches in CAM1, 

in stage 2 the corresponding entries of CAM2 are searched with the 16 least significant bits 

of the address to complete the full-IP match in the Full Address Zone. Otherwise, stage 2 

applies the 16 most significant bits of the address to the prefixes cached in the Prefix Zone. 

If there is a match in either the Full Address Zone or the Prefix Zone, stage 3 accesses 

the RAM location corresponding to the matching entry, and returns the next hop data as 

the lookup result. SPE ensures that an IP address either hits the Full Address Zone or the 

Prefix Zone, but not both (See Section 5.2.3).

When there is no match either in the Full Address Zone or in the Prefix Zone, a cache 

miss is reported. A routing table search returns the routing information that is then stored 

in the MPC. The time required to complete this search and store the value in the cache is 

known as miss penalty. Servicing a miss is time consuming because of the slow main mem­

ory accesses to the routing table. MPC stores recent misses in an Outstanding Miss Buffer 

(OMB) until the processor returns the lookup results (see Section 5.4.2). Figure 5.7(a) 

depicts the pipeline flow diagram for a cache search. The diagram for an update is in 

Figure 5.7(b). The update process is later discussed in detail in Section 5.4.3.

5.4.2 Outstanding Miss Buffer

MPC uses the OMB to store recent misses until the processor returns their lookup results. 

Without OMB, MPC would need to stall while each cache miss is serviced. Blocking 

hinders cache throughput because further cache searches cannot proceed until the lookup 

is performed and the cache updated, even if pending requests would hit the cache. When 

a miss occurs in the non-blocking MPC, the address is stored in the OMB and the cache
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continues performing lookups. If subsequent IP addresses hit the cache while a miss is 

being serviced, a hit under miss occurs. A miss under miss (secondary miss) occurs when 

a subsequent IP address also misses the cache. Secondary misses are stored in the OMB 

until the buffer is full, at which point MPC blocks and the processor stalls until misses 

are serviced and removed from OMB. An example of MPC functionality with a two-entry 

OMB is given in Figure 5.8. In this example, IP2, IP4 and IP6 are cache misses. The 

MPC is able to search for IP3 and IP5 and forward their corresponding information to the 

processor while the main table lookup for IP2 is in progress. The MPC stalls after searching 

for IP6 because OMB is full. No new IP can be searched until IP2 is serviced and removed 

from OMB to make room for IP6.

5.4.3 Cache Update

When the lookup result of a pending IP address in the OMB comes back from the main 

memory lookup, the MPC updates either the prefix zone or the full address zone with the 

corresponding information according to the MPC replacement policy. An expansion of the 

lookup table ensures that the result is either a short prefix that updates the prefix zone, or a 

full address with 32 bits that updates the full address zone (See Section 5.2.3).

MPC requires a pipeline stall to update the data stage by stage. After an update is 

complete, the missing IP is removed from OMB. However, other pending IP addresses in 

the OMB might be identical to the recently updated IP address. Additionally, an update 

result might be a prefix covering multiple pending IP addresses in the OMB. To ensure
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that the same lookup result is not written into the cache multiple times, we implement the 

OMB as a 33-bit CAM. Each OMB entry stores a 32 bit address and a valid bit. Only 

valid entries require a software lookup and cache update. After each update, an associative 

search of OMB identifies all matching entries. If the lookup result is a prefix, its don 7 care 

bits are externally masked to ensure that they match with the data in OMB. The valid bits of 

all matching entries are cleared. A second search for those matching OMB entries will now 

hit the cache, and provide the processor with the next hop information. The flow diagram 

for an MPC update is shown in Figure 5.7(b).

This simple update scheme allows the cache to issue update requests one by one. After 

one update is complete the next update request can be issued. However, a more compli­

cated update scheme can be employed to allow the lookup algorithm and the corresponding 

interface to decide when pending requests are serviced, how many requests are serviced at 

a time, and the order in which the requests are serviced with no restrictions. We call the 

update algorithm Out-Of-Order Cache Update, or OCU, and present it in Figure 5.9(b). 

OCU lets the interface to the lookup and the lookup algorithm benefit from out-of-order 

processing and batch requests to move data more efficiently. The general functionality of 

this algorithm is similar to the simple update algorithm, but there are three issues requiring 

special consideration, namely update/lookup interlacing, batch updates, and contention for 

the OMB.

Cache lookups and cache updates are both pipelined operations that move through the 

same pipeline stages. Therefore, both lookups and updates can be fed arbitrarily into the 

pipeline without introducing stalls. If an update precedes a lookup, the lookup will see the 

updated data at each stage. Alternatively, if the lookup generates a miss and writes to the 

OMB before an update starts, the update will clear that entry from the OMB. However, a 

lookup that occurs shortly before an update could produce a miss on the same data that the 

update is writing into the cache. If the miss were written into the OMB, a second main 

table lookup would return the same result, and the second update would write a second, 

identical entry into the cache. We wish to avoid this situation. Therefore, before an update 

starts, the main table lookup result is stored in the Pending Update Register (PUR). Every
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cache miss checks the missed value against the address or prefix in the PUR before writing 

to the OMB. If there is a match, the next hop information in the PUR can be forwarded as a 

cache hit. Otherwise, the miss is written to the OMB just as in the simple scheme. After an 

update is finished, the PUR is replaced with a zero value, which cannot match any address.

The lookup system may batch update requests, and subsequently batch the lookup re­

sults, in order to improve data movement efficiency. A batch request can easily be formed 

by taking multiple valid entries from the OMB. However, batch updates conflict with the 

serialized cache update mechanism. Furthermore, batch and out-of-order lookups introduce 

the problem that two requests may generate the same lookup result, which should only be 

written to the cache once. To rectify this situation, lookup results are placed in a FIFO, and 

sequentially moved into the PUR. Therefore, each lookup result generates a separate cache 

update, and these updates are completely serialized. A second identical update result will 

not match any valid entries in the OMB, and will be discarded.

With OCU, the OMB becomes a point of contention in the system. Cache misses write 

to the OMB, while cache updates read from and write to the OMB. Only one of these 

actions can be performed in a given clock cycle. The write from a miss occurs at the end 

of the lookup pipeline. The accesses for an update occur at the beginning of the update, 

before it enters the pipeline, and multiple updates are serialized. Therefore, we prioritize 

miss writes over update accesses. In the worst case, a long sequence of misses may cause 

an update to be delayed until the OMB fills and blocks further cache lookups. However, 

the OMB is small, and any cache hit provides an opportunity for an update to proceed.

An example of all three cases are depicted in detail in Figure 5.10. In this example an 

update request comes back to the cache after two clock cycles. Thus the update result for 

IP2 is written to PUR at the end of cycle 5. Since there is a miss report for IP4 at the end of 

cycle 5, the miss must be compared with the PUR and written to the OMB at cycle 6. IP4 

is not written in the OMB if IP4 matches with the PUR. Otherwise the valid bit of IPA in 

the OMB is set.

At cycle 7, again there is another missing IP waiting to be compared with the PUR and 

be written in the buffer. In cycle 8, the OMB starts the search operation before the update.
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During cycles 9, 10 and 11, the cache is updated with the update result of IP2. However if 

the OMB was full at the end of cycle 5, IP4 could not be written to OMB in cycle 6. The 

OMB would search for update results of IP2 at cycles 6 and write IP4 in cycle 7 (if empty).

5.5 Summary

In this Chapter we have proposed MPC, a non-blocking, multizone, half-prefix half-full 

address cache that dedicates different zones to different lookup prefix lengths. The Pre­

fix Zone is able to store and search prefixes with 16-bits or less. The Full Address Zone 

stores and searches for full IP addresses whose lookup prefixes are more than 16 bits long. 

Prefix caching increases the cache coverage while a relatively small table expansion is re­

quired. The EF method, proposed in this Thesis, completely eliminates table expansion 

for software lookups. Also MPC potentially can achieve higher throughput and low power 

consumption due to pipelining. The effective miss penalty is also reduced by using the 

non-blocking buffer to let the cache search for new IPs while waiting for the lookup re­

sults of cache misses. The next Chapter presents the simulations results and performance 

evaluations of MPC and HLPM.
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Chapter 6

Performance Analysis and Simulation

6.1 Overview

This Chapter presents a simulation-based performance evaluation of the new forwarding 

mechanism described in this thesis. This performance study used a high level architectural 

simulator run with real IP traces and lookup tables of three distributing, neither core nor 

edge, routers. Table 6.1 contains the characteristics of these traces.

Our forwarding architecture is comprised of the MPC and the Look Up Table as de­

scribed in detail in Sections 5.4 and 5.3 respectively. The IP addresses, existing in our real 

traces, are referenced to the cache (MPC) one by one. If an IP address misses the cache, 

after some clock cycles, the lookup result of the missing IP is returned to the cache. We 

do not specify the LUT at this point and we simulated the performance of MPC indepen­

dent of the type of the LUT employed in the system. The LUT can be either implemented 

in software or hardware. Note that the LUT implementation has a direct impact on the 

number of clock cycles it takes the cache to receive the lookup results for a missing IP 

address. But this delay not only depends on the LUT speed, but also on the whole router 

system to carry the missing IP from the cache to the LUT, perform the look up and send 

the results back to the cache. For example when a single LUT handles multiple caches 

on multiple Input / Output interfaces, the contention between lookup requests from differ-
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TABLE 6.1 

Trace Characteristics
ISP1 ISP2 ISP3

Trace Length (Packets) 99117 98948 98142

Routing Table Size (Prefixes) 10219 10219 6355

ent caches, might increase the lookup delay as well. This delay relates to the Cache Miss 

Penalty in general and is presented as a parameter named Latency in our simulations. Also 

note that the cache miss rate is totally independent of the LUT implementations. Thus in 

our simulations, the cache (MPC) performance is evaluated independent of the LUT im­

plementations. Later in this Chapter we present the simulation results of the HLPM-based 

LUT for our forwarding mechanism as well.

Before we evaluate the MPC performance in detail, we consider the question raised 

in Section 5.2: To what extent do non-cacheable prefixes impact cache performance? If 

the LPM of most IP addresses are cacheable prefixes, there is little benefit from table ex­

pansion. In that situation, the cache would store full IP addresses whose LPM are non 

cacheable prefixes, and there is no need to generate cacheable prefixes. Thus, we simulated 

a cacheless architecture where all IP addresses reference the LUT directly. The results in 

Table 6.2 indicate that the LPM of up to 47% of all IPs are actually non-cacheable prefixes. 

Thus the spatial locality of the cache decreases dramatically if IP addresses are cached in 

full due to non-cacheable prefixes. Table 6.3 compares the miss rates of different cache 

types. Based on these simulation results, if non-cacheable prefixes are cached in full (in 

the Simple Prefix Cache), the miss rates are close to the full address cache, while Ternary 

CAM is required for implementations of the prefix cache. Thus the non-cacheable prefixes, 

make a Simple Prefix Cache degrade to a Full Address Cache.

However in the ISP3 trace very few non-cacheable prefixes are referenced. A careful 

investigation of the ISP3 trace indicates that all the IP addresses of this trace are covered 

with 7% of the prefixes in the LUT, which indicates that there is very strong locality in this 

traffic. Although this amount of locality is not commonly observed in routers closer to the
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TABLE 6.2

Non-cacheable prefixes in a LUT.
ISP1 ISP2 ISP3

Referenced 

Non-cachebale Prefixes % 46.8 37.8 2

backbone, we completed our simulations for this trace as well as our other two traces.

6.2 MPC Performance Evaluation

To evaluate the performance improvements achieved by MPC, several cache types are sim­

ulated and compared. Table 6.3 compares the miss rates of the MPC with a Full Address 

Cache, a Simple Prefix Cache (as explained above) and a Full Prefix Cache (fully ex­

panded). Note that a cache hit in MPC is either in the full address zone (a hit in both 

CAM1 and CAM2) or in the prefix zone (a miss in CAM1 and a hit in the TCAM). Also, 

MPC miss rates, presented in Table 6.3, represent miss rates in the full address zone and 

the Prefix zone in total. A cache miss in the full address zone is the result of a hit in CAM1 

but a miss in CAM2. A miss in the TCAM, is the result of a miss in both CAM1 and the 

TCAM. For a fair comparison, the Full Address cache is simulated as a two-zone two-stage 

pipelined cache with equal sized zones. This architecture caches full IP addresses and is 

implemented in a 32 bit binary CAM. The Simple Prefix Cache and the Full Prefix Cache 

are 32-bit Temary-CAMs that store prefixes. The former stores cacheable prefixes and 

stores full addresses if the lookup results are non-cacheable prefixes. The later uses a fully 

expanded version of the real lookup table (LUT) in which all prefixes are cacheable.

The Full Prefix Cache clearly outperforms all other caches. However, the prefix caches 

must be implemented in a 32-bit TCAM. Since the area required for a TCAM cell is almost 

twice the area of a CAM cell, MPC and the IP Cache use half the area of a prefix cache 

with the same number of entries. To compare the performance of caches with the same 

storage area, MPC and the Full Address cache should be compared to a prefix cache with
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half as many entries. The simulation results indicate that for equal cache size (storage 

area), the performance of MPC is almost as good as the full prefix cache. Moreover, the 

full prefix cache requires full LUT expansion while MPC can be implemented with SPE 

(See Section 5.2. Table 6.4 compares the total number of prefixes in the LUT after the 

expansion for a prefix cache and MPC.

Lookup tables contain redundant information. A prefix pt is redundant if the lookup 

table still returns correct results when p t is removed from the table. Figure 6.1 gives two 

examples of redundancy in a LUT. In this example, p x at node 1, encompasses p 2 at node 

8, and that they both forwarded to the same port. Since there is no other prefix on the path 

from p x to p2 on the lookup trie, p2 merely duplicates information from p x lower in the 

trie, and can be removed with no change in the lookup results. Figure 6.1(b) depicts the 

new trie in which /?, is removed. On the other hand, p2 at node 5 and pA at node 6, of 

the same length, differ only in their last bit, are both forward to the same port. Those two 

prefixes can be replaced with one new prefix, p5 at node 2, which is identical to p 2 and 

p4, but has a ’’don’t care” in the last bit. Figure 6.1(c) depicts the trie with no redundancy. 

Some software based lookup tables compress the total trie by removing all the redundant 

prefixes [7]. Although the initial table size is significantly reduced in such a compressed 

table, it is difficult to perform some table updates, and to keep updates from generating 

redundant prefixes. Thus, the table usually has some redundancy in it.

TABLE 6.3

Miss Rates (%) vs. Cache Sizes (No. of Entries) for Three Traces
ISP1 ISP2 ISP3

Entries 512 1024 2048 512 1024 2048 512 1024 2048

Full Address Cache 22.7 15.4 10.5 10.8 7.2 4.9 3.6 2.2 1.9

Simple Prefix Cache 17.2 11.2 6.5 7.1 4.5 3.1 0.6 0.6 0.6

MPC 15.5 7.9 3.7 6.2 3.3 2.0 3.0 2.0 1.6

Full Prefix Cache 7.4 2.5 1.4 2.9 1.3 1.2 0.5 0.5 0.5
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TABLE 6.4 

Number of Prefixes after Table Expansion

ISP1 ISP2 ISP3

Entries % Larger Entries % Larger Entries % Larger

Original Table 10219 - 10219 - 6355 -

Full Expansion 30620 199 30620 199 7313 15

SPE 17485 71 17485 71 6469 2

(Port A) M
(Port A) 0

P ,Q t) (Port B) (Port B) 
(Port" A} (Port B) (Port B) (Port At (PortB)

(a) (b) (c)

Fig. 6.1. Examples of Existing Redundancy in a LUT.

If redundancy is removed from a table, there are fewer prefixes to cache, and the ef­

fectiveness of caching should improve. Furthermore, redundant prefixes often give rise to 

situations where a short prefix unnecessarily encompasses an redundant prefix. In the ISP1 

and the ISP2 tables 27.0% of the prefixes are redundant while 28.6% of the prefixes in the 

ISP3 table are also redundant. To investigate the impact of the table redundancy on the 

cache performance, we removed the redundant information from our real tables and then 

transformed the tables to ensure correct cache results (See Section 5.2). As shown in Table 

6.5, cache miss rates are equal or better when non-reaundant tables are used. Section 6.2.3 

presents the impact of redundancy on the Lookup scheme.
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Fig. 6.2. CPO vs. Latency for lK-Entry (equally sized zones) MPC.
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TABLE 6.5

Miss Rates (%) vs. Cache Sizes (No. of Entries) for Three Traces with No Redundancy in 

_______________________________ the LUTs_______________________________
ISP1 ISP2 ISP3

Entries 512 1024 2048 512 1024 2048 512 1024 2048

Full Address Cache 22.7 15.4 10.5 10.8 7.2 4.9 3.3 2.0 1.9

MPC 15.5 7.9 3.7 6.0 3.2 2.0 3.0 2.0 1.6

Full Prefix Cache 7.4 2.5 1.4 2.5 1.1 1.1 0.3 0.3 0.3

6.2.1 OMB Performance Evaluation

MPC uses a small buffer (OMB) to hide the miss penalty. As mentioned before, the sim­

ulator uses a latency parameter to model miss penalty. A cache that has no buffer to store 

recent misses has to stall at each miss and wait until the update result is returned to the 

cache. To evaluate the impact of the miss penalty we measure a metric called CPO (Clock 

Per Output) that reports the average number of clock cycles necessary to provide the Next 

Hop Information for an IP address. Figure 6.2 depicts CPO versus Latency for MPC with 

no OMB, OMB with a single entry, and OMB with 10 entries. As expected, CPO increases 

linearly with latency for a cache with no buffer. For small latencies, in an MPC with a 

single entry OMB, the CPO is almost independent of the latency. For larger values of la­

tency, CPO again increases linearly, but remains less than without the OMB. The OMB 

becomes more important in systems where a single LUT handles the misses from multiple 

caches, due to contention between the caches for service from the LUT. This performance 

study does not simulate LUT contention directly. Effects of contention are longer and non- 

uniform latencies. Therefore, the overall effects of contention can be roughly estimated by 

observing cache throughput under longer-latency conditions.
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6.2.2 Power Savings

In a CAM-based device, power consumption is an important constraint that is addressed 

by many designs [30,33]. The power consumption in a CAM-based device can be sepa­

rated into three components: Evaluation Power (Search power), Input Power and Clocking 

Power [24]. All these sources are linearly dependent on the number of entries searched. If 

50% of the time, only half of the entries of the cache are searched, the effective number of 

entries during each search operation is reduced to 75% of the physical number of entries. 

Thus 25% power is saved.

MPC divides the cache entries into two zones in the DAA: the full address zone (the 32 

bit CAM) and the prefix zone (the 16 bit TCAM) as described in detail in Section 5.4. We 

assumed these two zones are equally sized (equal number of entries). During the pipelined 

search operation of the cache, half of the cache entries in the full address zone (in CAM1) 

are always searched in the first stage of the pipeline (the 16 MSB of the IP address are 

searched in all entries of CAM1, See Section 5.4). The second half of the cache entries 

in the prefix zone are searched only if the IP address misses the full address zone during 

the first stage. If the IP address hits the full address zone (CAM1) in the first stage, in 

the second stage, the 16 LSB of the IP address are searched in CAM2. The prefix zone is 

searched only if the address misses CAM1 of the full address zone.

The vertical pipelining feature of MPC leads to the fact that not all cache entries are 

always searched for an IP address. Thus the effective number of cache entries is actually 

less than the physical number of entries. This results in power savings compared to the 

caches that search all entries. Our simulation results, presented in Table 6.6, indicate that 

almost 60% of the IP addresses hit CAM1, eliminating the need to search the TCAM. Since 

half of the total cache entries are dedicated to each zone, this results in a 30% reduction 

in the effective number of entries searched in the cache, and a corresponding 30% power 

savings in the cache search operation compared to caches that search all their entries during 

a search.
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TABLE 6.6

CAM1 Hit Rates
# Entries ISP1 % ISP2 % ISP3 %

512 62 64 74

1024 63 65 74

2048 63 65 74

6.2.3 The HLPM-based LUT Performance Evaluation

In the forwarding architecture, a cache miss results in a reference to the LUT. The LUT 

stores the routing prefixes after SPE expansion. We simulated the HLPM performance 

considering one MPC with IK entries. Table 6.7 shows the simulation results for the real 

lookup tables and for the ones with redundant information removed. We found that approx­

imately 35% of measured expanded prefixes stored in the LUT are short (less than or equal 

to 16 bits). Almost 28% of the missing IP addresses match these short prefixes (cacheable 

prefixes) for ISP1 and ISP2.

Cacheable prefixes of the ISP3 table are referenced infrequently because most IPs in 

this trace match with a very small set of cacheable prefixes, In other words, the ISP3 trace 

has very high spatial locality. When those prefixes are cached, most IP addresses hit the 

cache. This result is also observed in MPC simulation results given in Tables 6.2 and 6.4. 

In a prefix cache, the miss rates does not improve when the cache size increases. This 

insensitivity to cache size suggests that only a small number of prefixes need to be cached 

to hit most addresses in the trace. The miss rates improve very little for larger MPC or a 

larger full address cache. Naturally, this increase is due to caching full IP addresses.

As shown in Table 6.7, Length Column searches are only required for a portion of the 

matching prefixes. Almost 40% of the time, the LUT can find the LPM with no Length 

Column search. The pipelined design saves power by avoiding unnecessary searches in the 

second stage o f the missing IPs that match with cacheable prefixes. When the missing IP 

matches with a short cacheable prefix, the second stage of the pipeline is a No-Op and no
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TABLE 6.7

Simulation Results for HLPM-based LUTs (Tables with redundancy are the real tables).
ISP1 1SP2 ISP3

Redundancy Yes No Yes No Yes No

LUT Short Prefixes % 36.6 41.6 36.6 41.6 19.5 23.2

Referenced Short Prefixes % 27.8 27.8 27.2 29.1 <1 <1

Second Level Search % 55.8 55.8 59.2 57.5 70.0 83.0

Power Savings % 14.0 14.0 13.6 14.5 <1 <1

search is performed, as described in detail in Section 5.3. Thus fewer bits are searched. This 

leads to potential power savings. The power savings estimates reported in Table 6.7 are in 

comparison with a standard full length TCAM processing the same traces. In previously 

reported pipelined TCAM designs, matching entries are searched to the last stage, but in 

our pipelined TCAM, matching entries are searched until a don’t care is observed and not 

all matching entries are searched in all stages. Since low power TCAM designs use most 

of the power for matching entries [2], this power reduction directly affects the total TCAM 

power consumption. The HLPM architecture should be even more power-effective for IPv6 

prefixes that have wider prefix length variation.

6.3 Summary

In this Chapter, we presented our simulation results for both the Hardware-based Longest 

Matching Prefix (HLPM) scheme as well as our Multizone Pipelined Cache (MPC). We 

simulate our forwarding mechanism comprised of the MPC and a HLPM-based LUT. Our 

MPC simulation is independent of the LUT implementations. We also simulate a situation 

where there is no cache and the HLPM-based LUT is referenced with IPs.

Our simulation results demonstrate that our forwarding mechanism meets our goals. 

MPC has lower miss rates compared to other caches while saves power through smart
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search operations. The LUT is able to find the LPM with no table management and re­

quirements as well as saving power for short prefixes.
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Chapter 7

Conclusions and Future Work

In this thesis, IP forwarding is discussed and an efficient forwarding mechanism is pro­

posed, designed and simulated. Our forwarding mechanism is comprised of an efficient 

routing cache and a hardware-based Lookup Table.

In summary, the list of contributions of our design is as follows.

1. (a) A novel Hardware-based Longest Prefix Matching (HLPM) technique for Ternary

Content Addressable Memories (TCAM) is proposed in this thesis. We demon­

strate a TCAM with HLPM is very suitable for efficient look up table imple­

mentations.

(b) HLPM provides very fast table updates (no worst-case delays) with no table 

maintenance/management requirements. The prefixes can be stored anywhere 

in the table independent of their sizes.

(c) HLPM can be applied to any pipelined TCAMs and is very easily scalable.

(d) HLPM performs a two level search on entries of a TCAM. The first level re­

solves the LPM of prefixes ending in different stages by searching for a don’t 

care in the last bit of each stage. A very simple cell modification is presented in 

this thesis to perform the first level search. The second level resolves the LPM 

of multiple prefixes ending in one common stage of the pipeline by finding the 

max value of the coded lengths of prefixes in the last stage of the pipeline.
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(e) HLPM aims at a further decrease in power consumption compared to previously 

reported pipelined TCAM designs, by saving power for matching short prefixes.

(f) HLPM saves area compared to other fast table update solutions for TCAM 

based lookup tables.

2. We employ a TCAM with HLPM for the look up table implementations of the 

forwarding mechanism presented in this thesis. HLPM is applied to a two-stage 

pipelined TCAM. The first stage is 17 bits long and the second stage is 15 bits, pro­

viding 32 bits for IPv4 prefixes.

3. (a) We proposed a novel Multizone Pipelined Cache (MPC) to implement the cache

of the forwarding mechanism proposed in this thesis. MPC is a non-blocking, 

multizone, half-prefix half-full address cache that dedicates different zones to 

different lookup prefix lengths. The Prefix Zone is able to store and search 

prefixes with 16-bits or less. The Full Address Zone stores and searches for full 

IP addresses whose lookup prefixes are more than 16 bits long.

(b) MPC has lower miss rates compared to previously reported caches.

(c) Also MPC potentially can achieve higher throughput and low power consump­

tion due to vertical and horizontal pipelining.

(d) MPC uses a non-blocking buffer to let the cache search for new IPs while wait­

ing for the lookup results of cache misses. Thus the effective miss penalty is 

reduced.

(e) MPC saves power through smart search operations where unnecessary search 

operations are avoided.

4. A novel Short Prefix Expansion (SPE) technique is proposed to allow MPC to store 

prefixes instead of full IP addresses to increase the locality. The increase in the table 

size after SPE transformation, is less than other expansion techniques while SPE 

allows MPC to store the short prefixes with the most coverage.
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5. A novel EF method is proposed in this thesis to completely eliminate table expansion 

for software lookups. This techniques generates cacheable prefixes during each look 

up process and requires zero increase in table size.

6. A high level simulator was written in C++ and ran with real traces (IP packets and 

lookup tables) taken from several local distributing routers in Edmonton, Alberta.

Although different parts of the forwarding mechanism are designed and simulated 

through a high level architectural simulator using real traces, as presented in Chapter 6, 

there are many potential research directions as the future work of this thesis. The main 

directions include:

1. The circuit level simulations and exact timing and throughput analysis based on IP 

arrivals are the primary steps towards the future work of our research. The power 

consumption evaluations of the whole system (the cache and the lookup table) are 

required through a circuit level simulation.

2. Although our high level simulation results proved the efficiency of the proposed for­

warding mechanism, hardware implementations and testing of both the Lookup table 

(TCAM with HLPM) and the cache (MPC) are required as a precise evaluation of 

the forwarding architecture proposed in this thesis.
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