
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

C o n t e n t A d d r e s s a b l e M e m o r y - B a s e d C i r c u i t s f o r In t e r n e t P r o t o c o l

R o u t e r s :

A C a c h e a n d A L o o k u p Ta b l e

by

Soraya Kasnavi

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment

of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta

Spring 2005

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

0-494-08095-7

1*1 Library and
Archives C anada

Published Heritage
Branch

395 Wellington Street
Ottawa ONK1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN:
Our file Notre reference
ISBN:

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I’Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n’y aura aucun contenu manquant

i + i

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Abstract

Packet forwarding is a fundamental task for an Internet router. A routing lookup table

(LUT) is used to decide where to forward a packet at each router. The routing lookup is a

rather complicated and slow process and the lookup delay is a bottleneck in high throughput

routers. An effective strategy to speed up routing lookup is to use a cache to store recent

routing results for reuse. This thesis proposes an efficient forwarding mechanism with a

hardware-based LUT and a Multizone Pipelined Cache.

The LUT is implemented with a pipelined TCAM (Ternary Content Addressable Mem­

ory). Our TCAM employs a novel Hardware-based Longest Prefix Matching (HLPM) to

completely eliminate table management requirements and to reduce the power consump­

tion for short matching prefixes. The cache is a multizone non-blocking pipelined cache

for IP routing lookup that achieves lower miss rates compared to previously reported IP

caches and reduces the effective miss penalty by using a very small non-blocking buffer.

The simulation results of our forwarding mechanism, based on real traffic, demonstrate the

efficiency of the design.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Acknowledgements

I would like to especially thank Dr. Vincent C. Gaudet for his guidance, supervision and

funding for the work presented in this Thesis. I would also like to thank Mr. Paul Berube,

Dr. Jose Nelson Amaral and Dr. Mike MacGregor from the Department of Computing

Science, University of Alberta for providing data (IP traces and lookup tables), priceless

discussions and consulting.

I would like to thank my parents and my brothers for their non-stop support and patience

throughout my life, specially during past three years. I would like to thank my husband,

Hanif, for his positive and encouraging comments and his care and support for my academic

goals. Finally, I would like to thank the International Center of the University of Alberta

for helping me enjoy my social life as well as my academic life at the University of Alberta

and feel like home in Canada.

Thank you all.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Contents

1 Introduction 1

2 Background and Motivation 3

2.1 Routing Lookup... 7

2.2 Routing Cache ... 10

2.2.1 Related W ork.. 11

2.2.2 Multizone C ache .. 13

2.2.3 Cache Miss Penalty... 13

2.3 The Proposed Forwarding Architecture... 14

2.4 Sum m ary.. 14

3 Content Addressable Memory 16

3.1 O verview ... 16

3.2 Content Addressable Memory (CAM) Architecture..................................... 16

3.3 Low Power CAM Design..21

3.3.1 Power Savings in a CAM C e l l ... 21

3.3.2 Systematic Power Savings... 26

3.3.3 Numerical Examples of Power Consumption......................................29

3.4 Longest Prefix Matching in Ternary C A M ...29

3.5 Sum m ary... 33

4 Hardware-Based Longest Prefix Matching (HLPM) 34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.1 O verview .. 34

4.2 HLPM .. 35

4.2.1 TCAM Search Operation... 36

4.2.2 TCAM Entry Modification.. 38

4.2.3 Second Level Search...40

4.2.4 HLPM Advantages... 42

4.3 Sum m ary ..42

5 IP Forwarding Architecture: The Cache and the Look Up Table 44

5.1 O verview ..44

5.2 What to Store in a Routing Cache?... 45

5.2.1 What to Update a Routing Cache W ith? ...46

5.2.2 Prefix Caching and Table Expansion...47

5.2.3 Short Prefix Expansion (S P E) ..49

5.2.4 Expansion-Free (EF) Software Lookups... 51

5.3 HLPM-based LUT for SPE Implementation.. 52

5.4 Multizone Pipelined Cache (MPC) Architecture.. 55

5.4.1 Cache Functionality... 56

5.4.2 Outstanding Miss Buffer... 56

5.4.3 Cache Update.. 58

5.5 Sum m ary..62

6 Performance Analysis and Simulation 63

6.1 O verview ... 63

6.2 MPC Performance Evaluation... 65

6.2.1 OMB Performance Evaluation.. 69

6.2.2 Power S av ings... 70

6.2.3 The HLPM-based LUT Performance Evaluation 71

6.3 Sum m ary ... 72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7 Conclusions and Future Work 74

References 77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Tables

3.1 Comparison of Previously Reported CAM Energy Consumption.......................30

4.1 Entry Evaluation in One Stage.. 37

4.2 Entry Evaluation... 40

6.1 Trace Characteristics..64

6.2 Non-cacheable prefixes in a LUT. ... 65

6.3 Miss Rates (%) vs. Cache Sizes (No. of Entries) for Three T ra c e s 66

6.4 Number of Prefixes after Table Expansion... 67

6.5 Miss Rates (%) vs. Cache Sizes (No. of Entries) for Three Traces with No

Redundancy in the L U T s... 69

6.6 CAM1 Hit Rates ..71

6.7 Simulation Results for HLPM-based LUTs (Tables with redundancy are

the real tables).. 72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

2.1 An Example of a N e tw o rk ... 4

2.2 Internet Protocol Header format.. 5

2.3 A General Description of an Internet Router, (a) depicts an example of

the IP forwarding in a router in general, and (b) depicts the impact of the

routing cache on IP forwarding.. 7

2.4 An Example of Longest Matching Prefix.. 9

2.5 A Functional View of A Routing Cache [1] .. 11

2.6 The proposed forwarding scheme (a) Hardware-based Look Up Table and

(b) the routing cache... 15

3.1 CAM vs RAM.. 17

3.2 Content Addressable Memory (CAM).. 18

3.3 A Conventional TCAM cell...20

3.4 Some Low Power CAM Cell Design.. 22

3.5 A CAM Cell with Data L ines..23

3.6 NAND Type Match Lines... 24

3.7 A MisMatch Dependent Sensing Match Line [2]...25

3.8 A Selective Precharged Match Line [3]... 26

3.9 A Pipelined TCAM Storing IPv6 Prefixes.. 27

3.10 A Pre-Computational CAM.. 28

3.11 TCAM Space Management, (a) reserves some space between sets of prefix

lengths, and (b) reserves the extra space in the middle on ly31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.12 Binary CAM with mask features presented in [4]... 32

4.1 The Proposed Four-Stage Pipelined TCAM..35

4.2 A Modified TCAM Entry... 38

4.3 Length Column..41

5.1 An Example of Longest Matching Prefix.. 46

5.2 Trie presentation of a small lookup table.. 48

5.3 SPE: The Proposed Partial Table Expansion... 50

5.4 Expansion Free Transformation.. 52

5.5 Two-stage Pipelined TCAM with HLPM..53

5.6 MPC With SPE.. 55

5.7 Flow Diagram of the Cache Performance... 57

5.8 Pipeline Diagram of the Cache.. 58

5.9 Search / Update Diagram with Free Interface... 60

5.10 Update Complications... 62

6.1 Examples of Existing Redundancy in a LUT... 67

6.2 CPO vs. Latency for 1 K-Entry (equally sized zones) MPC..............................68

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

Acronyms

Acronyms

AHAL

CAM

CIDR

DL,

FIFO

FPGA

Gbps

HLPM

IP

IPv4

IPv6

ISP

LAN

LFU

LPM

LRU

LSB

LUT

ML

MPC

Definition

Active High Active Low

Content Addressable Memory

Classless Inter Domain Routing

Data Line /

First Input First Output

Field Programmable Gate Array

Giga Bit Per Second

Hardware-based Longest Prefix Matching

Internet Protocol

Internet Protocol Version 4

Internet Protocol Version 6

Internet Service Provider

Local Area Network

Least Frequently Used

Longest Prefix Matching

least Recently Used

Least Significant Bits

Look Up Table

Match Line

Multizone Pipelined Cache

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Mpps Mega Packet Per Second

MSB Most Significant Bits

OC Optical Carrier

OCU Out-of-order Cache Update

OMB Outstanding Miss Buffer

QoS Quality of Service

RAM Random Access Memory

SL, Search Lines

Tbps Tera Bit Per Second

TCAM Ternary Content Addressable Memory

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

List of Symbols

Symbol Definition

C Capacitance

/ Operation Frequency

0(N) Order of N

V Voltage

VDD Source Voltage

VTn Threshold Voltage for the NMOS Transistor

VTp Threshold Voltage for the PMOS Transistor

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Introduction

With increasing use of the Internet, a more robust, fast, reliable and secure backbone net­

work is required. Some applications such as Voice over IP or QoS, generate huge amount

of complexity as well. The backbone network is required to transfer and process Internet

data as fast as possible. Internet routing is one of the fundamental tasks done in a Network.

Routers receive a packet of data and decide where to forward it. Since this routing process

is done at each router the packet visits from its source to its destination, the routing speed

is an important parameter of the whole network performance.

In this thesis a high throughput-power efficient forwarding mechanism is proposed, dis­

cussed and simulated. The forwarding mechanism includes a routing lookup table and a

routing cache. Content Addressable Memory (CAM) is desirable for the cache and the

lookup table implementations. The CAM based devices are desirable due to their high

speed (they can perform a parallel search for a specific pattern, in all entries in a single

memory access), but are disadvantageous in terms of power consumption and area require­

ments. The hardware presented in this thesis, both for the main lookup table and for the

cache, saves power through smart search operations. The lookup table is implemented with

a pipelined Ternary CAM (TCAM). It resolves the Longest Matching Prefix with no table

management and requires less area compared to other TCAM-based lookup tables. The

lookup table saves power for short matching prefixes as well as for non matching prefixes.

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The other part of the design is the routing cache which is a half-prefix half full address

cache. Our cache is a Multizone Pipelined Cache (MPC) which has lower miss rates com­

pared to a full address cache and requires less table expansion compared to a full prefix

cache. We propose two novel table expansion methods in order to reduce the table size

as well as to increase the locality of the data stored in the cache. Short Prefix Expansion

(SPE), fully expands the table for short prefixes. MPC uses SPE for table expansion. Also,

we propose an Expansion Free (EF) method for software based lookup tables to generate

cacheable prefixes during lookups and forward those prefixes to the cache. The EF method

fully eliminates table expansion requirements for prefix caches with software based lookup

tables. MPC also employs a very small non-blocking buffer and reduces the effective cache

miss penalty.

This thesis dissertation is organized as follows. A brief background on IP forwarding

and Internet router architectures is given in Chapter 2. Also the motivations for designing

a more efficient forwarding mechanism are discussed. Chapter 3 relates to CAM based

solutions for fast routing lookups. The main CAM functionality is explained and a brief

description of several previously reported low power CAM designs is given. Chapter 4

describes the novel hardware solution proposed in this thesis for a high throughput routing

lookup. Chapter 5 describes the novel cache design used in our forwarding mechanism.

The complexities of routing caches and their impact on routing table implementations are

discussed in detail. The simulation and evaluation results of our forwarding mechanism are

given in Chapter 6. Finally Chapter 7 concludes the thesis dissertation and presents future

research directions.

2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

Background and Motivation

The Internet has become a part of everyday life for many people since the early 1990s. The

Internet mainly provides information exchange and communication services such as web

browsing and e-mail, from one point to another. The backbone network is built of high

capacity transmission, multiplexing and signal switching facilities to provide transmission

paths for logical connectivity and requirements for all Internet services. Figure 2.1 depicts

an example of an Internet network. Internet routers are responsible to route packets from

their sources to their destinations. The backbone routers (core routers) are responsible

for routing the aggregated traffic of all users connected to the network. The increase in

Internet traffic over the last decade has necessitated faster and faster backbone networks.

First generation routers could support up to 0.5-Gbps. Currently, 160-Gbps to 20-Tbps

routers are in development [5]. An OC-48 (Optical Carrier) backbone network can support

up to 2.5-Gbps of aggregated data. Each light-path could be formed as 4 OC-48s to carry

an 192c (10-Gbps aggregation of traffic) [6]. Enterprise routers (edge routers) aggregate

the local user traffic (e.g. a LAN of a Company). Internet Service Providers (ISP) are the

connection points of users to the high capacity backbone network. Routers closer to the

backbone require higher capacity, are more complex and more expensive.

The data is carried in the form of packets routed across the network. The most popular

inter-network transport protocol is the Internet Protocol (IP). An IP packet consists of a

3

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

modem Router
(Core)

! LAN

I □□□
\ LAN

'Mqpn

Enterprise
Router

(Edge)

Fig. 2.1. An Example of a Network

header part and a payload part. The header format of IP version 4 (IPv4) is shown in

Figure 2.2(a). Each host connected to any public Network has a unique IP address. All IPv4

addresses are 32 bits long and are used in the Source Address and Destination Address fields

of the header of IP packets. Usually IPv4 addresses are broken into 4 groups, 8 bits each,

represented as four decimal numbers separated by dots {e.g. 129.128.0.0). Each IP address

is composed of a Class identifier, a Network number and a Host number. IPv4 addresses

have three main classes (Classes A, B and C). The class of an address is coded in the Most

Significant Bits (MSB) of the address and represents the size of a Network. Network size

is determined by the number of bits used to represent the network and host parts. Thus,

networks of class A, B, or C consist of an 8, 16, or 24-bit network part and a corresponding

24, 16, or 8-bit host part. Thus, the decimal presentation, as explained above, is suitable

for presenting addresses in all classes. With this addressing scheme, known as Classjul

Addressing, Internet routing is simply a two-level hierarchy with three possible network

sizes. All the hosts connected to a single network share the same Network Number in

their IP address. This hierarchy in IP addresses allows Internet Protocol to interconnect

networks.

With the exponential growth in the number of hosts and networks, classful addressing

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

32 bits

Version IHL Type of Service Total Length

Identification Fragment Offset

Time to Live Protocol f Header Checksum

Source Address

Destination Address

Optional (0 or more words)

(a) IPv4

32 bits

Version Priority Flow Lablc

Payload Length Next Header Hop Limit

Source Address (128 bits)

Destination Address (128 bits)

(b) IPv6

Fig. 2.2. Internet Protocol Header format.

appears to be very inefficient. Since only three network sizes are allowed (Classes A, B

and C), IP addresses are not used efficiently. Even the smallest network size allowed might

be too large for a network. Thus there might be many IP addresses that are assigned to a

network that cannot be assigned to any other host but are not used at all. It was observed

that Internet Protocol was running out of IP addresses, even though only a small fraction of

allocated addresses were actually used. Also, routing tables stored in routers were getting

very large. This is due to an exponential increase in the number of networks. Classless

Inter Domain Routing (CIDR) has since been introduced to allow more efficient use of

IP addresses and slow down the growth of backbone forwarding tables [7]. In CIDR the

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

network size can be variable to match with a network. Assume a network requires 156

addresses. In classful addressing scheme, a class C with 256 addresses must be assigned

to this network. CIDR assigns a subset of 128 addresses and a subset of 32 addresses

to this network, providing 160 addresses. Thus CIDR uses IP addresses more efficiently.

To provide more IP addresses, IP version 6 (IPv6) has been adopted. It can support a lot

more addresses even with inefficient space allocations using a 128-bit addressing scheme.

Figure 2.2(b) depicts the IPv6 header. A detailed description of other parts of the header

is given in [8]. However, CIDR allows address aggregation at several levels. The address

aggregation reduces the number of entries in the router forwarding tables as explained in

detail in Section 2.1.

Internet routers receive a packet from an input line, extract the destination address,

perform packet processing (e.g. packet forwarding and classification) and finally, forward

the packet to its destination. Figure 2.3(a) depicts the architecture of a general bus-based

router. In this example, Packet 1 (PI) and Packet 2 (P2) arrive at the first port from the left.

PI is forwarded to the third port and P2 is forwarded to the second port.

Packet forwarding is a fundamental task in routing IP traffic. Routers lookup the desti­

nation address of each packet in their Look Up Table (LUT) and resolve which interface the

packet should be forwarded to. Routers either store LUT information in the main memory

and use a software method to perform the lookup or use dedicated hardware. More details

on routing lookup are given in Section 2.1.

However, the routing lookup is a rather complicated and slow process. An effective

strategy to speed up routing lookup is to use a cache to store recent routing results for

reuse. Figure 2.3(b) describes the cache impact on forwarding. Assume that the cache on

the first port stores the forwarding information of P I. When PI arrives at the first port, it hits

the cache. The forwarding information (the output port identifier) is fetched from the cache

and the packet is directly forwarded to its output port (third interface). Since the cache does

not have the forwarding information for P2, it misses the cache. The processor fetches the

missing information from the lookup table (either by software methods or hardware) and

then, updates the cache and forwards packet 2 to its output interface.

6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Memory

CacheCache Cache

Line Card Line Card Line Card

f " L I ,P2 P2 PI

Main
Memory CPU

AA A

 ;►---------

E
Ai

Cache
/r

I

j r
jL

Cache

H
■i

(rache
J

Liie Card Lihe Card Line Card
I

V

P2 PI P2 PI

H.W.
LUT

(a) (b)

Fig. 2.3. A General Description of an Internet Router, (a) depicts an example of the IP

forwarding in a router in general, and (b) depicts the impact of the routing cache on

IP forwarding.

Clearly, the cache hit ratio and the main lookup speed directly impact the packet for­

warding efficiency. Thus it is quite beneficial to design efficient and fast lookup methods

and to improve the cache hit ratio at the same time. In this Thesis, the lookup process and

the previous implementations of routing caches and routing lookup tables are investigated.

Finally, an efficient forwarding mechanism is designed, studied and simulated.

2.1 Routing Lookup

An Internet router performs a routing lookup in a Look Up Table (LUT) to forward a packet

to its next hop to get it closer to its destination. The routing table stores routing prefixes

rather than full destination addresses, in order to reduce the table size. A routing prefix

corresponds to a number of Most Significant Bits (MSB) of an IP address followed by

don V cares. For example, a Classful IPv4 prefix is comprised of the Class Number and

the Network Number of a network followed by don’t cares. Thus the address of all the

7

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

hosts of that network are covered by a single prefix. An address is searched in the LUT and

the matching prefix is found. The corresponding forwarding information is fetched from

the table. As mentioned before, in classful addressing architectures, the prefixes represent

the networks. Prefixes in the forwarding table are organized in three separate tables and an

exact match of the class part of an IP address resolves which table to access. With Classless

Inter-Domain Routing (CIDR), routing prefixes (Network sizes) may have variable lengths.

In the case where multiple prefixes match with an address, the longest matching prefix is the

correct result. Consequently, routers must perform Longest Prefix Matching (LPM) when

searching the routing table. For example, consider the networks represented by the network

numbers from 208.12.16/24 through 208.12.31/24. 208.12.16/24 represents a prefix of size

24 bits. This prefix covers all the addresses from 208.12.16.0 to 208.12.16.255. Suppose

that all these network addresses are reachable through the same router. From the binary

representation we can see that the leftmost 20 bits of all the addresses in this range are the

same (11010000 00001100 0001). Thus, these 16 networks can be aggregated into one

supemet represented by a 20-bit prefix of 208.12.16/20. While a great deal of aggregation

can be achieved if addresses are carefully assigned, in some situations a few networks can

interfere with the process of aggregation. For example, suppose now a customer owning the

network 208.12.21/24 changes its service provider and does not want to renumber its net­

work. In this situation, either 16 prefixes (representing 208.12.16/24 to 208.12.31/24) must

be stored in the lookup table or these prefixes could be aggregated in spite of the exception

networks and additionally storing entries for the exception networks. In our example, this

will result in only two entries in the forwarding table: 208.12.16/20 and 208.12.21/24. In

this case, some addresses match with both prefixes because prefixes overlap. In order to

always make the correct forwarding decision, routers need to find the most specific match,

which is the longest matching prefix [7]. Since LPM is performed in every router along a

packet’s path from source to destination, routers require a fast mechanism to perform the

lookup in order to maintain high throughput and low latency under load.

A simple example of a LUT for a 4-bit addressing scheme is given in Figure 2.4(a). The

lookup result for address 1001 is prefix I and the corresponding port ID is port A. Address

8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Prefix Port ID CD
Prefix I (lxxx) Port A
Prefix II (11 Ox) Port B
Prefix III (01 xx) Port A

Prefix I
(port A)

Prefix II n 3
(port B) ^

(a) (b)

Fig. 2.4. An Example of Longest Matching Prefix

1101 matches with both Prefixes I and II. Since prefix II is the LPM, the port ID is port

B. Figure 2.4(b) depicts the LUT organized as a trie. A trie presentation of a lookup table

is a tree-based scheme where the root of the trie corresponds to the most significant bit of

the address. Branching right indicates that a bit is 1, while branching left indicates that a

bit is 0. A complete trie enumerates every possible address. In order to reduce the space

requirement of the trie, only the nodes required to form a path to each prefix are stored.

Nodes are sequentially numbered from top to bottom and from left to right. Gray nodes

represent prefixes stored in the lookup table.

The key elements in routing lookup efficiency other than the lookup speed include

routing table update delay, power consumption and routing table memory footprint. Several

lookup methods have been proposed to increase the efficiency of routing lookup [7]. In

general, schemes that achieve high lookup speed or smaller memory footprint size, require

more complicated implementations and suffer from slower routing table updates. Software

solutions are slow (at least 4 to 6 memory accesses required for a lookup) compared to

hardware solutions and do not easily scale up to 10-Gbps processing. Content Addressable

Memory (CAM) is one of the available hardware solutions for IP lookup. A CAM is a fully

associative binary memory capable of matching a specific pattern of data (a key) against

all its entries in parallel. A TCAM can store and search for don’t care values as well

9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

as Os and Is. A don’t care matches with both Os and Is during a search process. CAM

based solutions are desirable due to their high speed (a single memory access resolves the

lookup) but are not efficient in terms of power consumption and on-chip area compared

to RAM. On the other hand to find the LPM of multiple matching prefixes, complicated

table maintenance or management is required in CAM-based lookup tables. The details of

CAM-based lookup table designs are discussed in Chapter 3.

2.2 Routing Cache

Caching forwarding information for IP addresses is an effective method to speed up IP

forwarding in Internet routers. However, the performance of the cache depends on the

characteristics of the IP traffic, such as its temporal and its spatial locality. Greater temporal

locality increases the probability that destination addresses are frequently used, and thus

increases the utility of a cached address. Spatial locality means referencing addresses in

the same numerical range. When prefixes are cached, a single cache entry can cover a

large number of destination addresses in the same numerical range. Therefore, the spatial

locality in the traffic stream is converted to temporal locality in the cache access stream.

Figue 2.5 depicts a functional description of a routing cache designed by Berube et

al. [I]. IP addresses or prefixes are stored in a Destination Address Array (DAA). Next hop

information is stored in the Next Hop Array (NHA). The DAA and NHA are co-indexed,

with one entry in the NHA corresponding to a single entry in the DAA. The NHA is im­

plemented using standard SRAM technology. The DAA is implemented using a CAM or a

TCAM if prefixes are cached.

A routing cache searches for an IP address in all entries of the DAA in parallel. If the

address is found, a cache hit occurs. The Next Hop identifier (output port) is read from

the NHA, and the packet is directly forwarded to the output port. If no entry in the DAA

matches the IP address, a cache miss occurs. In this case, a lookup in the full routing table

is performed (a software or a hardware lookup) and the cache is updated with the new

destination address/next hop pair.

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Processor

Cache Controller

DAA
(CAM)

NH A
(RAM)

a.

Update Address Select

Entry
Select

Cl

Fig. 2.5. A Functional View of A Routing Cache [1]

Generally the cache impact on the total performance of a system is directly dependent

on the miss rate and the miss penalty of the cache. The lower the miss rate the better is the

total performance. Several designs have been proposed to reduce the miss rate of routing

caches. The next section briefly describes the related work to routing cache design.

2.2.1 Related Work

Many researchers have addressed the efficiency of routing caches. Some studied existing

locality in IP traffic [9-11]. Others designed more efficient caches for IP routing [12-15].

In 1988, Feldmeier demonstrated that a routing-table cache could reduce the lookup time

in network gateways by 65% [9]. He believed that a fully associative cache provides the

best performance and ran his simulations for a fully associative cache. He also observed

that a packet from host A to B is very likely to be followed by a packet from B to A. Thus

he suggested two different schemes of storing data: Destination/Source or only Destination

addresses and demonstrated his observation was correct.

Chiueh et al. designed a CPU style IP caching scheme and demonstrated that general-

purpose processors can serve as a powerful platform for high performance IP routing [13].

11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

However, the data streams presented to the network processors have very different char­

acteristics than the streams accessed by general-purpose CPUs. Thus, the cache design

must be considerably different and the cache coverage must be improved to achieve ac­

ceptable performance [16]. This study shows that although enough temporal locality exists

(based on real packet traces), the cache coverage should be improved to achieve acceptable

performance such as caching address ranges rather than individual addresses. Also they

demonstrate, due to very poor spatial locality cache block sizes should be small, preferably

one entry. Talbot et al. [11] demonstrate that caching IP destination addresses is an effec­

tive speedup for IP lookup in high speed routing. They also show the lowest bits of the IP

addresses are the most random suitable for indexing their CPU style cache. Shyu et al. [10]

also analyze the temporal locality in IP addresses and observe strong locality in backbone

routers.

Liu [14] completes the idea of caching address ranges instead of caching full destination

addresses (e.g. 32-bit destination address for IPv4) by using the term IP Prefix Caching and

demonstrates higher locality in prefixes resulting in lower miss ratio for IP Prefix caching

compared to full IP caching. One potential problem with this scheme is multiple prefix hits.

The choice of what routing prefix to return is critical because if only one of those matches

is cached wrong lookup results may occur. Thus an algorithm must be applied to the table

to make sure this problem is avoided. Liu suggests 3 different possible algorithms of which

one of them increases the size of the lookup table dramatically by expanding the lookup

tree completely. His second solution simply looks like the conventional IP full address

caching and the third is a hybrid of the two. The details of his method are further discussed

in Chapter 5, Section 5.2.

Improving the Replacement Policy of an IP cache is another way to reduce the miss

rate [10,17], Feldmeier demonstrated that FIFO (First Input First Output) performance is

almost as good as LRU (Least Recently Used) when large caches are used. But FIFO is very

poor for small caches [9]. An LFU (Least Frequently Used) replacement policy is found to

outperform FIFO and LRU [10]. H. Liu presents the multi-segment LRU (mLRU) replace­

ment policy applied to prefix caches. mLRU aims to combine LRU and LFU together but

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

it is complicated to implement and maintain [17].

2.2.2 Multizone Cache

A cache naturally exploits temporal locality. However, routers manage traffic from a large

number of hosts. In some cases, only part of the traffic has high locality. In a router with

a single cache, low-locality traffic pollutes the cache with low-utility entries. These entries

reduce the effectiveness of the cache for all traffic, and may cause thrashing. However, if

the cache is split then the cache performance is improved [12,15]. One portion of a split

cache stores addresses or prefixes associated with shorter routing prefixes, and the other

portion caches the addresses of prefixes associated with the longer routing prefixes. Such

a multizone cache prevents the lack of locality in one portion of the traffic from polluting

the locality in the rest of the traffic. The new cache design in [12] shows miss ratios

approximately one-half those of conventional caches.

2.2.3 Cache Miss Penalty

IP caches have very large miss penalties because a miss requires a rather slow main table

lookup. Complicated lookup techniques can be applied to the main table to increase the

lookup speed. However, these techniques dramatically increase the table updating delays.

Thus, improving the cache miss ratio could compensate for the large cache miss penalty

and allow a simple main lookup table to provide fast table updates.

Non-blocking general purpose processor caches hide memory latency by overlapping

the processor computations with memory data accesses [18], Special registers are used

to hold information about each cache miss. The processor can then overlap the service

of a cache read miss with the execution of subsequent instructions [19,20]. Bhuyan et

tf/.used execution-driven simulation to study the impact of instruction level parallelism

(ILP) and cache architectures on the performance of routers [21]. They observed up to

37% improvement for their traces due to multiple issues, out of order execution and non-

blocking loads.

13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.3 The Proposed Forwarding Architecture

In this thesis an efficient forwarding mechanism for Internet routers is designed, studied

and simulated. Our design goals are to: (1) reduce the cache miss rate; (2) reduce the

effective cache miss penalty; (3) provide simple and fast table updates; (4) lower the power

consumption and (5) decrease the storage area requirements. Our design has two main

parts:

1. An efficient lookup table (Figure 2.6(a)). We propose a pipelined TCAM with a novel

Hardware-based Longest Prefix Matching (HLPM) technique to provide an efficient

and fast hardware solution for routing tables. Chapter 4 describes our HLPM in

detail.

2. An efficient forwarding cache (Figure 2.6(b)). We propose MPC, a Multizone, non-

blocking, Pipelined Cache. MPC uses prefix caching in multiple zone caches to

improve cache miss ratio. MPC adopts a non-blocking buffer to reduce the effective

cache miss penalty. A pipelined design implements a novel search and reduces power

consumption. The details of the MPC architecture and features are further described

in Chapter 5.

2.4 Summary

In this chapter, the background on Internet routing has been discussed. The high speed re­

quirements of Internet Routers motivates us to design an efficient forwarding mechanism in

terms of throughput, power consumption and are requirements. The next chapter describes

the basics of a Content Addressable Memory (CAM) which is used in several parts of an

Internet router. The most important disadvantages of a CAM, the high power consumption

and the management requirements, are described and a variety of existing solutions are

presented in detail.

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Cache

H.W.
LUT

H.W.
LUT

Cache

CPUMain
Memoiy

CPUMain
Memory

Cache Cache CacheCache

Line Card Line Card Line Card

(a)

Line Card Line Card Line Card

(b)

Fig. 2.6. The proposed forwarding scheme (a) Hardware-based Look Up Table and (b)

the routing cache.

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3

Content Addressable Memory

3.1 Overview

A Content Addressable Memory (CAM) is a binary memory device that accelerates any ap­

plication requiring fast searches of a pattern (or key) in a database or list such as database

machines, voice or image recognition, fully associative caches or computer and commu­

nication networks. Specifically, a CAM is suitable for routing lookup implementations

due to its fast and simple searching operations. Ternary CAM (TCAM) is capable of stor­

ing a third value as well as zeros and ones. This third value is a don’t care value which

matches with both zeros and ones during a search process. However, CAM-based design is

challenging due to the high power consumption, cost and on-chip area requirements. This

chapter gives a brief description of a CAM and its challenging design issues. Also, some

previously reported low power CAM designs are discussed. Complications of applying a

TCAM to CIDR lookups are explained as well, later in this chapter.

3.2 Content Addressable Memory (CAM) Architecture

Figure 3.1 compares a CAM to a RAM. A RAM provides the data stored in the location

of the address given to the RAM. A CAM receives data (key or pattern) and provides the

16

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

RAM CAM

Address

1 0 0 0 1 1 0 1

Data
1 0 0 0 1 1 0 1

Data
1 0 0 0 1 1 0 1

:)
Address

1 0 0 0 1 1 0 1

Fig. 3.1. CAM vs RAM

address of the location where data is found or generates a non-matching signal in case data

does not match with any entry in the CAM.

A CAM performs a write and a read similar to a RAM, but it allows parallel searching

for a specific pattern in all its entries as well. The pattern (key) is stored in a comparand reg­

ister and is compared with the data stored in the CAM bit by bit. All entries are searched in

parallel. During a search, if all the bits of an entry in the CAM match with the correspond­

ing bits of the key, a match flag is set. An encoder generates the address of the location of

the matching data. In a Ternary CAM, multiple different entries might match with a key,

simply because don 7 care bits match with everything. In this case, a priority encoder is

used to resolve the matching entry. Thus, a CAM/TCAM gets the content and produces the

location.

Figure 3.2(a) depicts a block of CAM cells. The peripheral circuits of a CAM or a

TCAM are similar to RAM as well. Bit Line Prechargers and Bit Line Sense Amplifiers

are used to write or read a data to or from a CAM. The position of the entry to be written

into or read from is selected by the Address Decoder. After each search operation, the

Word Match Sense Amplifiers, detect the matching entry and the Address Priority Encoder

generates the address of the matching entry.

A CAM cell is implemented by modifying a RAM cell. There are both static and

dynamic CAM cells. A standard static CAM cell is depicted in Figure 3.2(b). The cross-

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bit Line Prechargers

u
v>
•O

•o •o

Bit Line Sense Amplifiers

[c] CAM Memory Cell

BitO Bit 1

Word
Select

Match
Line
(ML)

(a) Memory Block (b) Standard Static Cell

Fig. 3.2. Content Addressable Memory (CAM).

coupled inverters form a latch to store data statically. A CAM uses the pass transistors (W1

and W2) to perform read and write operations identically to those in a static RAM [22]. To

write in a CAM entry, the location is selected by an address bus or data is simply written

to the first empty entry. To write a new value in each cell, the value is asserted on the

complementary bit lines (Bit 0 and Bit 1) while the Word Select Signal is raised. To read

a data from a cell, the bit lines are precharged, then the Word Select Signal is raised and

finally the Bit Line Sense Amplifiers detect a discharge on one of the bit lines, representing

either a one or a zero value stored in the cell.

A CAM performs a search operation with an exclusive OR comparator formed by two

pass transistors (PI and P2) and a pull-down transistor (M). The value to be searched (key)

is asserted on the Bit Lines and the Match Line is precharged. If the key and the data stored

in the cell do not match, a path from the Match Line to ground is created and the Match Line

discharges. When a pattern is searched in a row of memory cells (word line), the Match

Line discharges to ground if one or more cells do not match with their corresponding bits

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

in the pattern. If a Match Line of a row, does not discharge at the end of a search operation,

the Match Sense Amplifiers sense a Match and the priority Encoder generates the location

address of the match. A priority encoder is used to resolve the match in case more than

one entry matches with the data. This is specifically useful for Longest Prefix Matching in

CIDR, where multiple prefixes might match with an IP address. The priority encoder can

easily resolve the longest matching prefix, if the prefixes are sorted based on their lengths.

As described in Figure 3.2(b), a standard 9-transistor CAM static memory cell is 50%

larger than a standard 6-transistor SRAM cell (9 vs. 6). Charging and precharging long

memory lines (the Bit Lines and the Match Lines) of all entries results in high power

consumption of a CAM compared to a RAM. Note that when a pattern is searched, the

precharged match lines of all non-matching entries discharge to ground. Only one (or pos­

sibly a few more) entry actually matches with the pattern. Thus, a lot of power is wasted

for non-matching entries. Also when the Match Line is prechaiged before a search opera­

tion, the Bit Lines should be discharged to ground. All these transitions on long memory

lines with laige capacitances, consume a lot of power. Thus, although CAM devices are

desirable due to the parallel searching of a pattern in all CAM entries, high power con­

sumption, cost and area requirements are serious limiting issues. These problems worsen

when Temary-CAM (TCAM) is used.

Although the first binary CAM, brought to market in the early 1990s, suffered from var­

ious performance limitations such as high power consumption, high cost and slow search

rate, now many vendors claim their product employs techniques to lower power consump­

tion with veiy fast search rates. CAM based search hardware has become increasingly

attractive due to fast table look-ups and being well suited for high-speed applications.

TCAM with three states per cell (0, 1, X (dont care)) opened new possibilities, particu­

larly for longest prefix match problems. Also, TCAM devices prioritize search results in

such a way that multiple search matches, corresponding to different prefix lengths, could be

resolved in accordance with Classless Inter Domain Routing (CIDR) requirements. TCAM

technology is rapidly being adopted by networking equipment vendors.

Figure 3.3 depicts a conventional static TCAM cell with 15 transistors. Two SRAM

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bit 00 Bit 01 Bit 10 Bit 11
Word
Select

*-<H Cell 1

Match
L ine"
(ML)

Fig. 3.3. A Conventional TCAM cell

cells (Cell 1 and Cell 2 in Figure 3.3) provide four different storage states. These states

are presented with a two-bit binary value. One bit represents the data stored in point A and

the other bit represents point B. If cell 1 stores a zero at point A and Cell 2 stores a zero

at point B, both pass transistors (PI and P2) are always closed. Thus no matter what is

applied to the bit lines (Bit 00 and Bit 11) during a search operation, the match line does

not discharge. This state is the don’t care state of the TCAM cell. The cell provides a zero

and a one state by storing a 01 or a 10 in AB. Note that the fourth possible state (I I in AB) is

not desirable at all, because this state always keeps both pass transistors open. This means

that the entry always mismatches with the data. Thus three states are easily provided with

this TCAM cell. Note that the complementary values of A and B also exist in the cell.

A TCAM cell is even larger than a CAM cell (66% with a conventional 9-transistor

CAM and a 15-transistor TCAM cell). Although more complicated designs reduce the

number of transistors down to 12 transistors in each cell [23], a TCAM cell is much larger

than a RAM cell and consumes more power. Beside the power consumed during the search

operations in a TCAM, the larger memory cells require longer memory lines with larger

capacitances, which results in higher power consumption. Thus in a TCAM cell, the power

20

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

consumption is a limiting issue. Several low power methods have been proposed to de­

crease the power consumption in a CAM based device. In the next Section, some of those

methods are presented.

3.3 Low Power CAM Design

Since power consumption is a challenging issue in CAM-based circuits, this section specif­

ically describes and analyses previously reported low power CAM solutions. The first step

to design a low power CAM is to find the sources of power consumption. Hsiao et al.

model the power consumption of a standard CAM [24]. The power models are originated

from the fC V 2 formula. The main sources of power consumption are (1) the Evaluation

power which is the power consumed on the match lines, (2) Input Transition power and

(3) Clocking power. Each of these sources of power consumption are modeled based on

the architecture of a CAM. To decrease the power consumption, designers reduce fC V 2.

This is achieved through either (1) fewer transitions on memory lines, (2) less capacitance

or (3) lower power supply. Some low power CAM architectures modify each cell to save

power. Some designs use the standard cell but apply modification to the whole system

to avoid unnecessary power consuming tasks. Since all power consumption models are

linearly dependent on the number of entries searched during a search process, some low

power CAM devices save power by reducing the effective number of entries. This can be

achieved through smart search operations. In this section some of the previously reported

low power CAM architectures are discussed.

3.3.1 Power Savings in a CAM Cell

To perform a search operation in a CAM cell (See Figure 3.2(b)), the Match Line (ML) is

precharged to VDD and discharged to ground (in case of a mismatch) through transistor

M. One simple way of saving power is to reduce the voltage swing on ML. An Active Low

match line connected to VDD instead of the ground, reduces the voltage swing to VDD VT ri­

l l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

BitO Bit 1 BitO Bit 1

Word
Select

W1 W2

ML

Control

Word
Select

W2W1

ML

AHAL

(a) AHAL (b) A CAM cell with Controlled Match Line

Fig. 3.4. Some Low Power CAM Cell Design.

Note that an active low match line requires a pre-discharge circuit instead of a precharge

circuit [25]. If transistor M is replaced with a PMOS transistor, the voltage swing on

ML is reduced to VDD VTp with the same Active High method [26]. If transistor M is

connected to an Active High / Active Low (AHAL) Signal (is switched on alternate cycles to

identify the activity of ML), the switching activity on ML is reduced by half [25]. This cell

modification is depicted in Figure 3.4(a). However, in the standard CAM cell both bit lines

must be discharged to ground during the precharge phase of a search. A Controlling pass

transistor can disconnect ML from ground during the precharge phase [27]. This modified

cell is depicted in Figure 3.4(b).

One of the sources of power consumption is Input power. The transitions on bit lines

dissipate a lot of power due to their large capacitances. For every search operation in a

standard CAM, the key is applied to bit lines (See Figure 3.2(b)). Thus bit line transitions

are unavoidable. Figure 3.5 depicts a CAM cell which avoids bit line transitions by adopt­

ing two extra transistors and Data Lines (DLO and DL1) [28]. During the precharge phase

of a search, the DLO and DL1 are set to ground. Thus transistor A/3 and M4 are turned off.

During the evaluation phase of the search, the data (key) is applied to the Data Lines (DLO

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bit 0 Bit 1

Word
Select

w i W2

Ml M2

M3 M4

DL 0 DL 1
Fig. 3.5. A CAM Cell with Data Lines

and DL1). The use of separate bit line pairs (bit lines and data lines) reduces the load on

bit lines and thus, lowers the Input power [24]. These Lines are also called Search Lines

(SLO and SL1).

In the standard implementation of a CAM, NOR type comparison circuits are used.

Two transitions occur on ML during a search in a non-matching entry (precharging during

the precharge phase and discharging during the evaluation phase). The fact that very few

entries might actually match with the key, results in excessive power dissipation. A smart

design of a low power CAM would use the power only for matching entries. One easy

solution is to use NAND type of comparison circuits compared to conventional XOR ones.

In a NAND type match line, the precharging path is cut down if any non-matching bit is

found anywhere in the word [29]. Thus the match line is precharged only if it is a matching

entry. Figure 3.6(a) depicts a CAM cell with a NAND type match line and Figure 3.6(b)

depicts a CAM entry (Word Line). NOR type match lines, provide parallel and fast search

operations while NAND type match lines perform a serial and slow search. The word line

can be divided in half to allow faster search operations [29]. However, NOR type match

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bit 0 Bit 1

Word
Select

W2

(ML)

(a) A CAM Cell with NAND type ML

CAM CAM
cell cell

_n___
Match Line (ML)

(b) A CAM Entry with NAND type ML

Fig. 3.6. NAND Type Match Lines.

lines are preferred when the search speed is considered. Some CAM designs are based on a

combination of serial and parallel search choices such as [30]. In this serial-parallel CAM,

the first few bits of each entry are searched with the corresponding bits of the key serially.

If those match, the rest of the bits are searched in parallel. However, this serial-parallel

CAM is 25% slower than a conventional parallel CAM with NOR type match lines [30].

In order to allow parallel and fast search operations on the ML as well as save power

for non-matching entries, a mismatch dependent power allocation technique is designed

in [2]. The sensing circuit in [2] is combined with the precharging circuit through pos-

24

CAM
o
esJZo
HiSicu

cel

J
•

CAM
cell

_n

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

vtEnable

ML

Positive]
Feedback J

Voltage Controlled
Current Source

Enable

Current Control

Fig. 3.7. A MisMatch Dependent Sensing Match Line [2]

itive feedback. Figure 3.7 depicts the design in [2]. Before a search starts, the ML is

precharged to ground. When the search operation starts, the Voltage Controlled Current

Source precharges the ML. If the entry matches with the key, the ML is precharged very

fast. A higher voltage on the ML, pushes the Voltage Controlled Current Source to generate

more current and the positive feedback loop is closed. If there is at least one non-matching

bit in the word line, a path from ML to ground is created and the ML does not precharge

a lot. This positive feedback results in higher voltage on the ML of matching entries and

lower voltage on non-matching MLs. Thus power is mostly used for matching entries.

Note that a matching entry has no path from ML to ground. Thus it is precharged faster. A

Threshold voltage can be defined based on a dummy matching entry (all don’t care values).

If an entry reaches the threshold voltage the search operation stops. Thus the maximum

voltage swing is the threshold voltage which is less than vdd- A 60% power saving is

reported in [2] compared to a CAM with conventional sensing circuits.

The large capacitance on the match line results in high power consumption through

search operations. A recent low power TCAM design reduces the effective capacitance on

the ML by providing a dual Match Line [31]. In this design, every TCAM cell is made of

two SRAM cells and two comparison circuits. Each SRAM cell is connected to one Match

25

R eproduced with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

°ll Match LineO
\ (ML 0)

Match Line 1
(ML 1)

r-o

D k i rDk+1 Dn-1

Fig. 3.8. A Selective Precharged Match Line [3]

Line (ML1 and ML2). The data applied to each TCAM cell is a two bit data to provide

three states (one, zero and don’t care). The search operation is a two step function. One

bit of the data (key) is applied to one SRAM cell. If it matches, the second bit is applied

to the second SRAM cell. Since fewer transistors are connected to each match line the

effective capacitance is reduced in half. On the other if the first ML proves a mismatch, the

second match line is disabled. Thus no power is used for the second one. Up to 43% power

reduction with 4% penalty in the total search speed is reported in [31].

3.3.2 Systematic Power Savings

Beside cell improvements, systematic improvements can play an important role in saving

power in CAM based devices. Some low power CAM designs use an adiabatic switching

technique which uses an AC power source instead of a DC power source. An Adiabatic

CAM recycles the charge stored in the Match Line capacitance. The AC power supply’s

slow transitions help to reduce the energy dissipation [32].

Some systematic power saving is achieved through smart search operations which avoid

unnecessary searches. The power consumption in a CAM device is reduced if fewer entries

or fewer bits in each entry are searched. A Selective precharge scheme precharges some of

the bits of an entry and performs a search operation on those bits [3]. In case they match

with the corresponding bit of the data (the key), the rest of that entry is precharged and

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

#bit 127 . . . 96 95 . . . 64 63 32 31 . . . 0

Entry 1

Entry 2

Entry 3

Entry 4

MissMatch

MissMatch

MissMatch

The
Matching

Entry

Stage 1 Stage 2 Stage 3 Stage 4

Fig. 3.9. A Pipelined TCAM Storing IPv6 Prefixes.

searched. If the few first bits do not match with the corresponding bits of the key, there

is no need to search for the rest of the entry. Although there might exist some matching

entries in the first few bits that mismatch in total, the most power is actually used for the

matching entries. Figure 3.8 depicts a CAM entry of n bits with the selective precharge

scheme. In the first Step, the first k bits are searched. MLO is precharged through the

PMOS transistor controlled with SI signal. The Dt values come from each memory cell.

During the evaluation phase, if any of the first k bits do not match with the corresponding

bit of the key, the Dt equals to one for that memory cell. Thus the match line (ML 0)

discharged to ground. If all first k bits match, then in the next step, the second match line

(ML 1) is precharged and searched for the rest of the key (bit k to bit n-1) during the second

evaluation phase. Note that ML1 does not precharge at all if MLO senses a mismatch.

A selective precharge scheme can be used in a pipelined CAM [33]. If each CAM entiy

is divided into two or more sections, these sections can form the stages of a pipeline. In each

stage, the entries that match with the data in their previous stage are searched. If one part

of an entry does not match with the corresponding bits of the key, it is clear that the entry

is not matching with the whole key. Thus there is no need for further searches. Figure 3.9

depicts an example of a four stage pipelined CAM/TCAM applied to IPv6 addresses. In

the first stage, the Most Significant Bits (MSB) of the address are searched with all entries

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Input Data

j£
Parameter
Extractor

Po Data0

p, Data,

p2 Data 2

pm-, Datam_,

< x ---------------------- >
[log (n+2]j n

Fig. 3.10. A Pre-Computational CAM.

in parallel. Assume this results in three matching entries (entry 1,3 and 4). It is clear that

those entries that mismatch the key in this stage (e.g. entry 2), do not match with the key.

Thus, in the second stage only entries 1, 3 and 4 are searched with the key. Thus, at each

stage only matching entries of the previous stage are searched with the corresponding bits

of the key. After the last stage the matching entry is found. Pipelined CAM devices save

power by avoiding unnecessary search operations.

A pre-computational CAM is designed with the purpose of avoiding unnecessary search

operations [34]. Figure 3.10 depicts an example of a pre-computational CAM. Each entry

has a corresponding parameter section, Vr stored for the data, Data,. The design in [34]

uses a one count function as the parameter extractor. With an n bit data length, there are

n+1 possibilities for ones count (from 0 ones count to n ones count) and an extra case must

be dedicated to clarify the availability of the stored data. Thus, a 30-bit entry has a 5-bit

parameter. During a search operation, the parameter of an Input datum is extracted and

searched will all parameters in the CAM. If any parameter mismatches with the parameter

of the input, that entry mismatches with the input as well. Thus there is no need to perform

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

a full search on entries that do not match in their parameter part.

3.3.3 Numerical Examples of Power Consumption

To clarify why power consumption is a critical issue in a CAM design, a numerical example

is given based on previously reported low power CAM designs. The energy consumption

per bit per search for some of these designs are given in Table 3.1. Note that the energy

consumption value for [33] is only for the Match line and the Search line. The clocking

power is not considered. Also consider that the CAM presented in Serial [30] is 25%

slower than a fully parallel CAM. To give a fair example, assume a CAM consumes 10

fj/bit/search energy (a rough example based on Table 3.1) and has 10k entries, 128 bits

wide each (suitable for IPv6). The size of the CAM represents the number of prefixes in

the LUT. The core routers require larger lookup tables. Recently, tables with up to 150,000

prefixes are reported in [35]. However, we chose a rather small LUT with approximately

10,000 prefixes for the numerical example (10K entry CAM), based on our real traces as

described later in Chapter 6. If the CAM is required to perform a search every 10 ns (for

100 Mpps processing), Iw power is consumed. With larger CAM sizes or faster searches

(e.g.2 ns as in [2]), the power consumption increases dramatically. Note that a TCAM cell

is inherently larger than a CAM cell. This would generate more capacitance on memory

lines and result in higher power consumption. Thus it is very important to consider low

power consumption for a CAM-based design.

3.4 Longest Prefix Matching in Ternary CAM

Since CAM based devices can perform a parallel search for a key in all their entries, they

are suitable for lookup table implementations. Routing lookup tables store routing prefixes

which are comprised of ones and zeros followed by don’t cares. Thus a Ternary CAM

(TCAM) is required for routing lookup implementations. Since CIDR requires a routing

lookup to return the Longest Matching Prefix, the TCAM must resolve which of those

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE 3.1

Comparison of Previously Reported CAM Energy Consumption.
/J/bit/search

[29] 83.0

[36] 97.7

Serial [30] 3.1

Parallel [30] 7.5

[24] 45.5

[37] 13.9

[33] 4.5

matching entries is the longest matching entry, in the case of multiple matching entries.

Usually, finding the longest prefix match (LPM) during TCAM lookups requires main­

taining the prefixes in a sorted length order which makes worst case updates very slow. For

example, an insertion of a new entry in a TCAM storing N prefixes might result in moving

(shifting) 0(N) TCAM entries to create an empty space for the new insertion. This slow

update is undesirable due to possibility of 100s to 1000s of updates per second in today’s

forwarding tables [38].

The routing table update delay is one of the key elements of routing lookup efficiency

beside the lookup speed, power consumption and memory footprint. Several solutions

have been proposed to decrease the routing table update delay such as reserving some

empty entries between sets of different length prefixes. Figure 3.11(a) depicts a TCAM

with some empty entries reserved between each set of prefixes with the same length. If

the TCAM is required to insert a new prefix of size n, it will simply add this new entry

to the reserved space. If all the reserved spaces are full, then 0(N) shifts are required for

the worst case. While some of these reserved entries might be used up very fast, some

entries might remain untouched. This leads to under-utilization of the TCAM space while

the worst case complexity of updates remains the same. Since there is no need to sort the

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

32-bit Prefixes
Y /////W

31 —bit Prefixes

30-bit Prefixes

•
•
•

0-bit Prefixes

BB1 1 1

32—bit Prefixes
31-bit Prefixes

17-bit Prefixes

16—bit Prefixes

0—bit Prefixes

Empty TCAM Entries Empty TCAM Entries

(a) (b)

Fig. 3.11. TCAM Space Management, (a) reserves some space between sets of prefix

lengths, and (b) reserves the extra space in the middle only.

prefixes in a segment, the TCAM can reserve some empty space in the middle. Then an

empty space can be provided anywhere with no more than L/2 shifts (L represents possible

prefix lengths (e.g. L = 32 for IPv4 prefixes) [39]. Figure 3.11(b) depicts a TCAM with

empty entries reserved only the middle of all entries.

The TCAM space management overhead and non-uniform update delays reduce the

TCAM efficiency. These problems worsen with 128-bit IPv6 due to the much longer possi­

ble prefix lengths. Some applications avoid TCAM sorting requirements by manipulating

the data before storing it. For example, in IP prefix caches implemented by TCAMs, the

LUT is fully expanded to avoid multiple matches for correct cache results [14]. But not all

applications have such a convenient solution to the problem. Many TCAM vendors employ

a simple sorting technique and live with an 0(N) worst-case update time solution.

31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

0816

Vertical OR

10XXX
< -

1010X

1001 1
Horizontal

10100

1 1 000

i i i 10

->

LPM
— >

11110
Prefix Column Mask Column

Fig. 3.12. Binary CAM with mask features presented in [4].

A TCAM can store the prefix lengths as well as the prefixes and use them to find the

LPM. This is a simple and fast solution for LPM but it results in at least a 70% increase

in the TCAM memory requirement [40]. Power consumption also increases because more

search operations are required. However, binary CAMs, with no built-in mask circuits, can

use this extra information to mask data as well as finding the LPM [4]. Faster updates are

obtained at the cost of slower search times and lower memory density. Figure 3.12 depicts

an example of searching 10100 in the table using the design in [4] for a 5-bit addressing

scheme. A prefix (comprised of zeros and ones followed by don’t cares) is represented by

a binary prefix entry and a binary mask entry. Mask entries are sequences of ones followed

by zeros, such that the number of consecutive ones represent the length of the prefix and

zeros stand for don’t cares. Horizontal AND circuits mask each prefix entry and vertical OR

circuits in the mask column find the longest length among all matching entries. A second

search of the longest length in the mask column resolves the position of the LPM.

All existing LPM solutions: (1) have long worst-case update delays, (2) slow down the

lookup speed, (3) need complicated table management and maintenance or (4) require a

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

great amount of extra area. Thus, in a TCAM based lookup table design, the update delays

and the table management complexities must be optimized as well as the look up speed,

power consumption and memory footprint.

3.5 Summary

Although CAM based search engines are desirable due to their high speed, their high power

consumption is an important disadvantage. Several solutions have been proposed to de­

crease the power consumption in a CAM device. Pipelined CAM devices avoid unneces­

sary search operations and provide high throughput. The Hardware-based Longest Prefix

Matching (HLPM) technique proposed in this thesis provides a simple, fast and scalable

LPM solution with very small increase in area as well as potentially reducing the power

consumption. In the next Chapter HLPM is discussed in detail.

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

Hardware-Based Longest Prefix

Matching (HLPM)

4.1 Overview

As one major part of our forwarding mechanism, we adopt a pipelined TCAM as the main

lookup table implementation, because TCAM based lookup tables perform parallel and fast

search operations. As mentioned in Chapter 2, the main lookup delay directly impacts the

cache miss penalty. The TCAM stores routing prefixes in its entries. When a lookup for

an IP address is performed, the TCAM searches all prefixes in parallel. However a TCAM

must be able to find the Longest Matching Prefix if multiple prefixes match with the IP

address. As explained in Chapter 3, finding the longest matching prefix is a complicated

task in a TCAM. In this Chapter a novel technique, Hardware-based Longest Prefix Match­

ing (HLPM), is proposed for TCAM based lookup tables to resolve the LPM with no table

management requirements as well as to maintain high search speeds and reasonable power

consumption levels.

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LPM

00101

11001

11011

Stage 1 Stage 2 Stage 3 Stage 4

■ Prefix Length Length Column

Fig. 4.1. The Proposed Four-Stage Pipelined TCAM.

4.2 HLPM

This Section describes our proposed HLPM for a four stage pipelined TCAM applicable

to IPv6, but the technique is scalable to any pipelined TCAM. Later in Chapter 5 we scale

HLPM to our two stage pipelined TCAM to store 32 bit IPv4 prefixes.

Figure 4.1 shows our four-stage pipelined TCAM with an extra SRAM stage named:

Length Column. Every entry in each stage is 32-bits wide to provide the 128 bits required

by IPv6 prefixes. HLPM stores the binary coded lengths of prefixes in their ending stages

in the Length Column. Thus, 5 extra storage bits per entry are required for IPv6 prefixes

(in a four-stage pipeline, 32 bits each). For example 00011 is stored in the corresponding

Length Column entry of a prefix with size 35, because the prefix ends in the second stage,

and there are only 3 bits in that stage. The same value will be stored for 3, 67 and 99

bit prefixes, because they all have 3 bits in their ending stages. However, with no sorting

requirement for the prefixes, new prefixes can be inserted in any TCAM entry, regardless

of the prefix length. Note that if the number of stages with the same length increases, the

number of bits in the Length Column does not increase. Thus HLPM is easily scalable to

any size or length.

As described in Section 3.4 Pipelined TCAM devices save power by lowering the power

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

consumption for non-matching entries. However, TCAM searches consume fixed power

for different length matching prefixes. In CIDR prefixes can vary in size from 0 to 127

(IPv6) and many prefixes might match with an address. On the other hand, since short

prefixes cover more addresses, there is higher probability of searching for a short prefix

in a LUT than a long one. The HLPM technique saves power not only on non-matching

entries through pipelining, but also on short prefixes which are more likely to be searched.

The following sections describe search and update operations.

4.2.1 TCAM Search Operation

IP prefixes are formed as sequences of data bits (either Os or Is) followed by don’t care

bits (the number of Is and Os represents the length of each prefix). Since don’t cares match

with both zeros and ones, a TCAM search may result in multiple matching entries with

an address. Figure 4.1 shows an example of multiple matching entries. Entries I,II and

III are three matching prefixes with different lengths for a given address. Searching the

IP address in the first stage results in matches in all those entries. These matches lead to

further searching of the IP address in the following stages of the pipeline in those three

entries. There is no need to search the rest of entry II, simply because the rest of the bits of

that entry are don’t cares and will always match. Thus, if the last bit of an entry in one stage

of the pipeline stores a don’t care value, there is no need to search the rest of the entry in

the following stages. In our example, second stage searches are necessary only for entries

I and III. On the other hand, after the fourth stage of the pipeline, it is clear that entry II is

not the longest matching prefix due to the fact that prefix II ended in the first stage of the

pipeline. These observations lead us to simplify the LPM in our TCAM. However, several

matching prefixes might end in the same stage and a Second Level Search is necessary to

find the LPM from those entries (e.g. entry I and III in Figure 4.1), by using the information

stored in the Length Column.

Thus the TCAM search operation is similar to any pipelined TCAM with one differ­

ence. During a search, an IP address is compared with every TCAM entry in parallel, stage

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE 4.1

Entry Evaluation in One Stage.
Entry Matches

with the IP Address?

Entry has a don 7 care

in the Last Cell?

Search the Entry

in the Next Stage?

Yes No Yes

Yes Yes No

No — No

by stage (one prefix is stored in each entry). This means if the corresponding bits of the IP

address do not match with the corresponding bits of a prefix (an entry) in one stage, that

entry of the TCAM is not searched in the following stages of the pipeline. That entry is

definitely a mismatch, no matter what is stored in the last bit of the entry in the current

stage. If an entry matches with the corresponding bits of the IP address in one stage, the

entry might match with the IP address at the end of the pipeline. Thus the entry must be

searched in the following stages of the pipeline as well. However, if the entry has a don 7

care bit in its last cell, the entry is not searched in the following stages. This is because

the rest of the entry are don 7 cares and definitely match with the IP address. This is the

difference between conventional pipelined TCAMs and an HLPM-based pipelined TCAM.

This entry evaluation per stage is given in Table 4.1.

Note that unnecessary searches are avoided for short matching prefixes as well as for

non-matching prefixes. However, a two-level search is required to find the longest pre­

fix amongst all matching prefixes. If multiple entries match with an IP address and those

entries end in different stages of the pipeline, the LPM is simply found at the end of the

pipeline search operation {First Level Search) as described before. In case multiple match­

ing prefixes end in one common stage of the pipeline, the Second Level Search resolves the

LPM. Section 4.2.3 describes the Second Level Search in detail. However, in order to find

out if a prefix ends in one stage of the pipeline or not, the last cell of the TCAM in each

stage should be modified. This modification is described in Section 4.2.2.

Since an HLPM-based pipelined TCAM avoids unnecessary searches for short match-

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Precharge-Control Precharge
Circuit

Match Line (ML)
MLx F n

Precharge-Control

i
TCAM

cell
S TCAM

cell

M l

h HUH H
SLO SL1)| SLO SL1

M 2l[-
• • • r- 11

y
{ >

Output

fo r the
Next Stage

Sensing
Circuit

Jh HL
r SLO SLI 1

Fig. 4.2. A Modified TCAM Entry.

Local Match,

Final Match
 >

clk^

ing prefixes, the power consumption is reduced in comparison with previously reported

pipelined TCAMs [33]. Meanwhile, since not ail matching prefixes require the second

level search (e.g. entry II), we achieve further power saving compared to previous designs

such as [4].

4.2.2 TCAM Entry Modification

Figure 4.2 shows a TCAM entry in one stage of the pipeline. The last cell is modified

by adding two extra transistors (Ml and M2) which are controlled by the complementary

bits of the data stored in the cell. Each TCAM cell can store three states (zero, one and

don’t care). A two-bit binary state, Ox Q2, represents these three states. A 01 or a 10 state

represents a one or a zero and 00 represents a don’t care. If a cell stores a don’t care, its

paths from ML to ground are closed. If the last cell stores a don’t care, the path from MLx

to ground is open, because Ml and M2 are controlled with the complementary values of

Qx and Q2.

At each stage, the Precharge-Control Signal comes from the evaluation results of the

entry in the previous stage. The Precharge-Control signal of the first stage comes from

the valid bit of the entry. A normal search operation of the entry includes searching for

a don’t care in the last cell in parallel with the conventional searching for a match or a

miss-match between the data stored in the entry and the input pattern. The extra circuits

for the last cell, including the precharging circuit and the sensing circuit, are similar to the

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

normal search circuits. A very short match line, shown by MLx in Figure 4.2, is precharged

to logic high in the precharge state. In the evaluation phase, the last cell searches for a

don’t care which corresponds to storing 00 in the last TCAM cell. If the cell stores a don’t

care, the paths from ML to ground are closed but the path from MLx to ground is open.

MLx discharges, and the Output senses a logic high. Although search operations of ML

and MLx are similar, MLx evaluation is much faster, consumes less power, and does not

require complicated sensing circuits due to the very short length of MLx. Besides, the MLx

evaluations or sensing circuits are actually independent of the circuits used for the whole

entry. This allows the system to use complicated sensing circuits for the whole entiy to

optimize the power consumption while a very simple sensing circuit is used for the last

cell. Smart sensing and precharging circuits such as [2], precharge the ML/MLx only for

matching entries, resulting in further power savings. However, after the search operation

is complete at each stage, the pipeline decides whether search the rest of each entry in the

next stage or not. As mentioned before, if one entry does not match the data at one stage,

the rest of that entry is not searched in the next stage of the pipeline. In our pipeline, one

entry is not searched in the next stage not only if it mismatches the data at the previous

stage, but also if it ends with a don’t care. As depicted in Figure 4.2, the Local Match

signal is the result of the entry evaluation in each stage. If the entry does not match with

the corresponding bits of the address in one stage, the Local Match signal senses a logic

zero and the Precharge-Control signal notifies the next stage not to perform a search any

more. However, if the entry matches with the address and stores a don’t care in its last cell,

the Final Match signal declares a matching prefix and the rest of that entry is not further

searched in the following stages of the pipeline. The general evaluation of the entry is

described in Table 4.2 Note that this change in the architecture not only saves power for

short matching prefixes, but also resolves the first level search of our HLPM.

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE 4.2

Entry Evaluation.
ML Output Search the Next Stage?

High Low Yes

Low High No

High High No

Low Low No

4.2.3 Second Level Search

The second level search resolves the LPM for multiple matching prefixes ending in one

common stage. Figure 4.3 depicts the length column in detail. The Second Search Signal(O)

is the result of the last stage of the pipelined TCAM. SSS(O) is set only for matching

prefixes requiring a second level search. In the example given in Figure 4.1, the second

search signal is set only for entries I and III. Since the length column stores the binary

lengths of prefixes in their ending stages (5 bits long), the entry storing the max value is the

longest matching prefix. As depicted in Figure 4.3(a), we adopted a 5-stage pipelined Bit-

Serial approach to find the max length. At each stage if a second search is required (SSS(i)

= /), one bit of the data in the corresponding entry of the Length Column is evaluated. If

there is only one data equal to ’ 1’ among all entries, that entry is the max of all. But if

no entry has a ’1’ or more than one entries store Is, those entries should be searched in

their next stages as well. Thus the SSS signal for the next stage of those entries will be

set (SSS(i+l) = /). Figure 4.3(b) depicts the logic required for the Second Level Search at

each stage of the Length Column.

However, the simple length-column pipeline can be clocked faster (e.g. it can be sen­

sitive to rising and falling edges of the clock) than the TCAM pipeline or a digit serial

approach can be used to provide short latency.

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Length Column
SSS(O)

1 —
Entry I SSS (i)

Data (i)

Entry II

Entry III

SRAM
cell

Data (i): Data at stage i
SSS (i): Second Search Signal at stage i

(a)

SSS(i)

Data (i)

SSS (i+1) = SSS (i) .C + SSS (i) . Data (i)

(b)

Fig. 4.3. Length Column.

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.2.4 HLPM Advantages

The HLPM architecture has the following advantages:

1. HLPM saves power for short matching prefixes. HLPM does not search the rest of

a matching entry, which has a don7 care in its last cell in the current stage. This is

important because all the bits of that entry are don 7 cares in the following stages and

there is no need to perform a search on an entry full of don 7 cares. The details of the

HLPM power savings is given in Chapter 6.

2. HLPM resolves the LPM without requiring LUT management or maintenance or

sorting of the entries in the TCAM. Table updates require a single update operation.

3. HLPM is simple and scalable with TCAM width. The second level search does

not change if the TCAM has more or less 32-bit stages. The first level search, as

described in 4.2.1, is also independent of the TCAM size. Thus, the extra area and

the complexity of HLPM remains the same if the TCAM size is scaled.

4. HLPM is efficient in extra storage area requirements. For example, a conventional

TCAM needs 100x128 bits of extra storage to reserve only one empty entry for only

100 different IPv6 prefixes. This area is equal to the storage area of the 5 th stage (5 bit

entries) for a 5K entry TCAM with the proposed HLPM. Since the Length Column

requires only 5 SRAM bit per entry SRAM rather than 32 CAM bit per entry, the

total area of our TCAM is approximately 20% less than comparable designs [4],

4.3 Summary

A novel Hardware-based Longest Prefix Matching (HLPM) scheme for TCAM-based lookup

tables is proposed in this Chapter. This technique is applied to pipelined TCAMs and aims

at further decreasing power consumption compared to previously reported pipelined TCAM

designs, by saving power for matching short prefixes. The HLPM is a two level search. The

first level resolves the LPM of prefixes ending in different stages by searching for a don 7

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

care in the last bit of each stage. A very simple cell modification is presented in this chapter

to perform the first level search. The second level resolves the LPM of multiple prefixes

ending in one common stage of the pipeline by finding the max value of the coded lengths

of prefixes in the last stage of the pipeline. In the next Chapter, a novel routing cache with

an HLPM-based LUT are described in detail.

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5

IP Forwarding Architecture: The Cache

and the Look Up Table

5.1 Overview

A routing cache stores recent routing results for reuse. The higher locality in the traffic

results in lower cache miss rates. This means if packets with identical destination addresses

arrive at the router, they are forwarded to their next hop by referencing the cache only. Since

performing a lookup in the main lookup table is much slower than referencing a cache, the

miss penalty is rather large. A missing address must be carried to the LUT, a full lookup

must be performed and the lookup result must be sent back to the cache and at the end,

the cache must be updated. The packets whose next hop information is not in the cache,

must be buffered until the lookup is done. Thus the miss penalty delay directly delays the

forwarding of packets to their destinations. As a result, a routing cache with very small

miss rates can improve the forwarding mechanism efficiency. The choice of what to store

in the cache is an important part of a routing cache design. This is explained in detail in

Section 5.2. When an IP address misses the cache, the cache must be updated. The main

lookup table is accessed to resolve what the cache must be updated with. An entry in the

cache is replaced with the new update result. The entry is selected based on the replacement

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

policy of the cache. Later in this Chapter a routing cache is designed with the main goal of

reducing both the cache miss rate as well as the effective cache miss penalty. A software

and a hardware based LUT are also proposed in this Chapter. The novel software solution

requires no table expansion and the novel hardware solution employs HLPM to resolve the

LPM and to save power.

5.2 What to Store in a Routing Cache?

A routing cache stores IP addresses and their forwarding information (output port ID).

If an IP address exists in the cache, the packet can be easily forwarded to the output port.

However, many IP addresses covered with a common prefix in the LUT might be forwarded

to the same output port. Thus, if the prefix is cached instead of individual IP addresses

covered by it, more IP addresses hit the cache. Thus caching prefixes reduces the cache

miss rate because a stronger locality exists among prefixes.

However, routers are required to provide Longest Matching Prefix routing. If multiple

prefixes match an address, a situation may arise where the longest matching prefix is not

present in the cache, but a shorter matching prefix is in the cache. This short matching

prefix will produce a cache hit, leading to an incorrect routing decision. In our previous

example given in Figure 2.4 (repeated in Figure 5.1), if Prefix I is cached, it will match with

IP addresses whose longest matching prefix in the trie is Prefix II (e.g. address 1101). An

IP address matching Prefix II could then be incorrectly matched by Prefix I and forwarded

to port A. The prefix in node 2 (prefix I) is said to encompasses the prefix in node 13

(prefix II), because node 2 is on the path from the root to node 13. Encompassing prefixes

are non-cacheable. Thus prefix caching is not as simple as caching full IP addresses and

correct cache results must be ensured somehow. One simple solution is to cache the full IP

addresses when the lookup results are non-cacheable prefixes. In this example, the prefix at

node 4 (prefix III) is cacheable because it does not encompass any other prefix. As a result,

the choice of what to update the cache with, becomes a critical issue. This is explained in

the next section.

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Prefix Port ID
Prefix I (lxxx)
Prefix II (llOx)
Prefix III (Olxx)

Port A
Port B
Port A

Prefix IIIU .
(port A)

Prefix II
(port B)

(a) (b)

Fig. 5.1. An Example of Longest Matching Prefix

5.2.1 What to Update a Routing Cache With?

A cache miss eventually results in a cache update. In a full address cache, where full

IP addresses {e.g. 32 binary bits for IPv4) and their corresponding output ports are stored,

the cache must be updated with the full missing address. The missing output port must

be resolved through main table access. The longest matching prefix with the missing IP

address is found in the main table and the corresponding output port is read from the table.

Then an entry in the cache is replaced with the full missing IP address and the output port.

As mentioned before, the replacement policy of the cache decides which entry is selected

to be replaced.

On the other hand, a prefix cache can be updated with a prefix or an IP address. If the

Longest Matching Prefix of a missing IP address is a cacheable prefix, the cache is updated

with that prefix. If the Longest Matching Prefix of the IP address is not cacheable, then

the full IP address (e.g. 32 bits for IPv4) is stored in the cache. However, if non-cacheable

prefixes are common lookup results, then a prefix cache degrades into a full-address cache.

A prefix cache requires a TCAM, while a full IP cache is implemented with a binary CAM.

Thus the prefix cache full of 32 bit IP addresses is not efficient in terms of area and power

consumption. Note that for the main lookup table to return correct results to the cache (the

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

prefix or the full address), the lookup scheme must decide if a prefix is cacheable or not.

This complicates the table look ups and table updates and requires more storage area. Note

that a cacheable prefix might be no longer cacheable after the table is updated with a new

prefix which is covered with the old cacheable prefix.

It is important to see how often the non-cacheable prefixes are the results of the lookups.

Our simulation results, given in Chapter 6, show that the LPM of a large portion of IP

addresses (up to 46%) correspond to non-cacheable prefixes. Thus it is essential to increase

the number of cacheable prefixes, if a prefix cache is to be used.

5.2.2 Prefix Caching and Table Expansion

To increase the locality of data stored in a forwarding cache, full prefix caching is preferred

where all the prefixes are cacheable (leaves of the trie). This requires a full LUT expansion.

Figure 5.2(b) shows a complete expansion of the trie for our example in Figure 5.2(a).

Prefix I is expanded by appending 0 to form prefix 1-1 in node 5, and by appending 11 to

form prefix 1-2 in node 14 and the forwarding information (port A) is copied in both nodes

5 and 14. Thus full table expansion means replacing any non-cacheable prefix with a set

of new cacheable prefixes (with the same output port ID). The new prefixes ensure that all

IP addresses covered with the old non-cacheable prefix, are covered with the set of these

new prefixes. Thus all addresses whose longest matching prefix was the old non-cacheable

prefix, are now matched with a cacheable prefix and are forwarded to the correct output

port.

However, note that the number of valid prefixes increases and the lookup table gets

larger. Liu reports up to an 118% increase in table size [14]. Routing table expansion is

unfavorable due to memory area limitations, power consumption and cost. On the other

hand, table expansion pushes prefixes lower in the trie, increasing the search time for Soft­

ware searches. Also, updates in a fully expanded table are challenging, since all prefixes

remaining in the table after an update, must be cacheable. Note that an expanded prefix no

longer exists and the update must find the prefixes created by expansion.

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Prefix III14
(port A)

Prefix IIQ3)
(port B)

Prefix 1-1
(port A)

Prefix 1-2
(port A)

(a) Original trie (no expansion) (b) Full trie expansion

Prefix I
(port A)

1

Prefix I—1
(port A) (13

(c) Partial trie expansion in [14]

Fig. 5.2. Trie presentation of a small lookup table.

A partial LUT expansion can be adopted to increase the locality as well as to keep

the LUT small. Figure 5.2(c) depicts the partial expansion in [14] where non-cacheable

prefixes are expanded only to their first level of expansion. This partial expansion means

for every non-cacheable prefix, only one new cacheable prefix is added to the table. The

new prefix is formed by adding either a 0 or a 1 to the non-cacheable prefix. Note that

the non-cacheable prefix is not removed from the table and the new prefix is added only if

it is cacheable. The goal of this expansion method is to increase the chance that longest

matching prefix of more IP addresses, is cacheable. If the new prefix (either by adding

a 0 or a 1) is cacheable, half of the IP addresses covered with the non-cacheable prefix

are covered with this new prefix. The longest matching prefix of these addresses are now

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

this new cacheable prefix. In the previous example, Prefix 1-1 is added to the trie at node

5 with the same forwarding information as prefix I. In the original trie, the LPM of all

the IP addresses covered by node 5 and 14, is prefix I (node 2). Since prefix I is not

cacheable, those IP addresses must be cached in full. After addition of Prefix 1-1 to the trie

(See Figure 5.2(c)), the LPM of all IP addresses covered by node 5, is prefix 1-1 which is

cacheable. Caching Prefix 1-1 instead of IP addresses increases the locality of the cache

and results in lower miss rates. Note that the table size after this partial expansion is less

than the fully expanded table.

However, the level one expansion method is not useful for some non-cacheable prefixes

which remain non-cacheable by adding either a 0 or a 1. This is especially important be­

cause the short prefixes on top of the trie, which cover most of the IP addresses, encompass

many other prefixes and level one expansion is most likely to be useless. Moreover, the

lookup scheme must still decide if a prefix is cacheable or not.

5.23 Short Prefix Expansion (SPE)

Short prefixes cover more IP addresses than longer prefixes. Thus higher locality exists

in short prefixes. Although there are fewer short prefixes in a routing table, short prefixes

might be referenced more often [41,42]. Short Prefix Expansion (SPE) fully expands the

trie for the prefixes less than 17 bits long (short prefixes). SPE ensures that any prefix

less than or equal to 16 bits is fully expanded and thus, cacheable. A short prefix covers a

large number of addresses. If short prefixes are cached, better cache hit rates are expected.

On the other hand, most prefixes stored in lookup tables are between 16 to 24 bits long

and there are many cacheable 16 bit prefixes as well [15]. Thus, SPE performs the table

expansion for fewer number of prefixes compared to a full table expansion and provides

the most coverage of IP addresses with cacheable prefixes.

An example of SPE for a 5 bit addressing scheme is given in Figure 5.3 which expands

prefixes of size 3 or less. The original trie depicted in Figure 5.3(a) is similar to our previous

example bus has one more non-cacheable prefix of size 3 (Prefix II at node 7). As depicted

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Prefix II

(a) Original Trie

Prefix I-l^ i
(port A)

$) Prefix 1-2
(port A)

Prefix II-1

(b) Trie with SPE

Fig. 5.3. SPE: The Proposed Partial Table Expansion.

in Figure 5.3(b), SPE fully expands short prefixes (whose sizes are less than or equal to 3)

by pushing them down the trie until they either become leaf nodes (cacheable), or become

4 bits long. In this example, Prefix I is completely expanded by Prefix 1-1 and Prefix 1-2.

But Prefix II is only pushed down to node 15 and is replaced with prefix II-1. In a 32 bit

addressing scheme applicable to IPv4, SPE pushes the short prefixes down the trie until

they either become leaf nodes (cacheable), or become 17 bits long. Thus all short prefixes

are cacheable. This table transformation (SPE) has the following advantages:

1. Routing table expansion is limited to those prefixes that provide the greatest coverage

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

of the IP address space. This is the important difference between SPE and the full

expansion. The increase in the table size is much less than a fully expanded table (See

Chapter 6) while the non-cacheable prefixes with the most coverage are replaced with

cacheable prefixes.

2. All short prefixes are cacheable and a length check is sufficient to determine if a

prefix is cacheable or non-cacheable.

3. Table updates are simpler compared to a fully expanded trie. In a fully expanded trie,

if a new prefix matches with an other prefix (either shorter or longer), several extra

new prefixes must be added to the table, no matter what size these two prefixes are.

In table with SPE, if the new prefix and old matching prefix are both longer than 16

bits, no table modification is required and the new prefix can be simply added to the

table.

If the LUT is implemented in a two stage pipelined TCAM, our HLPM technique can

be employed to easily find the longest cacheable prefix on a cache miss. This hardware-

based LUT implementation is described in detail in Section 5.3. Section 5.4 describes a

Multizone Pipelined Cache (MPC) based on the SPE table expansion.

5.2.4 Expansion-Free (EF) Software Lookups

Lookups may be implemented in hardware or software. A software lookup walks down the

trie to find the longest matching prefix for an IP address [7]. The search ends when there

are no more branches to take. The longest matching prefix is the last prefix encountered

in the trie. Some of these longest matching prefixes might not be cacheable in a non­

expanded table. We propose a new Expansion-Free (EF) method to generate cacheable

prefixes using a simple and inexpensive mechanism during a software lookup. EF forwards

the generated cacheable prefixes to the cache but does not store them in the lookup table,

thus eliminating problems associated with table expansion. Figure 5.4 illustrates the EF

method on the example of Figure 5.2. Let n be the last node visited during a traversal of

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Fig. 5.4. Expansion Free Transformation.

the trie for an IP address, and let p be the last node visited containing a prefix during the

traversal. EF has three rules.

1. If p = n is a leaf node in the trie, then the prefix in p is cacheable and can be

forwarded to the prefix cache. For example, for IP addresses covered by node 4,

p = n = 4. Thus the prefix in node 4 is cacheable and is forwarded to the cache as

the lookup result.

2. If p = n is not a leaf node in the trie, p is not cacheable. In Figure 5.4, assume an IP

address matches node 5, n = p — 2. A cacheable prefix can be produced by adding

the next bit in the address (in this case a 0) to the path followed to encounter p. This

generated cacheable prefix is forwarded to the cache.

3. I f p ^ n, the prefix in p is not cacheable. In Figure 5.4, assume an IP address matches

node 14 in the trie. For this IP address, p = 2 and n = 6. A cacheable prefix is

produced by adding the next bit in the address (in this case a I) to the path traversed

to find n. This generated cacheable prefix is forwarded to the cache.

5.3 HLPM-based LUT for SPE Implementation

In this section we employ an HLPM-based pipelined TCAM to implement the LUT. The

general description of HLPM is given in Chapter 4. We scale and modify HLPM to be

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Length
Stage 1 Stage 2 Column

LPM
0111

0000

0001

Length 24

Length 18

< > < > < >
17 bits 15 bits 4 bits

(a) Pipelined TCAM

Length Column
SSS(O)

I — :
Entry 1 55 5 (i)

Data (i)
SSS(i+l)

SRAM
cell

Entry II

Entry III

Data(i): D ata at stage i
555 (i): Second Search Signal at stage i

(b) Length Column

Fig. 5.5. Two-stage Pipelined TCAM with HLPM.

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

applicable to our cache in our forwarding system. Note that the design presented in this

section is a demonstration of the fact that HLPM is easily scalable to any application.

Figure 5.5(a) depicts the two stage pipelined TCAM which stores 32 bit IPv4 prefixes.

The first stage stores the 17 Most Significant Bits (MSB) of prefixes and the second stage

stores the 15 Least Significant Bits (LSB). The Length Column records for each entry, as a

4-bit binary coded value, the number of non-don’t-care bits stored in the second stage. For

example 0000 is stored in the corresponding Length Column entry of a prefix with size 17

(or less), because there is no non-don’t-care bit in the second stage before the don’t care

bits. 0111 and 0001 are stored for prefixes of length 24 and 18, respectively.

When an IP address misses the cache, it is searched in the LUT. This search is done in

two steps in our two-stage pipelined TCAM. In step one, the MSBs (bits 31 to 15) of the

IP address are applied to the first half of the TCAM (all entries are searched in parallel). If

the IP address matches with any entry that has a don’t care value in its last cell (the \ l ,h

bit), it means that the IP address matches with a prefix of length less than 17. SPE ensures

that this prefix is cacheable and is the LPM (See Section 5.2.3). Thus the search ends and

the second stage of the pipeline is a No-Operation task for that IP address. For example, in

Figure 5.5(a), if an IP address matches with prefix II, this prefix and corresponding output

port can be forwarded to the cache. The required TCAM entry modifications are depicted

in Figure 4.2 in Chapter 4.

However, if the search in the first stage results in a matching entry with no don’t care in

the last cell, it means the LPM is more than 16 bits long and a second step search is required.

For example, assume an IP address matches with prefix I in Figure 5.5(a). In the second

stage, the LSB of the IP address (bits 14 to 0) are applied to the second part of the matching

entry in the first stage (entry I). If a prefix matches with the IP address in the second stage

as well, the matching prefix is found. The full IP address and the corresponding output port

can be forwarded to the cache. However, multiple long prefixes might match with an IP

address after the second stage. For example, an IP might match with both Prefix I and III

as shown in Figure 5.5(a). In this case, the data in the Length Column resolves the LPM as

explained in the general description of HLPM presented in Section 4.2.3. The modification

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

DAA NHA

Prefix I
■. Fully Expanded

N on-Expanded Prefixes
r (Not stored in theXache)

232 IP Addresses
<— 16—> <— 16 —

Full Address Zone

Entry
Select

CAM1
Stage 1

(MSB)

CAM2
Stage 2

(LSB)

Prefix Zone

TCAM
Stage 2

RAM

(a) SPE Table expansion (b) MPC Memory Allocation

Fig. 5.6. MPC With SPE.

required for the Length Column is depicted in Figure 5.5(b).

5.4 Multizone Pipelined Cache (MPC) Architecture

This Section describes the Multizone Pipelined Cache (MPC) [43]. Figure 5.6 presents a

structural description of MPC. The DAA is divided into two parts horizontally. The two

parts form the two zones of the cache, and have independent sizes. The upper Prefix Zone

stores short IP prefixes, which are 16 or fewer bits long. The lower Full Address Zone stores

full 32-bit IPv4 destination addresses. The Full Address Zone is further divided vertically,

with each entry split in half. The most significant 16 bits of the address are stored in CAM1,

while the least significant 16 bits are stored in CAM2. A TCAM is used for the Prefix Zone

implementations. A binary CAM is used to implement the Full Address Zone of MPC.

MPC searches all entries of the DAA in parallel for an IP address. If the MPC finds the

address in the DAA, a cache hit occurs, and the corresponding next hop is read from the

NHA and returned to the processor. If no entry in the DAA matches the IP address, a cache

miss occurs. In this case, a lookup in the full routing table is performed and the cache is

updated with the new destination address/next hop pair.

55

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.4.1 Cache Functionality

Breaking the DAA into three pieces allows cache lookups to be pipelined. The pipeline

has three stages: (1) a lookup in CAM1; (2) a lookup in either CAM2 or the Prefix Zone, as

required by the results of the first stage; (3) an access to the NHA RAM (on a hit) to return

the lookup result (forwarding information or cache miss indication). In stage 1 the most

significant 16 bits of the address are applied to CAM1. If there are any matches in CAM1,

in stage 2 the corresponding entries of CAM2 are searched with the 16 least significant bits

of the address to complete the full-IP match in the Full Address Zone. Otherwise, stage 2

applies the 16 most significant bits of the address to the prefixes cached in the Prefix Zone.

If there is a match in either the Full Address Zone or the Prefix Zone, stage 3 accesses

the RAM location corresponding to the matching entry, and returns the next hop data as

the lookup result. SPE ensures that an IP address either hits the Full Address Zone or the

Prefix Zone, but not both (See Section 5.2.3).

When there is no match either in the Full Address Zone or in the Prefix Zone, a cache

miss is reported. A routing table search returns the routing information that is then stored

in the MPC. The time required to complete this search and store the value in the cache is

known as miss penalty. Servicing a miss is time consuming because of the slow main mem­

ory accesses to the routing table. MPC stores recent misses in an Outstanding Miss Buffer

(OMB) until the processor returns the lookup results (see Section 5.4.2). Figure 5.7(a)

depicts the pipeline flow diagram for a cache search. The diagram for an update is in

Figure 5.7(b). The update process is later discussed in detail in Section 5.4.3.

5.4.2 Outstanding Miss Buffer

MPC uses the OMB to store recent misses until the processor returns their lookup results.

Without OMB, MPC would need to stall while each cache miss is serviced. Blocking

hinders cache throughput because further cache searches cannot proceed until the lookup

is performed and the cache updated, even if pending requests would hit the cache. When

a miss occurs in the non-blocking MPC, the address is stored in the OMB and the cache

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Search Start

NoYes Hit;

YesYes HirHit

NoNo

Search End
No

Yes

3uffer
imptyj.

Stall

Search LSB in
CAM 2

Search MSB in
TCAM

Read info
from RAM

Cache Miss
Set the Miss Signal

Search MSB in CAM 1

Insert the Missing
IP into the OMB

(Outstanding Miss Buffer)

(a) Cache Search

Update Start
the Update Result

a Prefix?

Update the Update the
Full Address Prefix Zone

Zone

Search all entries of OMB
(Outstanding Miss Buffer)

for the Update Result

No

Yes
Clear the Valid Bit

for all matching entries

Update End

(b) Cache Update

Fig. 5.7. Flow Diagram of the Cache Performance.

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 2 3 4 5 6
Tim e (clock cycles)

IP. Cl C2/T NHA
IP2 Cl C2/T b " Clock Cycles B UCl/s UC2/T UNHA

1P3 Cl C2/T NHA
IP. Cl cm b • • •

IPs Cl cm NHA

IP* ci cm s s • • •

IP
7

s s ci cm

s : Stall
B : Buffer
Cl : CAM1
IP : IP Address
NHA : Next Hop Array
C2 / T : CAM2 or TCAM
UC1 / s : Update CAM1 or Stall
UC2 / s : Update CAM2 or Stall
UNHA: Update Next Hop Array

Fig. 5.8. Pipeline Diagram of the Cache.

continues performing lookups. If subsequent IP addresses hit the cache while a miss is

being serviced, a hit under miss occurs. A miss under miss (secondary miss) occurs when

a subsequent IP address also misses the cache. Secondary misses are stored in the OMB

until the buffer is full, at which point MPC blocks and the processor stalls until misses

are serviced and removed from OMB. An example of MPC functionality with a two-entry

OMB is given in Figure 5.8. In this example, IP2, IP4 and IP6 are cache misses. The

MPC is able to search for IP3 and IP5 and forward their corresponding information to the

processor while the main table lookup for IP2 is in progress. The MPC stalls after searching

for IP6 because OMB is full. No new IP can be searched until IP2 is serviced and removed

from OMB to make room for IP6.

5.4.3 Cache Update

When the lookup result of a pending IP address in the OMB comes back from the main

memory lookup, the MPC updates either the prefix zone or the full address zone with the

corresponding information according to the MPC replacement policy. An expansion of the

lookup table ensures that the result is either a short prefix that updates the prefix zone, or a

full address with 32 bits that updates the full address zone (See Section 5.2.3).

MPC requires a pipeline stall to update the data stage by stage. After an update is

complete, the missing IP is removed from OMB. However, other pending IP addresses in

the OMB might be identical to the recently updated IP address. Additionally, an update

result might be a prefix covering multiple pending IP addresses in the OMB. To ensure

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

that the same lookup result is not written into the cache multiple times, we implement the

OMB as a 33-bit CAM. Each OMB entry stores a 32 bit address and a valid bit. Only

valid entries require a software lookup and cache update. After each update, an associative

search of OMB identifies all matching entries. If the lookup result is a prefix, its don 7 care

bits are externally masked to ensure that they match with the data in OMB. The valid bits of

all matching entries are cleared. A second search for those matching OMB entries will now

hit the cache, and provide the processor with the next hop information. The flow diagram

for an MPC update is shown in Figure 5.7(b).

This simple update scheme allows the cache to issue update requests one by one. After

one update is complete the next update request can be issued. However, a more compli­

cated update scheme can be employed to allow the lookup algorithm and the corresponding

interface to decide when pending requests are serviced, how many requests are serviced at

a time, and the order in which the requests are serviced with no restrictions. We call the

update algorithm Out-Of-Order Cache Update, or OCU, and present it in Figure 5.9(b).

OCU lets the interface to the lookup and the lookup algorithm benefit from out-of-order

processing and batch requests to move data more efficiently. The general functionality of

this algorithm is similar to the simple update algorithm, but there are three issues requiring

special consideration, namely update/lookup interlacing, batch updates, and contention for

the OMB.

Cache lookups and cache updates are both pipelined operations that move through the

same pipeline stages. Therefore, both lookups and updates can be fed arbitrarily into the

pipeline without introducing stalls. If an update precedes a lookup, the lookup will see the

updated data at each stage. Alternatively, if the lookup generates a miss and writes to the

OMB before an update starts, the update will clear that entry from the OMB. However, a

lookup that occurs shortly before an update could produce a miss on the same data that the

update is writing into the cache. If the miss were written into the OMB, a second main

table lookup would return the same result, and the second update would write a second,

identical entry into the cache. We wish to avoid this situation. Therefore, before an update

starts, the main table lookup result is stored in the Pending Update Register (PUR). Every

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Search Start V
Search MSB in CAM 1

Yes No

t
Search LSB in Search MSB in

CAM 2 TCAM

— => Stall

No
"buffer

(flit)

No

Yes Yes

Read info
from RAM I

No

Cache Miss
Set the Miss Signal

I
Compare the Miss

with the PUR

Insert the Missing
IP into the OMB

Search End
 >

(a) Cache Search

Update Start
Yes

there a miss
report?^

Write the recent
miss to BMO

Clear the Valid Bit
for all matching entries

Search all entries of OMB
(Outstanding Miss Buffer)

for the Update Result

the Update Result
Prefix^

Update the Update the
Full Address Prefix Zone

Zone Update End

(b) Cache Update

Fig. 5.9. Search / Update Diagram with Free Interface.

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

cache miss checks the missed value against the address or prefix in the PUR before writing

to the OMB. If there is a match, the next hop information in the PUR can be forwarded as a

cache hit. Otherwise, the miss is written to the OMB just as in the simple scheme. After an

update is finished, the PUR is replaced with a zero value, which cannot match any address.

The lookup system may batch update requests, and subsequently batch the lookup re­

sults, in order to improve data movement efficiency. A batch request can easily be formed

by taking multiple valid entries from the OMB. However, batch updates conflict with the

serialized cache update mechanism. Furthermore, batch and out-of-order lookups introduce

the problem that two requests may generate the same lookup result, which should only be

written to the cache once. To rectify this situation, lookup results are placed in a FIFO, and

sequentially moved into the PUR. Therefore, each lookup result generates a separate cache

update, and these updates are completely serialized. A second identical update result will

not match any valid entries in the OMB, and will be discarded.

With OCU, the OMB becomes a point of contention in the system. Cache misses write

to the OMB, while cache updates read from and write to the OMB. Only one of these

actions can be performed in a given clock cycle. The write from a miss occurs at the end

of the lookup pipeline. The accesses for an update occur at the beginning of the update,

before it enters the pipeline, and multiple updates are serialized. Therefore, we prioritize

miss writes over update accesses. In the worst case, a long sequence of misses may cause

an update to be delayed until the OMB fills and blocks further cache lookups. However,

the OMB is small, and any cache hit provides an opportunity for an update to proceed.

An example of all three cases are depicted in detail in Figure 5.10. In this example an

update request comes back to the cache after two clock cycles. Thus the update result for

IP2 is written to PUR at the end of cycle 5. Since there is a miss report for IP4 at the end of

cycle 5, the miss must be compared with the PUR and written to the OMB at cycle 6. IP4

is not written in the OMB if IP4 matches with the PUR. Otherwise the valid bit of IPA in

the OMB is set.

At cycle 7, again there is another missing IP waiting to be compared with the PUR and

be written in the buffer. In cycle 8, the OMB starts the search operation before the update.

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

IP.
IP2

1P3
IP4

IP5
IP6

IP7

Ip8
IP9

1 2 3 A 5 6 7 8
Time (clock cycles)
9 10

Cl CUT NHA
Cl CUT CB B S s SB UCl/s UC2/T UNHA

Cl CUT NHA
Cl CUT CB

Cl CUT CB

Cl CUT NHA

Cl CUT CB

Cl CUT

s Cl CUT

s : Stall
B : Buffer
Cl :CAM1
IP : IP Address
SB : Search the Buffer
NHA : Next Hop Array
C2 / T : CAM2 orTCAM
UC1 / s : Update CAM1 or Stall
UC2 / s : Update CAM2 or Stall
UNHA: Update Next Hop Array
CB : Compare with PUR, then

Push to the Buffer

Fig. 5.10. Update Complications.

During cycles 9, 10 and 11, the cache is updated with the update result of IP2. However if

the OMB was full at the end of cycle 5, IP4 could not be written to OMB in cycle 6. The

OMB would search for update results of IP2 at cycles 6 and write IP4 in cycle 7 (if empty).

5.5 Summary

In this Chapter we have proposed MPC, a non-blocking, multizone, half-prefix half-full

address cache that dedicates different zones to different lookup prefix lengths. The Pre­

fix Zone is able to store and search prefixes with 16-bits or less. The Full Address Zone

stores and searches for full IP addresses whose lookup prefixes are more than 16 bits long.

Prefix caching increases the cache coverage while a relatively small table expansion is re­

quired. The EF method, proposed in this Thesis, completely eliminates table expansion

for software lookups. Also MPC potentially can achieve higher throughput and low power

consumption due to pipelining. The effective miss penalty is also reduced by using the

non-blocking buffer to let the cache search for new IPs while waiting for the lookup re­

sults of cache misses. The next Chapter presents the simulations results and performance

evaluations of MPC and HLPM.

62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6

Performance Analysis and Simulation

6.1 Overview

This Chapter presents a simulation-based performance evaluation of the new forwarding

mechanism described in this thesis. This performance study used a high level architectural

simulator run with real IP traces and lookup tables of three distributing, neither core nor

edge, routers. Table 6.1 contains the characteristics of these traces.

Our forwarding architecture is comprised of the MPC and the Look Up Table as de­

scribed in detail in Sections 5.4 and 5.3 respectively. The IP addresses, existing in our real

traces, are referenced to the cache (MPC) one by one. If an IP address misses the cache,

after some clock cycles, the lookup result of the missing IP is returned to the cache. We

do not specify the LUT at this point and we simulated the performance of MPC indepen­

dent of the type of the LUT employed in the system. The LUT can be either implemented

in software or hardware. Note that the LUT implementation has a direct impact on the

number of clock cycles it takes the cache to receive the lookup results for a missing IP

address. But this delay not only depends on the LUT speed, but also on the whole router

system to carry the missing IP from the cache to the LUT, perform the look up and send

the results back to the cache. For example when a single LUT handles multiple caches

on multiple Input / Output interfaces, the contention between lookup requests from differ-

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE 6.1

Trace Characteristics
ISP1 ISP2 ISP3

Trace Length (Packets) 99117 98948 98142

Routing Table Size (Prefixes) 10219 10219 6355

ent caches, might increase the lookup delay as well. This delay relates to the Cache Miss

Penalty in general and is presented as a parameter named Latency in our simulations. Also

note that the cache miss rate is totally independent of the LUT implementations. Thus in

our simulations, the cache (MPC) performance is evaluated independent of the LUT im­

plementations. Later in this Chapter we present the simulation results of the HLPM-based

LUT for our forwarding mechanism as well.

Before we evaluate the MPC performance in detail, we consider the question raised

in Section 5.2: To what extent do non-cacheable prefixes impact cache performance? If

the LPM of most IP addresses are cacheable prefixes, there is little benefit from table ex­

pansion. In that situation, the cache would store full IP addresses whose LPM are non

cacheable prefixes, and there is no need to generate cacheable prefixes. Thus, we simulated

a cacheless architecture where all IP addresses reference the LUT directly. The results in

Table 6.2 indicate that the LPM of up to 47% of all IPs are actually non-cacheable prefixes.

Thus the spatial locality of the cache decreases dramatically if IP addresses are cached in

full due to non-cacheable prefixes. Table 6.3 compares the miss rates of different cache

types. Based on these simulation results, if non-cacheable prefixes are cached in full (in

the Simple Prefix Cache), the miss rates are close to the full address cache, while Ternary

CAM is required for implementations of the prefix cache. Thus the non-cacheable prefixes,

make a Simple Prefix Cache degrade to a Full Address Cache.

However in the ISP3 trace very few non-cacheable prefixes are referenced. A careful

investigation of the ISP3 trace indicates that all the IP addresses of this trace are covered

with 7% of the prefixes in the LUT, which indicates that there is very strong locality in this

traffic. Although this amount of locality is not commonly observed in routers closer to the

64

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE 6.2

Non-cacheable prefixes in a LUT.
ISP1 ISP2 ISP3

Referenced

Non-cachebale Prefixes % 46.8 37.8 2

backbone, we completed our simulations for this trace as well as our other two traces.

6.2 MPC Performance Evaluation

To evaluate the performance improvements achieved by MPC, several cache types are sim­

ulated and compared. Table 6.3 compares the miss rates of the MPC with a Full Address

Cache, a Simple Prefix Cache (as explained above) and a Full Prefix Cache (fully ex­

panded). Note that a cache hit in MPC is either in the full address zone (a hit in both

CAM1 and CAM2) or in the prefix zone (a miss in CAM1 and a hit in the TCAM). Also,

MPC miss rates, presented in Table 6.3, represent miss rates in the full address zone and

the Prefix zone in total. A cache miss in the full address zone is the result of a hit in CAM1

but a miss in CAM2. A miss in the TCAM, is the result of a miss in both CAM1 and the

TCAM. For a fair comparison, the Full Address cache is simulated as a two-zone two-stage

pipelined cache with equal sized zones. This architecture caches full IP addresses and is

implemented in a 32 bit binary CAM. The Simple Prefix Cache and the Full Prefix Cache

are 32-bit Temary-CAMs that store prefixes. The former stores cacheable prefixes and

stores full addresses if the lookup results are non-cacheable prefixes. The later uses a fully

expanded version of the real lookup table (LUT) in which all prefixes are cacheable.

The Full Prefix Cache clearly outperforms all other caches. However, the prefix caches

must be implemented in a 32-bit TCAM. Since the area required for a TCAM cell is almost

twice the area of a CAM cell, MPC and the IP Cache use half the area of a prefix cache

with the same number of entries. To compare the performance of caches with the same

storage area, MPC and the Full Address cache should be compared to a prefix cache with

65

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

half as many entries. The simulation results indicate that for equal cache size (storage

area), the performance of MPC is almost as good as the full prefix cache. Moreover, the

full prefix cache requires full LUT expansion while MPC can be implemented with SPE

(See Section 5.2. Table 6.4 compares the total number of prefixes in the LUT after the

expansion for a prefix cache and MPC.

Lookup tables contain redundant information. A prefix pt is redundant if the lookup

table still returns correct results when p t is removed from the table. Figure 6.1 gives two

examples of redundancy in a LUT. In this example, p x at node 1, encompasses p 2 at node

8, and that they both forwarded to the same port. Since there is no other prefix on the path

from p x to p2 on the lookup trie, p2 merely duplicates information from p x lower in the

trie, and can be removed with no change in the lookup results. Figure 6.1(b) depicts the

new trie in which /?, is removed. On the other hand, p2 at node 5 and pA at node 6, of

the same length, differ only in their last bit, are both forward to the same port. Those two

prefixes can be replaced with one new prefix, p5 at node 2, which is identical to p 2 and

p4, but has a ’’don’t care” in the last bit. Figure 6.1(c) depicts the trie with no redundancy.

Some software based lookup tables compress the total trie by removing all the redundant

prefixes [7]. Although the initial table size is significantly reduced in such a compressed

table, it is difficult to perform some table updates, and to keep updates from generating

redundant prefixes. Thus, the table usually has some redundancy in it.

TABLE 6.3

Miss Rates (%) vs. Cache Sizes (No. of Entries) for Three Traces
ISP1 ISP2 ISP3

Entries 512 1024 2048 512 1024 2048 512 1024 2048

Full Address Cache 22.7 15.4 10.5 10.8 7.2 4.9 3.6 2.2 1.9

Simple Prefix Cache 17.2 11.2 6.5 7.1 4.5 3.1 0.6 0.6 0.6

MPC 15.5 7.9 3.7 6.2 3.3 2.0 3.0 2.0 1.6

Full Prefix Cache 7.4 2.5 1.4 2.9 1.3 1.2 0.5 0.5 0.5

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE 6.4

Number of Prefixes after Table Expansion

ISP1 ISP2 ISP3

Entries % Larger Entries % Larger Entries % Larger

Original Table 10219 - 10219 - 6355 -

Full Expansion 30620 199 30620 199 7313 15

SPE 17485 71 17485 71 6469 2

(Port A) M
(Port A) 0

P ,Q t) (Port B) (Port B)
(Port" A} (Port B) (Port B) (Port At (PortB)

(a) (b) (c)

Fig. 6.1. Examples of Existing Redundancy in a LUT.

If redundancy is removed from a table, there are fewer prefixes to cache, and the ef­

fectiveness of caching should improve. Furthermore, redundant prefixes often give rise to

situations where a short prefix unnecessarily encompasses an redundant prefix. In the ISP1

and the ISP2 tables 27.0% of the prefixes are redundant while 28.6% of the prefixes in the

ISP3 table are also redundant. To investigate the impact of the table redundancy on the

cache performance, we removed the redundant information from our real tables and then

transformed the tables to ensure correct cache results (See Section 5.2). As shown in Table

6.5, cache miss rates are equal or better when non-reaundant tables are used. Section 6.2.3

presents the impact of redundancy on the Lookup scheme.

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Cl
oc

ks

Pa
r

O
ut

pu
t

4.5

♦ No OMB
♦ 1 Entry
-*-10 Entries3.5 ■

2.5

0.5 -

5 10 15 20 25 30 35 401

♦ No OMB
♦ 1 Entry
♦ 10 Entries

0.5

5 10 15 20 25 30 35 401
Latency (cycles) Latency (cyles)

(a) ISP1 (b) ISP2

2.5

♦ No OMB
♦ 1 Entry
-*-10 Entries

0.5

5 10 15 20 25 30 35 401
Latency (cycles)

(c) ISP3

Fig. 6.2. CPO vs. Latency for lK-Entry (equally sized zones) MPC.

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE 6.5

Miss Rates (%) vs. Cache Sizes (No. of Entries) for Three Traces with No Redundancy in

_______________________________ the LUTs_______________________________
ISP1 ISP2 ISP3

Entries 512 1024 2048 512 1024 2048 512 1024 2048

Full Address Cache 22.7 15.4 10.5 10.8 7.2 4.9 3.3 2.0 1.9

MPC 15.5 7.9 3.7 6.0 3.2 2.0 3.0 2.0 1.6

Full Prefix Cache 7.4 2.5 1.4 2.5 1.1 1.1 0.3 0.3 0.3

6.2.1 OMB Performance Evaluation

MPC uses a small buffer (OMB) to hide the miss penalty. As mentioned before, the sim­

ulator uses a latency parameter to model miss penalty. A cache that has no buffer to store

recent misses has to stall at each miss and wait until the update result is returned to the

cache. To evaluate the impact of the miss penalty we measure a metric called CPO (Clock

Per Output) that reports the average number of clock cycles necessary to provide the Next

Hop Information for an IP address. Figure 6.2 depicts CPO versus Latency for MPC with

no OMB, OMB with a single entry, and OMB with 10 entries. As expected, CPO increases

linearly with latency for a cache with no buffer. For small latencies, in an MPC with a

single entry OMB, the CPO is almost independent of the latency. For larger values of la­

tency, CPO again increases linearly, but remains less than without the OMB. The OMB

becomes more important in systems where a single LUT handles the misses from multiple

caches, due to contention between the caches for service from the LUT. This performance

study does not simulate LUT contention directly. Effects of contention are longer and non-

uniform latencies. Therefore, the overall effects of contention can be roughly estimated by

observing cache throughput under longer-latency conditions.

69

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6.2.2 Power Savings

In a CAM-based device, power consumption is an important constraint that is addressed

by many designs [30,33]. The power consumption in a CAM-based device can be sepa­

rated into three components: Evaluation Power (Search power), Input Power and Clocking

Power [24]. All these sources are linearly dependent on the number of entries searched. If

50% of the time, only half of the entries of the cache are searched, the effective number of

entries during each search operation is reduced to 75% of the physical number of entries.

Thus 25% power is saved.

MPC divides the cache entries into two zones in the DAA: the full address zone (the 32

bit CAM) and the prefix zone (the 16 bit TCAM) as described in detail in Section 5.4. We

assumed these two zones are equally sized (equal number of entries). During the pipelined

search operation of the cache, half of the cache entries in the full address zone (in CAM1)

are always searched in the first stage of the pipeline (the 16 MSB of the IP address are

searched in all entries of CAM1, See Section 5.4). The second half of the cache entries

in the prefix zone are searched only if the IP address misses the full address zone during

the first stage. If the IP address hits the full address zone (CAM1) in the first stage, in

the second stage, the 16 LSB of the IP address are searched in CAM2. The prefix zone is

searched only if the address misses CAM1 of the full address zone.

The vertical pipelining feature of MPC leads to the fact that not all cache entries are

always searched for an IP address. Thus the effective number of cache entries is actually

less than the physical number of entries. This results in power savings compared to the

caches that search all entries. Our simulation results, presented in Table 6.6, indicate that

almost 60% of the IP addresses hit CAM1, eliminating the need to search the TCAM. Since

half of the total cache entries are dedicated to each zone, this results in a 30% reduction

in the effective number of entries searched in the cache, and a corresponding 30% power

savings in the cache search operation compared to caches that search all their entries during

a search.

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE 6.6

CAM1 Hit Rates
Entries ISP1 % ISP2 % ISP3 %

512 62 64 74

1024 63 65 74

2048 63 65 74

6.2.3 The HLPM-based LUT Performance Evaluation

In the forwarding architecture, a cache miss results in a reference to the LUT. The LUT

stores the routing prefixes after SPE expansion. We simulated the HLPM performance

considering one MPC with IK entries. Table 6.7 shows the simulation results for the real

lookup tables and for the ones with redundant information removed. We found that approx­

imately 35% of measured expanded prefixes stored in the LUT are short (less than or equal

to 16 bits). Almost 28% of the missing IP addresses match these short prefixes (cacheable

prefixes) for ISP1 and ISP2.

Cacheable prefixes of the ISP3 table are referenced infrequently because most IPs in

this trace match with a very small set of cacheable prefixes, In other words, the ISP3 trace

has very high spatial locality. When those prefixes are cached, most IP addresses hit the

cache. This result is also observed in MPC simulation results given in Tables 6.2 and 6.4.

In a prefix cache, the miss rates does not improve when the cache size increases. This

insensitivity to cache size suggests that only a small number of prefixes need to be cached

to hit most addresses in the trace. The miss rates improve very little for larger MPC or a

larger full address cache. Naturally, this increase is due to caching full IP addresses.

As shown in Table 6.7, Length Column searches are only required for a portion of the

matching prefixes. Almost 40% of the time, the LUT can find the LPM with no Length

Column search. The pipelined design saves power by avoiding unnecessary searches in the

second stage o f the missing IPs that match with cacheable prefixes. When the missing IP

matches with a short cacheable prefix, the second stage of the pipeline is a No-Op and no

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE 6.7

Simulation Results for HLPM-based LUTs (Tables with redundancy are the real tables).
ISP1 1SP2 ISP3

Redundancy Yes No Yes No Yes No

LUT Short Prefixes % 36.6 41.6 36.6 41.6 19.5 23.2

Referenced Short Prefixes % 27.8 27.8 27.2 29.1 <1 <1

Second Level Search % 55.8 55.8 59.2 57.5 70.0 83.0

Power Savings % 14.0 14.0 13.6 14.5 <1 <1

search is performed, as described in detail in Section 5.3. Thus fewer bits are searched. This

leads to potential power savings. The power savings estimates reported in Table 6.7 are in

comparison with a standard full length TCAM processing the same traces. In previously

reported pipelined TCAM designs, matching entries are searched to the last stage, but in

our pipelined TCAM, matching entries are searched until a don’t care is observed and not

all matching entries are searched in all stages. Since low power TCAM designs use most

of the power for matching entries [2], this power reduction directly affects the total TCAM

power consumption. The HLPM architecture should be even more power-effective for IPv6

prefixes that have wider prefix length variation.

6.3 Summary

In this Chapter, we presented our simulation results for both the Hardware-based Longest

Matching Prefix (HLPM) scheme as well as our Multizone Pipelined Cache (MPC). We

simulate our forwarding mechanism comprised of the MPC and a HLPM-based LUT. Our

MPC simulation is independent of the LUT implementations. We also simulate a situation

where there is no cache and the HLPM-based LUT is referenced with IPs.

Our simulation results demonstrate that our forwarding mechanism meets our goals.

MPC has lower miss rates compared to other caches while saves power through smart

72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

search operations. The LUT is able to find the LPM with no table management and re­

quirements as well as saving power for short prefixes.

73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 7

Conclusions and Future Work

In this thesis, IP forwarding is discussed and an efficient forwarding mechanism is pro­

posed, designed and simulated. Our forwarding mechanism is comprised of an efficient

routing cache and a hardware-based Lookup Table.

In summary, the list of contributions of our design is as follows.

1. (a) A novel Hardware-based Longest Prefix Matching (HLPM) technique for Ternary

Content Addressable Memories (TCAM) is proposed in this thesis. We demon­

strate a TCAM with HLPM is very suitable for efficient look up table imple­

mentations.

(b) HLPM provides very fast table updates (no worst-case delays) with no table

maintenance/management requirements. The prefixes can be stored anywhere

in the table independent of their sizes.

(c) HLPM can be applied to any pipelined TCAMs and is very easily scalable.

(d) HLPM performs a two level search on entries of a TCAM. The first level re­

solves the LPM of prefixes ending in different stages by searching for a don’t

care in the last bit of each stage. A very simple cell modification is presented in

this thesis to perform the first level search. The second level resolves the LPM

of multiple prefixes ending in one common stage of the pipeline by finding the

max value of the coded lengths of prefixes in the last stage of the pipeline.

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(e) HLPM aims at a further decrease in power consumption compared to previously

reported pipelined TCAM designs, by saving power for matching short prefixes.

(f) HLPM saves area compared to other fast table update solutions for TCAM

based lookup tables.

2. We employ a TCAM with HLPM for the look up table implementations of the

forwarding mechanism presented in this thesis. HLPM is applied to a two-stage

pipelined TCAM. The first stage is 17 bits long and the second stage is 15 bits, pro­

viding 32 bits for IPv4 prefixes.

3. (a) We proposed a novel Multizone Pipelined Cache (MPC) to implement the cache

of the forwarding mechanism proposed in this thesis. MPC is a non-blocking,

multizone, half-prefix half-full address cache that dedicates different zones to

different lookup prefix lengths. The Prefix Zone is able to store and search

prefixes with 16-bits or less. The Full Address Zone stores and searches for full

IP addresses whose lookup prefixes are more than 16 bits long.

(b) MPC has lower miss rates compared to previously reported caches.

(c) Also MPC potentially can achieve higher throughput and low power consump­

tion due to vertical and horizontal pipelining.

(d) MPC uses a non-blocking buffer to let the cache search for new IPs while wait­

ing for the lookup results of cache misses. Thus the effective miss penalty is

reduced.

(e) MPC saves power through smart search operations where unnecessary search

operations are avoided.

4. A novel Short Prefix Expansion (SPE) technique is proposed to allow MPC to store

prefixes instead of full IP addresses to increase the locality. The increase in the table

size after SPE transformation, is less than other expansion techniques while SPE

allows MPC to store the short prefixes with the most coverage.

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5. A novel EF method is proposed in this thesis to completely eliminate table expansion

for software lookups. This techniques generates cacheable prefixes during each look

up process and requires zero increase in table size.

6. A high level simulator was written in C++ and ran with real traces (IP packets and

lookup tables) taken from several local distributing routers in Edmonton, Alberta.

Although different parts of the forwarding mechanism are designed and simulated

through a high level architectural simulator using real traces, as presented in Chapter 6,

there are many potential research directions as the future work of this thesis. The main

directions include:

1. The circuit level simulations and exact timing and throughput analysis based on IP

arrivals are the primary steps towards the future work of our research. The power

consumption evaluations of the whole system (the cache and the lookup table) are

required through a circuit level simulation.

2. Although our high level simulation results proved the efficiency of the proposed for­

warding mechanism, hardware implementations and testing of both the Lookup table

(TCAM with HLPM) and the cache (MPC) are required as a precise evaluation of

the forwarding architecture proposed in this thesis.

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

References

[1] P. Berube, A. Zinyk, J. Amaral, and M. MacGregor, “The bank Nth chance replace­

ment policy for FPGA-based CAMs,” in 13th International Conference on Field

Programmable Logic and Applications (FPL), Lisbon, Portugal, September 2003.

[2] A. Sheikholeslami and I. Arsovski, “A mismatch-dependent power allocation tech­

nique for match line sensing in content-addressable memories,” IEEE Journal o f

Solid-State Circuits, vol. 38, pp. 1958-1966, Nov. 2003.

[3] S. Y. W. C. A. Zukowski, “Use of selective precharge for low-power content-

addressable memories,” in Proceeding o f the 1997 International Symposium on Cir­

cuits and Systems, 1997, pp. 1788-1791.

[4] M. Kobayashi, T. Murase, and A. Kuriyama, “A longest prefix match search engine

for multi-gigabit ip processing,” in International Conference on Communications

(ICC 2000), New Orleans, LA, June 2000, vol. 3, pp. 1360-1364.

[5] N. McKeown, “Trends in the design and analysis of Internet Routers,”

http://www.stanford.edu/nickm/talks.

[6] W. D. Grover, Mesh-Based Survivable networks, first ed. Upper Saddle River, New

Jersey: Prentice Hall PTR, 2004.

[7] M. A. Ruiz-Sanchez, E. Biersack, and W. Dabbous, “Survey and taxonomy of IP

address lookup algorithms,” IEEE Network, vol. 15, pp. 8-23, Mar./ Apr. 2001.

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.stanford.edu/nickm/talks

[8] A. S. Tanenbaum, Computer Networks, third ed. Upper Saddle River, New Jersey:

Prentice Hall PTR, 1996.

[9] D. Feldmeier, “Improving gateway performance with a routing-table cache,” IEEE

INFOCOME 88, pp. 298-307, March 1988.

[10] W. Shyu, C. Wu, and T. Hou, “Efficiency analyses on routing cache replacement

algorithms,” IEEE International Conference on Communications, vol. 4, pp. 2232-

2236,2002.

[11] B. Talbot and B. L. T. Sherwood, “IP caching for terabit speed routers,” GLOBECOM

99, vol. 22, pp. 1565-1569, 1999.

[12] I. Chvets and M. MacGregor, “Multi-zone caches for accelerating IP routing table

lookups,” Merging Optical and IP Technologies Workshop on High Performance

Switching and Routing, pp. 121-126, May 2002.

[13] T. cker Chiueh and P. Pradhan, “High performance IP routing table lookup using CPU

caching,” in IEEE INFOCOMM (3), 1999, pp. 1421-1428.

[14] H. Liu, “Routing prefix caching in network processor design,” in Tenth International

Conference on Computer Communications and Networks, Scottsdale, AZ, Oct. 2001,

pp. 18-23.

[15] W. Shyu, C. Wu, and T. Hou, “Multilevel aligned IP prefix caching based on singleton

information,” GLOBECOM 02, vol. 3, pp. 2345 2349, Nov 2002.

[16] T.-C. Chiueh and P. Pradhan, “Cache memory design for network processors,” in Sixth

International Symposium on High-Performance Computer Architecture, Toulouse,

France, January 2000, pp. 409-419.

[17] H. Liu, “Reducing cache miss ratio for routing prefix cache,” GLOBECOM 02, vol.

3, pp. 2323 2327, Nov 2002.

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[18] T. Chen and J. Baer, “Reducing memory latency via non-blocking and prefetching

caches,” in 5th Int. Conf. Architectural Support for Programming Languages and

Operating Systems, Oct 1992, pp. 51-61.

[19] K. I. Farkas and N. R Jouppi, “Complexity/performance tradeoffs with non-blocking

loads,” in 21st Int. Symposium on Computer Architecture, 1994, pp. 211-222.

[20] D. Kroft, “Lookup free instruction fetch/prefetch cache organiztion,” in 8th Int.

Symposium on Computer Architecture, May 1981, pp. 81-87.

[21] L. Bhuyan and H. Wang, “Execution-driven simulation of IP router architectures,”

IEEE Int. Symposium on Network Computing and Applications, pp. 145-155, Oct.

2001.

[22] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits, A Design

Perspective, second ed. Upper Saddle River, New Jersey: Prentice Hall PTR, 2003.

[23] I. Arsovski, T. Chandler, and A. Sheikholeslami, “A ternary content-addressable

memory (TCAM) based on 4T static storage and including a current-race sensing

scheme,” IEEE Journal o f Solid-State Circuits, vol. 38, pp. 155-158, Jan. 2003.

[24] H. Hsiao, D. Wang, and C. Jen, “Power modeling and low-power design of content

addressable memories,” IEEE Int. Symposium on Circuits and Systems, pp. 926-929,

May. 2001.

[25] G. Thruhnanam, N. Vijaykrishnan, and M. J. Irwin, “A novel low power CAM de­

sign,” in Proceeding o f 14th Annual IEEE International ASIC/SOC Conference, Sept

2001, pp. 198-202.

[26] H. Miyatake, M. Tanaka, and Y. Mori, “A design for high-speed low-power CMOS

fully parallel content-addressable memory macros,” IEEE Journal o f Solid-State Cir­

cuits, vol. 36, pp. 8-23, June 2001.

79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[27] t. Juan, T. Lang, and J. Navarro, “Reducing TLB power requirements,” in Proceeding

o f the 1997 International Symposium on Low Power Electronics and Design, 1997,

pp. 196-201.

[28] S. C. Liu, F. A. Wu, and J. B. Kuo, “A novel low-voltage content-addressable-

memory (CAM) cell with a fast tag-compare capability using partially depleted (PD)

SOI CMOS dynamic-threshold (DTMOS) techniques,” IEEE Journal o f Solid-State

Circuits, vol. 36, pp. 712-716, November 2001.

[29] F. Shafai, K. J. Schultz, G. F. R. Gibson, A. G. Bluschke, and D. E. Somppi, “Fully

parallel 30-MHz, 2.5 Mb CAM,” IEEE Journal of Solid-State Circuits, vol. 33, pp.

1690-1696, November 1998.

[30] A. Efthymiou and J. Garside, “A CAM with mixed serial-parallel comparison for

use in low energy caches,” IEEE Transaction on Very Large Scale Integration (VLSI)

Systems, vol. 12, pp. 325-329, March 2004.

[31] N. Mohan and M. Sachdev, “Low power dual matchline ternary content address­

able memory,” in Proceeding o f the 2004 International Symposium on Circuits and

Systems, 2004, pp. 11-633-636.

[32] A. Natarajan, D. Jasinski, W. Burleson, and R. Tessier, “A hybrid adiabatic content ad­

dressable memory for ultra-low power applications,” in Proceeding o f the IEEE/ACM

Great Lakes Symposium on VLSI, 2003, pp. 72-75.

[33] K. Pagiamtzis and A. Sheikholeslami, “Pipelined match-lines and hierarchical search-

lines for low-power content addressable memories,” in IEEE Custom Integrated Cir­

cuit Conference, San Jose, CA, Sept. 2003, pp. 383-386.

[34] C. S. Lin, J. C. Chang, and B. D. Liu, “A low-power precomputation-based fully

parallel content-addressable memory,” IEEE Journal o f Solid-State Circuits, vol. 38,

pp. 654-662, April 2003.

80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[35] G. Huston, “Routing table status report,” http://bgp.potaroo.net.

[36] H. H. andS. Tachibana, M.Minami, and T. Nagano, “A 2-ns, 5-mw, synchronous-

powered static-circuit fully associative TLB,” in Symposium on VLSI Circuits, Digest

o f Technical Papers, 1995, pp. 21-22.

[37] K. H. Cheng, C. H. Wei, and S. Y. Jiang, “Static divided word matching line for low

power content addressable memory design,” in Proceeding o f the 2004 International

Symposium on Circuits and Systems, 2004, pp. 11-629-632.

[38] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,” IEEE/ACM

Transactions on Networking, vol. 6, pp. 515-528, Oct. 1999.

[39] D. Shah and P. Gupta, “Fast updating algorithms for TCAMs,” IEEE Micro, vol. 21,

pp. 36-47, Jan./ Feb. 2001.

[40] S. Sharma and R. Panigrahy, “Sorting and searching using ternary CAMs,” in 10th

Symposium on High Performance Interconnects, Stanford, CA, Aug. 2002, pp. 101—

106.

[41] M. J. Akhbarizadeh and M. Nourani, “Efficient prefix cache for network processors,”

in 12th Annual IEEE Symposium on High Performance Interconnects, 2004, pp. 41-

46.

[42] S. Kasnavi, P. Berube, V. C. Gaudet, and J. N. Amaral;, “A hardware-based longest

prefix matching scheme for TCAMs,” Accepted for Publication in the IEEE Int.

Symposium on Circuits and Systems, ISCAS 2005,2005.

[43] S. Kasnavi, P. Berube, V. C. Gaudet, and J. N. Amaral;, “A multizone pipelined cache

for IP routing,” Submitted to Networking 2005, 2005.

81

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://bgp.potaroo.net

