INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
3137761-4700 800/521-0600

NOTE TO USERS

The original manuscript received by UMI contains pages with
indistinct and/or slanted print. Pages were microfilmed as
received.

This reproduction is the best copy available

Uaiversity of Alberta

TEMPORALITY IN OBJIECT DATABASE MANAGEMENT SYSTEMS

by

Igbal A. Goralwalla @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

Department of Computing Science

Edmonton, Alberta
Spring 1998

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre reférence

Our fle Notre reférence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reprodutre, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
N1 la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-29042-5

Canadi

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled Temporality in Object Database
Management Systems submitted by Iqbal A. Goralwalla in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

Ao Bl e

. M. Ta,mer Ozsu
/ -
Dr. Duane Szafron

<

Dr. Ramez Elmasri

Dr. David Wishart

Dr. Li-Yan Yuan

Date: 376/78

Abstract

Conventional databases represent the state of an enterprise at one particular point in time.
That is, they contain only current data. As a database changes, out-of-date information.
representing past states of the enterprise, is discarded. However, temporal support is a
requirement posed by many database applications, such as office information systems, en-
gineering databases, and multimedia systems. Most of the research on modeling time has
concentrated on the definition of a particular temporal model and its incorporation into a
(relational or object-oriented) database management system. This research has led to the
definition and design of a multitude of temporal models. Many of these assume a specific
set of temporal features, and therefore do not incorporate sufficient functionality or exten-
sibility to meet the varying temporal requirements of today’s applications. Instead, similar
functionality is re-engineered every time a temporal model is created for a new application.
This suggests a need for combining the diverse features of time under a single infrastruc-
ture that allows design reuse. In this thesis, an object-oriented framework that provides
such a unified infrastructure is presented. An object-oriented approach allows one to cap-
ture the complex semantics of time by representing it as a basic entity. Furthermore, the
typing and inheritance mechanisms of object-oriented systems directly enable the various
notions of time to be reflected in a single framework. The framework can then be tailored
to accommodate the temporal needs of different applications, and existing temporal models
can be derived n; making a -eries of design decisions through subclass specialization. The
framework can also be usad to derive a series of more general temporal models that meet
the needs of a growing number of emerging applications. Furthermore, the framework can
be used to compare and analyze different temporal object models with respect to the de-
sign dimensions. This helps identify the strengths and weaknesses of the different models

according to the temporal features they support.

The framework is then used to instantiate a single temporal object model which has
multiple facets of time. There have been many temporal object model proposals (for exam-
ple, [RS91. SC91. WD92, KS92, CITB92, BFGY7]). These models differ in the functionality
that they offer, however as in relational systems, they assume a set of fixed notions of
time. The temporal object model developed in this thesis consists of an extensible set of
primitive time types with a rich set of behaviors to consistently and uniformly model the
diverse features of time. The model is one possible implemention of the temporal framework
and provides concrete and consistent semantics for the different temporal features which is
necessary for their coexistence.

The establishment of a temporal object model provides a foundation from which in-
vestigations are carried out on using temporality to model other database features such as
schema evolution. The issues of schema evolution and temporal object models have tradi-
tionally been considered to be orthogonal and handled independently. This is unrealistic
because to properly model applications that need incremental design and experimentation
(such as CAD, software design process), the evolutionary histories of the schema objects
should be traceable. In this thesis, a method for managing schema changes by exploiting the
functionality of the temporal object model is proposed. The result is a uniform treatment

of schema evolution and temporal support for many object database management systems

applications that require both.

Acknowledgements

All praises are due to God who guides and protects me. Indeed, His Bounties on me cannot
be enumerated. This thesis is for His sake.

[would like to sincerely thank my supervisor, Dr. M. Tamer (")zsu, for his advise,
guidance, and support during my research. His patient encouragement and enthusiasm in
publishing the results of my research is very much appreciated.

Many thanks go to Dr. Duane Szafron, my co-supervisor, for all his help and support
during my research. His detailed comments and advise on every aspect of my research
helped me to think rigorously.

I would also like to thank the members of my committee, Dr. Peter van Beek, Dr.
Li-Yan Yuan, Dr. Ramez Elmasri, and Dr. David Wishart for their willingness to be on
my thesis committee and for their invaluable comments and suggestions.

[t was a rewarding experience working within the database research group at the Uni-
versity of Alberta. [am especially grateful to Yuri Leontiev for all those hours we spent
discussing various aspects of the temporal model, Paul Iglinski for listening and helping me
with ObjectStore and C++ related questions, Kaladhar Voruganti and Vincent Oria for
all the interesting discussions we had, Wade Holst for his help in developing the temporal
framework toolkit, and last but not least Anne Nield for always saying “yes” to my never
ending requests.

Finally, I express my sincere gratitude to my wife and parents for all their love, support
and encouragement. Their patience while [completed my education helped carry this dream

to reality.

Contents

1 Introduction

LI Overview
1.2 Scope and Contributions
1.2.1 Temporal Framework Issues _ .
1.2.2 Temporal Object Model Issues
1.2.3 Schema Evolution Issues
1.3 Organization

An Object-Oriented Framework for Temporal Data Models
2.1 Overview

2.2 Object-Oriented Frameworks |
2.3 The Architecture of the Temporal Framework
2.3.1 Design Dimensions
2.3.1.1 Temporal Structure

2.3.1.2 Temporal Representation

23.1.3 Temporal Order

2.3.14 Temporal History

2.3.2 Relationships between Design Dimensions
2.3.3 Temporal semantics in relational vs object-oriented databases

2.4 Tailoring the Temporal Framework
2.+1 A Toolkit for the Temporal Framework
2.4.2 Clinical Data Management
2.4.3 Time Series Management
2.44 TOODM - A Temporal Object-Oriented Data Model
2.44.1 Overview of Temporal Features.

2.4.4.2 Representing the Temporal Features of TOODM in the Tem-

poral Framework

2.5 Comparison of Temporal Object Models
2.5.1 Overview of Temporal Object Models
2.5.2 Classification of Temporal Object Models

2.6 Implementation of the Temporal Framework
2.6.1 Implementation of Temporal Structure
2.6.2 Implementation of Temporal Representation
2.6.3 Implementation of Temporal Order
2.6.4 Implementation of Temporal History

=T OV e NN =

©w o« 00

v N

NN
-1 Uv v

]

3 The TIGUKAT Temporal Object Model 49

3.1 Overview of the TIGUKAT Object Model 49
3.2 Temporal Representation _ . 51
3.2.1 Calendric Granularities __ 52
3.22 Functions 53
3.2.3 Conversions between Calendric Granularities 54
3.2.4 Mapping to TIGUKAT 57

3.3 Temporal Structure 59
3.3.1 Motivation 59
3.3.2 Unanchored Temporal Primitives 61
3.3.2.1 Conversion of Time Spans 62

3.3.2.2 Canonical Forms for Time Spans 64

3.3.2.3 Operations Between Time Spans 66

Arithmetic Operations Between Time Spans 66

Comparison Operations Between Time Spans 67

3.3.24 Related Work 67

3.3.25 Mapping to TIGUKAT 70

3.3.3 Anchored Temporal Primitives 72
3.3.3.1 Representation of Time Instants 73

3.3.3.2 Operations on Time Instants 75
Comparison Between Time Instants 75

Elapsed Time Between Time Instants 76

Operations Between Spans and Time Instants 76

3.3.3.3 Related Work 7

3.3.34 Mapping to TIGUKAT 78

3.3.4 Implementation Issues 79

4 Temporal Order. 80
3.5 Temporal History 82
3.5.1 Real-World Event Histories 82
3.5.2 Valid and Transaction Time Histories 84

3.6 A Medical Trial Object Database 86
3.6.1 Medical Trials in Pharmacoeconomics 86
3.6.2 Medical Trial Types and Behaviors 87
3.6.3 A Medical Trial Instance _ . 89
3.64 Example Queries 90
3.6.4.1 The TIGUKAT Query Language 90

3642 Query Examples 91

4 Schema Evolution 94
4.1 Semantics of Schema Change 95
4.1.1 Overview 95
412 Related Work 95
4.1.3 Schema Related Changes 97
4.1.4 Changing Behaviorsofa Type 98
4.1.5 Changing Implementations of Behaviors 101
4.1.6 Changing Subtype/Supertypes ofa Type 102
417 Queries 105

4.2.1 Overview 106

+.2.2 Related Work 107

4.2.3 Changing Implementations of Behaviors 109

4+.2.4 Change Propagation 111

+.2.5 Temporal Behavior Dispatch 113

4.2.5.1 Dispatch Semantics 114

4.2.5.2 Dispatch Examples 117

14.2.6 Immediate Object Conversions 120

5 Conclusions 122
5.1 Summary and Contributions., 122
5.2 Future Research 125
Bibliography 127
A Multiple Calendar Support 135
Al Calendars L 135
A.l.l Calendric Granularities 135

A.1.2 Conversions between Calendric Granularities 136

A.2 Unanchored Temporal Primitives 137
A.2.1 Representation of Time Spans. 137

A.2.2 Conversion of TimeSpans 138

A.2.3 Operations between Time Spans 140

A.3 Anchored Temporal Primitives 140
A.3.1 Conversion of Time Instants. 140

A.3.2 Comparison between Time Instants. 143

A.3.3 Elapsed Time between Time Instants 143

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23

2.24
2.25
2.26
2.27
2.28
2.29
2.30

3.1
3.2
3.3
3.4
3.5
3.6

Building a Temporal Structure 13
Design Space of a Temporal Structure 14
The Inheritance Hierarchy of a Temporal Structure 15
Multiple Subtyping Hierarchy for Unanchored Temporal Primitives 16
Temporal Representational Examples 17
Temporal Order Relationships 18
The Hierarchy of Temporal Orders 19
An Example of a Sub-Linear Order. 19
An Example of a Linear Order. 20
An Example of a Branching Order. 20
The Types and Properties for Temporal Histories 21
Design Space for Temporal Models 22
Relationships between Design Dimensions Types 23
The Inheritance Hierarchy for the Temporal Framework 24
The Temporal Framework Toolkit 26
Tailoring the Temporal Framework 28
Recursively Tailoring the Temporal Framework 29
A Patient’s Blood Test History 30

The Temporal Framework Inheritance Hierarchy for the Clinical Application 32
The Temporal Framework Inheritance Hierarchy for Time Series Management 33

System Defined Temporal Typesin TOODM 34
The Temporal Framework Inheritance Hierarchy for TOODM 36
Classification of Temporal Object Models according to their Temporal Struc-

LUTES o L e e e, 41

Classification of Temporal Object Models according to their Temporal Orders 42
Classification of Temporal Object Models according to their Temporal Histories 42

Overall Classification of Temporal Object Models 44
The Implementation Inheritance Hierarchy of a Temporal Structure 45
The Implementation Inheritance Hierarchy of a Temporal Representation . 46
The Implementation Inheritance Hierarchy of Temporal Orders 47
The Implementation Inheritance Hierarchy of Temporal Histories 18
Simple type lattice. 50
The calendar type. 57
Calendric Granularity types.. 58
Span types., 70
Structural representation of a time instant. 73

The timelines type hierarchy. 82

4.1
4.2
4.3
4.4

4.9

4.10

4.11

4.12

The temporal histories type hierarchy. 85

The type hierarchy for a medical trial. 88
A pictorial representation of the components of a medical trial. 90
Interface history of type Tperson. 99
Implementation history of behavior B_.name on type Tperson. 101
Supertype lattice history for type T.employee. 103
Implementation histories of behaviors B_birthDate and B_age for type T_person
and object representations. 110
Initial representation of joe and changes list of T_person. 113
The representation objects of joe and the changes list of T_person after be-
havior application of B_birthDate at time t7. 113
Dispatch process for applying a behavior b to an object o at time ¢. 114
Example showing effects on implementation histories of first adding and then
dropping a behavior. 117
The representation objects of joe and the changes list of T_person after be-
havior application of B_birthDate at time brze v o o o 118
The representation objects of joe and the changes list of T_person after be-
havior application of B_age at time ¢19. 119
The representation objects of jane after behavior application of B_age at time

LT 120
The representation objects of joe and jane, and the changes list of T_person

for immediate object coercion. 120

List of Tables

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2

Temporal Design Dimension Features of TOODM 35
Design Dimension Features of different Temporal Object Models 40
Behaviors defined on calendars. 57
Behaviors defined on calendric granularity. 58
Behaviors defined on timespans. 71
Examples of time instants. 73
Conversion of time instants to finer granularities. 74
Behaviors defined on time instants. 79
The medical trial types and behaviors. 89
Classification of schema changes. 97
Valid implementation changes of a behavior in atype. 109

Chapter 1

Introduction

1.1 Overview

A database contains data pertaining to an organization and its activities. It forms a data
repository from which information is extracted for various purposes. Databases in general
carry the most recent data. As changes occur, out-of-date data, representing past states
of the enterprise, are overwritten and are no longer available. Conventional databases can
be viewed as snapshot databases in that they represent the state of an enterprise at one
particular time. However, time is an attribute of most real-world phenomena. Events occur
at specific points in time; objects and the relationships among objects exist and change over
time. The ability to model the temporal dimension of the real world is essential for many
applications such as econometrics, banking, inventory control, medical records, real-time
systems, multimedia, airline reservations, versions in CAD/CAM applications, statistical
and scientific data, etc. To support the temporal information needs of these applications,
the database should possess a temporal dimension to store and manipulate time varying
data.

In the last decade there has been extensive research activity on temporal databases.
An initial summary of research projects can be found in [Sno86] which also includes a
bibliography on temporal databases. Additional bibliographies on temporal databases are
given in [SS88, So091]. These bibliographies were updated by Kline [K1i93]. A further
update to Kline’s bibliography appeared in [TK96). Certain research directions ir tempo-
ral databases are highlighted in [Sno90]. Further areas of temporal database research are
detailed in [TCG*93] which gives comprehensive treatment of the state-of-the-art in tem-
poral databases as of 1993. Reports on two international workshops on temporal databases
can be found in [Pea94] and [SJS95]. Research on temporal object-oriented databases is
surveyed and critically compared in [Sno95a). A further survey on temporal and real-time
databases is given in [0S95]. The state of art of temporal database system implementations
is summarized in [B5h95].

The early research on temporal databases concentrated mainly on extending the re-

1

lational model [Cod70] to handle time in an appropriate manner. These extensions can
be grouped into two main categories. The first approach uses First Normal Form (1NF)
relations in which special time attributes are added to a relation and the history of each
attribute is modeled by several INF tuples [Ari86, LJ88, NA89, Sar90, Sno87]. This ap-
proach is known as tuple timestamping. The second approach uses Non-First Normal Form
(NINF) relations in which time is attached to attribute values of a relation and the history
of an attribute is modeled by a single NINF tuple [CC87, Gad88, Tan86]. This approach
is known as attribute timestamping. TQUEL [Sno87] is a prototype implementation on the
INGRES database management system (DBMS) which demonstrates the tuple timestamp-
ing approach. A memory resident prototype implementation using attribute timestamping
(TDBMS) is reported in [Gor92]. TDBMS has been used to study the performance of the
attribute and tuple timestamping approaches [GT695]. The results reported in this study
provide useful insight into the design of temporal databases.

The notion of time, with its multiple facets, is difficult (if not impossible) to represent in
the relational model since it does not adequately capture data or application semantics. This
is substantiated by most of the relational temporal models that only support a discrete and
linear model of time. The general limitation of the relational model in supporting complex
applications has led to research into next-generation data models, specifically object data
models. The research on temporal models has generally followed this trend (for example,
[RS91, SC91, WD92, KS92, PM92, CITB92, BFG97]). Temporal object models can more

accurately capture the semantics of complex objects and treat time as a basic component.

1.2 Scope and Contributions

Most of the temporal database research has concentrated on the definition of a particular
temporal model and its incorporation into a relational DBMS (RDBMS) or object-oriented
DBMS (ODBMS). Many of these do not incorporate sufficient functionality to meet the
varying requirements that many applications have for temporal support. This thesis de-
scribes the development of a temporal framework that exploits object-oriented features to
model the diverse aspects of time. The framework can then be tailored to reflect the tem-
poral needs of a given class of applications. The framework is also used to instantiate a
particular temporal object model which has multiple facets of time. The model is sub-
sequently used to manage advanced DBMS functionality, such as schema evolution. This
section provides an overview of the contributions in each of these areas.

1.2.1 Temporal Framework Issues

The relational and object-oriented approaches to model temporal information have led to
the definition and design of a multitude of temporal models. Many of these assume a set of
fixed notions about time, and therefore do not incorporate sufficient functionality or exten-

2

sibility to meet the varying temporal requirements of today’s applications. Instead, similar
functionality is re-engineered every time a temporal model is created for a new application.
Wuu & Dayal [WD92] provide an abstract time type to model the most general semantics
of time which can then be subtyped (by the user or database designer) to model the various
notions of time required by specific applications. However, this requires significant support
from the user, including specification of the temporal schema.

Although most temporal models were designed to support the temporal needs of a
particular application, or group of similar applications, if we look at the functionality offered
by the temporal models at an abstract level, there are notable similarities in their temporal

features:

e Each temporal model has one or more temporal primitives, namely, time instant,
time interval, time span, etc. The discrete or the continuous domain is used by each

temporal model as a temporal domain over the primitives.

e Some temporal models require their temporal primitives to have the same underlying
granularity, while others support multiple granularities and allow temporal primitives

to be specified in different granularities.

e Most temporal models support a linear model of time, while a few support a branching
model. In the former, temporal primitives are totally ordered, while in the latter they

have a partial order defined on them.

e All temporal models provide some means of modeling historical information about
real-world entities and/or histories of entities in the database. Two of the most
popular types of histories that have been employed are valid and transaction time
histories [Sno87].

These commonalities suggest a need for combining the diverse features of time under a
single infrastructure that is extensible and allows design reuse. In this thesis, an object-
oriented framework [JF88] is presented that provides such a unified infrastructure. An
ob ject-oriented approach allows us to capture the complex semantics of time by representing
it as a basic entity. In addition, the typing and inheritance mechanisms of object-oriented
systems directly enable the various notions of time to be reflected in a single framework.
Furthermore, temporal models and applications requiring temporal support can be built
using the pre-existing components of the framework. This allows reuse of a small number of
types, thereby minimizing the code needed to develop new models. The temporal framework
has been implemented in C++ on Sun Solaris. Additionally, a graphical user interface (GUI)
has been implemented in perl/Tk as a front-end to the temporal framework. The GUI allows
a user to tailor the framework by selecting the desired temporal features. The fundamental

contributions of the temporal framework are as follows:

1. A design space for temporal models. This involves identifying the design dimensions
and their temporal features, and exploring the dependencies within and among the de-
sign dimensions to structure the design space. The design space is then represented by
exploiting object-oriented features to model the different aspects of time (Section 2.3).

2. The temporal framework can be tailored to accommodate real-world applications that
have different temporal needs (Section 2.4).

3. The various existing temporal object models can be represented within the framework
(Section 2.4).

4. The framework can be used to analyze and compare the different temporal object mod-
els based on the design dimensions. This gives an indication of how temporal object
models range in their provision of different temporal features of a design dimension
(Section 2.5).

1.2.2 Temporal Object Model Issues

The design and development of the temporal object model, as an example instantiation
of the temporal framework, is conducted within the context of the TIGUKAT! system
[OPS“’QS]. The TIGUKAT temporal object model provides concrete and consistent seman-
tics for the different temporal features of the framework which is necessary for their coex-
istence. The behavioral and uniform features of the TIGUKAT object model are exploited
in order to incorporate time uniformly. The philosophy behind adding temporality to the
TIGUKAT object model is to accommodate multiple applications which have different type
semantics requiring various notions of time. Consequently, the TIGUKAT temporal object
model consists of an extensible set of primitive time types with a rich set of behaviors to
consistently and uniformly model the diverse features of time. Chapter 3 provides more
details on the TIGUKAT temporal object model. The fundamental contributions of the
TIGUKAT temporal object model are the following:

1. The model manages both anchored (time instant, time interval) and unanchored
(time span) temporal data of multiple granularities. In supporting temporal data
that is specified in different granularities, numerous approaches have been proposed
to deal with the issues of converting temporal data from one granularity to another
[CC87, WIL91, WJS93, WBBJ97, BP85, MPB92, MMCR92, Sno95b]. The emphasis,
however, has only been on granularity conversions with respect to anchored temporal
data. This is because a granularity in these approaches is modeled as an anchored
partitioning of the time axis, thereby making it difficult to deal with granularity
conversions in unanchored temporal data. The TIGUKAT temporal object model

'TIGUKAT (tee-goo-kat) is a term in the language of Canadian {nuit people meaning “objects.” The
Canadian Inuit, commonly known as Eskimos, are native to Canada with an ancestry originating in the
Arctic regions of the country.

provides a novel approach to the treatment of granularity in temporal data. A granu-
larity is modeled as a special kind of unanchored temporal primitive that can be used
as a unit of time. That is, a granularity is modeled as a unit unanchored temporal
primitive. Granularities are accommodated within the context of calendars and gran-
ularity conversions are presented and discussed in terms of unanchored durations of
time. This allows consistent modeling and operation on unanchored temporal data
comprised of different and mixed granularities. Specifically, the TIGUKAT temporal
object model provides a means to represent unanchored temporal data, procedures
to convert the temporal data to a given granularity, canonical forms for the data,
and operations between the data. The model also provides a means to represent an-
chored temporal data at different granularities and gives the semantics of operations
on anchored temporal data.

2. Both discrete and continuous domains of time are supported. This is in contrast to
previous work which deals with only a single domain of time which is usually discrete
[Sno92]. The need to support different time domains in a general object model is
the emerging consensus in the temporal database research community [DSS94]. In
the TIGUKAT temporal object model, discrete temporal primitives with different
granularities and continuous temporal primitives are consistently represented.

3. The notion of a timeline to represent an axis over which time can be perceived is
supported. Different types of orderings which give timelines their structural charac-
teristics are identified. As a result, both linear and branching orders are supported.
Most temporal object models support only linear time. Furthermore, timelines can
be comprised of time intervals or time instants or both. This facilitates the definition
of both homogeneous and heterogeneous timelines, thereby allowing events that take
place at particular moments of time and those that take place within a duration of
time to be modeled on the same timeline. This feature of heterogeneous timelines has

not been addressed before in the temporal database research community.

4. Since the TIGUKAT model is behavioral, different dimensions of time (e.g., valid and
transaction time dimensions) are represented using separate behaviors in contrast to
structurally combining them in a single behavior. Thus, the approach of modeling
different dimensions of time in TIGUKAT is purely behavioral and encapsulates the
structure within behaviors.

1.2.3 Schema Evolution Issues

The provision of time in the TIGUKAT object model establishes a platform from which
temporality can be used to investigate advanced database features such as schema evolution.
The issues of schema evolution and temporal object models are generally considered to be
orthogonal and are handled independently. This is unrealistic because to properly model

applications that need incremental design and experimentation (such as CAD, software
design process), the evolutionary histories of the schema objects should be traceable. In
this thesis, a method for managing schema evolution by exploiting the functionality of the
TIGUKAT temporal object model is presented. Given that the applications supported by
ODBMS:s need support for incremental development and experimentation with changing and
evolving schema, a temporal domain is a natural means for managing changes in schema and
ensuring consistency of the system. The result is a uniform treatment of schema evolution
and temporal support for many ODBMS applications that require both.

Schema evolution is the process of allowing changes to schema without loss of informa-
tion. Typical schema changes include adding and dropping behaviors (properties) defined
on a type, and adding and dropping subtype relationships between types, to name a few.
The meta-model of TIGUKAT is uniformly represented within the object model itself, pro-
viding reflective capabilities [P693]. One result of this uniform approach is that schema
objects (e.g., types) are objects with well-defined behaviors. The approach of keeping track
of the changes to a type is the same as that for keeping track of the changes to objects.
By defining appropriate behaviors on the meta-architecture, the evolution of schema is sup-
ported. Any changes in schema object definitions involve changing the history of certain
behaviors to reflect the changes. For example, adding a new behavior to a type changes the
history of the type’s interface to include the new behavior. The old interface of the type is
still accessible at a time before the change was made.

Using time to maintain and manage schema changes gives substantial flexibility in the
software design process. It enables the designers to retrieve the interface of a type that
existed at any time in the design phase, reconstruct the super(sub)-lattice of a type as it
was at a certain time (and subsequently the type lattice of the object database at that
time), and trace the implementations of a certain behavior in a particular type over time.

A change to the schema of an object database system necessitates corresponding changes
to the underlying object instances in order to ensure the overall consistency of the system.
Change propagation deals with reflecting changes to the individual objects by coercing them
to coincide with the new schema definition. Two main approaches have been proposed to
deal with coercing object instances to reflect the changed schema: immediate and deferred
object coercions. Immediate object coercion results in suspension of all running programs
until all objects have been coerced, while deferred object coercion leads to delays each time
an object is accessed.

In this thesis, the strategy for change propagation supports both deferred object update
semantics and immediate object update semantics. The granularity of object coercion is
based on individual behaviors. That is, individual behaviors defined on the type of an object
can be coerced to a new definition for that object when the object is accessed, leaving the
other behaviors to retain their old definitions. This is in contrast to other models where an
object is converted in its entirety to a changed type. The approach taken in this thesis has
two distinct advantages depending on whether deferred or immediate update semantics are

6

used. If deferred update semantics are used, the “behavior-at-a-time” coercion results in an
even “lazier” update semantics — a behavior application to an object results in the update
of only part of the object’s structure. Updates due to other behavior changes are delayed
until they are needed by other behavior applications. If immediate update semantics are
used, then the update can be done more quickly since the system knows that changes to the
affected type are localized to the single behavior that was Jjust changed. This is important
because the major drawback of immediate update semantics is the speed of update. Another
identifying characteristic of the propagation model is that a historical record of the coerced
behaviors is maintained for each object so that even if behaviors are coerced to reflect an
update to an object. older definitions of the behaviors can still be accessed for each object.

1.3 Organization

The remainder of this thesis is organized into four chapters defining the temporal framework,
the temporal object model, schema evolution management, and a summary chapter which
contains concluding remarks and future research directions.

Chapter 2 presents the temporal framework by identifying the design space for tempo-
ral models. The design space is classified across four design dimensions (key abstractions).
Interactions within and between the dimensions are identified in order to structure the
design space. The design space is then represented by exploiting object-oriented tech-
niques. Object-oriented types are used to model the design dimensions and their temporal
features, while object-oriented properties (abstractions of methods and attributes in tradi-
tional object-oriented terminology) are used to model the relationships between the design
dimensions and the operations on their temporal features. The chapter also describes the
functionality of the temporal toolkit and illustrates how the toolkit can be used to tailor the
temporal framework in order to accommodate the temporal needs of different applications,
and temporal models. Object-oriented techniques are then used to compare and analyze
different temporal object models with respect to the design dimensions of the framework.
Finally, the implementation details of the framework are outlined.

Chapter 3 presents an example instantiation of the temporal framework within the
context of the TIGUKAT temporal object model, demonstrating a single temporal model
with multiple facets of time. The model consists of an extensible set of primitive time
types with a rich set of behaviors to consistently and uniformly model the design space for
temporal object models.

Chapter 4 examines the issue of managing schema evolution using a temporal object
model. A method for managing schema changes and propagating the changes to under-
lying instances by exploiting the functionality of the TIGUKAT temporal object model is
presented.

Chapter 5 presents conclusions and contributions of this thesis. The results are summa-

rized and avenues for future research are outlined.

Chapter 2

An Object-Oriented Framework for
Temporal Data Models

2.1 Overview

[n this chapter!, an object-oriented framework is presented that provides a unified infras-
tructure for the diverse notions of time. The temporal framework consists of abstract
object-oriented types and properties (abstractions of methods and attributes in traditional
object-oriented terminology). The types are used to model the different temporal features
in each of the design dimensions, while the properties are used to model the different op-
erations on each temporal feature and to represent the dependencies between the design
dimensions. These types and properties could then be used by any temporal model to
define the semantics of their specific notion of time. The framework can be considered as
an extension to the work of Wuu & Dayal [WD92] in that it provides the user or database
designer with explicit types and properties to model the diverse features of time. The spec-
ification of a schema for modeling time is complex, and certainly not trivial. It is therefore
imperative for temporal object models to have a temporal infrastructure from which they
can choose the temporal features they need.

A parallel can be drawn between the temporal framework presented in this thesis and
similar (albeit on a much larger scale) approaches used in Choices [CIJR87] and cmcc
[ATGL96]. Choices is a framework for operating system construction which was designed
to provide a family of operating systems that could be reconfigured to meet diverse require-
ments posed by an application or a user. emcc is an optimizing compiler that makes use of
frameworks to facilitate code reuse for different modules of a compiler. Similar to Choices
and cmecc, the temporal framework can be regarded as an attempt to construct a family
of temporal models. The framework can then be tailored to reflect a temporal model or
application which need certain notions of time. A particular temporal model or application

'This chapter has appeared as [GOS98] and portions of an earlier version have appeared as [GOS97b].

would be one of the many “instances” of the framework.

A similar objective to the temporal framework is pursued by Wuu & Dayal [WD92]
who provide an abstract time type to model the most general semantics of time which
can then be subtyped (by the user or database designer) to model the various notions of
time required by specific applications. The temporal framework presented in this thesis
subsumes the work of Wuu & Dayal in that it provides the user or database designer with
explicit types and properties to model the diverse features of time. The approach of Wuu
& Dayal requires significant support from the user, including specification of the temporal
schema, which is a complex, and non-trivial task. It is therefore imperative for temporal
object models to have a temporal infrastructure from which users can choose the temporal
features they need.

The diverse features of time are also identified in [Sno95a). The focus however, is on
comparing various temporal object models and query languages based on their ability to
support valid and transaction time histories. In this thesis, the generic aspects of temporal
medels can be captured and described using a single framework. I[n [PLL96] a temporal
reference framework for muitimedia synchronization is proposed and used to compare exist-
ing temporal specification schemes and their relationships to multimedia synchronization.
The focus however, is on different forms of temporal specification, and not on different no-
tions of time. The model of time used concentrates only on temporal primitives and their
representation schemes.

The rest of this chapter is organized as follows. Section 2.2 gives an overview of object-
oriented frameworks. The architecture of the temporal framework is presented in Sec-
tion 2.3. Section 2.4 shows how the temporal framework can be tailored to accommodate
different applications and temporal models. Finally, Section 2.5 describes the comparison

of different temporal object models using the temporal framework.

2.2 Object-Oriented Frameworks

A framework characterizes the reusable architectural design of a system; the kinds of objects
in the system and how they interact. Frameworks consist of collections of abstract classes
that capture the common aspects of applications in a certain problem domain, and the
way in which the instances of these classes collaborate. More specifically, a framework
is a set of classes that embodies an abstract design for solutions to a family of 1elated
problems [JF88]. The framework can then be specialized and/or instantiated to implement
a particular problem. With frameworks, software developers don’t have to start from scratch
each time they write an application. Frameworks are built from a collection of objects, so
both the design and code of a framework can be reused [Tal94]. This is useful in software
development since it saves time and effort. The Model-View-Controller of Smalltalk-80
[KP88] and the Unidraw graphical editor [VL90] are two examples of frameworks that have
been developed for graphical user interfaces. Frameworks have also been used in other

domains such as operating systems [CJR87]. network protocols [HJE95). and compilers
[ATGL96]. to name a few.

2.3 The Architecture of the Temporal Framework

In order to accommodate the varving requirements that many applications have for temporal
support. the design dimensions that span the design space for temporal models are first
identified. Next. the components or features of each design dimension are identified. Finally.
the interactions between the design dimensions are explored in order to structure the design
space. These steps produce a framework which consists of abstract and concrete object
types. and properties. The types are used to model the different design dimensions and
their corresponding components. The properties are used to model the different operations
on each component. and to represent the relationships (constraints) between the design
dimensions. The framework classifies design alternatives for temporal models by providing
tvpes and properties that can be used to define the semantics of many different specific
notions of time.

2.3.1 Design Dimensions

The design alternatives for temporal models can be classified along four design dimensions:

1. Temporal Structure — provides the underlying ontology and domains for time.

2. Temporal Representation — provides a means to represent time so that it is human
readable.

3. Temporal Order — gives an ordering to time.

+. Temporal History ~ allows events and activities to be associated with time.

There are two parts to the description of a design dimension. First. a set of temporal features
that the design dimension encompasses is defined. Second. the relationships between the
temporal features is explored and the resulting design space for the design dimension is
described. The design space consists of an architectural overview of abstract and concrete
types corresponding to the temporal features. and a design overview which describes some
of the key properties (operations) defined in the interface of the types. The properties are
not described in detail since manv of these are traditional temporal operations that have
already appeared in the literature on temporal databases.

The availability of commonly used object-oriented features is assumed — atomic enti-
ties (reals. integers. strings. etc.): types for defining common features of objects: properties
(which represent methods and instance variables) for specifying the semantics of operations
that may be performed on objects; classes which represent the extents of types: and collec-

tions for supporting general heterogeneous groupings of objects. In this chapter. a reference

10

prefixed by “T_" refers to a type. and “P_" to a property. A type is represented by a rounded
box. An abstract type is shaded with a black triangle in its upper left corner, while a con-
crete type is unshaded. In Figures 2.5, 2.8, 2.9. and 2.18 the rectangular boxes are objects.
Objects have an outgoing edge for each property applicable to the object which is labeled
with the name of the property and which leads to an object resulting from the application
of the property to the given object. A circle labeled with the symbols { } represents a
container object and has outgoing edges labeled with “€” to each member object.

2.3.1.1 Temporal Structure

The first question about a temporal model is “what is its underlying temporal structure?”
More specifically, what are the temporal primitives supported in the model, what temporal
domains are available over these primitives, and what is the temporal determinacy of the
primitives? Indeed. the temporal structure dimension with its various constituents forms
the basic building block of the design space of any temporal model since it is comprised
of the basic temporal features that underlie the model. An overview of the features of a
temporal structure is given and the relationships that exist between them are then identified.

Components

1. Temporal Primitives

Temporal primitives can either be anchored (absolute) or uranchored (relative)
[Sno92]. For example, 31 July 1995 is an anchored temporal primitive since
its exact location on the time axis is known, whereas 31 days is an unanchored
temporal primitive since it can stand for any block of 31 consecutive days on the
time axis.

There is only one unanchored primitive. called the span. A span is a duration
of time with a known length, but no specific starting and ending anchor points.
There are two anchored primitives. the instant (moment, chronon) and the in-
terval. An instant is a specific anchored moment in time, e.g.. 31 July 1995. An
interval is a duration of time between two specific anchor points (instants) which
are the lower and upper bounds of the interval, e.g.. [15 June 1995, 31 July 1995].

2. Temporal Domain
The temporal domain of a temporal structure defines a scale for the temporal
primitives. A temporal domain can be continuous or discrete. Discrete do-
mains map temporal primitives to the set of integers. That is, for any temporal
primitive in a discrete time domain, there is a unique successor and predeces-
sor. Continuous domains map temporal primitives to the set of real numbers.
Between any two temporal primitives of a continuous time domain. another tem-
poral primitive exists. Most of the research in the context of temporal databases
has assumed that the temporal domain is discrete. Several arguments in favor

11

of using a discrete temporal domain are made by Snodgrass {Sno92] including
the imprecision of clocking instruments, compatibility with natural language ref-
erences, possibility of modeling events which have duration, and practicality of
implementing a continuous temporal data model. However, Chomicki [Cho94]
argues that the continuous (dense) temporal domain is very useful in mathemat-
ics and physics. Furthermore, continuous time provides a useful abstraction if
time is thought of as discrete but with instants that are very close. In this case,
the set of time instants may be very large which in turn may be difficult to imple-
ment efficiently. Chomicki further argues that query evaluation in the context of
constraint databases [KKR90, Rev90] has been shown to be easier in continuous
domains than in discrete domains. Continuous temporal domains have also been
used to facilitate full abstract semantics in reasoning about concurrent programs
[BKP86]. A general framework for supporting temporal primitives (instants, in-
tervals, sets of intervals) that allows seamless integration of dense and discrete
temporal domains of time over a linearly ordered, unbounded point structure is
given in [GLOS97].
3. Temporal Determinacy

There are many real world cases which have complete knowledge of the time
or the duration of a particular activity. For example, the time interval allowed
for students to complete their Introduction to Database Management Systems
examination is known for certain. This is an example of a determinate temporal
primitive. However, there are cases when the knowledge of the time or the dura-
tion of a particular activity is known only to a certain extent. For example, the
exact time instant when the Earth was formed is unknown, though one may spec-
ulate on an approximate time for this event. In this case, the temporal primitive
is indeterminate. Indeterminate temporal information is also prevalent in various
sources such as granularity, dating techniques, future planning, and unknown or
imprecise event times [DS93]. Since the ultimate purpose of a temporal model
is to represent real temporal information, it is desirable for such a model to be

able to capture both determinate and indeterminate temporal primitives.

Design Space

Figure 2.1 shows the building block hierarchy of a temporal structure. The basic build-
ing block consists of anchored and unanchored temporal primitives. The next building
block provides a domain for the primitives that consists of discrete or continuous tem-
poral primitives. Finally, the last building block of Figure 2.1 adds determinacy. Thus,
a temporal structure can be defined by a series of progressively enhanced temporal
primitives.

Figure 2.2 gives a detailed hierarchy of the different types of temporal primitives that
exist in each of the building blocks of Figure 2.1. Based on the features of a tem-

12

TEQ AL T MRy 4
:Déterminacyz
Domain-based Temp

+ determinacy/
indeterminacy

2,
Rt

Tompors s

+ discrete/continuous
domain

Figure 2.1: Building a Temporal Structure

poral strucuure, its design space consists of 11 different kinds of temporal primitives.
These are the determinacy-domain-based temporal primitives shown in Figure 2.2 and

described below.

Continuous time instants and intervals. Continuous instants are Jjust points on
the (continuous) line of all anchored time specifications. They are totally ordered
by the relation “later than.” Since, in theory, continuous instants have infinite
precision, they cannot have a period of indeterminacy. Therefore, continuous
indeterminate time instants do not exist in Figure 2.2. However, continuous
intervals can be determinate or indeterminate. The difference between them is
that a continuous determinate interval denotes that the activity associated with
it occurs during the whole interval, while a continuous indeterminate interval
denotes that the activity associated with it occurs sometime during the interval.

Continuous intervals have lower and upper bounds which are continuous instants.

Discrete time instants and intervals. Assume that somebody has been on a train
the whole day of 5 January 1987. This fact can be expressed using a determi-
nate time instant 5 January 19874, (which means the whole day of). However,
the fact that somebody is leaving for Paris on 5 January 1987 can be repre-
sented as an indeterminate time instant 5 January 1987,,4¢ (which means some
time on that day). Hence, each discrete time instant is either determinate or
indeterminate, corresponding to the two different interpretations. Determinate
and indeterminate discrete time instants can subsequently be used to form dis-
crete time intervals. Determinate (indeterminate) time instants can be used as
boundaries of determinate (indeterminate) time intervals.

Time spans. Discrete and continuous determinate spans represent complete infor-
mation about a duration of time. A discrete determinate span is a summation of
distinct granularities with integer coefficients e.g., 5 days or 2 months + 5 days.
Similarly, a continuous determinate span is a summation of distinct granularities
with real coefficients e.g., 0.31 hours or 5.2 minutes + 0.15 seconds.

Discrete and continuous indeterminate spans represent incomplete information
about a duration of time. They have lower and upper bounds that are determi-
nate spans. For example, 1 day ~ 2 days is a discrete indeterminate span that

13

Temporal Structure Design Space

! Oomain-based '
. Temporal Primitives '

+ Determinate Discrete Instants
Discrete Instants <
. Ingk inate Di I

Detarminacy-D based
Temporal Primitives

Temporal Primitives
. '
Continuous Instants —+——= D inate C us Instants
Anchored Primitives Vo : '
v : .+ Determinate Discrate Intervals
Discrete Intervais <
. ' = Indgterminate Discrete Intarvais
. Tempora! Structure L .
J intervals [,
. L Determinate Continuous Intervals :
)
Continuous Intervals < '
' " Indeterminate Continuous Intervals :
' . 4
. -+ Determinate Discrete Spans :
Discrete Spans <: ,
. ™~ Indeterminate Discrete Spans :
Unanchored Primitives : : :

E : ++ Determinate Continuous Spans
™ Continucus Spans <
\ ; "~ Indaeterminate Continuous Spans

............................

Figure 2.2: Design Space of a Temporal Structure

can be interpreted as “a time period between one and two days.”

The mapping of the temporal structure to an object type hierarchy is given in Fig-
ure 2.3 which shows the types and generic properties that are used to model various

kinds of determinacy-domain-based temporal primitives.

Properties defined on time instants allow an instant to be compared with another
instant; an instant to be subtracted from another instant to find the time duration
between the two; and a time span to be added to or subtracted from an instant to
return another instant. Furthermore, properties P_calendar and P_calElements are
used to link time instants to calendars which serve as a representational scheme for
temporal primitives (see Section 2.3.1.2). P_calendar returns the calendar which the
instant belongs to and P_calElements returns a list of the calendric elements in a
time instant. For example P_calendar applied to the time instant 15 June 1995 would
return Gregorian, while the application of P_calElements to the same time instant
would return (1995, June, 15).

Similarly, properties defined on time intervals include unary operations which return
the lower bound, upper bound and length of the interval; ordering operations which
define Allen’s interval algebra [All84]; and set-theoretic operations.

14

T_detDiscinstant | Psux. P_pred

T_indetDiscinstant | P-suce. P_pred

T_instant

T_detContinstant

P_calElements

P _pddDuration
P_subDuratin
T_temporaiStructure
P _before
P _after P_ib, P_ub. P_lemgth
P_overlaps. P_durmyg
P_starts, P_finishes, P_meets
P_union
P_intersection
P_difference

T_detDiscSpan | P-suce. Ppred

P_Ib, P_ub
T_indatDiscSpan |, %

P_add, P_subtract T_detContSpan
P_crefficient

P_calGranulantses
T_indetContSpan | P-&b. Pub

Supertype Subtype

Figure 2.3: The Inheritance Hierarchy of a Temporal Structure

Properties defined on time spans enable comparison and arithmetic operations be-
tween spans. The P_before and P_after properties are refined for time spans to model
the semantics of < and >, respectively. Additionally, properties P_coefficient and
P_calGranularities are used as representational properties and provide a link between
time spans and calendars (see Section 2.3.1.2). P_coefficient returns the (real) coef-
ficient of a time span given a specific calendric granularity. For example, (5 days)-
P_coefficient(day) returns 5.0. P.calGranularities returns a collection of calendric
granularities in a time span. For example, the property application (1 month+5 days)-

P_calGranularities returns {day, month}.

[t can be noted that the properties P_succ and P_pred are defined in all the types
involving discrete instant and span primitives (see Figure 2.3). This redundancy can
be eliminated by refactoring the concerned types and using multiple inheritance. More
specifically, an abstract type called T_discrete can be introduced, and the properties
P_succ and and P_pred defined on it. All the types involving discrete primitives can
then be made subtypes of T_discrete. A similar approach can be used to factor the
types that define properties P_Ib and P_ub. An abstract type called T_bounds can be
introduced with the properties P_Ib and P_ub defined on it. The T_interval type and

15

the types involving indeterminate spans can then be made subtypes of T_bounds. The
concept of multiple subtyping hierarchies to collect semantically related types together
and avoid the duplication of properties has been reported in [HKOS96]. For example,

the unanchored primitives hierarchy can be re-structured as shown in Figure 2.4.

P _succ, P_pred

P_add, P_subtract Pib. P_ub
P_coefficint

P_calGranulanities T_contSpan

T_detDiscSpan

T_indetDiscSpan

T_indetContSpan

T_detContSpan

Supertype Subtype

Figure 2.4: Multiple Subtyping Hierarchy for Unanchored Temporal Primitives

2.3.1.2 Temporal Representation

Components. For human readability, it is important to have a representational scheme
in which the temporal primitives can be made human readable and usable. This is
achieved by means of calendars. Common calendars include the Gregorian and Lunar
calendars. Educational institutions also use Academic calendars.

Calendars are comprised of different time units of varying granularities that enable the
representation of different temporal primitives. In many applications, it is desirable
to have multiple calendars that have different calendric granularities. For example,
in financial trading, multiple calendars with different time units and operations need
to be available to capture the semantics of financial data [CS93, CSS94]. Extensive
calendar support is also required in time series management [DDS94, LEW96].

Design Space. A calendar is composed of an origin, a set of calendric granularities, and
a set of conversion functions. The origin marks the start of a calendar?. Calendric
granularities define the reasonable time units (e.g., minute, day, month) that can be
used in conjunction with this calendar to represent temporal primitives. A calendric
granularity also has a list of calendric elements. For example in the Gregorian calen-
dar, the calendric granularity day has the calendric elements Sunday, Monday, ...,
Saturday. Similarly in the Academic calendar, the calendric granularity semester has
the calendric elements Fall, Winter, Spring, and Summer. The conversion functions
establish the conversion rules between calendric granularities of a calendar.

*The definition of a calendar in this thesis is different from that defined in [C$93, CSS94, LEW96] where
structured collections of time intervals are termed as “calendars.” The definition in this thesis adheres closely
to the human understanding of a calendar. However, the extensibility feature of the framework allows other
notions of calendars to be incorporated easily under the temporal representation design dimension.

16

Since all calendars have the same structure, a single type, called T.calendar can
be used to model different calendars, where instances represent different calendars.
The basic properties of a calendar are, P_origin, P_calGranularities, and P_functions.
These allow each calendar to define its origin, calendric granularities, and the conver-
sion functions between different calendric granularities. Calendric granularities and
their conversion functions are treated in detail within the context of the TIGUKAT

temporal model (see Section 3.2).

Example 2.1 Figure 2.5 shows four instances of T_calendar — the Gregorian, Lunar,
Academic, and Fiscal calendars. The origin of the Gregorian calendar is given as the span
1582 years from the start of time since it was proclaimed in 1582 by Pope Gregory XIII
as a reform of the Julian calendar. The calendric granularities in the Gregorian calendar
are the standard ones, year, month, day, etc. The origin of the Academic calendar shown
in Figure 2.5 is assumed to be the span 1908 academicYears having started in the year
1908, which is the establishment date of the University of Alberta. The Academic calendar
has similar calendric granularities as the Gregorian calendar and defines a new calendric
granularity of semester. The semantics of the Lunar and Fiscal calendars could similarly
be defined. O

[academlcYuq I semester l l academicMonth

€

1908 years

P_calGranulanities

P_ongin

P C210!
Academic |=Lenchons

e p{w@o{ e K-

P_calGranulanties

(o] [ew] [o] |

Figure 2.5: Temporal Representational Examples

2.3.1.3 Temporal Order

The means of designing the temporal structure and the temporal representation of a tempo-
ral model leads to the next step of providing an ordering scheme for the temporal primitives.
This constitutes the third building block of the design space.

Components. A temporal order can be classified as being linear or branching. In a linear
order, time flows from past to future in an ordered manner. In a branching order,
time is linear in the past up to a certain point. when it branches out into alternate
futures. The structure of a branching order can be thought of as a tree defining a
partial order of times. The trunk (stem) of the tree is a linear order and each of its
branches is a branching order. The linear model is used in applications such as office
information systems. The branching order is useful in applications such as computer
aided design and planning or version control which allow objects to evolve over a non-
linear (branching) time dimension (e.g., multiple futures, or partially ordered design

alternatives).

Design Space. The different types of temporal orders are dependent on each other. A
sub-linear order is one in which the temporal primitives (time intervals) are allowed
to overlap, while a linear order is one in which the temporal primitives (time intervals)
are not allowed to overlap. Every linear order is also a sub-linear order. A branching
order is essentially made up of sub-linear orders. The relationship between temporal

orders is shown in Figure 2.6.

; is-a
is-a sub;ﬁ.gz'ear -— Lir.(xiear
rder
Temporal Order
is-a composed-of
Branching Order

Figure 2.6: Temporal Order Relationships

The hierarchy in Figure 2.7 gives the various types and properties which model dif-
ferent temporal orders3.

Example 2.2 Consider the operations that take place in a hospital on any particular day.
[t is usually the case that at any given time multiple operations are taking place. Assume
that an eye cataract surgery took place between 8am and 10am. a brain tumor surgery
took place between 9am and 12pm, and an open heart surgery took place between 7am
and 2pm on a certain day. Figure 2.8 shows a pictorial representation of operationsOrder,
which is an object of type T_subLinearOrder. operationsOrder consists of the time intervals
[08:00,10:00], [09:00,12:00], [07:00,14:00], and does not belong to any branching timeline. As
seen in the figure, operationsOrder consists of intervals (representing the time periods during

3 Periodic temporal orders are not considered in this thesis. However, these can easily be incorporated as
a subtype of T_temporalOrder.

18

N
T_subLinearOrdeH T_linearOrder J

—~/ P_branchingOrder
@temporalOrder)
P_t IPrimitives
~emperatnmt \(T_branchingOrdeq
P_root
P_branches
P_in

Supertype Subtype

Figure 2.7: The Hierarchy of Temporal Orders

which the different surgeries took place) that overlap each other. Hence. operationsOrder is

an example of a sub-linear order. O

P_branchingOrder ']
operstionsOrder —— ~ ' null |
S

. P_temporalPrimitives
1

it)

e/ € \¢

| [08:00, 10:00) " \
| [09:00, 12:00) 1 \

{07:00, 14:00]

Figure 2.8: An Example of a Sub-Linear Order.

Example 2.3 To illustrate the use of objects of tyvpe T_linearOrder which are total linear
temporal orders. consider a patient with multiple pathologies. for example as a result of
diabetes. The patient has to attend several special clinics. each on a different day. Hence.
it follows that since the patient cannot attend more than one special clinic on any day.
the temporal order of the patient’s special clinics visit history is linear and totally ordered.
Suppose the patient visited the opthalmology clinic on 10 January 1995. the cardiology
clinic on 12 January 1995. and the neurology clinic on 3 February 1995. Figure 2.9 shows a
pictorial representation of specialClinicOrder. which is an object of tvpe T_1linearOrder. As
seen in the figure. specialClinicOrder is totally ordered as its time intervals do not overlap.

-

Example 2.4 Consider an observational pharmacoeconomic analysis of the changing trends.
over a period of time. in the treatment of a chronic illness such as asthma [GOS97a]. The
analysis would be performed using information gathered over a time period. At a fixed
point during this period new guidelines for the treatment of asthma were released. At that

19

l specialClinicOrder |- s null

l P_temporal Promtives
()

€ € €

l“lO January 19957 [Edmmq 1995j [3 February 1995

Figure 2.9: An Example of a Linear Order.

point the population of patients known to have asthma are divided into those whose doctors
continue the old established treatment. and those whose doctors. in accordance with new
recommendations, change their treatment. Thus, the patients are divided into two groups.
each group undergoing a different treatment for the same illness. The costs and benefits
accrued over the trial period for each treatment are calculated. Since such a study consists
of several alternative treatments to an illness, a branching timeline is the natural choice
for modeling the timeline of the study. The point of branching is the time when the new
guidelines for the treatment of the illness are implemented. Figure 2.10 shows the branching
timeline for such a medical trial history.

Regular treatment

L
N ‘The medical trial branching timeline
which includes the Regular Treatment,
Treatment A, and Treatment B
Treatment B
Branching point

{time when new guidelines are released)

Figure 2.10: An Example of a Branching Order.

The same branching timeline could as easily handle the situation where different versions
of a particular treatment. say Treatment A, are implemented based on certain parameters.
In this case. the “Treatment A” branch would in turn branch at a certain point into different
Treatment A versions. This situation is also depicted in Figure 2.10. O

2.3.1.4 Temporal History

So far various features of time have been considered: its structure, the way it is represented.
and how it is ordered. The final building block of the design space of temporal models
makes it possible to associate time with entities to model different temporal histories.

20

Components. One requirement of a temporal model is an ability to represent and manage
real-world entities as they evolve over time and assume different states (values). The

set of these values forms the temporal history of the entity.

Two basic types of temporal histories are considered in databases which incorporate
time. These are valid and transaction time histories [SA85]. Valid time denotes the
time when an entity is effective (models reality), while transaction time represents
the time when a transaction is posted to the database. Usually valid and transaction
times are the same. Other temporal histories include event time {RS91. CK94] and
decision time [EGS93] histories. Event (decision) time denotes the time the event
occurred in the real-world. Valid. transaction, and event times have been shown to

be adequate in modeling temporal histories [CK94].

Design Space. Since valid. transaction, and event time histories have different semantics.
they are orthogonal. Figure 2.11 shows the various types that could be used to model
these different histories. A temporal historv consists of objects and their associated

timestamps.

P_history

[T_history] g_:mporaIOrder

P_remove
P_getObjects

N
(T_validHistory J E‘_transactionHistory j T_eventHistory

Figure 2.11: The Types and Properties for Temporal Histories

Property P_history defined on T_history returns a collection of all timestamped ob-
Jects that comprise the history. A history object also knows the temporal order of
its temporal primitives. The property P_temporalOrder returns the temporal or-
der (which is an object of type T_temporalOrder) associated with a history object.
The temporal order basically orders the time intervals (or time instants) in the his-
tory. Another property defined on history objects, P_insert. timestamps and inserts
an object in the history. Property P_remove drops a given object frem the history
at a specified temporal primitive. The P_getObjects property allows the user to
get the objects in the history at (during) a given temporal primitive. The proper-
ties defined on T_history are refined in T_validHistory, T_transactionHistory.
and T_eventHistory types to model the semantics of the different kinds of histories.
Moreover, each history type can define additional properties, if necessary, to model
its particular semantics. The clinical example described in Section 2.4.2 illustrates
the use of the properties defined on T history.

21

2.3.2 Relationships between Design Dimensions

In the previous section the building blocks (design dimensions) for temporal models were
described and the design space of each dimension was identified. In this section, the inter-
actions between the design dimensions are explored. This will enable the building blocks
to be put together and will give structure to the design space for temporal models.

A temporal history is composed of entities which are ordered in time. This temporal
ordering is over a collection of temporal primitives in the history, which in turn are rep-
resented in a certain manner. Hence, the four dimensions can be linked via the “has-a”

relationship shown in Figure 2.12.

(N

Temporal Model Design Space

R Valid
. Temporal Histary ——E Transaction
S Event

has

sub-Linear
Linear
Branching

r— Determinate Discrete Instants
— Indeterminate Discrete Instants
— Determinate Continuous Instants

e i— Determinate Discrete Intervals
— Indeterminate Discrete Intervals
= Determinate Continuous Intervals

[Indeterminate Continuous Intervals
— Determinate Discrete Spans

— Indeterminate Discrete Spans

— Determinate Continuous Spans

— Indeterminate Continuous Spans

Gregorian
Academic
Business

Financial

Figure 2.12: Design Space for Temporal Models

Basically, a temporal model can be envisioned as having a notion of time, which has an
underlying temporal structure, a means to represent the temporal structure, and different
temporal orders to order the temporal primitives within a temporal structure. This notion
of time, when combined with application objects, can be used to represent various temporal

22

histories of the objects in the temporal model.

Figure 2.12 gives the design space for temporal models. A temporal model can support
one or more of valid, transaction, event, and user-defined histories. Each history in turn has
a certain temporal order. This temporal order has properties which are defined by the type
of temporal history (linear or branching). A linear history may or may not allow overlapping
of anchored temporal primitives that belong to it. if it does not allow overlapping, then
such a history defines a total order on the anchored temporal primitives that belong to
it. Otherwise, it defines a partial order on its anchored temporal primitives. Each order
can then have a temporal structure which is comprised of all or a subset of the 11 different
temporal primitives that are shown in Figure 2.2. Finally, different calendars can be defined

as a means to represent the temporal primitives.

The four dimensions are modeled in an object system by the respective types shown
in Figure 2.13. The “has a” relationship between the dimensions is modeled using the
properties shown in the figure. An object of T_temporalHistory represents a temporal
history. Its temporal order is obtained using the P_temporalOrder property. A temporal
order is an object of type T_temporalOrder and has a certain temporal structure which
is obtained using the P_temporalPrimitives property. The temporal structure is an object
of type T_temporalStructure. The property P_calendar gives the instance of T_calendar

which is used to represent the temporal structure.

[T_temporalFramework j

‘ T_calendar] [T.temporalStructurej &_temporalOrder] [I‘_tempomlﬁ.istorn
> S, PRI -

P_calendar P_temporalPrimitives P_temporalOrder

Figure 2.13: Relationships between Design Dimensions Types

The relationships shown in Figure 2.13 provide a temporal framework which encompasses
the design space for temporal models. The detailed type system, shown in Figure 2.14, is
based on the design dimensions identified in Section 2.3 and their various features which
are given in Figures 2.3, 2.7, and 2.11. As described in Section 2.3.1.1, refactoring of types
and multiple inheritance can be used to handle identical properties that are defined over
different types in the inheritance hierarchy shown in Figure 2.14. The framework can now
be tailored for the temporal needs of different applications and temporal models. This is

illustrated in Section 2.4.

23

P_sucx, P _pred

T_detDiscinstant

T_detContinstant

P_addDuration
P _subDuratron

T_temporalStructure

T_datDiscinterval

T_inte
P _after

PUb. P_ub. Plegth
P_pvertaps.

P_durng

Pwrts, P finshes, P_meets

T_detContinterval
P_smon

T_indetContinterval

P _ntersectuon
P_iifference

T_detDiscSpan

T_indetDiscSpan

Pb. P ub. P_sucx. P_prat
[T_tomponanrnmrk

T_detContSpan

P_ongm
P_calGranulanties
P_functions

T_indetContSpan

Pb, P _ud

T _pubUnarOrderH T_linearOrder j

P_branchingOrder

T_temporalOrder

P_temporalPrimitives

T _branchingOrder

T_validHistory

P_history
P_temporalOrder
P_insert
P_remove
Supertype

T_eventHistory
P_getObjects

Subtype
Figure 2.14: The Inheritance Hierarchy for the Temporal Framework

24

2.3.3 Temporal semantics in relational vs object-oriented databases

In temporal relational databases the semantics of the different notions of time usually appear
in the query model. For example, the temporal relations in the database can either be point-
based or interval-based and the underlying query language would have to be designed to
capture point-based or interval-based semantics.

In temporal object-oriented databases much of the semantics of the different notions
of time is captured by the properties (behaviors) defined on the various types that model
temporal features, as shown in Figure 2.14. For example, to retrieve the length of an interval,
one would just apply the P_length property on the interval. No explicit construct would
be needed in the underlying query language. In temporal relational databases however,
an explicit construct, or operation would have be defined in the query language to return
the length of an interval. The semantics of the properties in the temporal framework are
well defined in the literature. For example, the semantics of the ordering properties (for
example, P_overlaps, P.meets) on intervals are well defined by Allen in [All84].

2.4 Tailoring the Temporal Framework

This section illustrates how the temporal framework that is defined in Section 2.3 can be
tailored to accommodate applications and temporal models which have different temporal
requirements. The first sub-section describes a toolkit that aids users in tailoring the
temporal framework. The use of the toolkit is demonstrated in subsequent sub-sections.
In the next two sub-sections, examples of two real-world applications that have different
temporal needs are given. The last sub-section gives an example of a temporal object model

and shows how the model can be derived from the temporal framework.

2.4.1 A Toolkit for the Temporal Framework

[n this section a toolkit for using the temporal framework is described. The toolkit is
comprised of a graphical user interface which provides a user with the ability to choose
different temporal features that pertain to a particular application or group of applications.
The toolkit has been implemented in perl/Tk and its temporal type hierarchy is shown
in Figure 2.15. The type hierarchy is a little different from the type hierarchy of the
temporal framework given in Figure 2.14. These differences are due to the implementation
environment and are discussed in Section 2.6.

In order to select the desired temporal features, a user simply clicks on the types associ-
ated with the features. For each type selected, the toolkit highlights all other types that are
related with the selected type. The related types are of two kinds: the first kind are those
related to the selected type by virtue of inheritance (these are basically all the supertypes
of the selected type); the second kind are those related to the selected type by virtue of
the design dimension relationships shown in Figure 2.13. The toolkit provides a facility

25

e

Creale Framewar.. Open Directary... f Postscrit... j Quit

Figure 2.15: The Temporal Framework Toolkit

26

(the Create Framework button) whereby all the header and source C++ files associated
with the highlighted types can be stored in a specified directory. Two additional files are
also copied to the directory. The first file is a standard Makefile which allows the user to
compile all the source files. The second file is an exemplary main.C file which illustrates
how objects of the various temporal framework types can be created and manipulated.

Figure 2.16 shows the types highlighted when T_branchingTransactionHistory is se-
lected. The types T_branchingHistory, T.history, and Tframework are supertypes of
T_branchingTransactionHistory. The type T_transactionHistory is highlighted be-
cause the root of a branching transaction history is an object of type T_transactionHistory.
Every branching transaction history has a branching order which is why T_branchingOrder,
and subsequently its supertype T_temporalQOrder are highlighted. The type T_linearOrder
is highlighted because the root of a branching order is an object of type T_linearOrder.
The type T_now and all its supertypes are highlighted because the timestamps in a trans-
action history are restricted to the current date. Since the type T_detContInstant defines
an operation that returns the elapsed time (which is a time span) between two instants, the
type T_detDiscSpan (and its supertype) is also highlighted. Finally, the types T_gregDate
and T_calendar are highlighted since they represent human-readable timestamps in the
branching history.

The tailoring process described above is recursive in that the toolkit allows a user to
specify a directory from which an already tailored type hierarchy can be read (using the
Open Directory button). For example, the type hierarchy shown in Figure 2.17 consists
of the highlighted types of Figure 2.16. The user can now select the desired types from
the tailored type hierarchy. The types highlighted in red in Figure 2.17 are as a result of
selecting the T_transactionHistory type.

2.4.2 Clinical Data Management

This section describes a real-world example from clinical data management that illustrates
the four design dimensions and the relationships between them which were discussed in
Section 2.3.

During the course of a patient’s illness, different blood tests are administered. It is
usually the case that multiple blood tests of the patient are carried out on the same day.
Suppose the patient was suspected of having an infection of the blood, and therefore had
two different blood tests on 15 January 1995. These were the diagnostic hematology and
microbiology blood tests. As a result of a very raised white cell count the patient was given
a course of antibiotics while the results of the tests were awaited. A repeat hematology test
was ordered on 20 February 1995. Suppose each blood test is represented by an object of
the type T-bloodTest. The valid history of the patient’s blood tests can then be repre-
sented in the object database as an object of type T_validHistory. This object is called
bloodTestHistory. To record the hematology and microbiology blood tests, the objects mi-

27

Create Framework... Open Directory... Postscript... Quit

Figure 2.16: Tailoring the Temporal Framework

28

N

e TbranchingTransactonHistory ‘

(reale Framework... | Open Directory... ' Postscript... Quit

Figure 2.17: Recursively Tailoring the Temporal Framework

29

crobiology, hematologyl, and hematology? with type T_bloodTest are first created and then
entered into the object database using the following property applications:

blood TestHistory. P_insert (microbiology, 15 January 1995)
bloodTestHistory. P_insert (hematologyl, 15 January 1995)
bloodTestHistory.P_insert(hematology2, 20 February 1995)

If subsequently there is a need to determine which blood tests the patient took in
January 1995, this would be accomplished by the following property application:

bloodTestHistory.P_getObjects([1 January 1995, 31 January 1995])

This would return a collection of timestamped objects of T_bloodTest representing all the
blood tests the patient took in January 1995. These objects would be the (timestamped)
hematologyl and the (timestamped) microbiology.

Figure 2.18 shows the different temporal features that are needed to keep track of a
patient’s blood tests over the course of a particular illness. The figure also illustrates the
relationships between the different design dimensions of the temporal framework.

lLtimoSumpodMicrobiology !E\eshmpedﬂemtologﬂ

€
€ € timeStampedHematology2

. {}
' P_insert (aBloodTest,aTimeStamp) o st @< timestamped biood tests
: 1story
i P_remote (aBloodTest,aTimeStamp) bloodTestHistory |~ P-&etObjects(aTimeStamp)

...

P_temporalOrder

f Temporal Order bloodTestOrder

...

null '

P_temporalPrimitives

15 January 1995 | w e

:' Temporal Structure

P_calendar P_calendar

Gregorian
gt P_functions Q% ‘
\mlcnmulanlics

Bal

Figure 2.18: A Patient’s Blood Test History

P_origin

1582 years
! € €
: L year J Lmonth

Temporal Representation

€

30

The patient has a blood test history represented by the object bloodTestHistory. The
P_history property when applied to bloodTestHistory results in a collection object whose
members are the timestamped objects timeStampedMicrobiology, timeStampedHematologyl,
and timeStampedHematology2. The P_insert property updates the blood test history (blood-
TestHistory) by inserting an object of type T-bloodTest at a given anchored temporal prim-
itive. Similarly, the property P_remove updates the bloodTestHistory by removing an object
of type T_bloodTest at a given anchored temporal primitive. The P_getObjects property
returns a collection of timestamped blood test objects when given an anchored temporal
primitive,

Applying the property P_temporalQOrder to blood TestHistory results in the object blood-
TestOrder which represents the temporal order on different blood tests in blood TestHis-
tory. bloodTestOrder has a certain temporal structure which is obtained by applying the
P_temporalPrimitives property. Finally, the primitives in the temporal structure are repre-
sented using the Gregorian calendar, Gregorian and the calendric granularities year, month,
and day.

Consider now the various temporal features required to represent the different blood
tests taken by a patient. Anchored, discrete, and determinate temporal primitives are
required to model the dates on which the patient takes different blood tests. These dates
are represented using the Gregorian calendar. Since the blood tests take place on specific
days. the temporal primitives during which the patient took blood tests form a total order.
Lastly, a valid time history is used to keep track of the different times the blood tests were
carried out. To support these temporal features, the toolkit described in Section 2.4.1 can
be used to reconfigure the temporal framework with the appropriate types and properties.

This is shown in Figure 2.19.

2.4.3 Time Series Management

The management of time series is important in many application areas such as finance,
banking, and economic research. One of the main features of time series management is
extensive calendar support [DDS94, LEW96]. Calendars map time points to their cor-
responding data and provide a platform for granularity conversions and temporal queries.
Therefore, the temporal requirements of a time series management system include elaborate
calendric functionality (which allows the definition of multiple calendars and granularities)
and variable temporal structure (which supports both anchored and unanchored temporal
primitives, and the different operations on them).

Figure 2.20 shows how the temporal requirements of a time series management system
can be modeled using the types and properties of the temporal framework. It can be
noted from the figure that only the temporal structure and temporal representation design
dimensions are used to represent the temporal needs of a time series. This demonstrates

that it is not necessary for an application requiring temporal features to have all four

31

Create Framework... Open Directary... Pastscript... ozt

Figure 2.19: The Temporal Framework Inheritance Hierarchy for the Clinical Application

32

design dimensions in order to be accommodated in the framework. One or more of the

design dimensions specified in Section 2.3.1 can be nsed as long as the design criteria shown

in Figure 2.12 hold.

Create Framework... ? Open Directory... Postscrpt... Quit

Fi

igure 2.20: The Temporal Framework Inheritance Hierarchy for Time Series Management

33

2.44 TOODM - A Temporal Object-Oriented Data Model

This section illustrates how the temporal framework can accommodate the temporal fea-
tures of different temporal object models. Rose & Segev's temporal object-oriented data
model (TOODM) [RS91] is chosen as a representative model since it uses object types and
inheritance to model temporality. An overview of the temporal features of TOODM is
first given followed by a description of how these features can be derived using the types
and properties of the temporal framework. There is no doubt that TOODM has more
functionality to offer in addition to temporality, but capturing the additional non-temporal
functions is beyond the scope of this framework and this thesis.

2.4.4.1 Overview of Temporal Features

TOODM was designed by extending an object-oriented entity-relationship data model to
incorporate temporal structures and constraints. The functionality of TOODM includes:
specification and enforcement of temporal constraints: support for past, present, and future
time; support for different type and instance histories: and allowance for retro/proactive
updates. The type hierarchy of the TOODM system used to model temporality is given in
Figure 2.21. The boxes with a dashed border represent types that have been introduced to
model time. while the rest of the boxes represent basic types.

Figure 2.21: System Defined Temporal Types in TOODM

The Object type is the root of the type tree. The type V-Class is used to represent user-
defined versionable classes. More specifically, if the instance variables, messages/methods,
or constraints of a type are allowed to change (maintain histories), the type must be defined
as a subtype of V-Class.

The Ptypes type models primitive types and is used to represent objects which do not
have any instance variables. Ptypes usually serve as domains for the instance variables of
other objects. The Time primitive type is used to represent temporal primitives. The TP
type represents time points, while the TI type represents time intervals. Time points can
have different calendar granularities, namely Year, Month, Day, Week, Hour, Minute, and

34

| Structure " Representation Order History

Primitives Domain Determinacy

Anchored Continuous | Determinate || Gregorian Calendar || Total Linear || Valid

Unanchored Transaction
Event

Table 2.1: Temporal Design Dimension Features of TOODM

SFecond.

The TS[T] type represents a time sequence which is a collection of objects ordered on
time. TS[T] is a parametric type with the type T representing a user or system defined
type upon which a time sequence is being defined. For every time-varying attribute in a
(versionable) class, a corresponding subclass (of TS[T]) is defined to represent the time
sequence (history) of that attribute. For example, if the salary history of an employee is to
be maintained, a subclass (e.g., TS[Salary]) of TSLT] has to be defined so that the salary
instance variable in the employee class (which is defined as a subclass of V-Class) can refer

to it to obtain the salary history of a particular employee.

2.4.4.2 Representing the Temporal Features of TOODM in the Temporal Frame-

work

TOODM supports both anchored and unanchored primitives. These are modeled by the
Absolute and Relative types shown in Figure 2.21. The anchored temporal primitives
supported are time instants and time intervals. A continuous time domain is used to
perceive the temporal primitives. Finally, the temporal primitives are determinate.

Time points and time intervals are represented by using the Gregorian calendar with
granularities Year, Month, Day, Week, Hour, Minute, and fecond. Translations between
granularities in operations are provided, with the default being to convert to the coarser
granularity. A (presumably total) linear order of time is used to order the primitives in a
temporal sequence. TOODM combines time with facts to model different temporal histories,
namely, valid, transaction, and event time histories. Table 2.1 summarizes the temporal
features (design space) of TOODM according to the design dimensions for temporal models
that were described in Section 2.3.1.

Figure 2.22 shows the type system instance of our temporal framework that corresponds
to the TOODM time types shown in Figure 2.21 and described in Table 2.1.

The Time primitive type is represented using the T_temporalStructure type. The TP
and TI types are represented using the T_instant and T_interval types, respectively. Sim-
ilarly, the Relative type is represented using the T_unanchPrim type. Since TOODM sup-
ports continuous and determinate temporal primitives, the (concrete) types T_detContInstant,
T.detContInterval, and T-detContSpan are used to model continuous and determinate in-
stants, intervals, and spans, respectively.

35

T
frrosiisry 8

Creale Framework... | Open Directary... Pestscript... Guit

Figure 2.22: The Temporal Framework Inheritance Hierarchy for TOODM

36

The Gregorian calendar and its different calendric granularities are modeled using the
T.calendar type. Time points and time intervals are ordered using the T_linearOrder
type. Time sequences represented by the TS[T] type are modeled by the history types in
the temporal framework. More specifically, valid time (vt), record time (rt), and event time
(et) are modeled using the T_validHistory, T_transactionHistory, and T_eventHistory

types.

TOODM models valid, transaction and event histories all together in one structure as
shown by the TS[Salary] type in the previous section. The temporal framework, however,
provides different types to model valid, transaction, and event histories to allow their respec-
tive semantics to be modeled. Moreover, it uses properties to access the various components
of histories. For example, to represent the valid history of an employee’s salary an object
of type T_validHistory is first created. The P_insert property then inserts objects of type
T-integer (representing salary values) and objects of type T_interval (representing time
intervals) into the salary valid history object. The transaction and event time histories of
the salary are similarly represented, except in these histories the P_insert property inserts

timestamps which are time instants (i.e., objects of type T.instant).

2.5 Comparison of Temporal Object Models

In this section the temporal framework is used to compare and analyze the temporal object
models that have appeared in recent literature. In particular, the [RS91, SC91, KS92,
PM92, CITB92, BFG97] temporal object models are considered. The work of Wuu & Dayal
[WD92] and Cheng & Gadia [CG93] (which follows a similar methodology as [WD92]) are
not considered since they do not provide concrete notions of time in their models. In
[WD92, DW92], variables and quantifiers are used to range over time. Abstract notions of
time and abstract time types are used to facilitate the modeling of various notions of time.
However. it is not clear how these abstract types fit in the primitive type lattice. Neither are
any behaviors defined on these abstract types. Essentially, the user (or database designer)
is burdened with the responsibility of defining most of the temporal model which includes
specifying the temporal schema and specifying the queries.

Object models which support versioning using time [KGBW90, WLH90, SRH90, Sci94]
usually follow a structural embedding of temporality within type definitions. Thus, the
notion of temporal objects is lost since the model knows nothing about temporality. More-
over, most temporal version models use the Date function call which is provided by the
system. For example, though the EXTRA-V version model [Sci94] supports “valid” and
“transaction” time, it does so by timestamping attributes using system provided dates.
This is limited in scope as no semantics of the various notions of time are provided. Since
these models are not “temporal object models” in the strict sense of the term, they are not

included in this study.

37

2.5.1 Overview of Temporal Object Models

Rose and Segev [RS91. RS93a, RS93b] extend an object-oriented based entity-relationship
data model to incorporate time. Their work is described in Section 2.4.4.

OSAM*/T [SC91] is a temporal object-oriented knowledge model which provides a con-
ceptual basis for representing behavioral and structural properties of objects. Behavioral
properties are represented in terms of methods and knowledge rules, while structural prop-
erties are represented in terms of structured associations with other objects. The emphasis
of the model is on temporal knowledge rules which are represented as conceptual objects
that can evolve (through updates) over time. Histories of temporal knowledge rules and
other object instances are captured by object instance time-stamping. OSAM*/T uses the
discrete time domain to perceive time, in which time is isomorphic to natural numbers
and is represented as a time sequence. Valid time is used to record the changes of object
instances as they evolve in time. Object histories are recorded by time stamping object

instances using time intervals.

Kifer and Schéning propose a temporal object-oriented data model called TMAD [KS92],
to deal with history management of complex objects. They extend a general object-oriented
data model (MAD), which allows for overlapping complex objects, by a temporal dimen-
sion. Objects of TMAD are called molecule histories, and a temporal query returns a set
of molecule histories. A molecule history describes the evolution of an object in time. The
lifespan of this evolution is called the validity interval. A molecule history consists of all the
states the molecule has had in this interval. Each state is called a time slice. A temporal
complex object has a history which is comprised of time slices. To retrieve and manip-
ulate temporal complex-objects TMAD defines a query language with specific temporal
constructs. In order to preserve the previous values of data, TMAD defines a new update
operation which inserts copies of the latest state of all modified objects into the database
without deletion of the old states. Each state is marked with a validity interval which has
to be specified by the user. However, the transaction time is automatically recorded by the
system.

Chu et. al., propose a temporal evolutionary object-oriented data model (TEDM) for
medical image data in [CITB92]. Images such as X-rays, CT scans, etc. and the image
features related to a patient’s body structure are represented as objects in the data model.
TEDM enhances the traditional object-oriented constructs with a new set of constructs
to describe the evolutionary behavior of objects. Evolutionary object constructs consist
of Evolution which models the characteristics of an object as it evolves over time; Fusion
which models the cases when an object fuses with different objects to form a new object; and
Fission which takes care of situations in which an object splits into two or more independent
objects. Temporal relation object constructs include constructs that represent the temporal
relationships between an object and its supertype, and object constructs that show the

temporal relationships between the life spans of peer objects at the same level in a type

38

hierarchy. Objects in TEDM can be either versionable or non-versionable. Versionable
objects are simply collections of non-versionable objects associated with linearly ordered
time intervals. TEDM adopts different time dimensions to time stamp objects. Valid time
is represented using a time interval and denotes the duration in which the object was valid,
record time is when the object is recorded in the database, and event time is when the event
about an object actually occurs.

Pissinou and Makki [PM92] extend an object-oriented data model, called the 3 Dimen-
sional Information Space (3DIS), to incorporate the semantics of time and thereby support
temporal data and the temporal evolution of data. All entities in the Temporal 3DIS (T-
3DIS) databases are treated as objects at various discrete time intervals. The T-3DIS model
extends the 3DIS model to include temporal information on objects, mappings, and types.
Each object is associated with a valid time temporal version {[ta, ts], {versionnumbers}}
which gives the lifespan of an object for a given version or a sequence of versions. The
interval [tq,] denotes the valid time of the temporal version. The version number(s)
together with the time interval model the evolution of an object. Temporal relation-
ships between objects are modeled by (domain-object([t;, ¢;], v), (mapping-object([tx, t/], v),
(domain-object([tm, ta], v)), where v indicates a version number. This helps in determin-
ing the lifespan of a mapping (interval [tk. t:]), which then helps in determining temporal
inter-object relationships. A set of temporal operations is defined on objects in T-3DIS that
allows viewing, insertion, deletion, and modification of temporal objects.

Bertino et. al., present T_Chimera, a temporal extension to the Chimera object-oriented
data model [BFG97]. The main objectives of T_Chimera are to represent on a formal basis
several issues that arise from the introduction of time in an object-oriented database. These
include both temporal and object-oriented issues. T.Chimera extends the set of Chimera
types with the notion of a temporal type. Temporal types uniformly represent variables
for which the history of changes over time is recorded and variables for which only the
current value is kept. For each Chimera type T, a corresponding temporal type (denoted
as temporal(T)) is defined. The domain of time is assumed to be isomorphic to natural
numbers and is modeled using the time type. Instances of the temporal(T) type are partial
functions from instances of the time type to instances of the type T'. An interval denoted as
(t1,t2] includes all time instants between ty and £, including ¢; and ¢3. Union, intersection,
and inclusion operations are defined on time intervals and have the usual semantics of set
operations. T_Chimera also provides notions of consistency between an object with respect
to its class taking into account that both the object state and the classes the object belongs
to (objects can migrate during their lifespan from one class to another) vary over time.
Formal definitions of object equality, referential integrity, and inheritance in the context of

both temporal and non-temporal objects are also given.

39

2.5.2 Classification of Temporal Object Models

The temporal features of the different temporal object models discussed in Section 2.5.1
are summarized in Tables 2.1 and 2.2. The criteria in comparing different temporal object
models is based on the design dimensions identified in Section 2.3.1. It is true that the mod-
els may have other (salient) temporal differences, but the concern in this work is comparing
their temporal features in terms of the framework defined in Section 2.3.

Similar to the methodology used in Section 2.3, object-oriented techniques are used this
time to classify temporal object models according to each design dimension. This will give
an indication of how temporal object models range in their provision of different temporal
features of a design dimension — from the most powerful model (i.e., the one having the
most number of temporal features) to the least powerful model (i.e., the one having the
least number of temporal features).

Model Structure “ Representation I Order History
Primitives | Domain | Determinacy

OSAM™/T Anchored Discrete | Determinate N/A Linear Valid

TMAD Anchored Discrete | Determinate || Gregorian Calendar || Linear Valid
Transaction

TEDM Anchored Discrete | Determinate N/A Linear Valid
Transaction
Event

T-3DIS Anchored | Discrete | Determinate Gregorian Calendar || Partial || Valid

T-Chimera || Anchored Discrete | Determinate || N/A Linear Valid

Table 2.2: Design Dimension Features of different Temporal Object Models

Temporal Structure. It can be noticed from Tables 2.1 and 2.2 that most of the models
support a very simple temporal structure, consisting of anchored primitives which are
discrete and determinate. In fact, all models in Table 2.2 support the same temporal
structure, which consists of discrete and determinate anchored temporal primitives.
These primitives can be accommodated in the temporal framework by the T_anchPrim.
T_instant, T_detDiscinstant, T_interval, and T_detDiscInterval types, and their
respective properties. The temporal structure of TOODM is slightly enhanced with
the presence of unanchored primitives. TOODM is also the only model that supports
the continuous temporal domain.

Figure 2.23 shows how the type inheritance hierarchy is used to classify temporal
object models according to their temporal structures. The temporal structures of
OSAM*/T, TMAD, TEDM, T-3DIS, and T-Chimera can be modeled by a single type
— that representing temporal primitives that are anchored, discrete, and determinate.
This means that any of these models can be used to provide temporal support for
applications that need a temporal structure comprised of anchored temporal primitives
which are discrete and determinate. Similarly, the temporal structure of TOODM can

40

be modeled by a type which represents anchored and unanchored temporal primitives
that are continuous and determinate. This implies that TOODM is the only model
that can support applications requiring a continuous time domain, and unanchored

temporal primitives.

OSAM"/T, TMAD, TEDM, T-3DIS, T_Chimera
g

.

Anchored, Determinate, & Discrate W

Temporal Primitives)
Anchored & Determinate
Temporal Primitives
Anchored & Unanchored, Determinate & Continuous
. Temporal Primitives
X
TOODM
_Supertype Subtype

Figure 2.23: Classification of Temporal Object Models according to their Temporal Struc-

tures

Temporal Representation. Temporal primitives in the OSAM*/T [SC91], TEDM [CITB92],
and T-Chimera [BFG97] models are simply represented using natural numbers. The
models do not provide any additional representational scheme which supports calen-
dars and different granularities. The granularity of the temporal primitives is depen-
dent on the application using the model. When a calendric representational scheme is
provided for the temporal primitives, it is comprised of a single underlying calendar,
which is usually Gregorian. This is the case in the TOODM [RS91], TMAD[KS92],
and T-3DIS [PM92] models.

Temporal Order. All models shown in Tables 2.1 and 2.2, except T-3DIS, support a linear
temporal order. The T-3DIS model supports a sub-linear temporal order. These tem-
poral orders are accommodated in the temporal framework using the T_subLinearOrder
and TlinearOrder types. Figure 2.24 shows how the models can be classified in an
inheritance type hierarchy according to their temporal orders. The type that models a
partial linear order of time sits at the root of the hierarchy and represents the T-3DIS
model. Since a total linear order is also a partial order, the models supporting total
linear orders can be represented by a direct subtype of the root type.

Temporal History. Tables 2.1 and 2.2 show how the temporal object models range in
their support for the different types of temporal histories. Figure 2.25 shows how
the models can be classified according to the temporal histories they support using
a type inheritance hierarchy. The root type in Figure 2.25 represents the models
which only support valid time histories. These are the OSAM*/T, T-3DIS, and T-

41

TOODM, OSAM*/T,TMAD,

T-:‘i,Dls TEDM, T’-Chimera
(Partial Linear Orders
Supertype Subtype

Figure 2.24: Classification of Temporal Object Models according to their Temporal Orders

Chimera models. A direct subtype of the root type inherits the valid time history and
provides transaction time history as well. This type represents the TMAD model.
Similarly, the rest of the subtypes inherit different histories from their supertypes and
add new histories to their type as shown in Figure 2.25. From Figure 2.25, it can
be seen that applications requiring only valid time histories can be supported by all
models; applications requiring valid and transaction time can be supported by the
TMAD, TEDM, and TOODM models; and applications requiring valid, transaction.
and event time can be supported by the TEDM and TOODM models.

OSAM*/T, T-3DIS,

T-Chlmerg TI‘R,AD TOODM TEDM
LVal,d Time History Valid & Transaction Valid & Transaction & Event
Time History Time History
Supertype Subtype

Figure 2.25: Classification of Temporal Object Models according to their Temporal Histories

Overall Classification. Having classified the temporal object models according to the
individual design dimensions, the models can now be treated as points in the design
space and the object-oriented inheritance hierarchy can be used to com pare the models
on all the temporal features of the design dimensions that they support. Figure 2.26
gives an inheritance hierarchy in which types are used to represent the different models.
and the temporal features supported by the models are used as the criterion for

inheritance.

The abstract type at the root of the hierarchy represents the least powerful temporal
object model which supports a temporal structure comprised of anchored primitives
which are discrete and determinate, no temporal representational scheme, a partial
linear order, and a valid time history. This type has two immediate subtypes. The
first subtype represents the OSAM*/T and the T-Chimera models. It inherits all
the features of the root type and refines its partial linear order to a total linear
order. Similarly, the second subtype represents the T-3DIS model, inherits all the
features of the root type, and adds a representational scheme which supports the
Gregorian calendar. The type representing OSAM*/T and T-Chimera also has two

42

subtypes. The first subtype represents the TEDM model and has all the features
of its supertype with the additional features of transaction and event time histories.
The second subtype (which is also a subtype of the type representing T-3DIS from
which it inherits the representational scheme) represents the TMAD model. This
type has the additional feature of the transaction time history. A direct subtype of
the types representing TEDM and TMAD represents the TOODM model. The type
representing TOODM inherits the representational scheme from the type representing
TMAD and the event time history from the type representing TEDM. It also adds
unanchored primitives and the continuous time domain to its temporal structure.
From Figure 2.26 it can reasonably be concluded that OSAM*/T and T-Chimera are
the two least powerful temporal object models since they provide the least number
of temporal features. The TOODM model is the most powerful since it provides the
most number of temporal features.

The comparison of different temporal object models made in this section shows that
there is significant similarity in the temporal features supported by the models. In fact,
the temporal features supported by OSAM*/T and T-Chimera are identical. The tempo-
ral features of TEDM are identical to those of OSAM*/T and T-Chimera in the temporal
structure, temporal representation, and temporal order design dimensions. These common-
alities substantiate the need for a temporal framework which combines the diverse features
of time under a single infrastructure that allows design reuse.

It can also be noted that temporal object models have not really taken advantage of the
richness of their underlying object model in supporting alternate features of a design dimen-
sion. They have assumed a set of fixed notions of time. From a range of different temporal
features, a single temporal feature is supported in most of the design dimensions. As such,
not much advantage has been gained over the temporal relational models in supporting
applications that have different temporal needs. For example, engineering applications like
CAD would benefit from a branching time model, while time series and financial applica-
tions require multiple calendars and granularities. In Chapter 3, a temporal object model
is presented that aims to exploit object-oriented technology in supporting a wide range of

applications with diverse temporal needs.

2.6 Implementation of the Temporal Framework

The temporal framework architecture described in Section 2.3 is general enough to be
implemented on most object-oriented systems. In this section, a prototype implementation
of the temporal framework in C++ on Sun Solaris is described. The implementation is
constrained by the functionality of C++, and as such the implemented type hierarchy of
the temporal framework is a little different from the hierarchy shown in Figure 2.14. In the
following sub-sections, these differences will be highlighted for each design dimension. In

43

[l
- fewer features (types) Vv

i Temporal Structure:
i Anchored, Discrete, &
; Determinate :
i Temporal Representation:
’ None
| i Temporal Order:
i ! Partial Linear |
| Temporal History: '
| i Valid f
‘ — J
| OSAM™fT, T-Chirpera T-30IS «
i 5 - ~ r Vi
1 Temporal Structure: ’ : Temporal Structure:
§ ' Anchored, Discrete, & i i Anchored, Discrete, &
i . Determinate ' | Determinate
; . Temporal Representation: | . Temporal Representation:
‘ : None i : Gregorian
i i Temporal Order: { | Temporal Order:
: . Total Linear A ! Partial Linear
. Temporal History: i\\ J Temporal History:
| | Valid) \ i Valid
? TEDM f \ TMAD< f
! ! < |
i SN | \ R |
. .
' i Temporal Structure: ; \ Temporal Structure:
j i Anchored, Discrete, & i ‘ Anchored, Discrete, &
i Determinate ! i Determinate
i Temporal Representation: ! Temporal Representation:
j . None , . Gregorian
- Temporal Order: i ! Temporal Order:
Total Linear ; ' Total Linear
; ' Temporal History: i | Temporal History:
! * Valid, Transacticn, Event i ' Valid, Transaction
S/

more features (types)

P

Figure 2.26: Overall Classification of Temporal Object Models

\ /
\\
\ —

Temporal Structure:
Anchored, Unanchored,
Continuous & Determinate
Temporal Representation:
Gregorian

Temporal Order:

Total Linear

Temporal History:
LVaiid, Transaction, Event

TTTTTYN

this section. the term “type” is used to refer to the term “class™ in C+.

2.6.1 Implementation of Temporal Structure

The implemented type hierarchy for the temporal structure is given in Figure 2.27. This
hierarchy is similar to the one shown in Figure 2.3. The additional types T_discInstant,
T.discInterval and T_contInterval have been implemented to abstract out properties
common to their respective subtypes. The concrete type T_now has been defined so that
its instant represents the current time. Type T_now is used specifically in transaction time

T_detDiscinstant
T_indetDiscinstant
T_detContinstant HT_now]

T_detDiscinterval
T_discinterval

T_indetDiscinterval]

T_detContinterval

T_indetContinterval j

histories to timestamp objects with the current time.

E’_temporalstructure

T_continterval

T_detDiscSpan

T_unanchPrim

T_indetDiscSpan
Supertype Subtype

Figure 2.27: The Implementation Inheritance Hierarchy of a Temporal Structure

The type T_detContInstant is the most basic concrete type for anchored primitives. It
represents a determinate continuous instant which is a point on the global axis of time. All
operations pertaining to time instants are defined as behaviors in type T_detContInstant.
The type also defines constructors that allow a determinate continuous instant to be rep-
resented as a gregorian date. Objects of type T_detContInstant are also used to con-
struct determinate and indeterminate continuous intervals. These are objects of types
T.detContInterval and T.indetContInterval, respectively. The lower and upper bounds
of determinate and indeterminate continuous intervals are determinate continuous instants.
The abstract type for continuous intervals, T_contInterval defines the different ordering
operations on intervals. Two different semantics are associated with the ordering operations;
“for sure” and “maybe.” These have been implemented to better capture the semantics of
the ordering operations when indeterminate continuous intervals are involved. For example,
the “maybe” before operation when the argument and/or receiver is indeterminate returns

TRUE if the intervals overlap or meet. In contrast, the “for sure” before operation when

45

the argument and/or receiver is indeterminate returns TRUE only if the upper bound of the
receiver interval is less than or equal to the lower bound of the argument interval. The
set-theoretic operations have been implemented to restrict the argument and receiver in-
tervals to be of the same type. As such, these operations have been implemented in the
T_detContInterval and T_indetContInterval types.

2.6.2 Implementation of Temporal Representation

The implemented type hierarchy for the temporal representation is given in Figure 2.28.
For illustration purposes, a simplified version of the Gregorian calendar having the calen-
dric granularities year, month, and day has been implemented as a means of representing
temporal primitives. The algorithms used in the implementation of the Gregorian calendar
have been proposed by Dershowitz and Reingold [DR90]. Gregorian dates are implemented
as absolute dates. An absolute date refers to the number of days elapsed since the Gregorian
date Sunday, December 31, 1 BC. Thus the Gregorian date January 1, 1 AD is absolute date
number 1. An operator, int(), has been implemented in T.gregDate to cast a calendric
date to an integer (absolute date). This has made the implementation of ordering and com-
parison operations on temporal primitives much easier. Temporal primitives represented as
Gregorian dates are simply cast to integers, and the ordering or comparison operations are
then carried out on integers. Another operation implemented in T_gregDate computes the
calendric date from the absolute date.
The semantics of other calendars can be implemented similarly as subtypes of T_calendar.

The work of Dershowitz and Reingold [DR90] also has algorithms for other calendars, for

example, Julian, Islamic, and Hebrew dates.

LT_calendaU—‘ T_gregDate

‘Supertype Subtype

Figure 2.28: The Implementation Inheritance Hierarchy of a Temporal Representation

2.6.3 Implementation of Temporal Order

The implemented type hierarchy for temporal orders is given in Figure 2.29. The temporal
order types are implemented as templated types where the type T_Y is one of the concrete
anchored temporal primitive types. To maintain a sorted order of temporal primitives,
the temporal order types make use of sorted templated collections in the Tools.h++ class
library that comes with the Sun OS compiler. In particular, the pointer-based collection,
RWPtrSorted Vector(T_T) is used. The items in the collection have an ordered relationship
with each other and can be accessed by an index number. An insertion sort is used to

maintain a sorted order in the collection, and duplicates are allowed. The operators ==

46

and < must be defined on type T in order to ensure the type has well-defined equality
and less-than semantics, respectively. The == and < operators are used by operations in
RWPtrSorted Vector(T_T) to insert and find objects in the collection.

T_subLinearOrder<T_Y> J

[I‘_temporalOrdeKT_Y> T_linearOrder<T_Y> j

T_branchingOrder<T_Y> j

Supertype Subtype

Figure 2.29: The Implementation Inheritance Hierarchy of Temporal Orders

The abstract type T_temporalOrder(T.Y) defines virtual insert and remove operations
which simply call their counterpart operations in RWPtrSorted Vector(T_T). The insertion
sort that is implemented in RWPtrSorted Vector(T.T) falls short in maintaining a linear order
when intervals are involved. This is because the only criteria used in the sort are equality
and less-than semantics. If these criteria are not met, the interval is assumed to have greater-
than semantics and inserted in the collection at an appropriate location. This is problematic
since the inserted interval may overlap with one or more intervals in the collection. To
get around this problem, a method has been implemented in T linearOrder(T.Y) which
ensures that the intervals in the linear collection strictly follow or precede each other. The
problem of overlapping intervals does not apply for sub-linear orders since objects of type
T_subLinear(T_Y) are partially ordered with respect to each other. Thus, T_subLinear(T.Y)
simply uses the insert and remove operations defined in T_temporalOrder(T.Y).

A branching order is implemented as a triplet comprising of a starting point (which
is a determinate continuous instant), a root (which is a linear order), and a collection
of branches (which is an ordered collection of branching orders). The insert and remove
operations are redefined in type T branchingOrder(T.Y). The insert operation inserts the
temporal primitive in the root of the receiver after ensuring that the primitive is not before
the starting point and does not overlap the starting points of any of the receiver branches.
Another operation defined in T_branchingOrder(T.Y), insertBranch, inserts a branch on
the receiver at the point given by a determinate continuous instant. The branch is inserted
after ensuring that the timestamps on the root of the receiver do not overlap the starting
point of the branch to be inserted.

2.6.4 Implementation of Temporal History

The implemented type hierarchy for the temporal histories is given in Figure 2.30. This
hierarchy is quite different from the one shown in Figure 2.11. Additional types have been
introduced for valid and event time histories in order to capture the different ordering in

47

these histories. For example, the type T_linearValidHistory(TX,T.Y) represents valid

histories that are linearly ordered.

T_linearValidHistory<T_X,T_Y>)

T_history<T_X,T_Y> T_subLinearValidHistory<T_X,T_Y> j

T_linearEventHistory<T_X,T_Y> J

&_subLineaerentHistory(I‘_X,T_Y> j

T_transactionHistory<T_X.T_Y> l

T_branchingValidHistory<T _X,T_Y> '

T_branchingHistory<T_X.T_Y>

T_branchingEventHistory<T_X,T_Y> j

T_branchingTransHistory<T_X,T_Y> l

Supertype Subtype

Figure 2.30: The Implementation Inheritance Hierarchy of Temporal Histories

Similar to the temporal order types (see Figure 2.29), the temporal history types
are implemented as templated types with two argument types. The type T X can repre-
sent any object, while the type T.Y is one of the concrete anchored temporal primitive
types. In type T_transactionHistory, T_Y is restricted to be the type Tnow. The de-
scription for ensuring linearity outlined in Section 2.6.3 also applies to temporal histo-
ries. A temporal history consists of a sorted collection of timestamped objects (of type
T-timeStampedObject(TX,T.Y). A timestamped object basically defines operations that
return the timestamped object (of type TX) and the timestamp (of type T_Y). The im-
plementation of the branching histories is similar to that of branching orders described in
Section 2.6.3. The type T_-branchingHistory(TX, T.Y) has been implemented to abstract

out properties common to its subtypes.

48

Chapter 3

The TIGUKAT Temporal Object
Model

This chapter presents the TIGUKAT temporal model! as an example instantiation of the
temporal framework that incorporates the multiple notions of time given in Figure 2.14.
The philosophy behind adding temporality to the TIGUKAT object model [Pet94] is to ex-
ploit the richness of the object model in order to accommodate multiple applications which
have different type semantics requiring various notions of time [LGOS97, GOSQta]
[LGOSQ(] the temporal model is used to manage temporal relationships which is mherent
in multimedia data such as video, while in [GOSQ:a], the temporal model provides branch-
ing temporal histories that are needed to store and retrieve historical information that is
commonly found in medical applications such as clinical trials, and in applications such
as computer aided design and planning or version control. Consequently, the TIGUKAT
temporal object model consists of an extensible set of primitive time types with a rich set of
behaviors that implement the temporal framework, providing consistent semantics for the
different temporal features which is necessary for their coexistence.

The rest of the chapter is organized as follows. Section 3.1 gives an overview of the
TIGUKAT object model. In Sections 3.2-3.5, the temporal features of the TIGUKAT tem-
poral object model are presented as instantiations of the design dimensions of the temporal

framework that were identified in Chapter 2.

3.1 Overview of the TIGUKAT Object Model

The TIGUKAT object model [Pet94, 6?3*‘95] is purely behavioral with a uniform object
semantics. The model is behavioral in the sense that all access and manipulation of objects
is based on the application of behaviors to objects. The model is uniform in that every
component of information, including its semantics, is modeled as a first-class object with

'Initial work on the model appeared in [G(393]. Subsequent enhancements of different aspects of the
model presented in this chapter appear in [LGOS97, GéSS?a].

49

well-defined behavior. Other typical object modeling features supported by TIGUKAT
include strong object identity, abstract types, strong typing, complex objects, full encapsu-
lation, multiple inheritance, and parametric types.

The primitive objects of the model include: atomic entities (reals, integers, strings,
etc.); types for defining common features of objects; behaviors for specifying the semantics
of operations that may be performed on objects; functions for specifying implementations
of behaviors over types; classes for automatic classification of objects based on type?: and
collections for supporting general heterogeneous groupings of objects. Figure 3.1 shows a
simple type lattice that will be used to illustrate the concepts introduced in the rest of the

thesis.

T_object

/

T_person T_taxSource T_bloodTest

SN

T_patient T_employee
T_nuli

Figure 3.1: Simple type lattice.

In this thesis, a reference prefixed by “T." refers to a type, “C.” to a class, “B."
to a behavior, and “TX< T.Y >” to the type TX parameterized by the type T.Y. For
example, T_person refers to a type, C_person to its class, B_age to one of its behaviors
and T_collection< T_person > to the type of collections of persons. A reference such as
Joe, without a prefix, denotes some other application specific reference. The type T_null
in TIGUKAT binds the type lattice from the bottom (i.e., most defined type), while the
Tobject type binds it from the top (i.e., least defined type). Tonull is introduced to
provide, among other things, error handling and null semantics for the model.

The access and manipulation of an object’s state occurs exclusively through the ap-
plication of behaviors. We clearly separate the definition of a behavior from its possible
implementations (functions). The benefit of this approach is that common behaviors over
different types can have a different implementation in each of the types. This provides
direct support for behavior overloading and late binding of functions (implementations) to
behaviors.

The model separates the definition of object characteristics (a type) from the mecha-
nism for maintaining instances of a particular type (a class). A type defines behaviors and
encapsulates behavior implementations and state representation for objects created using
that type as a template. The behaviors defined by a type describe the interface to the
objects of that type. A class ties together the notions of type and object instances. Objects
of a particular type cannot exist without an associated class and every class is uniquely

*Types and their extents are separate constructs in TIGUKAT.

30

associated with a single type. Object creation occurs only through classes using its associ-
ated type as a template for the creation. Thus. a fundamental notion of TIGUKAT is that

objects imply classes which imply types.

3.2 Temporal Representation

In this section, the temporal representational scheme of calendars, described in Section 2.3.1.2,
is used as a means to make the temporal primitives, described in Section 2.3.1.1, human
readable and usable in the TIGUKAT temporal model. A calendar should be able to sup-
port multiple granularities since temporal information processed by an ODBMS is usually
available in multiple granularities. Such information is prevalent in various sources. For

example:

e clinical data — Physicians usually specify temporal clinical information for patients
with varying granularities [CPP95, CPP96]. For example, “the patient suffered from
abdominal pain for 2 hours and 20 minutes on June 13, 1996, “in 1990, the patient
took a calcium antagonist for 3 months,” “in October 1993, the patient had a second

heart seizure.”

e real-time systems — A process is usually composed of sub-processes that evolve ac-
cording to times that have different granularities [CMR91]. For example, the temporal
evolution of the basin in a hydroelectric plant depends on different sub-processes: the
flow of water is measured daily; the opening and closing of radial gates is monitored

every minute; and the electronic control has a granularity of microsecond.

® geographic information systems — Geographic information is usually specified accord-
ing to a varying time scale [Flo91]. For example, vegetation fluctuates according to a

seasonal cycle, while temperature varies daily.

® office information systems — temporal information is available in different time units
of the Gregorian calendar [BP85, CRSS, MPB92]. For example, employee wages are
usually recorded in the time unit of hours while the history of sales are categorized

according to months.

Clearly, in many applications, it is desirable to have multiple calendars that have different
calendric granularities. As discussed in Section 2.3.1.2, a calendar is comprised of an origin,
a set of calendric granularities, and a set of conversion functions. In the following sub-
sections, the concepts of calendric granularity and conversion functions in the TIGUKAT
temporal model are defined. The work in this section and Section 3.3 is based on a single
calendar. Extensions of the work presented in these sections to incorporate multiple calendar

support are given in Appendix A.

51

3.2.1 Calendric Granularities

[n the TIGUKAT temporal model, a novel approach to the treatment of granularity in
temporal data is provided. A granularity is modeled as a unit unanchored temporal primitive
(unit time span). More specifically, a granularity is modeled as a special kind of time span
that can be used as a unit of time (unanchored durations are discussed in more detail in
Section 3.3.2). Granularity conversions are presented and discussed in terms of unanchored
durations of time. This feature allows the consistent modeling and operation on unanchored
temporal primitives that are comprised of different and mixed granularities. The work in
this thesis should be seen as complementing other works on temporal granularity. It fills
in the missing piece by allowing unanchored temporal primitives to be specified in different
and mixed granularities, and facilitates the conversion of unanchored temporal primitives
from one granularity to another.

The inherent problem in adequately supporting unanchored temporal primitives with
different granularities in [CC87, WJL91, WJS93, WBBJ97, BP85. MPB92, MMCR92,
Sno95b], is that a granularity is treated as an anchored partitioning of the time axis. Since
unanchored temporal primitives are independent of anchored temporal primitives (i.e., their
location on the time axis is unknown since they are not anchored at any particular point)
problems arise in the conversion of unanchored temporal primitives from one granularity
to another when a granularity is modeled as an anchored partitioning of the time axis. In
converting (scaling) an unanchored temporal primitive from one granularity to another in
TSQL2 [Sno95b], it is noted:

. the problem is that a granularity is an anchored partitioning, whereas an
interval® is unanchored ... the consequence of the unanchored nature of intervals
is that whenever an interval is scaled, an indeterminate interval will result, even
when an interval is scaled from a finer to a coarser granularity” (page 370 in
[Sno95b]).

Since a calendric granularity is a special kind of a time span, it is meaningful to compare

two calendric granularities with each other.

Definition 3.1 Comparison between calendric granularities: G 4 is coarser than Gg if G4
> G as a time span. Similarly, G, is finer than G4 if G4 < Gp as a time span. W

Example 3.1 The span of 1 day is shorter (<) than the span of 1 month and therefore
the calendric granularity of days (Gday) is finer than the calendric granularity of months
(Gmontn) in the Gregorian calendar. Similarly, G month is coarser than Gqy. O

3An interval is the basic unanchored temporal primitive in TSQL2. It is similar to a time span in this
work.

52

3.2.2 Functions

Associated with a calendar is a list of functions (F) which determine the number of finer
calendric elements in coarser calendric elements. For example, assume the presence of
a calendar C with the calendric granularities year, month and day. Three functions are
defined: The first returns the number of months in a given year; the second returns the
number of days in a given month of a given year; and the third maps a given year, month,
and day to a real number on a global timeline. Notice that these functions depend on
the particular value of a granularity and not just the granularity itself. For example, the
number of days in 2 month depend on the month itself. More generally, let C be a calendar
with calendric granularities Gy, Gy, ..., Gy, where G, is the coarsest calendric granularity
and Gy, is the finest calendric granularity. The following functions are then defined:

Definition 3.2 Conversion functions:

felit) = Ng,, 1<ip <py
fEliti2) = Ng,, 1<y <p, 1< <py

feliniz o iin) = R, 1<i<p,1<ia<py....1< iy < py

where ¢; (1 < j < n) are natural numbers which correspond to the ordinal number of a
calendric element of the j'* calendric granularity in calendar C. For example, the ordinal
values of the year 1995 and the month September in the Gregorian calendar would be 1995
and 9, respectively. Ng, (1 <z < n) is a natural number which stands for the number
of G:'s. p; is the range of calendric elements for each considered granularity. R is a real

number?. W

The first function (f{(i1)) gives the number of G;’s in a given calendric element of
Gy. The second function (f2(i1,i2)) gives the number of G3's defined by a given pair
of calendric elements of types G| and G,. The last function (fE(i1, i2,...,i,)) maps a
calendric element of the finest calendric granularity (G,) to a real number on an underlying
global real timeline, hereafter referred to as Gu. The scale of Gy is dependent on the
precision of the respective machine architecture. For simplicity and explanatory purposes

in this work, the scale of Gy is assumed to be seconds.

Example 3.2 To illustrate the workings of the above functions, suppose one is interested
in the number of months in 1995, the number of days in September 1995 and the number
of seconds in 12 September 1995 in calendar C. The ordinal values corresponding to the
year 1995, the month September, and the day 12, are 1995, 9, and 12, respectively. Then:

fo(1995) — 12
f2(1995,9) — 30
f2(1995,9,12) — 86400.0

*We assume the underlying global timeline is real

53

a

Although the above example is trivial. it illustrates how the conversion functions work. [t

sets the stage for the more complicated cases that are discussed in the next section.

3.2.3 Conversions between Calendric Granularities

[n a temporal model where times with different calendric granularities are supported. one
should be able to convert a finer calendric granularity to a coarser calendric granularity. and
vice-versa. These conversions are discussed below by first defining two functions. These
functions are necessary since the number of units of one granularity contained in a unit of
another granularity is not fixed. For example, there are 30 days in September and 31 days

in January.

Definition 3.3 Lower bound factor [lbf(G4.GB)]: The lower bound factor of G4and Gpg
is the minimum number of Gg units that can form 1 G4 unit. W

Definition 3.4 Upper bound factor [ubf(G4.Gpg)]: The upper bound factor of G, and
Gpg is the maximum number of Gg units that can form 1 G4 unit. &

Example 3.3 16f(Gmonth: Gaay) = 28 and ubf(Gmonth, Gday) = 31. Both factors coincide
In the case of those granularities that have exact conversions. For instance, [bf(Ghour, Gminute) =
Ubf(Ghour-,Gminute) =60. O

The user can define new calendric granularities in terms of existing ones. For example.
the new calendric granularity decade could be defined in terms of the existing calendric
granularity year using [6f(Guecade: Gyear) = b f(G gecade Gyear) = 10.

The derivations of Ibf(G 4.Gg) and ubf(G.4,Gpg) from the conversion functions defined
in Section 3.2.2 when G 4 is coarser than G, and when G4 is finer than Gg are now given.

Derivation 3.1 G4 is coarser than Gg: Let Gy,....Ga,....Gpg,...,G, be the totally

ordered calendric granularities of calendar C with G, being the coarsest calendric granu-
larity and G, the finest. The following conversion functions are defined in C:

fé(ilv"' viA) — IVG‘.|+1

Gy, .ig) = Nggu

Now, the number of Gg units in any given calendric element i4 is given by the following

summation:
A—B; :
fc_’ (21, ceny 1.4) =
S i) FE i iagy) fg"(ix.---.i.a.jxm- JB-A-2)
B-1,- . . .
Z e Z fc (zlv---lelev"'vJB—A—l)
n=1 =l JB—a-1=1

54

The minimum (maximum) number of G5 units in calendric element 4 is then the minimum

(maximum) of the above formula over all iy, t4. More specifically,
bf(Ga,Gg) = min_ {fEB(i1,... . i4)} (3.1)
(t1,... 14)EC
ubf(Ga.Gp) = max {f37B(if,...,i4)} (3.2)
{(f1,....i4)EC
[|

Example 3.4 Let C be a calendar with the calendric granularities year, month and day.
The following functions are defined in C:

fcl‘(y) — Nmonths
fg'(y, m) — Avdays
ym.d - R

where y, m, and d are ordinal values of calendric elements in the calendric granulari-

ties year, month, and day, respectively. Suppose we want to find 1bf(Gyeary Gday) and
fE()

ubf(Gyeary Gday). The number of daysin any year y is given by the summation: ;"7 f2(y, m).

The minimum (maximum) number of days in a year is then the minimum (maximum) of

this summation over all y. More specifically,
f&ty) f&w)
f(Gyears Gaay) = min{ D _ f2(y,m)} ubf(Gyear, Guay) = max{ ¥ f2(y.m)}
Y m=1 y m=1

a

Derivation 3.2 Minimum and mazimum number of Gp in K units of G4: Formulas
(3.1) and (3.2) calculate the minimum and maximum number of Gp in one unit of G4,
respectively. Formulas (3.1) and (3.2) are now generalized to calculate the minimum and
maXimum number of Gg in K units of G4, e.g.. the minimum and maximum number of

days in 2 -G onen where K = 2.

Ibf(K,G4,Gg) = min { My 7B, .. i)} (3.3)
b 0Ldisty (i} vreevi’y)o(i11enevia)) SK =1
ubf(K,G4,Gg) = max { > 283, ... i) (34)

0L disti (({i]0eee i’y u(i10eee i)) SK -1

The summation in formulas (3.3) and (3.4) is the number of B units in K consecutive
A units starting with (i;,...,74). The function distkA((ill, cen, i'A), (i1,..-,14)) finds the
number of k4 units elapsed between (i'l, e ,i'A) and (zy,...,%4). For example, the number
of months elapsed between (1996, February) and (1995, January) is 13. The lower and upper
bound factors are then obtained by taking the minimum and maximum of the summation

over all (iy,...,i4). 0

55

Embedding the coefficient A" within formulas (3.3) and (3.4} reduces the information lost
in the process of calculating the number of G units in K units of G 5 as compared to first
finding the number of G'g units in one unit of G 4 and then multiplying it by K to find the
number of Gg in A units of G 4. For example. using formulas (3.1) and (3.2) to calculate
the minimum and maximum number of days in 2-G o gives 56 and 62. respectively. while
formulas (3.3) and (3.4} give 59 and 62. respectively — thereby reducing the information
lost by 3 days. Note that for exact conversions. (bf(K. G4.Gg) =ubf(K.G4.Gg) = K -
Ibf(G4.Gg} = K-ubf(G4.Gpgj. Forexample. bf(K.Gaays Ghours) = ubf(K.Giays. Ghours)
=R -24,
Derivation 3.3 G4 is finer than Gg: If G4 is finer than Gp. then the lower and upper
bound factors can be calculated using the formulas:

Ibf(N.G4.Gg) = rg}g%c{[{ [N > ubf(K.Gp.G4)} (3.5)

ubf(N.G4.Gg) = ;\r_nei%{[\'j N <Ibf(K.Gg.G4)} (3.6)

Example 3.5 To illustrate the formulas in Derivation 3.3. suppose one wants to find the

number of months in 45 days. Then:
Ibf:(45-Gizy-Gmanth) = ri\né%{{[{ f 15 > ubf(I\- Gmonth-Gday)} =1

Ubfx(‘l":"-cday' Gmon:h} = ;‘n;l%{[{ ! 15 S lbf([‘- Gmonzh- G'iay)} =2
Hence. the number of months in 45 daysis 1 ~ 2. ©

Note that it is not necessary that A be an integer. It can be a real number as well. in which
case the amount of indeterminacy in finding the number of months in 45 days is reduced.

Thus. the formulas in Derivation 3.3 become:

Ibf,(R.G3.Gg} = AQ%E{A'ZRZ ubf(K.Gpg.G 4}} (3.7)
ubf (R.G4.Gg) = Amil{x‘{[\";Rglbf(k’.GB.G_4)} (3.8)

Example 3.6 It is known that the number of days in 1 month is 28 ~ 31 and the
number of days in 2 months is 539 ~ 62 . Therefore. it can be reasonably concluded that
for I< K <2

(K. Gronth-Gizy) = 28+(39-28)- (K —1)=31-K -3

ubf(K.Grontii- Giny) 31+-(62-31)- (K -1)=31-K

Ibfr(4'5~Gdcy-Gmanth) = AT_U%'X {k’ ! 15 2 Ubf([{ Gmor.th-Gdny)}
E -*
= x{K|{45>31-K} =45/31=1.45
max (K {452 } =45/ 5
ubfr(45.Gaay. Grromen) = Age]ip?‘{K | 45 S f(K.Gmonts. Gaay)}
= min {K' 145 < 31-K - 3} =48/31 = 1.55
KeR+

In this case the number of months in 45 days is 1.45 ~ 1.55. quite a contrast from what

was obtained for K as an integer. O

In TSQL2 [Sno95b], a calendar has a specification file which provides regular and irregu-
lar mappings between granularities. It is not clear however, how these mappings are derived.
In this section, detailed derivation procedures for the lbf(Ga,GB) and ubf(G4,Gg) func-
tions which represent regular and irregular mappings between any two granularities in a
calendar were provided. Section 3.3.2.1shows how the [bf(G 4, GB) and ubf(G 4,Gp) func-
tions are used in the conversion of unanchored temporal primitives to a given calendric

granularity.

3.2.4 Mapping to TIGUKAT

In this section the calendar model described in Sections 3.2.1-3.2.3 is incorporated into
the TIGUKAT object model. Types relevant to the representation of temporal information
are depicted in Figures 3.2 and 3.3, along with their subtyping relationships. Likewise,
operations defined in Sections 3.2.1-3.2.3 have corresponding TIGUKAT behaviors. These
behaviors (along with their signatures) are given in Tables 3.1 and 3.2.

The type T_calendar models different kinds of calendars. It is a direct subtype of the
T_object type as shown in Figure 3.2. Behaviors defined on T_calendar are shown in

Table 3.1.
=

Supertype Subtype

Figure 3.2: The calendar type.

Behavior B_name returns the name of a calendar e.g., Gregorian, Academic. B_origin
returns the origin of the calendar in terms of a span. B_calGranularities returns a totally or-
dered collection of the calendric granularities of the calendar. For example, B_calGranularities
of the Gregorian calendar shown in Figure A.1 returns {Gym,.,GMomh,GDay, GHour}- Fi-
nally, behavior B_convFunctions returns a list of the conversion functions described in Sec-
tion 3.2.2. The behaviors B-origin, B.calGranularities, and B_convFunctions correspond to
the properties P_origin, P_calGranularities, and P_functions of the T_calendar type in the

temporal framework.

T.calendar B_name: T.string
B_origin: T.span
B.calGranularities: T_orderedColl(T calGranularity)
B.convFunctions: TJist(T function)

Table 3.1: Behaviors defined on calendars.

Since a calendric granularity in this thesis is a special kind of a determinate span,
the type T_calGranularity is defined as a subtype of T_discreteSpan (described later in
Section 3.3.2.5) as shown in Figure 3.3. The T_calGranularity is a new type that does not

57

exist in the temporal framework inheritance hierarchy shown in Figure 2.14. It is introduced
in the TIGUKAT temporal model to model the notion of calendric granularity described in
Section 3.2.1. This illustrates the extensibility of the framework in that existing framework
types can be subtyped with new types that are required to accomodate new features in a
temporal model.

T_discreteSpanH_calGnnularity]

Supertype Subtype

Figure 3.3: Calendric Granularity types.

[nstances of T_calGranularity represent the different kinds of calendric granularities,
e.g., year, hour, semester. Behaviors on calendric granularities are shown in Table 3.2.

T-calGranularity B.calendar: T.calendar
B_similarCalGran: T.collection(T calGranularity)
B.calElements: T.list(TcalElement)
B_lowerBound: TcalGranularity
B_upperBound: T.calGranularity
B_exactlyConvertible To: T_calGranularity — T_boolean
Bi-Ibf: T.integer — T_calGranularity — T.integer
Br-ibf: T.real — T_calGranularity — T.real
B-ubf: T.integer — T_calGranularity — T.integer
B_r-ubf: T_real —+ T_calGranularity — T_real

Table 3.2: Behaviors defined on calendric granularity.

Behavior B_calendar in T_calGranularity returns the calendar which the calendric
granularity belongs to. Behavior B_similarCalGran returns the set of calendric granularities
that have similar duration as a particular calendric granularity. Behavior B_calElements re-
turns an ordered collection of the calendric elements of a calendric granularity. For example
B_calElements applied on the calendric granularity semester returns (Fall, Winter, Spring,
Summer). The B_lowerBound and B_upperBound behaviors are refined accordingly to re-
turn a calendric granularity as the lower and upper bound of a calendric granularity. Since
the calendric granularity is determinate, these behaviors return the same value. The be-
havior B_exactlyConvertibleTo checks if a calendric granularity is exactly convertible to
another calendric granularity. For example, G,y B_exactlyConvertibleTo(Ghoy,) returns
True, while Gponin- B_exactlyConvertibleTo(Gday) returns False. T.calGranularity also
defines new behaviors, B_i-Ibf, B_r-1bf, B-ubf and B_r-ubf. B_-Ibf and B_-ubf return
the lower and upper bound factors (see Section 3.2.3) of two calendric granularities with in-
teger coefficients. Similarly, B_r-Ibf and B_r-ubf return the lower and upper bound factors
of two calendric granularities with real coefficients. For example, Gmontn+ B-Ibf (1, Gaay)
returns 28 while Gmonen Bi-ubf (1, Gyay) returns 31.

58

3.3 Temporal Structure

[n this section, the problem of modeling and managing, within an ODBMS, the different
anchored and unanchored primitives of the temporal framework (shown in Figure 2.3) is
addressed. Many applications require support for (a) unanchored temporal primitives that
are specified in different (for example, 3 months, 150 seconds) and mixed granularities (for
example, 2 hours and 20 minutes), and (b) anchored temporal primitives that are speci-
fied in different granularities (for example, 1990, October 1993, 15 June 1996). Supporting
anchored and unanchored temporal primitives with different granularities necessitates the
proper handling of granularity mismatches in operations between temporal primitives with
different granularities. This usually requires converting a temporal primitive from one gran-
ularity to another. Although there have been various recent proposals that handle multiple
granularities [CC87, WJL91, WJS93, WBBJ97, BP85, MPB92, MMCR92, Sno95b), the
focus has been on representing anchored temporal primitives that are specified in differ-
ent granularities. Granularity conversions are given for anchored temporal primitives only.
However, supporting unanchored temporal primitives with different granularities is equally
important, and the issues that arise therein must be addressed. The real-world example

from clinical medicine presented in Section 3.3.1 motivates this claim.

3.3.1 Motivation

In this section, a clinical example related to a patient with cardiological problems, particu-
larly related to the widely known problem of diagnosing and following up unstable angina
[BMJ94] is presented. Unstable angina’ is a transitory clinical syndrome usually associated
with an increased duration and/or intensity of symptoms related to coronary artery disease;
risk of cardiac death and myocardial infarction increase. In this situation it is important to
consider both the time when the symptoms (like chest pain) began and the time duration
of these symptoms.

Consider the following sentences which are related to information contained in the car-

diological medical record of a patient:

S1. The patient suffered from chest pain at rest for 2 hours and 55 minutes on 13 December
1995.

S52. The patient presented an episode of acute chest pain on 29 January 1996 from 13:20:15
to 13:56:23.

S53. The patient has been admitted to an [ntensive Care Unit from 21:00 29 January 1996,
and he has undergone intensive medical management for 36 hours.

*Formally known as angina pectoris. A clinical syndrome typically characterized by a deep, poorly
localized chest or arm discomfort that is reproducibly associated with physical exertion or emotional stress
and relieved promptly by rest or sublingual nitroglycerine. The discomfort of angina is often hard for patients
to describe, and many patients do not consider it to be “pain.” In most, but not all patients, these symptoms
reflect myocardial ischemia resulting from significant underlying coronary artery disease (BMJ94].

59

S4. On 15 February 1996 the patient had myocardial infarction.

S5. At 3 pm 12 April 1996 the patient presented a new episode of chest pain of 7 minutes
and 35 seconds during a soft exertion.

S6. From December 1994 to April 1996 the patient took aspirin.

S7. From 30 January 1996 the patient had to take a thrombolytic therapy for 38 months.

It can be observed from the above sentences that there are many different granularities for
time instants (days in S1, S4, and S7; seconds in 52; minutes in S3; hours in S5; months
in 5§6) and different and mixed granularities for time spans (hours and minutes in S1; hours
in 53; minutes and seconds in S5; months in S7). Moreover, in a single sentence there may
be time instants and time spans having heterogeneous granularities. For example, in S3
the time instant at which the patient is admitted is specified at the granularity of minutes,
while the time duration of the medical management that the patient undertook is specified
at the granularity of hours.

In addition to the different and mixed granularities in the patient-related information,
the definition of unstable angina itself involves time spans given at different granularities.
Unstable angina is, in fact, defined as: (1) symptoms of angina at rest, for more than
20 minutes, or (2) new onset, within two months, of exertional angina, involving marked
limitations of ordinary physical activity, or (3) increasing angina within two months from
the initial presentation, or (4) post- myocardial infarction angina, i.e., angina occurring
from 1 to 60 days after an acute myocardial infarction [BMJ94].

In a clinical setting, one should be able to derive some extra information from the stored

sentences about the patient. For example:

1. What is the time span between the myocardial infarction and the last episode of chest
pain?
To derive this, the elapsed time (which is a time span) between the time instants
15 February 1996 and 3pm 12 April 1996 (see sentences S4 and S5) needs to be

computed.

2. What is the global span of the symptoms of angina?
To answer this question, the elapsed time between the time instants 13:20:15 29 January

1996 and 13:56:23 29 January 1996 has to be added to the time spans 7 minutes and 35
seconds, and 2 hours and 55 minutes (see sentences S1, S2, and S5).

3. When did the patient finish the intensive medical management and what is the time
span between the end of the intensive medical management and the onset of the new
angina episode?

To answer the first part of the question, the time span 36 hours has to be added to
the time instant 21:00 29 January 1996. The elapsed time between the resulting time
instant and the time instant 3pm 12 April 1996 gives the answer to the second part

of the question (see sentences S3 and S5).

60

4. Was the patient taking aspirin when the past episode of chest pain happened?

The answer to this question depends on what interpretation is given to the time
instants December 1994 and April 1996. If the interpretation is that the patient
took aspirin from sometime in December 1994 to sometime in April 1996, then
a definite answer to the question cannot be given. However, if the time instants
December 1994 and April 1996 are interpreted to mean the entire specified months,
then December 1994 means the entire period between 00:00:00 1 December 1994 and
23:59:59 31 December 1994. Similarly, April 1996 means the entire period between
00:00:00 1 April 1996 and 23:59:59 30 April 1996. In this case a definite answer can
be given that the patient was taking aspirin when the episode of chest pain happened
(see sentences S5 and S6).

5. When will the thrombolytic therapy end?

In this case the time span 38 months has to be added to the time instant 30 January 1996
(see sentence S7).

These questions substantiate the need for a temporal DBMS to provide the means for (a)
representing and storing time instants with different granularities, and time spans with dif-
ferent and mixed granularities, (b) handling granularity mismatches in operations between
temporal primitives with different granularities, (c) converting a temporal primitive from
one granularity to another, and (d) considering different interpretations for time instants.
The following sections show how these issues can be supported in a temporal ODBMS.

3.3.2 Unanchored Temporal Primitives

In Section 2.3.1.1, a time span was identified as being an unanchored, relative duration of
time. Since a calendric granularity is a unit time span in the TIGUKAT temporal model,
calendric granularities can be used to construct time spans. For example, the time span
of 36 hours which represents the duration of intensive medical management the patient
underwent (see sentence S3 in Section 3.3.1), is obtained as 36 - Ghoyr. A time span of
2 hours and 55 minutes, which represents the duration of chest pain the patient suffered
(see sentence S1 in Section 3.3.1), can be obtained as 2 - Ghour + 55 Gminute- In general, a
time span is made up of mixed calendric granularities and is defined as a finite sum:

Definition 3.5 Discrete Determinate span:
N
Sdiser = Y _(Ki-G) (3.9)
=1

where K; is an integer coefficient of G;, which is a distinct calendric granularity in the

calendar. H

61

Definition 3.6 Continuous Determinate span:

N
Seont =) _(R:+ Gy) (3.10)
=1
where R; is a real coefficient of G;, which is a distinct calendric granularity in the calendar.
[|

Basically, Sgiser and Scon; are summations of distinct calendric granularities over a given cal-
endar. Sc,n; is a generalization of Sy, for the case of real coefficients. In a temporal model
where time spans with different calendric granularities are supported, one should be able
to convert a time span to a given calendric granularity. This conversion process, together
with the semantics of operations on time spans with mixed granularities, are discussed in

the following sections.

3.3.2.1 Conversion of Time Spans

The first question that comes to mind is whether it is always possible to convert a time
span from a coarser to a finer calendric granularity without loss of information. The an-
swer, perhaps surprisingly, is negative. To illustrate this point, consider the following: the
conversion of the time span 1 hour to the calendric granularity of minutes is exact and will
result in the time span of 60 minutes. However, the conversion of the time span 1 month to
the finer calendric granularity of days cannot possibly be an exact one. Should the resulting
time span be 31, 30, 29 or 28 days? One cannot tell unless one knows which month is in-
volved. Since a time span is unanchored this information is not available. One could convert
1 month to the indeterminate span 28 days ~ 31 days but in this case the conversion is
not exact and some information is lost. Therefore, the following observation is made:

Observation 3.1 The set of all calendric granularities is not totally ordered with respect

to the binary relation “exactly convertible to.” O

The conversion of a determinate time span to any given calendric granularity G4 is now
defined.

Definition 3.7 Discrete time span conversion: The conversion of a time span of the form
depicted in Definition 3.5 to a calendric granularity G 4 results in a time span5.

with lower bound

N
1D Li)-Ga (3.11)
=1

®Note that conversion of a time span to any calendric granularity may be exact or inexact. In the former
case, the lower and upper bounds of the resulting time span are identical, which signifies that the time span
is determinate. In case of an inexact conversion, the resulting time span will be indeterminate.

62

and upper bound

[>_U:l-Ga (3.12)

where
L; = bf.(K;,Gi;,G4) and U; = ubf (K, G, G 4) (3.13)

The definition of converting a continuous time span to a given calendric granularity is
similar to Definition 3.7. The following examples illustrate exact and inexact time span

conversions.

Example 3.7 To convert the duration of the chest pain in sentence S1 (see Section 3.3.1),
which is the discrete time span 2 hours and 55 minutes, to a time span in the calendric
granularity of minutes (Gminuse), the duration is first represented in the form given in Defi-
nition 3.5: 2-Ghour +35:Gminute- In this span, K; = 2, Ko = 55, G1 = Ghoury G2 = Gminyte-
Since G is already in minutes, it is sufficient to convert the time span 2 - Gpour to minutes,

and then add the resulting time span to 55 - G minute-

Ll = Ibf([{lv Gly Gminute) Ul Ubf([\‘-lq le Gminute)

= Ibf(z- Ghoure Gminute) = Ubf(Qv Ghourv Gminute)
= 2. lbf(Ghoury Gminute) = 2. Ubf(Ghoury Gminute)
= 2-60 = 2-60
= 120 = 120
L; = 55 Us = 55
lower bound = |Ly+ Ly - Gpinute upper bound = [U; + U;] - Gminute
= 175 Gminute = 175 - Gminute

Hence, the result of the conversion is the determinate discrete time span time span
175 - Gminute (175 minutes). This is an example of an exact time span conversion. The

next example shows an inexact time span conversion. O

Example 3.8 To convert the discrete time span 2 months and 45 hours to a time span in
the calendric granularity of days (Gday), 2 months and 45 hours is first represented in the
form given in Definition 3.5: 2- Gponim + 45 - Ghour- In this span, K| = 2, K; = 45,G, =
Gmonthy G2 = Ghour. Formula (3.13) is used to compute Ly, L,, Uy, Us:

63

Ly = bf(K\,G1,Gday) U = ubf(K1,G1,Gaay)
= lbf(z‘ Grmonths Gday) = Ubf(Qv Gmonthv Gday)
= 39 = 62

L, = lbf(]\"g,Gz,Gday) U, = ubf([(—z,Gg,Gday)

lbf(45~ Ghourv Gday) ubf(451 Ghourv Gday)
maz{K | 45 > ubf(K,Gay Ghour)} min{K | 45 < Ibf (K, Gaay Ghour)}
mar{K |45 > K - 24} min{K |45 < K - 24}

1.875 = 1.875

Ibf(K,Gmonth, Gday), 1bf(K,Gay, Ghour), ubf(K, Gmonth, Gday), and ub f(K, G day, Ghour)
are calculated from the conversion functions in the Gregorian calendar. Lastly, the lower
and upper boundary of the resulting time span are computed according to formulas (3.11)
and (3.12), respectively:

lower bound = |L;+ L, *Gday upper bound = [U) +U;]-Gyay
159 + 1.875] - Gua, [62 +1.875] - Ga,
60 - Gda.y = 64- Gday

Hence, the result of the conversion is the indeterminate discrete time span 60 days ~ 64 days.
a

3.3.2.2 Canonical Forms for Time Spans

[n addition to the set of granularities Gy, . . . G~ and conversion functions discussed earlier,
each calendar also implicitly defines the relation ezactly convertible to between its granular-
ities. G is exactly convertible to G iff ubf(k,G:,G;) =1lbf(k,Gi,G;) = k-C, where C is a
natural number. Note that exact convertibility is a partial order on granularities which is a
suborder of magnitude ordering. If G is exactly convertible to Gj, then G; = C-G;, where C
is a natural number. Since discrete determinate time spans have the form $§ = Z:‘il K;G,,
where K; are integer numbers, the presence of the exact conversion rules implies the exis-
tence of different forms of a time span. For example, 2 hour 55 minutes and 175 minutes
are different forms of the same time span S’. To adhere as much as possible to human
readability and user intuition, it is usually desirable to represent time spans in some canon-
ical form. For example, when the time span 1 hour 30 minutes is added to the time span
35 minutes, the user would expect the time span 2 hours 05 minutes rather than the time
span 1 hour 65 minutes. In this section, canonical forms for time spans are defined. First,

representations for time spans are defined.

Definition 3.8 Span Representation: The N-tuple r = (a;)¥.| (where a; are integer num-
bers and V is the number of calendric granularities in a calendar) is called a representation
of a span S (denoted r € Rep(S)) iff S = Z:\ix a;G;.

Example 3.9 Assume that the Gregorian calendar has the calendric granularities year,
month, day, hour, minute and second. Then 2 hour 55 minutes and 175 minutes which are

64

two forms of S’ have the representations ri1 =(0,0,0,2.55.0) and r, = (0.0, 0,0, 175.0),
respectively. O

Span representations will be used to define a canonical form for a time span. In order

to do that, the notion of a strictly non-negative span is introduced.

Definition 3.9 Strictly Non-Negative Span: A span S is a strictly non-negative span
(denoted S >* 0) iff 3r = (a;)Y, € Rep(S):a; >0fori=1,..., N. R

=1

Example 3.16 The time span 2 hour 55 minutes is strictly non-negative while the time
spans | week — 10 days and 1 month — 30 days are not strictly non-negative since no
positive representations of either of them exist. In the first time span, although 1 week
can be converted to days exactly, the resulting span —3 days does not have a positive
representation. In the second time span, no positive representations are possible since
1 month does not have an exact conversion to days. O

Another definition that needs to be defined for a canonical form is a dominancy relation
between span representations. The dominancy relation is in fact a lexicographical order on

span representations, which is used in determining the canonical representation of a span..

Definition 3.10 Dominancy: A representation r = (a;)¥.| dominates another represen-
tation ' = (bi);i\;l (denoted r > '), r,r' € Rep(S), ff 3k : a > b Aa; = b; fori =
lL....(k=1). 1

Example 3.11 r; =(0,0,0,2,55,0) > r, = (0,0.0,0,175,0). O

Having defined strictly non-negative spans and dominancy. the canonical representation

and the canonical form for strictly non-negative spans’ can now be defined.

Definition 3.11 Canonical Representation: A representation r = (a;)¥, € Rep(S) is the
canonical representation of span S >+ 0iff a; > 0fori = 1.... yNAYr € Rep(S) : r »

r’rvr=r'".m

Example 3.12 r(, i.e, (0.0,0,2,55,0) is the canonical representation of the time span S'.
a

Observation 3.2 Every strictly non-negative span has one and only one canonical repre-
sentation. O

The canonical representation is the best representation of a given strictly non-negative span.

Definition 3.12 Canonical Form: A strictly non-negative span S = Z}il a; -G; is in

canonical form iff r = (a;){L, is the canonical representation of S. B

Example 3.13 The canonical form for the time span S’ is 2 hour 55 minutes. O

Strictly non-positive spans can be defined similarly and the canonical form can also be defined for them.

65

3.3.2.3 Operations Between Time Spans

In this section the semantics of arithmetic and comparison operations between time spans

are given and the questions posed in Section 3.3.1 are answered.

Arithmetic Operations Between Time Spans

As described earlier. a time span is represented as a summation of different calendric granu-
larities. In this section we elaborate on the arithmetic operations between time spans using
various examples. The semantics of adding (su btracting) two time spans is to add (subtract)
the components which have the same calendric granularity. concatenate the remaining com-
ponents to the resulting time span. and reduce the resulting time span to canonical form as
described in Section 3.3.2.2.

Example 3.14

L. (5 years + 4 months) + 2 years — (7 years + 4 months)

2. (5 years + 4 months) + 15 days — (5 years + 4 months + 15 days)
a

Similar semantics hold true for addition {subtraction) of determinate time spans and inde-
terminate time spans. The following example shows the global duration of the symptoms
of angina. described in sentences S1 and S5 for the patient considered in the motivating

example presented in Section 3.3.1.
Example 3.15

(2 hours 4+ 55 minutes) + (T minutes + 35 seconds)
— (2 hours + 62 minutes + 35 seconds)
— (3 hours + 2 minutes + 35 seconds)

»]

It can be noted from the above example that the global duration of the two angina episodes
is converted to its canonical form by the addition operation.

Subtraction leads to the notion of negative spans. In this work, both positive and
negative spans are allowed. Positive spans have the semantics of forward duration in time.
while negative spans have the semantics of backward duration in time. Allowing positive
and negative spans enables one to carry out the subtraction operation between spans of
different calendric granularities which could result in either a positive or negative span, for

example. 1 month — 30 days.

66

Comparison Operations Between Time Spans

The semantics of comparing two time spans is to first convert each time span to the finest
granularity that exists between the two time spans, and then carry out the comparison.

The following example illustrates the various combinations that could occur:
Example 3.16

L. (1 hour + 30 minutes) = 90 minutes ?
< 90 minutes = 90 minutes
< True

2. 1 month > 30 days ?
< (28 days ~ 31 days) > 30 days
4> Unknown

O

It is noted from the above example that time spans which overlap (or even meet each
other) cannot be compared. This follows from Observation 3.1 (see Section 3.2.3) which
states that calendric granularities are partially ordered with respect to the binary relation
“exactly convertible to.” The next example compares the duration of the first symptom
of angina (sentence S1) with the duration (20 minutes) defined for establishing unstable

angina (see the motivating example in Section 3.3.1).
Example 3.17

(2 hours + 55 minutes) > 20 minutes ?
< 175 minutes > 20 minutes
< True

Therefore the patient is identified as suffering from unstable angina. O

3.3.2.4 Related Work

In this section the approach presented in this work of representing and operating on unan-
chored time durations (time spans) is compared to that of Lorentzos [Lor94] and TSQL2
[Sno95b]. Since a time span is independent of any time instant or time interval due to
its relative nature, granularity conversions in the context of anchored temporal primitives
cannot be used for unanchored temporal primitives. Hence, none of the temporal models
[CC87, WIL91, WJIS93, MPB92, MMCR92, Sno95b, WBBJ9IT] can support the unanchored
temporal information needs of an application like the clinical example given in Section 3.3.1.

Although the work of Lorentzos [Lor94] does not explicitly deal with temporal gran-
ularity, it proposes a scheme for representing and operating on non-metric types. Mixed

67

granularity time durations, with separate fields for their composite parts (e.g., hours, min-
utes. seconds) are one example of a non-metric data type. These can be represented as
elements of sets of composite numbers which provide conversion relationships (mappings)
between the composite fields. However, only exact (regular) mappings are discussed. The
representation does not provide inexact (irregular) mappings. Therefore time durations
with composite parts having granularities of months and days cannot be modeled. In the
approach presented in this work, a time span is simply a summation of calendric granu-
larities. Both exact and inexact mappings between granularities are provided (using the
[bf(Ga.Gg) and ubf(Ga,Gp) functions). This allows time durations to be converted to
any given calendric granularity.

The conversion of a time duration to a particular granularity is possible in [Lor94].
However, the target granularity is restricted to be one of the granularities of the composite
parts of the time duration. For example, if the time duration is 2 hours, 50 minutes, 30
seconds, then the time duration can be converted to hours, minutes, or seconds. Such a
restriction is not enforced in this work. A time duration can be converted to any desired
granularity in the calendar. The conversion process of the time duration 2 months and
45 hours to a time duration in the granularity of days is shown in Example 3.8.

In [Lor94], addition between time durations is also possible. However, the operands
have to be addition compatible. If S; and S, are time durations, then they are addition
compatible if S, consists of at most as many composite parts as Sy, and for these composite
parts, the granularities should be the same. For example, the time durations with compos-
ite granularities (days,hours,minutes,seconds), (hours,minutes,seconds), (minutes,seconds),
and (seconds) are addition compatible, and thus can be added to each other. The approach
presented in this thesis is more general in that time durations do not have to be addition
compatible. The components of the time durations which have the same calendric granu-
larity are simply added to each other. and the remaining components are concatenated to
the resulting time span, as shown in Section 3.3.2.3.

In TSQL2 [Sno95b], time spans (durations) which have mixed granularities cannot be
represented [Sno96]. For example, the duration of the chest pain in sentence S1 (see Sec-
tion 3.3.1) would have to be represented in hours or in minutes. Since a time span is a
summation of distinct granularities in this thesis, representing symptom durations with
mixed granularities is straightforward. The representation of mixed granularity time spans
in this work is also more general than that used in SQL-92 in that time spans are not
restricted to only year-month or day-time combinations.

A time span in TSQL2 is necessarily indeterminate at both coarser and finer granulari-
ties. This is because a granularity is modeled as an anchored partitioning of the timeline,
whereas a time span in unanchored. Therefore, all time span conversions in TSQL2 are
treated as inexact, resulting in indeterminate time spans. In the TIGUKAT temporal
model, a time span conversion can be exact or inexact. Consider the simple conversion of
the time span 1 hour to the granularity of minutes. In TSQL?2, this conversion results in the

68

indeterminate span 1 ~ 119 minutes — an indeterminacy of 120 minutes. In this thesis
however. the conversion is exact and results in the determinate span 60 minutes, which is
what is expected in reality.

Operations involving time spans in TSQL2 could give rise to ambiguities and even incor-
rect results. Consider the addition of the time span 1 hour to the time span 40 minutes in
TSQL2. There are two semantics defined: left-operand (coarser granularity) semantics and
finer granularity semantics. In left-operand (coarser granularity) semantics, this addition

can result in two different time spans:

L. 1 hour + 40 minutes — 1 hour + scale(40 minutes)
— L hour + (0 ~ 1 hour)
— 1 ~ 2 hours

2. 1 hour + 40 minutes — 1 hour + cast(40 minutes)
— 1 hour + cast(0 ~ 1 hour)
— 1 hour + 0 hour
— 1 hour

The first operation scales the time span of 40 minutes to the granularity of hours (granu-
larity of the left operand), which results in the indeterminate time span 0 ~ 1 hour. In
the second operation, the time span of 40 minutes is cast to the granularity of hours. The
cast operation first scales the time span 40 minutes to the granularity of hours which result
in the indeterminate time span 0 ~ 1 hour from which the first component, 0 hour, is
arbitrarily chosen.

In finer granularity semantics, this addition can result in two different time spans:

L. 1 hour + 40 minutes — scale(l hour) + 40 minutes
~ (1 ~ 119 minutes) + 40 minutes
— 41 ~ 139 minutes
2. 1 hour + 40 minutes — cast(1l hour) 4+ 40 minutes
— cast(l ~ 119 minutes) + 40 minutes
— 1 minute + 40 minutes
— 41 minutes

The first operation scales the time span of 1 hour to the granularity of minutes (the finer
granularity of the operands), which results in the indeterminate time span 1 ~ 119 minutes.
In the second operation, the time span of 1 hour is cast to the granularity of minutes re-
sulting in the time span 1 minute.

In both cases, the addition operation yields results which are counter-intuitive to what
a user actually expects, since some information is lost in the conversion process. Indeed
neither semantics gives the desired result of 100 minutes or 1 hour and 40 minutes. In this
work, the resulting time span for the addition of 1 hour to 40 minutes is 1 hour and 40 minutes.

69

Since a time span is represented as a summation of different calendric granularities, the se-
mantics of arithmetic operations between time spans of different calendric granularities in
this thesis exactly model what is intuitively expected in the real-world.

Comparison of time spans of different granularities in TSQL2 can also lead to incorrect
results. Consider the comparison of the time span 30 minutes with the time span 1 hour
in TSQL2 [Dyr96], using left-operand semantics or finer granularity semantics:

30 minutes > 1 hour ?

< 30 minutes > cast(l ~ 119 minutes)
<> 30 minutes > 1 minute

< True!

The time span 1 hour is first converted to the granularity of the leftmost operand. Since a
time span is indeterminate at any finer or coarser granularity in TSQL2, the conversion of
1 hour to the granularity of minutes yields the indeterminate time span 1 ~ 119 minutes.
The cast operation then converts this to a determinate time span by arbitrarily choosing
the lower bound. This leads to comparing the time span 30 minutes to the time span
1 minute, and subsequently returning True which is the opposite of what is expected. In
the approach presented in this thesis, the time span 1 hour would be converted exactly to

the time span 60 minutes, and the comparison would then return False.

3.3.2.5 Mapping to TIGUKAT

‘The TIGUKAT types corresponding to the span types in the temporal framework are shown
in Figure 3.4. The various behaviors on time spans together with their signatures are shown

in Table 3.3.
T_duscreteindeterminateSpan

Supertype Subtype

Figure 3.4: Span types.

The type T_indeterminateSpan models continuous indeterminate time spans, and corre-
sponds to the T_indetContSpan type in Figure 2.3. Behaviors defined on T_indeterminateSpan
include B_lessthan and B._greaterthan which model the comparison operations on time
spans. Behaviors B_add and B_subtract allow continuous determinate spans to be added
to and subtracted from continuous indeterminate spans, respectively. The unary behav-
iors, BJowerBound and B_upperBound return the lower and upper boundaries (which are
continuous determinate spans) of a continuous indeterminate time span, respectively.

T.indeterminateSpan has two direct subtypes: T_discretelndeterminateSpan and
T_span. The latter corresponds to the notion of a continuous determinate span. This sub-
typing relationship has the following justification: Every continuous determinate span can

70

be treated as an indeterminate one (with identical lower and upper bounds) and every dis-
crete span can be treated as a continuous one. T_.discreteIndeterminateSpan corresponds
to the T_indetDiscSpan type of the temporal framework, while T.span corresponds to the

T_detContSpan of the temporal framework.

T-.indeterminateSpan B_lessthan: T-indeterminateSpan — T_boolean
B greaterthan: T_indeterminateSpan — T_boolean
B.add: T_span — T_indeterminateSpan
B_subtract: T_span —+ T_indeterminateSpan
B_lowerBound: T_span
B_upperBound: T.span
T.discreteIndeterminateSpan B_add: TdiscreteSpan — T-discreteIndeterminateSpan
B_subtract: T.discreteSpan — T_discreteIndeterminateSpan
B.lowerBound: T.discreteSpan
B_upperBound: T.discreteSpan
T-span B.add: T.span — T.span
B_subtract: Tspan — T_span
B.calGranularities: T_collection(T calGranularity)
B_coefficient: T_calGranularity ~+ T_real
B.multiply: T.real — T_span
B.divide: T.real — T_span
B_convertTo: T_calGranularity — T.indeterminateSpan
T_discreteSpan B.add: T.discreteSpan —+ T_discreteSpan
B_subtract: T.discreteSpan — T_discreteSpan
B_coefficient: T_calGranularity — T_integer
B_multiply: T.integer — T_discreteSpan
B_suce: Tspan
B.pred: T_span

Table 3.3: Behaviors defined on time spans.

In TdiscreteIndeterminateSpan, the behaviors B_add and B_subtract take a discrete
determinate span as an argument and return a discrete indeterminate span as the result.
Furthermore, the unary behaviors B_lowerBound and B_upperBound are refined to return
a discrete determinate span.

Behaviors B.add and B_subtract are refined in T_span to take a continuous determinate
span as an argument and return a continuous determinate span as the result. Behaviors
B_calGranularities, B_coefficient, B_multiply, B_divide and B_convertTo in T_span are used
in the conversion process of a time span to a specific calendric granularity as shown in
Section 3.3.2.1. B_calGranularities returns a collection of calendric granularities in a time
span. For example, the behavior application (1 month+5 days)- B_calGranularities returns
{Gday, Gmontn}. The behavior B_coefficient returns the (real) coefficient of a time span given
a specific calendric granularity. For example, (1 month+35 days)- B_coefficient(G 4qy) returns
5.0. Behaviors B_multiply and B._divide are basically used in the conversion process. The
B_convertTo behavior is derived from the rest of the behaviors in T_span and essentially
converts a determinate time span to an indeterminate time span with the specified calendric
granularity.

The type T.discreteSpan, corresponding to the T_detDiscSpan of the temporal frame-
work, is defined as a subtype of the T.discretelndeterminateSpan and T_span types
described above. Behaviors B._add and B_subtract are refined in T_discreteSpan to take

71

a discrete determinate span as an argument and return a discrete determinate as a result.
Behavior B_coefficient is refined to return the integer coefficient of a discrete time span and
the B_multiply behavior is refined to multiply an integer by a discrete time span. Behaviors
B_succ and B._pred are defined in T_.discreteSpan to return the next or previous discrete
time span of a particular discrete time span. For example, (2 months + 45 hours)- B_succ
returns the time span 3 months + 46 hours while (2 months + 45 hours)- B_pred returns
the time span 1 month + 44 hours.

3.3.3 Anchored Temporal Primitives

To complete the puzzle on temporal granularity, anchored temporal primitives with different
granularities are also supported in the TIGUKAT temporal model. Consider the following

3 sentences:
L. The spaceship will be launched on 15 January 1995.
2. The Family Day holiday in Alberta is on 17 February.
3. John was born on 12 May 1965.

[t can be noticed from the above sentences that the event in each case takes place on a
certain day. The temporal primitive associated with all three events is traditionally called
a time instant (granule), which is an anchored temporal primitive. However, time instants
can be subjected to different interpretations. In particular, three possible interpretations

of a time instant are proposed:

1. A time instant which refers to the beginning of the period it denotes. For example in
the first sentence, what is meant is that the spaceship will be launched precisely at
the beginning of the day, signifying the start of the time instant 15 January 1995.

2. A time instant which refers to the whole period it denotes. For example in the second
sentence, what is meant is that the whole of the time instant 17 February is a holiday.

3. A time instant which refers to sometime in the period it denotes. This is perhaps
the most commonly used time instant in “real-world” temporal measurements. For
example in the third sentence, the birth took place sometime during the time instant
12 May 1965.

Basically, only the time instant which refers to the beginning of the period it denotes is a
“genuine” instant. The other two times are special kinds of time intervals that are called
time instants only due to tradition. The time which refers to the whole period it denotes is
analogous to a determinate interval, signifying that the event took place during the entire
period. Similarly, the time which refers to sometime in the period it denotes is analogous to
an indeterminate interval, signifying that the event took place sometime during the period,

72

although exactly when it took place is unknown. Since a time interval is represented by
two anchored time instants, the presentation in this section focusses on time instants. The
following sub-sections show how these “time instants” are mapped to their corresponding
time intervals. The sub-sections also show how time instants are converted to different
granularities, and describes the various operations that involve time instants specified in
different granularities. These include comparison of time instants, elapsed time between
two time instants, and arithmetic operations that involve time spans and time instants.

3.3.3.1 Representation of Time Instants

Figure 3.5 shows the structural representation of a time instant. Every time instant be-
longs to a specific calendar and is composed of calendric elements which belong to different

calendric granularities of the same calendar. Table 3.4 gives examples of time instants, the

Instant
—— Calendar

[Calendric Element

[Calendric Element,
members of Calendar

" Calendric Element,
Figure 3.5: Structural representation of a time instant.

calendar they belong to, the calendric elements they are composed of and the respective
calendric granularities.

[Instant Calendar | Calendric Elements | Calendric Granularities |
15 June 1995 | Gregorian | 15 Day
June Month
1995 Year
Fall 1995 Academic | Fall Semester
1995 Academic Year

Table 3.4: Examples of time instants.

Three possible interpretations of a time instant can be identified:

® Beginning Instant (Iyeg). This type of instant refers to the beginning of the period it
denotes. Examples of beginning instants would be the time of space launches, start
of exams, process start and end times in real-time systems, etc. Therefore the time
instants 19954, January 199544, and 1 January 199544 are equivalent and refer to
the beginning of the year 1995.

o Determinate Instant (I4e). This type of instant refers to the whole period it denotes.
The time instants denoting national holidays are examples of determinate instants.
For example, Victoria Day (a national holiday in Canada) occurs on 24 May each

73

year. This means that the whole day of 24 May is a holiday. In this case, 24 M ayqe
is a determinate instant.

o [ndeterminate Instant (I;54.¢). This type of instant refers to sometime in the period it
denotes, and is perhaps the most commonly used time instant in “real-world™ temporal
measurements. For example birth dates are usually specified in the granularity of days.
[n reality however, the person is born sometime on that day. Another example would
be the times of clinical events. In sentence S4 of the motivating example, 15 February
1996, the time at which the patient had a myocardial infarction, would be represented
as 15 February 1996;,4.: (which means the patient had a myocardial infarction some
time on that day).

Essentially, a determinate (indeterminate) time instant behaves like a determinate (inde-
terminate) interval whose lower and upper bounds are beginning time instants. For example,
the time instant 5 February 19974, is analogous to the interval [5 February 1997y, 6 February
19974c,).

Every determinate (indeterminate) time instant has a granularity (G;) associated with
it. This granularity determines the mapping of the given determinate (indeterminate) time
instant [4e¢ ([;nge:) to the domain of beginning time instants. The mapping is defined as
follows:

Laet = [lyeq, lpeg + G)
Lindet 7 [lbeg ~ Ibeg + Gi)

Here [;., denotes the counterpart of I ., and Iindet in the domain of beginning time in-
stants. This is exemplified by the mapping of the discrete determinate instant 5 January 1997 4.,
to the interval [5 February 19974eq,6 February 1997se,). In this case G; = Gdays = 1 day.
The upper bound of the resulting interval is defined to be open to ensure that different time
instants with the same granularity do not overlap. Table 3.5 gives examples of a beginning,
determinate, and indeterminate time instant at different granularities.

Granularity | Beginning Instant Determinate Instant Indeterminate Instant
g
Year 19955, 1995e¢ ~ [19954eg, 1996504 1995, nder =+ [19955., ~ 19965.,)
Month January 1995;., January 1995;.,, January 1996;.,) January 1995,,, ~ January 19964, ,)
Day 1 January 19955, 1 January 1995;.,,1 January 19964.,4) 1 January 1995p4 ~ 1 January 1996,.,)

Table 3.5: Conversion of time instants to finer granularities.

A beginning time instant is determinate at all finer and coarser granularities. A determi-
nate time instant is also determinate at all finer granularities. This is because a determinate
instant is first mapped to a determinate interval whose bounds are beginning time instants.
This interval is then determinate at all finer granularities. An indeterminate instant is
indeterminate at the granularity it is defined. It is mapped to an indeterminate interval
whose bounds are beginning time instants. At all finer levels of granularity, the bounds of
the indeterminate interval are simply replaced by equivalent ones at that granularity. Since

74

determinate and indeterminate time instants can be mapped to the domain of beginning
time instants, the rest of this section concentrates on beginning time instants. Without
losing generality, in the rest of the thesis, a beginning time instant is referred simply as a

time instant.

3.3.3.2 Operations on Time Instants

As with time spans, instants can be compared with each other, and subtracted from one
another to find the elapsed time between them. Additionally, a time span can be added to,
or subtracted from, a time instant to return another time instant.

Comparison Between Time Instants

Let Icl;,. = ({1,...,im) and [cz:a = (ill, e i;) be two time instants, with finest granularities
G4 and Gp, respectively, where iy, ..., i;m are ordinal numbers of the calendric elements
of [C".A and i’l, ey i; are ordinal numbers of the calendric elements of [C275’ respectively. It

can be assumed without loss of generality that m > n. The following algorithm checks if
[CI;A < [(2-,.3:

Algorithm 3.1 Comparison of time instants:

Compare, (1}, 12)
by = Gin, i)
[éa = (iy,...,0,)

1

IZ, = (iip,1,...,1);

m-—n
for j from 1 to m {
if (¢; > i)
return False

}

return True

}

The algorithm basically compares the time instants by comparing each of their calendric
elements. The instant Iéa is adjusted by adding the calendric element with the ordinal
number 1% until its finest granularity is the same as that of I, - This is reasonable because
a time instant refers to the beginning of the time period it denotes.

Example 3.18 This example gives several time instants and the ordinal values of their
respective calendric elements. The comparison algorithm is then illustrated by comparing

different time instants.

8Calendric elements are counted starting from 1. Thus, in this work hours are 1-24 rather than 0-23.
The same with minutes and seconds. This is an internal representation. The data will still be entered and
printed “normally” in its external representation.

75

5 June 1990 = (1990,6,5); 15 June 1990 = (1990, 6, 15): June 1990 = (1990, 6); 1990 =
(1990). Then, 5 June 1990 < 15 June 1990 because (1990.6,5) < (1990, 6, 15);

June 1990 < 15 June 1990 because (1990,6) = (1990, 6, 1), and (1990, 6, 1) < (1990, 6, 15);
1990 < 15 June 1990 because (1990) = (1990, 1, 1), and (1990, 1, 1) < (1990,6.1). O

Elapsed Time Between Time Instants

Let (iy,...,7,) and (z"l, ..., i) be two time instants belonging to the same calendar. Then:

Elapsed((i1, ... ,in), (i], ..., i) = D (K, -G;), where K; = i = i;

Jj=1
The following examples illustrate the various cases that can take place:

Example 3.19 Elapsed((13 hour 20 min 15 sec 29 January 1996), (13 hour 56 min 23 sec
29 January 1996)) = (26 minutes 8 seconds)

This is the simplest case in which both instants have the same finest granularity. The
calendric elements of the first time instant are simply subtracted from the corresponding
calendric elements of the second time instant. In this example the time span (duration) of
the acute chest pain in sentence 2 (see Section 3.3.1) for the generic patient was evaluated.
Adding this time span to the result in Example 3.15 enables one to determine the global
span of the symptoms of angina (see question 2 in Section 3.3.1). O

Example 3.20 Elapsed((15 February 1996), (16 hour 12 April 1996)) =

Elapsed((1 hour 15 February 1996), (16 hour 12 April 1996)) = (1 month 27 days 15 hours)
Here, the finest calendric granularity of 15 February 1996 is coarser than that of 16 hour 12
April 1996. Thus, 15 February 1996 is first replaced by the time instant 1 hour 15
February 1996, its equivalent time instant with the finest granularity of hour. The elapsed
time between 1 hour 15 February 1996 and 16 hour 12 April 1996 is then calculated as
shown in the previous example. In this example the time span between the myocardial
infarction and the last episode of angina (see sentences S4 and S5, and question 1 of the
motivating example in Section 3.3.1) was evaluated. O

From the above two examples it can be noted that the Elapsed function returns a time
span which comprises of all participating granularities in the two time instants. [t may be
desirable, however, to return a time span in some specified granularity or set of granularities.
In this case, the Elapsed function can be extended to accept a third argument, namely, the
granularities of the resulting span. If such an additional argument is omitted, the Elapsed
function reverts to the default behavior described in the above two examples.

Operations Between Spans and Time Instants

[n performing arithmetic operations that involve spans and time instants, there are two

cases to consider:

e [f the finest calendric granularity of the span is coarser than or the same as the finest
calendric granularity of the instant. then each component of the span is simply added

to the corresponding calendric element of the time instant.

Example 3.21 Adding the time span 38 months to the time instant 30 January 1996.
in order to know when the thrombolytic therapy (see sentence S7 and question 5 in
Section 3.3.1) will finish. results in the time instant 30 March 1999. O

o If the finest calendric granularity of the span is finer than the finest calendric granu-
larity of the time instant. then the time instant is first replaced by an equivalent time
instant whose finest granularity is the same as that of the span. and the addition is

carried out.

Example 3.22 To know when the the first episode of chest pain ended (see sentence
S1in Section 3.3.1). the time span 2 hours and 55 minutes has to be added to the
time instant 13 December 1995. In this case the time instant is first replaced by its
equivalent time instant 1 hour 1 min 13 December 1995. The addition of the time
span to this time instant results in the time instant 3 hour 56 min 13 December 1995°
a

3.3.3.3 Related Work

Most of the research on temporal relational models has concentrated on modeling temporal
information with a single underlying granularity. There have been some recent proposals.
however. that handle multiple granularities.

Clifford and Rao [CC87] introduce a general structure for time domains called a temporal
universe which consists of a totally ordered set of granularities. Operations are defined on
a temporal universe. which basically convert different anchored times to a (common) finer
granularity before carrying out the operation. Wiederhold et al.. [WJL91] also examine the
issue of multiple granularities. An algebra is described that allows the conversion of event
times to an interval representation. This involves converting the coarser granularity to the
finer granularity in light of the semantics of the time varying domains. [\WJS93] extend this
work by providing semantics for moving up and down a granularity lattice. In [BP85] the
issues of absolute. relative, imprecise, and periodic times are discussed. Multiple granular-
ities are supported for each time. Operands (which are anchored) in operations involving
mixed granularities are converted to the coarser granularity to avoid indeterminacy. In a
more recent work [MPB92], the existence of a minimum underlying granularity (quantum
of time) to which time is mapped. is assumed. Montanari et al., [MMCR92] examined the
issue of multiple granularities, but considered exact granularity conversions only. Corsetti
et al., [CMR91] deal with different time granularities in specifications of real-time systems.

®Note that this time instant is given in the internal representation. The external representation of the
time instant would be 2 hour 55 min 13 December 1995.

~]
=1

In the above works. granularities are treated as anchored partitionings on the timeline
whereas in this work. granularities are unanchored since they are modeled as unit spans.
Hence. while both anchored and unanchored granularity conversions can be performed in
this work, the proposals above consider only anchored granularity conversions. Further-
more. none of the models. with the exception of [MPB92]. explicitly address the notion of
indeterminacy.

TSQL2 [Sno95b] treats all instants as indeterminate at finer granularities. In contrast.
the treatment of time instants in this work depends on the interpretation given to the time
instant. This is illustrated in Table 3.5. In this thesis. indeterminacy in time instants is not
in the conversion to finer granularities. but it is in the interpretation of the time instant.
Furthermore. even when indeterminacy arises (in the case of indeterminate time instants).
it is at the granularity at which the time instant is defined. This is due to the mapping of
indeterminate instants to intervals (that was defined in Section 3.3.3.1 which have beginning
instants as their lower and upper bounds.

In TSQL2. the semantics of arithmetic operations is not explicitly supported. More
specifically, the semantics of arithmetic operations which involve time spans and time in-
stants are left to the calendar as calendar specific operations. These include instant +
span. span +instant. and instant — instant. This is partly due to ambiguities which arise
from these operations. Consider the operation 1 month + 15 June 1995 in TSQL2. Here.
according to the [left operand] semantics of TSQL2. the following would happen:

1 month + 15 June 1995
— 1 month + June 1995
— July 1995

The time instant 15 June 1995 is first scaled to the coarser granularity of month (which is
the granularity of the left operand). resulting in the time instant June 1995. The addition
operation then results in the time instant July 1995. which is not what one would intuitively
expect. In this work (see Section 3.3.3.2), the addition operation would return the expected
time instant 15 July 1995. Basically. the semantics of arithmetic operations is not explicitly
supported in TSQL2. It is left to the calendar. Therefore. if month + DATE = DATE is
not supported by the calendar. then the operation ! month + 15 June 1995 in TSQL2 will
result in July 1995 [Sno96]

3.3.3.4 Mapping to TIGUKAT

The TIGUKAT types and behaviors for anchored temporal primitives are similar to the
corresponding concrete anchored primitive types shown in Figure 2.3. For example. the
type T.instant is defined in TIGUKAT an an abstract type of all time instants. The
behaviors defined in TIGUKAT on the type T_instant are shown in Table 3.6. These
include the comparison behaviors B_less, B_greater, B_leq and B_geq (these are essentially
the <. >. < and > operators. respectively). the B_elapsed behavior which returns the elapsed

T8

' B_less: T_instant — T boolean
B_greater: T.instant — T_boolean
! Bleq: T_instant — T_boolean
! B.geq: T_instant — T boolean
! B_elapsed: T_instant — T._span
l B_add: T_span — T_instant
| B_subtract: T_span — T.instant
l B.calendar: T_calendar
B_calElements: T _list(T calElement)

Table 3.6: Behaviors defined on time instants.

time (duration) between two time instants. and the B_add and B_subtract which are used in
arithmetic operations between time instants and time spans. Behavior B_calendar returns
the calendar which the instant belongs to and behavior B_calElements returns a list of the
calendric elements in a time instant. For example. B_calElements applied to the instant
June 15. 1995 returns the list (1995.6.15). Other tyvpes and behaviors are similar to those
given in Figure 2.3.

There is also one additional instant tvpe T_speciallnstant defined as a subtype of
T_instant. The only instances of this tvpe are — and +>c. These instances are used as
minimum and maximum bounds of a timeline as will be discussed in Section 3.4.

3.3.4 Implementation Issues

The formulae (3.3) and (3.4) for Ibf(A. Ga1.Gpg) and ubf(K.G4.Gp) (see Derivation 3.2)
are computationally expensive. However. they are not designed for direct computation.
These formulae are just mathematical definitions. Any approximation of these formulae will
suffice. and such approximations for the most common conversions can be chosen at the time
when the calendar is defined. Another technique that can be used to make computations
less expensive would be to simplify these formulae since they allow for many simplifications
once a set of particular calendric functions is chosen. As an example. consider the Gregorian

calendar. In this calendar.

ff*(y) = 12 (months)
(30 ifmis 3. 5. 8 or 10
31 ifmis0.2.4.6.7.9. 0r 11
fromh(y.my = (o0 Hmis T davs)

28 ifm =1 and yis not leap

29 ifm=1andyis leap

\

¥ (y.m.d) = 24 (hours)

where y is leap when ymod 400 = 0 vV ymod 4 = 0 A ymod 100 # 0.

Consider the conversions from vears to months. from vears to days. and from months

9

to days. Then.

f."ear—*momh(y) — f’“"”(y) =12
f""‘"‘*da"(y) _ 366 if yis leap
365 otherwise

frotdym) = fronth(y.m)

Then. using formulae (3.3) and (3.4) it is found that
[bf([\' G_veare Gmonth) = min{ Z f)-ear—)month(yl)}
v 0<distyear(y'.yj<A' -1

= min{12K}
= 12K
ubf(K.Gyear- Gmontn) = 12K
Ibf(K.Gyear Gay) = myiﬂ{365(y +R)+[(y+ K)/4] - [(y+ K)/100] + [(y + K)/400]

— 365y — y/4] + [y/100] — [y/400]}
> 365K + |K/4] — [(K + 96)/100]

ubf(K. Gyear Gaay) < 365K + (K +3)/4]

The above /bf and ubf bounds can be used instead of exact formulae. These bounds are
easily computable and introduce an error that is less than a day per century. Analogous
methods can be used to find computationally cheap approximations for conversion of months
to days: however. to obtain reasonable approximations, values for small (K < 48) have
to be tabulated. Let gu.n(A’) and gm,:(A) be such tabulations. Then:

I6f(R. Gmonth- Gday) = gmin (K mod 48) + {b f(|A/48] - 4. Gyear. Gday)
ub (K. Gmonth. Gday) = gmar(K mod 48) + ubf(LK /48] - 4. Gyear. Gday)

Using these formulae one can now make fast and quite precise conversions. For example.
the number of days (d) in 100 months according to the above formulae is 120 + 2921 =
3041 < d < 3044 = 122 + 2922, which is the correct estimate. The simplistic approach
where the number of months is not taken into account when the coefficients are computed
would give 28 + 100 = 2800 < d < 3100 = 31 * 100. which is an error of more than 8%. or
200 days.

3.4 Temporal Order

In the TIGUKAT temporal model. the notion of a temporal order (defined in Section 2.3.1.3)
is enhanced by introducing the concept of a timeline. A timeline represents an axis over

80

which time can be perceived in an ordered manner. Basically, timelines are used to give an
order to the timestamps in histories (described in Section 3.3).

Definition 3.13 Timeline (Tc): A timeline Tz is a triplet (O,Z,L.7), where O is the
temporal order of Tz, Z is the defining time interval of 7%, and L_7 is a collection of the
timestamps (time intervals) which belong to 7. B

The different temporal orders of a timeline can be classified as being linear or branching
(described in Section 2.3.1.3).

Definition 3.14 Sub-linear Order: Let t; and ¢; be anchored timestamps. Then,
Vtitj(t; overlaps t; Vt; precedes t; V t; precedes t;) B

Definition 3.15 Linear Order: Let ¢; and t; be anchored timestamps. Then,
Vtit;(¢; precedes t; V¢; precedes t; V ¢ equals ¢;) @

In a sub-linear order, timestamps are allowed to overlap each other while in a linear order,
timestamps strictly follow or precede each other, i.e., they do not overlap.
[n a branching order, time is linear in the past up to a certain point, at which it branches

out into alternate futures.

Definition 3.168 Branching Order: Let ti, t; and t; be anchored timestamps. Then,
Vtit;jti((t; precedes t;At; precedest;) — (tj precedes ¢ V¢; overlaps ix Vi, precedes t;))
|

The branching order defined above is a forward (in time) branching order. It ensures the
two predecessors of a given time are comparable. Without loss of generality, in the rest of
this chapter timelines with a linear order will be referred to as linear timelines while those

with a branching order will be referred to as branching timelines.

Definition 3.17 Defining time interval (I): A defining time interval Z = [t,,¢.] is a time
interval over which a timeline 77 is defined. ts is a time instant denoting the start time of

Tc and ¢, is a time instant denoting the end time of 7. B

A timeline is comprised of one defining time interval 7 which essentially determines the size
of a timeline. Two constants (which are essentially instances of T_speciallnstant) —oc
and +oo are defined to be the lower (¢,) and upper (te) bounds of the longest defining time
interval time of which a timeline could be comprised.

A timeline may then contain any number of additional time intervals and time instants
with the restriction that each of them lies within the defining time interval Z. Over the
lifetime of the timeline, 7 remains the same, but other additional time intervals and time
instants may be added, deleted or modified. For example, consider a timeline with an Z [08 :
00 January 11993, +o00). Time intervals or time instants (which could be modeling the his-
tory of a particular object) such as [January 15 1993, February 20 1993), March 27 1995, 00 :

81

T_subLinearTL }-’&_ﬁneaﬂl j

T_branchingTL j

E’I‘_object H T _timeline

Supertype Subtype

Figure 3.6: The timelines type hierarchy.

00 : 03 May 25 1995 can now be added to the timeline. These time intervals and instants
form the collection L_r.

Since L_7 can consist of time intervals or time instants or both, both homogeneous
and heterogeneous timelines can be defined. This provides additional flexibility in defining
histories of various activities and objects because some activities occur at moments in
time, while others occur over a period of time. Figure 3.6 shows the type hierarchy of the
types used to model the different kinds of timelines described in this section. The abstract
type T-timeline (corresponding to the T_temporalOrder type shown in Figure 2.7) is
first defined as a supertype of all linear and branching timelines, and defines the following

behaviors:

B_definingTimelnterval : Tinterval
B_timelntervals : Tcollection < T_interval >

B_definingTimelnterval returns the defining time interval of a timeline, while B_timelntervals
returns a collection of time intervals that have a certain temporal order (this behavior is
similar to the P_temporalPrimitives property defined on the T_temporalOrder type). The
rest of the types shown in Figure 3.6 are instantiations of the corresponding subtypes of
T-temporalOrder of the temporal framework.

3.5 Temporal History

One requirement of a temporal model is an ability to adequately represent and manage
histories of real-world events. In this section the types and behaviors in TIGUKAT that
can be used to model histories of real-world events are described. These are then used to

uniformly model valid and transaction histories in TIGUKAT.

3.5.1 Real-World Event Histories

The approach of modeling histories in TIGUKAT temporal model makes use of the availabil-
ity of parametric types in the underlying object model. This allows one to model histories

that adhere more closely to the real-world.

82

The type T_history of the temporal framework is used as an abstract type of all histories
modeled in TIGUKAT. Temporal histories of real-world objects whose type is T_X are then
represented in the TIGUKAT temporal model as objects of the T history(TX) type, which
is 2 subtype of T history (see Figure 3.7). For example, suppose a behavior B_salary is
defined in the T_employee type. Now, to keep track of the changes in salary of employees,
B_salary would return an object of type Thistory(T_real) which would consist of the
different salary objects of a particular employee and their associated time periods.

A temporal history consists of objects and their associated timestamps (time intervals
or time instants). One way of modeling a temporal history would be to define a behavior
that returns a collection of <timestamp, object> pairs. However, instead of structurally
representing a temporal history in this manner, a behavioral approach is used by defining
the notion of a timestamped object. A timestamped object knows its timestamp (time
interval or time instant) and its associated value at (during) the timestamp. A temporal
history is made up of such objects. The following behaviors, similar to the properties defined
on T history of the temporal framework, are defined on the T history type in TIGUKAT:

B_history: T.collection(T_timeStampedObject(T X))

B_timeline : T_timeline
B_insert : TX,T.anchPrim —
B_remove : T.X, T_.anchPrim —

B_validObjects: T_anchPrim — T.collection(T-timeStampedObject(T X))
B_validObject: T_anchPrim — T_timeStampedObject(T X)

Behavior B_history returns the set (collection) of all timestamped objects that comprise
the history. A history object also knows the timeline it is associated with and this timeline
is returned by the behavior B_timeline. The timeline basically orders the timestamps of
timestamped objects (see Section 3.4). The B_insert behavior accepts an object and an
anchored timestamp as input and creates a timestamped object that is inserted into the
history. Behavior B_remove drops a given object from the history at a specified anchored
timestamp. The B_validObjects behavior allows the user to get the objects in the history
that were valid at (during) a given anchored timestamp. Behavior B_validObject is derived
from B_validObjects to return the timestamped object that exists at a given time instant.

Each timestamped object is an instance of the T_timeStampedObject(TX) type. This
type represents objects and their corresponding timestamps. Behaviors B_value and B_timeStamp
defined on T_timeStampedObject return the value and the timestamp (time interval or time

instant) of a timestamped object, respectively.

B_value : TX
B_timeStamp : T.anchPrim

83

3.5.2 Valid and Transaction Time Histories

To represent valid, transaction, and event time histories in the TIGUKAT temporal model,
temporality is associated with class objects. The T_temporalClass<T.X> type is intro-
duced as a subtype of the primitive type T_class<T X> to manage temporal information of
objects. An instance of T_temporalClass<T.X> (or any of its subtypes) is called a temporal
class, and so objects belonging to a temporal class are called temporal objects.

TIGUKAT treats everything as objects; consequently classes are objects too. [t therefore
makes sense to distinguish between the notions of class temporality and object temporality.
An object that is not a class can be either temporal or non-temporal whereas a class object

may be temporal as a class or temporal as an object!®,

Definition 3.18 Temporality of Objects: An object o is temporal as an object if and only
if the class of 0 is a temporal class. B

Definition 3.19 Temporality of Classes: A class object o is temporal as a class if and
only if its type is a subtype of T_temporalClass. B

These definitions imply that temporality of objects in TIGUKAT is not orthogonal
to their class. If a class is temporal, then all of its members are temporal; if a class is
non-temporal, then none of its members is temporal.

Type T_temporalClass defines additional functionality for representing the semantics of
the temporality of objects. It allows its instances (which are temporal classes) to maintain
histories of their constituent objects. The T_temporalClass type defines three behaviors to
model valid, transaction, and event time histories independently of one another as follows:

B_validH istory : Thistory < TX >
B_transHistory : Thistory < TX >
B_eventHistory: Thistory < TX >

Behaviors B_validHistory, B_transHistory, and B_eventHistory return the valid, trans-
action, and event time history of an object belonging to the type T_X, respectively. Model-
ing the different kinds of histories using behaviors conforms to the behavioral nature of the
TIGUKAT object model. Instead of using the temporal framework types that model the
different kinds of histories, histories in TIGUKAT are modeled using behaviors defined on
T_temporalClass.

The approach of separating valid and transaction times into two behaviors is in contrast
to other temporal object models (for example, [RS91]) where they are structurally modeled
together. This usually requires an object value to have corresponding entries for both the

'*The same word (temporal) is used for both these notions since it is usually clear from the context which
one of the two is being referred to. In the rest of this section, unless otherwise specified, temporal class will
mean the instances of the class are temporal.

84

valid and transaction times. The separation in modeling of valid and transaction times is
more intuitive and gives substantial flexibility as it allows different types of object databases

to be defined as per application needs [Sno87]:

® Rollbackor transaction-time object databases can be modeled using the B_transHistory
behavior. This facilitates the state of the object database to be seen as of some par-

ticular time.

e Historical object databases can be modeled using the B_validHistory behavior. This
shows the time when the stored historical information was valid.

® Temporal object databases encompass the functionalities of rollback and historical
object databases and are. therefore, modeled using both the B_validHistory and

B_transHistory behaviors.

Example 3.23 Suppose the hospital staff wants to maintain a record of the time when
operations in the hospital took place. In this case, the class of all operations (C_operation)
will be a temporal class with type T_temporalClass<T.operation>. C_operation will
then consist of temporal objects having the semantics of different operations and the times
they took place. The following behavior returns the history of different operations that
took place in the hospital:

C_operation.B_validHistory

Applying the behavior B_history to this object returns a collection consisting of times-
tamped operations. If one were also interested in the times when operations in the hospital
were entered in the object database, then one would simply use the B_transHistory behavior
to access these. O

Figure 3.7 shows the type hierarchy of the history types described in this section.

=\
T_hist
-ty T_history<T_object> j
T_timeStampedObject B
~timeStampedObj J ﬁ[ﬂ T_timeStampedObject<T _object> J

Supertype Subtype

&_object

Figure 3.7: The temporal histories type hierarchy.

85

3.6 A Medical Trial Object Database

[n this section, a pharmacoeconomics study (briefly described in Example 2.4) is described
which makes use of the timeline and history features of the TIGUKAT temporal model that
were presented in Sections 3.4 and 3.5. The rest of the section shows these features can be

used to represent, store, analyze, and reason about the components of the study.

3.6.1 Medical Trials in Pharmacoeconomics

One of the methods used in the field of pharmacoeconomics is cost-effectiveness analysis
of different treatments [JJGB92]. This method has been used in the pharmacoeconomic
analysis of treatments for illnesses such as pneumonia, asthma, chest infection, etc. In
these trials, the group of patients suffering from the illness of interest are divided into sub-
groups. Each of these sub-groups is administered one of the different treatments under
investigation. Pharmacoeconomic analysis has so far mainly focussed on the comparison of
different drugs used for treating the same illness. During the course of the trial, an object
database of information is maintained which will be used in the cost-effectiveness analysis of
each treatment. To illustrate, consider a trial comparing two different antibiotic treatments.

The information required would include:

o Antibiotic Related Costs — The different antibiotics used and the time period during
which they were applied. For each antibiotic, the costs related to its use are also

recorded. These include:
— Acquisition cost
~ Preparation and administration costs

— Laboratory monitoring costs

— Cost of treating adverse effects
e Infection Related Costs — These include:

— Laboratory monitoring tests (for example, microbiology blood tests and radiology
tests), the times the patient took the tests, and the cost incurred for each test
— Health care used (this includes emergency room visits, hospital bed costs, etc.)

and related costs

[n addition to this information, a medical trial has various temporal modeling requirements.

These include:

e A branching model of time in which histories of alternate treatments of a medical trial

could be represented, and subsequently analyzed for their cost-effectiveness.

e The different kinds of medication and the time periods during which they were ad-
ministered during the course of a particular treatment in the medical trial.

86

o The time periods during which different treatments in the medical trial were admin-

istered.

e Whether a patient in the current medical trial underwent a similar medical trial in
the past.

¢ The different blood tests a patient took while undergoing a particular treatment.

The following sections show how a medical trial can effectively be modeled in the TIGUKAT
temporal ODBMS. Analysts working in pharmacoeconomics can then use the temporal
ODBMS to retrieve components relevant to their line of investigation to aid their pharma-

coeconomic analyses.

3.6.2 Medical Trial Types and Behaviors

This section describes all the necessary types and behaviors which are needed to model a
pharmacoeconomic trial (such as that described in Section 3.6.1) in the TIGUKAT temporal
model. Figure 3.8 shows the types used to model the various components of a medical trial.
The behaviors of the types are given in Table 3.7.

The T_medicalTrial type is introduced to represent different alternative treatments in a
medical trial. For example, treatmentA and treatmentB described in Example 2.4 are objects
of type T_-medicalTrial and represent the different treatments used in a medical trial. Since
a medical trial is comprised of alternate treatments which take place during a time period,
its semantics is best captured by a branching timeline as was shown in Example 2.4. The
B.timeline behavior defined on T_medicalTrial returns the timeline that is associated with
the medical trial as is depicted in Figure 2.10. Each treatment then has the same timeline. A
treatment also has a collection of patients and antibiotics. To model these, T_medicalTrial
defines the behaviors B_patients and B_antibiotics, respectively. For a given treatment, the
B_treatmentPeriod behavior returns the time period during which the treatment took place.
The iliness for which the medical trial is being undertaken is given by the behavior B_illness.

B_antibiotics returns a collection of timestamped antibiotics. Each member of such a
collection has an associated timestamp which returns the time period during which the an-
tibiotic was administered. In addition to the timestamp, each member also has an antibiotic
object whose type is T_antibiotic. This type defines several behaviors which returns the
various costs (outlined in Section 3.6.1) associated with an antibiotic. These behaviors are
shown in Table 3.7.

The type T_patient represents the patients undergoing the medical trial. In the course
of a treatment, a patient takes various blood tests and radiology tests. These are represented
by the type T_test. Behaviors B_blood Tests and B_radiologyTests are defined on T_patient
to return the history of tests taken by a patient as shown in Table 3.7. Using histories to
model a patient’s tests enables one to look up the times when particular tests were taken.

87

T_antibiotie .
T_patient

™ LI, o
T_temporalClass)—L’l‘.temw'ﬂcwmﬁ"ﬂ;]

Supertype

Figure 3.8: The type hierarchy for a medical trial.

Type T_test defines the B_cost behavior which returns the cost associated with a particular

treatment.

The behavior B_diseases defined on T_patient returns the disease history of a patient. It
enables one to find out what diseases a patient has and at what times they were diagnosed.
The B_medicalTrials behavior gives the history of all the different medical trials the patient
has gone through up to the current date. Finally, the B_healthCare behavior returns the
health care object of a patient.

The T_healthCare type represents the prescribed medical treatment of a patient. Be-
havior B_bedCost returns the bed cost of a patient during the period of a given treatment of
a medical trial. B_emergency Visits returns the number of emergency visits of a patient dur-
ing the period of a given treatment of a medical trial. Finally, behaviors B_admissions and
B_.operations give the hospital admission and operation histories of a patient, respectively.
Using histories to model a patient’s hospital admissions enables one to easily determine when
the patient was admitted and when he/she was discharged, and the number of times the
patient has been admitted to the hospital. Similarly, modeling a patient’s operations using
histories gives us the start and end times of each operation, and the number of operations.

88

[Type Signatures
TmedicalTrial B_timeline: T_branchingTL
B_antibiotics: T_collection(T t imeStampedObject(Tantibiotic))
B_patients: T_collection({T patient)
B_treatmentPeriod: T_interval
B_illness: T._disease
T.antibiotic B_acquisitionCost: T_real
B_prepAdmCost: T_real
B_labCost: T._real
T_patient B_bloodTests: T history(T test)
B_radiologyTests: T_history(T test)
B_diseases: T_history(Tdisease)
B.medicalTrials: T history(TmedicalTrial)
B.healthCare: T_healthCare
T.test B.cost: T.real
T.healthCare B_bedCost: T.medicalTrial — T_real
B_emergency Visits: T.medicalTrial — T.integer
B_admissions: T history(T.admission)
B.operations: T_history(Toperation)

Table 3.7: The medical trial types and behaviors.

3.6.3 A Medical Trial Instance

Having defined the types and behaviors used to model a medical trial, Figure 3.9 shows a
pictorial view of one of the treatments (treatmentA) in a medical trial. The pictorial view
shows how, starting from treatmentA, various components of a treatment (as outlined in
Section 3.6.1) can be reached using the behaviors defined in Table 3.7.

Figure 3.9 shows that treatmentA has a branching timeline medicalTrialBranchingTL
which is shared by all other treatments. During the course of treatmentA, two antibiotics,
antibioticA and antibioticB were used. antibioticA was administered during the time interval
[January 1, 1995, April 1, 1995) and was followed by antibioticB which was administered
for the time period [April 1, 1995, July 1, 1995). During the time period they were used.
antibioticA incurred an acquisition cost of 45.0, a laboratory cost of 24.0, and a preparation
and administration cost of 53.50, while antibioticB incurred costs of 55.0, 37.25, and 77.50,
respectively.

patientl was one of the patients who went through treatmentA. The previous medical
trials that patientl went through are given by medicalTrialHistory. Similarly, patientl’s
history of diseases is given by diseaseHistory. The various monitoring tests taken by patientl
are given by radiology TestHistory and bloodTestHistory. Figure 3.9 shows that patientl had
three blood tests done; hematologyl and microbiology were done on January 15, 1995 and
incurred costs of 64.50 and 43.50, respectively. hematology2 was done on February 20, 1995
and incurred a cost of 70.0.

Finally, patientlHealthCare gives the prescribed medical treatment of patientl. Using
the hospital bed during the course of treatmentA incurred a cost of 550.0. patientl had 2
visits to the emergency room while undergoing treatmentA. A history of patientl’s hospital
admissions is given by admissionHistory while the different operations he went through are

given by operationHistory.

89

B _timeStamp

[Januasry 1, 1995,
April 1,1995) -

Figure 3.9: A pictorial representation of the components of a medical trial.

Researchers working on the pharmacoeconomic analysis of different treatments can now
use the objects. types and behaviors shown in Figure 3.9. Figure 3.8 and Table 3.7 to retrieve
costs of antibiotics. monitoring tests. hospital bed. etc. and the time period during which
they occurred. They can then use the retrieved information to carry out comparisons of the
costs and effectiveness of alternative treatments. The following section shows how queries
can be constructed in TIGUKAT to retrieve the various components of a medical trial.

3.6.4 Example Queries
3.6.4.1 The TIGUKAT Query Language

The TIGUKAT query model is a direct extension to the object model. It is defined by
type and behavioral extensions to the primitive model. The languages for the query model
include a complete calculus. and equivalent object algebra and a SQL-like user language
[PL6893]. This sub-section briefly discusses the TIGUKAT Query Language (TQL) and

demonstrates how it can be used to access objects of a medical trial. TQL!! is based on the
SQL paradigm [Dat87] and its semantics is defined in terms of the object calculus. Hence.

"'"TQL was developed before the release of OQL [Cat94]. It is quite similar to OQL in structure.

90

every statement of the language corresponds to an equivalent object calculus expression.
The basic query statement of TQL is the select statement which operates on a set of input

collections, and returns a new collection as the result:

select < object variable list >

[into < collection name > |
from < range variable list >

[where < boolean formula >]

The select clause in this statement identifies the objects to be returned in a new collection.
There can be one or more object variables with different formats (constant, variables, path
expressions or index variables) in this clause. They correspond to free variables in object
calculus formulas. The into clause declares a reference to a new collection. If the into
clause is not specified, a new collection is created; however, there is no reference to it. The
from clause declares the ranges of object variables in the select and where clauses. Every
object variable can range over either an existing collection, or a collection returned as a
result of a subquery, where a subquery can be either given explicitly, or as a reference to a
query object. The where clause defines a boolean formula that must be satisfied by objects
returned by a query. Two additional predicates are added to TQL boolean formulas to
represent existential and universal quantification. The existential quantifier is expressed by
the ezists predicate which is true if the referenced collection is not empty. The universal
quantifier is expressed by the forAll predicate which is true if for every element in every
collection in the specified range variable list, the given booiean formula is satisfied.
Having described TQL, the next section shows how temporal objects can uniformly be
queried using behavior applications without changing any of the basic constructs of TQL.

3.6.4.2 Query Examples

To make the queries easier to read, assume that treatmentA exists in the object database
and is a member of the C_medicalTrial class. That is, the presence of the “treatment.A
in C_medicalTrial” construct is assumed in the from clause of each query.

Example 3.24 Which antibiotics were administered in treatment A and during what
times?

select timeStamped Antibiotic.B_value, titmeStamped Antibiotic. B timeStamp

from timeStamped Antibiotic in treatmentA.B_antibiotics

This query simply goes through the collection of timestamped antibiotics of treatmentA and
returns the antibiotic and timestamp associated with each timestamped antibiotic in the
collection. As seen in Figure 3.9, this query would return a collection containing antibioticA,

antibioticB and their associated timestamps (time intervals). O

Example 3.25 What was the total cost of using antibiotic A?
select antibioticACost

91

from antibioticACost in C_real. timeStamped Antibiotic in treatmentA.B_antibiotics,
antibiotic4 in C_antibiotic

where (antibiotic4d = timeStampedAntibiotic. B_value) and

(antibioticACost = antibioticA.B_acquisitionC'ost.B-add(antibioticA.BJabC’ost).
B_add(antibioticA.B_prepAdmCost))
In this query, the acquisition, laboratory, and preparation and administration costs of an-
tibiotic 4 are added to return the total cost, which would be 132.50 according to Figure 3.9.
a

Example 3.26 Which antibiotics had an acquisition cost of more than $50?

select timeStamped Antibiotic. B_value

from timeStampedAntibiotic in treatmentA.B_antibiotics

where timeStamped Antibiotic. B_value.B_acquisitionCost > 50

This query goes through the collection of timestamped antibiotics of treatmentA and returns
the collection of antibiotics whose acquisition cost is greater than 50. From Figure 3.9, it
can be seen that a collection containing only antibioticB is returned as a result of this query.
a

Example 3.27 Which blood tests did patient 1 take while antibiotic A was being admin-

istered, and what were the associated costs?

select timeStampedbloodTest.B_value, timeStampedbloodTest.B_value.B_cost

from patientl in treatmentA.B_patients, timeStampedbloodTest in patientl.B_bloodTests.

B_history, timeStamped Antibiotic in treatmentA.B_antibiotics

where (antibioticA = timeStamped Antibiotic. B_value) and
(timeStampedbloodTest.B.timeStamp.B_within(timeStampedAntibiotic.B.timeStamp))

This query returns patientl’s blood tests (with their associated costs) whose timestamps

fell within the time interval during which antibioticA was being used. From Figure 3.9. it

can be seen that these blood tests were hematologyl, microbiology, and hematology?2. O

Example 3.28 What was the time period during which treatment 4 took place?

select treatmentA.B_treatmentPeriod

This query returns a collection consisting of the time interval during which treatmentA took
place. Assuming treatmentA ends when no more antibiotics are administered, an alternative
approach would be to construct the query such that it goes through the collection of the
timestamped antibiotics of treatmentA and takes the union of the timestamps associated
with each antibiotic in the collection. Then, for the instance given in Figure 3.9, the query
would return the time interval [January 1, 1995, July 1, 1995). O

Example 3.29 How many alternative treatments took place in the medical trial in which
treatment A was administered?
select treatmentA.B_timeline.B_branches.B_cardinality

92

Since treatmentA has a branching timeline associated with it, the number of alternative
treatments in the medical trial is simply the number of branches of the branching timeline.
This is obtained by taking the cardinality of the collection returned as a result of the
treatmentA.B_timeline.B_branches behavior application. If the medical trial consisted of
treatment A and treatment B, then for the instance in Figure 3.9, this query returns a

collection containing 2. O

Example 3.30 Has patient 1 undergone a medical trial for the same illness before?

select timeStampedMedicalTrial.B timeStamp

from patientl in treatmentA.B_patients, timeStampedMedicalTrial in
patientl.B_medicalTrials.B_history

where timeStampedz\/[edicalTrial.B_ualue.B_illness.B_equal(treatmentA.B.iIIness)

This query goes through patientl’s medical trial history and checks if there exists an illness

which is the same as the one for which treatmentA is being administered. O

Example 3.31 How many patients went through treatment A?
select treatmentA.B_patients.B_cardinality
The number of patients in treatmentA is the cardinality of the collection returned as a result

of the treatmentA.B_patients behavior application. O

93

Chapter 4
Schema Evolution

In this chapter', the issues of schema evolution and temporal object models are addressed.
These two issues are generally considered to be orthogonal and are handled independently.
However, many ODBMS applications require both. For example:

e The results reported in [Sjo93] illustrate the extent to which schema changes occur
in real-world database applications such as health care management systems. Such
systems also require a means to represent, store, and retrieve the temporal information
in clinical data [KFT91. DM94, CPP95].

o The engineering and design oriented application domains (e.g., CAD, software design
process) require incremental design and experimentation [KBCG90, GTC*90]. This
usually leads to frequent changes to the schema over time which need to be retained

as historical records of the design process.

Given that the applications supported by ODBMSs need support for incremental devel-
opment and experimentation with changing and evolving schema, a temporal domain is a
natural means for managing changes in schema and ensuring consistency of the system. The
result is a uniform treatment of schema evolution and temporal support for many ODBMS
applications that require both.

A typical schema change can affect many aspects of a system. There are two fundamental
problems to consider:

1. Semantics of Change. The effects of the schema change on the overall way in which
the system organizes information (i.e., the effects on the schema). The traditional
approach to solving this problem is to define a set of invariants that must be preserved

over schema modifications.

2. Change Propagation. The effects of the schema change on the consistency of the
underlying objects (i.e., the propagation of the schema changes to the existing object

'Contents of this chapter are published as [GSOP97] and [GSOP9S].

94

instances). The traditional approach of solving this is to coerce objects to coincide
with the new definition of the schema.

[n this chapter, a method for managing schema changes and propagating the changes to
underlying instances by exploiting the functionality of the TIGUKAT temporal object model
is presented. The approach described in this chapter is conducted within the context of
the TIGUKAT temporal ODBMS that was described in Chapter 3. However, the results
reported here extend to any ODBMS that uses time to model evolution histories of objects.
The issue of semantics of schema change is addressed in Section 4.1 and the issue of schema
change propagation is addressed in Section 4.2. Numerous approaches that have been
proposed to handle schema evolution are examined in detail in Sections 4.1.2 and 4.2.2,

4.1 Semantics of Schema Change

4.1.1 Overview

In this section, the necessary modifications that could occur on the schema are described,
and a treatment of managing the implications triggered by the modifications is presented.
The schema changes considered include adding a behavior to a type, dropping a behavior
from a type, changing the implementation of a behavior for a particular type, and adding a
supertype or subtype relationship between two types. By defining appropriate behaviors on
the meta-architecture, the evolution of schema is supported. That is, changes to the schema
involve updating the history of certain behaviors. For example, adding a new behavior to
a type changes the history of the type's interface to include the new behavior. The old
interface of the type is maintained and can be accessed through TIGUKAT query language
language features that allow behavior applications to be qualified by a time reference point.
Similarly, the subtype relationship behavior is defined to be temporal and, therefore, the
structure of the type lattice can be reconstructed at any time of interest. The TIGUKAT
query language gives designers a practical way of accessing temporal information in their
experimental and incremental design phases.

4.1.2 Related Work

The issue of schema evolution has been an area of active research in the context of ODBMSs
[BKKK87, KC88, PS87, NR89]. In many of the previous work, the usual approach is to
define a set of invariants that must be preserved over schema modifications in order to
ensure consistency of the system. The Orion [BKKK87, KC88] model is the first system to
introduce the invariants and rules approach as a more structured way of describing schema
evolution in ODBMSs. Orion defines a complete set of invariants and a set of accompanying
rules for maintaining the invariants over schema changes. The work of Smith and Smith
[SS77] on aggregation and generalization sets the stage for defining invariants when subtypes
and supertypes are involved. Changes to schema in previous works are corrective in that

95

once the schema definitions are changed, the old definitions of the schema are no longer
traceable. In TIGUKAT, a set of invariants similar to those given in [BKKKS87] is defined.
However, changes to the schema are not corrective. The provision of time in TIGUKAT
establishes a natural foundation for keeping track of the changes to the schema. This allows
applications, such as CAD, to trace their design over time and make revisions, if necessary.

In handling temporal information, temporal object models (for example, [RS91, SC91,
WD92, KS92, CITB92, BFG97]) have focussed on managing the evolution of real-world
entities. The implicit assumption in these models is that the schema of the object database
is static and remains unchanged during the lifespan of the object database. More specifically,
the evolution of schema objects (i.e., types, behaviors, etc) is considered to be orthogonal to
the temporal model. However, given the kinds of applications that an ODBMS is expected
to support, the underlying temporal domain in the TIGUKAT temporal model has been
exploited to support schema evolution.

In the context of relational temporal models, Ariav [Ari91] examines the implications
of allowing data structures to evolve over time in a temporal data model, identifies the
problems involved, and establishes a platform for their discussion. McKenzie and Snod-
grass [MS90] develop an algebraic language to handle schema evolution. The language
includes functions that help track the schema that existed at a particular time. Schema
definitions can be added, modified, or deleted. Apart from the addition and removal of
attributes, the nature of the modifications to the schema and their implications are not
demonstrated. Roddick [Rod91] investigates the incorporation of temporal support within
the meta-database to accommodate schema evolution. In [Rod92], SQL/SE, an SQL exten-
sion that is capable of handling schema evolution in relational database systems is proposed
using the ideas presented in [Rod91]. The approach used in the TIGUKAT temporal object
model is similar in the sense that temporal support of real-world objects is extended in a
uniform manner to schema objects, and then used to support schema evolution. Some of
the ideas in [Rod91, Rod92, Rod95] have been carried forward in the design of the TSQL2
temporal query language [Sno95b)].

Skarra and Zdonik [SZ86, SZ87] define a framework within the Encore object model for
versioning types as a support mechanism for changing type definitions. A type is organized
as a set of individual versions. This is known as the version set of the type. Every change
to a type definition results in the generation of a new version of the type. Since a change
to a type can also affect its subtypes, new versions of the subtypes may also be generated.
This approach provides fine granularity control over schema changes, but may lead to inef-
ficiencies due to the creation of a new version of the versioned part of an object every time
a single attribute changes its value. In TIGUKAT, any changes in type definitions involve
changing the history of certain behaviors to reflect the changes. For example, adding a new
behavior to a type changes the history of the type’s interface to include the new behavior.
The old interface of the type is still accessible at a time before the change was made. This
alleviates the need of creating new versions of a type each time a type changes.

96

4.1.3 Schema Related Changes

There are different kinds of objects modeled by TIGUKAT, some of which are classified
as schema objects. These objects fall into one of the following categories: type, class,
behavior, function, and collection. There are three kinds of operations that can be performed
on schema objects: add, drop and modify. Table 4.1 shows the combinations between
the various schema object categories and the different kinds of operations that can be
performed in TIGUKAT [Pet94, P697]. The bold entries represent combinations that
implicate schema changes while the emphasized entries denote non-schema changes.

Operation
Objects Add (A) Drop (D) Modify (M)
Type (T) subtyping type deletion add behavior(AB)
drop behavior(DB)
add supertype link(ASL)
drop supertype link(DSL)
Class (C) class creation class deletion extent change
Behavior (B) behavior definition behavior deletion change association(CA)
Function (F) function definition function deletion implementation change
Collection (L) || collection creation | collection deletion ertent change

Table 4.1: Classification of schema changes.

In the context of a temporal model, adding refers to creating the object and beginning
its history, dropping refers to terminating the history of an object, and modifying refers
to updating the history of the schema object. Since type-related changes form the basis
of most other schema changes, the modifications that affect the type schema objects are
described. Type modification (depicted at the intersection of the M column and T row
in Table 4.1) includes several kinds of type changes. They are separated into changes in
the behaviors of a type (depicted as MT-AB and MT-DB in Table 4.1) and changes
in the relationships between types (depicted as MT-ASL and MT-DSL in Table 4.1).
[nvariants for maintaining the semantics of schema modifications in TIGUKAT are described
in [Pet94, POQT]. The invariants are used to gauge the consistency of a schema change in
that the invariants must be satisfied both before and after a schema change is performed.

The meta-model of TIGUKAT is uniformly represented within the object model itself,
providing reflective capabilities [P093]. One result of this uniform approach is that types
are objects and they have a type (called T_type) that defines their behaviors. T_type
defines behaviors to access a type’s interface (B-interface), its subtypes (B_subtypes), its
supertypes (B_supertypes), plus many others that are not relevant for the scope of this
chapter. Since types are objects with well-defined behaviors, the approach of keeping track
of the changes to a type is the same as that for keeping track of the changes to objects
discussed in Chapter 3. This is one of the major advantages of the uniformity of the object
model. The semantics of the changes to a type are discussed in the following sections.

97

4.1.4 Changing Behaviors of a Type

Every type has an interface which is a collection of behaviors that are applicable to the
objects of that type. A type’s interface can be classified into two disjoint subsets:

1. the collection of native behaviors which are those behaviors defined by the type and
are not defined on any of its supertypes;

2. the collection of inherited behaviors which are those behaviors defined natively by

some supertype and inherited by the type.

There are three behaviors defined on T_type to return the various components of a type’s
interface: B_native returns the collection of native behaviors, B_inherited returns the in-

herited behaviors and B_interface returns the entire interface of the tvpe.

Types can evolve in different ways. One aspect of a type that can change over time is the
behaviors in its interface (i.e., adding or deleting behaviors). To keep track of this aspect
of a type's evolution, histories of interface changes are defined by extending the interface
behaviors with time-varying properties. The definition of the extended behaviors are as
follows:

B_native : Thistory(T.collection(T behavior})
B_inherited : Thistory(T.collection(T behavior}
B.inter face : Thistory(T.collection(T behavior}

Each behavior now returns a collection of a collections of timestamped behaviors.
Adding a new behavior to a type changes the history of the type's interface to include
the new behavior. The old interface of the type is still accessible at a time before the
change was made.

Note that separate histories for each of these behaviors need not be explicitly maintained.
For example. in an implementation one can choose to maintain only the native behaviors
of a type. The entire interface of a type can be derived by unioning the native behaviors
of all the supertypes of the type. The inherited behaviors can be derived by taking the
difference of the interface and the native behaviors of the type. As another alternative,
one may choose to maintain the interface of a type and derive the native and inherited
behaviors. In this approach, the native behaviors of a type can be derived by unioning the
interfaces of the direct supertypes and subtracting the result from the interface of the type.
The inherited behaviors can be derived in the same way as above.

With the time-varying interface extensions, one can determine the various aspects of a
type's interface at any time of interest. For example, Figure 4.1 shows the history of the
entire interface for the type T_person.

At time ¢, behaviors B_name, B_birthDate. and B_age are defined on T_person and the
initial history of T_person’s interface is {<to, { B.name. B_birthDate, B_age}>}. At time
ts, B_spouse is added to T_person. To reflect this change. the interface history is updated
to {<to. {B_name, BbirthDate, B_age}>, <ts.{B_name, B_birth Date, B_age, B_spouse}>

98

£

| tmestampedehvaa | |tmesuipadanvcons |

B_timeStamp B_value

ls.blrmo-t'- l |s_birtnoata | [8:epouse. | | B.bithDate | B.chidun

Figure 4.1: Interface history of type T_person.

}. This shows that between to and t5 only behaviors B_name, B_birthDate, and B_age
are defined and at t5 behaviors B_name, B_birthDate, B_age, B_spouse exist. Next, at
time ¢)9, behavior B.age is dropped from type T_person and at the same time behav-
ior B_children is added. The final history of the interface of T_person after this change
is {<tg, { B_name, B_birthDate, B_age}>, <ts, { B_name, B_birthDate, B_age, B_spouse}>
» <ti0, { B-name, B_birthDate, B_spouse, B_children}>}?. The native and inherited behav-
lors would contain similar histories. Using this information, one can reconstruct the interface
of a type at any time of interest. For example, at time ¢3 the interface of type T_person
was {B_name, B_birthDate, B_.age}, at time t5 it was {B_name, B_birthDate, B_age,
B_spouse}, and at time t)o (now) it is {B_name, B birthDate, B_spouse, B _children}.
The behavioral changes to types include the MT-AB and MT-DB entries of Table 4.1.
These changes affect various aspects of the schema and have to be properly managed to

ensure consistency of the schema.

Modify Type - Add Behavior (MT-AB). This change adds a native behavior b to a
type T' at time t. The MT-AB change has the following effects:

e The histories of the native and interface behaviors of type T need to be up-
dated. The T.B_native.B_insert(b,t) and T.B_inter face.B_insert(b,t) behav-
ior applications perform this update. For example, the behavior application

*Note that in Figure 4.1 objects that are repeated in the timestamped collections are actually the same
object. For example, the B_name object in all three timestamped collections is the same object. It is shown
three times in the figure for clarity.

99

T_person.B.interface.B_insert(B_spouse,ts) updates the interface history of the
type T_person when behavior B_spouse is added to T_person at time ¢s.

e The implementation history of behavior b needs to be updated to associate it with
some function f. This is achieved by the b.B.implementation.B_insert(f,t) be-
havior application (details on implementation histories of behaviors are given in
Section 4.1.5). For example, if the function associated with behavior B_spouse
is the stored function Sspouse, then the implementation history of B_spouse is
updated using the B_spouse.B.implementacion.B_insert(s,pou,c,t5) behavior ap-

plication.

e The history of inherited and interface behaviors of all subtypes of type T needs
to be adjusted. That is, VT’ | T subtype-of T,

T'.B-inherited.B_insert(b, t) and T'.B-z'nterface.B_insert(b.t)

For example, the histories of inherited and interface behaviors of types T_employee
and T_patient (see Figure 3.1) need to be adjusted to reflect the addition of

behavior B_spouse in type T_person at time ts. For T.employee, this is accom-

plished by the behavior applications T_employee.B._in terface.B_insert(B_spouse,ts)
and T_employee.B.nherited.B_insert(B_spouse.ts). Similar behavior applica-

tions are carried out for T_patient.

Modify Type - Drop Behavior (MT-DB). This change drops a native behavior b from
atype T at time t. When a behavior is dropped, its native definition is propagated to
the subtypes unless the behavior is inherited by the subtype through some other chain.
In this way, as with the supertypes, the subtypes of a type also retain their original
behaviors. Thus, only the single type involved in the operation actually drops the
behavior and the overall interface of the subtypes and supertypes are not affected by
the change. Many behavior inheritance semantics are possible. One such semantics is
that when a native behavior is dropped from a type, all subtypes retain that behavior.
This means that if another supertype of the subtype defines this behavior, there is
no change. Otherwise, the behavior in the subtype moves from the inherited set to
the native set. This is the semantics that is modeled in this thesis. If any other
behavior inheritance semantics are used, appropriate changes can easily be made to
the temporal histories. The MT-DB change has the following effects:

e The native behaviors history of type T changes. The behavior application
T.B_native.B_remove(b, t) performs this update. For example, the behavior ap-
plication T_person.B_native.B_remove(B.age,t)o) updates the history of native
behaviors of T_person when the behavior B_age is dropped from type T_person.

e The native and inherited behavior histories of the subtypes of T (possibly)
change. For example, the T_employee.B._native.B_insert(B_.age,t;o) and

100

T_employee.B.inherited.B_remove(B.age,t,o) behavior applications add behav-
ior B.age to the native behaviors of T_employee, and drop behavior B_age from
the inherited behaviors of T_employee respectively, when B_.age is dropped from
T_person at tjg. This is because B_age is not inherited by T_employee through
any other chain. If B.age was inherited by T_employee from some other super-
type, nothing would change. Similar behavior applications are carried out for

type T_patient.

4.1.5 Changing Implementations of Behaviors

Each behavior defined on a type has a particular implementation for that type. The
B_implementation behavior defined on T_behavior is applied to a behavior, accepts a type
as an argument and returns the implementation (function) of the receiver behavior for the
given type. In order to model the aspect of schema evolution that deals with changing the
implementations of behaviors on types. the history of implementation changes is maintained
by extending the B_implementation behavior with time-varying properties. The definition

of the extended behavior is as follows:
B_implementation : T_type — T history(T_function)

With this behavior one can determine the implementation of a behavior defined on a type
at any time of interest. For example, Figure 1.2 shows the history of the implementations

for behavior B_name on type T_person.

B_name’
B_implementation (T_person)

functionistory -

B_history
{}

€ €
€

B_timeStalV B_value B_timeSth B_value B_value
Ty KN | | sl 8

Figure 1.2: Implementation history of behavior B_.name on type T_person.

In Figure 1.2, ¢; denotes a computed function, s; to denote a stored function (computed
and stored functions are described in more detail in Section 4.2.3) . At time t,. the imple-
mentation of B_name changed from the computed function ¢, to the computed function c3.

101

At time ¢4, the implementation of B_name changed from the computed function c3 to the
stored function s;. All these changes are reflected in the implementation history of behavior
B_name. which is {<to, c1>, <tq, €3>, <ty, s1>}.

Using the results of this section and Section 4.1.4, we can reconstruct the behaviors,
their implementations and the object representations® for any type at any time ¢. For
example, the interface of type T_person at time ¢3 is given by the behavior application
T_person.[t3]B_interface which results in {B_name, B_birthDate, B_name}, as shown in
Figure 4.1. The syntax o.[t]b is used to denote the application of behavior b to object o at
time ¢. The implementation of B_name at time ¢5 is given by the behavior application
B_name.[t3)B.implementation(T_person) which is c3, as shown in Figure 4.2.

If the binding of a behavior to a function changes in a type, one semantics is that the
bindings of that behavior in the subtypes are unaffected. That is, there is no implementation
inheritance. This is the semantics modeled in this thesis. If implementation inheritance is
desired. it can easily be modeled by temporal histories similarly to behavioral inheritance.

4.1.6 Changing Subtype/Supertypes of a Type

The changes in a type's interface, described in Section 4.1.4. is one aspect in which a type
evolves. Another aspect of a type that can change over time is the relationships between
types. These include adding a direct supertype link and dropping a direct supertype link.
The B_supertypes and B_subtypes behaviors defined on T_type return the direct supertypes
and subtypes of the receiver type, respectively. In order to model the structure of the type
lattice through time, we define histories of supertype and subtype changes of a type by
extending the B_supertypes and B_subtypes behaviors with time-varying properties:

AN

B_supertypes : Thistory(T-collection(T_type))

ARY

B_subtypes : Thistory(T.collection(T.type))

Using the B_supertypes and B_subtypes behaviors. one can reconstruct the structure of a
type’s supertype and subtype lattice at any time of interest. To facilitate this, the derived
behaviors B_superlattice and B_sublattice are defined on T_type:

B_superlattice : Thistory(T_poset(T.type))

B_sublattice : Thistory(T.poset(T.type})

The behavior B_superlattice is derived by recursively applying B_supertypes until T_object
is reached. while the behavior B_sublattice is derived by recursively applying B_subtypes
until Tnull is reached. In both cases, the intermediate results are partially ordered. Fig-
ure 4.3 shows the supertype lattice history for type T_employee.

3Stored functions associated with behaviors allow one to reconstruct object representations (i.e., states of
objects) for any type at any time ¢. This is useful in propagating changes to the underlying object instances
as shown in Section 4.2.

102

T-emloyes

B_superlattice

ooty
B_history
{}
£ £
timeStampedSLCollA
B_tisztcn/ lB__ualue
S € SN 1
to (} | T_person |
& T_object.
T_taxSource-

Figure 4.3: Supertype lattice history for type T_employee.

At time o, the superlattice history of type T_employee includes the types T_person,
T_taxSource, and T_object. At time ts5, the supertype link between T-employee and
T_taxSource is dropped. To reflect this change, the superlattice history of T_employee
is updated to {<tq, {T-person, T_taxSource, T.object}>, <ts, {T-person, T_object}>}.

The relationships between types include the MT-ASL and MT-DSL entries of Ta-
ble 4.1. Similar to the behavioral changes to types discussed in Section 4.1.4, the relation-
ships between types affect various aspects of the schema and have to be properly managed

to ensure consistency of the schema.

Modify Type - Add Supertype Link (MT-ASL). Add a type, say S, as a direct su-
pertype of another type, say T at time t. The MT-ASL change has the following

effects:

e The history of the collection of supertypes of type T is updated. The behavior
application T.B_supertypes.B_insert(S,t) performs this update. The history of
the super-lattice of T is adjusted accordingly. For example, adding the supertype
link between T_employee and T_taxSource at ¢y necessitates an update to the
history of supertypes for T_employee. This is done by the behavior application
T_employee.B.supertypes.B.insert(T_taxSource,to). The history of the direct
supertypes of T_employee would then be {<tq, {TtaxSource}>}.

® The history of the collection of subtypes of type S is updated. The behavior ap-
plication S.B_subtypes.B_insert(T,t) performs this update. The history of the

103

sub-lattice of S is adjusted accordingly. In this case, the history of the collection
of subtypes of T_taxSource has to be updated. This is done by the behavior ap-
plication T_taxSource.B_subtypes.B_insert(T_employee.ty). The history of the
direct subtypes of T_taxSource would then be {<tq, {T.employee}>}.

e The behaviors of S are inherited by T and all the subtypes of T. Therefore, the
inherited behavior history of T and all subtypes of T is adjusted. The current
behaviors of S are inherited by T and all subtypes of T, and timestamped with
t. That is, Vb € S.B_inter face.B_history.B_last, and VT’ | T' subtype-of T,
T'.B_inherited.B_insert(b.t). Behavior B_last returns the collection of behav-
iors that are currently valid from the interface history of S. Assume that
T_taxSource has the behavior B_taxBracket defined at ty. B_taxBracket then has
to be added to the history of inherited behaviors of T_employee. This is done
by the behavior application T_employee.B_inherited.B_insert(B_taxBracket,tg).
The history of the inherited behaviors would then be {<t,. {B_name. BbirthDate.
B_age. B taxBracket}>}. Behaviors B_name,B_birthDate B_age are inherited
from type T_person (see Figure 4.1), while behavior B_.taxBracket is inherited

from type T_taxSource.

Modify Type - Drop Supertype Link (MT-DSL). Drop a direct supertype link be-
tween two types (a direct supertype link to T_-object cannot be dropped) at time ¢.
Consider types T and S where S is the direct supertype of T. Then, removing the
direct supertype link between T and S at time ¢ has the following effects:

e Adjust the history of supertypes of T and the history of subtypes of S. For
example, dropping the supertype link between T_employee and T.taxSource
at ¢5 requires updating the history of supertypes of T_employee and history
of subtypes of T_taxSource. This is carried out using the behavior applications
T_employee.B_supertypes.B_remove(T taxSource.ts) and T_taxSource.B_subtypes.
B_remove(T_employee.ts).

e The MT-ASL operation is carried out from T to every supertype of S, unless T
is linked to the supertype through another chain. This operation is not required
when the supertype link between T_employee and T_taxSource is dropped be-
cause T_employee is linked to the supertype of T_taxSource (T_object) through
T_person.

e The MT-ASL operation is carried out from each subtype of T to S. unless the

subtype is linked to S through another chain. This operation requires adding a
supertype link between T_null and T_taxSource.

¢ The native behaviors of S are dropped from the interface of T. That is, the his-
tory of inherited behaviors of T is adjusted. This means the behavior B_taxBracket.
defined natively on T_taxSource, has to be dropped from the history of inherited

104

behaviors of T_employee. The T_employee.B.inherited.B_remove(B_taxBracket,ts)
behavior application performs this operation.

4.1.7 Querles

In this section several queries are constructed using the TIGUKAT query language (TQL)
[PLOSQS] (described in Section 3.6.4.1) to retrieve schema objects at any time in their
evolution histories. This gives software designers a temporal user interface which provides
a practical way of accessing temporal information in their experimental and incremental
design phases. TQL incorporates reflective temporal access in that it can be used to retrieve
both objects, and schema objects in a uniform manner. Hence, TQL does not differentiate

between queries (which query objects) and meta-queries (which query schema objects).

Example 4.1 Return the time when the behavior B_children was added to the type T_person.
select b.B_timestamp

from b in T_person.B.interface.B_history

where B_children in b.B_value

The result of this query would be the time t;¢ as seen in Figure 4.1. O

Example 4.2 Return the types that define behaviors B_age and B_taxBracket as part of
their interface.
select T
from T in C_type
where (b1 in T.B_interface.B_history and B_age in b1.B_value) or

(62 in T.B_interface.B_history and B_taxBracket in b2.B_value)
This query would return the types T_person, T_taxSource, T_employee, and T_null. The
type T_person defines behavior B.age natively (see Figure 4.1), while the type T_taxSource
defines behavior B_taxBracket natively. The behaviors B_age and B_taxBracket are inher-
ited by types T_employee and T_null since they are subtypes of T_person and T_taxSource

as shown in Figure 3.1. O

Example 4.3 Return the implementation of behavior B_age in type T_person at time ¢,.
select i.B_value

from i in B_age.B_implementation(T_person).B_history

where i.B_timestamp.B_lessthaneqto(t,)

The behavior B_lessthaneqto is defined on type T_timeStamp and checks if the receiver
timestamp is less than or equal to the argument timestamp. The result of the query is the

computed function ¢; as shown in Figure 4.4. O

Example 4.4 Return the super-lattice of type T_employee at time ¢;.
select r.B_value
from 7 in T_employee.B_super-lattice.B_history

105

where r.B_timestamp.B_lessthaneqto(t;)
The super-lattice of T_employee at t3 consists of the types T.person, T_taxSource, and
Tobject. This is shown in Figure 4.3. O

Example 4.5 Return the types that define behavior B_age with the same implementation
as one of their supertypes.
select T
from T in C_type, S in T.B_supertypes.B_history,

i in B_age.B.implementation(T).B_history,

Jin B.age.B.implementation(S.B_value).B_history
where b in S.B_value.B_interface.B_history and B_age in b.B_value and

i.B_value = j.B_value and i.B_timestamp = J.B_timestamp

This query would return the types T_employaee, T_patient, and T_null, assuming the im-
plementation of behavior B_age is not changed when it is inherited by these types. O

4.2 Semantics of Change Propagation

4.2.1 Overview

In this thesis, change propagation is performed lazily. When a behavior is re-associated
with a different implementation, the old implementation is maintained and the change is
recorded in the implementation history of the behavior. When a behavior is applied to
an object at a particular time, it is coerced to the changed implementation, if it has not
already been updated. The old implementations of the behavior are still maintained by the
implementation history. Thus, one can still run historical queries on objects. Several algo-
rithms are presented that dynamically fetch the correct implementation (function/method)
of a behavior and apply it to the correct representation of an object during a behavior
application process at a given time.

A novel characteristic of the change propagation approach presented in this thesis is
that the granularity of object coercion is based on individual behaviors. That is, individual
behaviors defined on the type of an object can be coerced to a new definition for that object
when the object is accessed, leaving the other behaviors to retain their old definitions. Con-
verting one behavior at a time gives more flexibility, since implementations are associated
with individual behaviors. If an implementation of a behavior changes, one does not need to
coerce the rest of the behaviors in that type. Since behaviors are used to model attributes,
the same is true for structural changes. Furthermore, a historical record of the coerced
behaviors is maintained for each object so that older definitions of the behaviors can still
be accessed for each object. Complete object coercion takes place when all behaviors of a
type have been accessed. This is in contrast to other models where an object is converted
in its entirety to a changed type [PS87, BKKKS87, FMZ%95]. This means that for every
behavior modification that takes place in a type, default conversion functions are defined

106

for all unmodified behaviors in that type. Furthermore, the old information of the object
is lost. Since the model used to handle change propagation in this thesis is time based,
the old information of the object is available so even if objects are coerced to a changed
type. historical queries can be run by giving an appropriate time point sometime in the past
history of the object.

4.2.2 Related Work

In addition to modifications to schema, a system must define how schema changes are
reflected in the instances. In order for the instances to remain meaningful, either the
relevant instances must be coerced into the new definition of the schema or a new version of
the schema must be created leaving the old version intact. Three main approaches have been
identified and employed in the past. Immediate (conversion) and deferred (lazy, screening)
propagate changes to the instances - only at different times - while filtering is a solution for
versioning which attempts to maintain the semantic differences between versions of schema.
A fourth approach is to combine the above three methods into a hybrid model. The various

techniques are summarized below.

¢ Immediate: Each schema change initiates an immediate conversion of all objects
affected by the change. This approach causes delays during the modification of
schema, but no delays are incurred during access to objects. GemStone [PS87] and O,
[FMZ+95] systems report the use of immediate conversion for schema change propa-
gation. In O3, immediate conversion is implemented using the algorithm defined for

deferred conversion.

¢ Deferred: Schema changes generate a conversion program that is capable of con-
verting objects into the new representation. The conversion is not immediate; but
is delayed until an instance of the modified schema is accessed. Object access is
monitored and whenever an object is accessed, the conversion program is invoked, if
necessary, to convert the object into the new definition. The conversion programs
resulting from multiple independent changes to a type are composed, meaning access
to an object may invoke the execution of multiple conversion programs where each
one handles a certain change to the schema. Deferred conversion causes delays dur-
ing object access. ORION [BKKKS87] uses this approach and OTGen [LH90] uses it
for database reorganization. In O, [FMZ94, FMZ*95), implementation strategies are
defined for conversion functions implemented as deferred database updates.

e Filtering: In the filtering approach, changes are never propagated to the instances.
Instead, objects become instances of particular versions of the schema. When the
schema is changed, the old objects remain with the old version of the schema and
new objects are created as instances of the new one. The filters define the consistency
between the old and new schema versions and handle the problems associated with

107

behaviors written according to one version accessing objects of a different version.
Error handlers are one example of filters. They can be defined on each version of
the schema to trap inconsistent access and produce error and warning messages. The
Encore model [SZ86] uses type versioning with error handlers as a filtering mechanism.
The Avance [BH89] system adopts a similar approach to Encore. Exception handlers
are defined as filters to cope with mismatches between different versions. Both Encore
and Avance use emulation to present old instances as if they are new ones. It is
not possible to associate additional storage with existing attributes since all objects
are strictly connected to the version in which they were created. As such additional
attributes would necessarily be read-only and have a fixed, default value. This problem
is remedied in CLOSQL [MS92] where objects are allowed to dynamically change the
class version with which they are connected. Each attribute of an object has update
and backdate functions (provided by the user) for converting objects into different
formats. However, the overhead of the conversion process and the added responsibility
on the user are quite significant in CLOSQL.

e Hybrid: A hybrid approach combines two or more of the above methods. GemStone
mentions an effort to incorporate a hybrid approach, but currently we are unaware of
such a system implementation. In Sherpa [NR89], schema changes are propagated to
instances through conversion or screening, which is selected by the user. However, only
the conversion approach is discussed. Change propagation is assisted by the notion
of relevant classes. A relevant class is a semantically consistent partial definition of a
complete class and is bound to the class. A relevant class is similar to a type version

in [SZ86] and a complete class resembles a version set.

Although numerous approaches have been proposed for propagating different schema changes
to object instances, the schema change that involves changing the implementation of a
behavior, and how it affects the underlying object structure has not been addressed com-
prehensively. In this thesis, a deferred approach that uses a finer grained filtering based
on behavior histories is used as the underlying mechanism for behavior implementation
change propagation. The approach also allows for immediate behavior coercion to reflect
the changed schema. This makes it feasible for the system to take a more active role by
using deferred object coercion as the default and switching to immediate object coercion
whenever the system is idle.

In systems that use immediate or deferred object coercion, the entire object must be
converted upon coercion and in the systems that don’t define versions of schema, the old
state of the object is lost. The approach in this thesis differs in that the granularity of
object coercion is based on individual behaviors. That is, an individual behavior of an
object’s type can be coerced to a new definition for that object, leaving the other behaviors
to retain their own definition. Furthermore, a historical record of the coerced behaviors is
maintained for each object so one can access the older definitions of the behaviors for each

108

object. Complete object conversion takes place only if all behaviors defined in the type of
the object have been coerced. This results in considerable savings of work.

4.2.3 Changing Implementations of Behaviors

There are two kinds of implementations for behaviors (Pet94]. A computed function consists
of runtime calls to executable code and a stored function is a reference to an existing object
in the object database. Thus a behavior with a computed function implementation can be
considered an abstraction of a method in classical object models, whereas a behavior with
a stored function implementation is an abstraction of an attribute (with getter and setter
functions). The valid implementation changes for behaviors are shown in Table 4.2. The
notation computed; (c;) and stored; (s;) refer to computed and stored functions respectively.
The subscripts i and j are used to denote distinct functions. The term undefined is for the
case when the behavior is undefined. The combinations computed; to computed; and stored;
to stored; (which imply changes to the function code) are not included in the table because
these do not reflect changes in function association. The emphasized entries represent user-
level changes (i.e., by the schema designer) and the bold entry is a system-level change for
reorganizing the internal representation of objects.

Old Implementation | New Implementation
CC | computed; computed;
CS | computed; stored;
SS | stored; stored;
SC | stored; computed;
US | undefined stored;
UC | undefined computed;

Table 4.2: Valid implementation changes of a behavior in a type.

With the B.implementation behavior (defined in Section 4.1.5) we can determine the im-
plementation of a behavior defined on a type at any time of interest. For example, Figure 4.4
shows the history of the implementations for behaviors B_birthDate and B_age on type
T_person. A timeline representation and the result of B_birthDate.B_implementation(T_person).
B_history and B.age.B.implementation(T_person).B_history are shown. The implementa-
tion histories of B_birthDate and B_age return a collection of timestamped function objects.
The value of each timestamped function is a computed or stored function. The timestamp of
each timestamped function denotes the time interval during which the particular implemen-
tation is valid. The interface history of T_person is also shown for clarity. The B_interface
behavior is defined in T_type and returns a history of the evolution of behaviors in a type.
Each timestamped object in the history consists of a collection of behaviors that are valid
during the associated time interval.

[n the timeline representation, B_X:c; or B_X:s; denotes the association of a computed
or stored function with behavior B_X. Moreover, for stored functions the subscript ¢ refers

109

to a location (e.g., a slot number) in an object representation that the stored function
accesses. Each association is valid at a certain time ¢ and remains valid until it is modified
or removed. An object representation (i.e., the state of an object) consists of a number
of slots for holding information carried by the object. The representations of objects at
different times according to the stored functions associated with behaviors at those times
are depicted by the boxes labeled with behaviors. For example, between times ¢ and tg, the
object representation consists of two slots — the first slot is for the stored implementation
of behavior B_age and the second is for B_birthDate. Between times tg and t)q, the object
representation consists of only one slot which is for B_birthDate, since during this interval,
B.age is associated with the computed function, c,.

ty t ty tg tg o t12
B_birthDate: q B_birthDate: L B_birthDate: s 3 B_birthDate: s B_age: <, B_age:s 2 B_birthDate: s
B_age: sy B_age: Sy B_age: Sq
I- """""" 1
B_age B_birthDate | |B_birthDate | [B_birthDate || B.age kK

B_birthDate B_age B_age

Implementation history of behavior B_birthDate for type T_person:
I<lty .ty)ocp >, <[ty .ty dey >, <ty tg desy > <ltg tyy)sy >, <ltyy mow], c5 >

Implementation history of behavior B_age for type T_person:
l<lt, e dosy > <ftg ,ty), 532, <[ty g ey >, <[tm Stz)sy >, <[t12 , now],s, >}

Interface history of type T_person:
l<[t" ~now |, {B_birthDate , B_age}>}

Figure 4.4: Implementation histories of behaviors B_birthDate and B_age for type T_person
and object representations.

Figure 4.4 is used to describe how the implementation changes in Table 4.2 are main-
tained by implementation histories. Prior to time g both behaviors are undefined and at
time to, B_age is defined as stored (I/S) and B_birthDate is defined as computed (UC). At
time t;, the implementation of B_birthDate changes from the computed function ¢; to the
computed function c3 (C'C). At time ¢, the implementation of B_birthDate changes from
the computed function c3 to the stored function s, (CS). At time tg, the implementation of
B_birthDate changes from the stored function s; to the stored function s1 (SS) and B.age
changes from s; to s, (5S). At time ts, the implementation of B.age changes from the
stored function s, to the computed function ¢, (8C).

Note that at time t;3 the behavior B_birthDate changes from the stored behavior s;
to the computed behavior c5. Since all object representations at time £, require only one
slot, the change to B_birthDate forces a change to B_age so that at time ¢,, behavior B_age
accesses slot one instead of slot two. Furthermore, the implicit implementation change of

110

B_age is from a stored function to a stored function (§5) which is a system managed change
and therefore is transparent to the user. The implicit implementation change of B_age is
reflected in its history by the two entries <[ti0,t12), 52> and <[t;2, now], s;>. In general, the
slots of an object representation are reorganized (i.e., an implicit change occurs) whenever
a stored to computed implementation change removes a slot other than the last slot of an
object’s representation. The system can also rearrange slots as part of an implementation
change, necessitating internal system organization as at 4.

Using the results of this section, one can reconstruct the implementations of behav-
iors, and the object representations for any type at any time ¢{. The implementation of
B_birthDate at time t; (where tg < t- < tg) is given by B_birthDate.[t7] B_implementation
(T-person) which is s;. Similarly, the implementation of B_age at time t; is given by the
behavior application B.age.[t7]B_implementation(T_person) which is s;. Since there are
two stored functions, this implies a two slot representation for objects at time ¢;. That is,
B_birthDate accesses slot one using stored function s1 and B_age accesses slot two using

stored function s,.

4.2.4 Change Propagation

The behaviors that are applicable to an object at creation is the set of behaviors that are
defined on its type. The implementations of these behaviors are those which exist in the
implementation histories for the type at creation time (which can be obtained by means of
the B_created behavior defined on T_object).

When changes occur to the type definition and behavior implementations, they do not
immediately get propagated to the instances. Instead, the old version of the schema is
maintained and the change is recorded in the proper behavior histories (as described in
Sections 4.1.4 and 4.1.5) The propagation of changes to the instances is delayed until the
instances are accessed. This occurs when a behavior is applied to an object. At that point
in time, the behavior is coerced to reflect the implementation changes that have occurred
on the behavior since the last behavior application. These changes are recorded in the
B_changes behavior which is defined in T_type. The signature for B_.changes is as follows:

B_changes : T-1list(T.timeStamp, T .behavior)

The result of B_changes is a list of (timestamp, behavior) pairs. Each pair denotes the
time at which the implementation for the behavior has changed. The B_changes list is used
by the behavior dispatch routine (defined in Section 4.2.5) to determine the most recent
coercion time of the behavior that is applied to an object. The time is used as a reference
point for finding an appropriate implementation of the behavior.

A novel characteristic of the model presented in this thesis is that the basic unit of
object coercion is individual behaviors. More specifically, objects from the older schema

are coerced to the newer schema one behavior at a time. Thus, portions of an object (i.e.,

111

some behaviors) may correspond to older schema, while other portions correspond to newer
schema.

[n order to model the representations of an object over time (resulting from changes
to its structure), the T_history mechanism that is described in Chapter 3 is used. For
example, type T_person = T history(T _person’) is created to maintain the representations
of a person over time. Therefore, if joe is an object of type T_person, then joe represents
the history of its different structural changes over time. The value of each timestamped
object in an object o of type TX = Thistory(TX') is called a representation object of o.
and is of type TX'.

[n this thesis the notation T-history(TX’) is used to denote a type whose schema
changes are recorded. However, an actual user of the ODBMS would simply use the notation
TX and indicate at type creation time that the schema changes should be recorded for this
type. The ODBMS would then create T_X as T history(TX') and the user would never deal
directly with TX’. However, the notation Thistory(TX’) will continue to be used in this
thesis to show how the model and algorithms for schema changes can be defined using only
the existing TIGUKAT temporal model and without introducing any new concepts. The
user does not actually see or use T history.

Whenever a change to the representation of an object occurs due to coercion of one
of the behaviors of its base type!, the change is recorded by updating the history of its
structural changes. Thus, an object of type T history(TX') is generic in the sense that
it consists of all its representation objects over time. This is called the generic instance
of the object. The default representation object of a generic instance is the most current
representation object in the history of its structural changes. The individual representation
objects in the history denote how the object existed at certain times in the past. Each
of these representation objects is called a structural instance of the object and has type
TX'. In essence the changes list of the type TX’ and the objects of type T_history(TX')

(potentially) “grow” with each behavior application.

Example 4.6 Consider Figure 4.5, which contains the object joe created as an instance
of type T-history(T.person’). Assuming no behavior application has occurred, the figure
shows the created time and the representation objects of joe. It also shows the changes list
of T_person®. The notation 0Qt; is used to denote the structural instance of an object o
at time ¢;. Object joe is created at time tq. The default properties and implementations
for this object are those that exist at time to, namely, B_birthDate:c; and B_age:s; (see
Figure 4.4). There are no entries in the changes list of T_person since no coercion of any
behaviors of T_person’ has taken place yet. Therefore, joe has only one structural instance
Joe@tg, the representation object that existed at the creation time of joe.
Now suppose joe is accessed at time - through the behavior application joe.[t7] B_birth Date.

The B_birthDate behavior is coerced to a version at t7, and joe is updated. These changes

‘The base type of an object o of type T_history<T.X’> is the type TX".
5The changes list of T_person, is actually computed from the base type as T_person’. B_changes.

112

joe.B_created = t¢g
joe.Bhistory = {<[to,now), joed@ty>}
T-person’.B.changes = {}

Figure 4.5: Initial representation of joe and changes list of T_person.

are shown in Figure 4.6.

to

{<[to, ts), joe@tg>, <[t4, tg), joe@ty>, <[t6, now],joe@ts>}
{<to, BbirthDate>, <ta, B.birthDate>, <t4, B birthDate>,
<te, BbirthDate>}

joe.B_created
joe.B_history
T.person’.B_changes

Figure 4.6: The representation objects of joe and the changes list of T_person after behavior
application of B.birthDate at time ¢-.

Since this is the first behavior application of B_birthDate on object joe, the B_changes
list of T_person is updated with the times of all implementation changes that took place on
behavior B_birthDate prior to time ¢-. From Figure 4.4 we see that these times are ¢, ¢,,
t4. and tg. The behavior coercions at times ty and t¢ lead to changes in the representation of
object joe. At ty, the implementation of B_birthDate changes from a computed to a stored
function and at tg, the implementation changes from a stored to a stored function. These
changes in structural representation are recorded in joe as shown in Figure 4.6. Note that
changes to B_age are not yet recorded since deferred coercion is used and B_age has not yet

been applied at ¢;. O

4.2.5 Temporal Behavior Dispatch

Having established the mechanism for maintaining the histories of the implementations of
behaviors for a type, and the representations of objects, the behavior dispatch process that
occurs when some behavior b is applied to an object o at given time ¢ is illustrated in this
section. This application is denoted as o.[t]b. The time component is optional and if left
out the current time now is assumed.

Figure 4.7 provides an overview of the dispatch process. Detailed explanations of the
various steps are given in the sections that follow. In general, a dispatch mechanism takes
a type and a behavior and returns the function associated with the behavior for the given
type [HS97]. In this thesis, the dispatch mechanism is extended to take a third argument
which is time.

A behavior application is first checked for temporal validity. It is considered valid if the
object o exists at time ¢ and behavior b is defined in the interface of o’s base type at time
t. Aninvalid behavior application produces an error and this is the only place an error can
occur. This is a good feature because errors are caught early in the dispatch process. After

113

o.[t]b

0. b, 4

Temporal Validity Check [nvalid
Ensure object o exists at time t [Error
Ensure base type of o defines b at time t

Valid
o, b,

i

Perform Behavior Coercion

Update B_changes
Update o

o,b.t

/

Find Representation 0@t
Useo

o b, t
Y

Find Implementation f
Use B_implementation history

f, o@tl

Apply f(o@t)

Figure 4.7: Dispatch process for applying a behavior b to an object o at time ¢.

the validity check, all behaviors will execute even in the presence of schema changes.

For a valid application, the B_changes list of the base type of o is updated. A search
is made in b.B_implementation for implementation changes that took place before or at
the same time as t. The B_changes list of the base type of o is then updated with all
implementation changes that have not yet been recorded in B_changes. Object o is then
updated if neccssary.

The appropriate representation object 0@t of o, and the appropriate implementation
f of b for the base type of o at time ¢ are then retrieved by indexing into o and the
B_implementation history of b, respectively. Finally, function f is applied to the represen-
tation object o@t¢.

4.2.5.1 Dispatch Semantics

In order for a behavior application to be valid, object o must exist at time ¢ and behavior
b must be defined in the interface of the base type of o at time t. The temporal validity
check algorithm, Algorithm 4.1, performs this test in the form of a logical expression.

Algorithm 4.1 Temporal Validity:
Input: An object o, a behavior b and a time ¢

Output: True if the application is valid, false otherwise

114

Procedure:

return
(t.B_within(o.B_lifespan(o.B_mapsto.B-classof.B_shallowE:rtent)14.1)
A Jz(z € o.B-mapsto.B_baseType.B-interface.B_history (4.2)
A t.B_within(z.B_timeStamp) (4.3)
A b € z.B_value)) (4.4)

The first part of the expression (4.1) checks that o exists at time ¢ by testing whether
time ¢ lies within® the lifespan of o in the class of its associated type. In the second part of
the expression, 0.B_mapsto.B.baseType.B_interface.B_history returns the interface history
for the base type of object o. This history is searched for an entry z that satisfies (4.3),
which checks that time ¢ lies within the timestamp of entry z, and (4.4), which checks that
behavior b is part of the collection of behaviors defined in the interface of the type at this
time. If all conditions are satisfied, the behavior application is valid.

If the validity test is satisfied, the next step is to coerce behavior b based on the imple-
mentation changes that took place prior to time ¢t. Algorithm 4.2 performs this operation.

Algorithm 4.2 Coerce:
Input: An object o, a behavior b and a time ¢
Procedure:
o.B_mapsto.B baseType.B _updateChangest, b.B.implementation(o.B_mapsto.B_baseType))

(4.5)
0.B_update Rep(t, b.B_implementation(o.B.mapsto.B.baseType)) (4.6)

In step (4.5), B_changes list of the base type of o is updated with the implementation
changes that took place on behavior b at or before time t. The B_updateChanges behavior,
defined on the T_type type, performs this update by taking ¢t and B.implementation of b as
arguments. [t searches B_implementation of b for implementation changes that took place
before or at the same time as ¢t and updates the B_changes list with all implementation
changes that have not yet been recorded in B_changes. For example, the behavior applica-
tion T_person’.B_updateChanges(tr, B.birth Date.B.implementation(T-person’)) updates
the B.changes list of the base type of joe (T-person’) during the behavior application
joe.[t7] B birthDate. The updated B_changes list is shown in Figure 4.6. The object o is
then updated if neccessary (4.6). The B_updateRep behavior, defined on the type of o,
performs this update. For each behavior implementation change at time ¢; that leads to a

®The B.within behavior is defined on T-anchPrim and checks whether one timestamp is within another

timestamp.

115

change in the representation of o, B_updateRep updates o with the appropriate represen-
tation object with respect to time ¢; and the time interval during which it was valid. The
behaviors applicable to the representation object are those which exist in the interface of
its type at ¢;. The implementations of these behaviors are those which exist in the imple-
mentation histories for the type at ¢;. The stored functions at t; determine the initial state
of the representation object.

Algorithm 4.3 performs the simple task of returning the appropriate representation

object of o at time ¢.

Algorithm 4.3 Representation:
Input: An object o and time ¢

Output: An object with its representation at time ¢

Procedure:
return o.B_validObject(t).B_value

The appropriate implementation f of b for the base type of o at time ¢ is then retrieved
from the B_implementation history of b. Algorithm 4.4 finds and returns this implementa-
tion.

Algorithm 4.4 Implementation:

Input: An object o, a behavior b and a time ¢
Output: The function that implements behavior b for object o at time ¢

Procedure:
return b.B_implementation(o.B_mapsto.B baseType) .B_validObject(t). B_value

A final step of the dispatch mechanism is the execution of the function returned from
Algorithm 4.4 to the representation object returned by Algorithm 4.3. The B_execute be-
havior is used on functions to accomplish this. The relationships between all the algorithms

are shown in Algorithm 4.5.

Algorithm 4.5 Dispatch:
Input: An object o, a behavior b and a time ¢

Output: An object resulting from the application o.[t]
Procedure:

if TemporalValidity(o,b,t) then
Coerce(o, b, t)
0@t « Representation(o, t)
f & Implementation(o, b, t)
f.B_ezecute(oQt)
else
INVALID: object o does not exist at time ¢
or behavior b not defined in the interface of o’s base type at time ¢

116

4.2.5.2 Dispatch Examples

For the following examples, consider Figure 4.8, which extends the timeline of type T_person
in Figure 4.4 by adding a behavior B_spouse with the computed implementation cg at time
t14 and dropping the behavior B.age at time ;5. Note that an object representation will not
change by adding behavior B_spouse and the representations will be empty after behavior
B_age is dropped. For this example, now > t4.

ty tH Y ts ty o 2 e te
l | | | | | | | |
l l I | I l l | l
8_birthDate: < B_birthDate: ¢ 3 B_birthDate Sy B_birthDate: 5 B _age: [B_gge: s 2 8_birthDate: [+ B_spouse - LA - B_age
B_uge: s, B_ngr:sz B_ﬂxt:s,
Bge | | BbithDute | (5 pirthDate] (B rnDute | | mae
B_birthDate B_age B8_age

B_btrtthtt.B_lmplzmmlatim (T. —person’)B_history
(<l .ty)y > <lty 1, hcy >, <lgtgdsy > <lg.tyy)s, >, <ky .now] cg >}

B_uge.B_implementation (T —person’)B_hustory
(<lty b5)5, >, <ltg .ty)5y >, <bg.tig)y > <k, g ksy sty sy o)

B_spouse.B_implementation (T person’)B_history
(<[I“ .now l,z"s >)

T_person’. B_inlnfna.BJnstory
{<lt, otyq). [B_birthDate . B_age l>,<[l“ oty) |B_birthDate .B_age . B_spouse)>,<(l’6 .now |, {B_birthDate ,B_spouse }>)

Figure 4.8: Example showing effects on implementation historjes of first adding and then

dropping a behavior.

Several example behavior applications using time are presented to show how the dispatch
process is followed in order to determine the proper implementation and state instance that
are appropriate at the given time of interest. We assume the behavior applications take
place in chronological order.

Example 4.7 Behavior application joe.[t;]Bbirth Date (assuming no previous behavior

application has taken place)

Validiiy: Object joe was created at time to and exists at time now. Therefore, the lifespan
of joe is the time interval [to, now]. Since ¢7 in within this interval (i.e., lifespan), the
object part of the behavior application is valid. The base type of joe is T_person’.
The interface of T_person’ at time t7 is {BbirthDate, B_age}. Since B_birthDate is
part of this interface, the behavior part of the application is valid and thus the validity

test is satisfied.

Coerce: The next step is to update the B_changes list of the base type of o and the
representation history of o. These updates are performed by the behavior applications
T_person’.B_updateChanges(t7, B_birthDate.B_implementation(T_person’)) and

117

joe.B-updateRep(t-;,B_birthDate.B_implementation(T_person')), respectively. The
updated B_changes list and representation history of o is shown in Figure 4.6.

Representation: The behavior application joe.B_validObject(t7).B_value returns Joe@tg,
which is the appropriate representation object of joe at time ¢7 (see Figure 4.6).

Implementation: The behavior application
B-birthDate.B-implementation('I’_person’).B.validObject(t-,-).B-value returns the ap-
propriate implementation of B_birthDate for type T_person at time ¢7, which is the

stored function s;.

Dispatch: To complete the dispatch of the behavior, the stored function s, is executed
using the representation object joe@ts as an argument. This will access the first slot
of the representation of joe at tg. The represenation of joe at ¢7 is the same as the one
at tg, so the behavior application accesses the appropriate birthdate slot of joe at ¢-.

a

Example 4.8 Behavior application joe.[ts] B_birth Date

The validity test is satisfied. The B_birthDate has already been coerced to the implemen-
tations at times tq and £, since the entries <to, BbirthDate> and <t,, B_birthDate>
exist in the changes list of T_person. Therefore, B_changes and o remain unchanged. The
representation object at {3 is joe@ty (see Figure 4.6) and the implementation chosen at ¢;
is the computed function c3. The function ¢ is then applied to joe@tq. O

Example 4.9 Behavior application joe.[t 5] B_birthDate

The validity test is satisfied. In Algorithm 4.2, the implementation change of B_birthDate
at time £;2 is recorded in the B_changes list, and the representation history for object joe
also changes since the implementation for B_birthDate changes from a stored function (time
tg) to a computed function (time t;5). Figure 4.9 shows the changes in B_changes and the

representation history of joe.

joe.B_created = (g

joe.B_history = {<[to,t4), joe@tg>, <[ts,ts), joe@t4>, <[ts,t12), joe@ts>,
<[t12, now], joe@t;,>}

{<to, BbirthDate>, <ta, B_birth Date>, <t4, B_birth Date>,
<ls, BbirthDate>, <ty2, B_birth Date>}

T-person’.B_changes

Figure 4.9: The representation objects of joe and the changes list of T_person after behavior
application of B_birthDate at time ¢5.

The appropriate implementation for B_birthDate at t,,, which is the computed function
¢s, is then applied to joe@t;,, which is the representation object of joe at ¢;,. O

118

Example 4.10 Behavior application joe.[t10] B_age

Now suppose a different behavior (B-age) is applied to object joe. The validity test is
satisfied. The B_changes list is updated with the times of all implementation changes that
took place on behavior B_age prior to time £;9. From Figure 4.8 we see that these times are
to, te, ts, and t1g. The behavior coercions at all these times lead to changes in the structural
representation of object joe. At ¢y, the implementation of B_age changed from undefined
to stored (UC), at tg the implementation changed from stored to stored (SS), at tg the
implementation changed from stored to computed (SC), and at ¢ the implementation
changed from computed to stored (CS). The new value of B_changes and the structural
representation history of joe are shown in Figure 4.10.

Jjoe.B_created = ¢,
joe.B_history = {<[to,l4), joe@ty>, <[ta, ts), joe@ts>, <[ts, tg), joe@ts>,
<[t8, ti0), joe@tg>, <[tlo, t12), joe@t o>, <[t12, now],joe@t13>}
T_person’.B_changes = {<tq, BbirthDate>, <tg, B_age>, <to, BbirthDate>,
<t4, BbirthDate>, <tg, B_birthDate>, <tg, B_age>,
<ts, B_age>, <tyq, B_age>, <t, B birthDate>}

Figure 1.10: The representation objects of joe and the changes list of T_person after behavior
application of B_age at time ¢;q.

Having updated the B_changes list and o, the representation object joe@t,g, and the
implementation s, are returned from Algorithms 4.3 and 4.4 at time ¢;5. We can now apply
S2 to joeQt;q. O

Example 4.11 Behavior application joe.[now]B_age
This fails the validity test because behavior B_age is not part of the interface of T_person’
at time now. O

Example 4.12 Behavior application joe.[t;s] B.spouse

The validity test is satisfied. An appropriate entry <t4, B_spouse> is added to the changes
list of T_person. The representation history of joe remains unchanged since the implemen-
tation change is from an undefined function to a computed one (UC). The representation
object at time t)4 is joe@t,, (see Figure 4.10) and the implementation is the computed
function c¢. The function cg is then applied to joe@t,,. O

Example 4.13 Behavior application jane.[t7]B.age
Suppose the object jane was created at time te. The validity test is satisfied. The changes list
of T_person remains unchanged since it has already been updated with the implementation
changes of B_age prior to ¢; (see Figure 4.10). The structural representation history of jane
however, is updated to reflect the behavior coercions that took place at or after jane was
created and before or at t7. This is shown in Figure 4.11.

The time ¢; is used to find the appropriate representation object for jane and the correct
implementation of B_age for type T_person’. The representation object chosen is janeQtg

119

jane.B_created = (4
jane.B_history = {<[t, now), jane@te>}

Figure 4.11: The representation objects of jane after behavior application of B_age at time
t-.

and the implementation returned is the stored function s2. This function is then applied to
JaneQtg. O

4.2.6 Immediate Object Conversions

The temporal infrastructure proposed in this thesis is sufficiently powerful to support coer-
cion approaches other than deferred coercion. In this section, it is shown how the immediate
object coercion approach of schema change propagation can be implemented using the model
presented in Sections 4.2.3-4.2.5. In immediate object coercion, changes are immediately
propagated to the instances. This would mean that each time the implementation of a
behavior changes, the behavior is coerced to the newer implementation at that time and
the structural representations of all objects of that type are updated, if necessary. These
changes are recorded in the Bimplementation and B_changes behaviors, respectively. Fig-
ure 4.12 shows the changes list for T_person and the representation history of object joe
when immediate object coercion is used for the behavior implementation changes shown in

Figure 4.8.

to

{<l[to. ta), joeRto>, <[t4, ts), joe@ts>, <[te,ts), joe@ts>,
<[ts,t10), joe@ts>, <[tig,t12), joe@l 0>, <[t12,t16), joe@t 2>,
<[t1s, now), joe@t 6>}

joe.B_created
joe.B_history

jane.B_created = tq
jane.B_history = {<[te,tg), jane@ts>, <[ts,t10), jane@tg>, <[t10,112), jane@t;o>,
<[l1'_7, tig), jane@t >, <[115, now], jane@t16>}
T_person’.B_changes = {<tq, BbirthDate>, <ty, B_age>, <ta, B_birthDate>,

<ts, BbirthDate>, <tg, B_birth Date>, <tg, B_age>,
<ts, B_age>, <t\q, B_age>, <t,», B birthDate>,
<ti2, B.age>, <t14, B_spouse>}

Figure 4.12: The representation objects of joe and jane, and the changes list of T_person

for immediate object coercion.

The B_changes behavior for T_person’ shows that each time the implementation of a
behavior changes after the object was created, the behavior is coerced to the newer im-
plementation since immediate object coercion is used. For example, after joe is created,
the implementation of behavior B_birthDate changes at times 3, t4, tg, and t;5 (see Fig-
ure 4.8). Subsequently, B_birthDate is also coerced to the newer implementations at these
times. This is shown in the changes list of T_person. The representation history of an

120

object is only updated when a change to the representation of an object occurs due to
the coercion of one of its behaviors. For example, although the behavior B_birthDate is
coerced to a newer implementation at time ¢,, the representation of joe is unaffected since
the implementation is changed from one computed function to another computed function
(see Figure 4.8). Therefore, joe is unchanged at ¢,. A similar situation occurs at t14 for joe
and jane when behavior B_spouse is added to type T_person’.

With immediate coercion, if a behavior implementation change at time ¢ for a type T
necessitates an update of the representation of an object, the change is recorded in the
representation histories of all objects of type T that exist at time t. This is exemplified
in Figure 4.12 where the tuples in representation histories of objects joe and jane (of type
T_person) are updated at the same time after jane was created (from tg to now).

[n the immediate coercion approach, Algorithm 4.2 is carried out at the time of behavior
implementation change, and not during a behavior application process as was the case in
deferred coercion. The only difference to the dispatch algorithm is that invocation of coerce
is not necessary. The example below shows how the dispatch process is followed when

immediate object coercion is used for the behavior application given in Example 4.7.

Example 4.14 Behavior application joe.[t;]B_birthDate

The validity test is satisfied. The appropriate representation object for joe at time t; is
JoeQts, while the appropriate implementation of B_birthDate for type T_person’ is the
stored function s;. s; can now be applied to Jjoe@tg. The function and representation are
correct for joe since the implementation of behavior B_birthDate changed at time ¢tg for this
object, and B_birthDate was coerced to the new version at the same time. O

From the above example, it is noted that the function and the representation object
obtained for joe using immediate object coercion are the same as those obtained in Exam-
ple 4.7, in which deferred object coercion was used. The function chosen in both cases is
the stored function s,, and the representation object chosen for joe in both cases is joe@tg.

This equivalence of deferred and immediate ob ject coercion strategies is neccessary.

121

Chapter 5

Conclusions

5.1 Summary and Contributions

The first and most important result of this thesis is the definition of an object-oriented
temporal framework which supports the diverse notions of time under a single infrastructure.
The framework is expressive in that it can be used to accommodate the temporal needs of
different real-world applications, and also reflect different temporal object models that have
been reported in the literature. Using the object-oriented type system to structure the
design space of temporal object models and identify the dependencies within and among
the design dimensions helps simplify the presentation of the otherwise complex domain of
time. The framework is extensible in that additional temporal features can be added as long
as the relationships between the design dimensions are maintained. The focus in this thesis
is on the unified provision of temporal features which can be used by temporal object models
according to their temporal needs. Once these are in place, the model can then define other
object-oriented features to support its application domain. The temporal framework also
provides a2 means of comparing temporal objects models according to the design dimensions
identified in Section 2.3.1. This helps identify the strengths and weaknesses of the different
models.
The fundamental contributions of the temporal framework are the following:

1. A design space for temporal models. This includes the design dimensions, their tem-
poral features, and the dependencies within and among the design dimensions.

2. The capability of accommodating different applications that require temporal support.
3. The capability of representing various existing temporal object models.

4. The capability of analyzing and comparing different temporal object models based on

the design dimensions

The second important result described in this thesis is the design and development of a
temporal object model that implements the temporal framework and provides concrete and

122

consistent semantics for the different temporal features necessary for their coexistence. The
work on the temporal object model is conducted within the context of the TIGUKAT sys-
tem [OPS*95]. The behavioral and uniform features of the TIGUKAT model are exploited
in order to incorporate time so as to accommodate different applications that require vary-
ing temporal support. Consequently, the TIGUKAT temporal object model consists of an
extensible set of primitive time types with a rich set of behaviors to consistently and uni-
formly model the diverse features of time. In [LGOS97], the temporal model is used to
manage temporal relationships which is inherent in multimedia data such as video, while in
[GOSQ(a] the temporal model is used to store and retrieve historical information commonly
found in clinical trials.

The contributions and novelty of the TIGUKAT temporal object model are the following:

1. The model provides a novel approach to the treatment of granularity in temporal
data. Granularities are modeled as unit unanchored temporal primitives. Granular-
ities are accommodated within the context of calendars and granularity conversions
are presented and discussed in terms of unanchored durations of time, unlike other
works where the emphasis has only been on granularity conversions with respect to

anchored temporal data.

2. The model also provides a means to represent both anchored and unanchored temporal
primitives at different and mixed granularities and gives the semantics of operations

on these primitives.

3. The model supports multiple calendars and provides means for granularity conversions

and operations across calendars.

4. Both discrete and continuous domains of time are supported. This is in contrast to
previous work which deals with only a single time domain that is usually discrete.

5. Different types of orderings (linear, branching) are supported, unlike most temporal

object models that support only linear time.

6. Since the TIGUKAT model is behavioral. different dimensions of time (e.g.. valid and
transaction time dimensions) are represented using separate behaviors in contrast to
other works in which they are structurally combined in a single behavior.

The provision of time in the TIGUKAT object model establishes a platform from which
temporality can be used to investigate advanced database features such as schema evolution.
In this thesis a uniform treatment of schema evolution using the TIGUKAT temporal object
model is presented. Schema evolution is managed by exploiting the functionality of the
TIGUKAT temporal object model. This constitutes the third major contribution of this
thesis.

Using time to maintain and manage schema changes gives substantial flexibility in the
software design process. Given that the applications supported by ODBMSs need support

123

for incremental development and experimentation with changing and evolving schema, a
temporal domain is a natural means for managing changes in schema and ensuring con-
sistency of the system. The evolution history of the interface of types, which includes the
inherited and native behaviors of each type, describes the semantics of types through time.
Using the interface histories, the interface of a type can be reconstructed at any time of
interest. The evolution histories of the supertype and subtype links of types describe the
structure of the lattice through time. Using these histories, the structure of the lattice can
be reconstructed at any time of interest. The implementation histories of behaviors give
the implementations of behaviors on types at any time of interest. From these, one can
reconstruct the representation of objects by examining the stored functions associated with
behaviors at a given time. The TIGUKAT query language gives designers a practical way
of accessing temporal information in their experimental and incremental design phases.
The strategy for managing schema evolution for ODBMSs in this thesis is characterized

by four novel concepts:

1. The schema evolution strategy is based on a uniform temporal object model. Con-
sequently, no special concepts are introduced for modeling schema changes which are
expressed as changes to the behaviors defined on types. These changes are tracked
using the same T_history mechanism that is used for modeling temporal changes to

non-schema objects in the database.

2. In addition to schema changes, the strategy supports lossless recording of these

changes, allowing historical queries.

3. The strategy supports both deferred (lazy) object update semantics and immediate
object update semantics using the same basic algorithms. Only the application time
of the algorithms is changed to produce the desired update semantics.

4. The granularity of schema changes is finer than traditional approaches that require
a complete type change every time a single behavior changes. We handle behav-
ior changes individually. This approach has two distinct advantages depending on
whether deferred or immediate update semantics are used. If deferred update seman-
tics are used, the finer granularity results in an even “lazier” update semantics, since
when a behavior is applied to an object, only part of the object’s structure needs
to be updated, to reflect changes for only that particular behavior. Updates result-
ing from other behavior changes are delayed until they are needed by other behavior
applications. If immediate update semantics are used, then the update can be done
more quickly since the system knows that changes to the affected type are localized
to the single behavior that was just changed. Since the major drawback of immediate
update semantics is the speed of update, this is important.

Support for historical queries potentially has a profound effect on ODBMS behavior dis-
patch. In traditional behavior dispatch, each behavior on a type is bound to a single

124

function (implementation) and dispatch is a mapping of behavior-type pairs to functions.
With recorded schema evolution, each behavior may be bound to a different function at dif-
ferent times. Therefore, the dispatch process must map a three-tuple (behavior, type, time)
to a function. Unfortunately the domain of the temporal argument is very large compared
to the domain of all behaviors or all types so standard dispatch techniques do not work
very well. This thesis provides a temporal dispatch algorithm to demonstrate that no new
concepts need to be added to the schema evolution model to solve the temporal dispatch
problem.

The fourth contribution of this thesis is a toolkit which allows users/temporal model
designers to interact with the framework at a high level and generate specific framework

instances for their own applications.

5.2 Future Research

A number of interesting future research avenues can be outlined from the work presented
in this thesis. An interesting first step would be to build query semantics on top of the
present framework. This will involve addressing issues such as: how the choices of different
design dimensions affect the query semantics; what kind of query constructs are needed;
what properties should be provided; how are these properties used, to name a few.

Section 3.3.4 showed that it is possible to establish computationally inexpensive yet quite
precise formulae for lower and upper bound coefficients in the granularity conversion process.
Currently, the derivation of these formulae has to be done by a database administrator:
their automatic derivation would be an interesting topic for future research. In handling
indeterminacy. it would useful to consider modality, multiple-valued logics, and probabilistic
approaches [DS93, MPB92, CPP96] for dealing with uncertainty in relationships.

To overcome the corrective nature of schema evolution. the concept of schema versioning
in ODBMSs has been proposed [SZ86, SZ87, KC88, ALP91, MS92, MS93]. In most of these
systems, a change to a schema object may result in a new version of the schema object.
or the schema in general. However, schema changes are usually of a finer granularity than
definable versions. This implies that not every schema change should necessarily result in
a new version. Rather, one should be able to define a version during any stable period
in the evolutionary history of the schema. Within a particular version, the evolution of
the schema should be traceable. For example, in an engineering design application many
components of an overall design may go through several modifications in order to produce
a released product. Furthermore, each intermediate version of the component may have
certain properties that need to be retained as a historical record of that particular compo-
nent (the different versions may have been used in other products). The inter-connection
of the various versions of components also gives rise to versions of the overall design. The
resulting designs may be part of others and so on. The contention of this thesis is that
schema evolution using temporal modeling sets the stage for full-fledged version control.

125

The schema evolution policies reported in this thesis can be used as a basis for version
control in ODBMSs.

126

Bibliography

[AlIS4]

[ALP9]]

[Ari86]

[Ari9]]

[ATGL96]

[BFG97]

[BHS9]

[BKKKS87]

[BKPS6]

[BMJ94]

[B5h95)

[BPS5)

[Cat94]

J. F. Allen. Towards a General Theory of Action and Time. Artificial Intelli-
gence, 23(123):123-154, July 1984.

J. Andany, M. Leonard, and C. Palisser. Management of Schema Evolution in
Databases. In Proc. 17th Int’l Conf. on Very Large Data bases, pages 161-170,
September 1991.

G. Ariav. A Temporally Oriented Data Model. ACM Transactions on Database
Systems, 11(4):499-527, December 1986.

G. Ariav. Temporally oriented data definitions: Managing schema evolution in
temporally oriented databases. Data & Knowledge Engineering, (6):451-467,
1991.

A-R. Adl-Tabatabai, T. Gross, and G-Y. Lueh. Code Reuse in an Optimizing
Compiler. In Proc. of the Int'l Conf on Object-Oriented Programming: Systemns,
Languages, and Applications - OOPSLA “96, pages 51-68, October 1996.

E. Bertino, E. Ferrari, and G. Guerrini. T_Chimera - A Temporal Object-
Oriented Data Model. Theory and Practice of Object Systems, 3(2):103-125,
1997.

A. Bjornerstedt and C. Hiiltén. Version Control in an Object-Oriented Ar-
chitecture. In Won Kim and Frederick H. Lochovsky, editors, Object-Oriented
Concepts, Databases, and Applications, chapter 18, pages 451-485. Addison
Wesley, September 1989.

J. Banerjee, W. Kim, H-J. Kim, and H.F. Korth. Semantics and Implementation
of Schema Evolution in Object-Oriented Databases. In Proc. ACM SIGMOD
Int’l. Conf. on Management of Data, pages 311-322, May 1987.

H. Barringer, R. Kuiper, and A. Pnueli. A Really Abstract Concurrent Model
and its Temporal Logic. In Proc. of the 13th ACM Symposium on Principles
of Programming Languages, pages 173-183, 1986.

E. Braunwald, D.B. Mark, and R.H. Jones. Diagnosing and Managing Unstable
Angina - Quick Reference Guide for Clinicians. (10. AHCPR Publication No.
94-0603), May 1994.

M.H. Béhlen. Temporal Database System Implementations. ACM SIGMOD
Record, 24(4):53-60, December 1995.

F. Barbic and B. Pernici. Time Modeling in Office Information Systems. In
Proc. ACM SIGMOD Int’l. Conf. on Management of Data, pages 51-62, May
1985.

R. Cattell. The Object Database Standard: ODMG-93. Morgan Kaufmann
Publishers, 1994.

127

[CC87]

[CG93]

[Cho94]

[CITB92]

[CIRST]

[CK94]

[CMRY1]

[Cod70]

[CPPY5)]

[CPP96]

[CRSS]

[CS93]

[CSS94]

[Dat87]
[DDS94]

[DM94]

J. Clifford and A. Crocker. The Historical Relational Data Model (HRDM) and
Algebra Based on Lifespans. In Proc. 3rd Int'l Conf. on Data Engineering,
pages 528-537, February 1987.

T.S. Cheng and S.K. Gadia. An Object-Oriented Model for Temporal
Databases. In Proceedings of the International Workshop on an Infrastructure
for Temporal Databases, pages N1-N19, June 1993.

J. Chomicki. Temporal Query Languages: A Survey. In D. Gabbay and
H. Ohlbach, editors, Proceedings of the International Conference on Temporal
Logic, pages 506—534. Lecture Notes in Computer Science, Vol. 827, Springer
Verlag, July 1994.

W.W. Chu, L.T. Ieong, R.K. Taira, and C.M. Breant. A Temporal Evolution-
ary Object-Oriented Data Model and Its Query Language for Medical Image
Management. In Proc. 18th Int’l Conf. on Very Large Data Bases, pages 53-64,
August 1992.

R.H. Campbell, G.M. Johnston, and V.F. Russo. Choices (Class Hierarchical
Open Interface for Custom Embedded Systems). Operating Systems Review,
21(3):9-17, 1987.

S. Chakravarthy and S-K. Kim. Resolution of Time Concepts in Temporal
Databases. Information Sciences, 80(1-2):91-125, September 1994.

E. Corsetti, A. Montanari, and E. Ratto. Dealing with Different Time Granular-
ities in Formal Specifications of Real-Time Systems. The Journal of Real-Time
Systems, 3(2):191-215, 1991.

E.F. Codd. A Relational Model for Large Shared Data Banks. Communications
of the ACM, 13(6):377-387, 1970.

C. Combi, F. Pinciroli, and G. Pozzi. Managing Different Time Granularities
of Clinical Information by an Interval-Based Temporal Data Model. Methods
of Information in Medicine, 34(5):458-474, 1995.

C. Combi, F. Pinciroli, and G. Pozzi. Managing Time Granularity of Narrative
Clinical Information: The Temporal Data Model TIME-NESIS. In L. Chit-
taro, S. Goodwin, H. Hamilton, and A. Montanari, editors, Third International
Workshop on Temporal Representation and Reasoning (TIME’96), pages 88-93.
IEEE Computer Society Press, 1996.

J. Clifford and A. Rao. A Simple, General Structure for Temporal Domains.
In C. Rolland, F. Bodart, and M. Leonard, editors, Temporal Aspects in Infor-
mation Systems, pages 17-30. North-Holland, 1988.

R. Chandra and A. Segev. Managing Temporal Financial Data in an Extensible
Database. In Proc. 19th Int'l Conf. on Very Large Data Bases, pages 302-313,
August 1993.

R. Chandra, A. Segev, and M. Stonebraker. Implementing Calendars and Tem-
poral Rules in Next-Generation Databases. In Proc. 10th Int’l Conf. on Data
Engineering, pages 264-273, February 1994.

C.J. Date. A Guide to SQL Standard. Addison Wesley, 1987.

W. Dreyer, A.K. Dittrich, and D. Schmidt. An Object-Oriented Data Model
for a Time Series Management System. In Proc. 7th International Working
Conference on Scientific and Statistical Database Management, pages 186-195,
September 1994.

A.K. Das and M.A. Musen. A Temporal Query System for Protocol-Directed
Decision Support. Methods of Information in Medicine, 33:358-370, 1994.

128

[DR90]
[DS93]
[DSS94]
[DW92]

[Dyr96]
[EGS93]

[Flo91]

[FMZ94]

[FMZ+95]

[Gads8s]

[GLOS9T7)

[GO93]

[Gor92]

[GOS97a]

[GOS97b]

[GOS98]

N. Dershowitz and E.M. Reingold. Calendrical calculations. Software - Practice
& Ezrperience, 20(9):899-928, September 199C.

C.E. Dyreson and R.T. Snodgrass. Valid-time Indeterminacy. In Proc. 9th
Int’l. Conf. on Data Engineering, pages 335-343, April 1993.

C.E. Dyreson, M.D. Soo, and R.T. Snodgrass. The TSQL2 Data Model for
Time. A TSQL Commentary. September 1994.

U. Dayal and G. Wuu. A Uniform Approach to Processing Temporal Queries.
In Proc. 8th Int’l. Conf. on Data Engineering, pages 407-418, August 1992.

C. Dyreson. June 1996. Private correspondence.

O. Etzion, A. Gal, and A. Segev. Temporal Active Databases. In Proceedings of
the International Workshop on an Infrastructure for Temporal Databases, June
1993.

R. Flowerdew. Geographical Information Systems. John Wiley and Sons, 1991.
Volume 1.

F. Ferrandina, T. Meyer, and R. Zicari. Implementing Lazy Database Updates
for an Object Database System. In Proc. 20th Int’l Conf. on Very Large Data
Bases, pages 261-272, September 1994.

F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, and J. Madec. Schema and
Database Evolution in the O, Object Database System. In Proc. 21st Int’l
Conf. on Very Large Data Bases, pages 170-181, September 1995.

S. Gadia. A Homogeneous Relational Model and Query Languages for Temporal
Databases. ACM Transactions on Database Systems, 13(4):418-448, December
1988.

[.A. Goralwalla, Yuri Leontiev, M.T. C")zsu, and Duane Szafron. Modeling
Temporal Primitives: Back to Basics. In Proc. Sizth Int’l. Conf. on Information
and Knowledge Management, pages 24-31, November 1997.

LLA. Goralwalla and M.T. Ozsu. Temporal Extensions to a Uniform Behavioral
Object Model. In Proc. 12th Int’l Conf. on the Entity Relationship Approach
(ER’93), pages 115-127, December 1993.

[. Goralwalla. An Implementation of 2 Temporal Relational Database Manage-
ment System. Master’s thesis, Bilkent University, Ankara, Turkey, 1992.

LLA. Goralwalla, M.T. ézsu, and D. Szafron. Modeling Medical Trials in Phar-
macoeconomics using a Temporal Object Model. Computers in Biology and
Medicine - Special Issue on Time-Oriented Systems in Medicine, 27(5):369 -
387, 1997.

[.A. Goralwalla, M.T. Ozsu, and Duane Szafron. A Framework for Temporal
Data Models: Exploiting Object-Oriented Technology. In R. Ege, M. Singh,
and B. Meyer, editors, Twenty-third International Conference and Ezhibition
on Technology of Object-Oriented Languages and Systems (TOOLS USA '97),
pages 16-30. IEEE Computer Society, July 1997.

LA. Goralwalla, M.T. Ozsu, and D. Szafron. An Object-Oriented Framework
for Temporal Data Models. In O. Etzion, S. Jajodia, and S. Sripada, editors,
Temporal Databases: Research and Practice. Springer Verlag, 1998. To appear.

129

[GSOP97]

[GSOP98]

[GTC+90]

[GTO95)

[HIE95]

[HKOS96]

[HS97]

[JF8s]

[1IGB92]

[KBCG90]
[KC88]

[KFT91]

[KGBW90]

[KKR90]

(K1i93]

[KP88]

L.A. Goralwalla, D. Szafron, M.T. Ozsu, and R.J. Peters. Managing Schema
Evolution using a Temporal Object Model. In Proc. 16th Internationel Con-
ference on Conceptual Modeling (ER '97), pages 71-84, November 1997. Pro-
ceedings published as Lecture Notes in Computer Science, David Embley and
Robert Goldstein (eds.), Springer-Verlag, 1997.

[.A. Goralwalla, D. Szafron, M.T. Ozsu, and R.J. Peters. A Temporal Approach
to Managing Schema Evolution in Object Database Systems. Data & Knowledge
Engineering, November 1998. To appear.

S. Gibbs, D.C. Tsichritzis, E. Casais, O.M. Nierstrasz, and X. Pintado.
Class Management for Software Communities. Communications of the ACM,
33(9):90-103, September 1990.

[.A. Goralwalla, A.U. Tansel, and M.T. Ozsu. Experimenting with Temporal
Relational Databases. In Proc. Fourth Int’l. Conf. on Information and Knowl-
edge Management, pages 296-303, October 1995.

H. Hiini, R. Johnson, and R. Engel. A Framework for Network Protocol Soft-
ware. In Proc. of the Int'l Conf on Object-Oriented Programming: Systems,
Languages, and Applications - OOPSL A '95, pages 358-369, 1995.

W.H. Harrison, H. Kilov, H.L. Ossher, and I. Simmonds. From Dynamic Su-
pertypes to Subjects: a Natural way to Specify and Develop Systems. IBM
Systems Journal, 35(2):244-256, 1996.

W. Holst and D. Szafron. A General Framework For Inheritance Management
and Method Dispatch in Object-Oriented Languages. In Proc. European Con-
ference on Object-Oriented Programming (ECOOP’97), pages 276-301, 1997.

R.E. Johnson and B. Foote. Designing Reusable Classes. Journal of Object-
Oriented Programming, 1(2):22-35, 1988.

L.M. Jolicoeur, A.J. Jones-Grizzle, and J.G. Boyer. Guidelines for performing a
pharmacoeconomic analysis. American Journal of Hospital Pharmacy, 49:1741—
1747, July 1992.

W. Kim, J. Banerjee, H.T. Chou, and J.F. Garza. Object-oriented database
support for CAD. Computer Aided Design, 22(8):469-479, 1990.

W. Kim and H-J. Chou. Versions of Schema for Object-Oriented Databases.
In Proc. 14th Int’l Conf. on Very Large Data Bases, pages 148-159, 1988.

M.G. Kahn, L.M. Fagan, and S. Tu. Extensions to the Time-Oriented Database
Model to Support Temporal Reasoning in Medical Expert Systems. Methods of
Information in Medicine, 30:4-14, 1991.

W. Kim, J.F. Garza, N. Ballou, and D. Wolek. Architecture of the ORION
Next-Generation Database System. IEEE Transactions on Knowledge and Data
Engineering, 2(1):109-124, March 1990.

P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint Query Languages. In
Proc. of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 299-313, April 1990.

N. Kline. An Update of the Temporal Database Bibliography. ACM SIGMOD
Record, 22(4):66-80, December 1993.

G.E. Krasner and S.T. Pope. A Cookbook for Using the Model-View-Controller
User Interface Paradigm in Smalltalk-80. Journal of Object-Oriented Program-
ming, pages 26-49, August-September 1988.

130

[KS92]

[LEW96]

[LGOS9T)

[LH90]

[LISS]
[Lor94]

[MMCR92]

[MPB92]
[MS90]

[MS92]

[MS93]
[NASY]
[NRSY]

[OPS+95)

[0S95]

[Pea94]

[Pet94]

W. Kafer and H. Schoning. Realizing a Temporal Complex-Object Data Model.
In Proc. ACM SIGMOD Int’l. Conf. on Management of Data, pages 266-275,
June 1992.

J.Y. Lee, R. Elmasri, and J. Won. Specification of Calendars and Time Series
for Temporal Databases. In Proc. 15th International Conference on Conceptual
Modeling (ER’96), pages 341-356, October 1996. Proceedings published as
Lecture Notes in Computer Science, Volume 1157, Bernhard Thalheim (editor),
Springer-Verlag, 1996.

J.Z. Li, .A. Goralwalla, M.T. Ozsu, and Duane Szafron. Modeling Video Tem-
poral Relationships in an Object Database Management System. In SPIE Pro-
ceedings of Multimedia Computing and Networking (MMCN97), pages 80-91,
February 1997.

B.S. Lerner and A.N. Habermann. Beyond Schema Evolution to Database
Reorganization. In ECOOP/OOPSLA 90 Proceedings, pages 67-76, October
1990.

N. Lorentzos and R. Johnson. Extending Relational Algebra to Manipulate
Temporal Data. Information Systems, 13(3):289-296, 1988.

N. Lorentzos. DBMS Support for Non-Metric Measuring Systems. I[EEE Trans-
actions on Knowledge and Data Engineering, 6(6):945-953, December 1994.

A. Montanari, E. Maim, E. Ciapessoni, and E. Ratto. Dealing with Time
Granularity in Event Calculus. In Proceedings of the International Conference
on Fifth Generation Computer Systems, pages 702-712, June 1992.

R. Maiocchi, B. Pernici, and F. Barbic. Automatic Deduction of Temporal
Information. ACM Transactions on Database Systems, 17(4):647-688, 1992.

E. McKenzie and R. Snodgrass. Schema evolution and the relational algebra.
Information Systems, 15(2):207-232, 1990.

S.R. Monk and [. Sommerville. A Model for Versioning of Classes in Object-
Oriented Databases . In [0th British National Conference on Databases (BN-
COD '92), Aberdeen, Scotland July 1992, pages 42-58, July 1992.

S. Monk and I. Sommerville. Schema Evolution in OODBs using Class Ver-
sioning. ACM SIGMOD Record, 22(3):16-22, September 1993.

S.B. Navathe and R. Ahmed. A Temporal Relational Model and a Query
Language. Information Sciences, 49:147-175, 1989.

G.T. Nguyen and D. Rieu. Schema evolution in object-oriented database sys-
tems. Data & Knowledge Engineering, 4:43-67, 1989.

M.T. Ozsu, R.J. Peters, D. Szafron, B. Irani, A. Lipka, and A. Munoz.
TIGUKAT: A Uniform Behavioral Objectbase Management System. The
VLDB Journal, 4:100-147, August 1995.

G. Ozsoyoglu and R. Snodgrass. Temporal and Real-Time Databases: A Survey.
[EEE Transactions on Knowledge and Data Engineering, 7(4):513-532, August
1995.

N. Pissinou and et. al. Towards an Infrastructure for Temporal Databases:
Report of an Invitational ARPA/NSF Workshop. ACM SIGMOD Record,
23(1):35-51, March 1994.

R.J. Peters. TIGUKAT: A Uniform Behavioral Objectbase Management Sys-
tem. PhD thesis, University of Alberta, 1994.

131

[PLL96]

[PLOS93]

[PM92]

[PO93]

[PO97]

[PS87]

[Rev90]
[Rod91]
[Rod92]
[Rod95]

[RS91]

[RS93a]

[RS93b]

[SASS]
[Sar90]

[SCo1]

[Sci94]

M.J. Perez-Luque and T.D.C. Little. A Temporal Reference Framework for
Multimedia Synchronization. IEEE .Journal on Selected Areas in Communica-
tions, 14(1):36-51, January 1996.

R.J. Peters, A. Lipka, M.T. Ozsu, and D. Szafron. An Extensible Query Model
and Its Languages for a Uniform Behavioral Object Management System. In
Proc. Second Int’l. Conf. on Information and Knowledge Management, pages
403-412, November 1993.

N. Pissinou and K. Makki. A Framework for Temporal Object Databases.
[n Proc. First Int’l. Conf. on Information and Knowledge Management, pages
86-97, November 1992.

R.J. Peters and M.T. Ozsu. Reflection in a Uniform Behavioral Object Model.
In Proc. 12th Int’l Conf. on the Entity Relationship Approach (ER’93), pages
37-49, December 1993.

R.J. Peters and M.T. Ozsu. An Axiomatic Model of Dynamic Schema Evolution
in Objectbase Systems. A CM Transactions on Database Systems, 22(1):75-114,
March 1997.

D.J. Penney and J. Stein. Class Modification in the GemStone Object-Oriented
DBMS. In Proc. of the Int'l Conf on Object-Oriented Programming: Systems,
Languages, and Applications, pages 111-117, October 1987.

P.Z. Revesz. A Closed Form for Datalog Queries with Integer Order. In Inter-
national Conference on Database Theory, pages 187-201, 1990.

J.F. Roddick. Dynamically Changing Schemas within Database Models. Aus-
tralian Computer Journal, 23(3):105-109, 1991.

J.F. Roddick. SQL/SE- A Query Language Extension for Databases Supporting
Schema Evolution. ACM SIGMOD Record, 21(3):10-16, 1992.

J.F. Roddick. A Survey of Schema Versioning Issues for Database Systems.
Information and Software Technology, 37(7):383-393, 1995.

E. Rose and A. Segev. TOODM - A Temporal Object-Oriented Data Model
with Temporal Constraints. In Proc. 10th Int’l Conf. on the Entity Relationship
Approach, pages 205-229, October 1991.

E. Rose and A. Segev. TOOA - A Temporal Object-Oriented Algebra. In
Proceedings of the European Conference on Object-Oriented Programming, July
1993.

E. Rose and A. Segev. TOOSQL - A Temporal Object-Oriented Query Lan-
guage. In Proc. 12th Int’l Conf. on the Entity Relationship Approach (ER'93),
pages 128-138, December 1993.

R. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. In Proc. ACM
SIGMOD Int'l. Conf. on Management of Data, pages 236-246, May 1985.

N. Sarda. Extensions to SQL for Historical Databases. [EEE Transactions on
Knowledge and Data Engineering, 2(2):220-230, June 1990.

S.Y.W. Su and H.M. Chen. A Temporal Knowledge Representation Model
OSAM*/T and its Query Language OQL/T. In Proc. 17th Int'l Conf. on Very
Large Data bases, pages 431-442, 1991.

E. Sciore. Versioning and Configuration Management in an Object-Oriented
Data Model. The VLDB Journal, 3:77-106, 1994.

132

[Sje93]
[S1S95]
[Snos6]
[Sno87]
[Sno90]

[Sno92]

[Sno95a]

[Sno95b]

[Sno96]
[So091]

[SRH90]
[SS77]
[SS8S]

[SZ86]

[587]

[Tal94]

[Tan86]

[TCG+93]

[TK96]

Dag Sjoberg. Quantifying Schema Evolution. Information and Software Tech-
nology, 35(1):35-44, January 1993.

A. Segev, C.S. Jensen, and R.T. Snodgrass. Report on the 1995 Intl. Workshop
on Temporal Databases. ACM SIGMOD Record, 24(4):46-52, 1995.

R. Snodgrass. Research Concerning Time in Databases: Project Summaries.
ACM SIGMOD Record, 15(4), December 1986.

R.T. Snodgrass. The Temporal Query Language TQuel. 4CM Transactions on
Database Systems, 12(2):247-298, June 1987.

R. Snodgrass. Temporal Databases: Status and Research Directions. ACM
SIGMOD Record, 19(4):83-89, December 1990.

R.T. Snodgrass. Temporal Databases. In Theories and Methods of Spatio-
Temporal Reasoning in Geographic Space, pages 22-64. Springer-Verlag, LNCS
639, 1992.

R. Snodgrass. Temporal Object-Oriented Databases: A Critical Comparison. In
W. Kim, editor, Modern Database Systems: The Object Model, Interoperability
and Beyond, pages 386-408. Addison-Wesley/ACM Press, 1995.

R. Snodgrass. The TSQL2 Temporal Query Language. Kluwer Academic Pub-
lishers, 1995.

R. Snodgrass. May 1996. Private correspondence.

M.D. Soo. Bibliography on Temporal Databases. ACM SIGMOD Record,
20(1):14-23, 1991.

M. Stonebraker, L.A. Rowe, and M. Hirohama. The Implementation of POST-
GRES. IEEE Transactions on Knowledge and Data Engineering, 2(1):125-142,
March 1990.

J.M. Smith and D.C.P. Smith. Database Abstractions: Aggregation and Gen-
eralization. 4CM Transactions on Database Systems, 2(2):105-133, 1977.

R. Stam and R. Snodgrass. A Bibliography on Temporal Databasesl. IEEE
Database Engineering, 7(4):231-239, December 1988.

A.H. Skarra and S.B. Zdonik. The Management of Changing Types in an
Object-Oriented Database. In Proc. of the Int’l Conf on Object-Oriented Pro-
gramming: Systems, Languages, and Applications, pages 483-495, September
1986.

A.H. Skarra and S.B. Zdonik. Type Evolution in an Object-Oriented Database.
In Research Directions in Object-Oriented Programming, pages 393-415. ML.I.T.

Press, 1987.

Taligent, Inc., Cupertino, CA. Building Object-Oriented Frameworks, 1994.
White Paper.

A. Tansel. Adding Time Dimension to Relational Model and Extending Rela-
tional Algebra. Information Systems, 13(4):343-355, 1986.

A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass. Tem-
poral Databases: Theory, Design, and Implementation. Benjamin/Cummings,
1993.

V.J. Tsotras and A. Kumar. Temporal Database Bibliography Update. ACM
SIGMOD Record, 25(1):41-51, March 1996.

133

[VL90]

[WBBJ97]

[WD92]

[(WJIL91]

[WJS93)

[WLH90]

J.M. Vlissides and M.A. Linton. Unidraw: A Framework for Building Domain-
Specific Graphical Editors. ACM Transactions on Information Systems,
8(3):237-268, July 1990.

X.S. Wang, C. Bettini, A. Brodsky, and S. Jajodia. Logical Design for Tem-
poral Databases with Multiple Granularities. ACM Transactions on Database
Systems, 22:115-170, June 1997.

G. Wuu and U. Dayal. A Uniform Model for Temporal Object-Oriented
Databases. In Proc. 8th Int’l. Conf. on Data Engineering, pages 584-593,
Tempe, USA, February 1992.

G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with Granularity of Time in
Temporal Databases. In R. Andersen, J.A. Bubenko Jr., and A. Solvberg, edi-
tors, Advanced Information Systems Engineering, 3rd Int’l Conference CAISE
'91, pages 124-140. Springer-Verlag, 1991.

X.S. Wang, S. Jajodia, and V. Subrahmanian. Temporal Modules: An Ap-
proach Toward Temporal Databases. In Proc. ACM SIGMOD Int . Conf. on
Management of Data, pages 227-236, 1993.

K. Wilkinson, P. Lyngbaek, and W. Hasan. The Iris Architecture and Imple-

mentation. /EEE Transactions on Knowledge and Data Engineering, 2(1):63-
75, March 1990.

134

Appendix A

Multiple Calendar Support

[n many applications [CS93, CSS94, DDS94], it is desirable to have multiple calendars that
have different calendric granularities. One way to meet this requirement is to provide system
support for multiple calendars with a large number of calendric granularities. However, this
has high overhead, and inevitably, there will be applications that will need calendars and
calendric granularities beyond a reasonable set provided by the system. It is, therefore.
important for the model to be extensible and not limited to a predefined set of calendars and
calendric granularities. In this appendix, extensions of the work presented in Section 3.2-
3.3 are given when multiple calendars are involved. Only those sections that need to be

extended are described.

A.1 Calendars

A.1.1 Calendric Granularities

Each calendric granularity in a calendar has a reference to a set of similar calendric gran-
ularities belonging to different calendars, hereafter referred to as Setg,, associated with
it. Setg, contains calendric granularities which have the same time duration as Ga.
For example, the calendric granularities Gmonth and GacademicMonth have references to
the set {month, academicMonth}. More specifically, Setg
{month,academicz\/[onth}. Setg, is utilized when a calendric granularity of one calen-

month = SetGacaderch!onth =

dar needs to be converted to a calendric granularity with the same time duration but
belonging to a different calendar. For example, the span 2 months is equivalent to the span
2 academicMonths when converted to the calendric granularity of academicMonths.

Example A.1 Figure A.1shows the hierarchical calendric structures of two real-world cal-

endars namely, the Gregorian and Academic calendars. We use these two example calendars

in the following discussion. O

135

Gregorian Calendar A Caiendar

Oori Y
origin — « 1582 years gin 1908 ars
Calendric G ity A Year
—— Calendric Granularity, — Year . 1
_— '
r Sety,,., ——= (year. acacemcYear} ; Set) cademicTenr {academexcYear, year!
T Calendric Element, —= 1008
Calendric Element; ——e 1582 i eq .
Calendric Element, ——« 1583 r-—— Calendric Blement ; —— 1909
!
! -
—— Calendric Granulsrity ——= Semestsr
L Calendric Granularity, — Month %
}_ i St e ———= {semester)
Setyens —— {month. acaderrchkionth} T CalendricEllement, —= Faf
L— Calendric Element; ——+ January ! ca ic Element
; Calendric Blement, —— February | cal ic Element | Vintes
——— Calendric Element, ——= Summer
Calendric Element ;; ——= December
—— Calendric Granularity, —= Day f—— Calendric Granularity, —= AcademicMonth
Setpyy = (day. academucDay| — S, , reath ——= {scademuchbontt), month)
[T CalendricHement, — Sundsy —— CalendricElement, ~——= September
{— ledxkﬂmcmx — Monday == Calendric EBlement, ——« Ocwober
i |
;' Calendric Element ; ——+ Saturday — Calendric Element ;z — August
t—— Calendric Granularity, —= Hour Calendric Granularity, AcademicDay
i St Hour — (hour} S) crtermicOry = (scacemxOay. aay]
pP——— Calendric Elementy ——= 1 = CalendricElement, —— Monday
IL—— Calendric Ema\l: —_— 2 il_ Clkudxkﬂmmt! ——= Tuesday
i]
*——— Calendric Hement ;; — 24 L Calendric Element; ——= Sunday
— Functions
— Functions ‘
i & — 4
; -_—

-~

Figure A.1: The Gregorian and Academic calendric structures.

A.1.2 Conversions between Calendric Granularities

In Section 3.2.3 the derivations for Ibf(K, G 4, Gpg) and ubf(K,G4.Gg) when G4 and Gg
belong to the same calendar were considered. In this section, the case when G4 and Gpg

belong to different calendars is considered.

Derivation A.1 G4 and Gp belong to different calendars:
Let G4 and G belong to calendars C; and Cs, respectively. The following procedure
derives (bf(K,G 4,Gp) and ubf(K,G4,Gpg) for both K as an integer coefficient and K as

a real coefficient:

if 3G,,Gp | G4 € Setg, NG € Setgy NGy €C' NGz eC’
{

if G'A is coarser than G'B
Derive Ibf (K, G;,Gg) and ubf(K,G',,Gg) using Derivation 3.2
else if G'A is finer than G;B
Derive Ibf (K, G'A,Gg) and ubf(K, G'A, G'B) using Derivation 3.3
Use bf(K,G4,Gg) for Ibf(K,G4,Gg) and ubf(K,G',G'g) for ubf(K,G4,Gp)

}

136

else

I6f(K.G4.Gp) and ubf(K. G 1.GB) have to be explicitly specified

Since Setg, and Setg, contain calendric granularities which have the same time duration
as G 4 and Gp, respectively. the above procedure first checks whether there exists in Setg,
and Setg, calendric granularities which belong to the same calendar. If such calendric gran-
ularities exist, then they are used instead of G 4 and G in the derivations of Ibf(K,G 4. Gpg)
and ubf(K.G4,Gpg). If no calendric granularities exist in Setg, and Setg, belonging to
the same calendar. the Ibf(K.G 4. Gg) and ubf(K.G 4. GB) have to be explicitly provided.
|

Example A.2 Suppose we want to calculate 16 f(Ghusinessionth- Gyear) Where GousinessAonth
belongs to the Business calendar and G year belongs to the Gregorian calendar. Suppose also

that Sethu,me,,Mm,h = {Gbusiness.\!onths Gacademic.‘!anth} and SetG,ea,- = {Gycarv Gacademic}"ear}-
where GacademicMonth 2nd GacademicVear belong to the Academic calendar. Then.

Ibf(Gbusiness.\!onth- Gycar) = Ibf(Gacademic;\{onth, Gyear) = Ibf(Gacademic;’l!onzb GacademicYear)-
d

A.2 Unanchored Temporal Primitives

A.2.1 Representation of Time Spans

In general. a time span is made up of different calendric granularities. possibly belonging
to different calendars.
Definition A.1 Discrete Determinate span:

N Vv

Saiser =) _ D (K5 GS) (A.1)

=1 =1
where KJ-C‘ is an integer coefficient of GJC.". which is a distinct calendric granularity in
calendar C;. &

Definition A.2 Continuous Determinate span:

N M

Seont = >_ > (RS- G$) (A.2)

=1 j=1

where RJC' is a real coefficient of GJC', which is a distinct calendric granularity in calendar
C;.n

Basically, Sgiser and S.on: are summations of distinct calendric granularities over different

calendars.

137

A.2.2 Conversion of Time Spans

Definition A.3 Discrete span conversion: The conversion of a span of the form depicted

in formula (A.1) to a calendric granularity G 4 results in a span with lower bound

\f
LZZL ’]-Ga (A.3)

J=1 i=1

and upper bound

N
[ZZ (A-4)

Jj=11i=1
where
=bf(K{.G,G) (A.5)
and
U7 = ubfo (K{'.GT G) (A.6)
[]

Definition A.4 Continuous span conversion: The conversion of a span of the form de-

picted in formula (A.2) to a calendric granularity G 4 results in an span with lower bound

N
Z Z LS (A7)

J=11=1

and upper bound

N
3 Z UST -Gy (A.8)

Jj=1i=1
where
= 1bf (KO ,GS,G4) (A.9)
and
US? = ubfo (K&, G, G 4) (A.10)
-]

Example A.3 Toillustrate the conversion described above, the discrete time span 2 months and
43 hours and 3 academicYears is converted to a discrete indeterminate span in the calen-
dric granularity of days (Gdays). First the given span is represented in the form given in

formula (A.1):

2- Gmonths +45- Ghoura +3- Gacadcmic}’ears

138

This span has calendric granularities from two calendars. the Gregorian and Academic calen-
dars. Gmonehs and Ghoyrs are members of the Gregorian calendar (C'}). while GacademicY ears
is 2 member of the Academic calendar (C2). Additionally, KIC‘ = 2. ['C‘ = 45.ch2 =
3.G$' = Gmonths. GS' = c,w, G{* = GucademicYears- The formulas (A.5) and (A. 6)
are now used to compute LCl L LC2 U, G LC‘ LC’ The calculations of LC‘ L'C‘ LC‘
and LZ,C‘ are the same as those given for Ly.Ly,U.U; in Section 3.3.2.1. Example 3.8.
Therefore. it is only necessary to show how ch and (,162 are calculated.

LS = Bf(KC.G. Gy
bf(3.GacademicYears- Gays)
6f(3.Gyears. Giays)

= 1095
UF? = ubf(K{2.GE Gaay)
= ubf(3.GacademicYears- Gaays)
= ubf(3.Gyears. Giays)
= 1096

In deriving bf (K. GucademicYears- Gaays) and ubf(K. GacademicYears. Giays)- since Gacademicy ears
and Ggyay, belong to different calendars. Derivation A.1 is used. It can be noted that in
SetG 4 nsmicyea, and Setg,,, there exist calendric granularities Gyear and G4y which belong
to the same calendar (the Gregorian calendar). Therefore. [bf(K.GicademicYears. Giays)
is equivalent to Ibf(K.G ryears: Gdays) Which is then calculated from the conversion func-
tions in the Gregorian calendar. The same holds true for ubf(K.G,mdem,-cyea,.,.Gda.J,).

If Setc,.,pmicy.ar and Setg,,, did not have calendric granularities belonging to the same

zar

calendar. then l6f(K.G cademicyears- Giays) and ubf(K.Gacademicyears. Gaays) Would have
to be explicitly specified.

Lastly. the lower and upper boundary of the resulting indeterminate span are computed
according to formulas (A.3) and (A.4). respectively:

lower bound = [L{* + L + L€2] . Gyyys
139 + 1.875 4 1095] - G 4ays

1155 - Gays
upper bound = [Uf* + U7+ UT?] - Guays
= [62+ 1.875+ 1096] - Gaays

= 1160 - Gyay,

Hence, the result of the conversion is the indeterminate discrete time span 1155 ~ 1160 days.
O

139

A.2.3 Operations between Time Spans

The semantics of adding (subtracting) two spans is to add (subtract) the components which
have the same calendric granularity and concatenate the remaining components to the re-
sulting span. For example, assume we have two calendars, the Gregorian calendar with cal-
endric granularities year, month, and day, and the Academic calendar with calendric gran-

ularities academic Year and semester. Suppose also that SetGye,, = {GyeareGacademicyea,-}.
Example A.4

1. (5 years+4 months)+2 academicYears — (5 years+4 months+ 2 academicYears) =
4 months + 7 years = 4 months + 7 academicY ears

2. (5 years + 4 months + 2 academicYears) + (2 academicYears + | semester) —
(5 years + 4 months + 4 academicYears + 1 semester) = 4 months + 1 semester +

9 academicYears = 4 months + 1 semester + 9 years

It is worth mentioning that mathematical operations between spans could result in spans
which are composed of calendric granularities belonging to different calendars. In such a
case, if human understandability becomes an issue, the span can be converted to a single

calendric granularity using the conversion procedure described in Section A.2.2.

A.3 Anchored Temporal Primitives

Operands in the operations between time instants may belong to different calendars. Simi-
larly, operations between spans and time instants may involve spans composed of calendric
granularities belonging to different calendars. Therefore, to carry out operations on time
instants, it may be necessary to convert time instants from one calendar to another. In
the following section, detailed conversion functions which enable an instant to be converted

from one calendar to another are given.

A.3.1 Conversion of Time Instants

To convert a time instant from one calendar to another, the time instant is first mapped
to a real value on the global time axis (Gy). This value is then mapped to a time instant
in the calendar of interest. Therefore, functions are defined to convert a time instant to
its respective value on Gy, and inverse functions are defined to convert a value on Gy to
an instant in a particular calendar. To simplify the description, the functions for a simple

calendar are first given and then generalized for any given calendar.

Derivation A.2 Mapping a time instant to Gy - Simple calendar: Let C be a calendar
with the calendric granularities year, month and day. The following functions are defined

140

in C:

fCl'(y) > Vmonths
fg‘(yv m) — Ndays
f&lyym,d) - R

where y, m, and d are ordinal values of calendric elements in the calendric granularities
year, month, and day, respectively. Since a time instant is represented in terms of the
calendric elements of a calendar, we can write any time instant in C using the ordinal
values of calendric elements as (y,m,d). For example, the time instant September 12, 1995
is written as (1995, 9, 12).

Now, to map the time instant (y,m,d) to Gy the R value for all days up to year y is
first calculated. This is given by the summation:

y=1 f&(a1) fi{a1.a2)

> >) filanasa) (A.11)

ay=1 az=1 az=l1

Formula A.11 calculates the R value up to year y by summing R for every day, in every
month, of every year up to year y. Next, the R value for all days in all months up to month
m in year y is calculated:

m—1 f2(y.21)

Z Z fg‘(yvalvGQ) (AIZ)

ar=1 az=1

This formula calculates the R value in year y by summing R for every day, in every month
up to month m of year y. Lastly, the R value for all days up to day d in month m is
calculated:

d—1

Y fly.m,a) (A.13)

ar=1
Formula A.13 calculates the R value in month m by summing R for every day up to day
d in month m of year y. The R value corresponding to the time instant (y, m,d) is then
obtained by summing Formulas A.11, A.12, and A.13 to the origin of calendar C. Consider
now the mapping of a time instant belonging to any general calendar to Gy. W

Derivation A.3 Mapping a time instant to Gy — General calendar: Let C be a calendar

with origin Oc, and conversion functions e, Fain, da), .. ., fE(in, iz, ..., in) (see Def-
inition 3.2 in Section 3.2.2). Additionally, let (iy,... +in) be a time instant in C. Then,
R(Zy,...,i,), the R value for the time instant (i1,...,1,) is given by:

R(iy,... i) = Oc+ (A.14)

. ks . n—t,; :
n t—1 jc(‘lv----’k—lvak) fc (i1, k=118kseee@n—1) niee .
Zk:l (Zak=l Q41 =1 "‘Zan=1 fC(lla-“ 1 =118y - - . 1an)

141

Formula A.14 first calculates the R value of the time instant up to the calendric element i,
followed by the R value in i,, up to the calendric element i,,_;. This procedure is repeated up
to the finest calendric granularity, i.e., up to calendric element i1. The following derivation
shows how a real value on Gy is converted to a time instant in any given calendar. il

Derivation A.4 Mapping a real value from Gy to a time instant ~ Simple Calendar: Let
C be a calendar with origin O¢, calendric granularities year, month, and day, and r be a
real value on Gy. Then the following formulas calculate a time instant in C corresponding

to r:
Y = max{y|R(y,1,1) < r - Oc}
yE€Z
M = mg%c{m | R(Y,m,1) <r - Oc¢}

D = Teai({dl R(YY,M,d) < r~0Oc¢}

The above formulas first find the maximum year Y which when mapped to Gy gives a real
value which is less than or equal to r — Oc. The trick here is to vary the year value (y)
in R(y, m,d) (Formula A.14) and keep the month (m) and day (d) values constant at 1.
After having found Y, the maximum month in year Y which when mapped to Gy gives a
real value which is less than or equal to r — O¢ is then calculated. In this case, the year
value in R(y, m,d) is kept fixed at Y, the month value is changed, and the day value is kept
constant at 1. Finally, the maximum day in year Y and month M which when mapped to

Gu gives a real value which is less than or equal to r — O¢ is calculated. B

Derivation A.5 Mapping a real value from Gy to a time instant ~ General Calendar:
Let C be a calendar with origin Oc, and calendric granularities G, G, ... ,Gn, where G,
is the coarsest calendric granularity and G, is the finest calendric granularity. Additionally,
let r be a real value on Gy. Then the following formulas calculate a time instant (Z1y+ -y in)

in C corresponding to r:

= 3 <r-
i rilé'«).z‘({alR(a,l,) <r-0c¢}

n—1

I = Tea.zx{alR(il,ig,...,ik_l,a,l,...,1) <r-0c¢}

n-k

in = max{a|R(i1,iz,...,in_1,a) <r— Oc}
a€Z

Having defined the conversion functions necessary to convert a time instant from one
calendar to another, in the following sections, algorithms are given that show how the

operations on time instants are carried out when the operands belong to different calendars.

142

A.3.2 Comparison between Time Instants

Let (i1,...,¢,) and (i'l, ceey z':n) be two time instants belonging to calendars C'; and Cj,

respectively. The algorithm to compare (if,..., in) and (i'l, e, i:n) is:
Algorithm A.1 Comparison of instants belonging to different calendars:

ry = R(il, ceey ln)
o 7
ro:=R(i,...,i,)

Compare r; and ry

Algorithm A.1 makes use of the global time axis which provides a homogeneous underlying
platform on which time instants can be mapped. The two time instants are first converted
to their respective real values on the global time axis using Derivation A.3. These real

values are then compared.

A.3.3 Elapsed Time between Time Instants

Let (iy,...,in) and (i},...,4.,) be two time instants belonging to calendars C; and C»,,
respectively. The algorithm to find the elapsed time between (¢1y...,%,) and (i'l, e ,i;n)
is:

Algorithm A.2 Elapsed time between instants belonging to different calendars:

Convert (ij,...,i,) to (is--. i) using Derivations A.3 and A.5
"

SN .= Elapsed((iy,..., i), (z"l', ceenin))

The algorithm first converts the time instant (i1r...,in) toits equivalent counterpart
in calendar Cy, (i},...,i.) using Derivations A.3 and A.5. It then finds the elapsed time
between (iy,....i,) and (z"l', ey i::). The result is a time span, S, which is of the form

shown in formulas (A.1) or (A.2).

A.3.4 Operations between Spans and Time Instants

Consider the situation when the calendric granularities of the span do not belong to the

same calendar as the instant. Let S be a span of the form:

N M
S = D S (KE -GS

=1 j=1

aul Mo c c
= D (K7 -GT) 4.+ Y (KON .GSw)

j=1 ij=1

= Se, +Sc2+...+ScN

Basically Sc, is a span composed of calendric granularities belonging to calendar C;. The
algorithm for adding span S to a time instant Ic, (a time instant belonging to calendar

C4) is as follows:

143

Algorithm A.3 Addition of a span to an instant:

Ie, = Ic,
repeat for i:= 1 to NV
Convert Ié.A to Ic, using Derivations A.3 and A.5
Ic, :=Sc, + I¢,
Convert Ié.' to [é',. using Derivations A.3 and A.5
[éA = I&-\
return [é‘,.

For each span component, Sc,, the algorithm converts the time instant belonging to
calendar C'4 to a corresponding time instant in calendar Ci, adds it to S¢, and converts the
resulting instant back to an instant of calendar C4. The algorithm for subtracting span S
from a time instant Ic, is similar. That is, Ie, - S=1Ic, +(-9).

144

1.6

Il

.4

e

Il

150mm

125

I

IMAGE EVALUATION
TEST TARGET (QA-3)

hone: 716/482-0300
716/288-5989

~Tow

= Rochester, NY 14609 USA

© 1993, Applied Image, Inc.. All Rights Re:

