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Abstract

This study proposes a new method for speaker-information enhancement in
computer speaker recognition. The basic approach is to measure the distribution
pattern of speaker information in the parametric domain with the training speech
data, and then apply corresponding weighting strategy in the testing phase to
enhance those speaker-information rich elements. This approach is based on the
assumption that a speech signal contains both phonetic (linguistic) and speaker
information. Though interrelated, these two kinds of information have their own
distinctive representations in the acoustic and parametric domain. For speaker
recognition purposes, only the speaker-information component in the speech
signal should be maximaily enhanced.

This study first reviews the anatomical. psychological and social nature of a
speaker’s voice quality and its manifestation in the acoustic domain. The phonetic
environment and the interrelationship between phonetic and speaker information
are also discussed. Since the cepstral representation of a speech signal is widely
used in present speech and speaker recognition applications, the new approach
for speaker-information enhancement is tested in the cepstral domain.

The experiment consists of two parts. The first part investigates speaker-
information distribution in the mel frequency cepstrum coefficients (MFCC). Two
statistical methods, the inter-distribution distance measurement and the speaker
identification error rate measurement, are used independently for estimating the

amount of speaker information coded in each MFCC coefficient. The second part



of the experiment compares three different cepstral weighting (or liftering)
approaches for speaker-information enhancement. The first weighting is a
traditional speech weighting method; the other two weightings are based on either
the general or individual speakers’ distribution patterns of speaker information.
The experimental results indicate that the weightings based on speaker
information provide better speaker recognition performance.

Though the proposed new approach for speaker information enhancement was
tested in the cepstral domain, the same principle for maximally enhancing the
speaker-related variability should also be applicable to other speech parameters.
In this respect, the present study provides a methodology, rather than only a
specific technique, for speaker information enhancement. This new approach

also has its implication for speech recognition research.
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CHAPTER 1

INTRODUCTION

The goal of computer speaker recognition is to determine “Who is speaking?”
(speaker identification) or “Is the speaker the claimed client?” (speaker
verification). This is an area of artificial intelligence where machine performance
can exceed human performance (O'Shaughnessy, 1987). Because of the
potential applications in high-security data or area access. bank transactions,
telephone services etc., there has been in recent years an increased momentum
in speaker recognition research. From an engineering perspective, speaker
recognition shares quite similar techniques with speech recognition, such as
digital signal processing, parametrization, statistical modelling and pattern
recognition. From a linguistic point of view, however, these two tasks differ in
nature. The task of speech recognition is to search for phonetic information. i.e..
the invariant acoustic cues in the speech signal. Speaker variability is considered
a confounding factor which needs be suppressed in the feature extraction and
pattern recognition processes. For speaker recognition, on the contrary, speaker
variability provides all the information needed for speaker identification and
verification. while phonetic information becomes an irrelevant or even
confounding factor. How to effectively extract speaker information (or speaker
variability) from the speech signal, then, is the fundamental question for speaker
recognition research. The literature has reparted various methods for enhancing
speaker recognition performance, such as selecting the optimal parametric
representation of the speech signal and using sophisticated statistical methods
for speaker modelling and distance measurement (Rosenberg & Soong, 1992:
Furui, 1994). However, the fundamental question of how speaker idiosyncrasy is
coded in the speech parameters and the effective method to extract it have not
yet been sufficiently exploited for the benefit of improving speaker recognition
performance.
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The present study proposes a new approach, originally inspired by Furui (1994).
for speaker-information enhancement. In his overview of speaker recognition
technology, Furui suggested pursuing “ a method for extracting and representing
the speaker characteristics that are commonly included in all the phonemes
irespective of the speech text” ( p. 8).

The new approach is based on the assumption that speech contains both
speaker- and phonetic-information components. Though interrelated, these two
kinds of information have their own characteristic distribution patterns in the
acoustic domain. For speaker recognition, only the speaker-information
component in the speech signal should be enhanced.

The new approach for speaker-information enhancement can be briefly described
as using the training speech data to measure the distribution of speaker
information in the parametric domain, and then applying the optimal weighting
strategy in the testing phase to enhance only the speaker-information rich
elements. Since the cepstrum is a widely used parametric representation of the
speech signal in both speech and speaker recognition systems, the present study
tests the new approach in the cepstral domain. Efforts are focused on the
measurement of speaker information in the mel frequency cepstrum coefficients
(MFCC), and the optimal weighting strategy for speaker-information
enhancement. The study is divided into the following eight chapters:

Chapter 1 is the introduction of the study.

Chapter 2 surveys the anatomical, psychological and social origins of a speaker's
voice quality and their representations in the acoustic domain.

Chapter 3 investigates the interrelationship between speaker information and its
phonetic environment.

Chapter 4 is a review of the methods for speaker-information extraction, followed
by the proposal of a new approach for speaker-information enhancement.
Chapter 5 discusses the technical aspects of the cepstral representation of the
speech signal.



Chapter 6 presents the experiments for measurement of speaker information in
the cepstral domain. For comparison, the distribution pattern of phonetic
information is also investigated.

Chapter 7 compares different weighting strategies for an optimal speaker-
information enhancement.

Chapter 8 presents the summary and conclusions.



CHAPTER 2
SPEAKER INFORMATION IN THE ACOUSTIC DOMAIN

A speech signal carries both phonetic and speaker information. Phonetic
information is related to three distinct linguistic functions(Trubetzkoy, 1969).
* the meaning-differentiating (distinctive) function, which distinguishes the
individual units of meaning.
» the culminative function, which indicates the important linguistic units
contained in a particular utterance.
e the delimitative function, which signals the boundaries between the
linguistic units.
Speaker information refers to a speaker's voice quality defined by Laver (1980)
as the characteristic auditory colouring of an individual speaker’'s voice.
Acoustically, speaker information is reflected in an individual speaker’s
idiosyncratic spectral representation of speech. Speaker information permits the
hearer to identify individual speakers.
Compared to phonetic information, speaker information is usually not under a
speaker's conscious control. Speaker information reflects mostly the invariant
aspects of a speaker’s anatomical structure and the habituated nature of vocal
settings. The function it plays in speech is informative rather than communicative.
The distinction between communicative and informative was defined by Lyons
(1977) as : a signal is informative if (regardless of the intentions of the sender) it
makes the receiver aware of something of which he was not previously aware; on
the other hand, a signal is communicative if it is intended by the sender to make
the receiver aware of something of which he was not previously aware.
Besides its informative function, speaker information also plays a “channel”
function in speech communication. A well-known example is the “cocktail party
effect” (Ainsworth, 1976). Without a speaker cue, it would be difficult to follow a
selected conversation when the surrounding conversations are of greater

loudness.



Sapir (1927) distinguished different levels in the structure of the voice: voice
proper, intonation, rhythm, continuity and speech rate. He suggested that each of
these has individual and social dimensions that interact to create various voice
patterns.

O’'Shaughnessy (1987) attributed speaker variations to three sources: differences
in vocal cords and vocal tract shape, differences in speaking style and
differences in what the speaker chooses to say.

Rosenberg and Soong (1992) classified speaker information into two categories:
the physical and behavioural information of the speaker. The physical information
refers to a speaker's speech-related anatomical structures such as the oral
cavity, vocal folds, velum and nasal cavity, the teeth and jaw configuration; the
respiratory volume; the dimensions of lips and the geometry of laryngeal
structures. Behavioural information can be low-level or high-level. Low-level
behavioural information is associated with vocal settings such as tongue position,
pitch contours, rhythm, etc. . High-level behavioural information takes the form of
the characteristic choice of words, phrases and other aspects of speech style.
Laver and Trudgill (1979), in a more philosophical approach, characterised
speaker information in a speech signal as three types of markers: physical
markers, psychological markers, and social markers. Physical markers are similar
to Rosenberg and Soong's definition of physical information, which refers to a
speaker’'s physical characteristics, such as vocal anatomy, age, sex, physique
and state of health; psychological markers refer to those marking a speaker's
psychological characteristics of personality, and affective and attitudinal status;
social markers refer to those marking a speaker's social characteristics such as
regional affiliation, social and educational status, occupation and social role. The
same voice phenomenon can be attributed to different types of markers. For
example, a speaker's particular vocal setting can be either psychological or
social. The following discussion of speaker information will adopt Laver and

Trudgill's typology.



2.1 Physical Markers
Speech production is a complex co-ordination of muscles and speech organs.
Speech-related muscle systems can be classified into following categories (Laver
and Trudagill, 1979):
» the Respiratory System which co-ordinates the lungs’ inspiration and
expiration.
* the Phonatory System which controls the larynx during phonation.
 the Pharyngeal System which controls articulatory activity at the posterior
end of the vocal tract.
e the Velopharyngeal System which controls the production of nasality.
o the Lingual System which is responsible for the oral articulations.
* the Labial System which controls the actions of the lip structures.
e the Mandibular System which controls movements of the jaw.
The speech organs consist of the subglottal respiratory system, the larynx and
the superiaryngeal vocal tract (Lieberman and Blumstein, 1988). They are the
apparatus for generating speech and also the main sources for individual
variability. The description of physical markers will be focused on these three

aspects.

2.1.1 The Subglottal Respiratory System

The subglottal respiratory system (SRS) consists of the lungs and associated
respiratory musculature. The function of the SRS in speech is to provide an
airstream for phonation. Speech sounds are the resuft of manipulation of air
stream from the SRS. One speaker difference in the SRS is the vital capacity,
which is measured by taking a maximum inspiration, then measuring a maximum
expiration. Vital capacity is related to a speaker’s sex, size, and breathing habits.
Another speaker variability in the SRS is the individual pattern in controlling the
subglottal air pressure. Intensity of voicing will increase as a function of a value
between the 3rd and 4th power of the subglottal air pressure, which means that a



small change in subglottal air pressure makes a large intensity difference.
Different intensity patterns of speech by different speakers can be observed
perceptually or acoustically. Fant (1873) found that an increase in subglottal air
pressure did not cause a uniform increase of the intensity level over all the
frequency ranges. In general, a greater intensity increase was observed in the
higher frequency range than in the lower frequency range.

The relationship between subglottal air pressure and the fundamental frequency
(Fo) was addressed by many experimental and modelling studies (Strik and
Boves, 1992). The F, to subglottal air pressure ratio was estimated in values
between 5 - 15 Hz/cm H,0.

Perkell et al. (1994) reported sex differences in subglottal air pressure and
maximum airflow declination rate. As for age differences in speech respiration,
an investigation by Hoit and Hixon (1987) revealed that ageing men generally
used larger lung volume excursions per breath group, and expended larger lung
volumes per syllable. In addition, fewer syllables per breath group and the
initiation of breath groups from higher rib cage volumes were observed. In speech
pathology, it was reported that a creaky voice (vocal fry) was associated with low
subglottal air pressure (Laver, 1980).

2.1.2 The Larynx

The larynx consists of the thyroid, cricoid and arytenoid cartilages and the vocal
folds, which are shelf-like elastic protuberances of tendon, muscles and mucous
membranes. According to the myoelastic aerodynamic theory of phonation
proposed by Van den Berg(1958), the vibration of vocal folds is caused by two
forces: the myoelastic tensions acting on the vocal folds, and the aerodynamic
Bernoulli effect. With the glottis closed by muscular tensions, sub-glottal air
pressure builds up. When the pressure reaches certain level, it blows open the
vocal folds. The air stream passes the narrow glottis, and the increase of velocity
causes the sudden pressure drop. Then, due to the Bernoulli effect, as well as
the myoelastic tensions, the vocal folds are pulled together. The closure of the



glottis causes the air pressure to build up again, leading to the continued vibration
of vocal folds. The frequency of vocal-fold vibration is determined by the
elasticity, tension, and mass of the vocal folds. Long and thick vocal folds vibrate
at lower Fy. Since males usually have longer and thicker vocal folds than females
do, males usually have a lower natural F; than females. To examine Fo
differences between male and female speakers, the Fy s of 16 repetitions of the
word “zero” spoken by eight male and eight female speakers, respectively, were
extracted using the Cspeech (Milenkovic and Read, 1992). The average Fy and
the standard deviation (STD) for each speaker are presented in Table 2-1 and
also plotted in Figure 2-1. The Speech data used is TI-46, which will be described
in detail in Chapter 6.

Table 2-1: Individual speakers’ average Fqs and STDs for
16 repetitions of the word “zero” from the T1-46 speech data

Speaker Fo (Hz) STD (Hz) Speaker Fo (H2) STD (Hz)
F1 179 19.98 M1 108 25.36
F2 237 30.63 M2 123 12.6
F3 230 21.59 M3 132 20.88
F4 156 20.44 M4 129 13.4
F5 188 15.68 M5 102 19.42
F6 198 33.46 M6 120 17.11
F7 220 15.88 M7 130 9.31
F8 199 35.97 M8 132 32.14

Average 200.88 _242 Average 122.13 18.78
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Figure 2-1 Male and female Fo differences.

it can be observed from Figure 2-1 that all the eight female speakers have a
higher Fo than the male speakers. The average F, over all the male speakers is
122 Hz, while the average Fg over ali the female speakers is 201 Hz. In each sex
group, there are also individual variations. The average Fg range for the male
speakers is between 102 Hz to 132 Hz, and the average Fq range for the female
speakers is between 156 Hz to 237 Hz. This result is close to the Fo value
reported by Spencer's perceptual experiment (1988). In that perceptual
experiment, male-to-female transsexuals’ voices were presented to the listeners,
who were asked to judge whether the voices were male or female voices. The
resuit was that all speakers with Fg below 160 Hz were identified as male, and all
those speakers with Fy above 160 Hz were identified as female.

In addition to sex information, Fo also carries age information. Children usually
have higher natural Fo than adults because children's vocal folds are not well
developed, i.e. , children’s focal folds are much shorter, thinner and more elastic
than adults’. For male speakers, there is a general lowering trend of Fy from
infancy through middle age, then a reversal in the trend whereby the Fy rises
slightly with advancing age. With females, however, there is controversy over
whether Fo changes with advancing age. Some expenments with aged females
found no significant Fy changes (Mcglone and Hollien, 1963; Biever and Bless.
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1989). The explanation is that anatomical changes in the female larynx are not as
extensive as those for men. Therefore, the degenerative changes may not have
as great an effect on females’ laryngeal structures as on males’ in their advanced
ages. On the other hand, other experiments (Honjo and Isshile, 1980: Bussel et
al. , 1995) found that aged females’ Fo was significantly lower than young
females'. Bussel et al.'s experiment used archival data, recordings made in 1945
of a group of Australian females, and recordings made in 1993 of the same group
of females. The result showed significant lowering of Fy with aging. However,
using recording data from about 50 years ago could be problematic if some
technical aspects were not strictly controlied.
The aging factor is also reflected in Fy variability. Endres et al. (1971) showed
that the individual Fy distribution curves became narrower with increasing age
because of the decreasing ability in controlling the laryngeal muscles.
The Fy perturbation can also be informative about a speaker's vocal folds'
anatomical characteristics. Jitter is the cycle-to-cycle variation of the glottal
period, and shimmer is the cycle-to-cycle variation of the peak amplitude. The
aperiodic vocal fold vibration gives a voice the quality of harshness. Such vocal
fold vibration is caused by excessive laryngeal tension. The jitter and shimmer
patterns for individual speakers are quite different.
The anatomy of the larynx affects the glottal source waveform characteristics.
Craner and Schroeter (1995) showed that in the speech spectrum, there exists a
dc component during the “closed glottis” interval of vowels produced by both male
and female speakers at a normal loudness level. This dc component is caused by
glottal leakage. A moderate leakage may give rise to appreciable source-tract
interaction. In the time domain, such leakage manifests itself as a ripple in the
glottal flow waveform just after closure. In the frequency domain, the spectrum of
the flow through a glottis with a ieak is characterized by anti-resonances. Hanson
(1997) found that incomplete glottal closure causes

* anincrease in the bandwidth of the first (and possibly the second) formant.

* anincrease in the tilt of the glottal spectrum at high frequencies.
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* an emergence of a turbulence noise source in the vicinity of the glottis that
may be comparable in amplitude (at high frequencies) to the spectrum
amplitude of the periodic source.

A more open glottal configuration results in relatively greater low frequency and
weaker high-frequency components, compared to a more adducted glottal
configuration. The more open glottal configuration aiso leads to a greater source
of aspiration noise and larger bandwidth of the natural frequencies of the vocal
tract, particularly the first formant. Female speakers are found more likely than
male speakers to have incomplete closure of the focal folds. The degree of
incomplete closure of the vocal folds is also speaker-dependent.

2.1.3 The Vocal Tract

The vocal tract includes the pharyngeal cavity, the oral cavity and the nasal
cavity. According to the source-filter theory (Fant, 1960). the vocal tract acts as
an acoustic resonator. If G (f) represents the glottal source spectrum. H (f)
represents the gain factor of the filter function at the frequency of f. then the
speech spectrum X(f) can be estimated as

XHH=GMH H(. (2.1)

The spectral peaks of X (f) are called “formants” or “poles”™. They correspond to
the resonances of the vocal cavity, which can be approximated by a tube open at
one end and closed at the other. For a vocal tract with a fairly uniform cross-
section, the resonances or the formant frequencies can be estimated as

_2i-Ne
4L

F (2.2)

where F; is the ith resonance (or formant frequency); c is the velocity of sound in

the air and L is the length of the vocal tract. For the schwa sound [ ¢ ] produced



by a male with vocal tract length of 17 cm, F, will be around 500 Hz. F; around
1500 Hz, F3 around 2500 Hz, and so forth. The average frequencies of the vowel
formants are inversely proportional to the length of the vocal tract. Fant (1973)
found that:
The percentage of relative increase in formant frequencies associated with
the removal of one-half centimetre of the pharynx of the vowel [ i ] is 3.5%
in Fy, 47% in F,, and 0.5% in Fi. Similarly, a removal of a one-half
centimetre section of the frontal mouth cavity of [ i ] results in a 1.3%
increase in Fy, a 0.2% increase in F,, and 6.1% increase in Fi. (p.88)
Since different speakers have vocal tracts of different lengths and shapes, the
natural resonant frequencies or formants will be different among speakers. The
average female vocal tract is about 15% shorter than the male's vocal tract; and
consequently. females usually have higher average formant frequencies than
males. Anatomical studies have also found that males have relatively greater
pharynx length and more pronounced laryngeal cavities than females, which also
contributes to the formant differences between sexes. We analysed a segment of
speech spoken by four female speakers and four male speakers respectively
from the T1-46 speech data. Phonetically, this segment is the steady state portion
of the vowel [ i ] with duration of 100 ms. We did both Discrete Fourier Transform
(DFT) and Linear Predictive coding (LPC) analyses, and the DFT and LPC
generated spectra are plotted in the graphs of Figure 2-2. The measured formant
frequencies of [ i ] for each speaker are presented in Table 2-2.
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Figure 2-2 DFT and LPC spectra of the vowel [ i ] spoken by four female and four male
speakers. In each graph, the highly varying spectrum is from the DFT spectral analysis,
and the smooth spectrum from the LPC spectral analysis. The spectral peaks are the
formants.
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Table 2-2: Formant frequencies of [ i ] for four female speakers and four male
speakers from the T1-46 speech data

Speaker Fq (H2) F2 (H2) Fi(Hz) Fq (H2)

Female 1 366 2832 3491 4285
Female 2 427 2771 3137 4297 ;

Female 3 452 2865 3210 4407

Female 4 330 2527 3528 4089

Average [female] 394 2749 3342 4270

Male 1 305 2026 2673 3101

Male 2 317 2112 2905 3320

Male 3 330 2209 2698 3369

Male 4 281 2234 3000 3333

Average [male] 308 2148 2819 3281

Figure 2-2 and Table 2-2 indicate the formant difference between the sex groups.
The average formant values of the female group are significantly higher than
those of the male group. Individual differences also exist within each sex group.

If both the oral and nasal cavities are involved in articulation, anti-resonances or
“zeros” are introduced into the spectrum because the side-branching chamber
acts as a filter, and selectively absorbs energy from the main tube at frequencies
which are dependent. in part, on the side-chamber's own resonant frequencies. In
speech production, either the nasal cavity or the oral cavity can act as a side-
chamber relative to the other (Laver, 1980). Provided that the exit of the cavity is
smaller than the entrance, whichever cavity has the smaller exit becomes the
side-chamber. Spectrally, the anti-resonances or “zeros” cause the formant
frequencies to be dampened. Since a speaker’'s nasal cavity, compared with the
oral cavity, is not subject much to change during articulation, the resonances or
anti-resonances of the nasal cavity can provide quite reliable speaker information.



2.1.4 Pathological Status

A speaker’s pathological status might also be determined from the speech signal.
Partial vibration of the vocal cords creates a creaky or laryngealized voice.
Acoustically, a creaky voice is manifested by a narrowing of the glottal pulise in its
duration and a lowering of F; and its amplitude. Comparing creaky voices of both
sexes, Klatt and Kiatt (1990) found no significant Fo range difference, and
suggested that in the creaky mode, Fy is not affected by larynx variations. When
the vocal folds are irritated and swollen, the voice becomes hoarse. Incomplete
glottal closure during the “closed” phase of the phonation gives a breathy voice
quality. Breathy glottal source signals obtained through inverse filtering typically
show more symmetrical opening and closing phases with little or no complete
closed phase. With increasing breathiness in speech, the F, tends to be lowered
and the relative Fo amplitude tends to be increased. As well. the first formant
bandwidth can also be increased. With the air passing the narrow glottal chink
during the “closed” phase of phonation. noise is generated. This reduces the
amplitude of the higher frequency harmonics, and the upper portion of the
spectrum becomes dominated by a dense aspiration noise. In a breathy voice.
more high frequency energy is evident than in a normal voice (Kiatt and Kiatt,
1990; Hillernbrand et al. , 1994).

Apart from pathologies specific to speech. other health problems of a speaker
might also be reflected in his/her speech. Speakers suffering from Parkinson's
disease, for example, have reduced stress in speech. Stress reduction may result
from respiratory/phonatory impairments, such that pitch and loudness, which cue
syllabic stress, are diminished. For hearing-impaired speakers, Subteiny et al.
(1989) found that their tongue tended to retract for front vowels and to move
frontward for back vowels. For high vowels, most of the hearing-impaired
speakers had an elevated hyoid, an unusually large vertical dimension between
hyoid and laryngeal sinus, and a retracted tongue root associated with a marked
retraction or deflection of the epiglottis toward the pharyngeal wall. The
characteristic voice of persons with Down Syndrome is harsh, raucous and low-



pitched. The spectrum shows the emphasizing of the F, for all vowels. and the
range of the spectrum is narrowed. The irregular vibration of the vocal folds
causes the irregular breaks in the Fi. The F is often very weak, and the higher
formants are invisible (Novak, 1971). Dysarthric speakers usually show in their
articulation (1) anterior lingual place inaccuracy, (2) reduced precision of fricative
and affricate features, (3) an inability to achieve extreme positions in vowel
articulatory space, (4) nasalization of vowel production (Andrews et al. , 1977;
Yorkston et al. , 1989).

The nasalization of dysarthric speech is possibly caused by the inability of the
patient's velopharyngeal musculature to control the velum for closing the
velopharyngeal port, resulting in the air leaking through the nasal cavity. Weismer
et al. (1995) observed that in most motor disorders. articulatory gestures are
typically slow; the articulatory gestures are often under-scaled: and there are
significant intra- and inter-speaker variations. Figure 2-3 illustrates the
spectrograms of a normal speech and a speech manifesting a motor disability.
Figure 2-3a is the spectrogram of the word * x-ray “ spoken by a normal female
speaker. Figure 2-3b is the spectrogram of the same word spoken by a female
speaker with dysarthria. Comparison of the two spectrograms clearly shows that
the dysarthric speech has much longer utterance duration (about double the
normal utterance duration). The fricative [ s ] spectrogram is observable in the
normal speech, but nearly disappears in the dysarthric speech. In addition, the
dynamic transition in the diphthong [ ei ] is observable in the normal speech
spectrogram, but is flattened in the dysarthric speech spectrogram.
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Figure 2-3.a The spectrogram of a normal female speaker’s speech “x-ray”.
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Figure 2-3.b The spectrogram of a dysarthric female speaker’'s speech “x-ray”.

2.2 Psychological Markers

A speaker's psychological status or personality may also be reflected in the
speech signal. Early studies showed that breathy voices might be indicative of
introversion, neurotic tendency and anxiety (Diehl et al. , 1959; Moor, 1939).
Siegman and Pope (1965) found extroversion to be associated with shorter



latency, fewer ‘filled' brief pauses and fewer silent pauses. Fy was reported to
have a strong positive correlation with a speaker’s personality traits such as
sociability, dominance and aggressiveness (Scherer & Giles, 1979). Competent
and dominant speakers usually have a higher Fy than non-task-oriented,
submissive speakers. In addition, Fy can be an indicator of the stress level of the
speaker. Scherer showed that stress-induction led to a significant rise of
speaker's Fo. Laver (1975) found that for tense voices caused by high muscular
tension when a speaker was in an emotional state, the energy concentration was
between 500 and 1000 Hz, compared with a lax voice, which had energy
concentration below 500 Hz. A speaker’s psychological stress can also affect the
magnitude of shimmer and jitter (Inbar and Eden, 1976). According to Williams'
research (1972), a speaker's emotion has its acoustic correlation in the speech
signal. In a neutral emotion state, vowels tend to have well-defined formant
structures, with little noise or irregularities, either between the formants or in the
high frequency regions. Consonants are uttered in an imprecise manner,
particularly when in unstressed syllables. The F, contour, as a function of time, is
characterized by smooth, siow and continuous changes. The Fy changes occur
with syllable stress or semantic emphasis. In an emotional state, both the spectral
and Fo patterns are affected. For example, if the speaker is angry, high Fy is
observed throughout the breath group. Fy increase is. on the average, at least
half an octave above that during the neutral state. Fo variation is also
considerably larger. Some syllables are produced with significantly increased
intensity. The vowels in these syllables tend to be articulated with a more open
vocal tract. The F, is usually weakened in intensity and increased in frequency,
while the consonants are generated with a more clearly defined closure. A more
recent study (Laukkanen et al. , 1996) suggested that stress or emotion brought
about simultaneous changes in F,, SPL, subglottal pressure and the giottal

airflow waveform.



2.3 Social Markers

A speaker's social status, such as education, occupation, regional affiliation and
social role, is also marked in the speech signal. Social and regional dialects are
the obvious examples. In his investigation of Norwich English, Trudgill (1974)
found that the working-class speakers tended to use a creaky voice, a high pitch
range, a wide loudness range, a lowered tongue position, a raised larynx position,
a particular type of nasality and a relatively high degree of muscular tension,
which distinguish them from the middie-class speakers.

Cultural differences are also reflected in a speaker's speech pattern. Laver (1975)
reported a very low pitch range in American males. Scherer (1979) found a
significant difference in the mean Fy for his American and German speakers. For
his 28 American subjects, the mean F, was 128 Hz and for his 29 German
subjects, the mean Fy, was 161 Hz. The cultural markers in speech reflect a
speaker's learned behaviour and can be attributed to historical tradition, cultural
stereotypes, national character or even the influence of television and movie
stars. Moreover, people with certain occupations could have unique speech
patterns. For example, Kuwabara et al. (1983) analysed the speech recordings of
several announcers, finding that their speech could be characterized by the
dynamic characteristics of the Fg and formant frequencies. Compared with people
of other occupations, announcers’ voices also had a higher energy level in the 3-
4 kHz frequency band.

Some of the sex differences in speech can aiso be culture markers. For example,
females are more likely than males to have incomplete closure of the vocal folds
in their speech, causing an airflow bypass even duning the closed phase of the
glottal vibratory cycle and creating a breathy voice quality. There is also a
tendency for women to produce a more standard, or rhetorically correct
pronunciation. For example, in Montreal, French Canadian women pronounced
the approximant [ | ] in pronouns and articles such as il, elle, la and les more often
than men did. Clark and Clark (1990) found that a creaky voice could also reflect



dialect and sex. In a Northen dialect of British English, a creaky voice was
observed in over 65% of the syllables for some male speakers.

Studies conducted in the United States and Germany (Herbst, 1969: Takefuta et
al. , 1971) showed that females had a greater pitch variability than males.
McConnell-Ginet (1974) reported greater pitch range and intonation variability for
white, middle-class women in the United States. Other studies (Pellowe and
Jones, 1978; Elyan, 1978) also reported that men used a much greater proportion
of falling than rising intonation, while women generally used more rising
intonation. Furthermore, women displayed a greater variety of intonation patterns
than men did. In our experiment on Fq variation, the standard deviations of Fos
were calculated for 17 male speakers and 17 female speakers over 5 repetitions
of the utterance “My name is (speaker's name)”, and the results are plotted in
Figure 2-4. The average F, standard deviation of 17 males is 10.13 Hz: while the
average Fq standard deviation of 17 females is 21.55 Hz. That is to say, the
females’ average standard deviation is more than double that of the males.

Standard Deviation

Speaker No.

Figure 2-4 Variability of female and male speakers’ F,.

One explanation for the significant Fy variation difference between male and
female is the non-linear characteristics of auditory perception. To produce a
perceptually equivalent intonation pattern, a female's Fy variation has to be larger
because a female’s natural F, is higher than a male's. Furthermore. female



speech is observed to have more intonation variability than a male’s speech,
which also contributes to greater F variation.

Another interesting phenomenon in the observed sex differences in the phonetic
realisation of vowel categories is that the vowels spoken by females exhibit
greater between-category dispersion in the F1 x F2 plane than the vowels spoken
by males. Different explanations for this phenomenon have been suggested. One
interpretation (Sachs et al. , 1973; Ohala, 1984) is that the differences reflect a
strategy of the speakers to supplement or exaggerate the acoustic effects of
anatomical differences so as to achieve a more masculine-sounding vocal quality
in males and a more feminine-sounding vocal quality in females. Another theory
(Diehl et al. , 1996) suggests that without the compensatory effect of greater
dispersion of vowel categories in the acoustic domain, the typically higher Fq of
female speakers would yield reduced identifiability of vowels because of sparser

harmonic sampling of spectral envelopes.

2.4 Speaker Vs. Phonetic Information

There exists distinction between phonetic and speaker information in the acoustic
domain. The relative formant positions are an important phonetic cue. it is well
documented in the literature that within certain limits, vowels retain their
phonemic identity if certain formant frequency ratios are preserved. The absolute
formant positions, however, are an important speaker cue. When different
speakers produce a set of speech sounds with the same phonetic quality, the
relative formant positions will be about the same, but the absolute formant
frequency values differ from speaker to speaker.

The low formants (F; and F.) are important for both phonetic and speaker
information because they are sensitive to the articulator positioning or movement,
as well as to the overall characteristics of a speaker's vocal tract. The high
formants, however, are more relevant to speaker information, rather than to the
phonetic aspects of the sound because they are mainly decided by the shape of
the vocal tract and less disturbed by the articulator positioning or movement.
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Fant's study of American English and Swedish Vowels (1973) showed that
different vowel classes in both languages had no significant impact on formant F;.
Ladefoged (1982), on the other hand, suggested that “the position of the fourth
and higher formants in most vowels is indicative of a speakers voice quality
rather than the linguistics aspects of the sounds” (p.193). Endres et al.'s study
(1971) also suggested that the formants in the higher frequency range are more
reliable source for a speaker's vocal-tract information, compared with the
formants in the low frequency range. In their study, the spectrograms of two
professional imitators’ imitations were analyzed. They found that the formants in
the higher frequency ranges were particularly difficuit for mimicry.

Furui (1986) analyzed the long-time speech spectra derived from the averaged
cepstral coefficients for a Japanese word / baNgo: / uttered by nine male
Japanese speakers. He found that a significant part of the spectral variations
among the speakers was above the frequency range of 2.5 kHz; while in the
lower frequency range, the spectral envelopes were relatively consistent. This
supports the argument that the higher frequency range in the speech spectra
contains significant speaker information.

The cross-language long-time speech spectrum comparison performed by Byrme
at al. (1994) provides another interesting view of the general speaker-information-
distribution pattern in the frequency domain. In Byme et al.'s experiment, the
long-time average speech spectra from speakers of 17 different languages and
dialects were compared, using ten male and female speakers for each language
or dialect. The speech material was a passage selected from a story book on the
basis that it was relatively easy to read and did not involve excessive repetition.
The experimental results showed a similarity of the long-time average speech
spectra across different languages, and also the inter-speaker variation pattern in
the frequency domain. A significant increase in frequency variability existed
around 100 Hz for the male groups and around 300 Hz for the female groups.
Frequencies around 400 Hz to 1 kHz showed relatively low speaker variability for



both sex groups. An increase of speaker variability began for both groups at
around 3 kHz and reached its peak at around 8 to 10 kHz.

Formant transitions or dynamics in the speech signal contain significant phonetic
information. For example, the perception of a particular liquid or glide, e.g. [I, r, w,
i] depends on the onset frequencies and direction of the formant transitions
(Lieberman and Blumstein, 1988). In fricatives, the onset of the noise is fairly
gradual. If it is too abrupt, the sound will be perceived as an affricate or a stop
(Gerstman, 1957). Formant transitions also provide important cues for the place
of articulation in perception of stop and nasal consonants (Lieberman and
Blumstein, 1988, Ladefoged, 1975). In speech recognition, using feature
parameters associated with formant transitions or dynamics reported significant
enhancement of speech recognition performance (Furui, 1986; Chengalvarayan
and Deng, 1997).

As for the significance of formant transitions or dynamics for speaker information,
Heuvel et al. (1992) found that in Dutch vowels, the transition part contained less
speaker information compared with the steady-state one. Heuvel et al. (1995)
further investigated speaker variability in the coarticulation of / a. L, u/in /C{VCy
pseudo-words containing the consonants / p, t, k, d, s. m, n. r /. They found that
the largest amount of coarticulation was in / u / where nasals and aiveolars in Cy
position had the largest effect on the formant positions, especially on F,. They
aiso found that coarticulation in / a, u / more tended to be speaker-specific. Some
researchers (Soong & Rosenberg, 1988; Furui, 1990) used the transitional
spectral information in their speaker recognition systems and achieved improved
performance.

Fo is a significant acoustic cue for speaker information. Furui (1986) found in his
perceptual experiment that though the Fy, the source spectrum, the formants and
the spectral envelope were all relevant to speaker characteristics, the Fy played
the major role in speaker identification. In early speaker recognition research,
automatic speaker recognition systems based only on speakers’ Fy information
(Atal, 1972) reported a high speaker identification rate. However. the problem



with using only Fy for speaker recognition is that, Fy is vulnerable to mimicry.
Endres et al. (1971) found that Fy could be imitated quite accurately by
professional imitators. In contrast, the formants, particularly those in the higher
frequency ranges, did not correspond with the voice being imitated. Therefore, F,
may be not as reliable as the formants for computer speaker recognition
purpose.

The significance of Fg for phonetic information, however, is largely language-
dependent. In languages like English, Fq provides phonetic cues for voicing and
some suprasegmental features such as stress, intonation and marking of the
boundaries of syntactic units. In tone languages, Fo plays a more significant
phonetic role. For register tone languages, the F, level carries phonetic
information. For contour tone languages, Fy contours convey different linguistic
meaning. There are also tone languages where both the level and contour of Fo
play an important phonetic role (Hogan, 1996).

There were researches attempted to separate speaker information from phonetic
information in the speech signal. One method was to use the long-time averaged
speech spectrum for speaker information (Furui et al. | 1972). With the averaging
of the spectra extracted from each frame of the entire utterance. the phonetic
effects were removed from the speech signal. In another study (Furui, 1986), a
linear model consisting of phonetic factor, speaker factor and the interaction
between phonetic and speaker factors was built and the effects of phonetic,
speaker and interaction factors were measured based on the multivariate analysis
of variance using x2 distributions. The finding was that the phonetic effect was
much larger than the speaker effect, and the interaction effect was also relatively
large. Furui suggested that the extraction of speaker information was more
difficult than that of phonetic information.

2.5 Intra-Speaker Variation
Intra-speaker variation refers to the normal varniability of an individual speaker's
voices. As pointed out by Nolan (1983), because of its plasticity. the vocal
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apparatus does not determine particular acoustic characteristics of a person's
speech, but merely the range within which variation in a particular parameter is
constrained to take place. No one actually repeats the same word exactly the
same way even in the same psycho-physical condition. There always exist
articulatory differences from trial to trial. Figure 2-5 illustrates the long-time
spectra from both DFT and LPC analyses of the six utterances of the same word
‘zero” spoken by the female speaker F1 from the TI-46 database. These six
repetitions were taken from six different recording sessions.
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Figure 2-5 Long-time spectra of six repetitions of the same word “zero” spoken by a
female speaker in the TI-46 data. In each graph, the highly varying spectrum is from DFT
analysis, and the smooth spectrum from LPC analysis.

Figure 2-5 clearly indicates the spectral differences among six repetitions of the
same word spoken by the same speaker. More drastic intra-speaker variation can
be caused by fatigue, health condition or emotional status. Another source which
contributes to intra-speaker variation is the communicative intent. Nolan (1983)
suggests that:
The speech of an individual will be influenced by the attitude he wishes to
convey (affective), by the image he is trying to present (self-presentation)
and by the organization he tries to impose on an interaction (interaction
management). (p.203)
In speech communication, a speaker uses different intonation, stress, tempo and
voice patterns to convey his/her emotion or attitude towards the addressee; s/he
may also adjust the speech style or dialect to the social environment. These are
what Nolan termed as affective aspects of speakers’ communicative intent. In
conversation, a speaker also tries to present him/herself in a certain way, in
terms of masculinity-femininity, self-confidence etc. This is the self-presentation
aspect of the communicative intent. A very interesting example of both the
affective and self-presentation aspects of communicative intent was provided by
the speeches and debates by both candidates for the US presidency during last



year's election period on the TV shows. Both candidates used voice strategies in
appealing to audiences. Interaction management refers to the speech patterns
which are used to structure the verbal interaction. For example, a speaker might
use an overall intonation pattemn to signal the end of his/her speech and yield the
“speaking turn” to the other participant.

Intra-speaker variation may also be age-dependent. Research (Sharkey et al. |
1985) found that some of the children's articulatory movements tend to be more
variable than adults. This variability was attributed to children's lesser degree of
precision in their speech; less habituation of movement patterns; and exploration
for motor leaming. Smith (1994) showed that young children had longer duration
and greater duration variability than adults when producing the same target
speech. It was suggested that the duration variability was a useful measure of
children’s progress toward adult-like speech. However, Stathopoulos (1995) did a
study of the acoustic, aerodynamic and respiratory kinematic comparison of
children and adults during speech with subjects ranging from 4 to 30 years age,
and claimed that the experimental results did not support the argument that
children show consistently more intra-speaker variability than adults in their
speech.

Intra-speaker variation can also come from the phonetic environment. Whalen
and Levitt (1995) found in their study with 31 languages representing 11 of the
world’s 28 major language families that there is a universal tendency for high
vowels to have higher Fy than low vowels. Moreover, Bruyninckx et al. (1994)
found that intra-speaker variation is language-dependent. In their study, bilingual
(Catalan/Spanish) speakers were selected in order to neutralize the speaker’s
individual characteristics. The long-time average spectrum was used as an
acoustical measure of intra-speaker variability. They did two kinds of within-
speaker variability comparisons: the between-language (Catalan/Spanish) and
the within-language (Catalan/Catalan and Spanish/Spanish) ones. It was found
that the between-language intra-speaker variability was higher than the within-
language one, irespective of sex and language dominance categories. The data



also show a tendency of greater within-language variability in the dominant
language than in the non-dominant one.

With longer time intervals, the intra-speaker variation usually increases. Furui
(1986) conducted an investigation on intra-speaker variability with nine male
speakers over 15 months. He found in his experimental results that intra-speaker
variation increases as a function of the time interval in the first three months.
After that, the change is not that significant. For speaker recognition, intra-
Speaker variation is a serious problem. The speaker model of the speaker
recognition system is built on a speaker’s training utterances, which are usually
collected in a short period of time. If the speaker model has no adaptation ability,
then, the performance of the speaker recognition system will deteriorate with
time.

in summary, this chapter has discussed speaker information and its
representation in the acoustic domain. A speaker's idiosyncratic voice quality is
the result of the complicated interaction of his/her anatomical, psychological and
social factors. The inter-speaker variations existing in speech signals provide the
basis for computer speaker recognition. However, there also exist significant
intra-speaker variations, which make the real-world speaker recognition

application a very challenging task.



CHAPTER 3
SPEAKER INFORMATION IN THE PHONETIC DOMAIN

Speaker information is embedded in the phonetic environment. In articulation, the
involvement of a speaker’s vocal organs and articulators varies according to each
speech sound. Consequently, different aspects and degrees of speaker
information are encoded in a particular speech signal. This chapter examines how
speaker information is associated with different phonetic categories.

3.1 Vowels

The production of vowel sounds involves a relatively unobstructed air stream, a
relatively large amount of acoustic energy, and a relatively steady-state
articulatory position. These features ensure the formation of a relatively stable
formant structure. Compared with other phonetic categories. it is expected that
vowels contain more speaker information because a stable formant structure
provides reliable information on a speakers glottal-source and vocal-tract
characteristics. As for diphthongs, they involve dynamic movements from one
articulatory position to another. An interesting question is: does the dynamic
articulatory movement acoustically encode more or less speaker idiosyncrasy?
O'Shaughnessy (1996) suggested that both the static and dynamic values of the
center frequencies of the strongest resonances in speech sound are of great
importance to speech perception. Some researchers (Soong & Rosenberg, 1988:
Furui, 1990) used the transitional spectral information in their speaker recognition
systems and reported improved performance: while Heuvel et al. (1992) found
that, in Dutch vowels, the transition part contained less speaker information as
compared with the steady-state one.

Within the vowel category, the amount of speaker information still depends on the
particular class of vowels. Fant (1973) compared the first three formants of
different vowels in both the American English and Swedish data (See Fugue 3-1).
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According to the average male-female formant ratios of Fi, F2 and F; for different
vowels of the American English and Swedish data, Fant suggested that there
exist quite similar patterns for formant differences between male and female
speakers across different vowel categories.

It can be observed from Figure 3-1 that F, and F2 of the rounded back vowels
reflect relatively low sex, or vocal-tract-related speaker differences. F; of the
close or highly rounded vowels is also the same. However, for the very open front
or back vowels, the sex difference of F, is significantly higher than the average,
which Fant called the sex factor. Fant's interpretation of the dependency of
speaker information on the particular vowel category is that: the low formants (F,
and F3) produced with a typical double Helmholtz resonator configuration, such as
with rounded back vowels, are less critically dependent on the overall vocal tract
length than other formants. The shorter overall vocal tract length of the female
speaker can be compensated by narrowing lip-opening and tongue-hump
passage. This may explain the relatively low speaker information (or sex
difference) in the highly round or close vowels. As for the very open front and
back vowels, the vocal cavities behave more like standing wave resonators.
Consequently, the characteristics of the vocal tract has a direct effect on all the
formants. It may explain the significant increase of speaker information in F; in
this category of vowels.

Fant's study found no significant difference for formant F3 across different vowel
classes in both languages. This factor may suggest that F3 is a more reliable
source for speaker information, compared with F, and Fo.

3.2 Fricatives

Fricatives are characterized by a turbulent air stream which occurs when the air is
channeled through a narrow constriction. The spectrum of a fricative sound can
be considered as the product of a noise source located supragiottally (except for
[h]), which is modified by the front resonator. In the case of voiced fricatives, a
second source due to the vibrating vocal folds is also present in the spectrum.



The front resonator involved in the fricative production is usually a small portion
of the vocal tract. For example, for fricatives like [s]and [ z] the place of
articulation involved is the region around the alveolar ridge. Therefore, the
derived acoustic parameters may only reflect very limited and partial information
of the speaker’s vocal tract. Aithough the part of the vocal tract behind the noise
source may contribute anti-resonances to the fricative spectrum, most of the
speaker differences in producing fricatives are more likely due to an individual
speaker’s vocal setting rather than to the glottal source and vocal-tract anatomy.

3.3 Nasal Consonants

Nasals are dominated primarily by the resonances of the nasal-pharyngeal tube
and the anti-resonances of the mouth-cavity. The anti-resonances are introduced
into the spectrum because the oral cavity acts like a side-chamber which absorbs
energy from the nasal cavity. The nasal spectrum varies from speaker to speaker
due to variation in the properties of the nasal cavities. Since a speaker's nasal
cavity is largely fixed and not likely to be maneuvered during articulation. nasal
consonants can be a very good source for speaker information. Su et al. (1974)
also suggested that the coarticulation between a nasal and its ensuing vowel
contains even more speaker information than the nasal itself. However, nasals
are a paradox for computer speaker recognition. Since nasals contain stable
speaker information in normal conditions, it is desirable to have more nasal
components in a speaker's training and testing utterances. However, the
resonances of the nasal cavity are susceptible to changes due to common
diseases such as cold and influenza. Congestion of the nasal passages will
seriously affect speaker-recognition performance, which causes one serious
problem for the real-world application of computer speaker recognition.

3.4 Stops
Stops can be divided into five acoustic segments: occlusion, transient, frication,
aspiration and transition (Fant, 1968). The occlusion is the period when the vocal



tract is completely closed and characterised acoustically by the absence of high
frequency energy. In the case of voiced stops like [b], [d] and [g]. there is a low
frequency energy in the 0-500 Hz range, which is sometimes called the “voice
bar’. The transient corresponds to the release of the closure following a sharp
rise in intra-oral air-pressure and is acoustically represented by an intense spike
of about 10 ms, with energy at all frequencies. The high intra-oral pressure and a
narrow opening at the point of release results in frication. With an increase in the
vocal tract opening, aspiration, which is caused by turbulence at the glottis, may
arise. The transition is the interval from the time at which the formants are first
detectable in the aspiration stage to the following vowel formant target. According
to Ladefoged's study (1982), there exists speaker variability in the length and
type of aspiration that occurs after initial voiceless stops. The rate of transition of
the formants after voiced stops is also different from one individual to another.
However, the duration of the transition segment in a stop sound is usually very
short. Listeners may not be able to perceive the individual difference. According
to Ainsworth (1976), the onset of a tone does not create an instantaneous
sensation of pitch. It usually takes a critical duration before a stabie pitch is
heard. For tones below 1000 Hz, the critical duration is about 6 + 3 cycles,
whereas above 1000 Hz, the critical duration is about 10 ms. This minimum
threshold duration for tone perception has also been verified in a Mandarin
Chinese tone perception experiment (Chen & Rozsypal, 1992). The perceptual
limitation on transient sound for human listeners, however, does not necessary
hold for the computer. With proper processing of the speech signal, the transient
acoustic change may still be detected. However, in the conventional speech and
speaker recognition systems, the frame size for short-time spectral analysis
(either FFT or LPC) is usually longer than 20 ms, which is inappropriate for
catching the very short transition of a stop in the speech signal.



3.5 Quantitative Studies

Quantitative studies of speaker information in the phonetic domain have been
extensively reported. Generally speaking, there is consensus on which phonetic
categories tend to carry more speaker information. Wolf (1971) found that vowel
and nasal spectra were efficient acoustic parameters for speaker recognition.
Fakotakis et al. (1993) reported that good speaker verification performance was
achieved by using only the vowel segments in the speech signal (91.39% for
verification, 90.19% for closed-set identification, 95.28% for open-set
identification). Heuvel et al. (1992) found that the rank order of increasing
speaker information was: stops + [ r ], fricatives, short vowels, nasals and long
vowels. Floch et al. (1994) reported similar results. They found that vowels,
diphthongs and nasals were most favorable for speaker discrimination. Eatock
and Mason (1994) produced a phoneme ranking based on the speaker-
verification performances. They found nasals and vowels were most informative,
followed by fricatives, affricates and approximants. Stops performed the worst.

In summary, this chapter has discussed speaker information in its phonetic
environment. Vowels tend to be rich in speaker information because their
relatively-stable formant structures provide more reliable information concerning
the anatomy of a speaker's glottal source and vocal tract. Within the vowel
category, the very open front or back vowels tend to contain more speaker
information; while the close or rounded vowels contain less speaker information.
Nasals can also be good candidates for spotting speaker idiosyncrasy because of
the distinct properties of a speakers’ nasal cavity. However, the disadvantage of
using nasals in speaker recognition is that the credibility of nasals depends much
on a speaker's health condition. The nasal resonances can be easily affected by
common iliness such as influenza. Other phonetic categories are also discussed
conceming their respective importance for speaker information. Quantitative
research has supported the close relationship between speaker information and
its phonetic environment. In general, vowels, nasals have been proved to contain
more speaker information than other phonetic categories.
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CHAPTER 4
SPEAKER-INFORMATION EXTRACTION

A speech signal contains both phonetic- and speaker-information elements.
During speech recording and signal processing, the environmental and channel
noises are also introduced into the speech signal. Consequently, the speech
signal under analysis consists of phonetic- and speaker-information elements, as
well as noises. Speaker recognition is only interested in the speaker-information
elements. The non-speaker-information-related aspects of the speech signa! can
be potentially confounding factors for identifying or verifying a speaker. How to
maximally extract speaker information from the speech signal, then, becomes one
of the most challenging tasks in speaker recognition research. In the literature,
various methods have been reported on extracting or enhancing speaker
information in the speech signal for improving speaker recognition performance.

4.1 Noise-Reduction Approach

This approach enhances speech in the parametric domain by suppressing or
eliminating the non-speech elements which are mostly environmental or channel
noises introduced during speech recording and signal processing.

Naik and Doddington (1987) introduced the principal spectral components (PSC)
as a spectral representation of the speech signal for speaker verification
purposes. The basic principle of the PSC approach is as follows: each frame of a
speech signal is first processed into LPC coefficients and transformed into a
spectral amplitude vector using mel-frequency filter banks. The amplitude vector
is then rotated and scaled by the eigen vectors of a covariance matrix, which is
estimated by pooling together the spectral amplitude vectors over the entire
training data base. The resulting vector consists of uncorrelated features, ranked
according to their statistical variance. The least significant features are removed.
Those removed features represent mostly invariant environmental or channel



noises. The PSC method reportedly achieved higher performance than other
parametric representations for speaker verification (Homayounpour and Chollet,
1994).

Assaleh and Mammone (1994) proposed the adaptive component weighting
(ACW) in the cepstral domain. The purpose of ACW is to emphasize the formant
structure by attenuating the broad-bandwidth spectral components. According to
Assaleh and Mammone, the broad-bandwidth spectral components were found to
introduce undesired variability in the linear predictive coding of speech signal,
which undermined the speech information extraction.

Rosenberg et al. (1994) applied three different cepstral channel-normalization
methods to remove the noises mostly caused by mismatched recording and
channel conditions. Their normalization methods treated the non-speech noises
as (1) a long time cepstral average; (2) a short time cepstral average; and (3) a
maximum likelihood estimate of the cepstral bias. Their experiment showed
significant improvement of speaker verification performance with using of the
cepstral channel-normalization techniques.

All the above methods enhance speech in the parametric domain by reducing
noises or non-speech elements. Since speech consists of both phonetic- and
speaker-information. Speaker information is boosted with the enhancement of
speech, which explains the improved speaker recognition performances.
However, the noise-reduction approach also enhances the phonetic-information
elements in the speech signal. As we will illustrate in Chapter 6, the phonetic-
information elements in the speech signal can be confounding factors in speaker
recognition. This suggests that enhancing speech as a whole can help the
extraction of speaker-information, however, it is certainly not an optimal approach
for speaker-information enhancement.
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4.2 Auditory Approach

This approach is based on human listeners’ auditory properties. The fact that
human listeners are very effective in “picking up” phonetic or speaker information
in a speech signal, fascinated many speech researchers. There were various
attempts to simulate a human listener's auditory properties in speech signal
processing. One popularly used auditory parameter for speaker recognition is the
mel frequency cepstrum coefficients (MFCC). An important aspect of the MFCC
is that the bandpass filters designed for cepstral transformation are not linearly
spaced in the frequency domain, but based on the “mel” scale, which is a non-
linear frequency representation. According to psychophysical studies, the human
ear's frequency response is nonlinear above 1 kHz. This led to the mel scale
measurement of pitch. The mel scale is defined as the pitch of a 1 kHz tone, 40
dB above the perceptual hearing threshold, for 1000 mels. Other pitch values are
obtained by adjusting the frequency of a tone such that it is half or twice the
perceived pitch of a reference tone. Davis and Mermelstein (1980) found that the
mel frequency representation of the speech signal had significant advantages.
Specifically, it gave better suppression of insignificant spectral variation in the
higher frequency bands. More detailed description of the MFCC is presented in
Chapter 6.

Another example of the auditory approach is the perceptually-based linear
prediction (PLP) (Hermansky et al. , 1985: Xu & Mason, 1991), which transforms
speech signals from acoustic spectra into perceptual representations according to
the human ear’s nonlinear transformation of frequency and amplitude of the
acoustic signal. Three auditory principles are used in the PLP for estimation of
the auditory spectrum: (1) the critical-band spectral resolution; (2) the equal-
loudness curve, and (3) the intensity-loudness power law.

As the noise-reduction approach, the auditory approach enhances speech as a
whole, instead of speaker information in particular. Different from the noise-



reduction approach, however, the auditory approach enhances speech according
to the human’s auditory properties.

4.3 Phonetic Approach

The phonetic approach is based on the knowledge that the amount of speaker
information coded in the speech signal depends largely on the phonetic
environment (see discussion in Chapter 3). This approach enhances speech
elements containing those phonetic categories which are believed to be speaker-
information rich (such as vowels and nasals). Meanwhile, speech elements
containing other phonetic categories will be suppressed, or even eliminated in the

speaker-recognition process.

Savic and Gupta (1990) classified speech segments into five broad phonetic
categories: Nasal, Voiced 1, Voiced 2. Plosive and Fricative according to their
typical spectral differences. A five-state ergodic HMM model was built for each
speaker using his/her training speech data. Each state represented a broad
phonetic category. To classify the speech frames of an utterance into the
corresponding phonetic categories, the Viterbi algorithm was used to obtain the
maximum likelihood state sequence which assigned each frame to one of the
states (or the phonetic categories). With the classification of all the frames in the
training data into five broad phonetic categories, the reference templates and
verification thresholds were computed. Each reference template consisted of a
mean vector and a covariance matrix. The verification threshold consisted of the
Mahalanobis distance and the number of verification votes required to make an
‘accept’ decision. In the text-independent speaker verification phase, the frames
of the testing utterance were classified into the five broad phonetic categories by
using the claimed speaker's trained HMM model and matched with the
corresponding reference templates. The final verification score was a weighted
linear combination of the scores for each individual phonetic category. The
weighting for each phonetic category was based on its effectiveness in



discriminating speakers. The experimental results indicated that speaker
verification performance was improved by treating the broad phonetic categories
separately.

The speaker recognition system based on vowel spotting (Fakotakis et al. , 1993)
is another example of the phonetic approach. On the assumption that much of the
speaker information was contained in the vowel category, this system extracted
only the steady-state vowel parts in the speech signal for the text-independent
speaker recognition. Online automatic vowel spotting was based on the energy
concentration and the spectral characteristics of the speech signal. This method
also reported good speaker recognition results. With training utterances per
speaker about 50 sec and the average test utterance duration of 1.3 sec, the
average speaker recognition rate was above 90%.

The main problem with the phonetic approach is that the acoustic cues which
differentiate speakers with a similar voice are not necessarily be encoded in
vowels or nasals, which are usually considered the important phonetic categories
for speaker information, but in other phonetic categories. In that case, the
speaker recognition system may lose those cues for separating close speakers.
The point we try to stress here is that though some phonetic categories tend to
contain more speaker information than others do, as far as an individual speaker
is concerned, any phonetic category is potentially important for providing his/her
individual voice characteristics. Therefore, in speaker recognition, weighting
based on phonetic categories is not an optimal approach either. At the same time,
there are technical problems for detecting phonetic categories accurately online.

4.4 Speaker-Information Enhancement Approach

In this research, we suggest a new approach for extracting speaker information.
Different from the noise-reduction and auditory approaches, this approach will
enhance only those speaker-information-related elements in the speech signal,
instead of speech as a whole. This approach is also different from the phonetic
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approach in that none of the phonetic categories will be treated differently. The
only criterion for the weighting strategy of the new approach depends on the
distribution pattern of speaker information in the speech parameters, which is
estimated from the training speech data. The basic assumption underlining this
approach is that a speech signal contains both phonetic- and speaker-information
components. Though interrelated, these two kinds of information components
have their distinctive representations in the acoustic and parametric domains. For
speaker recognition purposes, the optimal way to enhance speaker information is
to measure the distribution pattern of speaker information in the acoustic or
parametric domain in the training phase, and then apply the corresponding
weighting function to enhance only the speaker-information-related elements in
the testing phase.

Since the cepstrum is a widely used parametric representation of the speech
signal in both speech and speaker recognition applications, the present study
focuses on the methods for measurement of speaker information in the cepstral
domain, and the optimal weighting strategy for speaker information enhancement.
More detailed description of this approach will be presented in Chapter 6 and
Chapter 7.

In summary, this chapter has reviewed existing methods in speaker recognition
research for extracting or enhancing speaker information. The noise-reduction
and auditory approaches enhance speech as a whole, rather than speaker
information in particular. As for the phonetic approach, it emphasizes the phonetic
categories in the speech signal which tend to contain more speaker information.
The problem with this approach is that an individual speaker’s voice idiosyncrasy
may be coded in those phonetic categories which are usually low in speaker
information and consequently be neglected. At the same time, online phonetic-
category-spotting is technically difficuit.

We propose a new approach for speaker-information enhancement, which
focuses on speaker-information elements in the speech signal. The basic method
is to measure the distribution pattern of speaker information in the speech
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parameters using the training speech data, and in the testing phase. apply the
corresponding weighting function to enhance only those speaker-information rich
elements in the speech parameters.



CHAPTER §
CEPSTRAL REPRESENTATION OF THE SPEECH SIGNAL

The proposed new approach for speaker-information enhancement will be tested
in the cepstral domain. For a better understanding of the cepstrum, this chapter is
devoted to a discussion of some technical aspects of the cepstral representation

of the speech signal.

5.1 Parametrization

Parametric representation of the speech signal is done in the front end of
computer speech or speaker recognition. Its purpose is to compress the speech
data in such a way that the irrelevant elements contained in the speech signal are
maximally reduced with minimum loss of relevant information. The choice of a
specific parametric representation is determined by the type of speech application
and considerations of computational efficiency. In speech recognition, a good
parameter should maximally reduce data redundancy with minimum phonetic-
information loss. In speaker recognition. however, the parameter should

maximally reduce irrelevant elements with minimum speaker-information loss.

5.2 Spectral Representation of the Speech Signal

The spectrum is the basic representation of the speech signal in the frequency
domain. Speech is a non-stationary signal. However, it is assumed that the
speech signal is stationary in a sufficiently short period of time. Then, either a
discrete Fourier transform (DFT) or linear predictive coding (LPC) can be applied
to get the short-time spectrum or LPC coefficients for representation of that
speech interval. The spectrum is appropriate for speech representation because
it conforms with human auditory perception of speech sound. According to
auditory perception theory, the basilar membrane within the inner ear responds to
the sound wave like a bank of fiiters. When the incoming sound causes
displacements of the basilar membrane, the membrane vibrates at frequencies



commensurate with the incoming sound frequencies and transmits the frequency
information via inner hair cells to higher level auditory nerve systems.

In speech signal processing, the DFT plays a role similar to the basilar
membrane. It converts a time-domain signal into a frequency domain
representation :

V-l .
Fim)=Y x(n)g "™ * (m=0, 1, ..., N-1) (5.1)
n=0

where x(n) is the sampled sequence; N is the number of samples in the short-
time analysis interval.

Figure 5-1a illustrates a short interval of a speech signal in the time domain, and
Figure 5-1b shows the same speech signal in the frequency domain after DFT.
The speech signal was a short interval of the vowel [ 1] recorded at 16 bits with
an 11 kHz sampling rate. The DFT used a Hamming window with duration of 20
ms and a shift of 10 ms.
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Figure §-1 (a) Waveform for a short interval of the vowel [i]; (b) DFT of the speech signal.

LPC analysis is also very effective in representing the speech signal. The basic
assumption for LPC is that a given speech sample at time n. s(n). can be
approximated as a linear combination of the past p speech samples. The
following description of LPC calculation using the autocorrelation method is
basically from Rabiner and Juang (1993).

(1) Calculation of autocorrelation coefficients:

V—{-m
rim) = Z.r(n)x(n+m). m=01...p. (5. 2)

n=N

where r(m) is the mth autocorrelation coefficient; N is the number of samples in
the short-time analysis interval: p is the order of the LPC analysis.
(2) Converting autocorrelation coefficients to LPC coefficients:

E9=r(0) (5.3)

;' -1
k - ';r(i)‘za(,'—“r(i"j;):’ i [_:u—l) . 1< Sp (54)

1=1
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a'=k . a'=a/ " ~kal", E"=(1-k)E"" (5.5)

J K =

The set of equations (5.3 - 5.5) are solved recursively for i=1, 2, ..., p. and the

LPC coefficients an, are given as:

am=a'P 1<m <p. (5.6)
LPC provides good spectral approximation of the speech signal, especially for the
quasi-stable-state voiced regions of speech. Figure 5-2 is an illustration of
spectral representation of a short interval of the vowel [i] (see Figure 5-1a) using

LPC analysis.
90
80 -
§70~
ESO
%550»
g 40 -
§3o-
- 20 -
10 -
0 -- . L - .
S35 2885885898 s
T@ AN @ - ~NO M0 ® A
© O O v o= - N Le B . B B . R R S, 1
Frequency (kHz)

Figure 5-2 Spectral representation of a short interval of the vowel [i] using LPC Analysis.

LPC analysis brings some degree of source-vocal tract separation, which makes
the spectrum smoother and the formants more prominent. For a better
comparison of DFT and LPC spectral representations of the same short speech
signal, we re-plotted the DFT spectrum in Figure 5-1b and the LPC spectrum in
Figure 5-2 as Figure 5-3.
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Figure 5-3 DFT and LPC spectral representations of a short interval of the vowel [i].

Both DFT and LPC are used extensively in speech signal processing. However.
there are inherent problems with these two spectral representations for speaker
recognition purposes. The disadvantage of LPC is that it is an all-pole mode!,
which overlooks the anti-resonances (zeros) in the speech signal. The anti-
resonances, as we have discussed in Chapter 2, contain significant speaker
information especially for nasal sounds. As for the DFT, it can be observed from
Figure 5-3 that there are rapidly varying components which are superimposed on
the spectral envelope. These rapidly varying components occur because of the
interaction between the vocal tract transfer function h(t) and the quasi-periodic
excitation glottal source g(t). The voiced speech signal x(t) can be seen as the
convolution of g(t) and h(t):

x(1) = [g(2)h(t - )z (5.7)

or

X(0)=G{w)H(») (5.8)



where X(w), G(w), and H(w) are the Fourier transforms of x(t), g(t) and h(t),
respectively. The problem with the convolution of the glottal source and vocal
tract transfer functions in the spectrum is the mix-up of glottal and vocal tract
information. The strong presence of a rapidly varying component due to the
periodic excitation obscures the formant information. This is undesirable for
speaker recognition because the formant positions indicate a speaker's vocal-
tract characteristics, and the glottal source spectrum also contains significant
speaker information about the speaker's subglottal and laryngeal status. To
separate the glottal source from the vocal tract transfer function, then. is

advantageous for speaker recognition.

5.3 Homomorphic Filtering

Homomorphic filtering is a class of nonlinear signal processing techniques that is
based on a generalization of the principle of superposition that defines linear
systems (Schafer and Rabiner, 1990). In a conventional linear system, signals
are composed of added components. The use of linear operators can easily
separate them. In a nonlinear system, however, signals are combined by
multiplication and convolution. A conventional linear operator cannot be directly
applied to separate the component parts. In that situation, homomorphic filtering
becomes necessary to convert the nonlinearly combined signals to the linear
domain, so that the signal can be treated with conventional techniques. The
cepstrum is a kind of homomorphic process, and it is defined as the inverse
Fourier transform of the logarithm of the power spectrum of a signal (Rabiner and
Schafer, 1978). The cepstrum is appropriate for separating the source G(w) and
vocal transfer function H(w) because these two components are combined by
convolution in the speech signal . The cepstral analysis transforms G(w) and H(w)

into a summation:

logX(w)|=log|G(w)| +log|H(w)|, (5.9)
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c(i)=F "log|X()|=F"[log|G(w)+F 'jlogH(w)|. (5.10)

The glottal source and the vocal tract transfer function are separated in the
quefrency domain. The peak interval in high quefrency represents the giottal
source and the vocal tract resonance is represented in low quefrency region.

The cepstral coefficients used for parametric representation of speech can be
derived from the discrete cosine transform of the log filter bank outputs:

V4
c,:Zm,cos(%’(j—O,S)). I<i<A. (5.11)

r=1

where ¢; is the th cepstral coefficients: p is the analysis order: m; is the fth log
filter bank output resulted from the DFT and filter bank analysis; and N is the
defined number of cepstral coefficients.

The cepstral coefficients can also be derived from the LPC coefficients (Rabiner
and Juang, 1993):

Co = Inc?, (5.12a)
m-~1
cm=am+Z(£)aam-k, 1<ms<P, (5.12b)
k=] M
m-1 k
Cm = Z(—)Clam~ ko, m>P . (5120)
k=t M

where 6°is the gain term in the LPC model; a,, is the mth LPC coefficient; P is the
number of LPC coefficients.

The lower-order cepstral coefficients are related to the global pattern of the
logarithmic spectrum, whereas the higher-order ones are more related to spectral
details (Furui, 1986). The cepstrum has the advantage of being invariant to fixed
spectral  distortions from recording and transmission environments
(O'Shaughnessy, 1987). Davis and Mermelstein (1980) conducted an experiment
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with different parametric representations of the speech signal. They found that
the cepstral parameters such as linear frequency cepstrum coefficients (LFCC),
mel-frequency cepstrum coefficients (MFCC) and linear prediction cepstrum
coefficients (LPCC) performed better than other parameters in capturing
significant speech information. Davis and Mermelstein suggested that a
Euclidean distance metric defined on the cepstrum parameters gives better
separation of phonetically distinct spectra. The representation of acoustic
information in the hyperspace of the cepstrum parameters favours the use of a
particularly simple distance metric.

However, some inherent problems with the cepstral analysis need be taken into
account. As discussed by Deller et al. (1993), the cepstrum may fail to resolve the
low- and high-quefrency components and may have the potential of improperly
emphasizing the low-level noise portions of the speech spectrum. For people
accustomed to think in terms of frequency, quefrency may also cause confusion.
In summary, this chapter has discussed the cepstral representation of the speech
signal. According to the source-filter theory, the speech signal is the convolution
of the glottal source spectrum and the vocal tract resonances. In speaker
recognition, it is desirable to separate the glottal source from the vocal tract
transfer function because they are encoded with different aspects of a speaker's
anatomical characteristics. The cepstrum is a kind of homomorphic filtering which
separates the glottal source spectrum from the vocal tract resonant frequencies in
the quefrency domain. Consequently, it provides a better spectral representation
of the speech signal for speaker recognition purposes.
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CHAPTER 6
SPEAKER-INFORMATION DISTRIBUTION IN THE CEPSTRAL DOMAIN

In the previous chapters. we have discussed speaker-information representation
in the acoustic and phonetic domains, and the distinction between speaker and
phonetic information in the speech signal. On the bases of these discussions, we
have proposed in Chapter 4 a new approach for speaker-information
enhancement. Different from the existing speaker-information extraction methods
which either enhance speech as a whole, or enhance speech elements
associated with certain phonetic categories (see discussions in Chapter 4), the
new approach suggests to enhance only those speaker-information-related

elements in the speech signal.

In order to develop an optimal strategy for enhancing the speaker-information-
related elements in the speech signal, we first need to find out the distribution
pattern of speaker information in the speech parameters. In this chapter, we
investigates speaker-information representation in the cepstral domain.

6.1 Experimental Design

An experiment is designed to perform quantitative measurements of speaker
information coded in mel frequency cepstrum coefficients (MFCC) (Davis &
Mermelstein, 1980). The basic assumption of this experiment is that the variance
in each MFCC coefficient contains different degrees of speaker information,
which may contribute to the separation of one speaker's voice from the others.
To estimate the amount of speaker information coded in each MFCC coefficient
for a particular speaker, then, we can intentionally exclude the variance in a
MFCC coefficient in tum from a pattern distortion measurement and see how it
will statistically affect the separation of this speaker from the rest of the speakers



in the database. The degree of its effect is used as an indicator of the amount of
speaker information coded in that particular MFCC coefficient.

Two different statistical methods are used in the present experiment for
measuring speaker information. One is the inter-distribution distance
measurement (Homayounpour & Chollet, 1994), which measures the change of
statistics in the intra- and inter-speaker distortion score distributions when the
variance in a particular MFCC coefficient is excluded from the distortion distance
measurement. The other is the speaker identification error rate measurement,
which measures the change of the speaker identification error rate when the
variance in a particular MFCC coefficient is excluded. Detailed descriptions of
both methods will be presented in the following relevant sections. The purpose of
using two different statistical methods for speaker-information measurement is to
compare which method provides a better estimation of the speaker-information
distribution pattern in the MFCC coefficients.

To validate the hypothesis that speaker and phonetic information have their
distinctive distribution patterns in the parametric domain, the distribution of
phonetic information in the MFCC coefficients is also investigated. The phonetic-
information distribution in the MFCC coefficients is estimated by using the speech
recognition error measurement. Similar to the speaker identification
measurement, this method measures the change of the speech-recognition-error
rate when the variance in a particular MFCC coefficient is excluded from the

distortion measurement.

6.2 Speech Database

This experiment needs two sets of speakers’ data. One set of data is for training
speaker models; the other set of data is for applying either the inter-distribution
distance measurement or the speaker identification error rate measurement to
estimate the amount of speaker information coded in each MFCC coefficient.



The speech database we used in the experiment is TI-46 Speech Data, which
was designed and collected at Texas Instruments (Tl) in 1980 (Doddington &
Schalk, 1981). This database was originally designed for the purpose of testing
speech recognition systems. It is available on CD-ROM by the National Institute
of Standards and Technology (NIST) and is distributed with the permission of
Texas Instruments. TI-46 consists of two sets of vocabulary: TI-ALPHA and Ti-
20. The TI-ALPHA vocabulary contains twenty-six English alphabets. In Chapter
2, we used some of its data for illustration of the inter- and intra-speaker spectral
variations. In the present investigation of the distribution pattern of speaker
information, we only use the Ti-20 vocabulary. The TI-20 vocabulary list includes
the following twenty words:

T1-20 Vocabulary List
[1]. zero [2]. one [3]. two, [4]. three [5]. four

[6]. five [7]. six [8]. seven [9]. eight [10]. nine
[11]. enter [12]. erase [13]. go [14]. help [15]. no
[16]. rubout [17]. repeat [18]. stop [19]. start [20]. yes

The TI-20 data corpus contains speech from 16 speakers: 8 male speakers
labelled M1 to M8 and 8 female speakers labeled F1 to F8. There are nine
recording sessions for each speaker. The first session has 200 tokens, 10
repetitions for each word. The words were collected in rotation, that is, the
speaker read the word list 10 times, rather than repeating each word 10 times at
once. This session was originally designated for speech model training (or
enroliment). The other eight sessions were originally designated as speech
testing sessions. Each session recorded 40 tokens in a different random order,
with 2 repetitions for each word. The data collection stretched out for nearly two



months. Figure 6-1 illustrates the percentages of each broad phonetic class
contained in the phonemic inventory of the T1-20 vocabulary:
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Figure 6-1 Phonetic composition of the TI-20 vocabulary, where VL stands for vowel; DG:
diphthong; VF: voiced fricative; VLF: voiceless fricative; VA: voiced affricate; VLA:

voiceless affricate; NL: nasal; AT: approximant; VP: voiced stop; VLP: voiceless stop.

These data were recorded in a low-noise sound-isolation booth, using an Electro-
Voice RE-16 cardoid dynamic microphone, positioned two inches from the
speaker's mouth and out of the breath stream. The data were sampled at 12-bit
precision with a 12.5 kHz sampling rate, and stored in NIST-wave format.

The reason for selecting the TI-20 speech database is that this study needs
sufficient word repetitions. As we have mentioned, two sets of data are required
for this experiment. one set for speaker model training and the other set for
speaker-information estimation. We also need a third set of data in the next
experiment (Chapter 7) for testing purposes. In the TI-20 database, each speaker
has 26 repetitions for every word item from 9 separate recording sessions, which
provides an adequate number of sessions and tokens for the present study. The
data assignment in this study is as follows: Session 1 is designated to the
speaker model training; Sessions 2-5 are used for the measurement of speaker
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information; Sessions 6-9 are used for testing different weighting approaches
(Chapter 7).

Since the T1-20 data were originally designed for speech recognition purposes,
the vocabulary consists mostly of single-syllable words. The average length of
each word is about 300 ms in duration. This utterance length is not long enough
to yield high speaker recognition performance. However, our study is interested in
maximally extracting speaker information from a limited speech source. The data
provide the necessary challenging environment.

6.3 Data Pre-Processing
The digitized speech wave files in the TI-20 data contain pre- and post-word

silences. For better speaker-information measurement, the silences need to be
removed before parametrization. A simple energy-based word-detection algorithm
was used to automatically remove the silences. The word-detection program
checks the energy level in a 25.6 ms moving window. Two preset energy
thresholds are used to detect the word boundaries. The Low Threshold (LT) is
determined by the noise leve! of the recorded signal, and the High Threshold (HT)
is empirically set to three times that of the LT (HT = 3 * LT). If the energy level in
the current window is higher than the LT, then the frames of the recording in the
wave file start being copied into a new buffer. If the energy level drops below the
LT in the search process, the buffer will be cleared, and the frame copying will
start from the beginning of the buffer again when the energy level rises higher
than the LT. This search continues until the energy level in subsequent frames is
higher than the HT. Then the word-detection algorithm supposes that the initial
part of the speech signal has been spotted with high confidence, and the frames
of the recording already being copied to the buffer will no longer be overwritten.
The frame copying continues until the algorithm finds that the window energy
level is lower than the LT, and a continued search for a certain duration still
cannot find any frame whose energy level is greater than HT. Then, the end of
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the speech signal is presumably found and the word-detection completed. The
frames copied in the new buffer will be saved as the end-pointed speech for
parametrization (see the next section). Since the automatic word-detection used
here is totally energy dependent, it is possible that the initial and final consonant,
expecially stops and fricatives, might be lost because they are usually at very low

energy levei.

6.4 Parametric Representation of the Speech Signal

The MFCC is used for parametric representation of speech signals. The block
diagram of the MFCC processing is illustrated in Figure 6-2
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Figure 6-2 Bleck diagram of the MFCC processing.

In Figure 6-2, F; represents the th speech frame, which is 25.6 ms long with a
frame shift of 10 ms, and is weighted by a Hamming window. M represents a 15
dimensional vector. M; is the jth MFCC coefficient of the ith speech frame. The



reason for preference of a DFT approach to LPC in this study is that LPC is an
all-pole model. The significant speaker information coded in the anti-resonances
of the spectrum, such as in cases of nasals, may be lost by the LPC analysis. In
addition, LPC was found to provide an inaccurate representation of the
consonantal spectra (Davis & Mermelstein, 1980).

In the spectral analysis, mel frequency is used instead of a linear-frequency scale
because the non-linear frequency representation, as we have discussed in
Chapter 4, is closer to human perception. The mel frequency is calculated directly
from the output of the DFT as:

Mel (f)= 2595 logio (1+f/700). (6.1)

The filters used are triangular (bandwidth = 110 mels, spacing = 55 mel) and they

are equally spaced along the mel-scale as shown in Figure 6-3.
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Figure 6-3 Mel-Scale Filter Bank.

where p is the number of triangular bandpass filters. In this experiment, p is set to
20. The MFCC coefficient c; is calculated by the discrete cosine transform of the
log filter bank outputs m, .
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where p is the number of mel-scale bank fiters, and N is the required number of
cepstrum coefficients. In this experiment, N is set to 15.

6.5 Speaker Modelling

For estimation of speaker information in the MFCC coefficients, we first need to
train the speaker models for each word item. These speaker models will be used
later for distortion measurement. There are two different statistical modeling
techniques: parametric and nonparametric. Parametric modelling, such as Hidden
Markov Models (HMM), is based on certain assumptions about the distribution of
the parameters of the sampled population. while nonparametric modeling, such
as Vector Quantization (VQ), makes no pre-assumptions. In our experiment, VQ
is used for speaker modeling, which has the advantage of modeling complex
vector spaces with arbitrary precision by simply designing a sufficiently large code
book (Picone,1990). A codebook representing a speaker's reference template
can be generated by clustering the feature vectors of that speaker’s training data.
This technique has been proven to be quite efficient for characterizing speaker-
specific features (Furui, 1994). There are different algorithms for building a VQ
codebook. The method used here is the binary splitting algorithm or LBG
algorithm (Linde et al. , 1980; Rabiner and Juang, 1993). The detailed binary
splitting algorithm can be described as follows:

(a) Initialization. Set m = 1 and calculate the global centroid (codeword) ¢, for
the entire speech training sequence {x;; j = 1, ...,n}.
(b) Given the ¢ .containing m code words {¢,;i=1, ..., my}, split each code

word ¢, into two close code words ¢,(1+ o) and &,(1 - o), where 5 is a
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fixed small number. Typically ¢ is chosen in the range 0.01 < o < 0.05.
¢ (m) Now has 2 * m code words. Assign D' = 0;

(c) Assign each speech frame, which is represented by a vector of 15 MFCC
coefficients, to the closest codeword of the current codebook, then update
the code word by calculating the centroid of all the training vectors which
have been assigned to it;

(d) Compute the average distortion of the training data with the updated
codebook:

L -
D= ;;gg{(x,,c.) (6.3)

where d(x, ¢,) is the distortion between a training vector x, and a centroid
vector of the updated jth codeword. The distortion is calculated by the
Euclidean distance measure.

if (D - D) >68 (the preset threshold), set D' = D and iterate Step (c) to
continue the nearest-neighbor search; if (D - D') £ § and m is smaller than
the predefined codebook size M, then go to Step (b) to continue the code
splitting process;

(e) lterate Step (b), (¢), and (d) until a codebook of size of M reached.

The block diagram of VQ codebook training is illustrated in the following figure.
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Figure 64 Block diagram of VQ codebook training.

In this experiment, the VQ codebook size is set to 32. The choice of codebook
size depends on the phonetic contents of the training data. In general, larger
codebook size provides better resolution with the cost of increased computation
time. The VQ codebook built for the present experiment is word-based. Since all
the words in the TI-20 data are very short (one or two syllables, and no more than
five phonemes), a 32-codeword VQ codebook seems adequate for covering the
significant spectral categories.

The first recording session of the TI-20 speech data was used to build speakers'
VQ codebooks. Since the vocabulary consists of 20 words, twenty codebooks
were built for each speaker. Each codebook was trained on the 10 repetitions of
a word. The total number of codebooks built for 16 speakers was 16 x 20 = 320.
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6.6 VQ Distortion Score Measurement
Since in both the inter-distribution distance measurement and the speaker

identification error measurement, we need to calculate the VQ distortion scores
for each testing utterance, the algorithm used for VQ distortion measure is
described here. The method for calculating distortion between a speech vector
and a codeword in a VQ codebook is the vanance-weighted Euclidean distance
measure (Tohkura, 1986).

2
dx,x)=)Y wexi—x1":
; (6.4)

where d is the distance score; p is the number of cepstral coefficients; w, is the
inverse of the &h cepstral coefficient variance.

The reason for using inverse-variance weighting of the MFCC coefficients in this
experiment is that there exist large differences among the variances of different
MFCC coefficients. Figure 6-5 shows the variances of the 15 MFCC coefficients
obtained from the TI-20 Session 1 speech data. The low-order coefficients
obviously have much larger variances than the high-order ones. If the MFCC
coefficients were not properly weighted, then the variances contained in the lower
coefficients would play a dominant role in the VQ distortion measurement. It has
been reported that the weighted cepstral distance measure got significantly better
results in both speech recognition and speaker verification experiments (Paliwal,
1982; Nikaus et al. , 1983; Furry, 1981; Tohkura, 1986).
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Figure 6-5 Variance distribution in the MFCC coefficients.

In VQ distortion measurement of a testing utterance, each speech frame is 25.6
ms long and represented by a vector of 15 MFCC coefficients. For each speech
vector, the closest codeword is searched based on the Euclidean distances
between the vector and each of the 32 codewords of the speaker’'s codebook.
Then, the distortion scores of each vector (or speech frame) against its closest
codeword are added together across the whole utterance. The final VQ distortion
score for a testing utterance is the average score of all the frames of the

utterance:
D=1>"d(xi), (6.5)
=1
where
X = arg mei(ry d(x,,y. (6.6)

6.7 Inter-Distribution Distance Measurement

The inter-distribution distance (IDD) measurement is one the two statistical
methods which we used in this study to estimate speaker information in the
MFCC coefficients. This method was originally proposed by Homayounpour and
Chollet (1994) for evaluation of speaker recognition performance. The basic



e e OALX QRSO TR

assumption of IDD measurement is that any improvement in speaker recognition
performance will require a wider separation of the intra- and inter-speaker
distortion score distributions. The IDD score will increase if the distance between
the two means of the inter- and intra-speaker distributions is getting larger and if
the inter- and intra-speaker standard deviations are getting smaller. Figure 6-6
llustrates a case of intra-speaker and inter-speaker VQ distortion score

distributions:

Frequency

istortion Score

<
0
=]

Figure 6-6 A case of intra-speaker and inter-speaker VQ distortion score distribution

pattern.

The algorithm used in the present experiment is an adapted version of
Homayounpour and Chollet's, to make it statistically more robust for speaker

information measurement.

IDD(i) = : (6.7)
DN ’Z< -u)
V' n-d \ -1




where IDD(i) is the ith speaker’s IDD score; u is the mean of the intra-speaker
scores; u2is the mean of the inter-speaker scores; dy; is the speaker’s ith testing
utterance’'s VQ distortion score; d; is impostors’ fh testing utterance’s VQ
distortion score. “Impostors” here are defined as all the speakers in the database
other than the speaker whose VQ speaker model is currently being used for
distortion measurement; n, is the number of the speaker’s total testing utterances;
nz is the number of the impostors’ total testing utterances.

To measure an individual speaker’s IDD score, two sets of VQ distance scores
are necessary. One set is the intra-speaker distortion scores, which are the
distance scores obtained when a speaker's utterances are matched with his/her
own corresponding word VQ codebooks. The other set is the inter-speaker
distortion scores, which are the distance scores obtained when the utterances of
the rest of the speakers in the database are matched with that speaker's
corresponding word VQ codebooks.

The computer program used in the present experiment has been designed in
such a way that it automatically loads each speaker's codebooks in turn and
measure the VQ distortion only with its corresponding utterances of all the
speakers in the testing data. The computer program also identifies each
utterance's VQ score as either an intra- or inter-speaker distance score and save
it accordingly. The identification of each utterance’'s speaker ID and utterance ID
by the computer program is based on the wave file name. In the present
experiment, Session 2 to Session 5 of the TI-20 data are used for IDD score
measurement. There are 20 words with 8 repetitions for each speaker.
Consequently, there are 160 intra-speaker VQ distortion scores and 2400 inter-
speaker VQ distortion scores for each speaker. Based on these two sets of
scores, the IDD score for each speaker can be calculated by using the IDD
algorithm.

For estimation of speaker information in each MFCC coefficient, we first conduct
a baseline experiment. The baseline calculates the IDD scores for each speaker,
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with all the 15 MFCC coefficients included in the intra-and inter-speaker VQ
distortion measure. Then, we repeat the same procedure except that, in turn, one
of the 15 MFCC coefficients is excluded from the intra- and inter-speaker VQ
distortion measure. The purpose is to prevent the variance contained in that
particular MFCC coefficient from contributing to the Euclidean distance. The
individual speakers’ IDD scores may be affected when one of the MFCC
coefficients is being excluded from the distortion measurement. Increase or
decrease of the IDD scores depends on the amount of speaker idiosyncrasy
contained in that particular coefficient. There are three possible cases:

* Ifthe variance in a MFCC coefficient contains significant speaker information,
the IDD score will decrease when that coefficient is excluded.

e If the variance in that MFCC coefficient contains little speaker information, the
IDD score basically remains unaffected when that coefficient is excluded.

o If the variance in that MFCC coefficient contains significant confounding
variation for speaker recognition, the IDD score will increase when that
coefficients is excluded.

Consequently, the amount of speaker information contained in each MFCC
coefficient can be approximated by the difference between the baseline IDD
score, which includes all the coefficients in its VQ distortion measurement, and
the IDD score which is measured with one of the MFCC coefficients excluded.
The resulting difference score is introduced here as the normalized inter-
distribution distance score (NIDD). We need to stress here that the NIDD score
can be either positive or negative. The higher the NIDD score, the more speaker
information is contained in that particular coefficient. A negative NIDD score
means that the variance contained in that particular coefficient is mostly
confounding for speaker recognition. In the subsequent discussions, we will refer
to that kind of variance as negative speaker information.

The average NIDD score of all the speakers is defined as:
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Y NIDDj . (6.8)

where NIDD , is the average NIDD score for the Ah MFCC coefficient; N is the

total number of speakers; NIDD; is the NIDD score for th speaker's th MFCC
coefficient.

Experimental Results

There are a total of 16 IDD measurements performed, which include the baseline
IDD and the 15 IDDs in which each MFCC coefficient is excluded from the intra-
and inter-speaker VQ distortion score measure in turn. The resulting IDD scores
are normalized into NIDD scores. The average NIDD score distribution in the
MFCC coefficients over all the speakers is presented in Figure 6-7; the average
NIDD score distribution over the female group is presented in Figure 6-8; the
average NIDD score distribution over the male group is presented in Figure 6-9;
the individual speakers’ NIDD scores are presented in Appendix 1-A. and their
graph representations are presented in Appendices II-A and 1I-B.
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Figure 6-7 Average NIDD score distribution in the MFCC over all the speakers.
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Figure 6-8 Average NIDD score distribution in the MFCC over the female speaker group.
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Figure 6-9 Average NIDD score distribution in the MFCC over the male speaker group.

The average NIDD score distribution in the MFCC over all the speakers (Figure
6-7) reveals that the lowest-order coefficient (C;) and the high-order cepstral
coefficients (C,2 and above) contain little or even negative speaker information.
Most of the speaker information is concentrated in the lower- and middle-order
coefficients.

As for sex differences, a comparison of Figure 6-8 and Figure 6-9 shows that the
high-order coefficients (C1> and above) are all characterized by negative NIDD
values for the female speaker group; while for the male speaker group, the
coefficients in that region mostly have low, but still positive, NIDD values. This
suggests that there may exist some kind of different distribution patterns of
speaker information in the MFCC coefficients between female and male
speakers.
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Since Figures 6-7, 6-8 and 6-9 are based on the average NIDD scores of the
speaker groups, they only reflect some general tendencies of the distribution
pattern of speaker information in MFCC. For a closer examination, we need to
look at each individual speaker's NIDD score distribution pattern. Appendices Ii-A
& 11-B show the graphs of each individual speaker's NIDD score distribution in the
MFCC. It can be observed from these graphs that speaker-information
distribution in the cepstral domain, though it may be subject to certain general
tendencies, is largely speaker-dependent. Each speaker has his/her unique
distribution pattern of speaker information in the MFCC. A certain coefficient can
have significantly high NIDD score for one speaker, but less so for another
speaker. An individual speaker's NIDD score distribution may also not be
consistent with the average distribution pattemn of speaker information. Further
discussion will be presented in the discussion part of this chapter.

6. 8 Speaker ldentification Error Rate Measurement
Another approach for speaker-information estimation is the speaker identification

error rate measurement (SIER). The SIER uses speaker identification tests to
estimate speaker information contained in each cepstral coefficient.

Speaker recognition can be classified into two categories: speaker verification
and speaker identification. Speaker verification verifies whether the speaker is
truly the person claimed to be by comparing his/her utterance with the model of
the speaker claimed to be. If the distortion score is within the preset threshold,
the speaker will be accepted, otherwise s/he will be rejected.

Speaker identification identifies who is speaking from a known population. There
are two types of speaker identification: closed-set identification and open-set
identification. For closed-set identification, the utterance is assumed to be spoken
by 2 speaker within the known population. The utterance is matched with all the
speaker models and the system identifies the utterance with the speaker whose



speaker model yields the least distorted score (or the highest likelihood score).
For open-set identification, the speaker may not be in the known population.
Therefore, finding the closest speaker model does not necessarily mean that the
speaker’s identity is verified. A further verificaton process is used to accept/reject
the speaker with a preset threshold. In this respect, the open-set identification is
a hybrid method, which includes both speaker verification and identification.

Speaker recognition can also be classified as text-dependent or text-independent
according to whether the speaker is restricted to say a predefined utterance or
not. For text-dependent speaker recognition, the speaker model! is built on a
particular utterance, and in the testing phase, the speaker must say that
utterance. In text-independent speaker recognition, the speaker model is built on
a training data which include the whole phonetic inventory of the target language.
In the testing phase, the speaker is free to say any utterance.

The present SIER measurement uses the closed-set text-dependent speaker
identification test. The same VQ codebooks built from Session 1 of the TI-20 data
for the IDD measurement are still used here as text-dependent speaker models.
Sessions 2 to 5 of the TI-20 data are used as testing data. The speaker

identification error measurement program is illustrated in Figure 6-10.
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Figure 6-10 Block diagram of the speaker identification error rate measurement.

The speaker identification test is designed in such a way that for each testing
utterance, the program automatically identifies its word index and loads all the
speakers’ VQ codebooks with the same word index. Then, this utterance is
matched with all those codebooks and finds the one with the least VQ distortion
score. If the codebook has the same User ID as the utterance's. then, this
utterance is counted as a correct identification. Otherwise, it is counted as an
identification error. A speaker’s identification error rate (IER) is the percentage of
the identification errors.

For an estimation of speaker information coded in each MFCC coefficient, the
baseline performs a speaker identification test for each speaker, with all the
MFCC coefficients included in the VQ distortion measure. The subsequent tests
repeat that same testing procedure except that each one of the 15 coefficients
was excluded in turn from the VQ distortion measure. The normalized IER score
(NIER), which is the difference score between the baseline |IER score and the
IER score that is calculated with one of the MFCC coefficients excluded, is used
to indicate how the variance in that particular coefficient affects the speaker
identification performance, or in other words, how much speaker information is
coded in that MFCC coefficient.



Experimental Results

There are a total of 16 speaker identification tests, which include the baseline test
and 15 tests in which each coefficient is excluded from the VQ distortion measure
in tun. The results of individual speakers’ NIER score distributions in the MECC
coefficients are listed in Appendix I-B. The corresponding graphs are presented in
Appendices lll-A and IlI-B. The average NIER distributions in the MFCC
coefficients over all the speakers, the female speaker group and the male
speaker group are plotted in Figures 6-11, 6-12 and 6-13. A positive NIER score
indicates that the identification error rate increases with the exclusion of that
MFCC coefficient. For example, in Figure 6-11, C3's NIER is 3.01%: this means
that the exclusion of C; increases speaker identification error rate by 3.01%. A
negative NIER score means that the exclusion of that MFCC coefficient
decreases the speaker identification error rate by that amount. In other words. the
variance contained in that MFCC coefficient is a confounding factor for speaker
recognition, or that coefficient contains negative speaker information.
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Figure 6-11 Average NIER score distribution in the MFCC over all the speakers.



71

2% 41 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CEPSTRAL COEFF. INDEX

Figure 6-12 Average NIER score distribution in the MFCC over the female speaker group.
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Figure 6-13 Average NIER score distribution in the MFCC over the male speaker group.

Comparison of the NIER score distribution in Figures 6-11, 6-12 and 6-13 with the
corresponding NIDD score distribution in Figures 6-7, 6-8 and 6-9 shows that the
two different speaker-information measurements vyielded similar distribution
pattemns of speaker information in the cepstral domain. The Pearson product-
moment correlation coefficient (Eq. 6.8) was computed to find out the correlation
between the results of these two different methods :
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where n is the number of cepstral coefficients, which in our experiment is 15; x, is
the th cepstral coefficient's average NIDD score; y, is the th cepstral coefficient's
average NIER score. The resulting coefficient of linear correlation is 0.796.

Though the IDD and SIER methods have yielded similar average distribution
patterns of speaker information, there still exists a discrepancy as far as
individual coefficients are concemed. It is especially true when we compare the
individual speakers’ NIDD and NIER score distributions (see Appendices I-A & I-
B. Appendices II-A & 1I-B and Appendices Ili-A & liI-B). For some speakers, the
distribution pattems of speaker information in the MFCC coefficients based on the
IDD and the SIER methods are quite different (e.g. , female speaker F2 and male
speaker M4). An evaluation will be performed in the next chapter to see which
method provides a better estimation of the speaker-information distribution in the
MFCC coefficients.

6.9 Phonetic-Information Distribution

To verify our hypothesis that speaker- and phonetic-information distributions in
the cepstral domain have their distinctive patterns, the phonetic-information
distribution in the MFCC is also investigated. The phonetic information in each
MFCC coefficient is estimated by using the speech recognition error rate

measurement (SRER).

The difference between SRER and SIER is that in the SIER, the testing utterance
matches with all speakers’ same word models, and finds the model which
produces the least distortion score. If the testing utterance's speaker ID matches
with the model's speaker ID, it is counted as a correct speaker identification.
Otherwise, it is counted as a speaker identification error. While in the SRER, the
testing utterance matches with all the word models of the same speaker, and
finds the one which produces the least distortion score. If the model's word index
matches with that of the testing utterance's, then the utterance is correctly
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recognized. Otherwise, it is counted as a speech recognition error. For
compatibility with the speaker-information investigation, the SRER uses the same
VQ approach for word modeling. Though the temporal information of the
utterances will be lost with the VQ, it does not affect our investigation because
what we are interested in is finding only the spectral information coded in the
MFCC. The speech recognition procedure is illustrated in Figure 6-14 :

speaker #1's
VQ word model 1 f—p

utterance MFCC

Minumum
— M Distortion # If k = j : Comect Recognition
: speaker #1's word el
:Word index [k] VQ word model 2 else : Recognition erfor

speuker £1's
VQward medei n L—J

_;Speaker D[ Y

Figure 6-14 Block diagram of the speech recognition error rate measurement.

For the SRER measurement, the same TI-20 data are used. The word models
used are built in exactly the same way as for the SIER measurement. The testing
data are also the same. The testing procedure is designed in such a way that it
loads utterances in sequence. With each utterance, the program automatically
identifies its speaker ID according to the wave file name, loads all the word
models of that speaker, calculates the VQ distortion scores, selects the closest
codebook and matches its word index with the testing utterance’'s word index. For
each speaker, the speech recognition errors are calculated and the phonetic
information coded in each MFCC coefficient is approximated by the normalized
speech recognition error rate (NRER). The NRER score is the difference between
the baseline speech recognition error rate, which includes all the 15 MFCC
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coefficients in the VQ distortion measurement, and the one which excludes one
MFCC coefficient.

Results

Same as the NIER measurement, the SRER measurement is performed with the
rotation of each of the 15 MFCC coefficients excluded from the VQ distortion
measurement, as well as a baseline test which includes all the 15 MFCC
coefficients. The resulting individual speakers’ NRER score distributions in the
MFCC are listed in Appendix IV. The graphs are presented in Appendices V-A
and V-B. The average NRER score distributions in the MFCC coefficients over all
the speakers, the female and the male speaker groups, are presented in Figures
6-15, 6-16 and 6-17.
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Figure 6-15 The average NRER score distribution in the MFCC over all the speakers.
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Figure 6-16 The average NRER score distribution in the MFCC over the female speaker
group.
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Figure 6-17 The average MRER score distributions in the MECC over the male speaker

group.

6. 10 Discussion

Figures 6-11, 6-12 and 6-13 show the average speaker-information distributions
in the MFCC using the SIER measurement for the TI-20 data. F igures 6-15, 6-16
and 6-17 show the average phonetic-information distributions for the same data.
There exist differences between the speaker- and phonetic-information
distributions. However, both distributions also share some global similarity, that is,
the lowest and higher-order cepstral coefficients contain less or little phonetic and
speaker information. This global similarity can be partially due to the speech
recording and processing environment. As pointed out by Juang and Rabiner
(1987), the variability of the higher-order cepstral coefficients is partially caused



by the inherent artifacts of the signal processing procedure. This diminishes the
discriminating power of the higher-order cepstral coefficients. The channel
differences, such as the effect of differences in channel frequency response
rolloff, on the other hand, usually affect most the first couple of cepstral
coefficients and consequently degrade their performance.

The correlation between the average speaker- and phonetic-information
distributions in the MFCC coefficients was computed. The resulting coefficient of
linear correlation is 0.66. This suggests that the distributions of speaker and
phonetic information have a fairly high correlation in the cepstral domain. It is
consistent with the result reported by Furui (1986). Furui experimented with a
linear model which consists of the phonetic factor, the speaker factor and the
interaction between phonetic and speaker factors. The effects of phonetic,
speaker and interaction factors were measured based on the multivariate analysis
of variance using x? distributions. His finding was that the phonetic effect was
much larger than the speaker effect, and the interaction effect was also relatively
large.

Since the general speaker- and phonetic-information distributions represent the
average value from all the speakers in the database, they have obscured
individual speakers’ differences. The general speaker- and phonetic-information
distribution patterns only provide us with the general tendency. For both speaker-
and speech-information distributions, each individual speaker has his/her own
unique pattens (see Appendices II-A & II-B, llI-A & l-B, V-A & V-B), and they
can be quite different from the average distribution patterns. For example, in the
average distribution pattem of speaker information using the SIER measurement
(Figure 6-11), the highest cepstral coefficient Cis is negative in speaker
information. In other words, the variability contained in this coefficient is rather a
confounding factor for speaker recognition. However, a look at Appendices Ill-A
and llI-B reveals that there are 6 speakers (36.5% of all speakers) who actually
have positive speaker-information values for this coefficient.
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The speaker-information distribution is mostly speaker-dependent. This is also
true for the phonetic-information distribution. To compare the difference between
the speaker- and phonetic-information distribution patterns, the best way is to
look at individual speakers’ patterns, instead of the averaged patterns. As an
ilustration, we present speaker F1's phonetic- and speaker-information
distribution in the MFCC for a closer comparison.
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A. The phonetic-information distribution B The speaker -information distribution

Figure 6-18 Speaker F1’s phonetic- and speaker-information distributions in the MFCC.

From Figure 6-16 we can see that the speaker- and phonetic-information
distributions for speaker F1 are both similar and different. They are similar in the
way that the lowest and higher-order coefficients in both distribution patterns
have less relevant information. This conforms with the general distribution
patterns for both kinds of information. The difference is that those coefficients
which contain high speaker information tend to be low in phonetic information.
This demonstrates, on the one hand, that speaker and phonetic information have
their distinctive representations in the parametric domain. On the other hand, it
suggests that significant speaker variances contained in those coefficients are
confounding factor for speech recognition.

In summary, we have investigated the distribution patterns of speaker information
in the MFCC. Two statistical methods (IDD and SIER) have been used
independently for speaker-information measurement. They have vyielded close
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results concerning the distribution patterns of speaker information, which can be

briefly summarized as follows:

* Ingeneral, the lowest- and the higher-order MFCC coefficients tend to contain
less speaker information compared with the lower- and middie-order ones, for
many speakers, the variances contained in the lowest- and higher-order
MFCC coefficients are confounding factors for speaker recognition.

e The female speakers tend to have much less speaker information distributed
in the higher-order MFCC coefficient region as compared with the male
speakers.

» Though there exist the above general tendencies in the distribution patterns of
speaker information, the amount of speaker information in each MFCC
coefficient is largely speaker-dependent. In other words, each individual
speaker’s idiosyncrasy is coded in the MFCC in its unique way.

In this chapter we have also investigated phonetic-information distribution in the

MFCC. Comparison of the distribution patterns of phonetic and speaker

information shows that these two kinds of information have their distinct

distribution patterns in the cepstral domain. However, there also exists fairly high
correlation between these two distributions.
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CHAPTER 7
SPEAKER-INFORMATION ENHANCEMENT

In the last chapter, we have investigated speaker-information distribution patterns
in the MFCC coefficients. Based on those findings, we will compare different
weighting strategies in the cepstral domain in search of an optimal way for
speaker-information enhancement.

7.1 Experimental Design

A baseline and three different cepstrum weighting (or “liftering”, a special name in
cepstral analysis, analogous to filtering) methods are implemented in the closed-
set speaker identification tests for comparison. The baseline speaker
identification test uses only the inverse-variance weighting (see Chapter 6: 6.6).
For the other three methods, different weighting functions are applied, in addition
to the inverse-variance weighting. Weighting Function A uses the raised sine
function (Juang et al. , 1987), a popularly used cepstral weighting strategy for
speech information enhancement; Weighting Function B uses the average
distribution pattemn of speaker information in the MFCC acquired from the last
experiment, Weighting Function C uses the individual speakers’ distribution
pattemns of speaker information in the MFCC. For comparison of the IDD and
SIER methods, Weighting Functions B and C include two sub-experiments which
use distribution patterns of speaker information provided by the IDD and SIER
measurements in the last experiment respectively. The above three weighting
methods can also be classified into two categories: the general weighting
approach and the speaker-based weighting approach. For the general weighting
approach, the same weighting function is applied to all the speakers
indiscriminately in the VQ Euclidean distance measurement.
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y-4
d(x,x)= Z(w,ixi - i Mi). (7.1)

1=}

where wi is the ith MFCC coefficient's inverse-variance weight. M, is the ith MFCC
coefficient’s speaker-information weight. The function of M, is to enhance speaker
information in that particular MFCC coefficient. In the general weighting approach,
M, is the same for all the speakers. The general weighting approach includes
Weighting Functions A, B1 and B2.

For the speaker-based weighting approach., weighting is based on individual
speakers' information distribution patterns in the MFCC and different weightings
are applied to different speakers in the Euclidean distance measurement.

P
dlx.x)= Z(er.tl — X1 M. (7.2)

r=|

where M, is the jth speaker’s ith cepstral coefficient speaker-information weight.
Weighting Functions C1 and C2 are the speaker-based weighting approach.

Weighting Function A

This weighting function is a raised sine function (Figure 7-1), which was originally
proposed by Juang et al. (1987) in their speech recognition experiment:

M(i) = 1+ 0.5p sin (ni/ p), 1<i<p. (7.3)
where p is the order of cepstral coefficients. The purpose of this weighting

function is to minimize the cepstral variability caused by the artefacts of the
analysis procedure or sources which did not pertain to speech recognition.
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Figure 7-1 Raised sine weighting function.

As we have discussed in the previous chapter, the variability of the higher-order
Cepstral coefficients is partially caused by the inherent artefacts of the signal
processing procedure; and channel differences, such as the effect of differences
in the channel frequency response rolloff, usually affect the first couple of cepstral
coefficients. Speaker variability also significantly affects the lower cepstral
coefficients. Juang et al. (1987) tested different cepstral weighting methods to
reduce the lower- and higher-order cepstral coefficients’ effect on the distance
measure and found that the raised sine function yielded a better speaker-
independent speech recognition performance. We apply this raised sine function
weighting for speaker identification in the present experiment. The purpose is to
compare this conventional speech-information weighting approach with our new

speaker-information weighting approaches.

Weighting Function B1

Weighting Function A was originally intended for speech recognition. Therefore,
the lower-order coefficients are given low weighting because the variability of
these coefficients is more related to speaker variation, as well as to the
transmission channel variation. For speaker recognition, however, the variability
due to speaker variation should be enhanced instead. Furthermore, the average
distribution pattern of speaker information (see Figure 7-11) indicates that the
speaker information distribution is actually not exactly a sine function and the



higher-order coefficients tend to have little or even negative speaker information.
A better approach for speaker information enhancement, then, should adopt a
strategy which weights the MFCC coefficients according to the average
distribution pattern of speaker information, which is obtained from the speech
training data. Weighting Function B1 is based on this approach, and weights
each MFCC coefficient according to its ranking in the amount of speaker
information. The coefficients are sorted in an increasing order according to their
respective NIER scores based on the SIER measure. The weights rank from 1 to
15. The lowest-ranking coefficient is assigned the weight value of 1 and there is
an increment of 1 for each subsequent coefficient. If two or more coefficients
have the same NIER scores, they receive the same weight. In that case, the
highest weight will be lower than 15. The general-speaker-information based
weighting function is illustrated in Figure 7-2. This weighting function is applied to
all the speakers in the testing phase.
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Figure 7-2 Weighting function based on the average NIER score distribution in the MFCC
coefficients.

Weighting Function B2

For measurement of the speaker-information distribution, two different statistical
methods were used in the last experiment: one is the IDD measurement; the
other is the SIER measurement. Weighting Function B1 is based on the average
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NIER score distribution in the MFCC using the SIER measurement. Weighting
Function B2 uses the average NIDD scores based on the IDD measurement. The
purpose of performing Weighting Function B2 is to find out which statistical
method provided a better estimation of the average distribution pattern of speaker
information in the cepstral domain. Weighting Function B2 is plotted in Figure 7-3.
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Figure 7-3 Weighting function based on the average NIDD score distribution in the

cepstral coefficients.

Weighting Function C1

The difference between Weighting Functions B1 and B2 is that Weighting
Function B1 is based on the average NIER score distribution in the MFCC
coefficients, while Weighting Function B2 is based on the average NIDD score
distribution. However, both weighting functions assume that the average
distribution pattern of speaker information is applicable to all the speakers.
Therefore, the same weighting function is applied to speakers indiscriminately in
the testing phase.

As we have already pointed out, although there exists a general tendency, the
speaker-information distribution is largely speaker-dependent. If we look at the
individual speakers’ NIDD or NIER score distribution patterns in the cepstral
domain (Appendices II-A_B, lli-A_B), we can see that there exist significant inter-
speaker differences. Some individual speakers’ pattems are quite inconsistent
with the average distribution pattern of speaker information. For example. the



lowest- and higher-order coefficients contain little speaker information in the
average distribution pattern, but this is not the case in some individual speakers’
patterns. The middle-order coefficients contain much speaker information in the
average distribution pattern. However, some individual speakers’ pattems show
negative NIER or NIDD scores in that region. Optimal speaker-information
enhancement, then, has to depend on individual speakers’ distribution patterns of
speaker information.

Weighting Function C1 adopts this approach. The weight assigned to each
coefficient is based on the ranking of NIER scores of the SIER measure. In this
respect, Weighting Function C1 is the same as Weighting Function B1. However,
the ranking of speaker information in Weighting Function B1 is based on the
average NIER score distribution, and the weighting assigned to each coefficient is
the same for all the speakers. The ranking of speaker information in Weighting
Function C1, on the other hand, is based on each individual speaker's NIER
score distribution and the weighting assigned to each coefficient is speaker-

dependent (see Table 7-1).

Table 7-1: Cepstral coefficient weighting for individual speakers based on the NIER

score
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Weighting Function C2

Weighting Function C1 applies different weighting pattemns to different speakers.
Weighting Function C2 adopts the same strategy, except that the weighting
patterns are based on individual speakers’ IDD score distributions instead of the
NIER score distributions (see Table 7-2). The purpose of performing Weighting
Function C2 is the same as for Weighting Function B2, which is to compare the
performance of the two different statistical methods for speaker information

estimation in the cepstral domain.

Table 7-2: Cepstral coefficient weighting for individual speakers based on the NIDD

score
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For the baseline and all the weighting approaches, the text-dependent speaker
models are trained on the recording session 1 of the TI-20 data. The testing data
are from recording sessions 5 to 9, which consist of 8 repetitions of the same
vocabulary item for each speaker. In the testing phase, the MFCC coefficients of
each frame of the utterance were weighted according to different weighting
approaches in the Euclidean distance measure for the VQ distortion score. The
identification error rate (IER) for each speaker is calculated the same way as in
the SIER measurement (Chapter 6: 6.8).
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7.2 Experimental Results

The IERs for the 16 speakers of the TI-20 data with the baseline and three
different weighting approach tests are listed in Table 7.3. F1-8 are female
speakers and M1-8 are male speakers.

Table 7-3: Speaker identification error rates for different weighting strategies

M8  4375% 41.88% 43.75% 37.90% 31.88% 47.50%

SPEAKER IDENTIFICATION TESTS

Speaker Basetine Weighting A  Wesighting B1 Weighting 82 Weighting C1 Weighting C2
F1 39.38% 29.38% 27.50% 31.88% 27.75% 29.38%
F2 5.00% 4.38% 5.63% 3.13% 2.50% 4.38%
F3 44.38% 32.50% 31.88% 34.38% 30.00% 30.63%
F4 31.25% 33.13% 31.25% 21.25% 26.88% 31.25%
FS 54.38% 47.75% 43.13% 39.38% 45.63% 42.50%
F6 39.38% 41.25% 27.13% 37.13% 31.25% 31.25%
F7 16.25% 11.88% 5.63% 11.88% 9.38% 6.88%
F3 27.13% 27.13% 21.25% 32.50% 23.13% 23.13%
M1 51.28% 46.79% 40.38% 33.97% 41.67% 41.03%
M2 42.50% 36.25% 37.50% 34.38% 35.63% 37.13%
M3 1.88% 1.88% 1.88% 4.38% 1.88% 1.88%
M4 26.28% 27.56% 24.36% 26.92% 22.44% 24.36%
MS 37.46% 36.54% 32.69% 28.49% 33.97% 33.33%
M6 32.08% 22.01% 23.90% 19.50% 20.75% 21.38%
M7 46.54% 43.40% 39.62% 47 17% 41.51% 41.51%

Average  3381%  30.36% __ 27.40% _ 27.86% ___ 26.70% __ 27.03%

7.3 Discussion

The results of the three different weighting functions for speaker-information
enhancement provide some interesting observations for discussion. Weighting
Function A reduced the overall error rate by 3.45% in speaker identification
performance compared with the baseline. Since this weighting function was
originally designed for enhancing phonetic information only, the effect of this
function in improving speaker recognition supports our experimental result in
Chapter 6 that there exists a fairly strong correlation between the distribution
patterns of speaker and phonetic information in the MFCC. One source
contributing to the correlation between the distributions of phonetic and speaker
information is from the speech processing environment, which mostly affects the
lowest- and higher-order coefficients. The other source is from the acoustic



nature of speech itself. As pointed out by O'Shaughnessy (1987): “Most of the
parameters and features used in speech analysis contain information useful for
the identification of both the speaker and the spoken message. (p.480)". In the
speech signal, the same acoustic phenomena, such as formant frequencies, carry
both phonetic and speaker cues. Recent studies on speech perception (Goldinger
et al. , 1991; Palmeri et al. , 1993; Nygaard et al. , 1994) further indicate that
speaker information actually facilitates listeners’ phonetic processing for some
perceptual tasks. This suggests that the human’s perceptual system treats
speaker information as an integrated component of the acoustic cues for speech
recognition, and there is an inherent relationship existing between phonetic and
speaker information.

In spite of the fact that the implementation of Weighting Function A improved
speaker recognition performance in general, there were three speakers (Speaker
F4, F6 and M4) whose error rates actually were increased and another two
speakers (F8 and M3) whose error rates remained the same, compared with the
baseline (see Figure 7-4).
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Figure 74 Comparison of speaker identification performance between the baseline and
weighting function A.
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Weighting Functions B1 and B2 were based on the average distribution pattern of
speaker information in the MFCC according to either NIER or NIDD scores and
they both achieved overall better performance than the baseline with significant
error rate reduction of 6.41% and 5.95% respectively. They also outperformed
Weighting Function A with error rate reduction of 2.84% and 2.50% respectively.
These results strongly support our basic argument that speaker information has
its distinct distribution pattern in the acoustic and parametric domain, which can
be identified and enhanced effectively for speaker-recognition.

A further comparison between Weighting Function B1 and B2 shows that
Function B1 achieved slightly better overall performance than Function B2. What
is significant, however, is that for Weighting Function B1, there was only one
speaker (F2) whose error rate actually deteriorated and 3 speakers (F4, M3 and
M8) whose error rates remained the same, while all the other speakers improved
their speaker identification performance. For Weighting Function B2, there were
four speakers (F8, M3, M4, M7) whose error rate actually increased compared

with the baseline (see Figure7.5).
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Figure 7-5 Comparison of speaker identification performances among the baseline,
Weighting Function B1 and B2.
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The better performance of Weighting Function B1 over Weighting Function B2
suggests that the SIER provided a better average speaker-information-
distribution estimation than the IDD measurement.

Weighting Functions C1 and C2 were based on the individual speakers’ NIER
and NIDD score distributions respectively. In Comparison with the baseline and
Weighting Function A, C1 and C2 performed significantly better. They also
yielded slightly overall better performance than Weighting Functions B1 and B2.
One advantage of C1 and C2 over B1 and B2, however, is that this individual-
speaker-information-distribution-based approach reduced most of the individual
speakers’ identification error rates, rather than just the average error rate over all
the speakers. In other words, most of the speakers were benefited from this
weighting approach. It is particularly true for C1. Compared with the baseline, C1
reduced all individual speakers' identification error rate except one speaker (M3),
whose error rate remained the same (see Figure 7-6). As for this particular
speaker, there may be an explanation for the lack of improvement even with the
use of speaker-dependent weighting strategy. The error rate for this particular
speaker in the baseline is the lowest (1.88%). Compared with the average error
rate 33.81%, improvement in performance for this speaker might have aiready
been saturated.

C2 produced less satisfactory results than C1. There is still one speaker (M8)
whose error rate actually increased and two speakers (F4 and M3) whose error
rates did not change as compared with the baseline. This further indicates that
the SIER provided better estimation of the speaker-information distribution than
the IDD measurement.
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Figure 7-6 Comparison of the speaker identification performances among the baseline,
Weighting Function C1 and C2.

Based on the above experimental results, we tentatively conciude that:

» Weighting based on the speaker-information distribution (B1, B2, C1 and C2)
performs better than the conventional speech weighting method (Weighting
Function A) for speaker-information enhancement.

» Weighting based on individual speakers’ speaker-information distribution (C1
and C2) has one important advantage over the weighting approach based on
the average speaker-information distribution (B1 and B2), that is, it is basically
effective for all the speakers.

The better speaker identification performance with using individual speakers’
distribution patterns conforms with a voice perception theory that different
acoustic cues are used in distinguishing different voices ( Lancker et al. , 1985).
According to Lancker et al. , the critical parameter(s) for speaker information are
not the same for all voices. The acoustic cue(s) essential for distinguishing one
speakers voice may be expendable in the case of distinguishing another
speaker’'s voice. Loss of certain parameter(s) will not impair recognisability if a
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voice is sufficiently distinctive on some other dimensions. In their voice perception
experiments, Lancker et al. found that speech contains a constellation of potential
cues from which the listener “selects” a subset to use for identifying a given
voice. The weighting approach based on the individual-speaker-information
distribution conforms with this basic human perceptual process.

As the two speaker-information-estimation methods are concerned, the SIER
measure provides better speaker-information-distribution estimation than the IDD
method. Compared with the IDD method, the SIER has the obvious advantage
that its measurement comes directly from the speaker identification performance.
The disadvantage of the SIER, however, is that this measure is not as sensitive
as the IDD method in detecting the effect of a slight experimental condition
changes. It is especially true in the situation when a speaker’s intra-speaker and
inter-speaker distance score distributions do not overlap with each other. In that
case, the perturbation of the intra-speaker and inter-speaker distance score
distributions will be reflected in the IDD score, but not in the IER score.



CHAPTER 8
SUMMARY AND CONCLUSION

The basic assumption in this study is that speech contains both phonetic
(linguistic) and speaker information. Acoustically, these two kinds of information
have their distinctive representations in the speech signal. The optimal approach
for improving speaker recognition performance is to enhance only the speaker-
information component coded in the speech signal.

This study first investigated the articulatory and acoustic aspects of speaker
information, the interrelationship between speaker information and its phonetic
environment, and the contrast between speaker and phonetic information cues.
On the basis of speaker-information analysis, we proposed a new approach for
speaker information enhancement. This approach used the speech training data
to identify the speaker-information distribution in the parametric domain. In the
testing phase, corresponding weighting (or liftering) strategy was applied to
enhance the speaker-information rich elements. Since the cepstrum is a widely
used parametric representation of the speech signal in both speech and speaker
recognition systems, this study was focused in the methods for measurement of
speaker information in the MFCC, and the optimal weighting strategy for speaker-
information enhancement.

The first part of the experiments was to measure the speaker-information
distribution in the MFCC. Two statistical methods were used independently for
speaker-information estimation. One was the IDD method, which measured the
intra- and inter-speaker distribution scores. The other was the SIER method,
which measured the speaker identification error rates. In both methods, Session
1 of the TI-20 speech data was used for speaker VQ mode! training, and
Sessions 2-5 were used for speaker-information measurement. The experimental
results from both statistical methods showed similar general distribution patterns
of speaker information in the MFCC coefficients. In general, the lowest- and
higher-order coefficients contained little speaker information, or even confounding
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variances; most of the speaker information was concentrated in the lower- and
middle-order coefficients. As for the sex difference, female speakers tended to
have much less speaker information distributed in the region of the higher-order
coefficients, as compared with male speakers. In spite of the above general
tendencies, the speaker-information distribution in the MFCC was found to be
largely speaker-dependent. There were cases in which individual speakers’
information distribution patterns did not conform with the general distribution
pattern of speaker information or the distribution pattern of its own sex group. The
phonetic-information distribution pattem in the cepstral domain was also
investigated to verify our assumption that speaker information and phonetic
information have their distinctive representations. Comparison of the general
phonetic- and speaker-information distributions in the MFCC indicated that the
two information distribution patterns were different. However, they also had
relatively-high correlation (r = 0.66). This correlation could come from two
Sources: one source was the inherent overlap between the phonetic and speaker
information. The other source was the channel effect and artefacts of the signal
processing procedure. Further comparison of individual speakers’ phonetic- and
speaker-information distribution patterns showed that the MFCC coefficients
which contained high speaker information tended to be low and even negative in
phonetic information. This suggests that speaker variances can be serious
confounding factors in speech recognition.

The second part of the experiment was in search of the optimal speaker-
information enhancement strategy in the cepstral domain. We compared three
different weighting functions for speaker-information enhancement. Weighting
Function A was a raised sine function, which was originally proposed by Juang at
el. for speech enhancement, not specifically targeted for speaker information.
Weighting Functions B (1-2) were based on the average distribution pattern of
speaker information in the MFCC coefficients. The weight assigned to each
coefficient was proportional to either its average NIER or NIDD score. Weighting
Functions A, B (1-2) applied the same weighting function to all the speakers
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indiscriminately. Different from Weighting Functions A and B(1-2), Weighting
Functions C (1-2) were based on the individual speakers’ NIER or NIDD score
distribution patterns in the MFCC coefficients. For different speakers, Weighting
Function C (1-2) applied different weightings.

The three weighting functions were tested in the VQ-based text-dependent
speaker identification program. Sessions 6-9 of the TI20 data were used as
testing stimuli. The experimental results show that all three weighting functions
improved speaker recognition performance compared with the baseline; however,
the weighting functions based on speaker information performed better than the
weighting function based on speech information. Furthermore, the weighting
Function which was based on individual speaker information gave an overall
better speaker identification performance. This resuit supported a voice
perception theory, which suggested that a speaker's voice pattern contains a
constellation of potential cues from which the listener “selects” a subset to use for
identifying a given voice.

With Weighting Functions B and C, we also compared two sets of speaker-
information scores (NIER and NIDD), which resulted from two different statistical
methods for speaker-information measurement. The speaker identification results
indicated that the SIER measurement produced an overall better speaker-
information estimation than the IDD measurement.

In conclusion, this study has developed ideas on how to improve automatic
speaker recognition via a new methodology and technique designed to enhance
those elements in the speech parameters most relevant to discriminate speakers.
By increasing the weights in appropriate distance measures along the lines of the
power of each parameter to discriminate speakers, speaker information is
enhanced, which improves the performance of speaker recognition. The same
methodology can be applied in speech recognition to enhance the phonetic
information. How well this approach will improve speech recognition performance
iS our next research interest.
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APPENDICES

Appendix 1-A Individual Speakers’ NIDD Score Distributions
in the Cepstrai Coefficients

.

Speeker Cepstral Coefficient

C1 C2 C3 C4 C5 C6 C7 C8 CO9 C10 Ci1 C12 C13 C14 Ci5
F1 -0.05 0.01 0.02 0.01 0.04 0.03 0.01 0.02 003 0.00 0.00 0.01 0.00 0.01 -0.02
F2 0.04 0.05 002 003 0.02 0.01 -0.01 0.04 0.00 0.02 0.00 -0.01 0.00 0.00 -0.01
F3 -0.01 0.02 0.06 0.01 0.02 0.01 0.07 0.01 001 0.06 0.01 -0.01 -0.02 -0.01 -0.02
F4 -0.01 0.05 0.07 0.04 0.01 0.02 0.00 -0.01 0.02 0.03 0.00 0.07 -0.01 -0.02 -0.03
F§ -0.02 0.02 0.04 0.02 0.00 001 0.01 0.01 0.01 0.01 0.00 -0.01 -0.01 0.01 0.00
F8 -0.02 0.02 0.05 0.02 0.03 0.00 0.03 -0.02 0.02 002 0.00 -0.01 -0.01 0.00 -0.01
F7 -0.01 0.04 009 0.03 0.02 001 0.01 0.01 0.01 0.00 0.00 -0.02 001 0.00 0.00
F8 -0.04 0.00 0.06 0.01 0.01 -0.01 0.05 0.03 0.02 0.00 0.02 -0.01 0.01 -0.01 0.00
M1 -0.08 -0.04 0.02 004 0.03 0.02 0.04 0.03 0.01 000 0.02 002 002 001 0.00
M2 -0.05 0.04 0.03 0.02 0.02 0.03 0.03 0.02 0.04 0.03 -0.01 -0.01 0.00 0.01 -0.02
M3 0.00 0.02 0.01 0.01 0.01 0.01 0.01 0.04 -0.01 0.04 -0.01 0.00 0.00 0.01 002
M4 0.02 -0.01 -0.01 -0.01 0.01 003 0.01 0.03 0.01 002 0.00 002 0.02 0.03 -0.02
M5 -0.04 0.05 0.03 0.03 0.01 000 002 0.0%1 -001 002 0.02 001 0.00 -0.01 0.00
M6 -0.11 0.01 0.07 0.03 0.02 0.00 0.02 0.04 0.02 004 -0.01 001 -0.03 0.01 0.00
M7 -0.03 0.02 0.01 -0.01 0.01 0.01 0.02 0.02 0.05 004 0.02 000 -0.01 -0.01 0.00
M8 -0.02 0.00 0.00 0.04 0.0t 0.02 001 003 0.00 0.01 0.00 0.03 0.00 001 -002
Appendix 1-B Individual Speakers’ NIER Score Distributions

in the Cepstral Coefficients

Speaker Cepstral Coefficient

€1 G C Ct C5 €6 C7T C8 €9 CI0 C11 C12 Ci3 Cl4 Ci§
F1 -0.04 0.03 0.09 004 0.04 0.03 001 0.00 0.09 002 00t 001 -0.04 001 -0.02
F2 -0.01 -0.01 -0.01 0.00 0.01 0.01 0.00 -0.01 -0.01 0.00 0.00 000 0.01-0.01 0.01
F3 0.00 0.04 004 002 -0.01 0.04 001 003 0.0t 0.01 -0.01 -0.02 -0.02 -0.02 -0.01
F4 0.05 0.06 006 0.05 002 0.03 003 0.01 0.03 0.03 -0.02 003 0.00 0.01 0.01
F§ -0.01 0.04 003 0.06 003 001 005 0.02 0.06 001 0.02 0.01 -0.03 -0.04 001
Fé 0.01 0.03 0.04 0.01 004 0.05 003 0.01 -0.03 -0.01 -0.02 -0.01 -0.04 -0.01 0.02
F7 -0.01 0.0t 0.04 0.03 003 0.01 004 -0.01 -0.01 0.03 -0.01 -0.03 -0.04 -0.01 -0.03
F8 0.00 -0.01 0.04 0.03 0.05 0.00 0.02 0.01 -0.01 0.01 -0.02 -0.01 -0.01 -0.01 -0.01
M1 0.01 -0.04 0.01 0.04 0.03 003 0.08 0.00 0.04 006 0.02 0.06 0.00 0.06 -0.02
M2 -0.03 -0.02 0.01 0.03 0.02 0.02 0.01 0.01 0.03 -0.02 -0.03 -0.01 -0.02 -0.01 -0.06
M3 -0.04 0.03 002 -0.0¢ 0.01 0.03 0.01 003 001 004 0.03 0.01 0.02 0.01 -0.01
M4 -0.01 0.01 004 0.03 002 0.01 002 0.03 -0.02 0.01 -0.04 -0.02 -0.02 0.01 -0.01
MS 0.02 0.03 0.04 000 -001-001 -003 0.00 0.00 -0.01 0.02 0.03 -0.06 001 -0.03
M6 -0.12 -0.08 0.02 -0.01 0.04 -0.02 0.00 0.04 0.03 -0.01 0.01 0.01 -0.04 0.04 001
M7 0.02 0.06 0.02 -001 0.01-0.01 0.02 0.03 0.02 0.01 Q.01 0.04 -0.07 -0.05 -0.03
M8 0.07 0.01 0.00 0.04 -0.02 0.00 -0.01 0.03 0.05 0.01 0.03 0.06 -0.04d 005 0.01
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Appendix li-A Individual Speakers’ NIDD Score Distributions in the Cepstral
Coefficients [Female Speaker Group]
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Appendix lI-B Individual Speakers’ NIDD Score Distributions in the Cepstral
Coefficients [Male Speaker Group]
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Appendix Ill-A Individual Speakers’ NIER Score Distributions in the Cepstral

Coefficients [Female Speaker Group]
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Appendix llI-B Individual Speakers’ NIER Score Distributions in the Cepstral
Coefficients [Male Speaker Group]

Q@
204
D06

NIGR

SPEAKER M1

aoe
Qaoe
0.0¢
o
©00 4

SPEAKER M3

a04

ac2
Q0¢

2 34567 8 9101112131415

J06

CEPSTRAL COEFF. INDEX

SPEAKER M5

288¢

b o o o

L4
€08

<c8

CEPSTRAL COEFF. NDEX

SPEAKER M7

o8

Qe
Qo4
Q08

11 2 34567 89101121314 15

Qm

NIER

NIER

SPEAKER M2

34587aatouv2131415

CEPSTRAL COEFF. INDEX

SPEAKER MA

Ft 2 3 4« 567 8164112131415
LK

CEPSTRAL COEFF. INDEX

SPEAKER M6

0.08
0.06
0.04
oo

am
0.0¢

CEPSTRAL COEFF. INDEX

SPEAKER M8

8 9 10111213 1415

CEPSTRAL COEFF. INDEX



Appendix IV Individual Speakers’ NRER Score Distributions in the Cepstral

Coefficients

Speaker
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Appendix V-A Individual Speaker's NRER Score Distribution in the Cepstral
Coefficients [Female Speaker Group]
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Appendix V-B Individual Speaker's NRER Sccre Distribution in the Cepstral
Coefficients [Male Speaker Group]
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