
Spreadsheets for Legal Reasoning: The Continued
Promise of Declarative Logic Programming in Law

by

Jason Patrick Morris

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Laws

In Faculty of Law and Department of Computing Science

University of Alberta

c© Jason Patrick Morris, 2020



Abstract

The legal services market is one in which there is too much demand, and too

little supply. One method of increasing supply in a market is to increase ef-

ficiency by automating. Automated legal services require the automation of

legal reasoning. Declarative logic programming (DLP) has long been recog-

nized as well-suited to the automation of legal reasoning. This dissertation

reviews the legal academic literature surrounding the automation of legal ser-

vices using DLP, which has been discussed primarily with regard to how it

can be used to build “expert systems”. This dissertation argues that most of

the criticisms of the use of expert systems for automating legal services can

be addressed by using modern DLP technologies, conceiving of the encoding

as being representative of an interpretation of the law rather than the law’s

correct meaning, and increasing ease-of-use for non-programmers.

The dissertation then proposes a set of 7 criteria of suitability for DLP tools

developed from a legal services automation perspective. A survey of available

tools is performed, comparing the available tools to these criteria. The dis-

sertation advocates for the development of open source DLP tools that have

both accessibility features (ease of use and price), and at least one of the five

technical features. The dissertation concludes with the description of an open-

source tool developed by the author as an ABA Innovation Fellowship project,

which is open-source, free, aims to be easy to use, and implements case-based

reasoning to allow users to automate reasoning around open-textured legal

concepts.

ii



Preface

Portions of this dissertation are adapted from work submitted for credit in
LAW 696 and CMPUT 605 as a part of this degree program. A demonstration
paper based on the work in Chapter 7 was published in the 2019 Proceedings of
the International Conference on Artificial Intelligence and Law (Jason Morris,
“User-Friendly Open-Source Case-Based Legal Reasoning” [2019] Proceedings
of the Seventeenth International Conference on Artificial Intelligence and Law
270).

None of the work in this dissertation has been submitted for credit in any
other degree program.

Unless otherwise noted this dissertation is my own work.

iii



For Maja, Liam, Gabe, and Oliver

for allowing me to be myself.

iv



Acknowledgements

I am grateful for the assistance of my advisor in the Faculty of Law, Dr.

Cameron Hutchison, and my advisor in the Department of Computing Science,

Dr. Randy Goebel, and the additional members of my review committee.

I am grateful to the Faculty of Law and the Department of Computing

Science, as well as the Faculty of Graduate Studies and Research for their

unflinching support of my interdisciplinary course of study.

I am grateful also to the University of Alberta Faculty of Law for awarding

me a scholarship to pursue these studies.

Coherent Knowledge provided valuable feedback and insights to encoding

written legal rules in the ErgoAI and ErgoLite langauges.

Thank you to the American Bar Association Center for Innovation, in

particular Chase Hertel, Sarah Hoffmeyer, and Jordan Furlong. My being

awarded the 2018/2019 ABA Innovation Fellowship allowed me to go from an

idea about what ought to be done to actually doing it.

Thank you also to Clio, and in particular Jack Newton and Joshua Lennon,

who recognized the potential of that fellowship project and whose sponsorship

of it allowed it to expand into the project it now is.

Thank you to Jonathan Pyle, author of Docassemble, for his availability

and support over the course of my research.

Thank you to Dr. Kevin Ashley for his openness and generosity.

Thank you to Dr. Matthias Grabmair for his expertise and contribution

of OpenLCBR.

No words could express the gratitute I feel for my wife Maja, and my

children Liam, Gabriel, and Oliver, whose support of their husband and dad

has been absolutely unwavering.

v



Contents

1 Introduction 1

2 Declarative Logic Programming (DLP) in Law 4
2.1 What are “Written Legal Rules”? . . . . . . . . . . . . . . . . 4
2.2 What is “Declarative Logic Programming”? . . . . . . . . . . 6

2.2.1 What is Declarative Programming? . . . . . . . . . . . 6
2.2.2 What is Logic Programming? . . . . . . . . . . . . . . 7
2.2.3 Rules, Facts, and Questions . . . . . . . . . . . . . . . 7

2.3 Why Declarative Logic Programming? . . . . . . . . . . . . . 8
2.3.1 Translation, not Reformulation . . . . . . . . . . . . . 9
2.3.2 Increased Efficiency for Encoding and Maintaining . . . 11
2.3.3 Explainability . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Applications of Encoding Legal Rules in DLP . . . . . . . . . 13
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Using DLP To Find Legislative Bugs: An Experiment 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Kraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Background of the Case . . . . . . . . . . . . . . . . . 16
3.2.2 Our “Bug” in the Code . . . . . . . . . . . . . . . . . . 17

3.3 Encoding Kraft . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 The ErgoAI Language . . . . . . . . . . . . . . . . . . 19
3.3.2 The Selected Scope . . . . . . . . . . . . . . . . . . . . 19
3.3.3 Encoding Counterfactual Conditions . . . . . . . . . . 21
3.3.4 Using ErgoAI to Test for the Bug . . . . . . . . . . . . 23

3.4 The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Legal Scholarship on DLP in Law 29
4.1 Expert Systems and DLP . . . . . . . . . . . . . . . . . . . . 29
4.2 Why Legal Scholarship? . . . . . . . . . . . . . . . . . . . . . 29
4.3 Susskind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Popple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Leith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Ashley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 McCarty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.8 Addressing the Criticisms . . . . . . . . . . . . . . . . . . . . 45

4.8.1 The Legal Services Supply Perspective . . . . . . . . . 45
4.8.2 Standards of Appropriateness for Automated Legal Ser-

vices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.8.3 We Encode Interpretations, not “the Law” . . . . . . . 47
4.8.4 Concerns with Statutory Interpretation Can be Miti-

gated, and Do Not Apply Universally . . . . . . . . . . 48

vi



4.8.5 DLP Technology Has Improved . . . . . . . . . . . . . 52
4.9 The Real Challenge . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9.1 The Solution: The Legal Expert Is the Programmer . . 53
4.9.2 Spreadsheets for Legal Reasoning . . . . . . . . . . . . 53

4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Desirable Qualities in DLP Tools for Automation of Legal Ser-
vices 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Affordability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Case-Based Reasoning . . . . . . . . . . . . . . . . . . . . . . 59
5.6 Temporal Reasoning . . . . . . . . . . . . . . . . . . . . . . . 60
5.7 Defeasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.8 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Survey of Selected Tools for Automating Legal Reasoning with
DLP 63
6.1 Criteria for Inclusion . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Selected Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.1 ErgoAI/ErgoLite . . . . . . . . . . . . . . . . . . . . . 64
6.2.2 Neota Logic . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.3 Oracle Policy Automation . . . . . . . . . . . . . . . . 66
6.2.4 Regulation as a Platform . . . . . . . . . . . . . . . . . 68
6.2.5 Docassemble . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.6 DataLex . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Summary of Available Options . . . . . . . . . . . . . . . . . . 75
6.4 What is Missing? . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5 What Should We Build? . . . . . . . . . . . . . . . . . . . . . 77
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 User-Friendly Legal Case-Based Reasoning 79
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 OpenLCBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3 The IBP Algorithm In Brief . . . . . . . . . . . . . . . . . . . 80
7.4 Docassemble-OpenLCBR . . . . . . . . . . . . . . . . . . . . . 83
7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.6 Temporal Reasoning in Procedural Languages . . . . . . . . . 88
7.7 Impressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Conclusion 92
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2 The Question of Scale . . . . . . . . . . . . . . . . . . . . . . 93
8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

References 96

Appendix A Oracle Policy Automation Encoding of Adult Inter-
dependent Partnership Act 99

Appendix B ErgoAI Encoding of Adult Interdependent Partner-
ship Act 107

vii



Appendix C ErgoAI Encoding of Kraft 118

viii



List of Tables

3.1 Variables used in ErgoAI Code . . . . . . . . . . . . . . . . . 23
3.2 Bugs Found Automatically in Copyright Law . . . . . . . . . . 26

6.1 Summary of available DLP tools and their features . . . . . . 76

7.1 Results of Leave-One-Out Testing on Relationship of Interde-
pendence Reasoner . . . . . . . . . . . . . . . . . . . . . . . . 87

ix



List of Figures

6.1 RaaP’s Rule-Browsing Interface. . . . . . . . . . . . . . . . . . 69
6.2 RaaP’s Graph Visualization Interface. . . . . . . . . . . . . . . 70
6.3 An interview created in Docassemble. . . . . . . . . . . . . . . 71
6.4 An interactive consultation generated by DataLex. . . . . . . . 74

7.1 Expandable reasons for a prediction are displayed to the user
in docassemble-openlcbr. . . . . . . . . . . . . . . . . . . . . . 85

7.2 How the list of factors are displayed to the user in docassemble-
openlcbr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 How the details of a factor are displayed to the user in docassemble-
openlcbr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.4 How the details of an issue are displayed to the user in docassemble-
openlcbr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

x



Listings

2.1 Example of DLP Rule . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Example of Encoding Socrates is Mortal . . . . . . . . . . . . 8
3.1 ErgoAI Code for section 27(2)(e) Copyright Act . . . . . . . . 21
3.2 Code To Find “Bug” in Copyright Act . . . . . . . . . . . . . 24
6.1 Code as entered into DataLex tool. . . . . . . . . . . . . . . . 73
7.1 Example of Python Code Block in Docassemble Interview . . . 88
7.2 Excerpt of Python code for Calculating the Start of an AIP . 89
B.1 ErgoAI Encoding of Adult Interdependent Partnerships Act . 107
C.1 ErgoAI Encoding of Kraft . . . . . . . . . . . . . . . . . . . . 118

xi



Chapter 1

Introduction

This dissertation seeks to contribute an interdisciplinary perspective to the

academic conversation surrounding the use of declarative logic programming

in the automation of legal reasoning around written legal rules. Specifically,

it seeks to approach the topic from the perspective of the following question:

How can the potential of declarative logic programming in law be brought to

bear to automate legal services in a responsible way?

In Chapter 2 this dissertation defines “written legal rules” and “declarative

logic programming”. It then provides a brief introduction to declarative logic

programming, and answers the question of why these tools in particular are

deserving of attention, arguing that they have a great deal of potential for

automating reasoning around written legal rules.

As an example of the potential applications discussed in Chapter 2, Chap-

ter 3 describes an experiment to demonstrate the potential use of these tech-

nologies for scenario testing. Statutory and common law rules surrounding

Canadian copyright are encoded in the ErgoAI1 programming language to de-

termine whether the encoding of those rules would be capable of predicting

scenarios in which the outcome arrived at in the Supreme Court of Canada

decision in Euro Excellence v Kraft, 2007 SCC 37 (CanLII) [Kraft ] would be

obtained. By generating a wide spectrum of possible fact scenarios the code

was able to find three distinct fact scenarios in which the result in Kraft would

1Over the course of the writing of this dissertation, the names of some of the software
products changed. The programming language offered by Coherent Knowledge called Ergo
was renamed ErgoAI. The open source version of this language called Flora-2 was renamed
ErgoLite. I have attempted to use only the newer names.

1



occur, of which the facts of Kraft are one.

Chapter 4 is a brief review of and response to legal and interdisciplinary

academic writing on the viability of expert systems in law. This chapter argues

that most of the difficulties identified with declarative logic programming tools

for the automation of legal services are misconceived, have been solved by

technical advances, or can be solved by improving the ease of use of the tools

in order to facilitate their use by legal subject matter experts. It argues for a

focus, in future tool development, on ease of use for non-programmers.

In Chapter 5, the dissertation sets out a list of seven desirable features

for a tool designed to facilitate the use of declarative logic programming to

automate reasoning around legal rules.

Chapter 6 is a survey of legal DLP tools available commercially or on an

open-source basis, addressing how each of the tools satisfies the requirements

set out in Chapter 5. This chapter then identifies significant gaps in the tools

that are available, and argues that development efforts should focus on tools

that are open source, easy to use, and feature one or more of the other 5

features listed in Chapter 5.

Chapter 7 then describes an effort by the author to develop a tool that

is open source, easy to use, and includes the additional desirable features

of explainability and case-based reasoning. Docassemble-OpenLCBR was an

ABA Innovation Fellowship project undertaken by the author as a part of his

research. The project demonstrates that lawyer-friendly interfaces to features

like case-based reasoning in open source tools are possible.

The dissertation then concludes in Chapter 8, reiterating its major argu-

ments. First, the only remaining obstacle to the adoption of DSL tools in the

automation of legal reasoning is what has been called the “knowledge acquisi-

tion bottleneck”. Second, a solution to the knowledge acquisition bottleneck

is to make the person who has the knowledge and the person who uses the

DLP tool the same person. Third, this solution does not require legal subject

matter experts to learn to code as that is traditionally understood, but rather

we need a step forward in usability in logic programming analogous to the

step forward in usability for mathematics programming that occurred with

2



the advent of electronic spreadsheets. That is to say, we need Spreadsheets

for Legal Reasoning. Fourth, there are significant gaps in the available tools

for the automation of legal reasoning around written rules, and these gaps

should be filled with free, open-source, easy-to-use DLP tools that feature one

or more of uncertainty, defeasibility, temporal reasoning, case-based reasoning,

and explanation. And lastly, the experiment in Chapter 7 demonstrates that

this is a realistic goal.

3



Chapter 2

Declarative Logic Programming
(DLP) in Law

This dissertation examines only declarative logic programming tools, which are

declarative logic programming languages, or tools based on those languages.

It is also limited to an examination of the usefulness of these tools in automat-

ing legal reasoning with regard to written legal rules. This Chapter will set

out what exactly “written legal rule” means in this dissertation. It will then

explain what “declarative logic programming” is, and set out why declara-

tive logic programming tools are worthy of particular scrutiny with regard to

automating legal reasoning around written legal rules.

2.1 What are “Written Legal Rules”?

This dissertation does not address the ability to automate reasoning about

“the law” writ large. It focuses only on automating reasoning around “written

legal rules.” And as we will see in later Chapters, not all written legal rules

are appropriate for encoding in these tools (or perhaps at all).

For the purpose of this dissertation, a statement is a written legal rule if

it is written in natural language, it is intended to have legal effect, and it

is drafted not in a narrative or persuasive way, but in the succinct, specific,

general and prescriptive or proscriptive manner of legal rules. Clearly included

in this category would be most legislation, most regulations, some policies, and

most contracts. Excluded from the category would be most holdings of law

4



that appear in judgements.

The distinction is not black and white as between statutes and case law. If

a judgment sets out a statement of law that is sufficiently general and specific

as to be comparable to the format of legislation, portions of judgements may

also be caught within the definition of “written legal rules.” Or, someone may

write a legal rule that is derived from the ratio decendi of one or more cases

that fits in the category.

For example, in the recent Supreme Court Case of Canada (Minister of

Citizenship and Immigration) v Vavilov, 2019 SCC 65 (CanLII) [Vavilov ], the

Court sets out circumstances in which the correctness standard of review might

apply. One such circumstance is where the legislation explicitly requires a

correctness standard. The ratio decidendi ”if a law states that review is on

the standard of correctness then the standard of correctness applies”, once

written, constitutes a written legal rule that would fall into the scope of this

dissertation.

On the other hand, Vavilov also stands for the proposition that in the case

of a person whose citizenship is denied because their parents were foreign spies

at the time of their birth in Canada, they nevertheless can obtain citizenship

by birth in Canada. That may be a “rule” of law that comes from Vavilov,

but it is not expressed as a rule in the judgement in those succinct and general

terms. The succinct statement statement above is derived from the judgement,

not contained in it. As such, this ”rule”, despite having the same force of law

and coming from the same primary source, is not a written legal rule in the

sense that term is used in this dissertation.

Portions of legislation, regulation, and contract will be written in language

that fails to satisfy the requirements. In particular, purpose statements will

generally not be written legal rules because they lack prescriptive or proscrip-

tive content.

At this point, the dissertation does not distinguish between written legal

rules that are useful to encode, and those that are difficult or unwise to encode.

For example, a subjective legal written rule, is nevertheless a written legal rule.

Issues of subjectivity and vagueness will be dealt with in detail later in the

5



dissertation.

2.2 What is “Declarative Logic Programming”?

A programming language is an interface between a computer and a human

being, the programmer. In the same way that there are many different user

interfaces for desktop computers, there are many different programming lan-

guages that have been developed for different purposes.

2.2.1 What is Declarative Programming?

There are many different ways of categorizing programming languages, but

one of the most significant divisions is between “imperative” programming

languages and “declarative” programming languages.

An imperative programming language is a language which sets out the steps

that a computer should follow in order to obtain a certain objective, and how

each step should change the state of the data the program is manipulating.

For example, imagine that you were trying to instruct a computer on how

to fill a grocery bag. In an imperative language you would give sequential

instructions, like this: “First, sort all the items according to their size. Starting

with the largest object, examine each object to see if it is heavier than all the

other objects that have not been bagged. If it is, bag it and then examine the

next object. If it is not, return it to the table and examine the next object.”

You can see that the instructions are expected to be followed in a certain

order. That order can be complicated because some instructions are repeated

(e.g. “examine each object”), and not all instructions happen every time (e.g.

“if it is heavier than all the other objects that have not been bagged”). In

an imperative programming language these sorts of basic structures are called

looping and conditional statements.

Declarative programming languages, instead of specifying a set of instruc-

tions for the computer to follow, set out an objective that the computer should

seek. There is then another piece of software that interprets the objectives and

the rules to follow in order to generate a procedure like the one above. In this

6



way, a declarative programming language allows you to give the computer a set

of instructions on how to write its own imperative program to solve a problem.

Using declarative language to program a computer to fill a bag of groceries,

you might say something like this: “All Objects should be placed in the Bag.

Usually, large Items should go in before smaller items. If a large item is lighter

than other smaller items, it should go in after those smaller items.”

A computer receiving these instructions might then generate its own im-

perative procedure for filling grocery bags similar to the one above.

You can see that these instructions are not expected to be followed in a

particular order. They do not set out a process for the computer to follow

that will achieve the desired result. They merely state the desired result.

So declarative programming can be understood in a simplified way as pro-

gramming in a language that sets out objectives, not processes, with the help

of another piece of software that will generate the required processes.

2.2.2 What is Logic Programming?

Logic programming languages are a category of declarative programming lan-

guages. What distinguishes logic programming from other forms of declarative

programming is that the basic unit of programming is a logical “rule”, as op-

posed to an “instruction”. The software that generates a process to follow

those rules and achieve the objective, called a “reasoner”, implements the

rules of a formal logic like modus ponens.

I refer to these languages as declarative logic programming languages (or

DLP languages) in this dissertation.

2.2.3 Rules, Facts, and Questions

A declarative logic programming language typically uses three primary state-

ment types: rules, facts, and questions. A rule is stated as follows:

Listing 2.1: Example of DLP Rule

1 Conclus ion :− Condit ions .

7



This rule states that the conclusion is true, if all of the conditions are true.

The symbol “:-” is used as an approximation of the logical implication symbol

`.

In addition to rules, declarative logic programming languages allow you to

state facts, and to ask questions, by omitting one or the other of the two parts

of a rule. A fact omits the conditions, and a question omits the conclusion. To

distinguish between the two, a question may include an identifier at the start

of the line, such as “?-”.

As an example, one might ask the computer to determine whether or not

Socrates is mortal by giving it the following expressions:

Listing 2.2: Example of Encoding Socrates is Mortal

1 i sMorta l (X) :− isHuman (X) .
2 isHuman ( s o c r a t e s ) .
3 ?− i sMorta l ( s o c r a t e s ) .

The first line is a rule, which states that a thing “X” is mortal if that thing

is human. The second line says that Socrates is human. The third line asks

whether Socrates is mortal.

If you ran this logic program, the computer would answer “Yes.”

2.3 Why Declarative Logic Programming?

Written legal rules can be, and regularly are, automated in a variety of tools.

But declarative logic programming languages have always been recognized as

being particularly well suited to the task of automating legal reasoning.

One of the first and most influential declarative logic programming lan-

guages is Prolog, which was developed in the 1970s.1 Very shortly after its

development, it was recognized that Prolog had utility in automating legal

reasoning.2 One early experiment involved encoding the British Nationality

Act of 1981 in Prolog.3

1M Van Emden and R Kowalski, “The Semantics of Predicate Logic as a Programming
Language” (1976) 23(4) Journal of the ACM (JACM) 733.

2Marc A Borrelli, “Prolog and the law: Using expert systems to perform legal analysis
in the uk” (1989) 3 Software LJ 687.

3Marek J Sergot et al., “The British Nationality Act as a logic program” (1986) 29(5)
Communications of the ACM 370.

8



While the potential of declarative logic programming for modeling legal

rules was recognized early on, declarative logic programming is not commonly

used, even for automating legal services. So why should we examine declarative

logic programming tools in particular?

There are at least three arguments that declarative logic programming is

preferable to imperative programming for the purpose of automating legal

reasoning specifically with regard to written legal rules.

2.3.1 Translation, not Reformulation

“Imperative” and “declarative” are called “paradigms” of programming lan-

guages. In the same way that programming languages have paradigms, so does

writing in natural languages. Writing in a natural language can be impera-

tive, procedural, declarative, logical, narrative, persuasive, and fall into any

number of other categories.

Written legal rules tend to be written in a paradigm that is very similar

to the logical declarative paradigm. The statements tend to set out outcomes

that are to be achieved, and outcomes that are to be avoided, as opposed to

setting out the only process by which those outcomes should be achieved or

avoided. And they can be analysed in a deductive manner.4

The stereotypical example of “keep off the grass” demonstrates this. This

is a declarative statement that states that an objective, that at any point in

time the number of people on the grass should be zero. It is not an imperative

or procedural statement. If it were, it would read something more akin to “if

you are on the grass, get off the grass, and if you are not on the grass, don’t

move onto the grass.” This process of converting the declarative statement

“keep off the grass” to the imperative statements “if you are on the grass, get

off the grass, and if you are not on the grass don’t move onto the grass” I refer

to as “reformulation.”

I use the word ”reformulation” here to distinguish between it and ”transla-

tion.” Translation changes only the language, reformulation changes the mode

4Cameron Hutchison, The Fundamentals of Statutory Interpretation (LexisNexis Canada
2018) at p. 20.

9



of expression, such as from declarative to imperative. For example, drawing a

copy of a picture is a type of translation. The model, a two dimensional rep-

resentation, doesn’t change. Describing a photo in words is a reformulation.

It requires that a two-dimensional image be converted to a verbal description.

We tend to write legal written rules declaratively, and in ways that can be

modeled in deductive reasoning. Modelling a legal rule written in declarative

natural language in a declarative computer language requires translation, but

it does not require reformulation. It is argued here that the absence of a need

to reformulate a rule when modelling it in a DLP tool simplifies the task of

modelling that rule. It also results in a structure to the model of the rules that

more closely mirrors the structure of the rules themselves. Reformulating a rule

in procedures generates something that is typically much more complicated

than the rule was, and may be completely unrecognizable compared to its

source.

This increased simplicity and greater similarity in structure have two pos-

itive effects. First, it increases the amount of confidence that users of the

programming language (i.e. legal subject matter experts building automated

systems) can have in the finished product. For example, if a lawyer familiar

with the law can read the code, and the code is structurally similar to the

source written legal rules, and expressed in a similar paradigm, that will in-

crease the confidence the lawyer will have that they understand the meaning

of the code, and can advise as to whether the code is a reasonable model of

the law.

Secondly, the similarity in structure and paradigm between the source rules

and the encoded model of those rules increases the likelihood that legal subject

matter experts will be able to learn to do the encoding themselves. This

dissertation will argue below that the opportunity to democratize access to

these tools by making them easier for non-programmers to learn is a critical

component of overcoming the problems that have prevented the adoption of

DLP tools more widely.

10



2.3.2 Increased Efficiency for Encoding and Maintain-
ing

To the extent declarative logic programming language tools allow a greater one-

to-one relationship between the source written legal rules and the code, it will

simplify the task of developing and maintaining the code.5 The degree to which

the original written legal rules and the representation in the programming

language have matching structures is called “isomorphism”. Declarative logic

programming languages, because they allow the programmer to write rules,

are better suited to maintaining that one-to-one relationship.

Without isomorphism, every time a legal written rule is added, or changed,

the developer needs to review everywhere in the imperative code that might

have been affected by that addition or change. By contrast, where isomorphism

exists, the developer in a declarative logic programming language would only

need to review the parts of code that encode the portion of the rule that was

changed. This problem grows exponentially if code needs to be written to do

more than one thing with the rule-set.

An intuitive way to understand this problem is by analogy to a person

who is responsible for programming self-driving cars to find routes to their

destinations. We would not expect that person to write a separate program

for each combination of starting and ending location, and then to modify all

of those programs whenever the roads change. Instead, we would expect that

person to write one tool that is capable of searching for routes on its own, and

then focus on providing that software with up-to-date digital maps.

By analogy, a person attempting to implement legal reasoning around a

rule in an imperative language is writing a set of directions from A to B.

A person encoding those rules in a DLP language is creating a digital map

that the computer can search for solutions once you give it a specific problem.

The search algorithms, in this case, are the generic logic programming solvers

provided for use with DLP languages.

The benefit of isomorphism is seen most clearly when the written legal

5Kevin D Ashley, Artificial Intelligence and Legal Analytics (Cambridge University Press
June 2017) at p. 63.

11



rules change, and the code needs to be updated to represent the changes. In a

non-isomporphic representation of the rules, the programmer will need to ask

themselves where in the code the current rule is represented. And it will likely

be in more than one place, particularly if the rule is an exception that applies

to more than one determination. So one change to the rule becomes multiple

changes to the code. And it is impossible to predict from where the amended

rule exists in the written legal rules where the corresponding piece of code will

be in the model.

But more problematically, the programmer will also need to find where in

the code the prior rule is not represented, because it previously didn’t matter,

and where the new rule needs to be represented, because now it does matter.

This means that in a non-isomorphic language, one change to the written legal

rules can require the programmer to survey the logic of a substantial part of

their application in order to see whether and where their code needs to be

changed.

By contrast, in a perfectly isomorphic representation, when there is a

change to the written legal rules in one place, the code that represents those

rules also needs to be changed only in one place. Isomorphism therefore re-

duces exponentially the amount of work involved in maintaining encodings of

written legal rules once they are developed. Declarative logic programming

tools increase the isomorphism of encoded written legal rules, and reduce the

cost of developing and maintaining them.

2.3.3 Explainability

Declarative logic programming also has one significant advantage over the cur-

rent generation of machine learning and neural network techniques, which are

also used in legal applications. Unlike ’modern’ artificial intelligence methods,

declarative logic programming allows the computer to explain how it used the

rules and facts in order to come to a conclusion.6

The ability to explain reasons is also a very important feature in developing

systems, as it allows the developer to understand the “source” of erroneous

6Ashley (see n. 5) at p. 64.

12



output.7 It is also a very important aspect of the automation of legal services

by governmental or judicial bodies which are obliged to meet strict standards of

transparency in their reasons for making certain decisions. For example, such

tools could be used to provide explanations for how court websites determine

whether electronic filings can be accepted, or to provide explanations for why

a person was determined not to be entitled to a government benefit.8

This should not be understood to mean that all DLP systems feature the

capacity to generate explanations for conclusions. As the survey in Chapter 6

reveals, that is not the case. But fundamentally, generating explanations for

conclusions reached by DLP tools is technically feasible.

2.4 Applications of Encoding Legal Rules in

DLP

It is beyond the scope of this dissertation to review in detail all the potential

applications of DLP programming in the automation of legal reasoning with

regard to written rules. The possibilities include the creation of expert systems

that power automated legal services; a drastic modernization of legal knowl-

edge management allowing recorded legal knowledge to be used by computers

in addition to other human legal experts; the application of formal quality as-

surance methods from computing science to laws, contracts, and other rulesets;

improvements in legislative and contract drafting methodology; the simulta-

neous drafting of natural language and digital legislation, as proposed by the

growing international “Rules as Code” movement; and more.9

These tools are already used in large national governments. One tool in-

cluded in the Survey in Chapter 6, Oracle Policy Automation, is used by the

7Giridhar Pemmasani et al., “Online Justification for Tabled Logic Programs” [2004]
Functional and Logic Programming (Yukiyoshi Kameyama and Peter J Stuckey eds. 24.

8The term “explain” here is used colloquially. There are distinctions that can be drawn
between concepts of explanation, proof, or justification. For the purposes of this dissertation,
I refer only here to the capacity of the tool to generate something that would explain in a
way intelligible to a human being how the human being might come to the same conclusion.

9Service Innovation Lab, Government of New Zealand, Better Rules for Government Dis-
covery Report (https://www.digital.govt.nz/assets/Uploads/Better-Rules-for-Government-
Discovery-Report.pdf, Accessed: July 25, 2019).

13

https://www.digital.govt.nz/assets/Uploads/Better-Rules-for-Government-Discovery-Report.pdf
https://www.digital.govt.nz/assets/Uploads/Better-Rules-for-Government-Discovery-Report.pdf


government of the UK to process applications for legal aid, by the government

of the United States to process applications for health insurance, and by the

government of New Zealand for processing applications for child benefits. But

most of these uses involve web interviews, which is only one of the possible

uses of the technology.

As an example of some of the other possible applications of DLP tools in

automating reasoning around written legal rules, I performed an experiment

using a DLP tool to do scenario testing on Canadian copyright law. That

experiment is described in detail in the next Chapter.

2.5 Conclusion

Declarative logic programming is a style of programming in which the pro-

grammer, instead of writing procedures, writes rules, facts, and questions.

The declarative paradigm is the same paradigm in which written legal rules

are written, allowing those rules to be translated without their needing to also

be reformulated from one paradigm to another, and increasing the confidence

that legal subject matter experts can have in the result. It also increases

the isomorphism of the resulting code, making the code easier to maintain

when the written legal rules change. Unlike many other modern techniques,

declarative logic programming is also inherently explainable, making it more

appropriate for use in public law purposes. For those reasons, it is a very

promising technology, and to the extent that promise has not be realized the

reasons why, and whether there are solutions to them, is an important area of

research.

There are a wide number of possible uses of declarative logic programming

in automating reasoning with regard to written legal rules. A survey of those

purposes is outside the scope of this dissertation. But as a demonstration,

the next Chapter will demonstrate a use of a DLP tool to automate analysis

around Canadian copyright law.

14



Chapter 3

Using DLP To Find Legislative
Bugs: An Experiment

3.1 Introduction

This Chapter describes an experiment using the ErgoAI programming lan-

guage to encode legislation and common law rules in order to demonstrate

something analogous to detecting bugs in legislation. The ErgoAI program-

ming language is described in Chapter 6.

The experiment revolves around the unusual Supreme Court of Canada

decision in Euro-Excellence Inc v Kraft Canada Inc, [2007] 3 SCR 20, 2007

SCC 37 (CanLII) [Kraft ]. In that decision, it was determined that sales of

works may not infringe copyright, despite the existence of an exclusive license,

if the works were purchased from the copyright owner overseas.

This creates an injury to the owner of the exclusive license, with no means

of redress. An injury with no means of redress is a stereotypical example of an

error in legislation, making Kraft a good example. In the software development

technique called “regression testing” the developer can write an automated test

to ensure that a known bug does not reappear in the code as the code changes

in the future.

In this experiment, I took the idea of a person with an injury and no

remedy as the bug, encoded the rules as they were understood after the Kraft

decision, and asked the software to detect whether the bug existed in those

rules.

15



The resulting software was not provided with the description of the facts in

Kraft. Rather, the experiment was to determine whether, given the description

of the bug, and an encoding of the law, the software could discover, using

scenario testing, the facts such as those in Kraft that would give rise to the

problem.

In the result, the software was able to predict that the fact scenario in

Kraft would result in the bug. It also found two additional fact scenarios in

which the problem would arise, neither of which were known to the author

before running the software.

3.2 Kraft

3.2.1 Background of the Case

For the purposes of this dissertation, the following simplified summary of Kraft

will suffice.

The plaintiff Kraft Canada was the exclusive distributor of Toblerone choco-

late bars in Canada. The defendant Euro-Excellence was a company which

purchased Toblerone bars in Europe, imported them to Canada, and resold

them in Canada. The Toblerone bars were manufactured by parent companies

of Kraft located in Europe. The parent companies made the plaintiff an ex-

clusive licensee within Canada of the Toblerone logo. The plaintiff thereafter

sued the defendant for breach of their copyright in the Toblerone logo by im-

porting infringing works. That copyright action made its way to the Supreme

Court of Canada.

It was agreed that the defendant was being accused of violating the rule

in the Copyright Act, s 27(2)(e), RSC 1985, c C-42, [in this Chapter, the Act ]

against importing into Canada a copyrighted work from another jurisdiction

in circumstances where had the manufacturer of the product manufactured

and sold it in Canada, the manufacturer would be in breach of the exclusive

licensee’s copyright. This rule is designed to prevent a company from breaching

Canadian copyright by simply manufacturing an infringing copy in another

jurisdiction and then importing it for sale.

16



There were two legal issues discussed in the case, but this experiment deals

only with the first - namely, whether the owner of a copyright can be sued by

an exclusive licensee of that copyright for copyright infringement in Canada.

Whether or not it was possible for an exclusive licensee to sue a copy-

right owner for copyright infringement turned on the interpretation of section

27(2)(e) of the Copyright Act, RSC 1985, c C-42 [in this Chapter, the Act ].

It was the opinion of five of the nine justices of the Court that an owner of a

copyright could not be sued by an exclusive licensee for copyright infringement.

3.2.2 Our “Bug” in the Code

For the purposes of this experiment, we are assuming two things: that the

interpretation of the five members of the Court who found that an owner was

not liable to an exclusive licensee for copyright infringement under the Act

was correct, and that the outcome of Kraft was an unintended effect for the

legislature.

These assumptions are not justified here on legal or policy grounds. That

it was an unintended effect for the legislature means, for our purposes, that

had the legislature been aware that the legislation as drafted precluded the

enforcement of a copyright by an exclusive licensee against the copyright owner,

the legislature would have chosen to draft the legislation differently.

The interpretation of the Act which we adopt as having been unintention-

ally given effect by the words of the Act is that interpretation set out in the

minority judgement of Justice Rothstein, at paragraphs 1-56 of Kraft. The

relevant reasons are summarized as follows:

1. In order to find an infringement under section 27(2)(e) of the Act, it is

necessary to find that the person who produced the imported good would

have been in violation of copyright had they produced it in Canada.

2. By default, a person without property rights in a copyright cannot sue

for infringement of that copyright, and a person with property rights in

a copyright can.

17



3. An owner of copyright and an assignee of copyright have a property right

in the copyright.

4. An owner loses their property rights to an assignee when they assign

those rights.

5. There is an exception in the legislation for exclusive licensees to be able

to sue for infringement.

6. A person with a right to sue for infringement but without a property

right cannot sue a person with a property right.

7. The Act does not give property rights to exclusive licensees.

8. Therefore, an exclusive licensee cannot sue a person with a property right

in the copyright for infringement.

9. Therefore, an exclusive licensee cannot sue the owner of a copyright for

hypothetical infringement.

10. The inability to maintain an action with regard to the hypothetical in-

fringement means the importation is not infringing.

These rules come from the Act and the common law. Again, this under-

standing of Rothstein’s reasons is not defended, here. It is merely provided

to be explicit about the interpretation of those reasons that will be encoded.

However, accurately modelling the law of copyright is not necessary for this ex-

periment. Including common-law elements in our analysis, whether established

or novel, enhances the realism of our experiment, as statutory interpretation

may consider common law principles.

From the perspective of the dissertation, we are treating Justice Rothstein’s

opinion and the relevant sections of the Act as our “written legal rules”.

18



3.3 Encoding Kraft

3.3.1 The ErgoAI Language

ErgoAI is a declarative logic programming language in the Prolog family of

languages, published by Coherent Knowledge, and marketed for use in legal

applications.1 ErgoAI was selected as the tool for this experiment for two pri-

mary reasons.2 First, this experiment did not require a user-friendly interface.

Second, ErgoAI is an advanced logical programming language that provides

a number of features anticipated to be valuable in this experiment, and that

were not available in the other tools. Specifically, ErgoAI is capable of defea-

sible reasoning, which allows the encoding of a law to remain more isomorphic

with the source material.

3.3.2 The Selected Scope

For the purpose of this experiment it was not necessary to encode the entirety

of the Act. This experiment requires only encoding elements of the Act and

jurisprudence sufficient to reveal our “bug.” Through a trial and error process

that began from the “bug” and worked backwards to the elements we wanted to

be able to test and distinguish, the following ontological entities were included

in the scope:

• Parties;

• Works;

• Sales;

• Exclusive Licenses;

• Assignments (for comparison purposes);

1Coherent Knowledge, ErgoAI (https://coherentknowledge.com/, Accessed: July 25,
2019).

2The ErgoAI programming environment was downloaded onto a Intel i7-5500U dual-
processor laptop running at 2.4GHz with 12GB of installed ram, running Windows 10. The
ErgoAI 1.2 (Solon) release was used. Coherent Knowledge provided the author with an
academic license for the software for this purpose, and advice on programming technique,
which assistance is gratefully acknowledged.

19

https://coherentknowledge.com/


• Products;

• Places of Manufacture;

• Rights to Sue for Infringement;

• Infringements including infringing products, sales, and importations; and

• Property Rights.

The rules that were encoded for this experiment are listed here:

1. Section 27(2)(e) of the Copyright Act

2. The rule that by default you cannot sue for copyright infringement unless

you have a property interest.

3. The rule that owners have a property right by default.

4. The rule that owners lose their property rights when they assign them,

which defeats the rule above.

5. The rules that gives assignees a property interest in copyright.

6. The rule allowing exclusive licensees to sue.

7. The rule that if a law gives a type of person a right to sue and requires

them to join owners in those lawsuits, that type of person does not have

a property right.

8. The rule that a person without a property right cannot sue someone with

a property right, which defeats any rule to the contrary.

9. The rule that the absence of a right to sue for hypothetical infringement

implies the absence of a right to sue for the actual importation, which

defeats any rule to the contrary.

10. Rules about what constitutes an infringement of a copyright.

20



It’s worth noting briefly that this code reformulates slightly the decision

in Kraft. In the decision, the Court held that the absence of an ability to sue

with regard to the hypothetical infringement means that the importation is

not infringing. This is encoded as if the absence of an ability to sue for the

hypothetical infringement implied only a similar lack of ability to sue with

regard to the importation. This modification allowed the code to use the

presence of an infringment and the absence of a remedy as the definition of

our ”bug”.

3.3.3 Encoding Counterfactual Conditions

The ErgoAI code which was used to represent the ontology and rules in this

experiment is attached as Appendix C. As an example, the following excerpt is

the section of code that represents section 27(2)(e) of the Act. This section is

included because section 27(2)(e) is an example of a statutory provision with

a counterfactual condition, as discussed in Chapter 4.

A counterfactual condition is a condition that depends for its calculation

on the software being able to imagine that something that is false is true, and

consider the results if it were true. In this case, whether a person is liable for an

infringement depends on whether the same thing would have been infringing

if it had been done by someone else somewhere else.

This is dealt with in the code is by creating an additional type of prod-

uct, called a Hypothetical Product, and then asking whether the Hypothetical

Product is infringing, in order to determine whether there is an infringing im-

portation. You can see from the code below that while the use of counterfactual

contingencies does complicate the code slightly, and injures the isomorphism

between the code and the legislation, it is not an insurmountable obstacle.

Listing 3.1: ErgoAI Code for section 27(2)(e) Copyright Act

1 HypoProduct : : Product .
2 HypoProduct [ | r e a l s a l e=>Sa le | ] .
3 HypoProduct (? product ) : HypoProduct [
4 o r i g i n−>Canada ,
5 manufacturer−>? manufacturer ,
6 o r i g ina l work−>? o r i g i n a l ,
7 r e a l s a l e −>? P ] :−
8 ? P : Sa le [

21



9 product so ld−>? product : Product [
10 o r i g i n−>NotCanada ,
11 manufacturer−>? manufacturer ,
12 o r i g ina l work−>? o r i g i n a l
13 ]
14 ] .
15
16 ?X: I n f r i n g i n g I m p o r t a t i o n :−
17 ?X: Sale ,
18 ?Y: HypoProduct [ manufacturer−>? accused , r e a l s a l e −>?X] ,
19 ?Y: In f r i ng ingProduc t .

Read from top to bottom, this code states that a Hypothetical Product

is a type of product, with the added information of being associated with a

real sale. It then states that a hypothetical product exists with an origin of

Canada for every sale of a product originating from outside of Canada. Thirdly,

it states that if an object is a sale, if there is a hypothetical product associated

with that sale, and if the hypothetical product would be an infringing product,

then the sale is an infringing importation.

Compare this to the text of the Act itself, which does not find it necessary

to spell out the nature of the hypothetical infringement in that level of detail:

Secondary infringement

(2) It is an infringement of copyright for any person to

(a) sell or rent out,

(b) distribute to such an extent as to affect prejudicially the owner

of the copyright,

(c) by way of trade distribute, expose or offer for sale or rental, or

exhibit in public,

(d) possess for the purpose of doing anything referred to in para-

graphs (a) to (c), or

(e) import into Canada for the purpose of doing anything referred

to in paragraphs (a) to (c),

a copy of a work, sound recording or fixation of a performer’s per-

formance or of a communication signal that the person knows or

22



Variable Name Variable Type
Owner Party

Manufacturer Party
Seller Party

Licensor Party
Licensee Party
Assignor Party
Assignee Party

Place of Manufacture Boolean (Canada, or Not Canada)

Table 3.1: Variables used in ErgoAI Code

should have known infringes copyright or would infringe copyright

if it had been made in Canada by the person who made it.

3.3.4 Using ErgoAI to Test for the Bug

The process used in this Chapter for testing for bugs is a brute force search,

which involves two steps. The first is to have the software generate a large

number of possible fact situations, and the second is to have the software

search the implications arising from those fact scenarios for evidence of the

“bug.” Having the software generate possible fact scenarios and then testing

those fact scenarios for certain implications is one of the many possibilities

opened up by declarative logic programming for the law.

In our model of the law there are 8 relevant variables, show in table 3.1.

In order to address all possible scenarios, including those scenarios where the

same party fills more than one of the various roles, we need to create 7 possible

parties, and two possible locations, and generate test data for each partition

of parties across the various roles, combined with each possible location. We

also want to be able to consider those scenarios in which there is no licensee,

scenarios in which there is no assignee, and scenarios in which there is neither.

In order to do that code was written to

• generate facts for each possible unique combination of a unique partition

of parties and a location,

• test those facts for whether or not they reveal the bug we are looking

23



for,

• report the result,

• delete the generated facts, and

• move on to the next unique combination.

Four of these code blocks were written, one each for each of the four possibilities

with regard to the existence or non-existences of licenses and assignments.3

Choosing how to search for the bug is a challenging part of the design of

the experiment, because it would be very easy to design the query to search for

the problem we already know is there. The question is therefore what might

the legislative drafter have been seeking to avoid before they knew about this

bug? One answer might be that they would seek to avoid infringements for

which the authorized party does not have a right of action against an infringing

party, for a reason other than that the plaintiff and defendant would have been

the same person.
That query can be expressed as follows in ErgoAI:

Listing 3.2: Code To Find “Bug” in Copyright Act

1 isabug (? I ) :−
2 ? I : Infr ingement , // the re i s an in f r ingement
3 ( // e i t h e r
4 // the in f r ingement i s an i n f r i n g i n g s a l e
5 ? I : I n f r i n g i n g S a l e [
6 s e l l e r −>? S ,
7 product so ld−>? P : Product [
8 o r i g ina l work−>? W
9 ]

10 ] ,
11 // the product so ld i s not hypo the t i c a l .
12 \naf ? P : HypoProduct ,
13 // there i s a person author i zed with regard to the work
14 ? W[ author ized−>? A ] ,
15 ( // e i t h e r
16 // the r i g h t o f ac t i on has been overr idden
17 ? R : RightOfAction [ p l a i n t i f f −>? A , claim−>? I ] ,
18 Overridden (? R ) ,
19 // in which case the r i g h t o f ac t i on i s the bug
20 ?bug = ? R
21 ) \ or (

3The assistance of Keith Morris and Steven Taschuk is gratefully acknowledged in de-
signing an efficient algorithm for generating only legally-unique scenarios.

24



22 // i t never e x i s t e d
23 \neg ? R : RightOfAction [ p l a i n t i f f −>? A , claim−>? I ] ,
24 // the impugned s e l l e r i s not a l s o the p l a i n t i f f
25 ? A !== ? S
26 )
27 ) \ or (
28 // the in f r ingement i s an i n f r i n g i n g product
29 ? P : In f r ing ingProduc t : Product [
30 manufacturer−>? M,
31 o r i g ina l work−>? W
32 ] ,
33 // the i n f r i n g i n g product i s not hypo the t i c a l .
34 \naf ? P : HypoProduct ,
35 // there i s a person author i zed with regard to the work
36 ? W[ author ized−>? A ] ,
37 ( // e i t h e r
38 // the r i g h t o f a c t i o n s has been overr idden
39 ? R : RightOfAction [ p l a i n t i f f −>? A , claim−>? P ] ,
40 Overridden (? R ) ,
41 // in which case the r i g h t o f ac t i on i s the bug
42 ?bug = ? R
43 ) \ or (
44 // i t never e x i s t e d
45 \neg ? R : RightOfAction [ p l a i n t i f f −>? A , claim−>? P ] ,
46 // the impugned manufacturer i s not a l s o the p l a i n t i f f
47 ? A !== ? M
48 )
49 ) .

3.4 The Results

A summary of the results is provided in table 3.2. The software was run

and asked to find the bug in the automatically-generated fact scenarios. This

began with the least complicated scenario, i.e. those involving no licensee or

assignee. The software completed its search in under 3 seconds and found no

instances of the bug among the 10 possible scenarios.

The code was then run against all possible scenarios involving a licensee but

no assignee. The software completed its run in approximately 30 seconds, and

among the 104 possible scenarios, it found three which resulted in a bug. One

scenario was the scenario in Kraft. The two other scenarios were as follows:

1. A work owned by a party A is manufactured by a party B outside of

Canada. The owner A then purchases that product from manufacturer

B and sells the product in Canada. If the owner A has given an exclusive

25



Variables Possible Scenarios Running Time Bugs Found
Manufacturers 10 <3 seconds 0 bugs
Owners
Sellers
Place of Manufacture
Manufacturers 104 ˜30 seconds 3 bugs
Owners
Sellers
Place of Manufacture
Licensee
Licensor
Manufacturers 104 ˜30 seconds 0 bugs
Owners
Sellers
Place of Manufacture
Assignee
Assignor
Manufacturers 8280 unknown n/a
Owners
Sellers
Place of Manufacture
Licensee
Licensor
Assignee
Assignor

Table 3.2: Bugs Found Automatically in Copyright Law

26



license to party C, party C cannot sue party A for the sale, despite the

fact that it is the first sale of an infringing product imported into Canada.

This is different from the scenario in Kraft, because in Kraft the seller

and the owner were not the same party.

2. A work is owned by Party A, manufactured anywhere, and sold in

Canada by party A. If the party A has given an exclusive license to a

party B, the party B is prohibited from enforcing any copyright against

A despite the exclusive license. This is different from Kraft, and the

scenario described above in paragraph 1, because it does not require hy-

pothetical infringement. The product can be owned, manufactured, and

sold in Canada, and the “bug” still happens.

The code was then run to detect bugs in scenarios involving no exclusive

license, but a valid assignee of copyright. The code completed its search of all

104 possible scenarios in approximately 30 seconds, finding no bugs.

Unfortunately, a search of all 8280 scenarios involving both an assignment

and a license took an inordinate amount of time (more than several hours),

suggesting that there was an error in how the code for that search had been

drafted.4 There was not sufficient time to resolve that error, and this portion

of the experiment was abandoned.

3.5 Conclusions

Automated scenario testing is just one of many possible applications of declara-

tive logic programming with regard to written legal rules. But this experiment

demonstrates that it is possible to encode legal rules in a way that will allow

for their automated analysis in order to discover things which might not have

been apparent otherwise. This could be done when a law is being drafted,

to improve its quality. It could be done at the time of amendment to see

4The number of scenarios to test in this model can be calculated as the Bell number
(the number of possible unique partitions of a set of length N) for integer N, where N is
the number of roles in the scenario, mutliplied by 2 for the number of possible locations of
manufacture.

27



whether a proposed amendment has any unanticipated and undesired effects.

And there are many other possible applications.

Having discussed what declarative logic programming is, why it is rele-

vant with regard to the automated analysis of written legal rules, and having

demonstrated one possible use of the technology, the next Chapter will now

survey the treatment of DLP tools in legal research, and respond to the com-

mon criticisms.

The ErgoAI code that was used in this experiment is included in this

dissertation as Appendix C.

28



Chapter 4

Legal Scholarship on DLP in
Law

4.1 Expert Systems and DLP

There are varying definitions of the term “expert system.” Many of the current

uses of the term describe applications that do not rely on DLP as an underlying

technology. But as the term was understood in the 1980s, and as it has been

used in legal scholarship, it refers to technologies that allow for the encoding

of rules in systems that use a semantics of formal logic. In reviewing the

literature surrounding expert systems in law, the term “expert system” still

seems to be used in this way, and so it used in that meaning, which is usefully

analogous to DLP tools, in this chapter.

4.2 Why Legal Scholarship?

In this Chapter I will review some of the most significant legal academic schol-

arship on the topic of expert systems in the law. Most of what has been

written on the topic comes from the field of computer science. It is important,

therefore, to ask why this review should focus on the contributions of legal

academics.

The need for legal scholarship with regard to DLP technologies is illus-

trated by an example. Consider a future in which more and more contractual

relationships are being documented and implemented using declarative lan-

guage programming techniques for automating the rules agreed to between

29



the parties.1 Our laws of contractual construction are built on the premise

that the contracts are written in a natural language. What happens when the

parties agree that their intent is reflected primarily in the encoded version of

the contract, and there is a disagreement over what the encoded contract was

intended to mean?

Questions arising from that possibility, all of which are fundamentally legal

questions, include: Do we have judges who are capable of “reading” an encoded

contract? Do we need them? Does it still make sense to suggest that a

contractual clause can have more than one meaning if it is written in a language

with strict semantics, and the parties tested it before signing it? What impact

will parol evidence as to the intent of the parties have when a contract is

incapable of being interpreted automatically in more than one way, and it

can only possibly have been incorrectly drafted? If an encoded contract is

interpreted by a court, and the court finds that it was drafted in a way that

was inconsistent with the intent of the parties in fact, and should be “read”

differently than it was encoded, will the judge be expected to provide the new

code? How do we equip the profession for these tasks? If a lawyer provides

advice on the meaning of an encoded contract, but the lawyer cannot read

the language in which the contract was encoded, relies on the advice of a

technical person, and that advice is flawed, is the lawyer liable in professional

negligence?

This is just one non-exhaustive set of questions arising from one possible

application of DLP technology in law. The current state of legal scholarship

and jurisprudence on the construction of contracts expressed in languages with

strict semantics is beyond the scope of this dissertation. But it will hopefully be

uncontroversial to suggest that the law is unsettled with regard to all of these

questions. Settling the law will require a dialogue including legal academia,

1This is not a fanciful proposition. DLP tools like Accord (Accord Project, Accord
Project (https ://www.accordproject .org/, Accessed: December 1, 2017)) are currently
being used to implement smart contracts, and methodologies for evaluating these contracts
are being developed (Florian Idelberger et al., Evaluation of logic-based smart contracts for
blockchain systems [2016] (In: Alferes J, Bertossi L, Governatori G. Fodor P, Roman D
(eds), Rule Technologies. Research Tools, and Applications, RuleML 2016. Lecture Notes
in Computer Science, vol 9718, Springer, Cham.)).

30

https://www.accordproject.org/


and founded in a strong understanding of the technologies involved. This

dissertation aspires to contribute to that conversation.

4.3 Susskind

The legal academic discussion surrounding expert systems begins with Richard

Susskind’s Expert Systems in Law.2 Susskind’s text calls for a jurisprudential

study of expert systems in order to promote their adoption, and improve their

quality.3 Susskind’s research was the jurisprudential sibling to computer sci-

ence work on the development of an expert system dealing with latent dam-

ages.4 That system was implemented in Prolog, which is a DLP language.

Susskind’s text, therefore, is an examination of precicely the same technology

that this dissertation examines.5

Susskind’s definition of expert system is relatively constrained. He is in-

terested in examining specifically systems that are designed to operate as an

alternative to one lawyer calling on the expertise of another lawyer who is an

expert in a given field.6 That definition would eliminate many concerns asso-

ciated with expert systems, but his text also addresses a number of arguments

for and against the adoption of expert systems that extend past that limited

context.

The main thrust of the text is that expert systems in law have great po-

tential, but that interdisciplinary work must continue to make them more

generally applicable.7

Susskind argues that the knowledge collection process for the development

of expert systems in law ought to be simpler than in other fields of study,

because law has human-created and readily-available primary sources of data,

2Richard E Susskind, “Expert systems in law: A jurisprudential approach to artificial
intelligence and legal reasoning” (1986) 49(2) The modern law review 168.

3Richard E Susskind, Expert systems in law: a jurisprudential inquiry (Clarendon; New
York 1987) at pp. 18, 26.

4Phillip Capper and Richard E Susskind, Latent Damage Law: The Expert System:[a
Study of Computers in Legal Problem Solving] (Butterworths 1988).

5Van Emden and Kowalski (see n. 1).
6Susskind, Expert systems in law: a jurisprudential inquiry (see n. 3).
7ibid. at p. 288.

31



and other fields of study require experimentation.8 He also argues that the

purpose of an expert system is not to encode “the law”, but rather to encode

the expert’s formulation of the law.9 He does suggest, however, that areas of

law in which there are significant disagreements between experts as to the

correct formulation should be avoided.10

Throughout, he insists that the use by lawyers of computer programming

languages is to be rejected. He calls tools that require a lawyer to learn a pro-

gramming language “no more than a hindrance”, and even describes controlled

natural language interfaces as requiring a prohibitive degree of “preparatory

effort on the part of the prospective user.”11 Here, Susskind is talking about

the lawyer as the user of the expert system, not as the subject matter expert

in the development of the system.

When he turns his gaze to the other lawyer in the process, the legal subject

matter expert, he equally anticipates that it is not feasible for lawyers to

learn the programming languages in which expert systems are manufactured.

He states that “one of the most important goals of researchers in AI and

legal reasoning should be the development of a shell for expert systems in

law.”12 This is undoubtedly also a result of his evident opinion that it is not

practicable to ask lawyers to learn to use programming languages the way

software developers do.

The word “shell” refers to a usually text-based interface between a user

and a computer to make it easier to accomplish certain tasks. Operating

system command-line prompts, and interactive interpreters for programming

languages are examples of such shells. Susskind is writing at a time when a

text-based interface was the primary method of interacting with a computer.

So his call for a “shell” for the development of legal expert systems can be

better understood today as a call for an application designed to make it realistic

that lawyers could learn and use these technologies.

8Susskind, Expert systems in law: a jurisprudential inquiry (see n. 3) at pp. 49, 61.
9ibid. at Ch. 2.

10ibid. at p. 53.
11ibid. at pp. 65-66.
12ibid. at p. 156.

32



Susskind considers and responds to a number of counter-arguments against

the use of expert systems in law. Many of these objections he manages to avoid

by having specified that the end users of his concept of expert systems are other

lawyers. He argues that lawyers should be aware of basic legal principles, and

should be aware if it seems like there is relevant information that the expert

system is not requesting. This mitigates certain risks. He does, however,

acknowledge what he calls “boundaries” to what expert systems in law can

accomplish.

One such boundary is the argument from open texture and vagueness.13

Typical expert systems do not have a mechanism to deal with uncertainty or

subjectivity as to what words in law mean (e.g. ”reasonable”), or uncertainty

or subjectivity as to whether a given fact falls into a particular category where

the extremes might be uncontroversial, but the boundaries are fuzzy (e.g.

”bald”).

In response to these issues Susskind suggests that the conclusions of an

expert system should be considered contingent on whether the formulation of

the law encoded is accurate, whether there are not implied exceptions on the

grounds of principle or purpose, and other similar factors.14 The text does not

assert that expert systems can be perfect, but rather takes a pragmatic ap-

proach suggesting that there are circumstances in which they can nevertheless

be valuable.

We are faced with the choice between ... expert systems in law

built by human beings upon whose skill we rely and upon whom

great responsibility is bestowed, or ... no further research and

development into expert systems in law at all. It is submitted that

the former option is preferable.15

This dissertation can be understood as an examination of how far we have

come toward developing Susskind’s “shell” for developing legal expert systems.

13Susskind, Expert systems in law: a jurisprudential inquiry (see n. 3) at p. 191.
14ibid. at pp. 191, 198.
15ibid. at p. 151.

33



This dissertation attempts to survey what has happened in the meantime, what

remains to be done, and what steps we might want to take next.

4.4 Popple

In contrast to Susskind’s insistence that a jurisprudential point of view be

taken to how to develop expert systems, James Popple’s PhD dissertation

argued for a pragmatic approach.16 Popple’s SHYSTER legal expert system

tool was a case-based reasoning tool, and was later adapted to an existing

MYCIN rules-based expert system to create a hybrid DLP and case-based

reasoning tool. SHYSTER was published in 1993, and it was integrated with

MYCIN in 2003.17 Popple’s pragmatic argument, which is compelling on its

face, is that many lawyers operate at the level of expertise expected of a

lawyer without any jurisprudential knowledge. I take this to mean that Popple

believes a typical lawyer might review of similarities in fact scenarios and

outcomes, without a deeper analysis of the reasons for each decision, if they

have no grounds to believe that the case before them ”breaks the mold”.

SHYSTER is built to mimic what a lawyer would do in the same circumstances,

without concerning itself with jurisprudential models of the law.

I understand Popple’s pragmatic argument to be a response to the idea that

encoding laws in an expert system allows the system to predict an outcome,

but does not give the system an understanding the underlying jurisprudential

theory that has been applied so as to arrive at that interpretation of the law.

The risk from this would be that if the facts of a new case engage the underlying

theory in a way that isn’t obvious from the precedent, the lawyer may make a

prediction that is likely based only on past outcomes, but ultimately incorrect.

Popple’s reply seems to be “that is no worse than a lawyer would do.”

16James Popple, A pragmatic legal expert system (Dartmouth (Ashgate) 1996).
17Thomas A O’Callaghan, “A Hybrid Legal Expert System” (PhD thesis, 2003).

34



4.5 Leith

Where Susskind is a high-minded proponent of expert systems, and Popple

is a more pragmatic proponent of them, Phillip Leith has positioned himself

as an opponent to the use of expert systems in law.18,19,20 He does so from a

place of knowledge and experience, having done PhD work in the field.

Leith argues that it was always a naive belief that law could be reduced

to a set of rules, the automatic manipulation of which would result in legal

advice. Writing in 2016, he calls the experimentation with expert systems in

law a failure.21 He argues that there was an illusion of early success for expert

systems driven by commercial motivations, but that they were never actually

adopted even in the medical sphere, where the first commercially available

applications existed.22

He suggests that a misunderstanding of what the formalism of logic repre-

sents, and a misunderstanding of what a law actually is, led people to encode

laws in a way that “gutted” them.23 I understand this critique to be grounded

in the view that law is not deterministic, and cannot be forced into determin-

istic models without losing something critical in its nature.

Leith also suggests that law was approached by technicians as a test prob-

lem for the purpose of demonstrating the usefulness of logic programming, as

opposed to a means of providing something that would be of value to practic-

ing lawyers.24 Essentially, Leith suggests that these early legal expert systems

were academic experiments, and never demonstrated real-world usefulness be-

cause they were not intended to. They were useful if you wanted to do a

particular thing in a particular way envisioned by the makers of the tool, but

in reality that is not how that thing was done, and so they were not used.

18Philip Leith, “The rise and fall of the legal expert system” (2016) 30(3) International
Review of Law, Computers & Technology 94.

19Philip Leith, “The Emperor’s New Expert System” (1987) 50(1) The Modern Law
Review 128.

20P Leith, “Fundamental Errors in Legal Logic Programming” (1986) 29(6) The Computer
Journal 545.

21Leith, “The Emperor’s New Expert System” (see n. 19) at p. 98.
22ibid. at p. 99.
23ibid. at p. 100.
24ibid. at pp. 100-101.

35



He also points out that lawyers do not typically deal with agreed-upon legal

interpretation of written rules. He suggests that proponents of expert systems

in law have adopted a view of the law as knowable, known, and unchanging,

and that none of these things are true in practice. He colourfully describes “two

users of expert systems going into the courtroom and waiving their respective

printouts at the judge, claiming that theirs states that they should win” as

what proponents of expert systems were offering.25

Leith argues that there is little sign of life in the legal expert systems

research community now, and sees it as unlikely that what he views as the

mistakes of the expert system proponents in the past will be repeated. He notes

that logic programming, formal proofs, natural language processing are not

widely adopted in computing, and that much of the academic enthusiasm for

the project came not from proven utility, but from the availability of funding.26

The huge support for the expert systems movement in the UK

was partly that the idea of producing such systems was attractive

to the academic IT community, partly that there was a lack of

critical perspective on the nature of law within the academic legal

community, but also because there was a massive influx of funding

from a programme which was to be the saviour of UK computing.27

4.6 Ashley

In his 2017 text Artificial Intelligence and Legal Analytics: New Tools for Law

Practice in the Digital Age, Kevin Ashley makes an argument in favour of what

he calls a new paradigm for intelligent technology in legal practice.28 The text

espouses a belief in something Ashley calls “Cognitive Computing”, which he

descibes as a paradigm in which

human users are ultimately responsible for customizing their own

solution using a legal app, but the commoditized legal service tech-

25Leith, “The Emperor’s New Expert System” (see n. 19) at p. 103.
26ibid. at pp. 104-105.
27ibid. at p. 104.
28Ashley (see n. 5).

36



nology should apprise the humans of the need for customization

and support them with customized access to relevant legal infor-

mation to help them construct a solution.29

Ashley also talks about the potential of argument retrieval (AR) technol-

ogy.30 AR is imagined as an evolution of the existing information retrieval

(IR) systems that are used to help lawyers access statute and case law rele-

vant to their legal issue. In AR, the items that are being searched through

are not documents, or paragraphs of text, but abstract representations of legal

arguments that might be relevant to a situation. This would be achieved by

automatically identifying issues in dispute inside decisions, and the structure

of the arguments that were used to resolve those disputes. It would then be

possible, for example, to search for cases in which a specific issue was argued

(instead of ”a specific word was used”), or a specific argument with regard to

that issue was adopted or rejected.

Ashley contrasts cognitive computing and argument retrieval, the new

paradigm, with what he calls the “former paradigm” of expert systems.31 In

that sense, much of the text can be read as setting out a new and better alter-

native to expert systems, though he also acknowledges that the new systems

will not do what was expected of expert systems.

The text is an optimistic and detailed look at a variety of artificial intelli-

gence techniques that can be used to extract legal meaning from texts without

(or with minimal) human intervention. Extracting legal information from text

is the “legal analytics” of the title of his book. The fundamental distinc-

tion that Ashley draws between the old and new paradigms is that in the old

paradigm knowledge was acquired from experts, and in the new paradigm it is

- to the degree possible - extracted from data.32 Human experts are expensive,

but machine learning provides an opportunity to extract meaning from data

with a speed and scale that human beings cannot match, and that requires no

human intervention. This new paradigm, therefore, promises greater efficiency

29Ashley (see n. 5) at p. 13.
30ibid. at p. 11.
31ibid. at p. 8.
32ibid. at p. 13.

37



in automating the digitization of legal knowledge.

It is interesting that Ashley suggests that cognitive computing should in-

volve the collaboration of humans and machines in solving legal problems. Yet

in the task of acquiring knowledge of the law, he suggests that people should

be left out of it as much as possible. But this is not without reason. He

repeatedly notes what he calls the “bottleneck of knowledge acquisition” in

the old paradigm, where the subject matter expert is the only source of legal

knowledge.33

The prevailing model for how expert systems should be developed is the

combination of the skills of two different people. One person is the“subject

matter expert” (or SME) who knows the things that need to be represented in

code. The other person is the “programmer” who knows how to express those

ideas in a programming language, allowing them to be used by the computer.

The SME attempts to teach the subject to the programmer, the programmer

attempts to encode their understanding, and the program is tested by the

SME. Where the program does not behave properly the two people attempt

to determine whether that is because the SME’s understanding is inconsis-

tent, the SME explained their understanding poorly, the programmer grasped

it poorly, the programmer coded it poorly, the data used to represent the sit-

uation is wrong, or inadequate, the SME misunderstands what the software is

trying to do, or some combination of the above.

It is a challenging communication task that Ashley describes as: “the man-

ual process of acquiring rules is cumbersome, time-consuming, and expensive,

a knowledge acquisition bottleneck that has limited to utility of expert systems

in law and many other fields.34”

He also notes that logic-based representations of statutory rules is “a kind

of model that probably is not yet ready to automatically connect directly to

legal texts”.35 So Ashley is saying that using people to get legal knowledge

into an automated system is cumbersome, and at the same time, it is a task

33Ashley (see n. 5) at pp. 4, 11, 226, 355.
34ibid. at p. 11.
35ibid. at p. 11.

38



that is beyond the capabilities of machine learning.

The implication of these two facts - getting knowledge into logic-based

systems from experts has been inefficient, and it is not yet possible to automate

the process of extracting the logical representations from text - is that the old

paradigm is to be disfavoured compared to those techniques that might be

able to chew through more source material with less human involvement.

In chapter 2 of his text Ashley focuses on DLP technologies under the

heading of “modeling statutory reasoning.” This is his discussion of the use of

DLP for modelling written legal rules. While he notes that there is a “pressing

necessity” to be able to reason with statutes, he notes a number of areas that

he says pose challenges to the logical encoding of statutory rules.36

The restraints he notes are vagueness, semantic ambiguity, syntactical am-

biguity, the difficulty of statutory interpretation, the need to address disagree-

ments as to legislative meaning, and the practical difficulty of maintaining

logical representations of statutes alongside textual statutes.37

Semantic ambiguity is defined as uncertainty as to which of a limited num-

ber of possible meanings was intended by the legislature for a given word or

phrase. An example might be a word like “cleave” which might mean either

“separate” or “combine.” Vagueness refers to uncertainty about whether a

particular entity is included in the meaning of a phrase. An example might be

when the phrase “reasonable efforts” is used, and there is some uncertainty as

to whether a given set of efforts is “reasonable.” Ashley notes that vagueness

in particular may be used as a technique of legislative drafting, with the pur-

pose of delegating some high fidelity interpretation questions to the court, or

to facilitate legislative compromise, and that as a result, this problem is likely

endemic to legislation.38

Syntactical ambiguity, by contrast, is a situation in which it is not clear

what the syntactical meaning of the elements of the law actually are. The

celebrated example of syntactical ambiguity is the case of State v. Hill, 245

36Ashley (see n. 5) at p. 38.
37ibid. at pp. 42-48.
38ibid. at p. 40.

39



La 119 (1963) where in a Louisiana statute the word “and” was interpreted

by the Louisiana Supreme Court to mean “or.” The statutory language was

as follows:

No person shall engage in or institute a local telephone call, con-

versation or conference of an anonymous nature and therein use

obscene, profane, vulgar, lewd, lascivious, or indecent language,

suggestions or proposals of an obscene nature and threats of any

kind whatsoever.

In State v. Hill the accused had been obscene, but not threatening, and argued

that the word “and” syntactically required both.

Unlike vagueness or semantic ambiguity, which can sometimes be inten-

tional, there is no conceivable benefit from syntactical ambiguity. But it is a

challenge identified in encoding statutes. Effectively, it creates a situation in

which there is more than one possible meaning of the words of the statute, and

it needs to be decided which of those meanings should be encoded. Who, Ash-

ley asks, should make that decision, given that legal experts might disagree?

Ashley then reviews the difficulties that were encountered in the encoding

of the British Nationality Act, 1948 in the Prolog programming language, one

of the first published attempts at using a declarative logic programming tool to

automate legal reasoning.39 The problems he notes are reformulation, negation,

default reasoning, counterfactual conditions, and open-textured terms.40

Reformulation is described as the process of encoding a clause of a law

and then later coming back to it to change it later when later clauses in the

same act change what needs to be considered in the earlier encoding. In

natural language the new text is implicitly included in the definition created

in the original clause, but Prolog had no ability to include it implicitly, so the

encoding of the original clause had to be amended, which injured isomorphism.

An example of reformulation can be seen in Appendix A. The second rule

in that code sets out how to calculate whether “the parties have a valid adult

39Sergot et al. (see n. 3).
40Ashley (see n. 5) at pp. 49-52.

40



interdependent partnership agreement”. But that rule is not isomorphic to

any one part of the Adult Interdependent Partnership Act. That is to say,

there is no one-to-one relationship between a section of the code and a section

of the Act. Instead, the code combines elements from sections that deal with

age of consent, capacity, whether the parties were married, and termination,

among others.

The issue identified with negation is that while legal reasoning requires that

certain things be uncertain until they are known to be true, or false, Prolog

did not have that capability, and instead treated anything that was not either

known to be true or provable as true, as false.

To illustrate the problem with negation, consider a rule that states ”if your

facial hair is longer than 5mm, you have a beard.” The encoded rule knows

how to figure out whether or not the answer to the question ”do you have a

beard” is true. But it does not know how to figure out whether or not the

answer to the question ”do you have a beard” is false. Is it if you know that

their facial hair is 5mm or less, or if you don’t know anything about their facial

hair, or either, or both?

Prolog uses a “closed-world assumption”, which means that anything not

provable as true or known as true is false. So by default Prolog would say

that a person for whom it was unaware of the length of their facial hair, could

be shown to not have a beard, which is intuitively incorrect. Our intuitive

understanding of the logic of a rule is that if we don’t know whether the

conditions are satisfied, we also don’t know whether the conclusion is satisfied.

But that was not the logic of Prolog.

Default reasoning is the fact that legislation is frequently drafted in ways

where something is presumed to be true until it is made false (or vice versa)

by some other condition. This is non-monotonic reasoning, where the addition

of information to the logical formula can change a result that already existed.

Prolog did not have the ability to represent non-monotonic reasoning, and so

default reasoning was difficult to model.

As a simple example, if you wanted to say ”a thing can fly if it is a bird,

but a wounded bird can’t fly”, you could not. Saying something along the

41



lines of ”but” or ”unless” requires default reasoning. Prolog forced you to

reformulate this statement into a single statement that ”a thing can fly if it

is a bird and it is not wounded.” So the lack of default reasoning would have

made the reformulation problem worse.

Counterfactual conditionals refers to a difficulty in encoding rules that

make decisions about what might have been true, but isn’t. Again, because

Prolog implemented formal logic, it was not possible from Prolog to consider

both that something was true and false at the same time, and it became

necessary to add concepts to the code that did not exist in the law such as

“the manner in which a person would have become a citizen if they had become

a citizen despite the fact that they died first.”

He quotes Berman and Hafner41 on the inappropriateness of formal logical

models for modeling statutory reasoning as a result:

It is logically impossible to begin with a set of premises, and create

a valid argument for both a conclusion and its opposite. This

restriction certainly makes sense - but in the law, such a “logical

impossibility” seems to be precisely what happens!42

Ashley very briefly notes “[l]ogicians have developed some alternative logics

that can deal with inconstitency subject to various constraints.”43 He does not

mention what they are, or where they have been implemented. Later in the

chapter he notes the need for rules systems to support defeasible reasoning,

which is reasoning about defaults and exceptions.44

Defeasible reasoning is reasoning that allows for statements to contradict

one another, and provides a mechanism for determining which of the contra-

dictory statements applies in a given situation. The form of logic implemented

in Prolog is not defeasible, which created problems because defeasibility is of-

ten used in written legal rules. Exceptions, defaults, and presumptions are

41Donald H Berman and Carole D Hafner, “Indeterminacy: A challenge to logic-based
models of legal reasoning” (1987) 3(1) International Review of Law, Computers & Technol-
ogy 1.

42Ashley (see n. 5) at p. 55.
43ibid. at p. 56.
44ibid. at p. 63.

42



all forms of defeasible reasoning used in law, which became more difficult to

express when written in Prolog.

Open-textured terms refer, essentially, to instances of vagueness. In the

BNA project, the developers dealt with vagueness by simply asking the user

whether or not the vague term was satisfied, and providing no other guidance.

Ashley then refers to larger issues of statutory interpretation, pointing

to the fact that when judges interpret laws they consider linguistic meaning,

systemic coherence, purpose of the law, the intent of the legislator, and implicit

requirements of things like constitutionality and coherence with public policy

or maxims of law.45 He also points to the difficulties that arise where even if

parties agree on the meaning of the relevant law, they dispute the relevant

facts.46

Ashley also discusses the benefits of isomorphism, the need for a one-to-one

relationship between pieces of legislation and pieces of code, in order to facili-

tate development and maintenance of the code. With regard to maintenance,

he notes that isomporphism is difficult to maintain given the complexity of

statutes and the fact that they change.47

4.7 McCarty

L. Thorne McCarty recently wrote an article48 providing his theory of the

balance to be had between different conceptions of artificial intelligence and

law. In the article he comments on the recent writings of Susskind49,50 and

Ashley51.

McCarty has been a part of the field of expert systems in law for as long as

the field has existed. He published his work on the TaxMan system in a paper

45Ashley (see n. 5) at p. 53.
46ibid. at p. 54.
47ibid. at pp. 63-64.
48LThorne McCarty, “Finding the right balance in artificial intelligence and law” [2018]

Research Handbook on the Law of Artificial Intelligence 55.
49Richard E Susskind and Daniel Susskind, The future of the professions (First published

in paperback, Oxford University Press 2017).
50Richard E Susskind, Tomorrow’s lawyers (Second edition, Oxford University Press

2017).
51Ashley (see n. 5).

43



in 1977 that was a rules-based approach to tax law, similar in that sense to

the work that Susskind did in latent damages nearly a decade later.52

McCarty argues that very quickly the focus of the work shifted away from

what could be calculated with rules and facts to what couldn’t. A later paper of

McCarty’s espoused the idea that law is incurably open-textured, and that laws

are better represented as a combination of invariant requirements, prototypical

examples of scenarios that meet those requirements, and then deformations

from those prototypes to other examples.53

In his Balance paper, he argues that the important point for representing

laws is not to apply a theory to facts, but to generate a theory from them.54

These theories can be represented in traditional logical terms, which he calls

a logical template, but they can also be represented by these prototypes and

deformations.

McCarty’s recent paper then sets out the history of his work toward being

able to automatically generate structured case notes from judicial decisions.

He describes this process as involving elements of machine learning, elements

of natural language processing, and also elements of knowledge representation,

which is analogous to DLP.

He seems to suggest that there is a place for expert system style knowledge

representation in these technologies of the future. But his project also seems

to hope for more than this dissertation is examining. Indeed, he is looking for

ways to automatically translate judicial materials into his Language for Legal

Discourse55, which he says is a domain-specific logic programming language,

and points to ErgoAI56 as an alternative to it.57

He also explicitly criticizes Ashley for failing to have spoken to the new

52LThorne McCarty, “Reflections on “Taxman”: An Experiment in Artificial Intelligence
and Legal Reasoning” (1977) 90(5) Harvard Law Review 837.

53LThorne McCarty, “An implementation of Eisner v. Macomber” [1995] ICAIL ’95 276.
54McCarty, “Finding the right balance in artificial intelligence and law” (see n. 48).
55LThorne McCarty, “How to ground a language for legal discourse in a prototypical

perceptual semantics” [2015] ICAIL ’15 89.
56ErgoAI (see n. 1).
57McCarty, “Finding the right balance in artificial intelligence and law” (see n. 48) at p.

33.

44



breed of DLP tools such as ErgoAI.58

He notes that there are applications for KR in smart contracts, though he

expresses uncertainty about how open-textured questions will be dealt with in

that context. He also notes that the systems which are useful for interpreting

judicial decisions are not useful for understanding statutes, and that there is

a place for the manual annotation of statute law, which presumably could be

done in DLP tools. He also expects that to some extent knowledge represen-

tation will be a part of attempts to predict legal outcomes in the future.59

4.8 Addressing the Criticisms

In this section I will address each of the criticisms raised by the authors above

about the feasibility of the legal expert system project. But first, it is necessary

to contrast the perspective of this dissertation from the perspective of some of

the critics that makes some of these criticisms not unfair, but unimportant.

4.8.1 The Legal Services Supply Perspective

Taken from the perspective of people who want to automate legal services

to increase their supply, the fundamental question is do legal expert systems

realistically have the potential to increase affordable access to appropriate legal

services. The emphasis here is on practicality, and appropriateness.

Practicality requires us to consider whether it is viable to use DLP tech-

nology to automate legal services. Reasons it might not be viable, even if

technically feasible, include whether it is prohibitively expensive, or the peo-

ple with access to the tools do not have any motivation to use them in the

service of automating legal services.

Appropriateness requires us to consider whether what can be provided

by an expert system (or with the help of one) is a net improvement for the

consumer of the service. Appropriateness considers both issues of quality and

cost. Consistently incorrect legal advice is not appropriate. Overly expensive

58McCarty, “Finding the right balance in artificial intelligence and law” (see n. 48) at pp.
39-40.

59ibid. at pp. 34-38.

45



legal advice is not appropriate. But legal services that are less reliable than a

lawyer and also considerably less expensive than a lawyer may be appropriate.

The various critiques of expert systems in law will be addressed from this

dual perspective.

4.8.2 Standards of Appropriateness for Automated Le-
gal Services

The question of whether automated legal services are appropriate needs to

consider both the risks and the benefits of automated legal services and the

risks and the benefits of the best alternatives. Examples of the best alternatives

may be self-representation, asking a friend for help, or relying on publicly

available legal education services.

It is useful to make explicit and distinguish between three different stan-

dards of appropriateness. In order from least strict to most strict I will call

these “better than nothing”, “no worse than a lawyer”, and “perfection”.

If an automated legal service can be provided that is significantly better

than the realistic alternatives, and it can be provided sustainably, and afford-

ably, then it will increase the supply of legal services, and is appropriate. This

is the “better than nothing” standard of appropriateness, because “nothing”

is often the alternative against which the automated legal services should be

compared. Many people seek to solve their problems with no legal advice or

information whatsoever.

There is an intermediate standard of appropriateness, which I call “no

worse than a lawyer”. If an automated legal service is no worse than the service

that would have been provided by the lawyer who built the automated version

of that service, and it is less expensive than receiving the service directly from

the same lawyer, that automation will also serve to increase the supply of legal

services. It is important to note that the best way to know that a service is “no

worse than a lawyer” is if it does the same thing a given lawyer would do in

the same situation. And the best way to know that is the case if is the person

who automated it was the lawyer themselves. I will return the importance of

that feature of the “no worse than a lawyer” standard.

46



It is worth noting that as Chapter 3 demonstrates, the “no worse than

a lawyer” standard also admits of the real possibility that there may be au-

tomated legal services that are superior to the service that would have been

provided by lawyers. The “no worse than a lawyer” standard could also be

called “no worse than a lawyer and potentially much better than one”.

There is a third standard that most often occurs in the literature, but only

implicitly. That is the standard of “perfection”. That is a standard not applied

in any other context, and applying it exclusively in the realm of automated

legal services only serves to badly injure the supply of legal services.

We assert that we must be consciously aware of the apparently sub-conscious

tendency to apply the “perfection” standard of reasonableness when discussing

the automation of legal services. The “better than nothing” or “no worse than

a lawyer” standards can be argued for, but the “perfection” standard must be

made explicit, and rejected.

4.8.3 We Encode Interpretations, not “the Law”

I will start by addressing the concerns expressed about whether it is possible

to accurately reflect the meaning of law in DLP tools.

The use of DLP tools should be understood to involve, as Susskind suggests,

not an encoding of a categorically correct representation of the meaning of

the relevant law, but an encoding of the internally coherent understanding

of the law that a responsible legal professional believes would be appropriate

for people receiving automated legal services to rely upon, in all the relevant

context.60

If what we are encoding is not “the law”, but one person’s understanding

of it, all the abstract concerns about whether expert systems can accurately

represent the “true” meaning of a law disappear. Leith’s concerns that repre-

senting laws in logical terms “guts” the law can therefore be ignored. If gutting

the law in this way serves increasing the supply of legal services through au-

tomation, then taking a cue from Popple’s pragmatism, we should have no

compunctions.

60Susskind, Expert systems in law: a jurisprudential inquiry (see n. 3) at Ch. 2.

47



The idea, which is repeatedly expressed in the literature, that we cannot

be sure that our encoding of a law represents what the law really means, is an

example of an application of the implicit standard of perfection. No human

lawyer is required to know, with certainty, that they are giving advice on the

basis of a law’s true meaning. The absence of perfection in that regard is not

an obstacle to the responsible provision of legal services by lawyers.

Another way of expressing the idea that we encode interpretations, and not

the law itself, is by considering it as a sequence of events. A law is written,

the law is read by a lawyer, and then the lawyer gives advice about the law.

Similarly, a law is written, the law is read by that same lawyer, and then

the lawyer encodes the law, and the code provides advice. In both of these

situations, the advice that was given, either by the human lawyer or the code,

was based on that particular lawyer’s understanding of the law. Because the

same understanding was used both times, we can expect that the result from

the encoding might be “no worse than a lawyer”.

Difficulties involved in determining what a law means must be overcome

before either the lawyer gives advice, or they encode their understanding.

Interpretation is necessary in both circumstances, and so the need for inter-

pretation is not a critique of expert systems at all, but a critique of laws.

Ashley mentions concerns about disagreements as to the meaning of statutes.

But in the same way, the fact that the interpretation that would be interpreted

by two different lawyers might result in two different sets of code that did not

agree with one another is not a criticism of expert systems. This inconsistency

exists as between lawyers who do not encode their understandings, too.

4.8.4 Concerns with Statutory Interpretation Can be
Mitigated, and Do Not Apply Universally

The difficulty of interpreting statutes is only relevant with regard to the use

of expert systems if there are difficulties that are exacerbated with regard to

automated understandings. In his text on statutory interpretation, Cameron

Hutchison breaks down the categories in which there may be uncertainty as

to the meaning of a law into three: incompleteness, error, and circumstantial

48



change.61 The text also sets out four causes for incompleteness: the impreci-

sion of language, the possibility of unanticipated cases, the intentional use of

vagueness by legislators, and the necessity to consider implicit rules. These

incompleteness factors overlap to an extent with the concerns Ashley raises

about vagueness, semantic ambiguity, and syntactical ambiguity.

It is helpful to look at which, if any, of these problems is worse with re-

gard to understandings of the law that have been encoded. First, we can say

that if a lawyer is aware of a statutory error, they can encode their corrected

understanding of the law as easily as they can advise using it. If they are

not aware of the error, they would provide incorrect advice in any case. The

encoded version will still meet the “no worse than a lawyer” standard. With

regard to changes to the meaning of laws that arise due to changed circum-

stances, the same thing is true. A lawyer may anticipate that the change in

general circumstances will require a change in the meaning of a provision, or

they won’t. If they do, they can encode that understanding. Legislative error

and changes in circumstances are difficulties with statutory interpretation that

have no particular impact on the use of expert systems.

The fact that the meaning of statutes can change over time, even in the

absence of explicit amendment, suggests that the maintenance of automated

systems will be an important factor in whether they continue to be reasonable.

The case of legislative incompleteness is more problematic. First, we can

look at cases where the legislation is incomplete because it either intentionally

or unavoidably uses imprecise language. The source and motivation of the

vagueness is not important. It is still the case that where the lawyer cannot

give advice in person, they ought not automate it. Non-provision of a service

may still be “no worse than a lawyer”. But what if the lawyer does give advice

about vague terms? It may be that the lawyer cannot encode how they do that

task satisfactorily, in which case they ought not encode their understanding

of that topic. If they can set out the factors that they personally would use

in determining whether or not the requirements of a vague term are satisfied,

and can set out how those factors should be used, it might be reasonable to

61Hutchison (see n. 4) at p. 7.

49



encode those factors and perform the same analysis in code.

As Ashley notes in Chapter 3 of his text, significant strides have been

made in using case-based reasoning in order to address a wider range of open-

textured legal issues in automated systems. This can be a potential solution

where statutory language is vague.62

However, this sort of automated advice about vague terms has a flaw in its

automated form that may not exist when performed by a person.

New fact scenarios may change the lawyers mind about how to determine

the correct answer. A client may appear with an unusual combination of facts

that the lawyer had never anticipated, and so could not have added to their

encoded process for determining whether vague terms are satisfied. This is

a problem with automated legal services of any variety, and is not specific

to expert systems in particular, but it is nevertheless a situation in which

the encoded understanding is not “as good as a lawyer”. Because the lawyer

can come to a new and better way of giving the advice based on the client’s

scenario, and the code cannot.

This same problem exists with regard to cases in which there is an ap-

plication of implicit rules. It is possible that a fact scenario may implicate

a different additional source of law not anticipated by the lawyer when they

encoded their understanding.

With regard to cases of incompleteness caused by a failure of the legislators

to consider certain fact scenarios, there is a similar problem. If you are dealing

with a lawyer, the lawyer can take a fact scenario from a client and will perhaps

recognize that it was not anticipated by the law, and the straightforward

application of the understanding the lawyer previously had of the law will

result in an absurd result. Again, this is not a realization that the automated

version of the advice can achieve. So in this way, advice from an automated

system may not be “as good as a lawyer”.

The question then becomes whether it is possible to achieve the standard

of “better than nothing” with regard to advice that deals with these difficult

forms of interpretation, and if so, how.

62Ashley (see n. 5).

50



There are ways of mitigating these problems. The first and most obvious

is to simply not encode problematic provisions, but this does not achieve even

the “better than nothing” standard, and is not to be preferred. Second, dis-

claimers can be used to advise the user of the system’s limitations, and allow

them to adopt the risk that the system might be flawed with regard to their

own situation. This is the approach that is used, for example, in tax filing

preparation software, and is probably to be recommended even where the de-

veloper is not aware of any specific concerns, as there may be problems they

do not anticipate. Third, human advisors can be involved in the process only

where they are required, or on the user’s request, and the remainder of the

process automated. There are undoubtedly other options.

There will be situations in which no combination of these mitigations will

result in a system that meets even the standard of “better than nothing”. This

may be because the risks to the client from incorrect advice are so large. In

those situations, expert systems should not be used. But this will not be all

cases of uncertainty. Far more importantly, there will be cases in which despite

incompleteness in the law, the automated version of the lawyer’s understanding

will be either “better than nothing” or “no worse than a lawyer”. And in those

situations, expert systems are still appropriate.

We cannot justify refusing to use DLP tools for what they can do because

there remain things they cannot do. Responsible use of these tools will always

include deciding when not to use them, and issues of open-texture, vagueness,

or uncertainty may remain good reasons to come to that conclusion.63

Even if uncertainty as to the meaning of the law can be mitigated in some

circumstances, there are two other categories of concerns that Ashley raises

that apply to all possible uses of expert systems: technical shortcomings of

the tools, and the knowledge acquisition bottleneck.f64

63The Better Rules conversation (Better Rules for Government Discovery Report (see
n. 9)) proposes a fascinating possible resolution to this problem: that public rules ought to
be drafted with an eye to how easily they could be automated, encouraging the avoidance of
open-textured terminology except where the vagueness serves an explicit policy objective.
Such a change in how legal rules are drafted would be a sea change for the applicability of
DLP tools, and statutory interpretation itself.

64I rely on Ashley here not because he is particularly critical, but because his text provides

51



4.8.5 DLP Technology Has Improved

In the category of concerns with the technology, Ashley mentions the practical

difficulty of maintaining logical representations of statutes alongside textual

statutes, reformulation, negation, default reasoning, and counterfactual condi-

tions. But as McCarty correctly notes, Ashley fails to seriously consider how

the available technology for DLP has changed since the British Nationality

Act, 1948 was encoded.65

The problems of reformulation and default reasoning can be dealt with

by using tools that include defeasible reasoning. Defeasible reasoning also

increases isomorphism, which makes the task of maintaining encodings of the

law easier, as exceptions in the law can be represented by exceptions in the

code. The problems that Ashley describes with negation are solved with tools

that offer three-valued logic and both classical negation and negation as failure.

Counterfactual conditions are complicated to implement in DLP tools, be-

cause they require creating additional entities in code to represent both the

actual legal condition and the hypothetical. The complication, however, taken

in the context of the complexity of implementing DLP tools generally, is mi-

nor. It is a hurdle, not a wall. An example of implementing counterfactuals

is included in Chapter 3, where the legal question required consideration of

whether something would have been valid had it been done by someone else

in a different place.

4.9 The Real Challenge

The knowledge acquisition bottleneck is the only common criticism left unad-

dressed. It applies to all possible uses of expert systems. It is not resolved by

using modern tools. It cannot be resolved by merely avoiding the standard of

perfection. The viability of expert systems as a tool for increasing the sup-

ply of legal services may legitimately turn on whether there is a realistic and

appropriate solution to this problem.

such a comprehensive survey of the problems that have been expressed throughout the
literature.

65McCarty, “Finding the right balance in artificial intelligence and law” (see n. 48).

52



To reiterate, the knowledge acquisition bottleneck refers to the high cost

and low reliability of the method of having a legal subject matter expert and

a programmer work side by side to develop expert systems.

4.9.1 The Solution: The Legal Expert Is the Program-
mer

The knowledge acquisition problem disappears entirely when the person who

holds the subject expertise and the person who understands the programming

language are the same person. There is no risk of anything being lost in trans-

lation, missed, or misunderstood when the process of legal encoding involves

only one person.

The solution to the knowledge acquisition bottleneck problem, therefore,

and potentially the key to getting the benefits of DLP for the purpose of in-

creasing the supply of legal services through automation, is making it realistic

for legal subject matter experts to use DLP tools without the assistance of a

programmer.

Note that this also allows the person who is both the legal expert and the

developer to satisfy themselves that what the tool they have built does is “no

worse than a lawyer”, because it does precisely what they themselves would

do.

As a person with formal training in both technology and law, I might be

accused of unrealistic optimism in this regard. Ashley and Susskind are both

either explicitly or implicitly fatalistic about the possibility of lawyers learning

to use DLP tools.

I argue that pessimism is based on a false assumption - that if lawyers are

to begin using DLP tools, because the most effective of those tools today are

programming languages, that lawyers would need to become programmers. If

that assumption were true, the pessimism might be well-founded. It is not.

4.9.2 Spreadsheets for Legal Reasoning

Making legal subject matter experts such as lawyers the people who use DLP

tools is possible without requiring those people to go through the difficulty

53



currently associated with learning to write software in a programming lan-

guage.

For this argument, I point to a natural experiment that can be observed

by comparing the legal profession today to the accounting profession of ap-

proximately 40 years ago.

Prior to the advent of electronic spreadsheets in the late 1970s, it was

technically possible for an accountant who was also a programmer to get a

computer to do complicated math.66 We can safely presume that very few

accountants actually did so.

That state of affairs is analogous to the legal profession of today. It is pos-

sible for lawyers who are also programmers to get computers to do complicated

legal reasoning. Very few, the author included, actually do so.

The controlled variable in this natural experiment is a technological ad-

vancement that changed the difficulty of learning to use computers to auto-

mate the respective field. The late 1970s saw the advent of electronic spread-

sheets, starting with VisiCalc. By the early 1990s research showed that the

vast majority of professional accountants were using spreadsheets for financial

modelling without the assistance of a computer professional.67 By the mid-90s,

the ability to use electronic spreadsheets was considered a basic competence

for members of the profession.

After the advent of electronic spreadsheets, demand for accounting services

increased, because accountants were able to do more sophisticated analysis,

faster, more accurately, and less expensively than ever before.68

What changed? How did electronic spreadsheets so significantly change

what we expect an accountant to know?

Spreadsheets used an interface, values in the cells of a grid, with which

accountants were already familiar, making spreadsheets feel like something

66B Grad, “The Creation and the Demise of VisiCalc” (2007) 29(3) IEEE Annals of the
History of Computing 20.

67Bob Berry and Alyson McLintock, “Accountants and financial modelling” (1991) 4(4)
OR Insight 11.

68Jacob Goldstein, How The Electronic Spreadsheet Revolutionized Business “All Things
Considered” (https : / / www . npr . org / 2015 / 02 / 27 / 389585340 / how - the - electronic -
spreadsheet-revolutionized-business).

54

https://www.npr.org/2015/02/27/389585340/how-the-electronic-spreadsheet-revolutionized-business
https://www.npr.org/2015/02/27/389585340/how-the-electronic-spreadsheet-revolutionized-business


accountants already knew, making them easier to learn, driving adoption.

The key difference between the two stories is accountants have an applica-

tion or interface which takes what is possible, and makes it easy. Lawyers do

not have that application.

The analogy between spreadsheets and declarative logic programming may

not immediately be obvious, but it is strong. Spreadsheets are, in fact, a

declarative tool for math programming. In the same way that DLP technolo-

gies allow you to specify rules without specifying the order in which they are

applied, spreadsheets allow you to express the relationships between numer-

ical values without setting out the order in which those calculations will be

performed.

And in the same way that spreadsheets mimic an interface that was in use

by accountants before it was made electronic, it is possible to make declar-

ative logic programming look very much like statutory drafting. Two of the

products included in the survey later in this dissertation are proof. The con-

strained natural language interface of Oracle Policy Automation can be seen

in Appendix A, and the similar interface of DataLex is shown in Chapter 6.

The knowledge acquisition bottleneck is the only real challenge remaining.

It disappears entirely when the legal subject matter expert and the program-

mer are the same person. That can and will happen when someone builds a

tool for declarative logic programming that is as accessible, as powerful and

as easy to learn as electronic spreadsheets.

This “spreadsheets for legal reasoning” will not be a literal spreadsheet.

But it will do for legal reasoning and legal service providers what spreadsheets

did for math and accountants. It will make lawyers faster, more accurate,

increase demand for legal services, increase the supply of legal services, and

make legal services possible, including automated legal services, that were

never possible before.

55



4.10 Conclusion

Legal academics have considered the viability of expert systems in law for

decades, and have expressed a consistent set of concerns. Most of these con-

cerns can be dispensed with by using modern technology, by understanding

that what we are attempting to encode faithfully is not the meaning of the

law, but what an expert understands the meaning of the law to be, and by

concerning ourselves with what can be done instead of what cannot. Of the

criticisms in the literature, only one stands as a true obstacle to increasing

the supply of legal services with DLP technologies: the knowledge acquisition

bottleneck.

That problem has a solution that has not been seriously considered in the

literature: make DLP tools possible for legal subject matter experts to use

without the assistance of programmers. Indeed, the suggestion has been dis-

missed out of hand, to the extent it has even been discussed, for decades.

But the experience of the accounting profession at the advent of electronic

spreadsheets provides strong evidence that easy-to-use declarative program-

ming tools can quickly and dramatically change the face of a profession, and

there is no reason to believe the same is not true of law.

The open question, then, is only whether the things that it is already

possible to do with DLP tools can be made easier.

The rest of this dissertation will examine what would be required of these

tools, including ease of use, where the existing tools stand, and what steps

should be taken next.

56



Chapter 5

Desirable Qualities in DLP
Tools for Automation of Legal
Services

5.1 Introduction

This chapter sets out a short list of qualities or features that would be de-

sirable in a modern DLP tool for automating legal reasoning: Affordability,

Uncertainty, Explainability, Case-Based Reasoning, Temporal Reasoning, De-

feasibility, and Usability.

An effort has been made to prioritize features by their potential impact on

automation of legal services. An effort has also been made to keep the list to

as few items as possible.

This list is generated in the light of attempts to encode Alberta’s Adult

Interdependent Partnerships Act, SA 2002, c A-4.5, [AIPA] in two of the tools

included in the survey in Chapter 6, ErgoAI and Oracle Policy Automation.

The encoding of AIPA in ErgoAI is included as Appendix B to this dissertation.

The encoding of AIPA in Oracle Policy Automation is included as Appendix

A.

The list draws also from the literature reviewed in Chapter 4, the bibliogr-

phy, and informal observations of public conversations online among people

pursuing research or work in the automation of legal reasoning. Of the seven

criteria listed, the first six appear repeatedly in existing legal and interdisci-

plinary writings on the topic of DLP tools. Only the criteria of usability by

57



non-programmers is novel, and then only perhaps in the priority given to it.

5.2 Affordability

The importance of affordability for the use of these technologies in the automa-

tion of legal services cannot be overstated. Organizations and individuals who

provide the sorts of legal services that can most benefit from automation are

chronically underfunded, and cannot afford large investments in technology.

A high price tag prevents the tool from being tried.

Affordability obviously includes the price of the software, if there is one.

But it should also take into account the maintenance and operating costs of

using a particular technology, as well as the expenses associated with training

employees to use that technology.

In the best case scenario, DLP tools for automating legal reasoning would

be open source, and free. They would have excellent freely available documen-

tation, tutorials, and active mutually-supportive user communities to assist in

getting users up to speed.

5.3 Uncertainty

Formal logic, which is implemented in DLP tools, operates on truth values of

true and false.1 DLP tools have also typically implemented monotonic logic,

which means that the addition of new information cannot change any previ-

ously known conclusions.2 These are two of the ways in which traditional forms

of formal logic are not, by themselves, well suited to encoding legal reasoning.

A great deal of legal reasoning occurs in situations where not all the relevant

facts are known, and we need to be able to draw contingent conclusions, or

conclusions based on presumptions. DLP tools, to be effective, need to be able

to distinguish between something that is not known, and something that is

known to be false. That requires the ability to reason about uncertainty.

1Ashley (see n. 5) at p. 44.
2ibid. at pp. 50-51.

58



It would also be helpful to have tools which are capable of answering ques-

tions by relative value instead of only by absolute value. A great deal of legal

reasoning occurs in situations in which facts or conclusions may not be known

specifically, but an unspecific answer may be sufficient. For example, the dates

of distant facts are often estimated. It would be convenient if DLP tools could

accept a relative value instead of an absolute value, so that the user could

either specify a day, or use a statement such as “more than 5 years ago”. I am

aware of no tools with this feature.

5.4 Explainability

There is a general distrust of legal algorithmic reasoning today, raised by

valid concerns about the incorporation of human bias into machine learning

algorithms which have no ability to justify their conclusions. In the judicial and

quasi-judicial context there are administrative law requirements for sufficiency

of reasons that will need to be met by systems which make determinations.

The ability to have the tool explain its answers is therefore a critical component

of developing with DLP tools. The ability of the code to explain an incorrect

answer provides the tool developer with the opportunity to understand very

quickly where and how the code went wrong, speeding up development and

enhancing testing.3 The ability to explain conclusions will also provide greater

confidence to subject matter experts in how tools are coming to the conclusions

that they reach, and may provide better confidence to users of those tools.

5.5 Case-Based Reasoning

There are elements of written legal rules that are ambiguous. One of the

approaches taken in the past to deal with these sorts of problems is to attempt

to encode “heuristic” rules in DLP tools. Heuristic rules can be thought of as

”rules of thumb”, or perhaps more accurately as an imperfect model, in rule

form, of how a human expert would make the same decision. A typical example

of the use of heuristics in an expert system for diagnosing car problems might

3Pemmasani et al. (see n. 7).

59



be something like ”if the noise does not change with speed, the problem is

most likely not in the drive train”. In practice this is an inadequate solution

to the problem. Heuristic rules are difficult to formulate, and of questionable

reliability. They are also not how lawyers actually analyze legal problems that

depend on knowledge of written legal rules.

Machine learning techniques can be used in this realm, but by themselves

lack the ability to generate an explanation for the conclusion or prediction

reached.

There is a third sort of technology, case-based reasoning, that can be used

to compare a fact scenario to a database of previously decided cases and come

to an explainable prediction of the legal outcome.4 CBR is analogous to the

process that a lawyer undertakes in deciding ambiguous questions. This simi-

larity makes the task of building of CBR tools more intuitive for legal experts

than drafting heuristic rules. CBR also employs algorithms that make it pos-

sible to generate explanations for their predictions.

For its ability to deal with ambiguous legal texts in a way that is analogous

to how legal experts answer the same sort of question, the ability to resort

to CBR when ambiguity requires it is a critical feature for automating legal

reasoning around written legal rules.

5.6 Temporal Reasoning

Written legal rules very frequently deal with events and periods of time, and

provisions will relate to one another in terms of how those events or periods

of time overlap, if at all.5 Words like “while” and “until” are very intuitively

understood by people when written into legislation, but become very difficult

to encode unless the DLP provides specific mechanisms for doing it.6

There are different forms and depths of temporal reasoning that might be

implemented in a DLP tool, and various purposes for which they might be

4Ashley (see n. 5) at Ch. 3.
5ibid. at p. 65.
6Listing 7.6 shows an example of what it becomes necessary to do to make date calcula-

tions without the benefit of temporal reasoning features.

60



used, including calculating a legal state at a point in time based on a series of

legal events, and determining the rules applicable to a specific event based on

proclamation dates.

Given how frequently these sorts of problems arise in legislation, and how

difficult they are to solve in the absence of sophisticated temporal reasoning

features, a high quality tool for automating legal reasoning would need to have

the ability to simplify this sort of reasoning for the user.

5.7 Defeasibility

Isomorphism is a word used to describe the degree to which a piece of software,

written in a DLP language, can be divided into sections of code, where each

section of code has a one-to-one relationship to a section of the written legal

rule.7 All DLP languages will have some greater degree of isomorphism than

most imperative languages, because they are structured as sets of rules. But

the degree of isomorphism varies.

In terms of the underlying logic implemented by the language, a tool that

implements “defeasibility” is a tool in which you can write rules that are

exceptions to other rules.8 This is an important capability, because it greatly

increases how isomorphic the code will be to the source material.

That is the case because writing rules as exceptions to other rules is a

much more efficient way of expressing them, and so is used widely in written

legal rules. Expressing written legal rules in a DLP tool that does not feature

defeasibility requries you to re-implement the same rule in any other rule to

which it might apply, causing a loss of isomorphism, increased difficulty in

encoding the rules, and complicating the task of maintaining them when the

written rules inevitably change.

An excellent tool for encoding legal reasoning would therefore need to make

it possible for the user to express rules using exceptions.

7Ashley (see n. 5) at p. 63.
8ibid. at p. 63.

61



5.8 Usability

Usability is a difficult factor to define or quantify, but it is used here to describe

to the degree to which users find the tool easy to learn and use. Users, in this

case, are the subject matter experts who are using these tools to encode legal

knowledge.

Chapter 4 argues that one of the solutions to the problems identified with

the implementation of DLP tools in the legal realm is to eliminate the division

between the programmer and the legal subject matter expert, and make both

the same person. Achieving that requires vastly improved usability of DLP

tools from the perspective of non-programmer legal subject matter experts.

5.9 Conclusion

These constitute a “top 7” list of features that would make a DLP tool for

automating legal reasoning highly effective.

The first six of these features are not novel. Usability, in a sense, is also

not novel. Most legal scholarship with regard to the use of DLP tools for

automating legal reasoning seems to have simply presumed that usability could

never be achieved in sufficient measure to eliminate the need for lawyers to

rely on programmers to encode legal rules.

In the next Chapter the dissertation will review several existing tools

against these seven criteria, and discuss the state of the currently available

options.

62



Chapter 6

Survey of Selected Tools for
Automating Legal Reasoning
with DLP

6.1 Criteria for Inclusion

In order to limit the number of products that needed to be considered for

this dissertation, the review was limited to products that are commercially

available, or are available as mature open-source projects, and which are built

for, marketed toward, or used by individuals who are automating reasoning

around legal rules.

For people familiar with the legal technology space, this may lead to some

surprising exclusions. There are a number of tools designed to allow people to

build legal expert systems of some variety, but which do not use a declarative

programming paradigm. Examples include A2JAuthor1, and QnA Markup2.

These tools are excluded.

Similarly, there are a large number of “generic” applications of declarative

logic programming such as Prolog and related programming languages, and

Business Rule Management Systems, such as InRule3 in the commercial space

or Drools4 in the open source space. These, too, are excluded.

1A2J Author (https://www.a2jauthor.org/, Accessed: July 25, 2019).
2David Colarusso, QnA Markup (https ://www.qnamarkup.org/, Accessed: July 25,

2019).
3InRule Technology, Inc, InRule (https://www.inrule.com/, Accessed: July 25, 2019).
4Drools (https://www.drools.org/, Accessed: July 25, 2019).

63

https://www.a2jauthor.org/
https://www.qnamarkup.org/
https://www.inrule.com/
https://www.drools.org/


Every effort was made to include as wide a variety of tools as possible over

the course of the research, but as with any survey, examples have most likely

been unintentionally omitted.

6.2 Selected Tools

6.2.1 ErgoAI/ErgoLite

ErgoAI5 is an example of a modern declarative logic programming language,

a descendent of Prolog. There are many such languages, but ErgoAI and

ErgoLite are included here because they include features specifically useful

in automating legal reasoning, and because the commercial version has been

marketed for use in that realm.6 ErgoAI is the name given to the commercial

version of the language, which is offered by Coherent Knowledge Inc. Licenses

for the use of ErgoAI, at the time of writing, were available free for academic

use, and in the range of several hundred to several thousand dollars for com-

mercial use, depending on how the software was deployed.7 ErgoLite is the

name given to the open-source version of the language, which was previously

known as Flora-2.

ErgoLite is a programming language with a simple text-based interpreter.

ErgoAI adds a number of visual interface elements to the development environ-

ment, adds features for obtaining explanations for the reasoner’s conclusions,

and includes features that allow the software to be more easily integrated

with other systems. Most of these interface elements are also available for the

open-source version of Prolog, named XSB, on which Ergo operates.8 However,

the same user interface elements are not available for ErgoLite. Both version

of the software include support for defeasibility, allowing the user to specify

rules that override other rules.9 Neither product has any built-in support for

5ErgoAI (see n. 1).
6Coherent Knowledge, Financial Domain Application (https://coherentknowledge.com/

financial-domain-application/, Accessed: July 25, 2019).
7Coherent Knowledge, Ergo Pricing (https : / / coherentknowledge . com / pricing/, Ac-

cessed: July 25, 2019).
8interProlog Consulting, Prolog Studio (http:// interprolog .com/interprolog- studio/,

Accessed: July 25, 2019).
9Michael Kifer, Defeasible Reasoning in Ergo (https ://docs .google . com/document/

64

https://coherentknowledge.com/financial-domain-application/
https://coherentknowledge.com/financial-domain-application/
https://coherentknowledge.com/pricing/
http://interprolog.com/interprolog-studio/
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit


temporal reasoning, or deals with uncertainty of facts.

6.2.2 Neota Logic

Neota Logic is a tool that is for generating web-based applications which ask

users for information, and provide users with information or documents based

on the responses to those questions. These interfaces, which ask the user for

one or a small number of pieces of information at a time, and progress based

on logical deductions about what other information is required in order to

calculate some goal, will be referred to as ”interviews”.10 Unlike any of the

other tools in this survey, the makers of Neota Logic have specifically targeted

the legal industry in their efforts to market the tool. This has been done in

part by promoting the adoption of the tool and a program of education on its

use in various law schools throughout North America.11

Recently, however, Neota has announced that their focus on the legal in-

dustry will be broadened. Subsequent to that announcement, and consistent

with it, Neota Logic announced the creation of an advisory board that includes

representatives of both law firms and insurance companies.12

Neota Logic advertises itself as a “no code” solution for building legal

expert system websites. The encoding of declarative rules and procedures is

done in a visual coding environment in which the rules and procedures are

depicted as flowchart-style diagrams. Neota’s rules system does not include

defeasibility. All relevant criteria for a given conclusion must be included in

the same rule.

However, because Neota Logic requires that the rules be encoded as dia-

grams, the benefit of a 1:1 relationship between the law and the diagrams is

less significant. Arguably, text and diagrams are so ill suited for side-by-side

comparison that isomporphism, to the degree it exists in Neota Logic, does not

d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit, Accessed: July 25,
2019).

10Neota Logic, Neota Logic (https://www.neotalogic.com/, Accessed: December 1, 2017).
11Neota Logic, Neota Logic: University Programs (https://www.neotalogic.com/pro-

bono/law-schools/, Accessed: July 25, 2019).
12Neota Logic, Neota Logic reveals new Client Advisory Board [] (https://www.neotalogic.

com/2019/06/03/neota-logic-reveals-new-client-advisory-board/, Accessed: July 25, 2019).

65

https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://www.neotalogic.com/
https://www.neotalogic.com/pro-bono/law-schools/
https://www.neotalogic.com/pro-bono/law-schools/
https://www.neotalogic.com/2019/06/03/neota-logic-reveals-new-client-advisory-board/
https://www.neotalogic.com/2019/06/03/neota-logic-reveals-new-client-advisory-board/


confer the advantages that it has in other products that use a text-based inter-

face. Any further injury to isomorphism by virtue of the lack of defeasibility

is probably less of a strike against Neota Logic, as a result.

Neota Logic does not publish its pricing, but the author understands that

in 2017 Neota Logic offered commercial licenses of its product starting in the

mid four-figure range for one year, making it likely the second most expensive

offering in this survey.

6.2.3 Oracle Policy Automation

Oracle Policy Automation (OPA) is a tool offered by Oracle Corporation for

the automation of web-based expert systems based on encoded rules.13 OPA

is actually a suite of products that work together for this purpose. Oracle

Policy Automation is currently marketed as a part of Oracle’s suite of products

for customer service delivery. It is primarily marketed as a tool to provide

customer service representatives with an interactive interview that will allow

them to answer customer questions in compliance with a centralized database

of policy rules, allowing for a change in policy in one location to instantly

change the advice provided by any number of phone or automated customer

service agents.

OPA is the latest evolution of a product that was originally designed with

specifically legal applications in mind, called SoftLaw. That software went

through a number of different owners and names, including “Ruleburst”, “Ha-

ley Office Rules”, and “STATUTE Expert”, before being purchased by Oracle

in 2007 and eventually rebranded as Oracle Policy Automation.14,15

OPA has a number of features that make it unique. First, rule authoring

in OPA happens in a combination of an installed application called Oracle

Policy Modelling, which deals with specifying the ontology, and the layout of

the interview pages, and in Microsoft Word and Excel, with the assistance of

13Neota Logic reveals new Client Advisory Board (see n. 12).
14Wikipedia, Oracle Policy Automation (https://en.wikipedia.org/wiki/Oracle Policy

Automation, Accessed: July 25, 2019).
15Charles Lindop, Oracle to Acquire Hayley/Ruleburst/Softlaw for A$150m (http://tmt-

transactions.com/oracle-to-acquire-hayleyruleburstsoftlaw-for-a150m/, Accessed: July 25,
2019).

66

https://en.wikipedia.org/wiki/Oracle_Policy_Automation
https://en.wikipedia.org/wiki/Oracle_Policy_Automation
http://tmt-transactions.com/oracle-to-acquire-hayleyruleburstsoftlaw-for-a150m/
http://tmt-transactions.com/oracle-to-acquire-hayleyruleburstsoftlaw-for-a150m/


plug-ins that connect those applications to the data in the Policy Modelling

app.

Drafting of rules, specifically, happens in Microsoft Word or Microsoft Ex-

cel. In Word, the rules use a constrained natural language, allowing the rule

developer to encode the rules using language which is similar to natural En-

glish. Rules which can be more easily described in a table, (e.g. tax rates given

for different ranges of income) can be specified in a Microsoft Excel sheet, or

in a table in a Microsoft Word document. An example of what legislation

encoded in OPA looks like is included as Appendix A.

While by default it is presumed that you will be developing rules for gen-

erating web-based expert systems, it is also possible to redeploy these rules for

other purposes. The OPA Reasoner and rules can be added to any other appli-

cation via an application programming interface. Oracle also provides software

that allows for the management of your database of rules as a resource that

is available over a network, allowing multiple applications and users of those

applications to operate off of a centralized set of rules.

OPA includes a number of functions that can be used in the rule modelling

in order to convert a set of date-stamped entries into a single list of different

values for the same variable over time. If this value is used as a condition in

any rule, OPA automatically converts the result of that rule into a temporal

list of changing variables over time. It also provides mechanisms by which you

can visualize the changing values of any temporal variable. This makes the

task of writing rules capable of determining whether a legal conclusion was

valid at a give point in time only marginally more complicated than writing

rules capable of determining whether it is valid now.

OPA’s ontology model includes all of the information that is required to

recognize when a concept is being referred to in the rules, and that information

is also used to explain the outcome of a decision. An interview developed in

OPA will have a tree-structured explanation of its outcome, allowing the user

to dig down into reasons for conclusions and sub-conclusions until they arrive

at the data they originally entered. That explanation is generated automati-

cally based on the ontology and the rules.

67



OPA also treats all conclusions as unknown until it has the information

necessary to determine their value, making it possible to deal with scenarios

where some pieces of information are missing. It also includes features that

allow the developer to run an interview in a test environment and save the

data entered in that interview as a test that can be automatically loaded to

test the database again later.

OPA is probably the most widely used of the tools on this list, and the best

supported in terms of available documentation, training, and support. Because

the rule authoring happens in Microsoft Word and Microsoft Excel, and uses

something similar to the langauge in which written rules might originally be

written, the difficulty of learning to develop tools in OPA can be expected to

be less than that in all of the other tools listed.

OPA is currently licensed on a server-usage basis, with one unit of usage

representing up to a certain number of minutes of time for an interview. There

is a minimum purchase of such units. When I investigated the cost of the

minimum purchase of these units of purchase in 2017, the cost was in the

range of $50,000USD.16 This places OPA well outside the range of the sorts of

tools that can easily be adopted by most legal service organizations unless it

can be shown to have very significant productivity gains. Proving those gains,

however, would require owning the license. For educational purposes, Oracle

Policy Modelling is free to use.

6.2.4 Regulation as a Platform

Regulation as a Platform (RaaP) is a tool under development by Data61, a

division of CSIRO, in cooperation with the government of Australia.17 RaaP

is an example of an attempt to capture the benefits of DLP tools that may be

available for the drafters of legislation and for governments annunciating legal

rules.

16Oracle Corporation, Oracle e-Business Suite Applications Global Price List (http://
www . oracle . com / us / corporate / pricing / applications - price - list - 070574 . pdf, Accessed:
September 21, 2017).

17Commonwealth Scientific and Industrial Research Organization, Data61 Digital Leg-
islation & Regulation as a Platform (https://digital- legislation.net/, Accessed: July 25,
2019).

68

http://www.oracle.com/us/corporate/pricing/applications-price-list-070574.pdf
http://www.oracle.com/us/corporate/pricing/applications-price-list-070574.pdf
https://digital-legislation.net/


Figure 6.1: RaaP’s Rule-Browsing Interface.

RaaP is a web-based interface on which anyone can encode a piece of

legislation using a tool that implements a defeasible deontic logic designed for

encoding laws. The tool is based on the work of logician Guido Governatori.18

Deontic logics are a sub-set of formal logics that include deontic “modes”

for statements. These deontic modes are evolved from the modes in logics of

necessity, which allow for distinctions between statements of necessity, pos-

sibility, and impossibility. Deontic logic uses similar modes to represent the

moral or legal concepts of obligtaion, permission, and prohibition.

Unlike Neota Logic, Oracle Policy Automation, and Docassemble, which

are intended to be used to create end-user applications, RaaP is intended to

be used by knowledge engineers to create application programming interfaces

(APIs). An API is a resource on the Internet that can be accessed by other

pieces of software to do specific tasks. A knowledge engineer could encode

legislation in RaaP, and then publish what they have encoded. That would

then make it possible for anyone creating an end-user focussed application that

needs to be able to make decisions on the basis of the legislation to delegate

the job of answering the legal questions to the RaaP server, and simply show

18Ho-Pun Lam and Guido Governatori, The making of SPINdle (Springer 2009).

69



Figure 6.2: RaaP’s Graph Visualization Interface.

the user the results.

The interface to RaaP is more user friendly than that of a programming

language, but is not yet what someone might call straightforward. An example

of the rulebrowsing interfaces is shown at Figure 6.1. It does include some

unique features designed to ease the work of the knowledge engineer, including

the ability to view a graph representation of how the rules in the system relate

to one another, and navigate the rules using that visual interface. An example

of that graph representation is shown at Figure 6.2.

6.2.5 Docassemble

Docassemble is an open-source software developed by Jonathan Pyle.19 Re-

markably, Pyle is a lawyer and computer programmer who works for Philade-

phia Legal Assistance, a pro bono legal organization. Pyle wrote Docassemble

to assist him in his own work attempting to develop web based interviews for

the generation of legal documents more efficiently.

The motivation for Docassemble was to generate a tool that could gather

as a much information as possible about how to build a web interview from

19Jonathan Pyle, Docassemble (https://docassemble.org, Accessed: January 25, 2019).

70

https://docassemble.org


Figure 6.3: An interview created in Docassemble.

the annotations that are used for document assembly. In this way it is possible

to have the document be the source code for your interview. An image of an

interview generated in Docassemble is included at Figure 6.3.

Docassemble is not advertised as declarative logic programming tool. It

is included in this survey because the way that Docassemble has been imple-

mented allows for something that approximates declarative logic programming.

Docassemble operates with the user providing the software with an “inter-

view” file, written in the YAML markup language. The interview file contains

a number of “blocks”, and each block defines a question, a piece of code, or

another configuration for the interview. Docassemble evaluates these interview

blocks idempotently. Any time Docassemble’s code would be forced to stop

because it encounters a variable that has not been previously defined, instead

of displaying an error and stopping, it treats that variable as though it was

another field to fill in the document, and searches the interview to see if there

is a code block or a question block that might give it the answer for what that

71



variable should be. If it can find one, it asks that question, or runs that code,

and starts again at the beginning.

This idempotent design means that “rules” can be implemented as “code

blocks” in a Docassemble interview. The way in which the software searches

for blocks of code that can fill in the blanks is analogous to the way a logic pro-

gramming language reasoner uses backward-chaining to find a rule that might

trigger the condition it is looking for. In Docassemble the rules themselves are

written as small blocks of generalized Python code.

It is therefore possible to implement written legal rules in a quasi-declarative

logic programming way by using the Docassemble configuration language,

which is a declarative configuration language. This method has its limits, and

while it would be possible to integrate Docassemble with a true rules-based

reasoning engine, that has not yet happened.

Despite the fact Docassemble has existed for only a few years, it has seen

significant adoption. Two annual user conferences for Docassemble users have

been held, at the time of writing. The American Bar Association in January

of 2019 released a list of the top 20 web tools for lawyers.20 Docassemble was

on that list, and two of the other 19 were pieces of software developed using

Docassemble. In 2019, the Legal Services Corporation, a funding body for pro

bono civil law organizations in the United States, has advised funded orga-

nizations seeking Technology Initiative Grants that they should be seriously

considering using Docassemble for their projects.21

Because Docassemble provides the user with the ability to include arbitrary

Python code in their interview, almost anything that can be done with the

Python programming language is possible to achieve in Docassemble. How-

ever, Docassemble provides no features beyond the ability to write and execute

Python code that would facilitate defeasibility, explainability, temporal rea-

soning, or uncertainty.

Docassemble’s strengths as a tool for encoding legal rules is in its extensibil-

20Stephen Rynkiewicz, Best Web Tools of 2018 (http://www.abajournal.com/magazine/
article/best legal apps 2018/, Accessed: July 25, 2019).

21Legal Services Corporation, Technology Initiative Grant Program (https://www.lsc.
gov/grants-grantee-resources/our-grant-programs/tig, Accessed: July 25, 2019).

72

http://www.abajournal.com/magazine/article/best_legal_apps_2018/
http://www.abajournal.com/magazine/article/best_legal_apps_2018/
https://www.lsc.gov/grants-grantee-resources/our-grant-programs/tig
https://www.lsc.gov/grants-grantee-resources/our-grant-programs/tig


ity, its affordability, and in its ability to very efficiently generate a high-quality

user interface for the desired application.

6.2.6 DataLex

DataLex is an offering of the Australiasian Legal Information Institute.22 It is

a web-based version of a text-based tool developed in the 80s, very much as

Richard Susskind anticipated in his text Expert Systems in Law.23

DataLex provides two interfaces, one a more fully-featured interface for

developing knowledge bases which is available on approval of a request for

access and is licensed only for non-profit and educational use. A second, limited

version provides a single window into which DataLex code can be written, and

allows the user to run consultations, or perform two types of debugging tests

on that code. That is the interface that was reviewed for this survey.

DataLex allows you to mark one or more of the rules in your knowledge base

as a “goal” rule. When you run a consultation using the code you are taken to

a text-chat style interface where you are asked questions one at a time, in much

the format anticipated by Richard Susskind. For boolean criteria, the possible

answers are “yes,” “no”, and “uncertain”, indicating that by default DataLex

operates with uncertainty. But unlike Susskind’s specification, DataLex is

capable of dealing with numerical values, dates, strings of text, and other

forms of answers.

When the rules are formed in DataLex, they are formed using a controlled

natural language that allows DataLex to use that formulation to generate

questions, answers, and explanations. As an example of how this works, Listing

6.1 shows the code that was used to generate the conversation that appears in

Figure 6.4.

Listing 6.1: Code as entered into DataLex tool.

1 GOAL RULE Sect i on 1 o f the Rules PROVIDES
2 s e c t i o n 1 a p p l i e s ONLY IF
3 s e c t i o n 1( a ) a p p l i e s OR
4 s e c t i o n 1(b) a p p l i e s

22Australasion Legal Informatmon Institute, DataLex (http://austlii.community/foswiki/
DataLex/, Accessed: July 25, 2019).

23Susskind, Expert systems in law: a jurisprudential inquiry (see n. 3).

73

http://austlii.community/foswiki/DataLex/
http://austlii.community/foswiki/DataLex/


Figure 6.4: An interactive consultation generated by DataLex.

We can see that DataLex has extended the basic structure of the rule in

declarative logic programming by requiring the user to specify the rule’s prove-

nance (e.g. “Section 1 of the Rules”), before providing the rule’s conclusion

(e.g. “section 1 applies”). This is designed to facilitate explanations.

Similar to OPA, DataLex is able to generate the phrases “section 1 does

not apply” and “does section 1 apply” from the phrase “section 1 applies.”

However, if the automatic translations are inadequate, again like OPA, it is

possible to correct them specifically. The tool also has the ability to include

links to source materials within the natural language elements of the rules,

making it possible to have a certain section of legislation link to a web resource

74



for that legislation.

DataLex also implements PANNDA, which is a case based reasoning tool,

allowing the user to specify a set of example cases and receive an explanation

for whether or not a given proposition is true based on the similarity of the

user’s fact scenario to the propositions listed as having been true in those

cases.

Where DataLex excels is the code is in a controlled natural language that

is very intuitive for a legal expert to read, and the fact that a sophisticated

user interface can be generated for a specific application merely by typing the

word “GOAL” in front of one of the legal provisions.

Where DataLex falls short of the other tools listed is that it features only

propositional logic. This makes it difficult to model scenarios that involve mul-

tiple instances of a type of object, or require determining whether something

is true for any or all of those individual instances.

Another place that DataLex is slightly less sophisticated than some of the

other tools is how it deals with nested conjunctions and disjunctions. Where

for example OPA will allow you to specify multiple nested conjunctions and

disjunctions in a single rule, DataLex seems to allow for only one. Given that

a single section of legislative code may have nested conjunctions or disjunc-

tions without the use of numbered subsections, it might then prove difficult in

DataLex appropriately set out the provenance of the nested lists.

This restriction may be to ensure that each conjunction or disjunction has

a name that can be used to describe it when it is true or false, making it easier

to display explanations for conclusions. If that suspicion is correct, the benefit

comes with the cost of less isomorphism in how the legislation is encoded.

6.3 Summary of Available Options

A summary of the products described above indicating the features of those

products that are considered relative strengths is set out in Table 6.1.

A few caveats are worth noting. ErgoAI, Neota Logic, and Oracle Policy

Automation all have different levels of cost associated with their use, varying at

75



(* indicates commercial) P
ri

ce

U
n
ce

rt
ai

n
ty

E
x
p
la

n
at

io
n
s

C
as

e-
B

as
ed

R
ea

so
n
in

g

T
em

p
or

al
R

ea
so

n
in

g

D
ef

ea
si

b
il
it

y

E
as

e
of

U
se

ErgoAI* X X
ErgoLite X X

Neota Logic* X X X
Oracle Policy Automation* X X X X

Regulation as a Platform X X X
Docassemble X

DataLex X X X X X

Table 6.1: Summary of available DLP tools and their features

times by degrees of magnitude. But none has a price so low that it wouldn’t be

considered a disincentive to adoption among people operating in the pro bono

legal services space. RaaP is listed as having an advantage on price because

it is currently free to use. It is not, however, open source software, and its

availability may change. The same is true of DataLex, which is not open-

source, but is currently licensed at no cost for non-profit and educational use.

The gold standard for price is permanently open source and free, a standard

met only by Docassemble and ErgoLite.

With regard to uncertainty, some of the tools listed as not having this

feature do allow for reasoning using three-valued logic, but either this doesn’t

happen by default, requires extra steps, or is initially configured for a different

purpose. For example, ErgoAI and ErgoLite use truth values of true, false, and

undefined, but undefined in this context refers to the inability of the reasoner

to determine the truth value of the question, not to the idea that there is some

uncertainty as to the facts that might prove it.

76



6.4 What is Missing?

The obvious conclusion from Table 6.1 is that there is no one product that “has

it all.” Particularly noteworthy are the many features that are not available

in any open-source product. None of the open source products have expla-

nations as a built-in feature. Not even ErgoLite, the open source version of

ErgoAI, includes a functioning explanation system.24 It has been noted that

implementing justifications in modern DLP tools that use tabling to speed up

reasoning time is a “non-trivial” task.25 However, all the commercial products

surveyed include an explanation feature, reflecting how critical it is both to

providing a tool that will be trusted by end users, and as a debugging tool

during development.26

None of the open source tools have temporal reasoning features built in, or

can claim ease-of-use.27

The product with the most of these features is DataLex, but DataLex is

restrained in that it may not be available for commercial use at all, and it does

not allow the user to express rules in terms of predicate logic.

From the perspective of automating legal reasoning, the ideal tool with all

of the qualities described in the previous Chapter does not yet exist.

6.5 What Should We Build?

People interested in developing tools for the automation of legal reasoning

using DLP ought to focus their efforts in those places where the technological

solutions are known, and it is realistic to make progress.

24ErgoLite is built on top of a Prolog-like langauge called XSB. XSB includes a module
entitled ’justify’ which seems intended to provide explanations for answers generated in
XSB. The XSB justify module is not referred to in the ErgoLite documentation, and I was
unable to find a way to take advantage of it from within ErgoLite.

25Pemmasani et al. (see n. 7).
26ibid.
27Researchers at the University of Luxembourg ran a tutorial at ICAIL 2019 demonstrat-

ing the use of NAI (University of Luxumbourg, NAI: Normative Reasoner [http://nai.uni.lu,
Accessed: July 25, 2019]), a normative declarative logic coding tool designed for ease of use
for lawyers. It is not included in this survey because it does not qualify as a “mature” open
source tool. It utilizes an interface in which logical representations of rules are generated
by annotating the text of the actual rule, which is a promising approach for ease-of-use.

77

http://nai.uni.lu


Ease of Use and price go to the accessibility of the tool. Tools which are

not used will not help, and so accessibility features should be primary in all

future work. As can be seen in the case of DataLex, where the tool is free,

but not available for commercial use, licensing is also an accessibility concern,

and so open source should be the gold standard.

If we look only at tools in Table 6.1 that are both open source and easy to

use, there are none. The target for developers of DLP tools for legal reasoning,

therefore, should be anything that is easy to use, open source, and has at least

one of the other features listed.

6.6 Conclusion

While high quality tools exist, the ideal tools required for using DLP for au-

tomating legal reasoning do not. For the reasons set out in Chapter 4, work

going forward must focus on ease of use. In order to assure accessibility, the

ideal tools will also be open source and free to use.

78



Chapter 7

User-Friendly Legal Case-Based
Reasoning

7.1 Introduction

The author proposed a project to the Amercian Bar Association Center for

Innovation to develop a tool that would seek to create an example of one of

the tools argued for in Chapter 6. The project proposed was to build a tool

that was open source, easy for lawyers to use, and featured both case-based

reasoning and explanations.

That application was accepted, and was generously funded by Canadian

legal practice management software vendor Clio.1

The project was a combination of two open source projects, Docassmeble

and OpenLCBR. Docassemble is described in Chapter 6.

7.2 OpenLCBR

Prior to making the application, the author contacted the authors of IBP to

ask about the availability of open-source implementations of that algorithm.2

IBP was selected for two primary reasons. First, it uses a terminology and

a data structure that is intuitive and familiar to lawyers, which would make

it more intuitive to lawyer-users, and which would make the output of the

tool analogous to how legal arguments are frequently expressed. Second, it

1Themis Solutions Inc, Clio (http://www.clio.com, Accessed: July 28, 2019).
2Kevin D Ashley and Stefanie Brüninghaus, “Automatically classifying case texts and

predicting outcomes” (2009) 17(2) Artificial Intelligence and Law 125.

79

http://www.clio.com


had shown remarkable success in developing high quality predictions. The

original paper reported 91% accuracy and 100% coverage with their trade

secret database.3

At the time, attempts to find an open-source implementation of IBP, or

any other legal case-based reasoning algorithm, were fruitless. At my request

the authors of IBP consented to the development and release of an open-source

implementation of their algorithm. Some time later, OpenLCBR was devel-

oped and released by Matthias Grabmair.4 OpenLCBR is a re-implementation

of IBP in the Python programming language.

7.3 The IBP Algorithm In Brief

IBP is an algorithm that works with a data structure which includes legally

relevant factors, issues, and cases. Factors are those facts that may or may

not be true about a given case, along with the side of the argument they

favour if they are true. In IBP, the side of the argument is described as being

the plaintiff’s side, or the defendant’s side. The IBP algorithm works on a

database generated by an expert, who determines what the relevant factors

are, and which side they favour.

OpenLCBR includes a demonstration database, and here are some exam-

ples of factors in that database:

1. “plaintiff disclosed its product information to outsiders” — favours De-

fendant

2. “plaintiff’s disclosures to outsiders were subject to confidentiality restric-

tions” - favours Plaintiff

The IBP algorithm also requires data about the issues relevant to the

open-textured legal question. The issues are set out in a tree. The root of

the tree is the main legal question to be answered. The branches of each node

are the conjunctive or disjunctive issues, which, if predicted, are sufficient

3Ashley and Brüninghaus (see n. 2).
4Matthias Grabmair, OpenLCBR (https://github.com/mgrabmair/openlcbr).

80

https://github.com/mgrabmair/openlcbr


to predict the node issue. Each issue node must indicate whether there is a

presumption that applies in the absence of relevant factors, and if so, whether

the presumption is for the plaintiff or the defendant.

For leaf issue nodes (issues with no sub-issues), the algorithm uses a list

of the factors that are relevant to deciding that issue. The structure of the

issue tree, the presumptive outcomes if any, whether sub-issues are conjoint or

disjoint, and the factors relevant to each issue must all be set out by a human

expert.

Below is a representation of the issue structure included in the OpenLCBR

package (with relevant factors excluded for brevity).

1. There was a misappropriation of a trade secret if (all of)

(a) The information was a trade secret, which is true if (all of)

i. The information was valuable, which will be found for the plain-

tiff if unraised and depends on the following factors...

ii. The information was kept secret, which will be found for the

plaintiff if unraised and depends on the following factors...

(b) The information was misappropriated, which will be found for the

plaintiff if unraised, and is true if (any of)

i. There was a breach of confidentiality by the defendant, which

is true if (all of)

A. The information was used, which is found for the plaintiff

if unraised, and depends on the following factors...

B. There was a relationship of confidentiality, which is found

for the plaintiff if unraised, and depends on the following

factors...

ii. There was improper means used by the defendants, which de-

pends on the following factors...

The expert may also specify a list of factors called “knock-out” factors.

These are factors are used to justify ignoring precedential cases that do not

81



share those factors with the test case. In the database provided with OpenL-

CBR there are two knock-out factors. The first is “whether the plaintiff dis-

closed the alleged trade secret in a public forum”, and the second is “whether

the plaintiff completely failed to protect their trade secret.”

Lastly, the IBP algorithm requires the expert to specify a database of cases.

Each case consists of two pieces of data used by the algorithm, who won on

the base issue (defined as either plaintiff or defendant), and the list of factors

that were present in that case.

The algorithm that IBP uses in order to predict the outcome of a test case,

which is specified as a list of factors, starts at the root of the issue tree. It

then goes through the issue tree following this recursive 7-step procedure:

1. If the current issue was not raised, and there is no default, the algorithm

“abstains” with regard to that issue. If the current issue was not raised,

and there is a default, it predicts the default. “Raised” means either a

relevant factor for the current issue exists in the test case, or the same

is true of a sub-issue.

2. If the current issue was raised and has sub-issues all of which must be

true, it repeats the process from 1 for each sub-issue, and predicts for the

plaintiff only if the prediction for all the sub-issues is also the plaintiff.

It predicts for the defendant if the defendant is predicted for any of the

sub-issues. If it abstains from predicting any sub-issues, it abstains from

predicting this issue.

3. If the current issue was raised and has sub-issues one of which must be

true, it repeats the process from 1 for each sub-issue, and predicts for the

plaintiff if any sub-issue is predicted for the plaintiff. If none is predicted

for the plaintiff but any are abstained, this issue is also abstained. And

if they are all predicted for the defendant, this issue is predicted for the

defendant.

4. If the current issue has no sub-issues, and all of the factors relevant to

that issue are to the favour of the same party, the prediction is for that

82



party.

5. If the current issue has no sub-issues, and there are factors relevant to

that issue going in both directions, the software collects all of the cases

which share any of the factors of the test case. If it finds any precedents,

and all of those cases were decided for the same party, that party is the

prediction for this issue. If it finds precedents, but not all those cases

were decided for the same party, it checks to see if any of the cases

decided for the defendant can be explained away because they do not

have the same knock-out factors as in the test case. If any cannot be

explained away, it predicts for the defendant. If they can all be explained

away, it predicts for the plaintiff.

6. If the current issue has no sub-issues, and there are factors relevant to

that issue going in both directions, and there are no precedents which

share all of the factors in the test case, then it will search for cases with

all but one of the relevant factors favouring the plaintiff, dropping each

factor in turn. For each of those sets of factors, it re-does the analysis

in 5 as if those were the only factors in the test case. If the result of all

of those analyses is a prediction for the plaintiff, then a prediction for

the plaintiff is made for the current issue. If the result of any of those

predictions if for the defendant, the current issue is abstained.

7. If it is a raised issue, with factors favouring the plaintiff, but there are no

precedential cases even after dropping one factor at a time, the prediction

for the current issue is abstained.

7.4 Docassemble-OpenLCBR

The objectives for the Docassemble-OpenLCBR project were as follows:

1. Develop software that will allow OpenLCBR to be used from within

Docassemble interviews.

83



2. Develop a Docassemble interview (a type of web application) that would

allow a non-technical user to generate an IBP database for use in OpenL-

CBR.

3. Develop a tool that will allow a person generating an IBP database

to perform leave-one-out testing on that database to test its predictive

strength.

4. Using the tools in 2 and 3, generate an IBP database capable of predict-

ing an open-textured legal issue in an access-to-justice area of law, and

capable of explaining that prediction.

5. Implement the database in 4 in a Docassemble interview which provides

legal advice about a legal issue in an access-to-justice area of law, and

explains that advice.

7.5 Results

All of the objectives of the experiment were met. The source code for Docassemble-

OpenLCBR was released under the MIT open-source license, and is available

at https://github.com/Gauntlet173/Docassemble-OpenLCBR.5

As a part of that effort to make the tools as user friendly as possible, I refer

to the combination of the IBP algorithm and a database as described above as

a “reasoner”. As such, the objective 1 above was to generate the software that

allowed a “reasoner” to be used in Docassemble. Objective 2 was to create

a “reasoner builder” web application. Objective 3 was to create a “reasoner

tester” web application.

Tools for generating IBP “reasoners” and for testing them were developed

as Docassemble interviews. An example of how these reasons generated by

Docassemble-OpenLCBR are displayed to the user in the resulting web tool is

provided in Figure 7.1.

5Jason Morris, Docassemble-OpenLCBR (https : / / github . com / Gauntlet173 /
Docassemble-OpenLCBR,Accessed:July25,2019).

84

https://github.com/Gauntlet173/Docassemble-OpenLCBR, Accessed: July 25, 2019
https://github.com/Gauntlet173/Docassemble-OpenLCBR, Accessed: July 25, 2019


Figure 7.1: Expandable reasons for a prediction are displayed to the user in
docassemble-openlcbr.

The tools were then used to generate an IBP reasoner capable of predicting

whether two individuals are in a relationship of interdependence as that term

is defined in the Adult Interdependent Relationships Act, SA 2002, c A-4.5

in Alberta. That reasoner, in turn, was used in developing a Docassemble

interview designed to advise whether two people are common law partners

under the terms of that Act.

An image of the screen in which the list of factors is presented is included

as Figure 7.2 and an image of the screen used to edit one of the factors is

included as Figure 7.3.

An image showing how the issue review screen is displayed to the user is

included as Figure 7.4.

Due time time limitations, the development of the reasoner was limited to

a database of 50 promising cases. Of those, 28 were eventually encoded in

the reasoner, the remainder having been unsuitable for various reasons. After

the data entry process was completed, it was necessary to do some analysis of

the output of the tool to determine its performance, and tune the reasoner to

improve it. After redefining several factors by changing the side for which they

were relevant, and setting appropriate knock-out factors, the results shown in

Table 7.1 were obtained.

85



Figure 7.2: How the list of factors are displayed to the user in docassemble-
openlcbr.

Figure 7.3: How the details of a factor are displayed to the user in docassemble-
openlcbr.

86



Figure 7.4: How the details of an issue are displayed to the user in docassemble-
openlcbr.

Cases 28
Abstentions 4
Predictions 24

Correct Predictions 22
False Positives 1

False Negatives 1
Coverage (predictions/cases) 86%

Accuracy (correct predictions/predictions) 92%

Table 7.1: Results of Leave-One-Out Testing on Relationship of Interdepen-
dence Reasoner

87



The total amount of time spent developing this reasoner was less than 30

hours. Again, that is unlikely to be generalizable across different legal issues,

or different subject-matter experts, and will scale with the size of the database

and the complexity of the legal issue. However, it does give some impression

as to the relative investment of subject-matter expert time required in order to

generate a case-based reasoning tool of relatively strong accuracy as measured

in leave-one-out testing.6

As mentioned in Chapter 6, Docassemble requires that deductive elements

of the legislation are encoded in a series of blocks of code in the Docassemble

configuration langauge. An example of a code block for implementing the

other elements of the Act is included at listing 7.5

Listing 7.1: Example of Python Code Block in Docassemble Interview

1
2 −−−
3 code : |
4 i f f i r s t p a r t y . h a s o t h e r a i p or second party . h a s o t h e r a i p :
5 a i p i n v a l i d n o m u l t i p l e s = True
6 e l s e :
7 a i p i n v a l i d n o m u l t i p l e s = False
8 −−−

7.6 Temporal Reasoning in Procedural Lan-

guages

A challenge encountered in encoding this legislation was the fact that there are

two different ways of initiating a common law relationship under the legislation.

The first is a cohabitation of not less than three years, where the parties do not

have children, and the second is a cohabitation of “some permanence” in the

case that they do.7 The relationship begins at the end of the required period

of time. Knowing when exactly the adult interdependent partnership begins

is necessary in order to determine whether any terminating events happened

6No claim is made with regard to the actual strength of this reasoner. Leave-one-out
testing is less than ideal for measuring prediction performance, which is better done against
data that was not used in training the reasoner, or by comparison to human predictions.

7I might have treated “some permanence” as an open-textured phrase, but impermanence
of the relationship is so seldom found as a factor in the presence of a child of the relationship,
that I decided instead to arbitrarily treat one month as sufficient for “some permanence.’

88



before or after that time. And determining the start date is complicated in

that a couple who began cohabiting without a child and then have a child

may become partners immediately upon the date of the child’s birth. Also,

the cohabitation may have been interrupted by a separation, meaning that for

purposes of the Act, the cohabitation is not deemed to have begun until the

separation ended.

All of this is very typical of attempting to encode the provisions of legisla-

tion that deal with sequences of events over time. These sorts of problems are

why temporal reasoning is an important feature of DLP tools for automating

legal reasoning.

Docassemble does not have temporal reasoning capabilities built in, and so

it was necessary to implement a procedural algorithm for determining when

an adult interdependent partnership began, and whether, after that date it

had ever been terminated.

The process of developing, coding, and testing that algorithm took nearly

two business days. As an illustration of the complexity involved in dealing

with temporal reasoning without specific features to support that work, an

excerpt of the code used to do this is included as Listing 7.6.

Listing 7.2: Excerpt of Python code for Calculating the Start of an AIP

1 # Go through a l l the events
2 f o r e in events :
3 i f i s c o h a b s t a r t ( e ) :
4 # Birth , then cohab i ta t ion , one month from s t a r t .
5 i f c h i l d and i s a f t e r b i r th and more than month ago ( e [ ’

date ’ ] , c h i l d d a t e ) :
6 i f not ha s t e rm ina t i on w i th in one month a f t e r ( e [ ’ date

’ ] ) :
7 a i p s t a r t d a t e s . append ( e [ ’ date ’ ] + one month )
8
9 # Cohabitat ion , then b i r th in l e s s than 35 months ,

10 # one month from b i r th .
11 e l i f c h i l d and i s w i t h i n 3 5 m o n t h s o f b i r t h ( e [ ’ date ’ ] ,

c h i l d d a t e ) :
12 # Fir s t , i f the cohab i t a t i on l a s t e d 3 years ,
13 # i t might be the s t a r t date .
14 i f i s m o r e t h a n t h r e e y e a r s a g o ( e [ ’ date ’ ] ) :
15 i f not h a s t e r m i n a t i o n w i t h i n t h r e e y e a r s a f t e r ( e

[ ’ date ’ ] ) :
16 a i p s t a r t d a t e s . append ( e [ ’ date ’ ] + t h r e e y e a r s

)
17

89



18 # Second , i f the re was no terminat ion with in 1 month
o f

19 # the bi r th , the b i r t h might be the s t a r t date .
20 i f i s more than one month ago ( e [ ’ date ’ ] ) :
21 i f not ha s t e rm ina t i on w i th in one month a f t e r (

c h i l d d a t e ) :
22 a i p s t a r t d a t e s . append ( c h i l d d a t e + one month )
23
24 # No Birth be f o r e Or with in 35 months o f cohab s ta r t ,
25 # three years from s t a r t .
26 e l s e :
27 i f i s m o r e t h a n t h r e e y e a r s a g o ( e [ ’ date ’ ] ) :
28 i f not h a s t e r m i n a t i o n w i t h i n t h r e e y e a r s a f t e r ( e

[ ’ date ’ ] ) :
29 a i p s t a r t d a t e s . append ( e [ ’ date ’ ] + t h r e e y e a r s

)
30
31
32 # make the l i s t o f a ip te rminat ion dates
33 f o r e in events :
34 i f i s t e r m i n a t i o n ( e ) :
35 i f i s more than one yea r ago ( e [ ’ date ’ ] ) :
36 i f not h a s r e c o n c i l i a t i o n w i t h i n o n e y e a r a f t e r ( e [ ’

date ’ ] ) :
37 a ip end da t e s . append ( e [ ’ date ’ ] + one year )
38
39 re turn e a r l i e s t u n t e r m i n a t e d a i p s t a r t ( a i p s t a r t d a t e s ,

a i p end da t e s )

Had Docassemble offered a DLP language with temporal reasoning features

such as pre-defined meanings for dates, durations, qualities such as “before”,

“during”, and “after”, and the ability to convert a series of events into a truth

function over time, the process would have been significantly easier.

7.7 Impressions

Based on my anecdotal experience of using the tools created as part of the

Docassemble-OpenLCBR project, I belive they are drastically easier for lawyers

to use and understand than most open source DLP tools available to lawyers

today. It is not possible to compare Docassemble-OpenLCBR to the usability

of other open-source case-based reasoning tools, because there are none in the

survey in Chatper 6. In fact, Docassemble-openLCBR may be the first.

I submit that this experiment gives reason to believe that there is an oppor-

tunity to make case-based reasoning something that lawyers are comfortable

90



using.

Similarly, while this experiment was not designed to measure the quality of

the IBP algorithm, this reasoner, or CBR tools generally, it does provide some

evidence that CBR has potential for expanding the realm of legal services that

can be automated to include more open-textured matters.

This experiment also shows that it is possible to generate explanations

which are intelligible to human users for the predictions that arise from an

IBP algorithm or other case-based reasoning algorithms.

91



Chapter 8

Conclusion

8.1 Summary

Declarative Language Programming technologies have been around for nearly

four decades, and were immediately recognized as having significant utility in

automating legal reasoning with regard to written legal rules.

The legal academic literature on expert systems in law reveals a longstand-

ing skepticism about the viability of DLP tools. Of the many concerns stated,

most can be resolved by conceptualizing of the encodings differently, and by

using the features of modern DLP tools. The remaining hard problems are

open-textured concepts, for which case-based reasoning provides a partial solu-

tion, and which do not affect all applications of DLP tools, and the knowledge

acquisition bottleneck problem.

This dissertation argues that the solution to the knowledge acquisition

bottleneck problem is to focus on improving the ease of use of DLP tools

until we have something that is analogous to spreadsheets for legal reasoning.

Tools such as Oracle Policy Automation show that it is possible to create user-

friendly interfaces that use metaphors that are familiar to legal subject matter

experts.

When viewed from an access to justice perspective, many of the concerns

commonly expressed fade in importance compared to the potential benefits to

people for whom the next best alternative is nothing.

The most important qualities for tools that bring the power of DLP to

automated legal reasoning are affordability, uncertainty, defeasibility, ease of

92



use, temporal reasoning, case-based reasoning, and explainability. A review

of the tools currently available shows that most of these features do not exist

in an open source alternative, and none of the open source alternatives that

exist feature ease of use. While explanation remains a difficult feature to

implement, there are no technological obstacles to tools that feature all of

these capabilities.

People who wish to develop technology to improve automated legal rea-

soning should focus on building DLP tools that are open source and free, are

easy enough for lawyers to learn and use, and have at least one of the other

technological features listed. Because defeasibility is already implemented in

the open source tool ErgoLite, an easy-to-use open source tool implementing

defeasible reasoning would seem like a realistic next step.

8.2 The Question of Scale

Professor Ashley’s text suggests that DLP technologies for human beings,

which are designed to allow one person to do one thing at a time, are inade-

quate to the scale of the problem of automating legal services. In discussing

why expert systems are not the “killer app” for the legal domain, Ashley argues

“... text analytics cannot solve this particular knowledge acquisition bottle-

neck. While the new text analytics can extract certain kinds of semantic legal

information from text, they are not yet able to extract expert system rules.”1

Reviewers of this dissertation, too, have also asked whether the solution

proposed to the knowledge acquisition bottleneck can ”scale.” There are three

answers to this criticism.

First, this dissertation does not attempt to answer the question of how

we can digitize the entire statute book. It is asking whether and how we can

increase the efficiency of the provision of legal services using DLP.

Second, high-quality DLP tools for encoding written legal rules aimed at

human beings encoding one rule at a time are a necessary first step toward

our best hope of automation on that larger scale.

1Ashley (see n. 5) at p 11.

93



Machine learning has made amazing strides, particularly in the task of

translation. The task of taking written legal rules in a natural language and

encoding them can certainly be thought of as a translation task. There is

every reason to believe those same technologies will be able to do a great deal

of this work for us at some point in the future.

But machine learning requires data. For translation, it requires human

translations between the source and target language. The translation data

needs to be high-quality, and it needs to be voluminous. For translating be-

tween written legal rules and declarative logic code there is no viable database,

and no obvious route to getting one.

That is, no obvious route “yet.” Giving human beings a tool that makes

encoding written legal rules worthwhile is our best hope of creating a database

of sufficient size and quality to take advantage of machine learning, and achieve

the scale of digitization to which Ashley and others aspire.

Third, even if machine learning were to progress to the point that it could

generate semantically-meaningful representations of written legal rules and

use them, unless those representations can be shared with human beings, and

tested for adherence to their expectations, they will not be trusted. Which

means that tools such as this disseratation argues for will be necessary to have

people learn what the computer thinks the rule means, if not the other way

around.

In that sense, regardless of the progress on other fronts, human-focused

tools for working with DLP encodings of written legal rules are a necessary

step toward practical solutions at scale.

8.3 Future Work

We make a number of assumptions which, with further work, it would be

possible to objectively test.

There is a presumption that lawyers will find it easier to encode written

legal rules in DLP tools than in procedural tools. There is a presumption

that encoding and maintaining the encoding of written legal rules is simplified

94



by the use of declarative tools. There is a presumption that interfaces which

appear similar to statute law, as opposed to alternatives like drag-and-drop

language interfaces, text annotation, or flowcharts, will be easier for lawyers

to learn to use.

If DLP tools are to have the beneficial effect in automated legal reasoning

that they are capable of having, unrelenting focus must be placed on ease of

use. It is worth noting that because ease of use and ease of learning are so

closely linked, legal education institutions are ideally placed to be able to do

this sort of research.

95



References

A2J Author (https://www.a2jauthor.org/, Accessed: July 25, 2019).
Accord Project, Accord Project (https://www.accordproject.org/, Accessed:

December 1, 2017).
Ashley KD, Artificial Intelligence and Legal Analytics (Cambridge University

Press June 2017).
Ashley KD and Brüninghaus S, “Automatically classifying case texts and pre-

dicting outcomes” (2009) 17(2) Artificial Intelligence and Law 125.
Australasion Legal Informatmon Institute, DataLex (http://austlii.community/

foswiki/DataLex/, Accessed: July 25, 2019).
Berman DH and Hafner CD, “Indeterminacy: A challenge to logic-based mod-

els of legal reasoning” (1987) 3(1) International Review of Law, Computers
& Technology 1.

Berry B and McLintock A, “Accountants and financial modelling” (1991) 4(4)
OR Insight 11.

Borrelli MA, “Prolog and the law: Using expert systems to perform legal anal-
ysis in the uk” (1989) 3 Software LJ 687.

Capper P and Susskind RE, Latent Damage Law: The Expert System:[a Study
of Computers in Legal Problem Solving] (Butterworths 1988).

Coherent Knowledge, Ergo Pricing (https://coherentknowledge.com/pricing/,
Accessed: July 25, 2019).

— ErgoAI (https://coherentknowledge.com/, Accessed: July 25, 2019).
— Financial Domain Application (https://coherentknowledge.com/financial-

domain-application/, Accessed: July 25, 2019).
Colarusso D, QnA Markup (https://www.qnamarkup.org/, Accessed: July 25,

2019).
Commonwealth Scientific and Industrial Research Organization, Data61 Digi-

tal Legislation & Regulation as a Platform (https://digital-legislation.net/,
Accessed: July 25, 2019).

Drools (https://www.drools.org/, Accessed: July 25, 2019).
Goldstein J, How The Electronic Spreadsheet Revolutionized Business “All

Things Considered” (https://www.npr.org/2015/02/27/389585340/how-
the-electronic-spreadsheet-revolutionized-business).

Grabmair M, OpenLCBR (https://github.com/mgrabmair/openlcbr).
Grad B, “The Creation and the Demise of VisiCalc” (2007) 29(3) IEEE Annals

of the History of Computing 20.

96

https://www.a2jauthor.org/
https://www.accordproject.org/
http://austlii.community/foswiki/DataLex/
http://austlii.community/foswiki/DataLex/
https://coherentknowledge.com/pricing/
https://coherentknowledge.com/
https://coherentknowledge.com/financial-domain-application/
https://coherentknowledge.com/financial-domain-application/
https://www.qnamarkup.org/
https://digital-legislation.net/
https://www.drools.org/
https://www.npr.org/2015/02/27/389585340/how-the-electronic-spreadsheet-revolutionized-business
https://www.npr.org/2015/02/27/389585340/how-the-electronic-spreadsheet-revolutionized-business
https://github.com/mgrabmair/openlcbr


Hutchison C, The Fundamentals of Statutory Interpretation (LexisNexis Canada
2018).

Idelberger F et al., Evaluation of logic-based smart contracts for blockchain
systems [2016] (In: Alferes J, Bertossi L, Governatori G. Fodor P, Roman D
(eds), Rule Technologies. Research Tools, and Applications, RuleML 2016.
Lecture Notes in Computer Science, vol 9718, Springer, Cham.).

InRule Technology, Inc, InRule (https://www.inrule.com/, Accessed: July 25,
2019).

interProlog Consulting, Prolog Studio (http://interprolog.com/interprolog-
studio/, Accessed: July 25, 2019).

Kifer M, Defeasible Reasoning in Ergo (https://docs.google.com/document/d/
1aPUUUzkBgtdQ8PMvyIRGgA - qGYRowbqZBeaUBUXFH3k / edit, Ac-
cessed: July 25, 2019).

Lam H and Governatori G, The making of SPINdle (Springer 2009).
Legal Services Corporation, Technology Initiative Grant Program (https://

www.lsc.gov/grants-grantee-resources/our-grant-programs/tig, Accessed:
July 25, 2019).

Leith P, “Fundamental Errors in Legal Logic Programming” (1986) 29(6) The
Computer Journal 545.

Leith P, “The Emperor’s New Expert System” (1987) 50(1) The Modern Law
Review 128.

— “The rise and fall of the legal expert system” (2016) 30(3) International
Review of Law, Computers & Technology 94.

Lindop C, Oracle to Acquire Hayley/Ruleburst/Softlaw for A$150m (http :
//tmt- transactions .com/oracle - to - acquire - hayleyruleburstsoftlaw- for -
a150m/, Accessed: July 25, 2019).

McCarty LT, “Reflections on “Taxman”: An Experiment in Artificial Intelli-
gence and Legal Reasoning” (1977) 90(5) Harvard Law Review 837.

— “An implementation of Eisner v. Macomber” [1995] ICAIL ’95 276.
— “How to ground a language for legal discourse in a prototypical perceptual

semantics” [2015] ICAIL ’15 89.
— “Finding the right balance in artificial intelligence and law” [2018] Research

Handbook on the Law of Artificial Intelligence 55.
Morris J, “User-Friendly Open-Source Case-Based Legal Reasoning” [2019]

Proceedings of the Seventeenth International Conference on Artificial In-
telligence and Law 270.

— Docassemble-OpenLCBR (https://github.com/Gauntlet173/Docassemble-
OpenLCBR,Accessed:July25,2019).

Neota Logic, Neota Logic (https://www.neotalogic.com/, Accessed: December
1, 2017).

— Neota Logic reveals new Client Advisory Board [] (https://www.neotalogic.
com/2019/06/03/neota- logic- reveals- new- client- advisory- board/, Ac-
cessed: July 25, 2019).

— Neota Logic: University Programs (https : //www.neotalogic . com/pro -
bono/law-schools/, Accessed: July 25, 2019).

97

https://www.inrule.com/
http://interprolog.com/interprolog-studio/
http://interprolog.com/interprolog-studio/
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://docs.google.com/document/d/1aPUUUzkBgtdQ8PMvyIRGgA-qGYRowbqZBeaUBUXFH3k/edit
https://www.lsc.gov/grants-grantee-resources/our-grant-programs/tig
https://www.lsc.gov/grants-grantee-resources/our-grant-programs/tig
http://tmt-transactions.com/oracle-to-acquire-hayleyruleburstsoftlaw-for-a150m/
http://tmt-transactions.com/oracle-to-acquire-hayleyruleburstsoftlaw-for-a150m/
http://tmt-transactions.com/oracle-to-acquire-hayleyruleburstsoftlaw-for-a150m/
https://github.com/Gauntlet173/Docassemble-OpenLCBR, Accessed: July 25, 2019
https://github.com/Gauntlet173/Docassemble-OpenLCBR, Accessed: July 25, 2019
https://www.neotalogic.com/
https://www.neotalogic.com/2019/06/03/neota-logic-reveals-new-client-advisory-board/
https://www.neotalogic.com/2019/06/03/neota-logic-reveals-new-client-advisory-board/
https://www.neotalogic.com/pro-bono/law-schools/
https://www.neotalogic.com/pro-bono/law-schools/


O’Callaghan TA, “A Hybrid Legal Expert System” (PhD thesis, 2003).
Oracle Corporation, Oracle e-Business Suite Applications Global Price List

(http://www.oracle.com/us/corporate/pricing/applications-price- list-
070574.pdf, Accessed: September 21, 2017).

Pemmasani G et al., “Online Justification for Tabled Logic Programs” [2004]
Functional and Logic Programming (Kameyama Y and Stuckey PJ eds.
24.

Popple J, A pragmatic legal expert system (Dartmouth (Ashgate) 1996).
Pyle J, Docassemble (https://docassemble.org, Accessed: January 25, 2019).
Rynkiewicz S, Best Web Tools of 2018 (http://www.abajournal.com/magazine/

article/best legal apps 2018/, Accessed: July 25, 2019).
Sergot MJ et al., “The British Nationality Act as a logic program” (1986)

29(5) Communications of the ACM 370.
Service Innovation Lab, Government of New Zealand, Better Rules for Gov-

ernment Discovery Report (https://www.digital.govt.nz/assets/Uploads/
Better-Rules- for-Government-Discovery-Report.pdf, Accessed: July 25,
2019).

Susskind RE, “Expert systems in law: A jurisprudential approach to artificial
intelligence and legal reasoning” (1986) 49(2) The modern law review 168.

— Expert systems in law: a jurisprudential inquiry (Clarendon; New York
1987).

— Tomorrow’s lawyers (Second edition, Oxford University Press 2017).
Susskind RE and Susskind D, The future of the professions (First published

in paperback, Oxford University Press 2017).
Themis Solutions Inc, Clio (http://www.clio.com, Accessed: July 28, 2019).
University of Luxumbourg, NAI: Normative Reasoner (http : / / nai . uni . lu,

Accessed: July 25, 2019).
Van Emden M and Kowalski R, “The Semantics of Predicate Logic as a Pro-

gramming Language” (1976) 23(4) Journal of the ACM (JACM) 733.
Wikipedia, Oracle Policy Automation (https://en.wikipedia.org/wiki/Oracle

Policy Automation, Accessed: July 25, 2019).

98

http://www.oracle.com/us/corporate/pricing/applications-price-list-070574.pdf
http://www.oracle.com/us/corporate/pricing/applications-price-list-070574.pdf
https://docassemble.org
http://www.abajournal.com/magazine/article/best_legal_apps_2018/
http://www.abajournal.com/magazine/article/best_legal_apps_2018/
https://www.digital.govt.nz/assets/Uploads/Better-Rules-for-Government-Discovery-Report.pdf
https://www.digital.govt.nz/assets/Uploads/Better-Rules-for-Government-Discovery-Report.pdf
http://www.clio.com
http://nai.uni.lu
https://en.wikipedia.org/wiki/Oracle_Policy_Automation
https://en.wikipedia.org/wiki/Oracle_Policy_Automation


Appendix A

Oracle Policy Automation
Encoding of Adult
Interdependent Partnership Act

99



AIP Common Law Rules.docx        7 
11/05/2018 2:28 PM 
 

 

the parties are in an Adult Interdependent Relationship if 
an adult interdependent partnership was commenced 

the parties have a valid adult interdependent partnership agreement 
or 
the parties have lived in a relationship of interdependence for a continuous period of not 

less than 3 years 
or 
the parties have lived in a relationship of interdependence of some permanence and 

there is a child of the relationship by birth or adoption. 
and 
the parties have not terminated their adult interdependent partnership 

the parties have a valid adult interdependent partnership agreement if 
ExistsScope(all instances of AIP Agreement) 

the agreement is between the two parties 
and 
the AIP agreement has not been terminated 
and 
the agreement was not induced by fraud, duress, or undue influence 
and 
the agreement was signed before today 

the date the AIP agreement was signed < CurrentDate() 
and 
ForAllScope(all instances of party to the agreement for AIP Agreement) 

the party to the agreement was not married when the agreement was signed 
and 
the party to the agreement was competent at the time the agreement was 

signed 
and 
the party to the agreement was of age or had consent 

and 
the parties were living together or intended to when the agreement was entered into 

the parties lived together in a relationship of interdependence when the 
agreement was entered into 

or 
the parties intended to live together in a relationship of interdependence when 

the agreement was entered into 

the agreement is between the two parties if 
in the case of First Party (FP) 

ExistsScope(all instances of party to the agreement for AIP Agreement, target party) 
ForScope(the person who is target party, target person) 

InstanceEquals(FP, target person) 
and 
in the case of Second Party (SP) 

ExistsScope(all instances of party to the agreement for AIP Agreement, target party) 
ForScope(the person who is target party, target person) 

InstanceEquals(SP, target person) 

the AIP agreement has been terminated if 
for at least one of all instances of party to the agreement for AIP Agreement , the party to the 

agreement got married after the agreement was signed 
or 
the agreement was terminated by something else 

the party to the agreement was married when the agreement was signed if 
forScope(the AIP agreement for the party to the agreement) 

100



AIP Common Law Rules.docx        8 
11/05/2018 2:28 PM 
 

 

ForScope(the person who is party to the agreement, testparty) 
ExistsScope(all instances of Marriage) 

testparty is a member of spouse 
and 
the date the AIP agreement was signed >= Marriage Date Start 
and 
one of 

the date the AIP agreement was signed <= Marriage Date End 
or 
the marriage is not terminated 

the party to the agreement got married after the agreement was signed if 
forScope(the AIP agreement for the party to the agreement) 

ForScope(the person who is party to the agreement, testparty) 
ExistsScope(all instances of Marriage) 

testparty is a member of spouse 
and 
Marriage Date Start > the date the AIP agreement was signed 

the party to the agreement was of age or had consent if 
the party to the agreement was of age 
or 
the party to the agreement had consent 

the party to the agreement was of age if 
ForScope(the AIP agreement for the party to the agreement, AGREEMENT) 

ForScope(the person who is party to the agreement, TRYPERSON) 
the number of years between the date the AGREEMENT was signed and the 

TRYPERSON's birth date >=18 

the party to the agreement had consent if 
ForScope(the AIP agreement for the party to the agreement, TRYAGREEMENT) 

ForScope(the person who is party to the agreement, TRYPERSON) 
the number of years between the date the TRYAGREEMENT was signed and the 

TRYPERSON's birth date >=16 
and 
the party to the agreement had the prior written consent of their guardians to 

enter into the agreement 

the parties lived together in a relationship of interdependence when the agreement was 
entered into if 
ExistsScope(all instances of cohabitation) 

ForAllScope(all instances of party to the agreement for AIP Agreement) 
ForScope(the person who is party to the agreement, agreement party) 

agreement party is a member of Parties to the Cohabitation 
and 
Cohabitation Start Date < the date the AIP agreement was signed 
and 
one of 

Cohabitation End Date is uncertain 
or 
Cohabitation End Date > the date the AIP agreement was signed 

and 
ValueAt(the date the AIP Agreement was signed,the cohabitation involves a relationship 

of interdependence) 

the parties intended to live together in a relationship of interdependence when the 
agreement was entered into if 
ExistsScope(all instances of cohabitation) 

101



AIP Common Law Rules.docx        9 
11/05/2018 2:28 PM 
 

 

ForAllScope(all instances of party to the agreement for AIP Agreement) 
ForScope(the person who is party to the agreement, agreement party) 

agreement party is a member of Parties to the Cohabitation 
and 
Cohabitation Intent Date < the date the AIP agreement was signed 
and 
one of 

Cohabitation End Date is uncertain 
or 
Cohabitation End Date > the date the AIP agreement was signed 

and 
the cohabitation was intended to involve a relationship of interdependence 

the cohabitation involves a relationship of interdependence if 
the parties to the cohabitation share one another’s lives 
and 
the parties to the cohabitation are emotionally committed to one another 
and 
the parties to the cohabitation function as an economic and domestic unit 
and 
the cohabitation does not involve an employee presuming false 
and 
the parties to the cohabitation are not married to one another presuming false 
and 
the cohabitation does not involve a related minor 

Marriage is a member of marriages in which all spouses are parties to the cohabitation if 
for each of Parties to the Cohabitation (cohab party) 

cohab party is a member of spouse 

Marriage is a member of marriages in which any spouse is a party to the cohabitation if 
for at least one of Parties to the Cohabitation (cohab party) 

cohab party is a member of spouse 

IsMemberOf(Marriage, marriages to which either party is a spouse) if 
in the case of First Party (FP) 

ExistsScope(spouse, S) 
InstanceEquals(FP,S) 

or 
in the case of Second Party (SP) 

ExistsScope(spouse, S) 
InstanceEquals(SP,S) 

the parties to the cohabitation are married to one another = 
TemporalFromRange(marriages in which all spouses are parties to the cohabitation, 
Marriage Date Start, Marriage Date End, True) 

the cohabitation involves an employee = TemporalFromRange(all instances of employment 
period for Cohabitation, employment period start date, employment period end date, 
True) 

the cohabitation involves a related minor if 
the parties to the cohabitation are related 
and 
for at least one of Parties to the Cohabitation (cohab party) 

ValueAt(Cohabitation Start Date,the cohab party is a minor) 

the person's age in years = TemporalYearsSince(the person's birth date, the current date) 

the person is a minor if 

102



AIP Common Law Rules.docx        10 
11/05/2018 2:28 PM 
 

 

the person’s age in years < 18 

IsMemberOf(Cohabitation, cohabitations between the parties in a relationship of 
interdependence) if 
in the case of First Party (FP) 

ExistsScope(Parties to the Cohabitation, CP) 
InstanceEquals(FP,CP) 

and 
in the case of Second Party (SP) 

ExistsScope(Parties to the Cohabitation, CP) 
InstanceEquals(SP,CP) 

and 
the cohabitation involves a relationship of interdependence 

the parties are cohabiting in a relationship of interdependence = 
TemporalFromRange(cohabitations between the parties in a relationship of 
interdependence, Cohabitation Start Date, cohabitation end date allowing for open 
ended cohabitations, True) 

IsMemberOf(Period of Separation, periods of separation between the parties) if 
Intent of one or both parties was that relationship would terminate 
and 
in the case of First Party (FP) 

ExistsScope(separation parties, SepP) 
InstanceEquals(FP,SepP) 

and 
in the case of Second Party (SP) 

ExistsScope(separation parties, SepP) 
InstanceEquals(SP, SepP) 

the parties are separated = TemporalFromRange(periods of separation between the 
parties, Period of Separation Start Date, Period of Separation End Date allowing for 
open ended periods of separation, True) 

the parties are cohabiting uninterrupted in a relationship of interdependence if 
the parties are cohabiting in a relationship of interdependence presuming false 
and 
the parties are not separated presuming false 

the parties have lived in a relationship of interdependence for a continuous period of not 
less than 3 years if 
IntervalConsecutiveDays(Earliest(),the current date,365*3 ,the parties are cohabiting 

uninterrupted in a relationship of interdependence presuming false) 

the parties have lived in a relationship of interdependence of some permanence and there 
is a child of the relationship by birth or adoption if 
the parties have lived in a relationship of interdependence of some permanence assuming false 
and 
there is a child of the relationship by birth or adoption 

there is a child of the relationship by birth or adoption if 
ForScope(First Party, FP) 

ForScope(Second Party, SP) 
ExistsScope(all instances of Person) 

SP is a member of parents  
and 
FP is a member of parents 

the parties have lived in a relationship of interdependence of some permanence if 
IntervalConsecutiveDays(Earliest(), the current date, 30, the parties are cohabiting in a 

relationship of interdependence) 

the parties have terminated their adult interdependent partnership if 

103



AIP Common Law Rules.docx        11 
11/05/2018 2:28 PM 
 

 

one of 
the adult interdependent partnership is terminated by a written agreement regarding 

separation 
or 
the adult interdependent partnership is terminated by separation 
or 
the adult interdependent partnership is terminated by marriage 
or 
the adult interdependent partnership is terminated by an AIP Agreement 
or 
the adult interdependent partnership is terminated by a declaration of irreconcilability 

the adult interdependent partnership is terminated by a written agreement regarding 
separation if 
ExistsScope(all instances of Written Agreement re Separation) 

ForScope(First Party, FP) 
FP is a member of WArS parties 

and 
ForScope(Second Party, SP) 

SP is a member of WArS parties 
and 
Written Agreement re Separation Provides evidence of intent to live separate and apart 

without possibility of reconciliation 
and 
Written Agreement re Separation Date > WhenLast(the current date,an adult 

interdependent partnership was commenced) 

the adult interdependent partnership is terminated by separation if 
IntervalAtLeastDays(earliest(),latest(),365,the parties are separated) 
and 
WhenLast(the current date, an adult interdependent partnership was not commenced) < 

WhenLast(the current date, the parties are not separated) 

one of the parties got married = TemporalFromRange(marriages to which either party is a 
spouse, Marriage Date Start, AddDays(Marriage Date Start,1), True) 

the adult interdependent partnership is terminated by marriage if 
WhenLast(the current date, an adult interdependent partnership was not commenced) < 

WhenLast(the current date, one of the parties got married) 

the adult interdependent partnership is terminated by an AIP agreement if 
one of 

WhenLast(the current date, one of the parties signed an AIPA) < WhenLast(the current 
date, the parties have not lived in a relationship of interdependence of some 
permanence and there is a child of the relationship by birth or adoption) 

or 
WhenLast(the current date, one of the parties signed an AIPA) < WhenLast(the current 

date, the parties have not lived in a relationship of interdependence for a 
continuous period of not less than 3 years) 

one of the parties signed an AIPA = TemporalFromRange(AIPAs signed by either party, the 
date the AIP agreement was signed, AddDays(the date the AIP agreement was 
signed,1), True) 

IsMemberOf(AIP Agreement, AIPAs signed by either party) if 
in the case of First Party (FP) 

ExistsScope(all instances of party to the agreement for AIP Agreement) 
ExistsScope(the person who is party to the agreement, TP) 

InstanceEquals(FP, TP) 
or 
in the case of Second Party (SP) 

104



AIP Common Law Rules.docx        12 
11/05/2018 2:28 PM 
 

 

ExistsScope(all instances of party to the agreement for AIP Agreement) 
ExistsScope(the person who is party to the agreement, TP) 

InstanceEquals(SP, TP) 

the adult interdependent partnership is terminated by a declaration of irreconcilability if 
ExistsScope(all instances of Declaration of Irreconcilability) 

FP is a member of DoI Parties 
and 
SP is a member of DoI Parties 
and 
Declaration of Irreconcilability Date > WhenLast(the current date, an adult 

interdependent partnership was not commenced) 

 

cohabitation end date allowing for open ended cohabitations 

Cohabitation End 
Date 

Cohabitation End Date is certain 

Latest() otherwise 

 

the parties are cohabiting in a relationship of interdependence presuming false 

the parties are 
cohabiting in a 
relationship of 
interdependen
ce 

the parties are cohabiting in a relationship of interdependence 
is certain 

False otherwise 

 

the parties are separated presuming false 

the parties are 
separated 

The parties are separated is certain 

False otherwise 

 

the parties have lived in a relationship of interdependence of some permanence 
assuming false 

the parties have 
lived in a 
relationship 
of 
interdepende
nce of some 
permanence 

the parties have lived in a relationship of interdependence of 
some permanence is certain 

False otherwise 

 

the cohabitation involves an employee presuming false 

the cohabitation 
involves an 

the cohabitation involves an employee is certain 

105



AIP Common Law Rules.docx        13 
11/05/2018 2:28 PM 
 

 

employee 

False otherwise 

 

the parties to the cohabitation are married to one another presuming false 

the parties to the 
cohabitation 
are married 
to one 
another 

the parties to the cohabitation are married to one another is 
certain 

False otherwise 

 

the parties are cohabiting uninterrupted in a relationship of interdependence 
presuming false 

the parties are 
cohabiting 
uninterrupte
d in a 
relationship 
of 
interdepende
nce 

the parties are cohabiting uninterrupted in a relationship of 
interdependence is certain 

False otherwise 

 

Period of Separation End Date allowing for open ended periods of separation 

Period of 
Separation 
End Date 

Period of Separation End Date is Certain 

Latest() otherwise 

 

106



Appendix B

ErgoAI Encoding of Adult
Interdependent Partnership Act

Listing B.1: ErgoAI Encoding of Adult Interdependent Partnerships Act

1 // AIRA. ergo
2 // An Ergo Implementation o f the Adult Interdependent

R e l a t i o n sh i p s Act , SA 2002 , c A−4.5
3 // As acce s s ed May 16 , 2018 at https : //www. c a n l i i . org /en/ab/ laws /

s t a t /sa−2002−c−a−4.5/ l a t e s t /sa−2002−c−a−4.5 . html
4 // Implemented as coursework f o r CMPUT 605
5 // Course Superv i so r : Randy Goebel
6 // Un ive r s i ty o f Alberta
7 // Jason Morris
8 // LLM Candidate
9 // Student ID #0353905

10
11 // The ” expert ” compi le r opt ion a l l ows f o r c e r t a i n s o r t o f frame

syntax e x p r e s s i o n s in the conc lu s i on por t i on o f ru l e s ,
12 // and a l l ows f o r other f e a t u r e s which tend to be mis−used by

inexpe r i enced coder s .
13 :− comp i l e r op t i on s { expert=on } .
14
15 // The use argumentation theory s e t t i n g a l l ows f o r the use o f the

d e f e a s i b i l i t y f e a t u r e s o f the Ergo language .
16 :− use argumentat ion theory .
17
18 // ONTOLOGY
19 Re la t i on sh ip [ |
20 f i r s t=>Person ,
21 second=>Person
22 | ] . // A Re la t i on sh ip has a f i r s t person and a second person .
23
24 AIP : : Re l a t i on sh ip . // An Adult Interdependent Partnersh ip i s a

type o f Re la t i on sh ip .
25 FAIP : : Re l a t i on sh ip . // A Former Adult Interdependent Partnersh ip

i s a type o f Re l a t i on sh ip .
26 AIR : : AIP . // An Adult Interdependent Re la t i on sh ip i s a type o f

Adult Interdependent Partnersh ip .

107



27 ROI : : Re l a t i on sh ip . // A Re la t i on sh ip o f Interdependence i s a type
o f Re la t i on sh ip .

28 ROI [ |
29 c o n t i n u o u s p e r i o d o f n o t l e s s t h a n 3 y e a r s ,
30 of some permanence
31 | ] .
32
33 Person [ |
34 marr i ed to=>Person ,
35 s h a r e s l i f e w i t h=>Person ,
36 i s emot i ona l l y commi t t ed to=>Person ,
37 func t i on s a s e conomi c and domes t i c un i t w i th=>Person ,
38 h a s c h i l d w i t h=>Person ,
39 r e l a t e d b y b l o o d o r a d o p t i o n t o=>Person
40 | ] .
41
42
43 // ENCODING OF ACT
44
45 /∗
46 Sec t i on 8(2) , 8 (3) , 9 , are note encoded because they do not

address the ques t i on o f when an adul t interdependent
47 par tne r sh ip e x i s t s . Sec t i on 2 i s not encoded because i t merely

s t a t e s that i t a p p l i e s r e t r o a c t i v e l y .
48 ∗/
49
50 /∗
51 I n t e r p r e t a t i o n
52 1(1) In t h i s Act ,
53 ( a ) ” adul t interdependent partner ”

means an adul t interdependent
partner with in the meaning o f
s e c t i o n 3 , but does not in c lude a
former adul t interdependent partner
;

54 ∗/
55 \ opposes ( f a i p (? A , ? B ) : FAIP , a ip (? A , ? B ) : AIP) . // I f A i s a FAIP

o f B, A i s not an AIP o f B. The two are o p p o s i t e s .
56
57
58 /∗
59 I n t e r p r e t a t i o n
60 1(1) In t h i s Act ,
61 ( c ) ” adul t interdependent

r e l a t i o n s h i p ” means the
r e l a t i o n s h i p between 2 persons who
are adul t interdependent par tne r s
o f each other ;

62 ∗/
63 // I f A i s an AIP o f B and B i s an AIP o f A, then there i s an AIR

between A and B.
64 // Note that t h i s w i l l prove both AIR(A,B) and AIR(B,A) , so e i t h e r

notat ion can be used to t e s t f o r the e x i s t e n c e o f an AIR .

108



65 // Note a l s o that t h i s d e f i n i t i o n i s not used anywhere in the act .
I t e x i s t s in the code s o l e l y to a l low i t to be quer i ed .

66 @{AIRbetweenTwoAIP Section 1 1 c}
67 a i r (?A, ?B) : AIR :− // There i s an AIR between A and B i f
68 a ip (?A, ?B) : AIP , // A i s an AIP o f B and
69 aip (?B, ?A) : AIP . // the other way around .
70
71 /∗
72 I n t e r p r e t a t i o n
73 1(1) In t h i s Act ,
74 ( f ) ” r e l a t i o n s h i p o f

interdependence ” means a
r e l a t i o n s h i p out s id e marr iage in
which any 2 persons

75 ( i ) share one another ’ s l i v e s
,

76 ( i i ) are emot iona l ly committed
to one another , and

77 ( i i i ) f unc t i on as an economic
and domest ic un i t .

78 ∗/
79 // Two people are in a r e l a t i o n s h i p o f interdependence i f i , i i ,

and i i i , and they are not married .
80 @{ROIDe f ined Sec t i on 1 1 f }
81 r o i (?A, ?B) : ROI [ f i r s t −>?A, second−>?B] :−
82 ?A: Person , ?B: Person , // A and B are people .
83 \naf ?A[ marr ied to−>?B] ,
84 \naf ?B[ marr ied to−>?A] , //A and B and not married .
85 ?A[ s h a r e s l i f e w i t h −>?B] ,
86 ?B[ s h a r e s l i f e w i t h −>?A] , // A and B share one another ’ s l i v e s .
87 ?A[ i s emot i ona l l y commit t ed to−>?B] ,
88 ?B[ i s emot i ona l l y commit t ed to−>?A] , // A and B are emot iona l ly

committed to one another , and
89 ?A[ func t i on s a s e conomic and domes t i c un i t w i th−>?B] ,
90 ?B[ func t i on s a s e conomic and domes t i c un i t w i th−>?A ] . // A and B

func t i on as an economic and domest ic un i t .
91
92 // Sec t i on 3
93 /∗
94 Adult interdependent partner
95 3(1) Subject to subse c t i on (2 ) , a person i s the adul t

interdependent partner o f another person i f
96 ( a ) the person has l i v e d with the

other person in a r e l a t i o n s h i p o f
interdependence

97 ( i ) f o r a cont inuous per iod
o f not l e s s than 3 years , or

98 ( i i ) o f some permanence , i f
the r e i s a c h i l d o f the
r e l a t i o n s h i p by b i r th or
adoption ,

99 or
100 (b) the person has entered in to an

adul t interdependent partner

109



agreement with the other person
under s e c t i o n 7 .

101 (2 ) Persons who are r e l a t e d to each other by blood or adoption
may only become adul t interdependent par tne r s o f each other by

en t e r i ng in to an adul t interdependent partner agreement under
s e c t i o n 7 .

102 ∗/
103 @{AIPDef ined Sect ion 3 }
104 aip (?A, ?B) : AIP :− // A i s an AIP o f B i f ( one−d i r e c t i o n a l )
105 r o i (?A, ?B) : ROI , // the re i s a r e l a t i o n s h i p o f interdependence

between the p a r t i e s ( presumed b i d i r e c t i o n a l ) , and
106 (
107 r o i (?A, ?B) : ROI [ c o n t i n u o u s p e r i o d o f n o t l e s s t h a n 3 y e a r s ] //

3(1) ( a ) ( i )
108 \ or
109 ( // 3(1) ( a ) ( i i )
110 r o i (?A, ?B) : ROI [ of some permanence ] ,
111 ?A[ ha s ch i l d w i th−>?B] // r e l a t i o n s h i p i s presumed

b i d i r e c t i o n a l .
112 )
113 )
114 \ or
115 (
116 aipa (?A, ?B) :AIPA; aipa (?B, ?A) :AIPA // there i s an AIPA

between them .
117 ) .
118
119 @{AIPBloodAdoption Sect ion 3 2 }
120 \neg aip (?A, ?B) : AIP :− // A i s not an AIP o f B i f
121 ?A: Person [ r e l a t e d b y b l o o d o r a d o p t i o n t o −>?B] , // A i s r e l a t e d

by blood or adoption to B, and
122 \naf a ipa (A,B) :AIPA,
123 \naf a ipa (B,A) :AIPA.
124 \ o v e r r i d e s ( AIPBloodAdoption Section 3 2 , AIPDef ined Sect ion 3 ) .
125
126 // Sec t i on 4
127 /∗
128 Re la t i on sh ip o f interdependence
129 4(1) A r e l a t i o n s h i p o f interdependence may e x i s t between 2

persons who are r e l a t e d to each other by blood or adoption
except where one o f the persons i s a minor .

130 (2 ) A r e l a t i o n s h i p o f interdependence does not e x i s t between 2
persons where one o f the persons prov ide s the other with
domest ic support and per sona l care f o r a f e e or other
c o n s i d e r a t i o n or on beha l f o f another person or organ i za t i on ,
i n c l u d i n g a government .

131 ∗/
132
133 @{NoROIMinorBlood Section 4 1}
134 \neg r o i (?A, ?B) : ROI :− // there i s no ROI i f
135 ?A[ r e l a t e d b y b l o o d o r a d o p t i o n t o −>?B] ,
136 (
137 ?A[ i s m ino r ] ;
138 ?B[ i s m ino r ]

110



139 ) .
140 \ o v e r r i d e s ( NoROIMinorBlood Section 4 1 , ROIDe f ined Sec t i on 1 1 f ) .
141
142 @{NoROIEmployment Section 4 2}
143 \neg r o i (?A, ?B) : ROI :− // there i s no ROI i f
144 ?A[ p r o v i d e s c a r e f o r c o n s i d e r a t i o n t o −>?B ] ;
145 ?B[ p r o v i d e s c a r e f o r c o n s i d e r a t i o n t o −>?A ] .
146 \ o v e r r i d e s ( NoROIEmployment Section 4 2 , ROIDe f ined Sec t i on 1 1 f ) .
147
148 // Sec t i on 5
149 /∗
150 R e s t r i c t i o n s
151 5(1) A person cannot at any one time have more than one adul t

interdependent partner .
152 (2 ) A married person cannot become an adul t interdependent

partner whi l e l i v i n g with h i s or her spouse .
153 ∗/
154 // Note that these p r o v i s i o n s are e x p l i c i t l y temporal . Given the

d i f f i c u l t y o f implementing temporal r ea son ing in
155 // ergo without deve lop ing a compl icated l i b r a r y , those temporal

a spec t s have been subsumed in to the pred i ca t e s ,
156 // which s p e c i f y ”when formed ” . Note that ”when formed” i s a

guess at what t h i s s e c t i o n means in 5(1) . 5 (2) i s
157 // e x p l i c i t about ”becoming” an AIP ” whi le ” . So the per iod o f the

AIP cannot commence during the per iod o f cohab .
158 // But s e c t i o n 5(1) does not say what the r e s o l u t i o n i s i f the re

are two p r o c e s s e s that would both r e s u l t in over lapp ing
159 // AIPs . The presumption i s that only the f i r s t comes in to e f f e c t

, which i s approximated by ”had other AIP when formed . ”
160 // However , i t i s a l s o p o s s i b l e f o r a person to meet the

requi rements f o r an AIP with two d i f f e r e n t people at the same
161 // time , and there i s no i n d i c a t i o n o f how to address that

c i rcumstance in the l e g i s l a t i o n .
162
163 @{OneAIPAtATime Section 5 1}
164 \neg aip (?A, ?B) : AIP :− // there i s no AIP between a and B i f
165 a ip (?A, ?B) : AIP , // there i s any AIP between A and B, and
166 ( // e i t h e r
167 a ip (?A, ?B) : AIP [ f i r s t had other AIP when formed ] ;
168 a ip (?A, ?B) : AIP [ second had other AIP when formed ]
169 ) .
170 \ o v e r r i d e s ( OneAIPAtATime Section 5 1 , AIPDef ined Sect ion 3 ) .
171
172 @{NoAIPWhileMarriedAndCohab Section 5 2}
173 \neg aip (?A, ?B) : AIP :− // there i s no AIP between A and b i f
174 a ip (?A, ?B) : AIP , // there i s any AIP between A and B, and
175 ( // e i t h e r
176 a ip (?A, ?B) : AIP [ f i r s t l i v e d w i t h s p o u s e w h e n f o r m e d ] ;
177 a ip (?A, ?B) : AIP [ s econd l ived wi th spouse when formed ]
178 ) .
179 \ o v e r r i d e s ( NoAIPWhileMarriedAndCohab Section 5 2 ,

AIPDef ined Sect ion 3 ) .
180
181 // Sec t i on 6

111



182 /∗
183 Minors
184 6 Subject to s e c t i o n s 4(1) and 7(2) , a minor may be an adul t

interdependent partner .
185 ∗/
186 // This does not need to be encoded .
187 // I t s t a t e that a minor may be an adul t interdependent partner .

There i s no way to encode the p o s s i b i l i t y o f
188 // something being true . I f t h i s i s intended in the deont i c s ense

o f ” i s permitted to ” , t h i s encoding i s not attempting
189 // to encode deont i c concepts .
190 // This i s a l s o not a d e f e a s i b i l i t y statement .
191 // Sec t i on 4(1) s t a t e s that a minor cannot be party to an ROI .

That i s not an except ion
192 // to the statement a minor may be an AIP . Sec t i on 7(2) s t a t e s a

minor must have consent or be 16 to ente r
193 // in to an AIPA. That i s not an except ion to the statement that a

minor may be in an AIP . That a minor
194 // can be an AIP i s i m p l i c i t from the p o s s i b i l i t y o f en t e r i ng in to

the AIPA.
195
196 // Sec t i on 7
197 /∗
198 Adult interdependent partner agreement
199 7(1) Subject to subse c t i on (2 ) , any 2 persons who are l i v i n g

toge the r or intend to l i v e toge the r in a r e l a t i o n s h i p o f
interdependence may ente r in to an adul t interdependent partner

agreement in the form provided f o r by the r e g u l a t i o n s .
200 (2 ) A person may not ente r in to an adul t interdependent partner

agreement i f the person
201 ( a ) i s a party to an e x i s t i n g adul t

interdependent partner agreement ,
202 (b) i s married , or
203 ( c ) i s a minor , u n l e s s
204 ( i ) the minor i s at l e a s t 16

years o f age , and
205 ( i i ) the minor ’ s guard ians have

g iven t h e i r p r i o r wr i t t en
consent .

206 ∗/
207 // Again , we are not encoding deont i c concepts , so ”may ente r ” and

”may not ente r ” are being t r a n s l a t e d to determine
208 // whether or not the AIPA i s ” v a l i d ” . Note that negat ing the

e x i s t e n c e o f the AIPA at t h i s po int e l i m i n a t e s the need
209 // to encode s e c t i o n 8(d) .
210 // Note that the semant ics o f 7 (1) i s unc l ea r . Not c l e a r whether

” in a r e l a t i o n s h i p o f interdependence ” a p p l i e s to both
211 // ” are l i v i n g toge the r ” and ” intend to l i v e toge the r ” . I

presumed that i t a p p l i e s to both .
212
213 @{AIPADef ined Sect ion 7 1 }
214 aipa (?A, ?B) :AIPA :− // there i s an adul t interdependent

par tne rhs ip agreement between A and B i f

112



215 (? form [ f i r s t −>?A, second−>?B ] : AIPAForm ; ? form [ f i r s t −>?B, second
−>?A ] : AIPAForm) , // the p a r t i e s f i l l out a form , and

216 ( // e i t h e r
217 ? form [ pa r t i e s c ohab i t ed in ROI when en t e r ed in to ] ; // they

cohabited when they s igned the form , or
218 ? form [ p a r t i e s i n t e n t e d t o c o h a b i t i n R O I w h e n e n t e r e d i n t o ]
219 ) .
220
221 @{ I n e l i g i b i l i t y f o r A I P A S e c t i o n 7 2 }
222 \neg aipa (?A, ?B) :AIPA :− // there i s NO AIPA between A and B i f
223 (? form [ f i r s t −>?A, second−>?B ] : AIPAForm ; ? form [ f i r s t −>?B, second

−>?A ] : AIPAForm) , // the p a r t i e s f i l l e d out the form , and
224 ( // any o f
225 (
226 ? form [ f i r s t a l r eady has AIPA when s i gned ] ; ? form [

second already has AIPA when s igned ]
227 ) \ or (
228 ? form [ f i r s t i s m a r r i e d w h e n s i g n e d ] ; ? form [

s e cond i s mar r i ed when s i gned ]
229 ) \ or (
230 ( // e i t h e r
231 ? form [ f i r s t i s m i n o r w h e n s i g n e d ] ,
232 \naf ? form [ f i r s t i s a t l e a s t 1 6 w h e n s i g n e d ] ,
233 \naf ? form [ f i r s t h a s p a r e n t a l c o n s e n t f o r s i g n i n g ]
234 ) \ or (
235 ? form [ s econd i s minor when s igned ] ,
236 \naf ? form [ s e c o n d i s a t l e a s t 1 6 w h e n s i g n e d ] ,
237 \naf ? form [ s e c o n d h a s p a r e n t a l c o n s e n t f o r s i g n i n g ]
238 )
239 )
240 ) .
241 \ o v e r r i d e s ( I n e l i g i b i l i t y f o r A I P A S e c t i o n 7 2 ,

AIPADef ined Sect ion 7 1 ) .
242
243 // Sec t i on 8
244 /∗
245 V a l i d i t y o f adul t interdependent partner agreement
246 8(1) An adul t interdependent partner agreement i s i n v a l i d i f
247 ( a ) one o f the p a r t i e s was induced

by fraud , dures s or undue i n f l u e n c e
to ente r i n to the agreement ,

248 (b) one o f the p a r t i e s lacked the
mental capac i ty to understand the
nature o f the agreement ,

249 ( c ) the p a r t i e s were n e i t h e r l i v i n g
toge the r nor in tend ing to l i v e
toge the r in a r e l a t i o n s h i p o f
interdependence when the agreement
was entered into , or

250 (d) one o f the p a r t i e s was
p roh ib i t ed by s e c t i o n 7(2) from
ent e r i ng in to the agreement .

251 ∗/

113



252 // Note that 8(1) ( c ) i s e n t i r e l y d u p l i c a t i v e o f the same
requirement in 7(1) . I t i s omitted . 8 (1) (d) i s a l r eady
implemented

253 // by the concus ion o f 7(2) , which a l s o negates the truth o f the
AIPA fact , and i s not repeated here .

254
255 @{ Inva l id AIPA Sect ion 8 }
256 \neg aipa (?A, ?B) :AIPA :− // there i s no AIPA between A and B i f
257 ? form [ f i r s t −>?A, second−>?B ] : AIPAForm, // there i s an agreement

between the pa r t i e s , and
258 ( // one o f
259 ( // s e c t i o n 8(1) ( a )
260 ? form [ f i r s t w a s i n d u c e d b y f r a u d ] ;
261 ? form [ second was induced by f raud ]
262 ) \ or ( // s e c t i o n 8(1) (b)
263 ? form [ f i r s t l a c k e d m e n t a l c a p a c i t y ] ;
264 ? form [ s e cond lacked menta l capac i ty ]
265 )
266 ) .
267 \ o v e r r i d e s ( Inva l id AIPA Sect ion 8 , AIPADef ined Sect ion 7 1 ) .
268
269 // Sec t i on 10
270 /∗
271 Former adul t interdependent partner
272 10(1) Unless another enactment prov ide s otherwise , an adul t

interdependent partner becomes the former adul t interdependent
partner o f another person when the e a r l i e s t o f the f o l l o w i n g

occurs :
273 ( a ) the adul t interdependent

par tne r s ente r in to a wr i t t en
agreement that prov ide s ev idence
that the adul t interdependent
par tne r s intend to l i v e s epara te
and apart without the p o s s i b i l i t y
o f r e c o n c i l i a t i o n ;

274 (b) the adul t interdependent
par tne r s l i v e s epara t e and apart
f o r more than one year and one or
both o f the adul t interdependent
par tne r s intend that the adul t
interdependent r e l a t i o n s h i p not
cont inue ;

275 ( c ) the adul t interdependent
par tne r s marry each other or one o f

the adul t interdependent par tne r s
marr i e s a t h i rd party ;

276 (d) in the case o f an adul t
interdependent partner r e f e r r e d to
in s e c t i o n 3(1) ( a ) , the adul t
interdependent partner e n t e r s i n to
an adul t interdependent partner
agreement with a th i rd party ;

277 ( e ) one or both o f the adul t
interdependent par tne r s have

114



obtained a d e c l a r a t i o n o f
i r r e c o n c i l a b i l i t y under s e c t i o n 83
o f the Family Law Act .

278 (2 ) For the purposes o f subs e c t i on (1 ) (b) , a per iod o f l i v i n g
separa te and apart i s not cons ide r ed in t e r rup t ed or terminated

279 ( a ) by reason only that e i t h e r adul t
interdependent partner has become

incapab l e o f forming the i n t e n t i o n
to l i v e s epara te and apart , or

280 (b) by reason only that the adul t
interdependent par tne r s have
resumed l i v i n g toge the r during a
s i n g l e per iod o f not more than 90
days with r e c o n c i l i a t i o n as i t s
primary purpose .

281 (3 ) An adult interdependent partner agreement e x p i r e s when the
p a r t i e s become former adul t interdependent par tne r s under
subse c t i on (1 ) .

282 ∗/
283 // note , again , that t h i s s e c t i o n has e x p l i c i t y temporal a spec t s ”

the e a r l i e s t o f the f o l l o w i n g occurs ” , and i m p l i c i t l y temporal
aspects , in that the events which cause an adul t

interdependent par tne r sh ip to a r i s e must have happened ” be f o r e
”

284 // the f a c t o r s in 10(1) can be s a t i s f i e d , s i n c e they a l l apply to
adul t interdependent par tne r s .

285
286 @{Writ ten Agreement Re Separat ion Sect ion 10 1 a }
287 f a i p (?A, ?B) : FAIP :− // A i s a former adul t interdependent partner

o f B i f
288 (? agreement [ f i r s t −>?A, second−>?B ] :WARS; ? agreement [ f i r s t −>?B,

second−>?A ] :WARS) , // the re i s a wr i t t en agreement regard ing
s epa ra t i on between the p a r t i e s

289 ? agreement [ e v i d e n c e s i n t e n t t o l i v e s e p a r a t e l y a n d a p a r t ] . //
which ev idence s i n t e n t .

290
291 // nece s sa ry because FAIP(?A, ?B) i s de f i ned as the oppos i t e o f AIP

(?A, ?B) , and so r u l e s that prove a FAIP are in c o n f l i c t with
r u l e s that prove an AIP .

292 \ o v e r r i d e s ( Wri t ten Agreement Re Separat ion Sect ion 10 1 a ,
AIPDef ined Sect ion 3 ) .

293
294 @{ S e p a r a t i o n S e c t i o n 1 0 1 b }
295 f a i p (?A, ?B) : FAIP :− // A i s a former adul t interdependent partner

o f B i f
296 (? s e p a r a t i o n : Separat ion [ f i r s t −>?A, second−>?B ] ; ? s e p a r a t i o n :

Separat ion [ f i r s t −>?A, second−>?B] ) , // the re i s a s epa ra t i on
between the two pa r t i e s , and

297 ? s e p a r a t i o n [ more than one year ] , // the s epa ra t i on i s f o r more
than one year and

298 ? s e p a r a t i o n [ one o r more in t end to t e rmina t e ] . // one or both
intend i t not cont inue .

299

115



300 // nece s sa ry because FAIP(?A, ?B) i s de f i ned as the oppos i t e o f AIP
(?A, ?B) , and so r u l e s that prove a FAIP are in c o n f l i c t with
r u l e s that prove an AIP .

301 \ o v e r r i d e s ( Sepa ra t i on Sec t i on 10 1 b , AIPDef ined Sect ion 3 ) .
302
303 @{M ar r i a g e S e c t i o n 1 0 1 c }
304 f a i p (?A, ?B) : FAIP :− // A i s a former adul t interdependent partner

o f B i f
305 ( // e i t h e r
306 a ip (?A, ?B) : AIP [ o n e p a r t y m a r r i e d a f t e r c o m i n g i n t o e f f e c t ] ;
307 a ip (?A, ?B) : AIP [ p a r t i e s m a r r i e d a f t e r c o m i n g i n t o e f f e c t ]
308 ) .
309
310 // nece s sa ry because FAIP(?A, ?B) i s de f i ned as the oppos i t e o f AIP

(?A, ?B) , and so r u l e s that prove a FAIP are in c o n f l i c t with
r u l e s that prove an AIP .

311 \ o v e r r i d e s ( Mar r i age Sec t i on 10 1 c , AIPDef ined Sect ion 3 ) .
312
313 // We need to be ab le to d i s t i n g u i s h an AIP under the common law

r u l e s from an AIP under the agreement r u l e s .
314 // We w i l l approximate i t by r e q u i r i n g the presence o f an AIP and

the absence o f an AIPA between the p a r t i e s .
315 // In a more accurate model , the idea o f having an AIPA when you

a l ready have an AIP would v i o l a t e the r u l e aga in s t having two
AIPs . However , we have implemented that r u l e as a p r e d i c a t e
o f the AIP ( person has another AIP) ,

316 // which i s not der ived , so t h i s r u l e w i l l not c o n f l i c t with that
r u l e . When d e s c r i b i n g f a c t s c e n a r i o s o f t h i s sor t , AIP
created by AIPAs a f t e r a p r i o r AIP f o r the same person should
have that p r e d i c a t e s e t to f a l s e .

317 // Because i t doesn ’ t o v e r r i d e any i m p l i c a t i o n s o f any ru l e s , we
can ignore the requirement that the date o f the AIPA be l a t e r
than the date o f the AIP .

318 // This i s c l e a r l y sub−optimal , and r e q u i r e s the person d e s c r i b i n g
the f a c t s c e n a r i o to understand how the model works in a way

that i s u n i n t u i t i v e . But without robust temporal opt ions ,
g e t t i n g to the po int where the r u l e s

319 // can de r i v e whether or not an AIP e x i s t s f o r one o f the p a r t i e s
who ente r i n to an AIPA i s beyond the scope o f the coursework .

320 @{AIPA Overr ides AIP Sect ion 10 1 d }
321 f a i p (?A, ?B) : FAIP :− // A i s a former adul t interdependent partner

o f B i f
322 \naf a ipa (?A, ?B) :AIPA, // they do not have an AIPA
323 \naf a ipa (?B, ?A) :AIPA,
324 aipa (? f i r s t , ? second ) :AIPA, // there i s an AIPA between one o f

them and someone e l s e
325 (
326 (? f i r s t == ?A, ? second !== ?B)
327 \ or
328 (? f i r s t == ?B, ? second !== ?A)
329 ) .
330
331 // nece s sa ry because FAIP(?A, ?B) i s de f i ned as the oppos i t e o f AIP

(?A, ?B) , and so r u l e s that prove a FAIP are in c o n f l i c t with

116



r u l e s that prove an AIP .
332 \ o v e r r i d e s ( AIPA Overr ides AIP Sect ion 10 1 d , AIPDef ined Sect ion 3 )

.

117



Appendix C

ErgoAI Encoding of Kraft

Listing C.1: ErgoAI Encoding of Kraft

1 // New Copyright . ergo
2 // by Jason Morris , s tudent ID #0353905
3 // as part o f r e s ea r ch paper ”Encoding Kraft ”
4 // f o r Law 696 , P r o f e s s o r Muir , Un ive r s i ty o f Alberta , December 8 ,

2017
5 :− comp i l e r op t i on s {product ion= on , expert=on , omni=on } .
6 :− use argumentat ion theory .
7 ?− setmonitor {10 , extended } .
8 ?− set runt ime {memory(24) } .
9

10 // ONTOLOGY
11
12 // A party i s a type o f th ing .
13 Party : : Thing .
14
15 // Work i s a type o f object , which i n c l u d e s an owner , which has a

value which i s o f the Party type .
16 Work [ | owner=>Party | ] .
17
18 // Canada and NotCanada are Places o f Manufacture .
19 {Canada , NotCanada } : PlaceOfManufacture .
20
21 // A Product has a manufacturer , an o r i g i n , and an o r i g i n a l work .
22 Product [ | manufacturer=>Party , o r i g i n=>PlaceOfManufacture ,

o r i g i n a l w o r k=>Work | ] .
23
24 // An I n f r i n g i n g s a l e i s a type o f Sa l e .
25 I n f r i n g i n g S a l e : : Sa l e .
26
27 // An I n f r i n g i n g Importat ion i s a type o f i n f r i n g i n g s a l e .
28 I n f r i n g i n g I m p o r t a t i o n : : I n f r i n g i n g S a l e .
29
30 // An I n f r i n g i n g Product i s a type o f Product
31 In f r i ng ingProduc t : : Product .
32
33 // An i n f r i n g i n g sa l e , and i n f r i n g i n g importat ion , and an

i n f r i n g i n g product are a l l i n f r i ngement s .

118



34 { I n f r i n g i n g S a l e , In f r i ng ing Impor ta t i on , In f r i ng ingProduc t } : :
In f r ingement .

35
36 // Property Rights adhere to a work with regard to a party .
37 PropertyRight [ | property=>Work , owner=>Party | ] .
38
39 // A Right o f a c t i on i s owned by a party with regard to an a l l e g e d

in f r ingement .
40 RightOfAction [ | p l a i n t i f f=>Party , c la im=>Infr ingement , accused−>Party

| ] .
41
42 // A Sa le i n c l u d e s a product so ld , and a s e l l e r .
43 Sa le [ | produc t so ld=>Product , s e l l e r=>Party | ] .
44
45 // An assignment o f copyr ight i s from an a s s i g n o r to an a s s i g n e e

with regard to a work .
46 Assignment [ | a s s i g n o r=>Party , a s s i g n e e=>Party , work−>Work | ] .
47
48 // An e x c l u s i v e l i c e n s e o f copyr ight i s from an l i c e n s e e to a

l i c e n s o r with regard to a work .
49 L icense [ | l i c e n s e e=>Party , l i c e n s o r=>Party , work−>Work | ] .
50
51 // COMMON LAW RULES
52
53 // Owners have a property r i g h t by d e f a u l t .
54 @{OwnersPropertyRight}
55 PR(? owner , ? proper ty ) : PropertyRight [ property−>? property , owner−>?

owner ] :−
56 ? proper ty : Work [ owner−>? owner ] .
57
58 \ opposes ( Overridden (? X) ,? X : RightOfAction ) . // I f a th ing i s

Overridden , that th ing i s not a r i g h t o f act ion , and v i c e
ver sa .

59
60 // A person without a property i n t e r e s t cannot sue someone who has

a property i n t e r e s t . This r u l e o v e r r i d e s a l l o ther r u l e s .
61 @{CantSueOwner}
62 Overridden (? roa ) :− // a r i g h t o f a c t i on i s over r idden i f
63 ? roa : RightOfAction [ p l a i n t i f f −>? p l a i n t i f f , claim−>?

in f r ingement , accused−>? accused ] , // the re i s a
r i g h t o f ac t i on

64 ( // e i t h e r
65 ( // I t i s a sa l e , the s e l l e r has a

property r i g h t and the p l a i n t i f f does not
66 ? in f r i ngement : I n f r i n g i n g S a l e [ s e l l e r −>? accused ,

product so ld−>? product : Product [ o r i g ina l work
−>? work ] ] ,

67 ? s e l l e r s r i g h t : PropertyRight [ property−>? work ,
owner−>? accused ] , // the s e l l e r has a
property r i g h t in the work

68 \naf ? p l a i n t i f f r i g h t : PropertyRight [ property−>?
work , owner−>? p l a i n t i f f ] // the p l a i n t i f f has
no property r i g h t in the work . .

69 ) \ or (

119



70 // i t i s a product , the manufacturer has a property
r i g h t and the p l a i n t i f f does not

71 ? in f r i ngement : Product [ manufacturer−>? accused ,
o r i g ina l work−>? work ] ,

72 ? manu fac tu r e r s r i gh t : PropertyRight [ property−>?
work , owner−>? accused ] , // the manufacturer

has a property r i g h t in the work
73 \naf ? p l a i n t i f f r i g h t : PropertyRight [ property−>?

work , owner−>? p l a i n t i f f ] // the p l a i n t i f f has
no property r i g h t in the work .

74 )
75 ) .
76 \ o v e r r i d e s ( CantSueOwner , ? ) . // Because t h i s r u l e causes a

c o n f l i c t because over r idden ( ) opposes : RightOfAction , t h i s
r u l e d e f e a t s a l l other r u l e s .

77
78 // I f a hypo the t i c a l r i g h t o f a c t i on aga in s t a hypo the t i c a l

i n f r i n g e r would be overr idden by Can ’ t Sue Owner above , then
the r i g h t o f a c t i on with regard to the ac tua l in f r ingment

79 // to which i t r e l a t e s i s a l s o overr idden .
80 @{Hypothet ica lChain ing }
81 Overridden (? roa ) :− // a r i g h t o f a c t i on i s over r idden i f
82 ? roa : RightOfAction [ p l a i n t i f f −>? p l a i n t i f f , claim−>?

in f r ingement , accused−>? accused ] , // the re i s a
r i g h t o f ac t i on

83 Overridden (? roa2 ) , // another r i g h t o f ac t i on i s
over r idden

84 ? roa2 : RightOfAction [ claim−>? in f r i ngement2 : HypoProduct [
r e a l s a l e −>? in f r i ngement ] ] . // the over r idden r i g h t
o f act ion ’ s r e a l s a l e i s the in f r ingement f o r the
f i r s t r i g h t o f ac t i on .

85 \ o v e r r i d e s ( Hypothet ica lChaining , ? ) .
86
87 // LEGISLATIVE RULES
88
89 // Sec t i on 2 .
90 // . . .
91 // i n f r i n g i n g means
92 // ( a ) in r e l a t i o n to a work in which copyr ight s u b s i s t s , any copy

, i n c l u d i n g any c o l o u r a b l e imi ta t i on , made or de a l t with in
cont ravent ion o f t h i s Act ,

93 / / . . .
94 // The d e f i n i t i o n i n c l u d e s a copy that i s imported in the

c i r cumstances s e t out in paragraph 27(2) ( e ) and s e c t i o n 27 .1
but does not otherw i se in c lude

95 // a copy made with the consent o f the owner o f the copyr ight in
the country where the copy was made ;

96
97 // I n f r i n g i n g Copies
98
99 //A v a l i d ass ignment i s made by the owner o f the work .

100 ?X: ValidAssignment :−
101 ?X: Assignment [ a s s i gnor−>? a s s i g n o r , work−>? work ] ,
102 ? work [ owner−>? a s s i g n o r ] .

120



103
104 // A v a l i d l i c e n s e i s made by the owner o f the work i f the re i s no

as s i gnee , or the a s s i g n e e i f the re i s .
105 ?X: Va l idL icense :−
106 ?X: L icense [ l i c e n s o r −>? l i c e n s o r , work−>? work ] ,
107 (
108 \naf ? A : Assignment [ work−>? work ] , // the

ownership in the work has not been ass igned ,
and

109 ? work [ owner−>? l i c e n s o r ] // the l i c e n s o r i s the
owner o f the work

110 ) \ or
111 (
112 ? B : Assignment [ work−>? work , as ignee−>? a s s i g n e e ] ,

// the re i s an ass ignment o f the work
113 ?X: L icense [ l i c e n s o r −>? a s s i g n e e ] // the l i c e n s e

was granted by the a s s i g n e e .
114 ) .
115
116 // Note that our model exc ludes the p o s s i b i l i t y o f an a s s i g n e e sub

−a s s i g n i n g or a l i c e n s e e sub−l i c e n s i n g , f o r s i m p l i c i t y .
117
118 // A person i s author i zed to copy a work i f
119 ?X[ author ized−>?Y] :−
120 ?X: Work ,
121 ?Y: Party ,
122 (
123 \naf ? L : Va l idL icense [ work−>?X] , // the re are no

v a l i d l i c e n s e s f o r the work
124 \naf ? A : ValidAssignment [ work−>?X] , // the re are

no v a l i d ass ignments
125 ?X: Work [ owner−>?Y] // the person i s the owner
126 ) \ or (
127 ? L : Va l idL icense [ work−>?X, l i c e n s e e −>?Y] // the

person i s a v a l i d l i c e n s e e
128 ) \ or (
129 \naf ? L : Va l idL icense [ work−>?X] , // the re are no

v a l i d l i c e n s e s
130 ? A : ValidAssignment [ work−>?X, as s i gnee−>?Y] // the

person i s a v a l i d a s s i g n e e
131 ) .
132
133 // A product i s an i n f r i n g i n g product i f i t was manufactured by a

person not author i zed to manufacture i t .
134 ?X: In f r i ng ingProduc t :−
135 ?X: Product [ manufacturer−>? manufacturer , o r i g ina l work−>?

work , o r i g i n−>Canada ] , // the product has a
manufacturer and a work

136 \naf ? work : Work [ author ized−>? manufacturer ] . // the
manufacturer i s not author i zed to make c o p i e s o f the
work .

137
138 // What c o n s t i t u t e s an i n f r i n g i n g s a l e ?
139 ?X: I n f r i n g i n g S a l e :− // a th ing i s an i n f r i n g i n g s a l e i f

121



140 (
141 ?X: Sa le [ s e l l e r −>? s e l l e r , product so ld−>? product :

Product [ manufacturer−>? manufacturer ] ] , // i t
i s a s a l e o f a product and

142 ? product : In f r ing ingProduct , // the product i s an
i n f r i n g i n g product .

143 ? s e l l e r == ? manufacturer // the product i s be ing
so ld by the person who manufactured i t .

144 ) .
145
146 // Sec t i on 27(2) ( e )
147 // I t i s an in f r ingment o f copyr ight f o r any person to
148 // a ) s e l l or rent out
149 // . . .
150 // e ) import i n to Canada f o r the purpose o f doing anything

r e f e r r e d to in paragraphs ( a ) . . .
151 // a copy o f a work , . . . that . . . would i n f r i n g e copyr ight
152 // i f i t had been made in Canada by the person who made i t .
153
154 // A hypothe t i c a l product i s a type o f product
155 HypoProduct : : Product .
156 HypoProduct [ | r e a l s a l e=>Sa le | ] .
157
158 // Create a hypo the t i c a l product f o r each product not made in

Canada .
159 HypoProduct (? product ) : HypoProduct [ o r i g i n−>Canada , manufacturer−>?

manufacturer , o r i g ina l work−>? o r i g i n a l , r e a l s a l e −>? P ] :−
160 ? P : Sa le [ product so ld−>? product : Product [ o r i g i n−>NotCanada

, manufacturer−>? manufacturer , o r i g ina l work−>?
o r i g i n a l ] ] .

161
162 // A product not made in Canada i s an i n f r i n g i n g product i f i t s

hypo the t i c a l product made in Canada i s i n f r i n g i n g .
163 ?X: I n f r i n g i n g I m p o r t a t i o n :−
164 ?X: Sale , // X i s a s a l e o f a product
165 ?Y: HypoProduct [ manufacturer−>? accused , r e a l s a l e −>?X] , //

Y i s a matching hypo the t i c a l product f o r that s a l e .
166 ?Y: In f r i ng ingProduc t . // and Y i s an i n f r i n g i n g product .
167
168 // Val id Ass ignees are g iven a property i n t e r e s t in the works

a s s i gned to them .
169 PR(? a s s i g n e e , ? proper ty ) : PropertyRight [ property−>? property , owner

−>? a s s i g n e e ] :−
170 ? Y : ValidAssignment [ a s s i gnee−>? a s s i g n e e , work−>? proper ty

] .
171
172 @{OwnerAssignedPropertyRights }// A v a l i d ass ignment depr i v e s the

owner o f property r i g h t .
173 \neg ? X : PropertyRight [ property−>? property , owner−>? workowner ] :−
174 ? Y : ValidAssignment [ work−>? property , a s s i gnor−>? workowner

] .
175 \ o v e r r i d e s ( OwnerAssignedPropertyRights , OwnersPropertyRight ) . //

This r u l e o v e r r i d e s the d e f a u l t r u l e that owners have property
r i g h t s .

122



176
177 // A person with property r i g h t s has a r i g h t o f ac t i on f o r

in f r ingement .
178 @{PropertyOwnerRightOfAction }
179 RoA(? p l a i n t i f f , ? in f r ingement , ? accused ) : RightOfAction [ p l a i n t i f f

−>? p l a i n t i f f , claim−>? in f r ingement , accused−>? accused ] :− //
the p l a i n t i f f has a r i g h t o f c la im f o r an in f r ingement i f

180 ( // e i t h e r
181 ? in f r i ngement : I n f r i n g i n g S a l e [ s e l l e r −>? accused ,

product so ld−>? product : Product [ o r i g ina l work
−>? work ] ] ; // the work was i n f r i n g e d by a
sa l e , or

182 ? in f r i ngement : In f r i ng ingProduc t [ manufacturer−>?
accused , o r i g ina l work−>? work ] // the work

was i n f r i n g e d by a product
183 ) , // and
184 ? PR : PropertyRight [ owner−>? p l a i n t i f f , property−>? work ] ,

// the p l a i n t i f f has a property r i g h t in the work .
185 ? p l a i n t i f f !== ? accused . // the p l a i n t i f f and the acused

are not the same party .
186
187 // A l i c e n s e e has a RightOfAction f o r in f r ingement .
188 @{LicenseeRightOfAct ion }
189 RoA(? p l a i n t i f f , ? in f r ingement , ? accused ) : RightOfAction [ p l a i n t i f f

−>? p l a i n t i f f , claim−>? in f r ingement , accused−>? accused ] :− //
the p l a i n t i f f has a r i g h t o f c la im f o r an in f r ingement i f

190 ? L : Va l idL icense [ l i c e n s e e −>? p l a i n t i f f , work−>? work ] , //
the p l a i n t i f i s a l i c e n s e e o f the work and

191 ( // e i t h e r
192 ? in f r i ngement : I n f r i n g i n g S a l e [ s e l l e r −>? accused ,

product so ld−>? product : Product [ s c enar io−>?
same , o r i g ina l work−>? work ] ] ; // The work has
been i n f r i n g e d by sa l e , or

193 ? in f r i ngement : In f r i ng ingProduc t [ manufacturer−>?
accused , o r i g ina l work−>? work ] // the work

has been i n f r i n g e d by a product
194 ) ,
195 ? p l a i n t i f f !== ? accused . // the p l a i n t i f f and the

accused are not the same party .
196
197 // TESTING DATA
198
199 // S p e c i f y i n g the Fact S i t u a t i o n in Euro Exce l l ence v . Kraft
200 // This s e c t i o n i s commented out when running the experiment .
201
202 // Kraft has g iven an e x c l u s i v e l i c e n s e to KraftCanada f o r the

Toblerone copyr ight which Kraft Owns .
203 // LicenseToKraftCanada : L i cense [ l i c e n s o r−>Kraft : Party , l i c e n s e e−>

KraftCanada : Party , work−>Toblerone : Work [ owner−>Kraft ] ] .
204 // Euro Exce l l ence has so ld a Toblerone that was made by Kraft not

In Canada
205 // SaleOfImportedToblerone : Sa l e [ s e l l e r −>EuroExce l l ence : Party ,

product so ld−>ImportedToblerone : Product [ manufacturer−>Kraft ,
o r i g i n−>NotCanada , o r i g ina l work−>Toblerone ] ] .

123



206
207 // OUR EXPERIMENT
208
209 // This p r e d i c a t e w i l l be used to search f o r bugs in the

automat ica l ly−generated s c e n a r i o s .
210
211 isabug (? I ) :−
212 ? I : Infr ingement , // the re i s an in f r ingement
213 ( // e i t h e r
214 ? I : I n f r i n g i n g S a l e [ s e l l e r −>? S , product so ld−>? P :

Product [ o r i g ina l work−>? W] ] , // the
in f r ingement i s an i n f r i n g i n g s a l e

215 \naf ? P : HypoProduct , // the product so ld i s not
hypo the t i c a l .

216 ? W[ author ized−>? A ] , // the re i s a person
author i zed with regard to the work

217 ( // e i t h e r
218 ? R : RightOfAction [ p l a i n t i f f −>? A , claim−>?

I ] , // the r i g h t o f ac t i on has been
overr idden

219 Overridden (? R ) ,
220 ?bug = ? R // in which case the r i g h t o f

ac t i on i s the bug
221 ) \ or (
222 \neg ? R : RightOfAction [ p l a i n t i f f −>? A ,

claim−>? I ] , / / i t never e x i s t e d
223 ? A !== ? S // the impugned s e l l e r i s not

a l s o the p l a i n t i f f
224 )
225 ) \ or (
226 ? P : In f r ing ingProduc t : Product [ manufacturer−>? M,

o r i g ina l work−>? W] , // the in f r ingement i s an
i n f r i n g i n g product

227 \naf ? P : HypoProduct , // the i n f r i n g i n g product i s
not hypo the t i c a l .

228 ? W[ author ized−>? A ] , // the re i s a person
author i zed with regard to the work

229 ( // e i t h e r
230 ? R : RightOfAction [ p l a i n t i f f −>? A , claim−>?

P ] , // the r i g h t o f a c t i o n s has been
overr idden

231 Overridden (? R ) ,
232 ?bug = ? R // in which case the r i g h t o f

ac t i on i s the bug
233 ) \ or (
234 \neg ? R : RightOfAction [ p l a i n t i f f −>? A ,

claim−>? P ] , / / i t never e x i s t e d
235 ? A !== ? M // the impugned manufacturer

i s not a l s o the p l a i n t i f f
236 )
237 ) .
238
239
240

124



241 // UTILITY CODE
242
243 // This s e c t i o n o f code gene ra t e s only unique s e t s o f i n d i v i d u a l s

in more than 1 r o l e .
244
245 s t a r t :mynum[ s i z e −>1,pos (1 )−>1].
246 {1 , 2 , 3 , 4 , 5 , 6 , 7} :NumVal .
247 {A,B,C,D,E, F ,G} : CaseParty .
248 CaseParty : : Party .
249 A[num−>1].
250 B[num−>2].
251 C[num−>3].
252 D[num−>4].
253 E[num−>5].
254 F [num−>6].
255 G[num−>7].
256 ?X:mynum[ char (?Y)−>?Z ] :− ?X:mynum[ pos (?Y)−>?V] , ? Z : Party [num−>?V ] .

// c r e a t e s a char (?X) p r e d i c a t e f o r each pos (?X) p r e d i c a t e .
257 ?X[ pos (?Y)−>?Z ] :− ?X[ pr io r−>? O [ pos (?Y)−>?Z ] ] . // mynums i n h e r i t

the va lue s o f t h e i r o r i g i n a l s .
258 ?− i n s e r t a l l {\#newnum(?O, ?N, ?V) :mynum[ s i z e −>?N, pos (?N)−>?V,

pr io r−>?O]
259 |
260 (?O:mynum[ s i z e −>?S , pos (? )−>?P ] ;
261 (?O:mynum[ s i z e −>?S ] , ?V=1) ) ,
262 ?N \ i s ?S + 1 ,
263 ?V: NumVal ,
264 ?V=<?N,
265 ?P \ i s ?V−1,
266 ?S=1}.
267 ?− i n s e r t a l l {\#newnum(?O, ?N, ?V) :mynum[ s i z e −>?N, pos (?N)−>?V,

pr io r−>?O]
268 |
269 (?O:mynum[ s i z e −>?S , pos (? )−>?P ] ;
270 (?O:mynum[ s i z e −>?S ] , ?V=1) ) ,
271 ?N \ i s ?S + 1 ,
272 ?V: NumVal ,
273 ?V=<?N,
274 ?P \ i s ?V−1,
275 ?S=2}.
276 ?− i n s e r t a l l {\#newnum(?O, ?N, ?V) :mynum[ s i z e −>?N, pos (?N)−>?V,

pr io r−>?O]
277 |
278 (?O:mynum[ s i z e −>?S , pos (? )−>?P ] ;
279 (?O:mynum[ s i z e −>?S ] , ?V=1) ) ,
280 ?N \ i s ?S + 1 ,
281 ?V: NumVal ,
282 ?V=<?N,
283 ?P \ i s ?V−1,
284 ?S=3}.
285 ?− i n s e r t a l l {\#newnum(?O, ?N, ?V) :mynum[ s i z e −>?N, pos (?N)−>?V,

pr io r−>?O]
286 |
287 (?O:mynum[ s i z e −>?S , pos (? )−>?P ] ;

125



288 (?O:mynum[ s i z e −>?S ] , ?V=1) ) ,
289 ?N \ i s ?S + 1 ,
290 ?V: NumVal ,
291 ?V=<?N,
292 ?P \ i s ?V−1,
293 ?S=4}.
294 ?− i n s e r t a l l {\#newnum(?O, ?N, ?V) :mynum[ s i z e −>?N, pos (?N)−>?V,

pr io r−>?O]
295 |
296 (?O:mynum[ s i z e −>?S , pos (? )−>?P ] ;
297 (?O:mynum[ s i z e −>?S ] , ?V=1) ) ,
298 ?N \ i s ?S + 1 ,
299 ?V: NumVal ,
300 ?V=<?N,
301 ?P \ i s ?V−1,
302 ?S=5}.
303 ?− i n s e r t a l l {\#newnum(?O, ?N, ?V) :mynum[ s i z e −>?N, pos (?N)−>?V,

pr io r−>?O]
304 |
305 (?O:mynum[ s i z e −>?S , pos (? )−>?P ] ;
306 (?O:mynum[ s i z e −>?S ] , ?V=1) ) ,
307 ?N \ i s ?S + 1 ,
308 ?V: NumVal ,
309 ?V=<?N,
310 ?P \ i s ?V−1,
311 ?S=6}.
312
313 // QUERIES
314
315 // Case 1 − no ass ignments or l e a s e s .
316
317 /∗
318 ?− \whi le (? X :mynum[ s i z e −>3,char (1 )−>?A, char (2 )−>?B, char (3 )−>?C

] , ?P: PlaceOfManufacture ) \do
319 (\ whi le ( i n s e r t {
320 Sa le (?A, ?B, ?C, ?P) : Sa l e [ s e l l e r −>?C, product so ld−>

Prod (?A, ?B, ?C, ?P) : Product ] ,
321 Prod (?A, ?B, ?C, ?P) : Product [ manufacturer−>?B, o r i g i n

−>?P, o r i g ina l work−>Work(?A, ?B, ?C, ?P) : Work ] ,
322 Work(?A, ?B, ?C, ?P) : Work [ owner−>?A]
323 } ,
324 w r i t e l n (= ’ Test ing ’ | | ?A | | ’ , ’ | | ?B | | ’ , ’ | | ?C | | ’ , and ’ | | ?

P)@\ i o )
325 \do
326 (
327 (\ whi le i sabug (?X)
328 \do w r i t e l n (= ’Bug Found ’ | | ?X)@\ i o ) ,
329 d e l e t e {
330 Sa le (?A, ?B, ?C, ?P) : Sa l e [ s e l l e r −>?C,

product so ld−>Prod (?A, ?B, ?C, ?P) :
Product ] ,

331 Prod (?A, ?B, ?C, ?P) : Product [ manufacturer−>?B
, o r i g i n−>?P, o r i g ina l work−>Work(?A, ?B
, ?C, ?P) : Work ] ,

126



332 Work(?A, ?B, ?C, ?P) : Work [ owner−>?A]
333 }
334 )
335 ) .
336 ∗/
337
338 // Case 2 − Lease Only
339
340
341 ?− \whi le (? X :mynum[ s i z e −>5,char (1 )−>?A, char (2 )−>?B, char (3 )−>?C,

char (4 )−>?D, char (5 )−>?E] , ?P: PlaceOfManufacture )
342 \do
343 (\ whi le ( i n s e r t {
344 Sa le (?A, ?B, ?C, ?D, ?E, ?P) : Sa l e [ s e l l e r −>?C,

product so ld−>Prod (?A, ?B, ?C, ?D, ?E, ?P) :
Product ] ,

345 Prod (?A, ?B, ?C, ?D, ?E, ?P) : Product [
manufacturer−>?B, o r i g i n−>?P,
o r i g ina l work−>Work(?A, ?B, ?C, ?D, ?E, ?P)
: Work ] ,

346 Work(?A, ?B, ?C, ?D, ?E, ?P) : Work [ owner−>?A] ,
347 L icense (?A, ?B, ?C, ?D, ?E, ?P) : L i cense [

l i c e n s o r −>?D, l i c e n s e e −>?E, work−>Work(?
A, ?B, ?C, ?D, ?E, ?P) ]

348 } , w r i t e l n (= ’ Test ing L icense Scenar io ’ | | ?A | | ’ ,
’ | | ?B | | ’ , ’ | | ?C | | ’ , ’ | | ?D | | ’ , ’ | | ? E | | ’ and
’ | | ? P)@\ i o )

349 \do
350 (
351 \whi le i sabug (?X)
352 \do w r i t e l n (= ’Bug Found ’ | | ?X)@\ i o
353 ) ,
354 d e l e t e {
355 Sa le (?A, ?B, ?C, ?D, ?E, ?P) : Sa l e [

s e l l e r −>?C, product so ld−>Prod
(?A, ?B, ?C, ?D, ?E, ?P) : Product ] ,

356 Prod (?A, ?B, ?C, ?D, ?E, ?P) : Product [
manufacturer−>?B, o r i g i n−>?P,
o r i g ina l work−>Work(?A, ?B, ?C, ?
D, ?E, ?P) : Work ] ,

357 Work(?A, ?B, ?C, ?D, ?E, ?P) : Work [ owner
−>?A] ,

358 L icense (?A, ?B, ?C, ?D, ?E, ?P) : L i cense
[ l i c e n s o r −>?D, l i c e n s e e −>?E,
work−>Work(?A, ?B, ?C, ?D, ?E, ?P) ]

359 }
360 ) .
361
362
363 // Case 3 − Assignment And Lease
364 // Note that t h i s search takes at l e a s t s e v e r a l hours on the

t e s t e d hardware , and has never been s u c c e s s f u l l y completed .
365 // There may be bugs in the code below , or running the code below

may r e v e a l bugs in the code above ( or in the law ! ) .

127



366
367 /∗
368 ?− \whi le (? X :mynum[ s i z e −>7,char (1 )−>?A, char (2 )−>?B, char (3 )−>?C,

char (4 )−>?D, char (5 )−>?E, char (6 )−>?F , char (7 )−>?G] , ?P:
PlaceOfManufacture ) \do

369 (\ whi le ( i n s e r t {
370 Sa le (?A, ?B, ?C, ?D, ?E, ?F, ?G, ?P) : Sa l e [ s e l l e r −>?C,

product so ld−>Prod (?A, ?B, ?C, ?D, ?E, ?F, ?G, ?P) :
Product ] ,

371 Prod (?A, ?B, ?C, ?D, ?E, ?F, ?G, ?P) : Product [ manufacturer
−>?B, o r i g i n−>?P, o r i g ina l work−>Work(?A, ?B, ?C, ?
D, ?E, ?F, ?G, ?P) : Work ] ,

372 Work(?A, ?B, ?C, ?D, ?E, ?F, ?G, ?P) : Work [ owner−>?A] ,
373 Assignment (?A, ?B, ?C, ?D, ?E, ?F, ?G, ?P) : Assignment [

a s s i gnor−>?D, as s i gnee−>?E, work−>Work(?A, ?B, ?C
, ?D, ?E, ?F, ?G, ?P) ] ,

374 L icense (?A, ?B, ?C, ?D, ?E, ?F, ?G, ?P) : L i cense [ l i c e n s o r
−>?F , l i c e n s e e −>?G, work−>Work(?A, ?B, ?C, ?D, ?E, ?F
, ?G, ?P) ]

375 } , w r i t e l n (= ’ Test ing ’ | | ?A | | ’ , ’ | | ?B | | ’ , ’ | | ?C | | ’ , ’ | | ?
D | | ’ , ’ | | ?E | | ’ , ’ | | ? F | | ’ , ’ | | ?G | | ’ , and ’ | | ? P)@\ i o )
\do

376 (
377 \whi le i sabug (?X)
378 \do w r i t e l n (= ’Bug Found ’ | | ?X)@\ i o
379 ) ,
380 d e l e t e {
381 Sa le (?A, ?B, ?C, ?D, ?E, ?F, ?G, ?P) : Sa l e [ s e l l e r

−>?C, product so ld−>Prod (?A, ?B, ?C, ?D, ?E
, ?F, ?G, ?P) : Product ] ,

382 Prod (?A, ?B, ?C, ?D, ?E, ?F, ?G, ?P) : Product [
manufacturer−>?B, o r i g i n−>?P,
o r i g ina l work−>Work(?A, ?B, ?C, ?D, ?E, ?F
, ?G, ?P) : Work ] ,

383 Work(?A, ?B, ?C, ?D, ?E, ?F, ?G, ?P) : Work [ owner
−>?A] ,

384 Assignment (?A, ?B, ?C, ?D, ?E, ?F, ?G, ?P) :
Assignment [ a s s i gnor−>?D, as s i gnee−>?E,
work−>Work(?A, ?B, ?C, ?D, ?E, ?F, ?G, ?P) ] ,

385 L icense (?A, ?B, ?C, ?D, ?E, ?F, ?G, ?P) : L i cense [
l i c e n s o r −>?F , l i c e n s e e −>?G, work−>Work(?
A, ?B, ?C, ?D, ?E, ?F, ?G, ?P) ]

386 }
387 ) .
388 ∗/
389
390 // Case 4 − Assignment Only
391
392 /∗
393 ?− \whi le (? X :mynum[ s i z e −>5,char (1 )−>?A, char (2 )−>?B, char (3 )−>?C,

char (4 )−>?D, char (5 )−>?E] , ?P: PlaceOfManufacture )
394 \do
395 (\ whi le ( i n s e r t {

128



396 Sa le (?A, ?B, ?C, ?D, ?E, ?P) : Sa l e [ s e l l e r −>?C,
product so ld−>Prod (?A, ?B, ?C, ?D, ?E, ?P) :
Product ] ,

397 Prod (?A, ?B, ?C, ?D, ?E, ?P) : Product [
manufacturer−>?B, o r i g i n−>?P,
o r i g ina l work−>Work(?A, ?B, ?C, ?D, ?E, ?P)
: Work ] ,

398 Work(?A, ?B, ?C, ?D, ?E, ?P) : Work [ owner−>?A] ,
399 Assignment (?A, ?B, ?C, ?D, ?E, ?P) : Assignment [

a s s i gnor−>?D, as s i gnee−>?E, work−>Work(?
A, ?B, ?C, ?D, ?E, ?P) ]

400 } , w r i t e l n (= ’ Test ing L icense Scenar io ’ | | ?A | | ’ ,
’ | | ?B | | ’ , ’ | | ?C | | ’ , ’ | | ?D | | ’ , ’ | | ? E | | ’ and
’ | | ? P)@\ i o )

401 \do
402 (
403 \whi le i sabug (?X)
404 \do w r i t e l n (= ’Bug Found ’ | | ?X)@\ i o
405 ) ,
406 d e l e t e {
407 Sa le (?A, ?B, ?C, ?D, ?E, ?P) : Sa l e [

s e l l e r −>?C, product so ld−>Prod
(?A, ?B, ?C, ?D, ?E, ?P) : Product ] ,

408 Prod (?A, ?B, ?C, ?D, ?E, ?P) : Product [
manufacturer−>?B, o r i g i n−>?P,
o r i g ina l work−>Work(?A, ?B, ?C, ?
D, ?E, ?P) : Work ] ,

409 Work(?A, ?B, ?C, ?D, ?E, ?P) : Work [ owner
−>?A] ,

410 Assignment (?A, ?B, ?C, ?D, ?E, ?P) :
Assignment [ a s s i gnor−>?D,
as s i gnee−>?E, work−>Work(?A, ?B
, ?C, ?D, ?E, ?P) ]

411 }
412 ) .
413 ∗/
414
415 // KNOWN PROBLEMS
416 // 1 . The whi l e c l a u s e s with ? X :mynum . . . are r e tu rn ing twice as

many r e s u l t s as expected . Each s c e n a r i o i s be ing t e s t e d twice
.

417 // 2 . The s c e n a r i o gene ra t ing code above should be looped ra the r
than run e x p l i c i t y 6 t imes .

418 // 3 . The isabug ( ) p r e d i c a t e o c c a s i o n a l l y f i n d s bugs which are ”
undef ined ” in the code , I have not had the opportunity to
c l a r i f y why , or to f i x that . The s c e n a r i o s are AAAAB Canada ,

AABAC Canada , and AABAB Canada .

129


	Introduction
	Declarative Logic Programming (DLP) in Law
	What are ``Written Legal Rules"?
	What is ``Declarative Logic Programming"?
	What is Declarative Programming?
	What is Logic Programming?
	Rules, Facts, and Questions

	Why Declarative Logic Programming?
	Translation, not Reformulation
	Increased Efficiency for Encoding and Maintaining
	Explainability

	Applications of Encoding Legal Rules in DLP
	Conclusion

	Using DLP To Find Legislative Bugs: An Experiment
	Introduction
	Kraft
	Background of the Case
	Our “Bug” in the Code

	Encoding Kraft
	The ErgoAI Language
	The Selected Scope
	Encoding Counterfactual Conditions
	Using ErgoAI to Test for the Bug

	The Results
	Conclusions

	Legal Scholarship on DLP in Law
	Expert Systems and DLP
	Why Legal Scholarship?
	Susskind
	Popple
	Leith
	Ashley
	McCarty
	Addressing the Criticisms
	The Legal Services Supply Perspective
	Standards of Appropriateness for Automated Legal Services
	We Encode Interpretations, not ``the Law"
	Concerns with Statutory Interpretation Can be Mitigated, and Do Not Apply Universally
	DLP Technology Has Improved

	The Real Challenge
	The Solution: The Legal Expert Is the Programmer
	Spreadsheets for Legal Reasoning

	Conclusion

	Desirable Qualities in DLP Tools for Automation of Legal Services
	Introduction
	Affordability
	Uncertainty
	Explainability
	Case-Based Reasoning
	Temporal Reasoning
	Defeasibility
	Usability
	Conclusion

	Survey of Selected Tools for Automating Legal Reasoning with DLP
	Criteria for Inclusion
	Selected Tools
	ErgoAI/ErgoLite
	Neota Logic
	Oracle Policy Automation
	Regulation as a Platform
	Docassemble
	DataLex

	Summary of Available Options
	What is Missing?
	What Should We Build?
	Conclusion

	User-Friendly Legal Case-Based Reasoning
	Introduction
	OpenLCBR
	The IBP Algorithm In Brief
	Docassemble-OpenLCBR
	Results
	Temporal Reasoning in Procedural Languages
	Impressions

	Conclusion
	Summary
	The Question of Scale
	Future Work

	References
	Appendix Oracle Policy Automation Encoding of Adult Interdependent Partnership Act
	Appendix ErgoAI Encoding of Adult Interdependent Partnership Act
	Appendix ErgoAI Encoding of Kraft

