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Abstract

Sentence reconstruction and generation are essential applications in Natural

Language Processing (NLP). Early studies were based on classic methods such

as production rules and statistical models. Recently, the prevailing models

typically use deep neural networks. In this study, we utilize deep neural net-

works to develop a model capable of generating new and unseen sentences or

reconstructing the given input with minor changes. To achieve this goal, we

develop an unsupervised tree-based model based on the Variational Autoen-

coder (VAE) framework.

Our approach utilizes the grammar rules of natural language and gener-

ates sentences based on phrases. This approach helps the generated sentence

to be semantically and syntactically correct. Previous models typically con-

sidered the tokens sequentially, and the syntax was only learned implicitly. By

contrast, our model learns both the sequence of the tokens and the syntax of

the sentences explicitly in order to generate better samples. The variational

modelling enables us to sample from the continuous latent space to generate

new sentences or reconstruct the input.

We demonstrate the effectiveness of this model through experiments. The

tree-based VAE model is trained on the Stanford Natural Language Inference

(SNLI) dataset. First, we compute the BLEU score for the given input to eval-

uate the reconstruction capability of the model and how the model can preserve

the information from the input. This score shows that our proposed model

reconstructs the input sentence better than the baseline. Second, random sam-
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pling from the latent space is used to evaluate how fluent the generation is.

We observe the perplexity, UniKL, and entropy to evaluate the quality of the

generated sentences. The results show that the generated sentences are less

semantically meaningful. However, the sentences are correct in terms of the

syntax and the order of phrases. The reason is that the rules are applied in a

way that correct parse trees are generated.

iii



To my beloved parents, sister, and brother

For their unlimited love, care, and support.

iv



Acknowledgements

I would like to thank some people who supported me during my study.

I would take a moment to show appreciation to my supervisors, Professor

Lili Mou and Professor Davood Rafiei, for their guidance, knowledge shar-

ing, and providing invaluable advice. They have been patient and supportive

throughout this research. They helped to motivate me to deal with the chal-

lenges in the research path. I would like to take the opportunity to express

my gratitude to them for whatever I learned from them while working on my

research.

I am highly thankful to my parents, Masoud and Maryam, my sister,

Shekoofa, and my brother, Shahab, for always supporting and caring about

me, even during the most challenging times.

Having friends who encouraged me was another favourable situation. I

thank all my friends who made this journey of study and life more enjoyable

by supporting me.

v



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition and Motivation . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work and Background 9
2.1 Natural Language Generation . . . . . . . . . . . . . . . . . . 9

2.1.1 Text Generation Applications . . . . . . . . . . . . . . 9
2.1.2 Text Generation Techniques . . . . . . . . . . . . . . . 10

2.2 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Representation Learning . . . . . . . . . . . . . . . . . 14
2.2.2 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Variational Autoencoders . . . . . . . . . . . . . . . . 16

2.3 Parsing and Tree-Based Models . . . . . . . . . . . . . . . . . 20

3 Approach 23
3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Tree-Based VAE . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Drawback of Word-Level Generation . . . . . . . . . . 24
3.2.2 The Proposed Model . . . . . . . . . . . . . . . . . . . 24

3.3 Training Objectives . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.1 Sentence Reconstruction . . . . . . . . . . . . . . . . . 31
3.4.2 Sampling New Sentences . . . . . . . . . . . . . . . . . 32

4 Experiments and Results 33
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 SNLI Dataset . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Data Pre-Processing . . . . . . . . . . . . . . . . . . . 34
4.2.3 Pre-Train Embedding . . . . . . . . . . . . . . . . . . . 35

4.3 Training Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 VAE Optimization Challenges . . . . . . . . . . . . . . . . . . 38

4.5.1 KL cost annealing . . . . . . . . . . . . . . . . . . . . . 40
4.5.2 Cyclical KL Cost Annealing . . . . . . . . . . . . . . . 41

4.6 Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusion and Future Work 47
5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . 47
5.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . 48

vi



References 49

vii



List of Tables

2.1 Notation of context-free grammars for natural language . . . . 21

4.1 Samples from SNLI dataset . . . . . . . . . . . . . . . . . . . 34
4.2 Experimental settings for the autoencoding model . . . . . . . 36
4.3 Results of different autoencoder models for text generation.

↑ / ↓ means the larger/lower, the better. For the Entropy, the
better happens when the result is close to the corpus distribu-
tion that is indicated by →. †Results quoted from the previous
paper [2]; others are given by our experiments. . . . . . . . . . 43

4.4 Generated sample examples with the tree-structured VAE . . 45

viii



List of Figures

2.1 Architecture of an autoencoder . . . . . . . . . . . . . . . . . 15
2.2 Architecture of a variational autoencoder . . . . . . . . . . . . 19
2.3 Demonstration of reparameterization trick, adapted from Kingma

et al. [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Example of context-free grammar . . . . . . . . . . . . . . . . 21

4.1 Two approaches of learning VAE, adapted from Fu et al. [13] . 40
4.2 Comparison between the monotonic and cyclical weight anneal-

ing with the number of 10 cycles and λ as the weight, adapted
from a similar illustration from Fu at al. [13]. . . . . . . . . . 42

4.3 KL term of the VAE loss function (λ.KL) learning curve for
different values of λ and the effect of cyclical λ annealing. . . . 43

4.4 Tree of a generated sample from the latent space . . . . . . . . 46

ix



Chapter 1

Introduction

1.1 Background

The fields of Artificial Intelligence (AI) [34] and Machine Learning (ML) have

been flourishing in recent years, and there are many applications where ma-

chines learn to make decisions as if a human being takes them. Broadly speak-

ing, machine learning refers to the field that computers learn from data [17]

and obtain knowledge without being programmed explicitly [37]. Robotics,

computer vision, and natural language processing are some machine learning

applications, and there are significant advancements in these fields.

Machine learning has been improving recently at a much faster pace, and

there are two reasons for that. First, the applications of the deep neural

networks have been increasing every day. The reason is that these networks

are able to perform feature engineering on their own [5]. Second, the com-

putational power that enables machines to learn complicated models is more

reachable.

This study focuses on applying and developing deep neural network models

for a task in Natural Language Processing (NLP). Natural language processing

is concerned with enhancing how computers interact with humans in natural

language. This interaction involves various components such as natural lan-

guage understanding and generation. Each of these can be used in the tasks

of question answering, machine translation, text summarization, etc.

Our research further focuses on natural language text generation that

strives to generate sentences in a natural language as humans do. Here, a
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natural language sentence is a group of words sequenced together. Two fac-

tors in this task are expected to be satisfied with a generated sentence: for

a sentence to be considered correct, both its syntax and semantics should be

correct. The constraint on syntax is satisfied if the structure of a sentence

follows the rules of the desired language, while a semantic condition ensures it

is semantically acceptable.

We aim to learn sentence generation based on the given input sequences. In

addition to word orders considered in sequence-to-sequence (Seq2Seq) models

[45], we also consider the tree format of the sentences. The proposed model

learns the structure of the input sentences to be able to generate sentences

based on those structures.

1.2 Problem Definition and Motivation

We study the problem of sentence generation in two cases: (1) an input sen-

tence is given, and the output is the reconstruction of the input, and (2) an

output sentence is generated from scratch while an input sentence is unavail-

able. Sentence generation by itself is an essential technique in many natural

language processing tasks, such as text summarization [27], dialogue gener-

ation [38, 39], image captioning [47], and storytelling. Most of the models

for these tasks generate sentences from scratch and mostly have the issue of

generating generic outputs [23], while diverse sentences are desirable to be

generated. We also need to regenerate sentences, given an input, to assess

how the model can maintain the information from the input by having a re-

construction task that can be used in many applications such as paraphrasing

[32] and code generation [50].

As mentioned before, there are various applications for generating sentences

from scratch. Creating such sentences from a distribution provides a robust

environment to obtain the goal of diverse sentence generation. For example, a

dialogue generation system is supposed to receive a sentence and respond, but

various responses may be available [38]. Therefore, it is important to consider

probabilistic sentence generation to produce diverse sentences.
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The principal motivation for this research is to focus on the syntax ex-

plicitly to generate sentences. As mentioned, generating sentences is a key

concept in natural language processing. We would like to create sentences

as either reconstruction of input sentences with some variation or to develop

sentences from scratch. We want these sentences to be semantically and syn-

tactically correct. So, in the proposed model, we consider the tree-structure

of the sequence, along with a probabilistic encoder-decoder.

The baseline, which is the study of Bahuleyan et al. [2], does not consider

if the reconstructed or the generated sentences are grammatically correct and

the study is generally based on a sequence-to-sequence encoder-decoder model.

A sequence-to-sequence model works so that an output sequence of tokens

will be generated given an input sequence of tokens. For example, given an

input sequence a = (a1, a2, ..., am) with m tokens, the model may generate an

output sequence b = (b1, b2, ..., bn) with n tokens. This work generally pays

attention to the series of tokens within sentences, and the fact that sentences

in natural language must be generated following specific structures is only

implicitly satisfied.

Implicitly considering the structures of sentences has the potential of gener-

ating syntactically incorrect output sentences. The reason is that we are using

a variational autoencoder model for the text generation task. The continu-

ous latent space of this architecture merges both the syntactic and semantic

information [3]. So, many structural details miss while generating sentences

[41]. If the syntactic part is not modelled explicitly, it causes producing syn-

tactically incorrect text [52]. Researchers have shown that explicitly involving

syntax while generating sentences enhances the output quality for sequence-to-

sequence models [4, 9, 11, 41]. Therefore, adding grammar rules to generate

syntactically correct sentences is helpful because it considers the syntax di-

rectly.

Let us use an illustration to clarify the idea. For instance, consider the

syntactic part of the following sentences. The sentence “I like do this book”

has some flaws in the grammatical aspect of the natural language. The reason

is that the verb phrase includes two verbs consecutively (i.e., “like” and “do”)
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and a noun phrase after that (i.e., “this book”), where there is no valid tree

structure for this sentence; thus, this sentence is not correct syntactically. But

generating this sentence is possible by not having a grammar-based model and

not modelling the syntax explicitly. On the other hand, the sentence “I like

this book” is considered a correct sentence, according to the natural language

grammar, because it consists of a noun phrase and a verb phrase in the first

division of the sentence and the other subphrases afterwards in the order they

must be shown. By considering the syntax directly in our proposed model,

we can generate syntactically correct sentences, such as the latter example,

instead of the former. So, in this study, we consider the tokens and the applied

grammar rules during the generation process.

Usage of grammar rules in a model can be applied for different applications

in natural language generation. Language generation [3], unsupervised para-

phrase generation [52], and syntax-transfer generation [3] are examples of the

application of this model. Moreover, some studies on tasks such as machine

translation [9, 11, 24, 54] explicitly model the syntax to improve the quality

of the generated sentences. Explicit syntax modelling can be applied to the

natural language tasks because this model does whatever a non-grammatical

model does and also pays attention to the syntax of the generated sentences.

In this work, we study how grammar rules and their application can af-

fect the generation of natural language sentences. The generation can happen

under two cases: (1) we have an input and aim at generating sentences given

the input (i.e., reconstruction), and (2) the generation happens with no input.

This policy of explicitly demanding grammar rules in generating natural lan-

guage sentences is applied to a variational autoencoder model to assess how

different sentences can be generated through a stochastic generative model.

This architecture uses various features of the sentences in the generation task.

These features include the tokens, the rules, the context of the sentences, and

the information from the parent of a node in the parse tree. Yin et al. [50]

study the influence of these parameters in the generation task.
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1.3 Contributions

This study proposes a new way of generating sentences from the latent space

or regenerating them given input sentences. The suggested model works in an

unsupervised manner and combines a token-based with a grammatical-based

sentence generation.

The previous studies on natural language generation only use the tokens

within the sentences and are mainly based on Seq2Seq models [2, 7, 16]. We

do not ignore the effect of considering tokens within the sentence, but we think

that is not sufficient for the task of sentence generation.

If we think of natural language generation by human beings, not only

does the word choice play an important role in transferring their idea, but

also following a correct structure is essential because the sentences must be

grammatically correct.

Our framework is based on a variational encoder-decoder, and we consider

the following parameters to learn the structure of the sentences to finally be

able to generate new or reconstruct sentences that are similar to the previously

seen ones:

• actions that are applying grammar rules and generating tokens,

• context of the sentence,

• previously generated tokens, and

• information of the parent nodes in the parse tree of the sentence.

We use all these factors in a variational autoencoder architecture [19]. The

encoder and the decoder in our VAE model use LSTM, an RNN-based ap-

proach.

Based on a learned distribution and the encoded input, in the case of a

provided input, the most probable rule is applied or a token is generated at each

time step. Compared to a word-level sentence generation or reconstruction [2],

our approach uses grammar and considers syntax as the centre of the attention

of the model. So, we will have a tree-based VAE model.

5



The evaluation is done on the Stanford Natural Language Inference (SNLI)

dataset [6]1 to demonstrate how our approach works. The dataset includes

570k sentences in natural language. To evaluate if the generated sentences

are effective and of good quality in terms of reconstruction, the BLEU score

[31] is used if the input is available. Moreover, perplexity (PPL) is utilized to

measure the fluency of the generated sentences. UnigramKL and entropy are

also used to evaluate the closeness and similarity of distribution between the

generated sentences and the corpus.

Our quantitative evaluation demonstrates that a structure-based varia-

tional autoencoder works well in terms of reconstruction compared to the

non-tree-based model. In the case of sentence generation without giving an

input, although all the previously generated tokens are considered at each

step, the word choice does not result in developing fluent sentences. But, in

the case of evaluating the syntax of these generated samples, they are correct

and produce valid parse trees.

To summarize, the main contributions of this thesis are as follows.

1. We propose a variational autoencoder (VAE) [19], in which previous

tokens, context, and tree structure of a sentence consisting of actions

are effective in learning a model of sentence generation. These actions

include rule application and token generation in a top-down format of

the tree.

2. In this process, the parse tree is considered in addition to the simple

format of each sentence.

3. We study the quantitative evaluation of the model and assess its effec-

tiveness compared to the simpler models through different experimental

metrics.

Although explicitly considering the grammar rules can be beneficial and

be used in many applications and tasks in the natural language generation,

there are some issues. Compared to the non-grammatical models, this model

1https://nlp.stanford.edu/projects/snli
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requires more time to be learned and is more complicated. The reason is

that syntax-based models need more information than the sequence of tokens

to understand the tree structure of the sentences. In learning the tokens, the

model only needs to focus on the previous tokens at each step, and these tokens

are sequentially joined together. On the other hand, our framework also pays

attention to the structure of the sentence tree, including the parent nodes and

siblings. Our approach differs from the non-grammatical approaches in the

way that it is not completely sequential, and other topics also play roles.

Another challenge is having the ability to process the text with its grammar

rules. It is required that all the rules be extracted beforehand based on the

given dataset, while this is not needed when we are not explicitly working with

the grammar rules. When we introduce a model that utilizes the grammar

rules, we should provide those rules explicitly so that we can learn a proper

model based on the rules.

To conclude, not considering the grammar rules explicitly in the model can

achieve good results based on measurements, such as fluency. Moreover, these

models do not spend time in the pre-processing steps to extract grammar rules.

They also do not take time to learn the rules structure in their architecture

during training, which results in performing these models in less time. So,

obtaining good results while spending less time is the reason many applications

get away without explicitly using the grammar rules in their models.

1.4 Thesis Outline

This chapter presents the motivation and background behind our study and

an outline of our approach. The remaining parts of this thesis are structured

as follows:

• Chapter 2 reviews the related works on text and sentence generation.

We also review the background material referenced in the rest of the

thesis, including the variational autoencoders, the parse trees, and the

Context Free Grammars (CFGs).
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• Chapter 3 introduces our tree-based VAE model and the use of grammar

rules in natural language sentences to reconstruct input sequences and

generate new sentences.

• Chapter 4 provides details of our dataset, evaluation metrics and the

results of the proposed model. The model is assessed both in sentence

reconstruction and generation. We compare our model with the baseline

that does not benefit from the grammar rules within the language.

• Chapter 5 gives a summary of the study, followed by the conclusion and

directions for future research.
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Chapter 2

Related Work and Background

In this chapter, we review the relevant studies on generating sentences in the

natural language. We also cover the background topics that are needed in this

study, including autoencoders and tree-based models.

2.1 Natural Language Generation

In Natural Language Generation (NLG), we want to generate sentences or

paragraphs in natural language, and we want those sentences and paragraphs

to be similar to the human language. The goal is to create fluent, natural,

correct, and grammatical sentences while satisfying the criteria and objective

for a specific task. There are different well-established tasks and sub-fields in

NLG, including Machine Translation (MT), summarization, and chatbots. We

will go through each of these tasks briefly in the following.

2.1.1 Text Generation Applications

Given an input utterance in one language, machine translation is the task

of creating a new sentence in a different language (for example, translating

an English sentence into German) while maintaining the same semantics and

meaning. Recently proposed methods have mainly relied on neural networks

and are capable of generating accurate translations [1, 48].

Text summarization should produce a comprehensive and concise sum-

mary of the input while retaining all the crucial details from the original text.

There are two general approaches for generating an input text summary: ex-
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tractive and abstractive. The important sentences in a text are found using an

extractive method. Without making any changes, each sentence that conveys

vital information is added to the summary output. On the other hand, a more

sophisticated abstractive method interprets the context to identify the most

important sections and then reproduces them in a condensed form. The sec-

ond strategy, which is more relevant to this thesis, is regarded as a generation

task [30, 36].

Dialogue response generation is the process of creating a dialogue

based on a source utterance. Applications developed for this task include

chatbots and other similar services. More recent studies on dialogue genera-

tion use neural network encoder-decoder techniques [15, 40].

2.1.2 Text Generation Techniques

Now that we talked about some significant applications of NLG, we want to

discuss different techniques developed for the task.

Rule-Based Methods

Previous techniques in NLG, which were proposed in the early stages, mainly

focused on rules. The rule-based methods may be based on production rules

of grammars, probabilistic or statistical techniques, finding patterns of inter-

connected entities, or hierarchical classes and their relationship [8].

Sequential Models

Most state-of-the-art approaches are based on deep Neural Networks (NNs).

Various architectures are arising from NNs, and they are becoming popular.

This process of shifting from the early stages of NLG (i.e., rule-based meth-

ods) to the approaches centred on neural networks started with Recurrent

Neural Networks (RNNs) [44]. Later, Long Short-Term Memory (LSTM) and

Gated Recurrent Units (GRUs) architectures were used to generate sequences.

The work of Graves [14] is an example that uses Long Short-term Memory re-

current neural networks for different tasks. These methods are helpful because

they are applied to get a sequence in a natural language as input in order to
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predict the output. For generating natural language, regardless of the task,

the encoder-decoder architecture is shown to be a good option [10]. Sutskever

et al. [45] apply LSTM for both the encoder and the decoder to generate

sequences.

Many different studies utilize the previously mentioned sequential methods

and architectures for the task of natural language generation. These models

are called text generation from scratch. Many of these studies use VAE

to generate sentences or sequences. For instance, Bowman et al. [7] use an

RNN-based VAE model to create sentences. The distribution of the latent

space and sampling from it allows the whole sentence generation and learning

of the aggregated features. The study of Bowman et al. [7] encodes the input

data to a continuous hidden space and decodes the sampled vector from that

distribution to generate sentences.

A closely related study to our work is the study of Bahuleyan et al. [2],

which is considered a baseline in our study. It uses the Variational Autoen-

coder (VAE) and Wasserstein Autoencoder (WAE) for probabilistic sentence

generation. The encoder might be deterministic or stochastic in WAE. While

this method works better than previous approaches, the generated results may

not be grammatically correct since the training focuses only on the words and

not on the syntax of the sentences explicitly. Utilizing the syntax of the sen-

tences while using the sequence of words is what we study in this thesis.

Bao et al. [3] use disentangled syntactic and semantic spaces to model the

syntactic information and language generation. There are two latent spaces

needed to learn the syntax and semantics independently. Linearized tree se-

quences are used as the input for the syntactic part of this model. The defined

loss for this work is a combination of multitask loss, adversarial loss, and ad-

versarial reconstruction loss. Multitask loss makes sure that each space learns

the respective information. Adversarial loss predicts semantic information

from the syntactic space and inverse. Lastly, adversarial reconstruction loss

discourages the sentence prediction by only a single subspace.

Another study that considers syntax is the study of Zhang et al. [52]. This

work combines the semantics of a sentence with its syntactic tree to generate a
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more grammatical sentence. Similar to the study of Bao et al. [3], Zhang et al.

[52] use two separate latent spaces, one caring for developing a sentence and

the other learning a syntactic tree. Therefore, there is a joint distribution.

In the study of Zhang et al. [52], the two latent spaces can be treated in

two ways; the latent variables can be either dependent or independent of each

other. The loss function is designed accordingly.

Furthermore, Yuan et al. [51] model the syntactic structure of the data as a

graph and encode it based on Graph Neural Networks (GNNs). It utilizes VAE

for the generation part. The semantic aspect and the syntactic component of

the sentence are learned, but there are two different versions. One of the ver-

sions merges both latent spaces into a single space. While the other considers

them as two separate latent spaces that continue to the decoder separately.

The studies mentioned above for the generative tasks mostly used varia-

tional autoencoders, but there are other architectures that allow us to generate

sentences, such as Generative Adversarial Networks (GANs). Zhang et al. [53]

apply GANs to create texts. However, there are some challenges while using

this strategy. The problem is that accurate gradient computation cannot be

applied because the variables and outputs are discrete. So a gradient esti-

mation method is obtained. Monte Carlo estimation is used for the gradient

estimation of discrete variables.

Other studies accomplish the sentence generation task using edit-based

text generation. Miao et al. [26] propose a method for dealing with the

sentence generation task that includes the condition of containing predeter-

mined words in the generated sentences. In order to implement the method,

an approach based on Metropolis-Hastings sampling via unsupervised learning

was employed to overcome sequential sentence generation. In this approach,

one operation from the set of insertion, deletion, and replacement operations,

each comes with a specified probability, is selected. At each step, a word is

chosen randomly, and then the selected operation is performed to generate the

sentence.

In a similar study, Song et al. [42] propose a model to generate sentences

with the predetermined word at a specific position while using RNNs. The
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model uses two RNNs to generate forward and backward sentences, starting

from the desired word. They also add the embedding of a position into the

model training.

It should be considered that sentence generation does not always start from

scratch, as some studies sample prototypes from a training set and edit them

to produce new ones [16]. In the study of Guu et al. [16], sentence generation

is accomplished by randomly selecting a prototype sentence from a prototype

distribution and a random edit vector. Then a new sentence can be generated

by applying these to a neural editor. Additionally, the edit vector, which

determines the type of edit to be executed, is sampled from an edit prior.

The goal is to satisfy semantic smoothness and consistency. The smoothness

means that each edit is minor for the sentence, while several edits will obtain a

significant change. The consistency controls the change type in the sentence,

meaning that an edit vector makes semantically equivalent changes, even if

the prototypes are different. Guu et al. [16] claim that their proposed model

has better quality than the ones without having a prototype in the first step.

Attention Mechanism

Although the sequential models can be beneficial for sentence generation, some

issues might affect the quality of the long sentences due to the challenges in

managing the dependencies in long sentences using the standard networks. To

address this challenge, a new network model called the attention mechanism

[1] is introduced. The attention mechanism is expected to search for relative

words in an input utterance to help with predicting the next word in a target

utterance. Since the vectors in encoder-decoder models have fixed sizes, the

attention mechanism can be an improvement by working to create vectors that

are not necessarily fixed in size. In the other words, the attention model uses

context vectors based on positions to predict new words. Thus, this approach

helps to improve performance while working with longer sequences.

The Transformer model [46] is the model enabling us to work easier and

more efficiently in comparison to the recurrent models. This model is based on

the encoder-decoder architecture. Additionally, the Transformer uses attention
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as its main idea without recurrent structure. This model can handle long-range

dependencies within the input, which is a challenge in the sequential model

architectures. Moreover, parallelization of the computation is possible with

this architecture. In other terms, the initial proposed Transformer [46] uses

multi-head self-attention as its attention part, which means that the model

attends the input to itself and has multiple attention heads that perform in

parallel. Recently, Transformer-based models have been used for generative

tasks, such as Generative Pre-trained Transformer (GPT) [33].

2.2 Autoencoders

2.2.1 Representation Learning

Learning the representation of the data results in understanding its proper-

ties. The posterior distribution of the learned representation focuses on the

variation of the data and is helpful in tasks like generation. This distribution

is learned while working with probabilistic models.

The “manifold hypothesis” is expressed based on the dimension of the

data. This hypothesis states that even high-dimensional data tends to lie near

a low-dimensional topological space called a manifold [12]. This hypothesis is

useful for representation learning. Manifold learning is supposed to learn and

represent data based on a manifold hypothesis. Principal Component Analysis

(PCA), which is used for dimensionality reduction, is an example of manifold

learning.

Our work in reducing dimension and manifold learning is based on a neural

network architecture called autoencoder [35]. PCA finds a linear correlation

between the features, while autoencoders can find nonlinear correlations.

2.2.2 Autoencoders

As mentioned above, we can use autoencoders [22] for dimensionality reduction

and information compression. We want to reduce the number of data features

while missing as little information as possible in an unsupervised training

paradigm. This model can also be used to learn how to remove the noise of
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the input data.

Autoencoders use neural networks to learn a model on how to reconstruct

the input data points. This architecture is based on an encoder and a decoder

[22], as in Figure 2.1.

Figure 2.1: Architecture of an autoencoder

The encoder component is supposed to learn a mapping of the essential

information in the input data to a lower dimensional manifold. The mapping

result will be the input encoding in the Euclidean latent space of the new

features representation based on the original features in the input data.

The intermediate representation, also called the latent space, is the part

that has the key features and information from the input. Latent represen-

tation of the data points can be used in different cases. The dimensionality

of the latent space is usually less than that of the input, and the latent space

is an encoded and compacted version of the input data while maintaining the

essential information within the original data point.

The last component in the autoencoders is the decoder. The decoder uses

the data stored in the latent representation phase in the learned manifold to

decode it and reconstruct the input.

If we represent the encoder and decoder as f and g, respectively, we aim

to find these two functions such that they satisfy the following equation, for

input x,

g(f(x)) = x. (2.1)

If f and g are linear functions, the framework is PCA. The encoder and
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decoder can be considered neural networks if a non-linear function is used

instead of the linear function.

Normally, the output of the reconstruction does not satisfy the equality

of Equation 2.1. The output can be considered as g(f(x)) = x̂. Then, the

objective function is

Jreconstruction =
N∑
n=1

‖x̂n − xn‖22 . (2.2)

The loss of the autoencoder depends not only on the input data but also

on its structure. In our case, we are working with text and a sequential archi-

tecture, so the training loss for predicting the xt token is computed based on

the previous tokens and the latent representation,

Jreconstruction =
N∑
n=1

|x(n)|∑
t=1

−log(p(x
(n)
t |h(n), x

(n)
1 , .., x

(n)
t−1)). (2.3)

In this equation, h represents the latent space, superscript (n) indicates the

data point n that is from 1 through N , the total number of data points, and

t is the decoding step.

The autoencoders suffer from the lack of regularity in the latent space. The

reason is that we use neural networks in autoencoders that can learn complex

functions. Because of this, the model is more likely to overfit, which leads to

a less regular latent space [43]. Variational autoencoders are introduced to

address this problem.

2.2.3 Variational Autoencoders

The variational autoencoder [20] model forces a prior distribution p(z) on the

latent variable z. This distribution is commonly the normal distribution [20].

In simple autoencoder models, the latent space lacks a specific distribution

while encoding. The reason is that the model is trained on encoding and

decoding by minimizing the reconstruction loss, no matter how the latent

space is regularized. Not regularizing the latent space causes overfitting, which

makes the model not generalize well. A regularizer can be added explicitly to
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increase its generalizability and solve the unstructured latent space problem

[2].

The generative process is by sampling z ∼ p(Z) and computing f(z, θ) that

generates X. During the optimization process of θ, we require maximizing the

likelihood of the generated X. The optimization problem is to maximize the

probability of the training data, as follows:

pθ =

∫
pθ(z)pθ(x|z)dz. (2.4)

While computing this likelihood, some values will be intractable (i.e., it cannot

be computed for all the values z). Being intractable also happens for comput-

ing the posterior distribution, pθ(z|x) = pθ(x|z)pθ(z)/pθ(x). The variational

autoencoder helps us to learn an approximation of the posterior pθ(z|x) and

handle the intractable variables.

The Variational Autoencoder (VAE) [20] learns a generative latent vari-

able model and handles intractable distributions. The key idea is to have an

approximate posterior model qφ(z|x) and a true posterior pθ(z|x) and to learn

the parameters φ and θ to make the approximate posterior distribution to be

similar as much as possible to the true posterior. To compute the distance be-

tween these two distributions and minimize it, the KL divergence is commonly

used. The formula is as follows:

DKL(qφ(z|x)||pθ(z|x)) = Ez∼qφ [log qφ(z|x)− log pθ(z|x)]. (2.5)

Based on Equation 2.5 and applying the Bayes rule, we have the following

equation:

log pθ(x)−DKL(qφ(z|x)||pθ(z|x)) = Ez∼qφ [log pθ(x|z)]−DKL[qφ(z|x)||pθ(z)].

(2.6)

The term DKL(qφ(z|x)||pθ(z|x)) in the above equation is intractable, but

since the output of the KL divergence is non-negative, we can ignore this term

and obtain the following inequality:

log pθ(x) ≥ Ez∼qφ [log pθ(x|z)]−DKL[qφ(z|x)||pθ(z)] = ELBO. (2.7)
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The right-hand side of the inequality, known as evidence lower bound (ELBO),

is maximized in variational autoencoder models. And maximizing ELBO is

equivalent to minimizing the negative of the above expression.

The first term on the right-hand side of Inequality 2.7 is the output of the

sampling. On the other hand, the second term, which acts as the regularization

of the latent space, demonstrates the KL divergence between the posterior and

the prior. The regularizer controls sample generation and avoids overfitting.

As can be seen, this model works with reconstructing the input data point

and also generating new samples and contents. It can be interpreted because

the first term in the loss function is in charge of reconstructing the input data,

and the other term attempts to make the approximate posterior distribution

close to the prior as much as possible that can be used for sample generation.

These two terms are differentiable everywhere and will be considered as the

objective function for the VAE models.

In variational autoencoder models, the encoder encodes the given input

data point and produces a distribution in the latent space. qφ(z|x) can be

thought of as the encoder that encodes the input into two different latent

representation variables, the mean (i.e., µ) and the variance (i.e., σ2) of the

approximate posterior. On the other hand, the decoder decodes the output

data given the latent variables, where pθ(x|z) is supposed to be the decoder.

Typically, the encoder and decoder are neural networks with parameters φ

and θ to be learned, respectively. Therefore, based on the right-hand side of

Inequality 2.6, the encoder encodes the data point x to a distribution. The

decoder decodes the data and generates a new data point, given a sample from

the distribution. A graphical representation of this architecture is shown in

Figure 2.2.

Considering the posterior and prior distributions, it is common to think

of the posterior as a normal distribution (i.e., qφ ∼ N (µ, σI)) and the prior

to be a standard normal distribution (i.e., pθ(z) ∼ N (0, I)) [2]. Sampling

directly from the approximate posterior is not correct since it is a random

variable that is not differentiable. We can use the reparameterization trick [20]

to backpropagate for the gradients. Reparameterization makes the function

18



Figure 2.2: Architecture of a variational autoencoder

differentiable by removing the probabilistic variable, as shown in Figure 2.3. In

this way, we can sample from the prior and use the parameters of the posterior

to generate a sample in the posterior distribution. So, we can backpropagate

through z and compute the gradients. The sample can be generated from the

normal distribution (i.e., ε ∼ N (0, I)), then the sample from the posterior

distribution can be produced as follows:

z = µ+ σε. (2.8)

Figure 2.3: Demonstration of reparameterization trick, adapted from Kingma
et al. [21]

This reparameterization trick helps us learn the mean and variance of the
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posterior distribution by making the function differentiable. After training, the

inference process consists of generating innovative samples and reconstructing

input sentences by sampling latent vectors from the posterior distribution.

As mentioned, decoding can be used for generative purposes if the latent

space is regularized. Regularization prevents overfitting and makes it possible

for the latent space to produce new samples. The objective function (i.e.,

right-hand side of Equation 2.7) pushes the posterior distribution close to the

standard normal distribution to minimize the loss function. On the other

hand, it can cause the reconstruction error to increase. Therefore, there is a

trade-off between the two terms in the loss function (i.e., reconstruction error

versus KL divergence).

2.3 Parsing and Tree-Based Models

Context-Free Grammars

Context-free grammar (CFG) is a grammar that can be written as a 4-tuple

G =< N,Σ, R, S >. In this tuple, N represents the set of non-terminal vari-

ables, Σ is the set of terminals disjoint from N (i.e., words in the natural

language), and R denotes the set of grammar rules, which is a relation in

N × (N ∪ Σ)∗. S is the starting symbol that represents the whole sentence

and is an element of N . The rules in R can be used to generate sentences by

calling them iteratively, to get a tree structure.

Context-free grammars have been used for a long time in Computational

Linguistics. Figure 2.4 gives a CFG as an example, with the description of

their notations shown in Table 2.1.

Probabilistic Context-Free Grammars

The key idea of probabilistic CFGs is that there will be a probability distribu-

tion over all the possible derivations and parse trees. Each group of the rules

with the same left-hand side will have a different distribution from the others.

When working with the grammar rules, the model tries to learn their distri-

butions. New sentences can be generated based on the learned distributions
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Figure 2.4: Example of context-free grammar

notation description
S sentence

PP prepositional phrase
NP noun phrase
VP verb phrase
IN preposition
DT determiner
NN noun

PRP pronoun
VBD verb (past tense)

ADVP adverb phrase
RB adverb

Table 2.1: Notation of context-free grammars for natural language

while considering the sequence of rules and tokens together.

Since each grammar rule is a part of a distribution, each rule has a specific

probability. Furthermore, as already mentioned, a single distribution contains

all the grammar rules with the same left-hand side. Hence, for each grammar

rule a→ bi in the set of all grammar rules R, we have

p(a→ bi) ≥ 0. (2.9)
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We also have ∑
∀i;a→bi∈R

p(a→ bi) = 1. (2.10)

Constituency Parse Tree

As our work is syntactical sentence generation, we must consider the parse

trees. We use the Stanford Parser1 to get the parse trees of the dataset. Then,

based on those trees of the dataset samples, we use the parsed sentences to

extract the natural language grammar rules.

The constituency parse trees are established based on context-free gram-

mars. Processing the parse trees can assist us in learning a model that extracts

the syntactical patterns in the natural language. Understanding these patterns

enables the framework to know about generating valid phrasal constituents in

natural language. By combining these phrases, valid sentences can be gener-

ated.

Our framework is mainly based on parse trees and their generation. The

reason is that by using these trees, we can better understand the syntactic

structure of sentences. According to section 3.2.1, switching the generation

level of a sentence from words to phrases will assist us in producing grammat-

ically correct sentences. Working with the phrases contained in the sentences

is made more accessible by the constituency parse tree concept.

1https://nlp.stanford.edu/software/lex-parser.shtml
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Chapter 3

Approach

3.1 Outline

In this thesis, our goal is natural language sentence generation. Our focus is on

phrase-level and syntax-based generation instead of word-level generation [25],

which is common in the literature. We hypothesize that a structured approach

has the following benefit. The structural and syntax-based information helps

to model the information flow in the neural network. Passing information

happens from both the previous nodes and the parent node in the tree to use

relevant phrases in the natural language.

This chapter is organized as follows. Section 3.2 introduces phrase-level

sentence generation while it is compared to the word-level. We then present our

phrase-level sentence generation approach. Section 3.3 discusses our training

process, where we study the roles of grammar rules and phrases in the task

of sentence generation. Finally, Section 3.4 discusses the inference after the

model is trained. We talk about how the model can be applied to sampling

new sentences and reconstructing a sentence from an input.

3.2 Tree-Based VAE

The primary contribution of this thesis is introducing phrase-level genera-

tion into unsupervised sentence generation. In this section, we discuss the

motivation behind our contribution and the process of phrase-level sentence

generation using the VAE architecture.
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3.2.1 Drawback of Word-Level Generation

With a word-level sentence generation model, the continuous latent space of

VAE mixes the syntax and semantic parts of a sentence [3]. Thus, the syn-

tactic information is not explicitly modelled, which often results in generating

grammatically incorrect sentences [52]. Shi et al. [41] demonstrate that not

explicitly modelling the syntax makes many structural details missing while

generating a sentence. Studies show that explicitly modelling the syntax en-

hances the generation quality in sequence-to-sequence models [9, 11, 24, 54].

In our proposed approach, the phrases are also considered during genera-

tion. So, the generated candidate is grammatically and syntactically correct.

During the generation process, our approach considers the learned distribu-

tion of the natural language grammar rules and the distribution of generating

tokens, not just the latter.

3.2.2 The Proposed Model

The final goal of training our model is to obtain the syntax tree of the given

input sentence, while the tree has the highest score. Generating the syntax

tree is accomplished by an intermediate step (i.e., transition) that obtains all

the required actions to construct the sentence in a grammatical way. Those

actions can be applied to build the constituency parse tree of the sentence,

as described in Section 2.3. In this case, each subtree is viewed as a phrase.

The proposed model tries to capture the distribution of the rules such that

the final syntax tree is a regularized format of the most probable tree for the

input sentence. So, we mainly focus on the part of the transition from input

utterance to detailed actions, which can construct the final syntax tree. We

employ a generation modelling technique, called variational autoencoder, to

manage this transition part. Based on the parent and previous nodes in the

tree structure, this model learns the probability of the subtrees in a parse tree.

Encoder and decoder are the two major components of VAE models, as was

mentioned in Section 2.2.3. The input consists of natural language utterances,

and the encoder converts each input sentence into a vectorial representation
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using a bidirectional Long Short-Term Memory (LSTM) network. The prob-

abilistic latent space uses the vectorial representation as the input, and a

sample is generated from the distribution of the latent space. The decoder, a

standard LSTM, regenerates the sentence by decoding it. However, this time,

decoding also focuses on extracting the grammar rules. Obtaining the gram-

mar rules can help in learning the transition phase. Section 3.3 contains more

information on this.

As discussed in Section 2.2.3, VAE penalizes the divergence between pos-

terior and prior of the latent variable z. This divergence results in posterior

regularization, which enables the framework to generate sentences from the

continuous latent space [2].

We require natural language grammar rules in order to achieve these actions

for each input sentence. Then, the tree constructing actions are extracted,

which help to generate a syntax tree. Thus, modelling syntax trees can be

done using natural language grammatical formalization.

It is possible to observe the natural language grammar as a context-free

grammar. The left side of each rule contains a single phrase, while the right side

contains one or more phrases or tokens (i.e., vocabulary) from the language.

There are two main parts in the grammar: type and constructor. Types are

either composite or primitive. If the type is composite, there will be at least one

grammar rule with that type on its left so that the parse tree to generate the

sentence will extend further. In this case, the constructor is on the right side of

these rules. If the type is primitive, the values will be the terminal vocabularies

within the dictionary in the natural language. So, whenever a primitive type

appears, the tree expansion in that branch of the tree terminates, and a token

is generated. Each constructor carries a list of fields as its parameters, and

each field has a specific type, which may be primitive or composite. It is easy

to handle a primitive type, as was previously mentioned. But, when facing a

composite type, we will look for the grammar rules with the same left-hand

side to expand the sentence further. The entire sentence is generated while

the constructors of the sentence serve as the nodes of the syntax tree and

the values of the fields serve as the edges of the tree, and our final goal is to
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generate the corresponding tree of an input utterance.

For instance, a composite type S represents a sentence. Several rules in the

natural sentence generation phase can have S on their left-hand side, such as

S → NP V P , where a sentence consists of a noun phrase followed by a verb

phrase. This rule will be interpreted as follows. When the type S is observed

while extracting the actions in the sentence, one of the rules that we can choose

is to expand type S to NP and VP. The right-hand side, here NP V P , is called

the constructor. Each of the NP and VP on the right-hand side expresses a

field. They are expanded from S and have NP and VP types, respectively. As

the next step, we will look at the grammar rules with NP and VP on their left,

separately, to expand different tree branches. This process continues until no

more composite type exists, such as the rule NN → computer, while computer

is present in the dictionary and is a primitive type component.

After extracting the sequence of actions that produce each sentence, the

syntax tree is created. The tree is interpreted as a set of actions in the order

they are applied. The order determines the succession of constructing the

nodes and edges when generating the syntax tree.

The transition phase is mostly based on the study of Yin et al. [50] for

code generation. However, we must adapt this framework to natural language

generation. At each step of this transition, we use one of the two following

actions to extract all the actions used to form a specific syntax tree.

apply-constructor[p] action takes phrase p as a parameter and applies

a grammar rule with p on its left-hand side. It expands the derivation based

on the frontier node in the tree having the phrase p and gets the sub-phrases

based on the components on the right-hand side of the rule. Each element

on the right-hand side of the grammar rule (i.e., sub-phrases) will construct a

single node in the syntax tree.

generate-token[t] action takes token t as a parameter that occupies the

tree nodes when the frontier field has a primitive type. When this action is

called, the token t is added to the tree as a leaf node.

So, the only required actions for sentence generation in the natural language

are apply-constructor[p] and generate-token[t]. The transition completes
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when there is no other frontier node for the derivation to expand the tree.

Stopping the expansion of the tree implies that all the tree branches have

become leaves, which are no longer extensible.

Once these actions are learned to form the syntax tree, we can generate an

output sentence described by the syntax tree structure. We extract the tree

leaves (i.e., outputs of the generate-token actions) based on their applied order

and generate a plain sequence of tokens as a sentence.

The aim of the model would be to learn the probabilities of each of these

actions for different constructors and tokens, which will enable us to recreate

sentences.

To do this, learning the probability of the constructor application action

is not straightforward. The reason is that there may be various rules in the

grammar that have the same left-hand side but different right-hand sides. So

deterministic context-free grammars do not work here, and we need to utilize

the probabilistic context-free grammars, as introduced in Section 2.3.

We can use the Probabilistic Context-Free Grammars (PCFGs) to generate

phrases. By using PCFGs, not only are we able to generate new phrases that

have not been seen before, but also we can access the tree structure of the input

sentences. As a result, we can comprehend the grammatical components of

sentences.

Based on what has been discussed in Section 2.3, a whole sentence will have

a specific probability as we work with numerous probabilistic grammar rules

for each sentence. Consider a set of rules ri : ai → bi, with 1 ≤ i ≤ n, where

n is the total number of grammar rules that have been applied to produce a

sentence S. We can compute the probability of this sentence as follows:

Prob(S) =
n∏
i=1

Prob(ai → bi). (3.1)

In the next section, there will be more discussion on computing the action

probabilities.

In our study, the decoder predicts the probability of a phrase or a token.

This value is the product of the probabilities of all the grammar rules of the
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subtrees that are produced as the decoder output. We combine several steps

of generating phrases to develop a complete sentence.

3.3 Training Objectives

Our framework is based on the probability computation of the actions. These

action probabilities are used at each step of sentence generation. In this sec-

tion, we will cover training objectives for the proposed model. Different com-

putations that will be mentioned in the following are mostly taken from the

study of Yin et al. [50].

Our objective function is inspired by the loss function in the VAE (i.e.,

Section 2.2.3), including the reconstruction loss and the KL loss. We first focus

on the reconstruction loss. As discussed next, this part of the loss handles how

the input and output sentences can be more similar during training.

For a newly generated sample y, where an input x is given, we should break

down the output into the different actions in the transition system process to

compute the probability of producing y. Thus, the final value will be as follows,

Prob(y|x) =
∏
t

Prob(at|a<t, x), (3.2)

where at is the action in time step t and y is generated by combining all the

actions in its transition phase.

As mentioned earlier, our work relies on variational autoencoders that con-

sist of encoder-decoder architecture. Hence, we compute the probability based

on an encoder-decoder LSTM network.

Whenever an encoder is used in a neural network architecture, it is sup-

posed to encode the input value into a vector representation. Since the input

is a natural language sentence, we would like to encode the utterance x that

contains n tokens, {xi}ni=1, and get a vector of the encoded x.

As we work with the variational autoencoder architecture, the encoder

network outputs a distribution (i.e., a normal distribution with its specified

mean and variance). But the input to the decoder is not a distribution, and

we sample from the encoded distribution in the latent space.
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The decoder makes an effort to decode the sample from the encoded input.

For each hidden state, st, the function is as follows,

st = f([at−1 : t̃t−1 : s̃t−1 : pt], st−1), (3.3)

where f in the above equation is the LSTM function. The first parameter is a

concatenation of several features, and we will discuss them in detail. at−1 is the

embedding of the previous action, t̃t−1 is the embedding of the last generated

token, and s̃t−1 refers to the attention of the previous state as in the following

equation

s̃t = tanh(Wc[ct : st]). (3.4)

In Equation 3.4, ct is the context vector from the hidden space using attention.

The last term of the first parameter in Equation 3.3, called parent feeding, is

responsible for taking care of the tree structure of the syntax trees and using

the tree to generate valid sentences while considering their tree structure.

Thus pt focuses on the parent field, nf t, and encodes its information. The

information is made of the concatenation of embedding of the parent field and

the decoder’s state that generated the apply-constructor action of the parent

field.

As previously seen in Section 3.2, we have to compute the probability of

each apply-constructor[c] and generate-token[t] actions. Calculating the prob-

ability for these two actions is different. If the action is apply-constructor[c],

the probability is as follows,

Prob(at = apply constructor[c]|a<t, x) = softmax(aTcWs̃t). (3.5)

For the generate-token[t] action, we know that there are two possibilities:

generating a new token without considering the input tokens or simply copying

the same token seen in the input utterance. Therefore, the probability for

generate-token[t] is in the following equation,

Prob(at = generate token[t]|a<t, x) = Prob(gen|at, x)Prob(v|gen, at, x)

+Prob(copy|at, x)Prob(v|copy, at, x).

(3.6)
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Prob(gen|.) and Prob(copy|.) are computed similarly. Representing both

gen and copy as action, we have

Prob(action|.) = softmax(Ws̃t). (3.7)

The next computation term is Prob(v|gen, .), which is similar to Equation

3.5, and Prob(v|copy, .), which is as in Equation 3.8. Assuming the i-th token

in the input utterance is supposed to be copied, we have the equation as

follows,

Prob(xi|copy, a<t, x) = softmax(hTi Ws̃t), (3.8)

where hi is the encoded vector of xi.

According to Equation 3.3, we consider the previous actions and the parent

node in the tree at each time step during the decoding. These considerations

help to model the sentences based on their hierarchies in the parse trees be-

cause the information of the parent node is important. In this case, when the

frontier information in the tree structure of the sentence is considered, phrases

themselves or the dependencies between different phrases and sub-phrases can

be more consistent. Thus, we can generate syntactically correct sentences.

We mentioned earlier that there are two terms in the objective function

of our model. The reconstruction loss (i.e., cross entropy) is what we have

covered so far. This term tries to learn how to reconstruct the input sentence

and make the output as close as possible to the input sample. The next term

is the Kullback-Leibler loss (i.e., KL loss).

The KL loss is in charge of regularizing the objective function, as discussed

in Section 2.2.3. This term computes the difference between the prior and

posterior distributions of the latent variable z, using the KL divergence. The

model learns a posterior distribution as a normal distribution. On the other

hand, the prior distribution is a standard normal distribution. The final goal

is to minimize the difference between these two.

As a recap, the training objective is to minimize the expected reconstruc-

tion loss that is regularized with the KL divergence between posterior (i.e.,

q(z|x)) and prior (i.e., p(z)) distributions while z is sampled from the contin-

uous latent space.
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The two terms constructing the loss function are contrary to each other.

As the divergence between the prior and posterior distributions of the latent

variable given any input x decreases, it becomes impossible to have a perfect

reconstruction. Thus, a trade-off between these two goals should be satisfied.

3.4 Inference

According to Section 3.3, the model satisfies two factors while training: re-

construction and regularization. These two objectives do not act in the same

direction. Thus, a learned model can be used for two tasks in the inference

part: sentence reconstruction and sampling new sentences. Section 3.4.1 dis-

cusses the process of sentence reconstruction, while Section 3.4.2 talks about

how sentences can be generated from scratch.

3.4.1 Sentence Reconstruction

Reconstructing a sentence requires a plain input sentence to be given into

the model. It is then encoded, and a sample from the learned continuous

latent space is generated. Then, the generated sample is fed into the decoder.

Afterwards, the decoding phase begins. All of these steps are based on the

model architecture that was described in Section 3.2.2.

This model consists of an encoder and is supposed to regenerate the input

sentence. If we use the whole model architecture without any changes, we

can reconstruct the given input sentences, including their phrases and tokens.

Reconstruction enables us to assess how the autoencoder model can preserve

the input information.

Moreover, since our model tends to be regularized and to be able to gen-

eralize well, having the best reconstruction of the input may not be possible.

The reason is that the continuous latent space is a distribution. So, a sample

from this distribution is generated before decoding starts, which results in an

imperfect reconstruction. Hence, phrases and tokens within the sentences may

differ from the input. The KL divergence term of the loss function is the cause

of this phenomenon.

31



3.4.2 Sampling New Sentences

There is another application other than sentence reconstruction for our learned

model. Consider a situation where there is no input sentence. We only would

like to assess the ability of the model to generate unseen sentences based on

grammar.

We can use our proposed model in this case, but we need some modifica-

tions to the original encoder-decoder architecture. The reason is that we want

to create sentences entirely from scratch and do not have any input sentences.

The regularization of our proposed model, which stopped us from a perfect

reconstruction in Section 3.4.1, can help us here to generate various novel

sentences from scratch.

For the goal of generating new samples, there is no need for an input

sentence. A random sample from the prior (i.e., standard normal distribution)

is generated to skip the encoder since there is no input to be encoded. Then,

the sample is fed into the decoder. The decoder chooses an action at each

step based on the input sample. The action can both apply constructors and

generate tokens. The final result is a generated sentence including all the

phrases and tokens in it, based on the order they have been applied. Thus,

new sentences can be produced.
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Chapter 4

Experiments and Results

4.1 Overview

This chapter presents an experimental evaluation of our proposed model. We

discuss the dataset used in our assessment, the evaluation metrics, the im-

plementation details of our framework, and a performance comparison of our

method with the baseline.

4.2 Dataset

For evaluating our model, we use the Stanford Natural Language Inference

(SNLI) dataset [6]1 for the training and validation of the model. This dataset

can be used for sentence generation and reconstruction via the tree-based

variational autoencoder.

4.2.1 SNLI Dataset

This dataset consists of sentences written for an image captioning task through

crowdsourcing. The SNLI dataset is massive, which is a collection of 570k

sentences; however, the sentences are generally simple. This corpus is used as

a resource for various NLP tasks.

We aim to generate sentences in an unsupervised task by learning the

underlying patterns in the natural language sentences. Knowing the patterns

helps us to learn a model for developing sentences. An unlabelled dataset

1https://nlp.stanford.edu/projects/snli
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Sentences
the women are walking down the street
a couple are going for a long hike in the forest
a brother is taking his sibling for a stroll
a woman is climbing a rocky hill overshadowed by a partly cloudy sky
a young woman has blond hair
a man is preparing for the graduation ceremony
a dog playing with its owner

Table 4.1: Samples from SNLI dataset

consisting of simple human-written natural language sentences enables us to

learn the structures and patterns of these sentences. Some sample sentences

from this dataset are shown in Table 4.1. After training the model, we can

generate new sentences from scratch or reconstruct given input sentences.

4.2.2 Data Pre-Processing

In most of the datasets, the text data is not entirely clean or we need to extract

some information from the data. So we need to pre-process our dataset to

prepare it for training the model. The following data pre-processing steps are

adopted for our dataset:

• All sentences are converted to lower case.

• All the words are embedded using Word2Vec, which is required for ini-

tializing the word embeddings. The CBOW model was used with a word

embedding dimension of 300d and a context window size of 5.

• The unsupervised setting of the task would be to split the dataset the

same as the baseline. So, the dataset is divided into train/validation/test

with 90%/5%/5% of the whole sentences.

• We detect the phrases in all train and validation sentences by parsing

them using the Stanford Constituency Parser2.

• Since we are working with the grammar rules, all the rules in the natural

language must be extracted from the parsed dataset using NLTK.

2https://nlp.stanford.edu/software/lex-parser.shtml
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4.2.3 Pre-Train Embedding

As mentioned in the previous section, we need to generate a word embedding

vector for each token in the corpus. Embedding the words into numerical

vectors enables the computer to process the data. We need vectors representing

the words in the text corpus that encode the meaning of the words. The closer

the words are in the vector space, the more they are similar in their meaning.

Word2Vec [28] is a common method for word embedding because it is efficient

in the size of the vector and considers the semantic information of the words,

which are not taken into account in the basic methods. Moreover, it is able to

compute the word vectors fast [28]. So we use Word2Vec in our work.

The structure to learn Word2Vec embeddings is a neural network with

two layers. The input is the text, and the output is the set of word embed-

ding vectors. Each output vector is the weight matrix of the network for the

corresponding word in the corpus after the training is done.

Continuous Bag of Words (CBOW) and continuous skip-gram models are

the two different algorithms for learning Word2Vec embeddings [28]. Their

difference is that CBOW uses the surrounding words as the context to predict

a word, while continuous skip-gram uses a word to predict its context. We use

the CBOW model in our work because of the more computational complexity

in the continuous skip-gram model [28]. So CBOW trains the model faster,

which works better for massive datasets. Furthermore, it is more consistent

with our baseline, the study of Bahuleyan et al. [2], so our results can be

compared more accurately.

4.3 Training Setup

Our proposed model includes an autoencoding part that uses variational au-

toencoder architecture over the whole sentence of each input sample. This

model finds the posterior q(z|x) as close as possible to the prior distribution

p(z), where x is the sequence of words in the input and the prior is the stan-

dard normal distribution. As mentioned in Section 4.2.2, Word2Vec is used

to generate the word embeddings. Training of the embedding is done on the
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LSTM Hidden Dimension 100d
Latent Dimension 100d
Word Embeddings 300d
Action Embed Size 100d
Field Embed Size 20d
Type Embed Size 20d

Epochs 20
Learning Rate 0.001 (constant number)

Batch Size 128
Vocab Size 30000 (most frequent tokens)

Dropout Rate 0.2

Table 4.2: Experimental settings for the autoencoding model

whole SNLI dataset.

Because of the KL collapse issue in the VAE model, for the RNN-based

text settings, there are some methods to avoid it and make the posterior more

dependent on the input. One of these approaches is cyclical annealing [13],

which we will discuss in Section 4.5.2. The total number of cycles is set to 10,

which means the value will be set to zero 10 times during the training process,

and we will start annealing from that point again. The reason for choosing

this number for cycles is that the model should be able to achieve a KL loss

that converges to a non-zero value. By having experiments, it is demonstrated

that these conditions will be violated by choosing smaller and larger values.

The value of coefficient λ is annealed with a sigmoid function.

Experimental settings are mentioned in Table 4.2 in detail. For the encoder

and the decoder, LSTM architecture is used, and for the encoder, it is a

bidirectional LSTM (i.e., bi-LSTM). Adam [18] is used as the optimizer of

the model with the parameters β1 and β2 set to 0.9 and 0.999, respectively.

Action, field, and type embed sizes refer to the tree structure of the model,

which are covered in Section 3.2.2.

4.4 Evaluation Metrics

After designing and training the model, to figure out how the model is working,

it is necessary to assess and analyze its performance. The inference phase of
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the model, as mentioned in Section 3.4, consists of reconstructing the given

sentences and sampling new sentences. For the reconstruction task, the BLEU

score [31] measures the similarity between the input and the generated output.

On the other hand, perplexity (PPL) evaluates the fluency of the generated

sentences for the sentence generation task. Moreover, unigram-KL (UniKL)

measures if the distribution of the generated sentences is close to the training

corpus, and the entropy checks the similarity of the generated sentences to the

corpus. We will discuss these measurements as follows.

The first metric for this task is the BLEU score [31], computed between a

model-generated output and a ground truth. It was introduced initially for the

task of Machine Translation (MT) systems, but it was also used to evaluate the

reconstruction performance of autoencoders. We will use this measurement for

the reconstruction task, where the output of the model is the reconstruction of

the input, and the input serves as the ground truth. This measurement helps

to assess the ability of the proposed model to preserve the input information.

To explain more, BLEU (Bilingual Evaluation Understudy) can be applied

to the reconstruction task because it can measure the overlap between the set

of reference sentences with the generated sentence. Two factors play roles in

this score computation. One of them controls the brevity penalty, while the

other, which is precision-based, computes the n-gram overlaps. It penalizes

short generated sentences by comparing them to their proper length. By not

considering this penalty, precision for the shorter sentences will be higher,

which means a better score. Obtaining better scores in this way is not desired

because it encourages the model to generate shorter sentences and be assured

that a high score is achieved, even though that short sentence may not be

informative. Additionally, Papineni et al. [31] report that the proposed ap-

proach is correlated with human judgment and will have various benefits, such

as less time computation and reusability.

The other metric is perplexity (PPL), which determines the fluency of

the newly generated samples without having input sentences. So, random

samples from the continuous latent space (i.e., standard normal distribution)

are chosen. Then, the sentences are generated by decoding those samples. It
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is a way of probabilistic sampling and sentence generation. Therefore, the

model can generate novel sentences that are not present in the training set.

These sentences should be semantically and syntactically satisfactory. Before

computing the perplexity of a sentence, a language model should be trained.

In our experiment, we learned the language model using Kneser-Ney inter-

polation, an interpolated version of Kneser-Ney smoothing. The model at the

end is an n-gram language model. Kneser-Ney smoothing calculates the prob-

ability distribution of n-grams in the corpus, which identifies the possibility of

n-grams that can appear in a language. We consider 5-grams in this study.

Moreover, unigram-KL (UniKL) evaluates the word distribution closeness

of the original sentences (i.e., training corpus) with the generated sentences.

The entropy of the word distribution is also reported. It measures the simi-

larity between the generated sentences from the latent space and the corpus.

4.5 VAE Optimization Challenges

As mentioned previously, VAE consists of two terms in its loss function. The

first one is the reconstruction loss, which is the likelihood of the input given

the posterior distribution and can be the cross entropy loss. The other term

is the Kullback–Leibler (KL) divergence loss, which is the divergence between

the posterior distribution q(z|x) and the prior of the latent space p(z).

Bowman et al. [7] observe that implementing the vanilla VAE framework

using an autoregressive model fails to learn well. The KL divergence vanishes

for NLP tasks when the model is based on RNNs. Thus, VAE is challenging to

train for the RNN-based models. When using VAE in RNN encoder-decoder

models for text generation, in most cases, the model learns in a way that

the posterior equals the prior distribution. Thus, it is inevitable to make

the KL divergence term of the loss function intend to zero. KL vanishing

results in a decoder that ignores the latent variable z [49]. So, there is no

helpful information passing through the network from the input. But, the

goal of VAE is to store useful information in the latent space, and it needs

the KL divergence term to be non-zero and also to have a small value for the
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reconstruction loss.

If this does not happen, the KL divergence term will be zero, and only

the first term in the cost function is present, which results in a determinis-

tic autoencoder model. This phenomenon has the outcome that each input

is memorized in the model as a single point instead of having a continuous

latent space distribution [49]. However, we need a latent space (i.e., posterior

distribution) that is not a single point, which is the source of being variational.

Fu et al. [13] find an explanation for why this happens. As shown in

Figure 4.1(a), the traditional VAE learns to construct the model easily. But

the problem appears with the autoregressive encoder-decoders because each

step depends on the previous step. This phenomenon causes the vanishing of

the KL divergence. Let us explain the reason. Figure 4.1(b) has two parts that

reconstruct the input x. One part is the same as Figure 4.1(a), and the other

part obtains information from the previous steps of the sequential decoding

of the input x itself. This second part generates the input again in the time

step t based on the input’s decoding output for the time steps smaller than t,

which makes the model find an easier path to regenerate input x, tending the

KL loss to zero.

But this occurrence has a reason behind it, which is related to the begin-

ning of the training process, where decoding z in the first part (i.e., the part

illustrated in Figure 4.1(a)) has low quality. Low quality adds more trouble

to the reconstruction; thus, the model tends to learn a simpler path to reach

the goal. That leads the model to lean more toward the other path, i.e., being

dependent on the autoregressive decoder. As Mikolov et al. [29] mentioned,

autoregressive decoders are able to obtain complex distributions, such as in

language models.

Some methods, such as KL annealing [7], are proposed to balance these

two terms of the objective function. A modified version of KL annealing is

adopted in this study and will be described in the following sections.
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Figure 4.1: Two approaches of learning VAE, adapted from Fu et al. [13]

4.5.1 KL cost annealing

In this approach, the objective function of VAE goes through a simple change.

The change is to add a coefficient to the KL divergence term. Hence, the new

objective function will be as follows,

J = Jreconstruct(φ, θ, x) + λDKL[qφ(z|x)||pθ(z)]. (4.1)

This weight (i.e., λ coefficient) is zero at first and then is gradually annealed

to a threshold value, which is almost always 1 [7]. In other words, at first, it is

a vanilla autoencoder and slowly transforms into a variational autoencoder. It

works because, as the process starts, the model learns to reconstruct the input

well and encode information into the latent space. Then, when the weight

is slowly increased, the input encoding is mapped to continuous latent space,

while the posterior distribution is pushed as close as possible to the prior. At

the end of the annealing, the cost function is the variational lower bound, as in

Equation 2.7. The value of λ is set at each step based on the iteration number
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and the sigmoid function.

4.5.2 Cyclical KL Cost Annealing

KL cost annealing gives less weight to the prior regularization at first, which,

in return, makes the posterior prone to collapse into a single point instead of

being a distribution. By underestimating the regularization, the decoder can

be weak and suboptimal [13]. Cyclical annealing [13] was proposed to improve

the latent representation.

It is introduced in a way that, at first, the weight is zero, which opens

path A in Figure 4.1, then it anneals fast to become one and adds path B

in Figure 4.1 (i.e., such as Section 4.5.1). Then, for several iterations, the

weight is constant. At this step, the model has the variational autoencoder

objective function. So, the first version of the latent distribution is found.

But, the weight cannot be set to one for the rest of the learning. Because

by adding path B to the model, it is a simpler path for the model to learn

the reconstruction rather than the global latent representation (i.e., path A).

Therefore, path A will be blocked for the rest of the training. Since learning

the latent representation z is required, the weight is again set to zero, and the

process is repeated. By doing so, the decoder can be trained again with the

determined latent space. Also, by iteratively doing the annealing, there is the

opportunity to converge to a better latent space and progressively improve the

latent representation [13].

The process is split into the number of cycles determined at the beginning.

As each cycle starts, the weight is zero and gradually increases to become one.

Then for the subsequent remaining iterations, until the starting point of the

next cycle, the weight is fixed at one to make the model a VAE. This process

happens for several cycles until the whole learning process is finished. The

difference between the weights of a cyclical and a monotonic weight annealing

can be seen in Figure 4.2.

Fu et al. [13] compare and visualize different weight schedule methods for

the KL divergence term in VAE models. The constant weight case generates

a latent space, where different latent variables are mixed for different samples
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Figure 4.2: Comparison between the monotonic and cyclical weight annealing
with the number of 10 cycles and λ as the weight, adapted from a similar
illustration from Fu at al. [13].

in the dataset. For the monotonic annealing, the space is still mixed but more

divided into clusters compared to the constant schedule. Finally, when cyclical

annealing is applied, the result is similar to the monotonic case after the first

cycle, but continuing the annealing several times produces divided clusters at

the end, and all the variables of the latent space are separate.

The final result of our method can be seen in Figure 4.3, with different

tricks for the value of λ. The figure shows that the cyclical annealing policy

results in a more converged value in comparison to the others for the KL

divergence in the loss term, with a non-zero value.

4.6 Evaluation and Analysis

This study evaluates the model for sentence reconstruction and sampling from

the latent space tasks. The results are shown in Table 4.3.

We examine the BLEU [31] score of the reconstructed sentences to measure

the goodness of the model in regenerating the sentences. Considering the mean

(µ) of the latent space distribution, and ignoring its variance, results in a better

reconstruction. The reason is that considering the variance makes the model

inclined to generate varied sentences from the input, which is not desired for
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Figure 4.3: KL term of the VAE loss function (λ.KL) learning curve for dif-
ferent values of λ and the effect of cyclical λ annealing.

reconstruction.

On the other hand, for random sampling that is appropriate for evaluating

the ability of sentence generation from scratch, we randomly sample from the

prior distribution (i.e., N (0, I)). Then we feed that sample to the decoder as

z to generate new sentences. Only the decoder is observed in the inference

phase, and the encoder is ignored. The generated sentence that is sampled

from the latent space is expected to consider the syntax and semantics and to

be close to the natural language.

BLEU↑ PPL↓ UniKL↓ Entropy
Corpus† - - - →5.65

DAE† 86.35 146.2 0.178 6.23
VAE (kl-annealed)† 43.18 79.4 0.081 5.04
tree-DAE 90.67 11688.44 0.094 1.992
tree-VAE (cyclical
kl-annealed)

90.54 10160.31 0.094 1.993

Table 4.3: Results of different autoencoder models for text generation. ↑ / ↓
means the larger/lower, the better. For the Entropy, the better happens when
the result is close to the corpus distribution that is indicated by →. †Results
quoted from the previous paper [2]; others are given by our experiments.
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The results in Table 4.3 for DAE (i.e., Deterministic Autoencoder) and

VAE (i.e., Variational Autoencoder) are reported from the study of Bahuleyan

et al. [2]. The results of our framework are reported under tree-DAE and tree-

VAE since we are using the parse tree structures of the sentences, which also

help us to learn the model syntactically. To compare the models, we obtain

the BLEU score, perplexity (PPL), UniKL, and the entropy of the variational

and deterministic models for reconstruction and random sampling.

We will first start with sentence reconstruction. The best BLEU score

is obtained using the tree-DAE model, demonstrating that learning a model

that relies on both the tokens and their grammatical structures results in a

much better score when reconstructing a given input. The score is significantly

higher than that of a simple model that does not use the grammar rules. The

score of tree-DAE is higher than that of the tree-VAE model. The reason is

that the tree-VAE model aims for a distribution in the latent space, resulting

in variation in the output from the input. In contrast, tree-DAE looks for a

deterministic vector, not a distribution. So, tree-DAE can reconstruct better

than tree-VAE.

On the other hand, in terms of the fluency of the generated sentences from

the latent space, the scores of the tree-based models are higher than the simple

DAE and VAE models. But a model is considered a better model in terms of

fluency if its score is lower. However, when analyzing the generated sentences,

it is observed that they follow grammatical rules and apply the proper rules at

each step. Still, the tokens chosen as the tree leaves do not generate reasonable

sequences in natural language. Some of these generated sentences can be seen

in Table 4.4, where the generated samples are non-fluent, though they are

generated grammatically and syntactically, based on the rules. One of the

instances of the trees can be seen in Figure 4.4. In the case of the two tree-

based models, the deterministic model, which does not have a probabilistic

latent space, generates a higher PPL score than the variational model. So the

variational model can generate more fluent sentences than the deterministic

model, while it is still worse than the basic model that does not work with the

grammar rules.

44



Type Generated Samples

Simple hands being playing
Linearized Tree ( ROOT X ( X NP NP NP ( NP NNS ( NNS hands

hands ) ) ( NP JJ ( JJ being being ) ) ( NP NN (
NN playing playing ) ) ) )

Simple building being there clothed
Linearized Tree ( ROOT X ( X X ADJP ( X ADVP NP ( ADVP NN

( NN building building ) ) ( NP JJ ( JJ being being ) )
) ( ADJP RB VBN ( RB there there ) ( VBN clothed
clothed ) ) ) )

Simple an there
Linearized Tree ( ROOT X ( X X ADJP ( X DT ( DT an an ) ) (

ADJP RB ( RB there there ) ) ) )
Simple produce

Linearized Tree ( ROOT X ( X NP ( NP NN ( NN produce produce
) ) ) )

Simple several wearing whenever red wearing a one with be out
Linearized Tree ( ROOT ADJP ( ADJP ADJP SBAR (

ADJP JJ NN ( JJ several several ) (
NN wearing wearing ) ) ( SBAR WHADVP S (
WHADVP WRB ADJP ( WRB whenever whenever
) ( ADJP JJ JJ ( JJ red red ) ( JJ wearing wearing
) ) ) ( S NP ADVP VP ( NP NNP ( NNP a a ) ) (
ADVP NP IN ( NP CD ( CD one one ) ) ( IN with
with ) ) ( VP VB NP ( VB be be ) ( NP NN (
NN out out ) ) ) ) ) ) )

Simple old tennis an her near one both down near hands visible
Linearized Tree ( ROOT ADJP ( ADJP ADJP SBAR (

ADJP JJ NN ( JJ old old ) ( NN tennis tennis
) ) ( SBAR WHNP S ( WHNP DT ( DT an an ) ) (
S S CC S ( S ADVP VP ( ADVP NP IN ( NP PRP
( PRP her her ) ) ( IN near near ) ) ( VP NN (
NN one one ) ) ) ( CC both both ) ( S NP ADJP
( NP RB ( RB down down ) ) ( ADJP NP JJ (
NP JJ NNS ( JJ near near ) ( NNS hands hands ) )
( JJ visible visible ) ) ) ) ) ) )

Simple several hands wearing picture
Linearized Tree ( ROOT X ( X NP NP NP ( NP JJ NNS (

JJ several several ) ( NNS hands hands ) ) ( NP JJ (
JJ wearing wearing ) ) ( NP NN ( NN picture picture
) ) ) )

Table 4.4: Generated sample examples with the tree-structured VAE
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Figure 4.4: Tree of a generated sample from the latent space

Moreover, the UniKL is the lowest for the VAE model, which shows that the

generated sentences for the VAE model are closer to the corpus distribution.

This value for the tree-based models is slightly higher.

Again, the rules do not affect the best model in terms of entropy, which

means the simple DAE model gives the best score. So the simple DAE model

generates more similar sentences from the latent space to the corpus than any

other model that we consider in this study.

In summary, the proposed model works significantly better in terms of

reconstruction. Regarding fluency, the generated sentences follow syntacti-

cal concepts when considering the parse tree, but they are not strong when

choosing the sequence of tokens.
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Chapter 5

Conclusion and Future Work

5.1 Summary of Contributions

Our main goal in this research is to develop a deep learning approach for sen-

tence reconstruction and probabilistic natural language generation. In order

to achieve this goal, we implement an unsupervised variational autoencoder

model. The model focuses on the words in a sentence and also the syntax

between words and phrases to learn a sentence structure. This model can

generate sentences at the phrase-level instead of the word-level. Generating

sentences based on grammar rules improves the quality of the produced sen-

tences grammatically.

We discussed the drawbacks of word-level sentence generation, and why our

proposed model considers the phrases and the syntactic tree of the sentences

in addition to the tokens.

However, there is difficulty in training the VAE models in natural language

tasks when an autoregressive model is learned. The KL divergence term of

the loss function collapses to zero in sequential models. We apply a cyclical

annealing strategy for the KL loss term in order to avoid it tending to zero

and instead converging to a non-zero value.

The proposed model can reconstruct sentences relying on the parse tree

of the sentences and generating various sentences from the continuous latent

space. This model is evaluated with BLEU score, perplexity, UnigramKL,

and entropy. The BLEU score evaluates the n-gram similarity of the input

and output. At the same time, the perplexity is responsible for assessing the
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semantic part of the generated sentences and determining how the model can

generate fluent novel sentences that are correct semantically. Additionally,

UnigramKL assesses the distribution closeness of the training corpus with the

generated sentences. Finally, entropy considers the similarity between the

generated sentences and the corpus.

5.2 Limitations and Future Work

There are some challenges in this study. Compared to the earlier studies

that are not grammar-based, this model requires more time to learn and is

more complicated. The reason is that grammar rules and their applying order

in generating sentences play a vital role in our model, and we are explicitly

modelling this aspect of the sentences.

Moreover, to continue with this model, we should extract the rules in the

natural language before learning, which is not needed in the models that im-

plicitly learn the structure of the sentences.

The approach in this thesis for generating sentences is based on LSTM,

which is a recurrent neural network model. But by introducing transform-

ers [46], different models have been proposed that work effectively in natural

language tasks. Since there is more training parallelization for these models

compared to sequential models, they can be used as a future step to improve

our model in order to reduce the learning time of the model.
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