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Abstract 

As decisions require actions to have an effect on the world (Cisek & Kalaska, 2010), 

measures derived from movements can be used to provide a powerful index of decision-making 

processes (e.g., Gallivan & Chapman, 2014). Measures of trajectory curvature (interpreted as a 

competitive pull from the non-chosen choice; Spivey, Grosjean, & Knoblich, 2005), reaction 

time, and movement time obtained during mouse-tracked, reach-decision tasks thus provide a 

metric of the relative difficulty of decisions (McKinstry, Dale, & Spivey, 2008). While these 

measures of decision difficulty have been demonstrated across a variety of decision domains, 

they are reported in different studies with different groups of participants and are often captured 

using experimental systems both impractical and inaccessible outside of laboratory exploration. 

The current study therefore aimed to assess whether within-participant metrics of decision 

difficulty remain consistent across decision domains varying in choice stimuli, objectivity and 

processing requirement, data collection devices varying in size and user-interaction requirements 

(e.g., mouse-based interactions to touchscreen use) and implementation platforms requiring 

individualized data processing and cleaning strategies. Specifically, three primary questions were 

addressed: 1) How do measures of decision difficulty change across testing device: computers, 

tablets and smartphones? 2) How do measures of decision difficulty relate to each other and how 

does this change across decision domain and device? and 3) How does implementation platform 

effect measures of decision difficulty? Deploying a classic mouse-tracking, reach-decision 

paradigm, participants (N = 279) were asked to complete a numeric-size congruency (SC) task 

requiring objective perceptual judgements of which of two digits with different physical sizes 

was numerically larger (Faulkenberry et al., 2016), a sentence verification (SV) task requiring 

semi-subjective conceptual judgements about the truth value of statements varying in truth value 
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and negation (Maldonado et al., 2019), and a photo preference (PP) task requiring a subjective 

judgement of preference between two images varying in pleasantness (Koop & Johnson, 2013). 

An identical experiment was developed for implementation using both Labvanced and Horizon 

testing platforms, with participation using the prior platform distributed between personal 

computer (N = 83), tablet (N = 78) and smartphone (N = 78) testing devices and the latter limited 

to personal computer use (N = 40). Participation occurred remotely, online, and without device 

specification requirements.  

Broadly, task-specific results replicated previous work: SC: We found an increase in 

decision difficulty when digit choice options were incongruent in physical and numeric size; SV: 

Measures of decision difficulty increased when participants were asked to affirm negated 

sentences compared to non-negated sentences, with greater negation-driven difficulty effects for 

true statements than false statements; PP: Images matched in pleasantness showed increased 

decision difficulty compared to image options that differed in pleasantness. Importantly, task-

dependent decision difficulty effects were replicated independent of testing device or platform, 

demonstrating the robustness of trajectory-tracked measures of decision difficulty and offering 

seminal validation for the study of decision processes using small, portable devices outside of 

controlled laboratory spaces. Independent from these replication results, nuanced differences 

observed in pre-movement (i.e., reaction time) and post-movement (i.e., movement time and 

trajectory curvature) measures revealed device-dependent differences in which tablet- and 

smartphone-acquired measures showed right-hand reach direction biases resembling those seen 

in real-world movements while computer-acquired results did not. Tablet- and smartphone-use 

also showed greater sensitivity to decision difficulty expressed in movement times and trajectory 

curvature while computer-acquired results displayed greater sensitivity to decision difficulty 
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expressed in reaction times. Finally, while task-replication results revealed an increase in all 

measures (reaction time, movement time and trajectory curvature) in response to increased 

decision difficulty, a correlation analysis between measures of decision difficulty revealed 

consistent between-measure relationships within each task and across each device and platform, 

wherein faster decisions (i.e., decisions with decreased reaction time) had more decision 

difficulty reflected in the movement (increased movement time and trajectory curvature). 

Together, these results provide support for models of decision making in which decision 

processes continue to unfold after movements to enact a choice have been initiated (Wispinski, 

Gallivan & Chapman, 2020), and further suggest that these processes are flexibly adjusted along 

the time course of a decision even when decision domain and difficulty remain consistent.  
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1.0 - Introduction  

Our daily lives unfold as an amalgamation of decisions made and actions taken to execute 

those choices. Ultimately, these actualized choices shape our lives and our societies. As a result, 

the pursuit of understanding human decision behaviour has inspired researchers for centuries, 

from interest in risk preference amongst gamblers (Bernoulli, 1954), to willingness to pay given 

prior value contexts (Khaw, Glimcher, & Louie, 2017). Historically, measures of decision 

making have often been derived from verbal reports (as in Khaw et al., 2017), or inferences 

about observed choices (often involving a limited set of options, e.g., Padoa-Schioppa, & Assad, 

2006). More recently, discrete measurements of behavioural outcomes, such as reaction time and 

accuracy, have been popularized for their ability to generate rich accounts of cognitive 

processing (see Schulte-Mecklenbeck et al., 2017, for review). Where these off-line measures 

fall short, however, is in their ability to provide insight into the evolution of cognitive processes 

over time, or whether the temporal convergence of processes are responsible for driving 

responses. An expansive understanding of these features can instead be found in analysis of the 

dynamics of behavioural output over time, captured as a continuous stream of non-conscious 

movement behaviours occurring over the course of a decision process (Freeman, Dale & Farmer, 

2011; Gallivan & Chapman, 2014; Wispinski, Gallivan & Chapman, 2020; Gallivan, Chapman, 

Wolpert & Flanagan, 2018). 

1.1 – Towards an integrated view of cognition and movement 

Classic theories view the mind as a computational machine in which cognition and action 

arise from functionally independent systems, with perception informing cognition and cognition 

informing action in a hierarchical manner (see Rosenbaum, 2005, for discussion). Motor 

movements were therefore seen as the product of lower-order systems that could provide little 
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information about the higher-order processes that preceded them. This unidirectional, discrete-

processes approach to human cognition and action has since been deemed problematic as it 

cannot account for phenomena such as cognitive tuning, in which motor behaviours can inform 

cognitive processing (e.g., rating things more positively if facial muscles are in smiling-related 

positions, Strack, Martin & Stepper, 1988; see Koop & Johnson, 2013, and the references 

within). Further, recent work demonstrating correlated activity between cognitive and motor 

brain regions provides support for integrated, rather than discrete, cognitive and motor processes 

in which movement is continually updated by cognitive processing over time. For example, 

Freeman, Ambady, Midgley and Holcomb (2011) demonstrated that in tasks involving stimuli 

categorization, lateralized readiness potentials and N300/N400 event-related potentials occur in 

parallel independent of whether an action would be required to manually indicate said 

categorization. The first of these ERPs reflect a preparation for motor activity and the second 

reflects the accumulation of stimuli characteristics for categorization (e.g typical vs atypical), 

suggesting that cognitive categorization processes automatically and continuously update the 

motor cortex to guide hand-movement responses over time.  

The intimate relationship between action and cognitive dynamics is further exemplified in 

studies demonstrating simultaneous representation of multiple grip types in the primate anterior 

intraparietal area prior to specification of grip required for object interaction (Baumann, Fluet & 

Scherberge, 2009), and again in the simultaneous representation of potential choice targets in the 

primate dorsal premotor cortex prior to the correct target being indicated for final action (Cisek 

& Kalaska, 2005). Together, these findings support an integrated view of cognitive and motor 

systems, whereby mental processes direct manual dynamics on a continuous scale.   
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The implication of the integrated nature of these two systems is, then, that simple bodily 

movements can provide real-time read-outs of concurrent cognitive processing. Tracking eye 

movement has been used for this purpose for decades, serving as a proxy for tracking attention 

and informing inferences about thought processes (Yarbus, 1967; Just & Carpenter, 1980). 

Similarly, changes in hand movements - and by extension, mouse trajectories - have been shown 

to reflect ongoing mental processes with high temporal sensitivity (Ghez et al., 1997; Song & 

Nakayama, 2009; Freeman, 2018). Moreover, as decisions require actions in order to have an 

effect on the world (Cisek & Kalaska, 2010), these motoric measures can be used to provide a 

powerful index of the decision-making process (e.g., Chapman et al., 2010a-b; Gallivan & 

Chapman, 2014; Wispinski, Gallivan & Chapman, 2020). In the current study, use of these 

measures will enable inferences about the decision made (e.g., relative difficulty) as a function of 

the movement dynamics used to enact a particular choice. 

1.2 – Decisions as dynamic competition  

Prominent models of decision making (e.g., drift-diffusion and race models; Heath & Link,  

1975; Smith & Vickers, 1988; see Wispinski, Gallivan & Chapman, 2020, for a recent review) 

position decision making as a process during which evidence (information relevant to a decision, 

reflected within task-dependent neural activity; Platt and Glimcher, 1999; Huk and Shadlen, 

2005; Hunt et al., 2018) is accumulated over time until support for one particular option reaches 

a threshold, at which time a decision favouring that option is made (see Figure 1.1 A). Within 

these models, the accumulation of evidence towards one option over the other is a dynamic 

process as our representation of our choices evolve (e.g., Cunningham, Dunfield, & Stillman, 

2013). This evolution arises as representational information is integrated from both external and 
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internal sources (e.g., environment sampling vs. memories; Shadlen & Shodamy, 2016), has 

Figure 1.1 A schematic of the relationship between evidence accumulation models of decision 
making and its physical manifestation in mouse movements. A) An evidence accumulation model 
assumes that, over the course of a decision, relative evidence in support of one option or another 
(purple and green lines) are noisily accumulated over time until it reaches a predetermined 
threshold for selection in that direction (black boundary lines). Presented are two examples, one 
where evidence strongly and consistently supports selection of the right option (Low difficulty, 
green line) and one where evidence weakly and inconsistently supports selection of the left 
option (High difficulty; purple line). The average slope of evidence accumulation is represented 
by the arrows in the corresponding colour. Note that classic evidence accumulation models depict 
a termination of evidence accumulation at reach onset (i.e., limited to RT; blue, terminating at the 
dashed blue line) but here we demonstrate a continuation of evidence accumulation beyond the 
movement threshold into movement time (yellow) until the reach has terminated (MT; dashed 
yellow line). Adapted from Stillman et al., 2020. B) When simplified, the evidence accumulation 
processes can be depicted as an activation difference between two options as a function of time 
(on the left). Over the course of a classic reach-decision mouse tracking paradigm, continuous 
mouse movements (depicted as the recorded mouse cursor position; on the right) reflect the 
relative activation of choice options, such that decision processes inform cursor trajectories. More 
difficult decisions, where evidence is less consistent towards one option and the activation 
difference between options fluctuates demonstrate greater trajectory curvature in the 
corresponding mouse movement (purple). In contrast, decisions with low difficulty, where there 
is little fluctuation in activation difference between options, demonstrate relatively direct 
corresponding mouse trajectories (green). Adapted from Schoemann et al., 2019.   
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dimensional weightings applied (e.g., gains vs. losses; Chapman et al., 2015), and multiple levels 

of choice representation are compared and blended (e.g., good- vs. action- based representations; 

Cisek, 2012; Chen & Stuphorn, 2015).  

Over the dynamic, continuous time course of a decision, should one option provide strong, 

consistent evidence for its selection when the other does not, this manifests as a strong 

competitive pull towards one option and thus a relatively easy decision (see green traces in 

Figure 1.1). However, should the competitive pull of each of the choice options be relatively 

equal in strength - neither accumulating evidence stronger or more consistently than the other - 

this manifests as a difficult choice (see purple traces in Figure 1.1). Within this framework, we 

can therefore define decision difficulty by the strength of the evidence accumulated to bolster 

selection of one choice option over another (i.e., the relative difference in competitive pull 

towards each option).  

While the accumulation of evidence towards one choice option or another was once thought 

to terminate with movement onset (i.e. the decision is resolved within the reaction time prior to 

movements made to enact the decision, consistent with a serial account of cognition and 

movement; Smith & Vickers, 1988; Ratcliff &  Rouder, 1998;  Krajbich & Rangel, 2011), recent 

work instead supports the continued integration of evidence during movement (i.e. the decision 

continues to be resolved as movement unfolds; Ghez et al., 1990; Song and Nakayama, 2009; 

recent works reviewed by Wispinski, Gallivan and Chapman, 2020).  

Importantly, the continued contribution of decision-making during movement becomes 

apparent when examining the physical movements used to enact a choice, with reaches towards 

an option chosen for selection serving as a reflection of the evidence accumulation process 

(Stillman et al., 2020) such that less direct, less consistent movements reflect increased decision 
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difficulty (Schoemann et al., 2019). As such, decisions are dynamic not only in the way they 

unfold as an internal cognitive process, but also in the way they are expressed through 

movement.  

1.3 – Capturing ongoing decisions through movement 

Taking advantage of the reciprocal relationship between cognition and movement, classic 

trajectory tracking techniques involve the presentation of spatially separated response options 

and continuous recording of motor trajectories during option selection. Curvature (i.e., deviation 

from a direct path towards a selected option) in the trajectories of responses are interpreted as a 

competitive pull towards the non-chosen alternative choice (Spivey, Grosjean, & Knoblich, 

2005), driven by evidence accumulated during ongoing decision processes. The extent and time 

course of curvature can then be compared against theoretical accounts that make predictions 

about processes taking place over the time-course of a mental activity.  

This general paradigm has proven valuable in the understanding of a multitude of 

behaviours from domains such as social cognition (e.g. stereotyping, Freeman & Ambady, 2010; 

precepts of race, Freeman, Pauker & Sanchez, 2016; and gender biases, Freeman & Johnson, 

2016), language processing (e.g. phonetic competition, Spivey et al., 2005; syntactic expectation, 

Farmer, Cargill, Hindy, Dale, & Spivey, 2007; and speech perception, Spivey et al., 2005) and 

numeric operations (mental arithmetic, Szaszi et al., 2018; Pinheiro-Chagas et al., 2017; relative 

numeric representations, Erb, Moher, Song & Sobel, 2018). Importantly, trajectory tracking 

research has also revealed new insights into decision making processes themselves, with 

analyses of trajectories enabling inferences about relative decision difficulty as a function of 

trajectory curvature (Koop & Johnson, 2013; McKinstry, Dale, & Spivey, 2008; Faulkenberry, 

2014). In a study by McKinstry and colleagues (2008), for example, participants indicated 
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whether they agreed (“Yes”) or disagreed (“No”) with propositions ranging from high truth value 

(decidedly true, e.g. “Should you brush your teeth every day?”), to medium truth value 

(ambiguous truth, e.g. “Is murder sometimes justifiable?), to low truth value (decidedly false, 

e.g. “Is a thousand more than a billion?”). The authors found that questions with low truth values 

showed significantly more trajectory curvature (measured as maximum deviation) during choice 

selection than the trajectories of high truth value questions (see Figure 1.2 for results), indicating 

greater attraction to the “Yes” alternative even while participants responded “No”. This was 

taken to suggest that evaluating a proposition as false is more difficult than evaluating a 

proposition as true. Studies such as this set the precedent for the use of trajectory tracking to 

make relative judgements about individual decisions as a function of the degree of curvature 

exhibited during the reach-decision task.  

Figure 1.2 The influence of truth value on mouse-tracked trajectory curvature as indicated by 
A) The mean mouse cursor trajectories for questions with truth values ranging from high (1.0 
true, white) to low (0.0 true, black) and B) A histogram of trajectory curvature distribution for 
questions with high truth value (white), low truth value (black) and middle truth value (gray). 
Adapted from McKinstry et al., 2008. 
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Although reach-tracking has proven very fruitful for quantifying decision competition 

reflected in real-world, 3-D reaches (Chapman et al., 2010a; Chapman et al., 2010b; Gallivan & 

Chapman, 2014; Gallivan et al., 2018), of particular relevance to the current study is the 

application of such paradigms within 2-D, computerized spaces. Computer-mouse tracking 

during computerized choice selection has been shown to be a highly sensitive, flexible, and 

scalable technique for the examination of decision processes (Freeman, 2018; Stillman, Shen & 

Ferguson, 2018; Hehman, Stolier & Freeman, 2015; Stillman et al., 2020).  

1.4 – Mouse-tracked markers of decision difficulty 

Designed to provide a millisecond-level window into decision processes as they unfold over 

time and reveal the information-rich interplay between movement and underlying cognition, 

mouse tracking most notably offers opportunity to measure motoric indicators of decision 

difficulty. More precisely, classic mouse tracking designs are thought to compel the expression 

of relative accumulated evidence during decision processing in mouse movement responses 

(Schoemann et al., 2019; Stillman et al., 2020; Figure 1.1). Requiring participants to start with 

their mouse cursor centered at the bottom of the computer screen and necessitating the selection 

of one of two (as is most common in reach-decision tasks) choice options located in the top left 

and top right corners of the screen, classic mouse tracking paradigms subject mouse movements 

to two primary forces: a default vertical force upwards and a horizontal force leftward or 

rightward proportional to the rate of evidence accumulation (Stillman et al., 2020). Combined, 

these two forces create a continuum of relatively direct or indirect trajectories, reflecting the 

strength of competition between choice options and thus the relative difficulty of the decision at 

hand. Deviations from a direct path are interpreted as demonstrating greater competitive pull 

towards the unchosen response, and therefore trials demonstrating greater degrees of trajectory 
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curvature are considered to reflect more difficult decisions (see Figure 1.1 B). Given this 

conceptualization of choice difficulty, it follows that metrics of trajectory curvature reflecting 

divergence from a direct trajectory can serve as a measure of decision difficulty. The current 

study will use maximum absolute deviation (MAD) for this purpose (see Section 2.4.1.3 for 

implementation details).  

1.5 – Measures of decision difficulty over time  

While the power of a mouse-tracked approach lies in its ability to access the dynamic 

reflections of cognitive states through motoric measures, it must be noted that these measures, 

while sensitive to decision difficulty and the real-time evolution of decision processes as they 

unfold during movement time, may not provide a complete account of the cognitive competition 

driving a choice. Prior to movement onset, reaction time (that is, a measure of time beginning 

after choice presentation but terminating with motor response initiation) has also been shown to 

reflect cognitive conflict, with longer reaction times demonstrated by more difficult decisions 

(McCarthy & Donchin, 1981; Palmer, Huk & Shadlen, 2005; Rangel & Hare, 2010). A transition 

away from purely reaction time-based models of decision competition rose with the recognition 

that factors other than decision difficulty contribute to reaction time (e.g., “nondecision time” 

comprised of factors such as stimulus encoding and motor latency; Ratcliff & Tuerlinckx, 2002; 

Ratcliff & McKoon, 2008), making it difficult to extract purely difficulty-driven components.  

Despite a newfound focus on motoric measures of decision difficulty, however, recent work 

has shown mouse-tracked trajectory-derived measures of decision difficulty to be nonredundant 

with reaction time (Stillman et al., 2020), presenting a case in which each measure may provide 

unique indexes of decision processes. 



10 
 

The nuanced complexity of each index of decision difficulty and their relationship can be 

observed in experiments examining risk-based decisions pertaining to reward and loss. In a study 

presenting participants with a variety of gambles (e.g., a choice between a 50/50 gain/loss 

gamble or a certain option always equal to $0) to examine decisions involving risk, Stillman, 

Krajbich and Ferguson (2020) found motoric measures to be only moderately correlated with 

reaction time (r = 0.32), with the movement-derived measures being more predictive of risk 

preferences. Important to note, however, the authors also found that mouse-tracked measures 

outperform reaction time to a greater extent when predicting loss-aversion driven risk 

preferences (a phenomena in which loss avoidance drives preference to a greater extent than 

equivalent opportunity for gain) compared to risk preferences driven by diminished utility (a 

phenomena in which greater loss aversion is experienced for decisions involving greater 

opportunities for gain, even in the presence of only positive outcomes; e.g., $10 is valued less 

than twice as much as $5). This intricate and flexible connection between decision processes 

occurring prior to movement and during movement is further exemplified in an earlier study 

conducted by Chapman and colleagues (2015). Varying the amount of time participants spent 

observing two choice options before moving to enact a selection (stimulus-response intervals 

varying between 50 milliseconds before option presentation to 750 milliseconds after), Chapman 

and colleagues found that trials with less target processing time gave rise to reaches with more 

trajectory curvature, even when decision difficulty remained constant (i.e., the values of choice 

option did not change).   

Together, studies such as these suggest that the manifestation of decision difficulty in 

reaction time and post-reaction time measures (movement trajectories and movement time) could 

be flexible. That is, decision processes (e.g., evidence accumulation) may be sequestered in 
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reaction time prior to movement onset or seep largely into movement time (to be expressed in 

movement), and the timeframe of decision resolution can be adapted based on task demands.  

The seeping of choice competition into movement time appears to be dependent on the 

amount of evidence accumulated prior to movement commencement, determined by factors such 

as time allowed for option processing prior to movement (Ghez, Gordon, Ghilardi et al., 1990; 

Chapman et al., 2015; although effects are still apparent when movements are self-initiated 

without time restriction; Wispinski et al., 2017) as well relative strength of evidence for selection 

offered by a choice option (e.g., overall option value). Interestingly, the unconscious time course 

assignment of decision processes may also depend on the processing requirements of the choice 

in question (e.g., loss aversion vs. reward gain; Chapman et al., 2015; Stillman et al., 2020). 

Ultimately, it is perhaps only through capture of both time and motoric measures of decision 

making that we can obtain a comprehensive account of decision difficulty. Further, as different 

decision domains likely demand different comparative processes and therefore may present 

distinct distributions between pre- and post-movement measures, it is perhaps only through an 

examination of multiple indexes of decision difficulty across multiple decision tasks that we may 

begin to understand the relationship between these measures and their ability to accurately reflect 

decision difficulty.  

1.6 – The current study 

The primary goal of the current study was to examine how measures of decision difficulty 

(both pre- and post-movement) vary across decision-task, the input device recording the decision 

information and the platform used for study implementation. To this end, we deployed a classic 

mouse-tracking, reach-decision paradigm where participants were asked to complete a Numeric-

Size Congruency task requiring objective perceptual judgements of which of two digits with 
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different physical sizes was numerically larger (Faulkenberry, Cruise, Lavro & Shaki, 2016), a 

Sentence Verification task requiring semi-subjective conceptual judgements about the truth value 

of statements varying in truth value and negation (Maldonado, Dunbar & Chemla, 2019), and a 

Photo Preference task requiring a subjective judgement of preference between two images 

varying in pleasantness (Koop & Johnson, 2013). Section 1.6.2 provides additional details about 

these tasks. Within each task, reaction time, movement time and trajectory curvature were 

examined as indexes of decision difficulty (see Section 2.4.2). 

1.6.1– Motivations  

Discussed in relation to evident gaps in current reach-decision literature, there were three 

primary questions motivating the current study: 

1) How do measures of decision difficulty change across testing device: computers, tablets 

and smartphones? Trajectory tracking methods have been shown to produce reliable 

results using 3D reach-tracking (Chapman et al., 2010a; Chapman et al., 2010b; Gallivan 

& Chapman, 2014; Gallivan et al., 2018), stylus- and mouse-tracking on a large screen 

(Moher & Song, 2019) and 15 inch touch screen (Santens, Goossens, & Verguts, 2011), 

demonstrating successful application of these recording to gross motor movements (e.g. 

arm reaches) as well as fine motor movements (e.g. mouse movements). Despite 

recognition of trajectory tracking as an important and increasingly popular tool for the 

understanding of decisions and decision processes, however, these approaches remain 

relatively inaccessible and impractical outside of laboratory exploration (for example, by 

requiring an OptiTrack motion capture system, Chapman & Gallivan, 2014; 

MouseTracker or other test deployment software, Freeman & Ambady, 2010; or large 

computer screens). Given the rise of mobile devices as the primary way many people 
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access the internet, the current study aims to leverage the widespread use and familiarity 

of web/tablet/smartphone-based apps to test the feasibility and reliability of collecting 

motoric measures through these more accessible platforms. Specifically, the current study 

used online assessment platforms to deploy a classic trajectory tracking paradigm, 

comprised of the three reach-decision tasks previously introduced, across three device 

types of different size and user-interaction requirements: personal computers (mouse-

based interactions), tablets (finger or stylus-based interactions) and smartphones (finger-, 

thumb- or stylus- based interactions). Importantly, driven to explore the sensitivity of 

capturing reach-tracked metrics of decision-making difficulty in more noisy, real-world 

settings, the specifications of devices used by participants were uncontrolled aside from 

any requirements mandated by the testing platform in use (e.g., mobile devices limited to 

Android tablets or smartphones using Google Chrome Web applications, see 2.2.1 for 

discussion).  

2) How do measures of decision difficulty relate to each other and does this change across 

task and device? Measures of trajectory curvature (interpreted as a competitive pull from 

the non-chosen choice; Spivey, Grosjean, & Knoblich, 2005), reaction time, and 

movement time obtained during mouse-tracked, reach-decision tasks have been shown to 

provide a metric of the relative difficulty of decisions (McKinstry, Dale, & Spivey, 2008; 

see Section 1.4 for discussion). While these measures of decision difficulty have been 

demonstrated across a variety of decision domains, they are reported in different studies 

with different groups of participants. To our knowledge, no study has examined how 

decision difficulty is expressed across measures and whether the expression of decision 

difficulty across measures is consistent across tasks. To that end, the current study aims 
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to i) replicate task-specific metrics of competition between choice options in three 

independent decision domains differing in choice stimuli, objectivity and processing 

requirements using reaction time, movement time and trajectory curvature as measures of 

decision difficulty and ii) uncover the relationship between measures of decision 

difficulty and assess whether these relationships remain consistent across the decision 

domains and across different input devices. 

3) How does the implementation platform affect measures of decision difficulty? Recent 

works examining common methodological practices (i.e., design choices) applied during 

mouse-tracked reach-decision tasks have shown that, among other factors, starting 

procedure (e.g., static vs dynamic; Schoemann et al., 2019), response requirements (e.g., 

cursor click vs. hover; Kieslich et al., 2019) and stimulus placement (near or in responses 

boxes located in the upper corners of the screen or distanced from response boxes; 

Kieslich et al., 2019) influence mouse trajectory curvature and thus the strength of 

relationships observed between experimental manipulations and implied results 

(Schoemann et al., 2020). Not yet examined, however, are outcome differences that may 

arise from platform-dependent experimental procedures. Oftentimes online assessment 

platforms allow for identical task designs but vary in terms of their data export profiles, 

requiring individualized data processing and cleaning strategies. As a component of a 

Mitacs Accelerate International internship in which the objective of the partner 

organization, Neurosight Ltd., was to validate a novel online assessment platform, the 

current study also aimed replicate task-specific results captured using an established 

online testing platform (in this case, Labvanced; see Section 2.0) using a novel platform 

developed by the partner organization (Horizon; commercial release pending).  
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Together, these three separate yet inter-reliant questions informed the objective of this study: 

to assess whether within-participant metrics of decision difficulty remain consistent across 

decision domain, data collection device, and finally implementation platform.  

1.6.2 – Reach-decision tasks for replication 

Informed by the objectives discussed in previous sections (see Section 1.6.1), the current 

study aimed to replicate three reach-decision tasks shown to sensitively reflect decision-

difficulty dependent cognitive dynamics through cursor-tracked measures. Described below, 

each task employs a classic mouse-tracking reach-trajectory paradigm, presenting two choice 

options and requiring mouse-movement for option selection. Together, these tasks span a range 

of decision domains from objective perceptual judgments (e.g., digit discrimination), to semi-

subjective conceptual judgements (e.g., truth value of a statement), and finally subjective 

judgements of preference (e.g., preference for one photograph over another). The variability in 

objectivity (e.g., objective, semi-subjective, subjective), stimulus characteristics (e.g., numeric, 

alphabetic, image) and processing requirements (e.g., perceptual discrimination, conceptual 

discrimination) offered by this selection of tasks allowed for inferences to be made about the 

consistency of different metrics of decision difficulty (e.g. trajectory characteristics, movement 

time, reaction time; see Sections 2.4.2) to be generalizable across remarkably distinct decision 

domain categories whose boundaries are rarely crossed in decision making literature.  

1.6.2.1– Numeric-Size Congruency 

The size congruency effect is characterized by an interactive processing of physical and 

numerical size, such that the physical size of a number can increase or decrease the ease with 

which it’s numerical size is recognized (Henrik & Tzelgov, 1982; Faulkenberry et al., 2016; 

Sobel & Puri, 2016). In numeric comparison tasks, participants typically demonstrate faster 
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selection of numerically larger numbers in trials where the digits being compared are congruent 

in size and value (e.g., the number larger in value is also physically larger than its pair; Henrik & 

Tzelgov, 1982). Of interest to the current study, this effect also gives rise to differences in reach 

curvature between congruent and incongruent trials tested via mouse-tracking (Figure 1.3; 

Faulkenberry et al., 2016). 

In a study requiring participants to indicate with their mouse cursor which of two numbers 

presented at the top-left and -right of a computer screen were larger in numerical value (see 

Figure 1.3 A for trial design), Faulkenberry and colleagues (2016) tested 6 pairs of numerals (1–

2, 1–8, 1–9, 2–8, 2–9, and 8–9) that were physically and numerically congruent (the number 

larger in value was also physically larger) or incongruent (the number larger in value was 

physically smaller).  

In addition to the expected congruency-dependent differences in temporal measures, the 

authors found that response trajectories for incongruent trials were significantly deflected toward 

Figure 1.3 Adapted from Faulkenberry et al., 2016. A) Trial design for a typical size-
congruency task. Participants click Start to initiate trial, then made their response by moving 
the cursor to click on the number option of their choosing. Feedback was only provided if the 
response was incorrect. Shown is a congruent trial where the physically smaller digit is also 
smaller in numerical value. B) Mean left and right response trajectories for congruent and 
incongruent conditions, in screen coordinates.  
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the incorrect response alternative, indicating greater competitive pull relative to congruent trials 

(see Figure 1.3 B). Subsequent experiments indicated that this size congruency effect continues 

in the absence of forced movement initiation times (e.g., no specified time threshold), but is 

modulated by numerical distance, with the difference in curvature between congruent and 

incongruent trials increasing the further apart the number options are in value (Faulkenberry et 

al., 2016). 

1.6.2.2 – Sentence Verification 

Tasks involving judgements about the truth value of sentences have demonstrated a bias 

towards affirming truth (with truth valuations proceeding more quickly than false valuations; 

McKinstry et al., 2008) and slower reading responses when negation is present (i.e., for 

sentences with negative polarity; Wason, 1959). Further, an interaction between truth value and 

negation has been demonstrated, with negation introducing longer sentence processing times for 

true statements compared to false statement (Wason, 1959; Dale & Duran, 2011; Maldonado et 

al., 2019). Seminal work by Dale and Duran (2011), demonstrated that truth value and negation, 

as well as their interaction, also provide predictable changes in reach-trajectories in addition to 

producing response timing effects. While having participants judge the truth value of simple 

statements presented one word at a time, the researchers found that true sentences exhibited a 

greater increase in trajectory curvature when negated than false sentences. Unlike prior response 

time studies, however, this mouse-tracking task did not elicit a main effect of truth value despite 

the significant main effect of negation and the truth value-negation interaction. 
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 Illustrated Figure 1.4, Maldonado and colleagues (2019) replicated this examination of truth 

value and negation using a classic reach-trajectory paradigm presenting participants with 

complete sentences upon trial commencement (rather than paced word presentation like Dale and 

Duran, 2011). After presenting a simple declarative sentence, this replication study had 

participants reach with their mouse cursor from a bottom-centered start button to a choice option 

of “true” or “false” presented to the top-right and -left of the computer screen (see Figure 1.4 A). 

The statements presented could be true or false, negated or non-negated. In their adapted task, 

Maldonado and colleagues also found that affirming true negated sentences produced trajectories 

with more curvature compared to true non-negated sentences (see Figure 1.4 B), ultimately 

reproducing findings from Dale & Duran’s seminal work using a testing procedure relevant to 

the current study.  

 

Figure 1.4 Adapted from Maldonado et al., 2019. A) Trial design for the Dale and Duran 
sentence verification task replication. Participants indicated the truth value of a statement 
presented in the center of the screen by moving from the “start” position as the bottom of the 
screen to one of the two options at the top-left or top-right of the screen. Shown is a trial in 
which the statement is false and negated. B) Mean trajectories for true and false responses, in 
screen coordinates.  



19 
 

4.1.1.1 – Photo Preference 
 

Most tasks implemented for reach-trajectory investigations of decision making involve some 

degree of objectivity in the determination of correct responses (e.g., McKinstry et al., 2008; Dale 

& Duran, 2011; Faulkenberry et al., 2016), with few investigating decisions in which the 

competitive pull towards choice options is dictated purely by subjective preference (such as 

snack choice; see Wispinski et al., 2020 for description of unpublished data). Koop and Johnson 

(2013), however, set the precedent for use of traditional reach decision paradigms in 

examinations of subjective preference decision domains using a photo preference task. Their 

study simply required participants to select which of two photos they preferred (see Figure 1.5 A 

for task design). Photos (derived from the International Affective Picture System; Lang, Bradley 

Figure 1.5 Adapted from Koop & Johnson, 2013. A) Photo preference trial design. 
Participants were initially presented with a ‘‘Start’’ button and two empty response boxes, 
which were populated with response options once the ‘‘Start’’ button had been clicked. 
Selection of the preferred photo could then occur. B) Mean response trajectories for each 
degree of photo pair difference, in screen coordinates.  
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& Cuthbert, 2008) were paired according to pleasantness rating, with photo pairs ranging from 

similar (difference of 0) to dissimilar (difference of 6). Depicted in Figure 1.5, the reach-

trajectories elicited by this task indicated a preference for the more pleasant photo choice option, 

and a greater competitive pull towards the unchosen alternative photo as pairs increased in 

pleasantness rating similarity. This established a photo preference effect in which photo pairs 

with large differences in pleasantness (e.g., difference of 6) produce more direct trajectories 

towards the more pleasant option, while photo pairs with smaller differences in photo 

pleasantness (e.g., difference of 1) produce trajectories with more curvature (see Figure 1.5 B). 
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2.0 - Materials and Methods  

2.1 – Introduction 

The objective of this study was to assess whether within-participant metrics of decision 

difficulty remain consistent across decision domain, data collection device, and finally 

implementation platform. To accomplish this objective, this study varied along three dimensions: 

task, device and platform (see Figure 2.1). 

First, to assess the consistency of metrics of decision difficulty at the level of task, this study 

aimed to replicate three independent reach-decision paradigms previously shown to elicit 

decision difficulty-dependent behaviours, each of which offers a distinct decision domain 

differing in choice stimuli, objectivity and processing requirements. These tasks include a 

Numeric-Size Congruency task requiring objective perceptual judgements of which of two digits 

with different physical sizes was numerically larger (Faulkenberry et al., 2016), a Sentence 

Verification task requiring semi-subjective conceptual judgements about the truth value of 

Figure 2.1 A visual representation of the three dimensions along with the current study 
varied. 



22 
 

statements varying in truth value and negation (Maldonado et al., 2019), and a Photo Preference 

task requiring subjective judgements of preference between two images varying in pleasantness 

(Koop & Johnson, 2013). See Section 1.6.2 for details.  

Comprised of a combination of these three tasks, the study was deployed across three testing 

devices using Labvanced, an online, device-scalable experiment creation platform 

(www.labvanced.com). Specifically, the study was completed using one of three different 

devices: a personal computer, a tablet or a smartphone. As tests were completed using a 

consistent testing platform independent of the device used, this allowed comparisons to be made 

along the dimension of device (i.e., Device comparison, see Sections 2.5.2 and 3.1), permitting 

the assessment of decision-difficulty metric consistency when the testing device changes in size 

and user-interaction profile (e.g., mouse vs. touchscreen).  

As a component of a Mitacs Accelerate International internship and motivated by the 

interests of the partnering organization (Neurosight Ltd.), the consistency of decision difficulty 

metrics across testing platform was also examined. To achieve this goal, Horizon, a second 

online assessment platform offering a readymade reach-decision paradigm architecture with 

customizable stimuli components (www.neurosight.io; commercial release pending), was 

introduced for study implementation using a personal computer. When compared against results 

obtained through the Labvanced platform also completed by personal computer users (i.e., 

device is held constant), this allowed for comparisons to be made along the dimension of 

platform (i.e., Platform comparison, see Sections 2.6.2 and 3.2).  

Study design and procedure were kept consistent between platforms, with slight interface 

design allowances made to accommodate use of different devices within Labvanced (see Section 

2.3.2). Importantly, despite identical task designs, the two platforms required unique participant 

http://www.labvanced.com/
http://www.neurosight.io/
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recruitment (see Section 2.2), data export profiles, and data processing and cleaning strategies 

(see Section 2.4).  

 2.1.1 – Power analysis 

An a-priori power analysis using computational statistics simulation methods was conducted 

to determine sample size based on effects estimated from sample data. For complex study 

designs, computer simulations are a useful alternative for estimating power (and conducting 

subsequent sample size calculations) when use of power equations are no longer efficient 

(Arnold, Hogan, Colford & Hubbard, 2011; Feiveson, 2002).  

A 7-participant pilot study was conducted to provide an estimate of true condition means 

and within- and between-subject variance. Due to time constraints, only the Numerical-Size 

Congruency task (as described in Section 2.3.3.1) was tested, deployed on a personal computer 

during in-person testing and implemented using the Horizon testing platform. As the physical-

numerical size congruency and numeric value of the choice pairs have been demonstrated to 

Figure 2.2 The projected power outcomes as a function of sample size for each estimated 
Numeric-Size Congruency effect and interaction.  
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drive decision difficulty effects (Faulkenberry et al., 2016), these factors were the focus of our 

power analysis and subsequent sample size justification. Side of number presentation, on the 

other hand, has no prior indication of having significant effects on the curvature of reach 

trajectories, and is therefore disregarded in our choice of sample size (this, however, may be an 

inaccurate assumption. See discussion of right-hand bias in Section 4.2).  

Condition mean and variance parameters generated by the pilot analysis were used to 

simulate novel data (assuming normally distributed noise) over many experiments with varying 

sample sizes. Ultimately, 49,000 experiments were simulated with sample sizes ranging from 2 

to 100 participants (500 simulations per sample size). Each simulated experiment was then 

analyzed using a 3-factor within-subjects RM-ANOVA and the results aggregated to provide an 

estimate of power. Figure 2.2 illustrates the projected power outcomes as a function of sample 

size for each of our effect estimates. Overall, these simulations estimated a sample size of 40 

participants to obtain 80% power to detect significant Numerical-Size Congruency effects at the 

5% level of significance. The same number of participants will achieve 95% power for detection 

of significant differences between Number Pair conditions. While this proposed sample size 

would allow us to achieve sufficient power for our effects of interest during in-person and 

computer-based testing, we anticipated greater within- and between-subjects variability for 

online testing in uncontrolled settings and using novel devices. Further, online testing allows 

access to much larger sample sizes while maintaining feasibility of our projected timeline and 

study resources. As such, we ultimately chose to maximize our sample beyond the estimated 

sample size, with 40 participants recognized as a minimum required for each testing device and 

platform.   
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2.2 – Participants 

In all cases, participants had no prior knowledge about the objectives or design of the 

experiment, and could only complete the experiment once (i.e., there were no repeat participants 

between devices).  Participants self-reported age, gender, handedness and visual acuity, in 

addition to completing a brief survey about their English language proficiency, habitual activities 

requiring hand-eye coordination, and typical use of their chosen device for participation (see 

Figures 2.3 and 2.4 for a complete demographic summary). No participants were excluded based 

on demographic criteria.  

Participants could, however, be excluded from analysis based on performance. The basis of 

these exclusions was insufficient (< 50%) good trials within at least one of the experimental 

tasks or in any of the unique task conditions (whether due to unreliable data capture, trials 

unrepresentative of typical behaviour, or incorrect responses; see Section 2.4.3 for further details 

on data cleaning procedures). Device- and platforms-specific participation is discussed below.  

All experimental procedures were approved by the University of Alberta’s Research Ethics 

Office. 

2.2.1 – Labvanced  

Three-hundred and five participants were recruited online through Amazon’s Mechanical 

Turk (mTurk; http://www.mturk.com), a participant recruitment system shown to produce 

reliable respondents in other studies (including those employing reach-decision paradigms, e.g., 

Dale and Duran, 2011), for participation using the Labvanced platform. Three different groups of 

Labvanced participants completed the experiment using a personal computer, a tablet, or a 

smartphone of their choosing. The devices used were uncontrolled except for requiring use of a 

separate mouse (wired or wireless) during computer use, or an Android operating system and 

http://www.mturk.com/
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touch-screen device interaction (via finger, thumb or stylus) during tablet or smartphone use 

(note Apple iPads and iPhones were not compatible with cursor tracking in the Labvanced 

platform).  

2.2.1.1 – Personal Computer 

A total of one hundred and one participants completed the study using a personal computer. 

Of those, nine were excluded after participation for not meeting device interaction requirements 

(i.e., use of a wired or wireless mouse). Data pre-processing and cleaning (Sections 2.4.1.1 and 

2.4.3, respectively) resulted in the exclusion of a further nine computer users, resulting in data 

from 83 computer users (25 female, 56 male, and 2 who preferred not to say; Mage = 33.75, SDage 

= 9.35; see Figure 2.3 A) being used for analysis.      

 2.2.1.2 – Tablet  

One hundred and one participants completed the study using a tablet. Four were 

immediately excluded from analysis for not meeting device interaction requirements (i.e., finger-

, thumb- or stylus-based interactions). Data pre-processing and cleaning (Sections 2.4.1.1 and 

2.4.3, respectively) resulted in the exclusion of a further nineteen tablet users, leaving data from 

78 tablet users (27 female, 50 male, and 2 nonbinary; Mage = 33.51, SDage = 6.22; see Figure 2.3 

B) to be included in the analysis.  
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Figure 2.3 Self-reported demographic information for Labvanced participants included in 
the analysis, with A) Computer users (N = 83), B) Tablet users (N = 78) and C) 
Smartphone users (N = 78) shown separately. A complete summary of demographic 
survey questions and responses can be found in Appendix A.1.       
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2.2.1.3 – Smartphone  

A total of one hundred and three participants completed the study using a smartphone. Of 

those, twenty-five were excluded based on data pre-processing and cleaning criteria (Sections 

2.4.1.1 and 2.4.3, respectively). After exclusions, 78 smartphone users (25 female, 52 male, and 

1 who preferred not to say; Mage = 33.73, SDage = 6.72; see Figure 2.3 C) remained for analysis. 

2.2.2 – Horizon  

 2.2.2.1 – Personal Computer 

Fifty participants were recruited via university-wide email advert for study participation 

using the Horizon platform. Criteria for participation included only access to a personal 

computer with use of a wired or wireless mouse (laptop touchpads or trackpads were prohibited 

for device interaction). Four participants were excluded after participation for not meeting device 

interaction requirements and data pre-processing and cleaning (Sections 2.4.1.2 and 2.4.3, 

respectively) resulted in the exclusion of a further six participants from the analyses. After 

Figure 2.4 Self-reported demographic information for Horizon participants included in the 
analysis. A complete summary of demographic survey questions and responses can be found 
in Appendix A.1.       
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exclusion, 40 (24 female, 14 male, 2 nonbinary; Mage = 23.6, SDage = 6.12; see Figure 2.4) data 

sets remained for analysis. 

2.3 – Procedure and design 

 2.3.1 – Procedural overview 

Participants completed the experiment online using a Google Chrome browser, in a remote 

setting of their choosing. 

Upon study enrollment, participants were provided with an electronic consent form 

delineating their rights, the risks of the study (of which there are none known) and the removal of 

any personal identifiers linked to the data collected. Electronic consent indicating voluntary 

participation was obtained prior study commencement. Only consenting participants gained 

access to the study.  

The study consisted of a survey followed by three experimental tasks (see Figure 2.5 for an 

organizational overview of the study). The survey asked participants to share their demographic 

details (e.g., age, gender, handedness, English language proficiency, visual acuity), habitual 

partaking in activities requiring hand-eye coordination (e.g., videogame or sport activities), the 

unique specifications of the device they are using for participation (e.g., brand, model, size, input 

device) and their typical interactions with that device (e.g., weekly use for school, work, gaming, 

communication). Specific survey questions and response summaries can be found in the 

Figure 2.5 Overview of the study design, beginning with Consent (left, lightest grey) and 
concluding with a Debrief (right, darkest grey). 
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Appendix (A.1). The subsequent three experimental tasks each presented one of the reach-

decision tasks described previously: a Numeric-Size Congruency task (adapted from 

Faulkenberry et al., 2016; see Section 2.3.3.1), a Sentence Verification task (adapted from Dale 

& Duran, 2011 and Maldonado et al., 2019; see Section 2.3.3.2) and a Photo Preference task 

(adapted from Koop & Johnson, 2013; see Section 2.3.3.3).  Participants were instructed to 

complete the study in its entirety in a single session and were provided with detailed instructions 

outlining the study tasks prior to the start of each test task.  

All three experimental tasks presented a classic reach-decision paradigm requiring 

participants to choose one of two stimuli presented at the top left and top right of their device 

screen. Each trial first presented a green circular start button labelled “Touch here” on the bottom 

center of the screen, requiring participants to navigate their mouse cursor (in the case of 

computer use) to or place their finger, thumb, or stylus (in the case of tablet or smartphone use) 

on the button to trigger the trial start. Touching of the start button triggered a three second 

countdown, centered on the display screen (Figure 2.6). Removal of the mouse cursor, digit or 

stylus from the start button or the surface of the screen would cause the countdown to pause until 

touch-contact within the start button had been re-established. For Numeric-Size Congruency and 

Photo Preference tasks, countdown onset was accompanied by a question specific to the task 

type appearing centered at the top of the display (Figure 2.6). Once the countdown was complete, 

two choice boxes appeared at the upper-left and upper-right of the screen, each presenting trial-

specific choice options. Unlike the other two tasks, the Sentence Verification task instead 

presented the two choice options coincident with countdown onset and presented a statement 

(rather than a question) centered at the top of the screen upon countdown completion (Figure 

2.6). Task-specific choice stimuli and trial design are described in Section 2.3.3. Participants 
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were free to select either choice option in response to the question or statement on the screen 

immediately upon countdown completion, with no time constraints. In the case of computer use 

for study participation, choice selection required participants to move their mouse cursor inside 

the choice box of their choosing (no mouse click was required). In the case of tablet or 

smartphone use, participants were required to slide their finger, thumb, or stylus across the 

screen to touch their selected choice box, keeping contact with the screen at all times. If 

touchscreen contact was lifted, an error message would appear on the screen, reading “Your 

finger was lifted from the screen as you moved, and we were unable to track the movement. 

Please touch your option now and remember in the future to keep your finger on the screen.” The 

choice options glowed blue to confirm contact and selection. Once a selection was made, the 

Figure 2.6 Study testing interface and experimental task trial design. The four panels from 
bottom-right to top-left demonstrate the trial process for Numeric-Size Congruency (SC) and 
Photo Preference (PP) tasks. The order of choice/question component presentation is reversed 
Sentence Verification (SV) tasks, indicated by the alternative second panel. 
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start button and unchosen choice option disappeared, and a “Next” button appeared centered on 

the screen. Participants were then free to click or press on the “Next” button to continue to the 

next trial, allowing them to self-pace the experiment. Figure 2.6 provides a visual representation 

of the testing interface and trial design.  

Each experimental task presented 84 trials, taking approximately 15 minutes each to 

complete. Trials were randomized within each task to mitigate within-task practice effects. 

Similarly, the order of task presentation was counter-balanced across participants to mitigate 

between-tasks practice effects. Participants were encouraged to take short breaks between tasks 

but had a maximum time limit of ninety minutes to complete the study.  

Upon completion of the three testing tasks, participants were thanked for their time and 

given access to a debriefing form detailing the purpose of the study. Participants recruited locally 

through university adverts were compensated with a $10 CAD gift-card upon study completion, 

while participants recruited via Amazon Mechanical Turk were compensated with $7 USD.  

 2.3.2 – Device specific design  

The dimensions of the testing interface scaled according to the screen size of the device in 

use, presenting a landscape orientation for computer-based participation and a portrait orientation 

for touchscreen-based participation. Of note, start button, choice option and question or 

statement font size interface components scaled to maintain consistent component-screen 

proportions independent of device screen size (i.e., the proportion of interface space occupied by 
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each component stayed constant). Specifically, for computer-presented tests the start button 

occupied 1.2% of the testing interface (width = 8.3% of total screen width, height = 14.6% of 

total screen height), the choice options each occupied 5.2% of the testing interface (width = 

21.3% of total screen width, height = 24.4% of total screen height), and the font size of the 

written questions or statements was set at 5.6% of the screen height. For tablet- or smartphone-

presented tests, the start button also occupied 1.2% of the testing interface (width = 14.1% of 

total screen width, height = 8.3% of total screen height), the choice options each occupied 5.2% 

of the testing interface (width = 37.9% of total screen width, height = 14.8% of total screen 

height), and the font size of displayed questions or statements was set at 3.1% of the screen 

height. Examples of interface design and component sizing for each of the three devices 

permissible for participation use is shown in Figure 2.7.   

 

 

Figure 2.7 A comparison of interface arrangements between devices. Shown are 
representative examples of a Computer, Tablet and Smartphone testing interface. All values 
are reported in pixels. Specific sizes of device screens and interface components observed by 
participants were dependent on the size of the device used, but screen to interface component 
proportions remained constant within each device category. For full details regarding 
participant-reported screen sizes, see Table A.1.2. 



34 
 

2.3.3 – Stimuli and task-specific procedure 

   2.3.3.1 – Numeric-Size Congruency 

 The Numeric-Size Congruency task in the current study was designed to replicate 

Faulkenberry, Cruise, Lavro and Shaki’s (2016) experiment examining the dynamics of the size 

congruency effect (see Section 1.6.2.1). Due to time constraints, the stimuli presented in the 

current study were limited to a subset of those presented in the original experiment.   

For each Numeric-Size Congruency trial, the question “Which number is larger in value?” 

appeared coincident with the onset of the countdown timer and centered at the top of the screen 

(Figure 2.6). Following countdown termination two numbers were displayed simultaneously in 

choice boxes at the upper left and right corners of the screen, at which time participants could 

move to select their preferred choice. Stimuli consisted of the Arabic numerals 1, 2, 8 and 9 

displayed in Arial font and presented in pairs of different physical size. From these, six choice-

Figure 2.8 A representation of the twelve Numeric-Size Congruency conditions obtained by 
crossing selected Number Pairs (Pairs) by Congruency (Congruent or Incongruent) and side 
of presentation (Left or Right). Condition design is replicated from Faulkenberry et al., 2016.  
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pair options were generated: 1 – 2, 2 – 8 and 8 – 9, with each pair either congruent in physical 

and numeric size (the numerically larger numeral appearing physically larger than its paired 

counterpart, e.g., 2 – 8), or incongruent in physical and numeric size (the numerically larger 

numeral appearing physically smaller than its paired counterpart, e.g., 2 – 8; see Figure 2.8). 

Within each condition, the numerically larger number was presented equally often on the left and 

the right, counterbalancing side of space effects. The twelve conditions obtained by crossing 

each number pair with physical-numerical size congruency and side of presentation were 

presented 7 times for a total of 84 trials (see Figure 2.8).  

   2.3.3.2 – Sentence Verification 

The Sentence Verification task in the current study was designed to replicate Maldonado, 

Dunbar and Chemla’s (2019) adaptation of Dale and Duran’s (2010) linguistic negation 

experiment (see Section 1.6.2.3). Important to note, statement stimuli (see Appendix A.2) 

presented in the current study were developed from example statements provided by the authors 

of both previous works but exact replication of previous stimuli was not possible as no 

comprehensive list of statements used were published.  

On each Sentence Verification trial, the choice boxes appeared coincident with the onset of 

the countdown timer and were populated with “True” and “False” response options in the top-left 

and top-right corners of the screen, respectively (Figure 2.6). Following countdown termination, 

a statement was displayed at the top-center of the screen, prompting participants to judge 

whether it was true or false by selecting one of the options that appeared earlier. Statement 

stimuli consisted of 21 simple declarative statements manipulated in truth value (true, false) and 

polarity (positive, negative). Sentence polarity was determined by the presence of negation, 
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where non-negated sentences are considered positive in polarity (e.g., “giraffes are tall”) and 

negated sentences are considered negative in polarity (e.g., “giraffes are not tall”). Truth value 

was then manipulated by changing the adjective at the end of the sentence (e.g., “giraffes are not 

short” is true, while “giraffes are not tall” is false). Like with Maldonado et al. (2019), these two 

factors were crossed to generate four sentence conditions where each sentence could be a true or 

false statement in either negative or positive forms (exemplified in Figure 2.9; see Appendix A.2 

for a complete list of generated statement stimuli). Participants saw all four instances of each 

model sentence in random order for a total of 84 trials. 

   2.3.3.3 – Photo Preference 

The Photo Preference task in the current study was designed to replicate Koop and 

Johnson’s (2013) experiment examining the dynamics of preferential choice (see Section 

1.6.2.3). Again due to time constraints, the current study limited presented photo stimuli to a 

subset of those presented previously. Specifically, while Koop and Johnson presented a range of 

stimuli ranging from unpleasant (pleasantness = 1.66) to very pleasant (pleasantness = 8.34) and 

simply paired stimuli based on similarity such that pairs that ranged between similar 

Figure 2.9 A representation of the four Sentence Verification conditions obtained by crossing 
Truth Value (True or False) with Polarity (Positive or Negative). Condition design is replicated 
from Maldonado et al., 2019. 
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(pleasantness different = 0) and dissimilar (pleasantness difference = 6), the current study instead 

grouped photos into three categories of pleasantness (high, average and low; see for further 

detail) designed to span a similar range of pleasantness, and paired photos based on those 

groupings (see Figure 2.10 for stimuli overview).  

For each Photo Preference trial, the question “Which photo do you prefer?” appeared 

centered at the top of the screen with countdown initiation (Figure 2.6). Following countdown 

termination two images were then simultaneously displayed in the choice boxes to the upper left 

and upper right corners of the screen. As in Koop and Johnson (2013), the International 

Affective Picture System (IAPS; Lang, Bradley, & Cuthbert, 2008) was used to develop a 

stimulus set of paired images. The IAPS provides researchers with a standardized collection of 

over 1000 photographs, each normed in terms of pleasantness (affective valence), arousal, and 

dominance. These normative ratings were obtained in 18 separate studies, resulting in 

approximately 100 independent ratings per image, resulting in a nine-point scale for each 

affective dimension. The affective norms of interest in the current study were limited to 

pleasantness and arousal, given the prior validation of pleasantness as an analog to photo 

preference, given equal levels of arousal (Koop & Johnson, 2013). 

The average ratings of pleasantness and arousal were used to select 168 pictures from the 

IAPS, which were then categorized as being high in pleasantness (pleasantness rating between 7 

and 8), average in pleasantness (referred to as Med; pleasantness rating between 4.50 and 5.50) 

or low in pleasantness (pleasantness rating between 2 and 3). Images scoring higher than 8 or 

lower than 2 in pleasantness, and/or greater than 6.15 in arousal were excluded to minimize 

graphic content deemed inappropriate for the target participant pool. Selected pictures were then 

matched to provide all pairwise comparisons of pleasantness category, with arousal ratings held 
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constant between pairs (difference < 0.30). Pairs that were not matched in pleasantness (e.g., 

High – Med, High – Low, Med – Low) were counterbalanced for side of presentation, while 

pairs matched in pleasantness (e.g., High – High, Med – Med, Low – Low) appeared equally as 

often as the unmatched conditions when ignoring side of space (see Figure 2.10 for examples). 

This allowed for 14 presentations of each pleasantness pairing (7 of each unmatched pairing for 

each presentation side and 14 for matched pairings), for a total of 84 trials.  

 

 

 

Figure 2.10 A representation of the nine Photo Preference conditions resulting from all 
pairwise combinations of High, Med, and Low photo pleasantness categories. As depicted 
above, pairs not matched in pleasantness (High – Med, High – Low, Med – Low) were 
counterbalanced for side of presentation. Not shown is that photo pairings matched in 
pleasantness (High – High, Med- Med, Low – Low) appeared twice as often to maintain equal 
presentations of each pleasantness pairing. Condition design is adapted from Koop & Johnson, 
2013. 
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2.4 – Data treatment  

 2.4.1 – Trajectory extraction 

 2.4.1.1 – Labvanced  

Labvanced-acquired data treatment and measure extraction occurred using our Gaze and 

Movement Analysis (GaMA) platform, a custom software solution developed in-lab for stream-

lined gaze and movement analysis (https://www.ksr.ualberta.ca/acelab/?page_id=161).   

Raw movement data acquired through Labvanced was reported at device- and server 

latency-dependent framerates ranging between 5 and 30 milliseconds per frame (Mframerate = 

11.66, 9.78 and 9.94 for computer-, tablet- and smartphone-acquired data, respectively). Raw 

movement data was therefore first resampled to 60 Hz, then filtered using a 10 Hz lowpass filter. 

Reach onset was then defined as the first time the mouse cursor (computer-use) or 

finger/thumb/stylus (touchscreen tablet- or smartphone-use) ascended to 5% of its peak velocity 

within the start button and after countdown had terminated. Should this velocity threshold not be 

achieved prior to leaving the start button, this threshold was iteratively reduced to 95% of its 

value until a reach onset could be defined. Reach offset was similarly defined as the first time the 

mouse cursor (computer-use) or finger/thumb/stylus (touchscreen tablet- or smartphone-use) 

velocity descended below a velocity threshold of 5% peak velocity while within one of the two 

choice option boxes, with this threshold iteratively increasing by 5% until reach offset could be 

defined within those location parameters. Reach trajectories containing fewer than seven unique 

data points (e.g., having 100 milliseconds or less of data) were considered to have insufficient 

data for analysis. Once the reach trajectory was extracted, the trajectory curvature was 

operationalized as described in Section 2.4.1.3. 

 

https://www.ksr.ualberta.ca/acelab/?page_id=161
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2.4.1.2 – Horizon  

Horizon-acquired data treatment and measure extraction occurred exclusively through 

custom processing algorithms using MATLAB (www.mathworks.com/products/matlab). As with 

Labvanced-acquired data, raw movement data acquired using the Horizon platform expressed 

sampling rates varying between 0 and 1057 milliseconds per frame (Mframerate = 10.03), and was 

therefore resampled at 60 Hz prior to being filtered using a 10 Hz lowpass filter. Reach onset 

was defined at the as the first time the mouse cursor velocity ascended past a velocity threshold 

of 200 pixels per second. Reach offset was automatically defined by the Horizon platform as the 

first data point recorded within one of the choice option boxes. Unlike Labvanced-acquired data, 

Horizon-acquired reach trajectories were also space-normalized, a process involving resampling 

of the y-coordinate vector into a specific number of equal-space steps and computing, using 

linear interpolation, corresponding x coordinate and time vectors (Gallivan et al., 2011; 

Chapman & Goodale, 2010; Chapman et al., 2010a; Chapman et al., 2010b). In the current case, 

raw trajectories were normalized to 100 equally spaced points along the vertical axis between the 

start position to the final position, with each point corresponding to one percent of the y-distance 

travelled. Reach trajectories containing fewer than seven unique data points (e.g., having 100 

milliseconds or less of data) were considered to have insufficient data for analysis. Once the 

reach trajectory was extracted and normalized, the operationalization of trajectory data occurred 

in the same manner as Labvanced-acquire trajectories (see Section 2.4.1.3).  

2.4.1.3 – Operationalization of trajectory data 

Independent of data source or treatment method, raw trajectory data was operationalized in 

the same manner. Within each trial, absolute measures of deviation (Euclidean distance) of the 

observed trajectory relative to an ideal response trajectory (a straight line connecting the 

http://www.mathworks.com/products/matlab)
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trajectory start and end position) was calculated at each x,y coordinate data point (derived from 

the filtered trajectories described in Section 2.4.1.1  for Labvanced-acquired data, and the 100 

space-normalized bins described in Section 2.4.1.2 for Horizon-acquired data). The degree of 

curvature was indexed as the maximum absolute deviation (MAD), or the measure that 

maximizes the perpendicular distance between the idealized and observed paths (see Figure 2.11 

for an example). The computed MAD values were then interpreted as levels of deviation towards 

the unselected alternative option, with greater trajectory curvature towards the alternative option 

giving rise to larger positive MAD values, straight trajectories producing values approaching 

zero, and trajectories deviating away from the alternative option producing negative values. In 

the context of decision making, the maximum deviation of a reach was then interpreted as an 

estimate the level of competition or indecision between two choice targets in space, with greater 

Figure 2.11 For an example response trajectory, the maximum absolute deviation (MAD) is 
depicted (black line) as the maximum perpendicular deviation of the trajectory from a straight 
line connecting the start and end points of the trajectory (dashed line). Shown are examples of 
two reaches opposite in MAD value (positive in red and negative in yellow) given the same 
start and end point (i.e., same ideal trajectory).  
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positive deviations indicating greater decision difficulty (Spivey, 2008; McKinstry et al., 2008; 

Freeman & Ambady, 2010; Koop & Johnson, 2013). 

2.4.2 – Dependent measures  

For each trial, the following behavioural measures were obtained:  

Reaction time (seconds): time from countdown termination to reach onset. 

Movement time (seconds): time from reach onset to reach offset (choice selection). 

Maximum Absolute Deviation (MAD): maximum deviation of the reach trajectory from an ideal 

response trajectory, computed from the post-processing x,y coordinates of 

mouse/finger/thumb/stylus position on the device screen during choice selection (see Section 

2.4.1.3).  

Within-participant and within-task z-scores were computed for each dependent measure 

(reaction time, movement time, MAD). This standardization of within-participant measures 

allows for between-task and between-participant comparisons while controlling for participant 

variability and individual reach patterns. All analyses were conducted on these standardized 

values.  

2.4.3 – Data cleaning  

Data cleaning processes were identical independent of platform or device used for testing 

and were conducted using customized MATLAB cleaning scripts.   

Errors on each trial could be a combination of reaches with recording errors 

(ComputerHorizon: M = 0.29%, Range: 0% - 16.1%; ComputerLabvanced: M = 0.73%, Range: 0% - 

22.6%; Tablet: M = 4.5%, Range: 0% - 96.8%; Smartphone: M = 4.3%, Range: 0% - 92.9%), 

reaches with insufficient data points (see Section 2.4.1, ComputerHorizon: M = 3.7%, Range: 0% - 

65.87%; ComputerLabvanced: M = 1.65%, Range: 0% - 59.1%; Tablet: M = 7.1%, Range: 0% - 
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90.1%; Smartphone: M = 6.2%, Range: 0% - 86.1%),  reaches with “out of bounds” start or end 

positions (ComputerHorizon: M = 1.2%, Range: 0% - 36.1%), reaches with reaction times greater 

than 0.1, (ComputerHorizon: M = 0.1%, Range: 0% - 2.8%; ComputerLabvanced: M = 0.53%, Range: 

0% - 6.8%; Tablet: M = 0.85%, Range: 0% - 18.3%; Smartphone: M = 0.7%, Range: 0% - 

7.1%),  > 3 SD of mean movement time errors (ComputerHorizon: M = 2.1%, Range: 0% - 3.6%; 

ComputerLabvanced: M = 1.8% , Range: 0.4% - 3.2%; Tablet: M = 1.6%, Range: 0% - 2.8%; 

Smartphone: M = 1.6%, Range: 0% - 3.2%),  and > 3 SD of reaction time errors 

(ComputerHorizon: M = 1.5%, Range: 0% - 2.8%; ComputerLabvanced: M = 1.5%, Range: 0% - 

4.4%; Tablet: M = 1.6%, Range: 0% - 3.2%; Smartphone: M = 1.4%, Range: 0% - 3.9%). For 

Numeric-Size Congruency and Sentence Verification tasks, incorrect trials were also removed 

from analysis (Numeric-Size Congruency: ComputerHorizon: M = 2.4%, Range: 0% - 83.4%; 

ComputerLabvanced: M = 2.1%, Range: 0% - 42.9%; Tablet: M = 0.83%, Range: 0% - 42.9%; 

Smartphone: M = 0.91%, Range: 0% - 42.9%; Sentence Verification: ComputerHorizon: M = 1.5%, 

Range: 0% - 2.8%; ComputerLabvanced: M = 3.3%, Range: 0% - 45%; Tablet: M = 3.6%, Range: 

0% - 42.9%; Smartphone: M = 3.3%, Range: 0% - 45%). As these tasks previously demonstrated 

very high levels of accuracy (Dale & Duran, 2011, Faulkenberry et al., 2016), incorrect 

responses were considered to arise from participant error, with sustained performance errors 

indicating participant unreliability.  

In total, participants whose data was analyzed had a mean of 95.6% usable trials for analysis 

(Range: 83.7% - 98.4%). These trial rejection numbers fall within expected rates for reach-

decision experiments (Gallivan & Chapman, 2014). Participants were rejected from further 

analysis if the number of errors or incorrect trials resulted in <50% correct, usable trials within 

any of the unique conditions within the three experimental tasks. This criterion was enforced to 
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ensure participants had at least four trials in all conditions for analysis. Rejected participants (see 

Section 2.2 for an overview) are not discussed further.  

2.5 – Statistical analysis 

2.5.1 – Generic ANOVA procedure 

All statistical analyses followed the same order of testing. First, mixed-model ANOVAs 

were used to test for main effects and interactions, with within-subject factors determined by 

individual tasks design and between-subject factors of device (ComputerLabvanced vs. 

TabletLabvanced vs. SmartphoneLabvanced) or platform (ComputerLabvanced vs. ComputerHorizon). 

All interactions revealed by the omnibus analyses were followed-up with the appropriate 

repeated-measures (RM) ANOVAs, collapsing over any factors that did not interact. Should any 

of these interactions be with a between-subjects factor, follow-up analyses always split at the 

levels of that factor first (i.e., between-subjects factors were not included in any ANOVAs 

beyond the omnibus). Interactions at subsequent levels of analyses continued to be explored until 

the simple main effects of each factor were examined at all levels of the other factors. Significant 

main effects were then explored with all possible pairwise comparisons. All multi-way mixed- 

and RM-ANOVAs were family-wise error corrected using a sequential Bonferroni procedure 

(Cramer et al., 2016), and all repeated-measures main effects and interactions were Greenhouse-

Geiser corrected to protect against violations of sphericity. Pairwise comparison tests were 

corrected using a Bonferroni type adjustment to protect against multiple comparisons. 

Significance was set at a corrected p<=0.01. 
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2.5.2 – Device comparison 

Assessments in which differences between computer-, tablet- and smartphone-based 

testing were compared are described in two categories: within-task assessments and between-

measures assessments. 

Within-task assessments were conducted for each dependent measure of interest and 

examined decision difficulty effects as a function of the task-specific within-subjects factors. The 

main objective of these assessments was to determine whether task-specific effects (as expected 

by previous studies, e.g., Faulkenberry et al., 2016; Koop & Johnson, 2013; Dale & Duran, 

2011; Maldonado et al., 2019) were replicated and whether these effects were consistent despite 

differences in testing device.  

Between-measures assessments examined the relationship between measures of decision 

difficulty (reaction time, movement time and trajectory curvature), with the objective of 

determining whether there were correlational effects between measures of decision difficulty 

(e.g., whether increased curvature is correlated with increased movement time), and whether 

these relationships were consistent across task and testing device.  

The specific analyses conducted to assess within-task differences in decision difficulty 

(Within-task, Section 2.5.2.1) and the relational differences between measures of decision 

difficulty (Between-measures, Section 2.5.2.2) are outlined below. Where relevant for omnibus 

mixed-model ANOVAs, device (ComputerLabvanced vs. TabletLabvanced vs. SmartphoneLabvanced) was 

included as a between-subject factor.  
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  2.5.2.1 – Within-task  

2.5.2.1.1 – Numeric-Size congruency 

For each of the dependent measures (reaction time, movement time and MAD), the 

following omnibus analysis was conducted: 

1) A 3 (Number Pair: 1 – 2 vs. 2 – 8 vs. 8 – 9) x 2 (Numeric-Physical Congruency: Congruent vs. 

Incongruent) x 2 (Presentation Side: larger number Left vs larger number Right) x 3 (Device: 

ComputerLabvanced vs. TabletLabvanced vs. SmartphoneLabvanced) mixed-model ANOVA 

2.5.2.1.2 – Sentence Verification 

For each of the dependent measures (reaction time, movement time and MAD), the 

following omnibus analysis was conducted: 

2) A 2 (Truth Value: True vs. False) x 2 (Polarity: Positive vs. Negative) x 3 (Device: 

ComputerLabvanced vs. TabletLabvanced vs. SmartphoneLabvanced) mixed-model ANOVA 

   2.5.2.1.3 – Photo Preference  

Within-task analyses of the Photo Preference trials examining device differences 

followed two streams of investigation: 1) Differences between conditions in which at least one 

photo was characterized as being High in pleasantness (High – High, High – Med, and High – 

Low; referred to as the High-Chosen analysis), with analyses limited only to those where the 

High photo was selected and 2) Differences between conditions in which the pleasantness of the 

paired photos were matched (High – High, Med – Med, and Low – Low; referred to as the 

Matched-Pair analysis). 

For each dependent measure (MAD, movement time, reaction time), the omnibus analyses 

for each of these investigations were formulated as follows: 
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3) A 3 (Valence Pairing: High – High vs. High – Med vs. High – Low) x 2 (Presentation Side: 

Left vs. Right) x 3 (Device: ComputerLabvanced vs. TabletLabvanced vs. SmartphoneLabvanced) mixed-

model ANOVA 

4) A 3 (Valence Pairing: High – High vs. Med – Med vs. Low – Low) x 2 (Reach Direction: Left 

vs. Right) x 3 (Device: ComputerLabvanced vs. TabletLabvanced vs. SmartphoneLabvanced) mixed-model 

ANOVA 

2.5.2.2 – Between-measures  

To explore the relationship between measures of decision difficulty, a Pearson’s correlation 

coefficient (r) indicating the direction and the strength of the relation between each measure 

(MAD – movement time, MAD – reaction time, and reaction time – movement time) was 

obtained for each participant within each condition, task, and device. Differences in between-

measure correlations between task and device were then assessed using an omnibus analysis 

formulated as follows: 

5) A 3 (Correlated Coefficients: rMAD,MT vs. rMAD,RT vs. rMT,RT) x 3 (Task: Numeric-Size 

Congruency vs. Sentence Verification vs. Photo Preference) x 3 (Device: ComputerLabvanced vs. 

TabletLabvanced vs. SmartphoneLabvanced) mixed-model ANOVA 

2.5.3 – Platform comparison  

Analyses exploring differences between Labvanced and Horizon platforms, including 

within-task and between-measure assessments, were identical to those assessing differences 

between devices, apart from platform (ComputerLabvanced vs. ComputerHorizon) being included as a 

between-subject factor when relevant.  
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2.6 – Predictions 

 2.6.1 – Device comparison 

  2.6.1.1 – Within-task 

Movement time, reaction time, and trajectory curvature (operationalized as MAD, see 

Section 2.4.1.3) were measured as indexes of decision difficulty. Broadly, we expected these 

measures of decision difficulty in each decision domain task to illustrate the task-specific effects 

described in Section 1.6.2.  

In the Numeric-Size Congruency task, we predicted we would replicate classic congruency 

effect results previously demonstrated by Faulkenberry and colleagues (2016) wherein 

incongruent trials display greater relative decision difficulty, with greater congruency-dependent 

effects seen for number pairs that are further apart numerically (as exemplified in Figure 1.3). 

Moreover, we believed increased decision difficulty would be reflected as a relative increase in 

scores across all three measures of interest. That is, incongruent trials would display greater 

reaction times, greater movement times and greater trajectory curvature, with exaggerated effects 

for 2 – 8 number pairs compared to 1 – 2 and 8 – 9 number pairs (see Section 1.6.2.1). We did 

not predict any differences between 1 – 2 and 8 – 9 number pairs within the same congruency 

condition.  

 In the Sentence Verification task, we expected to replicate classic truth value-negation 

interaction effects previously demonstrated by Dale and Duran (2010) and later by Maldonado 

and colleagues (2019; see Section 1.6.2.2). Specifically, we predicted greater reaction times, 

movement times and mouse trajectory curvature – each indicating increased relative decision 

difficulty – for statements containing a negation (TN and FN) compared to those not containing a 
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negation (TP and FP), with greater increases in decision difficulty when true sentences are 

negated (TN) compared to false sentences (FN; as exemplified in Figure 1.4).  

In the Photo Preference task, we expected to find an ordinal increase in decision difficulty as 

a function of photo pleasantness similarity as was previously shown by Koop and Johnson (2013, 

exemplified in Figure 1.5; see Section 1.6.2.3). Specifically, we believed the High-Chosen 

analysis (in which High – High, High – Med, and High – Low photo pairings are compared) 

would show a linear increase in relative difficulty as the High photo counter-pair increased in 

pleasantness. As such, similar to Koop and Johnson (2013), we believed we would find greater 

reaction times, movement times and trajectory curvature for High – High trials, followed by 

High – Med trials and finally High – Low trials. In the Matched-Pair analysis (comparing High – 

High, Med – Med, and Low – Low photo pairings) we expected no difference between photo 

pairs to be reflected by the selected measures of decision difficulty as there are no disparities in 

pleasantness between pairs to drive differences in relative difficulty.  

Overall, we believed each mouse-tracked measure of difficulty to accurately express the 

evidence accumulation processes underlying task decisions (Sullivan et al., 2015; Stillman et al., 

2020), with more difficult decisions the result of greater competitive pull between choice 

options. We believed this choice competition would first be reflected in greater reaction times 

(the result of more time spent accumulating and processing evidence prior to movement), and 

finally give rise to greater trajectory curvature towards the unchosen option (a physical 

manifestation of choice competition) and movement times.  

Regarding our examination of measure consistency across device (computer, tablet, 

smartphone), we predicted that the expression of decision difficulty in each dependent measure 

(trajectory curvature, movement time, reaction time) would vary as a result of the device used for 
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testing. As studies have shown similar patterns of reach-trajectory results between 3-D reaches, 

mouse movements and stylus movements (Moher & Song, 2019), we did not anticipate 

differences as a result of the user-interaction profiles of the devices tested (e.g., mouse 

movement vs. touchscreen finger swipe). Instead, we believed the sensitivity to post-reaction 

time measures of decision difficulty (trajectory curvature and movement time) would be reliant 

on the size of the device in use, with smaller devices providing less surface area over which 

decision difficulty could be expressed. Ultimately, we believed constraining trajectories to a 

smaller surface area would allow for less variability in movement between task choices to be 

expressed, consequently producing smaller differences in trajectories between trials previously 

exhibiting different degrees of decision difficulty. An overall reduction in movement time was 

also expected as the spatial distance between the start position and choice options is reduced 

(resulting in more ballistic movements) and the complexity of trajectory curvature is limited 

(requiring less time to perform the movement and resulting in less variability in movement 

times). As such, we hypothesized that trajectory curvature and movement time would be most 

sensitive to decision difficulty during computer use, with a reduction in sensitivity during tablet- 

and finally smartphone-use. We did not, however, expect device-dependent changes in 

sensitivity within reaction time measures. 

  2.6.1.2 – Between-measures 

Predictions regarding the relationship between measures of decision difficulty (trajectory 

curvature, movement time and reaction time) were primarily founded on their theorized role in 

the expression of decision processes within an evidence accumulation model of decision making 

(Ratcliff & McKoon, 2008; Wispinski et al., 2020; Stillman et al., 2020). First, reaction time is 

thought to reflect decision processing time prior to movement onset, which fluctuates with the 
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need for further evidence prior to reaching a decision threshold. As more time is required to 

accumulate sufficient evidence in support of one choice over another when competition between 

choice is high (i.e., it is a difficult decision), reaction time is thought to provide a direct measure 

of decision difficulty. As these processes have been shown to leak beyond reaction time to be 

reflected in movement, trajectory curvature also provides a direct measure of decision difficulty, 

with increases in curvature reflecting increased competitive pull between options. Finally, rather 

than independently providing a read-out of decision difficulty, movement times are thought to 

arise as a composite of movement vigor (reflected in the velocity of the movement and 

dependent on confidence; Dotan, et al., 2019) and movement path (degree of trajectory 

curvature).  

Independent of whether a measure is thought to provide a direct or indirect quantification of 

relative decision difficulty, each has been shown to increase (greater trajectory curvature, 

reaction times and movement times) as decision difficulty increases. As such, we predicted that 

each of the three measures of decision difficulty (MAD, movement time and reaction time) 

would be positively correlated, such that trials with increased trajectory curvature would also 

demonstrate increase movement and reaction times. Further, we believed this relationship would 

remain consistent across all three decision domain tasks.  

We also hypothesized that the strength of the relationship between post-reaction time 

measures (trajectory curvature and movement time) and reaction time would vary according to 

the testing device. Specifically, we believed that the correlations between trajectory curvature 

and reaction time (MAD – RT) and movement time and reaction time (MT – RT) would be most 

positively correlated during computer use, followed by tablet use and finally smartphone use. 

This hypothesis is founded on the earlier prediction that sensitivity to trajectory curvature 
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differences, and thus movement time differences, will become diminished as the testing device 

decreases in size but reaction time will remain a consistently sensitive measure across devices.  

2.6.2 – Platform comparison 

 2.6.2.1 – Within-task 

Despite the differences in data processing and cleaning strategies between the Labvanced 

and Horizon platforms, we did not predict any differences between platforms. As this analysis 

was conducted on data derived exclusively from computer use (mitigating any earlier device-

specific predictions), we expected measures of decision difficulty captured by both platforms to 

illustrate the task-specific effects described in Section 1.6.2 (see Section 2.6.1.1 for an overview 

of these predictions), with no significant differences between ComputerLabvanced and 

ComputerHorizon factors.  

  2.6.2.2 – Between-measures 

As with the device comparison analysis, we again hypothesized that the measures of reach 

behaviour in each task would be mirrored by the temporal measures of performance. 

Specifically, trials exhibiting the greatest trajectory curvature would also demonstrate longer 

movement and reaction times, and all measures would be significantly positively correlated 

independent of the task from which they were derived. As both platforms were tested on a 

singular device in this analysis, we did not predict any differences in the relationship between 

measures as a function of platform.  
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3.0 – Results  

3.1 – Device comparison 

 3.1.1 – Within-task results 

  3.1.1.1 – Numeric-Size Congruency 

Discussed previously (Section 2.6.1.1), for the Numeric-Size Congruency task we predicted 

a successful replication of results reported by Faulkenberry and colleagues (2016) wherein trials 

presenting digit options Incongruent in numeric and physical size (e.g., 2 vs. 8) reflected 

increased decision difficulty in each of the three collected measures of interest – reaction time, 

movement time and trajectory curvature (MAD) – relative to Congruent trials, with greater 

congruency effects for pairs of greater numerical distance (e.g., 2 – 8) compared to those closer 

in numerical value (e.g., 1 – 2 and 8 – 9). Given our experimental task design, this projected 

numeric distance-modulated congruency effect would be reflected in an interaction between 

Congruency and Number Pairs factors. Further, should this effect be susceptible to changes in 

device (as previously predicted for movement time and trajectory curvature measures, see 

Section 2.6.1.1), we would expect to see a three-way interaction between Congruency, Number 

Pair and Device factors (or a main effect of Device at minimum should any variability in 

response be due to Device differences). 
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    3.1.1.1.1 – Reaction time analysis 

For Numeric-Size Congruency reaction time data, the 4-factor Number Pairs x Congruency 

x Presentation Side x Device mixed-model ANOVA revealed main effects of Number Pairs 

(F(2,472) = 76.43, p = 4.18e-27, η2 = 0.060), Congruency (F(1,236) = 137.12, p = 2.85e-25, η2 = 

0.050), and Device (F(1,236) = 12.36, p = 7.83e-6, η2 = 3.08e-4), as well as a two-way Number 

Pairs x Congruency interaction (F(2,472) = 8.77, p = 1.82e-4, η2 = 0.005) and a two-way Number 

Pairs x Device interaction (F(4,472) = 14.13, p = 3.96e-10, η2 = 0.022), both of which were 

followed up by separate simple main effect 1-factor RM-ANOVAs.  

Figure 3.1 Numeric-Size Congruency mean standardized scores for A) Reaction time, B) 
Movement time and C) Trajectory curvature measures, demonstrating the interaction between 
Number Pairs and Congruency factors. Incongruent trials were found to be significantly different 
from Congruent trials at all levels of Number Pairs, and across all three measures. Error bars 
represent standard errors. Significance: * 0.01, ** 0.001, *** 0.0001.  
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Simple main effect 1-factor RM-ANOVAs assessing Congruency at each level of Number 

Pairs revealed significant main effects of Congruency at all three levels (1 – 2: F(1) = 77.74, p = 

2.64e-16; 2 – 8: F(1) = 18.15, p = 2.95e-5; 8 – 9: F(1) = 75.93, p = 5.27e-16). As predicted, 

Incongruent pairings showed greater standardized reaction time scores compared to Congruent 

pairings at all three levels, indicating significant difference in decision difficulty as a function of 

numeric-size Congruency wherein Incongruent trials are more difficult than Congruent trials. 

Interestingly, however, while these effects are reliably modulated by the numeric values of the 

digits being compared, rather than pairs with the greatest numeric distance (e.g., 2 – 8) 

displaying greatest overall difficulty as predicted, 8 – 9 digit pairings displayed the greatest 

overall decision difficulty and greatest congruency effects (see Table A.3.1 for mean scores). 

This interaction is illustrated in Figure 3.1 A, and discussed further below (Section 4.1). Of note, 

no three-way Number Pairs x Congruency x Device interaction was uncovered, suggesting that, 

as predicted, decision difficulty expressed through measures of reaction time did not differ 

between devices. 

To explore the interaction between Number Pairs and Device, three simple main effect 1-

factor RM-ANOVAs were used to test Number Pairs differences at each level of Device. A main 

effect of Number Pair was revealed at each of the levels of Device (Computer: F(2) = 78.30, p = 

1.35e-24; Tablet: F(2) = 7.21, p = 0.001; Smartphone: F(2) = 13.73, p = 3.27e-6). Pairwise 

comparisons showed no significant difference in standardized reaction times when a Tablet was 

used as a testing device. For Computer-acquired reaction times, pairwise comparisons revealed a 

significant difference between 1 – 2 and 2 – 8(p = 0.007), 1 – 2 and 8 – 9 (p = 3.06e-31), and 2 – 

8 and 8 – 9 (p = 7.46e-17), giving rise to a linear relationship in which 8 – 9 pairings showed 

greater reaction times than 2 – 8 pairings, which in turn had greater reaction times than 1 – 2 



56 
 

pairings. Pairwise comparisons for Smartphone-acquired reaction times revealed only significant 

differences between 1 – 2 and 8 – 9 pairings (p = 4.60e-4), and 2 – 8 and 8 – 9 pairings (p = 

8.64e-4), with 8 – 9 pairings showing greater reaction times in both instances. Taken together, 

these results suggest a difference in decision difficulty between number pair comparisons 

wherein 8 – 9 pairings are most difficult (see Figure 3.2 A and Table A.3.1 for mean scores). Of 

note, however, these differences are only captured through Computer and Smartphone use. 

Though not predicted, speculations over the source of these results are discussed in Section 4.2.  

   3.1.1.1.2 – Movement time analysis 

For Size Congruency movement time data, the 4-factor Number Pairs x Congruency x 

Presentation Side x Device mixed-model ANOVA revealed main effects of Number Pairs (F(2,472) 

= 233.51, p = 9.81e-69, η2 = 0.127), Congruency (F(1,236) = 183.99, p = 2.26e-31, η2 = 0.051), and 

Presentation Side (F(1,236) = 60.52, p = 2.27e-13, η2 = 0.033), as well as a two-way Number Pairs 

x Congruency interaction (F(2,472) = 22.17, p = 9.52e-10, η2 = 0.012), a two-way Congruency x 

Device interaction (F(2,236) = 16.33, p = 2.28e-7, η2 = 0.009) and a two-way Presentation Side X 

Device interaction (F(2,236) = 17.78, p = 6.40e-8, η2 = 0.019).  

Subsequent simple main effect 1-factor RM-ANOVAs assessing Congruency at each level 

of Number Pairs revealed significant main effects of Congruency at all three levels (1 – 2: F(1) = 

47050, p = 4.97e-11; 2 – 8: F(1) = 17.32, p = 4.44e-5; 8 – 9: F(1) = 134.80, p = 5.98e-25). As with 

the reaction time scores, Incongruent pairs showed greater standardized movement time scores 

compared to Congruent pairs in all cases (see Table A.3.1 for mean scores). Depicted in Figure 

3.1 B, this interaction again suggests greater relative decision difficulty for Incongruent trials, 

with 8 – 9 pairs showing greater overall difficulty (i.e., longest movement times) and congruency 

effects (see Section 4.1 for discussion). Of note, while we predicted that decision difficulty 
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effects expressed in movement time would diminish as device size shrank, the absence of an 

interaction between these two interacting factors and Device suggest instead that this effect does 

not differ across the computer-, tablet-, and smartphone-based testing.  

To explore the interaction between Congruency and Device, three simple main effect 1-

factor ANOVAs were used to test Congruency at each level of Device. All three levels of Device 

showed a significant main effects of Congruency (Computer: F(1) = 11.19, p = 8.99e-4; Tablet: 

F(1) = 84.34, p = 5.31e-14; Smartphone: F(1) = 111.39, p = 1.29e-16), with Incongruent pairs 

showing greater standardized movement time scores compared to Congruent pairs (see Table 

A.3.1 for mean scores). Discussed in Section 4.2 and illustrated in Figure 3.2 B, it appears that 

this interaction is driven by diminished significance of congruency effects within Computer-

acquired data compared to Tablet- and Smartphone-acquired data. 

Finally, three simple main effect 1-factor RM-ANOVAs were used to explore the interaction 

between Presentation Side and Device, testing Presentation Side at each level of Device. A main 

effect of Presentation Side was revealed for Tablet- (F(1) = 48.58, p = 9.48e-10) and Smartphone- 

(F(1) = 35.20, p = 7.99e-8) acquired standardized movement scores, but not those acquired 

through Computer use. For both Tablet and Smartphone device use, greater standardized 

movement time scores occurred when the numerically larger number was presented on the right 

(mandating a rightward reach) compared to when the numerically larger number was presented 

on the left (mandating a leftward reach; see Table A.3.1 for mean scores and Section 4.1 for 

discussion).   

   3.1.1.1.3 – Trajectory analysis 

For Size Congruency MAD trajectory data, the 4-factor Number Pairs x Congruency x 

Presentation Side x Device mixed-model ANOVA revealed main effects of Number Pairs (F(2,472) 
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= 232.41, p = 3.95e-66, η2 = 0.076), Congruency (F(1,236) = 391.60, p = 4.94e-52, η2 = 0.074), and 

Presentation Side (F(1,236) = 43.65, p = 2.59e-10, η2 = 0.063), as well as a two-way Number Pairs 

x Congruency interaction (F(2,472) = 98.25, p = 2.09e-33, η2 = 0.030) and a two-way Presentation 

Side x Device interaction (F(2,236) = 17.09, p = 1.17e-7, η2 = 0.049).  

As with reaction time and movement time analyses, three simple main effect 1-factor RM-

ANOVAs were used to compare Congruency at each level of Number Pairs, and revealed 

significant main effects of Congruency at all three levels (1 – 2: F(1) = 54.88, p = 2.26e-12; 2 – 8: 

F(1) = 80.75, p = 8.42e-17; 8 – 9: F(1) = 331.17, p = 7.05e-47). In all cases, Incongruent pairs 

again showed greater standardized MAD scores compared to Congruent pairs (see Table A.3.1 

for mean scores), with greatest congruency effect revealed for 8 – 9 pairs compared to 1 – 2 and 

2 – 8 pairs. Illustrated in Figure 3.1 C, these results align with the decision difficulty effects 

revealed within reaction time and movement time, ultimately replicating predicted results with 

the exception of a numeric distance effect driving the interaction (see Section 4.1 for discussion). 

Contrary to our predictions, however, no interaction between our effect of interest (numeric 

distanced-modulated congruency, as would be reflected in a Number Pair x Congruency x 

Device interaction) and Device was revealed. As with our movement time analysis, this again 

suggests that these effects do not differ across the computer-, tablet-, and smartphone-based 

testing. 
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To explore the Presentation Side x Device interaction, three simple main effect 1-factor RM-

ANOVAs tested Presentation Side at each level of Device. A main effect of Presentation Side 

was revealed for Tablet- (F(1) = 21.67, p = 1.33e-5) and Smartphone- (F(1) = 33.33, p = 1.56e-7) 

acquired standardized MAD scores, but not those acquired through Computer use (Figure 3.2 C). 

For both Tablet and Smartphone device use, greater standardized MAD scores occurred when the 

numerically larger number was presented on the right (mandating a rightward reach) compared 

to when the numerically larger number was presented on the left (mandating a leftward reach; 

see Table A.3.1 for mean scores). Speculations as to the reason for these differences are 

discussed in Section 4.2.    

Figure 3.2 Numeric-Size Congruency mean standardized scores for A) Reaction time, B) 
Movement time and C) Trajectory curvature measures, each demonstrating factor interactions 
with Device. Significant differences between factor levels are indicated in the colour 
corresponding to the level of Device in which they were revealed. Error bars represent standard 
errors. Significance: * 0.01, ** 0.001, *** 0.0001. 
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  3.1.1.2 – Sentence Verification 

Discussed in Section 2.6.1.1, for the Sentence Verification task we predicted a replication of 

results reported by Dale and Duran (2010) and Maldonado and colleagues (2019) in which trials 

presenting negated statements (TN and FN) reflect increased decision difficulty in each of the 

three collected measures of interest – reaction time, movement time and trajectory curvature 

(MAD) – relative non-negated statements (TP and FP), with greater negation-driven effects for 

true statements compared to false statements. Given our task design, this effect would be 

reflected in a Truth Value x Polarity interaction. Further, should this effect be susceptible to 

changes in device (as previously predicted for movement time and trajectory curvature measures, 

see Section 2.6.1.1), we would also expect to see these factors interact with device (giving rise to 

a three-way Truth Value x Polarity x Device interaction).   

   3.1.1.2.1 – Reaction time analysis 

The 3-factor Truth Value x Polarity x Device mixed-model ANOVA for Sentence 

Verification standardized reaction time scores revealed main effects of Polarity (F(1,236) = 

1011.26, p = 2.76e-87, η2 = 0.621), a two-way Truth Value x Polarity interaction (F(1,236) = 

245.32, p = 2.17e-38, η2 = 0.085), a two-way Polarity x Device interaction (F(2,236) = 10.19, p = 

5.69e-5, η2 = 0.013) and a three-way Truth x Polarity x Device interaction (F(2,236) = 7.99, p = 

4.39e-4, η2 = 0.005). To investigate the three-way interaction further, a 2-factor Truth x Polarity 

RM-ANOVA was conducted at each level of Device.  
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Analyses at each of the three levels of Device revealed a main effect of Polarity (Computer: 

F(1,82) = 670.46, p = 3.15e-41, η2 = 0.702; Tablet: F(1,77) = 241.98, p = 1.78e-25, η2 = 0.592; 

Smartphone: F(1,77) = 231.63, p = 6.23e-25, η2 = 0.583) and a two-way Truth Value x Polarity 

interaction (Computer: F(1,82) = 191.58, p = 3.67e-23, η2 = 0.106; Tablet: F(1,77) = 53.08, p = 

2.38e-10, η2 = 0.054; Smartphone: F(1,77) = 46.36, p = 1.91e-09, η2 = 0.060), but no main effect 

of Truth Value. At each level of Device, follow-up simple main effect 1-factor RM-ANOVAs 

examining Polarity at each level of Truth Value also revealed a main effect of Polarity both True 

statements (Computer: F(1) = 706.09, p = 4.72e-42; Tablet: F(1) = 211.12, p = 9.12e-24; 

Smartphone: F(1) = 177.66, p = 1.08e-21) and False statements (Computer: F(1) = 205.34, p = 

Figure 3.3 Sentence Verification mean standardized scores for A) Reaction time, B) Movement 
time and C) Trajectory curvature measures, illustrating the interaction between Truth Value and 
Polarity. Significant differences between Positive and Negative polarities are indicated in black 
if applicable to all levels of Truth Value within that measure, or, when appropriate, in the colour 
corresponding to the level of Truth Value in which they were revealed. Error bars represent 
standard errors. Significance: * 0.01, ** 0.001, *** 0.0001. 
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4.86e-24; Tablet: F(1) = 131.82, p = 2.36e-18; Smartphone: F(1,) = 140.94, p = 4.50e-19). At all 

levels of Device and Truth value, the main effect of Polarity was driven by Negative statements 

exhibiting greater standardized reaction time scores than Positive statements (see Table A.3.2 for 

mean scores). Taken together, these results suggest a replication of predicted negation and truth-

value driven decision difficulty effects across all three devices, with device differences in 

reaction time driven only by differences in effect significance. The interaction between Truth 

Value and Polarity, is illustrated in Figure 3.3 A and 3.4 A.  

   3.1.1.2.2 – Movement time analysis 

The 3-factor Truth Value x Polarity x Device mixed-model ANOVA for Sentence 

Verification standardized movement time scores revealed main effects for Truth Value (F(1,236) = 

16.80, p = 5.72e-5, η2 = 0.012), Polarity (F(1,236) = 609.75, p = 2.367e-67, η2 = 0.425), and a two-

way interaction between these factors (F(1,236) = 189.64, p = 4.63e-32, η2 = 0.085; see Figure 3.3 

B for an illustration of this interaction). A two-way Polarity x Device interaction was also 

revealed (F(2,236) = 19.42, p = 1.56e-8, η2 = 0.027; see Figure 3.4 B). Each interaction was 

followed up by separate simple main effect 1-factor RM-ANOVAs examining Polarity at each 

level of the other factor.  

Tests conducted to follow up the Truth Value x Polarity interaction revealed a main effect of 

Polarity when statements were True (F(1) = 614.95, p = 1.15e-67) as well as when they were 

False (F(1) = 153.07, p = 1.97e-27). In both cases, Negative statement showed greater 

standardized movement time scores compared to Positive statements (see Table A.3.2 for score 

means). Illustrated in Figure 3.3 B, this particular result supports a replication of previous results 

(Dale & Duran, 2010; Maldonado et al., 2019). Specifically, as with reaction time, we see an 

increase in decision difficulty expressed by movement time during the verification of negated 
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(Negative) statements compared to the verification of non-negated statements (Positive), with 

greater differences between negation conditions for True statements than False statements. 

Contrary to prior predictions, however, these interconnected truth value and negation effects do 

not interact with device, suggesting consistent replication of these effects across computer-, 

tablet- and smartphone-based testing. 

Upon examination of the Polarity x Device interaction, a main effect of Polarity was also 

revealed at each of the three levels of Device (Computer: F(1) = 79.32, p = 1.11e-13; Tablet: F(1) 

= 202.45, p = 2.97e-23; Smartphone: F(1) = 472.56, p = 1.34e-34). In all three cases, Negative 

statements showed greater standardized movement time scores compared to Positive statements 

(Figure 3.4 B, see Table A.3.2 for mean scores). While tangential to the main effects of interest 

for this task, differences in movement time-reflected negation effects are discussed with respect 

to device differences in Section 4.2.  

   3.1.1.2.3 – Trajectory analysis 

The 3-factor Truth Value x Polarity x Device mixed-model ANOVA for Sentence 

Verification standardized MAD scores revealed main effects for Truth Value (F(1,236) = 30.22, p 

= 9.97e-8, η2 = 0.074), Polarity (F(1,236) = 123.69, p = 2.22e-23, η2 = 0.050), and a two-way 

interaction between these factors (F(1,236) = 95.23, p = 4.07e-19, η2 = 0.033; see Figure 3.3 C for 

an illustration of this interaction). A two-way Truth x Device interaction was also revealed 

(F(2,236) = 14.99, p = 7.39e-7, η2 = 0.074).   

To further understand the interaction between Truth Value and Polarity, a simple main effect 

1-factor RM-ANOVA was conducted to assess differences in Polarity at each level of Truth 

Value. A main effect of Polarity was revealed when statements were True (F(1) = 154.28, p = 

1.36e-27), but not when they were False (see Figure 3.3 C). For True statements, statements that 
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were Negative in polarity showed greater standardized MAD values compared to those that were 

Positive (see Table A.3.2 for mean scores). As with reaction time and movement time results, 

these results suggest negation-driven decision difficulty effects which are diminished when 

statements are False compared to when they are True. Device was not shown to modulate this 

interaction as it is reflected in trajectory curvature.   

To explore the interaction between Truth Value and Device, a subsequent simple main effect 

1-factor RM-ANOVA was used to explore difference in Truth Value at each level of Device. A 

main effect of Truth Value was revealed at the level of Tablet (F(1) = 14.88, p = 2.36e-4) and 

Smartphone (F(1) = 29.38, p = 6.59e-7), but not Computer. For both Tablet and Smartphone, 

False statements showed greater standardized MAD scores compared to True statements (Figure 

3.3 C, see Table A.3.2 for mean scores). Again suggesting that possible nuanced differences may 

Figure 3.4 Sentence Verification mean standardized scores for A) Reaction time, B) Movement 
time and C) Trajectory curvature measures, each demonstrating factor interactions with Device. 
Significant differences between factor levels are indicated in the colour corresponding to the 
level of Device in which they were revealed or in black should they consistent across all levels. 
Error bars represent standard errors. Significance: * 0.01, ** 0.001, *** 0.0001. 
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exist between decision difficulty expressed during different device use, though tangential to our 

replication of task-specific effects, these results are further discussed in Section 4.2.    

  3.1.1.3 – Photo Preference 

Photo choice selections in the Photo Preference task revealed a global preference for photos 

rated as more pleasant (MMore Pleasant Selected = 78.3%), substantiating claims that preference is 

roughly analogous with pleasantness ratings (Koop & Johnson, 2013). For Photo Preference 

trials in which the photo pair options were matched in pleasantness, photos on the left were 

selected 48.6%, with no difference from 50% (equal chance of selecting left vs. right) for Med – 

Med trials, a slight leftward bias for High – High pairings (p = 0.0005, P(Left Chosen) = 0.55) 

and a slight rightward bias for Low – Low pairings (p = 4.88e-14, P(Left chosen) = 0.40). 

Subsequent Photo Preference analyses were then separated into two categories: High-

Chosen analyses in which only trials containing a High pleasantness photo and in which the High 

photo was selected were analyzed, and Matched-Pair analyses in which only trials presenting 

photos matched in pleasantness were analyzed. Based on this segregated analysis, our predictions 

were twofold: 1) For High-Chosen trials, pairs more similar in photo preference (e.g., High – 

High) would demonstrate greater measures of decision difficulty than those less similar (e.g., 

High – Low), with a linear increase as similarity increase, and 2) For Matched-Pair trials, no 

differences would be revealed between photo pairs.  
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   3.1.1.3.2 – High-Chosen analysis 

    3.1.1.3.2.1 – Reaction time analysis 

A 3-factor Valence Pairing x Reach Direction x Device mixed-model ANOVA applied to 

Photo Preference High-Chosen standardized reaction time scores revealed no main effects or 

interactions, suggesting no significant difference between trial conditions or devices used.  

    3.1.1.3.2.2 – Movement time analysis 

A 3-factor Valence Pairing x Reach Direction x Device mixed-model ANOVA applied to 

Photo Preference High-Chosen standardized movement time scores revealed only a main effect 

of Valence Pairing (F(1,232) = 22.97, p = 2.16e-9, η2 = 0.056), with pairwise comparisons showing 

Figure 3.5 Photo Preference High-Chosen mean standardized scores for A) Movement time 
and B) Trajectory curvature measures, illustrating the main effect of Valence Pairs. 
Significant differences between High – High (H – H), High – Med (H – M) and High – Low 
(H – L) levels of Valence Pairs are indicated where relevant. Error bars represent standard 
errors. Significance: * 0.01, ** 0.001, *** 0.0001. 

 



67 
 

a significant difference between High – High and High – Med pairings (p = 1.69e-04), and High 

– High and High – Low pairings (p = 4.11e-10), but not High – Med and High – Low pairings. 

Despite the lack of significant difference between High – Med and High – Low pairings, 

averaged participant means of each condition reveal a linear trend in which High – High trials 

show the greatest standardized movement time values, followed by High – Med trials and finally 

High – Low trials (see Figure 3.5 A, see Table A.3.3 for mean scores). Paired with the absence 

of any interaction with Device, these results suggest that decision difficulty does indeed increase 

as similarity in photo pleasantness increases and that this effect does not differ as a result of 

testing device. 

    3.1.1.3.2.3 – Trajectory analysis 

As with the movement time analysis, the 3-factor Valence Pairing x Reach Direction x 

Device mixed-model ANOVA applied to Photo Preference High-Chosen standardized MAD 

scores revealed only a main effect of Valence Pairing (F(1,232) = 10.92, p = 4.51e-5, η2 = 0.018). 

Pairwise comparisons showed a significant difference between High – High and High – Med 

pairings (p = 0.009), and High – High and High – Low pairings (p = 2.05e-05), but not High – 

Med and High – Low pairings. Mirroring movement times, although not all significantly 

different, averaged participant standardized MAD score means again showed a linear trend in 

which High – High trials show the greatest standardized movement times, followed by High – 

Med trials and finally High – Low trials (see Figure 3.5 B; see Table A.3.3 for mean scores). 

These results again support our prediction that decision difficulty increased as photo pleasantness 

increased in similarity. Contrary to our predictions, however, this analysis again did not reveal 

any interaction or main effect of Device, serving as an additional indicator that trajectory-

curvature expressed decision difficulty is consistent independent of testing device used.   
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   3.1.1.3.3 – Matched Pair analysis 

    3.1.1.3.3.1 – Reaction time analysis 

A 3-factor Valence Pairing x Reach Direction x Device mixed-model ANOVA applied to 

the Photo Preference Matched-Pair standardized reaction time scores revealed a main effect of 

Valence Pair (F(1,234) = 17.37, p = 1.06e-7, η2 = 0.053) and a significant two-way Valence Pair x 

Reach Direction interaction (F(2,234) = 15.04, p = 1.53e-6, η2 = 0.040). A simple main effect 1-

factor RM-ANOVAs conducted to test for Valence Pair differences at each level of Reach 

Figure 3.6 Photo Preference Matched-Pair mean standardized scores for A) Reaction time 
and B) Movement time measures, illustrating the interaction between Valence Pairs and 
Reach Direction within Reaction time and the main effect of Valence Pairs within 
Movement time. Significant differences between High – High (H – H), Med – Med (M – M) 
and Low – Low (L – L) levels of Valence Pairs are indicated where relevant, with 
significance reported in the colour corresponding to the level of Reach Direction in which 
they were revealed for Reaction time. Error bars represent standard errors. Significance: * 
0.01, ** 0.001, *** 0.0001. 
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Direction revealed a significant main effect of Valence Pair for Leftward reaches (F(2) = 28.66, p 

7.34e-12), but not Rightward reaches. Subsequent pairwise comparisons between Leftward 

Valence Pair conditions showed a significant difference in standardized reaction time scores 

between all Valence Pair trial types different (High – High vs. Med – Med pairings: p = 8.56e-4; 

High – High vs. Low – Low pairings: p = 5.42e-13; Med – Med vs. Low – Low pairings: p = 

0.003), with a linear trend in which High – High trials showed the fastest standardized reaction 

time scores, followed by Med – Med trials and finally Low – Low trials (see Figure 3.6 A, and 

Table A.3.4 for mean scores). These results suggest that our prediction of no difference in 

relative decision difficulty between matched pairs is supported when photos on the right were 

selected.  However, leftward selections instead suggest that reaction time-expressed decision 

difficulty does indeed differ even when all photo pairs are matched in pleasantness, with 

selections between two photos rated lower in pleasantness showing the greatest difficulty. 

Ultimately, the expression of decision difficulty in reaction time appears to be dependent on the 

direction of movement (see Section 4.1 for discussion).  

    3.1.1.3.3.2 – Movement time analysis 

A 3-factor Valence Pairing x Reach Direction x Device mixed-model ANOVA applied to 

the Photo Preference Matched-Pair standardized movement time scores revealed a main effect of 

Valence Pair (F(1,234) = 22.97, p = 2.16e-9, η2 = 0.056), a main effect of Reach Direction (F(1,117) 

= 16.52, p = 8.67e-5, η2 = 0.026), and a significant two-way Reach Direction x Device 

interaction (F(2,117) = 22.97, p = 2.16e-9, η2 = 0.056).  
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All pairwise comparison between levels of Valence Pair were significantly different (High – 

High vs. Med – Med pairings: p = 2.82e-4; High – High vs. Low – Low pairings: p = 2.65e-12; 

Med – Med vs. Low – Low pairings: p = 0.001), with means revealing a linear trend in which 

High – High trials showed the fastest standardized reaction time scores, followed by Med – Med 

trials and finally Low – Low trials with the slowest scores (see Figure 3.6 B; see Table A.3.4 for 

mean scores). These findings suggest that contrary to prior predictions, movement times also 

express differences in decision difficulty between matched photo pairs, with decision difficulty 

increasing as the pleasantness of the paired photos decreases.  

Figure 3.7 Photo Preference Matched-Pair mean standardized scores for Movement time 
measures, illustrating the interaction between Reach Direction and Device factors. Significant 
differences between Left and Right reach direction levels are indicated in the colour 
corresponding to the level of Device in which they were revealed. Error bars represent 
standard errors. Significance: * 0.01, ** 0.001, *** 0.0001. 
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To further understand the interaction between Reach Direction and Device, a simple main 

effect 1-factor RM-ANOVA was conducted to assess differences in Reach Direction at each 

level of Device. A main effect of Reach Direction was revealed at the level of Smartphone (F(1) = 

27.97, p = 6.69e-6), but not Computer or Tablet. At the level of Smartphone, trials with leftward 

reaches showed longer standardized movement time scores compared to rightward reaches (see 

Figure 3.7, and Table A.3.4 for mean scores). Device-dependent results are discussed further in 

Section 4.2.  

    3.1.1.3.3.3 – Trajectory analysis 

A 3-factor Valence Pairing x Reach Direction x Device mixed-model ANOVA applied to 

the Photo Preference Matched-Pair standardized MAD scores revealed no main effects or 

interactions, suggesting no significant difference in trajectory curvature-expressed decision 

difficulty between trial conditions or devices used.  

 3.1.2 – Between-measures results 

To assess the relationship between measures of decision difficulty, a within-participant 

correlation coefficient (r) was obtained for each combination of measures (rMAD,MT vs. rMAD,RT vs. 

rMT,RT). It was predicted that each of these measures would be positively correlated, such that 

increases in one measure would be met by equivalent increases in the other. In line with this 

prediction, mean r values revealed trajectory curvature and movement time (rMAD,MT) to be 

moderately positively correlated (Mr = 0.33, SD = 0.25). Contrary to our predictions, however, 

reaction time instead appeared to be weakly inversely correlated with both other measures, 

demonstrating small negative r values (Mr = -0.083, SD = 0.15 and Mr = -0.039, SD = 0.20 for 

rMAD,RT and rMT,RT correlations, respectively).  
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Participant average conditions correlations were then analyzed as a function of task and 

device differences to assess whether these relationships were consistent across task or device. 

We predicted that all measures would be positively correlated, and that this relationship would 

hold across task but not across device (which would reveal a diminished relationship between 

reaction time and both movement time and trajectory curvature, but not between the latter two).    

The 3-factor Correlation Coefficient x Task x Device mixed model ANOVA testing for 

differences in the relationships between measures revealed a main effect of Correlation 

Coefficient (F(2,234) = 301.42, p = 1.55e-45, η2 = 0.447) and a main effect of Task (F(2,234) = 7.70, 

p = 6.09, η2 = 0.006). Figure 3.8 shows mean correlation coefficients for each level of 

Figure 3.8 Mean Pearson’s correlations (r) between measures of decision difficulty for 
Numeric-Size Congruency (SC), Sentence Verification (SV) and Photo Preference (PP) tasks. 
Degree of significance for mean correlations found to be significantly difference from 0 (no 
correlation) are indicated (* 0.01, ** 0.001, *** 0.0001). Error bars represent 95% confidence 
intervals. 
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Correlation coefficient, separated by task. Pairwise comparison between levels of Correlation 

Coefficient showed a significant difference between rMAD,MT  correlation coefficients and both 

rMAD,RT (p = 1.31e-59) and rMT,RT (p = 7.43e-52) correlation coefficients. In both cases, rMAD,MT  

was shown to be more positive than the other Correlation Coefficients. As with the reported 

mean correlations between measures, these findings contradict our prediction that all measures 

would be similarly positively correlated. Instead, positive rMAD,MT  correlations are distinct from 

rMAD,RT  and rMT,RT  correlations which are both negative and not significantly different from each 

other.  

 Pairwise comparisons between levels of Task revealed only a significant difference between 

Size Congruency and Sentence Verification (p = 5.09e-4), with Size Congruency revealing a 

smaller positive correlation when collapsed across all levels of Correlation Coefficient. No 

differences were revealed between Size Congruency and Photo Preference, or Sentence 

Verification and Photo Preference means. Despite these small differences in collapsed means, 

however, Task does not interact with the Correlation Coefficient factor, suggesting a consistent 

pattern within the correlated measures (that is, rMAD,RT  being positive and significantly different 

than rMAD,RT  and rMT,RT ) independent of the task from which those measures were derived. 

Similarly, results showed no main effect of Device, nor did this factor interact with Correlation 

Coefficient suggesting this pattern to also be consistent across devices. That is, pre- and post-

movement measures display an intricate relationship independent of their role in indexing task-

specific decision difficulty – trajectory curvature and movement time, though positively 

correlated themselves, are inversely correlated with reaction times. This suggests a secondary 

pattern of results in which trajectory curvature and movement time decrease as reaction time 

increases (see Section 4.3 for a discussion of these results).  
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3.2 – Platform comparison 

Results obtained from both the within-task and between-task analyses assessing differences 

as a function Platform widely replicated results previously reported and did not find any main 

effects or interaction with the between-subject factor of Platform. To avoid redundancies in 

result reporting, this data will not be discussed further.  
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4.0 – Discussion 

The objective of this study was to assess whether metrics of decision difficulty - indexed 

through reaction time, movement time and trajectory curvature - remain consistent across 

decision domain, data collection device, and finally implementation platform. To accomplish this 

objective, we designed a three-task online experiment, each task replicating the design of prior 

mouse-tracked reach-decision experiments used to observe decision processes. These tasks 

included a Numeric-Size Congruency task (Faulkenberry et al., 2016), a Sentence Verification 

task (Dale & Duran, 2011; Maldonado et al., 2019) and a Photo Preference task (Koop & 

Johnson, 2013). Together these tasks spanned a range of decision domains from objective 

perceptual judgements to semi-subjective conceptual judgements and finally objective 

judgements of preference. Our experiment was then deployed across three devices (computers, 

tablets and smartphones) varying in size and interaction requirements using two testing platforms 

(Labvanced and Horizon) varying in their data export profiles and requiring customized data 

processing and cleaning strategies. 

4.1 – Replication and extension 

Broadly, task-specific results replicated previous mouse-tracked outcomes, with primary 

effects of interest reflected in a consistent pattern across all the measures of decision difficulty. 

Importantly, and most excitingly, all task-dependent decision difficulty effects were replicated 

independent of testing device or platform. This study therefore demonstrates the robustness of 

dynamic measures and offers seminal validation for the study of trajectory-tracked decision 

processes using small, portable devices. Further, these results suggest that trajectory-tracking 

techniques no longer need to be confined to a laboratory space, but that this data can be gathered 

online, from within people’s homes, and using any device that is readily available to them. 
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Adapted from earlier works by Faulkenberry and colleagues (2016), a Numeric-Size 

Congruency task presented participants with a numerical comparison between two digits varying 

in numerical value and physical size and required judgements to be made based solely on the 

dimension of numerical value. Classic size congruency effects, in which decision performance is 

impaired when the two dimensions differ (i.e., are incongruent in numeric and physical 

magnitude), are thought to reflect automatic processing of both characteristics despite only one 

being relevant to the task (and processing of irrelevant information may even be disadvantageous 

to optimal behaviour; Henik & Tzelgow, 1982). Through their use of a moused-tracked reach 

decision paradigm, Faulkenberry and colleagues (2016) extended prior reaction-time based 

evidence of this effect (Henik & Tzelgov, 1982; Santens, Gossen & Verguts, 2011) to movement 

time and mouse trajectory measures, supporting decision making models in which choice option 

processing and competition continues beyond reaction time rather than the decision processes 

being resolved prior to movement (Santens et al., 2011; Song & Nakayama, 2009). The 

foundation of our predictions in the current study, choices made between incongruent digits were 

shown to incur longer reaction times (Henik & Tzelgov, 1982; Santens et al., 2011; no 

differences in what the authors called “initiation times” were found by Faulkenberry et al., 

2016), longer movement times, and greater deviations towards the alternative choice in trajectory 

curvatures. Faulkenberry and colleagues further expanded on these effects by demonstrating that 

this size congruency effect interacts with numerical distance such that effects increase as 

numerical distance between digits increase and, as with reaction time (Schwarz & Ischebeck, 

2003; Santens et al., 2011), this modulation of effects is reflected in both movement time and 

mouse trajectories. The results of the current study provide further support for these effects, 

showing differences decision difficulty reflected in reaction time, movement time and mouse 



77 
 

trajectory curvature between congruent and incongruent conditions in the Numeric-Size 

Congruency task (Figure 3.1). Specifically, as predicted, incongruent trials generated longer 

reaction times, longer movement times and trajectories with greater trajectory curvature.  

Where our results differ from previous findings, however, is in the modulation of these 

effects by numerical distance. Our results show an interaction between the congruency effect and 

numerical value of the paired digits in which 8 – 9 pairings show the greatest congruency effects 

and differ most significantly from 1 – 2 and 2 – 8 pairings. This contradicts our prediction 

founded on Faulkenberry and colleagues (2016) results that 2 – 8 pairings would show the 

greatest effects with no difference between 1 – 2 and 8 – 9 pairings offering choices of the same 

numerical distance. These results may differ from those reported by Faulkenberry and colleagues 

because of our limiting our stimuli to a small subset of digits rather than an extensive range (1, 2, 

8 and 9 in our case compared to 2, 3, 4, 5, 6, 7 and 8 in their second experiment examining 

numerical distance), washing out any relative effects. This does not, however, provide an 

explanation for a difference found between 1 – 2 and 8 – 9 pairings. Instead, two theories 

regarding perceived numerical processing and comparisons provide accounts compatible with 

our findings. The first stipulates that number comparison performance depends on the ratio of the 

two digits being compared, such that smaller number pairs are more quickly discriminated 

between because they present a larger ratio compared to larger number pairs with the same 

distance between them (Moyer & Landauer, 1967). The second theory suggests that numerically 

smaller digits are easier to process as they are more frequent (i.e., we are exposed to them more 

often in our daily lives; Dehaene and Mehler, 1992). While this theory was intended to explain a 

numerical distance effect (the further apart numbers are numerically the more processing 

advantage the smaller one has over the other), this can also be extended to explain performance 
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differences between number pairs of the same numerical distance should the digits presented in 

one of the pairs be smaller (e.g., 1 – 2) compared to those in the other pair (8 – 9). Together, 

these theories provide a compelling argument for the difference observed between 1 – 2 and 8 – 

9 pairings in the current study, wherein comparisons between the digits 8 and 9 reflect 

significantly greater decision difficulty.   

A Sentence Verification task, replicating earlier works by Maldonado and colleagues (2019; 

adapted from Dale and Duran, 2011), required participants to verify statements varying in truth 

value and negation as true or false. Founded on the notion that negation acts as an operator on 

reading comprehension processes (Wason & Johnson-Laird, 1972), it is thought that its presence 

abruptly changes the predicted meaning of statements in the presence of insufficient context 

(e.g., simple, stand-alone statements; Dale & Duran, 2011). Reframed in terms of decision 

difficulty in the current study, mouse-tracked studies have shown negation to drive increases in 

trajectory curvature (Maldonado et al., 2019; Dale & Duran, 2011). Maldonado and colleagues 

(2019) also demonstrated difference in trajectory curvatures between negated and non-negated 

statements to be greater when statements were true compared to when they were false. Trajectory 

curvature analyses in the current study replicate these interacting effects (see Figure 3.3). 

Additionally, these results were further exemplified in reaction time and movement time results, 

with the same conditions demonstrating greater trajectory curvature-expressed decision difficulty 

also showing longer reaction and movement times.   

Finally, in a Photo Preference task adapted from Koop and Johnson (2013), participants 

were presented with pairs of photos varying in pleasantness (but matched in arousal) and asked 

to select the one they preferred. Seminally employed to validate the use of mouse-tracked 

measures to assess decision dynamics during purely subjective choice, preference was shown to 
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parallel photo pleasantness ratings, producing trajectory curvatures reflecting greater decision 

difficulty as paired photo pleasantness increased in similarity. In our High-Chosen analysis 

(Section 3.1.1.3.1), we found a similar pattern of results within movement time and trajectory 

curvature measures of decision difficulty, with photos matched in pleasantness (High – High) 

showing greater decision difficulty than those not matched in pleasantness (High – Med and 

High – Low). However, despite a visibly linear trend of increased decision difficulty as photo 

similarity increases reflected in both movement time and trajectory curvature (see Figure 3.5), no 

significant difference was found between High – Med and High – Low pairs. This null effect 

may be due to an overvaluing of highly pleasant photos, such that relative pleasantness 

differences between choice alternatives (the difference between Med and Low photos in this 

case) are overlooked in the presence of a highly valued option (a High photo; Wispinski et al., 

2017). Additionally, despite a similar trend in the standardized means, no significant differences 

between photo pairs were revealed within reaction time measures, suggesting that in this 

particular case reaction times are less sensitive to changes in decision difficulty compared to 

movement times and trajectory curvature. 

To assess whether differences in similarity were indeed the sole contributors to this effect, a 

second analysis examining differences in photo pairs matched at varying levels of pleasantness 

(Matched-Pair analysis, Section 3.1.1.3.2) was conducted. Contrary to prediction based on 

outcomes reported by Koop and Johnson (2013), movement time results revealed a linear trend 

in which movement time increases as the pleasantness of the matched pairs decreases (see Figure 

3.6 B). Of note, however, is that these same results are not mirrored within reach trajectory 

measures, which show no differences between matched pairs. This dissociation between 

trajectory measures and movement time suggest that this effect might not arise as a reflection of 
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decision difficulty (which would be reflected in both measures), but rather an outcome of 

increased vigor when moving towards something pleasant (as would be the case in High – High 

pairings) compared to something unpleasant (as would be the case in Low- Low pairings; 

Chapman, Gallivan, Wong, Wispinski & Enns, 2015). Reaction times showed a similar pattern of 

results to movement time, but only for leftward reaches (see Figure 3.3 A). These direction-

dependent results could arise from preferential processing of stimuli presented on the right 

leading to decreased sensitivity to differences between rightward reaches, thus limiting the 

expression of pleasantness-driven decision difficulty differences to leftward reaches (Gallivan & 

Chapman, 2014).  

4.2 – Device differences 

Despite the evidence that indexes of decision difficulty are overwhelmingly consistent 

across devices, task outcomes also reflect device-dependent differences independent of these 

replication results. Here, we outline where those difference arise and offer rationale that accounts 

for these observed outcomes.  

4.2.1 – Overview of device-contingent results  

Within the Numeric-Size Congruency results, we see device differences reflected in factor 

interactions within each of the three measures of decision difficulty (see Section 3.1.1.1 for 

detailed results). Reaction time results reveal a modulation of reaction time-expressed decision 

difficulty differences between number pairs by device, such that differences between number 

pairs are more significant for computer-acquired data (Figure 3.2 A). Conversely, within 

movement time, we see an interaction between congruency-driven decision difficulty differences 

and device in which computer-acquired movement times show less significant differences 

between congruency conditions compared to tablet- and smartphone-acquire movement times 
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(Figure 3.2 B). Finally, trajectory curvature results reveal interaction between the side of 

numerically larger digit presentation (analogous with reach direction as only correct trials were 

included in the analysis) and device wherein right-sided presentations showed greater overall 

trajectory curvature compared to left-sided presentations, but this effect was not present during 

computer-based testing (Figure 3.2 C).  

Device differences also emerge within each measure of decision difficulty in Sentence 

Verification task outcomes (see Section 3.1.1.2 for detailed results). First, reaction time results 

revealed an interaction between the truth value and polarity of statements and testing device used 

wherein greater truth value- and polarity-driven effects were expressed during computer use 

compared to tablet and smartphone use (Figure 3.4 A). Movement times reveal a modulation of 

polarity-driven differences by device, such that less significant effects were shown for computer-

based testing (Figure 3.4 B). Finally, trajectory curvature results also show an interaction 

between truth value and device in which no truth-driven differences were uncovered for 

computer-based testing, but were for tablet- and smartphone-based testing (Figure 3.4 C).   

Differences due to device use within the Photo Preference task arose only when photo pairs 

were matched in pleasantness (see Section 3.1.1.3.2 for detailed results) and appeared 

exclusively in movement time results. An interaction between device and reach direction was 

revealed, indicating a significant effect of reach direction within smartphone-based testing but 

not when computers or tablets were used (Figure 3.7).  

 4.2.2 – Speculated explanation for differences 

To account for the outcomes described above, we first grouped the observed effects into 

three categories: those pertaining to directional bias differences, those pertaining to pre-

movement processing differences (e.g., effects observed in reaction times), and those pertaining 
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to post-movement processing differences (e.g., effects observed in movement times and 

trajectory curvatures). 

To understand differences in directional biases observed through side of space factors 

(Presentation Side within the Numeric-Size Congruency task and Reach Direction within the 

Photo Preference task) and how they come to interact with device, we look towards an effect that 

consistently emerges in reach-decision studies: right-hand bias (Chapman & Gallivan, 2014). 

This direction-dependent bias arises from preferential processing of stimuli presented on the 

right, manifesting smaller condition-dependent differences in behavior (e.g., less variation in 

trajectory curvature) and generally faster movement times during rightward reaches. Notably, 

these effects are particularly prominent in real-world reaches towards three-dimensional targets 

(Chapman et al., 2010b; Chapman & Gallivan, 2014). The presence of direction-dependent 

effects in trajectory curvature (Numeric-Size Congruency task) and movement time (Photo 

Preference) results obtained through use of touchscreen devices (smartphone and tablet or only 

smartphone, respectively; see Figure 3.2 C and 3.7) suggest that smartphones and tablets are 

better at replicating real movement effects. We therefore purport that directional effect 

differences between devices arise as a result of different user-interaction requirements enforcing 

different ‘reach’ biomechanics. Specifically, the swiping of a finger or sliding of a stylus across a 

screen surface appears to more closely resemble full-arm reaches during reach-decision tasks 

compared to mouse movements. Should a researcher be interested in more closely replicating 

real-world actions used to enact a choice, touchscreen-based testing may therefore provide a 

more biomechanically valid alternative to computer mouse tracking. 

To understand devices differences manifesting in interactions with non-biomechanically 

driven factors (e.g., Congruency and Pairs in the Numeric-Size Congruency task and Truth and 
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Polarity in the Sentence Verification task), we first looked at effects observed in reaction times, 

thought to reflect decision processes occurring prior to movement. In both the Numeric-Size 

Congruency and Sentence verification task, we see an increase in the significance of condition 

differences within computer-acquired data compared to tablet- and smartphone-acquire data. In 

the Numeric-Size congruency task this manifested as a more significant Number Pairs main 

effect at the level of Computer compared to Tablet and Smartphone (Section 3.1.1.1.1, depicted 

in Figure 3.2 A) and in the Sentence Verification task this manifested as a more significant 

interaction between Truth and Polarity at the level of Computer compared to Tablet or 

Smartphone (Section 3.1.1.2.1, depicted in Figure 3.4 A). This pattern of results suggest that 

computer-based testing shows increased sensitivity to decision difficulty expressed within 

reaction time.  

In examining device differences observed in post-movement measures (movement time and 

trajectory curvature), we see an inverse pattern emerge. Namely, we see a decrease in the 

significance of condition differences within computer-acquired data compared to tablet- and 

smartphone-acquire data. In the Numeric-Size Congruency task, this manifested as a less 

significant Congruency main effect at the level of Computer compared to Tablet and Smartphone 

(Sections 3.1.1.1.2 and 3.1.1.1.3, depicted in Figure 3.2 B). In the Sentence Verification task, a 

less significant effect was found at the level of Computer for both main effects of Polarity within 

movement time (Section 3.1.1.2.2, depicted in Figure 3.4 B) and Truth within trajectory 

curvature measures (Section 3.1.1.2.3, depicted in Figure 3.4 C). Together, these results support 

an increase in sensitivity to decision difficulty expressed within post-movement measures during 

tablet or smartphone use compared to computer use.  
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Grouped in this manner, the device-dependent outcomes observed in the current study evoke 

two primary forces driving device differences: biomechanics and measure-dependent sensitivity 

to decision difficulty. These forces manifest in across-device testing in the following ways: 

1) Tablet- and smartphone-based movements reflect right-hand biases similar to 

real-world movements, whereas computer-based testing does not. 

2) Computer-based testing shows more sensitivity to decision difficulty expressed in 

reaction times compared to tablet- and smartphone-based testing. 

3) Tablet- and smartphone-based testing shows more sensitivity to decision 

difficulty expressed in movement times and trajectories compared to computer-based 

testing, displaying a distribution of sensitivity more akin to real-world reaching. 

Importantly, however, these device-dependent effects do not impede successful capture of task-

dependent decision difficulty effects (see Section 4.1).  

Questions also remain as to whether differences in observed measure sensitivity to decision 

difficulty arise due to inherent device differences (e.g., size, vertical vs. horizontal distances, 

interaction methods) or if decision processes are fundamentally altered between devices (e.g., 

computer-based decisions induce greater seeping of decision processes into movement times, 

such that less of the decision is resolved during reaction time), or a combination of the two. For 

example, one could easily imagine that the greater horizontal distance between choice options 

presented on a landscape-oriented computer screen reduces the ease with which movements can 

be corrected if a change of mind occurs after reach onset compared to a smaller, portrait-oriented 

screen as there is a greater horizontal distance to travel back towards the alternative option and 

less vertical distance within which one can do so. The cost of mid-movement corrections could 

then produce a prioritization of decision resolution prior to movement, making reaction time a 
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more sensitive measure of decision difficulty for computer-based reach-decisions compared to 

movement time or trajectory curvature. However, real-world mouse movements made to enact 

mouse cursor changes on a screen are physically very small. Perhaps then, these differences arise 

instead due to the nature of actual movements through space produced by the human body rather 

than the resultant movements expressed on a digital screen. Aligned with this argument, the 

smaller hand movement required to move a mouse cursor over large distances increases the 

opportunity for - and perhaps inevitability of - more ballistic responses. The smaller physical 

movements in space therefore require more decision to be resolved prior to movement initiation, 

as time during movement and real-world, physical space to express indecision is reduced. This 

particular tradeoff between reaction time and post-movement measures is reflected in the raw 

(non-standardized) measure means (Figure 4.1), which reveal reduced movement times during 

computer-use compared to tablet- or smartphone-use across each of the tasks. In line with this 

explanation, recall that movement time is thought to index both the complexity of the movement 

path (trajectory curvature, dependent on decision difficulty) and movement vigor (Dotan et al., 

2019) which was hypothesized to underlie a dissociation between trajectory curvature and 

movement times in the Photo Preference task (Section 4.1). Should differences in measure 

sensitivity during computer-based testing indeed arise from its reduced physical requirement 

during movement, this would again suggest that trajectory curvature and movement times are not 

analogous, only interconnected. Movement times may be more dependent on the ballistic nature 

of the movement than the difficulty of the decision and thus its sensitivity as a measure of 

decision difficulty is reduced with smaller, faster movements. In contrast, trajectory curvature 

may display reduced sensitivity to decision difficulty during computer use because more of the 

decision is resolved in reaction time prior to movement. As it is known that motor behaviors can 



86 
 

inform cognitive processing (e.g., cognitive tuning; Strack, Martin & Stepper, 1988; Koop & 

Johnson, 2013), it is also reasonable to speculate that the requirement of a smaller movement  

would induce increased front-loading of decision processes prior to movement commencement 

(that is, a reciprocal relationship between shorter movement times and longer reaction times may 

exist).  

 

 

Figure 4.1 Raw (unstandardized) Reaction Time (left column), Movement Time (middle 
column) and Trajectory Curvature (right column) means for each task (Numeric-Size 
Congruency, top row; Sentence Verification, middle row; and Photo Preference, bottom 
row). Measure means are grouped by Device (Computer, Tablet and Smartphone). Error bars 
represent 95% confidence intervals. 
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4.3 – Within task differences between measures 

While our replication of task results demonstrates an increase in reaction times, movement 

times, and trajectory curvatures as a function of increased decision difficulty, correlational 

analyses between these measures did not reveal a positive correlation between all measures as 

anticipated. Instead, while movement time and trajectory curvatures were positively correlated, 

both were shown to be inversely correlated with reaction time and this pattern was shown to be 

consistent between tasks and devices (Section 3.1.2).  

An interesting dynamic between measures of decision difficulty is therefore revealed in 

which all three increase (i.e., show longer reaction times and movement times, or greater 

trajectory curvature) as decision difficulty increases, but separate from - or perhaps interacting 

with - these decision difficulty-driven changes, is an inverse relationship between reaction time 

and post-movement measures wherein increases in one mandate decreases in the other. Despite 

the apparent contradictions of these inter-dynamics, however, both are compatible within the 

rationale of an evidence accumulation model of decision making.  

Within the models, evidence is noisily accumulated over time until a decision threshold has 

been reached (Wispinski et al., 2020). More difficult decisions then arise from greater 

competition between choice which induce greater signal noise as evidence is accumulated for 

and against a choice option. Resolution of a difficult decision then requires more evidence to be 

accumulated before support for one option over another reaches the resolution threshold. This 

takes more time, and should these processes be ongoing after movement begins, is reflected in 

the physical pull experienced between options experienced during choice selection (Sullivan et 

al., 2015; Stillman et al., 2020). Thus, as in the current study, more difficult decisions show 

greater reaction times, movement times, and trajectory curvatures. However, even if decision 
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difficulty is unchanging (e.g., equal levels of evidence required for decision resolution), 

necessitating a specific amount of processing time, there is likely natural variation in reaction 

times. If decision processing requirements remain the same, but reaction time is reduced, 

decision processes must necessarily shift from reaction time into movement time. As the amount 

of processing required does not change, however, processing cannot seep into movement time 

without seeping out of reaction time, and vice-versa. This effect is what is reflected in the 

inversely correlation between reaction time and both movement time and trajectory curvature 

measures. 

One can perhaps best appreciate these co-occurring effects by imaging decision making 

processes as being akin to a one-way train on a track of fixed length. The train begins on one end 

of the track (start of the trial), and on the other end is a gate (end of the movement). This gate is 

the point at which a decision is resolved. Between the start point and the gate, however, is also a 

county line (movement initiation, where reaction time meets movement time). The length of the 

track on either side of the county line determined by the demands of the decision task (e.g., 

movement initiation time constraints). The goal of the train is to amass enough coal (i.e., 

evidence in the context of decision making) to power its passage from one county into another, 

and through the gate. The degree of difficulty of the decision at hand dictates the number of train 

cars and the length of the train. The longer the train, however, the more coal is needed to power 

it. This necessarily takes more time - although this time can be reduced if the lumps of coal are 

larger or more quickly dispensed (i.e., the evidence provided is more salient or compelling). Coal 

can be amassed in either county and moving the train along the track does not reduce its length 

or the amount of coal required, only the amount amassed in the first county compared to the 

second. It is in this way that faster decisions can have more decision difficulty reflected in the 
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movement - if less coal is collected in the first county, more coal must necessarily be collected in 

the second for the train to attain its goal. Importantly, this is true independent of the size of the 

train (i.e., the difficulty of the choice). The larger the train – or more difficult the decision – 

however, the more time is likely spent amassing coal in both counties. As such, while observing 

the proceedings of the train for the duration of its time moving along the track gives the most 

complete picture of the time course of events, indices of its length are accessible by observing 

the amount of coal amassed in either country independently. Similarly, while a complete account 

of the temporal dynamics of decision processes can only be found by observing the complete 

time course of a decision through reaction time and post-reaction time measures, each of those 

measures can independently provide indications of decision difficulty.  

Overall, our analysis of both task-specific results and the relationship between measures of 

decision difficulty show that difficult decision have longer reaction times, longer movement 

times, and greater trajectory curvatures. However, for a given degree of decision difficulty (for 

example, all difficult decisions), if a specific decision displays a shorter reaction time, then 

residual evidence accumulation must take place during movement, giving rise to a longer 

movement time and greater reach curvature. Conversely, if a given decision has a longer reaction 

time, then more evidence can be accumulated before the reach starts, requiring a shorter 

movement time and showing a more direct reach.  

4.4 – Implications and future directions 

Our work significantly advances the emerging body of reach-decision research by 

successfully replicating task-dependent reach-trajectory effects using both testing platforms, and, 

less expectedly, across all three devices. Our accurate and informative online extension of classic 

mouse-tracking techniques to tablet and smartphone use cases shows the robustness of reach-
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decision paradigms and corroborates the sensitivity of dynamic indexes of decision difficulty 

(i.e., trajectory tracking). Further, given the ubiquitous use of smartphones, tablets and websites, 

our validation of these techniques as accessible outside the lab and impartial to testing device 

and platform differences breeds an impressively large market within research settings and 

industry alike, with many applications where detailed knowledge of decision dynamics could be 

useful (including domains such as corporate talent assessment and implicit bias).  

Our work further indicates that where device differences do exist, they do not disrupt nor 

indicate pervasive decision difficulty effects but rather likely arise from biomechanical 

differences between device interactions and may reflect differences in the sensitivity of particular 

measures. For example, touchscreen devices may be more sensitive to decision difficulty 

expressed during movement while personal computers are more sensitive to decision difficulty 

expressed in reaction times. Should a researcher implement a task in which reaction time are 

highly controlled, it therefore follows that use of a touchscreen device may allow for the most 

sensitive capture of post-reaction time reach-paradigm measures. Conversely, if a task is known 

to produce highly condition-dependent reaction time effects, use of a computer-based testing 

system may allow for the most nuanced capture of those effects. 

The present work also deepens our understanding of the relationship between popular 

measures of decision difficulty. Although each is thought to index decision processes at different 

time points over the course of a decision, our task-specific results were replicated within reaction 

times, movement times and reach trajectories, demonstrating them to each be powerful and 

accurate measures of decision difficulty. Our correlational analysis, however, further revealed a 

fixed relationship between the measures that was consistent between tasks and across platform 

and device: movement times and indices of trajectory curvature are positively correlated, 
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increasing and decreasing in tandem, but both are inversely correlated with reaction time. These 

results align with current models of decision making in which decision processes beginning but 

not resolved prior to movement seep into movement, with ongoing choice competition reflected 

in movements made (and thus movement time; Wispinski et al., 2020). In this way, depending 

on the choice at hand, decision processes can be flexibly adjusted between reaction time and 

movement time measures. Should more of the decision resolution occur in movement time, 

however, this indicates a shift of processing out of reaction time and manifests as an increase in 

movement times proportionate to the decrease in reaction times from what would normally be 

required to resolve the decision.   

Finally, it is important to recognize some limitations of the current study and reaching-

tracking paradigms general. While the current study brought trajectory tracking outside of the lab 

and onto devices participants likely make decisions using on a daily basis, it still employed a 

controlled design in which movement start and end points were largely regulated, and choices 

were limited to two options. Real-world decision-making and digital interactions are rarely so 

straight forward. Further research is needed to assess whether the consistency of outcomes found 

in the current study hold when decisions are made between more than two choices and are 

enacted using movement profiles more commonly seen in the real-world (e.g., scrolling down a 

screen to make a selection).  

Additionally, while the current study explains device-driven result differences through 

differences in inherent measure sensitivity to decision difficulty, these claims are made on 

limited evidence accrued between tasks. Although a detailed discussion and analysis of the 

predictive ability of the measures collected are beyond the scope of the current study, we believe 

predictive modelling of the reported measures of decision difficulty as a function of device might 
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produce insights into whether the sensitivity of particular measures are indeed dependent on 

testing device (for example, whether reaction time more is sensitive to - and thus more predictive 

of – differences in decision difficulty during computerized testing compared to tablet or 

smartphone-based testing).  

As eye-tracking has evolved such that capture of reliable data is now possible via webcam, 

and these technologies being extended to the cameras of portable devices (e.g., smartphone 

camera), future directions that may also yield important results regarding decision making 

processes and the consistency of metrics of decision difficulty between tasks and devices include 

measuring eye-movements.  

4.5 – Conclusion  

Computer mouse cursor movements reflect underlying cognitive processes, and, when 

measured during a computerized choice between options, reaction time, movement time and 

mouse trajectory curvature can serve as indexes of decision difficulty and provide insight into the 

evolution of decisions over time (Song & Nakayama, 2009; Stillman et al., 2020). Employing 

three previously studied reach-decision tasks, the current study aimed to assess whether within-

participant metrics of decision difficulty remain consistent across decision domains varying in 

choice stimuli, objectivity and processing requirement, data collection devices varying size and 

user-interaction requirements (e.g., mouse-based interactions to touchscreen use) and 

implementation platforms requiring individualized data processing and cleaning strategies. Study 

outcomes add to the current body of literature that investigates decision processes using mouse-

tracking techniques by providing the first replication of classically computer-acquired task-

specific results using two platforms, and, most excitingly, two portable, touchscreen devices: 

tablets and smartphones. Where differences between data collection device did arise, they were 
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independent of primary task effects and served to suggest that tablet- and smartphone-based 

testing shows more sensitivity to decision difficulty expressed in post-reaction time measures, 

displaying directional biases and sensitivity distributions more reminiscent of real-world reaches 

compared to computer-based testing. Contrasting its touchscreen-based counterparts, computer-

based testing appeared to show more sensitivity to decision difficulty expressed in reaction time, 

suggesting a flexible distribution of decision processes between pre- and post-reaction time 

measures that is dependent on the device in use and the movements required to enact a choice 

using it. Lending further support to the flexible and continuous nature of decision processes, 

between-measure correlations revealed a decision-dependent effect existing in parallel to task-

dependent choice competition effects: while increased decision difficulty is reflected in increased 

reaction times, movement times and trajectory curvature, an inverse relationship also exists 

between these measures such that, for a given degree of decision difficulty and in the presence of 

natural variations in processing dynamics, movement time and trajectory curvature increase as 

reaction time decreases. Together, these results provide support for models of decision making in 

which decision processes continue to unfold after movements to enact a choice have been 

initiated, and further suggest that these processes are flexibly adjusted along the time course of a 

decision both when choice execution requirements change (e.g., device interaction methods 

change) and when decision domain and difficulty remain consistent. Importantly, however, 

despite this flexibility, these interacting measures remain powerful indicators of decision 

difficulty and impervious to changes in testing platform or data collection device. This study 

therefore serves to reinforce our understanding of the intimate connection between cognition and 

movement, and further emphasizes the power of trajectory tracking methods in unveiling the 

dynamism of decision processes. 
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Appendix

A.1 - Participant survey responses

Table A.1.1 Table of demographic survey responses
Disclosed Responses (count)

Labvanced Horizon

Survey Questions Response Options Computer Tablet Smartphone Computer

N = 83 N = 78 N = 78 N = 40

What gender do you identify as? Male 56 50 52 14
Female 25 27 25 24
Prefer not to say 2 1
Other (custom response) 1 2

What is your age? (custom response) range [21-65] range [23-58] range [24-57] range [17-43]

What hand do you typically write 
with (i.e. your dominant hand)?

Right 76 66 71 35

Left 6 12 7 5
Do you have normal or corrected 
to normal vision? (vision correc-
tion may be via surgery, glasses, 
contacts, etc.)

Yes 79 76 73 36

No 4 2 5 4

Is English your first language? Yes 80 76 76 22
No 2 2 2 18

If English is not your first language, 
how old were you when you learned 
English?

(custom response) 4,23 3,4 3.5 3,4,5,6,8,9,20

How would you rate your English 
reading comprehension skills? (1-5)

1 1
2
3
4 2 2 3 7
5 81 76 74 33

How many hours a week do you 
play video games?

0 2 2 2 1
Less than 1 6 6 3 13
 1 - 3 16 13 15 6
 4 - 6 16 14 14 6
 7 - 10 12 17 14 1
 11 - 15 7 6 10 2
 16 - 20 11 5 8
20+ 13 14 12 1

How many hours a week do you 
participate in activities requiring 
coordinated hand - eye movement? 
(e.g. instrument playing, catching 
and throwing, swinging, dribbling, 
etc.)

0 8 1 4 4
Less than 1 21 14 10 7
 1 - 3 18 26 24 17
 4 - 6 12 14 11 8
 7 - 10 4 7 11 3
 11 - 15 6 3 4 1
 16 - 20 2 5 3
20+ 12 7 11
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Table A.1.2 Table of device survey responses
Disclosed Responses (count)

Survey Questions Response Options Labvanced Horizon

Computer N = 83 N = 40
What device are you using to complete this 
experiment?

Desktop 69 37

Laptop 14 3

Desktop Computer
What brand of desktop computer are you 
using?

Apple 1 5

Acer 1 5

Asus 9 1

Dell 9 6

HP 13 4

Lenovo 1 3

Microsoft 5 2

I don’t know 3 1

Other (custom response)   25*     9**

What brand is your monitor? Apple 3 4

Acer 11 5

Asus 10 3

Dell 13 8

HP 7 5

Lenovo 2

Microsoft

I don’t know 2 1

Other (custom response)        21***          11****

What size is your monitor? 22 inches 10 5

24 inches 28 13

27 inches 19 6

34 inches 4

I don’t know 2 10

Other (custom response)           6*****

What operating system does your computer 
use?

Windows 64 30

Mac OS 2 5

Linux 1

Chrome OS 1 2

I don’t know 1

Other (custom response)

Note: table continued on next page
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Table A.1.2 (continued)

How are you choosing to interact with your 
computer?

Wired mouse 52 29
Wireless mouse 17 8
Trackpad
Touchscreen
Other (custom response)

Laptop Computer
What brand of laptop are you using? Apple

Acer 4
Asus
Dell 4 1
HP 6 1
Lenovo
Microsoft
I don’t know 
Other (custom response) 1†

What model/series of laptop from the brand 
are you using? (e.g., MacBook Air, Asus Vi-
voBook, Microsoft SurfaceBook, etc.) Please 
be as specific as posible.

(custom response) †† †††

What is your laptop’s screen size? (round to 
nearest option if necessary)

11 inches 1 1
14 inches 2 1
15 inches 5
16 inches 1 1
17 inches 5
I don’t know 
Other (custom response)

What operating system does your laptop use? Windows 13 3

Mac OS

Linux

Chrome OS 1

I don’t know 

Other (custom response)

How are you choosing to interact with your 
laptop?

Wired mouse 4 1

Wireless mouse 10 2

Laptop touchpad

Wired/wireless trackpad

Touchscreen

Other (custom response)

Note: table continued on next page
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Table A.1.2 (continued)

Tablet N = 78
What brand of tablet are you using? Samsung 38

Apple
Google 6
Amazon 25
Microsoft
HTC
Huawei
I don’t know 2
Other (custom response)  7‡

What is the make and model/series of the tab-
let you are using? (e.g., 10.2 Apple iPad Pro, 
Samsung Galaxy Tab S6, Google Pixel Slate, 
etc.). Please be as specific as possible.

(custom response) ‡‡

What is your tablet’s screen size? (round to 
the nearest option if necessary)

7 inches 15
8 inches 22
9 inches 4
10 inches 28
11 inches 4
I don’t know 4
Other (custom response)     1‡‡‡

What operating system does your tablet use? Android 76
Apple iOS
Harmony OS
Windows
I don’t know 2
Other (custom response)

How are you choosing to ineract with your 
tablet?

Wired mouse
Wireless mouse
Finger/thumb on touchscreen 73

Stylus on touchscreen 5

Trackpad

Other (custom response)

Smartphone N = 78

What brand of smartphone are you using? Samsung 45

Apple

Google 4

LG 10

Nokia 2

Motorola 6

Note: table continued on next page
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Table A.1.2 (continued)
Huawei 2
I don’t know 
Other (custom response)  9§

What is the make and model/series of the 
smartphone you are using? (e.g., Samsung 
Galaxy S20+, Apple iPhone 11 Pro, Hua-
wei P30 Lite, etc.). Please be as specific as 
possible. 

(custom response) §§

What operating system does your smartphone 
use?

Android 77
Apple iOS
Harmony OS
Bada
I don’t know 1
Other (custom response)

How are you choosing to interact with your 
smartphone?

Finger on touchscreen 43
Thumb on touchscreen 34
Stylus on touchscreen 1
Other (custom response)

Disclosed custom responses (note, only unique responses are reported here):
Custom build, CyberPowerPC, MAINGEAR, iBUYPOWER
Custom build, CORSAIR, CyberPower
AOC, BenQ, LG, Panasonic (television), Samsung, ViewSonic, Planar
BenQ, LG, Samsung
16 inches, 20 inches, 30 inches, 32 inches, 42 inches
RCA
Acer Chromebook 15, Acer Nitro 5, Acer Aspire 3, Dell Inpsiron 7300, HP ZBook, Dell Inpsiron 15 5570, Dell Inspiron 15 
5000, Dell XPS 15, HP EliteBook, HP Pavilon 
RCA Cambio Windows 2-in-1 Tablet/Laptop, Dell Vostro 3550, HP Spectre x360
Acer, Lenovo, RCA, TECNO
Acer Iconia One 7, Amazon Fire, Amazon Fire HD, Amazon Fire 7, amazon Fire 8, Amazon Fire 8 HD, Amazon Fire 10, 
Amazon Fire 10 HD, Amazon Kindle, Amazon Kindle Fire, Amazon Kindle Fire 5, amazon Kindle Fire HD, Fusion, Google 
Nexus 7, Google Pixel Slate, Lenovo M10 Plus, Lenovo Tab 4, ONN Tablet, RCA Galileo, Samsung Galaxy Tab 2, Samsing 
Galaxy Tab 4, Samsung Galaxy Tab A, Samsung Galaxy Tab A 10.1, Samsung Galaxy Tab A6, Samsung Galaxy Tab A7, 
Samsung Galaxy Tab A8, Samsung Galaxy Tab E, Samsung Galaxy Tab S10, Samsung Galaxy Tab S2, Samsung Galaxy 
Tab S3, Samsung Galaxy Tab S6, Samsung Galaxy Tab S6 Lite, Samsung Galaxy Tab S7, TECNO DroiPad, I don’t know 
12.4
Asus, BLU, Realme, TECNO, OnePlus, Xiaomi
Asus ROG Phone 2, Blu G90 Pro, Google Pixel 1, Google Pixel 3, Google Pixel 3a XL, Huawei P20, LG G3, LG G6, LG 
K20, LG Revolution, LG Stylo, LG Stylo 4, LG Stylo 5, LG, Tribute HD, Motorola Moto G Power, Motorola Moto G4, 
Motorola Moto G7 Play, Motorola Moto G7 Power, Motorola Moto X4, Nokia 5.3, Nokia 6.1, OnePlus 6, OnePlus 8T, 
Realme Note 6 Pro, Samsung Galaxy, Samsung Galaxy A10, Samsung Galaxy A10E, Samsung Galaxy A20, Samsung 
Galaxy A71, Samsung Galaxy J3, Samsung Galaxy J3V, Samsung Galaxy J7, Samsung Galaxy Note 10+, Samsung Galaxy 
Note 20 Ultra, Samsung Galaxy S10, Samsung Galaxy S10+, Samsung Galaxy S10E, Samsung Galaxy S20, Samsung 
Galaxy S20 FE, Samsung Galaxy S20 Ultra, Samsung Galaxy S6, Samsung Galaxy S7, Samsung Galaxy S7E, Samsung 
Galaxy S8, Samsung Galaxy S8+, Samsung Galaxy S9, Samsung Galaxy S9+, Samsung Galaxy S20+, Techno Camon 15 
CD7, Xiaomi Redmi Note 5, Xiaomi Redmi Note 8 Pro, Xiaomi Redmi Note 9

*
**

***
****

*****
†

††

†††
‡

‡‡

‡‡‡
§

§§
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Table A.1.3 Table of device use survey responses
Disclosed Responses (count)

Labvanced Horizon

Survey Questions ResponseOptions Computer Tablet Smartphone Computer
N = 83 N = 78 N = 78 N = 40

Which hand are you using to make 
responses on your device?

Left 12 8 8 5
Right 71 70 70 35

How many hours a week do you 
spending using this device?

 0 - 5 20 7 16
 6 - 10 4 20 15 3
 11 - 15 3 12 14 3
 16 - 20 4 12 9 2
21 - 25 9 8 9 2
26 - 30 9 1 7 3
31 - 35 7 1 4 6
36 - 40 4 1 5
40+ 43 2 8 5

How many hours a week do you typically use this device 
for the following activities:
Surfing the internet 0 3 1 10

Less than 1 6 16 11 7
 1 - 3 17 30 17 9
 4 - 6 9 12 18 4
 7 - 10 19 7 11 2
 11 - 15 11 3 5 2
16 - 20 5 2 12 2
20+ 16 4 3 3

Playing games 0 6 10 15 23
Less than 1 7 24 21 7
 1 - 3 19 22 21 4
 4 - 6 18 6 13 3
 7 - 10 8 6 2 1
 11 - 15 8 6 4
16 - 20 7 3 1
20+ 10 1 2

School (e.g., research, assignments, 
writing, etc.)

0 68 62 64 14
Less than 1 3 11 5 4
 1 - 3 5 2 4 6
 4 - 6 2 4
 7 - 10 3 1
 11 - 15 2 1 4
16 - 20 1
20+ 1 1 2

Note: table continued on next page     
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Table A.1.3 (continued)

Work (e.g. research, teaching, word 
processing, design, etc.)

0 8 46 21 14
Less than 1 6 10 16 5
 1 - 3 7 8 22 5
 4 - 6 6 3 8 5
 7 - 10 10 4 3 3
 11 - 15 5 2 4 4
16 - 20 7 2 3 2
20+ 34 1 1 2

Personal communication (e.g., 
talking with friends and family, 
etc.)

0 8 29 15
Less than 1 18 23 12 5
 1 - 3 27 10 30 15
 4 - 6 12 7 12 2
 7 - 10 7 7 8 2
 11 - 15 6 1 8
16 - 20 1 4
20+ 4 4

School/work communication (e.g., 
email, phone calls, video confer-
encing, etc.)

0 16 52 26 9
Less than 1 26 15 17 14
 1 - 3 17 8 20 7
 4 - 6 10 8 5
 7 - 10 4 2 1 2
 11 - 15 3 1 2
16 - 20 3 4
20+ 4 1
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A.2 - Sentence Verification statement stimuli

Table A.2.1 Table of Sentence Verification statement stimuli

True False
Positive Negative Positive Negative

Elephants are large. Elephants are not small. Elephants are small. Elephants are not large. 
Cars have tires. Cars do not have wings. Cars have wings. Cars do not have tires. 
Grass is green. Grass is not blue. Grass is blue. Grass is not green. 
Ice is cold. Ice is not warm. Ice is warm. Ice is not cold. 
Boulders are heavy. Boulders are not light. Boulders are light. Boulders are not heavy. 
Rocks are hard. Rocks are not soft. Rocks are soft. Rocks are not hard. 
Dogs bark. Dogs do not meow. Dogs meow. Dogs do not bark.
Apples are fruit. Apples are not vegetables. Apples are vegetables. Apples are not fruits. 
Candy is sweet. Candy is not salty. Candy is salty. Candy is not sweet. 
Knives are sharp. Knives are not blunt. Knives are blunt. Knives are not sharp. 
Villains are evil. Villains are not kind. Villains are kind. Villains are not evil. 
Fire is hot. Fire is not cold. Fire is cold. Fire is not hot. 
The sun is bright. The sun is not dim. The sun is dim. The sun is not bright. 
Rockets are fast. Rockets are not slow. Rockets are slow. Rockets are not fast. 
Car horns are loud. Car horns are not quiet. Car horns are quiet. Car horns are not loud. 
Turtles are slow. Turtles are not fast. Turtles are fast. Turtles are not slow. 
Giraffes are tall. Giraffes are not short. Giraffes are short. Giraffes are not tall. 
Garbage smells bad. Garbage does not smell 

good. 
Garbage smells good. Garbage does not smell 

bad. 
Heroes are helpful. Heroes are not useless. Heroes are useless. Heroes are not helpful. 
Kids like to play. Kids do not like to do 

homework. 
Kids like to do homework. Kids do not like to play. 

Diamonds are shiny. Diamonds are not dull. Diamonds are dull. Diamonds are not shiny. 
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A.3 - Tables of task-specific effects and means

Table A.3.1 Table of Numeric-Size Congruency means

Reaction Time (z-scored)
Interaction** Pairs x Congruency

Congruency
Congruent Incongruent F

Pairs

1v2
-0.199 0.381 0.028 0.395 ***

Congruent <<< Incongruent

2v8
-0.101 0.379 0.009 0.366 ***

Congruent << Incongruent

8v9
0.037 0.41 0.287 0.499 ***

Congruent <<< Incongruent
Interaction** Pairs x Device

Pairs
1v2 2v8 8v9 F

Device

Computer
-0.179 0.4 -0.044 0.379 0.283 0.452 ***

1v2 < 2v8 <<< 8v9, 1v2 <<< 8v9

Tablet
-0.022 0.384 -0.048 0.381 0.082 0.413 *

No significant pairwises

Smartphone
-0.051 0.359 -0.046 0.356 0.112 0.463 ***

1v2 << 8v9, 2v8 << 8v9
Movement Time (z-scored)

Interaction** Pairs x Congruency
Congruency

Congruent Incongruent F

Pairs

1v2
-0.217 0.38 -0.022 0.435 ***

Congruent <<< Incongruent

2v8
-0.152 0.384 -0.051 0.416 **

Congruent <<< Incongruent

8v9
0.077 0.408 0.442 0.55 ***

Congruent <<< Incongruent
Interaction** Congruency x Device

Congruency
Congruent Incongruent F

Device

Computer
-0.046 0.407 0.06 0.44 **

Congruent << Incongruent

Tablet
-0.12 0.361 0.146 0.455 ***

Congruent <<< Incongruent

Smartphone
-0.142 0.371 0.166 0.479 ***

Congruent <<< Incongruent
Note: table continued on next page
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Table A.3.1 (continued)

Interaction** Presentation Side x Device
Presentation Side

Left Right F

Device

Computer 0.008 0.43 0.019 0.417 ns

Tablet
0.16 0.414 -0.134 0.402 ***

Left >>> Right

Smartphone
0.137 0.428 -0.113 0.422 ***

Left >>> Right
Maximum Absolute Deviation (z-scored)

Interaction** Pairs x Congruency
Congruency

Congruent Incongruent F

Pairs

1v2
-0.202 0.477 -0.037 0.526 ***

Congruent <<< Incongruent

2v8
-0.195 0.482 0.004 0.505 ***

Congruent <<< Incongruent

8v9
-0.065 0.55 0.56 0.672 ***

Congruent <<< Incongruent
Interaction** Presentation Side x Device

Presentation Side
Left Right F

Device

Computer 0.049 0.427 -0.023 0.436 ns

Tablet
-0.222 0.567 0.244 0.558 ***

Left >>> Right

Smartphone
-0.253 0.544 0.271 0.503 ***

Left >>> Right
* 0.01, ** 0.001, *** 0.0001

Table A.3.2 Table of Sentence Verification means

Reaction Time (z-scored)
Interaction*** Truth x Polarity x Device

Interaction*** Truth x Polarity

Device

Computer

Polarity
Positive Negative F

Truth Value
True

-0.592 0.213 0.559 0.257 ***
Positive <<< Negative

False
-0.205 0.183 0.303 0.21 ***

Positive <<< Negative

Tablet

Interaction*** Truth x Polarity
Polarity

Positive Negative F

Truth Value True
-0.417 0.26 0.404 0.298 ***

Positive <<< Negative
Note: table continued on next page
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Table A.3.2 (continued)

False
-0.19 0.192 0.249 0.225 ***

Positive <<< Negative

Smartphone

Interaction*** Truth x Polarity
Polarity

Positive Negative F

Truth Value
True

-0.418 0.255 0.397 0.317 ***
Positive <<< Negative

False
-0.18 0.192 0.238 0.183 ***

Positive <<< Negative
Movement Time (z-scored)

Interaction*** Truth x Polarity
Polarity

Positive Negative F

Truth Value
True

-0.319 0.258 0.416 0.332 ***
Positive <<< Negative 

False
-0.174 0.215 0.105 0.266 ***

Positive <<< Negative 
Interaction*** Polarity x Device

Polarity
Positive Negative F

Device

Computer
-0.161 0.228 0.176 0.311 ***

Positive <<< Negative

Tablet
-0.276 0.245 0.283 0.292 ***

Positive <<< Negative

Smartphone
-0.308 0.207 0.329 0.263 ***

Positive <<< Negative
Maximum Absolute Deviation (z-scored)

Interaction*** Truth x Polarity
Polarity

Positive Negative F

Truth Value
True

-0.315 0.423 0.071 0.518 ***
Positive <<< Negative 

False 0.112 0.421 0.15 0.389 ns
Interaction*** Truth x Device

Truth
True False F

Device

Computer 0.055 0.322 -0.043 0.278 ns

Tablet
-0.191 0.514 0.196 0.448 ***

True >>> False

Smartphone
-0.241 0.493 0.253 0.413 ***

True >>> False
* 0.01, ** 0.001, *** 0.0001
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Table A.3.3 Table of Photo Preference High-Chosen means

Movement Time (z-scored)
Main Effect: Pairs

Pairs
High-High High-Med High-Low F

-0.045 0.425 -0.191 0.409 -0.282 0.744 ***
High-High >> High-Med, High-High >>> High-Low

Maximum Absolute Deviation (pixels)
Main Effect: Pairs

Pairs
High-High High-Med High-Low F

0.037 0.588 -0.084 0.507 -0.139 0.515 ***
High-High >> High-Med, High-High >>> High-Low

* 0.01, ** 0.001, *** 0.0001

Table A.3.4 Table of Photo Preference Matched-Pair means

Reaction Time (z-scored)
Interaction** Reach Direction x Pairs

Pairs
High-High Med-Med Low-Low F

Reach 
Direction

Left
-0.135 0.416 0.116 0.422 0.347 0.55 ***

High-High << Med-Med < Low-Low, High-High <<< Low-Low
Right 0.009 0.481 0.134 0.394 0.039 0.428 ns

Movement Time (z-scored)
Main Effect: Pairs 

Pairs
High-High High-Med High-Low F

-0.045 0.425 0.117 0.442 0.269 0.513 **
High-High << Med-Med < Low-Low, High-High <<< Low-Low

Interaction** Reach Direction x Device
Reach Direction

Left Right F

Device

Computer 0.096 0.409 0.032 0.476 ns
Tablet 0.137 0.404 0.123 0.503 ns

Smartphone
0.353 0.206 -0.045 0.412 ***

Left >>> Right
* 0.01, ** 0.001, *** 0.0001
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