
U niversity o f A lberta

T h e C o m p e t e n c y R e f i n e r y : a n e n v i r o n m e n t f o r p r o c e s s

IMPROVEMENT THROUGH THE ACCUMULATION OF EXPERIENCES

by

Am r A tef K am el

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of D octor o f Philosophy.

Department of Computing Science

Edmonton, Alberta
Spring 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-82123-4
Our file Notre reference
ISBN: 0-612-82123-4

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U n iv ersity o f A lb e r ta

L ib ra ry R elease F orm

N am e of A u tho r: Amr Atef Kamel

T itle o f Thesis: The Competency Refinery: an environment for process
improvement through the accumulation of experiences

D egree: Doctor of Philosophy

Y ear th is D egree G ran ted : 2003

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re
produced in any material form whatever without the author’s prior written
permission.

Amr Atef Kamel
61 IB Michener Park
Edmonton, Alberta
Canada, T6H 5A1

D ate: | 0 jS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Research for acceptance, a thesis entitled The Com
petency Refinery: an environment for process improvement through
the accumulation of experiences, submitted by Amr Atef Kamel in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

(supefv iso r)

H. James Hoover

Z
P*ur Musilek

j j y

Hausi Muller (external examiner)

Date: frAfcytA
\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A bstract

Accumulating and managing development experiences plays a key role in im

proving software quality and process. However, the complexity of the soft

ware process makes it difficult to establish and effectively provide operational

support for experience management. To overcome these difficulties, this the

sis defines a concept named the Competency Refinery, along with a method

for building and running one to support software process improvement. The

Competency-Refinery concept provides an organizational approach for extract

ing development experiences from current software projects and supplying

them to future projects. The thesis also provides a set of tools to support

the accusation, selection, and evolution of software experiences within the

Competency Refinery framework.

The concepts defined in this thesis, has been deploying to implement

a Competency Refinery to support software development using application

frameworks. Then, the concepts were validated by using the refinery, over

two years, to support software development in 15 different software projects

developed as a part of a senior level software engineering course at the Depart

ment of Computing Science, University of Alberta. Two experience-bases were

developed and managed within the framework of this thesis. One to support

peer reviews and the other to support development using a specific framework

called the CSF. Through our experience with the competency refinery, a peer

review process for information exchange was identified to support framework

learning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

All praises and thanks are due to GOD who guides and protects me. Indeed
his bounties on me are countless. The work done in this thesis and in the years
to come is devoted for his sake.

This thesis would have been impossible without the help and support of
many people. First and foremost, my supervisor Dr. Paul G. Sorenson, who
supported me technically, financially and morally; his patient encouragement
through out the thesis is very much appreciated. Thanks also must be extended
to members of my supervisory committee, Dr. H. James Hoover and Dr. Eleni
Stroulia and other members of my examining committee Dr. Petr Musilek and
Dr. Hausi Muller for reading my thesis and for their individual comments and
suggestions. Special thanks are due to Dr. Lettice Tse and Dr. Garry Froehlich
for their help and participation in the case study.

A large dept of gratitude is also owed to many of my friends who encouraged
me when I needed the most, and supported my in my down time. I would like
to specially thank Khaled Obaia and Omar El-sherbini; without their support
and encouragement, I would never have been where I am today. I also would
like to express my sincere gratitude to my parents and my in-laws for all their
love, support and encouragement. Last but definitely not least, I am eternally
grateful to my wife Solafa, her unconditional love and many sacrifices for my
sake gave me the courage to get over my down times and the will to finish this
thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 Quality improvement in it ia tiv e s .. 2
1.2 Research problem and m e th o d ... 3

1.2.1 Research M e th o d .. 4
1.3 Thesis contributions ... 6
1.4 Thesis o u tl in e ... 7

2 Learning Software Organizations 8
2.1 In troduction .. 8
2.2 Software engineering know ledge .. 9

2.2.1 Knowledge rep re se n ta tio n .. 10
2.3 Knowledge m a n a g e m e n t... 12

2.3.1 Knowledge evolution c y c le .. 13
2.3.2 Strategies for knowledge m anagem ent.............................. 14

2.4 Organizational s t r u c tu r e ... 15
2.4.1 Examples of knowledge u n its ... 18

2.5 The experience factory p a r a d ig m ... 19
2.5.1 Discussion .. 21

2.6 Technologies to support the experience fa c to ry 22
2.6.1 Knowledge a c q u is itio n .. 23
2.6.2 Knowledge deploym ent.. 24
2.6.3 Knowledge creation and o rg an iza tio n 25

2.7 Implementation of the experience factory c o n c e p t 26
2.8 S u m m a ry ... 28

3 A M odel for Selecting Process Steps 30
3.1 In troduction .. 30
3.2 The Competency Refinery c o n c ep ts .. 31
3.3 Competency Refinery arch itectu re ... 33

3.3.1 Reference architecture for the Competency Refinery . . 34
3.3.2 Instantiation of the a rch itec tu re .. 36

3.4 Packaging software process knowledge.. 38
3.4.1 Types of process p a c k a g e s .. 39
3.4.2 Experience R epresentation .. 42
3.4.3 Selection c r i t e r i a .. 43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.4 Experience A cquisition.. 44
3.5 Summary ... 45

4 A n E x p e rien ce B ase for P ee r R eview s 47
4.1 In troduction ... 47
4.2 Related work on taxonomies for peer rev iew s.............................. 48
4.3 Background on peer re v iew s ... 50

4.3.1 Empirical S tu d ie s .. 50
4.3.2 Experience R e p o rts ... 51

4.4 A framework for process ta x o n o m y .. 53
4.5 A taxonomy for peer review s... 55

4.5.1 Technical dimension ... 55
4.5.2 Economic d im e n s io n .. 61
4.5.3 Support D im ension... 63

4.6 Summary .. 68

5 E n a c tin g th e C o m p eten cy R efinery 69
5.1 In tro d u ctio n .. 69

5.1.1 Study objectives .. 70
5.2 B ack g ro u n d .. 71
5.3 Refinery con tex t.. 73

5.3.1 Study participants ... 74
5.3.2 Organizational S tru c tu re ... 74
5.3.3 Development p ro c e ss .. 75

5.4 Projects co n tex t.. 76
5.4.1 The CSF f ra m e w o rk .. 77
5.4.2 Peer review for information s h a r in g 78

5.5 Data and analysis ... 80
5.5.1 Data and analysis tech n iq u e ... 80
5.5.2 Potential confounding f a c t o r s ... 82

5.6 R esu lts ... 85
5.6.1 Effectiveness of peer rev iew s... 85
5.6.2 Role of the docum entation .. 86
5.6.3 Effective processes ... 89

5.7 S u m m a ry .. 90

6 Packaging P ro cess E xp erien ces 92
6.1 In troduction ... 92
6.2 Investigation s tra te g y ... 93

6.2.1 Evaluation c r i t e r i a ... 94
6.3 Overview of d a t a ... 94

6.3.1 Data r e d u c t io n .. 95
6.3.2 Summary of observations... 96

6.4 The effect of process s tru c tu re .. 98
6.4.1 The effect of the detection te c h n iq u e 98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4.2 Large team versus small t e a m ... 99
6.4.3 One session versus multiple sessions................................. 102

6.5 The effect of the process i n p u t s ... 103
6.5.1 Professional training fac to r.. 104
6.5.2 Industrial experience factor .. 106
6.5.3 Preparation time fac to r.. 107

6.6 Summary and recom m endations... 108
6.6.1 S u m m a ry ... I l l

7 A utom ated Support for the C om petency Refinery 112
7.1 In troduction .. 112
7.2 Requirements for supporting the Competency Refinery 113

7.2.1 Functional requirements.. 113
7.2.2 System level re q u irem en ts .. 114

7.3 A prototype environment to support the Competency Refinery 117
7.3.1 Supporting Technology.. 118
7.3.2 Tool A rch itec tu re .. 118

7.4 System im plem entation... 120
7.4.1 Current status of the experience b a s e 124

7.5 Usage scen a rio s ... 125
7.5.1 Selecting an experience p a c k a g e .. 125
7.5.2 Add a new f e a t u r e ... 126

7.6 Assessment and proposed m odifications.. 127
7.7 Summary .. 131

8 Conclusions and future work 133
8.1 Summary .. 133
8.2 Contributions and resu lts .. 134

8.2.1 Building and running a Competency R e f in e ry 135
8.2.2 Packaging process experiences... 135
8.2.3 Automated support for the Competency Refinery . . . 136
8.2.4 Process taxonomy model for peer review s........................ 137
8.2.5 Documentation of a major case s tu d y 137
8.2.6 Supporting framework knowledge internalization 138

8.3 Future d ire c tio n s ... 138
8.3.1 Tool development and re fin em e n t.................................... 138
8.3.2 Extending the experience b a s e ... 139
8.3.3 Case s tu d ie s .. 140
8.3.4 Controlled experim ents... 140
8.3.5 Documenting application fram ew orks.............................. 140
8.3.6 Peer reviews for framework u n d e rs ta n d in g 141
8.3.7 Forecasting and estim ation .. 141

8.4 Concluding rem arks.. 142

Bibliography 144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A C ase B ased R eason ing 161
A .l The CBR p ro c e ss ... 161
A.2 Building a CBR System .. 163

A.2.1 The case b a s e .. 163
A.2.2 Indexing techniques... 164
A.2.3 Retrieval algorithms ... 164
A.2.4 Adaptation strategy .. 164

B M od ellin g C u rre n t P ee r R eview s 165
B .l In sp e c tio n .. 165

B.1.1 Fagan In sp e c tio n .. 165
B .l.2 Fine-tunes on Fagen In sp e c tio n 167
B .l.3 Gilb In sp ec tio n ... 167
B .l.4 Phased In sp ec tio n s ... 168
B.1.5 Inspecting for Program C orrectness............................... 169

B.2 Technical R e v iew ... 169
B.2.1 Round-Robin R ev iew ... 169
B.2.2 Active Design Review .. 170
B.2.3 Verification Based Review s.. 171
B.2.4 Selected Aspect Review ... 171
B.2.5 Meeting-less r e v ie w s .. 172

B.3 Walkthrough ... 172
B.3.1 Structured W alk th ro u g h ... 173
B.3.2 Technical W alkthrough.. 173
B.3.3 Freedman and Weinberg’s W alkthrough......................... 174
B.3.4 Cognitive W alkthrough... 175
B.3.5 Programming Walkthrough .. 175

C S u p p o rt M a te ria l for th e C ase S tu d y 177
C .l Post-review questionnaire ... 178
C.2 Post-project q u estio n n a ire ... 179
C.3 Scenario-based checklist .. 181
C.4 F o r m s ... 182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Knowledge evolution c y c le ... 13
2.2 Differences in knowledge units d ep lo y m en t................................. 16
2.3 Conceptual structure of the experience fa c to ry 20

3.1 The Competency R e fin e ry ... 32
3.2 Relation between the competency refinery and the knowledge

evolution cycle .. 37
3.3 Different levels of experience packages... 41
3.4 Experience package tem p la te .. 44
3.5 Sources of knowledge for different types of p ack ag es................. 45

4.1 Dimensions and attributes of proposed taxonomy of peer reviews 56

5.1 Percentage of students relying on the framework experience base
to understand the C S F ... 88

6.1 Disposition of issues recorded at the review m e e t in g s 96
6.2 Number of findings per reviewer during p re p a ra tio n 97
6.3 Time spent preparing for the review ... 98
6.4 The effect of using different checklists... 99
6.5 Review benefits as team size increases... 101
6.6 Difference in review benefits as team size increases.................... 102
6.7 The effect of multiple session on review re s u lts 104
6.8 Histogram of randomly selected academic in form ation 105
6.9 Histogram of consistent industrial data through random selection 107
6.10 Histogram of randomly selected effort d a t a 108
6.11 Findings breakdown ... 109

7.1 Decomposition of the experience administration t a s k s 114
7.2 Architecture of the competency refinery support environment . 119
7.3 Maintenance tool s c r e e n .. 122
7.4 Query the RDBP experience b a s e .. 126
7.5 Case description for Fagan in sp ec tio n ... 127
7.6 Add a new question ... 128
7.7 Associate questions with c a s e s ... 129

A .l The process of case based reason ing ... 162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 Activities and communication pathes for the competency refinery 34

4.1 Empirical results of peer review experim en ts.................... 51
4.2 Reported peer review benefits in industry 53

5.1 Background scores for project teams ... 84
5.2 Correlation between implementation score and student back

ground 84
5.3 Answers to question: “how helpful were the reviews in under

standing the CSF?” ... 86
5.4 Rating for different sources of know ledge.................................... 87
5.5 Background scores for project teams ... 90

6.1 Multiple session - data sum m ary... 103
6.2 Data summary for industrial experience versus reported findings 106

7.1 Assessment of the p ro to ty p e ... 129

A .l An example of a c a s e ... 163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

The need to manage the quality of software products in a better way is quite

evident. Spectacular failures such as the crash of the AT&T communication

network [15] and Ariane 5 launch [217] still occur. Many recent problems, from

loss of money [55] to endangering human life [201], can be attributed to quality

problems in software products [124]. In addition to quality problems, schedule

and budget overruns are commonplace. For example, a computer system for

Allstate Insurance was budgeted for $8 million and scheduled to complete in

5 years; the system was completed after 11 years of development with a total

cost of $100 millions [194]. Unfortunately, defects are bound to occur even in

the most carefully written software.

Quality management has remained more of an art than a science. Most

project managers depend on their experiences and rather ill defined heuristics

to manage software production. W ith this approach, software managers are

expected to mentally maintain and deploy processes that produce high quality

software in their particular development setup. Unfortunately, the success of

this approach is tightly related to the level of experience of the project manger.

Striving to rectify these problems, many researchers turned their attention

towards the software development process [162]. After decades of researching

the software process, many practices have been identified and proven to be

useful in improving the quality of work products. However, the complexity of

most processes makes it difficult for organizations to identify and assess the

parameters affecting the process. As a result, selecting the proper process,

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from available process alternatives, remains a challenge.

This dissertation addresses the above challenge by capitalizing on expe

riences gained during software development. The approach is based on ex

tracting and packaging development experiences into an experience base, and

making it available for software practitioners. Software practitioners make use

of the packaged knowledge by extracting experience packages from the experi

ence base, and then reusing or tailoring them to suite the particulars of their

development environment. Practitioners can also enrich the experience base

by including their experiences to the experience base.

The rest of the chapter discusses the trends in quality improvement ini

tiatives, states the research problem addressed in this thesis along with the

research methodology followed. A synopsis of the thesis contributions is pre

sented and finally, the chapter ends with an outline for the rest of the thesis.

1.1 Q uality im provem ent in itia tives

Lack of a reliable methodology and the highly dynamic software market have

lead to instituting quality improvement programs in many software organiza

tions. The majority of these programs are based on the concept of continuous

process improvement. The concept promotes the idea of achieving quality

improvement in small steps by establishing feedback loops to monitor the per

formance of the improvement efforts.

Many quality improvement programs have been tried in the last two decades.

Some methods are based on the Shewart-Deming Cycle (plan/do/check/ act)

[65], others used the closely related Total Quality Management (TQM) paradigm

[79]. However, these approaches suffer from two major problems [21]: they as

sume a consistent picture of a good software product and, in general, they

don’t deal specifically with the dynamic, evolutionary, nature of software de

velopment.

To overcome these problems, Basili [21] introduced the Quality Improve

ment Paradigm (QIP). The paradigm is based on the notion that improving

software process and product requires a continuous learning through aceumu-

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lating experiences in well-understood forms and models that can be accessible

to other projects for use and/or modification. Basili et al. [24] introduced the

experience factory concept to support the enaction of the quality improvement

paradigm. The experience factory institutionalizes continuous improvement

through the capture and utilization of the collective learning of the organi

zation. Through the experience factory mechanisms different experiences are

collected and analyzed then packaged in order to provide, upon request, feed

back to new projects based upon the experiences of similar projects.

The perceived benefits of the experience factory paradigm were supported

by the Software Engineering Laboratory (SEL) success story [23]. Over a ten-

year period, the experience factory at SEL managed to reduce development

cost by 60%, decrease the error rate by 85%, and reduce cycle time by 20%.

Currently, the experience factory concept is widely accepted by the software

industry as the process management approach th a t is most suitable for the

special needs of software development [226].

1.2 R esearch problem and m eth od

In spite of reported successes, quality improvement programs are not always

successful; even when deploying practices, such as the experience factory, that

worked well for other organizations. The limited success can be attributed to

a combination of factors [208]:

• concentrating on the mechanics of the technology rather than acting on

the information it provides,

• enacting expensive practices that are beyond the technical needs of the

process, and

• overlooking the organizational culture while defining the improvement

program.

Furthermore, building an experience factory still represents a major challenge

that is undertaken by very few software organizations [106]. It is an extremely

challenging undertaking for the following reasons:

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The concept has been treated theoretically; however, reported efforts in

building an experience factory indicate tha t available information is too

abstract to help implement it.

• The experience factory at SEL evolved over more than 15 years. The es

tablishment process was written with hindsight, consequently the details

of the process may have been lost over time.

• Little information was delivered about how experiences can be accumu

lated, formalized, stored and used in day-to-day process management.

The goal of this thesis is to specify, implement and evaluate a model for

process improvement based on the experience factory concept. The goal can

be refined to the need to build a model for selecting processes based on the

accumulation of experiences. The general questions we would like to address

in this research area can be defined as follows:

How can we build an experience base to capture experiences gained

during project development? and what are the proper methods to

populate and extract information from the experience base?

Clearly, these questions are much more too broad to be fully addressed in one

thesis. The work in this thesis begins a long-term exploration by focusing

on some of the fundamental issues in this area. Specifically, we developed

the concept of a Competency Refinery that defines how experiences can be

captured, analyzed, modelled and deployed in support of software development

in the focused domain of application frameworks.

1.2.1 Research M ethod

Based on the type of the phenomena under investigation, March & Smith [153]

distinguished between design and natural sciences. In general, they divided

research activities into: build/evaluate for design science and theorize/justify

for natural science. They argued th a t the former is suitable for artificial phe

nomena whereas the latter is suitable for natural phenomena. They further

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

categorized outputs produced by design research into: representational con

structs, models, methods, and instantiations. Since we are investigating the

building of a Competency Refinery, the proposed research falls into the design

science category.

Nunamaker et al. [173] presented a methodology for design science. The

methodology consists of concept building, system development, experimenta

tion and observation. During concept development, new ideas are explored

and conceptual framework for methods and models are constructed. The sys

tem development phase is dedicated to build concrete systems to realize the

conceptual frameworks. Finally, during experimentation and observations re

search methods such as action research, laboratory experiments, field tests,

simulations and experimentation aid the researchers in validating or rejecting

the concepts upon which the system was built.

Zelkowitz & Wallace [244], defined three different experimentation mod

els for validating technology: observational, historical and controlled. Ob

servational methods collect relevant data as projects develop. They rely on

unobtrusive research methods such as project monitoring, case studies, field

studies and assertions. Historical methods collect data from projects that have

already been completed. Since data already exists in historical methods, the

focus is primarily on analyzing data using techniques such as literature search

or postmortem analysis. Controlled methods provides multiple instances of an

observation for statistical analysis. This method is the classical method for

experimental design in other scientific disciplines; relying on methods such as

replicated experiments in laboratory setting and simulations.

In his Turing Award Lecture, Hartmanis [101] endorsed demonstration and

observation as validation techniques in computer science, as they suite the na

ture of the computer science research. In this research, model evaluation was

run as a case study. The building and execution of a Competency Refinery

was monitored in order to collect information about various attributes char

acterizing the experiences.

Specifically, two types of experience bases are managed within the Com

petency Refinery defined in this thesis. One to support peer reviews and

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the other to support development using a specific framework called the CSF

(Client Server Framework) [85]. The experience bases, and processes to inter

act with them are evaluated by monitoring teams of developers using the CSF

framework to assess the influence of the experience bases on the development

process.

1.3 T h esis contributions

The work presented in this thesis is intended to address the above mentioned

deficiencies in the experience factory. In particular, it makes the following

contributions:

• The development of a method for building and running a Competency

Refinery to support software development. The applicability of the

method is examined by providing a concrete implementation for the re

finery.

• A three-level model for packaging process experiences. The model sup

ports the documentation of hands-on experiences as well as more abstract

level of experiences such as lessons learned.

• The development of a three dimensional process taxonomy model. The

objective of this model is to support engineering decision making in the

software process domain. The taxonomy was used to develop a process

model for peer reviews, thereby providing the refinery agents, and the

software practitioners at large, with a frame of reference for comparing

different aspects of the review process.

® The provision of an integrated set of tools that support knowledge man

agement within the refinery context. The set of tools support the se

lection, evolution and acquisition of experiences within the competency

refinery.

® The documentation of a significant case study tha t demonstrates the

applicability of the approach in the development of applications using a

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

common framework.

1.4 T hesis outline

The body of this thesis starts, in Chapter 2 with reviewing different approaches

used for building a learning software organization. Work done to implement

experience factories is also discussed. Chapter 3 provides the specifics of the

experience management environment used in this thesis research and presents

the characteristics of the structure agents, details of the experience base, as

well as the methodology developed to build and run the structure. The pro

posed process taxonomy is presented in Chapter 4. Efforts to identify experi

ence packages and build the experience base for peer reviews are also reported

in this chapter.

Details of the case study are discussed in Chapters 5 and 6. Enaction de

tails are reported in Chapter 5, and the evolution of the experience package

are discussed in Chapter 6. Chapter 6 also presents a simulation experiment

tha t illustrates how performance prediction capabilities can be added to the

experiences extracted in the case study. Chapter 7 discusses tool support for

the refinery and introduces a prototype tool intended to support the experi

ence base as well as tools for collecting and analyzing information. Finally,

thesis conclusions and further work related to this research are presented in

Chapter 8.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Learning Software
Organizations

2.1 In troduction

The continuous change in technology, unpredictable strategies of competitors

and the rapid change in customer needs has lead to a greater emphasize on

knowledge as an important asset in the software industry [13]. To address these

challenges, while providing high quality products, organizations are: system

atically and continuously, managing their experiences for comprehensive reuse

[5], leveraging the knowledge of highly skilled and experienced employees [80]

and/or extending their knowledge from sources external to the organization

[196],

Organizations taking measures to improve their products and processes by

creating new knowledge and disseminating this knowledge through the orga

nization are sometimes called Learning Software Organizations (LSO) [195].

Typically, LSOs have to deal with two fundamental issues: knowledge man

agement and organizational infrastructure to support it. However, creating a

LSO is not only a technical issue, it usually involves cultural change in the

organizations. A culture tha t promotes continuous creation of knowledge and

fosters the exchange of experience must be established.

Published studies [23], [106], [44], [116], [63] indicate a significant differ

ence in knowledge management activities among software companies. In many

cases, the recommended practices are in conflict. Therefore, similarities and

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

differences among these practices have to be well understood before making a

decision about the practices that best fit a particular organization. Because

of this uncertainty, some experts suggest th a t maintaining a combination of

strategies is the only way to improve the organization’s ability to compete in

the market [152].

The rest of this chapter will survey the work done in LSOs in prepara

tion for presenting the model used as the foundation for this thesis. Sections

2.2 and 2.3 present issues in knowledge management related to the software

organizations. Similarities and differences among organizational structure pro

posed to support knowledge management are presented in Section 2.4. Section

2.5 discusses the experience factory paradigm. Technologies proposed to sup

port the factory’s implementation, followed by presentation of some concrete

implementations are discussed in Sections 2.6 and 2.7 respectively.

2.2 Softw are engineering know ledge

There is a wide variety of expertise to capture for a software organization. This

expertise falls along three dimensions [13]: domain, methodology and technical

expertise. Domain expertise incorporates knowledge about the application do

main, methodology expertise requires knowledge about development processes

and principles, and technical expertise encompasses knowledge about the de

velopment technology including, for example, tools used in development.

Basili et al. [22] recommended packaging software engineering knowledge

in the form of experience packages. Baselines (e.g., resources and defect rates),

models (e.g., quality and process) and definitions (e.g., process and tools) are

examples of useful information that can be included in an experience pack

age. Basili [21] made some general suggestions about the contents of different

experience packages. He proposed six classes of packages:

1. Product. The center element of a product package is a life-cycle prod

uct supported with information needed to reuse this product, (e.g., pro

grams, architectures and designs).

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Process. The center element of a process package is a life-cycle process,

supported with information to enact it and lessons learned from previous

enactions, (e.g., process models, methods).

3. R elationship . The center element of a relationship package is rela

tionships among different software project characteristics, (e.g., cost and

defect models, resource models).

4. D ata. The center element of a data package is data collected from

different software projects, (e.g., standard quality records).

5. M anagem ent. The center element of a management package is refer

ence information for project management, (e.g., guidelines, project hand

books, decision support models).

6. Tool. The center element of a tool package is reference information to

a development and/or analysis tool, (e.g., CASE environment).

The contents and internal structure of a knowledge package depends upon the

type of the packaged experience as well as its intended use. The types vary

from mainly hands-on experiences [102] to lessons learned [222], Generally,

the package structure is clustered around a central element that determines

the nature of the package. There is no general agreement on the internal

structure of any of the proposed experience packages. In this research, we are

focused on process knowledge; one of the goals is to define a process pattern

for structuring and storing process experiences. The pattern should be capa

ble of representing hands-on experiences and support the evolution of these

experiences to recommended practices and lessons learned.

2.2.1 Knowledge representation

A central technical aspect of knowledge management is the experience base

(sometimes called the Organization Memory (OM)) [228]. Typically, experi

ence bases store a combination of informal, semi-formal and formal knowledge.

This combination poses challenges in how to organize and represent knowledge.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This section discusses the merits of current frameworks used for packing dif

ferent kinds of software engineering experiences.

Informal reports are the first form of packaged experiences proposed and

used by Basili et al. [25]. Reports may contain any combination of plain text,

graphs, tables and figures; the report structure is left to the report author.

Unfortunately, informal reports are very dependent on their author’s views and

perspectives and are prone to the risk of missing some relevant information

(e.g., clear definition of the context in which the experience was enacted).

The project PERFECT, funded by the European community, defined struc

ture for documenting process experiences. The suggested structure [177], [76]

consists of: context description, process models and quality models. Context

description contains a characterization of the environment and the project.

The process models describe activities, methods and role definitions of the

development process. The quality model represents the relationships among

different factors affecting the process. This type of experience packages is

limited to the software process [135].

The idea of extending software development experiences with formal char

acterizations was presented by Prieto-Diaz [187] and further refined by Os-

tertag [174]. Ostertag presented a formal language for documenting experi

ences, and introduced a similarity-based search mechanism to locate experi

ences in the experience base. However, to take advantage of this mechanism,

characteristics of the requested experience have to be described using the same

formal language. The need to have designers and developers describe expe

riences in a restricted, non-natural, language limits the applicability of this

approach in practice.

A similar representation formalism, called REFSENO (REpresentation For

malism for Software ENgineering Ontologies) was presented by Tautz k. Gresse

von Wangenheim [223], The goal of REFSENO is to formally define an ontol

ogy for software engineering. Defining an ontology is a long, time-consuming

process. It requires a good understanding of the parameters affecting the de

velopment environment before documenting an experience. This can pose a

limitation for many software organizations trying to start knowledge manage-

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ment efforts.

Houdek et al. [106] proposed an approach based on rearrangement and re

processing of captured experiences into quality patterns. The main concept

of the quality pattern is to document problem solution patterns, domain de

scriptions, explicit rationales and the pyramid thinking principle [166]. In this

approach, only experiences that can be fitted as quality patterns can be cap

tured and stored. Usually experiences directly extracted from development

projects take different forms th a t may not necessarily fit into a quality pat

tern. Using this approach, incorporating experiences from the development

projects to the experience base can sometimes be problematic or limited.

Generally, experience documentation techniques are concerned with doc

umenting successful experiences. W ith the exception of the quality patterns

approach, hands-on experiences are not documented within the same docu

mentation framework, because hands-on experiences are not always successful.

This puts ‘real’ experiences at risk of being lost. Furthermore, by neglecting

experiences with limited to no success some important information, such as

reasons of failure, may be lost and mistakes may be repeated. In our ap

proach, experiences are stored in a structured-text format. Different types of

experience packages are used to store different levels of experiences.

2.3 K now ledge m anagem ent

Although there is no generally agreed upon definition of knowledge manage

ment, it is universally accepted th a t transfer of knowledge resides at the center

of knowledge management [64]. The ultimate goal is to improve skills within

the organization by providing software professionals with the expertise re

quired to accomplish their tasks better.

Cook & Brown [61] distinguished two types of knowledge: explicit and

tacit. Knowledge that can be captured in a manual is referred to as explicit.

Tacit knowledge, on the other hand, includes the conventions and metaphors

by which individuals work together and share ideas. In order to facilitate

the transfer of knowledge, knowledge management activities should enable the

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Create
knowledc

Forget
knowledge

, Acquire
knowledge

Apply
knowledge

Organize
knowledge

Access
knowledge Abandon

knowledge

Figure 2.1: Knowledge evolution cycle

conversion of knowledge from tacit to explicit [152]. Captured knowledge can

either be applied to similar tasks or linked in new ways to handle new tasks.

2.3.1 Knowledge evolution cycle

In a typical software organization, knowledge is created, operated upon during

its lifetime, then forgotten or abandoned when it is no longer useful. This cycle,

as shown in Figure 2.1, is usually referred to as the knowledge evolution cycle

The creation of knowledge in an organization is associated with formal

training, innovation and creativity, or importation from outside sources. By

recording human experiences, information about the knowledge is acquired,

stage is to process the captured information and present the knowledge in a

format that is accessible and easy to use. Actions at these stages include,

analyzing the information, classifying contents by attributes, providing in

dexes, assuring the quality of contents and providing access controls. During

the access stage, knowledge is distributed to points of action. The distribu

tion may take place using pull technologies, e.g. knowledge databases and

search engines, or push technologies, e.g. training programs and alert mech

anisms. Knowledge th a t does not get accessed is eventually abandoned from

[196], [240].

retained and preserved by the organization. The objective of the organizing

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the evolution cycle. However, well understood knowledge may be abandoned

as well, as it becomes common knowledge within the organization. Apply

ing the knowledge is the ultimate goal and the most important stage of the

cycle. Experiences from knowledge application contribute to the creation of

new knowledge or the capture of more of its tacit part; hence deepening the

knowledge understanding. Information from these experiences that are not

acquired are usually forgotten.

2.3.2 Strategies for knowledge management

Trittmann [226] described two basic strategies for knowledge management:

mechanistic and organic. The mechanistic form supports codified knowledge

transfer. Systems adopting this form focus on capturing and documenting

tacit knowledge. The organic form, on the other hand, supports personal

ized transfer of knowledge. Systems adopting this form focus on facilitating

interpersonal communications.

The mechanistic form of knowledge management aims mainly at leveraging

existing knowledge through knowledge packaging [226]; knowledge is package

through codification and standardization. Systems aiming at knowledge lever

aging supports the identification, documentation, storage and communication

of the packaged knowledge. The packaging process requires a considerable up

front effort. However, once knowledge is documented, experience gained from

one project can be distributed to several receivers with little effort. The bene

fits of knowledge leveraging is maximized if the packaged knowledge supports

tasks with limited variability.

By combining knowledge from different sources, new knowledge can be

created, and the innovation effect of knowledge transfer can be realized [47]. In

these cases, targeted tasks are typically new, complex and poorly defined direct

reuse of experience is unlikely. The interaction between these experiences is

what fosters the innovation effects [172]. Systems targeting innovation should

support the personalized forms of knowledge transfer in order to facilitate the

exchange of ideas and the creation of permanent channels for feedback.

Knowledge management systems can target any identified area of exper-

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tise in the software industry: application domain, development methodology

and/or technology. The objectives of a system and the type of tasks it tar

gets determines the suitable form of knowledge management. For example, to

support the core development processes, a mechanistic system would perform

better than an organic one. On the other hand, the rapid rate of change in

the technology makes the organic form a more suitable form of support for

technology. However, there is growing belief [152] that maintaining a combi

nation of both strategies is the right-wayftcTimprove the organization’s ability

to compete in the market.

2.4 O rganizational stru ctu re

In order to take advantage of the organizational knowledge, knowledge man

agement activities should be supported by an organizational infrastructure

dedicated to that purpose [12], Published case studies [23], [106], [44], [116],

[63] indicate a significant difference and, in some cases, conflict in knowledge

management activities among software companies. In this section, we identify

four points of variation (see Figure 2.2), th a t represent the main differences in

organization structures. Examples of these structures are also discussed.

Tritmann [226] distinguished between two types of knowledge management

structures: centralized and decentralized. In a centralized structure, (e.g., the

experience factory [24]), an agent performs the same set of knowledge manage

ment tasks for all knowledge domains. This structure emphasizes capturing

and representing knowledge in explicit formats. In a decentralized structure,

(e.g., knowledge broker [44]), an agent performs all tasks pertaining to a certain

knowledge domain. Maintaining lists of agents and their areas of experiences

is the main focus of this structure [44]. The format of the preserved knowledge

is left to individual agents to decide upon.

The relationship between the knowledge unit and the development orga

nization represent another point of variation. The knowledge unit may serve

as an internal consultant [64], or as supervisor that recommends how devel

opment should progress [204]. Knowledge domain and the level of experience

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consultancy Supervisory

Radical
change

No
change

Level of
authority

Realization
technique

Department Position

Management
structure

Integration
requirements

Decentralized Centralized

Points of variation in knowledge
management activities

Figure 2.2: Differences in knowledge units deployment

in the organization are the major factors in deciding the suitable type of rela

tionship. Knowledge units dealing with methodology domains may adopt the

supervisory or consultants relationship for various reasons. For example, a su

pervisory relation supports the injection of some best practices (e.g., technical

reviews) into the development process, or the adoption of a new development

standards. On the other hand, the knowledge units may adopt the consul

tan t type of relationship to provide support without disturbing the ongoing

development. If the knowledge unit is dealing with technology domains (e.g.,

programming language, frameworks used in development), it is more suitable

to adopt the consultant type of relationship, as the required level of support

varies with respect to the particulars of the project, as well as the experiences

of the project participants.

The realization strategy represents the th ird point of variation. A knowl

edge unit can be realized in the form of a separate department [24], or a

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

position [116]. The last point of variation deals with the level of integration

between the knowledge management units and project development units. The

level of integration refers to the extent of change in the organization structure

and culture required to accommodate the knowledge unit within the organi

zation [98]. The overall organization structure, type of supported knowledge,

and the objectives of the knowledge unit are the major factors affecting the

selection of the suitable combination of these points of variation. For example,

a knowledge unit supporting tacit knowledge may be realized as a position.

In this case, the created position can be accommodated with minimal im

pact on the organization structure and culture. Transferring knowledge across

geographical boundaries may require a mechanistic strategy. The impact of

this specific organization structure and requirements of the knowledge unit

may enforce the need for a separate department to capture and process the

knowledge.

Despite their variations, all studies recommended the separation between

the knowledge management unit and the development units; members of the

knowledge unit should not be involved in the development organization. They

should convey the knowledge to members of the development organizations

and help them solve the problem rather than solving it themselves.

In this research we are interested in capturing knowledge in an explicit

format as well as developing a systematic method to support the knowledge

transfer process. We selected to define the knowledge unit as a centralized

department, working as an internal consultant. We envisioned the centralized

structure to be more suitable for our purpose for two reasons: (1) it supports

the preservation of knowledge in explicit format and (2) it facilitates the in

corporation of new knowledge domains in a systematic manner. Although we

chose to define the knowledge unit in this thesis as a department, merging the

identified tasks so that they are handled by one person can easily be achieved.

Knowledge was provided through an internal consultant to minimize the cul

tural and social impacts of the knowledge unit. We have viewed the cultural

and social aspects as falling outside the boundaries of the thesis. However,

we used alert mechanism (such as lectures) to advertise the benefits of the

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

knowledge packaged in our experience base.

2.4.1 Examples of knowledge units

By far, the Experience Factory [24] is the best documented approach practiced

in industry (see for example [36], [10], [9], [145]). However, approaches like the

Knowledge Brokers [44] and the Experience Engine [116] prove to be useful as

well. In this section we will discuss these three approaches emphasizing their

differences.

Knowledge brokers [44] are full-time employees in the knowledge unit.

Knowledge brokers act as internal consultants, they support projects with

their own knowledge and identify possible internal and external knowledge

sources. Each knowledge broker is responsible for one topic (e.g., requirement

engineering, specifications, testing). They are responsible for identifying best

practices, and maintaining knowledge stores related to their specific topic.

The concept of knowledge brokers, as described in [44], is an example of the

decentralized structure, with a consultancy type of relationship. Knowledge

brokers were realized as positions.

The experience engine concept [116] is based on maintaining “yellow pages”

of available expertise. The engine defines two roles: experience brokers and

communicators. Brokers are the visible members of the knowledge unit. Their

role is to maintain the yellow pages, and facilitate the contact between experi

ence communicators and those who need the knowledge. Experience communi

cators are those individuals who have the expertise. Their role is to help others

solve their problems. The concept of experience engines, as deployed by Eric

sson Software Technology AB [116], is an example of decentralized structure,

with a consultancy type of relationship. In this deployment, the knowledge

unit was realized as a department.

The experience factory is a logical and/or physical organization that sup

ports project development by acting as a repository tha t captures the results

of analyzing and synthesizing all kinds of experience and supplying that expe

rience to various projects on demand [24], The experience factory, as deployed

in [23], was realized as a separate department. It is an example of centralized

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

structure, with a more or less supervisory relationship with the development

organization. Due to its importance, and more direct relevance to this re

search, we expand on the experience factory paradigm in the sections that

follows.

2.5 T he exp erien ce factory paradigm

To address knowledge management with the purpose of software quality im

provement, Basili et al. [24] introduced the experience factory paradigm. The

paradigm was initially introduced to support the reenactment of successful

development activities. More recent work discusses tailored versions of the

factory to support learning organizations whose main business is not software

[19].

The paradigm organizes a software development organization into two or

ganizations with separate goals: experience factory and project organization.

The project organization focuses on developing and delivering software prod

ucts and the experience factory focuses on improving development practices in

the project organization by learning from experiences. The two organizations

interact to support each other’s objectives. The experience factory structure

and its interaction with the project organization is conceptually represented

in Figure 2.3 [24]. The factory is centered around an experience base, which

contains an integrated set of packaged experiences that capture past develop

ment competencies. The factory supports three different organizational units

that interact with the experience base: Support, Analysis and Packaging.

The Support unit facilitates the interaction between the factory and the

developers. It saves and maintains the information in an easily and efficiently

retrievable format. It also controls and monitors access to this information.

The Analysis unit processes the information received from the development

organization to provide direct feedback to individual projects. It also produces,

and may provide upon request, tools, lessons learned, baselines, etc.

The Packaging unit works off-line to generalize, tailor and formalize infor

mation and project experiences. It packages useful experiences in a variety of

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tailor

Formalize

Generalize

Support
Unit

5. Analyze
Unit

1. Characterize
2. Set Goals
3. Choose Process

4. Execute Process

6. Package
Unit

Experience
B ase

Project Organization

characteristics

process
modification

Knowledge
Consulting
(lessons

learned,
models)

project
analysis,

lessons
learned

data,

Experience Factory

Figure 2.3: Conceptual structure of the experience factory

models that meet the needs of different users of these experiences.

The experience factory institutionalizes the capture and utilization of the

organization’s knowledge to use it for collective learning purposes. To realize

its purpose, it must support a set of interacting mechanisms for experience ac

quisition, packaging and evolution as well as methods for providing packaged

experience to its potential users. Through these mechanisms, different experi

ences are collected, analyzed and then packaged in the experience base in order

to provide, upon request, feedback to new projects based upon the experiences

of similar projects. Packaged experiences may come from experimentation or

previous development experience either local to the organization, or from the

software industry at large. The experiences take into account the software

discipline’s experimental, evolutionary, and non-repetitive characteristics.

The operation of the experience factory is based on the Quality Improve

ment Paradigm (QIP) [21]. The paradigm is based on the notion that im

proving software processes and products requires continuous learning through

accumulating experiences in well-understood forms and models that can be

accessible to other projects to use and/or modify. QIP involves the following

six consecutive steps:

1. C h arac te rize . Understand the environment and understand the exist-

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing business process baselines.

2. S et goals. Based on the existing characterization and the capabilities

of the organization, set quantifiable, reasonable goals based on current

process baselines.

3. Choose process. On the basis of the environmental characteristics and

the set goals, choose an appropriate improvement process and provide

any required tools.

4. E xecute process. Enact the process and provide feedback to measure

progress against goals.

5. A nalyze process data. At the end of the process, analyze all data col

lected, record findings, determine problems and make recommendations

for future improvements.

6. Package experience. Consolidate the gained experience in a new (or

updated) experience package from this and prior project experiences.

In a successful implementation of the experience factory paradigm, each

project will follow its own process model. Choosing the right model will

take advantage of process models provided by the experience factory to select

the model that best fits the project’s context and its product characteristics.

Projects can access information about prior projects at different levels of ab

straction, examining problems and solutions, effective methods, tools, etc. By

accessing this prior experience, project managers can tailor the best possible

processes, methods, and tools.

2.5.1 Discussion

The significant advantage of the experience factory paradigm lies in the trans

ferring of development experiences, usually stored in the developers’ minds,

into permanent tangible corporate assets. The experience factory also provides

necessary resources and expertise to support a wide variety of activities such

as training, consulting, process management, process formalization, software

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

measurements and evaluation as well as organization learning. However, the

experience factory as implemented by Basili et al. [51] supports only codified

knowledge; it does not provide a mechanism to handle tacit knowledge.

Although technology supporting the experience factory concept has been

studied by many researchers [6] [102], successful realization of the experience

factory concepts based on Basili’s results is extremely challenging [222]. The

challenges vary from defining exactly what constitutes an experience and, how

it can be captured, documented and stored, to institutionalizing effective mech

anisms to select the most relevant experience from the knowledge base [106].

For example, experience packages presented while explaining the experience

factory concepts took the form of informal reports [23] [25]; yet, manuals of

the first implementation of the experience factory indicate that the experi

ence base was implemented using an online database [51], Furthermore, the

constructed experience base was criticized by its limited ability to incorporate

knowledge from software engineering body of knowledge [174, Chapter 5].

Theoretical treatment of the experience factory created many of these chal

lenges [106]; the treatment focused on explaining the factory and related strate

gies, giving little information about how experiences are accumulated, stored

and used in day to day process management. Furthermore, Houdek et al. [107]

indicated that these challenges existed even when the experience factory was

documented fifteen years after it was first initiated. The description of how to

establish the experience factory was written with hindsight, therefore it may

be difficult to repeat.

2.6 T echnologies to su pp ort th e exp erien ce fac
tory

Seaman et al [202] identified three technical aspects that need to be con

sidered for supporting the experience factory: repository, user interface and

procedural. The repository aspect deals with how experience should be stored

electronically. The user interface aspect deals with how to represent the ex

periences to its potential users and how the users will manipulate, search and

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

retrieve experiences. General purpose browsers [97] and special interfaces such

as the Visual Query Interface [209] have been used to support the factory’s

user interface [202]; however, many of the reports discussing the factory’s im

plementation do not emphasize aspects of the user interface.

The procedural aspect focuses on knowledge management issues, such as

how experiences are acquired, reused, maintained and updated. To date, most

of the technologies developed to support knowledge management within the

experience factory have focused either on knowledge acquisition [32] or knowl

edge deployment [103]; little support has gone into knowledge organization

[196]. In the rest of this section we examine candidate technologies to support

the procedural aspects of the experience factory. The discussion is organized

around stages of the knowledge evolution cycle.

2.6.1 Knowledge acquisition

Technologies supporting knowledge acquisition have to overcome the very dif

ficult task of making tacit knowledge explicit. The technology is usually built

around a specific acquisition technique. Several techniques have been used to

acquire software knowledge: literature surveys, expert consultation [75] and

collecting all uses of the experience base [103].

Literature surveys help organizations to solicit knowledge from the software

industry at large. This technique is useful to start a knowledge base, update

the knowledge base with industry best practices or, to explore the usability of

standards and recommended practices. When using consulting experts, a large

set of solutions for a given problem should be solicited. The experts are then

questioned about parameters that differentiate the solutions (solution space)

[75]. This technique is useful for relatively mature knowledge domains.

The amount of knowledge relevant to the software process and the dis

agreement among experts about key parameters affecting process performance

require the collection of information about concrete enactions of the process

in order to build a knowledge base for an organization. By treating every en

action of the process as new knowledge to be acquired, a rich set of data can

be collected, documented and analyzed. Several approaches such as informal

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reports [23], [25], structured text [106], [33] and formal languages [174] have

been proposed in the literature to document and store enaction knowledge.

2.6.2 Knowledge deploym ent

Software experiences have been made available through a human consultant

[105] and automated tools [97] [209] [202] [8]. For purposes of this discussion,

knowledge deployment implies that the knowledge about a software process

is codified, stored, and retrieved using an automated tool to support making

decisions about the process.

Technologies to support knowledge deployment are based on the expected

size of the Experience Base (EB). Lists and indexed catalogues have been

used to document experiences in small-to-medium size experience bases [97].

For large experience bases, reasoning technologies are recommended [102] [7];

although, relational databases have also been used [202]. Three reasoning

technologies can be considered in knowledge deployment systems: rule based,

model based and case based.

Rule-based reasoning systems require the extraction of the domain knowl

edge and encoding the knowledge into rules. Each rule contains a small chunk

of information and reasoning is done by rule composition. The intuition is

“by iteratively applying the knowledge rules, answers to questions may be de

rived.” With little guidance about rule contents, expressing knowledge into

rules is not a trivial task [94]. Evolving a rule based system is not a simple task

as well [212], because changing one rule often requires modification of several

other rules. Rule-based reasoning implies th a t most of the domain knowledge

is known and can be encoded into rules; an implication that does not generally

hold true for the software process domain.

Model-based reasoning derives answers by knowing the causal model of the

domain. Models tend to hold information needed for validation or evaluation

of the solution, but do not provide methods of constructing the solution. For

example, models for human resource management in software projects [2] pro

vide some insight into Brooks’ Law1 [43], but they stop short of suggesting

1Brooks’ Law states th a t “Adding manpower to a late software project makes it later.”

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

balanced manpower acquisition policies to overcome this problem. The un

derlying paradigm in the competency refinery supports mechanisms for con

structing solutions. Hence, model-based reasoning alone is not enough for

supporting the refinery concept. Furthermore, reasoning using causal models

assumes that the domain is well enough understood to enumerate a causal

model. Very few software organizations understand their software processes

well enough to reason about them, a state that limits the applicability of

model-based reasoning at present.

Case-based reasoning systems draws decisions on the comparison between

remembered cases and the new situation. The intuition is “what has been

done before to successfully solve a problem may be successfully used in similar

situations.” They typically reason using large chunks of knowledge, rules and

similarity metrics for adaptation - a type of knowledge that is easier to acquire.

Due to the importance of Case-Based Reasoning systems to this thesis, an

overview of how it can be deployed is given in Appendix A.

2.6.3 Knowledge creation and organization

Knowledge creation and organization add context to the information captured

by the system or imported from external sources. Knowledge creation and

organization tasks include maintaining the knowledge base according to a spe

cific classification, adding new relationships between knowledge items, setting

up a hierarchy of knowledge items and maintaining historical data about the

usage of the knowledge items. The level of support th a t can be provided at this

stage depends on the nature of information processed. For example, little sup

port can be provided for knowledge creation by soliciting information from the

software industry at large, because such information is presented in an infor

mal manner, often as a report or a working paper. Extracting knowledge from

these reports is typically a human intensive activity. On the other hand, qual

itative research methods and statistical analysis techniques can be deployed

to support knowledge organization for formal and semi-formal data captured

during the usage of different knowledge items. For example, the effect of a

new testing tool can be assessed by interviewing testers in the organization or

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by comparing the defect detection rates before and after the tool.

2.7 Im p lem en tation o f th e experience factory
con cep t

Most of the reported implementations of the experience factory focused on the

software process. However, efforts in building domain specific experience facto

ries in the areas of data mining applications [17], developing CBR applications

[11], and ontology deployment [125] have also been reported.

The first implementation of the experience factory was at NASA Goddard

Space Flight Center (GSFC). The center established the Software Engineering

Laboratory (SEL) in conjunction with University of Maryland and Computer

Science Corporation. SEL was established in 1976 to support research in

the measurements and evaluation of software development process. One of

its major responsibilities was the collection, storage and archival of software

engineering data. In this environment, the experience factory concept was

proposed, developed [24] and enacted [23]. SEL maintains its data in an

online database [51] implemented using the ORACLE Database Management

System. Over a ten year period, the experience factory at SEL managed to

reduce development cost by 60%, decrease error rate by 85%, and reduce cycle

time by 20% [202].

The success of the experience factory at SEL has motivated other organiza

tions to build their own experience factory. Houdek et al. [107] reported Daim

ler Chrysler’s initial experiences in establishing experience factories. Three

different projects formed the basis of the analysis: the first two initiatives fo

cused on formal reviews and the third dealt with acceptance processes. The

study concluded by defining a plausible m andate for similar initiatives [200],

and recommending more studies to validate and generalize their observations.

An Australian telecommunications company established an experience fac

tory [135] with the goal of enhancing the transfer of process knowledge amongst

projects. The factory was built by providing an effective framework for ac

cess and integration of the information already existing in the organization’s

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

repositories. Despite achieving its technical objectives, the system was decom

missioned shortly after the completion of the project. The lack of ongoing

management commitment and the lack of identification of clear goals and pay

back criteria was among the reasons contributing to the decommission.

Chatters [52] reported on ICL’s efforts to develop a framework to support

its method engineering based on the experience factory paradigm. The frame

work has four key components: tools development, learning, deployment and

experience. Checklists and process descriptions are examples of the tools de

veloped in the tools component. Through the learning component, project

members are trained on how to deploy the predefined tools. Finally, the expe

rience component captures the results, an assessment of effectiveness of specific

applications of the tools, and any lessons learned. Information gathered from

the application of the framework is captured in a knowledge sharing repository.

Recently, Fraunhofer Institute for Experimental Software Engineering built

a COrporate Information Network (COIN) to facilitate experience sharing

among different projects within the organization. COIN was used to develop

and validate a goal-oriented experience management approach. It consists

of three main parts: the experience base, the COIN Team and an intranet

representation [8]. The project is focused on business process description and

lessons learned.

Until recently, there is a limited number of published enactions of experi

ence factories. These publications focused either on the structure of the factory

as in [107] and [52] or the structure of the experience base as in [8]. Methods

to create, organize and evolve knowledge within the experience factory are

rarely discussed; details of the experience base to support this evolutionary

nature of knowledge are still vague. Furthermore, publications dealing with

the experience factory did not provide a comprehensive description for the

organizational units inside the factory nor how these units work together and

interact with the development organization.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.8 S um m ary

This chapter presented an overview of the measures taken by Learning Soft

ware Organizations to capture and disseminate software engineering knowl

edge. Typically, LSOs have to deal with two fundamental issues: knowledge

management and organizational infrastructure. We identified three main cat

egories of software engineering knowledge to capture for a software organiza

tion: domain, methodology and technical expertise. Strategies to manage this

knowledge depends on its format: explicit or tacit, as well as the objectives

of the organization. We also explored different organizational structures used

to support LSOs. Finally, we turned our attention to the experience factory

paradigm discussing its merits, problems of reenactment, as well as technolo

gies developed to support it.

Having investigated the fundamental issues facing LSOs, a number of weak

nesses were identified. It was decided to build an experience factory focusing

on software process expertise. The objective is to focus on the process of

starting and running one rather than its structure. We primarily want to:

• define process patterns for structuring and storing process experiences.

The pattern should be capable of representing hands-on experiences and

support the evolution of these experiences to recommended practices and

lessons learned.

• provide mechanisms to support a combination of mechanistic and organic

strategies for knowledge management within the factory. However, the

ultimate goal is to capture explicitly the required knowledge and support

it mechanistically.

® document the processes and infrastructure required to create, evolve and

disseminate knowledge within the organization.

These issues were identified as being vital to the success of starting a Learning

Software Organization. In order examine the validity of our ideas and concepts

we built an experience base for technical reviews and ran the factory to support

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a senior class in software engineering at the Department of Computing Science,

University of Alberta. In the next chapter we discuss our proposed structure

of the factory as well as the templates we use to capture experiences.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

A M odel for Selecting Process
Steps

3.1 In trodu ction

In this chapter, our model for knowledge management in software, called the

Competency Refinery (CR), is presented. The model is based on the experience

factory paradigm proposed by Basili et al. [24]. It supports the capitalization

and reuse of development experiences. The main goal of the competency refin

ery is to facilitate quality improvements by analyzing and packaging software

development competencies.

The main function of the competency refinery is to collect, package and

maintain process experiences and evolve and continuously improve the expe

rience models. Because the competency refinery is built on the concepts of

the experience factory, it utilizes the same quality improvement paradigms

and adopts the same principle of separating the factory organization from the

project organization. It further improves the paradigm by centralizing and

focusing experiences on knowledge units [52].

The refinery supports two types of users: technical leaders (or project man

agers) and quality improvement engineers. Technical leaders use the refinery

to make more knowledgeable decisions about the development, whether they

are facing circumstances that are new or similar to previous projects. Quality

improvement engineers use the refinery mechanisms to extract tacit knowledge

and present it in an explicit format. The extracted knowledge can further be

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

used to improve the performance of the technical staff.

In the rest of the chapter we further discuss the competency refinery model.

The next section presents the basic concepts and paradigms used in the refin

ery, explaining how it differs from the experience factory. Sections 3.3 and 3.4

discuss the refinery’s architecture and the details of the knowledge base as it

applies to the software process domain respectively.

3.2 T he C om p eten cy R efinery concepts

The Competency Refinery paradigm supports the reenactment of successful

development activities and institutionalizes continuous improvement through

the capture and utilization of the organization’s knowledge and collective learn

ing. It provides a mechanism for improvement through creating, analyzing and

packaging software development competencies within the organization. Com

petencies are created by documenting development experiences within the or

ganization, by importing generally accepted software engineering practices, or

through the innovation in development activities within the organization. Af

ter their creation, competencies are continuously refined by deploying them

in development. Experimentation serves as an important technique to create

and refine competencies as well.

The paradigm can be thought of as an extension to the experience factory

paradigm presented by Basili et al. [24]. The major differences are in the

overall objectives and the nature of stored knowledge. The paradigm has

evolved from a software environment concerned with storing software artifacts

for reuse, to an environment to store development experiences for the purpose

of detecting development competencies existing within the organization and

exploiting their intrinsic benefits.

While the main objective of the experience factory is facilitating software

reuse through packaging knowledge supporting software reuse, the major ob

jective of the Competency Refinery is to package knowledge to support decision

making and facilitate organization learning. The Competency Refinery capi

talizes on the evolutionary nature of knowledge. Experiences from deploying

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Competency RefineryProjects

Experience
Manager

Experience
Adapter

Experience
Base

Package
Developer

Experience
Organizer

Figure 3.1: The Competency Refinery

stored competencies in other projects lead to capturing more of its tacit part.

Through this process, issues affecting the quality of the competency may be

identified for the purpose of quality improvement and/or better control.

Experience bases built in most implementations of the experience factory

store one class of knowledge; some implementations focus on processed infor

mation [22] [222], others focus on hands-on experiences [102]. Objectives of the

competency refinery mandates maintaining historical data at different levels

of abstraction. To accommodate these requirements, different types of experi

ence packages are maintained to capture different classes of knowledge about

the competencies. In the competency refinery, the main source of knowledge is

hands-on experiences. By collecting and storing hands-on development experi

ence, the Competency Refinery creates and maintains a knowledge base about

the competencies administered by the refinery. By continuously analyzing and

synthesizing these experiences, lessons learned from its usage are abstracted

and stored. Models describing the competency and its performance may also

be developed by consolidating different hands-on experiences.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Competency Refinery is conceptually represented in Figure 3.1. The

refinery is centered around an experience base, which contains an integrated set

of packaged experiences that capture past development competencies. To serve

its purpose the competency refinery supports a set of interacting mechanisms

for experience acquisition, packaging and evolution as well as methods for

providing packaged experience to its potential users.

3.3 C om p eten cy R efinery arch itecture

An implementation of the Competency Refinery is composed of contents, ar

chitecture and tools. The contents sustains the core value of the refinery,

namely the experience packages. Packaged experiences can be raw data col

lected from various projects or knowledge extracted by abstracting the data.

Through out the thesis we use experience and package interchangeably to mean

experience package. Tools support managing and communicating the contents

of the refinery. The structure is the foundation that enables the refinery to

serve its purpose. The refinery structure proposed in this thesis is composed

of two parts: reference architecture and interaction mechanisms. The refer

ence architecture, as defined in [31], describes agents of the structure and their

necessary communication paths, leaving the particulars of their implementa

tion to the refinery instantiation. Therefore, there are no assumptions about

the way these components may be implemented. For example, they can be

implemented using human or computer based systems.

Interaction mechanisms define activities required for the components to

function on daily basis. Through the set of interaction mechanisms supported

by the competency refinery, experiences are collected, analyzed and then pack

aged in the experience base in order to provide, upon request, feedback to new

projects based upon the experiences of similar context. These mechanisms can

be grouped in three different sets of activities to interact with the experience

base: identification, storage and communication [226].

Communication activities facilitate the interaction between the refinery

and its users, with the objective of controlling and monitoring access to in-

33

with permission of the copyright owner. Further reproduction prohibited without permission.

Agent Specification

Experience Manager

Activities Package storage
Package retrieval
Taxonomy management

Comm. Paths Experience adapter
Experience organizer
Experience developer

Experience Adapter

Activities Package selection
Project consultation
Feedback generation

Comm. Paths Experience manager
Experience developer

Experience Organizer
Activities Information consolidation

Knowledge formalization
Comm. Paths Experience manager

Experience Developer

Activities Experimentation
Package generalization
Package composition

Comm. Paths Experience manager
Experience adapter

Table 3.1: Activities and communication pathes for the competency refinery

formation stored in the experience base. Experiences captured from different

projects, or other relevant sources of experience, are processed to identify

new experiences tha t need to be packaged. Through identification activities,

captured experiences are abstracted to establish baselines (e.g., defect rates),

build models (e.g., quality) and designate definitions (e.g., process). Storage

activities focus on the consistency and diversity of the captured experienced.

3.3.1 Reference architecture for the C om petency R efin
ery

From the discussion of the sets of activities associated with the refinery we

define requirements for four architectural agents. Activities performed by these

agents and their possible communication paths are summarized in Table 3.1.

The agents are:

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. E xp erien ce A d a p ter . The experience adapter is the main interface

between the refinery and its users. It selects and tailors a coherent set

of experiences that satisfy the project requirements. Selected packages

are based on the knowledge accumulated in the experience base. The

adapter is also responsible for tracking the deployment of selected ex

perience packages and documenting the resulting hands-on experiences.

Generally, the experience adapter is the only agent actively interacting

with the production process, by feeding knowledge and collecting expe

riences.

2. E xp erien ce M a n a g er. The experience manager controls the knowl

edge that resides in the experience base. In addition to storing the

experience packages, the manager responsibilities are addressed by two

activities: structural management and content management. Structural

management extends the taxonomy of the experience base to include new

areas of knowledge according the organization needs. Content manage

ment is concerned with the integrity of knowledge within the experience

base. The experience manager is concerned with the syntactical aspects

of the experience base. Access control and access strategies are also main

functions of the experience manager.

3. E xp erien ce D eveloper. The responsibility of the experience developer

is to create new experience packages. New experiences can be developed

by adapting, generalizing and/or assembling pre-existing experiences, or

adopting public domain processes typically found in the software lit

erature. The developer agent is also responsible for validating created

experience through practical techniques (e.g., experimentation). The ex

perience developer also defines measurements that need to be collected to

assess the value of the newly deployed experiences or to support knowl

edge area expansions proposed by the experience manager.

4. E xp erien ce O rgan izer. The responsibility of the experience organizer

is to maintain experience packages already existing in the experience

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

base. The organizer agent develops models to analyze existing experi

ences or validate the applicability of existing models by examining them

using newly acquired data. The semantics of the packaged experiences

is the main concern of the experience organizer.

Activities of the experience organizer are asynchronous with respect to

the production process in the organization as it interacts with the project

organization through the experience base. According to the QIP, knowl

edge packaged by the organizer agent start with a simple model that is

incrementally enhanced in order to improve and/or expand the capabil

ities of the packaged competencies.

This list of agents represent a complete set of architectural agents that cover

all the activities related to the knowledge evolution cycle stages (see Figure

2.1), as explained in Figure 3.2. Agents of the refinery interact together either

to communicate experiences or to extend the experience base. Communication

paths identified in Table 3.1 support experience-base extension.

3.3.2 Instantiation of the architecture

In order to instantiate this architecture, interfaces of the architectural agents

have to be defined as well as the flows of data and control among the agents.

This implies finalizing the agents’ communication specifics and the distribu

tion of control among agents. Similar to the experience factory, the refinery

can be started following two possible approaches: top-down and bottom-up

[25]. That is, proceed either from a well-defined ontology, to a schema for the

experience base, then collect concrete experience data, or else collect concrete

experiences and proceed towards abstracted knowledge. However, the bottom-

up approach mandates the definition of a taxonomy to start data collection. In

this implementation of the refinery, we favored the bottom-up approach over

the top-down for these reasons:

• Top-down approach assumes a relatively stable environment [5]. This

assumption does not hold true in general, as many organizations favor

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experience / '"V""
Developer' / / \

■N

.. ;’\ A T C p T f i

K n o w i s d c : - -

/ /E xperience Adapter

Knowiec

IIlT

Experience

iO w isc ig o ' ' f ' h - ' ! 1—

- Experience^ M anager / S i / .

Figure 3.2: Relation between the competency refinery and the knowledge evo
lution cycle

and, indeed live with, dynamic development environments to cope with

short technology cycles.

• Our approach focuses on data collected from hands-on experiences. Most

of documented experience factory implementations following the top-

down approach are either based on long-term application [23], or exper

imental data [11].

• For simplicity, we started with the simplest solution that would work as

recommended by newer software development methodologies [27].

From his experience in building knowledge units, Schneider concluded that

[200] seeding the experience base is a fundamental requirement to start a

knowledge unit.

To limit the thesis scope, we chose to focus on the software process knowl

edge. Following the concept of knowledge units requires partitioning the ex

perience base into knowledge domains (or topics). Knowledge captured in

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each knowledge domain is maintained independently. The knowledge unit we

implemented in this thesis is focused on peer reviews.

In our enactment of the refinery all agents of the structure were imple

mented using human agents. However, we developed several automated tools

to support the functions of the Experience Manager, the Experience Adapter

and the Experience Organizer. Details of this implementation will be further

discussed in chapters 4, 5 and 6.

3.4 Packaging softw are process know ledge

For an organization to benefit from a competency refinery, details about the

experience base need to be well understood. Key questions that need to be

answered include: W hat constitutes a process experience? How can it be cap

tured, documented and stored? W hat motivates the selection of a particular

process alternative?

In general, any knowledge related to the software development process

is considered a process experience that could be captured, documented and

stored for further use. To achieve the required learning goals, process knowl

edge needs to be kept in a normative or prescriptive format; a process package

should prescribe how a sensible agent should act to achieve a certain goal. A

process package may also be descriptive, describing the enaction details of a

particular process. The following are a few examples of these experiences:

Hands-on experiences: Objects describing knowledge gained through pro

cess enaction. This knowledge can be described in natural, or semi-

formal languages.

Process definitions: Definition of the process capturing its important de

tails. These details include its inputs, expected outputs, participants

and their roles, entry/exit criteria, etc. Process definition may be writ

ten in a language th a t may be formal, semi-formal, or graphical.

D evelopm ent m odels: Process models obtained by aggregation of several

processes to serve a particular purpose. These processes are integrated

38

with permission of the copyright owner. Further reproduction prohibited without permission

to cover one or more aspects of the development process. This includes

quality assurance processes, testing processes, and life-cycle models (e.g.,

waterfall, spiral).

A ssessm ent m odels: Objects describing how to measure the process, judg

ing its success or failure. This includes mathematical models, process

standards.

Supporting docum ents: Textual objects written in natural or semi-formal

language with figures, tables, checklists to communicate information in

some organized way, (e.g., hypertext objects). This includes specifica

tions of documents produced or consumed by a process, data analysis

techniques, recommendations, reports from specific studies and analysis,

etc.

Process experiences produced and maintained in the process refinery are called

Process Packages. Each process package is a composite object made of one

or more process experiences. The capability of the process refinery to orga

nize and synthesize process experiences is a critical element for the successful

support of process improvement.

3.4.1 Types of process packages

In the context of this thesis, process experience is viewed as the “practical

knowledge or skill abstracted or directly observed from participation in a par

ticular activity” [161]. We are interested in capturing the < abstracted knowl

edge, direct participation> tuple. This tuple implies that we are focused on

packaging knowledge rooted in participation and accumulated during everyday

work in the organization. However, knowledge and participation need not be

reported in the same package. In fact, we view participation reports as the

concrete knowledge from which abstract processes may be deducted.

The < knowledge, participation> tuple implies that development knowl

edge can be divided into concrete and abstract aspects. Concrete knowledge

captures hands-on experiences and abstract knowledge is a generalization of

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the concrete knowledge. It supports the decision making process of a project

by offering packaged solutions to its problems. This knowledge may come

from in-house experiences, experimental results or the adoption of standard

practices in the software industry. In despite of the basis of the abstract

knowledge, a critical aspect of process improvement within the organization

is the continuous refinement of the abstract knowledge using related concrete

experiences.

Process experiences need to be packaged in a variety of ways to fulfil dif

ferent interests of its users. For example, during project planning, experience

base users are more interested in exploring options to decide on the set of

processes to use. At this stage, they are interested in process merit and major

risks, inter-process interactions and trade-offs, rather than how to enact it.

When a particular process is chosen, a user’s interest shift to issues like com

paring the different methodologies to enact the process, and how to measure

its success or manage its risks.

While concrete knowledge can be packaged as one type (concrete type),

abstract knowledge needs to be packaged differently to fulfill different users’

interests. To emphasize these differences we have chosen to package abstract

knowledge as either: praxis and modus types. The three experience package

types can be described as follows:

Praxis. Praxis packages document industry best practices, as well as, the best

practices accepted within the organization. Praxis packages are general

in nature, documenting for example, the efficacy of a process, the merits

of a tool, with enaction details removed (i.e. abstracted out).

M odus. Modus packages focus on the details of a particular process or best

practice. A modus package may document a particular methodology

for enacting the process and, as necessary, clarify how to perform its

sub-processes.

Concrete. Concrete packages are tightly related to the real world; they doc

ument hands-on experiences. A concrete package reports on how an ab

stract package is enacted in a given organizational context, and whether

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A bstracts to

Modus
Package

Praxis
Package

Modus
Package

Modus
Package

Concrete
Package

Concrete
Package

Concrete
Package

Concrete
Package

Concrete
Package

Concrete
Package

Figure 3.3: Different levels of experience packages

the practice is a success or a failure. The package may include a recom

mendation of “what to do and/or avoid” .

Generally, praxis packages capture the merits of industry’s best practices;

modus packages represent methodologies of enacting these practices and con

crete packages describe the experience gained by participation on process en

actions.

The three package types align with proposed models of process evolution

[58]. The three package types can be viewed as representing development ex

periences at different levels of abstraction as depicted in Figure 3.3. Each

enaction of the process is acquired as a concrete package. By analyzing a

set of similar concrete packages, environment particulars are abstracted out

and the knowledge is represented as one modus package. Details of the en

action methodology are further abstracted out to be documented as one or

more praxis packages representing a best practice within the organization. For

example, various methodologies of performing technical reviews (e.g., Fagen

inspection [77] and IEEE standard review [112]) are represented as different

modus packages. However, the merits and risks of technical reviews (despite

the particulars of the methodology) are represented as one praxis package.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.2 Experience Representation

The complexity of the software process domain presents several problems in

determining and representing experience packages. At the macro level we must

address the question: “W hat is the proper level of granularity for an experience

package?” At the micro level, the main question is: “How to characterize

different experiences?”

An experience package may represent a process-step (e.g., inspection kick-

off meeting), a process (e.g., technical review) or a complete development

methodology (e.g., eXtreme Programming [154]). At the concrete level, pro

cess methodologies are too general to prescribe in one package. On the other

hand, we anticipate that process-steps are too specific. Hence, we set the

granularity level of our experience packages at the process level. A process is

defined as [126]: a set of process-steps with well defined roles and input/output

work products to serve a set of common objective.

The core of a process package is the < objective, prescription> tuple. Pro

cess objectives are the key characteristic th a t set processes apart; in a sense

they represent the “problem(s)” addressed by the process. The prescription

part of the package details the “know-how” or the core knowledge about the

process. Each process package must have at least one objective or goal to

achieve. For practical considerations, no other constraints are imposed on

process packages; for example, it is acceptable to include a process package

without well defined input/output or missing a clear definition of roles, etc.

It is evident th a t the performance of successful process experiences is not

globally consistent [208]; however our goal is to uncover experiences that

provide consistent performance with respect to their enaction environment.

Hence, reporting process prescription alone is not enough, the context of the

knowledge contained in a process package is also important to report, specially

for concrete packages.

The goal of the experience base is to categorize packaged experiences based

on certain features. A typical feature may be a chance of success at first

enaction or a type of training required to perform the process successfully.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Process features may not be clear at first; they are determined following an

iterative enactment of a process. Selection of new features to represent a

package is determined by studying the set of available experiences, studying

the discriminatory power of the selected features, modifying them if necessary,

then starting the next iteration. For example, by analyzing concrete packages

for inspection we might find out that formal inspection training increases the

chances of success of the inspection process. Hence, ” requires formal training”

would be added as a feature for the inspection modus package.

Other information about the process (e.g., references, comments) to provide

further information about the process is also required in the package. During

software production, processes interact in a variety of ways. Details of this

interaction and dependencies is captured in the process package as related

experiences. For management purposes, each package should have a name,

type, etc. The information in a process package is reported in a structured

text format following an experience package template as illustrated in Figure

3.4. As the experience base matures, the discriminatory power of process

features matures through a clear understanding of the network of interactions

and dependencies among processes.

3.4.3 Selection criteria

After matching the context of the process alternatives, project managers have

to apply some discriminate measures to select an alternative. The selection

measures are usually based on the the cost-benefit relations of the available

alternatives. Hence, a process package should contain cost-benefit models for

the process. Cost-benefit models define the set of metrics required to assess

the benefits of enacting the process as well as its set of cost drivers. Direct

process costs can be determined quantitatively. Measuring or estimating the

direct benefits is not so straight forward, as not all process benefits can be

quantified. Hence, in order to evaluate process alternatives, qualitative criteria

may be used.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N am e: a unique identifier for the experience.

T ype: Praxis, Modus or Concrete.

O bjective: a list of the objectives satisfied by the process documented in the

P re sc rip tio n : is a detailed description of the experience knowledge.

C o n tex t: characterization of the environment from which the experience was
acquired.

F ea tu res: features of the experience that make it distinctive from other ex
periences in the experience base.

R e la ted E xperiences: listing of experience packages semantically linked to
current experience (e.g. uses, contains), as well as information for nav
igation among experiences (e.g. linking inspection Modus package with
corresponding inspection concrete packages)

R eferences: Additional material discussing the experience (books, articles,
manuals, etc.).

C om m ents: any additional information important for using the experience.

A d m in is tra tio n : listing of administrative information.

Figure 3.4: Experience package template

3.4.4 E xperience Acquisition

Closely related to experience representation is experience acquisition. Where

to acquire experiences? When to say that available experience packages are

enough for the organization’s needs? There are three basic ways to gain expe

riences [33]:

• Use available technical knowledge sources;

• Use goal-oriented knowledge acquisition; and

• Accumulate knowledge during everyday work.

Concrete packages are typically internal to the organization. They doc

ument the enaction of a process (either in a project or in an experimental

setting). Aspects of the process that can’t be explored through day to day

work are usually investigated in experiments designed to achieve this goal.

Depending on the type of experiment, praxis and modus packages may be

created as well. For example, praxis packages can represent the result of sim

ulation experiments. Praxis and modus packages may come from internal or

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Praxis
Packages

External
Sources

Modus
Packages

Goal Oriented
sources

Concrete
Packages

Development
Projects

Figure 3.5: Sources of knowledge for different types of packages

external sources. If praxis and modus packages are internal, they are generated

by abstracting enaction details from different concrete packages. However, rel

egating the praxis and modus packages to this path is overly restrictive, as it

neglects the available knowledge accumulated in the software industry. Ex

ternal packages are acquired primarily from software engineering publications

and standards. Figure 3.5 presents sources of information for all types of the

process packages. Throughout the rest of the thesis the identified sources of

abstract experiences are explored. In chapter 4 we explore aspects of gener

ating knowledge packages from external sources. Documenting development

experiences is discussed in chapter 5 and packages generation from experimen

tation is discussed in chapter 6.

3.5 Sum m ary

This chapter presented our proposed architecture for the competency refinery.

While the architecture is based on the experience factory concepts, the major

differences are in the overall objectives and the nature of stored knowledge.

The main objective of the experience factory is to store software knowledge

to support reuse, the main objective of the competency refinery is to package

knowledge to support decision making and facilitate organization learning. To

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

serve its objective, the refinery is equally concerned with knowledge acquisi

tion, evolution and delivery.

The architecture defines four agents centered around an experience base:

experience adapter, experience manager, experience developer and experience

organizer. Experiences are packaged in the experience base in the form of

structured text that is tolerant to incomplete information and the incorpora

tion of knowledge from software engineering at large. The next three chapters

document our efforts and experiences in implementing and running a refinery

for peer reviews. The first step towards the implementation, discussed in the

next chapter, is to build an experience base for peer reviews.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

A n Experience Base for Peer
R eview s

4.1 In troduction

The main doctrine of the competency refinery is to support the selection of

the process alternative that best suites the specific needs of the project under

development. It provides the mechanisms to build experience bases and make

available relevant experiences to different projects based on some similarity

analysis.

Schneider [200] argues that a successful experience factory can not start

with an empty experience base. The experience base needs to provide useful

seeds [81] from the very first hour of usage. Process seeds could be driven from

internal sources (e.g., the organization process manual) or external sources

(software process literature). Unfortunately, most of the publications dis

cussing experience factories, discuss either the specifications of the experience

base (e.g., [8]) or how the experience base is used (e.g., [107]), ignoring the

transitional step where the experience base is actually built and seeded. In this

chapter we will discuss how process seeds can be constructed systematically

by building an experience base for peer reviews [84].

Unfortunately, inconsistencies among publications addressing peer reviews,

makes it difficult to identify similarities and differences among proposed and/or

practiced review processes [140]. Hence, it is not easy to evaluate and reconcile

the results for software practitioners. In order to identify those processes that

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be used as seeds in the experience base, we need to integrate published

work about reviews into a coherent body of knowledge through a comprehen

sive taxonomy. Because review literature can include many variations and

ambiguities, this integration is also needed to assist software organizations in

evaluating and benefiting from any research effort in the area [193].

First, we will review some of the proposed review taxonomies in Section

4.2. Some background about peer reviews is presented by describing some of

the major research results in the area in Section 4.3. Section 4.4 discusses the

process taxonomy we used along with its objectives. Peer review literature is

discussed in the context of this taxonomy in Section 4.5. The chapter concludes

with a summary of our key findings.

4.2 R ela ted work on taxon om ies for peer re
view s

The importance of peer reviews coupled with the ambiguities among published

work stimulated many trials to consolidate and reconcile peer-reviews research

findings. At a high level, peer reviews have been classified based on process

formality and objectives into inspections, technical reviews and walkthroughs

[108] [84]. Inspections are the most formal process with the most precise objec

tives. Walkthroughs are the least formal with the widest range of objectives.

According to this classification, walkthroughs are used for training, technical

reviews are used for consensus formation and planning, and inspections are

used for improving the quality of software artifacts.

At a lower level of detail, surveys provide taxonomies to classify peer re

views based on different subsets of its attributes. These attributes include

[180] [237] process objectives, input/ output characteristics, required prepara

tion, collection techniques, team size and member roles, number of sessions,

how the sessions are coordinated and defect detection method. Unfortunately,

most of these studies looked only at formal — inspection like — reviews ex

cluding and/or marginalizing some useful review methodologies (e.g., cognitive

walkthrough [236], IEEE standard technical review [112]). In a general sense,

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contributions of available surveys can be summarized as follows:

® Kim et al. [131] classified reviews across five dimensions: aims and ben

efits, human element, process, output and other matters. The survey

focused on how to perform a peer review.

• Macdonald et al. [148] focused their classification on the process. Their

goal is to formalize the process for the application of tool support.

• Porter et al. [180] focused on the review process that are geared towards

defect detection. The survey identified variation points among differ

ent review methodologies paying attention to the costs and benefits of

methodology alternatives.

• Wheeler et al. [238] divided reviews based on number of review partici

pants. They further categorized reviews with limited number of partici

pants into inspections, walkthroughs, selected aspect reviews and others.

The survey focused on elaborating the differences between inspection and

other peer review processes.

• Tjahjono [225] mapped formal technical reviews (FTR) methods into a

series of phases. Each phase is described in terms of seven basic com

ponents: objective, collaboration, roles, synchronicity, technique, entry

and exit criteria. The survey’s goal is to determine the similarities and

differences between different FTR methods.

• Laitenberger [140] classified software inspection along four dimensions:

technical, economic, organizational and tool support. The goal of the

classification is to articulate the core concepts and relationships of soft

ware inspections. Although Laitenberger’s model tried to be global, it

failed to classify reviews in orthogonal dimensions. Confusion was evi

dent when attributes of different dimensions were defined.

These surveys helped in identifying potential success factors controlling a

peer review process. Unfortunately, most of available surveys evaluated only

a subset of these success factors. Hence, resulting taxonomies are limited to

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the perspectives and objectives of the study — for example, [180] is part of a

study [213] looking at cost-benefit analysis of inspections. On top of that, most

of these surveys either ignored the organization context or project specifics

while presenting their findings. This makes it difficult for software developers

to choose the proper review that would fit their needs, and thereby provide

maximum impact on specific projects for the development organization.

4.3 B ackground on peer review s

Peer reviews have been practiced in the software industry for over twenty-five

years. They are used primarily for the detection and elimination of defects in

software artifacts as soon as these artifacts are created [77]. The core process

of any proposed and/or practiced peer review involves a team of independent

experts examining software artifacts. The benefit of reviews is supported by

the argument that it is easier to detect errors in someone else’s work than in

your own; a phenomenon known as ‘cognitive dissonance’ [232].

In general, a peer review process has three stages: preparation, examina

tion and follow-up. Specifics of these stages vary greatly depending on the

process objectives. With the objective of defect detection, Fagan inspection

[77] represents one of the earliest formal peer review processes described in

literature. Fagan inspection stimulated a substantial body of work in peer

reviews over the past twenty years. The published work concerned with peer

reviews can be categorized 1 into: empirical studies and experience reports.

4.3.1 Empirical Studies

Although there is a general agreement about the key factors affecting the

success or failure of a peer review, the contribution of each factor towards

review success is not well understood. For example, Eick et al. [73], Weller

[234] and Tjahjono [225] reported that the larger the number of reviewers, the

better the review performance; in Eick’s report [73], the performance increased

1 These categories are not m utually exclusive, a paper m ay present an enhancement in
methodology supported by industrial experience d ata (e.g., Fagan’s Inspection paper [77]).

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Method Efficiency Document type Team size Ref.
Paragraph effect
analysis

37.3% code 1 [104]

Code walkthrough 38% code 3 [168]
Phased inspection 50% code 2 [134]
Fagan inspection 20% - 46% code 4 and 7 [69]
FTArm 46.4% code 3 [225]
iV-fold inspection 27% requirements 4 [155]
iV-fold inspection 35.1% - 77.8% requirements 4 [199]
Inspection 25% - 50% requirements L 3 [184]

Table 4.1: Empirical results of peer review experiments

by 600% for 8 persons review team over individual reviewers. On the other

hand, Bisant and Lyle [34] found no difference in performance between 3, 4

and 5 person review teams.

To understand the causal factors underlying peer reviews success and ef

fectiveness better, many researchers conducted carefully controlled laboratory

experiments. Most of these studies focus on the defect detection aspect of

peer reviews. Study goals varied from evaluating the process as a whole (e.g.,

peer reviews against testing [104] [168]) to evaluating details of the process

(e.g., comparing the effectiveness of a set of defect detection techniques [183]

[225, 184]). Goals sometimes included an investigation of the superiority of a

specific review process [199] [134].

Reported experimental results, summarized in Table 4.1, shows a wide

variations in review performance. Reported defect detection efficiency2 ranges

from 20% to 50% for code and 25% to 77.8% for requirement documents.

There is no definitive explanation for this wide variation, however, factors

include review method used, team size and/or the document type.

4.3.2 Experience R eports

While introducing his inspection process, Fagan [77] demonstrated the pro

cess efficiency by comparing results pulled from the implementation of a large

operating system project. Fagan chose two pieces of a moderately complex

2In this context, defect detection efficiency is defined as percentage of to ta l defects found.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

component. One piece was subjected to inspection after the detailed design

and the coding phases, the other piece was not inspected at all. Fagan reported

an increase of 23% in coding productivity, a saving of one programmer month

per KNCSS (1000 Non Commented Source Statements). He also reported

quality improvement as the inspected piece contained 38% less errors.

The promised cost savings and quality improvements in Fagan’s report

promoted the enaction of peer reviews in many industrial setups. Reported

industrial experiences focused mainly on discussing peer reviews benefits and

limitation. Review benefits are reported as either improvements in product

quality or reduction in development time. Limitations on the other hand, are

presented as problems hindering the deployment of a successful peer review

process.

Industrial reports show that code is the most reviewed work product in

industry [84] [46] [129]. Review of design [100] [160] and requirements [67]

artifacts is also reported. Furthermore, industrial experiences are usually dis

cussed in the context of a particular review process experienced by an orga

nization. However, details of reported review process have to be examined

carefully. Many organizations which claim to use Fagan inspection are not

using the process as specified by Fagan [92].

Despite the number of reported successes, deployment of peer reviews is not

always successful [208]; Brykcysnki [45] attributed this to industry’s frequent

failure to adopt a successful peer review process. In the literature, this failure

was attributed partly to problems with enacting the technical details of the

process and partly to the development environment.

The major reason of failure related to reviews deployment is enaction errors

[110]. In one survey [92], 84% of surveyed organizations claimed to perform

Fagan inspection, yet none of them performed it exactly as specified by Fagan.

The relatively high process cost, setup and running costs, provides another

reason for failure, specially if review data is not well managed [110] [93] [45].

The biggest problem with review enactment as observed by Humphrey

[110] [111], is management inattention and schedule pressure. Other identified

organizational problems include technology transitions [4-5] and the difficulty to

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Organization Quality Imp. Saving Method
Aetna 83% [77]
Sperry Uni vac 27:1 [100]
IBM, Santa Teresa 1:20 [190]
IBM, UK 93% [78]
Standard Bank >50% [78]
AMEX > 50% [78]
IBM 85% [169]
Banking Services firm 1: 2.2-4.5] [3]
Operating Sys. firm 1: 1.4-8.5] 3

5.4:1 [84]
Jet Propulsion Lab. 75% $1:$100 [48]
Bell-Northern 1: [2-4] [197]
Bull HN 80% 1: [1.43-6] [233], [234]
Shell Research 1:30 [67]
IBM 1: 15-25] [129]
Jet Propulsion Lab. 1: 10-34] [128]

A Large Real-time
software project 1:[6.3-11.6] [56]

Ericsson 65% 1:16.75 [59]

Table 4.2: Reported peer review benefits in industry

motivate participants [93]. These problems could arise due to a previous failure

with reviews, or wrong perceptions about reviews. Reviews are sometimes

perceived as low-level manual work that can be easily automated and replaced

by testing [54].

It is worth noting that most of the industry reports are coming from large

software organizations like IBM [78] [127], Hewlett-Packard [96] [83], ICL [132],

AT&T Bell Laboratories [16] and Ericsson [59]. Successes and failures of small

to medium organizations with reviews are rarely reported in the reviews liter

ature.

4 .4 A fram ework for process taxon om y

Engineering decision making is a three-step process. First, plausible solutions

for the target problem are proposed. Second, the feasibility of enacting each

solution is assessed based on its risks, costs and benefits. For each alternative,

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

risks are assessed to evaluate: chance of correctness and chance of success.

Chance of success refers to the chance a proposed solution will adequately

solve the target problem. Chance of correctness refers to the chance the pro

posed solution be deployed correctly. Based on the assessed risks, the expected

benefits from enacting each alternative is calculated. Then, the costs associ

ated with deploying each solution are factored in. The last step is to select the

most appealing solution based on a predetermined criteria (e.g., lowest cost,

maximum benefit).

Following these steps, a process engineer, when selecting a process alterna

tive to solve a particular problem, answers the following questions in sequence:

1. What are the process alternatives that match this particular problem?

2. W hat are the chances th a t a selected process alternative will adequately

solve the problem?

3. What are the chances tha t the organization can deploy each of the se

lected process alternatives correctly?

4. What is the expected benefit from each process alternative - taking into

consideration the assessed risks?

5. What are the costs associated with each process alternative?

In order to answer these questions properly, knowledge about the processes

along different dimensions is required. The economics of different processes

(economic dimension), as well as the required development environment to

support process deployment (e.g., required tool support, staff training) (sup

port dimension) are key characteristics th a t need to be captured by any tax

onomy supporting decision making in software process. In addition, a third

dimension capturing the “how to” aspect of the process is needed (technical

dimension).

The taxonomy introduced here is organized around three main dimensions

Technical, Economic and Support. Each dimension encompasses a set of a t

tributes required to identify that dimension. Hence, carefully planning for

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and being aware of these dimensions and attributes can help an organization

to choose the best process alternative that suites their needs for a particular

situation and thereby maximize the benefits within allocated costs.

In the next section, details of the dimensions of the taxonomy and the

attributes characterizing them are discussed further in the context of peer

reviews.

4.5 A taxon om y for peer review s

In order to customize the process taxonomy presented earlier for peer reviews,

we need to articulate fundamental concepts of reviews around the taxonomy

dimensions. We elicited these concepts and notions from the literature and

extended them as attributes and sub-attributes along each of the three di

mensions. While the attributes are selected to be relevant to most processes

deployed in software development, the sub-attributes principally apply to just

peer reviews. Figure 4.1 shows the elicited concepts and presents them as

sub-attributes for the three dimensions.

In the rest of this section, each of the dimension, attributes and sub

attributes are discussed. Reference to various research contributions and cur

rent industry practices are integrated into the discussion.

4.5.1 Technical dimension

The technical dimension of peer reviews is concerned with the strategies and

enaction details of a particular review process. The main attributes of the

technical dimensions are the process objectives, process structure and

the work product. These attributes are discussed in the following sections.

Process O bjectives

The set of process objectives is probably the most im portant characteristic

that shapes the review process. For example, if an objective is defect detection,

the preparation period becomes essential for review success. Input materials

should include checklists. If, however, the objective is learning, the preparation

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Peer reviews

Support
Dimension

Economic
Dimension

Technical
Dimension

Work Product
-Type & size
-Entry/exit criteria

Figure 4.1: Dimensions and attributes of proposed taxonomy of peer reviews

stage can be small or even eliminated.

Software organizations have implemented different types of review pro

cesses to serve different objectives [219]. Reviews are mostly employed as a

tool to verify and validate work products [42] and to identify, and subsequently

fix defects in these products [78]. Nevertheless, information swapping and

learning [110], as well as progress reporting [57], are also important purposes

for deploying reviews. Some enactions of the review process have involved

brainstorming sessions, or a forum for design decision. Other enactions have

been geared towards resolving design and implementation issues [176].

Process s tru c tu re

The process structure attribute details the overall organization of the process

(i.e., enaction steps), specific techniques deployed during process enaction (e.g.,

reading techniques and collection techniques) and, resources mandated by the

review process (e.g., team roles and responsibilities).

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E naction steps. This sub-attribute looks into the underlying process steps

that characterize the review process. It helps in reducing ambiguities regarding

how to conduct a particular review technique. A reference model is needed to

explain the similarities and differences among different review processes. In

general, the review process can be viewed as a series of phases:

O verview The overview phase consists of a meeting, usually referred to as

the kick off meeting [92]. During the meeting, the author explains the

work product under review to other review participants. The objective

is to inform the participants about key aspects of the work product in

order to speed up the understanding process.

W ork product analysis Analyzing work products is an individual activity

performed by each review participants. A major goal of this phase is

for review participants to familiarize themselves with the work product

under review [3] [34]. However, many researchers [230] [3] [90] [141],

include defect detection as a major outcome of this phase. An objective

that motivated further research to improve reading techniques during

this phase [183] [18] [20] [141] [142],

Findings collection After review participants analyze the work product,

their findings have to be collected and documented, then passed to the

author to take proper actions. Findings collections is usually performed

in a group meeting [77] [92], During the collection phase decisions are

made about what needs to be reworked and whether the work product

needs to be reviewed again.

R ew ork. The final step in a typical review is to reflect the review findings

on the work product being reviewed. The author needs either to resolve

each raised issue or justify why the work product is defined the way it is

[77] [208],

In main stream reviews literature, these phases are done in sequence. However,

some authors [15-5] suggest multiple, parallel sessions of analysis and collection

phases.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In parallel to the review phases, a d m in is tra tio n [180] is another per

formed activity; although it is rarely discussed in the literature. Before a

review begins, administrative tasks include: selecting participants, preparing

and distributing review materials and ensuring that the work product to be

reviewed passes the entry criteria. During the review, the tasks focus on fa

cilitating the review (e.g., scheduling meetings and if needed, tool support).

After the review, the focus shifts to collecting and maintaining the review re

ports properly, ensuring that findings are handled properly by the author and

checking the review exit criteria. Some organizations create the role of Chief

Moderator [96] to administrate reviews and study possible improvements in

the process.

R eading technique. During the preparation phase, different types of analy

sis methods are applied to work products. Reading is one of the key activities

performed during this phase [20]. These methods range from unsystematic

ad hoc methods [208] to highly systematic methods. Checklists and question

naires are the most commonly used tools to help reviewers analyzing work

products [77] [224],

The design of a checklist and/or questionnaire used on a review, should

reflect the review objectives, reviewers’ responsibilities, and the underlying

work product analysis method [108]. Checklists for ‘defect detection’ might be

passive, reminding reviewers about the issues they have to examine [53]; while

checklists for ‘correctness’ may be more active, asking reviewers to justify the

acceptance or rejection of a specific part of the document [207] [206]. A single

general checklist can be designed for all reviewers. Alternatively, a different

checklist for each reviewer can be designed to focus the reviewer’s attention

on a limited set of issues [164] or to match the reviewer’s background and

expertise [18].

Different approaches based on scenarios [20], reading by stepwise abstrac

tion [71], and active participation from the document author [176] are also

proposed and evaluated in practice.

The justification for research in reading techniques is based on the as

sumption that review results depend on the participants and their strategies

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for understanding the work product they are reviewing [182] [192]. However,

when Sandahl et al. [198] replicated the experiment performed by Porter et al.

[183] they concluded that the work product under review is the most probable

explanation for the source of variance in defect detection rates rather than the

reading technique as originally suggested by Porter et al. [183].

C o llec tio n tech n iq u e . There are three basic techniques to collect reviewers’

comments: group-focused through meetings, individual-centered and computer-

mediated. Most of existing review processes include a meeting involving all

review participants. It is believed that meetings produce synergy and par

ticipant stimulation and, as a result, better and more objective reviews [77]

[219]. Learning by interaction is another advantage of a group-focused tech

nique. However, scheduling overheads and the general problems of improperly

conducted meetings have increased the popularity of the individual-centered

techniques [66]. In these technique, meetings are held only when needed and

attendance is optional [110]. The paper [230] suggests replacing meetings with

depositions, in which the author and moderator meet with one reviewer at a

time.

Although collection meetings are the most suggested collection technique

in the literature [237] [84] [219], there are no conclusive results to support the

effectiveness of such meetings for defect finding. In fact, some industrial data

[59] indicate that they are extremely expensive. However, meetings provide

other intangible benefits such as sharing development experiences, and enhanc

ing team spirit [62]. Furthermore, collection meetings improve participants’

confidence in the review quality [120].

In the third technique, called computer-mediated, a computer support en

vironment is necessary. Several such environments have been developed [117]

[156] to overcome the problems with group-focused technique without a seri

ous risk of loosing its benefits. In this technique, meeting time constraints are

relaxed, hence allowing participants to “effectively” meet [156]. Group e-mail

and electronic communication [117] are depended upon to reduce significantly

or eliminate the need for face-to-face meetings.

T eam roles an d resp o n sib ilitie s . A minimum set of roles for all reviews

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consists of [130]: moderator, author, reader and recorder. The author is pri

marily responsible for creating the work product, the moderator facilitates

and coordinates the review, the reader guides the review session by reading

or paraphrasing the work product, and the recorder keeps track, in writing, of

the issues raised during the session. A chief moderator role [96] is created to

oversee the administration of review enaction in the organization.

W ork product under review

The work product attributes describe the nature of the work product that may

undergo review (input material size and type) as well as the rules controlling

the initiation, progress within the enaction steps and termination of the pro

cess (entry/exit criteria). A ttributes of the technical dimension are furthered

discussed in the following subsections.

E n try /ex it criteria. Most review processes define entry and exit criteria that

determine the starting or completion conditions for the review. For example,

a clean compilation is usually the entry criteria for code documents [84]. W ith

the exception of code documents, entry criteria is not well defined in the

literature.

Exit criteria is usually dependent on the work product under review [119]

and its properties [133] [134]. Some authors recommend the use of exit criteria

based on statistically estimating the work product quality (number of remain

ing defects) [14] [50] [73]; evaluating these models is still an active research

subject [74] and is explored further in chapter 6.

Input m aterial ty p e and size. Any software work product can, and in

most cases should, be reviewed. Typical work products include: requirements,

design specifications, code and test plans. Despite the fact th a t deferring defect

detection is a costly mistake [35], code is the most reviewed work product [140].

The volume of materials to be reviewed depends on the review objectives

and the required exhaustiveness of the review. Reviews focusing on progress

reporting tend to cover a lot of material with shallow analysis, while defect

detection reviews cover less materials with deep analysis. Materials that can

undergo a review process can be work-in-progress or completed. However, an

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

entry criteria for the work product is always recommended.

4.5.2 Econom ic dimension

The economic dimension describes the effect of the process on the project by

detailing its cost and b enefit attributes. It is essential to collect and maintain

data tha t can be translated to either costs or benefits of the peer reviews.

At the micro level, cost-benefit data is essential to keep the project under

control. At the macro level, the same data is used to evaluate peer reviews

against alternative quality processes. For example, if the process goal is defect

detection, a typical set of data to collect might be effort and number of defects

found. At the micro level, this data is used to track total project costs, assess

product quality, etc. At the macro level, the same data may be translated into

cost per defect. This information can then be used to answer the question: if

we did not find these defects during a review, how much more will it cost to

detect and eliminate them later (e.g., using extra testing time).

Cost

For peer reviews, different types of costs are accounted for in the literature:

direct cost associated with deploying peer reviews (effort and administrative

costs) as well as indirect costs associated with the effect of reviews on the

project schedule (elapsed time) [180] [140].

Effort and interval are probably the most im portant cost items for running

reviews in large organizations; however, initiation, administration and main

tenance costs are typical items that can affect the decision making process in

small to medium size organizations.

E ffort. Because peer review is a human intensive activity, the person-power

cost (effort) of practitioners directly involved in the review process accounts

for the major portion of total review costs. Effort is usually measured in

person-hour units where typically, a person hour is rated equally despite that

person’s level of involvement in the project. However, this assumption is often

not true in practice. Dollar value and a person’s availability are two important

factors directly affecting the value of his/her person-hour. For example, the

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

value of the lead engineer’s person-hour is typically higher than that of a junior

developer.

Elapsed tim e. The elapsed time between start and end of the review process

is called the review interval. The length of this interval depends on time spent

performing the reviews and delays due to the unavailability of one or more of

the review participant. Measuring review interval and subintervals is usually

based on keeping track of start and finish times for the visible events of the

review process [241]. The review interval time is an important metric because

the inclusion of a review in the development process can directly increase

the product’s time-to-market. Increasing project time can lead to [180]: late

market entry, opportunity costs and carrying costs. Accounting for these cost

items falls beyond the scope of our work3; however, for proper calculation of

these costs, delays attributed to reviews has to be measured and assessed.

It is worth noting that mapping review interval to project delays is not a

straightforward process. For example, if the review interval is one week, its

effect on the project schedule could range from no effect to one week delay.

The exact delay depends on whether the review is on the project critical path

or not, the effect of tasks performed by review participants on the project

schedule, etc.

A dm inist rat ion costs. Administration costs account for costs that stem

from including reviews in the development process, for example, preparing

the review material, maintaining review results, resources consumed during

the review (e.g., meeting rooms), etc. all contribute to the overall costs of a

review. Initiation costs account for costs related to starting up the process

in the organization. Staff training, tool purchase and process adaptation are

typical examples of initiation costs. Finally maintenance costs account for

other running costs at the macro level, for example, tool upgrades, continual

training, etc.

3For interested readers methods for calculating these costs falls under “cost accounting”
domain boundaries. A good overview of these m ethods can be found in [151].

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B enefits

Although software organizations can benefit from peer reviews in three differ

ent areas: defect detection and elimination, development process management

[57] and enhancement of the proficiency level of review participants [110], most

of the published work quantifying review benefits focus mainly on defect de

tection, (see for example [4] [169] [197] [67] [234] [16] [96]).

R eview effectiveness. For defect detection purposes, several efficiency mod

els have been used in the literature. Two straightforward efficiency models are

suggested: i) measure the percentage of the total defects found during the re-

«ew (771 (“ “ > M u r e the eff° rt COnSUmed
. , , - i r / defects found during review \ rn o i r-, c r vi
m the process is made use of (^ orT^ n ~rnfdTr ^ ¥ w) W f150!'

Another model suggested by Collofello and Woodfield [57] compared the

estimated savings of the review to the costs consumed to perform the review

(—). A similar formula is used in Hewlett-Packardv effort consumed m review '
to calculate the return on investment (ROI) obtained from the review [83].

In their formula they used the net savings instead of the estimated savings
(defects found during review-effort consumed \
1 ’ effort consumed ''

Kusumoto [138] noticed a discrepancy in the above model. Comparing the

savings to the effort consumed might be deceiving. For the same efficiency

level, extra effort consumed is associated with larger savings. For example,

suppose we are comparing two review techniques, the first one has an ROI of

10 and consumes 20 Hrs; the second has an ROI of 8 and consumes 50 Hrs.

Looking only at the ROI, the first review should be favored. However, if we

calculate the actual savings, the first review saved (10 x 20 = 200 Hrs.) and

the second review saved (8 x 50 = 400 Hrs.). Kusumoto [138] suggested an

alternative formula to compare the net savings to the total efforts consumed

in testing, if no reviews are performed.

4.5.3 Support D im ension

The support dimension defines attributes characterizing the required support

from the software organization in order to enact a successful peer review. Un-

63

with permission of the copyright owner. Further reproduction prohibited without permission.

derstanding these attributes facilitates comparison among alternatives while

selecting the proper review for a particular project. Attributes of the support

dimension capture the characteristics of the development environment sur

rounding the process through the developm ent context and the staffing

attributes.

D evelopm ent context

The development context attribute articulates organizational culture (organi

zation), nature of the developed product (product), process formality (pro

cess), and the required tools to support the review (tool support). W ith the

exception of tools, few articles discuss this attribute of peer reviews (see for

example [82], [208] and [96]).

O rganization. Organizational context include the definition of the organi

zation’s business goals, resources and infrastructure, teams involved in the

process, their agents and roles as well as information flow paths. Organiza

tional context affects both the software process and product but in different

ways. The effect on the product was recognized decades ago by, Conway [60],

who wrote, “Organizations which design systems are constrained to produce

systems which are copies of the communication structures of these organiza

tions.” The effect of the software process and product was recognized in many

international standards such as ISO 12207 [114],

Although an organization’s operations and goals have, in general, broader

scope than the software process, the software process is implemented in this

context. At the macro level, to choose, or improve, a peer review process that

effectively benefits the overall software process, the appropriate organizational

environment needs to be established first [82]. At the micro level, the need to

understand the organizational context by project managers is vital in order

to choose the practices th a t both meet the organization’s goals and integrate

smoothly with its environment. For example, review practices and resources

allocated for a project th a t produces the first in a family of products, will

differ from those required for a m ature product line.

Product. The nature of the application being developed or enhanced im-

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

poses different requirements on the development process. Enacting a tool or a

method does not only depend on the process but also on the product. For ex

ample, the success of technical reviews for discussing the quality of a software

design does not only depend on how rigorously the process is defined, but also

on how clearly the system design is described.

Other factors include product size, maturity, level of reuse within the prod

uct, and the criticality of the product to the organization. The requirements

for security, quality, maintainability, reliability, also constrain the process to

be used.

P ro cess . Incorporating changes in the development process in not an easy

task. The m aturity of the overall process in the organization defines the nature

of tasks that can be successfully injected into or properly managed within

the organization. Peer reviews are no exception. Developing a strategy for

introducing reviews or changing current review practices is vital for the success

of the process change program. Tools used to enact process improvement

programs (e.g., training sessions [82], presentations [197], introduction of new

automation tools) can be deployed here as well.

Measures that relate directly to the process capabilities of the software or

ganization are the important parameters to consider along this sub-attribute.

Assessment of the process m aturity [68], defines how rigorously the process

is defined and enacted within the organization. The importance of under

standing the process capabilities of the organization emerges when applying

reviews in practice, as things can easily go wrong [208] if the process is not

well understood or consistently used.

For a particular peer review to be enacted successfully, its process require

ments should not exceed the organization’s process capability. For example,

a highly formal review process (such as Fagan Inspection [77]) with well de

fined process objectives, step definitions, entry and exit criteria for each step

and process monitoring mechanisms will not work properly for an organization

with an overall ad hoc. approach to software development. Using a less formal

review process (such as Freedman and Weinberg’s Walkthrough [84]) might be

more suitable for this organization.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tool su p p o rt. Tools to support reviews can range from tools as simple as

checklists and findings-collection forms [84] to computer based support envi

ronments [119], Computer based support for peer review is still in its infancy.

Few tools are available for peer review support and they provide limited sup

port for the process. Many tools start from the research community (e.g.,

In sp ec t [134], [29] ASSIST [146] and HyperCode [178]) and others are com

mercially available (e.g., ReviewPro [191] and CheckMate [157]). In addition

to these tools there is at least one “remote inspection” service available [189].

The level of support for these tools varies from support for a specific re

view process [134] to supporting limited phases of the process (e.g., findings

collection [178]) to supporting the whole process [149].

S taffing

A paradigm reducing the importance of people in production was initiated

with the industrial revolution through the creation of production lines. This

is not true in software production, “People are the production when it comes

to software” [15]. The best peer review for the project depends on both the

technical skills of the project staff and the social environment in which they

work. Proper training and harmonizing of the software worker’s goals and

motives are the key factors for a successful enaction of any peer review. The

staffing attributes describe the team size as well as how the review teams are

constructed.

T eam size. Review processes reported in the literature have the number of

review participants ranging from one reviewer [235] to an unlimited number

[112]. Reviews with an unlimited number can involve tens or hundreds of

participants who are usually not peers. These types of review are usually held

by software contracting agencies to evaluate the progress of their contractors

or by management to ensure progress. In this thesis we are not interested in

reviews with unlimited participants and therefore do not consider them further

in our work.

Fagan [77] recommended a four-person team. Performance of two-person

teams has also been studied [34] [139] [181]. Typical numbers from industry

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ranges from three to eight participants [243] [238] [150] [234].

The review literature does not provide definitive rules of when to increase

or limit the review team size. In a recent study, [38] supports adding more

reviewers to increase the quality of the review. Usually, a trade off between

work product coverage and cost must be considered in deciding actual team

size. The smaller the team size, the more likely that certain findings will be

overlooked. On the other hand, the larger the team size, the higher the impact

on the project cost and schedule.

Team construction. Peer review is a human intensive process, hence, con

sidering the human factor in the review team is fundamental for its success.

In order to choose the review team properly, qualifications and motivations of

the personnel have to be assessed. Qualifications include, general experience,

experience with the current project, initial education and amount of ongo

ing training. Motivation includes the social aspect of the process, like career

progression, salary, team work, etc.

To set the right attitude towards reviews, software developers have to ac

cept the fact that defects in software are inevitable [83]. For defect finding

reviews, reviewers have to be assured that review results are used to asses soft

ware particulars (e.g., quality, reliability) rather than the quality of the work

product author [78]. Hence, it is recommended to exclude management from

these type of reviews [83], [128] [216]. Furthermore, ‘selling’ reviews to project

participants through advertisement campaigns is deemed useful to resolve any

wrong impressions or attitudes toward reviews [197].

Primary candidates for the review team are the project participants [78] ;

they are the ones with most knowledge about the work product under review.

However, reviewers with distinguished expertise may be invited [216] [215]. It

is always recommended to have well trained [3] [82] inspectors with good ex

perience and knowledge about the work product under review [78] [219]. For

purposes like team building and knowledge spreading, novice or less experi

ence reviewers should also be included. Other suggested participants include

maintenance experts, and user representatives [216].

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Sum m ary

This chapter presented a taxonomy framework to distinguish several software

processes with the same objectives. The framework organizes the process along

three dimensions: technical, economic and support. In addition to the process

objectives, the technical dimension is concerned with the methodological de

tails of the process: process structure and work product characteristics. The

economic dimension is concerned with the cost effectiveness of the process by

describing its cost drivers and benefit measures. Finally the support dimension

is concerned with the environment within which the process is enacted. The

framework was applied on peer review processes and successfully identified

16 different proposed and practiced review processes which were organized in

an experience base for peer reviews - see appendix B for a summary of the

different review processes identified.

The taxonomy presents an up-to-date overview and analysis of peer re

view knowledge presented in literature th a t assisted in identifying 17 different

process attributes. Process objectives, enaction steps, reading techniques, col

lection techniques, team roles and responsibilities, work product type and size,

entry/exit criteria along the technical dimension; effort, elapsed-time, admin

istration costs and review effectiveness along the economics dimension; and

characteristics of the development context (organization, product, process,

tool support) and team size and team construction along the support dimen

sion. These attributes characterize the core concepts of the review process,

allowing the identification of the details of the review process that best suite

a particular situation through the comparison of different alternatives along

various dimensions.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Enacting the C om petency
Refinery

5.1 In troduction

Associated with most software development environments is a lot of experi

ences residing in people. It is often difficult to manage experiences within

organizations [30] because they are many and varied. W ithout proper man

agement; however, organizations may easily waste time and effort collecting

and managing experiences [200]. The question is how can useful experiences

be identified, collected and disseminated to those who need it? Experience col

lection activities must impose minimal overheads while collecting experiences

and, ensure completeness and consistency while disseminating these experi

ences. In order to assure these qualities in an experience management system,

it is necessary to enact the system. In particular, lessons learned from pro

cess enactment are needed to develop and recommend processes supporting

experience management activities properly.

In this chapter, we report on a study of processes supporting the infusion

of new technologies in a software development organization. The study was

conducted over a two-year period from 1998 to 2000 in an educational setting.

The main goal of the study was to investigate processes and techniques sup

porting software development using application frameworks. Specifically, we

investigated how software developers with little or no knowledge of a frame

work approach the development of new applications using this framework. This

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

chapter focuses on issues related to experience communication, elicitation and

preservation.

5.1.1 Study objectives

The focus of this enaction of the competency refinery is to observe and under

stand issues related to framework usability from the framework users’ stand

point. The refinery’s objective is to solicit related experiences and ultimately,

recommend best practices. In order not to disturb the project logistics (e.g.,

budget, schedule) by the refinery processes, we believed that the best approach

was to observe practitioners developing application with minimum interaction.

We solicited the experiences by reviewing project deliverables, meeting with

project participants regularly and polling their perspective using question

naires. By examining the information collected in a postmortem fashion, we

gained insights about the principles and issues. However, we provided guid

ance when needed and performed a postmortem analysis for the projects we

studied.

Since the enaction took place in a classroom environment, we felt it is

necessary to give the student some guidance, including what we envisioned as

best practices and guidelines. Using these recommended practices was optional

and students were allowed to make use of their expertise and experiences to

modify these guidelines. We observed the processes enacted by the students

and determined the usefulness of our guidelines. Early on, we narrowed down

the scope of the refinery to these questions:

1. Can peer reviews be effectively deployed as an interaction mechanism

to communicate knowledge about the framework at the early stages of

application development?

2. Is there a pattern-of-use framework users deploy to understand frame

works and learn how to develop applications using frameworks?

3. W hat are the roles of framework documentation in communicating the

framework knowledge and how can it be improved?

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To answer these questions, we collected a wide range of data about the par

ticipating students, factors affecting framework usage and understanding, and

the students’ views on recommended practices.

5.2 B ackground

Frameworks are difficult to understand [37]. This difficulty creates learning

problems associated with building applications by extending frameworks. The

static and dynamic structure of the framework must be first understood be

fore adapting it to the specific requirements of the application. Understand

ing these structures requires a lot of time and effort from new users of the

framework [185], [186]. Some researchers estimate the required effort as be

ing equivalent to that of maintaining an existing application [210]. Problems

associated with understanding a framework usually hinder the development

process, and in extreme cases may cause projects to fail [37].

According to the breakdown of the learning processes suggested by Nonaka

and Takeuchi [172], learning how to extend frameworks is a two step process:

knowledge externalization and knowledge internalization. During knowledge

externalization, framework developers explicitly codify all knowledge required

to extend the framework. During knowledge internalization, framework users

need to internalize the provided information into their tacit knowledge. A

survey of the framework publications shows that little work has been done

to support knowledge internalization in frameworks as opposed to knowledge

externalization.

Knowledge externalization in frameworks focuses on strategies for frame

work developers to document their work. The basic concept promoted by

most of the work addressing the framework intended-use is to think about the

framework in terms of the functionality it provides. Proposed strategies sug

gested the use of hooks [87], patterns [121], motifs [143] or cookbooks [137] to

document the functionality in terms of sets of related functions. For example,

a hook describes a set of functions supported by the framework along with a

demonstration of how to extend the framework to provide this functionality

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to an application. Other strategies demonstrate the most important points of

the framework functionality using exemplars [89] or tutorials [229].

All framework documentation strategies assume that framework develop

ers will be able to anticipate future uses of the framework and provide enough

documentation for all these uses. This assumptions imposes two main defi

ciencies:

1. It is hard to anticipate how much knowledge is enough for the framework

users to use the framework effectively.

2. It is unlikely that the framework users will always extend the framework

in a manner that was conceived by the framework developers.

To overcome these deficiencies and support the documentation, the framework

users need to participate in the process of understanding the framework by

asking questions in order to emphasize their perspective.

Documentation strategies provide no support for knowledge internaliza

tion. The assumption is tha t framework users will internalize the knowledge

by reading. We believe tha t supporting knowledge internalization is as impor

tant as supporting framework documentation in order to facilitate framework

learning.

We selected peer reviews as a vehicle for knowledge communication due to

its unique educational capabilities [118], [67]. Fortunately, reviews encompass

most of other knowledge communication techniques used within the software

engineering domain (e.g., reading, lectures and, learning by active partici

pation) . They support the exchange of views about a framework with the

objective of solving usage problems through an organized process. Another

viewpoint about the educational capabilities of reviews, endorsed by Votta

[230], argues tha t education by observation and participation is not effective,

and tha t proper training courses are a better option. This is a viewpoint that

is questioned by other studies that showed th a t lectures, the most common

method in training courses, are the least effective in knowledge transfer and

tha t learning by active participation is more effective [220].

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 R efinery context

We conducted the study over three consecutive terms within the context of

a senior level software engineering course (CMPUT401) at the Department

of Computing Science, University of Alberta. The study focused on a group

project th a t was the major activity and the focus of the course. The peda

gogical goal of the project is to help students put the theoretical knowledge

acquired through their undergraduate program into practice and show their

ability to work in teams and communicate verbally and in writing with external

and internal interest groups.

Students were divided into teams of five to seven students each. In order

not to interfere with team synergy, students self-selected their team partners.

To compensate for any bias in the collected data that might result from the

self-selection process (e.g., teams are not of equal capability), each student’s

background information (e.g., courses taken, industrial experience, technical

knowledge) was collected and considered during data analysis. A total of

fifteen teams participated in the study, six in the first term, five in second

term and four in third term.

Over the time span of the course, each team was required to develop a small

to medium size client-server application of their choice. The only requirement

imposed on the product was th a t it must be built by extending framework

called the Client Server Framework (CSF), which is described in the next

section.

The development budget ranged from 90 to 100 person-hours per student.

All developed applications were written in Java with a communication com

ponent that used the Internet as a communication medium. The size of the

developed applications ranged from 21 to 108 classes (excluding the frame

work) covering a variety of application domains like on-line auctions, distant

learning, on-line reservation systems, document sharing systems and on-line

gaming.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.1 S tu d y participants

Data was collected on all of 89 students who participated in the study. All

subjects were computer science students in their senior year of which 53% had

at least sixteen-month industrial experience through an industrial internship

program.1 Using students as representatives of software professionals is a

common, but still controversial, practice in software engineering studies [147],

[210]. A replicated experiment [184] indicates that student subjects can be

adequately used as representative for software professionals. Because, more

than half of our subjects have some industrial experience, we believe our results

are relevant to industry practice.

5.3.2 Organizational Structure

The projects are designed to simulate how real software products are devel

oped. The realistic setup was primarily achieved by following the domain

engineering organizational model [39]. In this model, a domain engineering

unit is responsible for the development, evolution and support of the reusable

asset (the CSF framework). Products are developed in separate business units.

The projects were run as business units and a member of the teaching team

(the CSF expert) represented the domain2 engineering unit by providing the

support activities for the CSF framework.

The teaching team performed the role of upper management, overseeing

the development activities and establishing a quasi-corporate culture through

coordination mechanisms. The projects were monitored by upper management

through weekly meetings and were controlled by a set of pre-scheduled deliv

erables. Commitment ethics [109] were adopted to ensure a mature attitude

among team members. The issues emphasized within the course were:

• Requirements are negotiated between members of the development team

and upper management.

1 h tt p : / / www. cs. ualb ert a . ca / iip / index. ht ml
2The domain in this case represents the domain of services provided by the framework

rather than the application domain.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Agreement on what is to be done was identified in a product specification

document.

® Teams are to do their best to meet their commitment,

• If it is evident that the delivery can not be done before the commitment

date, advanced notice is given to upper management and a new, less

ambitious, commitment is negotiated.

In addition to upper management activities, I, as a member of the teaching

team, played the role of the process adapter to fine tune the review process to

satisfy the project needs and track the process enaction.

5.3.3 Developm ent process

Due to the lack of guidelines for framework deployment in the literature, we

decided to develop our own. We relied heavily on experience existing from

previous offerings of the course, and the experience base we developed for peer

reviews. We separated the project life-cycle conceptually into two phases:

exploring the framework to gain an understanding of its use and, using the

framework to build an application.

In the first phase, framework users explored the basic functionality of the

framework. The objectives of this phase were:

1. To ensure that the framework can adequately support the needs of the

application the team was to develop.

2. To understand the framework enough to build a reuse strategy (e.g.,

assigning development responsibilities to team members).

At the beginning of the first phase, the CSF expert, gave two ninety-minute

overview sessions of the framework. The sessions covered the framework design

and its documentation style. The use of the framework was also demonstrated

using a simple example application to give a concrete instance of the abstract

classes of the framework. The developers were given the chance to explore

and voice their concerns about the framework in a peer review session. This

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

review, the focus of this study, aimed at supporting the internalization process

of the framework knowledge.

In the second phase, the framework was extended to produce the applica

tion. The main objective of this phase was to submit the project deliverables

on time. Details of the process were left to the individual project teams to

decide upon; however, we provided guidelines as to the nature of a set of de

liverables at predetermined milestones. Each team had to produce an analysis

document and a detailed design document. Deliverables up to and including

product testing, consisted of updated version of the two documents along with

test plans, integration plans, reports on the process used, and user documen

tation.

A second technical review was held in the eighth week of the development

cycle. The objective of the second review was for the teaching team to review

the product design and give students some feedback. The second set of reviews

followed a process similar to the first set, but they differed in roles, and reading

technique. In the second review, the teaching team was the reviewer and

student team was the authors. No particular reading technique was suggested

for this review.

Project progress was monitored in two ways. Weekly meetings were held

between management and each project team to gauge their progress and ad

dress any concerns the team might have. Secondly, project team members

were required to keep time logs of their project-related activities.

5.4 P rojects con tex t

Building the application by extending the CSF was the only development con

straint imposed on the products developed within the context of this study. In

addition, two review processes were recommended as part of the development

process. All fifteen teams chose to perform the second review, and twelve of

them chose to perform the first one (the focus of this study). In this section

we describe in more details the CSF framework and the process details of the

first review.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.1 T he CSF framework

The CSF [85] is a small framework of approximately 50 Java classes developed

to serve the purpose of this study. The framework facilitates persistence data

management and platform-independent communication. Through a relatively

simple messaging mechanism, the framework allowed objects within different

programs running on different machines to exchange messages of any type and

size.

In order to facilitate its use, the framework comes with several types of

documentation covering all aspects outlined in [49] and [123]:

• Design documentation to provide a high-level overview of the major

classes of the framework and their relationships to one another. This

includes both class diagrams and collaboration diagrams along with tex

tual descriptions.

• Hooks [87] to document the framework’s intended use. They show how

and where the framework can be extended in order to meet application

specific requirements.

• Use-cases to give an overview of the use of the framework. They refer to

individual hooks where developers have to provide their own classes or

methods.

® Examples to show some specific uses of the framework and to provide

running code th a t the developers can experiment with.

« Interface descriptions and source code to show details of classes used in

the framework.

The documentation is about 25 pages (excluding code and code documen

tation) and was distributed using the Web. The framework was carefully

designed. Commonality analysis was performed on other existing frameworks

in the area along with other client server applications developed in the class.

Design patterns [88] were incorporated where applicable. Furthermore, a beta

version of the framework had been used in a limited manner in two student

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

projects of a previous offering of the course to ensure the maturity of the

framework.

5.4.2 Peer review for information sharing

The objective of the first review in the project was to facilitate the knowl

edge internalization step associated with learning the framework. During the

review we collected questions and identified difficulties in understanding the

framework. The questions were addressed immediately if possible, or later if

needed. The underlying assumption is that framework understanding would

be enhanced by deploying a peer review process. The success of this pro

cess mandates that all framework documentation to be reviewed must be in a

relatively mature status.

The review team consisted of a moderator, framework expert, recorder and

five to seven reviewers (all members of the development team). Members of

the teaching team were assigned the moderator, the framework expert, and the

recorder roles. I joined the review meetings as an observer and was responsible

for tracking the review progress, capturing relevant data and video taping all

review meetings.

Unfortunately, none of the existing review processes included in our expe

rience base address the learning objectives directly. The round robin reviews

proposed by Freedman and Weinberg [84] was the closest to serving our pur

pose (see Appendix B), as round robin reviews provide a good educational

environment, especially when all reviewers are at the same level of expertise

[84]. In this study, we enacted a process based on the round robin review.

The review consisted of three phases: preparation, consolidation and follow-

up. The phases are detailed as follows:

Preparation P h ase The reviewers were exposed to the review materials in

two phases. First, they had a preparation meeting (1.5 hour in lecture

format) with the framework author. During that meeting, the framework

author introduced the framework, its design principles and available doc

umentation. These materials were available to students two weeks be-

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fore the review meeting. On the second phase, students uncovered and

recorded their findings using a checklist based method [183]. One week

before the review meeting, checklists were sent to students. Students

individually reviewed the framework documentation and each student

prepared a list of questions to ask.

C onsolidation P h a se Review findings were consolidated in face-to-face col

lection meetings. Each team was given the opportunity in a thirty-

minute meeting to pose their concerns and/or questions. Depending on

the nature of the concern/ question the framework expert either discussed

it immediately during the review meeting or deferred the answer to be

published in a list of Frequently Asked Questions (FAQ). The moderator

restricted the discussion about the raised issues as suggested by Gilb &

Graham [92].

Follow-Up Phase The author follow-up method was used as described in

[84]. The framework expert was free to choose what to include in the

FAQ. The FAQ was published (or updated) one week after the review.

The preparation phase of the reviews started at the beginning of the second

week of the project. The review meeting was held at the third week and the

process ended by publishing (or modifying) the FAQ in the fourth week.

An inspection rate of 50 pages per hour was required in this study - which

is much higher than the suggested optimal rate of one page per hour [92]. This

may indicate an unusually ineffective review process; however, the situation is

not as unusual for the following reasons:

• Gilb & Graham indicated that it is very difficult for organizations to

achieve the optimal rate in practice. In practice, inspection rate of up

to 60 pages per hour are reported (see for example [203], [40]).

• Studies investigating optimal rates are always referring to code inspec

tion rather than documentation reviews. The Reviews literature rarely

discusses technical documentation.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To support the review process, we developed preparation forms, collection

forms and a participant information package (see Appendix C). During the

review preparation period, participants used the preparation forms to record

questions and concerns they wanted to raise. They also recorded preparation

period, team ID, and personal ID. In addition to the material to be reviewed,

the participant information package included the checklist developed to sup

port analysis of the documentation. Findings forms were used to summarize

the outcome of the review meeting.

5.5 D a ta and analysis

5.5.1 D ata and analysis technique

A wide variety of data was collected over the course of the project life span,

using several techniques. First we describe the subset of data related to this

thesis, then we briefly discuss the analysis technique used to answer the re

search questions.

Q uestionnaires. Questionnaires were used at the beginning to collect in

formation about students’ academic backgrounds and industrial expe

riences, and at the end to poll students opinions about the provided

process guidelines and the quality of the documentation. Students were

also required to report on the effort invested in activities related to the

framework uses. After the first term, as a result of the projects post

mortem analysis a second questionnaire was added to poll the partici

pants’ view about aspects of the framework at the end of the first phase

of development.

Data on the first questionnaire were mostly confirmed using students’

academic records. Information from the final questionnaire were partially

verified against the submitted project documentation and the weekly

reports.

Im plem entation score An implementation score was assigned for each prod

uct at the end of the semester. A grade was assigned by the teaching

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

team based on the quality of the product’s architecture and how well

the submitted system meets each of the agreed-upon functionalities, as

defined in the product specification document.

The data was collected over three consecutive terms and members of the

teaching team changed over these terms. In order not to jeopardize the

consistency of the data, we analyzed data from each term separately.

R eview data The preparation data was collected (time and list of findings)

and the review meetings were video taped. Details of the review data

and its analysis will be discussed in the next chapter.

S elf-assessm ents Within the term, students were asked to assess the ef

fectiveness of all team members, individually and collectively. Self-

assessment reports were used to detect problems, or exceptional per

formance within the team.

Process M anagem ent R eport After committing to the product require

ments, each team is required to submit a project plan. The project

plan details the product requirements, development life-cycle, role as

signment and the projected budget. At the final delivery, the project

plan was modified to reflect changes to the plan over the semester with

proper justification in case of deviation from the original plan.

Progress reports Each team was requested to update their project logs on

weekly basis to record development activities done during th a t week as

well as the number of hours worked by the team on the project.

Problem reports Clarification or help with the CSF was submitted via e-

mail to the framework expert.

To answer our first question (can peer reviews be effectively deployed as

an interaction mechanism to communicate knowledge about the framework at

the early stages of application development?), we statistically analyzed the

review data (number of findings and effort). Statistical findings were further

confirmed (or questioned) based on the subjective assessment of the review

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

participants. The reviewer’s perception was collected right after the meeting

in a quick discussion session and was confirmed using the questionnaires.

To answer the second question (is there a pattern-of-use framework users

deploy to understand frameworks and learn how to develop applications using

frameworks?), we qualitatively analyzed the project management reports look

ing for commonalities and differences in the development process. Specifically

we were interested in management models and role assignments. Findings were

confirmed using the self-assessment reports, progress reports and the observa

tions we collected during the weekly meetings.

The third question (what are the roles of framework documentation in

communicating the framework knowledge and how can it be improved?) was

answered by quantitatively analyzing the student’s response to some closed

questions in the questionnaires. For example, students were asked to rate the

usefulness of the examples supplied in the framework documentation in a five

point scale. To reduce subject bias in the results, we allowed “not applicable”

as one of the choices. Findings were confirmed using open ended questions in

the questionnaires. For example, students were asked to recommend changes

in the process for future offerings of the course.

5.5.2 Potential confounding factors

Since in this study we didn’t have the same level of control as in a laboratory

experimental study, identifying and eliminating the effect of potential con

founding factors were vital for the validation of the study findings. The effect

of subjects’ backgrounds is a usual concern in this type of study. The concern

is that the differences in the statistical data can be explained by the partici

pants’ backgrounds rather than the variables identified in the study. Typically,

professional training of a software developer and industrial experience [210] are

used to assess his/her background.

The amount of professional training was assessed in terms of academic

records in previously studied computer science courses and the number of

these courses. Based on their Grade Point Average (GPA), students were

categorized as above average, average or below average. Assuming a normal

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distribution for GPA, a student is considered:

• above average if his GPA > average GPA + tr/2,

• below average if her GPA < average GPA - cr/2,

® average otherwise.

All subjects in our study have experiences in designing and implementing

course projects, and they all worked in development teams. We also assessed

their development experience in industrial setting. A student was assessed as:

• novice if s/he has any industry experience but less than one year of

experience in industrial setup

• experienced if s/he has more than three years of experience in industrial

setup, and

• limited experience otherwise.

Background data was assessed using a Likert-type scale in the follow

ing manner: above-average (3), average (2), below-average (1), experienced

(3), limited experience (2) and novice (1). The team score is calculated as

a percentage of the maximum score they could have achieved. For exam

ple, if the academic records of a team of six students shows two above aver

age students, three average and one below average, the team score would be

_ 72.22%. Table 5.1, provides a summary of background profile

of all participating teams along with the implementation score. The average

number of computer science courses (count) is also provided in the table.

In order to understand the effect of the confounding factors, we used Pear

son correlation coefficient [122] to measures the strength of the linear relation

ship between the implementation score and each of the potential confounding

factors discussed above. Correlation r falls between —1 and +1. Values of

r near zero indicate a very weak linear relationship. The strength of the re

lationship increases as r moves away from 0 towards either —1 or +1. The

case of — 1 indicates an inverse relationship. The values of Pearson correlation

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Team ID Industrial
Experience

Professional Training Implementation
ScoreScore Count

T1G1 53.33% 60.00% 6.00 98.67%
T1G2 50.00% 72.22% 4.67 92.00%
T1G3 38.89% 72.22% 3.17 88.67%
T1G4 40.00% 60.00% 4.20 55.33%
T1G5 66.67% 83.33% 6.83 93.33%
T1G6 66.67% 80.00% 7.80 83.33%
T2G1 38.89% 61.11% 4.50 88.81%
T2G2 60.00% 73.33% 6.80 80.00%
T2G3 61.11% 61.11% 6.00 90.71%
T2G4 44.44% 55.56% 5.67 16.67%
T2G5 61.11% 66.67% 6.50 75.24%
T3G1 33.33% 71.43% 3.71 85.71%
T3G2 52.38% 80.95% 6.57 76.19%
T3G3 33.33% 55.56% 4.33 84.52%
T3G4 66.67% 71.43% 7.43 92.38%

Table 5.1: Background scores for project teams

Correlation with
GPA number of courses Industrial Experience

Term 1 0.1001 0.2571 0.3105
Term 2 0.3198 -0.1 0.1768
Term 3 -0.1026 0.2 0.4045

Table 5.2: Correlation between implementation score and student background

coefficients are summarized in Table 5.2. As seen in the table, there is some

correlation between the confounding factors and the implementation marks.

As expected, the industrial experience has the largest correlation coefficient.

However, we can ignore these correlation in further analysis as the largest cor

relation coefficient, 0.4045 accounts for 16.4% (r2 = 0.1636) of the observed

variation in the implementation score. According to Humphrey [108]: there

is no relation if r 2 < 0.5. Furthermore, the combined effect (over the three

terms) of the industrial experience reduces the effect to 7.25% (r2 = 0.0727).

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 R esu lts

In this section the results are summarized in terms of project teams which is

the same unit of analysis used in the project. Through our study, we used the

implementation score as the major indicator for team success. The significance

of this measure was cross-checked using records of the weekly meetings and

the type and volume of questions addressed to the CSF expert after the first

review.

5.6.1 Effectiveness of peer reviews

Our quantitative analysis confirmed the usefulness of peer reviews in the con

text of understanding frameworks (see Chapter 6). The subjective assessment

of those who replied to the question “how helpful was the review process for im

proving your understanding of the framework?” in the questionnaire confirmed

the statistical results. The students answers to this question are summarized

in Table 5.3. As can be seen from the table, on a scale of 1 to 5 with 1 = not

helpful and 5 = very helpful, 54.29% of those responded to this question rated

the review as either helpful or very helpful as opposed to those who rated it

to be with limited or no help 17.14%. One student even added “The group

discussion, and review led to a faster and more thorough understanding o f the

framework. ” Furthermore, some of the reasons given by students for the low

rating of helpfulness were: “my understanding was that we were supposed to

understand the CSF when we showed up, enough to raise risks and concerns

with i t” and “I don’t think I am technically sound enough to go around and

start commenting on other peoples code. ”

Reviewers pointed out the benefits of reviews in three areas: i) setting

deadlines for the understanding process, ii) consolidating the development

team ’s point of view through well-organized discussion, and Hi) getting fast

feedback from the framework expert. Few reviewers saw reviews as waste of

time because they suspected the accuracy of the documentation; as one student

stated: “(the project has to work with the CSF not the concepts explained in

the documentation) .”

85

with permission of the copyright owner. Further reproduction prohibited without permission.

Helpfulness level
1 2 3 4 5

0.0% 17.14% 28.57% 42.86% 11.43%

Table 5.3: Answers to question: “how helpful were the reviews in understand
ing the CSF?”

The review benefit extended beyond supporting the development organi

zation, it provided an interaction mechanism to improve the form and content

of the framework documentation. The information sharing reviews were used

in building an experience base to support the CSF in the form of Frequently

Asked Questions. In total, the FAQ contains 48 questions, 85.42% of which

came directly from reviews.

Reviewers also detected framework defects (e.g., “There seems to be unnec

essary dependency between the persistence and the communication subsystems.

The initialization requires a persistence manager to be initialized even if the

user doesn’t require persistence (just communication) ”) or documentation lim

itations (e.g., “The exception types (i.e. SendException) do not appear to be

listed in a definitive form at”). Reported defects amounts to 18.5% of the total

number of reported issues.3

5.6.2 Role of the docum entation

At the beginning of the study, to ensure th a t the framework documentation

fulfils all the roles proposed by Johnson & Foote [123], we included a complete

set of documentation as suggested by Butler et al. [49]. In addition to the

functionality provided by the framework, we found that the framework users

were interested to learn about the non-functional aspects of the framework as

well. 25% of the reported questions and concerns in the reviews addressed

the performance of the framework. Although it seems natural enough for

developers to have concerns about framework performance, it has received

little recognition as a documentation priority [49]. Some of the questions in

this category addressed the general performance of the framework, (e.g., “In

Excluding false positives

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

!

Term
HL Doc. D. Doc. Code Exp. Base Consulting
R C R C R C R C R C

1 2.1 n /a 2.7 n /a 4.0 n /a n /a n /a n /a n /a
2 3.4 3.4 3.8 3.2 4.2 3.4 3.6 3.7 4.5 4.4
3 2.2 3.1 3.9 4.0 4.0 3.0 3.6 4.0 3.4 3.8

Table 5.4: Rating for different sources of knowledge

real time context, what are the overheads imposed by the framework?”) and

others addressed the options provided by the framework, (e.g., “Are there

performance advantages to running “applet mailserver” vs. “mailserver” ?)

As part of the post project survey, participants were asked to rate on a

scale of 1 to 5 where 5 is the highest value, the usefulness4 of different parts of

the supplied documentation. The results shown in Table 5.4 are the averages

of these ratings categorized into high level documentation (design diagrams

and use cases) and detailed documentation (hooks and examples) and code.

In the first term, as can be seen from the first line of the table, all aspect

of the supplied knowledge was not perceived as useful by project participants

(with the exception of code). Analyzing the results we realized that the doc

umentation suffers from two main problems: presentation and perspective.

The problem with the presentation of the documentation appeared in the

comment of one participant: “The documentation was fairly sparse, and I

really only found the use cases of any value. ” Although the documentation

provided all the required knowledge proposed in the framework literature, we

did not adequately support navigation among different type of documentation.

In the second term, we added diagrams and hyper-links to cross reference

related parts of the documentation. In general, these changes improved how

the developers valued the documentation as seen in the second and third lines

of Table 5.4.

The second problem with the documentation was already known to us, the

documentation reflects the perspective of the framework developer, providing

what s/he envisioned as im portant to document rather than what is seen as im

portant from the perspective of the framework users. The FAQ we maintained

4 Starting the second term the usefulness was refined into relevance and clarity.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P ro cess guidelines
for CSF

Term 3

Figure 5.1: Percentage of students relying on the framework experience base
to understand the CSF

was the first proposed solution to mitigate this problem. We also realized the

need to provide process guidelines for using the CSF framework. A series of

steps defining high level processes guiding new users of the framework through

its use were provided starting the second semester of the study [86]. Students

rated the experience base (FAQ) part of documentation as of high value (see

Table 5.4). Furthermore, as the framework FAQ and the process guidelines

evolved, the number of the students who relied on the framework FAQ for

understanding and using the framework increased. This increase showed up

in the increase of the number of students who explicitly mentioned FAQ and

the process guidelines while answering the question: “Which option5 or com

bination of options from question 3 did you mainly rely on in understanding

the CSF?,; in the post project survey. The results axe displayed in Figure 5.1.

5The options are code, hooks, examples, design diagrams, use cases, process guidelines
and FAQ.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6.3 Effective processes

The effect of using the framework on the development process was relatively

uniform across all teams. During the analysis phase, teams investigated the

framework to understand its architecture and how to integrate it within their

application. For the first two term, the key process enacted during this stage

was the information sharing review. During the third term the teams relied

predominantly on the knowledge carried over between terms. To prepare for

the review, students relied on high level documentation, mainly the use cases

and design diagrams, to gain a high level understanding about the framework.

During the coding and testing phases, most of the developers relied on

the code and examples. The key process during this phase was expanding the

examples. Almost all project teams started from one of the supplied executable

examples and modified that example to accommodate the requirements of

their application. The experience base built around the framework (FAQ and

process guidelines) provided guidance through out the modification process.

The number of developers directly interacting with the framework varied

depending on the team management model used. The number of developers

responsible for learning and using the framework varied from one person to

the nearly the entire group. Our data shows in Table 5.5 that successful

teams delegated all framework-related tasks to few team members. Pearson

correlation coefficient between the implementation score (measure of success)

and the number of people involved with the framework ranged from r — —0.99

to r = —0.73.

This correlation could be explained by considering a team ’s resource man

agement. Developers involved with the framework have to invest a considerable

amount of time and effort to understand the framework before they could be

come a useful resource for the team. Teams with few developers assigned to

the job, gained collectively from having an expert with good understanding

of both the framework and the application. This expert was able to work as

a framework consultant and to propose solutions and answer question when

the need arose without having other developers to devote extra time to under-

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Team ID
of developers

involved with the CSF
Implementation

Score
T1G1 1 98.67%
T1G2 2 92.00%
T1G3 3 88.67%
T1G4 4 55.33%
T1G5 3 93.33%
T1G6 3 83.33%
T2G1 3 88.81%
T2G2 2 80.00%
T2G3 1 90.71%
T2G4 1 16.67%
T2G5 5 75.24%
T3G1 1 85.71%
T3G2 2 76.19%
T3G3 1 84.52%
T3G4 n /a 92.38%

Table 5.5: Background scores for project teams

standing the details of the framework. On the other hand, teams with more

developers assigned to the job depleted their resources repeating the same job

with minimal gain to the team as a whole.

The use of consultant-based management was quite evident in the third

term of the study, as one team even relied on the help of a student who had

used the framework in a previous term. This model was recommended in other

studies concerned with communicating knowledge in software organizations

[116].

5.7 Sum m ary

We conducted a study to investigate processes and techniques supporting soft

ware development using application frameworks. Specifically, we investigated

how software developers with little or no knowledge of a framework approach

the development of new applications using this framework. The study was

considered successful. Over the course of three academic terms, adopted tech

niques managed to successfully disseminated knowledge about the framework

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to interested parties. The experience base centered around the framework

significantly improved the framework documentation and drastically reduced

dependency on the framework expert.

Analysis of quantitative data showed that reviews are useful interaction

mechanism for information sharing at early stages of development (after the

requirements phase and before the design phase). These findings were further

confirmed by the subjective assessment of the study participants. Reviewers

pointed out the benefit of reviews in three different areas: (i) setting deadlines

for the understanding process, (ii) consolidating the development team point

of view through well-organized discussion, and (Hi) getting fast feedback from

the framework expert.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Packaging Process Experiences

6.1 In troduction

The focus of this chapter is to analyze the concrete experiences collected from

the enaction of the competency refinery and to build a modus experience

package for the information sharing reviews discussed in the pervious chapter.

According to the review taxonomy defined in Chapter 4, the new package has

to define the process objective, work products that can be reviewed, methods

to calculate costs and benefits and the development context and to recommend

an optimal team size and a process structure.

The main objective of the information exchange review is to support frame

work learning by speeding up the rate of learning. However, the reviews have

proven to be useful in improving the quality of the framework documentation

as well. In the pervious chapter we discussed the development context, and

the document under review. In this chapter we define the costs and benefits

of enacting peer reviews to accelerate the early stages of framework learning.

We then use this function to statistically evaluate different alternatives of the

process structure. Specifically, we want to answer the following questions:

• Does the checklist used affect the review results?

• W hat is the optimal size for the review team to maximize the review

effectiveness?

• Do multiple-session reviews outperform one-session reviews with respect

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to defect detection? If yes, what is the optimal number of sessions to

maximize the defect detection rate?

First, our investigation strategy is presented in Section 6.2, followed by

an overview of the data used in the analysis in Section 6.3. The research

questions are answered in Section 6.4 and the effect of different process inputs

on the review performance is assessed. Specifically, professional training and

industrial experience of the reviewers, and the length of the preparation period

are analyzed in Section 6.5. The chapter concludes with our recommendation

for this type review.

6.2 In vestigation stra tegy

A total of 11 teams (55 reviewers) participated in the reviews; 27 students from

six teams, in the first term, and 28 from five teams in the second term. Since

we want to answer our research questions for a varying number of team sizes,

we based our study on virtual teams; a technique widely used in software en

gineering research [18], [38], [41], [163]. A virtual team is created by randomly

selecting a combination of individual reviewers from reviewers working on the

same document. The validity of this technique is assured by creating a large

group of virtual teams for each team size and using the statistical parameters

of the group as basis for the results.

The team size was systematically changed to cover the range of teams sizes

required to properly answer that particular question. For each team size a

group of 1000 different virtual teams were created. For each virtual team, we

collected the effort in minutes of each individual during preparation (rounded

to the nearest 10 m inute), and the specific issues (findings) raised during the

review meeting by th a t individual. To reduce the effect of out-liars in the

data, the value of the variable of interest is reported as the median of the 1000

observation. For the same reason, the IQR (Inter Quartile Range) was used

as a measure for the spread in data.

In the analysis, we considered two distributions to be significantly different

only if the Student’s t-test reject the null hypothesis (Ho) th a t the observations

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are drawn from the same population with a confidence level > 0.9. In all cases,

the value of the significant probability (Pt) is reported to indicate the strength

of evidence against (or for) H0. Pt < 0.1 indicates the significant probability

for rejecting the null hypothesis, a smaller value for Pt means that the H0 is

strongly rejected or the result is highly statistically significant.

6.2.1 Evaluation criteria

For defect detection purposes, several models have been used in literature

to report review effectiveness. Two straightforward efficiency models were

suggested: either to measure the percentage of the total defects found during

the review (^ or to measure the results (defects
r j , ,, a 4- i • , i / defects found durinq review \
oun agains e e or consume m e process (effort consumed in review)
[92] [163]. W ith the exception of evaluating the optimal team size, the first

model was used in all the analysis.

6.3 O verview o f data

Three sets of data are used in the analysis of this study:

i) Preparation reports. The preparation forms were used by individual re

viewers to record questions and concerns they wanted to raise during the

review meeting. They were also used to record time invested in prepar

ing for the review. The data recorded in the preparations forms are used

to assess the gain (or losses) of the virtual review meetings, assuming

that all questions and concerns reported in the preparation forms will

be asked during the virtual review meeting.

ii) Meeting summaries. Collection forms were used to summarize the re

view meetings. They captured all questions and concerns raised by each

team during the meeting. This information is used to assess the benefits

of multiple session reviews by comparing the meeting reports from all

review sessions.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in) The author repair list. The author repair list appeared in the form of

a list of Frequently Asked Questions (FAQ). Each item in the FAQ list

characterizes an issue related to the framework performance and func

tionality, but not covered by other forms of documentation (omission

defects).

6.3.1 D ata reduction

Data manipulation after collection is frequently called data reduction. This

manipulation is usually done to remove data that are not pertinent to the

study or to adjust to any systematic errors in the measurements.

The purpose of the data reduction we performed was to consolidate the in

formation captured in the preparation and meeting forms. Because the ques

tions and concerned were documented in natural language, the same issue

may be worded differently in different forms. Following the data reduction

technique presented in [41], two researchers independently reviewed the list of

issues with a primary focus of identifying repeated issues. To ensure a consis

tent counting scheme, the two researchers then met to produce a consolidated

list of unique issues. To raise our confidence in the final list, this list was

further confirmed by having the framework author review and agree to its

content.

Issues raised during the review meeting were classified and their classifica

tion was agreed upon by the reviewers. This classification was further validated

with the framework author through an interview and a few adjustments were

made. The issues were grouped into:

• False Positives (questions that are not related to the framework (e.g,

Java related questions).

• Maintenance issues (issues for which documentation was changed to fix

framework defects and documentation limitations (e.g., missing Web

link).

• Findings (questions related to framework understanding).

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V

■ Findings
HI O ther

<3N X& 0ON n # 0C? nO^ nCr5^ -<1/ /<(V ><(V

Figure 6.1: Disposition of issues recorded at the review meetings

Finally, to raise our confidence in the list of findings, it was cross-checked with

the FAQs. All issues in the findings list either appeared in the FAQs or was re

solved during the review meeting.1 Across all reviews, 36% of the issues raised

during the review meetings were false positives, 12% dealt with maintenance

issues and 52% were issues related to framework understandability. False pos

itives and maintenance issues were not included further in the analysis. The

distribution of issues reported by each team appears in Figure 6.1.

6.3.2 Summary of observations

During preparation, reviewers examined the framework documentation to iden

tify difficulties in understanding the framework. During the meeting, the is

sues raised were answered immediately, if possible, or later in the FAQ. The

meetings served two functions: (1) Removal of unimportant or unrelated is

sues from the list of questions that has to be answered in the FAQ, and (2)

improvement of the framework expert’s understanding of the issues. In this

section, we analyze the discovery of findings across the review activities.

1Issues resolved during the meeting generally resulted in docum entation changes (e.g.,
changes in the documentation wording to make it clearer).

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30% -

25% -

20% -

15% -
10% -

5% -

0% - # of
findings6

Figure 6.2: Number of findings per reviewer during preparation

Sum m ary o f reported findings

Figure 6.2, shows a histogram2 of the number of findings reported by each

reviewer. The number of recorded findings across all reviewers range from 0

to 9, with a median = 2, IQR = 2.

In analyzing the rate of findings reported per term, we found no statistical

difference3 between the average number of findings reported across teams in

each term (p^Term 1)= 0.37, Pi?(Term 2)= 0.62). However, this average was

significantly different across terms (pf = 0.01). The rate of reporting per team

in Term 2 was 45.6% less th a t the average rate in the first term.

Sum m ary o f effort data

The total number of hours spent in preparing, meeting and responding to

the review findings is the most common measure for review cost [77], [57],

[138]. Figure 6.3 shows a histogram of the time investment by each reviewer

in order to prepare for the review. Across all reviewers the effort ranged from

30 minutes to 4 hours, with a median effort was 2.5 hour, with IQR = 1 Hour.

2All histograms in this thesis are normalized to show percentage with respect to the to tal
population size.

3Multiple comparison tests like these were computed using ANOVA F -test.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50%

45% -
40% -

35% -

30% -

25% -

20% -

15% -

10% -

5% -

0% -

a Term 1
11 Term 2
■ Combined

Time invested in reviews

0.5 1.5 2.5 3.5 Tim e4.5

Figure 6.3: Time spent preparing for the review

The data suggests tha t there is no statistical difference between the average

effort across teams (pf = 0.33).

6.4 T he effect o f process stru ctu re

6.4.1 The effect o f th e detection technique

The choice of the detection technique has always been perceived as an im

portant factor affecting peer review performance [183]. Some methods use

systematic techniques, with specific and distinct responsibilities (e.g., Active

design review [175], phased inspection [133]). While others use nonsystematic

techniques with general and identical responsibilities (e.g., Fagan inspection

[77], jV-fold inspection [155]).

In our study we adopted the nonsystematic approach, however, we sup

ported the reviewers with a checklist. In the first term, two different checklists

were prepared and each list was given to three review teams. The first was a

generic checklist based on the checklist provided with the description of the

round-robin reviews [84]. The second checklist was based on the scenario based

checklists proposed by Proter et al. [183].

We studied the effect of using different checklists in two stages. First,

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

20

15

10

coo>c
C
O

V T r T T T

s m
X X

i
1 x >1 x ® lt< 1 T

X
1

> A.

T

Cklstl Cklst2 Cklstl Cklst2 Cklstl Cklst2 Cklstl Cklst2 Cklstl Cklst2
4 mmbrs 5 mmbrs 6 mmbrs 7 mmbrs 8 mmbrs

team team team team team

Figure 6.4: The effect of using different checklists

we investigated the individual preparation reports. There was no significant

difference in the number of findings reported by users of the two checklist

(Pt = 0.57).

Second, we investigated the amount of overlap in the reported findings

reported by the reviewers. In order to perform this analysis, we created virtual

teams. The total number of findings reported by each virtual team was then

calculated and we analyzed the differences in these results. The team size was

systematically changed from four to eight reviewers. The range of team sizes

was selected based on literature recommendations [95], [78], [150], and typical

numbers from industry [238], [243], [234].

As can be seen in the boxplot in Figure 6.4, there was no difference between

the two checklists despite the team size (pt (4 members team) = 0.43, pt (5

members team) = 0.73, pt (6 members team) = 0.80, pt (7 members team)

= 0.97, pt (8 members team) = 0.70).

6.4.2 Large team versus small team

The nature of the review and the definition of effectiveness are the major

source of variation in recommended team size. Usually, a trade off between

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

work-product coverage and review cost must be considered in deciding the

actual team size. The smaller the team size, the more likely that some findings

will be overlooked. On the other hand, the larger the team size, the higher the

impact on the project’s cost and schedule. In our context, the effectiveness of

the review is calculated as the gain divided by the costs. The review costs are

calculated as the sum of fixed costs and the cost of performing the review. The

fixed costs is the sum of the administration costs and the cost of the framework

expert. The review cost is the sum of the time reviewers spend in preparation

and the cost of attending the meeting. The review cost can be formulated as:

. » r • 7 ■ V '■team SizeFixed costs + leam size * Meeting duration + / x Preparation time

Review gain is calculated as the sum of the individual gain of all review par

ticipants. The individual’s gain is the time saved due to attending the review

meeting, i.e the number of of issues a reviewer learns during the meeting

multiplied by the cost of detecting these issues by reading the framework doc

umentation. The review gain can be formulated as:

E team Size , _ . 1 1 . . Preparation time of reviewer(i) .
(Issues learned by reviewer (i) * -----------------------------------)

i=zl Issues detected by reviewer (i)
This formula is built on assuming that the cost of detecting the issues learned

during the review is uniform and equals to the cost of detecting an issue during

preparation time. These assumptions are not accurate.

Since we don’t know the exact cost for an individual to detect more issues

we simulated this value. The time consumed by a reviewer to find an issue

after the review was estimated as the time consumed to detect an issue during

the review multiplied by a multiplication factor (MP). We simulated the MP

by a normally distributed random variable. A low MP means that issues

discussed during the review are simple and the reviewers will discover them if

they invested a small amount of extra time reading the documentation. The

higher the MP, the higher the likelihood a reviewer may need more time to

detect that particular issue by reading the documentation.

Since the review focused on the reviewers initial understanding of the

framework, the preparation time was divided between understanding the ba

sics of the framework and studying how the framework can be extended to

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

15

10

-5

tn
X
c
£/>D)C
>05tt>

m u

>.i A U A A® ti

Team size

10 11 12 13 14 15 16 17 18 19 20

Figure 6.5: Review benefits as team size increases

meet the project requirements. During the studying time, concerns and ques

tions are raised. We assume that a considerable part of the preparation time

was dedicated to understanding the basics of the framework. Consequently,

it is highly probable that finding more issues will take less time. Hence, we

assumed that the value for the MP should range between [0,1]. In the analysis

we used MP = (p. = 0.5, a = 0.167)4.

Although reviews with more than eight reviewers are rare in practice, one

report supported review teams of twelve reviewers [73]. Increasing the number

beyond 12 was supported by a recent study [38]. In order to cover all sizes

of review teams mentioned in the literature, we changed the team size from

two5 reviewers to teams of up to twenty reviewers. Because the framework

documentation were changed after the first term, members of the virtual review

teams were selected from the same term.

As can be seen in the boxplot in Figure 6.5, adding more reviewers will

increase in review benefits at a higher rate than the increase in its costs. Hence,

increasing the team size will increase the collective benefit from the review.

For practical reasons, while determining the optimal team size, we consid

ered a bigger team to be more efficient only if adding a new reviewer will result

in cost saving of more than 30 minutes (0.5 hr s.) per reviewers. The goal is

4Following the six-sigma rule, 98% of the values are bound between [0,1]
5for team size 2 the maximum number of different teams th a t could be created equals

2 7 C o — 351 virtual teams.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.0

0.8
0.7

0.5 -
0.4 -
0.3 ■
0.2 •

0.1 -

0.0 -

Figure 6.6: Difference in review benefits as team size increases

to evaluate the number beyond which, adding more reviewers will not achieve

the predefined savings level. According to this definition, the optimal team

sizes are nine or ten reviewers (as seen in Figure 6.6). The average increase in

time saving per reviewer drops to 25 minutes per reviewer when the team size

increases from 10 to 11 reviewers. Note that we considered the average savings

as the team increases from 8 to 9 reviewers (29 minutes.) as an outliar. On

the other hand, the data indicates tha t the benefit per reviewer for two and

three person reviewers is less than 30 minutes as well (see Figure 6.5).

6.4.3 O ne session versus m ultiple sessions

From the document under review perspective, the findings th a t appeared in

the FAQs are omission defects [18]. Finding and correcting these defects are

as important as spreading the framework knowledge among students.

As seen in Section 6.4.2, under realistic assumptions, large teams are not

efficient with respect to the reviewers’ knowledge about the framework. In

creasing the number of review teams [155] was proposed as an efficient method

to increase the throughput of the process; especially when the document under

review is written in natural language (e.g., requirements document). In this

section we want to evaluate the effectiveness and efficiency of using more than

one team to review the same document.

In order to perform this evaluation we generated all different two-team,

three-team, four-team and five-team permutations from our data such that all

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One Two Three Four Five
Term 1 6 6C2 = 15 6C3 = 20 6C4 = 15 6C5 = 6
Term 2 5 5C2 = 10 5C3 = 10 5C4 - 5 5c 5 = i
Total 11 25 30 20 7

Table 6.1: Multiple session - data summary

teams are from the same term. Table 6.1 shows the number of data points

for each treatment. Furthermore, to analyze the multiple session data, we

performed another data set reduction to remove duplicated findings (i.e., each

finding is considered once in the findings count across sessions).

We calculated the average change in the review throughput as

average findings for N + 1 sessions — average findings for N sessions
average findings for N sessions

As can be seen in Figure 6.7, adding an extra session to the review has im

proved the review throughput by a minimum of 14.8% (from four-sessions

review to five-sessions review) to a maximum of 80% (from one-session review

to two-sessions review).

Despite the difference in exact values, these results are consistent with

the results reported by Martin & Tsai [155] and Schneider et al. [199] but

contradict the results reported by Porter et al. [181]. This difference can be

attributed to the type of document under review. In our case, as well as in

Martin & Tsai and Schneider’s et al. experiments, the documents under review

are written in natural language. The document under review in the experiment

performed by Porter et al. was more formal as reviewers reviewed code written

in Ch—K

6.5 T he effect o f th e process in p u ts

Several factors, other than process construction, may affect the throughput of

the review process, including the characteristics of the document under review,

reviewer’s ability to detect issues, and the framework expert. The number

and type of issues raised during preparation are influenced by the reviewers’s

ability to detect and raise questions as well as the clarity of the document under

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-o

= 5.1S + 6.5
R2 = 0.9749

Number of sessions

Figure 6.7: The effect of multiple session on review results

review. The number and types of issues recorded in the collection meeting are

influenced by the number of issues recorded in preparation and the amount

of discussion about a specific issue with the framework expert attending the

review meeting.

In the previous section we studied the effect of the process structure on the

review process. In this section we discuss the reviewer’s effect on the review

throughput. Specifically, we will assess the effect of the following three factors:

professional training, industrial experience and preparation time on the total

number of issues reported by each reviewer.

Although, it does not confirm causality, the effect of these factors is assessed

by calculating the correlation between the number of reported findings and

each of the three factors. In order to increase the confidence in our results, we

used resampling techniques [211] to calculate the correlations.

6.5.1 Professional training factor

It is an established fact that experienced practitioners outperform less ex

perienced ones. Apart from the hands on experience (discussed in the next

section), process improvement programs like CMM put a lot of emphasis on

professional training as a vehicle to enhance practitioners’ experience. In this

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16% 16%

14% 14%

12% 12%
10% 10%

6%
4% 4%
2 % 2%

GPA Rank # of courses I

Figure 6.8: Histogram of randomly selected academic information

section we want to evaluate the effect of professional training on the review

throughput.

Although we did not provide direct training on reviews, we believe that

students’ Grade Point Average (GPA) of junior and senior level computer sci

ence courses as well as the number of these courses can be taken as an indicator

to the effect of professional training on the review performance. However, the

results have to be interpreted cautiously and can not be generalized beyond

the performance on this type of reviews.

In order to evaluate the correlation between the GPA and the review per

formance, we investigated whether students with high GPA tend to report a

high number of findings more often than would be expected by chance. The

strategy is to rank the students by GPA and split the number of reported find

ings into ‘above median’ and ‘below median’. Then, the sum of ranks (SO R)

for students in the ‘above median’ category is calculated (SORobserved)-

By randomly associating the GPA rank with the number of reported find

ings and calculating the resulting SOR, a data point representing an associa

tion ‘by chance’ between the sum of ranks and the ‘above median’ category is

generated. By repeating this process 1000 times, a distribution representing

how often the SOR are associated, by chance, with reporting ‘above median’

number of findings is generated (see Figure 6.8(a)).

The level of correlation can be evaluated by comparing the SORobserved to

the random pattern of SOR. The more frequently th a t the randomly generated

SOR(s) is as low as the SO Reserved) the higher the probability that there is no

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Number of
Reported Findings

Industrial Experience Rank
Total2 1

Above Median 25.9% 7.4% 33.3%
Below Median 37.1% 29.6% 66.7%

Total 63.0% 37.0% 100%

Table 6.2: Data summary for industrial experience versus reported findings

relationship between the students GPA and the number of reported findings.

The SORobserved for the students reporting an ’above median’ number of

findings is 115. Comparing with the randomly generated values we find that

in only 36.3% of the trials did random selection of ranks produce a total of

115 or less.

Following the same analysis strategy, the observed number of junior and

senior level computer science courses taken by students reporting ’above me

dian’ number of findings sums to 47 courses. Comparing with the randomly

generated values (see Figure 6.8(b)) we find th a t in 84.7% of the trials did

random selection of number of courses sums to 47 or more.

The above results imply that the association between the review perfor

mance and the GPA is stronger than tha t with the number of courses. How

ever, in both cases it does not seem to be a strong enough association to be

used as a predictor for the review performance.

6.5.2 Industrial experience factor

In this section we statistically evaluate whether the level of industrial expe

rience affects the individual’s performance in the review or not. According

to the categorization of industrial experience data presented in the previous

chapter, student’s experience can take the value of 1 for less than one year of

industrial experience or 2 for more than one year of industrial experience.

If there is a high association between the two variables, then the observed

data will be large in the two diagonal cells on either diagonal on Table 6.2

(ignoring the ‘to ta l’ data). Under the assumption that industrial experience

and the number of reported findings are positively associated, we expect that

the sum of the top-left, bottom-right diagonal to be larger than the other

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.9: Histogram of consistent industrial da ta through random selection

diagonal. The difference between the sums of the two diagonals is called the

consistency measure. In Table 6.2, the consistency measure = (25.9% + 29.6%)

- (7.4% + 37.1%) - 11%)

Comparing the difference between the sums of the two diagonals in the

observed data with randomly generated simulated results we found that 10.1%

of the trials produced difference equivalent to or higher than the observed

difference (see Figure 6.9). The results indicate that a strong association

exists between the reviewer’s industrial experience and the number of reported

findings.

6.5.3 Preparation tim e factor

The amount of preparation time is a measure of the amount of effort the

reviewers put into studying the framework documentation. In this study, we

recommended that students spend between 120 to 180 minutes in preparation.

However, students did not follow this recommendation literally, the reported

preparation time varied from 30 to 240 minutes.

Ranked on the number of reported findings, the top 25% students spent on

average 168 minutes in preparation for the review. The average time reduces

to 160 minutes for the top 50% students. As can be seen in Figure 6.10, the

chance of detecting the same numbers in a randomly generated data is 2.9%

and 4% respectively, indicating a high correlation between the amount of time

invested in preparation and the number of defects reported during the review

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Top 25%] 20%
18%
16%
14%

| 12%
10%

Top 5Q%[20%
18%

•[

2%
0%
8%

6%
4%
2%2%

Figure 6.10: Histogram of randomly selected effort data

meeting.

However, this impressive correlation can only be used as an indicator for

the review performance rather than a predictor. The amount of effort invested

does not only depend on the ‘planned’ or ‘recommended’ amount of effort the

reviewer wanted to spend in preparation, but also on the document under

review as well. It is influenced by the number of questions and concerns a

reviewer has identified by reading the documentation. The more difficulties

s/he finds, the more time s/he will invest to formulate the questions and

concerns. Hence, recommending longer preparation time may not improve

the review throughput. Comparing average preparation time and reported

defects among teams in the first term and the second term confirms this fact.

Although there is no significant difference in the preparation time among the

two sets, reported defects in the second term is less by 45.6%.

6.6 S um m ary and recom m en dations

We have collected data from a review process designed to accelerate the frame

work learning process. In this study, reviews are used in a novel way where

benefits of the review are not only directed towards the reviewers but focus

on improving the quality of the document under review. In order to build an

experience package for this type of review, we evaluated the optimal team size,

number of review sessions and, reading techniques. We also evaluated the ef

fect of the review context, in particular the effect of the reviewer’s background

(industrial and professional training) as well as the amount of time invested

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.11: Findings breakdown

in preparing for the review.

In the following section we summarize the specific results of our study data

and discuss their implications from the viewpoint of a practitioner wanting

to deploy the experience package and a researcher working to improve the

experience package.

R eported Findings. Around one third of the reported issues turned out

to be false positives. Approximately, 10% of the issues raised maintenance

issues either in the framework or in the documentation. Finally, of the issues

related to framework understanding questions, two thirds were seen as omis

sions from the documentation. The remaining 18% were resolved during the

review meeting (see Figure 6.11). The number of issues related to the frame

work understanding per review team ranged from 25.3% to 56.8% for the first

term and from 18.9% to 44.2% for the second term .

For practitioners this suggests that time spent in the review is well invested;

on average 38% of the issues raised during a review meeting added to the

knowledge of the reviewers on how to use the framework. We anticipate that

this number would increase if the reviewers are familiar with the programming

language used to develop the framework, as most of our false positives were

questions related to the Java programming language. However, the decline in

the number of questions and concerns discussed in the review meeting from

the first to the second term suggests that the review process is more useful at

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the introduction of a new framework. Over time, the documentation should

evolve to cover most of the concerns and questions related to the framework

with respect to that domain of applications.

For researchers this suggest that the learning capabilities of reviews need

to be well understood to support different aspects of software development

involving program understanding. Better models need to be developed to

evaluate specific aspects of the review in this context (e.g., review efficiency

and meeting gain).

Team size. We found that the bigger the team size, the more issues will

be detected. However, if the cost associated with adding a new member to

the team is accounted for, the optimal team size will depend on the difficulty

level of the issues raised during the review. Under reasonable assumptions, we

found that the optimal team size is 7 or 8 reviewers.

For practitioners, this imply that increasing the team size up to 8 would

improve the throughput of the review. However, for smaller development

teams, we don’t recommend joining two teams in one review as the points

of interest in the framework may change from one project to another (e.g., not

all the teams used the persistence storage aspect of the framework).

This result was based on the preparation reports. The underlying assump

tion is that all issues raised during the meeting are understood by all reviewers

attending the meeting. More research is needed to verify these results by tak

ing meeting synergy into account.

M ultiple sessions. We found that increasing the number of sessions

improves the throughput of the review; however, the rate of improvement

drops drastically as the number of sessions increases. Two sessions reviews

improved the throughput over one session review by an average of 80%. The

improvement drops to 28% if the number of sessions increased from two to

three. In practice, this means that if the main objective of the reviews is to

improve the quality of a framework documentation, multiple session reviews

improves the review throughput.

The efficiency of multiple session reviews depends on the number of defects

to be found in the document. The lower the number of defects in the docu-

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ment, the less the number of review sessions needed. In order to design the

proper number of sessions for a review, more research is needed using statistical

techniques to estimate the number of remaining defects in a document.

R ev iew er’s B ackground Our observed data indicates that the perfor

mance of individual reviewers is highly correlated with their industrial ex

perience. A weaker correlation with their performance in computer science

courses was also observed. The number of courses taken did not seem to have

any correlation with the performance.

From a practitioners’ perspective, these results confirm the value of indus

trial experience in software engineering activities. The importance of profes

sional training is also evident but somewhat weaker.

6.6.1 Summary

In summary, an information sharing review is an effective tool to accelerate

the process of knowledge internalization for object-oriented application frame

works at the early stages of the development process. The optimal team size

for this type of review is 7 or 8 reviewers. Statistically, the design of the

checklist does not affect the review performance; however reviewers felt more

comfortable with the scenario based checklists. In general, experienced review

ers will outperform the less experienced ones; however, professional training

may mitigate this performance difference.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

A utom ated Support for the
C om petency Refinery

7.1 In troduction

A typical competency refinery has to deal with a large amount of information

in order to create business value to support the development organization.

The refinery built in this thesis is no exception. The amount of information

to be handled mandates some level of automated support for the refinery

functionality. The main goal of the support environment is to facilitate the

reuse of past experiences and thereby suggest solutions to given problems based

on some similarity criteria.

The refinery’s support environment should aid both the users and the main

ta in ed of the experience base. The most im portant users are project members

who must be provided with easy to use and efficient search capabilities of the

experience base. Key support for the maintainers of the experience base in

clude the capturing and analyzing of information about the process enactment.

In the following section we discuss requirements for the proposed support

environment. An overview of the tool architecture to support different aspects

of the refinery architecture are described in Section 7.3. The documentation of

the prototype tool we built along with some usage scenarios follows in Sections

7.4 and 7.5, respectively. An assessment of the developed prototype along with

suggested modifications to overcome identified problems is discussed in Section

7.6. Finally, Section 7.7 summarized the chapter’s contributions.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 R equirem ents for supporting th e C om pe
ten cy R efinery

Several authors [7] [26] [24] [102] [167] [196] [221] [240] discuss the important

factors required for a successful implementation of a system to support knowl

edge management activities within software organizations. These requirements

can be grouped into organizational requirements (e.g., motivating employees,

need to share knowledge and to create shared objectives), functional (e.g.,

experience acquisition, experience characterization) and technological require

ments (e.g., details of the knowledge base and other technical infrastructure).

Although the organizational requirements are extremely important, we will

not elaborate on them any further, as they require substantial psychological

and sociological studies that are beyond the scope of this thesis.

7.2.1 Functional requirem ents.

As discussed in Chapter 3, the mechanisms necessary for the refinery to func

tion properly can be grouped in three sets of activities: identification, stor

age and communication of experiences [226]. Communication activities facil

itate the interaction between the refinery and its users. They can be broken

down into two sets of tasks: collecting information and dispensing experi

ences. Through the identification activities, collected information is processed

to extract knowledge, for example, to detect lessons learned, and/or develop

process models. Storage activities are concerned with packaging and saving

models created during identification as well as saving collected information.

Hence, an environment supporting the refinery is required to: collect infor

mation and package and dispense experiences. These functional requirements

can be broken down as follows (see Figure 7.1):

F . l C ollect in fo rm ation : In this set of tasks, information captured from

process enactions is recorded in order to document hands-on experiences.

Recorded information has to be somehow validated to assure its objec

tivity; for example, sending questionnaires to as many developers as pos

sible and using statistical techniques to determine trends in the replies.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Store Store

SelectMatchRecord Reason

BrowseCapture AnalyzeClassify

Validate

RetrieveCatalogue

Characterize

Package knowledgeCollect Information Dispense experiences

Tire Competency Refinery tasks

Figure 7.1: Decomposition of the experience administration tasks

Collected information is then classified according to a predefined taxon

omy and stored for future reference. This information should provide

evidence of success or failure of a particular process and/or technique.

F.2 Package knowledge: Through analysis, the refinery maintainer com

piles experiences by exploring knowledge contained in the collected in

formation. Compiled experiences are then catalogued according to the

problem they address and features that set them apart from similar expe

riences. Composed experience packages are then stored in the experience

base.

F.3 D ispense experiences: The refinery users access the experience base

to search for possible solutions for their problems. They should be able

to review and reason about the proposed solutions before selecting one.

Allowing the users to browse the contents of the experience base is im

portant in case the reasoning system failed to provide a solution to the

problem in hand.

7.2.2 System level requirem ents

In the following we present a list of requirements which we found important

for a system to support effectively the refinery’s functionality from a technical

perspective. The list is compiled from our experience in the enactment of the

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

refinery as well as the requirements reported in similar research results [7] [24]

[102] [167] [196]. A proposed system should:

5.1 Support th e evolutionary nature o f th e software experiences. As

more experiences are solicited from projects, more of the tacit process

knowledge is recognized and explicitly documented. Furthermore, devel

opment processes evolve to match the dynamics of the software business

and the organizations maturity. This means th a t packages stored in the

experience base should be continuously maintained. For example, at the

beginning of our case study, we anticipated the existence of an effective

process for developing applications using the framework but we did not

have any recommendations to this effect. After the first term, we realized

a correlation between the number of developers directly interacting with

the framework and the team performance and reflected this knowledge in

our recommendations. Towards the end of the case study, it was evident

that consultant-based team management is suitable for this type of de

velopment. A system to support this form of knowledge evolution must

allow the packaging and repackaging of knowledge at different levels of

abstraction.

5 .2 Support different project setups. The assumption that a standard

setup must be used for each project may create barriers to supporting the

development process. A competency refinery system must support the

development organization as its development practices mature. Hence,

the refinery should be able accommodate a variety of project setups

by supporting acquisition and deployment techniques that are flexible

enough to integrate easily with several development environments. For

example, we relied heavily on questionnaires to acquire knowledge about

the process performance. For an organization with mature development

processes, process measurements might be a better approach to acquire

the same information.

5 .3 Support evaluating the applicability o f packaged knowledge.

The dynamic nature of the software business frequently raises the need

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for new information to be collected and packaged; this, in turn, may

render some existing packages obsolete. A package may be obsolete

due to the emergence of a better solution for the problem or the prob

lem it addresses no longer exists. For example, the experience base

centered around the CSF matured as a result of the information shar

ing reviews. If this experience base reaches a certain level of maturity,

browsing the experience base might be a better approach to support the

CSF understanding than reviews. In order to evaluate the best match

ing knowledge item, the system should support mechanisms to solicit

user feedback about the used knowledge items. Maintaining statistics

about the system usage (e.g., frequency of search, frequency of access)

is also important to differentiate between obsolete knowledge items and

items that are not accessed due to problems in the built-in knowledge

classification technique.

5 .4 Support re triev a l of packages o f sim ilar experiences. Differences

between software development projects do exist, and therefore it is very

unlikely to find a packaged experience that exactly matches the cur

rent project’s characteristics. Typically, software practitioners address a

problem by thinking of situations where similar problems occurred and

often adapt a previous solution to the current problem. This reuse stra t

egy is commonly used by software developers. For example, based on our

experience, it is natural to recommend reviews as a tool for framework

understanding despite the product size, the development setup (indus

trial or academic). In support for this strategy, if the project charac

teristics can not be exactly matched, the retrieval mechanism should be

able to find and rank similar experiences.

5 .5 Interactively guide users through the retrieval process. In order

to locate the best matching solution, the built-in knowledge classifica

tion structure needs to be understood. Often, the refinery users can

only anticipate a subset of these classifiers; classifiers such as chances of

short-term and long-term success are sometimes used as process classi-

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fiers [159], yet they are not easy to anticipate. Knowing and understand

ing the built-in classification structure should not be required in order

to effectively use the system. To overcome these impedances, the sys

tem should guide users through the package selection by asking specific

questions about the problem context to retrieve the best solution(s) that

matches the problem and its environment characteristics.

5 .6 Support retrieval based on incom plete inform ation. As experi

ence packages stored within the system evolve, more classifiers about

these packages emerge. However, the refinery users might not be aware

of all the classifiers for the target experience package. The system should

be able to retrieve the packages, even if the user did not answer some of

the guiding questions.

5 .7 R ely on familiar technologies to acquire and dissem inate knowl

edge. The steep learning curve needed to use a software tool effectively

is a major reason for rejecting the software tool in practice [159] [27].

The refinery system must be easy to learn and use (e.g., by presenting a

familiar look and feel on a web platform).

7.3 A p ro to typ e environm ent to su pp ort th e
C om p eten cy R efinery

Because a wide range of activities are required in the operation of the refinery,

an automated environment should be considered (developed or acquired) to

provide basic support for the majority of these activities. First we describe

the core technology used to support knowledge deployment, followed by a

discussion of the tool architecture we used in our prototype environment. The

architecture is generic, scalable and supports not only the dissimilation of

experiences, but complete experience reuse as well.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3.1 Supporting Technology

As discussed in chapter 2, three candidate reasoning technologies: rule based,

model based and case based, can be used to support knowledge deployment

activities. In our approach, we favored case-based reasoning for the following

reasons:

• Rule-based and model-based reasoning imply that the domain knowledge

is well enough understood either to enumerate a causal model or to

encode the knowledge into rules; an implication that does not generally

hold true for the software process domain.

• Case-based systems can propose solutions without a full understanding

of the domain characteristics [136]. They provide an opportunity to

make assumptions and predictions about the domain according to what

worked in the past.

• Communicating cases, as opposed to rules or model characteristics, back

and forth with project participants (domain experts) is relatively simple

and straightforward.

• Case-based systems are easier to build and maintain [212].

We also assume th a t by adding more and more cases to the case base, the

domain will become better understood to the point that efficient, compre

hensive rule-based systems or models tailored to the organization needs can

be developed and enacted for the well-understood aspects of the development

processes.

7.3.2 Tool Architecture

A refinery system consists of three layers: data, servers and tools, as shown in

Figure 7.2. We distinguish between two types of tools, general purpose tools

and experience specific tools. General purpose tools administer the knowledge

deployment activities. Specifically, these tools focus on the experience base

and allow the refinery customers to locate experiences th a t meet their needs by

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Experience Specific toolsGeneral purpose tools

Search
tool

Questionnaire
tool

General purpose
browser

Experience
maintainer

Statistical
analysis tool

Measurement
tool

Servers Layer

CBR Engine DBMSWeb server

Case
B asel

Case
Base 2

Case
Base i

Data Layer

Figure 7.2: Architecture of the competency refinery support environment

searching or browsing the experience base. Other tools in this category include

experience input/ maintainance tools. These tools support the functionality

of different refinery agents. For example, experience input tool support the

functionality of the Experience Manager and the search tool supports the

functionality of the Experience Adapter. Experience specific tools support the

evolution of knowledge contained in the experience base. Tools in this category

support the collection of software engineering measurements, data analysis and

the polling of feedback from experience users. These tools mainly support the

functionality of the Package Developer. For example, the statistical analysis

tools developed to analyze the case study data are examples of this category of

tools. They focus on analyzing the reviews data to abstract general knowledge

about the information sharing reviews.

Both types of tools act as clients using servers within the servers layer.

The servers layer contains at its core a case-based reasoning engine to support

experience deployment. To manage the amount of knowledge in the process

domain, we implemented the experience base as a collection of case bases.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

However, in many instances data collected from projects did not fit directly

into the experience base (e.g., questionnaire results, review questions and mea

surements collected about the experience packages). This data is vital for the

proper evolution of knowledge within the experience base. It is important

to maintain and manage the databases and file systems containing this data

within the support environment. Supporting the collection and maintenance

of this data requires other types of servers within the servers layer such as Web

server, or a database server supported by a Data Base Management System

(DBMS).

7.4 S ystem im p lem entation

We built our prototype using a commercially available case-based reasoning

system (C a s e A d v is o r ™) [242]. Several case bases have been built, each

targeting a different type of experience. The whole system was then integrated

using the Web technology and Pearl scripts to allow the navigation from one

experience base to another.

C B R Engine

C a s e A d v is o r © is an intelligent problem diagnosis and resolution system for

applications in enterprise knowledge management. Although the core technol

ogy of the system is case-based reasoning engine, it contains additional features

such as decision trees and constraint satisfaction algorithms. C a s e A d v is o r

was developed by the CBR group at Simon Fraser University using case-based

reasoning technology. Stand-alone and client-server versions of the tool are

available to work on either a PC or via an internet connection. In addition

to the engine, C a s e A d v is o r contains two main tools: a C a s e A u t h o r in g

tool to build a case base and a PROBLEM RESOLUTION tool to use the case

base.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C a s e A u t h o r i n g t o o l

Domain experts interface with the system using the C a s e A u t h o r in g tool.

In addition to the case name, the tool provides two generic parts to describe

a case: problem description and problem solution.

Feature-value pairs can be added to increase case distinguishability in the

form of questions-answer pairs. Answerers can be individually weighted to

index the cases in the P r o b l e m R e s o l u t io n module.

Accessories such as files, decision trees and keywords may be attached

to any case to simplify and/or structure the retrieval process or to clarify

the proposed solution. Keywords can be manually entered or automatically

extracted by the system.

P r o b l e m R e s o l u t io n t o o l

After a case base for a domain has been constructed using the C a s e A u t h o r

i n g tool, it can be used to solve problems in that domain using the P r o b l e m

R e s o l u t io n tool. A user first gives a high-level natural-language description

of the problem. The system isolates keywords from the description and uses

them to retrieve the cases that best match the description. The questions serve

as a logarithmic indexing structure which dynamically re-ranks all retrieved

cases. A nearest neighbor formula is used to compute similarity.

E x p e r i e n c e m a i n t a i n e r t o o l

The effect of experience base maintenance activities can be local (affects a

particular experience package) or global (affects all packages). Typical main

tenance activities for the experience base are [171]:

• Add newly acquired knowledge.

• Remove obsolete packages.

• Add/modify a context parameter or a feature to the experience base.

To facilitate experience maintenance activities we built an experience main

tainer tool using peri and CGI scripts. Maintenance processes start with

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^ t i i ^ l i i s - V ie w e r \ i ' f n » s u l i I n l - r i r ! I x^loit- r ■■»■
: gte E-# gear F^ynfca ioofe I# / j j |
, fct-*.1 * •+ * # g) fi* | -flSeach ^Pavcntes #MKSa j t 3 S » 9 ? ^

TR Case Base

- J

Options:
t

■ ' ■ i r ;

'.■■■. ni, 1

--J
The case base contains the following cases:

1. Active Design Review
2. Cognitive Walkthrough
3. Fagan Inspection
4. Freedman & Weinberg’s Walkthrough
5. Gilb Inspection -!

Figure 7.3: Maintenance tool screen

extracting experience packages currently stored in the experience base. A

summary of the information along with maintenance activities options are

presented to the maintainer as in Figure 7.3. The summary lists all pack

age names and, package features along with the values that the feature may

take. Depending on the nature of the required update, the maintainer will

be presented with forms to either update the information in a single experi

ence package or add a new feature to the experience base. If a new feature is

added, the next step is to associate a value for tha t feature for the experience

packages. Finally, the updated information is posted back to the experience

base.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Browser tool

The hierarchical nature of the stored experiences requires browsing along two

dimensions: (1) within the same case base or (2) from one case base to an

other. In addition to browsing the same case base, the need for mechanisms

to navigate through different levels of experiences was evident.

The browser module was implemented to take full advantage of C a s e A d

v is o r features. Browsing the same case base is provided by default in the

P r o b l e m R e s o l u t io n module. For inter case-base browsing we used the

“invoking files” feature in C a s e A d v is o r case description. In the solution

description, experience packages are set to invoke and run a new PROBLEM

R e s o l u t io n module using the target case base. At present, browsing is lim

ited to one step either up or down the experience base hierarchy.

D ata acquisition tools

Data acquisition represents a major factor that determines the success or fail

ure of a competency refinery. If data acquisition does not happen naturally

(i.e. in a transparent manner) as part of the process, developers will refrain

from making the additional effort of entering data into the tool. Moreover,

the tool has to assert the objectivity of the data solicited from developers.

In our implementation of the refinery, we used a variety of methods to col

lect data and to assert its objectivity. Two questionnaires were used to solicit

feedback from the reviewers about the enacted review process (see Appendix

C). The review documentation (e.g., preparation reports and meeting min

utes) were collected to analyze the review performance and the review sessions

were video taped for further analysis.

Because the knowledge related to CSF is relatively mature, we relied on

‘consulting experts’ technique while building the experience base for the CSF

framework. In this case, a large set of documented problems were solicited

from users before they were addressed by the framework expert who provided

proposed solutions to these problems. Project members had a chance to in

teract with the framework expert in a formalized setting (peer review) at the

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

beginning of the project. As a follow-up support process, more problems were

addressed through e-mails and face-to-face meetings with the CSF expert.

D ata analysis tools

From our experience we soon realized the importance of collecting a set of

quantitative and qualitative data through measurements and questionnaires

to understand and develop processes that best suit the organization’s needs.

Collected data were statistically analyzed using Microsoft Excel and a statis

tical analysis tool called S-Plus. Subjective judgement was necessary in some

cases to determine the preference of one process alternative over the others.

For example, measurement data in the first enaction of the peer review pro

cess in our experiment indicated no difference in performance between the two

checklists used; however, post-questionnaire replies indicated that reviewers

were more comfortable using the scenario based checklist.

7 .4 .1 Current status of the experience base

To manage the different levels of knowledge abstraction in our model, we im

plemented the experience base as a collection of knowledge bases. A knowledge

base is dedicated to best practices (praxis package type). Moving down a level

of abstraction, a knowledge base is dedicated to knowledge about how to enact

a particular process (modus packages). Finally, concrete packages were col

lected in yet another knowledge base. We found th a t partitioning the knowl

edge in this manner helps to produce an experience base with manageable

sized knowledge bases. That strategy subsequently eased further analysis of

the information. At present, we have encoded three different knowledge bases:

Rapid Development Best Practices (RDBP) with 27 cases and 3 discrimina

tory features, Peer Reviews (PR) with 18 cases and 4 discriminatory features

and Information Swapping Concrete Experiences (ISCE) with 15 cases and 7

discriminatory features.

Packages in the (RDBP) (27 packages) were acquired from the set of best

practices in rapid development methodology identified by McConnell [159].

These practices are directly associated with development speed and process

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

visibility. To date, all modus packages existing in the experience base exist

on the P R knowledge base. In addition to the review package identified in

Chapter 6, this knowledge base contains different inspections, technical reviews

and walk-though mechanisms proposed by researchers and industry expert (see

Appendix B). The 15 packages in the ISCE were acquired from the case study

discussed in Chapter 5.

7.5 U sage scenarios

These scenarios demonstrate how the tool is used in practice. The first sce

nario describes how a typical customer of the refinery would use the support

environment to find the most similar experience package. The second scenario

describes how the tool is used by the refinery agents to evolve the knowledge

contained in the experience base.

7.5.1 Selecting an experience package

Let us assume the project manager of a particular project decides to use some

new technique to enhance the design quality. After querying the RDBP expe

rience base, he found that technical reviews is the most appropriate technique

to the current project goals (see Figure 7.4). By viewing the details of ‘tech

nical reviews’ he finds out th a t there are several technical review processes

that could be used. To find out what technical review process best suites the

project needs, the project manager invokes the TR experience base and com

pares different review methodologies to find a set of methodologies that best

suit the project context and needs. Prom this set, let us assume he chooses

Fagan Inspection. At this point the project manager may view the Fagan

Inspection case (see Figure 7.5) or invoke the concrete Inspection experience

base to review hands-on experiences within the organization. By retrieving

these experiences, information about the effect on the project schedule, and

design quality are retrieved and assessed.

After reviewing all information related to Fagan Inspection, the project

manager may either deploy the process or decide that this inspection process is

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-jp„] I .1 «;| , |v ai: 'r I

Pfoy& î Kesixulloti

Im prove design quality

W hat is your m ajor efficiency concern ? Long_Term Im proyernent
W ans 'tH e typebryour project?
Are you u nder schedule p ressu re ?

T echn ical R eview s
Evolutionary Prototyping
Reuse
Join t Application D evelopm ent (JAD)

i. - H - j x . i I p f

Figure 7.4: Query the RDBP experience base

C a se N a m e : Fagan Inspection

D e s c r ip t io n :
Fagan inspection is a p rocess for statically tes tin g a work product to verify th a t it m eets
its requirem ents.

Solution:
There a re six principle s ta g e s in Fagan inspection process: planning, overview, preparation ,
exam ination , rew ork an d follow-up.

1. Planning. A m o d era to r is designa ted and th e inspection tea m is form ed. The m oderator
en su res th a t th e w ork-product satisfies th e inspection en try criteria and assigns rotes to
participants.

2. Overview. An optional s te p to familiarize participants with th e work product, its con tex t, e tc .
3. Preparation . P articipants individually, analyze th e work product and rela ted m ateria ls and

record potential defects.
4 . Examination. The inspection team m eets to analyze the work product with the sole objective

of finding d efects. During th e m eeting , a person d esignated a s th e read e r p resen ts th e work
product while ev ery o n e is looking for defects. Identified d efects a re reported , classified and
th eir severity is noted.

5. Rework. The a u th o r reso lves all th e issues noted on th e exam ination stage.
6. Follow-up. The m o d era to r verifies th a t all issues h ave been resolved effectively and no

seco n d ary defec ts h av e b een introduced, o r a second inspection m ay b e scheduled.

A typical inspection team consists o f th ree participants, o th er th an th e w ork product au thor,
draw n from th e pro ject technical team ; m ore participants m ay b e added depending on the
su b jec t w ork product. The exam ination m eeting requires several roles to b e filled: a m oderator
to o rch estra te th e m eeting , a read e r to parap h rase th e work product, and a m ain tenance
ex p e rt to view th e work product from th e m ain tenance perspective. Only w ork in progress
goes th rough an inspection process. The work product has to m ee t th e inspection e n try criteria,
as weii. During th e p rocess, supp lem entary m ateria ls should be accessible to inspectors, e.g.
checklists, d efect d istributions from previous inspections, e tc . After th e inspection, the
m odera to r subm its a cum ulative report o f defects found, th e ir count, ty p e and severity to
th e project manager.

Figure 7.5: Case description for Fagan inspection

TR - C a se A d v iso r P ro b lem R eso lu tio n

»'l i I '.p jr .a ! lit I =d. 1*1 sal v |
p

jfl

126

with permission of the copyright owner. Further reproduction prohibited without permission

not appropriate because, for example, it is very human intensive and stretches

beyond the project’s available resources. At this point, s/he can reinvoke the

RDBP experience base and query it again to find out other practices that can

positively affect the design quality and adhere to the project’s constraints.

7.5.2 Add a new feature

Assume that analyzing available concrete packages for technical reviews reveals

that the chance of successfully enacting certain technical review methodologies

highly correlates with formal staff training. To incorporate this new feature

“requires formal training” in the TR experience base, we begin by adding the

question “Did the staff undergo review training?” and all its plausible answers:

“Yes” and “No” (see screen shot in Figure 7.6). After hitting continue, the

script will present the domain expert with another form (see screen shot in

Figure 7.7) that contains all technical review methodologies stored in the case

base with the option of associating the new question with all stored cases and

individually setting the weights of each answer. Finally, the question and the

weights of the answers for all the associations are posted to the experience

base by hitting ‘continue’ button.

7.6 A ssessm en t and proposed m odifications

Initial assessment of the prototype, based on the set of requirements identified

earlier, indicate that the major activities of the competency refinery can be

supported. Specifically, the prototype supports, to a large extent, most of the

identified requirements, however, it fell short of supporting requirement S .2

(support different project set-ups) and F . l (collect information) and provided

limited support for requirement F .2 (Package knowledge) and S.7 (see table

7.1).

Currently, support for the knowledge deployment tasks is provided through

the stand alone version o f C a s e A d v i s o r . ™ This choice limited our ability

to integrate the environment with different project set-ups because in this

version of C a s e A d v i s o r , ™ the user interface and the CBR engine are tightly

127

with permission of the copyright owner. Further reproduction prohibited without permission.

I n t e r n e t f x p lo fe r

Stil w *■ r̂-5V*S 1M Hjfe JH
, * •* * a % j . ftn*8? ‘.J’̂ a»f « . , ,

« 4 * - ' | s j 7 . \Co$<^3jse'5\3ddqueston2.htm *’• ‘rV} ■ A

Add Question

Case Base: TR

■"

Enter the question:
o a tne staff undergo review training?

Enter ail the answers you wish to associate wife this question:
(List one answer per line):____________________________
Yes
No

S K lM M i

m

A

Figure 7.6: Add a new question

’J c d s e Bosi' Fdilor [Adtl Q uestion] -Mitrr soft In te rn e t CxpJoror

* *) -M s *\
3 \\Sirj<ay\amr\CaseSases\addquestion3.ht-i,n

■ p

1 '■ ■*■ - • -j '■ '

Add Question
Case Base: TR

Question: Did the staff undergo review training?

Answers:

1. Yes
2. No

Associate answers to cases by assigning weights (I -100).

Answers
1 1 2

Active Design Review j t..J !L....!
Cognitive Walkthrough j L i ! 1..._J
Fagan inspection |i z z r r c i z r
Freedman & Weinberg’s Walkthrough j | 1 j (_ i
Gilb Inspection |~|" ; j j !
Meeting-less Review j L J O

r ~ - = t - n ~ ~ r ’'

Figure 7.7: Associate questions with cases

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Req. Rating Comments
F . l Poor data collection is not automated
F .2 Limited developed packaging tools are not general
F .3 Good
S . l Good
S.2 Poor the prototype works as a stand alone system
S .3 Good
S.4 Good
S.5 Good
S.6 Good
S.7 Limited the CBR engine uses an unfamiliar user interface

Table 7.1: Assessment of the prototype

coupled. However, this problem could be solved by using the web-based version

of (C aseA dvisor™) 1- note, when we started developing the prototype the

web-based version was not available.

To increase the provided support for incremental learning, better mecha

nisms are needed to enhance the flow of knowledge to and from the prototype,

as well as to improve the contents of the knowledge base. Specifically, we need

to:

• foster knowledge acquisition mechanisms tha t are transparent to the de

velopment process.

• integrate the user interface of the knowledge deployment prototype into

the development environment supporting the project organization.

• develop a richer knowledge base both at the abstract and concrete levels.

Knowledge acquisition techniques could be the factor causing the success

or failure of the refinery support environment. Effective knowledge acquisition

techniques have to: (1) be transparent to the development process and, (2)

target useful information. Knowledge acquisition techniques that require ex

tra documentation effort are bound to fail as most software professionals view

documentation as a cumbersome additional task. Knowledge acquisition tasks

have to be transparent to the development process. This could be achieved by

1http://ww w .cs.sfu.ca/~isa/isaresearch.htm l#svstem s

129

with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.sfu.ca/~isa/isaresearch.html%23svstems

using existing project documentation (e.g., project plans, e-mail threads) and

process measurements (e.g., costs and benefits) as the main sources of informa

tion. Furthermore, by modifying and standardizing parts of these documents

(e.g., through document templates) targeted information could be captured.

For end users to accept and value the knowledge stored in the system,

the system has to capture information that is perceived as useful by these

users. The system users should be able to report, react to and/or resolve

insufficiencies and breakdowns of the stored experiences. Typically, not all

users will be interested or willing to influence changes to the experience base;

however it is safe to assume that there often exist local users [170] who are

interested and capable of performing these tasks.

To increase the value of the experience base, a richer knowledge base has

to be developed. At the concrete level, enriching the knowledge base can re

sult from packaging each enaction of the process, as hands-on experience is

the source of concrete experience packages. However, including each enac

tion of the process as a new package should be considered with caution as it

may generate inconsistencies in the captured knowledge. For example, perfor

mance of individual review sessions in our experiment varied widely. Including

these experience packages without performing a root cause analysis to identify

the reasons for success or failure may result in inconsistencies in the stored

knowledge about the enacted review process.

At the abstract level, the knowledge base can be enriched by encoding more

results from work in the software process quality and improvement domain.

For example, ISO 15504 (Part 2) [115] (also called SPICE) defines a set of 40

processes that covers most of the software development process. By encoding

these processes into praxis level experience packages and seeding them into the

knowledge base, a comprehensive list of experiences covering major aspects of

the software process could be integrated into the experience base.

For a reasonable-size experience base, end users might not be fully aware

of what the refinery has to offer. We found that the existence of a human

expert to lead the knowledge deployment tasks is very important to raise users’

awareness about the stored experiences. However, the use of human expert is

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

typically expensive and may become the bottle-neck in knowledge deployment

tasks. To overcome this anticipated difficulty, we recommend integrating the

knowledge deployment tasks into a process support environment such as the

cafe-401 environment.2 The cafe environment is a distributed development

environment built using Prothos framework by Avrasoft). This integration

will support both knowledge acquisition and knowledge deployment activities.

7.7 Sum m ary

In this chapter we presented an environment to support the Competency Re

finery. To support knowledge management and deployment, we implemented a

prototype for an automated decision support system using case-based reason

ing technology. Assessment of the prototype indicated positive potential for

reasoning about the software process as our CBR-based approach can propose

solutions without a full understanding of all factors affecting the process. The

prototype fell short of satisfying all identified requirements. Specific modifica

tions to the prototype were proposed to fill these gaps.

Apart from the mechanisms to support knowledge acquisition and deploy

ment tasks, we realized the need for productive approaches for knowledge

abstraction. These approaches should address the problem that frequently

faces the refinery maintainers: Given a set of concrete packages, what abstrac

tions can be made to add or modify a modus package using automated or

semi-automated techniques?

2http://peoria.cs.ualberta.ca:8162/prothos/401_2003_W .x/login.p?

131

with permission of the copyright owner. Further reproduction prohibited without permission.

http://peoria.cs.ualberta.ca:8162/prothos/401_2003_W.x/login.p

Chapter 8

Conclusions and future work

8.1 Sum m ary

Despite the reported success of the ‘accumulation of experiences’ paradigm in

quality and process improvement programs, successfully deploying the paradigm

still represents a major challenge th a t is undertaken by very few software orga

nizations. This thesis has investigated challenges facing software organizations

to establish an environment to manage their experiences and to facilitate col

lective learning from these experiences; in other words, become a Learning

Software Organization (LSO).

The thesis began by critically reviewing existing trends in starting LSO(s)

with the purpose of identifying the main challenges in establishing an LSO;

two aspects were identified. The first is related to the accumulated experi

ences. Little information has been delivered about how experiences can be

accumulated, explicitly represented, formalized, stored and used in day to day

process management [106] [103]. To help address this deficiency, a three level

structure was defined for the experience base to capture different classes of

knowledge namely: praxis, modus, and concrete package types. Moreover, an

experience package template was defined to capture features of accumulated

experiences.

The second challenge is related to the actual building of an environment to

manage experiences. While the concepts have been treated theoretically, re

ported efforts indicate that available information is too abstract to effectively

implement such an environment [106] [222], To help address this problem, the

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

thesis defined the competency refinery paradigm to serve as a basis for manag

ing software experiences. To illustrate the competency refinery approach the

concept was deployed in a two-year case study to support application devel

opment using frameworks, with a special attention given to peer reviews.

Throughout the case study, the refinery was deployed using human agents.

The deployment successfully refined the information-sharing review process,

supported the development of better documentation for the framework and

helped in identifying team management models tha t provide best value to the

development team in the context of the study.

The experience gained from the case study, was then used to define the re

quirements for a system to automate key aspects of the agents’ functionality;

namely tasks related to experience storage and dissemination. A prototype

environment was then built to fulfill these requirements. Although, the rel

atively small number of experiences currently stored in the experience base,

and the scale and context of the projects used in the case study did not al

low a full evaluation of the developed prototype, the prototype was critically

assessed. The assessment indicated that most of the important requirements

were met; however, a need to improve on acquisition techniques, integrate the

environment with a process support system, and develop a richer knowledge

base were identified.

8.2 C ontributions and resu lts

This dissertation has made several contributions in the area of software qual

ity management and process improvement. In particular, we introduced the

Competency Refinery concept to support the re-enactment of successful devel

opment activities. The concept was then used to improve peer reviews prac

tices. An experience base for peer reviews was built to provide the required

background for the research.

The experience base was used to define an information sharing peer re

view. The defined process was enacted in 15 different projects, over three

consecutive terms, to speed up the learning curve for a moderately complex

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

framework (CSF). By collecting and packaging students’ experiences, the ap

plicability of the defined process was examined and validated. Collected expe

riences were used to suggest process modifications to be enacted in the next

round of projects. In addition, the case study collected information to identify

successful ‘patterns of use’ for building application using frameworks, and for

improving the quality of the framework documentation. The thesis also intro

duced an automated environment to support the collection, management and

dissemination of packaged experiences.

8.2.1 Building and running a C om petency Refinery

The applicability of the concepts underlying the Competency Refinery were

examined by providing a concrete implementation for the refinery. By collect

ing, packaging and managing projects’ experiences (15 different projects), the

concepts underlying the Competency Refinery were evaluated. By starting

with the simplest solution that works, as recommended by agile development

methodologies [27], we deployed the refinery using human agents. We then

proceeded towards the automation of certain aspects of the agents’ tasks.

We found that through the support of a human experience adapter agent,

the model could adequately support identification and reenactment of success

ful development activities. Furthermore, instantiating the refinery using the

bottom-up approach proved to be an appropriate decision; we started by col

lecting concrete data, then abstracted the data to answer specific questions

regarding the quality of the peer review process. Following this start-up ap

proach: (i) the refinery provided value to its customers as soon as the data

was collected; (n) there was no need to define a process ontology, as the de

velopment environment was not stable enough to define one.

8.2.2 Packaging process experiences

In order to fulfil different interests of the refinery users, three levels of ab

straction were introduced to package process knowledge: praxis, modus and

concrete packages. Generally, praxis packages capture the merits of the indus

try best practices; modus packages represent methodologies of enacting these

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

practices, and concrete packages describe the experience gained by participa

tion on process enactions. The main concept behind this knowledge struc

ture is to simultaneously capture and maintain abstract and concrete process

knowledge. The advantages of this structure are:

• Both the knowledge and its roots are captured and stored in the knowl

edge base.

• Experience from internal and external sources can be fit easily into

the structure. Only the internal experiences are supported by concrete

knowledge.

• The knowledge base is refined as soon as a concrete experience is cap

tured, rather than waiting until the experience is abstracted and pack

aged into the experience base.

• Abstracted knowledge can be continuously reevaluated based on the ac

cumulation of concrete experiences, supporting the main concept of the

competency refinery paradigm.

• Abstract knowledge is packaged in a variety of ways to fulfil different

needs of its users. Abstracted knowledge may be packaged as, modus or

praxis type experience depending on intended use.

8.2.3 A utom ated support for the C om petency R efinery

Through our experience in collecting, managing and disseminating knowledge

related to the case study, we identified the requirements of an environment

to support knowledge management and deployment. A proof of concept en

vironment to support the acquisition, selection, deployment and evolution of

experience packages was developed. The environment was implemented as

a decision support system using case-based reasoning technology. Although

the environment did not to provide general approaches for abstracting process

knowledge, several statistical analysis packages were developed to analyze and

abstract knowledge accumulated through the enaction of peer reviews. These

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

packages were developed in S, a language developed at AT&T for statisti

cal analysis. They also can be executed in S-Plus, a commercially available

statistical analysis tool or R, an open source statistical analysis environment.

8.2.4 Process taxonom y m odel for peer reviews

The thesis defined a process taxonomy to distinguish several software pro

cesses. The goal of the taxonomy was to meet the needs of the engineering

decision making process introduced in Chapter 4. The taxonomy organized the

process along three dimensions: technical, economic and support as described

in Section 4.4. The taxonomy was applied on peer review processes, and suc

cessfully identified 16 different proposed and practiced review processes which

were organized in an experience base for peer reviews.

The taxonomy presents an up-to-date overview and analysis of peer review

knowledge presented in literature and identified 17 different process attributes

for peer reviews as described in Section 4.5. These attributes characterized

the core concepts of the review process and allowed the identification of the

details of the review process tha t best suite a particular situation through the

comparison of different alternatives along various dimensions.

8.2.5 D ocum entation of a major case study

A long-term foundational case study was initiated in this thesis. The two-year

study investigated processes supporting the infusion of new technologies in a

software development organization. Specifically, we examined how software

developers, with little or no knowledge of a framework, approached the de

velopment of new applications using this framework. At the macro level, the

study was used to evaluate the competency refinery concept. At the micro

level, the study focused on examining processes and techniques supporting

software development using application frameworks.

In addition to confirming the value of process improvement based on the

accumulation of experiences, the study showed that: (i) peer reviews are useful

technique to speed-up frameworks learning; (ii) the consultant-based team

management model provided the best results for building of applications using

136

with permission of the copyright owner. Further reproduction prohibited without permission

this framework; and (Hi) in addition to the functionality provided by the

framework, the users are interested in learning more about the non-functional

aspects of the framework (e.g., reliability).

8.2.6 Supporting framework know ledge internalization

Over the course of the case study, the adopted techniques (peer reviews and

the framework’s experience base) successfully disseminated knowledge about

the framework to interested parties. Analysis of quantitative data from our

case study showed that reviews are useful interaction mechanism to facilitate

framework knowledge internalization at early stages of the application devel

opment. These findings were further confirmed by the subjective assessment of

the study participants. Reviewers pointed out the benefit of reviews in three

areas: (i) setting deadlines for the understanding process, (ii) consolidating

the development team point of view through well-organized discussion, and

(in) getting fast feedback from the framework expert. The experience base,

centered around the framework, significantly improved the framework docu

mentation by including the users’ perspective. Over time, the experience base

drastically reduce the users’ dependency on the framework expert.

8.3 F u tu re directions

While pursuing this thesis research, a number of interesting questions were

uncovered that could extend the research.

8.3.1 Tool developm ent and refinement

The developed prototype shows promise and leads naturally into the possibil

ity of developing a production-quality knowledge management environment.

This environment can be the basis for further studies and refinements in the

refinery model as well as mechanisms supporting experience base management.

Some of the key issues with the environment development that need immediate

attention are:

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Integration w ith other tools Knowledge management tools deliver their

best performance when integrated into existing development environ

ment. This integration facilitates knowledge acquisition tasks and en

hances opportunities for knowledge dissemination. Typically, automated

development environments collect a lot of information throughout the

development activities. By analyzing and/or modifying the collected

information, the refinery knowledge acquisition can happen effortlessly.

For example, integrating the prototype described in Chapter 7 with an

automated peer review tool will replace many of the specialized data

collection forms we developed. Review findings, time consumption and

checklist outcomes can all be electronically captured through an inte

grated peer review tool.

M aintaining the experience base The refinery concept is based on the ac

cumulation of experiences supporting the continuous growth of the ex

perience base and thus emphasizing the importance of deploying tasks

to maintain that experience base. The complexity of these maintenance

tasks can be attributed to: i) the evolutionary nature of the stored

knowledge which can quickly render some packages obsolete; ii) the di

verse sources of cases which can easily generate inconsistencies among

stored cases; and Hi) the emergence of new development methodologies

that may require substantial restructure of the experience base. The

complexity of these tasks, coupled with the demanding time and perfor

mance requirements of the software industry, strongly suggests the need

to find better automated support for experience-base maintenance.

8.3.2 Extending the experience base

From his experience in building knowledge units, Schneider concluded that

[200] seeding the experience base is a fundamental requirement to start a

knowledge unit. Based on our experience, seeding an experience base is not a

trivial task. Background research about the target process is required to apply

the process taxonomy framework and to reflect the up-to-date overview and

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

analysis of that process.

To exploit the full advantage of the Competency Refinery, the developed

experience bases have to cover as many processes as possible. As recommended

in Chapter 7 an investigation of how to extend the experience base by align

ing it with the SPICE embedded model should be undertaken. Specifically,

processes defined in the SPICE model can be used as basis for seeding the re

finery’s experience base. The SPICE standard defines a sophisticated model of

software process management consisting of 40 different processes drawn from

the the world-wide experience of large and small software organizations.

8.3.3 Case studies

The case study administered as part of this thesis enriched the peer-reviews

experience base by giving insights about how reviews can support frameworks

understanding. Despite the number of projects included in the study, the

scope of the study was somehow limited. It focused on peer reviews, was run

using one framework, and took place in an academic context. More case stud

ies using different frameworks, larger projects, different development context

and/or focusing on different activities supporting framework understanding

(e.g., structured tutoring) need to be explored.

8.3.4 Controlled experim ents

Our initial assessment of the tool indicates positive results supporting the

refinery’s functionality. However, more controlled experiments are required to

determine the areas of strength and weaknesses of the tool as it compares with

deployment through a human agent.

8.3.5 D ocum enting application frameworks

Frameworks are bound to evolve as they mature and more is understood

about the domain they represent. Nowadays, framework evolution is an active

research areas in software engineering. Framework documentation needs to

evolve to reflect changes in the framework, as should the experience base built

139

with permission of the copyright owner. Further reproduction prohibited without permission.

around the framework. More work is needed to determine when and how the

experience base will be affected by the evolution of the underlying framework.

For example, a model (formal or informal) th a t ties cases in the experience

base with changes in the associated framework could be used to determine hot

spots in the framework and predict framework evolution.

8.3.6 Peer reviews for framework understanding

Although information swapping and learning is a well recognized benefit of

reviews [110], little has been done to explore the full capacity of reviews to

serve these objectives. Most of the research concerning peer reviews has fo

cused on defect detection capabilities. More research is needed on reviews that

have information swapping and learning as a central objective. For example,

research is needed to answer the following questions:

• H ow to form an effective checklist? Our results indicated no dif

ference between the two checklists used; however, many researchers [92],

[53] emphasized the value of the checklist in supporting reviews. More

studies are also required to track and evaluate the effect of checklist

improvement techniques (e.g., the statistical method described in [53]).

® W hat data to collect? Gathering data concerning the performance of

the review process is essential for its improvement. Gilb & Graham [92]

define over fifty measures to collect. 1 In order to define a comprehensive

set of measures th a t will reflect the actual performance of information

sharing reviews, research is needed to evaluate the usefulness and cover

age of the measures defined by Gilb & Graham for information sharing

and learning purposes.

8.3.7 Forecasting and estim atio n

Despite the effectiveness of peer reviews in information sharing, reviewers are

unlikely to discover all questions they want to ask about a framework. Hence,

1 Other list of measurements defined for reviews could be viewed as subset of this list
(e.g., [72], [219]).

140

with permission of the copyright owner. Further reproduction prohibited without permission.

it would be useful to estimate how many problems (questions) are yet to

be discovered. Prom the application development perspective, the estimate

could be used to judge how well the developers understand the framework

prior to engaging in the development. From the framework documentation

perspective, the estimate could be used to judge the completeness of the doc

umentation. Capture-Recapture techniques [205] [239] have been suggested

to estimate number of defects remaining in a document after inspection [73]

[163]. However, the robustness of the CR models with respect to reviews need

to be carefully examined, as reported research indicated disagreement in the

results (see for example [163] and [41]).

8.4 C oncluding rem arks

Prom the research performed, it is clear that supporting software quality and

process improvement based on the accumulation of experiences is valuable.

Experiences accumulated about the difficulties facing the CSF users resulted

in framework documentation that reflects the users’ perspectives. Monitor

ing the performance of the information sharing peer reviews resulted in the

refinement of a review process that positively affects application development

using frameworks. Tracking the overall performance of the projects identified

consultant-base team management as an effective model for developing this

type of applications. The observed success of the Competency Refinery con

cepts defined and deployed in this thesis research suggests th a t these concepts

can be used as a baseline for exploring more advanced techniques to support

software experience acquisition and management.

The Nunamaker et al. [173] methodology for design science research was

followed in this thesis and it proved to be suitable for this line of research. Two

cycles of this methodology were performed in this thesis. In the first cycle,

the Competency Refinery model and its underlying paradigms were defined in

the concept building phase. During system development, a refinery for peer

reviews was built. The first cycle ended after the peer review refinery was used

in a case study to validate the defined concepts. From our experience in this

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cycle we learned that the interpretation of collected data is not a straightfor

ward process. The data reduction process is time consuming and in few cases

we had to use our subjective assessment. We also learned that experiments

assessing knowledge deployment is hard to control, as knowledge disseminates

along different routes that are not necessarily under the researchers’ control.

The second cycle was started by defining the requirements for an auto

mated environment to support the refinery, followed by the development of a

prototype environment to satisfy these requirements, and ended by a critical

evaluation of the developed environment. While implementing the tools, we

learned that having access to the internal representation of data within the

CBR system is useful. We also learned that even if the refinery is using an

off-the-shelf CBR engine, understanding the underlying indexing mechanism

is essential for the proper implementation of the knowledge base.

The cycle of conceptualize/build/ evaluate defined by Nunamaker et al.

can be repeated as required. The only caveats are the size of the developed

experience base and the evaluation environment context. Unquestionably, a

large experience base is required to explore the full potential of an automated

environment supporting the competency refinery. Furthermore, due to time

and budget limitations, there is an upper limit to the value achieved from

observing student projects. The research cycle would be more effective if

continued with software professionals in an industrial setup.

The area of software experience management is still in its infancy; there is

much scope for further research. Development of large experience bases, ad

vanced search algorithms, and knowledge abstraction techniques are a few of

the topics that need innovative research to boost the already realized benefits

of software experience management. As one of the most useful software verifi

cation and validation tools, peer reviews is another research area th a t deserves

much more investigation to exploit its full potential. In particular, a critical

investigation of the parameters th a t affect review performance is likely the

best means for defining review techniques that can exhibit better/ consistent

performance.

142

with permission of the copyright owner. Further reproduction prohibited without permission

Bibliography

Aamodt and E. Plaza. Case based reasoning: Foundational issues,
methodological variations, and system approaches. A I Communications,
7(1): 39-59, 1994.

T. Abdel-Hamid and S.E. Madnick. Software Project Dynamics: An
Integrated Approach. Prentice Hall, New York, NY., 1991.

A. F. Ackerman, L. S. Buchwald, and F. H. Lewsky. Software inspections:
An effective verification process. IEEE Software, 6(3):31-36, 1989.

A.F. Ackerman, P.J. Fowler, and R.G. Ebenau. Software inspections and
the industrial production of software. In H.L Hausen, editor, Software
Validation, pages 13-40. Elsevier, Amsterdam, 1984.

K-D Althoff, A. Birk, S. Hartkopf, W. Muller, D. Surmann, and
C. Tautz. Managing software engineering experience for comprehensive
reuse. In Proceedings o f the 11th International Conference on Software
Engineering and Knowledge Engineering (SEKE99), pages 10-19, 1999.

K-D. Althoff, A. Birk, C.G. von Wangenheim, and C. Tautz. CBR for
experimental software engineering. In Case Based Reasoning Technology
- From Foundations to Application, chapter 9, pages 235-254. Springer-
Verlag, Berlin, Heidelberg, 1998.

K-D Althoff, F. Bomarius, and C. Tautz. Using case-based reasoning
technology to build learning software organizations. In Proceedings of
the Interdisciplinary Workshop on Building, Maintaining and Using Or
ganizational Memory (OM-98), Brighton, UK., 1998.

K-D Althoff, B. Decker, S. Hartkopf, A. Jedlitschka, M. Nick, and
J. Rech. Experience management: The Fraunhofer IESE Experience
Factory. Technical Report 035.01/E, Fraunhofer Institute for Experi
mental Software Engineering, Kaiserslautern, Germany, 2001.

K.-D. Althoff, R.L. Feldmann, and W. Muller, editors, proceedings of the
3rd International Workshop on Learning Software Organization LSO ’Ol,
LNCS 2176. Springer-Verlag, Berlin, Heidelberg, 2001.

[10] K-D Althoff, S. Hartkopf, and W. Muller, editors. Proceedings of the
2nd International Workshop on Learning Software Organization L SO ’OO.
Fraunhofer Institute for Experimental Software Engineering, Kaiser
slautern, Germany, 2000.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[11] K-D Althoff, M. Nick, and C. Tautz. CBR-PER: A tool for implementing
reuse concepts of the experience factory for cbr systems. In Proceedings
of the 7th German Conference on Knowledge Based Systems (XPS99)
Workshop on Case-Based Reasoning, 1999.

[12

[13

[14

[15

[16

[17

[18

[19

[20

[21

[22

[23

[24

D.M. Amidon. Innovation Strategy for the Knowledge Economy: The
Ken Awakening. Butterworth-Heinemann, Boston, 1997.

C. Anderson. World gone soft: A survey of the software industry. IEEE
Engineering Management Review, 24(4):21-36, 1996.

M. P. Ardissone, M. Spolverini, and M. Valentini. Statistical decision
support method for in-process inspections. In Proceedings of the 4th
International Conference on Achieving Quality In Software, pages 135-
143, 1998.

L.J. Arthur. Improving Software Quality: An Insider’s Guide to TQM.
John Wiley & Sons Inc., New York, NY, 1993.

J. Barnard and A. Price. Managing code inspection information. IEEE
Software, 11 (2): 59-69, 1994.

K. Bartlmae. An experience factory approach for data mining. In Pro
ceedings of the 2nd Workshop in Data Mining and Data Warehousing as
Basis o f Modem Decision Support Systems, 1999.

V. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sorum-
gard, and M. Zelkowitz. The empirical investigation of perspective-based
reading. Journal o f Empirical Software Engineering, 2(1): 133—164, 1996.

V. Basili, M. Lindvall, and P. Costa. Implementing the experience fac
tory concepts as a set of experience bases. In Proceedings of the 13th
International Conference on Software Engineering and Knowledge Engi
neering (SEKE01), pages 102-109. Knowledge Systems Institute, 2001.

V. R. Basili. Evolving and packaging reading technologies. Journal of
Systems and Software, 38(1), 1997.

V.R. Basili. The experience factory and its relationship to other improve
ment paradigms. In I. Sommerville and M. Paul, editors, Proceedings of
the 4th European Software Engineering Conference ESEC, LNCS 717,
Germany, 1993. Springer-Verlag, Berlin, Heidelberg.

V.R. Basili and G. Caldiera. Methodological and architectural issues
in the experience factory. In Proceedings of the 16th Annual Software
Engineering Workshop, NASA/G SF, Software Engineering Laboratory
Series, Greenbelt, Maryland, 1991.

V.R. Basili, G. Caldiera, F. McGarry, R. Pajerski, G. Page, and S. Walig-
ora. The software engineering laboratory - an operational software ex
perience factory. In Proceedings of the I f t h International Conference on
Software Engineering (ICSE14), pages 370-378, Melbourne, Australia,
1992.

V.R. Basili, G. Caldiera, and H.D. Rombach. The experience factory.
In J.J. Marciniak, editor, Encyclopedia of Software Engineering., pages
468-476. John Wiley & Sons Inc., New York, NY, 1994.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[25] V.R. Basili and F. McGarry. The experience factory: How to build
and run one. Tutorial at the 19th International Conference on Software
Engineering., 1997.

[26] V.R. Basili and H.D. Rombach. Support for comprehensive reuse. IEEE
Software Engineering Journal, 6(5):303-316, 1991.

[27] K. Beck. Extreme programming: A humanistic discipline of software de
velopment. In Proceedings of the 1st International Conference of Funda
mental Approaches to Software Engineering (FASE98), pages 1-6, 1998.

[28] B. Bell, W. Citrin, C. Lewis, J. Rieman, R. Weaver, N. Wilde, and
B. Zorn. Using the programming walkthrough to aid in programming
language design. Software Practice and Experience, 24(1): 1—25, 1994.

[29] F. Belli and R. Crisan. Towards automation of checklist-based code
reviews. In Proceedings of the 8th International Symposium on Software
Reliability Engineering, 1996.

[30] G. Bhatt. Managing knowledge through people. Journal of Knowledge
and Process Management, 5(3):165-171, 1998.

[31] F. Biemans. Reference model of production control system. In Proceed
ings of IECOMN 86, Milwaukee, Min., 1986.

[32] A. Birk, D. Surmann, and K.-D. Althoff. Knowledge acquisition in ex
perimental software engineering. In Proceedings of the 11th European
Workshop on Knowledge Acquisition, Modelling and Management, pages
67-84, Dagstuhl Castle, Germany, 1999. Springer-Verlag, Berlin, Heidel
berg.

[33] A. Birk and C. Tautz. Knowledge management of software engineering
lessons learned. In Proceedings of the 10th International Conference on
Software Engineering and Knowledge Engineering (SEKE99), 1998.

[34] D.B. Bisant and J.R. Lyle. A two-person inspection method to improve
programming productivity. IEEE Transactions on Software Engineering,
15(10):1294-1304, 1989.

[35] B. Boehm. Software Engineering Economics. Prentice Hall, New York,
NY., 1981.

[36] F. Bomarius, editor. Proceedings of the 1st International Workshop on
Learning Software Organization LSO ’99. Fraunhofer Institute for Exper
imental Software Engineering, Kaiserslautern, Germany, 1999.

[37] G. Booch. Object Solutions: Managing the Object-Oriented Project. Ad
dison Wesley Publishing Company, Reading, MA., 1995.

[38] S. Boodoo, K. El-Emam, O. Laintenberger, and N. Madhavji. The opti
mal team size for UML design inspections. Technical Report NRC/ERB-
1081, National Research Council, Institute for Information Technology,
2000 .

[39] J. Bosch. Software product lines: Organizational alternatives. In Pro
ceedings of the 23th International Conference on Software Engineering
(ICSE23), pages 91-100, Toronto, Canada, 2001. ACM Press.

145

permission of the copyright owner. Further reproduction prohibited without permission.

[40] K. V. Bourgeois. Process insights from a large-scale software inspections
data analysis. Cross Talk, The Journal of Defense Software Engineering,
pages 17-23, 1996.

[41] Briand, K. L. El Emam, B. Freimut, and O. Laitenberger. A compre
hensive evaluation of capture-recapture models for estimating software
defect content. IEEE Transactions on Software Engineering, 26(6), 2000.

[42] R.N. Britcher. Using inspection to investigate program correctness.
IEEE Computer, 21(ll):38-44, 1988.

[43] F.P. Jr. Brooks. The Mythical Man-Month. Addison Wesley Publishing
Company, Reading, MA., 1978.

[44] P. Brossler. Knowledge management at a software house: A progress re
port. In F. Bomarius, editor, Proceedings of the 1st International Work
shop on Learning Software Organization L SO ’99, pages 77-83. Fraun
hofer Institute for Experimental Software Engineering, Kaiserslautern,
Germany, June 1999.

[45] B. Brykczynski. The software inspection process - Applying the prin
ciples of Deming and Crisby. Information and Systems Engineering,
1 (1) :23—37, 1995.

[46] R.D. Buck and J.H. Dobbin. Software Validation, chapter Application
of Software Inspection Methodology in Design and Code, pages 41-56.
Elsevier, Amsterdam, 1984.

[47] T. Burns and G.M Stalker. The Management of Innovation. Oxford
University Press, London, revised edition edition, 1994.

[48] M. Bush. Improving software quality:The use of formal inspections at the
jet propulsion laboratory. In Proceedings of the 12th International Con
ference on Software Engineering (ICSE12), pages 196-199, Nice, France,
1990. ACM Press.

[49] D. Butler and P. Denommee. Documenting frameworks. In Fayad,
Schmidt, and Johnson, editors, Building Application Frameworks., pages
495-503. Wiley Computer Publishing, New Your, NY, 1999.

[50] K. Cai. On estimating the number of defects remaining in software.
Journal of Systems and Software, 40:93-114, 1998.

[51] NASA Goddard Space Flight Center. Software engineering laboratory
database oranization and user’s guide. Technical Report SEL-89-101,
NASA/GSFC, Greenbelt, Maryland, Feb 1990. Revesion 1.

[52] B. Chatters. Implementing an experience factory: Maintenance and evo
lution of the software and systems development process. In Proceedings
of the International Conference on Software Maintenance (ICSM). IEEE
Computer Society Press, Los Alamitos, Ca., 1999.

[53] Y. Chernak. A statistical approach to the inspection checklist formal
synthesis and improvement. IEEE Transactions on Software Engineer
ing, 22(12):866-874, 1996.

146

permission of the copyright owner. Further reproduction prohibited without permission.

[54] J.A. Clapp, S.F. Stanten, W.W. Peng, D.R. Wallace, D.A. Cerino, and
Jr. R.J. Dziegiel. Software quality control, error analysis and testing.
Noyes Data Corporation, Mill Roald, Park Ridge, NJ, 1995.

[55] T. Collins. Bank error hands out 2bn pounds in half an hour. Computer
Weekly (UK), October 19 1989.

[56] J. S. Collofello and S. N. Woodfield. Evaluating the effectiveness of
reliability-assurance techniques. Journal o f Systems and Software, 9:191-
195, 1989.

[57] J.S. Collofello. The software technical review process. SEI Curriculum
Module SEI-CM-3-1.5, Software Engineering Institute, 1988.

[58] R. Conradi, C. Fernstrom, and A. Fuggetta. A conceptual framework
for evolving software processes. Software Engineering Notes, 18(4):26-
45, Oct 1993.

[59] R. Conradi, A.S. Marjara, and B. Skatevik. An empirical study of in
spection and test data at Ericsson. In Proceedings of the International
Conference on Product-Focused Software Process Improvement (PRO
P E S ’99), VTT Symposium : 195, pages 263-284, Oulo, Finland, 1999.
VTT.

[60] M.E. Conway. How do committees invent? Datamation, 14(4):28-31,
1968.

[61] S.D. Cook and J.S. Brown. Bridging epistemologies: the generative
dance between organization knowledge and organization knowing. Or
ganization Science, 10(4) :381-400, 1999.

[62] P. D’Astous and P. N. Robillard. Characterizing implicit information
during peer review meetings. In Proceedings of the 22th International
Conference on Software Engineering (ICSE22), 2000.

[63] T.H. Davenport and G. Probst, editors. Knowledge Management Case
Book: Siemens Best Practices. MCD, Munich, Germany, 2001.

[64] T.H. Davenport and L. Prusak. Working Knowledge: How organizations
Manage What They Know. Harvard Business School, Boston, 1998.

[65] W. E. Deming. Out of the Crisis. MIT Press, Cambridge, MA, 1986.

[66] M. Diehl and W. Stroebe. Productivity loss in brainstorming groups:
Toward the solution of a riddle. Journal o f Personality and Social Psy
chology, 53(3):497-509, 1987.

[67] E. P. Doolan. Experience with Fagan’s inspection method. Software
Practice and Experience, 22(3):173-182, 1992.

[68] A. Dorling. SPICE: Software Process Improvement and Capability dE-
termination. Software Quality Journal, 2:209-224, 1993.

[69] H.E. Dow and J.S. Murphy. Detailed product knowledge is not required
for a successful formal software inspection. In Proceedings of the seventh
Software Engineering Process Group Meeting, Boston, MA., 1994.

147

with permission of the copyright owner. Further reproduction prohibited without permission.

70] M. Dyer. Verification-based inspection. In Proceedings of the 25th A n
nual Hawaii International Conference on System Sciences, volume 2,
pages 418-427, 1991.

71] M. Dyer. The Cleanroom Approach to Quality Software Development.
John Wiley & Sons Inc., New York, NY, 1992.

72] R. G. Ebenau. Predictive quality control with software inspections.
CrossTalk, 7(6):916, 1994.

73] S. G. Eick, M. D. Loader, C. R.and Long, L. G. Votta, and S. Van-
der Wiel. Estimating software fault content before coding. In Proceedings
of the 1 4 th International Conference on Software Engineering (ICSE14),
pages 59-65, 1992.

74] K. El Em am and 0 . Laitenberger. Evaluating capture-recapture mod
els with two inspectors. IEEE Transactions on Software Engineering,
27(9):851-864, 2001.

75] H. Eriksson. A survey of knowledge acquisition techniques and tolls
and their relationship to software engineering. Journal of Systems and
Software, pages 97-107, 1992.

76] Experience base. A booklet from the PERFECT ESPRIT project 9090
Handbook Edition, 1996.

77] M. E. Fagan. Design and code inspections to reduce errors in program
development. IBM Systems Journal, 15(3):182—211, 1976.

78] M. E. Fagan. Advances in software inspections. IEEE Transactions on
Software Engineering, 12(7):744-751, 1986.

79] A.V. Feigenbaum. Total Quality Management. McGraw Hill Inc., New
York, NY, Fortieth Anniversary edition, 1991.

80] R.L. Feldmann and K-D. Althoff. On the status of learning software
organizations in the year 2001. In R.L. Feldmann and K-D. Althoff, edi
tors, proceedings of the 3rd International Workshop on Learning Software
Organization LSO ’01, Lecture Notes in Computer Science 2176, pages
2-6. Springer-Verlag, Berlin, Heidelberg, 2001.

81] G. Fischer. Seeding, evolutionary growth and reseeding: Construction,
capturing and evolving knowledge in domain oriented design environ
ments. Automated Software Engineering, 5(4) :447-464, 1998.

82] P. J. Fowler. In-process inspections of work-products at AT&T. AT& T
Technical Journal, 65(2): 102-112, 1986.

83] L. A. Franz and J. C Shih. Estimating the value of inspections and early
testing for software projects. Hewlett-Packard Journal, CS-TR-6, 1994.

84] D. P. Freedman and G. M. Weinberg. Handbook of Walkthroughs, In
spections, and Technical Reviews. Dorset House Publishing, New York,
4th edition, 1990.

85] G. Froehlich. Client-Server Framework.
http://w w w .cs.ualberta.ca/~garry / framework, 1999.

148

permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~garry

[86] G. Froehlich. Hooks: AnHooks: An Aid to the Use of Object-Oriented
Frameworks Aid to the Use of Object-Oriented Frameworks. PhD thesis,
University of Alberta, 2002.

[87] G. Froehlich, H.J. Hoover, L. Liu, and P. Sorenson. Hooking into object-
oriented application frameworks. In Proceedings of the 19th International
Conference on Software Engineering (ICSEl 9), pages 491-501, Boston
MA., 1997. ACM Press.

[88] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object- Oriented Software. Addison Wesley Pub
lishing Company, Reading, MA., 1995.

[89] D. Gangopadhyay and S. Mitra. Understanding frameworks by ex
ploration of exemplars. In Proceedings of the 7th International Work
shop on Computer Aided Software Engineering (CASE-95), pages 90-99,
Toronto, Canada, 1995.

[90] A.A. Gately. Design and code inspection metrics. In International Con
ference on Software Management and Applications of Software Measure
ment, San Jose, Ca., 1999.

[91] T. Gilb. Principles of Software Engineering Management. Addison Wes
ley Publishing Company, Reading, MA., 1988.

[92] T. Gilb and D. Graham. Software Inspection. Addison Wesley Publishing
Company, Reading, MA., 1993.

[93] R.L. Glass. Building Quality Software. Prentice Hall, New York, NY.,
1992.

[94] M. Goodman. Cbr in battle planning. In Proceedings of Workshop of
Case Based Reasoning (DARPA). Morgan Kaufmann, 1989.

[95] R. Grady. Practical software metrics for project management and process
improvement. Prentice Hall, New York, NY., 1992.

[96] R. B. Grady and T. van Slack. Key lessons in achieving widespread
inspection use. IEEE Software, ll(4):46-57, 1994.

[97] M.L. Griss, J. Favaro, and P. Walton. Managerial and organizational
issues - starting and running a software reuse program. In W. Schafer,
R. Prieto-Diaz, and M. Matsumoto, editors, Software Reusability, chap
ter 3, pages 51-78. Ellis Horwood Ltd., 1994.

[98] M. T. Hansen, N. Nohria, and T. Tierney. W hat’s your strategy for
managing knowledge? Harvard Business Review, pages 106-116, March-
April 1999.

[99] M.D. Hansen. Survey of available software-safety analysis techniques. In
Proceedings of the Annual R A M Symposium, pages 46-49. IEEE, 1989.

[100] J .J Hart. The effectiveness of design and code walkthroughs. In Pro
ceedings of the International Computer Software and Applications Con
ference, COMPS A C ’82, pages 512-522, Silver Spring, MD, Nov. 1982.
IEEE Computer Society Press, Los Alamitos, Ca.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101] J. Hartmanis. Turing award lecture: On computational complexity and
the nature of computer science. Communications of the ACM , 37:37-43,
1994.

102] S. Henninger. Capturing and formalizing best practices in a software
development organization. In Proceedings of the 9th International Con
ference on Software Engineering and Knowledge Engineering (SEKE97),
Spain, 1997.

103] S. Henninger. Using software process to support learning software orga
nizations. In Proceedings of the 25th Annual Software Engineering Work
shop, NASA/GSF, Software Engineering Laboratory Series, Greenbelt,
Maryland, 2000.

104] W. C. Hetzel. An Experimental Analysis o f Program Verification Meth
ods. PhD thesis, University of North Carolina at Chapel Hill. Depart
ment of Computer Science., 1976.

105] F. Houdek and C. Bunse. Transferring experience: A practical approach
and its application on software inspection. In F. Bomarius, editor, Pro
ceedings of the 1st International Workshop on Learning Software Or
ganization LSO ’99, pages 59-68. Fraunhofer Institute for Experimental
Software Engineering, Kaiserslautern, Germany, June 1999.

106] F. Houdek and H. Kempter. Quality patterns - An approach to packaging
software engineering experience. Software Engineering Notes, 22(3) :81-
88, 1997.

107] F. Houdek, K. Schneider, and E. Wieser. Establishing experience facto
ries at Daimler-Benz. An experience report. In Proceedings of the 20th
International Conference on Software Engineering (ICSE20), pages 443-
447, Kyoto, Japan, 1998. ACM Press.

108] W. S. Humphrey. A Discipline for Software Engineering. Addison Wesley
Publishing Company, Reading, MA., 1995.

109] W. S. Humphrey. Managing Technical People. Addison Wesley Publish
ing Company, Reading, MA., 1997.

110] W.S. Humphrey. Managing the Software Process. Addison Wesley Pub
lishing Company, Reading, MA., 1990.

111] W.S. Humphrey. A personal Commitment to Software Quality. Ed Your-
don’s American Programmer, 1994.

112] IEEE standard for software reviews and audits. ANSI/IEEE 1028-1988,
1988.

113] IEEE standard glossary of software engineering terminology. IEEE
610.12-1990, 1990.

114] Information technology - software life cycle processes. International Or
ganization for Standardization (ISO), ISO 12207, 1995.

115] ISO15504. A reference model for processes and process capability. Inter
national Organization for Standardization, 1997.

150

permission of the copyright owner. Further reproduction prohibited without permission.

116] C. Johansson, P. Hall, and M. Coquard. Talk to Paula and Peter - They
are experienced. In F. Bomarius, editor, Proceedings of the 1st Interna
tional Workshop on Learning Software Organization LSO ’99, pages 69-
76. Fraunhofer Institute for Experimental Software Engineering, Kaiser
slautern, Germany, June 1999.

117] Ph.M. Johnson. An instrumented approach to improving software qual
ity through formal technical review. In Proceedings of the 16th Inter
national Conference on Software Engineering (ICSE16), pages 113-122.
ACM Press, 1994.

118] P.M. Johnson. Reengineering inspection. Communications of the ACM,
41 (2) :49—52, 1998.

119] P.M. Johnson and D. Tjahjono. Improving software quality through
computer supported collaborative review. In Proceedings of the 3rd Eu
ropean Conference on Computer Supported Cooperative Work, pages 61-
76, 1993.

120] P.M. Johnson and D. Tjahjono. Does every inspection really need
meeting. Journal of Empirical Software Engineering, 3(l):9-35, 1998.

a

121] R. Johnson. Documenting frameworks with patterns. In Proceeding of
OOPSLA ’92, pages 63-76, 1992.

122] R.A. Johnson and G.K. Bhattacharyya. Statistics: Principles and Meth
ods. Addison Wesley Publishing Company, Reading, MA., 3rd edition,
1996.

123] R.E. Johnson and B. Foote. Designing reusable classes. Journal of Object
Oriented Programming, l(5):22-35, 1988.

124] C. Jones. Patterns of Software Systems Failure and Success. Interna
tional Thomson Computer Press, London, UK, 1996.

125] Y. Kalfoglou and D. Robertson. Applying experienceware to support on
tology deployment. In Proceedings of the 12th International Conference
on Software Engineering and Knowledge Engineering (SEKE00j, 2000.

126] A. Kamel, S. Voruganti, H. James Hoover, and P.G. Sorenson. Soft
ware process improvement model for small organization: An experience
report. In Proceedings of the Annual Oregon Workshop on Software Met
rics (AOWEM97), 1997.

127] S. H. Kan. Metrics and Models in Software Quality Engineering. Addison
Wesley Publishing Company, Reading, MA., 1995.

128] C. Kaner. The performance of the n-fold requirement inspection method.
Requirements Engineering Journal, 2(2): 114—116, 1998.

129] C. Kaplan, R. Clark, and C. Tang. Secretes of Software Quality. McGraw
Hill Inc., New York, NY, 1995.

130] J. Kelly. Inspection and review glossary, Part 1. The Software Inspection
and Review Organization (SIRO) Newsletter, 2, 1995.
http: / / www. ics. hawaii.edu / ̂ siro / articles / glossary 1.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131] L. P. W. Kim, C. Sauer, and R. Jeffery. A framework for software devel
opment technical reviews. Software Quality and Productivity: Theory,
Practice, Education and Training, 1995.

132] B. Kitchenham, A. Kitchenham, and J. Fellows. The effects of inspec
tions on software quality and productivity. Technical Report 1, ICL
Technical Journal, 1986.

133] J. C. Knight and E. A. Myers. Phased inspections and their implemen
tation. Software Engineering Notes, 16(3):29-35, 1991.

134] J. C. Knight and E. A. Myers. An improved inspection technique. Com
munications of the ACM, 36(11):51—61, 1993.

135] A. Koennecker, R. Jeffery, and G. Low. Implementing an experience
factory based on existing organisational knowledge. In Proceedings of
the Australian Software Engineering Conference (ASWECOO), 2000.

136] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers, Inc.,
1993.

137] G.E. Krasner and S.T. Pope. A cookbook for using the model-view-
controller user interface paradigm in smalltalk-80. Journal o f Object-
Oriented Programming, l(3):26-49, 1988.

138] S. Kusumoto. Quantitative Evaluation of Software Reviews and Test
ing Processes. PhD thesis, Faculty of the Engineering Science of Osake
University, 1993.

139] S. Kusumoto, A. Chimura, T. Kikuno, K. Matsumoto, and Y. Mohri.
A promising approach to two-person software review in an educational
environment. Journal of Systems and Software, 40:115-123, 1998.

140] O. Laitenberger. A survey of software inspection technologies. In Hand
book on Software Engineering and Knowledge Management, volume 2.
2001 .

141] O. Laitenberger, C. Atkinson, M. Schlich, and K. El Emam. An exper
imental comparison of reading techniques for defect detection in UML
design documents. Journal of Systems and Software, 53(2), 2000.

142] O. Laitenberger, K. El Emam, and T. Harbich. An internally replicated
quasi experimental comparison of checklist and perspective based read
ing of code documents. IEEE Transactions on Software Engineering,
27(5):387-421, 2000.

143] R. Lajoie and R. Keller. Design and reuse in object-oriented frame
works, patterns, contracts and motifs in concert. In Proceedings of the 62
Congress of the Association Canadienne Francaise pour VAdvancement
des Sciences, Montreal, Canada, 1994.

144] C. Lewis, P. Poison, C. Wharton, and J. Rieman. Testing a walkthrough
methodology for theory-based design of walk-up-and-use interfaces. In
Human Factor in Computing Systems, CHI’90 Conference Proceedings,
pages 235-242, Seattle, WA, 1990. ACM Press.

152

with permission of the copyright owner. Further reproduction prohibited without permission.

[145] M. Lindvall, I. Rus, and S. Sinha, editors, proceedings of the fth Inter
national Workshop on Learning Software Organization LSO ’Ol, Kaiser-
slauten, Germany, 2002. Fraunhofer Institute for Experimental Software
Engineering, Kaiserslautern, Germany.

[146] F. Macdonald. Assist v l .l user manual. Technical Report RR-96-199
[EFoCS-22-96], Empirical Foundations of Computer Science, (EFoCS),
University of Strathclyde, UK, 1997.

[147] F. Macdonald. Computer Supported Software Inspection. PhD thesis,
Department of Computer Science, University of Strathclyde, 1998.

[148] F. Macdonald and J. Miller. Modelling software inspection methods for
the application of tool support. Technical Report RR-95-196 [EFoCS-16-
95], Empirical Foundations of Computer Science, (EFoCS), University
of Strathclyde, UK., 1995.

[149] J. M. MacLeod. Implementing and sustaining a software inspection pro
gram in an r&d environment. Hewlett-Packard Journal, 1993.

[150] R. Madachy, L. Little, and S. Fan. Analysis of a successful inspection
program. In Proceedings of the 18th Annual NASA Software Eng. Lab
oratory Work-shop, pages 176-198, 1993.

[151] M. Maher. Cost Accounting: Creating Value for Management. McGraw
Hill Inc., New York, NY, Fifth edition, 1997.

[152] D. Malone. Knowledge management: A model for organizational learn
ing. International Journal of Accounting Information Systems, 2002.

[153] S. March and G. Smith. Design and natural science research on infor
mation technology. Decision Support Systems, 15:251-266, 1995.

[154] M. Marcheli and G. Succi, editors. eXtreme Programming and Flexible
Processes in Software Engineering - XP2000, Sardinia, Italy, 2000.

[155] J. Martin and W.T. Tsai, n-fold inspection: A requirements analysis
technique. Communications of the ACM, 33(2):225-232, 1990.

[156] V. Mashayekhi, C. Feulner, and J. Riedl. CAIS: Collaborative Asyn
chronous Inspection of Software. Software Engineering Notes, 19(5):21-
34, 1994.

[157] Check Mate. Static analysis tools.
http: / / www. bluest one-sw. com / index.html.

[158] S. McConnell. Code Complete, chapter 24. Microsoft Press, Redmond,
WA, 1993.

[159] S. McConnell. Rapid Development. Microsoft Press, Redmond, WA,
1996.

[160] J. McKissick, M.J. Somers, and W. Marsh. Software design inspection
for preliminary design. In Proceedings of the International Computer
Software and Applications Conference, COM PSAC’8f, pages 273-281,
Las Vegas, NV, Jul 1984. IEEE Computer Society Press, Los Alamitos,
Ca.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

161] Merriam-Webster. Merriam-Webster Dictionary.
http://www.m-w.com/home.htm.

162] R.E. Merwin. Software management: We must find a way. IEEE Trans
actions on Software Engineering, 1978.

163] J. Miller. Estimating the number of remaining defects after inspection.
Software Testing, Verification and Reliability, 9:167-189, 1999.

164] J. Miller, M. Wood, and M. Roper. Further experiences with scenarios
and checklists. Journal of Empirical Software Engineering, 3(3):37-64.,
1998.

165] H.D. Mills. Software development. IEEE Transactions on Software En
gineering, 1976.

166] B. Minto. The Pyramid Principle - Logic in Writing and Thinking. FT
Pitman, London, 4th edition edition, 1995.

167] D. Moody. Using knowledge management and the internet to support
evidence based practice. In Proceedings of the 10th Australian Conference
on Information Systems, pages 660-676, Wellington, New Zealand, 1999.

168] G. J. Myers. A controlled experiment in program testing and code
walkthroughs/ inspections. Communications of the ACM, 21(9):760-768,
1978.

169] W. Myers. Shuttle code achieves very low error rate. IEEE Software,
5(5):93-95, 1988.

170] B. A. Nardi. A Small Matter of Programming. MIT Press, Cambridge,
MA, 1993.

171] M. Nick and K-D. Althoff. The challenge of supporting repository-based
continuous learning with systematic evaluation and maintenance. In
22nd International Conference on Software Engineering. Workshop on
Intelligent Software Engineering (WISES), 2000.

172] I. Nonaka and H. Takeuchi. The Knowledge Creating Company. Oxford
University Press, 1995.

1731 J-F. Nunamaker, M. Chen, and T.D.M. Pur din. System development
in information systems research. Management Information Systems,
7(3):89-106, 1991.

174] E. Ostertag. A Classification System for software Reuse. PhD thesis,
University of Maryland, 1992.

175] D. L. Parnas and D. Weiss. Active design reviews: Principles and prac
tices. In Proceedings of the 8th International Conference on Software
Engineering (ICSE8), pages 132-136, 1985. Also Available as NRL Re
port 8927, 18 November 1985.

[176] D. L. Parnas and D. Weiss. Active design reviews: Principles and prac
tice. Journal o f Systems and Software, 7:259-265, 1987.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.m-w.com/home.htm

[177] The PEF Model. A booklet from the PERFECT ESPRIT project 9090
handbook edition, 1996.

[178] J. Perpich, D. Perry, A. Porter, L. Votta, and M. Wade. Anywhere, any
time code inspections: Using the web to remove inspection bottlenecks
in large-scale software development. In Proceedings of the 19th Inter
national Conference on Software Engineering (ICSE19), pages 14-21,
1997.

[179] P. Poison, C. Lewis, J. Rieman, and C.Wharton. Cognitive walkthrough:
A method for theory-based evaluation of user interfaces. International
Journal of Man-Machine Studies, 36:741-773, 1992.

[180] A. Porter, H. Siy, and L. Votta. A review of software inspections. Ad
vances in Computers, 42(4):39-76, 1996.

[181] A. Porter, H.P. Siy, C.A. Toman, and L.G. Votta. An experiment to
assess the cost-benefits of code inspections in large scale software de
velopment. IEEE Transactions on Software Engineering, 23(6):329-346,
1997.

[182] A. A. Porter and L. G. Votta. W hat makes inspections work? IEEE
Software, pages 99-102, 1997.

[183] A. A. Porter, L. G. Votta, and V. R. Basili. Comparing detection
methods for software requirements inspections: A replicated experiment.
IEEE Transactions on Software Engineering, 21(6):563-575, 1995.

[184] A. A. Porter and L. Votta. Comparing detection methods for software re
quirements inspection: A replication using professional subjects. Journal
of Empirical Software Engineering, 3(4):355-378, 1998.

[185] W. Pree. Design patterns for object-oriented software development. Ad
dison Wesley Publishing Company, Reading, MA., 1995.

[186] Taligent Press. The Power of Frameworks for Windows and OS/2 De
velopers. Addison Wesley Publishing Company, Reading, MA., 1995.

[187] R. Prieto-Daz. Implementing faceted classification for software reuse.
Communications of the ACM, 34(5):89-97, 1991.

[188] J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81—106,
1990.

[189] Remote inspection services.
http: / / www.nolan.com/~pnolan/rem _insp.htm l.

[190] H. Remus. Integrated software validation in the view of inspec
tions/reviews. Software Validation, pages 57-65, 1984.

[191] ReviewPro. The automated technical reviews and inspections system,
http: / / www.sdtcorp.com / reviewpr.htm.

[192] S. Rifkin and L. Deimel. Applying program comprehension techniques
to improve software inspection. In Proceedings of the 19th Annual NASA
Software Engineering Laboratory Workshop. NASA, 1994.

155

with permission of the copyright owner. Further reproduction prohibited without permission

http://www.nolan.com/~pnolan/rem_insp.html
http://www.sdtcorp.com

[193] D. Rombach. Special presentation in ICSE 2001. In Proceedings of
the 23th International Conference on Software Engineering (ICSE23'),
Toronto, Canada, 2001. ACM Press.

[194] J. Rothfeder. Its late, costly, incompetent but try firing a computer
system. Business Week, November 7 1993.

[195] G. Ruhe. Learning software organizations. In S.K. Chang, editor, Hand
book of Software Engineering and Knowledge Engineering, volume vol 1
- Fundamentals. World Scientific Publishing Company, Singapore, 2001.

[196] I. Rus, M. Lindvall, and S.S. Sinha. A state of the art report; Knowledge
management in software engineering. Technical report, DoD Data &
Analysis Center for Software (DACS), Rome, NY, Dec 2001.

[197] G. W. Russell. Experience with inspection in ultralarge-scale develop
ments. IEEE Software, 8(1):25-31, 1991.

[198] K. Sandahl, O. Blomkvist, J. Karlsson, C. Krysander, M. Lindvall, and
N. Ohlsson. An extended replication of an experiment for assessing
methods for software requirements inspection. Empirical Software En
gineering, An International Journal, 3(4):327-354, 1998.

[199] G.M. Schneider, J. Martin, and W.T. Tsai. An experimental study of
fault detection in user requirements documents. ACM Transactions on
Software Engineering and Methodology, 1(2): 188-204, 1992.

[200] K. Schneider. Realistic and unrealistic expectations about experience ex
ploitation. In Proceedings o f the Conference on Engineering in Software
Technology (CONQUEST 2001), pages 171-182, Nuernberg, Germany,
2001 .

[201] G. Schulmeyer. Zero Defect Software. McGraw Hill Inc., New York, NY,
1990.

[202] C. Seaman, M. Mendona, V.R. Basili, and Y.M. Kim. An experience
management system for a software consulting organization. In Proceed
ings of the 2f th Annual Software Engineering Workshop, NASA/G SF,
Software Engineering Laboratory Series, Greenbelt, Maryland, 1999.

[203] C. B. Seaman and V. R. Basili. Communication and organization: An
empirical study of discussion in inspection meetings. IEEE Transactions
on Software Engineering, 24(6):559-572, 1998.

[204] J. Segal. Organisational learning and software process improvement: A
case study. In K-D. Althoff, R.L Feldmann, and W. Muller, editors,
proceedings of the 3rd International Workshop on Learning Software Or
ganization L SO ’01, LNCS 2176, pages 68-82. Springer-Verlag, Berlin,
Heidelberg, 2001.

[205] Ch.C. Sekar and E.W. Deming. On a method of estimating birth and
death rates and the extent of registration. Journal of the American
Statistical Association, 44(245-248): 101-115, 1949.

[206] Y.S. Sherif. The characteristics of efficient formal review. Microelectron
ics and Reliability, 32(3):415-422, 1992.

156

with permission of the copyright owner. Further reproduction prohibited without permission

207] Y.S. Sherif. Software safety analysis: The characteristics of efficient
technical walkthrough. Microelectronics and Reliability, 32(3):407-414,
1992.

208] G. C. Shirey. How inspections fail. In Proceedings of the 9th International
Conference on Testing Computer Software, pages 151-159, 1992.

209] B. Shneiderman. Dynamic queries for visual information seeking. IEEE
Software, ll(6):70-77, 1994.

210] F. Shull, F. Lanubile, and V.R. Basili. Investigating reading techniques
for object-oriented framework learning. IEEE Transactions on Software
Engineering, 26(11): 1101—1118, 2000.

211] J.L. Simon. Resampling: The new statistics. Wadsworth, Boston, 1993.

212] E. Simoudis. Using Case-Based retrieval for customer technical support.
IEEE Expert, 7(5):7-13, 1992.

213] H.P. Siy. Identifying the Mechanisms Driving Code Inspection Costs and
Benefits. PhD thesis, University of Maryland at College Park, 1996.

2141 B. Smyth and P. Cunningham. A comparison of incremental case-based
reasoning and inductive learning. In Proceedings o f the 2nd European
Workshop on Case-Based Reasoning, pages 32-39, 1995.

215] Software formal inspection guidebook., 1993.
http://satc.gsfc.nasa.gov/fi/fipage.html.

216] Software formal inspection standard. NASA-STD-2202-93, 1993.
http://satc.gsfc.nasa.gov/fi/fipage.html.

217] P. Sparaco. Board faults Ariane-5 software. Aviation Week and Space
Technology, 145(5):33-34, 1996.

218] J. Stasko, A. Badre, and C. Lewis. Do algorithm animations assist learn
ing? An empirical study and analysis. In Human Factor in Comput
ing Systems, INTERCH I’93 Conference Proceedings, pages 61-66, The
Netherlands, 1993. ACM/IFIP, ACM Press.

219] S. H. Strauss and R. G. Ebenau. Software Inspection Process. Systems
Design & Implementation Series. McGraw Hill Inc., New York, NY, 1994.

220] K. E. Sveiby. The New Organizational Wealth. Berrett-Koehler Publisher
Inc., 1997.

221] S. Tan, H.-H Teo, B. Tan, and K.-K Wei. Developing a preliminary
framework for knowledge management in organizations. In Proceedings
of Fourth Annual Americas Conference on Information Systems, pages
629-631, Baltimore, MD, 1998.

[222] C. Tautz, K-D Althoff, and M. Nick. A case-based reasoning approach
for managing qualitative experience. In Intelligent Lessons Learned Sys
tems: Papers from the Workshop at 17th National Conference on A I
(AAAI00)., pages 54-59. The AAAI Press, 2000.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://satc.gsfc.nasa.gov/fi/fipage.html
http://satc.gsfc.nasa.gov/fi/fipage.html

[223] C. Tautz and C. Gresse von Wangenheim. REFSENO: A representation
formalism for software engineering ontologies. In Proceedings of the 5th
German Conference on Knowledge Based Systems (XPS99), Workshop
on Knowledge Management Organization Memory and Reuse, pages 61-
71, 1999.

[224] I. Tervonen. Support for quality-based design and inspection. IEEE
Software, 13(l):44-54, 1996.

[225] D. Tjahjono. Exploring the effectiveness of formal technical review factor
with CSRS, a collaborative software review system. PhD thesis, Depart
ment of Information and Computer Science, University of Hawaii, 1996.

[226] R. Trittmann. The organic and the mechanistic form of managing
knowledge in software development. In K-D. Althoff, R.L Feldmann,
and W. Muller, editors, proceedings of the 3rd International Workshop
on Learning Software Organization LSO ’Ol, LNCS 2176, pages 22-36.
Springer-Verlag, Berlin, Heidelberg, 2001.

[227] M.H. van Edman. Structured inspections of code. Software Testing,
Verification and Reliability, 2(3):133-153, 1992.

[228] G. van Heijst, R. van der Spek, and E. Kruizinga. Organizing corpo
rate memories. In Proceedings of the 10th Knowledge Acquisition for
Knowledge-based Systems Workshop, Banff, Canada, 1996.

[229] J. Vlissides. Unidraw Tutorial I: A simple drawing editor. Stanford
University, 1991.

[230] L. G. Votta. Does every inspection need a meeting. Software Engineering
Notes, 18(5): 107-114, 1993.

[231] I. Watson. Case-Based Reasoning tools: An overview. In Proceedings of
the Second UK Workshop on Case Based Reasoning, pages 71-88, 1996.

[232] G.M. Weinberg. The Psychology of Computer Programming. Van Nos
trand Reinholt Co, N.Y., 1971.

[233] E. F. Weller. Experiences with inspections at bull hn information system.
In Proceedings of the f th Annual Software Quality Workshop, 1992.

[234] E. F. Weller. Lessons from three years of inspection data. IEEE Software,
10(5):38-45, 1993.

[235] G. Wenneson. Quality assurance software inspections at NASA Ames:
Metrics for feedback and modification. In Proceedings of the 10th Annual
Software Engineering Workshop, Goddard Space Flight Center, Green-
belt, MD, 1985.

[236] C. Wharton, J. Rieman, C. Lewis, and P. Poison. The cognitive walk
through method: A practitioner’s guide. In J. Nielsen and R.L. Mack,
editors, Usability Inspection Methods, chapter 5. John Wiley & Sons Inc.,
New York, NY, 1994.

[237] D. A. Wheeler, B. Brykczinski, and R. N. Jr. Meeson. Software Inspec
tion - An Industrial Best Practice. IEEE Computer Society Press, Los
Alamitos, Ca., 1996.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[238] D. A. Wheeler, B. Brykczynski, and R. N. Jr. Meeson. Peer reviews sim
ilar to inspection. In D. A. Wheeler, B. Brykczinski, and R. N. Jr. Mee
son, editors, Software Inspection - An Industrial Best Practice., pages
228-236. IEEE Computer Society Press, Los Alamitos, Ca., 1996.

[239] G. White, D.Anderson, K. Burnham, and D. Otis. Capture recapture
method for sampling closed populations. Technical Report LA-8787-
NERP, Los Alamos National Laboratory, 1982.

[240] K. Wiig. Comprehensive knowledge management - working paper.
Knowledge Research Institute,
http: / / www. knowledger esearch. com / downloads/compreh_km.pdf, 1999.

[241] A.L. Wolf and D.S. Rosenblum. A study in software process data capture
and analysis. In Proceedings of the Second International Conference on
the Software Process, pages 115-124, 1993.

[242] Q. Yang, E. Kim, and K. Racine. C a s e A d v i s o r : Supporting interactive
problem solving and case base maintenance for help desk applications.
In IJCAP97, Workshop on Practical Use of CBR, Nogoya, Japan, 1997.

[243] E. Yourdon. Structured Walkthroughs. Prentice Hall, New York, NY.,
4th edition, 1989.

[244] M.V. Zelkowitz and D.R. Wallace. Experimental models for validating
technology. IEEE Computer, 31(5):23-31, 1998.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

Case Based R easoning

Case based reasoning [136] is a commonly used knowledge deployment tech

nique. A case-based reasoning system draws a decision on the comparison

between knowledge stored in the case base and the new situation. The current

problem description and the stored solutions are known as cases. The intu

ition is “what has been done before to successfully solve a problem may be

successfully used in similar situations” .

Typically, CBR systems reason using large chunks of knowledge, rules

and similarity metrics for adaptation. The CBR technology is an interac

tive paradigm, where the user is involved in much of the process [231]. The

CBR technique is more effective than rule-based or model-based reasoning

systems as it can overcome the ’’knowledge acquisition bottleneck” by storing

cases, as they emerge, for later analysis rather than encoding the entire do

main knowledge a priori [136]. This appendix provides an introduction to the

CBR technique.

A .l T he C B R process

The CBR process can be described as a four-steps cycle [1] - see figure (A.l):

R e triev e : The process starts by a user querying the CBR system to solve

a given problem. The system interprets a query to retrieve the most

appropriate case(s) from the case base.

R euse: Often, the system retrieves a list of cases. The user is given a chance

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similar Cases
Problem Retrieve

Case Base

Revise
Revised Solution Proposed Solution

Figure A.l: The process of case based reasoning

to select the ‘most’ appropriate case from the retrieved list.

R evise: If the selected case does not appropriately solve the current problem,

the system (or the user) revises the case to fit the current problem.

R e ta in If the solution is revised, the system or the user extends the case base

to include the revised solution as a new case in the case base.

In reality, most of the available CBR systems are retrieval and reuse sys

tems [231]. Typically, each of the retrieved cases is given a relative score based

on their similarity to the problem as expressed in a user querry. Generally, the

case with the highest score is the one which the system believes is the most

appropriate to answer the user query. Along with the list of cases, the system

posts a set of questions that the user can answer. If the user is unsatisfied

with the resulting list of cases (e.g. all retrieved cases have similar score), she

can answer the questions to further focus the results. Upon answering each

question the list of cases and the score of the cases are updated to reflect the

answers.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Feature Value
Make
Processor
Memory Size
Price ,

HP
P-IV 2.0 GHz
512 MB
$1,200

Table A .l: An example of a case

A .2 B uild ing a C B R S ystem

Typically CBR systems provide case indexing mechanisms in support of re

trieval algorithms. The domain expert is usually responsible for defining the

specifics of the case base. In this section we will briefly review the main issues

related to building a case base and the different techniques CBR designers use

to index and retrieve cases.

A .2.1 The case base

The case base is typically the first step in developing a CBR system. A case

base consists of a number of cases, each of which describes an experience

from the knowledge domain. There are no standards describing what informa

tion should be retained in a case [231]; however, each case must encompass a

problem description and a particular solution to that problem. Typically, the

problem description details the situation in which the case occurred, and the

contents of the solution are affected by tha t situation description.

In general, cases are structured as a collection of feature-value (also called

attribute-value) pairs. The main difference among case representations is the

granularity of the feature-value pairs. They can be very specific as the example

in Table A.l, or very general. In the general type of cases, the case may

only have two features, Case Name and Case Solutions, each is associated

with a paragraph of text. Two main factors affect the decision of the case

representation: ease of acquisition and provided functionality [136].

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A .2.2 Indexing techniques

The objective of indexing the cases is to provide efficient case retrieval. Wat

son [231] stated some guidelines for efficient indices. Essentially, the indices

should be: (1) predictive, (2) allow for an extending case base, and (3) con

crete enough to be recognized in the future. Traditionally, indices are used

as pointers to cases. Strategies such as applying importance value to cases or

sections of cases and labelling cases with their important features have been

used to index cases.

A .2.3 Retrieval algorithms

Given a user query, the retrieval algorithms are responsible for retrieving the

most similar case in the case base. Several techniques have been used for

case retrieval including nearest neighbor, induction and template retrieval or

a combination of these strategies [214] [231].

The nearest neighbor approach calculates similarity by matching a weighted

sum of the case features. To use this approach, each feature must be assigned

a weight to indicate its importance within the knowledge domain. In the

inductive approach a decision tree is built to classify cases within the case

base. Each branch represents a feature value pair and each level of the tree

represents a feature. The most similar cases are retrieved by traversing the

tree [188]. Template retrieval algorithms work similarly to the SQL (Standard

Query Language) used to extract information from databases. They return all

cases that fall within a specified parameters.

A .2.4 Adaptation strategy

There are two main methods to adapt retrieved cases to the current problems

[231]: transformational reuse and derivational reuse. These methods depend

heavily on the application domain and are expensive to implement. As a result

very few CBR systems use adaptation [231].

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

M odelling Current Peer
R eview s

This appendix provides a summary of different review methodologies we en

countered in our survey. At a high level of abstraction, reviews are classified

as inspections, technical reviews and walkthroughs [108]. Inspections are the

most formal process with the most precise objectives and walkthroughs are the

least formal that can accommodate a wide range of objectives in one session.

Generally, inspections are used for defect detection and elimination, technical

reviews are used for building consensus and walkthroughs are used for training

[84].

B .l In sp ection

Software inspection, as defined in IEEE STD.610.12-1990 [113] is “a formal

evaluation technique in which software requirements, design or code are ex

amined in detail by person or group other than the author to detect faults,

violations of development standards and other problems. The inspection ob

jectives as identified in IEEE-STD 1208-1990 [112] is to detect and identify

software elements defects.

B.1.1 Fagan Inspection

Fagan [77, 78] published an influential method, called inspection, for statically

testing a work product to verify that it meets its requirements. There are

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

six principle stages in Fagen’s inspection process [78]: planning, overview,

preparation, examination, rework and follow-up.

1. Planning. A moderator is designated and the inspection team is formed.

The moderator ensures that the work product satisfies the inspection

entry criteria and assign roles to participants.

2. Overview. An optional step to familiarize participants with the work

product, its context, etc.

3. Preparation. Participants individually, analyze the work product and

related materials and record potential defects.

4. Examination. The inspection team meets to analyze the work product

with the sole objective of finding defects. During the meeting, a person

designated as the reader presents the work product while everyone is

looking for defects. Identified defects are reported, classified and their

severity are noted.

5. Rework. The author resolves all the issues noted on the examination

stage.

6. Follow-up. The moderator verifies th a t all issues have been resolved

effectively and no secondary defects have been introduced, or a second

inspection may be scheduled.

A typical inspection team consists of three participants, other than the

work product author, drawn from the project technical team; more partici

pants may be added depending on the subject work product. The examina

tion meeting requires several roles to be filled: a moderator to orchestrate the

meeting, a reader to paraphrase the work product and a maintenance expert

to view the work product from the maintenance perspective.

Only work in progress goes through an inspection process. The work prod

uct hast to meet the inspection entry criteria, as well. During the process,

supplementary materials should be accessible to inspectors, e.g. checklists,

defect distributions from previous inspections, etc. After the inspection, the

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

moderator submits a cumulative report of defects found, their count, type and

severity to the project manager.

B.1.2 F ine-tunes on Fagen Inspection

“IEEE Standard for Software Reviews and Audits” [112] (IEEE STD 1028-

1988) adopted Fagen’s inspection, at large, and fine tuned some of its param

eters. Specifically, they restricted the inspection team to a maximum of six

participants, and added a ‘recorder’ role to record the location and description

of all defects discovered during the meeting. They also recommended that the

preparation period to be within 1.5 hours per inspector.

NASA [216] also fine tuned Fagan inspection focusing primarily on the

process itself. The examination meeting is strictly limited to two hours, if the

work product examination is not complete, an inspection continuation meeting

is scheduled for later time. Additional, informal meetings may be scheduled

to resolve open issues raised during the meeting and discuss defect solutions.

These meetings are scheduled upon a request from the work product author.

Schneider et al. [199] proposed replicating the inspection process to operate

in parallel using N independent teams along with a single moderator who is

responsible for coordinating and merging their efforts. They recommended

the replication only be applied to the inspection of the user requirements.

Studies [155] have showed that traditional inspections are much less successful

at detecting requirement faults in this case, than design and code faults.

B .1.3 Gilb Inspection

Gilb [92] introduced an inspection process that, in addition to the main objec

tive of detecting and eliminating defects, included process improvement as a

secondary objective. He suggested th a t inspection should take place between

software production phases to ensure a defect free transition between phases.

Gilb [91] [92] based his inspection on Fagan’s, yet he modified almost all of

the stages to adapt for the secondary objective, and introduced a new stage,

called third-hour as well. As opposed to Fagan’s inspection, the overview step

is usually held. It familiarize inspectors with the inspection process as well as

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

the work product to be inspected. Process changes, strategies and productivity

goals are usually discussed in this meeting.

During the examination meeting, identified issues are logged. Logged issues

can be potential defects, ‘question of intent’ to the author or an improvement

suggestion. Third-hour meeting directly follows the inspection meeting. It is a

process brainstorming meeting to discuss causes for raised issues, recommen

dations for eliminating them in the future as well as improvement suggestions

for the inspection process. The rework stage, usually done by the author, re

solves the issues logged during the examination meeting. The inspection ends

when the moderator make sure tha t corrective actions to identified defects are

taken.

B .1.4 Phased Inspections

A phased inspection [133] [134] is a series of small inspections, termed phases,

each of which is designed to inspect one class of defects. The idea behind

phased inspection is to examine work products, using a dependable method,

against different desired characteristics such as correctness, portability, reusabil

ity and maint ainability.

There is no overview stage in phased inspections and defect collection

is performed individually. Two types of phases exist in phased inspections,

single-inspector phase and multiple-inspector phase. The assumption is that

all inspectors, in multiple-inspector phase, will find exactly the same list of

defects. If not, a meeting may be needed to reconciliate the list of defects.

Depending on the property checked, either type of phases will be used. For

example, checking design functionality should be performed in a multiple-

inspector phase, whereas, checking source code readability may be performed

as a single-inspector phase. Inspected work products have to pass phases se

quentially, i.e. inspections does not progress to the following phase until all

identified defects in the previous phase are reworked.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.1.5 Inspecting for Program Correctness

Britcher’s [42] approach to software review builds on the questionnaire idea

used in active design review [176] and Fagan’s inspection [77]. Moreover, this

approach emphasizes the search for correctness, instead of looking for defects.

Reviewers would investigate how the software is developed, informally apply

formal verification methods, looking for evidence of disciplined methods in its

construction and adequate consideration of the error domain.

Correctness arguments are based on four key program attributes: topology,

algebra, invariance and robustness. Topological correctness refers to the hier

archical decomposition into small, manageable and independent subproblems

while conserving the original problem space. Algebraic correctness refers to

the functional equivalence among successive refitments of the design. Invari

ance attribute explores the relationship between variables before, during and

after execution. Robustness investigates how well the design considers error

conditions.

The process involves two to three reviewer in addition to the author. There

are two stages in the process, preparation and meeting. The meeting can be

split into four sessions [180], each session examines one correctness aspect of

the work product.

B .2 Technical R ev iew

A technical review as defined in ANSI/IEEE Std 610.12-1990 [113] is “a formal

meeting at which the preliminary or detailed design of a system is presented

to the user, customer or other interested parties for comments and approval”.

Reviews are frequently used to develop consensus about the work product,

examine alternatives or identify defects.

B.2.1 Round-Robin R eview

The basic idea behind Round-Robin reviews [84] is to give participants an

equal and similar share of the entire task. This could be achieved by circulating

different review roles among participants or by using forms of redundant round-

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

robins. Task division could depend on the review criteria, i.e. each person

examines the work product against one item of the review checklist, or on

the work product itself, i.e. dividing it into sections or on a functional basis.

Round-Robin reviews can be used to check work product characteristics or

decide the best alternative in design. They also provide a good educational

environment, especially when all participants are at the same level of expertise.

The Round-Robin review process is informal to the choice of number of

participants, their roles, review results reporting, reviewed material size and

m aturity level depend on the review objective. For example, for testing work

product readability, speed reviewing [165] can be employed. In this technique,

the work product is divided into equal parts. Reviewers spend short time (e.g.

five minutes) checking a part, before circulating it to the next reviewer. First

impression comments provide a good indication for a document readability.

B .2.2 A ctive D esign Review

Active design review, a review process developed by Parnas and Weiss [176],

uses a questionnaire to guide the reviewers during their preparation for the

review. These questions are carefully designed such th a t they can only be

answered by careful study of the design. The objective of this questionnaires

is to enforce the reviewers to take a more active role than just reading the

document; some of the questions may ask reviewers to implement particular

parts of the design.

There are three stages in active design reviews: overview, examination and

follow-up. In the first stage, a brief overview of the module being reviewed

is presented. In the second stage, reviewers study the design individually

and complete the questionnaire. Reviewers can meet with designers to resolve

questions they have about the design and/or the questionnaire. This stage ends

by handing the completed questionnaires back to the designers. In the third

stage, designers read the completed questionnaires and meet with reviewers to

resolve questions the designers may have about reviewers’ answers.

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B .2.3 Verification Based Reviews

Dyer [70] [71] proposed this review method with the intent of striking a compro

mise between formality and thoroughness. In these reviews, the work product,

usually code, is reviewed line by line using informal correctness proofs.

van Ed man [227] has also proposed a review process, mainly for code,

that is a cross between formal verification and technical reviews. The method

is based on including comments on the code using a formal notation. Then,

during the examination meeting, reviewers determine if the comments are ade

quate and if the code performs the functionality documented in the comments.

To successfully apply this review mechanism, another programming method

ology, namely the assertion-based methodology, is introduced. Van Edman

states th a t this methodology not only facilitates the review process, but eases

the coding process as well.

B .2.4 Selected A spect R eview

‘Selected aspect review’1 is a method of rapidly evaluating material by focusing

attention to a few selected aspects, one at a time [84], This type of review is

commonly used as part of feasibility studies, or to reevaluate plans and cost

estimate. Large amounts of materials are generally covered, as only selected

aspects of selected samples of the work are examined.

In this approach, preparation is recommended but not required and follow-

up is the responsibility of the work product author. Before the examination

phase starts, each participant should be informed of the primary area of con

cern, generally by a checklist of items to look for. The roles include moderator,

author and reviewers. The moderator role emphasizes on the interpersonal

skills more than technical skills because of the review structure. The review

team is generally larger in size than other types of reviews.

1 Freeman and Weinberg [84] called this approach inspection, however to avoid confusion,
we have used the name selected aspect reviews.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2.5 M eeting-less reviews

Several studies [230] [183] have indicated that most defects are found dur

ing the preparation stage. Votta [230] suggested replacing the examination

meeting with a series of depositions, A deposition is a meeting between the

work product author, inspection moderator and an inspector to collect his/her

findings.

Along the same line, Bisant and Lyle [34] proposed a two person inspection

for projects that do not involve large group of developers. The approach

requires only two people, the author and a reviewer. In other approaches

[238] [158], the process is limited to a person checking the work product and

returning his/her comments to the author. These approaches can be limited

in participant numbers from one person examines the code in isolation to two

or more reviewers examining distributed parts of the work product. Reviewers

may meet with the work product author to discuss the defects.

B .3 W alkthrough

A walkthrough is [113] “a review process in which a designer or programmer

leads one or more other members of the development team through a segment

of design or code that he or she has written, while the other members ask

questions and make comments about technique, style, possible errors, violation

of development standards and other problems”. The primary objective of the

walkthrough as identified in ANSI/IEEE-Std-1028-1988 [112] is “to find de

fects, omissions, and contradictions, to improve the software element and to

consider alternative implementations ”, Other objectives identified on the same

standard include “exchange of techniques and style variations, and education

of the participants. A walkthrough may point out efficiency and readability

problems in the code, modularity in the design or unstable design specifica

tions. ” Software engineers have used walkthroughs for other objectives such

as software safety analysis [99], usability analysis [144] [179] and programming

language design assessment to determine how easy or hard it is to write a

program given a specific language definition [28].

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B .3.1 Structured W alkthrough

Yourdon [243] defines his walkthrough process, named structured walkthrough,

as “a peer group review of a product”, with a basic purpose of error detection.

Reviewers are encouraged to make constructive criticism, comments and sug

gestions about the work product. The spectrum of work products th a t can

undergo a structured walkthrough includes specification, design, code and test

documents.

Roles in a structured walkthrough include the presenter (typically the au

thor of the work product), coordinator, secretary to record comments, mainte

nance oracle to look into maintainability aspects, standards bearer, user repre

sentative (where appropriate) and general reviewers to give general comments

about the work-product correctness and quality. The roles can be combined,

except for the coordinator and secretary. Two persons are a minimum re

quirement for a walkthrough. Yourdon recommends a team of 5-6 persons for

a productive walkthrough. The desired team size depends on parameters such

as walkthrough context and level of formality.

A structured walkthrough has two phases, preparation and meeting. Each

reviewer should spend on average one hour in preparation, for a typical 30

to 60 minute walkthrough meeting. The meeting begins by reviewing “old

business” from previous walkthroughs, if applicable. It may be followed by

a brief presentation of the work product. After collecting comments from

reviewers, the meeting ends with a recommendation if another walkthrough is

needed or not.

A structured walkthrough can be scheduled at different points in the life

cycle of a product. Yourdon suggests that they be held on legible documents

before any extensive testing, for example, code walkthroughs can be held after

clean compilation (legible code) but before testing.

B .3.2 Technical W alkthrough

The technical walkthrough process [206], defined for software safety analysis

purposes, is by far the most formally defined walkthrough process. Sherif

172

with permission of the copyright owner. Further reproduction prohibited without permission.

[207] recommended technical walkthroughs as a periodical ongoing activity in

all software development phases. In addition to the general objective of finding

errors, the specific objectives of a technical walkthrough will depend on when

it is held in the software life cycle.

The software manager appoints a lead reviewer for each phase of the prod

uct life cycle, who in turn, appoints the review team for tha t phase. Depend

ing on the work product being reviewed, the review team will have three to

six participants in addition to the lead reviewer and the author of the work

product. For example, the participants for the test plan walkthrough in the

analysis phase are: lead reviewer, test-plan author, a system engineer, a se

nior operations specialist, an integration specialist and a senior development

engineer.

Only work-in-progress work-products should undergo a technical walk

through. The presenter has to distribute the work-product to be reviewed

accompanied with a brief statement describing its state of completeness. Par

ticipants submit their comments to the lead reviewer before the walkthrough

meeting as well. During the meeting, the team goes through the concerns

raised and levies action items for those concerns. Critical concerns are added

to the project’s ‘Critical Issues List’. After the meeting, the lead reviewer has

to report findings and recommendations to the software manager.

B .3.3 Freedman and W einberg’s W alkthrough

Freedman and Weinberg [84] defined their walkthrough as a review process

“Characterized by the producer of the reviewed material”. The process is per

formed on the basis of a step-by-step simulation of procedures. Despite this

procedural approach, the walkthrough can be extended to review nonproce

dural materials as well.

The objective of this type of walkthrough is mainly educational. Major

oversights can also be detected, depending on the background and skills of the

audience. There are two roles in this type of walkthrough: presenter, who has

to lead the walkthrough meeting as well, and the audience. In this type of

walkthrough a classroom approach is followed. This gives the audience a more

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

passive role during the walkthrough meeting and implies that the presenter has

to do most of the preparation and guide the meeting progress. The classroom

approach is flexible enough to accommodate a large size of audience and large

amounts of materials.

B .3.4 Cognitive W alkthrough

Cognitive walkthrough [236] is “A set of reasonable speculations about a user’s

background and state of mind while carrying out a task” tha t is aimed at the

analysis of highly interactive user interfaces. C. Lewis et. al [144] [179] defined

this process to evaluate the ease of learning of user interfaces by exploration.

Different variations of a cognitive walkthrough have been used in different

contexts [28] [218]. The key idea is to examine a plausible sequence of steps

leading from a problem to its solution using a tool.

There are two phases in cognitive walkthroughs: preparatory and analy

sis. In the preparatory phase, reviewers identify the walkthrough inputs. In

addition to the design under review, the inputs should cover three different

areas: identification of the users, sample task suite for evaluation and action

sequences for completing the tasks. During the second phase, the analysis, re

viewers examine the actions required to complete each task on the task suite,

trying to assess if the user will choose the correct action to complete the task.

There is no limits on the team size of a cognitive walkthrough. It can

be as little as one person evaluating his/her own design, up to any number

needed to perform the task. Each member in the team should have a specified

role. The roles include presenter (the designer), secretary, coordinator and

reviewers (analysts). The reviewers should contribute various expertise such

as knowledge of potential market, user-needs analysis, and interface design

evaluation. A cognitive walkthrough can be performed at different points in

the development of a user interface.

B.3.5 Program m ing W alkthrough

A programming walkthrough [28] applies the same basic idea of cognitive walk

through to assess the ease of writing programs in a programming language.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The two processes share the property of defining specific tasks. The reviewers

must have a suite of problems to examine the process of writing programs to

solve them. In contrast to the cognitive approach, programming walkthroughs

do not require the action sequences for completing the program to be given a

priori. The output of the walkthrough is the careful documentation of these

sequences, along with the knowledge required for each step in the sequence.

Language designers use this knowledge to understand the programming pro

cess from the programmer’s point of view.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix C

Support M aterial for the Case
Study

This appendix provides a copy of forms and tools we developed and used

during our case study. The items listed in this appendix are:

1. The questionnaire used to survey the students’ feedback about the peer

review process. This questionnaire was added after the first round of

projects. It was added to solicit the the students’ opinion about the

review right after it was enacted.

2. The questionnaire used to solicit students’ feedback about the framework

and its documentation as well as the review processes recommended

during development.

3. The checklist used in the study as a part of the review preparation pack

age. In the first round of projects, two checklists were used, one copied

from Freedman and Weinberg book [84], and one developed to along the

lines of the scenario based reviews. The second checklist is included in

Section C.3.

4. Student preparation form.

5. Review meeting collection form.

6. Student’s background form.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

It should be noted that the students’ participation in the review process was

optional. All those attending the review meetings agreed to release the review

results to be used in this research project. Students’ consent was captured on

video before the review meeting.

C .l P ost-rev iew questionnaire

1. After the CSF review, how confident are you that you will be able to use

the framework to produce an application? (Answer on a scale of 1 to 5,

where 1 = not confident and 5 = very confident)

2. Rate the relevance and clarity of the documentation in terms of gaining

a high level understanding the CSF framework. In addition what per

centage of time did you spend on each of the types of documentation?

(For relevance and clarity, answer on a scale of 1 to 5, where 1 = not use

ful/clear and 5 = very useful/clear. For time, simply give a percentage.)
Item Relevance / U sefulness Clarity Time_____

Hooks
Examples
Design diagrams
Use cases
Guidelines/Process
FAQ
Talking to the CSF developer

3. How did you approach preparation for the review?

For example - started by looking over the review guidelines, reading the

use cases, then tried an example, etc.

4. Did you try any examples? If so, which ones?

5. Characterize the changes to the communication and persistence require

ments of your application due to using the CSF? (Answer either uncer

tain, or using a scale of 1 to 5, where 1 = no significant changes, 5 =

significantly modified)

177

with permission of the copyright owner. Further reproduction prohibited without permission.

6. How helpful was the review process for improving your understanding of

the framework? (Answer on a scale of 1 to 5, where 1 = not helpful and

5 = very helpful)

7. Prom your perspective, how can the review be improved for CMPUT 401

students in the future?

C.2 P ost-p roject questionnaire
Section I

1.1. W hat is your name and group name?

1.2. For your part of the project, how much did you use the CSF?

(Please answer: significant use, limited use or did not use)

If you used the CSF significantly or in a limited way, please answer sections

II and III. If you were not involved in using the CSF, proceed to section III.

Section II

II. 1 How did you approach development using the CSF? Give a brief de

scription. For example, did you start by modifying examples, read the

documentation, examine the code, etc.?

11.2 Now th a t you’ve completed a project, rate the usefulness/ relevance and

clarity of the following on a scale of 1 to 5 for using the CSF. (1 = not

useful or clear, 5 = very useful or clear)

Item Relevance / U sefulness Clarity_____

Hooks
Examples
Design diagrams
Use cases
Guidelines/Process
FAQ1
Talking to the CSF developer

11.3 Which option or combination of options from question 2.2 did you rely

on in learning and using the CSF?

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11.4 W hat problems did you encounter in using the CSF? Give a brief de

scription of 3 to 5 of the major ones.

11.5 At each stage of development, how much time did you personally spend

on issues involving the CSF as opposed to other activities? (i.e. How

much time did the CSF take up for that stage only as compared to other

activities at that stage?) Answer on a scale of 1 to 5 where:

1 = up to 10% (a minimal amount of your time for that stage)

2 = 10 to 25%

3 = 26 to 33%

4 = 34 to 50%

5 = greater than 50% (the majority of your time for th a t stage)

* Project planning

* Analysis

* Design

* Implementation

* Testing

11.6 On a scale of 1 to 5, how difficult did you find each of the following parts

of the framework to use? (1 = very difficult, 5 = very easy) Leave it

blank if you didn’t use that part.

* Asynchronous communication

* Synchronous communication

* Data m aster/data proxy

* Persistence

* Mail servers

* The Framework as a whole

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

II.7 After completing the project, how confident are you that you will be

able to use the framework to produce another application? (Answer on

a scale of 1 to 5, where 1 = not confident and 5 = very confident)

Section I I I

111.1 How useful was the design review in the areas of:

(Answer on a scale of 1 to 5 where 1 = not useful and 5 = very useful)

* Using the CSF correctly

* Enhancing the overall design quality

* Enhancing the design documentation style and details

* Enforcing a milestone for the progress of the project

111.2 How appropriate did you find the timing of the reviews?

(Answer: too early in the process, too late in the process, or at an

appropriate time.)

* CSF review

* Design review

C .3 Scenario-based checklist

This objective of this checklist is to help you as a reviewer to:

- Identify the parts of the CSF external interface that are relevant to your

particular application.

- Identify missing information (hooks, data objects, etc.) that is needed

by your application.

In order to use this checklist you have to:

i) Read the CSF documentation.

ii) Visualize your application’s requirements’ in the areas covered by the

CSF.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Identify the set of CSF use cases th a t are relevant to your application.

2. Identify the set of CSF Hooks that you will use to develop your applica

tion.

3. For the previously identified hooks and use cases:

- Do they cover your application’s key functional requirements? If

not, identify the functionalities that may not be properly covered.

4. Identify the CSF’s classes that you need to inherit from/ modify/ etc.

for your application’s purposes.

5. Identify the CSF’s input/output data objects relevant to your applica

tion.

6. For the previously identified classes and objects:

a. Do they cover your application’s anticipated requirements, if not,

identify the requirement (s) that may not be covered.

b. Does the CSF documentation cover their functionality, intended use,

etc. If not, identify any information need to be added.

7. Define key collaborations between the CSF and your application. I.e. in

the existing collaboration diagrams:

a. Identify those relevant to your application.

b. For each of these diagrams, mark the objects that your application

might change.

C .4 Forms

181

permission of the copyright owner. Further reproduction prohibited without permission.

COMPUT 401 - Software Engineering
CSF Review Preparation Form.

Team: ---------------- ------- -------------------------
R eview er:--
Preparation T im e:---------------------------------------

Findings:

Type Severity Document Comment

Notes:
Record the preparation time to the nearest 10 minutes.
Classify the type o f finding into either (question or concern)
Classify the severity into: major, moderate or minor.

- For ‘document’ indicate what part o f the documentation is related to your finding.
- In comment explain the actual finding.

//steele-Ik/docs/perf-frm.doc Individual Finding Report - version 1.0 1 of 1

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COMPUT 401 - Software Engineering
Review Collection Form.

Review Tim e Date

Participants:

Findings

Type Severity Document Comment

//steele-lk/docs/meeting-record.doc Review Collection Form - version 1.0 l o f l

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COMPUT 401 - Software Engineering
Background Information.

Personal Information:
Name: -------------------
ID: --------------------

Educational Background:
Current Degree: - Year:
Pervious Degree(s) (if an y):---
Please list all computing courses completed (course ID and name):

1.

3.

5.

7.

9.

2 .

4.

6
8
10.

Hands-on Experience:
Please describe any software projects you have worked on. Briefly explain the project

size (total number o f software workers, and total project duration in weeks) and your role
in the project (design, coding, testing, documentation, etc.). Also indicate if it is a course
project or not.

Project Size Your Role Project Description

//steele-lk/docs/stdbkgrd.doc Student Background - version 1.0 l o f l

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

