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ABSTRACT
This thesis is a- collectlon of three papers
(Chapters 1-3) and a research note (Chapter 4) ‘'which as
of November 16, 1979 have the following dlspos1t1ons.
Chapter one has been published in its entirety, appearing
in the June, 1979 issue of the Bulletin of the Seismolo-
gical Society of America; chapter two is forthcoming in
‘a slightly abridged form in a fall issue of the Canadian
Journal of Earth Sciences; chapter three has been
submitted for publication to Geophysics; and chapter
four is as yet unsubmitted. Each of the chapters is sei%—
contained and does not require the presence of the others.
No apology is made for the treating of the seemingly
trivial case of Sh waves when oealing with the p blems
discussed, as it is the author's intent to present in the
simplest possihle form certain topics in elastio wape,
propagation. All results derived here can and in some
cases have beenlapplied by the authors to more sophis-
ticated topics in elastic wave.propagation. A large
part of this thesis may appear tutorial in nature; but
this is necessary to prepare a bag;s from which to
explore obv1ous ex tensions.
\ There are many reports in the literature of

- anOmalles rn*travel tlme data when an 1sotrop1c homo-~
hgeneous earth model i8 used to rnterpret field data. In’

geveral 1nstances; the 1ntroductloﬁ of a layered trans-

PIRATS s
: s

iv ‘
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versely isotropic model has successfully e#plained tﬂese
N : .

kinématic irregularities. However, it is useful, in fact
essential, to confirm the kinematic fit &ith a‘dynami>
(amplitude) comparison. |

An asymptotic expansion of the displacement vector
‘in terms of inverse powere of ffequegcy is employed i
chapter one to investigate the dynamic properties of
SH waves propageting in plane layered transverseiy
isotropic media. Both reflected.and head.waves are
cofsidered in terms of the asymptotic expansion, and

‘w

their! des of validity are discussed. /;'l

Although solutions to the most general case of uave
proﬁagation in ahisotropic media can be found in the
iiteratute it is instructive to consider this simple case
in which many quantities inherent tp‘wave propagation in
anisotropictmedia can be more readily understood and can
be soivea analytically rather than reverting to numerical
methods. .

In chapter two the problem/of~SH waves propagating
in a transversely isotropic plane layered medium is |
dlscussed through the use of integral transforms and
evaluation by steepest descents. This proceduretylelds
not only the asymptotic solution which is also attainable
usingAan asymptotic ray seriee approach,.but'alsb allows

'for the 1nvest1gation of the interference of the reflected

and head waves in the. vicinity of the critical po;nt . éf
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(point of critical refraction). It is in this region

that asymptotic ray theory breaks down or in the least.

: : \
" introduces d@nsiderable error in the displacement

amplitudes.

The thégiy for the simple case of SH rays propagat-
i . ’

ing in plane layered media consisting of)thick layers

separated by thin layered transition zones is examlned

1n chapter thr\e. The SH~case was chosen, as the basic

idea of the met&od is conveyed without an excess of

mathematlcs that is necessitated by the’ 1ntroductlon of
«

potentlals in the P-SV case.

A stationary phase approximation is employed when

- evaluating the lntegral which yields the displacement

due to an arbitrary ray propagating in the above
|
mentioned mediu+, and the validity of tnig\approximation

is discussed. !

. x .
The comparison of ray, numd¥ical integration and

ray-reflectivity synthetic secﬁgpns indicates that the
transition zone |[method gives qﬁife acceptable resules'for
small source receiver offsets, Thie‘method is suitable

. ! G
for application in the oil industry as individual

.arrivals aseoci ted with ray paths in the thick layers

are'identified n thebsynthetic trace. Furthermore,
compared to other methods, thls technlque is quite cost

effic1ent.

In several papers in seismological literature it

vi




AN
has been shown mathematically that a periodic isotropic
two layered medium behaves as a homogeneous transversely

o v » .
isotropic medium. This assumption has been shown to be

valid as far as the propagation of elastic waves is
concerned provideé that the ismic wavelengths used
are large when compared to tZZ:thicknesses of the )
individual isotropic layers. Chapter four centains <
seis;oérams computed using two different methods which
compare the kinematic and dynamic properties of the - .
'perlodlc structure with its equ1valent isotropic homo-_ .
geneous structure for SH waves. Although this comparison
seems quite trivial, none has appeared in the literature
which is probably due to the prohibitive computing costs

involved. '
’4

VT e . _ vii ©
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CHAPTER 1

SH WAVES IN LAYERED TRANSVERSELY ISOTROPIC MEDIA -

AN ASYMPTOTIC EXPANSION APPROACH

1.1 Introduction
¢+ An asymptotic“expansion &f the displacement vector
in terms of inverse powers of frequency is employed to
investigate the dynamic (amplitude) pgoperties of SH |
waves propagating in plane lﬁyered transversely isotropic
media. Both reflected and head waves are considgred in
terms of‘the asymptotic expansion, ahd their ranges of
validity and accuracy are discussed.
\ ‘ Although the‘solution of the most general case of
wave propagation in an anisotropic ﬁedium hgs been
presented in the literature (CerJeny‘(1972)), it is
instructive to consider‘this simpile case in which-mgny
quaﬁtities‘inﬁgrent to wave propagatioﬁ in anisotropic
 media can be more readily understood and can be solved
for analytically rather_than'reverting to numerical
' methods. S .
| S
1.2 Mathematical Preliminaries
in a transversely isotropic inhomogeneocus elastic
medium; neglecting body forces,. the equation of motion

for the propagation of an SH wave can be written as

2~ ‘ -+ -+ . -
9%u _ 1} 8 ¢ 3u ] Ju 9 au
(1.1) 29 == c ) + =—(c -—-—)+—c —)
atz p[}xl\ 44 axl 3x2< 44 9x, /) 3x3( 66 3x3.

_....._.,,_.____IL
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where (kl,xz,x3) are the rectangular Cartesian coordi-

44" C66 and p are the elastic parameters and

density required to specify the medium for SH wave

nates and C

propagation (Potsma (1955), and Sato and Lapwood (1968)).
These quantities may be arbitrary continuous functions
of position.

As the SH displacement vector is normal to the

. plane of incidence in a transversely isotropic medium,

the displacement vector a can be chosen without losg

of generality as
(1.2) u = (0,u,0).

Although the problem as specified by equations (1.1) and
(1.2) can be treated in two dlmensisns (the (xl,x3)
plane), it is mathematically convenient for what follows
to retain the derivative with respect to x,.

Analogous to methods used in geometrical optics

\\\\$Lgnebérg (1944), Kline"(l951)) the solution of the

equation of motion will be assimed to have the form of
an asymptotic series in inverse powers of frequency
(Babich and Aleksiev (1958), Karal ahd Keller (1959),
Cerveny (1972{, Hron and Kanaséwiéh Tj;;iﬂ\go that

. |

o © (X X, rX,) XD iw[t=T (X{,X,/X,)]

(1.3) Boegxpkget) = [ =T 17273 1’23,
o =0 ' (iw)

" - ) -»> . . o~ "* )~*
Up 0y rrX3) = Up By X5 %300



where
w - frequency
ESH < a unit vector in the Xy direction
T(X) 1 X5rX5) '- a .phase function which describes
. the wavefront propagation
Un(xl,xz,x3) - complex gmplitﬁde thch is only

coordinate dependent.
The substitution of the assumed~asympto£ic series
solution (1.3) into the equation of motion (1.1{, yields
with the added conditions that U_l and u_, be identically

eqqal to zero, the following relation

(1.4) N(U) - MU _;) + L(U _,) = 0

where

' _ 2 2 2
! N@U) = (" + ByPy" + RgePy = LU,
/ ' 8U_ au_ 3u_
| MU = BygPy gt PadP2 T, * ReeP3 o,
(l. 5) s~
+ 22 (oa,,p.U oA, P U\ + 2 pApuﬂ
pal 44"1n, 442n> ’&‘B' 663n>—j
- T 2\ / U /AU
! 19 | n 9 n\
PLU) = olm— Py e | Y o P+ pA \
N TN pflk 448x1} axz\ xz/ T’\esax3/
A\
o o
i = —-4-i = ——6- = _g_‘r— 3
with A,, = 5 Ace 5 and Pi axi. being the

i-th component of the slowness vector. Discussions of

the slowness vector and slowness surfaces can be found

~



in Musgrave (1970) ahd Kraut (1963).. .
. Equation (1.4) must be equal to zero for all values
of n (n'= 0,%). Thus for n = 0, remembering that-U_l

and U_., are assumed equal to zero, the following °

2
condition must hold

2

2
44P3

) . 2 - -
(1.6) (A4 + A44p2 + A - l)Uo = 0.

4P

Assuming that Uo is not idehtically zero then .

L 2 2 27 L
(1.7) G(xi,pi) = A44pl + A44p2 + A66p3 =1. i —_1,2,3.
.The quantities p; are the slowness vector components
and are related to the wavefront normal yelbcity (phase
velécity) through the relation (Cerveny (1972), Cerveny

i

and Psencik (1972))

. N.
(1.8) p; = T% i=1,2,3

where N, are the directional cosines of the wavefront

normal; in case,
N, = sinbcos¢

8infsing

~~
[
_I
=
A
z
L]

N, = cosf .

‘The angle 6 is the angle the wavefront normal makes



D

/

with the X3 axis and ¢ is the angle of azimuth of the
wavéfront normal measured from the Xy axis. Thug\\
utilizing equations (1.7), (1.8) and (1.9) ‘the wave

front normal velocity can be written -as

2 . 2 2,
(1.10) V™ = A4451n~9-tA66cos ]

from which it is obviogs that.the wavefront is rota-

4

tionally invariant about the x4 axis.

1.3 Rays and Snell's Law
The quantity‘G(xi,pi)'defined\in the preceding
section is a homogeneous function of order 2 in Py-

From Eulers‘theorem on homogeneous functions, the

relations
3 3G |
(1.11) } P; 35~ = 26 can be obtained.
| o i=l Pi
The equation G(xi,pi) 1 is a nonlinear partial

differential equation fd; T(x;) (which describes the
. \ - . " . .

. propagation of the wavef%pnt) and may be solved using

the method of characteristics (Courant and Hilbert

- (1962)). The equations of the characteristics correse'

ponding'fo the partial differential_equation

-G(xi,pi) = 1 can be written with the help of relation

-

(1.11) as



L 136 L a o o RagStnicost L
dt 2 5p1 4471 W \x
A I
' \\ ' K '
(1.12) dx, _ 1 3G - A, ,sinbcos¢ ) ‘ Ca
’ dat 2 5p2 4472 v
' (
©odx . A__cosb
3_13986 _ A_p 66 :
. dr 2 9p 663 -V
dx . , ' :
The terms go are interpreted physically as_Epe

components of the ray veldcity;‘ that is, the velocity of
. energy propagation. In general, in an anisotropicvmedium,
the direction of energy propd‘ation does not céincide
with the wavéfront normal direction (Musgrave (1970)).

If a is denoted és tﬁe angle the‘raf makes with the X4
axis (which will henceforth be assumed to be the vertical
axis) aﬁg.B thg angle thé ray makes with the xl-axis, the
relations between the ray angles and wavefront normal ‘

angles can be found by taking the ratios of the compo-

nents of the ray velocity (equétions (1.12)) so that

. A,
tana = Xﬁiitane
: 66 .
ténB = tané¢

The magnitude of the fay velocity, a, is obtained

o ax (9%, ax, dx3} -
from the inner product of ar =l g+ 91’ az with

itself r Viz . p oy,

’m\:é‘ﬁl

e Q¥



. A 2sinze A 2"c<‘.~“'526\.;i
_ 44 + 66 i
= — 3 i

v v

(1.14) a= (3?.5?.

or using equation (1.13)

. 2 5
(1.15) .35 = S;n a cgs a
a 44 66

)

Equation (1.15) is that of an ellipse, signifying
that the SH wavefront is an ellipsoid. The absence of i

the azimutha. angle B from (1. 15) 1mp11es that the SH

wavefront is,

e111p501d of . revolutlon, the X4 axis
S

o belng the axls of Symmetry. It should be noted that at

. 9=a= 0’ V=oa-= /AGG and at 6 = o = -721" V=a-= /A44.

Two new variables a, and a,  corresponding respectively
to / —  and /R,4 + the velocities along the minor and
‘major axis of the ellipsoid, w1ll be introduced so that

2 2 . . 22

(1.16) Ve = a 'sin”" + a_“cos )
‘ 1 ! .2 . oA
: _ 8in“a co= -
(1.17) ;7'- -;—5— + X = .
' b 4 z

The de81gnatlon of the vertical axis of the e111p301d as

the mlnor and the horlzonta; axis as the major is done

| as in most seismological applications a >a; that is,

a

" theée degree of anieotrbpyvof the medium. 55 is usually

: ‘ ‘ z
greater than one. .



The geometry of a part of an SH wavefront in an

T

Figure 1. It can be seen tha%zthe projection of the ray
velocity onto thg.anéfront normal yields the magnitude

of thg}nérmalkVélbcity, so that

1.18) 0 Ve = VA

This same result can be obtained using

(82 N2 N2\
T = 1 2 3
V = —_—, ——, — and
Py Py Py -
§.= (a 2p avzp a 2 )
8y Pyr 8y Py 8, Py

tbgether with equations. (1.8) and (1.9). By definition

of the inner product, Vea = Va cos(6-a) so that

‘(1.19) a cos{f~a) = V.

1.4 Calculation of Ray Amplitudes ’ R

The solution for ;he'compiex amplitude components .
Un(xl,xz,xj) of the ray series expansion (l.3)bis°a£ |
iterative one; that is, if the sblution for Un is tovbe
. foﬁnd all Uk,‘k<n must.be,known,[ In equation (1;4) it
' can’théﬁJie assumed'that‘L(Un_l) is kqown. Call this

: -2 2
qugntity Q- - From (1.4) withA(Iv\“p1 +-A“p2 '+_
366p3? - 1) = 0 the following expression results:

s

\\‘

inhomogeneous transversely isotropic mgdium;i§~§hbwh“fﬁ. ¢

N




LICCRIN

Figure 1.1 Geometry of the wave front and ray and the
| relation between the wave front normal

velocity VN and the ray velocity a.’
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.30 U u_ U,
4Py 5x, * PRaePr 3%, P PPeefa axy T 0

2A

(1.20)

—

Wwith the aid of equations (1.12) this can be written

A

i[éun dxl . 8Un dx, . aun dx3} . EE
] : 3xl 9T 3x2 dt 43x3 drt p
(1.21)
frsa . 3 ? '1
TV (pa,) + z0— (pa,) + x—
xl 1l 8x2 2 EPS J

where ai,i = 1,2,3 are the components of the ray veloéity.

Equation (1.21) can be written more compactly as

f“ au. U q .
n n > - n ’
(1.2 ) -—T + E—p— Ve(pa) = — . ‘

N

Employing a vector integral theorem due to Gauss
as demonstrated in Appendix Al equation (l.22) becomes
the transport equation ‘ i

dau 'U q

n - _ﬂ
(1.23) &+ 3593 a— (pVI) = 3

the quantity J being defined in the appendix. The .

solution of (1.22) is given by

ot
(pVI) "P: :
to —_— I (pVJ);:

“’VU)t_J 200V3) 7 ¢

(1.24) Un(t)=Un(t°)[ qn(T)dr

10



where t defines a reference wave surface, at which thg e
value of U, (t ) is an initial condition which is as\gumed
known. The integration is taken to be along the ray path
f;om the reference wave surface to an arbitrary wave
sﬁfface denoted by t. ‘

Consequently from formula (1 24), U (t) can be
determined at an arbitrary p01nt alohg the ray if its
izilye at a previous point along ;he ray is gnown.l In
seismological applications the zero order 6} leading
term in‘thé réy egpansibn is usually considered to be
a sufficiéﬁtly good approximation. As qa = 0, equation

(1.24) becomes for n = .0
v / L[ vy %
S °
(1.2?) Uo t) = Qo(to) ova N .

In the problem under consideration p, V and J are all
easily comﬁuted along the ray.

Inspection of equation (1.25) reveals that an
infinite value of the‘raQ amplitu ig‘pfedicted at
caustics, where the function J, which is related to the
Jacébiin of the transformation from Cartesian coordinates
(xl,xz,x3) to ray coordlnates (a B T), van1shes. )

: Although some increase in amplltude in the vicinity

of a caustic may be physiCally jusﬁlfled by claiming
that energy flux .becomes high? concentrated when a. ray |

tube collapses to a condition of zero cross sectional



areéﬁ the inapplfcability of equation (1.25) in the region
of a caustic stems from éurely mathematical considerations.

It is well known, for example, Babich and Buldirev
(1972) or Cerveny et. al. (1977), that the ray series
expansion in equation (1.3) can be used only in such
fecions where the ra; field ;svregular, implYing a non-
zero value of the Jacobian D(xl,xz,xB)/D(a,B}T). As this
necessary condition for the application of the ray series
expansion technique is clearly violated at a caustic, no
attempt should be made to discredit asymptotic ray theory
by'eétendlng its results into this region.

Fortunately, alternative hlgh frequency techniques
have been veloped for the evaluation of ray amplitudes
in the vidinity of a caustic."Numerous papers on these
tectnlqu 8 appETr in the literature and are well docu-
mented, ir example, in the monographs-of ‘Stravroudis
(1972), Babich and Buldirev (1972), Babich and
Kirpichnikova (1974) ‘and Cerveny et. al. (1977).

-y As the results produced by these alternative methods
link smoothly with the asymptotlc ray'U1xmy solution in
the :regions where the latter is justified (Choi (1978)),
"equation (1.25) can be used at any point of the regular
- ray field, provided that the effect of each -caustic "
which the ray passes through, is included. fn the high
frequengy Iimit this effect amounts to a change in |

phase of 7 for each caustic passed through. -

5 -
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1.5,‘Reflection and Transmission Cpefficients

At an interf;ce between two transversely isotropic
media an SH wavefrontvimping%ng on thé'intgrface from
either medium gives riSe to a reflected and transmitted

wavefront. Let 90 (upper medium) and 65 (lower medium)

be the acute angles the incident SH wavefront normals

¢

make with the yertical axis and ev,'v =1]1,2 be‘the acute

/

angles the reflected and transmitted wavefronts make with Ve

h ]
i

thg vertical axis. The refleéted or transmitted wave-

front in the upper medium will be specified by Vv =1

while v = 2 will tgpify the same~quantities in the lower
medium, as shown in Figure 2. ~To simplify notation in
wﬁat fblibwé, the horizontal axis will be denoted aé the
x-axis and the vertical asik és the z-axisiwith the

positive direction ¢hosen to be downwards. Furthér,~it

- will be assumed.that the interface is planar and that
the axes of rotational invariance of the wavefronts are

aligned perpendicular to the intefface. Thus Snell's "~

o \ o —
. ~.

3

'Law for this case can be written

sin@ 8inbd :
(1.26) 0. Y

A v, |
where it is to be remembered that,vd andvvv are N
functions of 6, and 6. . Employing the equations (1.13),
“(1.14) and (1.15) a modified Snell's Law can be obtained

in terms of the xay velocities and argles in the form
. o . , .



O

‘ X A : ‘
Figure 1.2 The wabe\front normals of incidence (60 and\\
v | *xe\o)\ and refl‘eg\t:;on and refraction- (el ar‘_?ez)
of SH wave fronts at an interface between tﬁo\

\\ '\1\\ .
transversely isotopic media.

- ~
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‘ a.sina a sina’

0 0 _ v \Y
(1.27) 5 = 5 .
a a

XO X\)

"If thé fwo media described Bbove are in welded

contact, the two boundary conditions which must be

satisfi t their common interface are the continuity
of shear ;i;;;;\gga\aispiaéement. The plane of inci-
\ .

—

dence can be chosen without any loss Sf\§énerali§y as

—

the (x,z) plane. Under the last assumption, an arbitragyﬂ\\\m%

displacement vecgtor in either medium can be written as

- U (x,z)expliw(t=1_)]
[= ] ¢ -
(1.28) o (x,z,t) = [ -B¥ — v
.o n=0 (iw)
where ﬁnv(x,z) = Unv(x,z)gsﬂ, HSH being a unit vector

perpendicular to the plane of incidence (in the Y
direction).. The subscript v identifies the type and
medium of the diéplacement'vector while Ty does the same

for the wavefront.

v.= 0 - incident from medium 1

] :.v = 0 - incident fromfmediumvz
v=1 - reflected/trénsmitted in medium 1
v=2 = reflected/traﬁsmitted in medium é

Continuity of displacement has

3

-U _
, . n0 7
(1.29) Uy - Uy, = | o )
o Unp -



R

It should be recalled that .

‘ ' 9t sin® - ' ;
: v o \Y &
(1.30) % = TV

. v

and that.

' 9T v+8 ~ cos$

vV o_ . Vv0 v

(lf3l) % - {-1) Vv .

The choice of sign in (1.31) is detérmined by the physiéal
requirement that the solution for the disturbagce approach
éero as the wavefront moves away from thevinterface to
infinity. .

" The continuity of shear stress requires

2 oyz(UO)
. v .
(1.32). jvzl( 1). oyz(uv) = X
' —Oyz(ua) -

where

This yields

(v) .
-2 C cos®_U 2 U,
(1.33) z 44 7 v _p 4 Y (_1)“ C44(V) (gzl)v

o=l _ v v=1l :

where for incidence from above

16



and for incidence from below

(0) .
44 cose0

' In the zero order approximation (h=0) equations
(1.29) and (}.33) yield tw; sets of linear equations in
two unknowns; the unknowns being the ratios of. the
reflected and transmitted amplitudes to the incident.
amplitude. At this point it should be recalled that in
an earlier section U(-l)v yas set equal to zero.

As the axis of rotational invariance was chosen

perpéndicular'to the interface, it follows that 60561,

and.65=9 and consequent;y V5=Vl and V5=V2'

2

: 0 _ ~ (1) _
Atvthe interface C44 C44 f Blvand

44 “44 2 ' | f
Thus ' ’ :
~ E ‘ T — -
| 1 -1 L UQl 1 |
"1.34a) ‘v/ ‘ = _‘ | ‘ U00
Blcose1 Bzcosezu " Blcosel
I Vlv- . v, 02 1 vy

1

for a'wévefrOnt incident}from above (medium 1) and

17 .



! v 1 [u.,T (1]
. ol ‘
. 34b ’ = ' U~
(1.34Db) . 00
Blcose1 Bzcose2 , U. Bzcose2
Yy V2 L% L V2

‘for incidence from below (medium 2). The solutions of

(1.34a) and (1.34b) are given as RuY where u typifies the
incident and v the resultant wavefront moving away from

the interface.

- (Blcosel B,cos8, \ :
| : _ e

Ry1 © v, v,
; 2B. cos®
- _ 1 1
Ri2 = 7V, /D
, ' : 2B cose2
(1.35) ﬁ R21 =’ V2 /D
ﬁ _ Bzcose2 _ Blcose1 pu
22 "\ Vv, - v, '
i - b _ Blcosil_‘+ Bzcose2
v v
n - 1 - 2

1.6 Geometrlcal Spreadlng

‘The quantlty J mentloned in equatlons (1 23), (1. 24).
and (1 25) can be physically 1nterpreted as the meagure
of 1ncremental,cross sectlonal area of a ray tube (as

‘shown: in the appendix) and consequently 1t 1s conceptually

convenient to. wrlte equatzon (1. 25) 1n ‘the form

/

18



(1.36) uM) = )

FV(M )p (M )']%[do(m )]35

CTmoem ) L

where Mo is a point on the reference surface and.M is.an
arbitrary point alongrthe ray.

If the ray traverses through a medium from a
reference point M and encounters an interface at the

.

p01nt O and is either reflected back into the medlum of
1nc1dence or transmltted 1nto the second medlum, the
amplltude measured by a receiver at point M is generally
different than that glven by equatlon (1. 36) as the
dlscontlnulty of the elastlc parameters at the 1nterface
introduces effects which must be taken into account. The
' ray now essentially consists of two segments and the
amplitude at M,é;h'bé written as

o : et
Ve | _do(M) |

: [V'p'];ﬁ [dol];i R.
Vp o.v:,fdc (o)

'where'V and p denote'the velocity and density at the

(1.37)

| VM) p(M )T e (M )Tk
(M) = UM) o |

point O on the 51de of the 1nc1dent ray, v! and p' denote
'the same parameters at the beglnnlng of the second seg-

~/'ment of the ray and R is the approprlate reflectlon or

transmlsszon coeffrelent. |

. _ o ‘
Assuming. that a total ray is composed of k+1

19
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segments, where a ray segment will be defined as the part
af the total ray between one_refiection‘or refraction and

the next (Figure 3), €quation (1.37) can be generalized

to read
- 3y -
UM) V(M)pM)'? k "
(1.38) uM) = — o o g Yo R,
L Ve =1 _V% Jo, 3

J

where the primed quantities are as previously defined,

R, is the xeflection or transmission coefficient at the
!

point Oj and L is given by

. ‘ -

.39 L {g.._._..gggr,}*’,’ﬁ [g_f"
(o] j=1 - JOj

and serves as a measure qf the gebmetrical spreading of
tﬁe ra& tube. L

_ The remainder of_éhis_sectioh will be dgvoﬁeﬁ‘to
obtaining an expression foirthe geoﬁetriﬁal_spreadihg.L, ’
for fhe simple case of plane parallel homogeneoﬁéllayers,‘
vin'whiqh"thejakes1oflrotatiohal,inva:iance'of:the Wajee_
'fronﬁs are perpendicular to theiinté:facéSQ

o If o and B a;é.paraﬁetefé whidh}desc:ibé thé-réy,
éo can beﬂéxpre§5ed using the“sténq;rdvfbrmula £rom the

 differential geometry of suffaceS'aé'
(1.40)  do = J dudB

‘where .



d

Figure 1.3 Definition of interface coorgiinates and ray

segments;

21
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J = (EH - Gz);’

Egig.-a}. G:a—ﬁ-o-a-g Hz-ago—a_i
da da da 3B 9B 9B

R = the position vector of the ray of

magnitude R.

22

As the SH wavefront is an ellipsoid of revolution in /

a homogeneous medium, the components (x,y,z) of the vector

R can be expressed in standard polar coordinate notation

-~ ~

as
axt sinacosB
r X = RsinacosB = at sinacosf = - 7%
, ) {F+(1-F)sin“a}
a t sinasing
(1.41) { y = X R /
{F+(1-F)sin“a} "
. axt cosa - ' .
. z = 7%
{F+(1-F)s8in“a}

where a = ax/{F+(l~f)sin2a}% is' the ray velocity, ax is
the velocity of the wavefront in the horizontal direction

({x,y) plane), a, is thehveloéity of i the wavefroht_in

|
\ X
the vertical (z) direction and E =(ar/az)2.

Implementing equations (1.40)

axztz(éih?a+rzcoszu)

. E= , o )
~ . (F+(1-F)si;7§)? ‘

G=0 -.

T R



axztzsinza
H = 5—-——
(F+(1-F)sin“a)
and thus
(1.42)  do = R%ginadadp
e - cos (8-a)

8 being the angle which the wavefront normal makes with
the vertical axis. ’

The reference surface will be chosen such that the
component of the position vectoé defining a poiﬁt on the
wave surfacg hasvunitﬁlength in the vertical direction.
This beingvso, with R = at, t must have a magnitude of |

l . fThus, R = , where a_ has units of et
'azl o 2 ) -

|Z2]
This yields

N a aina da _dBf_
(1.43) do(M ) = °o o9 9o .

Iazl cosieo-ao) o

An alterndte expressxon for do(n) can be obtained

from sxmple geometrical considerations (Flgure 4)

(1;44) do(M) = d! ar

19%2

where it can be seen from Figure 4

dz ar l coagudao &
1 19¢ Qos(eu~au)
(1.45)' v -
sz_-.r‘dBe’f



)

' Figure 1.4 The geometry of a ray tube and definition of
quantities used to calculate an alternate

expression for d¢(M) [Equation (1.45)].
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which yields \
1%

o

rcosa

2
1.46) L zl- cos(Bo—ao)
° 2

1

M
sinao cos(eM—cLM)"J

x

It =

ldo]% .
3 1,;?0 Oj“

or
a0
o

[+

‘ - :
where it has been assumeg that Mo lies.in layer 1

accounting for the subscripts on a, and ‘a and further,

that do(M) is valid even if the point M does not lie in

the same layer -as Mo.

~

It can be seen from Figure 5 that . . .

(1.47) [ d&?k - ‘cosa:}% [?os(e'-a'{:%
. ;dO[JO / _cosn' o.L cos(B-a) jq,
R J.

and after introducing this interface correction,
equatiﬁn (1.46) becomes |

a2 " A

2 ryor| O?SQM cos (6 -a) X fc:oscz];ﬁrct)s(e'--oz')—;‘L‘S

a 2.1f“o|‘53“%>¢?s(emﬂﬁﬁ '() cos(b-a) |

.41 008a
=11 - 0.
;1 e J‘ - J 93

(1.48) L =

In the case under consideration, the interfaces are

plane and the media homogeneous so .that a‘(oj_l) = a(Oj)

and
(1.49) ° ]1;'{;5“,% | r'Jos(e'-m'):);i 27009%“2?;. cos (8,~a,) 1% .
A Dl e | T e, S0,

To aid in numerical computations it is convenient

~to parameﬁerize'all Angles in terms of. one angle, say



Figure 1.5

The diséontinuity of a ray tube at an inter-
face indicating'the interfacé correction
whiéh must be*intfoduced into the_e#pfession
for.geometfical spreéginq.: It can be seen
that at the interface éo/do'==d£/d2',vas‘the

spreading in the azimuthal direction is the

same on both sides of the interface.
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a ='dl. If the acute angle the j-th ray segment makes

27

with the vertical is denoted as ajcthen from equation (1.27)

2

sina
1 _

a.sina,
| b)

'
(1.27)" >

X1

where the ray velocity along the j-th ray segment is given

by

(1.50), a. =

J

From*® the above two’equations the following quantities '

,:'1

can be ob;éined

sina. =

J

(1.51)

For plane homogeneous layers
e . _

(1.52) r =

A

2

*5

a_
X,

3 " . F

. ., 2 ’
P.+(1-F. o.
( 3 ( J)sm J]

/ kijsinal

a,  \2 ’
()
j a_ |

\ 254

-

cosa. :

k+l

j=1

[1+(Fj-l)kjsin2a1]

-

-
1-kj51n al

. 2
.1+(Fj—l)kj§1n oyl

kfl -
r, = . h.tana,
J .jgl J . J

%

PR

k-)l:-l hj /Eijs;nal ’

j=1 (l—kjﬁinzai)k



where hj is the thickness of the layer in which thefj-th
ray segment is propagating and rj is the horizontal

. N )
distance the j-th ray segment travels.

«

As an analytic expression for r, in terms of a,;
3r dr

exists the calculatlon of Y- = Ja- presents no problems
1
80 that
2. 2 T
gy kil fhjax. 2 cosa, -
r 5 1
(1.53) s T 1 , > 573 -
a 1 j=1 a, a, "a, (1 -k.sin al)
. j %1 *1- ] :

Substltutlng the expre581ons (1 49), (1. 52) énd (1. 53)

the geometrical spreading, equatlon (1.54) becomes

2 o 2

o , %
‘ a k+1 V*Hax. k+l hjax.
(1.54) L=—tycosq| | —————p 7 -
~ axl o j=1 azj(l-kj81n al) j=1 azj(l—kj51n al) -J

For homogeneous medla, the density and normal

‘ veloc1ty 1s constant along each ray segment.' This

- » T
results in equation (1.38), the expression for the

complex amg}itude, reducing to '

AN

A : A
o UM k+l |
(1.55) UM) = — 1 R.

where L is given by (1.54).

‘_1nto equatlon (1. 48); the resultant expre551on measuring -

28



1.7 The Head Wave | e

In this section the‘head wave correspohding to ¢
critically refracted ray will be examined. .Tnls problent
for the isotropic case, including SH waves as well .
coupled P-SV waves has been treated extensively in the
literature, notably-the hook;by Cerveny and Ravindra

(1971) in which numerous references are c1ted.. The

approach used will employ asymptotic ray theory whlch as

the name suggests,aeymptotlcally approaches,the solutlonv:

attainable by exact (integral'transform) methods. This
"asymptotlc solution is reasonably accurate at distances
removed from the Crltlcal p01nt, however 1t tends to
‘break down in the_v1c1n1ty of this point.  Other methods
- of solutiontmust be used‘here, due not only to‘the“ |
inapplicability of asymptotic ray theory'but also the

effects introduced due to the interference of the

'_reflected and head wave near the‘critical point:(Ceriehy;.7

| (1965), Cerveny (1967)). | o
ch51dered w111 be two half spaces 1n welded '
'contact, the parameters of the upper and lower medla.

belng denoted l and 2, respectlvely. The velocrty

structure will be assumed such that for some real angle .

hof-lnc;dence “1'“2 = i-so that from,equatlon (1.27)
sinufl e : ' | o ﬂr o

a, /3~ = 3 which is equivalent to saying that for

_ a, . X, o SRR ' B

, Xy - 2

eome.e:'(wavefront'normal angle). 93 % so that

29



A reference point M will.be chosen a distance h
above the 1nterface at t=0 and a two segment ray, the
geometry of whiCh is shown in Figure 6 will be

considered. Then

‘r = h'tanal + H tanaz,
(1.56)
__H .
y - I B cosa, ’W(? h tana,)/sina;.
and T
_ o * a %a 2a3cosa " h a 2, 2,3c0s2a
. 3p 1- « X2 Zo 1- 1 _ xl z, 2 2
137 ga = 2. 2.3 At 3233
- 1 cos “a, a, az a, : ax a alcos al
S 1% X2 E2 0
oL aF
o0

‘cos 92 1

. 8o that the measure of thé geometrical spreadipg from

‘equation (1.48) is |
| | 2 Ty

. a.

. N I & A1 ¢ L

' (1.58) L= sosa; | 12 I ' ctna1' = Sesas -
IETEE ! . » 2

-

o ‘The expression for thé‘iéro'order'term.approximation

30



.2

'Figure 1.6 The geometry and notation used in deriving an

'expfgssidn for the head wave'ampliégae. 'Thei

L4

_ points A+-and A- 1ie, respective1y, above and
belbﬁ the interface. »Téxébfain the amplitude

| at A- in terms of the amplitude at A+, tﬁe
transmission eff%cts.achss the interface

- must be ;éken.iﬁ;o account.

/
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of the complex amplitude at the point A is

R
(1.59) Uy (B) = 12 cosa

——— = ﬁO(A) cosa
L

2 2

. . ‘ & ,
where Riz is the transmission coefficient giyen by
eqnation‘(l.35). From (1.59) it is obvious that for
%27 2

the éoint A, just below the interface is zero, and.as a
consequence to determine the amplitude at A+,'higher
order terms in the ray series expansion must be.,.,
coneidered. o~ |

It will Se shown ‘n w. = follows,‘that the first

non vanishing term or le~” .ag .~rm in the series is

, R 4 . o o
(1.60) '. u(A+) = my‘ Ul(‘vA_._) exp 1m{[t-112(A+)]} Dgy-

"The critically refracted fay can be considered as a

spec1a1 case of the ray. inc1&ent at the interface from
‘medium 2. Before proceedlng,'lt is useful to take into
‘account the’ interface effects and obtain an expressxon
for thlS cr1t1ca11y refracted. ray at A Just above the
1nterface in the upper half-space. '

To determlne the amplltude just above the 1nterface

at A_ in medium 1 the effects of transmlssion across

—~

the interface from medium 2 to ‘medi "1 must be deter-

mined. FO:,QZ = c}///§; e continuity of dlsplacement‘

T
o

= 1 (critical refraction), the complex amplitude at .

N

;
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and shear stress at the interface for incidence from

medium 2 using_equations (1.29) and (1.33) yields .

- 5

1l -1; ; Ul(A+) -0
(1.61) : =
_ Blcosel Bzcosel oo A ) | 32300(A+)
L_ Vl V2 . hal —— 82 -~
' ) ‘e*=1
2 2

wherg it is to bé remembered that ej gnd Vj (3=1,2)
refer to the wévéfront and not the ray. “

The solution of (1.61) for the complex amplitude
of the first term in the ray series in the ray refracted

back into medium 1 is

32 an(A+) ~ M213U0(A+)

cosei/Vi 0z - oz . °

(1.62) Uy (A) =g

-

Thus the expressibn for the displacement vector at a

point A_ just above the interface is

: . M U, (A))
+. 21 "0 +
(1.63) | uf(A_) = o) 3z

expliolt-1,,, (A_)1 igy.

But from equations (1.57), (1.58) and (1.59)

‘_\‘

60 20, (A,) 1im 3y (A) 1 14m 3u, (A,)
o ez H+0 3H Logxal 3a,

. L %272

RO C RrpE S

o)

. " *
5 @ o Rlz?z tana,
3 it Rl " §£575 _ :

N e /
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This ray which is critically refracted at the inter-

face between the two halfspaces and transmitted back into

the first halfspace is called a head wave (Cerveny and
Ravindra (1971)’. Introducing the head wave coefficient

* . .
Ty27 = Ry M,, the head wave amplitude at A_ can be

written as

-

*
r tana1 -

' iy inw
373 exp{[t-tlzl(A_)]-jr} Ngy

| F
(1.65) u*(a_) =-121 2
/ wr(A_)‘l

To compute the displaéement of the head wave due to
the leadihg term in the ray series at the point M in
medium 1, the following relation can be us%d

- Fdo(a_) %
(1.66) U* (M) = LW; U*(a_).

As- the waves emanating from A_ are conical, geometrical
spreadingAOCCurs only in the azimuthal (B8) direction so
that

do(A_) r(A))
(1.67) doM) ~ r(M)

Vd

-

apd.the head wave displacement vector at M is given bg/*/

N / -

. *x . i

T F., “tana :
12172 1 X Ty =

377 expliolt-1)5, ] = ) ngy.

wr(M)L

(1.68) U* (M) =
~ ’ BN

- 34
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1. 8 Numerical Results

Figures 7 and 8 demonstrate the effects that varylng
anisotropy has on reflection.and transmission coefficients.
The parameters a, and azlare varied in the ugper'medidm
(medium 1) while the velocitles in the second medium are -
held constant. The coefficients arehplotted for'O%,‘lO%
and 20%'anisotropy in medium 1 and 10% anisotropy in -

medium 2. The degree of anisotropy in both media'is

deflned to be £E§;ia x 100%8. The actual velocities
: z -
used for each -of the three;curves are giVen in Table 1..
An attempt nas been made to negate the effects of
changlng im?edanceaat the interface by-forcing‘(axi+azl)
to be constant in each of the tnreevceses qonsidered: ) o
As the coefficients.are complex‘quantlties, two plots,
one of ray angle of incidence vs. amplitude and one of . ) \
rayrangleﬁof incidence vs. phase; ere presented‘for- -
’each of the four coeff1c1ents. The phase 18 plotted
‘only once (for 10% anisotropy) as 1t 1s obvious ‘how it B
will behave in the Bther two cases. T ’H Y
A comparlson of log. amplitude-distance curves
for a once reflected ray and its corresponding head
wave is given in‘Figure 9. The curves 1ettered‘(a) - . .
correspond to 0% anisotrOpy in layer 1 while those: . L

: lettered (b) refer to 20% anisotropy in layer 1l and the .: o

‘kyr.velocities used are those given 1n Table 1. The loga-,'

N R

/"'.



Figure 1.7

s

The reflection coefficient H1H1 and the

S ¢ -
" transmission coefficient H2H1 for 0(i), 10,

and 20(a) pevcent anisotropy in layer 1{®

for the media specified in Table 1.
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/

- Figure 1.8 The transmission coefficient 3132 and the
‘vrSflection coefficient H2H2 for‘O(i), 10,
ané“ZO(a) percent anisotropy in layer 1, for

the media specified in Table 1.
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rithmic singularities in the reflected ahplitudés are due
to a zero in the reflection coefficient H1H1 as shown in
Figure 7a. .

At the critical points (denoted by v's in Figure 9)
the head wave amplitude blows up due to the fact that |
the asymptotic éxpansion is proportionél t:o.!l.'3/2
(Equation (1.68)) and at the critical points 2 = Q; As
was previously mentioned other methods must bevemployed
to accurately oeterminé the'head“wave amolitude'néar |
-his point. | |

When computing aynthetic seismograms in plane
iayeted media without lateral inhomogeneities it is
cohvenieht to use’the concepts of kinematic and dynamic.
analogues (Hron (1972)). For the rays shown in. the \
insérts of Figures 10 and. 11, u51ng the veloc1Ey-depﬁh
structure of Table 2, it follows that each: of the three
-p0881b1e rays wlth four segments 1n both 1ayers 1 and 2
- have the same ‘kinematic propert;es, that 1s, they all
arri%e at a given epicentral distance at the same time.
Consequently the'travel time nead only be'oomputed once,
and as the géometrical spreading depends only,on the |
nymber of ray segments, 1t too has only to be computed
once . for each of thé three rays (a klnematlc group).

' Also, since two of the three rays " encounter the :

‘ same set of reflectlon and transm1331on coefflclents,

_—

Vthough not 1n the same order, they both have 1dentica1

dynamic propertlesn that is, their ‘complex amplztudes

A



Table 1.1
% a az ' h ax a
anis. X1 1 1 1 2 Z2 P2
A
0 1.15 1.15 2.02 2.0 1.55 1.41 2.18
10 1.21 1.10 2.02 2.0 1.55 1.41 2.18
20 1.26 .1.05 2.02 2.0 1.55 1.41 2.18

Velocities (gx ro@, a8y o a, ) are 1n»km/seq,vden51ties (pl,pz)
1l 1l 2 1 °2
are in g/cm3, and the thicknesses (hl’hz) are in km. The degree
A a s

of apisotrdpy is defined as xa Z x 100%.
3 _ z A «
)
Table 1.2
Layer | Ay az; p h
o km/sec km/sec gm/cc km
1 T 1.32 1.05 2.02 2.0
2 - 1.76 1.41 2.18 2.0

HSPACE  2.20 . 1.76  2.30 S




-

Figure 1.9

The effectyon"thg_amplitude\of the reflectéd
wave (r).and the head wave (h) of varying -

the anisotropy in layer 1 and 0 percent (a)

to 20 percent (b). The elaétic>parameters of

" the two?léyéred-model are given in Table 1.

40
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Figure 1.10

et
—mead

The logarithmic amplitude distance curve

for the first dynamic group in the kinematic

group having four ray,seémehts in each of
layers 1 and 2. The three-layered model

is specified by Table 2. .
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Figure 1.11

42 -

The lqgarifhmic amplitude distancé_curve
for the second dyhamic gfbup‘in the

kinematic group having four ray segments in
each of layers 1 and 2. Table 2 cont&ins

the parameters of this three-layered model.
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are the same. This being»the'case amplitude calculations.
need only be carried out‘ouce for a dyngmic group.

Thus the three reys in the kinematic groub cun be
divided into two dynamic groups, the eecond dynamic group-
in this case having only one entry. Hoyevef.,as the rey
'paraﬁeter is the same for_all three rays, the reflection
and transmission coefficiente common to both gfoups of
dynamic analogues are the same, end a consideréglew&*\v

IS N

saving in computer time is realized.

e den _

1.9 Conclusion

The theoretical development of the dynamic properties‘ :
for SH waves inﬁplane,layered transversely isotropic media
using ;symptotic ray theory has been presented,with an
emphasis put on having the fiual formulae in a\fofm that
are readily programabie. jBesides reflected waves, head
'waves are investiéated within the limited framework that.
the‘asymctotic eigeneiou allows. The head wave amplitude )
requires the eveluatiou of the first order termvin the
asymptotlc expansion while the reflected amglltude'
requlres only the zero order term. |

A numerical discussion of a simple velocity depth
structure was given which showed the'effects of varying»
anlsotropy on reflect;on and transmlsslon coeff1c1ents
and hence amplitude dlstance curves. -The merlts of
employlng klnematic and dynqa}c analogues to reduce .
computzng costs when calcnlatlng synthetic selsmograms

-

~ were cited along»w;th an example. i - . ,"f'“ﬂmA;k

s
v
A3

ffé’_g:‘



CHAPTER 2
SH WAVES IN LAYERED TRANSVERSELY ISOTROPIC

MEDIA - A WAVE APPROACH

-

‘é.l Introduction .
'"The problem'of SH waves propagating in transversely
1sotrop1c homogeneous plane layered media is dlscussed
through the use of 1ntegra1 transforms. Thls procedure
‘ ylelds not only the asymptotic solutlon Whlch is ‘also
‘attainable u51ng asymptotlc ray series of geometrlcal
optics (Karal and Keller (1959), Cerveny (1972), Cerveny
;and Psenc1k (1972)) but also allows for She 1nvestlgatlo£
of the interference of the reflected and head waves in
the viclnlty of the crltlcal point (point of cr1t1ca1
) refractron). Itdls in this regloh.that asymptotic ray'

theory breaks'down or in the least ihtroduces consider-

able error in the displacement amplitudes.
@ ' ’

3

Although exact solutions can be obtained.using
1ntegra1 transforms, they become unsultable for numerical
calculatlons, and consequently the exact solutlons are |
approxlmated using the method ‘of steepest descents.
‘Direct waves will not be consadered 1n the followxng work.

The dynamic grggerties of reflected and head.waves
at and around the crYtical point have been solved for |
homogqneous isotropic media in the case of the coupled
jP—SV“problem (Cerveny (1962), Cerveny (1965), Cerveny

. R . .
» . o .
i L - . _ ) . -

44
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N A .
(1967), Cerveny and Ravindra (1971)). The notation in

this paper will be similar to the above mentioned works

as. w111 be the contour of integration used.

2.2 Mathematical Preliminsries
Consider tﬁo berfectly elastic transue?sely iso-

tropic homogeneous media, j and j+1, in welded contact,

. with a 501nt source of SH waves situated at a point z,

above e interface between the two media. a&he interface .
~"will be defined as the z = O plane. As SH wavefronts in
transversely isotropic media are ellipsoids of revolution,

it w111 .be further assumed that the axes of anisotropy

J;~are 9ligned perpendicular to the z = 0 plane (Figure 2.1).

'ingfcylindrical coordinates (r,¢ z), the equation
‘ f‘?% “J a}'ﬁ,r

"aa.\ 2%, a'zﬁ-. Aj;;(t) §(r) §(z-2 )
=TT T

a at . L
AT i

Bj = A(j) (Cerveny and

;ﬁen81k (1972), Daley and Hron (1977)) Both quantit

&

ﬂ:? and Ej have di‘hi’ensions of veloc1ty squared and in v

) mﬁst seismologigei applications the condition Aj>Bj o 'fﬁ.
ﬂholds. Thé plane of incidence can be chosen without -

floss of generality ag the ¢ = 0 plane and thus the dis-

piacement vector ‘can be expressed ap uj = uji¢ where
i

l '?~jff




oy

-t

Figure 2.1 Geometry of 1nc1dence ‘and notatlon used in
u ‘ (9

the case of a p01n€ source of SH waves at

r=0, z=z°. At the 1nterface at 240 the medla

j and "j+1 are in welded contact. : N

-
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Snell's Law is valid at the inte;face, but if , 'qﬁéak_

éxgressed in terms of ray angles and velocities as
opposed to wavefront normal angles and veldciti%?, takes
on a slightly different form (Sato and Lapwood4(1968),
Daley and Hron (1978)). -In general the wavefront normal
angles and velocities are different from ray anglés‘and
velocities (Mﬁsgrave (1970)). The problem under con-
siderati;n here déa be tréated totally using only ray s
andles and.velocities; these being fhe most praétical, ,.

for it is along the ray_that_the energy is propagated.

‘The statement of Snell's Law is

a.sina, a.,.sina. ¥ )
J i - 3+l Jj+1 . az.-+a_.
(2.2 ax’. ° - ax ¢ axj+ax3 gEJ*aZJ
L j j+l : . L ) ‘.‘"_" . ‘ ..'
i . Q\ ‘
where * =
aij =‘(Aj);5 - the velocity along the major (r) axis
of the ellipsoid.
azj ='(Bj?% = the velocity along the minor (z) axis _
of the ellipsoid.
1 sinza c052a.
= = > + > l - defines the ray velocity'aj.
s al ax’ az o '
3 3 y J
. ax. -
F. = ’fl = -.—-% _
J». By - az’ N

s _'théfﬁﬁéle the ray makes with the z #5%9.

the y direction. , NN

el
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A time dependence of e 19t Li11 be assumed so that
u=1u et ang equation (2.1) becomes
] . 2; . WD S . I S ‘.
[r3fuL) 3a°u o S(r)d(z-z ) N
PRI Sl LA I S o

with vector notation Being dropped as the result of a e

previous discussion. ‘ ‘ o ‘:{,’f L o
" Using the Fourier-Bessel trahsform as "H g
| " ‘ | H s RN
' r: o I . e "
(2.4) & (k,h,0) = j r J(kr)dr J Gj(r,z,m)e‘lhzaz :
‘ (o] -0
"and its inverse as %
L] . ’ .. e . ‘
) u ’ =L | ' = v b ihz .. |
(2.3) uj(:'z'm2 ™ j # Jo(kr)dk J uj(k,h,m)e dhh
O : -0 » J

ot

the soluﬁiqn of equation (2.3) can }Se written

© o . : '
' . F. : exp[ih(z-2z_)ldh
(2.6) u. = =1 | J_(kr)kdk f 0
_ J 2m o ,(hz + AZ)
o - j
2 >
2 2 W
A- = F - — . . .
wher’e 25 <3k Bj) 5 o

Sol'ving the integral over h«hy the method‘of 're’s‘id}}es

‘yields T, S P
~ Csug f T (kr)expl-A|z-z | 1kdk
(2.7) - u, = -F,e vt J 2 : l_.°_ B
: . 3 e 3 Aj '
it L e (o) . -

Y 3 : P : . .
f: n - : . : - o :
.€§§$ . R ' . L ’ “u’k ..?k
> . : o L : . ) ] .
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.
which is the displacement for therditect wave at snyﬂpoint
(r,2z) in the 3-th medium. ‘ |
The expressions for the displacement of the reflected

wave in the j-thmedium and the transmltted wave in the j+1

. g\i}w g
medium at an arbitrary point “(A/z). are respectively’

[+ ] .
\ fwt R. (k)J_(kr)exp[-). (z-2_)]kdk
— -10t J lo) . J o
(2:8) 9y = ~F5e J ‘ '
o J
and
[++] .," )
- (2.9) u. = _F'e-ith' 5(k)Jo(k,r)e;fpl[)\j_tlz—kao]kdk
t 3 :
A ' o 3
*where | |
. y.
A'+l = ‘F'+lk2" §93— %l
] ¥ j+1

'R{(k) and Ti(k) are the reflection and transmission coeffi-

. )
cieﬁts and can. be determlned from the 1nterface conditions

ofuchntlnulty of dlsplacement and shear stress. For - ‘_S?;
5oy -
compleugpess thesé*coeffic1ents are discussed in Appendli A.
in .

2 3 The.OOntour of?&ntegratlon

y Et is convenleng go expxeqs “the Bessel function ‘

J (kr) 1n the equatzon‘fotuthe reflected displacement in

' ﬂ.fterms of Hankel functions of the first and second kind

)

- as (Watson (1944))
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. " —‘
_ 1 (1) (2) ;
2.10) Jo(kr) =5 [Ho (kr) + Ho (kr{J. .
With the added facts that Hc()z) (e”1Mkr) ='—Hc(>1) (kr) and

Rj(k) = Rj(-k) as shown in Appendix B, it is possible to

write the equation (2.8) as

i

. _ .
o (1) _
F. , R, (k)H (kr)exp[-A. (z+z_)1kdk
(2.11) .u_ = - -1 ™20t | ] o i °c - .
" Tr 2 . Aj ‘
With the change of variable k = —— = k.g (2.11) can be
o | vB. It
written éﬁ/ ..
‘ AERRCEINE | Y
_ k.F. -—iuwt + 35 ~ % o
(2.12) u_= - -;%J% e © 2 N

o S DN I W
’ Rj(quo (qur)exp[lkj(l qu ) (z+zo)]qdq

<

.(l_quz)g R i
On thé Riemann sheet ﬁhere-thé contour of-intégratiénb
iiéS Fhe_radica1s Aj ahd'Xj*L muét have the following
choices of sign to ensure the vanishing of the exponential
térms as“z4w

< )

. oo . i
3 R : . L .
X . . \

. . 2%
. . = e . Ao . . = e k .
(2.13) AjA‘ 1k3(;_93%§) - -4 ij
& L w Aj 2 % . | ‘j;””””.@“n
57 = - - +l = -y K PEPTCIOUL ER R A
15+1 i 1 5 9 ) lkj+le+1‘

j*L M- 3
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B. ' : ‘
and for —1- <q2 the argument of w. =1,
: A, j+1l 2
j+1
Before proceeding further it is useful to generalize
the problem of the reflected wave to one of s-1 trans-
versely isotropic layers overlying a halfspace (the sfth
laygr). The source and receiver will .be assumed to be in
medium 1 just below the first interface (the free inter-

face) and.fhe distance ketween the two is r. It will be
, 4 v ‘ 19 S :

A
R

assumed that there are 2m*ray segménfs &p‘the (é—l)-th
layer, implying that the ray will be refiected m times
- from the s-th interface. A ray ‘segment will be defined
asfihe‘part of the‘total ray between one reflecfionoor
refraction and the next((Figure 2.2). The modified
expression for the reflécted displacement can then be
Qritten as

L ’ F.k ) -“iu)t 4 im
(2.14) wu 11 2. &

T 2() R (@B (kjar)explik F(q)Jadq S
) (]‘-P]_qz);5

~ . : ”' o~ ' '/
where '

/;‘1f s =2

~

Z(q) -’\ |
‘ “the product of all reflection and trans-

mission coefficients encountered by the ray



1

Figﬁfe 2.2 A ray diagram showing the labelling of the .

1ayérs and interfaces.

o

-l
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except for those m reflection coefficients

at the s-th‘interfece (s>2).

<

R (q) - the reflection coefficient at the s-th

“interface v
. | B, \k A, \X
" F(q) = § N.h, —}-\)4 1 - 51 q?

teg=1 3 :/ | 1)

hj - the thickness of the j-th layer.

?lw:
S -

In writing (2.14) it has been_assumed that is

B 1

N, - the number of ray segments in the j-th layer

53

the maximum value in the sequences of values Xl (3=1,s).

: S 1
. . , e
~ If this is not the case the radical in ‘the denominator

: : . . A k- R

in (2.14) must be replaced by (1 - sﬁ'qé> where K
i ) l o -: '

B, *~

refers to the layer theEMmaxlmlzes -Kl .

j | |

The 1ntegrand of (2.14) has 2s branch p01nts lylng

;fon the real axis of the q plane, at the points
/By\%

nj = % Ki (i=1, s). The velocity structurefwill be
3

i

assumed such that the mlnlmum value of. n {j=1, s) is ns.

,Thls 18 pecessary to ensureﬂehat the flrst head wave to
'appear will be. the one from critical: refract;on at the

s~th' 1nterface.

>

'ration“path in (2*14) passes*ihrOugh
(1)

" As -the’
the p01nt <0 where the value of H

"1nfin1te, it will be necessary to select d@trausformatlon

that will take the contour from Vto ,-“‘along the B

(i&qrg becomes ‘:fl



real q axis\into a new contoor D which does not pass
through the\point g=0. A discussion of-thislcontour
will ‘be made shortly. |

. If along this new contour D, k rlq |>>1 , where
lqml is the minimum value q attains along D, the
asymptotic expansion for large argument of the" Hankel
fugiflon (Watson (1944)) is valid.
(2.15) iuél’(qur)m(“kirq>? explik,z§ - Ty,

R

With (2.15) equation (2.14) becomes

. im Ny
. iwt + 3 .< kl)k

2rr | |

(2.16) %, = -F,
z&q)Rm(q)e#p[ik?r(q)J&?dq

2]2 } . ,'o L
19 ),_ o -

(l-F

)zk",l PO 4

‘where

' | s=1 B, \% A %
1 . 2
F@e=ra s ] “ﬁ( =) -st )
‘The most common technlque in approxlmatlng integrals
:of the' type in- (2 16) ‘is by the method of steepest des- |
“vcents or saddle p01nt method because of 1ts simplicity

and reasonable accuracy.' The saddle point is given qs

':the solutxon of * '%u S ;,4

ﬂv’ ' ’ . bl
- the solution of ., - ﬁ\,_ﬁﬂi{“__ . - L
3 / ggz i e
(2. 17) dq} q*ng-;p;v,

-w~i§'- -; o
] e e

%
' R v D . T



which after some algebra yields ' , ;; -

= az.a., sina, az.a.sina, '
- 1 az

If the angle’a is the acute angle between the ray and 4
axis in the layer havxng the second minimum value in the
' | By §
sequence of values v ,.j=1,s ’ then the range of
o . . e | .
sina_ is OSSian<l . and consequently the range of q, is

B.\% az.. - o ;
OSQ6_< —1> = 1. Thus d, is always real and positive.

| A'< ax,. . | N
'The'path of steepest descents as it passes through the
saddle polnt makes an angle of '%F' with the positive

“imaginary q axis (Figure 2. 39
A ba81c asgumptlon of the method of steepest descents
is that the-absolute value_of the egponentlal\terms in
the integral decay rapidly on either side‘of‘the saddle:
*point go. that‘they‘can be. approximated-by thelfirst term -
in a,Taylor serles about the saddle point, i. e. thelr
' value at the saddle“p01nt. Thls approach is nPt valxd
J however, if the non—exponentlal terms vary rapidly nqﬁr the o
‘ saddle poxnt. This occurs if the saddle poxnt is near one
of ‘the branch poxntsafsay R, due to the radgcal ws,_. L |
| In»the follow1ng sectlons, two regions of the value ;aﬁee$m>
' of the saddle point will be considered.f " : v_hhu’
‘.(az the saddle point, 9 11es between 0 and the fzrst »”wl f. 4
branch point ng wﬁich from now on w111 be referred B

N
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d

LFxgure 2 3 The contours of integration for (a) the saddle
R point lying between 0 and the flrsz branch, ‘
poxntggnd Wb) the saddle point lylng between . | o
the first and secondobranch points. The choice ' '
of parameterization forcés ‘the contour in both

' caaes to pass to the rlght of the branch point

Al '-‘.:'o '



-
[ 3
g
. . ' ‘.
i = N - -
@l L , -
. ' . .
y . 1 9,
T .
" C o
iy -
3
Y Y .,
5 4
N ~ IR v ¥
. v
.
K
v
o
. .
a
R
- .
B
’
5
}
S .
E
o
{
N
.
I8}
- -
I

- N
:
- .
B v,
l
»” ¢ N
2
\
L, - .
—
. ¢ »



2
4

o e 20h
(2.19) (%&Flg ) = (i F;qo

W

to as n. The*integral is transformed to the new :‘
contour shown 1n Funne 2.3 by the change of variable

2 | | 5, Ngﬁ
Z)k + p exp (- %})

,vhere p is real (~o<p<®) . The integration of q from
- I3 vy

O -

b\)

(b)

of the

o

- to = has been transformed to the integral around

the partial semicircle Dﬂplus'thevinte§r11 a?oung

the loop D through the SEddle pOlnt 95 "-“ed'b§w'

‘5 ®

N
*y

-~

the parametric equation (2. 19) - As the- radius f U N
t iv4 2 -

theqsem1c1rcle is extended to infinity the con

bution from D goes to. zefo and we are léft w1th thewb

@

integral along D; wﬁi@hg%}elds the displacement of

the reflected wave from tﬂe s th interface.

{1

rd

the sad@le pOint'qo ég greaggr'than.n ‘but less® than

the value of the next branch point as in Pigure 2.3
The integratian path now consists of sthree parts;
the integration along the semicircle D which goes

to zero as the radius tends to 1nfinity, the

int ation along D which gives the contribution

‘ected wave,)and the integration alw

p, which yields. the contribution due to the head wave

. from the s-th interface. Bhtegration around the

\branch cut 'due to the braﬁmh point n 1s necessary to.

I3

ensure that we remain on: the same Riemann sheet

The branch cut is defined ‘by the parametric equation

c

PASN

Py
)



. . ._-7‘) R ‘1 . & ‘
. ,k L & v - *1 . o |
" t(IZ:;’-'OA Q:’F : »(1.-F1n2);’,+ he ,exp(—_ .%)'p'real. (0sp<w) .
. % " ’. i : : - : N

ws
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| 4
‘Analogous integration contours for this probleln 'for .
s

| ~
isotropic ‘w%ia have been dealt w1th, at\great 1ength in

the 11terature (Cerveny (1965{), Cerveﬁg and Rav:,ndra o,

(1971),szmg et al. (1957), Brekhovs?c 1%.(19603_4, nonda

A
#HJ‘.

arf‘ﬁd Nakamura y(l954)) ana for thls reason ﬁ". wouldﬂ be“ :

- ‘- g ”‘y\'pﬁ@\',,\

redundant to repéat the dlscuss:Lon here." _,%'4;,&,.-'.?};;"'? ‘

1 o w ,*' e m&b - o J/’YQ»":‘;‘-.
2 4 The Reflected Wave ke R e

9 &y

In this sectlon an expre55~1on for the-reflectsg dlS-
8wy 3
placement, the 1ntegral along cont’oui D ’ will be obtalned

g thts. The exponent:.a’l
o TN
I A’ -

'_ tems@an bie exi:andedz in a Taylof f ek g 's 1n terms of tn/e new )
._l%egratlon variable p about p = 0 {q-q ) as s g
o o ' ‘ . vklf,.pz - - :
(2..211) ‘lle (q) \ = lklf (q‘_o)l - _2_;—5——:_3_ e '{
. , : - 2F, qo .
i s : = -
. ’ -./ h ’ ".Q
where oo
- . s=l ﬁl - ) R _
(2.22) £ = ) 'H.h; = tana;, o, being the acute angle
: 3= 1 i3 Bj 3 J S . :

the ray makes W:I.th the z axls in the@‘th layer.'_
Wl‘th the a:.d of equatlons (2. 2)>Pnd (2 18) it can be
shown that 1k F(q ) = sl w‘hene T, is the travel time "

of the refleoted %ave. o .

Substituting equation ﬂ 21) e (2 16) the




9
¥ ’ . :‘
expression for the displacement ug of the reflected w;glg.e '
is given by . -
e -1w(t-r )./k X :
= e 1 d
(2.23) ug = e \21“) j le‘)R (P)exp[ H(q )P ] —E
; .~ & - : " q
b W - ,. .~
whetéy B W .
. H(q, ) —~—5;—— o N
P;‘ ) u‘: :’g;ﬁ‘z ‘ ?Fl q % D - 1'(13. ‘ }.:1
P e T g I
. -rA sumfng R (p) and Z‘(p) vary onlﬂ,‘hl.ufﬁtly abou@ p—
(q—qol i.e. q does*&n,ot lie near a branch pog,gt, the non-
: expo“%ﬁtlal terrﬁs f}) (2. 23) can be approxlmated by thelt
4\%,
T value at p,— 0 (q—q »r because of the -fact that the

X

» J
exponent1a1 term decays rapldly @mall reglon about :

p = 0. It ould beﬂ"rémembered that as H(qo) is propor-
- 5‘% > ' / ¢ . - . , L
- tlona], to freque%cy ( = ﬁ—), the higher the frequency

a

 becomes o B
.
o ~io(t-1 )/ k. Vs T Yy
: = r S vy pMM; - 2,
| {2;2§)‘u° =e , Kznqu) ?(qo)Rs}qo) Iexp[ H(q,)p ]dp

s

1. .
/.Bl

:ﬂ .

§F

the more rapld is the decay about p = 0. »Th%s .:»(-2.23)\ o

\.

‘-1w(t-rr) -
e z(q )R (q ).

r,.v" . L

o

|

where

"az‘l:(rf.)‘k o e v
L= is called the geometr:.‘cal/‘spreading -

) ai s:mal

. _ BRI
. of the ‘ray. Equation (2 24) is the high frequency or -

)



S

~

asymptot-« form of the reflected wave which is also
o g e
attainable, u51ng asymptotlc ray theory.

‘ 3 In the case where qo lles.clqse to a branch pcint n,
app;oximating Rs(p)'by Rs(qo) is not valid since Bé(p)

- f'l - o 5 3 'j : .
contains the.radical we ={k - 97 .+ 'To. accommodateg for

g el

this the integral in (2.23) is divided into two parts-by
[ -»‘; B ) . . "{“'.‘_'*-. X } L ‘
expressing R in:‘the form .7 4. & .
i % s (P ‘ p e, “& . ‘
Rg(P) = Cy(p) = Cylplug. S I
e - 1#‘

'“Exp11c1t expresdlons for C, (p) and C (p) are g1ven in

Apﬁegglx B It follows that S 'ﬁgé;
e N v, Lo

J . . ° - ’~ .

S

~

-~

Fcr 9, close to B, ﬁs is approximately zero eo'thatl

Gfp)' . ’ “ ¢ . : .
) ‘<<l., If-this condltlon 1s satlsfled 1t can be
1(p5w : R | .

. ‘ KN P
L . . - e

) A_~./ \'
justlfled to’approxlmate R (p) by the flrét two terms

in a b1nom1al expans;on, viz.'h A / N o .
U - R s '
C (2.2 RSp) =c (p) - m ;" pic, (p)w

so that equation (2.23) can be written in the form

-

. . »
P ” .
. - A

B

- e

e “

4
> E ‘
N A I L
: 'R;“- (Cl(p) C2(p¥ws =C (P)'\l -4Cl(p)ws °

60
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1 x-
) ' 1m(t-1‘ ) |
(2.26) u, = e (2”)%1 z(p)c (p)exp[ H(q )p ] gg
e - f z(p)mclm'l_(p),cz(é)v‘égexp[-ﬁ(qoipzl. QE- .
) A < * - ‘ . d » -

As'the functions Z(p), C (p) and C (p) do not contain

the radlcal Wor they do not change rapldly in the neigh-

e

29 fgqg:hood of p= 0 and as an 1nﬂ1a1 apploxlmatlon it is

.....

';,_‘ﬂ‘asonable to a351gn &o’tﬂel%hedlr value at p 0. Thus

.
- - '
9 . PR
. 4 WEre
) . . L

5
v P
.,‘"’ t

S —1w(t T ) R ' ;gpﬂp
(2.27) uy= _"‘L——“ Z(q,) "'r%‘q ) r& - 1(q o R

[k N T ' - B
57;;&; X j w exp[ H(q )P ]dP ,

() 7T

%% The radical w cah be alternately wrﬂ:ten u51ng

equation (2»19) in the form e
5. R
) x 35“* oy, co

(2 28) Wy (1 E_s_ ) = <l_ _"«'97:" = —5;1 ’ : T

- | . n/\~ Fl _ | :.
_ (l-F n ) -‘ (1 quzkl;’[(l F n’ );’+(1-F 19 )!5:]35
< |9'4 v_‘." ree ‘,rA \.“} Na - ' R

=. i - ﬂl-f‘ 2)35‘;'(.:1.-? o )g;plexp(:il):,;’ I . :

.- :. X, (1_pln2)§’+ (1.f;§»1q°"2)*#,+ P exp T)“

ity e COUR
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v 3 ’
.Assuming that vﬂ‘ v X
o A T N R " .
(2‘29)2 H(qo) [}% F.n )* + (1 quo ) J>>1 A. .
. ! i \.‘h N R
s e ~- 1’ ‘
then Wy can be written approximately;ae ' ) L e
P ? .\,\ . ' . - ', . ’ N . R4
Yw = i 2%, 0 e 2|8l o2 T
(2.30) w, m[(l Fp) +<l xzq ] [‘1?‘1“ W e
. - N c{: W 2 —! s ( N
-(1 Fl );f' «p exp(,:%—/gl-é. L/
-
. ‘ S : : X
LR o a oL #

The argument of the' ';st radlcal in. the [J brackets is

“ R o o

)

always zero whlle that for the 5823;4 rad1ca1 1s, for p=0

E r'f 4 L e (- for 9 <n‘§-
(2-31).argl._(l-Finz);ﬁ-(l-quOZ)15 ) exp\ z">%
"// - o .o ‘] Ip for q >n .

L
st

The values of. the argument are chosen to agree with.
- equatlon (2.13) 1n Sectlon 1. \i s . . ."Tﬂ
Wlth the change of varlable p* (q )%p and the use of

‘" equatlon (2;30) the expre851on for the reflected dls- R
placement near the branchvp01nt n“be wes : ' K ¥
N S “--1w(t-r ) . : . ;o - ;;v

m- 1 SR

g2 3‘3M S uqoaﬁf“%) g )

1 P .
»'. ’ s S ‘ g»
o Y k ¥ | 5
P Cg(q L 7Eq] \', H(q,) ?(4 [1 ~F n2)15+(1_;-1q 2)3j}§

K \‘i” B T‘ i .‘ . ? {‘ K / . . . * ,
.91(1':0),., PR L e
where ~ o oo T e
h . t ’ v . @ g
. R .



:
“
5

-

BN
4
B l

o "\‘}

(2.33) g, (p,)

- N —\;5 . _ .
= ;’ ”-p -P exp( ol exp(n-p?')dp n
"'. ..mL- ’—J | E
“ ; }\, l?
- oo 2 15 -
po—H(q)I_(lf'n) .(1

. “ . . Y
LI . e “).‘»

-‘Eeforcpo<0 ;(qofng

1.0 ' for P> 05;.f-.(¢c')“>n) “

L . w O ) o s
2Ty . .

The fiequencjﬁéepegdéﬁtﬁquantity‘Ipsl can be thought of

as a measure of the,ﬂistancé”ffdm“the‘critical point;

g

the critical point belng deflned as the recelver 1oca‘lon

N .
)!& 2 IR " ) “‘@-

aﬁ the flrst 1nterface where the ray uhder;con51dera

arrives for q, = n. At the crltlcal p01nt P, = 0.

Multlplylng and leldlng the second term of -

-

fgquatlon (2.32) by Py and emplOylng the prev1ously
S : o :

defined relations for L and'w§ we are left with
, P S | ,
-iw (t--’rr) o

o

';‘(2.35}, u, = £ . Z(é’\) { (q ) mC (q )Cy (q, )
_ R W c

B

)

- . L 2\% S
. r ‘ . ;1L— _q—q_-t “ ( )’a'v \‘ . » - N
S T E) MR j ,_ I N

‘where .

. o - . X . . P SRR Y
N .

(2‘.."3 6) u.i (Ro)" "% ] ’ ﬁ-p _.exp (:%1) —',/PE,]%"-.exp (.}2) dp."

B
-

63
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Graphs of the functions (modulus and ag:se) of gl(p ).
and ul(p ') are shown 1n Flgure 2.4, -
Equation (2¢35) can be further simplified if it is
recalled that for q,*n . - | | -
o N 7.
' ' ) t‘::f'.“f‘ ' ' q 2 ¢
(2-25)'BST(qo) = Clm(qBY:-'mclm-l(qo)cz(qo)<l - :%f)
and as a result o , ;‘ ~ e T
‘ —'i.f'w<t~"~' B
(2.37) v, = ) \R (q ) + NJ TR
(2388 N = gmc ™ g, )C ‘V(qw)(lr-?»q )(u' (p)-1). .
X o - °o'T2FoT\" 2/ 170 ‘

Flnally by settlng q, = n andAmultiplyiﬁg»and divids

ing the expre551dh for N by P, with}the ddded facts that’

Cl(n.) = l “ . v‘( . ,

= F which will be called thgmodlfled | / |

e o head wave . coeff1c1ent, .
. : N L - . ) s " -
(N can be written ) PRS-

@39 N 'M<--—' ) 2’5 CEst )’“ .g’l"(p;) - iso?,"‘] o

o - 3/4 k o
Lo = - *
t¥x; | g (n) |12 gltpik iz ‘, . ]

with the result that neat the eriticgl poin% @he,7:7
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- Figure 2.4 “The modulus and argument (in radians)’_ of

R | ull‘an_d gy V8. P,-



MODULUS

7 aggamu

-

L.




where = , A —

’flrst part was solve%for in Sectlon 3 only the \contrlbu- '

_l tld\'x due to the 1ntegral over D w;ll@“’coneldered here.

. \' ) I i
- J.nc{—lhext wavefront has a f1n1te radlus of curvature in . o

‘the plané~pf inc:.éence. . QPlane wave 1nciﬂence cannot

v ..d.unens:.onal com.cal wave and hence has an mfmite radius~ :
""of curvature :m the plane of. incldence. Consequently,

K ,fang other occurz:ences of incidence by the ray on the | : DN

66

»

expression for the reflected wave has the form

-iw(t-1_)
e r

o (2.40) u, = /% 2(q,) {ka'(qo) - .g*(n)

Lizy“gl(pé) - 123/4po;§_j} o LT

_ ‘ mi""(l--}:‘lnz)!‘S - o " °
g*(n) = T — & '
(k,n¥)

»
N e .

3.5 The“‘Head Wave = ° %ﬁl S

For the reglon of tq referred to ni

. ‘_g'(

Sectlon 2 there are two dlsplacement contrlbutlon% to be . 2

con51deret, the reflected one! correspondzng to the

\

4o, - - \ .
1ntegral along D and the head ane dlsplacme&rres— T ?'
< /__’ ’ ) . "‘

,»pondlng to the 1ntegral around the brancﬂ cut D*. ‘ As the

[} Pk 4

‘

Head waves can only arise at an’ 1nterface 1f the

produce head waves) The resulting l'bead wave is a three ‘_';5‘" ~ ;

1 4 . Lo ;./'

S - ..
Ry b ¢ - - oS-

interface which produced the origihar head wave cannotm 1, -
S

| :_produce other head wave segments (Cerveny and Ravindra e i

o : . ',A_' o R _A__. - . . -

P JA. e



(1971)) .

. The expression for the dlsplacement due to the head i-f

-vr.

wave is given by

I N om, o K ol
it [ k) Z(Q)R (q)explik,F(q)lg-da | -
(2.41) u, = -Fje Vi J = |
e . /3, . -Fyg9*
’ ) . N ‘ : |
s o o N | ) |

-where all the quantitles in (2. 41) have been prev1ously

.

‘deflned, the contour of 1ntegratlon is shoWn m Figure 3’ h f‘
'ena*the aejmptoticxexpansion of}the'Hanke} function;wae ) f}¥¥7%;
" assumed valid. o o f?l‘ ﬁ&gf,'@'l. ';;3 L

N

) ¢ - r

" The 1ntegrat10n contour D, whlch clrcnmvents the

. k%)
1 4
h

. : - .’ _ o 2'§§° Q:-_L . '
branch cut due to the radical w_ = '1;—‘35 is-givenghx ’
: o ' n R
 the parametrlc equatlon."ﬂgi Lo co T
| C ' / BN A o
— (2 20)1 (1..qu )!5 = (1-F n )!5 + P exp(———) 0$p<'oo o e S
- { e g Lo j..:, - -
In terms of this new varlable, the radloal-ws, Ce e e

‘ whlch has a dlfferent SLgn on each 31deaof the cut, can if#*

be wrltten . Lo b S - L

. " Y
U ‘ e o o VT
. - . . . i . . " g .

(2:42) wg ;T[P +20oF T T () Texe T e

voooe L s . , . Co ~
.

* where e -

— ) [ "y
i\\ '-~-.L "”3” ' 0 on the left hand sxde of the cut

A\ ar S S0 S ,__,nj e 5
TN g P Q & B St

Vo o 0¥ on the rlqhtéhand s:.de of the cut

\ . ' . (‘7--
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B VLR

arg[p + 2(1-Fyn );’ exp(.i.'l'.] = 18'. foflpv-do. " o

4

We w:.ll proceed w1th the —solution of: equatlon (2.41).
under the assumption that the maximum ‘valye of the e

1ntegra1 occurs ‘near p = 0, 'and expand the function Jin

. -_the exponentﬁ in a Taylor sex.-ies about" P = 0 (q-n) so that ' :
G- C ‘ | B ;
.~ ’Q. '8’*“ - ." L N - o ‘ ,
e -‘/‘3% SR S _..’%
.; . r) . Ve - kl . B . . - .
(4.43) lk F(q,) = 1&(.,; )= (l F n )P exp( ) R ‘ \
"‘ E,n )
%* S @- *.\ : s
:‘ ‘ ' :'- —-‘ﬁ * ey -‘ "u' “ V . ‘. Q’ ‘ ::\ ‘ \,‘ ,l )
| ! vglFl n Afx’ c RN o
kA | " ¥ :
f wher is the travel time of the head wave and T = &F4 E.

The quant_ty o was defined ‘i‘\ e?qation (2 22) and 1111:he,—~

preserrt sit‘ﬁatzon is evulu#ted e;ut q = n, Theodlstance the\ o
' " ray travels along the s-th, interface is ﬁeflned by 2. It ” ‘

-

‘ should pe noted that L = r—rt where r 13 thé §ource-: "
' freceivar offaet and r* the crltical dista\ce, 1; the b - fi’ '
hor:.zontal d:.stanc% f;m the source at wh ,'ch the ?fgadf T

- “"Ve from the B-th interface firat appeaAs.' . frhe, ve; { o
qﬂan{ities are’ def:med in Flgure 2 5,~.. VAR | ;
AN 7 L > ;

o ' As before R (’q) can be éxpand . mear q= n as" -
(2 44) R (q) llq) - uc,

: The tvo tema in'tgxe expansion of R"h(q{) result i.n \ o AR




.qgantiéies in the first integral are the same on both

8 of the cut, the contribution from this integral is
zexo. The argument of We ehanges by 7 fromlthe }eft to
the right hand side of 'the cut and consequently the ‘
integral involving this termAis-non—zero. " The integfation
for the contributing term is then twice the integral over
p from zero to infinity.

-

The head wave displacement has the form

-jw(t-t, ) - &L <
-2 . h 4 -1
(2.45.) u, = 'F—g e KZTTZ‘)‘ i mZ(p)C (P)

.

L 2
MCZ(p) %r [p+2(1 F,n ) exp( nj]g
) - ' B

exp[} -%I (l-Flnz)%P EXP<%¥>‘ H*(n)pZJ QE ’

_ q ,
klr
where. H,(n) = —55 -
. 2Fl n

As in the case of tHe reflected wave it will be ,
assumed that the major contribution of the integral occurs
near p = 0 (g=n) so the folibwing approximations will be

made

. ' - ;5 ‘i
(2.46) Lp + 2(1-F n )kexp<ﬁr)] = 2%(1-Fln2)kexp\%$;

»

z(p)cl"“lcp)cztp) 2" e, m) 0
= | %

e 1]

uk‘l

n
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80 that
/
' ) ~iw(t=-1,.) =~ in k % m2 n)F(l—F n )k
(2.47) u, = 2e h 8
s * ‘ nrn g ~ ok
“ . nFl

’

O - k £ ‘ - ' T
. J pBexp - TF_' -Flnz)gp exp(%g)-ﬂ,(n)p%]dp.
. o h |
y
With the change of variable p+(H*(n))gp equation (2.47)
has the form
X
— -iw(t-rh) - n3(1-F1n2)
(2.48) u, =-e mZ(n)TF) | —3 2z 3J g, (Pa)

v 2 klr
. where
\ e

71")j p;’exi:[ -2;’(1+1)p*p:] dp

. kln(l:rlnz)-”’ o |
2r J .

<

The value p, is proportional to £ and as sucﬁ is
egual to zero atithe critical point and increases with 5
distanée-from the critical poiﬁt. As a requl£ Pa is’
always real and positive; For largeﬁb* the following

approximation is valid (see Figure §5).

iw/z
(2. 50) gz(p*)Lf ———73 for large Pa < .

Utilizing this asymptotic form for gz(p.o and



.

.Figure 2.5 The modulus and argument (in radians) of

¥, and g, VS. P,-.
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after some algebraic manipulation equation (2.48) can be

'written as

- - -iw(’t-Th) + 123 ;5 m-Z(n)Tta;Wl
(2.51) u, = e Fe %372

4

«

where I' = azsf.

Equation (2.51) is Bimilar to the expression obtained for
the head wave expression when geometrical ray theory is
used. . '

Near the critical point £ and hence P, is small so

. that the approximation (2.51) is no longei valid. Let

uz(p,) *'§;3/292(p,) from which it follows that

-iw(t-1,) mZ(n)fuz(p.)

(2.52) u, = F.e
1 k,r }(1-F,n2) *.
. 1 1
‘ 4 ' im
where for large p,, “2(9*) = ejr. Because uz(p,)»o as

2+0 equgtion (2.52) is in an 1nconvenient form.. Multiply-
ing and dividing (2.52) by Lp,3/2 (L being the geometrical

- spreading evaluated at g=n) the following flnal form is

obtained for head wave displacement near the critical

~ point

-im(t-rh)

(2.53) u, = & Z(n)g, (n) 2734 9, (P,)

L

%

where

72
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| A % .
mr(l - El nz) C?
(2.54) g*(n) = ,i .
(k,nE)

The term fk in the denominator of equation (2.54) should
actually be r, but since r = £ + £ and £ is small near
the critical point T has been replaced by .

At this point it should be mentioned, that (2440) | ‘1
.and (2.53) are epproximations for the-refiected wave and b
head wave near the critieal point, and their accuracy
diminishes with increasing distance from that point.
- However, at lardge distances from the critical point the
asymptotic expressions (2.24) j?d (2.51) are generally

—

good approximations.

2.6 Interference Reflected Head Wave - ‘i‘
For the range of qo(0$qg€n); oﬁly.thezreflected wave
from the s-th interface exists. The point qo-h corres-
ponds to the onset of the head wave. In Seetions 3 and 4
expresslens were’ obtained for the reflected wave and head
wave, equations (2. 48) and (2 53) whlch are valid in the
range (n5q05n+e), whe?p € is small and its magnitude
dependent on frequency. Fot values of 9, greater than n+e

the asymptotig forms for the reflected and head waves can

be used. The sum of the reflected and head wave displace-

Ll

ment comporents in the range (hsqésn+e) will be called
. the interference wave. T D

From equations (2. 40) and (2.53) the interference
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tw -

- displacement component has the formh'

-iw(t-rr)b

(2.55) u = u, *.u, = e I Z(qo){ksm(qo) =g*(n)

Fiz3/4gl}po)-123/4p°*1+gh(n)2‘3/‘eké(-i§)gz(pf§}

A4

- ’ ' _ N
where p = mg(rr-rh)k and it has~peen assumed that

Z(qo)=2(n). After some rearrangement (2.55) becomes

S , -iw(t-rr) ‘ -
(2.56) u = Ei;—£~———-z(qo){%sm(qo)fg*(n){123/491(po) -

-

- 3;,23/“po!5 - 2-37492(p*)exp(-i§2){}.

As the quantities p_, p, and p are all ﬁg&su;es of g ] :
the distance fromvthe_gritical_point, and in the vicinity ‘\\
of the é}iti;Si'point'are all approximate%y equal, they 2
can all be rebléceé by one value. The‘quaqtity B is | .;27

chosen bécause of its obvious physical significance.

Let * L K . o ' . R

&

. (2.57) 6B = 2¥%4g (B)-23/41p7%-27¥4g_(5) exp(-15) -
80 that.'
~iw(t-1_) s
. - e r : m =
(2.58) u = =——5—— Z(q)) {Rs (qo)-g*.(n)G(p_)j-

' With the aid of equations (2.33) and (2.49) the




expression for .G(E) can be writt;en

p, e [—pl 2pplexp { 1”]691

b

(2.59) G = -2 ‘n“’mcp[-’-}'i - ‘15]

- e - ( -‘ ) b A . - .
- _, /4 lsgp[z%g o4 2} J px,gp[_pz_zm w(_i}) o
. > L Cl A
-2¥/4;p , .
o o L \
ko ' : ;

where arg p, =T for pl>0. Extending the limits of

‘integration of .the second term.in G(p) results in the

>
fud

following
(2.60) G(p) = -23/4y% exp,:%l - i52J -

(- -]
X Jp;’exp E-pz-zfﬁ;exp<£}>]dp-—23/'4i§;’

- QD -

\

: .
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where arg p;’ = 0 for p>f (Cerveny and Ravindra (1970)). -

The form of G(p) in Puétion (2. 60\) is such that it

can be exp_ressed, in terms of the Weber-ﬂem.@te function ¥

(parabolic c.ylinder funccion)‘/ib-,;(fb(i-l) ), as
(\e.el)/z(ﬁ) - 2J-5exp[%1 - 5.52] D (B(i-1))-23/43p"

with D, (P(i-1)) being defined by the identity
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’

F'igﬁre 2.6 Real and imaginary pafts of the Weber function

for negave and poéiti:ve argi.l;nents-.

[
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R

[} .
(2.62) [ s;’exp -2 -2ps exp(%) d
. -cn : o _ ) . . Tx‘J,rT N . ]
=2 o Ny
- % ) -3/4 i v .j.__-' - -, Y. -
(2m)° 2 exp[—&-2 + . 4‘1\:&\!\),&(::(1)1‘1\}
N T

The behayiour of the Weber-ﬂermitew functi_on is shown
graphically in Figure 2.6. Other properties of the Wﬁber—
Hermite function and techniques for its numerical evalua-
tion can be found in the paper by Maxkd and Hron (1977)
and a numerical tabulation of it is given in Kireyeva

and Karpov (1961).

2.7 Numerical Results

In this section the:previously derived equations are
applied to a simple hywtheﬁical model of two plane
layers overlying a halfspa’ee':. ‘The description of the
media is given in Table 1. Mddulus of the amplitude vs.
distance curve‘are Plotted in the vicinity of the
critical point fc;r the two rays shown in the inserts of
Figures 2.7 and 2.8; that is for rays having niultiplicities
of one and three. The significance of the factor m in

" “the expression for the head wave amplitudé is that for a

ray-wi'th multiplicity m there are. m rays arriving at the
receiver with ‘the same kinematic and dynamic pr pertqes.ﬂ

As noted in the figure captions the three burves
Presented are for the asymptotic solutions of the
reflected wave (a) and the head wave (b) using equations

(2.‘24) and -(2.‘51) -and the interfe;ence wave (c) from

Ay
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\ ‘
Specifications of the media used in Figures 2.7 and 2.8

-

Layer ax az ' p thickness
kn‘./sec. kﬂh/ﬁ&C'- gm./CC kﬂl-
7
2 2,75 2.50 2,16 2.00

A

HSPACE 3.75 3.50 - 2.20 -?




‘Fiéure 2.7 Loq.”ampiitude-éistancé curves of the ray

| shown in the insert for (hi the reflected
wave (b) thé head wave (asymptotib fo:m)

“and (c) the interference reflegtéd-head wave.

;The criticalraiétangeris denoted by:r* .and

the interference zong for the source pulse

§iven-in the téxt lies between the v's.
It Shoﬁld be remembered that curve (c) is

only valid in the iffer ference zone.




*

.

]
o

O
i

C

»
.
i
.
£
5
. {
.
. / -
; ’
. ~
.
) .
J
[2)
.
. -
.
.
—
-
-
.
o 4 "
- °
s .
N ”
. .
. 2 * '
% .
' '
F

&

DISTANC




“
e

Figure 2.8
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A " Ny

N
Log. amplitude-distance curves for a ray of

multiplicity ‘3. 'The logarithmic singularity

~

is due to a zero in the reflection coefficient

of the ray incident from below at the second

interface.

”
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from equatidﬂ“(é.SB).
\\\\\’ In the‘agymptotic limit, the head wave ‘amplitude is
inveréély proportional to (r-r*), so that at r=r* this
amplitude becomes infinite and is obviously nOnjphysical.
Also as was previously mentioned, since the difference
in travel times between the reflected and head waves is
.small (i.e. the difference in travel timés is leés than
the length of the sourcg,pulse) in the vicinity of the
critical point, t?e two arrivals in;erfére with one
another so that a simple suﬁmation'of the two asympto£ic
< ' —id(t-1 ) -iw(tr-th)- -\ .

forms u, = e [}r + e A, ., in this

h

—
.

v

. region introduces further error. 1In the case qnder

consideration, for a source pulse L(t) = sin(2nf )

'

of 2m€ N2\ ,
ex - o ', with £ = 20 Hz and y = 4.0 the
/

length of the interference zone is approximately 1.9 km .
and is denoted in Figures 2.7 and 2.8 as the distance between
the two v's. The development of the interference formula
is an attempt to reduce the aforementioned inaccuracies
in this zone.

2.8 Conclusion

_The mathematical development of wave propaggtioﬁ for

SH waves in a plane léyered transversely isotropic homo-

geneous media using integral transform methods has been

~
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presented Asymptotic forms of the reflected and head

wave dlsplacement vectors have been derived along with
special treatment of the interference of these two waves
in the V1c1n1ty of the critical point, something which

is not attainable if asymptotic ray theory is employed.



B

.(1971)(1968) present the theory for computiﬁg qynﬁhetic

CHAPTER 3

RAY-REFLECTIVITY METHOD FOR SH‘WAVES IN

STACKS OF THIN AND THICK LAYERS

3.1 Introduction i;?
\ oy r )7

Several metho&% including plane wave, reflectivity,

L4

-

’
integral transform and ray approaches have been employed

in reflectién studies of plane layered media to produce

Asynthetic sections to aid in the interpretation of

observed seismograms. As would be expected eaclyof these

methods has its 6wn peculiar 1ist of advantéges and

*

kdisadvahtages. . i

The plane wave solution (for example,uWuenschel
(1960), Sherwood and Trorey (1965), ?iéitel and Robinson
119%6), Fragier (1969{) w;ich is a direct consequence of
the work of Thomson (1950) and Haskell (1953) has been -
used extensively and gives a good indication of the
reflection\:ggggnse of a layered medium. However, a
plane wave solution is a highly idealized approxlmatlon
éog?n explosive poxét source generating spher1ca1 waves

as it does not 1nc1udb the geometrical spreading of the

“

wavefront as it propagates through a medium. It is also

instructive to be able to identify individual arrivals
on a seismic trace, anloperation which is difficult to
do using this method.

. The papers of Fuchs and Miiller (1971), Fuchs

v

N\,
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seismograms by the reflectivity method qhich is extremely
.useful in refraction studies when invest&gating the
effects of a 51ng1e transition zone, However for sub-
critical (reflection) work the numerical integration |
used for refraction studies is not necessary and a o
watationary Phase approximation suffices, whereupon
':1naccurac1es in amplitudes are introduced if some layers
rkin the transitiog zones are thick or if multipleotransi-
tion' zones separated by thick leyers are to be considered.
~ Ray methods (Helmberger and Morris (1969), (1970),
Miller (1971), Hron and Kanasewich (1970)) are useful in
that they incorporate geometrical spreading and enable
1;d1v1dual arrivals to be identified. 1If a partial ray
expansion to the total wave field is desired (Hron i1971))
many rays must be considered to include all multiples 5nd
this places a severe restriction on the number of layers
which can reasonab}y be considered. Albeit some success
has been seen by including only the contributions from
primaries and surface multiples, the- seismograms produced .
may be misleading for some velocity depth structures,
Another draﬁbaék of ray‘theory is that it breaks down if
the dimensions of the'!ayers are of the order of the
wavelength (Cerveny (1977)).
The object of this paper f;'to'preseht a compromise
among ‘the methods mentioned above’that will provide

~greater flexibility in deeiihg with velocity depth

<



L .
strﬁétures than any one method alone"ahd at the same
Atime maintagp or ;ncrease the accuracy of the results.

The tebhniqués employed herezexam}ne-the velocity
: depth.structu;e and seéarate it into thick’layérs
separated by thin layered transition zones. The total
jwave fieId_will be .approximated by a partial ray
expansion in the thick layers oniy while the thin
layered (fransition) zones that have been iﬁfroduced
will be treated‘as quasi;interfaces and analogues of
reflection and transmission coefficients are calculated.
The reflection and transmission effects of these thin
layered zones are referred to in the literature as
reflectivitfies and transmittivities. " Their computation

.

v follows from the Thomson-Haskell technique and contain

PR
v !

*fﬁ;‘ the same inherent numerical problems (Knopoff (1964),
Dunkin (1965), Cerve;y (1974))

\ . In the text the slmple case of SH waves propagatlng

A in the preV1ously described medium w111 be discussed.

This simple case was ~hosen becauseilt presents the
basic idea of the metl-~ without involving excessive
mathematics which woulé¢ ne necessary if the coupled
P-SV case were considered. However, the method is
readily applicable to the P-SV problem and has been

treated in a relatively inaccessible book in Russian

by Ratnikova (1973).
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3.2 Theoretical Preliminaries a
Consider a syst&:yfompOBed.oﬂ m plane isot;pﬁic,

&~

homogeneous thick é&astic layers bétween_two halfspaces,

i
\

the upper of which is a vacuum_ahd the lower one isotropic
and homogeneous (Figure 1). A point source F(t) which
 fadiates spherical SH waves is located (in cylindriéai‘
coordihate notation) at r = 0, z = 0, ¢ = 0, and .a
reééiver'is situated at G, a distance r ;way. The coor-
dinate location z =kowzorresp0nds to the fgée'interface )
between the vacuum and layer 1 and z is asshmed.positive

\\

The displacement vector of an SH wave propagatingl. 

downwards.

iP an isotropic homogeneous medium iS‘perpendicu;ar to
the plane of incidence ?f the wave and,is decoupled?froﬁ'
‘the P-SQ wave propagafion. If the plane of incidence V
is chosen as the ¢ = 0 plane, the dlsplacement vecto:\

can be wrltten without  loss of generality as

(3.1) U(r,z,t) = u(r,z,t)3¢ s

o

where ﬁ¢ is a unit vector in the ¢ direction, and the

Fourier time transformed disturbance due to an arbitrary
ray propagating in some or all of the m layers at the’
point G can be written as (Daley and Hron (1979))

A

(3.2) @(r,0,0) =L() | R(k)exp -1 J N_h v}:o(kr) kdk
. : 0 " n=1 . 1



Figure 3.1 Geometry of the media for (a) plane inter-
faces betweeﬁ thick layers and (b) quasi-
interfaces between the thick layers

composed of thin layered transition zones.

87



>
h,

m-|}

‘ L




P3N

7

where L (w) is the'Fourier transform of the source pulse

F(t), J (kxr) is the Bessel fungg;g;'of the first kind and

2 zero order, R(k) is the product of all the reflection and
transmission goefficients encountered by the ray, and ¢he

quantities v, are defined by

w2 _ o 20%
(kn k»l . cz2B

w
o
\'/
e
=

]
(2

- laaud - c<By .
\ b . - v ' . . \J t
-~ K
& § -
The horizontal wavenumber k is.given as = z and

‘\ .
‘kn = gL_, B is the shear velocity in the n-th layer,

n : .
w is circular frequency and the quantities Nn and hn

. N ‘ f
are the number of ray segments in-the n-th layer and- ,
the thickness of the n-th layer respeptively.
. It will now be assumed‘that some or all of the

»
interfaces éncountered by the ray’are replaced by thin

transition zones; thin in the fact that their thicknesses
are negfigible when compared to the thicknesses of the
other thick layers. These tranaition Egnes may take the

-

form of a single thin high’or low velocity channel or

stack of several thin layers of varying velocity (FPigure lb)
‘ In this case equation (3 2) is changed in th/r the

frequency independent term R(k) must be replaced by the

product of the now frequency dependent reflectivities and

transmittivities P(u k) so that



/

®

&

\

(;.4) ﬁ(r}O.w)-"- L(w) I P(m,k)exé -;I,Vli1 N h‘v GJ (kr)qkdk'r |
. . 3 ney D RAfO IVI

‘One of the most common methods of evaluating infegrals of

the type in equation (3.4) is bf the station;ry phase ~.
approximation. By comparison with direct numeiical
integration, this method will be shown to b% a quite
acceptable approximatioa for small sogrcélxéceiver offsets.

The condition which must be satisfied f6r the successful Su

implementation of the stationary phase approximation is >

that the non-ekponential terms in'éqﬁhtion (3.4) are
slowly varyiné implying that the region of applicability
must be r ed from all singuiar points (Sranch,points

5

and poles). ‘ _ | - \

3.3 Refledtivity and Transmittivify_
For completeness, the reflectivity And'transmittivitjilqé

of a thin layered‘or transition zone will be briefij dis-
cussed in this sectién. Similar treatments qf fhis
problem may be found in”;he literature, espeéiaily Cerveny
(1974) and Molotkov et al (1972). |

_ A thin la&efed zone composed of s isbtr;béc,‘homo—
geneous elastic layers will be assumed tojlie in welded
.contact between the thick layers (layers 0 and s+I) which
are also isoéroéic homogeneous and élasti#. The vertical
coordinate designating the bottom of the ﬂ—th layer will

be denoted as z and the thickness of the n-th layer as



hn.' Without loss of generality, let z_ = 0. Each layer

can be fully defined for SH propagation by the density

X

p, and the shear wave velocity B, = (un/pn) when u_ is

n
the shear modulus. &

A plight deviation in notation will be used in this
section as it is convenient to assnme that a plane wave
impinges on the thin layered zone when deriving the
expressions for the reflectivity and transmittivity.

. This will require the introduction of.a Cartesian coor~
dinate system, with the plane of incidenc¢e being deflned
as the (x,z) plane (Flgure 2). This assumption does not
affect the results as it has been shown by Fuchs (1968),
(1971) that the kernel P(w,k) of the integral in - -
.equaﬁ}qn,i3\4) is the same whether a’ spherlcal or plane

W«
wave approach is used.’

w2, - 1 %Y
The solutlon of the wave equation V u, = =5 —;:7.

in each of the layers. has the form n

. : - -+
:(3.5).rv,.unﬁa ¢n,+ ¢n

.where the '+" and "-" signs 1nd1cate downward and upward

propagating plane waves and have the form

361 ¢F = A7 exp[Filz-z__,)v_lexpli(at-kx)]

. where as before



[N

~

Q

Figure 3.2 Description of layers and layer parameters

-for computing the reflectivities and
transmittivities of a thin layered zone.

.8, and p denote the shear wave velocity

et

énd density respectively of?%he n-th layer.
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(3.7) v

The quantities A; and A; are complex functions of w
and k to be determined from the boundary conditions.

Introducing the column vectors ¢ and S

(3.8) ¢

where (oyz)n

r

v

~

2 _ .2,\%
(k2 - k%)

]

Ciiqu? w210k
itk = k%))

>

—

b—

N

¢

ol

n

n

Ju

for czen

for c<Bn.

¢}

_ n . 4
= U, 37 1is the shear stress, the following

expression can be derived

(3.9, 5, =
where e
(3.10) Tn
.and‘

(;:11) -1

= 2iu_v

nn
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93
- It also follows from equation (3.9) that

(3.12) o =r1ls . ‘
n n: n . '

;!L vecter on at the lower boundary of the n-th
layer can be related to ¢n at the upper boundary of the

n-th layer as

(3.13) Qn(zn)'= E @ (zn‘l) -
»> I : .
_ where it can be deduced that - R o ’
. ,“‘1‘ -
‘ o
e . . ’
exp 1Qn Q-O 2
(3;14)\. Ln =
0 exp -iQ
»w1th Q A (zn-zn 1) = hnvh‘ e N

Utiliilng equations (3.9), (3.12) and (3.13) the _

-

' follow1ng relation bethen the vector S at the bottom

of the n-th layer (z ) and the top of the n-th layer:

»
‘

(z l) can be obtained ) .
(3.15) S (z, )-—T ¢ (z n) = ThEq ) (zn 1)=i?nLnTn Sh(z,.4) -
As the boﬁndaries between the layers are in welded
contaet‘there must be continuity of displacement (u) and
. . ’ )
shear stress'(oyz) at each interfage, so that at the n-th

ingerface>o _ -

»

L f ’ ’ - '

»



.‘3‘16) Sh+1(Zp) = Sn(?n)'

. ot
Continuing this analysis allowsqfor the expression
of the vector ¢ g+1’ at the boundary of the lower. halfspace

(z=2 ) in terms ofG) at the boundary of the upper half-

space in the form
\

(3.17) °_s+1<zs>=wo<zo>\'- -

wwhere uhe matrix D is given by

.
-b -
r .

— - * : -1 . 1 *
(3-18) D=y (TgBgTg ) (Tg 1Eq 1 Tyo 1""(T1 17170 T
-1 -C C . C,-T | | \‘
s+1 s-1°"""1 ‘o ' \NM

and it can be shown that the matrix C, has the form

The system of equatlons from equatlon (3.17) can be

wrltten ,
r -— -,
| P Dlz] A
(3.20) = | )
P21 Pazi |
b— ..‘_. -

" from which are‘obtained the relations o o

Q
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Introducing the notation Rll' Rlz' R22 and R21 as in
Figure 3 and using the relations given in equation (5:21),
the reflectivity and tranemittivity of a thin layered- zone
can be obtained. For incidence from the upper thick
layer A;+1=0 -and fog incidence from the lower thick

layer A;=0 so that

| 12
R,, = - ==%£
11 D11
.det D
R -
12~ "D ; ,
(3.22)
p o 21 “
.22 Dy
1
R Fo
21 Dy

The term’r(w,k) in equation (3.4) is the appropriate
product of these reflectivitles and tranSmittivities.
evaluated at the transxtion zones encountered by the ray.
It is easlly shown that for a single 1nterface between‘
two layeravequation (3 22) produces ~ordinary reflection
and transmission coeffic1ents for the case of plane waves

i
1

inc1dent on a plane boundary.

’
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Figure 3.3 Definition of the notation used in
describing the reflectivity and trans-

mittivity of a thin layered zone.
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3.4 Stationary Phase Approximation ‘ J

" Equation (3.4) gives the exact displacement dug to
an érbitrary ray arriving at G. “However, preserving this
exactness requires that numerical integration be used to.
evaluate the integral. This method is unsuitable
especiall& if the formula is used tb construct synthetic
seismograms where a great number of rays'are to be con-
sidered, and hence a great many numerical integrations
must be pérforméd. Consequently, the iﬁ;egral in
equation (3.4) will be approximéfed by the method of
stationary phase whiéh as previously mentioned corres-
ponds quite reésonably_ﬁo,the exact solution for small
source—re¢eivé;_offsets.

For Va;ues of tﬁe iptegration variable k greater
than some value kBg where kBl is the m?nimum in the _
series of.valugs (ksl, kBé ...'kBj), 3j be@gg the deepest
.thick layer the ray traverses (lsjsm), (1s2sj), the
exponent injéquation (3.4) will have a real negatije
term implying an exponentially'decaying‘integrand; Ift
the thicknesshof this layer 2% is,largé} the integrand

- will ﬂecay fairly rapidly for values of k>k8“_and for
. . o ‘ ) NS :

‘this reason values of k>k8 will not be considered.

97

Thus after replacing the upper limit of integration by - .

k, equation (3.4) becomes

By



k L]
j

nlenhn"n] Jo (kr)

L

(3.23) G(r,0,0) = L(w) P(m,k)expl:-‘i

Ot~

[

Introducing the change of variable

(3.24) k = qu, the radicals become
. ‘
N 21% .. _ 2%
(3.25) vy knLl (sn/slq)‘, with v, = k, (1-q“)

kdk

—

.'l.\)l

and the limits of integration are given by (0,81/82).

Equation (3.23) can be rewritten as

B,/B, ;
P(w,q)exp -inlen n
0 R

__gd
x Jo(.qur.) —(—I—?q%-)ﬂg .

(3.26)  &(r,0,u) = k;L(w)

1

If it is assumed4that the argument of the Bessel
function,‘qur, is large, Jo(qur) can be ﬁsed in its

asymptotic form, viz.

p . l . : " r
(3.27) J_(k,qr) = ——— exp[}(k qr + ﬂ-#expl-i(k q
_ o' /2nk1qr { ' vl T ol

Q2

~ Substitufing equation (3.27)£in£o~e§uation (3.26) has
_, o /8,
(3.28) 8r,0,0) = (1) Lwe [ P (w,q)

/ 0

n

h v_(q)

N
-
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. rj *l ;i

X exp{-i Z N h v (q) qur ;

_n=1 8. /g 2J (l*q);
1 l\

+ (%) L(w)~e-l31:/4'. L "P(w,q)
73 - ™ 3
x exp{. ' ] Nhowv (q)+-k1qr % -

_n-l nnan L (l_qz);ﬁ

Itvwill be assumed that the integials.ip equation~1
(3.28) can be approximated by the method of statibnary
phase and further that the phase of the product of the
reflectivities anq.transmittivities need not be included
in computing the stationary point. vThis second assump-
tion is valid dnly for epicentral distances less than the
critical distance, as after the critical distance the
phasé of P(w,q) varies gregtly, while before the critical
distance.its ghase is approximately constant for changing

values of q. Defining
-
s J
(3.29)  £7(q) = tkjqr + n£1 N h v (q)

Q

it foliows that

T
(3.30) i%—éﬂ’— =tkyr~k;q ] N

) LN ‘ Q_f_
In the "+" case, (dq
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= tanen wherefen-is the acute angle a ray segment in the

n-th layer makes with the vertical axis. Thus it is
ll

requirxed that

(3.31) q, =dsinel:

The "~-" case has no stationary point in .the range

, B | .
of definition of Osgs El so that the first integral
\ 2 o

in equation (2.28) may be neglected.

Using the standard férmula?for the statiohary
phase approximation to an integral, tﬁe displacement
can be wrigﬁgn as | '

.

\

Y N o b(w) [ kp8ing,y %
(3.32) u(r,0,w).= P(w,k) YT exp[—if(qo)J
R 1 rf"(qd)
with \ .
3 ? ‘o
£(g) = k [ ’ Z n 2L cose
q = s8inf,r + N_h cos !
1 '1 ney non By J 7
o ) -

and .

Qf"(q )= z A n n. !

k1n=1 cosae EI \
As was previously mentioned thé formula (3.32) is valid
only for small source receivet offsets, so that none of

'the ‘angles the ray segments make with the vertical axis
3

21

’ .
c. T . . ;:/‘
v ! .



101

approach critical angle»éalues. Also, it is assumed
that the thickness of a transition zone is small when
compared with the so-called thick iaYers, as spherical
divergenoe or geometrical spreading is only incorporated

in equation (3.32) for these thick layers. This geo-

metrical spreading is given by the k,//TETT(q]) term.

t

3.5 Numerical Results p

A simple hypothetical model with two transition
zones and two thick layers (Figure . Table l) is
used to compare three methogds of computin§ synthetic
siesmograms; (a) ray'theory,3aub) nﬁmerical integration
employing the reflectivity method, and-(c) the station-
‘ary phase approximation discussed in this paper. _The |
object of thie-comparison is to demonstrate the
efficiency‘and feaeonable'aocu:aoy-of ihe ray-
reflectivity method. | S | o ' I

The number of total layers was kept small at. six
to enable a partial ray. expansion (Hron (1971)) to |
approximate thg Eotal wave fielq by the ray method. ;hvv
‘this method all possible rays'op to those ﬁithvafmaximﬁﬁ
" of eighteen segﬁents were generated‘io the six layers:
.and included in the seismogram provided their arrivals
were within the time window apecified. 3;n the_rey-
:eflectivity method,orays needed only be generated‘in
the-two thick»layets.’. | ‘ -

- . N - - o . . - ‘ . : : > .l v>

-
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) P .
Fi_gure 3.4 Velocity-dept}; strﬁctu:e- of the model.
! {f.~ . ‘- h R
R %‘
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Tpree separate programs were used for each of the
traces 'shown in Figure 3.5. The ray method involved .
convolution in the time domain while the other two,
numerical integration and ray-reflectivitp; employed an
FFT algorithm (Cooley and Tdkey (1965)) when converting
from the frequency to time domain. '

The source pulse used was
\

| mf t\2
(3.33) Fﬁt) =_sin2nfot exp( Yo C . ewlt<o

where fo is the predominant frequency of the pulse and

Y is a damping factor. The Fourier transform of (3.33) is

<

i

. % 2 "/ | 2 \
_ in%y X __w : Yy W
(3..34) 0 L(w) = - >TE exp"— y <l+-. wao)2> sinh C‘"f e

This particular source pulse was chosen because of . the

ease with whféh it may be handled in the frequency domain
WA,

as its: spectrum is a Gaussian curve whose maximum is .

centered at §D However, all three of the programs used

can incorporate any source pulse whether 1n analytic or

E{gital form. 4
Figure 3. 51nd1cates that the ray-reflectiyity method

‘gives a good approximatlon to the exact (numerical inte-

gration) solﬁtion'evem though in terms of CPU time it

: was‘about forty times faster. The times for the ray
approach and the ray-reflectivity method were about .equal,

. but it must be remembered that the model chosen was to

g ‘A"C:
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-

-
“.Figune 3.5 A comparison of three methods of computing
synthetic seismograms for the model shown in
| Fig. 4. The three me;hodgvarg (a)-asymptotic
ray theory (b) numerical integration and

'(c) ray-reflectivity method. The notétion.’

. on the time axis in cases (a) and (c) ¥
idéntify the ray code of the arrival and its
amplitude. The source-receiver offset in

all cases is i.O Kft;
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facilitate the ray approach'and’that/the ray—reflectivity
may handle much more complicated structures.

As the ratio of'the dimehsion of the stack of thin
layers to the dimension of the thick layers used here
is quite large some error is introduced as can be seen
when the ray-reflectivitg trace is compared to the trace
obtaipedAby numerical integration. Thie error is reduced

as the aforementioned ratio is defreased.

:—’3.6 Conclusion ‘

The technique presented is Qell.suiredrfor the .
cempﬁtation of sypthetic seismograms-in oil exploration
for comparison and interpretation of real dete, as it
correctly prodﬁces the exeensive interferehce-phenomena
'due to the fine layering. This is done without any
effort to decompqse them into individual ray paths in
the thin layers. Physieally-justifiable amplitudes are -
produced as‘the method accounts for the divergence\fin
the thick layers) of“wavefrOnts radiated from a poiet
source and seismie’energy partitioning‘dﬁe.to reflec-

: tions and transmissioﬁ through the thin layer stacks.e~

The main advantage of this method is that a small
number of rays may be used to generate synthetlc sels-
mograms 1p.a many layered structure and their arrlvals

can be identified in the seismograms{
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CHAPTER 4

A COMPARISON OF SYNTHETIC SEISMOGRAMS FOR A THINLY

STRATIFIED MEDIUM AND A TRANSVERSELY ISOTROPIC MEDIUM

4.1 Ihtroduction .
Thar’a_periodic isotropic twozlayered (PITL) medium
bohaves as a homogeneous tréosversely iSotropic (HTI)
med ium in>its kinematic and oynamic properties has been
shown to be a Qalid assumption as far as the'propaoation
of:elastic.waves>is concernod provided that the séismic
'wavelepgths used are‘large when compargd to the thioknésses.
ofithe individual isotropic layers. ° |
A rev1ew "of ‘the llterature involving this problem to
\ﬁl962 1s contalned in the paper of Backus (1962). Notable
~ among the.references.are the works of Postma (1955), Uhrig
and Van Melle (1955), White and Agona (1955), Rytov (1956),
'ﬁirnickénko (1949) and Anderéon (1961). Subseouent,to
thesé are\thé publioationsvof Gassmann (1966) in which is-
breSented a comprehénsivé turorial on the many‘aspecrs of
elastlcrwave pxopagatlon in (HTI) medla and . Lev1n (1979)
where instructlonal flgures of wavefront proflles of (HTI).
equlvalents ‘of actual (PITL) media may be found.
However, to the author s,knowledge, no graphlc
comparison of methods can be found in the 11terature
that these two formulations are equlvalent. The intent

of»th18’paper is'to considgr a very -simple examp;e of a
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(PITh) medium composed of 2N layers sand%iched between'an
isotropic layer aﬁd'ah'isotropic'halfspace'ahd'to4compare"
kinematic and dynamic propertiee via'synthetio seismograms
to a 81milar geometry in which the (P %) layer has‘been -
replaced by its equivalent (HTI) medium (Filgure 4.1
.Thie comparison will be done only for Sﬁ‘waves.

The two.methods which will be employed to. compute-
synthetic seismograms are (a) asymptotic ray theory for
" which the required theory and formulae were developed
"for SH waves 1n an (HTI) medium in Daley and Hron (1979)
and (b) the numerical integration reflectiVity method 1n
fwhich each of the 2N layers of the (PITL) medium are

\

1ndiv1dually con81dered.

4. 2 Notatlon and the Two' Methods
Aside from the den31ty P, two elastic parametersv'
are required to fully describe SH wave propagation 1n an e

(HTI) medium, in which the wavefront is an e1119801d of‘

‘revolution. ,The-parametersvare c44 and c66' are such

that A é'Eiiviané)A = E§§ ha&e.the dimensions of o

uelocity squared; The square root of 344‘ande66 are
respectively, the velocity along the horizontal (x) aﬁah~

_vertical (z) axis of the ellipso;d describing the wave o

surface. :

o Wt

The quantities C44 and Cgs and density P are

7

obtained from the shear moduli uI -and ”II and denszties:

_ pI‘ and pn of. the two isotropic layers comprising the :



(PITL) medium by the following averaging techniques

(4.1) o i S o s i ¢
44 d1“11+d11“1
(4.2) R - il s o ¢
<) 66 a, ¥d.;
., dpep +drr0qg
(4.3) e I
- - I IT :
where dI and dII

I and II‘and N(d1+dII) ls the

medlum

’ "1fl In what follows the Bubscrlpts l, 2 and 3 w1ll refer

are the thicknesses of isotropic layers

thickness of the (PITL).

reSpectlvely to quantlties in layers 1 and ‘2 and the

’halfspace. In partlcular Bi

‘ana Py is the density in the

equlvalent of the (PITL) medlum (layer 2) the shear wave

is the shear wave veloc1ty

iLth layer. ‘In the.(HTI)

veloc1ty 62 (the velocxty of energy propagatlon) is -F

-

deflned by '

j“'. _ ‘f 1 ain2¢ ' coez¢
' Béuf/ 44 - 86

¢ belng the acute angle between the ray and the vertlcal

';(z) axis (Daley and Hron (1979)).

As was previously mentioned, the asympﬁotic ray .

e'.ftheory solution to the propagation of SH waves in a- (HTI)

108
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)
 Figure 4.1 Geometry of the’'media and definition of | L
| parameters. , | |
. o
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medium has been presented by Daley and Hron (1979) and all

relevant formulae for the computatioﬁ of syntheéic seismo-.

grams may be found there. In that work the first order

»

approximation of asymptotic ray theory is employed to
determine the solution £6r the disturbance/at a given
sgurce-réceiver-offset'and‘is assumed to.bé;the sum of
the disturbances of a finite number of rays which is
taken to approximate the total wave field. As- the

‘ numericél integration méthdg will yield head wave
arrivals a;;well as reflected arr{gals the high -frequency
ray approximation for head wave ar:ivals isAalsb included .
 in the seismograms.

The time transforme” 2xpi~ssion for the SH displace-

—

> - .
ment (i) at a point (r,z) in cylindrical polar notation
within an isotropic 1a&er‘due to the reflec;ion°from'a
stack of layers is : .

[+ ] - ~

(4.5) g(rlz'm) glL(im) J R(k,w) Jo(kr)
. o : :
o explin(z-2n)] X% 3

!

where

£
'

circular frequency

- horizontal wave number

x
1

2]
1

source receiver offset

=3
v

thickness of ovéilaying isot:opic layer

¢
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J - zero order Bessel function of the first

kind

L(w) --time transform of the source function f(t)

R(k,w) - reflectiyity of the thin layered zone
: o2 20
. (kl k%) for 0281
\)1.‘—‘ -
Iy AT B
i(lky - k [ for‘ c<B,
=8 /
ch .
-r

j. - unit vector perpendicular to the~p1ane of
incidence‘«r,z).planei and the orientation .
of axes and gedmetry is shown in Figure

(4.1). 1If the receiver is located on the

surface, 2z=0.

The. term R(w,k)-is the reflectivity of the PITL 1ayer'

and is defined as

(4.6)  R(wd) = - 2R

| where A
, ‘/,1 E
;(4‘7) N D = T, (cchI) Ty,
and . . N .
l\ " » - . ‘ ‘ \\;'

,>(4.8) T, o=
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, _
‘ T iu3v3 1
(4:9) p7l e 1
e 3 2Iu3v3 ? .
: L iu3v3 -1
L ] 0
T sinQ _: .
cosQ. vu :
o J ujvj ! . )
(4.10) c; = : j = 1,11
i-ujvjsinoj cost '
;o
[ (k?'-kz);5 for czaK

(4.11) with v_ 4
2, % :
v-i(lkx-k 1) for c<B,

=1,3,I,II.

f(

and Q = h, “j Y kJ belng the thickness of the j-th

wlsotroplc layer maklng up the PITL medium.
To simplify computatlon and to greatly reduce:

computer time, the matrix A = CICII can be diagonalized

which mlnlmlzes the number of operations to compute aR

t

Thus A takes the form

‘(4.12i a=p |

‘i N
where A is a two by two diagonal matrix whose elements

'are the eigenvalues (A and Az) of A. These eigenvalues

are obtained ‘from the solutlon of
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-~ . ~

(4.13) ) S {ZcosQIcosQII + 8 sinQIeinQIIj A
{2 2 2 2
+ _1‘cos QIcos QII + sin QIsin QII

-8 sin'QIeinQIIcosQIcosQIIj = 0

~ 5 - ”1“1 4_"11“11 : o ,

i MrVa

" P is the matrix whose columns are the eigenvectors

>

‘ corresponding to the two eigenvalues and P llis its

1nverse. A_S a consequence .

O

(4.14) A" =A%, o
The determination of the eigenvalues and ultimately A

and P is done numerically utilizing the IMSL routing

EIGCC .

4.3 NumeriCal’Digcusoion" o | ‘ (
As'was'indicatea eariier‘thevnodelito be nseo‘in
_camparing the two. techniques in computing synthétic .
seismograms is an isotropic layer over a (PITL) or |
ie_(HTI) layer over a half space. The (PITL) medium was
-chosen to be composed of 500 combinations of alternating
_:layers of shale and limestone each of one. meter thickness
‘*_for a total layer thickness of one kilometer. The velo-“
cities and densities)used are given in Table “. 1). v;;f

b
-

e



'v was employed. As the source receiver offset chosen for . ;| -
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In the numerical intggration a%proach a trans-
formation was made so that the integration variable was
the angle of incidence in the,pverlaying isotropic layer ‘
(Fuchs'1971) Angular increments of 0.1 degree were

chosen and a trapezoidal. numerical integration scheme ]

the comparison of the methods was 4 kilometers the ,
asymptotic approximation to the Bessel function was used.‘
the reflectivity of the (PITL) medium is frequency i
defendent the numerical integration wat carried out at v%§§m .
543 equally spaced points in the frequency domain * S
spanning the range of frequencies where the amplitude‘” .
spectrum of the source pulse was non zero.‘ The cOoley-
Fukey (1965) FFT algorithm was :;ed to invert to the
time dcmain.‘ fhe}resultant seiemic trace-is‘shoun'in'

Figure 2. o o c o~

/

The second. trace 1n-Figure 2 is the seismogram
compnted Via the ra, method Q}l 90831b1e rays up to L
those w1th a maximum of 18 ray segments are generated
and if they arrive within the specified time window theyh“4»
are included in the éeismogram .The major arrivals and .

'their amplitudes are identified along the time axis.f‘_‘ﬁ

L -

The time dependence of ‘the source pulse used is .

(4.15) - f(t) = sin(Z‘u‘f t)exp[ Y ) ] | '°<t<¢ e
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Figure 4.2 Comparison of the two methods of computing

R

synthetic seismbéramé;_ (a) numerical

1iinteqration' (b) asymptotid ray-thedry.
v : S o

7
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where fo is the predominant frequency of the pulse and ~
is the damping factor. 1In case,'fo = 30 Hz and y = 6.

The Fourier transform of (4. ) is

ok M2/ 2\ [ y2
o im 'y w oy w
(4.16) L‘(u!) = 2—."?5 exp = 3 1"‘(_"—2-,,150) /l s:thi ant_ -
- ) \

This pulse‘was chosen because of its simplicity in ther
frequency dcmain; however, any pulse may be incorporated
into the programélh ‘

It is: evident that the two,methods\discéssed are
equivélent in this highly idealized situation in which
only two abternatlng 1ayers are used. Backus (1962) has
shown that a medlum composed of many thin 1ayers, not
necessarily perlodlc, may be ‘approximated in the. long
‘'wave length 11m1t by an (HTI) . layer prov1ded a certain

number of stability crlteria are satlsfled.

 The comparison of selsmograms of the above mentioned.

type of thin layered medium'amd its equivalent’ (HTI) -
medium is preclqdea A£ the present time due to'the large
.amcunts'of CPU time requifed; ‘As an example for the case
) considered.hefe the ﬁumericelvintegration procedure
:eqﬁifed 250 times the CPU time as the ray method, evenc
" with_fhevdiagonalization simplificaficnlin computing the

reflectivity.

116
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7 API:’ENDIX A
. If the volume of a ray tube which is truncated at
both ends by the wavefronts at t, and t is denoted by v,
Gauss' iﬁtegral theorem has
(A1) I f j Vepady = j f_p(t)E-dEt + J f p(to)$~d3t
R Z(t) o Ity °©
J f b(t)V(t)do - J f p(t )V(t )dU
I(t) SR 1 8 ) o
ﬁhere
do - incremental surface area of the wavefront at T‘

V(r) - normal velocity of the wavefront at T

p(T) - density of the medium at T
. 5> . . . '
' ‘5 a - - ray velocity.

The.surfece integration‘need not-bevcarried out over the
sides of the rey tﬁbe,»as 3; the ray‘velocitj)is always
. tasgent to them. The normal difection to the surface
of y is chosen p051t1ve outwards so that at T“t ’ §(t )

- and do, point in opposite directiOns accountlng for the

%

minus 81gn in the second integral in Al.
The incremental area dc can be éspressed in terms

of the ray coordlnates (a 8,1), (Babich and Buldlrev
'(1972)) as -
.(Az)a ”-_dot‘;c,axr)dads

L.

- whefe‘tﬁei;oneseéétive,fgpction J is linked to the

P T IP  A S o mobam ke o A+ o ae o L L
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' Jacobian of the tranaformatxon of Cartesian coordinates

to ray coordinates by the rdlation'

D(xl,xz,xB)
D(a,B,7)

. | S
(A3.) ‘J -

yhete7 a is the hagnitudé'of the ray velooity ;. The
funotion d(t) for a particular Wavefrohtootvtimé=i is .
‘equal. |

e

S (Ad) -3 = l?tux;isl |
: N A T
}where x 5 ' Ba’ ad '&od:xB a;e.sioilog.‘oFgom;
this it follows that
(as) _Jé‘mia,-ﬁ])
_ L3 R -+ ;4 ' f; -,
B dR, . HeXpR . G=ReRp . oo
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= [ ] vk & e@vmamvmans s

= ‘ 7 1 a o
'-"I f I {VTT)J(I),E? (p(T)V(T)J(T){} dy
Y ‘ : :

; ]

- and. ‘hence

P

+.; 1 B d - " :
(A7) | 'vjpa = VD a ar (p(r)V(T)J(T)).l

t %

X
Rl DL R T

-]
R

o 3



Cwith o) =

‘eupper and lower media are labelled 1 and 2, employing
. equations (. 7). (. 8) and (2.9) from.tgg text. yields ;§f'§5

1'_the following set of two equations 1n two unknowns,“?af{iv""
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APPENDIX B

' REFLECTION AND TRANSMISSfON COEFFICIENTS

At.ah interfaceubetweeﬁ two'elastic ﬁedia in weided'
contact cer@din boundary conditions must be satisfied
when an SH ray'is incident at the interface and‘pfoduces
a reflected'ahd transmitted'ray. lTheseieonditions are
the continuity of dispiaeement,ané shear St;ess at\the
interfece. |

Dispi&cement§

(Bl1l) u; + u. =.et e I .

where the subseripted variables u,; u end\ﬁtirefer to

i’ "r. ‘
the displacement components‘of the 'incident, reflected

and transmltted rays respectlvely.

Shear Stress.
(B?) o o(ui) + o(ur) élo(ut)

/

. : ,Bau,
32

dén8i£y

o
'..

,.__;.—.\’ v

B - as deflned prev1ously in the'ﬁei{
| text. ' N

1 the z=0 plane is denoted as the xnterface and the :ff‘A
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1 -1 R(k)] -1
(B3) ,‘ , =
p131"1 232A2 T (k) P1B1My

R(k) and T(k) are the reflection and transmission

‘ y _ ‘ |
coefficiente and : ,

‘ R 5
A.k 2

. A}'=<€%f" %‘) *
e i 55/

- With the change of variable k= - g the system of

equations (A3) becomes 1

1 -1 R(Q)} -1 1

(B4)
T(q) ) | M,w

M. w _ﬂ\w 1% o ;

' where - M. = p.B.k.

A e
. - T - ...l 2
wj w»(l 'iBl g )  .

. The solufibng of (B4) are given by T

Lo - M_w
- mey Mywy = Mpv,
.. (B5) R(q) :

RN M1 17 ”z”z

M, v 1
+ MW

T(q) = W R
| ,"11 22

IR RO

R U R e T




Multiplying both the numerator and denominator of
(B5) by Ml 1" Mzw2 results in the following alternate

expre351on for the reflection' coeff1c1ent

v ' R 7
(B7) R(q) = Cy(q) - Cy(a)w,
with
J 2 2
_ (Myw 1) + (Mowy)
(lel) -.(Mzwz)
. 2M_ M. w :
C2(q) = l 2" l .

2
(M wl) - (M2w2)

123
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