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)taneously broken symmetries have been widely lnvestlgated

l*thesis-ls 1ntended to present, in the fﬁamework of the
,ordered state; b*;quantum ordered state we mean the'state'
Jwith- spontaneous breakdown of symmetrles

of reatlon of the ordered state We;analyse moﬁels w1th . R

"globald=~ Then, we analyse pecullar features of gauge

. the dynamlcal rearrangement of symmetry takes place even

. when no ordered state is created

ABSTRACT o . T o o
g PR PR e ‘(,/l

.Extended solutlons of. fleld theorles w1th spon—
l

A \d" 0
cent years. . The. propertles of these solutlons have

s e

nalysed in several mode 1s by means bf the sollton PR
ns of the - Euler equatlons for the cla351cal flblds

iestlng feature of models exhlbltlng such SOlutlons

- is the appearance of the SO called topologrcal charge. The

boson theory, a quantum fleld theoretlcal studyvof the
. o &

prOpertles of the extended obﬁects appearlng ln the quantum

@

]

As a flrst step of our analy51s we study the i process

1
1 o
o

global and gaugefSymmetries We see . that the spd/taneous ;' _k“f‘

4 “ 4’“.\

Ccreatign of an ordered state is always caused by a symmetry

3.

e angement when the symmetry of the Helsenberg flelds 1s

v

theorles..we show that in ordlnary quantum electrodynamlcs,

-
.

_ As ‘a second step of our analy51s we study the crea—
tlon of extended objects in the quantum ordered state.‘ In

our - approach the spacetlme prOpertles of extended objects

7are descrlbed by means of a c—number freld ¢ (x) constructed

[
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from the quantum theory by the boson transformatlon. ‘we

show that the c-number. fleld ¢ (x) construCted by the boson

P
-

method becomes the sollton solutlon of the Euler equatlons
’ when the Planck constant h “is lgnored 1mply1ng that the

sollton solutlon can be regarded as anﬁgxtended object w1th

4.

o+
quantUm orlgln. Startlngvfrom.the Helsenberg equatlons'of
the quantum theory we obtain.the equations for“¢f(k) which ~
,. S . ) . ;3;. . .
.,can be'regarded as classical Euler equations When the

.tree approkimation is used the Euler equatlons for ¢ (%)

;e [AIEN . N
.have.the same.form as the orlglnal Helsenberg equatlons.
The»general argument 15 supplemented by a concrete example
whlch shows how the boson transformatron applled to‘av

Jﬁo

quantum system leads to the statlc sollton solutlon 1n the«

@l+—l) dlmens10nal A¢ model U31ng the tree approx1matlon,
- 'I X
' e prove also the flnlteness of the energy of the sollton

N

_ constructed by the boson method After thlS ploneerlng work

our method has been successfully usedﬂ)n the analy51s of

a2

‘sollton solutlons of more- compllcated models S
. A ' A

Flnally, we analyse the relatlon between the ba51c

symmetry of the theory and the topologlcal charge. We

it'-

.”reach the conclu31on that although the ba51c symmetry does

not restrlct the shape of the extended ob]ecés appearlng in - L

=

the ordered state, 1t strongly 1nfluences ‘the answer to the

questlon asklng whlch extended object can be cla551f1ed y

topologlcal quantum number. Requlrlng the 51ngle valuedness

of the c- number fleld ¢f( X), we express the condltlonvfor‘

) . -
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the topological quantization of an extendedngbﬁect_in :

terms. of .the asymptotic behavior of thé'boSoHiggnction,'
o kb . . i ki .
The general argument is supplemented by concrete.examples

4

of models with U(l)—stmetry. ‘ o , o
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1.1 \The problem and its motiVathns
v . .
In recent years the structure of ‘extended objects,'

-

appearlng in a quantum fleld theory with spontaneous
breakdown\of symmetrles, have been w1dely 1nvestlgated
both in hlgh energy. and SOlld state phy51cs.~'

| - In hlgh energy phy51cs the 1nterest in "the study
of extended solutlons of fleld theorles has. been stimu—
"lated in connectlon with the problem of quark ‘confiné-
(1)

ment and with the fact that dual models seem to require

~an extended structure of the hadrons(z).f In. fact many
high energy phy51c1sts feel that the experlmental work . 1n‘

partlcle phy51cs during the past years has glven an

'1ncrea51ng support to the idea of an extended model for

the structure of the partlcles Wthh part1c1pate 1n strongv

lnteractlons The present v1ew, held by most, is that any’

1 model which has a reasonable chance of accountlng for all
the diverse phenomena must 1nclude quarks as the ba51c
1ngred1ents 1n the comp051tlon of the phy51cal hadrons.
Although -the quarks }hus follow in the hlstorlc traditions
-of the explanatlon of the: structure of the matter as the
latest element in the sequence of elementary parts,‘nature
has made a qualitative change in this case: in fact, ito

is a common bellef among phy51c1sts that quarks cannot

A

INTRODUCTION: EXTENDED OBJECTS INNGTF;Q.ﬂ"wM;WMMa- ---------- o
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"exist in 1solatlon and that . they are permanently conflned

constltuents of the hadrons.- Several models(l)

)

have_

been proposed in order to construct a scheme*in which

'

quark conflnement could be. understood in the framework

7ntum fleld theory, common feature of all these

"15 the 1ntroductlon of an extended domain in which

'quarks could be conflned :Furthermore, it has been pro—

(3) !

posed that the spectrum of the‘dual resonance models

could be regarded as the quantum states of a relat1v1stic ;

(4)

: ,string " The Vene21ano model . whlch 1ncorporated the

feature of duallty and which, when generallzed to 1nclude
vmultl partlcle processes, took shape ‘as. the dual resonance

.model ‘had a rather rich' spectrum of states 1n qulte good

»_.agreement w1th the observed hadron states. If thlS duallty

v

‘would 1ndeed orlglnate from the strihg structure, as many

phy51c1st5vfeel then the study of extended objects would i

“ 7_,;_

The elementary structure, 1nstead of belng a geometrlcal
'dp01nt 1s g-% sequence of geometrlcal pornts connected in a
ﬂ?llnear chaln in- the case of the strlng or a closed surfacejwb
:ln the case’ of bags. Thus, the 1nd1catlon comlng from the
phenomenology of the hadrons suggest looklng for: extended
solutlons of 1nteract1ng quantum fleld theorles w1th

vspontaneously broken symmetrles.; ThlS problem is far from'

,belng a trivial one. In_fact, the usual perturbat1ve»

. e

,approach of Q F.T. cannot be applied in this case and'new

methods to perform accurate but approx1mate calculatlons;



L . . ‘ ,
.

- in guantum £i&1d theory are needed. In the course of the '
. o . . ) - <
- last few years, there has been.a revival in the use of
‘ ) ' h . . . . o » . . a .‘ . . .
semi—CIaSSiCal'methods toward-this end, leading to many'

1nterest1ng results: w1th1n thlS perlod The central 1dea-

-

'qls to look for cla551cal solutlons to non- llnear fleld

-~

‘mequatlons, and then evaluate quantum correctlons" to the

“classical solutlon;

- We flnd it useful e lelde these methods in

'categorles-n,In the'flrst method, quantum fects are

reqained by quantizing the clas‘ al solutlon through
‘tzel Kramers Brlllouln (J W.K.B.)
(5) (6)

n- Hasslacher Neveu , Korepln Fadeev

semi- clas51cal Jordan-»
“methods (Da . ).p
.ie second approach the full quantum theory is expanded p
in the Born Oppenhelmer fashion, for whlch the flrst term
'hls computed cla551cally,/and quantum correctlonS'are'found
:1n a series’ expan31on (Goldstone Jacklw(7)); ‘Both the
l» . i ',4‘above mentloned methods have been 1llustrated in the case-
of l+l dlmens1onal scalar theorles(s’j), Although the

_practlcal 51gn1f1cance of all thlS for. descrlblng the

present experlmental data is- obsCure, we have learned

. 'h from these studles that a’ quantum fleld/theory mlght glve

Téd,ln exactly the same way

'ft e to more/reaI”Stlc theorles, a‘big difficulty in these cases °



o ' v ) o . . -
. .

‘lles at the cla551cal level of- sqlv1ng exactly_coupled

a

non-linear dlfferentlal equatlons. A host of lnterestlng

papers have emerged on approX1mate non-perturbatlve o /

'cla531cal solutlons to four dlmen51onal theorles._ An

";mportant set whose ancestry can be traced to the Nambu /
(8): . (CIE

‘strlng oy 1ncludes the work of Nlelsen and Olesen ,
't Hooft(lo),Faddeev( l), Wu and. Wu(lz); Mandelstam(;é)
,‘Polyakov(l4) and D.H.N. (5). These oeople obtaln approx1—

mate extended solutlons to gauge theorles)' The extended
..]_ .
_solutlons appear to have a separate conserved quantum, ,

“fnumber related to thelr topology (topologlcal charge)

ThlS 1s a generallzatlon of the "klnk"‘number of the l¢

(15)

theory 1ntroduced by Flnkelsteln The.'t:Hooft solu—

tion is in addltlon a spherlcally symmetrrc magnetlc mono~'L
’ .

pole. B LA R

The 1nterest in the study ‘of extended solutlons of
fleld theorles w1th spontaneous breakdown of symmetrles
is not motlvated only by problems in hlgh energy physrcs.,.
In solld state phy51cs, one ‘can flnd many examples of
‘;extended objects in the quantum ordered state (by quantum fd
ordered state we | ‘méan the state w1th spontaneous breakdownj'
of symmetrles) The vortex 1n superconduct1v1ty, the dls—*
: locatlons in crystals, the Welss domalns ln ferromagnetlc l[

»materlals are well known examples. © The study of the

rpropertles of the extended objects is performed in thls

( 6)

EOR

case by means of the Glnzbufg Landau equatlons whlch

4

1are regarded as a klnd of cla551cal Euler equatlon for the

R o
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order parameter. "Also in this case the solutions exhibit
t

N

L a quantized topologicad charge quantizatibn of the e.m.-
flux("l in superconductors, and quantization of the

(18)

Burger's vectors in the theory of crystal dislocations
are the well- known examples.

lnvthe following we call solitons the extended‘solu—
tidns og ‘the classical Euler eguations. ATthough all of
the above mentioned extended systems have usually been
described by means of classical equations, aﬂcomplete’;
understanding ofbtheir‘prOperties,must be tound'in the
JframeWOrk of the quantum theory; For this‘purpose, it is
important to observe ‘that many of the systems in which

%

extended objects appear, ‘when they: are studied With the -

"‘,methods of guantum field theory, are :in certain ordered

vstates whose structure is more or less complicated accord—
ing tolthe complegity of the System. |

It is a remarkable fact thatymost classical objects
manifest a certain o%der. To make this statement clearer,
we consider the case ofilicrystals. Theaequation for inter-
acting molecules is translationally and rotationally in-
'variant, as the equation'for a molecular gas should be.
Under certain conditions, the molecular gas system mani-
fests the crystal lattice order (creation of order) and
the translational and rotational symmetry disappear from -~

the observations (spontaneous breakdown of symmetry). In

thic perfect crystal state, we can excite phonons and many



‘other quantum’levels. In other words, the perfect crystal
‘state without'boundaries is a guantum system of\phonons
and other excitations. However, we can modify the situa-
tion in such a way that there appear, in this quantum
system, many kinds of extended objects (dislocation, point
defects, ...... etc.); thus creating alsituationiin‘whicn
classical and quantum.objects coexlst. |

In the course of the last years, a method_whicn pro—
vides us with a very systematic approacn to the study og.'
extended systems in quantum ordered states, nas been tor4
mulated by H. Umezawa and coworkers. It has been called
the boson theory(lg). |

The thesis 1is 1ntended to present‘ in the framework
of the boson theory, a detailed study of the ‘properties of
tne eftended objects appearlng‘;n'the guantum ordered
'state.. In general'terminology,,we will be concerned with
the followingﬁprocesses: | : |
(a).© ‘creation of an ordered state(equivalent to the

spontaneous breakdown of symmetry)

(b) creation of extended ob]ects in guantum systems.

A detalled analysis of step (a) will be presented in
Chapter‘II. There the phenomenon of the dynamlcal re-
arrangement of symmetry( 0) mill be carefully studied.

It will be shHown that the phenomenon of spontaneous break-

down of ‘symmetry (equivalent to the creation of an ordered

‘state) is almays caused by these symmetry rearrangements

-

X



when ‘the symmetry of the Helsenberg fields is global.
‘ (21)

Then, we analyse gauge theorles i we show that in
Q.E.D. the_dynamlcal rearrangement of symmetry takes
place even when>there is no.creation of an ordered'state.
Analysis of step (b) leads to a systematic formu-

lation of a theory for extended objects in a gquantum system
(the boson theory)(zz). The method was‘first applied to
the analysis of’vortices in type II superconductors(ZB)
and led to resudts in. good agreement w1th experiment.
Then, it was applied to the Nielsen-Olesen vortex solu-
tions(24)vof a relativistic‘theory Mere recently, the
boson theory has been successfully aoplled to the ‘study
of extended structures appearing in crystals such as dis;
locetions(zs), point defects, surg;he phenomena(zs) etc.
A'merit of the boson theory is that it allows us‘to.ayoid
any use of classical argumehts in therdiscussion of ex-
tended\objeots, thus implying the quantumtorigin of these
structures. | |

_~_'Chapter Ii‘mill be devoted to a etudy of the boson
theory. There, we will-be mainly concerned.with the ob:
servable effects of the massless bosons. The problem of
the relation between the basic symmetry of the theory and
the topological charge will be analysed. It will be shown
that, elthough the basic symmetry does not restrict the
‘"shape" of the exXtended objects(26), it profoundly

lnfluences the answer to the question asking which extended

object should be quantlzed ~In fact, the basic'group



gh which the topological guantum: number is.

',Iidentified by the requirement of single valuedness of the

observables of the theory.
‘ To sh? further light on theée results, I br%%fﬁlﬁf
summarize h the bOSQn theory is constructed.v Thé%%gks—
truction of”the boson theory can be”Sﬁmﬁarized in two |
essential steps: .
i), use of the‘inéfield (quasi<particle in soiid Ltate
physics) picture in thevstddy of the microscopic
. properties‘of the system.
ii) use of the bosonftransformation.

In the first step, one'usualiy starts from a given.

set of Heisenberg field operators which'satisfy‘anwn‘field

~equations:
AP (x) = Flyl . S (1.1)
One looks for solutions of egs. (l1.1) which can be .

. c
expressed in terms of normal prodicts of a set of certain

free”field‘operators {o}:

o

Vi(x) = U[x;o(x)] . , (1.2)

This equation, which has been calléd "dynamical map" has
to bevread as a weak relation, in the senéeithat‘eqéality
hol@s,oﬁly among matrix elements.  The e#istence and the
propérties of these free fields are determined in‘thé

course of a sélf—consistent calculation, in which the
) /



Hilbert space is chosen as the Fock space of the same free

- fields.. The Heisenberg fields operate in this space

]

through the expression of the dynamical map (1.2). At
this stage, all the calculations are performed by assuming
that the order parameter is honﬁgeneous (i.e. space time

‘1ndependent) a o . o v A»(
(19)

The second step is considered when one wants to

»

describe phenomena related to the presence of a. space,—
‘Aand/or time- dependent order parameter The spatlal and

temporal dependence is 1ntroduced by means: of the boson

(19)

transformatlon .. Let ¢ be one of the,bOson fields

appearing in the dynamical map‘satisfying_the free field

equation

B

Ao (xy =0 . o R (1.3)

Then, we perform the substitution calléd the boson trans- -

'\*formation

(%) > B(x) +£(x) L P C(1.4)

&

where -f(x) is a c-number function satisfying the equation:

AGBVE(x) =0 . | T (1.5)

/

As a result of the substitntion (1.4) the_Heisenberg oper-

ators transform according to .

D > v = Y e e, L) e

N

It can be proved that wf(X) satisfies the same Heisenberg

\
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’

"equatién of motion as ¥(x) does. Such a statement is the

content of the boson transformatlon theorem(lg). The
1ntu1t1ve content of the substltutlon (1.4).can»be'under;
stood as: follows- egs. (l.4)'and (1.5) show that the

functlons f(x) arebcreated by the condensation of the Bose

quanta ¢(x) in the vacupm of the physmcal Fock space.  The

-result of thlS condensatlon is the appearance of extended

obgects. Due to the fact that f(x) is a c- number functlon,
the extended objects Ccreated by f(x) behave cla551cally in
the sense that the quantum fluctuatlons are much smaller

than the macroscoplc effects of the condensed bosons

hAN
"~ hN

as N — »

The c—nUmber'field ¢f(x) defined by .

¢f(x) = <olwﬁ(x)jo>

is, at. least when w is a boson field, the space tlme depen—;

\

dent oqder parameter descrlblng the . propertles of the extended
object’created by a partlcular choice of f(x). How is ¢ (x)

constructed by the quantum field, related to the nggs field

¢(x) descrlblng the space time propertles of the. extended

solutlons of the.cla551cal Euler equations?d;The,answer.to

this gquestion is provided in Chaotef‘IIl- we show(zs) that
‘¢f(x)bc01nc1des with the soliton solutlon of the Euler equa-
tion when the Planck constant h, 1s 1gnored thus 1mply1ng

the quantum originrof solitons. The argument presented there
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guarantees also the flnlteness of the energy of the sollton

One sees then, that use of boson transformatlon prov1des us
\ \

with a technique to derive: class1cal\equat1ons from the

)

: S : AT . .
quantum theory. Furthermore, use. of dos@n transformatlon -

“51mpllf1es the study of many cla551cal%§Quatlons .The
~d1fferent cla551cal solltons correspond td dlfferent sollu- .

tions of "the classical Euler equatlons, solved under dlfferent

boundary condltlons . The adyantage presented by the use of

the boson transformatlon is that one does not have to apply

_the boundary condltlons dlrectly to the cla581cgl &quatlohs

of motlon, ‘but only to the choice of that partlcular f( )

which w1ll create the partlcular sollton solutlon in whlch
zone is 1nterested

It7is clear that this offers: a remarkable 51mpllc1ty ;4VA

\ .

when we con51der the fact that f(x) satlsfles a 51mple homo—"—;

geneous dlfferentlal equation'(the free fleld equatlon). i
When we try to apply the theory of extended objects to the
partlcle phy51cs, we meet a serlous dlfflculty_whlch arises.
from the fact thgt“the extended objects'behave’classically}i
whlle we want to have quantum partlcles To overcome this

dlfflculty we mlght ‘need an enlarged Hllbert space which

”contalns all the states with topologlcal objects a very

important result in this. direction has been recently
(29)

'obtalned - It has,been shown that i1t is p0551ble to

assoc1ate with the sollton a set of canonlcal varlables (qa,p):

the space of the states of a system contalnlng clas31cal

solltons 1sythen‘the product of the Fock space; 5'of thev

]

11"



h»p0581ble to aSSOC1ate

- considerations of ref.

in-fields and the Hilbert space of the canonical variables

Once the canonlcal coordlnates are a551gned it is

(29)

a-quantum coordinate Q with the

soliton. 1In Chapter ITII we review some of these resultsr

Here, it is important to p01nt'out that "depending on the

~

observability or uhobservability-oflthe quantum fluctuation

associated with Q, the solitgn behaves as a quantum or a
: Q!

'444;;51assicalfobj20t; The relevance of this result for hadron

(30)

physice is clear: in ref. it was shown that a small

object with an enclosed surface singularity behaves as. the

MIT bag. *Thére, the quantum coordinate was neglected, and

‘therefore,“the system behaved as a classical object. The

(29)
the quantumvcoordinate'couid show the quantum behavior ofi
the bag.

-

1.2 Extended solutions of classical Euler eguations

=N

Thi's section is to proVide.a‘review of the results

\obtained'in‘the study of the soliton solutions of the

“-classical Euler equations. The general framework will be

2,

'theoryy 1nvar1ant under an 1nternal symmetry group G, one

obtalns the cla551cal Fuler equatlons by mlnlmlzlng the

actlon 1ntegral.- Among the solutlons of- thEse equatloms

o

" offe c#n ‘di§tinguish, ‘in principle, . three typeS';ﬁ

o

s

12

show that a careful treatment of

x.

“uthe»fdllowing: starting from a classical Lagrangian field
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i) constant. solutions (time and space independent) :
ii) static solutions (time indepenaent.butﬂspace depen-

dent) - o ' 411,, léé
iii) time and space dependént solutions. |

In the following we will be mainly interested in solutions
vof‘class ii‘, Among these solutions the solitons will be
identifiegd with solutions of the cla551cal Euler equations
v
which satisfy ’peculiar" boundary COnditionS' The class
iii  of solutions is relevant for the study of multisolitons
and Fuclidean 1nstantons(3l).v’
| The set of peculiar boundary conditions lS usually
aSSigned by taking into account the fact that, due to the
spontaneous breakdown of the internal symmetry, the constant
solutions of the classical Euler equations describe a
manifold(32) parametrized by the parameters of a set M,
which is related to the original symmetry group G by the
relation M=G/H . (H an invariant subgroup) We will call ’
this manifold the manifold of the constant solutions. “Once
the manifold ofvthe constant solutions is specified, it isv

required( 2)

that the asymptotic values of the.classical
fields can have a non-trivial mapping onto this manifold.

A non-trivial mapping is one that cannot, by continuous
small changes, be deformed into the trivial mapping in Which
all the points of one manifold are mapped’ into a single
POint of the other. = . | -f~‘ N Vh,h‘.=*j‘

The mathematical study of such maos is called homotopy

“theory (an introduction to the homotopy theory is. prOVided

.



R

in ref. (33)

). Each map is characterized by an 1nteger
which, in all the cases known, is related to the topolo-

gical charge. 'Thus, in this approach, the question of

>

‘ex1stence of solitons is seen as a boundary value problem, -

_to wit: to construct sokutlons of the cla551cal Euler
equations with the requlrement that_the asymptotic values
of-the fields have a ncn—trivial mapping onto the manifold
of the constant solutlons of the Euler equations. The
follow1ng w1?l be dedlcated to an analysis of some spec1f1c
soliton solutions of the - cla531cal Euler equation and ‘a

study of their topologlcal properties.

‘a) Static solitons in 4+1 dimensional scalar models

'é . In'order to encounter first in a simple setting the

1deas that I wish to rev1ew, let us consider 'a field theory

»

‘of a 501nless field ¢(x t) in one spatial dimensionv
The Lagrange density is assumed to be of the form

- N

+ _ 1. u . = - » |
L= 5 SUd)S ¢ —‘U(cb) . ‘ | (2.1

For the energy teo be positive definite, we take the field’

potential U(¢) to be non-negative

u(e) > 0 . : , ' (2.2)

> .

U(d) Wlll 1n ‘general depend on varlous numerlcal parameters

,(coupllng constants). In the.mode;s we w1;1 be considering

in theifollowing U(¢) depends on the coupiing constant g in

a scaled fashion

14
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U() = U(big) = > U(ge; 1) . (2.3
| BRI A
The equarionxsatisfiéd;byl6,$S:
o+ UM (9) = (S - S50 + U () = 0 .. (2.43

ot _8x2

I shall discuss first static c-number solutions to this

field equation;i Time—dependen£ solutions will beianalyzed

only later. .In\the static case, eg. (2.4) readé:
. SR | . | -
— ¢ =U'(¢) : N . S (2.5)
dx

~and the static energy functional has the form

E_(¢) = erx[ (S0’ vu1 . (2.6)

N

w?

A first integral of'the one dimensional equation (2;5) irs

given, for arbitrary U, by

% (——v¢.>)2 = U(¢) + const. L - (2,7)

‘Use of (2.7) implies the follow1ng form for the static }
energy functlonal : ) . i .

“E_(¢) = de[ZU(¢) + const.] . » o (2.8)

In order ro eliminate an unwanted infrared divergence'of
‘the classical energy we choose the value of the 1ntegra—.
tion constant in (2.7) equal to 0.

To 1ntegrate (2. 7)»we need. an. eXpllClt expression

for U(d).. Two examplés w1ll be discussed explicitly; namely

\
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a) the ¢ -theory; ,
o , ,,-_‘ 22 - B © e
Ul9) = B (1-g% g7 L (2.9a)
C2g% Tond _
b) the sihe—Gordonvtheory;A >
s ) ‘. V. . - A
- m4f"' < g ‘ . : _
U(d) = =5 [1 - cos(m $)1 . I 5 ' (Z-Qb)
Both theories poésess discrete Symmetties
4 ) . ; o - ".. B _ ’ ) .
¢ -theory;: b+~ g : {(2.10a)
. . 0 P ‘ } . ~
sine-Gordon theorYE.¢3;i¢¥thry2 . L (2.10b)
Sy . ; . k - BN
’ n= O/tl/
The_constant solutions to (2;7) are
9 —-theory; =~ 9 =:t§ (2.11a)
'sine4GordonetheOry; ¢'='2wn(20- . ,“t' TZ.Iib)

/‘/'

The'boundary,dghdiEionétof“eq; 62m7) are assignedigy'requir_
' 1ng that the asymptotlc values of the flelds are not the
same in dlfferent dlrectlons (1n thlS case it means that

b () # 6 (=) . O |

o ,Position-dépendent:selutidhs of7(2<7),.Jndet[thev'

- above;specified boundary eonditiOneﬁ'are the tolio&ihg;

" . . . . . . V-

V¢44thebry;1_'f e (%)

il

‘Eﬁtanh:m(x—xbﬁ o (2.12a)
9. ° e A.

"sir_ie-'G.ordon'theor‘y; ci;é'(k) . ‘4”§tan-_l‘ex‘pvim(x‘.—xlo) . '-(2'12,b')
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:The occurrence of the parameter xo;specifies;the center

of the sollton.
13 .
The classical energy of the solution is finite and

vit is given by:

~¢4‘;£h R E_(4) _am’ e <2v 'iza)‘

B A A T - AR
S v e o3 o S
-'sine-~Gordon theory; - E_(¢) =8— - N (2.13b)

Letjus'observe that, in bOth'theories thesstatic ~
_solutlons H(2.12) are ofyorder'O(g—ll v'just'as are the

constant solutlons (2. ll) They lnterpolate between the‘:-

constant solutlons as x ranges from ~00 to Fo Furthermore,'

‘che energy of the sollton solutlons 2. 12) is locallzed

,'around the»p01nt X and depends upon the rec1orocal of the
coupllng constant ’As.weew1ll»see in the follow1ng, the
dependence of the energy upon the rec1procal of ‘the coupllng
constant is’ a general and 1mportant feature of all the soll—
z'tonvsolutlons of the classical Euler\equatlons, 'Becausefthe
field equations:are'Lorentz—inyariant once«wé"have'the‘

' N / X - vt

v l—' V2

We turn next to the deflnltlon of the topologlcal charge

,solntioh oc(x)’ we. also have -the boosted solutlon ¢ (
forqarbltrary |v|< 1. BT y .;l f

ln. the l+'l.‘d1men51onal models under: con51deratlon. Forx
this purpose, “we observe that eachlscalar'fleld 1n tWO:‘U
dimensionsvprOVldes'a oonserved'current and hence a tlme—
1ndependent charge.’”Thls was notlced long ago in the

(34)- (35)

annalySLS of the Schw1nger _and Thlrrlng models



. . X . _ .
gls naturally conserved because it is- the dlvergence of an

hb‘is the topological charge. It is clear from‘(Z lSlﬂthat“

e

The proof is.simple: let ¢ be a scalar ffeld in (1+1)
spacetimeyithen

.. X = y - ' EE ": ‘, ' . . 8 . : ’ ) .. 4 .
T | o stz

N

antlsymmetrlc tensor . ~The charge assoc1ated w1th it is

. .
{ A [
- - . t

xe! = JdX_JO.(x) = ¢ (x=tw) - ¢;(x=—°°)',_'- o (2'15)

the tOpologlcal charge Q is dlfferent from zero, 1f and only

. 1f the asymptotlc values of the scalar fleld ¢(x) are not

“uthe same in dlfferent dlrectlons (1 e. ¢ +m)#‘$(—m))

For the statlc solutlons (2 12a , D) Q-+l ‘In order ,

to cla551fy the poss1ble values of the topologlcal charge-

(2 15) in’ the two 1+1. dlmen51onal models we are con51der1ng,

'__we notice that the charge Q, deflned by (2 15) could be

w

‘lnterpreted 1n the framework of the algebralc topology as

the homotoplc 1ndex of the mapplng, 1nduced by ¢, between'

‘ the boundary of R and the manlfold of constant solutlons.

The possible values of the . topologlcal charge are cla551f1ed °

_by the homotOpy group H (M)}= (G/H) We have for';
| | T T
¢4—theory;i R hﬁo(?é)ﬁ f\\ Q _f'ho'fg’ S .t%;IGa)
D - -

n -

sine-Gordon theory; Hd(gi)

n"(fz)',-'=z=>'o. =n . - (2.16b)
Z," o) R : oS



19

-
il

For the sine;Gordon t%eory'theAvalues of the topoclo-
gical charge such that Q] > 1 cannot be realized as.static» 
solitons, the physiéal reason being that solitons "interact"
(the defining equétions are non—lipear)_and the twofsolitgn
cohfiéuration, for example, canﬁot bes time independent.. We
- are thus motivated to study the n-soliton time dependent
solutions éf the (2.11) s.G. equatioﬂ. These solutions have
tte following properties. The n—soliton‘solution dep#nds on
2n parameters. 'As t -+ -»= the solutlon becomes a superp051tlon
_of n one-soliton solutions and the 2n parameters correspond
(i) (1)

to asymptot1C‘velocitiescv and X (i=1,...,n). As

t+ += the soldtion again decomposes' into a sﬁperposition of
n one-solito solutié%s. The déymptotic final véloéitiés
are thg same as the initial‘ones, the asymptotic final poSi-
tions differ from the initial ones by an amount that can be

ascribed to a time delay in the multlsollton COlllSlQﬂ

The explicit form of the two-soliton solution is:

N . -1 u sinh myx
Yss gt T ook vt (2.17)
. i 5
Y = (l—uz) u < 1
soliton-antisoliton;
_,m -1 1 sinh myut
"ss T4g AT L oeh R 2.18)
5 -k
Y = (l - u ) u2 < 1

Here u is the relative velocity of the two solitons. -

- h 3



The total momentum of each solution is zero; the energy
is ZMOY, MO==8m3/g2. The analysis of the asymptotic form
of the two solutions shows that in both cases the time

delay is giVeﬁ by .
M

: 2
= —— 2.1.‘
At (u) Yy log u . | ( 9)

There is another class of exact solutions of the time
dependent sine-Gordon equation: the so-called "doublet"_
sélﬁtioqs. Such doublets are easily obtained by making
the relative velocity parameter u in (2.18) imaginary.

When we set u=1iv in ¢ss' (2.18) becomeg

¢

# g tan—l 1 sinh myvt . (2.20)
\Y g ) v cosh myx - ,

This function is still real, and a classical solution for

‘

all finite v. Its shave as a function of time continues,
roughly, to resemble ¢gs,‘5ut with aﬁbimportant.diffefencé.
Instead of separating into a soliton-antisoliton pair
infiqitely far apart as t' + to the relative separation here
osciliatés in time with period T:_2w(l+v2)%/mv. This doub-
.1et solution is a "breathing" solution and can be thought.

R

. of as a bound soliton-antisoliton pair.

e

Note that the.same procedure does not work.fof aﬁm,
soliton-soliton pair. 1If we set u:;iv in_¢SS the field
558 is not real any more. There seem to be no soliton-
SoILton,bounq pai;s.‘

,ﬁtvisuéléo p9§$ibIé“toAéohstfuct;exact;solutiqnsﬂ”
inVQlVihg én!arbitrarygnu@beg-éfisoiiﬁbns,:"W¢ will not

L PR

©



21

[

write them down here, but they are discussed in ref:(36).

0

A systematic way to obtain them is provided by the Backlund

37). In fact the Backlund transformation

transformation(
acts as a sort of creatlon operator creatlng the'soliton
out of a constant solution, the two soliton out of the

soliton, building soliton-antisoliton pairs (including the

doublets), “etc.

b) The vorteX‘in spperconductivity-like models

‘The pPossibility of vortices in superconductivity was

s
2N

first demonstrated by Abrikosov(3ﬁ). He showed that thev

magnetic field. Following this pioneering work, the exis-
tence of these objects was verified experlmentally and many
of thelr properties were investigated. More recently,
Nlelsen and Dlesen(g) pointed out that relativistic fleld
theories like the Abellan nggs model also possessed statlc
vortex solutions. 1TIn. these theorles, the scalar nggs v
.';tleld;pla§s—the role of the - order parameter ThlS develop—'

rment ‘'subsequently prov1ded the inspiration for 'thooft“
;treatment of the magnetlc monopole(lO) whlch ‘will be dis-
Cussed later The original idea behind the theory proposed
by Nielsen and Olesen was to provide a bridge between field
'theoretic and dual—string ~descriptions of the hadronic
world; in fact there is a limit where the Nielsen- Olesen
vortex behaves llke ‘a Nambu strlng( ). In the follow;ng

B I S
AS

>
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discussion of vortices we will review some of the findings

of Nielsen and Olesen and in addition outline a variety of

properties exhibited by vortices.

The Lagrangian density for the Abelian Hjiggs model<9)

.-

is given by

. . 2 .
=3 (0 -ien )¢* (3% + ey - 1 (2 _g2p*gy2 L F puv
2 u U 2 . 4 “yv
: , 4g
. ’ (2.21)
ks L s )
with FUV:BUA\)--B\)AU gauge groupvu(l).
The classical Euler equations are:
: Moy 20 2 4 L
(8U+-leAu)(8 +ieA" )b -u"d + g (¢ d)d = 0 (2.22a)
) Eo=Ta =3 =12 (4% 6 - s%e) - eZe*en¥ . (2.22p)
gy Ty v 2 Y v . - o :
Parametr121ng the nggs fleld by ¢ = ]u/g]exp 1Y egs.
"(2022) ‘become S
o U - L T o 2.2 2 3. ..
9 97 +1(3.9 +.21 (3 +eA Y9 -~ {3 ¥eR )Tlu=wu-"guv -
s o . o L (2.23a)
B P =Y = gY = —en? 3V ren) | . (2.23b)

Therefore

. _ 7 l . ‘ l “ A o Y R Y ‘f. N ! ‘
e By S m ey Ty "ga Kowvreie e e (2.24)
e u

Before actually show1ng that eqs (2.23) possess static
vortex solutions, -let us describe the. topologlcal propertles

such vortices must eXhlblt
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“ Let us evaluate the flux of the e.m. field through

vthevarea bounded byvan'infinitely large closed path C.

. =.IF ST # axha =- 1 # 3 ydx" .  (2.25)
. RRTRY . u e H i

c o c
In obtaining (2.25) we assumed Ju==0 along G. The‘aSSump—
tion is needed because in this approach we make no use of

the Maxwell equations. The requirement that ¢(x) be single

valued then implies
o = é [x (2m) - x(0)] :‘i—ﬂ- n=mno (2.26‘)

This‘quantized<magnetic flux is the total topological charge

: Vof the vortlces enc1rcled by the path C To illustrate,

"tthe hOmOtOplC nature of the flux quantlzatlon, let us recall ..

fthat the manlfold of the constant solutlons of the equatlon

for the nggs fleld (2 22a) is spec1fled by means of the

.o condrtlons o

el = = (3, +1ien g = 0 . (2.27)

However (2.27) specifies ¢ up to the phase ¥. There exists

a circle of constant solutions in the complex plane para-

W

metrlzed by X . Now suppose C is a circle in the (x>y) plane,

‘ﬂthen as .one, moves around thlS Cerle the phase. x (x,y) =¥ (8)

can change from 0 to 27n. Therefore,\x(@} provides a mapp—

ing from .a real circle in the (x,y) plane onto the manifold
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of the. constant solutions of the equation for the Higgs

field.. This is the map U(l)-*Sl characterized by:
M, (U(l)) =z “(the set of integers). o (2.28)

The integer labelling each ‘homotopy class is called - the
.winding number It indicates the‘number of complete
revolutions in the ¢ plane that correspond to a single
2n-revolution in the (x,v) plane. The net vor tex flux
is proportional to thisiwinding number.

It is a very difficult task to show that vortex
solutions to the field equations (2. 23) Wlth non- vanishing
flux actually exist. The‘equations of motion are too
difficult to solve and we need to make an ansatz for the'
fields which decreases the degree of difficulty of the
coupled non-linear differential equations which must be
solVed. In the follow1ng we will restrict ourselves to the

study of the static case

'ChOOSlng the gauge AO==O, egs. (2.23a,b) become

(—V>+ie§:.)(3-{»ie2‘:).uel'x + uzuelx-—g2u3elX =0 (2.29a)
- 2 > - ’ v .

AA = eu” (Vyx + en) . v (2.29b)
Egs. (2.29afb) are the relativistic analogue of the Landau-

Ginzburg equations for type II superconductors. A
Cylindrically symmetric ansatz which corresponds to a
vortex with n units of magnetic flux 4is givenAby“"



'i@ffpenetratlon depth 6

o
X = nyY o n%‘f: _V>X -§X .=; ] (2.30a)
= a(r)rvy B| = = & (ra) . ~(2.30p)
If we introduce the quantity
- n
Q=ator
qu. (2.29) become, {
, 14 ,_du 22 2 2.3 o |
. f'd_ (rdr) e’ 0"u + 1"u - g'u =0 (2.31a)
d 14 22 o |
ar (; ar (rQ)) - e"u"Q =0 ‘ | (2.3‘lb)
>0 1 a , | -
B| = T (rQ) . o (2.31c)
The vortex solution is obtalned(g)'WHén'wefrequire
u e b Q=20  |B]—o0 = (2.32)

1
(i.e. when we feqﬁire'that the asymptotic value of the
fields is mapped onto the manlfold of the constant solu-
tions of (2. 22))
There are two dlstinct mass scales in eqs (2.31)
ms-/2L1 and mv-ue/g which correspond respectlvely to-

the masses of the displaced nggs fleld ¢'=—¢«-§ and  the

vector gauge fleld Au - In analogy w1th the, study of super—

“

: conductors, the coherence length 5 V2/m prov1des the

ffﬁscale for spatlal varlatlons 1n‘the nggs fleld whlle the B

sV ke %l @ s s ma el e e e e @ e s e e A e vt o -

v B . 2 ey EENRE LB e

o oy
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l/m descrlbes the spatlal varlatlons R



in the‘e.m}»effects;h A well deflned vortex llne is obtalned -

" when SRE o ThlS is the SOlltOn" of the_ Nlelsen and, Olesen'

'+7”.theory, nothlng is known about multlsollton solutlons,‘nor"

fﬂistrlng

of sollton sollton 1nteractlon

P
ooy

“In’ the strong COUPllng llmlt (5-*0) We’have'just“the"r
constant solutlon throughout except for a line with a

strong magnetic fleld In thls llmlt the.. Vortex selution

v‘—;‘*v....v,.

‘afof the Nlelsen Olesen model lS 1dent1f1ed(9) Wlth the Nambu
(B)Q““ . R - ,

The energy of the ‘vortex solutlon is calculated by _“ o

E:jd x X with ' ‘ o T o
‘ 2 o
Hx) = L (vu)24-£ u ($x-+eA) P (u -g2u ) o+ 1 FFHY
(2.33)

The energy is divergent due to the infinite length of the
vortex solution. However, if one evaluates the energy per
unlt length under the assumption g>e (i.e. § = £ >0

smeared vortex) ohe flnds(39)

£ =_n2 B log g . _ (2.34)

As in the 141 dimensional models éxamined beforex?also in

~this case the energy dens1ty depends upon the reCLQrocal

:.-v..- .

. aof the coupang constant e d“'ggtffj;,ju
- RS R :

hifﬁc) The monopole in non Abellan gauge theorles>fT D

A

flrst dlscussed by 't Hooft(lo) and Polyakov(l4) They"'9‘

The pOSSlblllty of spherlcally Symmetrlc SOlltons was fnes el e
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~considered an SO(3) gauge invariant Lagrangian which
" describes the interaction of a gauge field and scalar

Higgs isovectors:

1 iy i 1 2.1 1 i _pvi ey
L= 5 p,e70% Tz Wingtelen - g R E (2.35)
g |
where
D4 =30 -+e€leAj¢ TR NI L 3>¢ - p
H : CH u wo
Froo= 5 at -3 Al +'eeljkA]Ak

pv pov viu TR

This mddel (whén fermions are added) is the GédrgiFGIAShéﬁ‘.f
model of weak and electromagnetlc 1nteractloné(40). 'it
describes one massless photon ‘and t&o massive charged inter-

‘ mediate veétdr bosons.which obtaiﬁ their masses by the Higgs
mechanismi Wé“ldok for statiC'apg\spheric;lly symﬁetrié’
solutions of the classical Euler equations of this model.

For this purpose, we assume (Wu and Yang) that:

. k .
A = i_ x”
A = 0 AU = €5k T al(r) (2.36a)
P i iio 2 -
25 = um) etet = W? (2.36b)
.+Bgs. (2.36) lead .to
LR ﬁkfx},dufngW RETRE Y i X 5 39
RS T e T e e e (2237
piotpet = (% Sod v sa?u? T 2 3m)
! ' »



Here the sum is over the space indices. Therefore,

L S ox X k - ik
io_ a . T vy X' da_ay X x 2
Fuv - 2€u\)iir ' (Ev’k 8uik -r) r (dr r)_Feenvk r2 e
(2.38a)
plopivt J g%, L)t da, af (2.38D)
URVEE N 2 d r’ . ST
'Then”(2;35) becomes -
= i(éﬁ)z_Z( ‘4_.2\")‘7" : 1 ( ) 2y ’:(éi;i")“ o z(e_a -1-‘2.,;
L=-31g0) “ufea+rz) - 0% - g%u BT T
’ 49 , - o
‘ (2.3,9’)_1.
 and the energy7i5~giVenﬁby:~
E = 4r f rParl-£1 . o (2.40)
0 ) '

> .

The equafiops.demgﬁion_thainedufrom 12,39)-are~:

2 LT s ‘- 2‘ '. . V B - .A s A . ;.— ,. L
du,2du 2(ea+—£)u4-(uz-g2u27w17= 0 - i (2.41a) 0
4 2 r dr r :
r
d%a 2 da 1 12 7 2 2 1 ' »
——54-— —-(a+-—) [(ea+ ) -5l -e"ul(ea+ ) . (2.41b)
dr xr dr er . r r r ) )

We again require that the asymptotic value of the Higgs
field is not the same in different directions. Then we

assume: ’ <

u(m): : ;—,; . a (o) oo a,r™" . | (2.43)

L Thet Tdse  Gf" (2 i41b);," together with (2,42) and (2.43), leads

- to -



L
L=z
I3

y a(r) -— —— o 1 —— .._}{_
r+wo ear U I~ pik 2
. o 3 er .
- L - X (2.44)
i xl.
.rve p

ZThe-solution we have found is called a  monopole or hedge—‘

hog(lo’l4). The .name hedgehog 1s derlved from the behav1or
| ofﬁthelgiggs field st 1nf1n1ty (¢ lf? 1t p01nts radially .
‘,outwards*"“ o ‘ )

The complete functlons knOWn only numerlcally,
smoothly 1nterpolate, w1thout nodes, between their asympto-

th values The energy or mass- of this monopole is compu-—

- table by numerlcal methods and found to be

”of “his® solUtlon,»'t Hooft constructed a’ gauge 1nvar1ant

LI R g | 2.15
Bs5 ek s g=92 (2.45)

The topologlcal 1nyar1ant in the model 1s the magnetlc

i,:charge In order to 1llustrate the non tr1v1al topology

v

electromagnetlc fleld tensor

ii 1. ik

=i o1 ST IR L
Fuv = 5] (¢ F““>-el¢12 € '¢ (Du¢vl(Dv¢ )].‘;(2,45)g

Merely inserting the asymptotlc values of the fields (2. 44)

1nto (2.46) and taklng into account that

1i Lowo ‘.. i S :
? Flvz_e Vi %7 2 Do =0 S (2.4
weooow egr® U H T
we obtain: o,
xt 1 | |
Fiv = 7801 T T3 (2.48)
MV UVl r er2 ) N



3 / A
which corresponds t¢ .a radial .magnetic field: . .
B ¢ Xl ' e -~ ' RS
Bt = (2.49)
er -
with magnetic flux
e ' o N -

tHence, this solutlon is a magnetlc monopole. It aatisfies

Schw1nger S condltlon

eg =1 » - . L . : R (2.51)

\

(intunits where h = 1). The antl—monopole is obtalned by

changlng the 31gn of the Higgs field in (2. 44)
To 1llustrate theée homotoplc nature of the magnetlc
”ﬁcharge we follow the dlscu531on of Arafune Freund Goebel( l),*

Pl

, We notice that ’t Hooft s electromagnetlc tensor can be

Fuv = My, + H O R \;;'(?;S%L_,
where . .. R

Mav = 9B, - 8B,

ai g R

B, =9 A | | (  ‘)

H @~ == 3 3 - ¢ = .

T ljk¢ ¢ ¢ ¢ Py
We now.define the magnetio‘ourtent as

"v‘_l V_po v‘ 3 o e

u T3 ?uvpog Pl o o "<?f54?‘

3

If there are no strlng s1ngular1t1es in Bu; thenhthe magne-

tic current is glven by



‘?;completely soec1f1ed in. terms’of ‘the. scalar trlplet of

'jthus clarlfled

IR |
J—ZT'

3, V% a%Ja A ~ (2.55)

pvpo ljk

The remarkable feature is that the magnetlc current is

nggs ﬁlelds It is 1ndependent of the Yang—Mllls flelds

AS; Such a current is tr1v1ally conserved because 1t is

the dlvergence of an antlsymmetrlc tensor. The magnetic

charge is given by \ Y
1 3 1 [ » o 3
‘ MT—ZF-JJ ¢ X~-87Te ‘pgljk abc 1(¢aaj¢b8k$c)

31
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 Row 52 . )k
: R
;where S lS a sphere of radlus R (1n the 11m1t Rﬁ-w) }ﬁl
e';Slnce a sphere can be parametrlzed by two coordlnates o
yia (a-l 2).(2.56) becomes
R 8We"Rv_n°‘ (],B abc e ] Y8 - =2 L ‘
. S . . .

|
i

-where g= det(B ¢ 4 ¢ ). The integral is known to be four

tlmes the Kronecker 1ndex of the map 52 g2 which- must .

R ¢

be an 1nteger-\therefore Q = n/e

The homotoplc nature of the magnetlc charge is

- - n

a

o
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CHAPTER IT _ : e

SPONTANEOUS CREATION OF THE ORDERED STATE:

OBSERVABiE-EFFECTS OF MASSLESS BOSONS

&

2.1 The structure of the dynamlcal map in'fieldﬁexpansion

of the observables

Our point of ﬁeparture,is the'formal-structure of the

"field equatlons for a given set {y} of Heisenberg field

Operators S ‘ LS

R it

A
v

. Here F.is a. functlonal of w(x) ‘and A(a) 1s the dlfferentlal

"operator apprOprlate to the spln of the fleld w C‘Because

of the operator nature of the fleld the solutlon of the

.f fleld'equatlons con51sts in reallzlng W(x) by matrlces 1n

l;;an approprlate Hllbert space ’ ThlS'lS a central problem of

the theory It is 1mportant to reallze, however that in
quantum fleld theory,j%he choice of an approprlate Hllbert
space on whlch to evaluate the matrlx elements of the-
Heisenberg fleld operators is a far from tr1V1al problem

because of the ex1stence of 1nf1n1tely many unltarlly

1nequ1valent irreducible reallzatlons of the canonical L.
(42)’ '

-

This is a statement about the kind of situation that

one should expect once the infinite number of degrees of

freedom,characteristic of a quantum field theoretical system -

o

32
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is taken into account, or, equivalently, once the non-

sepafability of the Space of the states is considerea(42).
It is obviéué that, a priori, nobody can'pell which, among
‘the many realizations of the canonical variables, is the
]physically relevant one. Tt turns out that this choice is
a self-consistent one in éhatvit will be the specific
”feature of the detailed dynamics involved in the basic
)field equqtions that selects "self—censistently" among all
possible inequivalent realizations which will be the one
related to “the "physical particles", 1
. )
At.this point, however, we must specify what we mean‘
by "physical particles": consider a scattering process
L tween two ‘or more particles. We can distinguish in such
a procesg, a first stage in which we. can identify by con-
venient me;sufements the kind, the number, the energy, etc.
of the particies before they interact (incoming particles);
a second stage, i.e{ the one of interaction; a third stage
in which dgain we can measure the kind, the number, the
energy, etc. of the pgrticles after the interaction (outgoing
particles). What is observed’is that in such a process-the
sum of the energies of the incoming particles is equél to
the sum of the energies of the outgoing particles; we will
refer to the incoﬂ?ﬁé‘and to the outgoing particles as
"physical pafticles" Oor else as "observed" or "free" parti-

cles, where the word "free” does not exclude the possibility

of interaction among them.

33
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- It only means that the total energy of the system:
is glven by the sum of the energies of the observed par—

ticles. Furthermore, in analogy to the Quantum Mechanlcs

-~ In solid state phy51cs the physical Dartlcles are usually

called quasi- particles,

that 1s, only by solving the field equations themselves
while, in order te solve tHe equations, we need a specifi-
cation of the physical Fock space. We can recognize a
similar dilemma in the Lehman- Symanzik- Zlmmermann

formallsm too: there rthe incoming flelds are
establlshed S an asymptotic (weak) limit 6f the Heisenberg
flelds, while to perform the weak llmlt requires a know—

ledge of the Hllbert Space associated with the incoming

fields. S e

In order to begin the self- con51stent @6~Dutatlon we
Prepare as a candldate for 'the set of phy51cal flelds, a

set of free fle}ds by appealing to varlous phy51cal consi-

34
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deratléns and theniexggnd the Helsenberg fheld Operators in
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terms of these free fields. By using the Heisenberg field

equatibns, we obtain a set of coupled eqguations for the

expansion coefficients. 1If one can solve these equations,

. : Y . S e, ) » x g i o Lo, . s e t .
one determines the expansion coefficients together with the
energy spéétrdm of the physical particles. If these equa-
tions do not admit any solution one modifies the initial set

of free fieids and repeats the computations. Such a modifica-

~tion of the initial set of free fields is frequently made by

infrod;cing more free fields. This is the way in which many
composite particles are successively brou%ﬂt intQ the
theory(44). | '

As we will analyse in more detail ini:hapter I1T,
soliton-meson bound states are introduced rn the fully
gquantum theory, through this self-consisteht procedure(gg);
Since the dynamics plays a crucial role’in fixing the
expansion of the Heisenberg fields in terms of the physical
fields, such an expansion has been called a "dynamical
map”§45’46). From a physical point of view, the dynamical
map self-consistently interpolates the Heisenberg fieid
operators, carriers of the fundamental properties of a given
physical system, and the physicalA}ield opeiators, carriers
of all the properties which are direcfly aetectable. In
this” context, a decisive step has been marked in exploiting
the éohﬁection‘among basic and physical fiélds, by answering
thé question as .to how observablé:3ymmetriesyof the physical

fields are consistently related to the invariance of the

Heisenberg field operators. In investigating this problen,

2
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the guiding principie is that the properties of invariance
of the Heisenberg equatjons cannot disappear but should
_remaln at every stage if we want -the theory to be 1nter—
nally con51stent . | - | |

However, due to the non—linearity'of‘the field egua-
tions, it can sometimes happen that the trahsfprmation takes
an eatirely aifferent shape when it is rewritten in terms
1of physical fields. When this happens, we do not recognize
the original symmetry in observations. Thus, we;may say
that the invariance of the basic equations cannot be‘broken,
but the shape'of‘the symmetry can change. This point of
Qiew has %een‘cast“in the concise ekpression: dynamical re-
arrangement of symmetries(2o’47).~ The spontaneoas breakdown
of a symmetry of the Heisenberg equatiens is eaused by tﬂese
symmetry rearrangements. A detailed analysis of this
phenomenon is presented in Section 2 where we anal?se in
detail the pfoble% of the creation of the ordered state.
Here we only point out that in all khown cases in which'the
dynamical rearrangement of symmetries takes place massless
boson fields are present among the physical fields and that
such symmetry rearrangements are caused by infrared effects
of these massless‘bosons.

Let us now”study ia more detail the structure of the
»dynamicai ﬁaps. ~For this purpose, we must construct the
Fock space, 5 ' associated with the physical particles.

To do this, we introduce the annihilation and creation

operatQrs of physical particles (and their antiparticles):
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] - T
these operators will be denoted by «, and a| (8" 'Bk ),

k k

where k signifies the partlcle and antiparticle momentum

and 1 the hellc;tj states. For the sake of 51mpllclty,
L - .
we"der.ote” these opérators by oy and dé (Bk

the helicity superscript. They satisfy

k)f'lgnorlngﬂ

oy 0n] = sk-4) . (1.2)

o

K
Strictly speaking, one cannot‘use plane waves as wave
~functions of physical particles, beceuse the pldne waves

- are not normalizable: one shouid usegwave packets. For
this pdrpose/ one'introduces a set {fi(E)} of functions

- which form an orthonormal set in the Lzespace and then
defines the annihilation (creatlon) operators for physical

'partlcles in wave oacket states

a, = Jd3k fi(k) ap - "(1.3)
B, = Jd3k £ 00 o | (1.4)

These operators satisfy
.Iai/a.] = 6.. . . : - (1.5)

Using @y and B and follow1ng the well- known stepe(48)
one builds the- Fock space ’5 The vacuum state in J will

be denoted by 0> .

(1.6)



to Fermions and Bosons -respectively’
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The physical field is then defined by:'_”

S d3k N 1kx~1Ek§'f 2 1'ji-1kx+1Ekt BT o
¢(x) J——;~j;7§ ulk) o ie qu,A+vw(k) 3 e B T S
(2m) R K |
(1.7)
The field ¢ satisfies the free. field egquation: - ..
A(3)¢o(x) =0 o : (1.8)

and this requirement determines the wave functions u(k) and

v(i).» These fuhctgpns‘are,then-orthonormélized acqo:ding
to:.

'Jd3x u};('xﬁ.‘(a,—‘a')u*(x) = s(K-1)

%~ .
_ (1.9)
AJd3x Vo (X)T(3,-8)va (x) = 8 (k ~ 1)
k. - ) :
Jd bYs u+(x)F(8,—§)v+(x) =0 (1.10)

37K )
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In the second equation the * signs on the right correspond

(48). The differential

operator P(B,—g) is uniquely determined by x(a).(48)
Having defined the corcept of physical field, we
state the probiem of the dynamical maps as the one of
expressing the Heisenberg fieid operator obe?iné eq.'(i.l)
in terms of the physical fields. If has been shdwn(27)

that the general form of the dynamical map is:

V() =x+2%%+ [d4aljd4£2f(x—al;x-£2):¢<£_l>¢>(52): oo



v
Hele ¢ stands for both ¢ and ¢ The dots denote those,

terms whlch contaln hlgher order normal products. ~x is

f“vu-‘fa‘lfzerOﬂunleSS~WilsrarbOSOH_fleldQ_ Z.is the wave functlom,.“

PR

.renormalization constant and the symbol Z ¢ means Z Zl¢l
'when there are many kinds of physical fields.

CAs it was pOintéd'BthbéEOre; Kl"ll)fmustvbe.inter—

preted‘as a Weakgequality‘ any matrlx element of the rlght

hand 31de of (l ll) is equal to’ the correspondlng«matrlx

.- o

elementwof the left hand s1de. Therefore, the normal
: product expanSLOn is c0nven1ent for our purposes because
each expan51on coeff1c1ent corresponds to a matrlx element

o L ' oy i -

of,w: for‘example the:matrix~elément of7<Oiw[aka

2
by the Fourier transform of f(xfEl;—EzfX). The expansion
N . cpefficients and therefore the matrix elements of the
. e b el ‘ :

‘Heisenberg'fieldgopefator‘are determined. by inse¥ting
(1.11) into the Heisenberg field equation (1.1) andvthen

starting the self-consistent computation'? However, in

(1.11) there is still an 1ndeterm1nacy in the choice of
" the phy51cal fleldsv ‘in fact, ¢(x)s=u ¢u can also be
used as a physical field when u is & unltary operator

N Among an infinite number of”choices for the thSical'fields,

one usually chooses the incoming fields -as the phy51cal

fields. The choice is established by requiring that the'”

expansion coefficients in (2.11) be retarded functions(48):

f(x-gl;x-52)= e(tx—tgl)G(tx-tgz)f(x—gl;x—52)<. (1.12)

R
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As a result of thlS requlrement the tlme 1ntegratlons

1nvolved 1n.(l ll) are. well deflned only when contrlbutlons

,from the 1nf1n1te past vanlsh Such vanlshlng occurs when
T we take the matrlx elements of the 1ntegrals appearlng in-

(l ll) between wave, packet states,ﬁcontrlbutlons from _the

o~ .

.1nf1n1te past do not vanlsh but make the 1ntegrals unde—
terminate when the plane wave states are used.

_ ThlS is due to the fact that 1n evaluatlng matrix

elements of the Helsenberg fleld w( ) the tlme 1ntegratlon

Xl-
j dt is deflned only if

| iim JdE £(E) & lEt -0 o | (1.13).

tr—c :
~and that (1.13) holds due to the Rlemann Lebesgue theorem.
only when f(ﬁ) 1s square 1ntegrable

Once the dynamical map (1.11) has been determined
we are able to construct the in- fleld expansion for all
the observables of physical interest of the theory under
study. To calculate the dynamical'map of a generic obser-
vable OH(w), we need to define the products of Y. The
products -are defined by the computational rule which states
that one first evaluates the’products cf‘nofﬁai products of
the in-fields and then rearrange them into a linear combin-
ation Qttncrmal.pfoduZts; The space—time integrations
should be performed only after thevproducts‘of ncrmai pro- -
ducts are well,taken care of. We assume that, when certain

divergences appear through the course of the calculation,

40
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they can be eliminatedvby eomefregularizatioh procedure.
Once the products of V¥ are determined, we cen evaluate all
the matrix elements of Oy (w)'ln the phys1cal Fock space
Let us now make some remarks on the structure of the
fHamlltonlan in the phy51cal representatlonjh Stpce the

physical flelds satlsfy certain free field equations (1.8),

their Hamiltonian HO is given by

. — okl - + . N —IL ?,- . . . o “ . .
H = Jd3k Ek(akak. + BB ) - - (1.14)
Here Ek stands for the energy of the physicaljparticle. We

_then have(45’46’20'27)

1 3 " S g
IS—E¢(X)_[HO,¢(X)] | | ) (1.15)
which is a weak equality, i.e.
<a[£—a—1p(x)lb$ = <aI[H III(X)]lb>” (1.16)
i 3t o’ - '

where |a> and | b> stand_fdﬁ wave packet states in the
physical Fock space. On the other hand, if one introduces

the Heisenberg Hamiltonian operator H such that
| . 13
<al [H(Y) ,v(x)]]|a> = <a|3: ¥ (x) |b> o (1.17)
‘ 1 9t _
one finds, by comparing (1.16) and;(l.l7),,that
<al ), v ()1 [b> = <al [H_,p ()] [B> C(1.18)

Vlafl [b>€ 3



-(1.18) 1mplles that when ¥ is an irreducible representa—
tion for the Heisenberg operators W(x)' the Heisenberg'
Hamiltonian is weakly equal to’the‘Hamiltonian of the

physical fields

HIV] = H_(6) + c . ‘ (1.19)

where ¢ is a'c—nunbef constanff Indééa;u;n‘oeniving (i.l9),
we considered the fact that any quantityvnhich commutes

w1th an 1rreduc1ble set of in-fielgd Ope;ators ‘must be a
C-niumber constant 1We observe also that eq. (1.19), whére
"H.is written in terms of the Heisenberg flelds, while HO

is in terms of the physxcal fields, is a direct consequence
of the dynamical map (1.11), and thus is a weak equality.
'Fnrthermofe, eq. (1719) relies heavily upon tho fact that
the physical fields ¢(x) are Fourier-transformable solutions
of linear homogeneous eéuations (the free field equations)
Only in this case, in fact, the energy of the phy51cal par—
ticles is determined as a certaln functlon of their momenta.
As we}will see later, some care is needed in evaluating tne
vacuum expect&tion value of the Heisenberg Hamiltonian in

!

the presence of an extended object created by a boson

'function-f(x), which is not Fourier~transformable.

‘We will see that eq. (1.19) cannot be used in thic
case. From an analysis of (1.19), we: should not conclude
that there are no reactions among the physical particles.
In fact, the outgoing particles are obtained by the usual

L.5.2. procedure

42
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cq)out = lim (w(x)__ ) o S . (1.20)
Lt )

-

where the limituis understood to be a weak limit. Since
the expansion coefficients f(x—gl;x—€2) in (1.11) are

retarded functions, they contribute to (1.20) although

they do not contribute to

lim ¢ (x) = co%(x) . (1.21)

>~ o

)

This shows ‘that ¢Out(k).is different from the incoming

field ¢ln(xh. Therefore, there exist reactions among the
physical particlesﬂ The calculation of the S-matrix in

the physical representation is the same as that in the

usual L.S.Z. formalism.

2.2 Original symmetry and observable symmetry: the

' spontaneous creation of the ordered state

As we mentloned earliér, many symmetry patterns,
whlch we can recognlze in the physical investigation,
appear to be violated to a certain degree in actual obser—

vations; usually one says that, in such circumstances, the

symmetry is broken. The term "spontaneous breakdown" tends
to .emphasize the disappearance of the original dynamical

symmetry and is popular in high energy physics; in fact,

- much of the recent progress in this branch of sc1ence is

based upon the assumption that the underlying dynamical
symmetry is modlfled at the phenomenologlcal level by some

kind of dynamlcal mechanism. The same klnd of phenomena is

)
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" very frequent also in the theory.of-sdlids: in fact, . the
cryétals do ndt»poséess translational and rotational
invariance though the Hamiltonian ofjmolecular gas is
transiationally and rotationaiiy invariant.'.in‘ferro;
magnetigm,-we.obserVe‘a similar situation COncérned with,
the rotational invariénce, and in supercdnductivity and
in'superfluidity we are concerned with the %henomenological
disappearance of phase invariance, and so on. What ‘

characterizes this set of phenomena is that the loss of the

' fundamental invariance does not lead to chaos at the obser-

vational level, but instead, to structures of high degree

(18)

of order: lattice structure in crystals '’ ; Spin—polarized

. : : /
state in ferromagnetism(49) etc. From

this point of view

the designation "ordered state" which is given to.such’

sxstems by solid state physicists is very appropriate.

It is clear, however, that the invariant properties

~

of the fundamental equations cannot simply disappear,

(45)

since the theory must be internally consistent

Then, it is evident that the analysis.of the probleﬁnof,
"brgkén symmetry" or "creaﬁion of the ordered state"
requires the stuay of the relation between originél
symmetfy and phenomenologiqal sfmmetry; we are thus still
facing the problem of the méppihg between-the two Y'languages”
used in~Quantum Fiélﬁ'Theo}y: the basic or Heisenberg‘field
."laﬁgﬁage" ahd the'physicai'field."langgagea. The designa-
tion of the abbve considered phénomena with the term

4



o the ordered state

symmetry rearrangement"'ls then more apt, since it bridges

~the two aspects of the phenomenon by focusrng on the change
of the dynamical symmetry into the observable symmetry of
(47?L In the self-consistent method, the .
eonnection between original and phenomenological symmetry

is guite obviously displayed through the dynamical map. Due
to the non;linear'character of'the“dynamicalimap, whrch.
reflects the non-linear dynamlcal effects, one . naturally

expects that the orlglnal symmetrles can manlfest themselves,

through the mechanlsm of "dynamlcal symmetry rearrangement

at the level of phy51cal-f1elds. ~'In fact, to the commentsv
on the dynamical map, given in 2.1, we should add that the"
left and right hand sides of (1.11) must have the same

symmetry properties, although not necessarily‘term—by—term.

' To be more specific, let us consider a theory wh\gh is

invariant under an internal transformation of th\/yelsenberg

fields:

() — (0 =Glu ) . C(2.1)

Weknthen, consider the set of‘physieal fields {¢a(x)},.

reiateatté_the'Heisenberg fields by means of the dynamical

map R " | | |
iu(x)ew[x;%(x):] N ) '(2.2)’,

e

We assume that there exists an invariant transformation of

the physical fields

LY

a
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such that, through the dynamical map (2.2), we have

o™

Ve = waen L T2

If the g- transformatlen and the G transformatlon are

dlfferent we speak of dynamlcal rearrangement of symmetry

" and we say that the G-symmetry is dynamlcally rearranged

into. the g- symmetry(20 27 47)

Note that‘(2.2—4) are weak equalities,. Let us note

also that from the above,p01nt of view the breakdown of

symmetry (or Creation of ordered state) is 1nterpreted as .
a dynamlcal effect in the sense that the basic equations

are fully lnvarlant whlle because of the dynamlcs, the

symmetry can appear in ‘a dlfferent form at the ohy31cal

level . Eq. (2 4) 1s one ‘of the condltlons which determlne

the q transformatlon There are two further 1mportant

requlrements(27). Namely, (2. 3) must leave the S—matrlx

r—"\

and the in-field equations of motion invariant

S[9'1 = s(4] \ s

related to each other There is, in fact, a“rich varlety»

of forms that the dynamical rearrangement of symmetrles

caﬁ take. It ig possrble(47)

[

to classrfy the various poss1—

bilities into three Classes as follows:

46
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"the group contraction. A very recent result

47

N |
(i) Rl—class: The G and g mappings correspond to the

same-algebra, but the Heisenberg field

v ¥ and the ‘physical field ¢.provide

ot

different realizations of the élgebra.

This is the case for Abelian symme-

tries(19’20’27)_

(iii szclass: The G and g mappings correspond to

dlfferent 'algebras (49,50,51) .

-

- (iii) R,-classicfThe G mapping generators form an algebra,

=]

but the g mapping does not<52).

The study of models in which the dynamical rearrange-

(53)

ment of symmetries is of R,-type suggests

the rearrangement of a simple Lie group is a group contrac-
(54). It has been proved, in fact, that if G =SU(2)
with an invariant subgroup-U(l), then g=E(2) (the two

(51)

dimen®ional Euclidean group) and that , when G =5SU(2)xsU(2),

with an SU(2) invariant subgroup, we havé.E(3).

However, the analysis of models of class R, does not

3
lead to ﬁhe same conclusion: if G=8U(2) with no invariant
subgroup the observable symmetry g does not form a group(52).
It is very difficult to determine the se! of conditions to
be verified in order to guarantee that the dynémical re-
arrangement of a simple Lie group followswthe mechénism of

) » (55) shows that

a necessary condition for the rearrangement to become a

group contraction is that the invariant-éubgroup is a maxi-

- mal subgroup of G. The origin of the symmetry rearrangement

the rule that '
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lies in the fact that the dynamical map is a weak relation.
When Gi stands for the generators of thé?C symmet;y, the
matrix elements have the form:

<aIGi‘[B> = JdB)'{<af pi (X)‘ib>'
When <a|pi{b> contains' a term of order 1/v - (v: volume) such
a term does not contribute to <alGiib>, becatuse the limit
V> should be taken before the sptial integration is made.
The limiting process 1/v -+ 0 induces . the symmetry rearrange-
ment(lg)Q ;
: 8, . |

The dynamical rearrangement of symmetries has been
studied in several models using either approximate methods
. L . . (20,27)
in the course of the self-consistent calculation _or
a formal derivation without any approximation by means of

(56,57)

the path-integral formalism As a result of these

studies, it has been shown that the creation of any ordered

state (i.e. spontaneous breakdown of any symmetry) is

caused by a certain symmetry rearrangement. The symmetry

g 1s the one which is manifested in observations on the
ordered state. We will analyse the implications of the
>
previous statement in the following.
A basic characteristic of theories in which an ordered

state is created is the appearance oI massless Goldstone

(19)

bosons in the set of the in-fields; -he massless bosons

provide the long range force necescar: for maintaining the

(18) ’ (49)

order: phonons in crystals  magnons in ferromagnets
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are the well known eXamples. In the case of the crystals,
the phonon is the ene which correietes the metion of a
large number of molecules in such a way that they are
prevented from going out of their stationery positions
(i.e. the lattice points). The effects of the Goldstone
bosons are éssential for the understandlng of the proper-

tles of the ordered state: flrst the observable symmetry

g 1s regulated by the condensatlon of the Goldstone field,

and second, thd creation of the ordered state is caused by

the infrared effect of the Goldstone boson. When these

effects become too strong they destroy order\58) We
.analyse rhese aspects in Section 3, where we discuss the
crucral role of the infrared boson in creating the ordered
state; there we also discuss a case in which the symméﬁiy
'earrangement takes place‘wrthout Creating any ordered

state. In fact, we have shown(21)

that in gauge theories
such as guantum electrodynamics, there always appear among
the set of in- -fields certain massless bosons and a symmetry -
rearrangement takes place even when no ordered state is
Created.

A general rule is that, whenever an ordered state is
Created the observable symmetry g contains the translation

in

"of the Goldstone bosons x;n~+ N

+8a. This leads to the
possibility of observing in spacetime meaeurements the

structure of the internal 9 symmetry of the ordered state.



The physical ﬁechanism, thfdugh which the internal
symmetry g has a spacetime manifestation, is the conden-
satiqp of bosons in the ground state of the physical Fock
space. The bosph condensation acts as a printing process
of these symmetry properties on the ground state. The
result of this "printing" is manifested as the creation-
of an extended structure in the spacetime which,.in a way
to be specified latef, ménifests_in spacetime the effects
of the translations of the observable symmetry gq. Since the
number of condensed bosons is infinite, the extendéd obiject,
ereéted through the condensation process, behaves classi-
cally: iﬁtuitively speaking, the quantum fluctuation pecomés
much smaller than the’macfoscopic effect of the condeqsed

bosons

hAN AN
W™ o§ >0 L as o N ooe ,

To study the situation in which a classically behaving

extended object is created in the quantum ordered state, we

use the boson theory(19(25).

We will see that the vacuum
- &_ : '
exXpectation value of the boson-transformed observables
constructed from the dynamical map of the Heisenberg field
Y, provides a spacetime ménifestation of the translations
in in . : :
Xo * X -+6a of the observable internal symmetry g. We will
analyse this problem in more detail in Sectionl4. There we

study also the problem of the topological guantum number and

see how the question asking which extended object should be
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quantized is contrblled by the translations of the obser-
vable integnal symmet:y q.

Thé'possibilitv of creating a claséically behaving
extended structure‘in the quantum ordered state is a very

beautiful feature of the boson method. It leads. us

immediately to.the question: how are the extended struc-

,turcs, created through the boson condensation process,

related to the ones described by means of the Higgs field

(16,9,10)

in a Ginzburg-Landau-type approach to the study

of the properties of the orderéd state? Chapter III is
devoted to the amalysis of this problem.
Let us now analyse the role played by- the infrared

bosons in creating the quantum ordered state.

’

2.3 Infrared effects of the_Goldstone bosons: the obser-

vable sy@metryrof the ordered state

a) A useful method of analysis

To study the process of creation of the ordered state,

c

we need the relation between the Heisenberg fields (in

»

terms of which. the basic equations are exbressed) and the
. ' ?
physical fields (which are revealed in observations). For

(59) ‘

this purpose, the path-integral formalism is an excell-

ent tool of analysis. A reason is that this formalism-
provides very compact expressions for the S-matrix-and

the Heisenberg operators in.terms of 'the physical fields.

(43)

According‘to-the L.S.Z. formulation of the field theory,
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the S-Mmatrix and the Heisenberg fields can be written

respectively as

Loy L | in in
S::nzo HT'Jd4xl'7'd4xnjn(xl"'Xn):¢~ (Xl) .o (xn)
' . ' (3.1)
Sy (x) = ; L d,x d,x jw(x X ) ¢in(x ) ¢in(x )
i n:()"n! 47177747 nn "1 1 .
(3.2)
where
5n(xl. .xn)= (—1z'%flx(xl)..;K(xn)<o|T{wH(xl).'.wH(Xn)}[O>.
™ (3.3)
and
) Ln
jﬁ(xl x )= (=12 ?) K(Xl)"'K(XnROIT{wH,(X)---‘PH(Xn)HO>
(3.4)

‘Here Z stands for the wave function renormalization constant

of the ¢ field, T is the chronological p¥oduct and

K(x) = - aua“ - m? . (3.5)

For simplicity, we assumed here that the theory describes
a single spinless massive particle. Egs. (3.1-2) are weak
relations; the matrix elements refer to wave packet states
of incoming particles. When we use the path-integral
fofmalism(sg), the wvacuum expectat{on values in (3.3) ahd
(3.4) are -given by certain functional average. ¥ Suppose

that our model is characterized by a Lagrangian Lix) =

.«Iﬂw,auw)-and define the generating functional
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WlJl = % J[dw] exp ijd4x[£(x)+-J(x)w(x)] - (3.6)

with J(x) an external source and N &iven by -

»

rqzj[dw]éXpin4xoL"(x). ' “ 3.7y

(59)

As. it is well known » W[J] generates the Green's func- —

tions of the model by repeated differentiations with reSpect

to the source J(x). For any functional g(y(x)], we define
| <g'[d}(x)]>J E % J[dw]g[w(X)] exp in4XI£(X) + T (x)y(x)]
(3.8)
and
<qlu()1> = <gly(a)l> . ‘ (3.9)

J=0

With these definitions, <g[y(x)]> coincides with the vacuum
expectation value 2O]Tg[wH(x)][O>. Here y  denotes the-
Heisenberg field and ¢y stands for the integration variable

in a functional integral.

Using these notations egs. (3.1-2) can be rewritten
as<6D)

°, . in

S ce MO )>: (3.10)

- in

SUy(x) = r<p(x) 0T, . (3.11)
where

. o in . 5. in > ‘

< (0 )=1Jd4xz o7 (x)K(x) P (x) . (3.12)

-
Here, the arrow on K(x) signifies that K(x) should be always

acting on Y (x) and the brackets on the r¥ght hand side of
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(3.10-11) denote functional average, not expectation value
in the gilbert space. The symbol : : means that the
annihilation aﬁd creation operato;s of ¢in stand in norma l
order. | | \ »

The;equa£ions (3.10) and (3.11) are the functional
eguivalents of £he familiar L.S.Z. reduction formulae.

Eg. (3.11) expresses the exact form of the dynamical map;

it can be generalized as

-

in, - o 1
Sglv, ()] = :<gly(x) o~ G o7 "

>z . (3.13)

What makes the path-integral formalism very useful in the

analysis of problems of spontaneous breakdown of symmetries
Co 3

is that symmetry transformations can be reduced by changes

of the functional integration varijables.

; ‘ .
It hagubeen realized, however, that special care 1is

needed to be able to distinguish between symmetric and

[

(56)

spontaneously broken solutions The reason -for this

lies in the fact that the field equations (and therefore-
the Lagrangian) are not sufficient to determine the solu- -
tions uniquely. Oﬁe also heeds to épecify the boundary
conditions. |

' Ifisponﬁanepus bfeakdowh of a continuous symmetry is
poSsible in the ﬁodel then there exists a continuous infin—
ity of spontaneously broken solutions each one corresponding

to a different choice of the boundary conditions. On the

other hand, once W([J] is specified, all the Green's functions
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o Tt =

(and therefore a solution of the theory)‘céh~be:obtained
from it byvappropriéte functional differentiation. Thus,
the information as to which particular solution is picked
must be contained in the definition of the generating
functionql itself. 1In order to obtain the asymmetric

w (56) of the

solutions we add to the Lagrangian an "e-term
form ie f[4], which violates the tnvariance of the Heisenberg
equations. The limit €->0 has to be taken when all calcu-

(56)

‘lations are performed In general, the génerating‘

functional for spontaneously broken solutions should be

(3.14)

2=

Jn[dfbi] exp in4X[L(¢) + )

where N is equal to the numerator of W[J] when Ji(x) are
all zero, and f[¢i] is a functional not invariant under
the original invariant transformations of the theory. In

the case of the complex scalar field model W[J] becomes:

o

1 - 2
W[J]:=§ J[d¢][d¢*]exp i[d4x[£(¢)4-J*¢'*J¢*‘*i€l¢—vl ] ’
‘ (3.15)
with i
N = )[['dM [d¢*] exp in4X[I(¢>) + ie|¢>-v]2] . (3.16)
Since each.functional derivative 6/68J (x) (6/6J¥(x))

~acting on W[J] generates the factor io* (x) (i¢(x)), the
vacuum expectation value of any chronological product of
¢* (x) and ¢(x); i.e. the Green's function, can be obtained

P

by repeated operations of §/8J and §/8J* followed by the
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K
\\'

4'/‘4 f

i'llmlfé%
the theory, we can thus derlve the Ward- Takahashl 1den—

(61)

tltleS ~"wh1ch express such pr0pertles - To t$1s end, we

""" ’ﬁ’fg‘% N . ! O
make the change ogéygrlables ¢ - et ¢ in the nw
ol ,JY eeTes -' '

(3.15). Slnce theﬁlntegral is unaltered by & cha 
& 4 & \

varlables, we must have ‘ ' Y

~To inbestigate the symmetry properties of ¢

3géJ] -0 | v (3.17)

| PO R

which, evaluated at 6 =0, leads to the basic'identity:

ird X<J ¢ ~J
JTaT

lXE,J =”v2 EVd4X<X>g,J~ .. ' »(3.18)

Here, the notation is as follows:

Q .
<F(8)>_ g = % J[d¢][d¢*}F(¢)exp ijd4x[L(¢)+J*¢+J¢*+iE[¢—v2JJ
B0 = = W)+ iy - L (3.19)
V2 o . -
1 . .
J(x) = = [J.(x) + igJ (x)]

-Further shorthand notations whichvwill be extensivel§ used,

are
F(¢)> = SE0)> oo (3.20)
<F(¢)> = <p(¢)>€_J;\O (3.21)
Before we proceed with the investigation’ of (3.18),

let us point out that <x (x)> e = 0 because both: the ~Lagrangian

and the e-term are invariant under the transformatlon
|
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/

X (x) > -x(x). Then, the vacuum expectation value of the E

$(x) is due entirely to that Of .y(x):

<p(x)> = JL.<w(xf> v . //‘ (3.22)

V2 V2

The second equality defines the quantity ¥. Vv is ,the homo-

"geneous order parameter. It is related to the original.v

in the following way: the phase of v is completely con-

trolled by the .phase of v, the magnitude of Vv does not

depend upon the magnitude of v, as long as V5£0.(56) By

successive functional differentiations of the (3.18) with

-

respect to Jl(x) and/or J2(x) we can obtain all the “iden-

tities relating the Green's “functions (i.e.: W.T. identi-

ties3(56).
. The ones we use in the following are:

,-<Q)(X)>€ = V2 ev J’d4y<x(x)xiy)>€ \ (3.23)
<O(X)D(y)>8-<x(X)X(y)>€==/5?37jd42<x(z)x(x)p(y)> (3.24)
where

p(x) = v(x) - <1,b(x)>€. ' _ (3.25

To rewrite these identities in momentum space, let us intro-

duce the Fourier transforms:

Il

<x{x)x (y)> ?—275 Jd4pe:ip(x_y)AX(p) (3.26a)
2

oply)> = —2 o [a,petP(y) 8, () | (3.26b)

(2w) )




C e w g

¥

andﬁﬁ

<x(x)x(y)o(ZY>=?—~3;—- d,pd qd-re_l(px+qy+TZ)6(p+q+r)X
: 8 4 743274 R

(2m)

A (YA (@)A (T)T (p,q,T) . (3.27)

x Pl @80T (prgT)
Here we used goo=-gii==l. The propagation fungtion AX(p),
has the form:

\ .

. { ZX _ o

A (p) = lim > — +  continuum (3.28)
X e>0 Ip -ﬁx-kiaax contributions

Here ZX is the wave function renormalization constant of

the field x. The continuum contribution comes from states

with more than one particle.
a5

Eq. (3.26a) implies

-

~ — Z 2 .
v=v2 Xy with m° =0 (3.29)

a X - P

X o
v =20 with mi #0 (3.30)

v"ereas (3.26b) yields

-1 -1 -
A" (p) = A “(p) =vT (0,p,-p) . , (3.31)

X o . XXP

Eg. (3.29) is a statement of the Goldstone‘theorem(sz):

if “#0, x(x) must be a zero mass field.

Eg. (3.31) gives the relationvémong the twopropaga-
wrs and the vertex function,; and leads to reStrictions on
the renbrmalizatidn constants. The presence of,the ge-term

. . S
generates the asymmetric solutions. TIf we had not introduced
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. B
such term, the relation corresponding to (3.23) would have .
been <$(x)> = 0 and the possibility of spontaneous break-
~down would not have arisen. The situation is quite

different if the effeéts of the eg-term are taken into
acéounf: if the inteéﬁal (3.23) remains finite when ¢ + 0
We~qet the symmetric solution; if it behaves as 1l/e in the
limit, Ehe ordéred state is créated. The Goldstone theorem
comes from such l/e—depe;dence. 'We glso note £hat tHe €=
term prescription is equivalent in this model to the replace-
ment J* J-iev in ‘W[J]. One can tﬁén reg;rd J—ievkas~$ new
source ,J' and assume that J' .does not Vaniéh:astt ; too,
Héwever,-such a'prescriptioﬁ is not a general one, since,
for example, it cannot'be appliéd to models'involving
« fermion fields or composite Goldétone bosons.

As. already mentioned, the_invariance of a theory

cannot disappear when an ordered state is created. This

feature of an invariant theory is expressed by the conser-,

vation of the local current corresponding to the symmetry

transformation. In the path-integral formalism, one can
derive W.T. identities for the divérgence of the current

by subjecting the integrand to lbcai_gauge transformations
ia (x) '

TLd(x) e

¢ (x), which are not invariant_transformatiOns

of this model. Through a procedure based eséentially on

functional differentiations of W{J], which we omit for

(56)

brevity, it is possible to verify the conservation of

the local current even when the ordered state is created.
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‘The path. integral analysis of.a,paﬁticular model in

.. which an ordered state is created showed us two general
[ . :

features of such models-‘j the appearance of massless

(Goldstone? partlcles and the conservation 5f the local

.”current correspondlng to the symmetry transformatlons of

the theory"

We are now ready to study the keyﬁrole played by the
massless bosons 1nwrearrang1ng ‘the orlglnal symmetrwa into

_the observable symmetry q of the 1n fields. For our dis-

3 L

.cussion we use the<complex scalar field model.
PO . . . , . -

: o o »

b) Dynamical rearrangement ‘and boson transformations of

global symmetries : e

Our s;artlng point is the dynamlcal map and the possi-

blllty of expres51ng 1t in a compact form through the path-

!‘,

integral formulatlon *As we mentloned thlS is- due to the
fact that the matrlx elements of local operators such as

¢ (x);ﬁan Qe obtained by suitable limiting operatlons (e.qg.

TE 4

those of the L.s.Z. formallsm) from the Green's functions
Gz,

of the theory, while the- latter are compactly summarized in

the generatlng functlonal

"In the case of the complex scalar field model there

.1s only one asymptotlc fleld which we shall denote by

Xlnﬁx) ‘It corresponds to x(x), the imaginary part of
 the complex fleld ' o
. . g . '
$(x) = — {v + p(x) + ix(x)} . : : (3.32)

V2

60
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o
There is no asymptotic field corresponding to p(x}, since
‘ : (56)
o becomes unstable in presence of spontaneous breakdown .
In the Fock space of the in-fields, we define the_S opera-
tor by(GO):
P 1/2 . s } ‘(3 33)
S = <:§x?tLZXJ§4x Xin(x)K(x)~xpx) > . .
The symbol K(x) denotes the-d'Alambertian
i ) ) )
K(x) =— 3 8"
1. ue o
The arrow on -K(x) signifieé that it should be always acting
on y(x). Let us also femember that the bracket on- the
right hand side of (3.33) denotes functional average, not
expectation value in the Fock space.
In a similar way, we can define the Heisenberg field
operator‘¢H(x) by means of the formul.:
) -~k - ’
4 = < . -3 2 . ;
Sty <$p(x):expt lZX Jd4xxin(x)K(x)X(x)}.> . (3.34) .~

This expression, which must be understood in the weag‘sénse,

,1is the functional equivalent of the familiar L.S.Z. reduc-

tion formula.

Let us introduce the in-field transformation

Xg () =%y (%) +a (X) | o (3.39)

where the c-number function a(x) satisfies the same field

equation as'xin(x):

K(x)a(x) 20 . - (3.36)

61
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The transformation (3.35) is called the boson transforma-

tion., We want to prove that the Heisenberg field Qg'which
is obtained thrbugh the dynamical mapping (3.34) from the
boson—transformed Xin(x) is also a solution of tﬁe field
equation.

Let us start with the identity
Lo

<x(x)Q> = Jd4x%§x(x)x(x‘)>q(x') . (3.37)

which is valid for any opérator Q and suitable choice of
a(x'). Eq. (3.37), together with. (3.23) and (3.29), implies

the basic relation-

i fd“xa(x)xtxwx(x)@='.1imV’fEVJ(d4X°‘(X><x<x>Q> (3.38) .
X >0 ,

,since the limit €+ 0 serves to pick up the zero-mass pole
and a(x) 1s a sQlution of the equation (3.36). Next, define

5 . . \v\ o
a new functional average with space-dependent e-term:

¢

FLOx))> zN"lf[dm[w*]Fw(xH s
- '4 o 2 .
expili d4z[ (¢)+jle;¢(z)-v(z)| ] (3.39a) ..
with
C T N O . 2 .
N —J[ddﬂ[d:b Jexp 1Jid z[L(6) + ie|o(2) - v(z)]|“] (3.39b)
and(6o).

Viz) = v{l+i £ a(z)] . (3.40)
’ . v
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Then, if we define the boson-transformed S and S¢H:

S[xin(-x) +a(x)] =

[N

' -
<:exp{—izxﬁé

220X () + a(x) ]K(x)'x(x);s:

(3.41)

S¢H[X;Xin(X)+-a(X)]E < ¢(X):exp{—iz;%fd4x[xin(x)4fa(x)]x
K(f)x(x):> _ (3.42)

we find with”the aid of (3-.38) and the definitions (3.39),
: $

(3.40):
in _ . f s —1/2 o > L
SIX™T (%) +'a(x)] =C<:exp/ 1ZX de<xin(X)K(x)X(¥)}“>V(x)
(3.43)
and N
SOy xixy () + a6 ] = Ceg(x)rexpl-1272 (a3 1P (1) (o) 4 (300} ¢
by P Xin a =C<¢(X):expl{-1i y 4% X X x) y (x)} >
v (x)
(3.44)
The factor
1
- z? [ .4 '
C = lim <exp /2 ev &£ Jd X a(x)y(x)}> . (3.45)
>0 Vv €
A
comes from the denominator N' defined in (3.39b). Egs.
(3.43), (3.44) prove the assertion made earlier: the two
field operators ¢H[x;xin(x)] and ¢H[x;xin(x)+-a(x)] differ

by e-terms,

equations

Egs.

and therefore are solutions of the same field

(60)

(3.41)

and (3.42)

vield an explicit expression%O)

for the boson-transformed order parameter:

63
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F(x) = <O]¢H[X;Xin(x)+-a(x)]0>
= iim.Nf’lJ[d¢][d¢*]¢(x)expijd4z[f(¢)&-ié|¢(z)—-v(zH2].
e+0 - . ;o T :
(3.46)
When a(x) is a normalizable function; we can gewrite eq.
(3.46) as: : o
- , i 2
vix) =lim N lJ[dM [d$*1¢ (x) exp inllz[L«C((b) vielp-verr (25
e-0 - :
’ (3.47a)
with
’Z%
A(x) = & q(x) ,
v B . , . X
and i '
~ x [ o ir(z) 2
N = {[d¢][d¢ ] exp 1fd4z[i($)~+16|¢(z)-ve |1 . (3.47p)

This follows from the fact that a#(x) with n > 2 gives no
contribution to (3;475, since their momentum space supports

are not limited to the hypersurface K2==O. As a consequence,
- . ‘. I4 .
the boson-transformed order parameter has the followini

structure(6o): X : e

L 1
.22 72
v(x) = exp{i 7; a(x)}[T+Vv(i £ 3 a(x)] - (3.48)
v v H

where the functional V has the property that

vt

1L
72 X
vii £ 93 a(x)) — o0 for  galx) —0 . (3.49)
V .

Eq. (3.48) defines the boson-transformed rorder parameter as
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a functional of the boson function.
The nofﬂgl}zability of a(x) is essential in deriving

eq. (3.47) from (3.46). 1If a(x) is a not normalizable
solution of 93.36); tﬂl singglar c-number translation of
the in-field mgst be viewed as the limit of é bosén trans-
formation by a square-integrable c-number function. The

limit must be taken at the end of all calculations (e.g.

after all matrix elements ‘have been calculated). An example
k)

of such situation is the translation_of xin(X) by a constant

c-number:
a(x) — o

Then (3.48) yields
' L
. Z 2
vi(x) = expfli TLG}G . (3.50a)
v _ . )

More generally, we mighct consider a boson function satisfy-
ing

. . - !
lim a(x) = a(n) (3.50b)
| %] oo
4
where R is a direction of approaching the space-infinity.
. »
The same considerations, which yielded (3.50a), lead to

a(n)}v . {3.50c¢)

[w]
<4xhr

lim ¥ (x) = exp{i

-
We may say that the boson—transformed'order paramneter
induced by a boson function satisfying (3.50b) asympto- -

tically manifests in space-time the structure of the ori-

ginal -internal group.
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We will return to the analysis of (3.50b)

in

section 4. We are now in a position to prove the basic

theorem about the dynamical rearrangement of phase symme-

try in -our model. The only in-field transformation

»

1n(X) —_ X;ﬂ(x;a)

(3.51)

which, throughgthe dynamicaf mapping, induces a constant

phase transformation of the Heisenberg field ¢,(x), is the

boson transformation (3.36) with a(x)-*éonst.(60

) -

Precisely

speaking, the problem of dynamical rearrangement in this

model involves finding an operator iln(x;a), which is a

function of.xln(x) and a phase parameter o, such that thég"

following two conditions are{satisfied:
sdx Mkl = sixT(x) ]

~in : ia
SéH[X (x,a)] = e‘~S¢HIXi

n(x)]

1

are defined through.the'dynamical mapping (3.33)

SR (x;0) ] = <:exp{—iA[iin(x7a)]}’>

I
r
|
N
1
!

in

So (X7 (x,0)] = <¢(x):exp{—iA[iin(x;a)]}:>

with-

AR (x,0) 1

. _1/2 ~in ] . - l
zX Jd4x X7 O (x;a)K((x)x(x) . |
|

.The operators on thé left hand sides of the abole

’

(3.52)

(3.53)

equations

(3

.34)

(3.54)

(3.55)

(3.56)

In addition, since the transformation (3.51) must be a

symmetry transformation at the in-field level,‘Qe must

|

: - ’ 1‘
. |

|



impose the condition:
K(x) ¥ M (x;a) =0 . (3.57)

The constraints (3.52), (3.53) lead to the following.
conditions by différentiéﬁion with respect to a:

3

) ~1in . . .
<:(—i)Jd42 z;f éx_ﬁ%ngl K(z)x(z)expl-ia{3 ™M (x,a)]}:>=0
(3.58)
and
<6 () s (i) [z 7% 20 (2,0 K (2)x(2)expl-ia (3™ (x:a) 1) >
4 X 8(1 X p X i ° .
= i<d(x)sexpl-iAl¥ M ()]s L - (3.59)

On the other hand, the basic identity (3.23) 0f the model,

-

'n(

when evaluated with Jl(x)?=0 and J2(x)=§—ZX il x;a)K(x)
yields

—1/ . ! . - 'I
< (—i)ZXZJd4ziln(z;a) K(z) (V4 p(2)) expl-ial§ ™ (x;a) 1}:5

= <:(—i)Jd4z A K(x)x(x)exp{~iA[iin(x;a)]}:>. (3.60)

Eg. (3.38) was used on the right hand side of this rela-
tion. Since p(z) has no zero-mass pole and Xln(z;a) has

a moméntum space support confined on the hypersurface

K*=0 by virtue of (3.57), the left hand side of (3.60)

is zero. Therefore

<:(—i)fd4z§l K (x) X (x) exp{-iA (¥ 0 (x;0)]):s> = 0 . C (3.61)

X



In a similar fashion, we can use the identity obtained by

6Jl 6J2

that | | ' R

applying —1(Ji—+i—é—) on both sides of (3.34) to prove

<¢(x):(—i)fd4z gl K(z)k(z)exp{-iAIxin(X;a)]}:>
X

= i<¢(x):exp{~iA[iin(x;d)J}:> . A (3.62)

Comparison of (3.58), (3.59) with (3.61), (3.62) leads to

the: following necessary and sufficient condition on {'07

. N
P (xra) =

o

3
an

> W

This differential equation, with the initial condition

P
D

Xt (x;a=0) = yPx) (3.63)
implies that:
Mxa) = yTh(x) o+ l% a (3.64)
7
X

Clearly, this solution sat¥sfies the requirement (3.57).
The in-field transformation (3.64) must be understood as

the limit of the boson transformation

M) N+

y/

X ag (x) . (3.65)

L
2
X
with g(x) a normalizable c-number function that tends to 1,

and satisfies : N

K{x)g(x) =0

The limit g(x) + 1 must be taken after all the matrix

68
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elements have been calculated. The reason isiihe same
as in (3.50): due to infrared singularities caused by
Feynman diagrams with many momentumless and energyless

external lines(63)

' S[xin+a] and S¢H{Xin+a] are i1l1ll- .

defined. On the other hand, S[Xin+ag(x)] and S¢H[Xin+ag(xﬂ,

with g(x) a normalizable c-number function, are well defined.
Note that g(x) must satisfy the free field massless

équations through the limiting process g(x) - 1. The fact

that the invariant transformation has different forms at

the level of the Heisenberg fields and at the level Of. the

in-fields expresses the dynamical rearrangement of the

phase symmetry. Eg. (3.65) shows ﬁhe crucial role played
b?hthé condensation of the Goldstone field, induced by a
normalizable boson function, in determining the difference
be tween thé origiﬁai and phenomenological symmetry. The
need for a hormalizable_g(x) comes from the requirement
that»theigeneratOr of the in-field translation must be a

: &
well defined operator in the in-field Fock space. It is

well known, in fact, that the generator of (3.32)

D = Jd?)x'i(in ;‘4;2- - (3.66)
X -
is i1l defined(64), whéreas . i
) . ,
Dg-—[d3x ;% [g(x) §E xin(x)] . (3.67)
X

is well defined. 1In fact, the Heisenberg field transforma-

tion is implemented through:
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iaD -iuD ia

lim {e 94 e g} = e ) . © (3.68)
H . H |
g~l |
!

Note (Rhat'Dg is time-independent when g(x) satisfi?s (3.36).

In suﬁmary, the phase transformatiorn of the Heisenberg

field: . ”)k ‘

by e by © (3.69)

is induced by the in-field transformation

s
xin(x)-—+ Xin(x) + ;E ag(x)

X

O

. 1 N
with g(x) a normalizable solution of K(x)g(x) =0, when the

limit g(x) +1 is performed after all matrix elements of 9y

have been evaluated. o !

1
I

The necessity of introducing g(x) in (3.65) leads' to
. . |
an intuitive understanding of the rearrangement of symmetry.

Consider the generatpr of the G-transformation

is, o '
o, (x) ~e ¢H(X)f ‘ ..

D(¢y) = Jd3x p (¢, (x)) @
, |
Here i .
p(¢éH) - ¢+ao¢

According to eq. (3.685ﬁ"w§.treat D(¢H) as the limit for.

g+ 1 of

Dg(¢H) = {d3x g (x) d[¢H(x)] . . - (3.70)
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The weak equality in tgﬁ dynamical map of oy leads

to the following relation between Dg(¢H) and the corres-

ponding in-field generator Dln(gf:

<alD;n|b>==Jd3x g(x) <alp(o (x))[b> . (3.71)

H

Here, the states Ia> and [b> are in particle wave packet
states and D;n generates the g-transformation, in the limit

g-> 1. Since g(x) is square integrable, the integration-
involved in (3.71) is insensitive to locally infinitesimal

H

of order 1/V, where V is the volume of the space). = Such
7 . . R

terms which may be present in‘ a{pk¢ (x)) [b> (i.e.: terms
terms do not contribute to D;n with g= 1 when it is evalu-
ated by means of (3.71); on the-other hand, since theygare(
uniformly distribﬁted over tﬁe space, they contribute to
D(¢H) by a f;nite amount, thus leading to a finite difference
between D(¢H) and Din. The condensation of iﬁfraredvGoldstone
bosons produces such locally infinitesimal contributions,

‘and when they\are summed . up, they account for the difference
(47)

between the G and q transformations

The example of .the complex scalar field model illus-

trates two important features of the dxnamidal rearrangement,

"first, the observable g-symmetry is régulateg bznghe conden-

sation of the Goldstone field, and second, the rearrangement

is caused by the infrdred effects of the Goldstone bosons.

The analysis of mgny models with non Abelian symmetries

(50,51,52,49) confirms the generality.of these results.

Furtﬁermore, we showed the remarkable way in which the



72

e
£33

original symmetry of the Heisenberg fields is recévered,
asymptotically, when gix) is a not ﬁormalizable‘soluticn
of'the‘free,massless equétion satisfying the boundary
conditions (3.50b). This result is expected to be true
also in non Abelian ‘theories - at least the ones in whi .
the dynamical rearrangement of symmetry is of R2 type -
since *he original symetry is rearranged into a phenéﬁen—
ological symmetry which contains, besides the invariantv
generators, only the generators of. the massless in—fieid

translations.

c) Dynamical rearrangement and boson transformations of N

gauge theories o Ty

Ny

We have seen that the creation of ordered staﬁes,
ih*the'case of a global symmetry, implies the existence
of massless bosons, the Goldstone particles, which play a —
key role in the rearrang@hent of the o:iginal symmetry of (/(

. , .

" the Heisenberg fields into the observable symmetry of the
in-fields. Intuitively speaking, the phénomenological
systematic structure of the ordered state is due to the
presence of these massless bosons which act as long range
correlatiop modes. 4 |

In particle physics, it seems hard, however, to
explain the observed symmetry violations ih terms. of
Goldstone bosons since fhere is no experimental observation /

- -

of such massless particles. 1In non-relativistic phenomena 4

(65)

it is known that the presence of the Coulomb inter-
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action affects the Goldstone'theorem in the sense that

the excitation modes have finite mass. Intuitively, this
fact suggests that the role® of the Goldstone mode in the
creation of the systematic structure of the ground state

is played by the long range Coulomb force. Following these
ideas, it has been‘shown(66) that in particle physics the
presence of a gauge field affects a spontaneously broken
symmetry theory by eliminating the massless Goldstone par—

ticles (Higys phenomenon) . By taking advantage of the "Higgs

’ ‘phenomenon, a unified theory of weak and electromagnetic

7)

interactions has been prOposed(6 and many investigations
of spontaneously broken gauge theories have been done,
especially in connection with ‘the renormalizability of such

theories(68)

It(has been Observed(69? that if long range forces
are present in the theory, the cdnservation of the total
charge assoc1ated with the symmetry transformation 1s not
valid, since surface contributions of the current do not
vanish: This fact invalidates the Goldstone theorem and.
Goldstone particles completely disappear from the theory
Thisg Situation is, however, unsatisfactory.since the
Goldstone bosons play the crucial'role of preserving the
local conservation of currents associated w1th the invar-
iance of the theory(19 45) (cf{.section 2.2), and the
absence of such Goldstone particles would make the theory
internally inconsistent from the_point of view of the

invariance properties. . ~

v
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]

&u
Furthermore; since the geuge fieldS'participate in
.+ local gauge t;ansformatiens only,’they cannot have an
effect in the 'rearrangement of theeglobal,invariance,
which normally is mediated by the Goldstone bosOns.‘ The
gquestion arises ﬁheﬁ: if COldstoﬁe bosons disappear froﬁ_
‘the theory what is..the agent of the giobal symmetryfffans—‘i_!
" formations? jAvclue to ‘the answer can be found in the'Gupte
Bleuler formuiafibnﬁof eleetrodynamics(70); in :this scheme,
the physical Hilbeft sbaeevislgefined as a_subspace‘of the
Fock space of the theory and unghysica} states do not’con-
Afribute to processes because of compensatien between longi—q
tudinal.and scalar photons.

It has been shown(7l)

that a similar situation occurs
in the Anderson-Higgs-Kibble meCﬁanism;»the.dynamics
naturally creates a‘bOSOh of;négatiseinorm (ghost), and the
contribution of this ghost Cancels the contribution‘of_thé.
Goldstone bosons in any EEysicaliprocess. The Geldstone
"boson therefore'dees,hot’aisappear from the theory, and it
can still particiéate in the rearrangement of a global
symmetry. It should Pe,mentioned that:thisrcancellation‘
between ghost and Goldstone guanta appears when\thelgfound

ally invariant. Very interesgﬁég effects

occur when a local condensation of Goldstone bosons induces

a space-time dependeht order parameter. These effects are

P

a consequence of the physical (Gupta-Bleuler type) condition
to eliminate unwanted components. Such a condition has to

be preserved even after the boso;\}mansformation\and this

&
-

-

74



necessitates a redefinition of the field operatdrs and -
induces the Meissner current in addition to the boson.

current. The situation is analogous to the one found in

superconductivity(19’23), where a boson condensation is

allowed also in the presence of Coulomb force; in this -
sense the Goldstone theorem is still valid and the gapless

energy modes’ recover the symmetry properties of the theory.

(71)

Let us summarize briefly the model of*ref. and

the way the bosdn transformation appears in the presence of

gauge, fields. The Heisenberg fields consist of a massless
fermion field Y and a gauge field Au and the Lagrangian is

assumed invariant under global and local chiral transforma-
tions:

107, ‘ ' | d
p(x) ~ e P(x) . Au(x) - Au (,X)

£

(8.72)

i A +A +3 A

b (x) U(X) ntey (x) | ,
. A g

The symmetry (3.72) is brokeln spontaneously by means of the

condition:

s o ,
. v o= fQ\IL
V2

[P () + )y v (x)1[Q> # 0

We work in the Lorentz gauge, and this is ensured by adding

to the Lagrangian a term
A (x) . 0

B(x) is put into the theory in order'to introduce the can-

P

~-onical conjugate of A _. ’ : -
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The set of in-fields consists of:

(i) a fermion massive field wln(x) )

(ii) . a massive vector field Uin(x) satisfying the Proca
equation: (—82—m2)Uln=£O, sHutt = o
. 3 H o H

(iii) a massless Goldstone field Xin(x), which is fermion-
antifermion bound state, and v

(iv) a massless field b>"(x) with negative norm (ghost).

EY

The relation between the S-matrix and the in-field is of

the form;
s = s[Ji“,wl“] g (3.73)
with (71
Jln==lm2-(z l-—l)(—az-mz)]Uln4-m Z—la (bln__yln)
3 ! 3 Ty

and the dynamical map of the various Heisenberg operators

1s given by:

5

Z .. ) . , . ”
(%) =:exp{i Eé xln(x)ys}[zwwlé(x)4—FY(x;wln,J;n)]: (3.74a)
Z% in 0
A (x) = —% 3 " (x) + a%x) . (3.74b)
S . 2e v H M .
S .
29 = 250700+ SCTE A T (3.740)
' 2e V- in i -
B(x) = —p— (™M (x) - x*(x)) \ (3.744)
. Z 2 , B .
X g
: R : 7% in i
o(x) == (Yy + Yy ) = texp{i—=X x " (x)1{¥+F ", 710}
L (*7de)

Ir these relations, the Z's are renormalization constants
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i

/

satisfying the constraints:

n’ = 2 (2e 9% (3.75)
o
X
The various F's appearing in egs. (3.74) are at least bi-

linear in their indicated arguments.- Ai(x) plays the role

of the vector potential in the Lorentz gauge. The current
[

u
of the equation of motion:

J (x) can be expressed in terms of the in-fields by means

2 _ B N '
-‘8 Au(x) = d7A (x) = Ju(x) auB(X)

Correspondence with the classical Maxwell equation requires

that for physical states |a>, |b>:
2 o ' : ‘ '
- 9 <a]Au(x)|b> = <aIJu(x)|b>

This imposes on the  physical states the Gupta-Bleuler kind

of condition:

;. in(-) in(-)

N S
{x - b )la> = 0 . (3.76)

o
¥

As can be seen from egs. (3.74),'the local gauge transfor-

mation of the Heisenberg fields is induced by:

in in 2ve
X (%) — xT (%) + 1 A (%)
X | (3.77)
in in - 2ve
b™ ' (x) — b7 (x) + —= A (x)
ZZ N
X

The S-matrix is clearly gauge invariant. Notice the special

dependenﬁe on Uin,,xln and bln; in fact, any.gaﬁge—invariant
operator G has a dynamical map of the form:

4



G = G[Ji“,wﬁn]' ) i ' - (3.78)

Because of the physical state condition (3.76), the boson
transformation in this case is more complicated than in

. 1
the case of a global symmetry. It was shown  1n ref.( 2)

that the boson transformation:

\ .

y (%) — ¥, (X)) + l% £ (%) , (3.79) .

in » in 7 i
X

must be accompanied by the transformation:

L ‘
g g™ 4 ou (%) : . ' (3.80)
u uooow : _

where £(x) is a solution of the d'Alembeft‘equéEIé;:

n

3°f(x) = 0 . : ) - (3.81)

and uu(x) satisfies:

2 2 m2k
(=3%-m)u (x) = - = 3 f(x) ; sPu =0 . ©(3.82)
u o 2e M

‘In this last equation, e. is the renormalized charge:

! - . .
2 . &

e=Z3o

Under the transformation (3.79-80), the gauge-invariant

operator G (eg. (3.78)) transforms into

¢t =i+ L g vt | (3.83)
TR "
) m )
where ~ ’
S J (x) = mz[u‘(x)h— L 3 £(x)] > (3 84)
T 3! 2e Ty ' . : ‘ "

The vector potential becomes

78
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o _%in. :
Auf(X) = Z3[Uu _+ uu(x)] + ... (3.85)

The renormalized c-number vector poténtial induced by the

boson transformation is then .
§ " A B
(x)]0> = uu(x) + ol (3.86)

o}

. L
- -k
a (x)-.<O]Z3 Auf

u

|
i
1

THe corresponding c-number current /is obtained through:
-3%a =J 4 ..., 7 (3.87)

. . . r *
Here, the dots stand for contributions coming frgm the
- functional FS appearing in the eipression of the dynamical

map of the gauge potential A°

(see eq. (3.74c)) .
The field stre@&ﬁﬁafh \fined" as

v

u =3 u - 9. u . . (3.88)
v TRV vTH : »
Solving (3.82) and substituting in (3.85) and (3.88) we
can express the c-number vector potential and field

strength as functionals of the bBoson' function f(x):

2 . ’
.uu(g) = %E JchdAc(x—xﬁaLf(x') = au(x) . (3.89)
I (x) = - 93-[d§!A (x-x")9' (39" - a’a')ka) (3.90)
U B 2e | - c nv v | :
uuv(x)E (3.9;)
where

L
<32+‘§“2)"-Ac(x’ = 5 0x)

\

H

79
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From the structure of the e.m. observables (3.89;91)

we see that, if f(x) is Fourier transformable everywhere

(i.e. [au,avlf(x):=0 ) Jh =0 : the gauge invariant obser- -,

Wabies are unaffected by the boson transformation. This

is due to the fact that the boson transformation? (3.79) in
i ' .

- this case is a gauge transformation, and therefore does not

lead to any observable effect. Thus, the boson function

} v
fi(x) should not be Fourier transformable in order to pro-

duce macroscopically observed effects.

j ‘our analysis showed that,}also in a gaugenmodely the

Goldstone bosons appear in the dynamical magiof the

Jelsenberg operators and that their infrared effects cause

| . .

the dynamical rearrangement of the global symmetry.

I
|

Hurthermore it showed a peculiarity of gau?e theories:

: \ i

ﬁhe only macroscopic effects of the local condensation
‘ .

of the massless bosons are obtained by a boson functlon

M

whlch is not Fourler transformabile. = When there is no gauge

%iéld, persistent flows without singularities (such as
ﬁinear flows) and with singularities{tvortices) are both
gessible. ‘ S

f' The symmetry considered in this model is Abelian; in -

this case the arguments are simpler and the main results

appear more clearly. It will be interestind to consider

- also non-Abelian gauge theories and to analyse the connec—

'ﬁion, if any, between the unphysical Goldstone mode and

, . »
the fictitious scalar field introduced by Faddeev ‘and

(72) - . | i L (73)

Popov in the perturbative treatment of a Yang-Mills



. in fact,. we have shown

" are
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field theory. However, the requirement that: the boson
' .

r

function must be singular (not Fourier transformable) in

- order to produce observable macroscopic e.m. effects

should hold also in a non-Abelian theory, due to ;he/fact

that this is only a consequence of a GuptafB;euler type

14

condition. - _ . g‘,b {

Thére-is another peculiar feature oOf gauge theories;

LBy " : ¢ /
4 21) that, when a theory has a gauge

T symmetry the dynamical rearrangement of symmetry takes

place even without creating any ordered state. To illus-

trate this point, wé discuss‘the'gauge transformation of

) S ]

the conventional (3+l) dimensional- quantum electrodynamlcs

v

from the point' of view of the in-field transformation. .

o

We start with the Lagrangian P
‘ ~
‘ e
L (x) =LO(W~(X),AU(X_)) + B(x)auAu(M) + 5 aB” (%) - (3.92)
where Y(x %s the electron field 'and A (x) is the gauge

. 3 4 )
fiedd, and L 4 IW(X) A (x)) 1is a gauge \nvariadt.Lagrangian.

ieX (x) R A ' e : e - |
(e vx),a (x) +aﬂ“‘/”*‘o““’”'Auf",‘”i' (3.9%8)
~ R . . S
The éupplementary field B(x) introduces the ‘canonical /-
conjugate of A and fixes tHe géugejcbndition(74}. The

, : ’ »
choice of the metric is,g =-g;. =1,
00 ii

R ) s . ‘)' . .
The W.T. relations, obtained from the gauge invariance

i - .1 o, - .
<8%B_ ...3%B_ , 3%B_-5"F (x) + ie[Ry=int>. Z0. (3.94)
1) ’ .Xn- XL M - J, .
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and

u - 3.9
<d Au + onB(x)>J'n 0 (3.95)

where, as usual, <F(Au,w)> means the functional average

with the ,source terms. The derivative operators (3.94)

#d (3.95) commute with the bracket symbols for the func-
' (75)

tional’average The W.T. relations for the two point

functions are

92<B(x),Au4y)> + iezé(x-y) =0 . (3.%6a)

t; 2,2

3.8 <B(x)B(y)> =0 (3.96b)

(3.96c)

BUQAU(X)Av(yJ> + a<B(g)Av(y)>:; 0

It follows from (3.96a) and (3.96c) that the propagator of

"the vector boson satisfies

PHAU\)(P) = - (1.—\2) ] . S (3-97)
‘P . .
where ¢
N | - lk | . “ip(X-.Y) - . B
1 »»Q<Au(x)Av(vy)> 3008 J dype iuv.(p) ] (3.98)

. L 'q,\.a;(
When we restrict the choice of the gauge by the re-

/

quiremant that the sinqularity'in Auv(p)’be a pole or cut

only (i.e. the théory admits the particle represéntation).,
v . j

we find, by using (3 97) that pole ‘terms in Auv(p) are

.

determlned as _ _
o > . .
-g , -g +P P./m™ PP
_ 5 _CHV (m) LV TRRY) Y
uv(p) =l t ;) - 5
P P -m~ mIP

Jr...' (3.?9)
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<O[T{AT?(X),A;?(y)}[o>==;_£_E Jc4pe ip(x~y) "ij
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with a=2_. In (3.99) fhe dots stand for terms with certain

3
cut singularities. We have Z3750 and‘Z§=:0 in the case of

conventional Q.E.D., while Z, =0 and Z?;éo in the model

3

analysed before. When the latter case was studied, it

was assumed that the system appeared in an ordered state;

i.e. there was a phase order paranmeter which did not vanish.

It is still an open question to ask whether or not the mass-
iveness of the gauge boson always reéuires the presence of a
certain non vanishing order parameter whep‘the space dimen-
sion%s more than one. The answer Fb such a question requires
detailed dynamical calculétions.

We analyse the conventional Q.E.D. i.e., the case

(m)

Z3#0 and 27" =0. It is straightforward to see that the

rélations (3.96a-c) and A p) = 2. —2UY 4 .. are datisfied
? TRY P 3 p2 : A

by the following in-field expressions: .

A x) =22 —2 o plPg v L (3.100a)
. G A |
> 1/2—>-‘ E} : :
A(x) = z3[A;“<x) Fep g, 01+ L (3.100b)

: (-v°)
B Lzl%o?r oyt L0 0 (3.1000)

Here A%n is the transverse photcn in-field, which satisfies

Y

112
8 -Pipj/\Pl_

(2m) P2
(3.101) -

and Xih(x) is a massless in-field with positive norm and

b (x) is a massless in-field with negative norm (the Gupta-

—_

Bleuler ghostf\-
3
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The dots.in (3.100a)-(3.100c) stand for the higher
order normal peructs.. The relations (3.10Qa)4(3.100cf
are weak ones. Once the asymptotic fields are identified,
one can derive more information about the.structﬁre of the
in~field expression of the Heisenberg fields by means of |
the Lehman-Symanzik-Zimmermann formula together with
successive uses of theﬂQ;f. relations.

The reéults~are:

L
72 . o . .
p(x) =explie —3—¢ b ) 1{z 0 + FIAL" ™ M - b0
(-V7) ‘

_— : (3.102a)
> o %ain v .in ~ in ,in in . in
A(x)==z3[AT (x)4-_»~§eg-x (x)]+F[AT YT XT  =bT ]

(~V7) \ _ (3.102b)

| g o
5 . : . , :
A (x) =12; -~%-$ﬂ%n(x)-+F e S (3.102¢)
SUANCE ° | |
5 2, %, in in A
B(x) =27 (-97) (b - x ) (3.1024)

Here V" is the electron in-field,

"y

’ Fo’ and F are

cértain linear combinations of hig ;-brder normal products

of in—fieids. The Gﬁpta—Bleuler condition for amy observa-
ble state |a> reads as follows:

Il

(-v2) % (pin _ i a2 o : L (3.103)

This ensures that neither the longitudinalAghotoh?xln or

‘ in . . . .
the ghost»bl appear in gauge invariant observatipns. The

. FE -
relations (3.102a)-(3.102d) imply that the gauge
| -
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v

transformation (w~*welex, Au-+Au—+aﬂA)-in oonventional

Q.E.D. is induced by

L ‘
X. o (x) — x, (X) +L1 (=v2) A (x) ‘ (3.104a)
in in . Z/Z :
3
‘ 1, o2, I ’
Dx) — b (x) + = (=79 Ax) . (3.104b)
7 2 : . . .
o3

The free‘fieldgequationS»for Xin and bin are invariant
under (3.104a)-(3.104b) when and only when 82x==0. This
is consistent with the fact that the gauge conditionl |
BUAU-+Z3B==O is preserved when and only when'a?x:eoi In
other worde, when A (x) does not satisfy 82XF§0, the gauge
condition is modified. ’EgﬁatiOns (3.104a) and (3.lq4b)

show how the gauge symmetry is dynamically rearranged in .

Q.E.D. . Although, due to (5;103), the ghost field and the

longitudinal photon X;, are not observable, they inducCe

through (3.104a)-(3.104b) the dynamical rearrangement Of

;io .

the Jauge symmetry in conventional Q.E.D. _ /

So far, we haVe been concerned only with the’ loCal
geuge transformation. Now, we consider the global phase
transformatlon of the Q.E.D. . Knowing the canonical
variables, we can fonstruct\the generator Q[x]vfor the

gauge transformatlf

Qtal =,Jd3xTJo(x)x(x> +’Foiaék(x)-JB(X)BOA(X)]'} (3.105) 'f‘

When the Heisenberg equation

\) : * “ . .v l .
-3 Fvu_o_Juv- 3, B (%) ~ (3.106)
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is considered, (3.105) can be rewritten ‘as. .

Q] = JdBX[B(x)A(x)-— B(x)A(x)] . - (3.107) Y
where an integration by parts has been made. SRR e
On the other hand, the global phase transformation . .
w-+eleew, Au(x)-*AU(x) is generated by *
_ i : | '
Q = [d3x[ ) Foi * B(x)] . . (3.108)
If the first term in (3.108) were to vanish, 0 would be
identical to lim 0OT)]. However, this is not true\in the f/
A1 : _ : i
case of Q.E.D. because F oi COntains_a massless component. \
To calculate the matrix elemets of Q in the case‘gf
Q.E.D., let us recall that the current JU(X) is written as:
I (%) = = 3°A (x)~t (1-0)? B (x) . ' (3 10%)
X = - — .
H ' AU X? ¢ u X . ,
“where use wasemade of
avA()"‘B() Y, = Z : S
. v (X) = - aB(x | Coa= 2y L { ’

4

e -
We are interested in the matrix elements <p[( -3 )A lp'>,

where p and p' are certain one electron states, Slnce the

d'Alembertian of ythe renormalized photon fiel® gives a

renormalized electric source, one has ' - ~ o
2, () b L% | -in_ in
.<pl—.8 A (xv)Jp >=‘erZ <plw Y.y lp'> . (3.110) .
TOR 3 S . .
. | Ly '
Using. the fact that er==e2;; we have
‘(fh _ ~in in N o .

i (x) ="ez.y YV 4-(1—Z3)BUB(X) MR (3.111)
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where the dots stand for the higher order normal products,
of in-fields. Therefore the generator Q is written as

- .~in‘ in PN L
Q = J?BX[eZ3w ‘Yow *—(}—23)B(X)]_. : (3-112?

Note that in the Calculétion of any matrix element of ‘

Operators which involve Q, the spatial integration should

be performed only after the matrix element of the inte-

grand is calculated. Note also that every particle state
’ 3

is a wave packet state, ’. _ //

\ ; . :
When the in-field expression of B is considered, we .

see that the first terﬁ in (3.112) generates,the
x . ieZ 8

renormallzed" phase transformatlon of w | wln-+e 3 w;n),

while the Second’term generates the fleld translatlon of

1 [}

Zzbln/( V ) and’ Zzgzx(lrl/(—v?‘)/2 according to

7 3pin . Z%bin
32 - — %\: + (L-z) 0 : L(3.113)
(-‘V )2 (_v )2 .
and
. {
Yy L
Z2x, 23X, .
—2Rp — 3An g, (3.114)
(-v7) = (-v7) 2 ‘ : 3 *
Then the dynamical map of y shows the remarkable way that e
Q as a whole generates the phase transformabaon R L
wﬂ-exp(leS)w .
, A e
-16Q ieQ iez38 ‘ie(lfz3)6" ieb

‘e e =g, e Vo= e Y (x) . . (3.115)



s

Then we see that the global phaee transform®tion Oﬁww(x)

'A--‘.'l

is induced by the transformation

ieZ38

P e v

Z;zbi(r} z32blrl .

2 s+ (1-z,) 6 (3.116)
(-9°) (=v7)*

. \
3 . \
23Xin 23Xin L )
2 7 P (o200
(=V7)y=2 o (-v7)

which is the combination of the field translations of bl
‘ - - ) ¥

and x*" and the phase transformation of the electron field
with ‘the renormalized charge e =ﬁe23. In this way, the

. B term in (3.112) plays a SLgnlflcant role in creatlng the
dlfference between "bare charge phase and renormallzed
charge" phase Whlle‘lt does not contribdte to the observable
total;charbé becaasé Qf”the Gupta—Bﬁeuler conditiohi ‘Thus, y

we say that the charge difference (e-e is in/the unobser-

(76)

r)
vable sector.of the Hiibert"Space

B ‘We showed that the changé of the total charge through

/
renormallzatlon is- explalned by- the fact that/the m1551ng p
charge is in the unobservable sector of the Hllbert space

/

our, ch01ce of the gauge condltlon is: ./‘ o .Z '

, . s , o : . J - '
8”Au - B s with, o = 23_,‘ '_ B (3.117)"
Any gauge transformatlon wi th 8 A = 0 does not change thlS
gauge condition. Furthermore, this cholce of gauge does :
not introduce any dlpOle ghost.‘.Tovmove to another choice

. . e
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the Gupta—Bleuler‘ooodition.

of gauge without introduciho ény‘q—number space—time
functlon in the 1n-f1eld expre551on of the Helsenberg

operators, we should perform the - .gauge transformation
2

IW1th a q—number A. In order to move to the gauge w1th

o # Z3, we need X with the property

¢ 3

S:A‘; (o = Z3)B ) o . (3.118)

which shows that A contains a dipole ghost because 82E==O.

This shows how the dipole ghogt appears when o # Z3. ’

In the case of a Yang-Mills theory,pUAll changes

under the gauge transformation even when 82A=0. It is

.

therefore an open question to ask if there is any choice
. 1 .
of gauge in which the Yang-Mills-Heisenberg field contains

: -

.no dipole ghost. In’'the case of Q.E.D. we saw that the boson:

transformation
— Y, +
n Xn

b, — b, + £
in in

induces the local gauge transformation, wi;hout modifying

-

The boson-transformed vector potential au(xk and the

c-number field strength Fuv are given by:

_ f 1
= <0|Aa 0> == 3 f 3.119
a, = <ola;(x)]| St | ( a)

F =

1
UV e

[8u,3v] £ . (3.119b)

Note that a non-vanishing e.m. field is obtained only 1if

f(x) is multivalued. » "
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2.4 Spacetime manifestation of internal symmetrles:

creatlon of tOpologlcally non- tr1v1al eXtended

objects in the ordered state

wf”
In the previous sectlon we analysed thé role of the

‘Goldstone bosons in the dynamlcal ;karrangement of the -
symmetry of the Helsenberg fields 1nto the observable
s&mmetry of the phy51cal fields: we saw that, whenever-a

Symmetry rearrangement occurs, the observable symmetry of

k4

ields contalns the translat{ons of the GoldStone‘;

bdsons ‘
in in ‘ ’ . ‘
- - 4.1
X, Xy * eafa(X) _ ( | )
a =1,...,n n = number of Goldstone bosons
. "SU, o

Here e are translatlon parameters and the f are normali-

zable c- number solutlons of
3

2% = o : | L . (4.2)
O(,‘ i )
-introduced in order to properlyndefine(64? the generators
of the in-field translations
_ N
. : . I . R -
Yot (r ) - er3xf (x) 2y i0 g | (4.3)

AN a o ot “q v : :
B : ——

in the' Fock sSpace of the phys1cal fields. e

Eg. (4. 3) ~led us to theYchclu51on that the infrared effects
of the Goldstone bosons are respons1ble for the dynamical
rearrangement of symmetrles. ' : _r‘" . : )

Here we analyse an observable effect of the transla—

tions (4 l); namely, how the condensatlon ofi the massless

)

90
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4 -

bosons in the ground state of the phy51cal Fock sp§§e leads
to observable spacetlme manlfestatlon of the internal symme-

try group. .To understand 1ntu1t1vely howvthis can happen

-, ’

A we<denote by hN 4a quantum number carried by these bosons,

° and by hAN the quantum fluctuatlon.' ‘When the condensation
of the bosons makes N very large, then hAN/hN-—AN/N becomes
very small and” the system created by the condensatlon pro-

-cess behaves cla551cally.‘ In this way.from a system of kg;;

. >

gquanta, a system,,in which a-classically behaving extended

object coexists with the quantum fields; 1s created. The S
L) -~ -

¢classical system manifests in _spacetime .the effects: of the
translatlons 51nce the transformatlons (4.1) regulate the

condensatlon>of the massless bosons.

The above intuitive congiderations have been put in

(19 22, 18)

a mathematical form: the boson theory The

boson theory-can-be:?gmmarlzed in two steps: ) ‘ \r—/;
(1) use of the dynamical map @ :
(ii) “use of the boson transformation.

In the first step .(see 2.1) one usually starts from

v

a'given set of Helsenberg field operators (say VY) which

satlsfy known field equ?tlons

A(‘a)"w(x)vr— F('wx)) : : | (4.4)

We look then for a solutlon of eg. (4.4) which can be .
weakly expressed in terms’ of normal products of a set of \\

-certain free' field operators

-




. . .
| . 0
. » N
~ - . 4

LY

px) = Plx; g (x)]

Thexdynamical map of .any Eeisenberg'operator:is then
obtainedéffom (4.5) (sée 2.1)
0. = 0, [x:¢ : R .6
'HIW] OH[X'¢Q(X)]_" ‘ ‘/ (4 6}

7
5

\ ’ \w ‘ . i .
Egs. (4.2) and (4.3) determine the structure of the

Heieenbe;g Operaﬁors Qhen no.exiehded objects are creaﬁed
in ﬁhe»quanﬁhm'syStem;°

» ~ The secend sﬁep iseconsidefed whenlone wents to.des-
cribe phenotmena related to tﬁe eppearance of a c1assically
behaving extended bbject. Extended objects are'introduced
-in the Eheory by:meQQS.of boson transfor'etions.’ Let ¢

be:a beeoh/field appearing in (4.5) satigfying the free
X / . Lo

"fiela/Equation

W

dhxa{a)¢Q(X) 0" ey ‘ | o K4'7L

. - o "“'_‘ . ‘ °
Let us perform thé boson transformation

¢d‘§).f—)¢a(x)if'faﬁx) N | (4.8)
where fa(xf'ié a c—number_fuﬁction\Satisfyingbthe equation

)\.a(ﬁ)fd(x) =o. . o (4.9)
As an effect of (4.8) the Heisenberg operator is madified
as . _ . \x%mn~

. . ] f '?‘ . . .

wfx) —7;w (x)-w{xﬂ¢a(k)+fa(x),.,..] : (4.10)

© and “the boson-transformed order parameter (here we assume

Yy to be a boson field)

yd
14

. -
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The transformatlon X4 8), together with theﬁcondrtlon"

(4.9), shows that f »are'created by‘thefcondensatlon'of

“

the bosons o, (x). t . S -

B 4

, ,( 93 i &3
-(‘\",,,,_M___ _‘__jx RO N . }} A T 3
: Lo - { g
RACENTN MR <‘0H{ lg>= <o|‘w(x;;¢a_+fm,..._),_lq> o ('4.,.11;—)
",’\' ‘ .o : : . { \‘ﬁ ¥ , _ s
descrlbes the spacetlme propertles of the system in whlch : :
£ ' ;
a.classical extended object con1sts w1th the quantum .
flelds. It can be proved that . _'l é ' v
A(3) wf = F('wf,)“._ | ST R (4.;12) UL
. 3 . ?'\ L, N . ‘ ~ v
(19 28) W
ThlS is the content of the boson transformatlon theore e

%

It has been w1dely known that to perfgrm the trans—

formatlon ¢ (x )+—¢ +c number 1s one way. tp cover many
. B #
&- i

unltarlly 1nequ1valent representatlon of canonlcal commu--

- 1

(42)

tatlon relatlons .' However, when we speak of boson
transformatlons, we are concerned not only with the canon

1cal commutatlon relatlons, but also w1th the Helsenbeng

'field equations; the boson transformatlon is condltboned

-
b

'w1th the requlrement that the Helsenberg equatlon should

not change. Thls condltlon is the one Wthh leads us to

[

o

(4.9). It should ,be. noted that when f (x) is 51ngular

A ] . ;)‘\

(see appendlx) ‘the orlglnal Helsenberg eguatlon should

hold even at the 51nguﬁar points.- Note that the boson

: &

'transformatlon (4. 8V can be performed on any boson fleld

.

massless or mas51ve.\\however, when the theory allows
T
massless bosons to appear in the dynamlcal map of the

Helsenberg operators, ow1ng to energy con51deratlons, we

N

>



Vi

'Jw1ll bexcbn51dered in Chapter III.

grearranged group q '

.namely B P

':expect that condensatlons of massless bosons w1ll be

PR

favored, ‘We con51der 1n the follow1ng only the conden--

\.

'~ sation of massless bosons. A case in Wthh an extended

J’,object is’ created by- the condensatlon of a- mas51ve boson

J .

Let us cons1der then & quantum fleld theoretlcal

a

h'model in whlch ‘an ordered state is created As we men-

i @ ,l.‘.
tloned the condensatlon of the massless bosons is 1nduced

'

by the translatlons (4 l) the result of the“condensatlon

X

‘1s the creatlonyof an extended object in the ordered state.:
-There exists a wide varlety of p0551ble extended structures,

teach one characterlzed by dlfferent cholces of f (x) satls—

fylng eq (4 2)(see appendlx). However, 1t is lnterestlng

~- . «

to note that dependlng upon the model under con51deratlon

there ex1sts some extended structures w1th .2 conserved

5

f quantlty,‘thegso called tOpologlcal quantum number, asso-

B

-c1ated w1th them We analyse the questlon asklng Wthh

restrrctlpns must be 1mposed on the bosoﬁ transformatlon

- -
\{ B .-r .

parameters f.fln order to create topologlcally non- tr1v1al

.

hextended objects., We w1ll see that an answer to such a-

e

»queftlon s strOngly COntrolled by the translatlons of the

" Our startlng p01nt 1s the requlrement that “the boson—_
transformed order . parameter (4.11) should‘be 51ngled,valued;

)

¢(x f +6f ,...) ii%g(xsz)(;; L - (4.13).
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.

Where Gf denotes the change of the boson functlon when r

‘. -
X moves along a closed path € in. the phy51cal spacé

= e
ﬁ",""f:’
4w

dfc-—_- st VE, - | s (4,14)

e

; - *

‘ When #he c§§Q3tlon (4.13) leads to: &f v, with vwinteger,

'Athen we: say that the extended object created by f is

topologlcally non—tr1v1al and we define v as th\\topologlcal

quantum number . "‘f‘
When an extended - object is such that . R {
.Q‘C ' g »':3 ’_ .
§£, =0 o
=

‘we - say that the extended object is topologlcally tr1v1al

How does the rearranged group control the ch01ce of. the ﬁ
1.

o

such that Sfa#()? For_the,sake;of s;mp11C1ty,we assume,?

a

thé circle ¢ to be infinitely.largei*"vt ey

A

We recall that the creatlon of e-éxtended objects“o--
in the ordered state is 1nduced by the translatlons of the:“
Goldstone bosons (4.1). Further, we: assume that f (xft;"'

g pends only upon the space coordlnates (statlc case) and

is such that . .
(4.15)

5

Here n denotes a dlrectlon of approaching 1nf1n1ty

'~ When we consider the asymptotlc form of the boson transformed

order parameter/induced by boson functions satiSfying (4.15),

we have:

<



- :F: a ‘; ', 4
- ' X ° q-:‘ X ' .
‘Z"\'\ o ! . : ! _. 9 6
-~ . - - N v-l- W + \\v’: . .' v . 4 ) .l’
llm ¢ (x f Bufd)ylzo(x,galnz) SRR _(f‘ 62

& ]
- Upon 1dent1fy1ng the trans atlon parameters e appearlng in

~ (4 l) w1th the asymptotlc value of the boson functlon gagﬁy
< we obtaln thixy x@[“ ’ ; S -';V” : : : o
ol : : = 30 ) s L& 4,17 '
v.dv(x,.ga(n)k,O),_ (?(x,,,ea) %;gd(g)_ ConE (4.17)

, *“Eq (4,17):1mplles that when (4 lS) is satlsfled the‘f

tﬂi asymptotlc form of the extended object w1th dlfferent o

‘w

,corresponds to dlfferent values of 6 . In fact upon chang— -
.__1ng the dlrectlon n cont1ﬂhously, the functlons g (n) are

mapped 3p a contlnuous path in: the manlfold of the transla—
S \
-v,_f tlon parameters e' of the observable symmetry group

In thls sense we: say that the asymptotlc form of the ex-

'tended object 1s a spacetlme manlfestatlon of the 1nternal

La S . : . I . . .
Symmetry T S S

Y

The topologlcal constant 6f can be quantlzed -only if,

changlng the dlrectlon of n contlnuously by a fu¥l turn in

v p) 1

RO the phy51cal space, the functlons 9, (n) are not mapped into
f‘ a closed path of the space of the G 's. In fact,

s £C

o

- C >0

J ds Vf = §g = §8 . . (4.18)
o o a - -

\

oo Let:us illustrate this situation for the case of the

U(l)esymmetry. In this case, the boson-transformed order

" parameter is given by, (see "2.3)

- ¢(x;f;3uf) = eif(X)F(Buf) . : (4.19)
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L

(’}'

L3

© L §£C ;vf‘dg VE = 2mv. o (4.20)

The eq. "(4.15) implies

ng \

lim 9Guo £,6) = P9 g S (4.21)
%] e ' o ' |
"and (4.20) leads to
5g = 21y L S T (4.22)

where &g is the'change of g(n) by a full turn of R#.

ﬁ Eq. (4.22) shows that Sg is  the topologlcal quantum number

éfor the U(l) -Symmetry. Sg-o if and only if. the change of
»g(n) under a full turn of n can, be mapped on a closed path.

lln the manifold - -of —&he translatlon parameter 6.

i
-

In the above specified way, the asymptotic.form'Of
¢ (x;£;9 f) manifests the internal syfmmetry and the. 1nteger \
cla551f1es the homotopy classes of the mapplng between {g(n )}
and 6. The, same argument,can‘be repeated even when we have’
a gauge field. The only modification in this casejls due

to the fact that the vacuum expectation value of the boson-

transformed Heisenberg field has the form (seée 2.3)

¢(x;f;au—8uf) eif(x)F(au—éufl \.f A “ - (4r23)

r

Eq. (4.23) completely clarifies the fopblogical nature of

"the fluk quantization in vortices In fact when one con-

siders the vortex line created by the boson trafsformation

(19, 2%), one has ‘that ‘ “

9.7,,
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v 14
r=/x2 %2 e a ~ = 5 f (4.24)
i 3 s - 2e Tq . .
and
o ' . b
lim £(xJ =8 = polar. angle in cylindrical coordinates.
y > ) L} z . .
| %[+ _ (4.25)
- '
Use of (4.24) and (4.25) leads. to
lim de(X;f;Buf)‘ = el-eF(Q) ' ' - S (4.26)
implying that
. c . . “ ' .
SE = [ das ﬁf::Zﬂv?fé dsuaU . : (4.27)
C - C '

LI

which shows th§t>tﬁe quantization of the e.m. flux is bnly

a consequence of the single-valuedness of the order para-

\;éter.
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‘appear”and the perturbative expenSion‘is usable.

-CHAPTER IIT

CONSTRUCTION OF SOLITON SOLUTION OF 'THE

CLASSIé?L EULER EQUATIONS

(

he:aim of.this chaptet is to present & description

‘:atiOn'betWeen‘the boson theory f extended -
\and the approach based on the sollton solutions
of the Euler equations for. the cla551cal flelds(77 78)

- o

also 1. 2) We will. see that the extended objects cons-

(see_,

tructed by the boson method become the sollton solutlons,

'qf the Euler'equatlons when the Planck constant, h, is

ignored,'implyingpthat the soliton solutions can be regarded
as the extended‘objectsrwith a quantum‘Origin;

To,make the essence of our aporoach more transparent
RS

o |

we consider a 51mple_case, in Wthh no compos1te'part;cles

).

Consider a Heisenberg equation

LN = F) . (1.
T Temde g gl T o (79)
Egq. (1.1) leads to a Yang-Feldman equation E
bo= T+ WG] TR . (1.2)
where - ¥ is a freb boson field satisfying
A ¥R =0 . L)

It is important to observe that F (y) in (1.1) is chosen in
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such. a way that the mass in A(B) 1s the physrcal mass, and "“
. e . ' S . .
thereforez that.?‘m is the renormalléed (or physlcalﬂ ﬁree .
fleld . To. understand this, we rewrlte ﬁl 2) 1n the form ;“; ;
o e N n” b - I "il o Y NI N .
C<aly(x) |[b>=<¢a l" 4 1,.”]b,> + (=1) J\d4)§'~A(x7'y) <a}F (Df [bx, ~(1.4)
. L . - L ‘ ,‘.\.' . B . g 4* . ', ««“:. . :.’/ f‘ - .’.'v— » »’ [<]
Here <a| and Ib> are . vectors in the Focg soace of q and_ o
O F {w] means Flw] at the space—tlme posltlon y ‘The‘funcﬁ X ;
'Atlon A.(x) Ain (l 4) lS the Green s functlon RN
A(a’M(x) NN . § (1:5)
,The second term on the rlqht hand ‘side of éf 1) dlverges "Vn"".
unless <a]Fy(u)|b>'vanlshes 1n a reasonable manner rn the,k," -

» dllmlt ty-**00 . Such a dlvergence is aw01ded When ¥ n'ls{v Lo
’renormaliZedj 1t is ellmlnated by the mass counter term‘{;‘ ST
1ntroduced in the renormallzatlon procedure. '7“»;;' g'“_ '“ o,

2 ' A - R
e»‘, The above argumenb 1mplres that we regard the L L
tod ~ ' . P
‘He1Senberg equatlon as an equatlon among matrlx elements

(1 a, the weak relatlon) All the equatlons for Helsenberg

2 . N -

‘operators 1n the follow1ng should be understood as weak

“ S
Sy, »

relatlons. When we' solve (l 2) by sd@ce551ve 1teratlon,v'..\<‘
',we are led to the usugl perturbatlve expan51on 'The:result'*rz” ‘
'1s an‘express1on for Y ln'terms of Yln -“;f, ' \j'n;ji . -
w<x>‘~“-=i'lk~(xf;ﬂ%}?)' ST T e (1.6)

‘Wthh is called the dynamlcaﬁpmap Itﬁss the- expre551on T

*of the fleld w ‘in terms of a llnear comblnatlon of normal



products of the phy51cal flelds' it should: be understood .
as a weak’ relatlon \f' 'V. tfi e .
Let us now 1ntroduce a c- numbex functlon f(x) Wthh :
'satlsfles the equatlon for Yln
rBYE =0 o
’Then,?we.can’generalize the &ang—Feldman equation"as_}'* g
vwf;=?lnr+ £ 4 [A(3)]7 T F(¢f)',”" » ""‘,‘(l.ax
Solv1ng thlS by succes51ve 1teratlon, we obtaln a new
solutlon of the Helsenberg equatlon (l l) o _;‘Ja'ﬂ-« 2
v (x) = w(x;? +£f) . B TP o '-(1-9).g/

1 '1s obtalned from w by means of the boson transformatlon.

o -
The fact that both w and w -Satlsfy the same' )
- l"

’ v . {;" -
He1senberg‘eQQatlon 1s the content of the boson transforma- .

tion theorem-‘1

a@eyFeareh o N S U T .
:We=int:oduce3the c—numbetifieldx¢f'as
 ¢?(x) = <0wa(k)Jo>'..-' S
When we 1gnore h (the Planck constant) ¢ﬁoWili»be denoted | o
¢ = llm ¢ (1.12):
O h+0 . BRRES . o :
N > k] .‘?i o ﬁ
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Note that now the differénce between' the vacuum

~expectation value of products of wf and‘khe product of

.vacudh expeotation valuEs of wf is due to the contractlon
of thes in- flelds, which create the loop dlagrams in the
course of successive iteration applied to (1.8). Since
the contractionlef”tbe in—fields creates terms thch

vanish at h==O,_Qe have:
£ £ E
P [0y = F (o )\O(h) : o (1.13)

2

»

Here‘d(h) sttands for terms which vanlsh in the llmlt h>0.

Thus, the boson theorem (l.lO) leads to the classical Euler

equation(?8) _ -

nerele = Fed) L : N UL VIR

i

AW The above argument’ shows that ¢Q is glven by tree

~

(28)

! general method of

dlagrams only We can formulate
oonstructlon of soilton solutions ¢ of the class1cal Euler
equatlon as follows Flrst! construct the dynamlcal map by
means of the tree appraxiﬁation and then perform the boson

transformation,_ We obtain wf in the limit h- 0. The vacuum

‘expectation value of wf thus obtained is the og which

satisfies the classical Euier equations
The situation becomes very involved when Y is a fermion

field, because <ij 0> vanishes. Im this case one can

-

Stlll donstruct varlous boson llke operators by means of

\number of w When one finds a set of

boson—llke‘operators-(say fa(w); a=1,...,n) which satisfy
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X
a cloéed_set of'Heisenberé equations, we can write down -
the‘elessical equatione of the same forﬁ.. The latter
classioal equations aredregarded as the Euler equations,
and our Considerationscan be applied-to these Euler
eqﬁations. However, it usually happens that the Heisenberg
edﬁations are not closed by a finite number of boson-=1like
operators; to obtain a closed set of Heiéenberg equations
for boson—like operators,.we usually need certain approxi-
N o <

mations. The Gor'kov equation for the order parameter
A(x)(BO). in the theory of superconductivity is a well-
known‘example of this kind of Euler equation. &hen A (x)
is very small,'the'Gorfkov equation becomes the Ginzborg—“
Landau equation. When A(x) is not smell; its Euler equation
has a very complicated structure.

Furthermore, when we denote the boson- transfgrmed
electroﬁ Helsenberg fleld by wﬁ “the order oarameter is

equal to <OIW¢V¢[0> and the Goldstone boson\;s a bound state

of two electrons. Thus, the tree approximation should be

formulated in such a Wéy that the internal lines include the

propagation function'of composite particles. "Such a tree

-approximation has been formulated by means of the W.T.

relations and has been called the generalized?tree Spﬁro—
(81)

Ximation . Using this tree approximation, we can calcu-

late the dynamical maps of the electron field w¢¢ and qof

g

its boson= transformed w Then the vacuum expectation
value of w+w¢ gives A(x), which satisfies the Euler equation

for A(x). However, in the boson method for superconductivity,

-



-
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.y | : »
weldo'npt need to calculate A(x), becauée we can calculate
the-classical physical quantities such as the electro-
magnetic field and current by applyiﬁg the boson transfor-
mation to the dynamical maps of the electromagnetic
Heisenberg field and electron Heisenberg field(19’82)..

It is an interesting question whether or not ¢£; with
all the choices of fu(x) satisfying Aa(a)fa(x):=0, covers
.éll the soliton solutions of- the classical éﬁier equation.
The fact that fhe boéon transﬁormatibh covers éll the
stateé in which certain exténded objects are created in the
vacuum of the in-field Féck space suggests that the soliton

-

solution, ¢§, constructed by the boson transformation method

3

may cover the cases in which the asymptotic limit of the

soliton solutions at infinite distance is well defined (see

2.4).

Let us illustrate the construction of the soliton

solution ¢£ from the boson transformation.by using the

following model in (1l+1) dimensions:
N . . . - |
2 2 ' 3 - o ;
(=37 - )Yv(x) = Ab7(x) . _ (1.15)
Here x::(xoxl) and Y (x) is a scalar Heisenberg field. Using
" the notation,
v = <0|¥(x) o> (1.16)

: s
we define the Heisenberg ®perator p(x) by the relation

Px) = v + p(x) . | (1.17)



10

Egq. (1.15) then leads to

2. 2 ‘ 3
(—32-m ) p(x) = %-mgpz(x)-+% g p3(x) ) ‘ (1.18)
L 2 2 ‘ 2 .2 |
and also to Av =-p~. Here g=/2X and m = 2Av . Let -

0> (x) denote the in-field which is the asymptotic limit

of p. We have

(- 32 -n®) o' (x) = 0

-

by the condensation of pin(x)" We can thenefore ignore all

the in-fields eXceﬁt Pin” The tree approximation leads to

the.following dynamical map for p:
. : , r
i

o 3. 2 : 2
px) =0 ()45 mg(—1)J§~yA(x—yL:(oin(y)) tt
> 2 3 |
+ [% g (—1)Jd yA(xfy):pin(y): + (1.20)

:\\_ - ‘ .
9.2 2, . [.2 2
+75 g (—1)Jd yA(x—y)A(y—z):pin(y)pih(z):]

Here A(x) is the Green's furiction satisfying

2 2 C(2)

(=32 -mdy Aalx) =iy L. (1.21)
We put’ (1.20) in the form
. o0 (n) a. .
o(x) = ) o (%) : (1.22)
n=1 : .

where (n) denotes the order of the normal ‘products. 'Then
the'fbllOWing'recursive reLatioh holds in the tree appfo—

Ximation:



- ©
o™ (x) = 2 mG(—i)szyA(x—y):: I oW ey s |
L . - FI=n " (1.23)
+ 1 gz(ii)Jd,zfA(x~y) : 7 oM e (90T ()
. " ’ i+3j+k=n ‘
We nbw perform the boson transfo;mation
o, (x) — o, (%) + £(x) - o (1.24)
in in . ‘ .
where the c-number function f satisfies (\
' . ' !
(-3%-m?)f =0 . \ + (1.25)

v . <y
Denoting the boson-transformed p—fieldvoperatbr by pf, we
have

¢£ < v +<Q{wflo> T ‘ _ ‘ ,(%fZG)

We consider the static case. The space coordinates‘x,_y,,

will be simply denoted by x, y, ... . Then (1.25) and

(1.26) read as

.
gl o2 T S '
— f(x) = m“f(x) ‘ , (1.27)
dx©. - : - _
and ;
. ¥ e :
¢>§(X)' = v+ f(x) +%— ngdyK(x—y)fz(y) + [%ng'dyK(x.—y) f3(y) +

+%—m2g2deK(x—y)f(y)szK(y—z)f%(z)]+ . e (1.28)

where the Gréen's function K(x-y) is defined by
\ o : .

5 o , . ‘ o
[515 - Z]K(Xfy)\= S{x-y) . ' (1.29)
o dx ‘ - :

The recursive relation (1.23) becomes

106 -
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o (X)==1 mg|dyK(x-y): ] o P +
£ 2 : £
: i+7J=n ‘
+39° |dyK(x-y): J oD B (1 30)
2 ! . £ " Fg - L
: i+ij+k=n v .

As a solution of (1.27), we choose f(x) which diverges at
X =-» and regular at x=+»; f(x) =A expl[-mx]. Since f(x)
diverges at X=-®, we chqose the Green'g function K in.

such a Way that K(x-y) =0 for x>y : . :' : o ©

K(x-y) = ée(yfx) % siﬁh m(x-y) . , Co (l:3l)v
, o ' 8 ‘ N | :
Noticing that pf ){x)£=f(x), we can easily see from (1.30)
that |
£ © o ’n o - ° ’

with C. satisfying the recurrence relation -

&
Y (1.33)

Solving (1.33), together with the relation v = m/g, we

have

A 28 . . :

Cn =. 2V(E) | . ’ | - ) (1.34)
which ‘leads to , ~
’ v A -mx .
o n l+y—e 7. o
of = vaov J (R e™y oy 2V (1.35)
0o 2v & 5
n=1 A ~-mx
l-=— e
2v

When A is;chosen as.

107 0



A= _?2vem§ . . ,“3‘-:\. - _(l.'36) '
. N -0 o '\\"t" o .
then¢o(x) is obtained. as A
\ uv'. . . . ‘\\
o : N ~ . . Ve ] . R
65 (x) = v tann(D (x-a)] Vs S (1.37y -
(? . 2: . : oo \\»0 . .
’ v . Ce B By ,‘ '
which is~the well-known static' solution ®&f’ the Euler
equation » T o o
', ) - - o ; o , S ')
-3 -wf)y ol = atefn Lo (1.38)
- o O~ ' w
WhennA==2Vemé,f¢f(x) is given by - N
. f m . o ) ".»‘9
ooﬁx) = v coth[i (x'=-a)] . w(1.39)
For the'static>case (1.37) and (1.39) are the only solutlons
whlch satlsfy (1 38) w1th the condltlon ¢ (‘)-‘v(x-++w)
‘The same approach ylelds the statlc soliton of the sine- =
Gordon model. -
B
The N- sollton solutlons of the time- dependent sine-
Gordon equatlon have been carefully studied by a group of:
people at Strasbourg(83)

They showed that the choice
N,, . v

£ (t,x) = ) expla.x+8.t=36,] (1.40)
. Lo i
J=1 '
withjthe'condition" [
2 2. 2
oy - Bi = m .
: L . (83,36) o .
leads to the N-soliton solutions ~of the classical
sine:GOrdon equation

-

The construction of the‘two sollton

solutions by means of f with N-2 was. exp11C1tly made in
,?ef~(83)

In their appreach the boson transformation

108 °
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parameter for the N- sollton is related by a. llnear law to

the single soliton ‘parameters (see eq. (1.40)). So far .
we have been concerned with the expllc1t constru@é&on of

the soliton solutions of the Euler equatlons for the

classical fields $. We have seen how, starting from a -
quantum theory in which the Heisenberg equations are treated

as weak relatlons deflned in the Fock space of the phySical

¢ N

flelds, .Oneé can construct a quantlty ¢ (x) which is a SOll—

ton solutlon of tﬁe Euler equatlons for the classical fleld .

x‘n.
‘_x‘

We want now to con51der the energy of our solutlon

Let B denote the Hamiltonian of the Heisenberg fleld ¢
b

A -

H o= [d3x Mixiyl - ©(1.41)

where M[x;y] is the Hamiltonian density. The boson-trans-

formed Hamiltonian ut is given by

ut ='fd3x‘x[g}wf]l.' N (1.42)

When the tree’approximation is used, one can"prove,'by means

of the same argument used in the derivation of the cla551cal

Euler equations from the gquantum Heisenberg equations, that

lim <O]H [0> = JdBX_M[x;¢f] . (1.43)
h+0 ©

Ed?-(l:43) when used in the -calculation of the energy of

the sollton solutlons of the l+l dlmen51onal models analysed

.Q»"'-.- %




(2 3 o
3 2 T2
g
- - .44)
E, = e (L.aa)
8 o 5.G. \
g

- When the tree approximation is not used, the soliton energy

is given by

<O]Hf[0> = dek<01J{[x;yf]]o>v{, . (1.45)

- g .
Co : : U s .
It 1s important te note that the space ‘lntegration

should be made only after the vacuum expectation value of

the bosoq—transformed Hamlltonlan den51ty 1s calculated.

. This is true only when bid has a certain 51ngular1ty which
, , N

N

prohlblts its Fourler transform In fact, it is well known

that the Helsenberg Hamlltonlan H(w)'is weakly equal to the

'

Hamlltonlan of the phy51cal fleld H (¢ln)
o
. < v
, . ) . - in . . N ‘ ‘ '
<alH(w)Ib> = <a[Ho(¢ )ib> : , . - (1.46)
and that as’ we saw in (2.1), the proof of‘(l.46)aheaVily

-

Vrelles upon the fact that é Jis a Fourier'transformable‘

solutlon 0of the free fleld equatlon Thus, when f(x) is

Fourler transformable, we can’generalize (1,45) as
D S .
<ofuf]o> = <olHO(¢1?4-f>]o> ' (1.47)
£ R ' |

s \ - M
whlch gmves the energy of the’ cla551cally behav1ng extended

s,

object created by a regular boson functlon

.When f has a certaln 51ngular1ty whlch prOhlbltS its

110



Furthermore, the interaction between the classical system

L

e . . . . . R lll,

¥

Fourier transformyeq. (1.47) is not true and we use (1.45).

Singular boson functions are very frequent in static

(28) )

models.  In fact we have shown that, eerpt for the

case in whith' the energy of the ¥ "-quantum vanishes for

a certain non-vanishing value of .the momentum, f(x) for a

N ' . [ ) ) i
'static soliton always has a singularity which prohibits its

Fourier transform. The’bosou‘theory eimélifies many of the

preblems-which we usUalIy’meet‘in a quantum theory of exten-
ded objects n@: T

L 14

Flrst of all -the ptoblem of evaluating guantum

corrections to_the classical soliton becomes clearer.’ We

'feca}l that the cinumberlfield ¢flcontains h, it has quantum

effects ih it, although it describes a classical object:

the quantum correction 1s glven by the loop dlagrams appear-

1ng in the complete kx#O} expression of the dynamical map.

i .
and, quanta is consistently studied in. the boson theory, since

for this purpose we need only to calculate other matrix

elements "of ¢f and find the expression of the boson-trans-

g.

formed S-matrix.

The interaction between a classically behaving extended

system-and the quanta.has been.studied very fecentlf(zg)

‘The starting point is the Yang—Feldman equation (1.2) for

the real boson field ¥ and the expre551on of the dynamlcal
e

- map of w in (1.9) by means of successive iteration together

" with the tree approximation

\_/
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wf(k) ='¢£kx) + jd;yk(x}y)?in(y) oo . (1.48) -
. : A ‘

kN

Here 5" is the free field which sétisfies.(l.3g;.'The

second term of the dynamical map‘is called the.lihear »
boson term. Note that from (1.48)
<olofin = [ayxign<olfitis 2w (1.49)
- is the one boson wavefunction in presence of solitons.
Then, use of the boson'theofem leads(zg),td\the following ' .‘ -
equation for u (x)
[A(3) - Ft(65)Tu(x) = 0 T (1.50)

=

f) = 6F/6¢£. This equation shows that the %;n
4 . . .

where‘F'(¢o

quantum feels, thé self-consistent potential, which is

’

induced by the solitgg.

A detailed study of eqg. (1.50) has been presented in

ref.(zg) and will not be repéeéated here. °‘An importént fea-

ture of eq.,(l.SO) is the fact that it admits as solutjons

. 2

zero energy bound states: the So~called translation’

modes(77'78).

It has been.shown(24) that, in order,ﬁo incldde "self; _ ~

consistently” the translation modes into the quantuﬁ theory,

t

#
2

we need to enlarge the physical Foék'space. ‘The impdf%ant

result contained in ref.(zg)

is that this can be done if:we
. > . .
associate a gquantum coordinate Q to the soliton in such a way

- that



B = b X+ B) +F(x+ D) . q (1.51)
iAn 1mportant conciu51dn whlch oan be reached from (1.51)
is the follow1ng when the 512e of the extended object is’
much larger than the quantum fluctuatlon of Q, the extended
object behaves as a c1a551cal ob]ect When the quantum
fluctuatlon of Q becomes as large as the size of the object
1the extended ob]ect behaves quantum mechanlcally
Varlous small domalns whlch apoear in the quantum

ordered states both 1n solld state and high energy phy31cs

could be these quantum extended objects

- . i s
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APPENDIX

Singular solutions ofvxa(a)fa(x) = 0

We showed how soliton solutions of the classical
%uler equations aré constructed from a fully guantum
theory by means of translations of boson fields (boson

transformations)

The only~requirement‘imposed on fa(x) is that it must

satisfy : Q
B .;‘q!
A VE (x) =0 | | (1.1)
| |

where X (3) 1is a'free field boson operator.

We want to examine’ ‘now the singular solutions of eq. (1. l)

We consider flrst the static case (i.e. fa==fa(§),
X = space coordlnate), In a relativistic theory, eqg. (1l.1)
becomes

(V- - ma)fa(x) =0 . (1.2)

("

When ma==0, this eﬁ\igfo?/ \\a trivial solution, i:e.
fa(x)==const. When w "isregérd the,triViai solution,
eqg. (1.2) with ms > O/ﬁoe; not admit any solution which is
Fourigr transformablé. Thus, the static extended objects
created by the condensation of bosons carry certain singu-

larltles which prohibit the Fourler transformablllty of

f (x).
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The situation is different in non-relativistic
‘cases, since the energy momentum relations allow for

a situation in which

T+

m(?(p) = 0 for ;épa#o (a=1,...,n)

Here wa(g) denotes the energy of the ‘boson { ™ with
momen tum p. Assumlng that f (X) is Fourier transfofmable,

eq. (1.1) for static cases 1eadsAto
—_ w,(PIE (P) =0 | , -

implying that fa(;) is a multiperiodic function of the

+

form N
. : ip_X
= g ‘ |

when fa==fa(§;t), eq. (l.l)‘edmits“beth_regular and‘einghlat
(non—Eourier transformable) solutiene. o

‘For a relativistic theory the analysis of the static
case of eq. (1.2) implies tgat £ (x) has either a diver—
gent 51ngular1ty or a topological 51ngular1ty | Here/

—

. divergent singularity means that fd(§) diverges at i§]==m

at least in certain direction of x. By topological singu- ,

larity.we mean that fa(;)'is»not single valued.

We want to show- that topologlcal Slngularltles are
P ]

associated with. the condensatlon of massless bosons(zs)

< O P

For thlS purpose let us recall that a tonIlecally SLngulara?;;“

~:&boson function.is- deflned by the relatxon




e Ta

implying that ma==0. ' : é

Thus,,the extended- objects created by a- tooologlcallz

"w,x

oy .
N

less bosons.‘ Let us recall here that the deflnltlon of

topologlcal 51ngular1ty of the beson method 1s 1n sharp

S R

-contrast W1th the commouly used deflnltlon -the“tOpolog;callyh

REEER

é%) (x) # 0 ~for certain X,U,V,0 S (1.3y
B _+_ _ BN : e . . ‘ ' o .
wlthGu\)(x) given.by .. L
c";ﬂ“.”“)ﬁr (~>?<)-‘:' It :'ra' ]f (x) L SR T E
. .tt_....u-v\). A :‘j o ]:J’," \) av, .. | ] o .
The deffhitiehs‘11.3—4)'éxpress the path-dependence of
f (x) Furthermore, ex1stence of the path deoendent f (*)A
requlres that 3 f (x) should be 51ngle valued '?;ff:.jb o
[au’av]apfa(X). O‘_ | | ( 5?
Eq. (1.1) together with (1.4) and (1.5) leads to. 6
via(x) = —?—i—j %“G(%) (x) (1.6)
.9 +m H
where the derivative operator 1/824-m§ is defined in terms
“of the Fourier representdtion as follows: .
1 ipx 1 1px
2 2°¢ 7 22 °¢
3 4+ m P +m
a
Thus,_l/32-+m§ is the' Green's function of the Klein-Gordon
equation with mass m, - lote that, due to eq. (1.5), GS%)
is Fourier transformable. Eq; (1.6) then leads to Bzfa(x);o
g
4-

: 151ngular bOSOn functlon comé”. from the condensatlon of mass—



itlon f (x) is obtalned through a path 1ntegral of 8 f ( )

Js1ngular domalns are usually deflned as the domalns where,

the nggs fleld vanlshes. The method of constructlon of

solutlons of the clas51cal Euler equatlons, presented 1n_

Chapter III prov1des a brldge between the two approaches

A systematic study of extended objects with topolo—

. . . 22
gical singularities has been presented in ref.( ). Here,

rwe only sketch the results of this constructlon . Use of

eq. (l 6) leads to:

A

. : - . v (a)' .
: &ufa(X) —,Jd4yD(xey)8 Guv (y) . | n-Klf7)
" Eq. (1.7) expresses aufa in terms of the tensor. G(S)
characterizing the tOpologlcally singular domain. In order

T _ i
(x), it is useful to introduce the tensor

(a)

to construct G
| uv

L
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gle) -1 Aeglar : (1.8) -
UV -2 TRV Ap : . ) '
Here, €5123 = 1 ; 9o0 =9 = 1 (1==l,2,3)’.
."%‘%"\
The single valuedness of aufa(x) leads to ™.
C 3% Y ) =g ~ | (1.9)
UV

\x
.

It can be easily shown that the condition (l.9)\is suffi-

L3N

cient for the relation (1.7) to reproduce (1.4).

Thus, the constructlon of boson functlons f (x) with

EREN

'?7?topologlcal 51ngular1t1es proceeds as follows: -First, ‘look

R

'for G whlch satlsfles the dlvergenceless condltlon (l 9)

-3

y-

UV . :
";lﬂand then construct Gé %) accordlng to (1. 8) Then, aufd(x)
"can be calculated by means of (l 7) . THe: multLValued func4ffl”'



the existence of which is gudrenteed by (1.4) esAlong'as"
the path does not cross the singularities. In, fact, (1.5)'
'}s“the.integrability condition fOr‘fa(zf outside the |
'singelar domain;"AlthOUgh £, (x)'is pathfdependent, an -
'_expllc1t expre551on of the functlon f Kx) for x‘ootside'l
of the topologlcally 51nghlar.doma1n can be Obtalned

It 1s”1mportant to,observe~that for'the construction

-

'ﬁof a topologlcally s1ngular boson functlon the only 1nout

e S Ts2s

o

is the a551gnment of a tensor c® e satlsfylng the dlvergence"”

-eondition.

The convenience of using such a tensor as a starting

R . : a
point for our/construction relies on the fact that Guv is

directly related to the parametrization of the topologically

. W
singular domain(zz). Furthermore, the condition (1.9)

imposes. some restrxctlons on the domain of tooologlcal

(22)

ASthularlty 1t has been shown . :that, in. order for G (k)ﬂ' AR

.

to satisfy (1.9), the domain of singslatlty must be w1thouthl’

end points.
As an example, we consider a set of topologically

singular domains yi(T,O) (a=1,...,n) which depends on two

parameters T and ©. Making use of the notation
9 Y 3 3 -
¥y _ Yy Ty vy oYy (1.10)
olT,0] 3T 30 30 9T :
we construet '
ERUEE S -9 lyS, vyl
o o aa STty (4) a
GUV(X)-——;AZ‘ JdTJdO’ W $ (X—y (T,G))
- askio oty 7 - (1.11)

“such that: © 0 L
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."b a
o HA) i vy s ta) o
8‘ GU\)' (X) = z m Jd‘f dO{ —TO' 3’1‘ + _8?- 90'}6(}( Y (t,6)).

El

ca=1l . .
. _(1.12)_

-

.As-mentionedgbefcre; thevccndition'(l.l2)'restricts’the-”

ch01ce of the surfaces y (T 0) For example, when we have':

. ¢

only one surface (say y(T o)) (1.12) requires that'the_

surface y(T d) should not have any boundary

"In the followmng we analyse the consequences of (l 12)

for a system of strlngs;

Systems of strings(22):

We assume that T is the time-like parameter and we

‘choose y as

yolt,0) = 1 for all a . (1.13)
L
Then ya(T,o) acpear to be lines at each instant T. These
.J'llnes are. parametrlzed by the - soatlal Qarameter . 1In this-

o .. '

“"icase the extended ob]ect 1s called the . string. Thefvcrticesl'

lin superconductors(?g) and the dlslocatlons(lg)bin crystals .
~are well known examples.

Use of (1.12) and (1.13) leads to

b () aL o 5 BYD 4 (4)
376G (x) =) N (dr do{ -~ ~—! ¢
J

> I 55 3Tt I 5e (x-y2(1,0))
=) Wﬁ?fdfcx;;g 6(4{k - (a)(T,u))
Bt e
- g,mfajao_fg-a(3’<§ §‘ff(t,c))
- 3 ﬂ%a[ﬁ(é)k;—§( D ie,00 -6 32,07
a .
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o a a ' e L (a) -
where 0y and 0, are the end points of the line y, ".(t,0)
M - - o e -'4%‘\ ’ A ’ ) - .L’ T » O we
~.at-the ‘time t. > - -~ L Lv
' On the other hand, the divergence ¢ondition with V =0
reads ‘ ,
2.6 20 Y sy
%rj “30; L : LT D R
which gives = e
Q) : L\ ,
o _ o _ . ‘
J d3x ajGjo {(x) =0 . \ - ‘(1.16)

where V is a. spatlal domaln enclosed by the surface S.
Suppose now that a llne (say y (T,O)) has an end point

(say y (T o] )) whlch 1s not shared bytany other llnes

s

We can choose V in such a way that 1t contalns no end p01nts"?'é'

—other ~than. y tt,0 ),?uLn.thls oase, (l l4) gives: . - o "7

J. .30

J d3x‘8.G§v?(x).= ﬂtaéf - o - ‘y‘ - _;"; . 'J_flif_};

N

v‘whioh:contradict55With (lylé) . Thus, the system of all the'

lines should form a networx whlch does not - have any end

EEEEEA Al301nt point. of, more than twor llnes is called a
'yertex.(or node); Consider a vertex denoted by y(t). 'The
.llnes which are joint with each other at y(1) will be
denoted by y (r o) (b=1;2, )n Then choos¢ng;V’to con;it

,taln no, other vertlces than y( ), we obtain from (1.16) and

I o=@ = o . | Coaan

where + bﬁ 51gn correSponds to the flrst @econd) term in -

rlght hand 51de of (1.14) .- Thlsirelatlon, which means that

a0



éthe strength of the string is conserved at: each vertex,
» w1ll be referred as- fhe contlnulty relatlon. Conversely,
itis p0551ble to show that BuGa =0 for all“v when

‘(l 17) holds at each vertex 1mply1ng that (l l7) is the

Pl

"complete condltlon for the dlvergence condltlon to-be

'satlsfled : Therefore, the ‘lines y (T'O)~( =1,2,...) at

time T should form a network w1thout any end p01nt -and the

contlnulty relatlon (1. 17) should hold at each Vertex of

\

the network. g
- = eLWOIK

The 51gn1f1cance of the study of a system of strlngs

lles in the fact that by comblnlng many strlngs and deform—

a8 e ronen

“'“lng them one can construct a full varlety of eXtended

RN

. objects with topological s1ngular1t1es ) Furthermore 1t_

\sheds llght on: the consequences of the dlvergence condltlon;:J

S ©

l.i(l 9Jr.1n fact due to (l 9) the system of strlngs should-

form & network w1thout any end p01nts. mhis 1mp11es that

B

»;only the~ 51ngular domalns, whlch can’ be formed by assembl—

‘lng elther open llnes or rlngs, are’ acceptable in thls

constructlon -

we w1ll call the tOpologlcal extended objects obtained

by the assembly of open llnes an open system, whlle the -
'fextended ObjeCtS obtalned by the assembly of rings a

fclosed system It 1s.amportant to note. that olOSed and

ogen systems are extremely dlfferent in- the asythotlc

Eropertles of the boson functlon. In fact 1t is pOSSlble

" to show that open systems are characterlzed by



lim £ (%) . g, (B

> (03

| X |eo

lim 5 £ (%) ~ 1
IRk -+

%[ =

while for closed sYStems we have

lim £ (%) = 0
a
e |
lim 3 f (x) = L
oo

.[;,_,m Jf}Y

[x[-*m.ls performed Eqs. (1.18a- b)

'J;charge are the open systems (see 214)'

+

' In (l 18a b) n is-the dlrectlon along whlch
leaa- us
'clus1on that the only extended objects whlch

'Lfrlse to an extended objects with a quantlzed

129
(1%18a)

(1.18b)

s

(1.19a)

(1.19b)

the llmlt

’to the con—_‘

could glve

topologioal‘, R
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