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Abstract 5 

As worldwide goals for sustainable development expand, numerous countries are investing in 6 

renewable energy projects, particularly onshore and offshore wind farm projects, which have low 7 

adverse environmental impacts. The relative novelty of onshore wind farm projects  worldwide 8 

means very few studies have been published and the literature lacks a comprehensive list of risks 9 

that affect such projects, although effective risk management for construction project relies 10 

heavily on successful risk identification. The first goal of this paper is to fill the research gap by 11 

identifying the work-package–level risks that affect onshore wind farm construction projects and 12 

developing a risk breakdown matrix suitable to these projects. However, the application of 13 

existing risk identification techniques in these projects is usually hindered by the lack of 14 

comprehensive research in the literature, scarcity of historical data, and high cost of acquiring 15 

expert knowledge. Consequently, the second goal of this paper is developing a new risk 16 

identification technique based on case-based reasoning and fuzzy logic suitable to onshore wind 17 

farm projects. The proposed technique identifies the risks associated with the onshore wind farm 18 

projects at the work-package level based on the similarities of these projects to the other types of 19 

construction projects. The application of fuzzy logic in the proposed technique allows users to 20 

assess the similarities between different types of projects using linguistic variables, and it 21 

facilitates the capture of partial similarities between the different types of construction projects. 22 

In addition to the novel risk identification technique, this paper presents a risk breakdown matrix 23 
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of onshore wind farm projects representing 169 risk factors, which are mapped to 11 24 

construction work packages of onshore wind farm projects. The results of this paper and the 25 

proposed risk identification technique are compared with conventional techniques, confirming 26 

that the proposed technique is suitable to novel types of construction projects like onshore wind 27 

farms. The main contributions of this paper are twofold: (1) proposing a new risk identification 28 

technique based on fuzzy case-based reasoning that suits novel types of construction projects 29 

with limited or no pre-existing knowledge; and (2) developing a generic risk breakdown matrix 30 

(RBM) for onshore wind farm projects to improve the risk management process. 31 

Keywords: Risk identification; risk breakdown matrix (RBM); fuzzy case-based reasoning; 32 

onshore wind farm; renewable energy project; work-package–level risk 33 

1. Introduction 34 

The number of wind farm projects has been significantly increasing worldwide because of 35 

the ongoing trend toward developing infrastructure for renewable energy sources and the 36 

technological advancements achieved in the production of highly efficient wind turbines (REN21 37 

2018). The global wind power capacity increased by 45 GW annually on average from 2013 until 38 

2018, which makes wind farms the fastest-growing type of renewable energy projects, ahead of 39 

solar power, hydropower, and geothermal power projects (IRENA 2019). Despite its fast growth 40 

in production capacity, wind farm projects only produced 24 percent of world renewable energy 41 

in 2018 (IRENA 2019). To meet the global target of onshore wind power for 2030, the current 42 

capacity needs to be tripled (IRENA 2018). However, challenges associated with developing 43 

onshore wind farm projects, such as insufficient risk management practices, can cause a failure 44 

to deliver projects within budget and schedule (Fera et al. 2017), and may prevent this 2030 45 

global target. Therefore, improving the risk management practice of onshore wind farm projects 46 
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can facilitate forecasted growth by promoting wind farm development and successful delivery of 47 

projects within budget and on schedule. 48 

According to the Project Management Institute (PMI 2016), the life cycle of construction 49 

projects can be divided into five phases: conception, design, construction, commissioning, and 50 

closeout. Among these, the construction phase consumes the largest portion of project budget 51 

and time; thus, the implementation of risk management practices during the construction phase is 52 

essential for the successful delivery of projects within budget and schedule, and failing to do so 53 

can negatively impact project objectives (Fera et al. 2012; Siraj and Fayek 2019). Risk 54 

identification is the first step in risk management, and successful risk identification results in the 55 

accurate assessment of threats and opportunities in onshore wind farm projects during the 56 

construction phase. According to Tchankova (2002), the risk identification step plays a leading 57 

role in effective risk management, and unccessful risk identification is one of the main reasons 58 

for risk management failure and, consequently, project cost overruns and delays. Thus, ample 59 

research in the literature focuses on risk identification for different types of construction projects. 60 

However, the relative novelty of onshore wind farm projects means they have not been 61 

sufficiently investigated in terms of the risks affecting them. Furthermore, the few studies 62 

conducted on these projects were primarily focused on project-level risks, and a research gap 63 

exists for identifying the work-package-level risks that affect onshore wind farm projects. 64 

Therefore, the first goal of this paper was to address the research gap by identifying the work-65 

package-level risks that affect onshore wind farm projects and, consequently, developing the risk 66 

breakdown matrix (RBM) of such projects by relating each identified risk to the work-packages 67 

affected by the risk. 68 
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Many tools and techniques have been proposed for identifying risks associated with 69 

construction projects, including literature review (Siraj and Fayek 2019); the strengths, 70 

weaknesses, opportunities, threats (SWOT) technique (Gao and Low 2014); checklist analysis 71 

(Guo et al. 2019); and Delphi technique (Perrenoud 2018). While risk identification significantly 72 

impacts the successful delivery of construction projects, in the case of onshore wind farm 73 

projects, the application of traditional risk identification techniques is often hindered by the 74 

incomprehensive research literature, lack of historical data, and high cost of acquiring expert 75 

knowledge. Thus, the second goal of this paper is to address this challenge by developing a novel 76 

risk identification technique based on case-based reasoning (CBR) that suits the needs of novel 77 

types of construction projects, including onshore wind farm projects. CBR is an artificial 78 

intelligence technique for identifying the characteristics (e.g., risks) of an unknown or less-79 

known phenomenon (e.g., onshore wind farm projects) based on its similarity to the other well-80 

known phenomena (e.g., other types of construction projects) (Watson 1999).  81 

CBR is widely used in different domains to solve different types of problems, including 82 

cyber security (Abutair et al. 2019), medical sciences (Marie et al. 2019; Ehtesham et al. 2019), 83 

and engineering (Tan 2006). Despite its application in a wide range of engineering problems, 84 

CBR lacks the capacity to capture the subjective uncertainty exhibited by different elements of 85 

real-world systems. Such limitation becomes more prominent in construction risk identification, 86 

where CBR cannot capture the subjectivity associated with assessing partial similarity between 87 

two types of construction projects (projects that are neither identical nor fully dissimilar). To 88 

address this challenge, CBR was integrated with fuzzy logic in this research, to develop fuzzy 89 

case-based reasoning (FCBR). Fuzzy logic is an artificial intelligence technique for capturing the 90 

subjective uncertainties of the real-world systems. The integration of CBR with fuzzy logic in 91 
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the proposed risk identification technique enables the FCBR technique to capture the 92 

linguistically expressed expert knowledge and assess the similarity between the different types of 93 

construction projects, as well as capturing the partial similarities between different project types. 94 

The proposed FCBR was then implemented to identify risks associated with the construction of 95 

onshore wind farm projects at the work-package level and develop an RBM for such projects by 96 

mapping each risk to the construction work packages (CWPs) affected by the risk. The 97 

contributions of this paper are twofold: (1) proposing a new risk identification technique based 98 

on case-based reasoning and fuzzy logic that suits novel types of construction projects with 99 

limited or no pre-existing knowledge; and (2) developing a generic RBM for onshore wind farm 100 

projects to improve the risk management process.  101 

The rest of this paper is organized as follows. The second section provides a literature review 102 

on risk identification for onshore wind farm projects and the applications of CBR and FCBR in 103 

construction research. The third section presents the research proposed technique for risk 104 

identification using FCBR. The fourth section presents risk identification of onshore wind farm 105 

projects and research results in the form of RBM. The fifth section presents a discussion on 106 

results, followed by the sixth section that presents conclusions and future research. 107 

2. Literature Review 108 

2.1. Risk identification of onshore wind farm projects 109 

The International Organization for Standardization (ISO 2016) defines risk as “the effect of 110 

uncertainty on objectives”, which includes opportunities with positive impact as well as threats 111 

with negative impact. Construction projects are highly influenced by various risks because of 112 

their complex nature and numerous external factors affecting them (Siraj and Fayek 2019). 113 
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Therefore, researchers work to identify and assess risks that adversely affect construction 114 

projects and determine appropriate risk management practices. 115 

In the risk identification step, construction risks are traditionally represented in the form of 116 

risk breakdown structure (RBS), which is a hierarchical structure of risks categorized based on 117 

their potential sources. Hillson et al. (2006) introduced the RBM as a new format for identifying 118 

and representing risks in construction projects. Although work breakdown structure (WBS) and 119 

RBS are noticeably similar, they illustrate two different structure of projects, namely, risks and 120 

activities. WBS constitutes the basic framework for the management of a project; likewise, RBS 121 

is used as a powerful tool in the risk management process (Hillson 2003; PMI 2016). Thus, a 122 

combined use of a project’s WBS and RBS allows the project team to control and monitor the 123 

risk at a level of detail appropriate to the specific project context (Rafele et al. 2005). In an 124 

RBM, the hierarchical structure of risks is presented as in an RBS, and each risk is mapped to 125 

those work package(s) that are affected by the risk. An RBM can be presented in the form of 126 

matrices or diagrams, which formats can guide researchers and practitioners to an in-depth 127 

understanding of risks and their effects on CWPs, (Hillson et al. 2006) via the following: 128 

• Identifying which activities have more associated risks 129 

• Identifying the most important single risk with the highest severity 130 

• Marking the most significant relationship between risks and their associated CWP (i.e., 131 

determine the most important risk associated with the CWP that has high contribution 132 

to project risks) 133 

In previous literature related to risk identification for onshore wind farm projects, researchers 134 

and practitioners specifically focused on construction risk identification of wind farm projects at 135 

the project-level. Fera et al. (2017) ranked 42 identified risks in wind farm projects based on 136 
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their severity index determined using the analytic network process, which revealed that the 137 

quality of concrete curing has the highest severity on project objectives. However, they did not 138 

specify their risk identification technique. Enevoldsen (2016) did a comprehensive literature 139 

review of onshore wind farm projects in forest areas that focused on the construction, operation, 140 

and commissioning phases of onshore wind farm projects. The result revealed that construction 141 

is the highest risk-prone phase because of risks associated with land use (e.g., land ownership 142 

transferring, renting, etc.). Finlay-Jones (2007) conducted an extensive literature review to 143 

identify the risks affecting wind farm projects focused primarily on risks that affect project cost. 144 

He interviewed eight project managers in Australia who were experts in on- and offshore wind 145 

farm projects to validate the list of identified risks. Study results showed that delay due to 146 

weather conditions, transportation of large machinery and turbine components, and availability 147 

of labor and resource are the most severe construction-phase risks. This review shows that most 148 

prior research focused on onshore wind farm projects at the project-level and neglected the work-149 

package level in the risk identification step. Accordingly, this research aims to develop a new 150 

risk identification technique based on FCBR that suits the challenges associated with risk 151 

identification of onshore wind farm projects. This paper also aims to fill the research gap for 152 

comprehensive risk identification for onshore wind farm projects by developing a generic RBM 153 

using the introduced risk identification technique. 154 

2.2. Risk identification techniques  155 

Many tools and techniques have been proposed for identifying risks associated with 156 

construction projects, including literature review (Siraj and Fayek 2019), the SWOT technique 157 

(Gao and Low 2014), checklist analysis (Guo et al. 2019), and Delphi technique (Perrenoud 158 

2018). According to Siraj and Fayek (2019), the information-gathering techniques (e.g., literature 159 
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review, questionnaire survey, expert interview) were more widely used than diagramming 160 

techniques (e.g., influence diagrams, cause-and-effect diagrams) because diagramming 161 

techniques do not consider the root causes of risk and their interdependencies. Among the 162 

information-gathering techniques, the literature review is the most commonly used technique, 163 

since it is straightforward and easily helps researchers to assess historical data from specific 164 

previous projects (Siraj and Fayek 2019). However, a lack of research makes it challenging to 165 

implement a literature review on novel infrastructure (Alavi and Nadir 2020). 166 

Another popular information-gathering technique is acquiring expert knowledge through 167 

questionnaire surveys and expert interviews. Although expert knowledge is valuable as input for 168 

the risk identification process, it has some limitations. Expert knowledge is predominately based 169 

on experience, and according to Hubbard (2020) experience is a nonscientific sample of events 170 

because it is based on selective memory over the course of one’s life, which results in bias. 171 

Further, humans tend to be inconsistent in using their experience to make decisions. 172 

Because information-gathering techniques rely on expert knowledge or prior knowledge of 173 

projects acquired through the literature review or historical data, their application in risk 174 

assessment for novel types of construction projects is limited. As a result, knowledge-based 175 

techniques, such as artificial neural network and case-based reasoning, have gained popularity in 176 

this context. Researchers can use data from other types of projects as inputs to generate output 177 

for risk management for new types of construction projects. However, improper data 178 

management can cause failure in the risk management process (Rodriguez and Edwards 2014), 179 

and few studies have been conducted on the application of knowledge-based techniques for risk 180 

identification in construction projects. 181 
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To address the scarcity of data regarding knowledge-based techniques in risk identification 182 

for novel types of construction projects, Somi et al. (2020) introduced a new risk identification 183 

technique based on case-based reasoning and fuzzy sets. In their proposed technique, similarity 184 

between the novel project type and the other types of construction projects is determined, and 185 

then similarities that affect the novel construction type are identified. The proposed technique by 186 

Somi et al. (2020) has the following shortcomings: (1) it lacks the capacity to capture the 187 

subjective uncertainty involved in determining similarity between two projects (i.e., partial 188 

similarity), and (2) it lacks the flexibility to be modified by the experts based on the application 189 

context. The current paper addresses these research gaps by developing a new risk identification 190 

technique using fuzzy case-based reasoning that captures the partial similarities between 191 

different project types using fuzzy numbers, and experts can modify it using natural language. 192 

Although the use of fuzzy numbers to represent similarity between different cases increases the 193 

computational complexity of the proposed technique, the comparison of the results to the 194 

existing FCBR technique (Somi et al. 2020) shows improvement in terms of performance (i.e., 195 

number of risks identified) and flexibility of the model. 196 

2.3. The applications of CBR and FCBR in construction  197 

Kolodner (1992) introduced CBR as a new technique for solving problems based on previous 198 

knowledge about similar cases, which imitate the human reasoning process of applying 199 

knowledge acquired through previous experiences to new situations. In a comprehensive 200 

literature review of 91 papers from 1996–2015, Hu et al. (2016) found CBR applied to 17 201 

construction areas and a high proportion of problems involving cost estimation and bidding. An 202 

et al. (2007) combined the analytic hierarchy process (AHP) with CBR to determine the relative 203 

importance of the characteristics used to compare construction projects, creating a hybrid CBR-204 
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AHP model for forecasting the construction cost of residential buildings. They defined 9 205 

attributes for residential buildings: gross floor area, number of stories, total unit, unit area, 206 

location, roof type, foundation type, usage of the basement, and finishing grades. Next, they used 207 

these weights to calculate the similarity index in the CBR technique. The CBR-AHP model 208 

needs expert opinions in order to define weights for each characteristics, which is a limitation for 209 

problems with many characteristics. Jin et al. (2016) expanded the application of CBR in 210 

estimating the duration of residential projects in the preliminary stage. In this model, similarity 211 

indexes are first calculated based on the similarity between each characteristic of problem case 212 

and previous cases (e.g., total floor area, foundation type, etc.) then used for calculating revised 213 

duration. They concluded that compared to the regression model (i.e., a statistical regression 214 

model developed to predict projects’ duration based on their characteristics), their CBR model 215 

more accurately predicted actual duration. 216 

Despite its numerous strengths for use in construction risk identification, CBR is not yet 217 

widely used in the construction risk management context. Goh and Chua (2009) applied CBR for 218 

construction hazard identification using a semantic taxonomy for representing each case to 219 

systematically retrieve similar information from previous cases. Goh and Chua (2010) expanded 220 

previous model using similarity indices to delete, add, and modify similar hazards from retrieved 221 

cases. Forbes et al. (2010) developed a CBR model for selecting appropriate risk management 222 

techniques in the built environment based on six characteristics of projects and the risks 223 

associated with them, including project phase, involving risks, risk owner, and the fuzziness, 224 

randomness, and incompleteness of the risk. Fan et al. (2015) broadened the application of CBR 225 

to the area of construction risk management, generating risk response strategies and their cost of 226 

implementation in subway construction projects. Given the above applications in construction, 227 
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CBR shows great potential in solving construction problems. More importantly, CBR is not 228 

considered a black-box model (Richter and Weber 2013), where the expert can find the logic 229 

behind each reasoning made by the model. However, CBR does not have the capability to 230 

capture the subjectivity of the information and consequently cannot consider subjective 231 

information in the similarity calculation. 232 

CBR has been combined with fuzzy set theory (Zadeh 1965) in order to capture the 233 

subjectivity and imprecision that exists in real-world systems (Richter and Weber 2013). Zuo et 234 

al. (2014) used fuzzy set theory in the retrieval phase of a CBR model for reinforced concrete 235 

structures, in which the user assigns weights to the key characteristics of the problem case in 236 

linguistic terms (“Very Important,” “Important,” “General,” “Not Important,” and “Not to Be 237 

Considered”). Then, these fuzzy weights are used to calculate similarity between characteristics. 238 

Zima (2015) developed an FCBR model for cost estimation that defines cases using 15 239 

characteristics, next represents each by linguistic terms that are determined as triangular fuzzy 240 

numbers, and then retrieves cases based on the defuzzified value of similarity indices. Lu et al. 241 

(2016) combined fuzzy rule-based systems (FRBS) with CBR in modelling to forecast 242 

precipitation. In their model, the most similar rule (i.e., the rule with the highest membership 243 

degree) is only activated in the fuzzy rule-based system. They also compared the fuzzy CBR 244 

with the stand-alone application of CBR and FRBS, which showed that FCBR is more accurate 245 

in predicting the level of precipitation. There is a research gap in the existing variations of 246 

FCBR, a technique that relies heavily on expert knowledge for capturing subjective uncertainty 247 

involved in the real-world problems. This paper addresses the research gap by calculating the 248 

similarity between the different cases based on fuzzy distance measures and using fuzzy numbers 249 

to represent these values and capture the partial similarity between cases in the real-world 250 
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problems. This paper also uses the proposed FCBR process and existing data about different 251 

types of construction projects to identify the risks associated with novel construction project 252 

types. 253 

3. The Proposed FCBR Technique for Risk Identification 254 

This section presents the methodology for implementing the proposed FCBR technique for 255 

construction risk identification. CBR was introduced by Aamodt and Plaza (1994), and its 256 

implementation consists of five steps: (1) case representation, (2) retrieve, (3) reuse, (4) revise, 257 

and (5) retain. FCBR uses fuzzy logic in the retrieve step (Richter and Weber 2013). Figure 1 258 

illustrates these five steps, which are further discussed in the following sub-sections.  259 

 260 

Fig. 1. Research methodology for implementing FCBR in risk identification. 261 
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The following subsections further discuss the five steps of the methodology. It should also be 262 

noted that prior to the implementation of the proposed risk identification technique, a database 263 

was needed that comprised the characteristics of different types of construction projects, the 264 

construction work-packages involved in their construction, and their associated risks at the work-265 

package-level. Moreover, the database is not limited to one type of construction project (e.g., 266 

hydropower projects), and it can cover all the different types of construction projects because the 267 

application of fuzzy logic in the proposed technique allows the capture of partial similarities 268 

between different project types. Fig. 2 presents the flow of information between the database and 269 

the different steps of the methodology and illustrates how the proposed technique uses project 270 

characteristics and previously identified risks for the novel type of construction project studied. 271 

3.1. Case representation 272 

Generally, in the CBR approach, different cases (i.e., construction projects in this paper) are 273 

represented by a set of characteristics or attributes, which are selected based on the scope of the 274 

problem. For representation of complex cases, which cannot be directly represented by a few 275 

characteristics or attributes, the local–global principle is used, which is based on the 276 

presumption that complex cases are built up hierarchically, starting from basic elements at the 277 

bottom of the hierarchy to comprehensive elements at the top (Richter and Weber 2013). To 278 

implement the local–global principle in case representation, each case is first decomposed into its 279 

basic elements. For example, in this paper the characteristics of construction projects are 280 

decomposed into project type and CWP involved in the project. Then, the similarity between the 281 

basic elements of different cases, called local similarity, is calculated. Next, local similarities are 282 

aggregated to calculate the overall similarity between the two cases, called global similarity.  283 
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 284 

Fig. 2. Data flow diagram of the proposed risk identification technique. 285 

Details of the calculations for local similarity indices and calculations of global similarity are 286 

provided in Section 3.2. One aggregation method is the product method, which simply multiplies 287 

the local similarities to determine the global similarity (Goh and Chua 2009). The product 288 

method is a non-compensatory aggregation technique, in which a very low evaluation in one 289 

criterion is not compensated by very high evaluations in other criteria. In this paper, a non-290 

compensatory aggregation technique is used, since very low similarity in one aspect of projects 291 

can make them completely distinct; thus, the risks related to one project type may be irrelevant to 292 

another project type. 293 
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In the case study discussed in this paper, the local-global principle was applied for case 294 

representation using two characteristics: project type, and CWPs of onshore wind farm projects. 295 

The project type characteristic is represented using hierarchical representation, in which cases 296 

are represented in the form of a taxonomy, and the similarity between cases is determined based 297 

on their location in the taxonomy (Richter and Weber 2013). The taxonomy of construction 298 

projects is developed using the Central Product Classification (United Nations 2015) and 299 

presented in Figure 3. 300 

This taxonomy starts with level 1 as all construction, level 2 is general concepts of 301 

construction sectors (e.g., buildings and civil engineering works) and is broken down into three 302 

more levels of categorization, with the lowest level being specific types of construction projects, 303 

such as electrical generating plants, restaurants, and embankments. Details regarding the 304 

calculations of the similarity between different types of construction projects using the taxonomy 305 

are discussed in Section 3.2.1. 306 

The proposed technique identifies construction risks at the work-package level, so CWPs are 307 

used as the second characteristic of construction projects. In this technique, each CWP is 308 

represented as the set of different construction activities that are included in its execution 309 

(Richter and Weber 2013). While this technique is designed to develop a comprehensive list of 310 

risks associated with a specific type of construction project, the context-specific characteristics 311 

of projects, such as project location and work package cost and time, are not selected for case 312 

representation. 313 

3.2. Fuzzy Retrieve 314 

In the case retrieval step, the project under study is compared to other construction project 315 

types based on two local characteristics and similarity between types. Similarity functions are  316 
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 317 
Fig. 3. Taxonomy of construction project types. 318 
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selected based on the type of information represented by each characteristic (e.g., numeric value, 320 

text, image), and the similarity index may be 0 for distinct cases, 1 for identical cases, or a value 321 

in the range of (0,1) for non-identical cases. Since determining the similarity between two types 322 

of construction projects is a subjective assessment, crisp similarity indices are not appropriate 323 

representation where the compared projects have partial similarity, and fuzzy numbers are used 324 

instead. The application of fuzzy logic allows users to assess the similarities between different 325 

types of projects using linguistic variables, and it also facilitates the capture of partial similarities 326 

between the different types of construction projects. 327 

In this study, five triangular fuzzy numbers are used to represent the similarity between 328 

project types in linguistic terms. These fuzzy numbers are based on previous studies conducted 329 

by Etemadinia and Tavakolan (2018) and Khatwani et al. (2015) and represented in Figure 4 and 330 

Table 1. Using linguistic terms to represent similarity improves the performance of FCBR in this 331 

study by (1) helping experts to more easily interpret the framework reasoning process (i.e., 332 

transparency) and (2) allowing experts to provide similarity between two cases using linguistic 333 

terms, which results in greater flexibility of the model as needed. 334 

Table 1. Triangular fuzzy numbers. 335 

Linguistic Term Similarity 

Very Low [0.0, 0.0, 0.25] 

Low [0.0, 0.25, 0.5] 

Medium [0.25, 0.5, 0.75] 

High [0.5, 0.75, 1.0] 

Very High [0.75, 0.75, 1.0] 

 336 
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 337 
Fig. 4. Triangular fuzzy numbers for similarity. 338 

 339 

3.2.1. Project type similarity 340 

The structure-oriented similarity function is used for the project type characteristic; it is also 341 

called “path-oriented similarity,” since the path between two project types in the hierarchy 342 

determines their similarity. In addition to the position of projects in the taxonomy of construction 343 

projects (Figure 3), the similarity between two project types is determined based on the deepest 344 

common predecessor (DCP) between them. DCP has five possible similarity values represented 345 

by fuzzy numbers, as shown in Table 1 and Figure 4: 1= “Very Poor,” 2 = “Poor,” 3 = 346 

“Medium,” 4 = “High,” and 5 = “Very High.” The structure-oriented similarity function used for  347 

determining the similarity between two types of construction projects is represented in Equation (1). 348 

 349 
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where DCP(pp, sp) = 1 refers to two types of construction projects that share exactly one level of 350 

taxonomy (i.e., the very highest level), such as “restaurant building” or “satellite launching 351 

sites.” Similarly, DCP(pp, sp) = 2, 3, 4, or 5 = can be defined for a pair of construction projects 352 

that share 2, 3, 4, or 5 levels of taxonomy, respectively. 353 

3.2.2. CWP similarity 354 

The counting similarity function is used for the CWP characteristic; the number of common 355 

elements between two sets determines the similarity of the two CWPs. To determine similarity, 356 

each CWP of a wind farm project is decomposed into its constituent activities. Next, the 357 

similarity function counts the number of construction activities in common between two CWPs 358 

and the number of construction activities specific to each. In this paper, the well-known Tversky 359 

similarity method is used to calculate the similarity between two CWPs, or sets P, and S, as 360 

presented in Equation (2).  361 

 𝑇𝑆𝑖𝑚(𝑆, 𝑃) =
(𝑠 ∩ 𝑝)

(𝑠 ∩ 𝑝) + 𝛼(𝑠 − (𝑠 ∩ 𝑝)) + 𝛽(𝑝 − (𝑠 ∩ 𝑝))
 (2) 

where S and P are the two CWPs for which similarity is being assessed; ps  is the number of 362 

common activities between the two CWPs; and the parameters α, β are weights for defining the 363 

importance of exclusive activities of S and exclusive activities of P. The value of the parameters 364 

α, β are assumed to be 𝛼 = 𝛽 = 0.5 (Richter and Weber 2013). Next, in order to determine the 365 

appropriate fuzzy number to represent the similarity between two CWPs, the distance between 366 

TSim (see Equation [2]) and the five triangular fuzzy numbers is calculated using the fuzzy 367 

distance measure introduced by Xie et al. (2019). The distance between two trapezoidal fuzzy 368 

numbers �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4; 𝑤�̃�), �̃� = (𝑏1, 𝑏2, 𝑏3, 𝑏4; 𝑤�̃�) is calculated using Equation (3), where 369 

𝑤�̃�, 𝑤�̃� ∈ [0,1] stands for the height of the fuzzy numbers �̃� and �̃�, respectively. 370 
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 𝑆(�̃�, �̃�) =  𝑠𝑒 ∗ 𝑠𝑤 (3) 

where 371 

 𝑠𝑒 = {
e−|𝑎1−𝑏1|, 𝑎4 = 𝑎1 and 𝑏4 = 𝑏1   

e−(𝑘+𝑧+ℎ+𝑙𝑟)/𝑤,                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

and k is the support difference, z is the maximum distance between the two left or right endpoints 372 

of �̃� and �̃�, h is the core difference between �̃� and �̃�, w is the maximum span of �̃� and �̃�, and lr 373 

is the maximum distance between the boundaries of the cores of �̃� and �̃�, as shown below: 374 

𝑘 = |(𝑎4 − 𝑎1) − (𝑏4 − 𝑏1)| 375 

𝑧 = max (|𝑎1 − 𝑏1|, |𝑎4 − 𝑏4|) 376 

𝑤 = max  (𝑎4 − 𝑎1, 𝑏4 − 𝑏1) 377 

ℎ = |(𝑎3 − 𝑎2) − (𝑏3 − 𝑏2)| 378 

𝑙𝑟 = max (|𝑎2 −  𝑏2|, |𝑎3 − 𝑏3|) 379 

and  380 

𝑠𝑤 =
min (𝑤�̃�, 𝑤B)

max (𝑤�̃�, 𝑤B)
 . 381 

After the distance between the similarity index, TSim, and the triangular fuzzy numbers is 382 

calculated, the fuzzy number with the smallest distance is selected to represent the fuzzy 383 

similarity, CSim, between the two CWPs. The fuzzy distance measure can then be applied to crisp 384 

numbers – 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4, or TSim in this case – as well as triangular fuzzy numbers – 𝑎1 <385 

𝑎2 = 𝑎3 < 𝑎4, the five fuzzy numbers that represent the fuzzy similarity indices. 386 
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3.2.3. Global similarity  387 

The global similarity is determined by aggregating the two local similarity indices, CSim, and 388 

PSim, using the product aggregation method. Total similarity S is defined by Equation (5) (Richter 389 

and Weber 2013):  390 

 𝑆 =  𝐶𝑆𝑖𝑚 ⊗ 𝑃𝑆𝑖𝑚 (5) 

Fuzzy multiplication (represented as ⊗ in Equation [5]) uses one of two approaches. The α-391 

cut approach is widely used in many different applications because of its computational 392 

simplicity, but it causes overestimation of uncertainties in the resulting fuzzy number (Gerami 393 

Seresht and Fayek 2019). In recent applications, the extension principle approach is therefore 394 

preferred, since it can eliminate the problem of overestimating uncertainty. Gerami Seresht and 395 

Fayek (2019) developed a computational method for implementing fuzzy arithmetic operations 396 

on a triangular fuzzy number using two t-norms: product t-norm and Lukasiewicz t-norm. Both 397 

result in a fuzzy number with a lower level of uncertainty compared to the α-cut approach, and 398 

the Lukasiewicz t-norm is more sensitive than the product t-norm to changes in the input fuzzy 399 

numbers. Therefore, this study uses the product t-norm. Also, the computational method 400 

proposed by Gerami Seresht and Fayek (2019) for implementing fuzzy multiplication on 401 

triangular fuzzy numbers is used to determine the global similarity index.  402 

Once the global similarity index for each identified risk is calculated, risks are retrieved that 403 

have an index higher than a prespecified threshold, known as the retrieval threshold. In this 404 

study, the retrieval threshold (RT) was set to “Medium” similarity, meaning that any risk with a 405 

global similarity of “Medium” or higher is retrieved as a potential risk in onshore wind farm 406 

construction. Equation (6) calculates the fuzzy distance between the global similarity index of 407 

each risk 𝑆𝑗 and the retrieval threshold 𝑅𝑇.  408 
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 d(𝑆𝑗 , 𝑇) =
∑ |𝜇𝑆(𝑥𝑖) − 𝜇𝑇(𝑥𝑖)|𝑛

𝑖=1

𝑛
 (6) 

where the universe of discourse of both fuzzy numbers 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} is discretized to n 409 

discrete points. A distance between the global similarity and the five triangular fuzzy numbers is 410 

calculated. The fuzzy number with the smallest distance is then selected to represent the global 411 

similarity in linguistic term. Finally, risks are retrieved that have an index higher than a RT 412 

threshold. 413 

3.3. Reuse 414 

In the reuse step, retrieved cases are reused in one of two ways: (1) risks retrieved from 415 

identical cases (i.e., with full similarity to the project being studied) are selected and transferred 416 

to the retain step with no revisions; and (2) risks retrieved from partially similar cases are 417 

reviewed and revised by the user/expert before being transferred to the retain step. In CBR, 418 

determining cases with full similarity (i.e., identical cases) is straightforward, being indicated by 419 

the full global similarity S = 1. However, determining full similarity between cases in FCBR is 420 

challenging due to the characteristic of fuzzy multiplication, where 𝑥 ⊗ 𝑥 = 𝑥 ⇔ 𝑥 =421 

(1,1,1)𝑜𝑟 (0,0,0), as there are no fuzzy numbers, such as 1 and 0 in crisp numbers, where 𝑥2 =422 

𝑥. In FCBR, if the local similarity between two cases is assessed to be the maximum value, 423 

“Very High” for both the project type and CWPs’ characteristics, the global similarity between 424 

the two cases is not “Very High”. In the proposed technique, this challenge is addressed by 425 

defining a threshold for full similarity between two cases, named identicality threshold (IT).  426 

In the case study of the risk identification of onshore wind farm projects (see Section 4), IT 427 

was set to “High” similarity, meaning that any risk with a global similarity of “High” or “Very 428 

High” is directly transferred to the retain step. The value of the RT was selected through a trial-429 
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and-error process based on the following considerations: if more than 20% of the risks retrieved 430 

are irrelevant to onshore wind farm projects, the value of the retrieval threshold needs to be 431 

increased; and if very few risks (i.e., less than 10 risks per work package) retrieved and/or the list 432 

of risks is not comprehensive, the value of the retrieval threshold needs to be decreased. In this 433 

study, the retrieval threshold was set to “Medium” to retrieve any risk factor with the value of 434 

local similarities equal to “High” or higher to onshore wind farm projects. Retrieved risks with a 435 

global similarity less than “High” were revised before being considered as a risk that affects 436 

onshore wind farm projects. 437 

3.4.  Revise 438 

In the proposed technique, at the revise step, risks identified from partially similar cases are 439 

investigated in more detail to reduce the inaccuracy of the model. The user/expert may conduct 440 

revisions directly while considering the risk sources and/or project characteristics. For example, 441 

in offshore wind farm projects, delay due to unstable sea conditions is a risk that affects the 442 

installation of wind turbines, and the risk source is the project environment, or more specifically, 443 

the sea conditions. According to high similarity between the two project types of off- and 444 

onshore wind farm projects and the high similarity of the CWP “installation of wind turbines” in 445 

the two projects, this risk may be retrieved by the proposed technique as a potential risk to 446 

onshore wind farm projects. However, this risk cannot be applied to onshore wind farm projects, 447 

since these projects are not developed in open bodies of water. Therefore, the user may remove 448 

this risk in the revise step, and such adding/modifying increases the reliability of the results (i.e., 449 

the list of identified risks). In the case study presented in Section 4, the authors revised the risks 450 

identified for the different CWPs of onshore wind farm projects. 451 
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3.5 Retain 452 

Finally, the list of identified risks is validated using expert knowledge. The retain step 453 

provides dynamic learning capacity to the proposed risk identification technique, and the 454 

validated list of risks can be used for risk identification in other types of construction projects in 455 

the future. The retain step provides two advantages. First, the risk identification technique 456 

utilizes expert knowledge and does not rely solely on computational algorithms to identify 457 

construction risks; therefore, any errors recognized during the validation process can easily be 458 

corrected by the experts. Second, expanding the technique’s database of construction risks makes 459 

it more robust for identifying risks in new types of construction projects. For verification 460 

purposes, the proposed risk identification technique was applied to a case study of onshore wind 461 

farm projects. 462 

4. Results, Case Study: Onshore Wind Farm Projects 463 

4.1 Developing a database for the proposed risk identification technique  464 

Through an extensive literature review, a database was developed in Microsoft Excel® to 465 

store the risks associated with the target construction projects, which have one or more CWP(s) 466 

in common with the onshore wind farm projects. For this purpose, first, the CWPs of onshore 467 

wind farm projects were extracted from Hao et al. (2019), which identified the following 11 468 

CWPs: pre-construction activities, surveying, turbine foundation, turbine assembly, electrical 469 

collector line, electrical distribution substation, access road and parking lot, stormwater 470 

management system, meteorological tower, dewatering, and operation and maintenance (O & M) 471 

buildings. Next, two common scientific databases, Scopus® and Google Scholar®, were 472 

searched. The name of each CWP was searched in Scopus® to find any journal articles, 473 

conference papers, or technical/engineering reports that in its keywords, abstract, or title that 474 
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include both the CWP name and at least one of the four following terms risk identification, risk 475 

management, risk assessment, or construction risk. The same search methodology was used with 476 

Google Scholar®, but it lacks advanced search options in Google Scholar® for searching within 477 

specific sections of the documents, so the aforementioned terms were searched for within whole 478 

documents. Searches in Scopus® and Google Scholar® were not limited to a specific time 479 

frame, meaning the upper limit for the publication date is 2020 (i.e., the time of conducting this 480 

research), and the earliest paper found was published in 1990. A total of 37 articles were found 481 

that identify risks associated with the CWPs of onshore wind farm projects, yielding a database 482 

inclusive of 347 risks collected from 15 different types of construction projects that have 483 

common CWPs. Table 2 presents the list of 37 articles, the types of construction projects studied, 484 

and risks identified by each article. This model can use risk data (e.g., identified risks, the 485 

severity of risks) from different project types (e.g., subway, road, building, and hydropower 486 

projects). However, in this study, a literature review is used to collect different project data as 487 

input to the model.  488 

Table 2. List of retrieved cases for each CWP. 489 

CWP Type of Project (References) 

Pre-construction 

activities 

Onshore wind farm project (Manwell et al. 2006); hydropower project (Baroudi and 

McAnulty 2013); highway project (Diab et al. 2017; Vishwakarma et al. 2016); water 

importation and pipeline project (Kershaw et al. 2009); electricity transmission project 

(Sidawi 2012) 

Surveying 
Pipe jacking construction project (Cheng and Lu 2015); highway project (Diab et al. 2017); 

electricity transmission project (Sidawi 2012) 

Turbine 

foundation 

Subway projects (Fan et al. 2015; Zhou and Zhang 2011; Zhou et al. 2017); onshore wind 

farm project (Hassanzadeh 2012); road construction project (Amey Comsulting PLC 2016); 

bridge construction project (Issa and Ahmed 2014); infrastructure projects-general 

(Hosny et al. 2018, Hussein and Goble 2000); hydropower project (Stantec 2017) 
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CWP Type of Project (References) 

Turbine 

assembly 

Onshore wind farm project (Chou and Tu 2011, Mustafa and Al-Mahadin 2018); windmill 

construction project (Sanders and Shapira 2011); on- and offshore wind farm projects 

(Canada Wind Energy Association 2018); infrastructure projects-general (Marquez et al. 

2014) 

Electrical 

collector lines 

Transmission and distribution line construction (Albert and Hallowell 2013); highway 

project (Zayed et al. 2008) 

Electrical 

distribution 

substation 

Onshore wind farm project (Hassanzadeh 2012, Canada Wind Energy Association 2018); 

hydropower project (Stantec 2017); transmission and distribution line construction 

(Albert and Hallowell 2013); UHV power transmission construction (Zhao and Guo 2014) 

Access road 
Highway project (Creedy et al. 2010; Tawalare 2019; Vishwakarma et al. 2016; Zayed et al. 

2008) 

Stormwater 

management 

Infrastructure projects-general (United States Environmental Protection Agency 1991, 

Government of Western Australia 2012, Infrastructure Health & Safety Association 2019); 

public utilities projects (Jannadi 2008) 

Meteorological 

tower 

Telecommunication tower project (Davies 2011, Rosu et al. 2018); modular construction 

(Li et al. 2013); Infrastructure projects-general (Marquez et al. 2014) 

Dewatering Infrastructure projects-general (Government of Western Australia 2012) 

O & M building 
Modular construction project (Li et al. 2013); building projects (Canadian Home Builders’ 

Association 1988, Enshassi et al. 2008, Valipour et al. 2017) 

 490 

4.2 Implementing the FCBR technique for risk identification 491 

Following the methodology introduced for proposed risk identification technique, as discussed in 492 

section 3.1, the local characteristic of project type was represented using the taxonomy of 493 

construction project types (see Figure 3). Next, the WBS of onshore wind farm projects was 494 

extracted from Hao et al. (2019) to identify the CWP involved in these projects and their relevant 495 

activities. Then, the global similarity index was calculated as discussed in Section 3.2.3, thus 496 

completing the case retrieval step. To automate the process of risk retrieval, a function is 497 

developed in MATLAB® programming language. As noted in section 3.2, RT was set to 498 
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“Medium”, and IT was set to “High”. For further clarification, Figure 5 and Figure 6 are 499 

presented illustrating global fuzzy numbers for two different thresholds in the turbine foundation 500 

work package. 501 

 502 

Fig. 5. Retrieved cases for high fuzzy threshold. 503 
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 504 

Fig. 6. Retrieved cases for high fuzzy threshold. 505 

IT was set to “High”, and RT was set to “Medium,” which resulted in retrieving 2 identical 506 

cases and 9 similar cases, respectively. It should be note that those 7 similar and non-identical 507 

cases need to be revised according to the scope of the project; and all retrieved cases for turbine 508 

foundation are related to foundation work packages in different projects, namely, subway, 509 

bridge, road, industrial buildings, and onshore wind farm projects. Following the implementation 510 

of the proposed risk identification technique, a total of 169 risks were identified for the 11 CWPs 511 

of onshore wind farm projects as presented in Table 3. 512 
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Table 3. List of risk factors associated with CWP in onshore wind farm projects. 513 

CWP  

(No. of risks) 

Risks  

(* indicates risks retrieved from identical rather than partially 

similar cases) 

Pre-

construction 

activities 

(15) 

(1) *Delay due to public (environmental) protest against wind farm 

development; (2) *Delay in obtaining permits / long regulatory 

permitting process; (3) *Land ownership issues (transferring, renting 

claims); (4) *Lack of skilled workers; (5) *Delay in delivery times for 

materials and equipment; (6) *Difficulty procuring materials and 

equipment; (7) *Significant communication problem; (8) Error in 

right-of-way; (9) Inadequate reviews of plans by designers and 

contractors/design errors; (10) Increased utility relocation costs; 

(11) Utility damages by contractors/subcontractors faults in 

construction; (12) Presence of cultural/archaeological resources; 

(13) Difficulty transferring construction waste and disposal; 

(14) Unavailability of owner engineers on the remote project's site 

due to their workload; (15) Delay in the approval of contractor 

submissions by the owner 

Surveying 

(4) 

(1) Inaccurate surveying and layout; (2) Late/erroneous surveys; 

(3) Inaccuracy of existing utility locations / survey data; (4) Delay in 

conducting of field survey by contractor 

Turbine 

Foundation 

(61) 

(1) *Poor material; (2) *Poor execution of work; (3) *Faulty 

detailing; (4) Longitudinal instability due to rainfall, poor soil, etc.; 

(5) Foundation deformation; (6) Gushing water and sand; (7) Creation 

of preferential pathways through a low-permeability layer, to allow 

potential contamination of underlying aquifer; (8) Creation of 

preferential pathways, through a low-permeability surface layer, to 

allow upward migration of land gas, soil gas, or contaminant vapors 

to the surface; (9) Direct contact of site workers and others with 

contaminated soil arisings brought to the surface; (10) Direct contact 
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CWP  

(No. of risks) 

Risks  

(* indicates risks retrieved from identical rather than partially 

similar cases) 

of piles or engineered structures with contaminated soil or leachate 

causing degradation of pile materials; (11) Driving of solid 

contaminants down into an aquifer during pile driving; 

(12) Contamination of groundwater and surface waters by concrete, 

cement paste, or grout; (13) Overexposure of soil / rainfall 

immersion; (14) Leakiness of sealed drill holes; (15) Shallow inserted 

depth of diaphragm wall; (16) Waterproof precaution failure; 

(17) Poor subsoil; (18) Negative effects of soil reinforcement; 

(19) Unsuitable operation; (20) Overloads; (21) Running on uneven 

ground; (22) Gyrating too quickly; (23) Using inappropriate tools; 

(24) No use for separation materials between piles during casting; 

(25) Incorrect preparation / poor choice of casting/curing area; 

(26) Poor curing of precast piles; (27) Weak connection between pile 

reinforcement and pile edge; (28) Pile arrangement / number of piles 

in casting/curing area; (29) Using inappropriate surveying devices to 

steer piling machine; (30) Difficulties implementing marks to locate 

pile over the water; (31) Poor system of fixing piling machine, e.g., 

using buoy or temporary timber piles; (32) Lack of specialized 

laborers running machine; (33) Extreme weather conditions; 

(34) Characteristics of waterway section, e.g., channel width, water 

velocity; (35) Handling pile in an unsafe manner or from non-specific 

lifting places; (36) Distance of transferring pile from casting/curing 

area to specified pile location; (37) Inability of pile to bear stresses 

resulting from handling process; (38) Differences between soil boring 

report and soil nature; (39) Machine or pile not vertical; (40) Non-

suitability of hammer distance and driving rate for pile; 

(41) Collapsing of pile head due to not using a cushion to absorb the 

driving energy; (42) Stopping during driving a certain pile; 
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CWP  

(No. of risks) 

Risks  

(* indicates risks retrieved from identical rather than partially 

similar cases) 

(43) Environmental problems due to driving, e.g. noise or steam; 

(44) Problems due to site conditions, e.g., railway adjacent to site; 

(45) Lack of follow-up / slow decision-making during driving 

process; (46) Major events, e.g., earthquakes, wars, revolution; 

(47) Improper/inadequate soil assessment; (48) Delay in designer’s 

response; (49) Poor communication with project stakeholders; 

(50) Insufficient organizational structure; (51) Poor qualification of 

staff; (52) Delay in inspection/testing; (53) Delay in approval of 

contractor’s submittals; (54) Ineffective decision-making; (55) Labor 

mistakes, rework, and idle times; (56) Labor shortage; (57) Labor 

conflicts/disputes; (58) Safety issues; (59) Labor cost fluctuations; 

(60) Lack of managerial skills; (61) Low credibility 

Turbine 

assembly 

(11) 

(1) *Missing information / inconsistencies in installation document; 

(2) *Bolt had insufficient strength due to bolt quality; 

(3) *Insufficient torsion applied to bolt due to human error; (4) *Lack 

of qualified labor; (5) *Inconstancies between parties’ documents 

(e.g., torsion magnitude in owner’s and contractor’s inspection 

documents); (6) *Transportation of wind turbine parts via public and 

access roads; (7) *Slipping risk; (8) *Tripping risk; (9) *Falling risk; 

(10) Reduction in crane capacity due to wind; (11) Improper ground 

connection 

Electrical 

collector lines 

(5) 

(1) Electrocution; (2) Sub-contractor delays; (3) Weather / natural 

causes of delay; (4) Rock encountered; (5) Extra cost due to remote 

location 

Electrical 

distribution 

substation 

(1) Poor material; (2) Poor execution of work; (3) Faulty detailing; 

(4) *Errors/omissions in construction documents; (5) *Issues with 

circuit switcher after long-term storage in substation; (6) *Moisture 
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CWP  

(No. of risks) 

Risks  

(* indicates risks retrieved from identical rather than partially 

similar cases) 

(12) content in transformer oil after long-term storage in substation; 

(7) *Electrical outage/failure construction; (8) *Delays due to 

unforeseeable site conditions; (9) *Delays due to equipment 

transportation; (10) Improper ground connection; (11) Environmental 

risk of SF6 circuit breakers; (12) Electrocution risk 

Access road 

(21) 

(1) Lack of design quality; (2) Lack of expert human resources; 

(3) Schedule delay due to rejection of unqualified materials; 

(4) Schedule delay due to late delivery of materials; (5) Inadequate 

labor/skill availability; (6) Changed orders due to political pressure; 

(7) Delay due to lawsuits by landowner’s for higher compensation; 

(8) Labor absenteeism; (9) Delay due to rain / weather causes; 

(10) Uncertain construction market conditions; (11) Contractor 

productivity issues; (12) Uncertainty in horizontal alignment; 

(13) Improper basic parameters; (14) Construction in hilly region; 

(15) Uncertainty in landscaping activities; (16) Uncertain land 

acquisition cost; (17) Uncertain land acquisition schedule; (18) Fuel 

availability/price; (19) Local disturbances; (20) Quality of 

construction/product; (21) Access road closure due to weather 

condition (spring and winter) 

Stormwater 

management 

(5) 

(1) Collapsing trench wall due to rainy weather; (2) Failure/collapse 

of soil in trench due to material/equipment too near edge; (3) Damage 

to existing utilities during excavation; (4) Unskilled or untrained 

equipment operators, workers, and foremen; (5) Insufficient, 

improper, and/or non-existent shoring system 

Meteorological 

tower 

(19) 

(1) Missing information and inconsistencies in the installation 

document; (2) Bolt had insufficient strength due to bolt quality; 

(3) Insufficient torsion applied to bolt due to human error; (4) Lack of 

qualified labor; (5) Inconstancies between parties’ documents (e.g., 
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CWP  

(No. of risks) 

Risks  

(* indicates risks retrieved from identical rather than partially 

similar cases) 

torsion magnitude in the owner’s and contractor’s inspection 

documents); (6) Slipping risk; (7) Tripping risk; (8) Falling risk; 

(9) Insufficient rigging plan; (10) Inadequate reinforcement for 

construction loads; (11) Guy wire slippage; (12) Tower failure due to 

ice / wind with ice; (13) Installation flaw; (14) Hurricanes, tornadoes, 

straight-line winds; (15) Anchor failure; (16) Corrosion of anchor; 

(17) Tower failure; (18) Delays due to wind; (19) Reduction in crane 

capacity due to wind 

Dewatering 

(9) 

(1) Loss of existing environmental value linked to receiving waters; 

(2) Poses significant threat to aquatic fauna/flora, especially in 

sensitive environments; (3) Soil erosion or local flooding; (4) Harm to 

native vegetation (via flooding or toxicity); (5) Erosion of structures 

or services; (6) Sediment build-up in drains, waterways, or wetlands; 

(7) Significant change of PH in soil, surface water, or groundwater; 

(8) Leaching of contaminant in concentrations likely to harm 

downstream water values; (9) Settlement due to incorrect or 

inappropriate dewatering 

O & M 

building 

(7) 

(1) Rushed design; (2) Gaps between implementation and 

specifications due to misinterpretation of drawings; (3) Lower work 

quality due to time constraints; (4) Delayed dispute resolutions; 

(5) Unmanaged cash flow; (6) Environmental factors; (7) New 

governmental acts or legislations 

The results of this study reveal that among the 11 CWPs of onshore wind farm projects, the 514 

largest number of risks are associated with “turbine foundation” with 61 risks. Moreover, the 515 

risks that are common among several CWPs are: “harsh weather conditions,” which affects 8 516 

CWPs; and “lack of skilled workers,” which affects 6 CWPs.  517 



34 

 

Piney (2003) suggested checking the risk factors against the scope of each CWP to validate 518 

the list of risks identified per CWP. In this paper, the proposed method was used to validate the 519 

risks identified for onshore wind farm projects; for illustrative purposes, two CWPs, “electrical 520 

distribution substation” and “meteorological tower,” were used to demonstrate the validation 521 

process of the RBM presented in Table 3. 522 

The first CWP, is the electrical distribution substation, which is common between different 523 

types of power plant projects since (in addition to generating power and transforming it into 524 

electricity) it is required to distribute power within the power network. Five cases were retrieved 525 

for the identification of risks affecting this CWP from different projects: onshore wind farm, 526 

hydropower, transmission and distribution line construction, and UHV power transmission 527 

construction projects. The onshore wind farm cases considered safety risks as well as risks 528 

associated with the foundation of an electrical distribution substation. The hydropower case only 529 

considered risks related to electrical equipment. The rest of the cases consider generic risks such 530 

as poor material, faulty detailing, and poor execution. Some risks were common between all 531 

cases, namely, electrocution risk and improper ground connection. 532 

The second CWP investigated in this paper is the meteorological towers, which commonly 533 

have a very high ratio of tower height to tower width (i.e., width measured at the very bottom of 534 

the cross-section of towers). Therefore, these types of structures are prone to structural risks 535 

caused by horizontal forces (i.e., wind force, earthquakes), and one of the few options available 536 

for addressing these risks is to support the structures with structural cables connected to the 537 

ground with anchors. The main function of this type of tower is carriage of measurement 538 

instruments. Four cases were retrieved for the identification of risks affecting this CWP from 539 

different projects: telecommunication towers, modular construction, and UHV power 540 
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transmission construction project. A telecommunication tower project has the same functionality 541 

and construction method as a meteorological tower. So, the risks retrieved from a 542 

telecommunication tower are related to structural failure of the meteorological tower of onshore 543 

wind farm projects. The rest of the cases for the CWP consider installation failure due to wind 544 

and unqualified labor. 545 

5. Discussion 546 

The use of FCBR for developing the proposed risk identification technique enables the 547 

user/expert to customize the linguistic terms and fuzzy numbers for different project types. It 548 

also enables the user/expert to understand the reasoning behind the risk identification process 549 

and to justify the selection of each risk. Table 4 presents a comparison of the proposed risk 550 

identification technique with some other common risk identification techniques (noted in  551 

section 1). 552 

Table 4. Comparison of proposed FCBR risk identification technique to other techniques. 553 
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Capturing subjective uncertainty  – – – – – ✓ 

Low reliance on historical data 

of the project 

– ✓ ✓ ✓ ✓ ✓ 

Quantitative analysis – – – – ✓ ✓ 

Low reliance on expert 

knowledge 

– – – – ✓ ✓ 
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Less challenging process ✓   ✓ ✓ ✓ 

Flexibility to customize method 

for different project types and 

stages 

✓ ✓ ✓ – – ✓ 

Considering all identified risks 

of other project types. 

– ✓ ✓ – ✓ ✓ 

The proposed technique is less challenging than the literature review method, because once a 554 

database is developed for FCBR, the same database can be re-used for other types of projects, 555 

which is not the case for the literature review. Moreover, for the risk identification of novel 556 

construction projects, the proposed technique is superior to the literature review method since it 557 

deals with challenges associated with historical data scarcity by using historical data collected 558 

from all different types of construction projects. Acquiring expert knowledge is time-consuming 559 

and expensive, so the proposed technique’s low reliance on expert knowledge makes it faster and 560 

cheaper to implement compared to methods that rely solely on expert knowledge, namely expert 561 

interview, Delphi, and SWOT. The proposed technique also captures subjective uncertainty by 562 

defining similarities between two cases using linguistic terms. As a result, FCBR can define the 563 

partial similarity between projects, which means that it considers a wider range of projects and 564 

generates more comprehensive results compared to CBR. 565 

Compared to the FCBR risk identification technique introduced by Somi et al. (2020), the 566 

proposed technique in this study first uses the extension principle to eliminate the problem of 567 

overestimation of uncertainty in global similarity. Further, using fuzzy distance measures and 568 

fuzzy thresholds of similarity and identicality rather than crisp ones enhances the model 569 

performance, since it avoids information loss due to the defuzzification of fuzzy numbers 570 

(Pedrycz 2017). Figure 6 illustrates that using fuzzy thresholds instead of crisp value results in 571 
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retrieving cases that are more similar to the target case, such as the construction of shaft cases. 572 

The cases graphically have defuzzifed values less than 0.5, but using fuzzy distances results in 573 

retrieval of those cases. Moreover, fuzzy thresholds increase the flexibility of the model by 574 

allowing the user/expert to use linguistic terms to modify the model. 575 

For further investigation regarding the validity of the proposed risk identification technique 576 

and to illustrate its flexibility, sensitivity analysis was performed to determine the sensitivity of 577 

the results to the changes in the parameters of the Tversky similarity index, presented in 578 

Equation (2) (see Section 3.2.2). The two parameters of the Tversky similarity index are 𝛼, 𝛽 ∈579 

[0, 1]; to test the sensitivity of the proposed technique per these parameters, the values of 𝛼 and 580 

𝛽 were changed between the two extreme points: 𝛼 = 0.0 and 𝛽 = 1.0; and 𝛼 = 1.0 and 𝛽 =581 

0.0. Then, for each case, CWPs that were found to be similar to onshore wind farm projects were 582 

retrieved from the database. The results are presented in Table 5. 583 

Table 5. Different retrieved cases regarding α, β in Tversky similarity. 584 

Tversky 

parameters 

values 

Retrieved CWPs 
Fuzzy CWP 

similarity 

Scenario 1: 

𝛼 = 0.0 

𝛽 = 1.0 

Deep foundation in metro station Very High 

Foundation in onshore wind farm project Very High 

Pile foundation in bridge projects Very High 

Continuous flight auger (CFA) piling construction in all 

infrastructure projects 

Very High 

Foundation in access road Very High 

Excavation in electrical transmission and distribution projects Very High 

Deep foundation in subway underground station Very High 
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Substation construction in hydropower projects 
Very High 

 Construction of shaft in subway underground station Very High 

Scenario 2: 

𝛼 = 1.0 

𝛽 = 0.0 

Construction of shaft in pipe jacking projects (pipeline) Very High 

Deep foundation in metro station Very High 

Foundation in onshore wind farm project 
Very High 

Pile foundation in bridge projects 
Very High 

Continuous flight auger (CFA) piling construction in all 

infrastructure projects 

Very High 

Foundation in access road 
Very High 

Deep foundation in subway underground station 
Very High 

Substation construction in hydropower projects 
High 

Per Section 3.2.2, to compare two CWPs S and P, α and β are the two parameters for defining 585 

the importance of exclusive activities of S and exclusive activities of P, respectively. In other 586 

words, for α = 0.0, β = 1.0, the Tversky similarity index ignores the exclusive activities involved 587 

in CWP S and not involved in CWP P, which is the case when S is more general (i.e., of a higher 588 

level in WBS) compared with CWP P. Conversely, for α = 1.0, β = 0.0,  the Tversky similarity 589 

index ignores the exclusive activities involved in CWP P and not involved in CWP S. According 590 

to the results presented in Table 5, a higher value for 𝛼 results in retrieving more cases, where 9 591 

cases were retrieved in scenario 1, and 8 cases were retrieved in scenario 2. However, a small 592 

value for β can cause negligence regarding the characteristics of the CWPs involved in other 593 

types of construction projects and would calculate a biased similarity value. Furthermore, using α 594 

= 0.5, β = 0.5 results in the same retrieved cases (refer to Table 3) but with lower similarity 595 

values. 596 
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In addition to the theoretical contributions of this paper, the proposed risk identification 597 

technique provides a practical tool for risk identification practices in real-world construction 598 

projects. For successful and efficient implementation of the proposed technique in practice, two 599 

things need to be developed: a large database of construction projects with a structured hierarchy 600 

of characteristics that determine the similarity of the projects, and a comprehensive risk list of 601 

the construction projects included in the database. The development of such a database within an 602 

organization facilitates the risk identification process for multiple projects, making the process 603 

more efficient. Moreover, the development of an open-source, online database (e.g., a data 604 

repository) is also recommended in order to enable different users to contribute to the database 605 

and to develop the most comprehensive set of project types and construction risks. 606 

6. Conclusions and Future Work 607 

Risk identification is the first stage in risk management practice, and the successful delivery 608 

of construction projects is highly dependent on the precise identification of the risks associated 609 

with them. However, construction risk identification is challenging in novel types of construction 610 

projects, since these projects are not comprehensively studied in the literature and limited 611 

historical data are available for them. To address this challenge, a new risk identification 612 

technique is introduced in this paper that uses FCBR to determine the similarity between novel 613 

types of construction projects and projects that are well-studied in the literature and identifies the 614 

risks associated with novel types of construction projects based on such similarities. To confirm 615 

the applicability of the proposed technique, it was used to identify risks associated with the 616 

construction of onshore wind farm projects. Despite the scarcity of historical data and lack of 617 

ample research on these projects, an RBM consisting of 169 risk factors was developed for the 618 

construction of onshore wind farm projects. Moreover, this paper advances the state-of-art of 619 
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FCBR by using fuzzy numbers to define similarities between the different cases to: (1) improve 620 

the interpretability of the model by using linguistic terms for the reasoning process; and (2) 621 

increase the flexibility of the model by allowing the user/expert to use linguistic terms to modify 622 

the model. The findings of this paper reveal that the capacity of FCBR for capturing partial 623 

similarity between two cases improves the model’s accuracy and comprehensiveness compared 624 

to CBR. 625 

This study represented validation by comparing the scope of each CWP with identified risks. 626 

In future research, a survey will be conducted with construction experts to validate the RBM 627 

developed for onshore wind farm projects and assess the accuracy of the proposed technique 628 

based on the construction experts’ opinions. Moreover, to further validate the proposed 629 

technique, the results of this study will be compared with other types of information-based 630 

techniques such as ontology-based risk identification. In this paper, the proposed risk 631 

identification technique solely relied on two characteristics to determine similarities. In future 632 

research, other characteristics of construction projects will be utilized and a hierarchy of project 633 

characteristics will be developed for determining the similarities in the proposed risk 634 

identification technique. Finally, the proposed risk identification technique will be extended by 635 

implementing weighted aggregation methods for determining global similarity between different 636 

types of construction projects. The application of weighted aggregation methods increases the 637 

flexibility of the proposed technique by incorporating the relative importance of each local 638 

characteristic in calculation of the global similarity index. Following the aforementioned 639 

theoretical extensions to the proposed risk identification technique, it will be applied to other 640 

kinds of renewable energy projects, including solar panel projects, and RBMs will be developed 641 

for those projects. 642 
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