
U n iv e rs ity o f A lb e r ta

I m p r o v i n g A I P l a n n i n g a n d S e a r c h w i t h A u t o m a t i c A b s t r a c t i o n

by

A d i B o te a

A thesis subm itted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of D o c to r o f P h ilo so p h y .

Department of Computing Science

Edmonton, A lberta
Spring 2006

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-13939-0
Our file Notre reference
ISBN: 0-494-13939-0

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

U n iv e rs ity o f A lb e r ta

L ib ra ry R e lea se Form

N a m e o f A u th o r: Adi Botea

T itle o f T hesis: Improving AI Planning and Search with Automatic Ab
straction

D egree: Doctor of Philosophy

Y ear th is D eg ree G ra n te d : 2006

Permission is hereby granted to the University of A lberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re
produced in any material form whatever without the au thor’s prior written
permission.

Adi Botea
8515-112 Street, Apt. 1717
Edmonton, A lberta
Canada, T 6 G 1K7

D ate :

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Abstract

Planning is ubiquitous in real life. AI planning and single-agent heuristic

search, two m ajor areas of artificial intelligence research, focus on machine

generated solutions to a great range of real-life planning applications. To

successfully tackle large planning problems, significant advances in technology

are necessary.

This research focuses on speeding up planning and single-agent search.

Abstraction, a central idea of this work, is explored in three major applica

tion domains, each assuming a different level of application-specific knowledge

available beforehand.

The first framework is fully autom ated AI planning, with no application-

specific knowledge provided. The contributions include a family of adaptive

techniques th a t automatically infer new information about a domain. Macro

actions are extracted from previously acquired information. Algorithms for

ranking, filtering, and using macros a t runtim e are introduced. Experiments

show an improvement of orders of magnitude, as compared to a state-of-the-art

planner such as FF, in domains where structural information can automatically

be inferred. Macro-FF, an adaptive planner th a t implements these ideas, suc

cessfully participated in the International Planning Competition IPC-4, taking

the first place in 3 out of 7 domains where it competed.

As a second domain, abstraction for path-finding on grid maps is explored.

Partial application-specific knowledge is assumed, since path-finding usually

takes place in a space with topological structure. The main contribution is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Hierarchical Path-Finding A*, an approach shown to achieve up to a 10-fold

speed-up in exchange for a 1 % degradation in path quality, as compared to a

highly optimized implementation of A*.

The third research domain provides a rich application-specific context: the

puzzle of Sokoban. The main contribution is a novel solving approach that

combines planning with abstraction. A maze is partitioned into rooms and

tunnels, allowing the decomposition of a hard initial problem into several much

simpler sub-problems. Experiments show tha t a prototype implementation of

these ideas is competitive with a state-of-the-art specialized solver, on a subset

of problems.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Acknowledgem ents

I have often felt th a t interacting with and learning from M artin Muller and
Jonathan Schaeffer, my co-supervisors, has been an exceptional privilege.
Their supervision, an amazing combination of expertize, discreetness, and pa
tience, has decisively supported the progress of this research. More impor
tantly, it has changed me both personally and professionally. Additionally, I
would like to thank the other committee members, Simaan AbouRizk, Fahiem
Bacchus, Joseph Culberson, and Robert Holte, who allocated valuable time to
evaluate this work and provide feedback.

Over the last few years, I have learnt many interesting things from the
Planning Reading Group, the Games Group, and the Computer Go Seminar
at the University of Alberta. I am thankful to all the people who attended
meetings of these groups and contributed to their value w ith interesting com
ments and discussions.

Portions of the work described in this thesis have been implemented on
top of software initially developed by Mike Ady, Fahiem Bacchus, Froduald
Kabanza, Markus Enzenberger, Jorg Hoffmann, and Andreas Junghanns.

All the extremely personable and supportive people around me have made
the Departm ent of Computing Science into an essentially perfect work envi
ronment. Special thanks go to Edith Drummond, whose dedication in helping
graduate students goes well beyond her regular job duties.

I will always remember the good times (and coffee) th a t I have had with
Akihiro Kishimoto, Markus Enzenberger, Markian Hlynka and other friends
within the Departm ent of Computing Science. I thank my Romanian friends
for playing soccer together and for the great times we have had in Edmonton.

For the strongest emphasis, I have left it to the last to acknowledge the
essential role played by family support, upon which I have relied. I am very
thankful to my wife Vio, whose moral support helped me complete the chal
lenging journey of a PhD program. Throughout these years, she has made
a superb effort to live away from her parents and sister, and to re-start her
career in a new country. Finally, I dedicate this thesis to my parents, to whom
I owe much of what I am today.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Contents

1 In trod u ction 1
1 .1 AI Planning and Heuristic S e a r c h .. 1
1 .2 A b s t r a c t io n ... 2
1.3 Contributions and Target A p p lic a tio n s .. 3

1.3.1 Domain-Independent AI P la n n in g 5
1.3.2 Path-Finding on Grid M a p s ... 6

1.3.3 S o k o b a n ... 8

1.4 Publications and Thesis O verv iew .. 9

2 L iterature R ev iew 10
2.1 AI P la n n in g ... 10

2.1.1 Background of Classical P la n n in g 11
2.1.2 Planning as Heuristic S e a rc h .. 14
2.1.3 Abstraction in P la n n in g ... 18
2.1.4 M acro-Operators in Planning ... 20

2.2 P a th -F in d in g .. 21
2.2.1 Abstraction for Path-Finding in Commercial Computer

G a m e s .. 22
2.2.2 Abstraction for Path-Finding in R obo tics 23
2.2.3 Other Relevant W o rk .. 23

2.3 S o k o b a n .. 25
2.4 Abstraction in Single-Agent S e a r c h .. 26
2.5 C o n c lu sio n s ... 28

3 C om ponent A b straction in A I P lan n in g 29
3.1 Component A b s t r a c t io n .. 31

3.1.1 Building the Static Graph of a P rob lem 32
3.1.2 Building Abstract Components 33
3.1.3 Assigning Types to A bstract Components 36

3.2 Creating M acro -O pera to rs ... 37
3.2.1 Macro G eneration .. 38
3.2.2 Macro Ranking and Filtering 41

3.3 A n a ly s is ... 42
3.3.1 How Macros Affect Planning in C A -E D 42
3.3.2 Limitations of C A - E D .. 43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.4 Conclusion and Future Work 44

4 S o lu tion A b straction in A I P lan n in g 47
4.1 Solution G r a p h .. 49
4.2 M a c ro -O p e ra to rs ... 53

4.2.1 Generating M acro-O perators.. 53
4.2.2 Filtering and R a n k i n g .. 56
4.2.3 Instantiating Macros a t Run-Time 58
4.2.4 D iscussion ... 61

4.3 Participating in the International Planning Competition . . . 62
4.3.1 M a c ro -F F ... 62
4.3.2 Competition R e s u l t s ... 65

4.4 Conclusions and Future W o r k ... 6 6

5 E xp erim en ts in A I P lann in g 67
5.1 Evaluating CA-ED vs. S O L - E P .. 67

5.1.1 Effects of CA-ED Macros on S e a rc h 76
5.2 Evaluating the Competition S y s te m ... 77
5.3 Evaluating S O L -E P .. 83
5.4 C o n c lu s io n s ... 90

6 H ierarchical P ath -F in d in g w ith T opological A b straction 92
6.1 Hierarchical Path-Finding A * .. 94

6.1.1 Preprocessing a G r i d ... 95
6 .1 .2 On-line Search ... 99
6.1.3 Experimental Results for the Running Example 101
6.1.4 Adding Levels of H ierarchy... 102
6.1.5 Experimental Results for Example with 3-Level Hierarchy 104
6.1.6 Storage Analysis .. 105

6.2 Experim ental R e su lts .. 107
6.2.1 Experimental S e tu p .. 107
6 .2 . 2 A n a ly s is .. 108

6.3 Conclusions and Future W o r k .. 112

7 U sin g A b straction for P lan n in g in Sokoban 114
7.1 Planning in S o k o b a n .. 115

7.1.1 Representing Sokoban as a Planning P r o b le m 116
7.1.2 Using a Standard Planner in S okoban 117

7.2 Abstraction in Sokoban... 118
7.2.1 Puzzle Decomposition .. 119
7.2.2 Hierarchical Problem R e p re se n ta tio n 121
7.2.3 Local P ro b le m s ... 121
7.2.4 Global P ro b le m ... 125

7.3 Experimental R e su lts .. 127
7.4 Conclusions and Future W o r k ... 132

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

8 C onclusions 1 3 3

A A lgorith m ic D eta ils o f C A -E D 142
A .l Pseudocode of Static Graph Construction 142
A .2 Static Facts in Domains with Hierarchical T y p e s 144
A.3 Pseudocode of Component A b s tra c tio n 144

B D om ain s used in P lan n in g E xperim en ts 147
B .l R o v e rs ... 147
B.2 D e p o ts .. 147
B.3 S a te l l i te ... 148
B.4 P r o m e la ... 148
B.5 A irp o rt.. 148
B .6 Power Supply R e s to ra t io n 149
B.7 P ipesw orld .. 149

C A lgorithm ic D eta ils o f H P A * 150
C .l P rep ro cessin g ... 150

C.1.1 Abstracting the Maze and Building the Abstract Graph 150
C.1.2 Creating Additional Graph Levels 152

C .2 On-line S earch ... 152
C.2 . 1 Finding an A bstract S o lu t io n ... 152
C.2 . 2 Searching in a Multi-Level G r a p h 153

D Sokoban Test Su ite 154

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

2 .1 Toy Logistics in STR IPS.. 12

2.2 A problem instance for ToyLogistics.. 13
2.3 Sokoban puzzle... 25

3.1 A generic planning approach th a t uses abstraction to generate
macro-operators.. 30

3.2 (a) Standard planning framework, (b) CA-ED - Integrating
component abstraction and macro-operators into the standard
planning framework... 30

3.3 Static graph of a Rovers problem... 32
3.4 Abstract type in Rovers.. 36
3.5 Example of a macro in Rovers... 37
3.6 STRIPS definitions of macro s a m p l e _s o i l __d r o p and the op

erators th a t it contains 38
3.7 Adding operators to a macro... 39
3.8 Operator m o v e in ADL A irp o r t ... 45

4.1 General architecture of SOL-EP.. 48
4.2 Solution graph for a Satellite instance....................................... 50
4.3 Pseudo-code for building the solution graph............................ 52
4.4 Pseudo-code for generating macros.. 54
4.5 Sigmoid function.. 64

5.1 Evaluating abstraction techniques in Rovers........................ 69
5.2 Evaluating abstraction techniques in Rovers (continued). . . . 70
5.3 Evaluating abstraction techniques in Depots....................... 71
5.4 Evaluating abstraction techniques in Satellite..................... 72
5.5 Evaluating abstraction techniques in Satellite (continued). . . 73
5.6 Effects of CA-ED macros on heuristic state evaluation and depth

of goal states.. 78
5.7 Comparison of the two implementations of state hashing in

PSR (left) and Promela Dining Philosophers (right)............ 79
5.8 Comparison of FF with and without competition macros in

Satellite, Promela Optical Telegraph and Promela Dining Philoso
phers... 80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.9 Comparison of FF with and without competition macros in Air
p o rt... 81

5.10 Comparison of FF with and without competition macros in
Pipesworld No-Tankage Non-Temporal, Pipesworld Tankage Non-
Temporal and PSR... 82

5.11 Experimental results in Promela Dining Philosophers................ 84
5.12 Experimental results in Promela Optical Telegraph.................... 85
5.13 Experimental results in Satellite..................................... 8 6

5.14 Experimental results in PSR Middle Compiled............................ 89

6.1 Example of a grid g ... 95
6.2 Abstracting the top-left corner of g ... 97
6.3 Cluster-internal path information.. 98
6.4 Abstract problem graph... 98
6.5 Low-level A* vs. hierarchical path-finding.................................... 109
6 . 6 Hierarchical search effort.. I l l
6.7 Solution quality.. 112
6 . 8 Search effort for finding an abstract solution................................ 113

7.1 Toy Sokoban problem used as an example....................... 118
7.2 Various types of tunnels.. 119
7.3 Abstract states of a tunnel.. 120
7.4 Hierarchical representation of a problem.. 121
7.5 Local processing of a small room.. 122
7.6 A few equivalent configurations of a room 122
7.7 Depth of the main search... 128
7.8 Nodes expanded in the main search.. 129

A .l Static graph construction in pseudo-code...................................... 143
A.2 Component abstraction in pseudo-code.. 145

C .l Preprocessing in pseudo-code... 151
C.2 On-line processing in pseudo-code... 153

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Tables

1 .1 Abstraction strategies... 8

3.1 Building abstract components for the Rovers example................. 34

5.1 Rate of cost per node.. 74
5.2 Summary of training in each dom ain.. 83

6.1 Number of expanded nodes for an example problem.................... 101
6 . 2 Average size of the problem graph in Baldur’s G ate...................... 106
6.3 Average size of the open list in A*... 107

7.1 Abstract Sokoban vs. Tunnel Sokoban.. 130
7.2 Abstract Sokoban vs. Rolling Stone... 130

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Introduction

1.1 AI P lanning and H euristic Search

Planning has an ubiquitous presence in real life. Humans need to plan many

of their activities, from shopping or driving to a destination to industrial pro

cesses or construction projects. As a natural consequence, the exploration of

planning has become a m ajor theme in the area of computing science, in an at

tem pt to provide machine-generated answers to humans’ day-to-day planning

jobs. Formal computer theories such as artificial intelligence (AI) planning [32]

and heuristic search [74], which model real-life planning, are well-recognized

areas of AI research.

The fields of AI planning and heuristic search share many common ideas.

At a high level of interpretation, they both try to provide a sequence of ac

tions that will lead to a goal state starting from the current state. Common

solutions are present at a more concrete, algorithmic level too. While several

major planning approaches exist (e.g., planning as satisfiability and constraint

satisfaction [54], the graphplan algorithm [4], planning with hierarchical task

networks [26, 80, 84], etc.), planning as heuristic search has proven to be one

of the most effective [5, 42].

Planning and search are hard by their nature, both for humans and com

puters. To illustrate this, consider the problem of airplane transportation.

Specifically, consider scheduling flights on a large network of airports while

taking into account routes, aircraft capacity, pilots, attendants, airport avail

ability, fuel costs, airport local configuration, etc. Furthermore, assume th a t

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the schedule should optimize some parameters such as operating costs or av

erage waiting time between flights.

Such a computation is next to impossible for a human to do, since it is

large, will require lots of time to solve, and errors are very likely to occur.

Encoding so many constraints into a computer application would result in a

very large problem, which exceeds the capabilities of current technology. Each

new variable, or new range of values of an existing variable, can result in a

combinatorial blow-up of the problem complexity.

Despite the hardness of planning and search problems, great progress has

been achieved in the development of efficient solving techniques. The evolution

of the international planning competition over its four editions [1, 40, 61, 67]

accurately reflects this. Successive editions introduced more and more realistic

and computationally challenging benchmarks, or harder problem instances in

the same domain. The top performers could successfully solve a large percent

age of the problems each time.

However, many real-life domains still pose great challenges for current tech

niques. Arguably, the advances in planning technology have yet to reach a

point th a t would allow autom ated planners to assist humans in many daily

activities. In effect, the need for more efficient planning methods, which push

the boundaries of current technology, is of great importance.

1.2 A bstraction

Abstraction can be a good answer to challenging planning problems. Humans

often abstract a problem solving task into higher level representations, and

a similar idea can successfully be used in computer applications. Consider

again the example of airplane transportation. A human planner would never

work at such a low level of detail th a t considers all variables of the model.

They would structure the problem hierarchically and decompose it into much

smaller subproblems. For instance, separate the problem of flying between

airports (the global problem) from the problems th a t encode local constraints

of each airport. The global problem uses a map of inter-connected airports.

2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

On this map, airports are black boxes tha t ignore local details such as the

term inal/gate where to land, how to refuel the airplane, or how to process the

passengers’ luggage. These details are solved as a separate problem for each

airport. The result is th a t many smaller problems get solved, with a large

reduction in the to ta l solving effort.

When the global problem is still too large, it can further be abstracted.

The network of airports can be structured into inter-communicating clusters.

Flying from Lethbridge, Canada to Trento, Italy is now a sum of smaller

problems:

1 . Fly from Lethbridge to a close national-size airport such as Edmonton.

This involves searching only in the airport network of Alberta.

2. Fly to Toronto, which has many international connections. This time

search is performed only in the network of im portant Canadian airports.

3. Fly to a major European airport such as Frankfurt, Germany. Now the

search explores only major airports on the map.

4. Go down in the hierarchy in a similar fashion until the destination airport

is reached.

Solutions to planning tasks often have associated metrics th a t characterize

their quality. Examples include the number of steps in a solution, the total exe

cution time, the resources consumed to achieve a goal, etc. Abstraction-based

solutions may not guarantee optimality. But even a near-optimal solution

might save millions of dollars per year, be more convenient for customers, and

even more environmentally friendly than a hand-made schedule.

1.3 C ontributions and Target A pplications

This thesis focuses on designing, analyzing and evaluating techniques for speed

ing up planning and search. Abstraction is a central idea of this research. The

term “abstraction” has a multitude of meanings, and many approaches from

the AI literature can fit into this category. In this thesis, abstraction refers to

3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the process of changing the level of granularity at which a problem is repre

sented. Two successful strategies th a t refine this high-level idea are reformu

lating a problem on several hierarchical levels, and using macro-operators.

A macro-operator abstracts several related actions into a single action.

W hen added to a search space as new transitions, macros can reduce the

distance to goal states, at the price of increasing the branching factor. To

balance this trade-off in favor of faster search, heuristic rules are introduced

th a t aim to prune macros tha t are probably not shortcuts towards a goal state.

As shown in Sections 3.3.1 and 5.1.1, macros can also improve the accuracy of

heuristic sta te evaluation in fully autom ated AI planning.

In this thesis, abstraction ideas are explored in a variety of frameworks,

each assuming a different level of application-specific knowledge:

• Fully autom ated AI planning. This is also known as domain-independent

planning. No application-specific knowledge is available beforehand, and

one single planner (i.e., solver application) addresses many classes of

problems.

• Path-finding on grid maps. This framework assumes partial application-

specific knowledge: application domains in this class contain a topolog

ical structure (e.g., a city map, a game level, a building where robots

navigate, etc.) which can be exploited by efficient solving methods.

In principle, one software application can tackle multiple domains with

topological structure.

• An application-specific context, the puzzle of Sokoban. No limitation

is imposed on the amount of domain-specific knowledge th a t can be

encoded in the solver.

The following subsections provide more details on each framework. In each

subsection, first the corresponding application domain is introduced, and then

the contributions are outlined.

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1.3.1 D om ain -In d ep en d en t A I P lann ing

AI planning focuses on solving problems expressed in a given standard lan

guage such as PDDL [65]. A domain definition includes general information

such as object types in th a t application, relationships th a t can exist between

objects, and actions, along with their preconditions (i.e., conditions that are

required for an action to be applicable) and effects. A problem is defined as

an initial state and a goal condition. A solution plan is a sequence of actions

th a t reaches the goal starting from the initial state.

In domain-independent AI planning, a planner must address a large class of

previously unknown domains. Hence domain-specific knowledge, which often

makes a huge contribution to the success of an AI application, is not available

beforehand. The challenge is to design generic methods th a t work well in

many application domains. In particular, systems th a t can adapt their solving

strategy to the particularities of a domain are very appealing.

The contributions of this thesis to the area of AI planning include:

• A family of adaptive techniques th a t automatically learn new informa

tion about a domain and use it to speed up planning in future problems

in that domain. Domain structure information is inferred with compo

nent abstraction and/or solution abstraction, briefly introduced in the

following paragraphs. Macro-operators are generated based on the pre

viously acquired information. Algorithms for efficient filtering, ranking,

and runtime use of macros are introduced.

• The contributions are evaluated both w ith systematic scientific exper

iments, and at an internationally recognized competition. When new

domain information can automatically be inferred, the performance im

proves by orders of magnitude, as compared to the state-of-the-art plan

ner FF [42]. Macro-FF, an adaptive planner th a t implements these ideas,

successfully participated in the Fourth International Planning Competi

tion IPC-4 [40], taking first place in 3 out of 7 attem pted domains.

Component abstraction groups related low-level constants of a planning

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

problem into more abstract entities called abstract components. The idea is

similar to how humans can abstract features connected through static relation

ships into a more complex functional unit. For example, a robot th a t carries

a hammer could be considered a single component, which combines the skills

of a robot and a hammer. Component abstraction is a clustering procedure

in a static graph. Nodes of a static graph are distinct objects such as BILL-

TH E-R O BO T , JACK -T H E-R O BO T, TH E-RE D-H AM M ER , etc. Edges model static

relationships between objects. The goal of clustering is to identify small local

sub-graphs as patterns th a t are relevant for the domain structure. In this

example, a cluster can model an abstract functional entity such as JA CK-t h e -

R O BO T-W ITH -TH E-RE D -H A M M ER .

In solution abstraction, the solution of a planning problem is represented

as a solution graph. Nodes are solution steps (i.e., actions in the plan). Edges

model interactions between actions. Solution abstraction analyzes a solu

tion graph to extract local patterns th a t are relevant to the structure of the

given domain. These local patterns, in fact small sub-graphs corresponding to

macro-actions, are used for faster planning in new problems.

1.3.2 P a th -F in d in g on G rid M aps

The objective of path-finding is to plan a route from an initial position to a

destination on a map w ith obstacles. The problem is of crucial importance in

applications such as robotics, transportation, traffic optimization in computer

networks, and commercial computer games, a fast growing multi-billion dollar

industry.

Besides the potentially large search space, path-finding problems often ex

hibit significant additional challenges. Path-finding problems in robotics and

commercial computer games usually have to be solved in real time and un

der constraints of limited memory and CPU resources. Moreover, a problem

environment can change dynamically, and parts of the map may be unknown

in advance. For some domains, im portant criteria regarding the quality of

solutions (e.g., “look human-like”) can be hard to quantify.

For the problem of path-finding on grid maps, the contributions of this

6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

thesis include:

• Hierarchical Path-Finding A* (HPA*), a hierarchical path-finding algo

rithm th a t achieves high performance and successfully addresses chal

lenges such as those mentioned before.

• Experimental results for hierarchical search on a variety of game mazes,

showing up to a 1 0 -fold speed improvement in exchange for a 1 % degrada

tion in path quality, as compared to a highly optimized implementation

of A*.

In this thesis, partitioning a map into a set of clusters is called topological

abstraction. Clustering allows to decompose an original problem into sev

eral, much smaller problems: one problem associated with each cluster, and

one global problem th a t models interactions between clusters. Since a grid

is usually represented as a graph of atomic locations (tiles) inter-connected

by neighborhood relationships, topological abstraction is a graph clustering

problem.

HPA* abstracts a map into linked local clusters based on topological ab

straction. Each cluster generates a graph with entrance nodes and crossing

path edges. At the local level, optimal distances for crossing each cluster are

precomputed and cached. At the global level, a whole cluster is traversed in

a single big step. Graphs of adjacent clusters are connected through common

entrance points. In this way, all cluster graphs are combined into one abstract

graph that covers the whole problem map.

A hierarchy can be extended to more than two levels. Small clusters are

grouped together to form larger clusters. Computation of graph edges (crossing

distances) for a large cluster uses the graphs of the smaller contained clusters.

Path planning starts with a search at the most abstract level of the graph.

An abstract solution can gradually be refined until a complete low-level solu

tion is obtained. HPA* is fully automated, needs no domain-specific knowledge

other than the assumption of topological structure, and allows great flexibility

in execution, solving parts of the problem if and when they are needed.

7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Name Target
Applications

Application
Independent

Utility
Scope

Graph
Abstraction

Component
Abstraction

AI planning Yes Domain Small clusters
as local patterns

Solution
Abstraction

AI planning Yes Domain Small subgraphs
as local patterns

Topological
Abstraction

Path-finding Partially Map Clusters tha t
partition a mapSokoban No

Table 1 .1 : Abstraction strategies.

1.3 .3 Sokoban

Sokoban is a single player game created in Japan in the early 1980s. A man

in a maze has to push several stones from their initial locations to designated

goal locations [10]. See Section 2.3 for a detailed description of the rules. As

shown in Chapter 7, Sokoban is a challenging application for both humans and

computers, being characterized by long optimal solutions, a large branching

factor, and the presence of dead ends in the search tree. The contributions of

this research to this domain include:

• A novel solving approach based on problem decomposition. Similar to

HPA*, a topological abstraction strategy decomposes a m ap into rooms

connected through tunnels. This allows for the decomposition of a hard

initial problem into several simpler sub-problems, w ith great potential

for reducing the overall search effort.

• Experiments show that, on problem instances th a t an initial implemen

tation of this approach can tackle, its performance is competitive with a

state-of-the-art specialized solver such as Rolling Stone [49].

Table 1.1 summarizes key properties of component abstraction, solution

abstraction, and topological abstraction, the three major approaches explored

in this thesis work. Topological abstraction in path-finding is listed as partially

depending on the nature of a given application domain. The only application-

specific knowledge assumed is the existence of a topological space as part of the

application definition. The column “Utility Scope” indicates the range where

8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

an abstraction remains valid once it is completed. For component abstraction

and solution abstraction, the utility scope is a planning domain. Information

acquired from training instances in a domain can be used to solve new instances

in the same domain. For topological abstraction, the utility scope is a map:

several problems on the same map can reuse the m ap’s abstraction.

As pointed out before, each of these abstractions can be seen as a particular

case of the more general problem of abstraction in a graph. The last column

of Table 1.1 indicates the result of the graph abstraction performed by each

technique.

1.4 Publications and T hesis O verview

The structure of the remaining chapters is the following: Chapter 2 surveys

related work in the AI literature and provides a background for the remain

ing chapters. Contributions to domain-independent AI planning are the topic

of Chapters 3-5. Chapter 3 presents macro-operators created with compo

nent abstraction. This work was previously reported in [13] and parts of [15].

Chapter 4, based on [14] and parts of [15], describes macro-operators created

w ith solution abstraction. Chapter 5 presents experiments in AI planning

previously discussed in [13, 14, 15]. Chapter 6 , based on [1 2], summarizes

research on hierarchical path-finding. W ith a content similar to [10], Chap

te r 7 explores how planning can be performed in an abstracted representation

of the Sokoban puzzle. Chapter 8 presents the conclusion of the thesis and

summarizes directions for future work.

9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

Literature R eview

This chapter surveys related artificial intelligence research and provides a back

ground for the following chapters. Section 2.1 focuses on AI planning research.

Section 2 . 2 surveys related work on abstraction in map navigation. Sokoban

is the topic of Section 2.3. Section 2.4 describes work on abstraction in other

single-agent search domains. Section 2.5 presents the conclusions of this chap

ter.

2.1 AI P lanning

The planning contributions of this thesis are in the area of classical planning.

In principle, the same ideas can be applied to extensions of classical planning

such as temporal planning, numerical planning, and planning w ith incomplete

information, but this is beyond the focus of this thesis. This section starts

with a short introduction to classical planning. Then three approaches, which

are often combined in planning research, are discussed:

• Planning as heuristic search, one of the most successful approaches to

AI planning.

• Abstracting planning problems based on the implicit structure of a do

main, which is not part of the standard definition of a problem. Such

domain structure can be either automatically inferred, or encoded by

hand.

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

• Macro-operators in AI planning, a topic that needs to be revived and

combined with current state-of-the-art technology.

2.1 .1 B ackground o f C lassical P lanning

W hen solving a planning task, a planner takes as input a domain and a problem

instance. Several problem instances are usually defined for one domain. Fig

ures 2.1 and 2.2 show a domain file and a problem file in ToyLogistics, a simple

application where trucks can transport crates between places. Variations of

the ToyLogistics’ operators DRIVE, LOAD, and u n l o a d are present in several

other domains as well. ToyLogistics is a simplified version of Depots, a domain

used in the third international planning competition [61]. ToyLogistics is rep

resented in STRIPS, a simple bu t widely used subset of the standard planning

language PDDL. For information on PDDL and subsets such as STRIPS and

ADL, see [31, 65].

In PDDL, a domain file contains general information such as types, pred

icates and operators (actions). A predicate has a name and a list of (typed)

variables. Each operator o has a name, a set of (typed) parameters, precon

ditions and effects. In STRIPS, the precondition Prec(o) is a conjunction of

predicates. An effect is split into a conjunction of positive (add) effects Add(o)

and a conjunction of negated (delete) effects Del(o). More complicated sub

sets of PDDL such as ADL allow precondition formulas th a t use quantifiers,

implications, disjunctions, conjunctions, and negations. Effect formulas can

use universal quantifiers, conjunctions, negations, and conditional effects [65].

A conditional effect is a pair (c, e), where c is a condition formula and e is an

effect formula. See below for details on how conditional effects work when an

action is applied to a state.

In PDDL, a problem instance file contains specific information such as the

(typed) objects (constant symbols), the initial state sq, and the goal condition

G of the instance.

A state of a problem is represented by a collection of binary variables

called facts. Facts are obtained from domain predicates by instantiating their

parameters with constant symbols. Only true facts in a state s are explicitly

11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(define (domain ToyLogistics)
(:types truck location crate)
(: predicates

(at ?t - truck ?p - place)
(at ?c - crate ?p - place)
(in ?c - crate ?t - truck)
)

(: act ion drive
:parameters (?t - truck ?pl - place ?p2 - place)
:precondition (and (at ?t ?pl))
:effect (and (not (at ?t ?pl)) (at ?t ?p2))

)
(: act ion unload

param eters (?t - truck ?c - crate ?p - place)
:precondition (and (at ?t ?p) (in ?c ?t))
:effect (and (not (in ?c ?t)) (at ?c ?p))

)
(: act ion load

:parameters (?t - truck ?c - crate ?p - place)
precondition (and (at ?t ?p) (at ?c ?p))
: effect (and (not (at ?c ?p)) (in ?c ?t))

)

)

Figure 2.1: ToyLogistics in STRIPS.

stated:

s = {p\p is true in s}.

All unspecified facts are false, according to the so-called closed world assump

tion [65].

Function 7 : S x A —> S models transitions between states. S is the set

of states, and A is the set of instantiated actions. An instantiated action is

obtained from an operator by instantiating all its param eters w ith constant

symbols. If s 7$- Prec(a), then y (s ,a) is undefined. If s =7 P rec (a), then a

is applicable to s, and 7 (s, a) is the state s' obtained by applying a’s effects

to s. For example, in STRIPS this means th a t all precondition facts of a are

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(define (problem Toylnstancel)
(:domain ToyLogistics)
(: objects

placeO placet - place
truckO - truck
crateO - crate

)
(:init

(at crateO placeO)
(at truckO place 1)

)
(:goal (at crateO placet)
)

)

Figure 2.2: A problem instance for ToyLogistics.

true in s: Prec(a) C s. The resulting state s' is

s' = 7 (s, a) = (s U Add(a)) — Del(a).

In ADL, a conditional effect (c, e) is considered only if s =7 c. In such a case,

e becomes part of the effect formula tha t creates s' from s.

A planning task is to find a sequence of instantiated actions called a solution

plan

7i = a 1a 2 . . . a n

th a t reaches a goal state sn starting from the initial state .s0:

si+i = 7 (si.Oj+i),? > 0 A s „ ^ G .

When looking for a solution, planners usually explore a search space asso

ciated with the current planning task. The nature of a search space depends

upon the solving strategy chosen. Different planning approaches can explore

different search spaces. Forward chaining planning [32] explores the state space

defined above. The root is the initial state so, and the successors of a state s

are the resulting states of all actions applicable in s.

In regression planning, which searches from the goal towards the initial

state, a state in the search space is a collection of facts seen as goal conditions.

13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The root of this search space is G. The successors of a state s in this space

are obtained as follows: For simplicity, assume tha t an action a achieves a

condition p E s and does not delete any condition in s. Then the successor

of s corresponding to a is obtained from s by removing p and adding all pre

conditions of a. The next two subsections contain more details and references

about forward and regression planning.

Partial-order planning [73] explores a space of partial plans. The root is an

empty plan, and a successor of a partial plan is obtained by resolving a flaw

(e.g., add a new action th a t satisfies a goal condition, or add a new ordering

constraint between two actions of the partial plan). In SAT planning [54], a

problem is represented as a SAT formula, and states in this search space are

partial assignments to the formula’s variables.

2.1 .2 P la n n in g as H eu ristic Search

Planning as heuristic search attem pts to compute a solution plan with single

agent search techniques. The direction of space exploration can be either

from the initial state towards the goal s ta te (forward-chaining search) or from

the goal state towards the initial state (regression search). The most popular

search strategies are based on hill-climbing or best-first search. A few variations

of these strategies are described later in this section.

A heuristic state evaluator guides the problem space exploration. Given

the generic nature of fully autom ated planning, the only knowledge about the

application at hand th a t a heuristic function can use comes from the domain

and problem formulations in a standard planning language. It is especially

challenging to design a heuristic evaluation function tha t uses no additional

hand-coded information, and works well in many classes of problems.

Many successful planners use heuristic search. The following paragraphs

focus on fully autom ated planners th a t have had a major impact on the de

velopment of the ideas in this thesis. Heuristic-search planners th a t can use

hand-coded information (e.g., TLPlan, TALPlanner, SHOP) are described in

Section 2.1.3.

Bonet and Geffner’s Heuristic Search Planner (HSP) [5] first dem onstrated

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the efficiency of heuristic search in modern planning, and generated a lot of

research interest on this topic. HSP implements a heuristic state evaluator

based on problem relaxation. Given a state s and a fact p, h(s,p) is the length

of a shortest sequence of relaxed actions tha t achieves p starting from s. A

relaxed action is obtained from a regular action by ignoring its delete effects.

Given a collection of goal facts G = {cq,. . . ,cq}, the heuristic evaluation of

state s is k
h (s) = (2 -1)

1 = 1

This additive formula introduces yet another approximation, assuming th a t

goal facts are independent. This heuristic can overestimate the real distance

and hence is not admissible. Admissibility of a heuristic h means that, for each

state s , h(s) < h*(s), where h*(s) is the minimum cost of a path from s to a

goal state. This property ensures tha t an algorithm such as A* [33] produces

optimal solutions w ith respect to their cost.

Several versions of this planner exist th a t differ mainly in their search

strategy. HSP implements an incomplete hill-climbing algorithm. HSP2 im

plements weighted A* (wA*) [75], a best-first search algorithm [5]. In wA*,

nodes in the open queue (i.e., nodes generated but not expanded yet) are

sorted according to a value f (s) associated to each state s:

f (s) = (1 — w)g(s) + wh(s), 0.5 < w < 1.

This is a weighted sum of g(s), the distance from the root to the current state

s, and h(s), the estim ated distance to a goal state. When w = 0.5, wA*

is equivalent to A*. Values of w larger than 0.5 are used with the purpose

of achieving a goal state faster, as nodes evaluated closer to a goal state are

expanded with increased priority. On the other hand, solutions computed

with wA*, w > 0.5, are not guaranteed to be optimal, even if the heuristic h

is admissible.

In HSP and HSP2, which use forward-chaining search, an im portant per

formance bottleneck is th a t the heuristic evaluation has to be recomputed

from scratch in each state. HSPr performs regression (backwards) search us

ing wA*. The benefit of regression search is a much faster com putation of

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

heuristic state evaluation. Recall th a t regression search tries to reach s0 by

exploring a space where states s = {pi, ...,pn} are collections of facts seen as

current goal conditions. The evaluation h(s0, s) of a state s = {pj, ...,pn} is
n

M s 0 , s) = £ > (*) , P i) - (2 -2)
t = i

Since the first param eter of h in Equation 2.2 is fixed (i.e., so), h(so,p) is

precomputed for each fact p in the problem. Then, for each state s, h(sQ, s)

is quickly obtained with Equation 2 .2 . Note th a t the idea of precomputing

h(s ,p) is hard to apply in forward search, since s can take arbitrary values

(see Equation 2.1).

Hoffmann’s planner Fast Forward (FF) [42] significantly advanced the stan

dards established by HSP. Due to its great success, F F ’s planning strategy is

implemented in many current planners. Perhaps the most im portant contribu

tion of FF is a new domain-independent heuristic function th a t proved to be

very successful in practice. The new m ethod preserves the action relaxation of

HSP, but does not assume th a t goal conditions will be achieved independently.

For each state th a t has to be evaluated, the distance to a goal state is approxi

mated by the length of a relaxed plan th a t achieves all goal conditions starting

from the current state. The relaxed plan is computed with relaxed graphplan,

a relaxation of the standard graphplan algorithm [4] in which delete effects

of actions are ignored. Solving a relaxed problem optimally is NP-hard [16],

but suboptimal relaxed plans can be found in polynomial time. Despite this

significant reduction, FF often spends large amounts of time doing heuristic

state computations. F F ’s heuristic is not admissible, but in practice it acts as

a lower-bound for the real value in most cases.

FF implements two forward search algorithms. Enforced hill climbing

(EHC) is a fast but incomplete algorithm th a t greedily searches for a goal

state in the problem space. If EHC fails, because of either its incompleteness

or the absence of a solution, a complete best-first search (BFS) algorithm is

launched to find a path to a goal state.

EHC starts from the initial state of a problem and performs a local search

using a breadth-first strategy. W hen a state with a better evaluation than the

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

starting state is found, the current local search stops and a new local search is

launched starting from the newly found state. In EHC, the relaxed graphplan

computation for a state is used not only to find a heuristic evaluation, but also

to further prune the search space with helpful action pruning. When a state

is expanded, only moves th a t occur in the relaxed plan and can be applied to

the current state are considered.

BFS is in fact wA* with w = 1, an algorithm also known as pure heuristic

search [58]. W hen ordering nodes in the open queue, only h, the estimated

distance to a goal state, is taken into account. Nodes evaluated to be closer

to a goal state are expanded with higher priority. This strategy tends to find

solutions with fewer expanded nodes for the price of sub-optimality.

Vidal’s planner YAHSP (Yet Another Heuristic Search Planner) [87, 8 8]

advances F F ’s approach in two significant directions. First, the use of a relaxed

plan is extended. The motivation is th a t a relaxed plan often contains useful

information about the solution of the real problem. If this information is

compressed to only one number, the heuristic evaluation of the current state,

much useful information might be lost. To address this, Vidal introduces

lookahead policies. A lookahead policy executes parts of the relaxed plan in

the real world. This often provides a path towards a goal state with no search

and few states evaluated. This technique heuristically orders the actions in

the relaxed plan and iteratively applies them as long as this is possible. When

the lookahead procedure cannot be continued with actions from the relaxed

plan, a plan repair method selects a new action to be applied.

As a second contribution, YAHSP combines EHC, BFS, and lookahead

policies into one single algorithm, in an attem pt to exploit the benefits of

each. EHC is fast and can cut off large parts of the space with helpful action

pruning, while BFS is complete. The new algorithm preserves the completeness

of BFS, but expands helpful nodes generated by helpful actions with higher

priority than the remaining nodes.

HSP, FF and YAHSP use some kind of relaxation of the graphplan algo

rithm for heuristic evaluation of states. Helmert’s planner Fast Downward

implements a new approach based on causal analysis [34, 35]. The motivation

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

of this work is th a t graphplan relaxation often loses much of the structure

of the problem, and the heuristic becomes inaccurate. This is the case, for

example, in transportation domains. W hen a mobile object such as a truck or

an airplane moves from location A to location B, in a relaxed state the object

can be in both locations at the same time. In bad cases, the relaxed plan has

so little relevance for the real problem th a t the search becomes blind.

Fast Downward represents problem states with multi-valued variables rather

than as in the classical style w ith propositional logic. In the example above,

there will be a variable for each mobile object, with a value for each possible

location of th a t object. Further, a causal graph is defined for a problem. Each

state variable is a node in the graph. If changing the value of a variable v

can depend on changes to a variable u, a causal link (u, v) is defined. One or

several subgraphs, called S A S + — 1 structures, are extracted from the causal

graph. A 5AS'+ — 1 structure has one node (variable) called the high-level

variable and several nodes called low-level variables. There is one edge from

each low-level variable to the high-level variable. S A S + — 1 structures are used

to compute the heuristic value of a state. For each structure, a local plan is

computed th a t changes the high-level variable from the current value to the

goal value. Local plans of all structures are combined into the heuristic of the

global state.

2.1 .3 A b straction in P lan n in g

Automatic discovery and exploitation of the implicit structure of a domain has

been explored by Knoblock [55]. In this work, a hierarchy of abstractions is

built starting from the initial low-level problem description. A new abstract

level is obtained by dropping literals from the problem definition at the pre

vious abstraction level. Planning first produces an abstract solution and then

iteratively refines it to a low-level representation. The hierarchy is built in

such a way tha t, if a refinement of an abstract solution exists, no backtracking

across abstraction levels is necessary during the refinement process. Back

tracking is performed only when an abstract plan has no refinement. Such

situations can be arbitrarily frequent, w ith negative effects on the system ’s

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

performance.

Bacchus and Yang [3] define a theoretical probabilistic framework to an

alyze planning in hierarchical models. Abstract solutions of a problem at

different abstraction levels are hierarchically represented as nodes in a tree

structure. A tree edge indicates th a t the target node is a refinement of the

s tart node. An abstract solution can be refined to the previous level with

a given probability. Hierarchical search in this model is analytically evalu

ated. The analytical model is further used to enhance Knoblock’s abstraction

algorithm. The enhancement refers to using estimations of the refinement

probabilities for abstract solutions.

Fox and Long propose algorithms th a t exploit the symmetry present in a

planning domain [29, 30]. Symmetries between objects are identified starting

from the initial state of a problem [29]. Two objects are symmetrical if swap

ping them does not change the initial state of the problem. Symmetries are

further used to identify equivalent actions th a t can be applicable to a state.

The search space can safely be pruned based on equivalent actions: it is enough

to generate only one action th a t represents an entire equivalence class. In [29],

the only symmetries recognized in search are a subset of the initial symmetry

group extracted from the initial state of a problem. However, many other

symmetries can exist at various levels of a search space. Hence the authors

extend their method to dynamically identify larger equivalence classes [30].

Two successful approaches th a t use hand-crafted information are temporal

logic control rules and hierarchical task networks. These can be seen as forms

of abstraction by hand, since planning uses information about the structure of

a domain tha t is not explicitly encoded in the domain definition. In planning

with temporal logic control rules, a formula is associated with each state in the

problem space. The formula of the initial state is provided w ith the domain

description. The formula of any other state is obtained based on its prede

cessor’s formula. W hen the formula associated with a state can be proven

false, that sta te’s subtree is pruned. The best known planners of this kind are

TLPlan [2] and TALPlanner [60].

Hierarchical task networks (HTNs) guide and restrict planning by using a

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

hierarchical representation of a domain. Human experts design hierarchies of

tasks th a t show how the initial problem can be broken down to the level of

regular actions. The idea was introduced by Sacerdoti [80] and Tate [84], and

has been widely used in real-life planning applications [89]. SHOP2 by Nau

et al. [72] is a well-known heuristic search planner where search is guided by

HTNs.

2 .1 .4 M acro-O perators in P lan n in g

Early work on macro-operators in AI planning includes Fikes and Nilsson’s

planner called STRIPS [28]. Macros are obtained from solution plans by re

placing constant arguments of actions w ith generic variables. Minton extended

this work by introducing techniques th a t filter a set of learned macro-operators

[6 8]. In his approach, two types of macro-operators are preferred: S-macros,

which occur with high frequency in problem solutions, and T-macros, which

can be useful but have low priority in the original search algorithm. Iba pro

poses generating macro-operators a t run-tim e using the so-called peak-to-peak

heuristic [47]. A macro traverses a “valley” between two peaks of the heuristic

state evaluation. This can correct problems with the heuristic evaluation. A

macro filtering procedure uses both simple static rules and dynamic statistical

data. Mooney considers whole plans as macros and introduces partial ordering

of operators based on their causal interactions [70].

Work on improving planning based on solutions of similar problems has

been reported by Veloso and Carbonell [8 6]. Large collections of cases are

stored as more instances are solved in a domain. A case is an entire solution

of a solved problem annotated w ith additional relevant information such as

explanations of successful or failed search decisions. W hen a new problem is fed

to the planner, cases corresponding to similar problems are used to guide the

current planning process. The same idea of reusing solutions of past instances

is explored by Kambhampati [53] in a hierarchical planning framework. In this

work, solutions are annotated w ith causal dependencies between the effects and

the preconditions of solution steps. W hen a new problem is being solved, an

old plan is modified into a valid solution to the current problem. In both cited

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

works, similarity metrics are defined th a t determine what stored solutions

should be retrieved and used to solve the current instance.

McCluskey and Porteous focus on constructing planning domains starting

from a natural language description [64], The approach combines human ex

pertise and autom atic tools, and addresses both correctness and efficiency of

the obtained formulation. Macro-operators are a major technique th a t the

authors propose for efficiency improvement. In this work, a state in a domain

is composed of the local states of several variables called dynamic objects.

Macros model transitions between the local states of a variable.

Recently, Coles and Smith implemented support for macro-operators in

their planner Marvin [18]. Macros are generated with two different techniques.

First, action sequences th a t escape a plateau (i.e. reach a state with a better

heuristic starting from a local minimum) are discovered online and cached for

later use. Second, an offline m ethod generates a reduced problem by exploiting

symmetries in the original instance. The solution of this problem is used to

generate macros th a t will be used in the main search. No macros are stored

from one problem instance to another.

2.2 P ath-F inding

The problem of path-finding is to compute a path between two given locations

on a map th a t can contain both blocked areas and passable areas. Path-

finding is im portant in numerous applications such as commercial computer

games, robotics, transportation, etc. Path-finding problems are usually solved

by running a single-agent search such as A* on a graph associated with the

problem at hand. A common way to obtain such a graph is to apply a grid

onto the problem map. Unblocked grid cells on the map become graph nodes.

Graph edges represent adjacency relationships between cells. Other methods

of abstracting maps into search graphs, such as visibility points, quadtrees,

and navigation meshes, are discussed in the following subsections. This sec

tion reviews path-finding in commercial games, abstraction applied to robot

navigation, and other relevant work.

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.2.1 A b straction for P a th -F in d in g in C om m ercial Com
p u ter G am es

Path-finding in games using a two-level hierarchy is described by Rabin [77].

The author provides only a high-level presentation of the approach. A map is

abstracted into clusters such as rooms in a building or square blocks on other

topologies. An abstract action crosses a cluster.

Another im portant hierarchical approach for path-finding in commercial

games uses points o f visibility [78]. This method exploits the local topology of

a domain to define an abstract graph th a t covers the map. Nodes represent

corners of convex obstacles. Edges link all nodes th a t can see each other (i.e.,

they can be connected by a straight line). This method is particularly useful

when the number of obstacles is relatively small and they have a convex polyg

onal shape. The efficiency decreases when many obstacles are present and/or

their shape is not a convex polygon. Consider the case of a map containing

a forest, a dense collection of small obstacles. Modeling such a topology with

points of visibility would result in a large graph (in terms of both number of

nodes and edges) with short edges. The key idea of abstraction, traveling long

distances in a single step, would not work. When the problem map contains

concave or curved shapes, the m ethod either has poor performance or needs

sophisticated engineering to build the graph efficiently.

A navigation mesh (also known as a NavMesh) is a powerful abstraction

technique useful for 2D and 3D maps. In a 2D environment, this approach

covers the unblocked area of a map with a (minimal) set of convex polygons.

A m ethod for building a near optimal NavMesh is presented in [85]. This

m ethod relaxes the condition of the minimal set of polygons and builds a map

coverage much faster.

Many contributions to the problem of path-finding in computer games come

from work on commercial games rather than academic research. Hierarchical

search appears to be used by several game companies. The algorithmic details

are not public.

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.2 .2 A bstraction for P ath -F in d in g in R ob otics

Quadtrees have been proposed for hierarchical map decomposition in robot

navigation [81]. A map is partitioned into square blocks of different sizes

such tha t a block contains either only empty cells or only blocked cells. The

problem map is initially partitioned into 4 blocks. If a block contains both

obstacle cells and walkable cells, then it is further decomposed into 4 smaller

blocks, and so on. A move in this abstracted framework connects centers of two

adjacent blocks. Since an agent always goes to the middle of a box, solutions

are sub-optimal.

The solution quality can be improved by framed quadtrees [17, 90]. In

framed quadtrees, the border of a block is augmented with cells at the highest

resolution. An action crosses a block between any two border cells. Since this

representation permits many angles of direction, the solution quality improves

significantly. However, framed quadtrees use more memory than quadtrees.

2 .2 .3 O ther R elevant W ork

Learning macro-operators for path-finding is explored by Markovitch in [62],

Given a fixed map and a distribution of the node pairs for which paths have to

be computed, training problems are generated and solved. The solutions are

analyzed to extract common patterns th a t will be stored as macro-operators.

Macros are filtered according to the so-called minimum-to-better rule, which is

very similar to the plateau-escaping rule presented at the end of Section 2.1.4.

Shekhar et al. decompose an initial problem graph into a set of fragment

sub-graphs and a global boundary sub-graph th a t links the fragment sub

graphs [82], Shortest paths are computed and cached for future use. The

authors analyze what shortest paths (i.e., from which sub-graphs) to cache,

and what information to keep (i.e., either complete path or only cost) for best

performance when limited memory is available.

Yap analyzes grid abstractions in path-finding problems [91]. Grid ab

straction discretizes a problem map into a grid with a regular structure. The

structure of a grid is determined by the shape of its atomic cells (e.g., squares,

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

hexagons, etc.), their relative positioning (e.g., squares can be either aligned

or shifted like bricks in a wall), and possible transitions between adjacent

cells (e.g., in four straight directions or in eight straight and diagonal direc

tions). The author analyzes how performance in path-finding is affected when

these grid abstractions are combined with search algorithms such as A* and

IDA* [56].

Reese and Stout classify path-finding problems according to the type of the

results tha t are sought, the environment type, and the amount of information

available [79]. Challenges specific to each problem type and solving strategies

such as re-planning and using dynamic data structures are briefly discussed.

Moore et al. use a multi-level hierarchy to enhance the performance of

multiple goal path-planning in a Markov Decision Process (MDP) framework

[71]. The problem posed is to efficiently learn near optimal policies n*{x,y)

to travel from x to y for all pairs (x, y) of map locations. The number of

policies th a t have to be computed and stored is quadratic in the number of

map cells. To improve both the memory and time requirements, at the price of

losing optimality, a multi-level structure is used - a so called airport hierarchy.

All locations on the problem m ap are airports th a t are assigned to different

hierarchical levels. The strategy for travelling from x to y is similar to traveling

by plane in the real world. First, travel to bigger and bigger airports until a

connection exists to the area th a t contains the destination. Second, go down in

the hierarchy by travelling to smaller airports until the destination is reached.

Precup et al. use macro-actions to speed up planning in reinforcement

learning [76]. In this work, a macro-action is defined as a starting state, a

policy tha t will be followed, and a completion function th a t tells the probability

of completing the macro-action a t a given tim e step. The completion function

of a macro models sub-goal achievement. Since policies have probabilistic

transitions, execution of a macro-action may end-up in different final states.

The authors focus on developing a mathem atical foundation of this model.

They illustrate the model with an application of navigating inside a building

with rooms. Macro-actions model leaving a room and reaching a hallway

point. Macros solve the local problems of navigating inside a room, which are

24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 2.3: Sokoban puzzle.

compiled away from the global problem.

2.3 Sokoban

Figure 2.3 shows the Sokoban problem # 1 in the 90-problem test suite available

at [48]. It consists of a maze which has two types of squares (also called tiles):

inaccessible wall squares and accessible interior squares. Several stones are

initially placed on some of the interior squares. A man can walk around by

moving from his current position to any adjacent stone-free interior position.

Consider a row (or column) of three adjacent interior squares such tha t the

man is on one end square, a stone is in the middle, and the other end square

is free. A push move is to shift both the m an’s and stone’s positions by one

square in the direction of the initially free square. The goal is to push all

stones to marked goal squares. In Figure 2.3, the six goal squares are the

marked ones at the right end of the maze.

Culberson showed th a t Sokoban is PSPACE-complete [19]. In computer

Sokoban, the state of the art is represented by Junghanns’ solver Rolling Stone

[52] and an anonymous Japanese researcher [49]. Little information is available

about the latter. Both solvers are able to find solutions for about two thirds

of the standard 90-problem test suite [52].

While centered on a classical single-agent search approach, Rolling Stone

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

owes part of its success to abstraction techniques. Two of the most effective

concepts in Rolling Stone are tunnel macros and goal macros [52]. A tunnel

is a line of adjacent free cells bordered by walls. The ends of the tunnel are

connected to the rest of the maze. Tunnel macros are move sequences that

push a stone through a tunnel from one end to another. A tunnel macro does

not interact with the rest of moves th a t are legal on the maze. Interleaving

single tunnel moves with other moves leads to a blow-up of the search.

A goal room is an area th a t connects with the rest of the maze via a few en

trances and contains one or several goal squares. Goal macros are precomputed

sequences th a t arrange stones into a goal room. While losing completeness,

goal macros eliminate many deadlocks th a t could be generated by incorrect

filling of a goal room.

2.4 A bstraction in S ingle-A gent Search

This section summarizes contributions th a t are not necessarily designed for

planning, path-finding, or Sokoban, but still remain relevant for the work

reported in this thesis.

Culberson and Schaeffer [20, 2 1] introduce pattern databases, large collec

tions of abstractions of problem states th a t represent a heuristic evaluation

function. State abstraction is performed by replacing part of the features tha t

characterize a state with a generic “don’t care” symbol. Subsequent research

significantly extended this idea. Korf used pattern databases to compute op

tim al solutions to the Rubik’s Cube puzzle [59]. Holte et al. analyzed how to

best use a fixed amount of memory when several pa ttern databases are avail

able [45]. The authors show th a t several smaller databases can be better than

one single database. Recent work exploits symmetries th a t pattern databases

can exhibit as a result of symmetries in problem states [27].

Edelkamp uses pattern databases in domain-independent planning [23, 24].

Hernadvolgyi applies uses pattern databases to find macro-operators in Ru

bik’s Cube [37]. Korf [57] and Iba [47] apply macro-operators to the sliding-tile

puzzle.

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Holte et al. [43] use homomorphism abstraction to analyze how a hierarchi

cal representation of a search space can be exploited in search. In homomor

phism abstraction, a graph node at an abstract level represents several nodes

from the previous level. Several levels can be built on top of one another until

an abstract one-state space is obtained. The authors argue th a t two strategies

for exploiting an abstract solution at the previous level have mainly been con

sidered in the literature. The first strategy uses an abstract level to build a

heuristic function at a lower level. The distance between two low-level nodes

is approximated by the length of an abstract path between the two abstract

nodes th a t correspond to each low-level node. The second strategy generates

a lower-level solution by refining an abstract solution. Nodes in the abstract

solution act as sub-goals in the low-level problem. Refinement generates a

path between two abstract nodes. The authors show the similarities between

the two approaches and develop a unified framework.

Holte et al. introduce Hierarchical A* [46], a search m ethod designed

for situations when no heuristic function is provided. Hierarchical A* uses

homomorphism abstraction to structure an original search space on several

levels. The hierarchy is then exploited according to the first strategy mentioned

before: search at a given level provides a heuristic function for the previous

level. The authors present techniques (e.g., smart caching of search results)

th a t result in expanding less nodes than blind search in the initial space.

Homomorphism abstraction and refinement in explicitly represented graphs

are explored by Holte et al. in [44], A clustering algorithm called STA R is

introduced as an efficient approach for homomorphism abstraction in generic

graphs. Several refinement techniques are evaluated, out of which a method

called AltO is shown to be the overall winner. In AltO, steps of an abstract

solution are graph nodes rather than graph edges. A search to find an abstract

solution and a search to refine a solution are performed in opposite directions.

AltO is opportunistic in the sense th a t steps in an abstract solution can be

skipped when the refinement process finds shortcuts towards the goal state.

Helmstetter and Cazenave use abstraction in a solitaire card game called

Gaps [36]. When this puzzle is played with a standard 52-card deck, 4 types

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

of moves exist, one for each suit. If moves of only one suit are considered,

they come in a forced sequence, with no branching. Branching is generated

when moves of different suits are considered at the same time. At some points,

sequences of different suits may interact: the subsequent evolution of a suit

can depend on whether a move was made for another suit. The authors exploit

these features of the puzzle to abstract an initial search space into blocks. A

block is a part of the space where move sequences of different suits do not

interact with each other. Blocks are efficiently searched, since there is no need

to interleave moves of different types.

2.5 C onclusions

This chapter has presented Al research related to this thesis work. The focus

has been on the state of the art in using abstraction in search and planning.

This survey indicates th a t variations of abstraction ideas have generated lots

of interest in Al planning and heuristic search. Many of the successful contri

butions have been applied in a domain-specific context. There are rather few

application-independent success stories in this area.

There is much room left for research on how abstraction can be exploited

in faster problem solvers. This implies both designing new algorithms and

applying abstraction to new domains. In particular, abstraction appears to be

necessary in domains where low-level search is often unable to find solutions

using the available CPU time and memory resources. Examples of such do

mains are some current planning benchmarks, path-finding on realistic maps,

and Sokoban, the target applications of this research.

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3

Component Abstraction in A l
Planning

In many domains, the performance of a planner can be improved by inferring

and exploiting information about the domain structure th a t is not explicitly

encoded in the initial PDDL formulation. The implicit structural information

th a t a domain encodes is, arguably, proportional to how difficult the domain

is, and how realistically this models the world. For example, consider driving

a truck between two locations. This operation is composed of many subtasks

in the real world. To name just a few, the truck should be fueled and have

a driver assigned. In a detailed planning formulation, several operators such

as FUEL, ASSIGN-DRIVER, and d r i v e would be defined. This representation

already contains implicit information about the domain structure. It is quite

obvious for a human th a t driving a truck between two remote locations would

be a macro-action where first the truck is fueled and assigned a driver (with no

ordering constraints between these two actions) and next the drive operator

is applied. In a simpler formulation, one can remove the operators f u e l and

ASSIGN-DRIVER. Now driving a truck is modeled as a single action, and part

of the original structure has been removed from the model.

In this chapter an autom ated m ethod is presented th a t learns such implicit

domain knowledge and uses it to simplify planning for new problem instances.

This is useful in fully autom atic planning, where only a domain and a problem

definition are fed into a planner. Additional input th a t would encode, for

instance, human knowledge of the domain at hand is not provided.

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 . Analysis - Extract new information about the domain structure.

2. Generation - Build macro-operators based on the previously ac
quired domain structure.

3. Filtering - Select the most promising macro-operators.

4. Planning - Use the selected macro-operators to improve planning
in future problems.

Figure 3.1: A generic planning approach th a t uses abstraction to generate
macro-operators.

PlannerPlanner
Domain

Sample
Instances

Domain Enhanced
Domain

Real
Instances

Abstraction
Real

Instances

Figure 3.2: (a) Standard planning framework, (b) CA-ED - Integrating com
ponent abstraction and macro-operators into the standard planning frame
work.

As shown in Figure 3.1, this learning approach has four-steps. At step 1 ,

component abstraction is introduced as a novel technique to infer knowledge

about the structure of a domain. Then a small set of useful macro-operators

is produced in steps 2 and 3. Assume the original domain is expressed in

STRIPS, a simple but widely used subset of the standard planning language

PDDL. The selected macro-operators are added to the initial domain formu

lation, resulting in an enhanced domain expressed in the same description

language. The definitions of the enhanced domain and new problem instances

can be given as input to any STRIPS planner, with no work required to imple

ment step 4. Once the enhanced domain formulation is available in standard

STRIPS, a planner makes no distinction between a m acro-operator and a nor

mal operator [13]. This approach is called CA-ED for Component Abstraction

- Enhanced Domain.

Figure 3.2 compares the general architecture of CA-ED with a standard

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

planning framework. In standard planning, a planner takes as input a domain

and a problem instance. In CA-ED, abstraction is used to enhance the original

definition of a domain. The enhanced domain and problem instances can be

fed into a standard planner. The box Abstraction in the figure includes steps

1-3 above. Abstraction is performed within a training session th a t uses one

or several sample problems from a domain. For each sample problem, related

low-level objects are grouped together into new components. Macro-operators

th a t group local actions at the level of one component are generated with a

local analysis. After all sample instances have been processed, filtering is used

to select the “best” macros, which will be added as new operators to the initial

domain.

If the above procedure is successful and useful macro-operators are learned,

planning will be affected in several im portant ways, analyzed in detail in Sec

tion 3.3:

• New actions are added to the search space, with the effects of reducing

the distance to goal states and increasing the branching factor.

• Heuristic state evaluation, using a state-of-the-art method such as Hoff

m ann’s relaxed graphplan [42], can become more accurate.

• Preprocessing cost, as well as run-time cost per node, will often increase.

The rest of this chapter is structured as follows: The next section describes

component abstraction. Section 3.2 focuses on generating and filtering macros.

Benefits and limitations of CA-ED are analyzed in Section 3.3. The last section

contains conclusions and ideas for future work.

3.1 C om ponent A bstraction

Humans often abstract objects connected through permanent (static) relation

ships into one functional unit. For instance, a robot with a hammer could be

considered a single unit, with both mobility and maintenance skills. In this

work, such units are modeled with abstract components (or, shorter, com-

31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 □ = s t o r e

o o 0N Q • o I II l = r o v err o v er

, f 1 1 ^

h i g h r e s

^ = o b je c t i v e

• = po in t

c o l o u r = m o d e
h ig h _r es = m o d e

Figure 3.3: Static graph of a Rovers problem.

ponents). Component abstraction automatically identifies components in a

two-step process:

1. Build the problem static graph, which models permanent relationships

between constant symbols (objects) of a problem.

2. Build abstract components w ith a clustering procedure. Formally, an

abstract component is a connected subgraph of the static graph.

3.1 .1 B u ild in g th e S ta tic G raph o f a P rob lem

A static graph is constructed from the PDDL representation of a planning

problem. Each constant th a t is an argument of at least one static fact defines

a node in the static graph. A fact is static for a problem if it is true in the

initial state and no action can change its value. All constants in a fact are

linked pairwise . 1 All edges in the graph are labeled with the name of the

corresponding fact.

A Rovers problem is used as an example of how component abstraction

works. See Appendix B for a description of Rovers. Figure 3.3 shows the static

graph of the sample problem. Starting from the left of the picture, the nodes

include two stores (s t o r e O and S T O R E l) , two rovers (r o v e r O and R O V E R l) ,

two photo cameras (CAMO and C A M l) , two objectives (o b j O and O B J l) ,

two camera modes (c o l o u r and h i g h _r e s), and four waypoints (p o i n t O,...

1In other words, a fact of arity k > 2 will generate a clique between its k constant
arguments.

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

p o i n t 3) . The edges correspond to the static predicates (s t o r e _OF ?S -

STORE ? R - ROVER), (O NJBOARD ?C - CAMERA ?R - ROVER), (SUPPORTS

?C - CAMERA ?M - M O D E), (CALIBRATION_TARGET ?C - CAMERA ? 0 - OB

JE C T IV E), and (v iSIBLE _FRO M ? 0 - OBJECTIVE ? W - W AYPOINT).

The two marked clusters on the left are examples of abstract components

found by CA-ED. Each component is a rover equipped with a camera and a

store. Details about how components are built follow in Section 3.1.2.

To identify static facts necessary to build the static graph, the set of domain

operators O is used to partition the predicate set V into two disjoint sets,

V = V f U V s , corresponding to fluent and static predicates. A predicate p

is fluent if p is part of an operator’s effects (either positive or negative). In

STRIPS, this translates to

p 6 V f -<=>3 o G 0 : p G Add(o) U Del(o).

Otherwise, p is static, denoted by p G Vs-

Facts tha t are true in the initial state of the problem and correspond to

static predicates are static. Static predicates th a t are unary2 or contain two or

more variables of the same type will be ignored. The latter kind of facts are of

ten used to model topological relationships, and can lead to large components.

Appendix A .l provides the pseudocode of the method th a t builds the static

graph of a problem. Details about identifying static facts in domains with

hierarchical types, which need additional care, are presented in Appendix A.2.

3.1.2 B u ild in g A b stract C om ponents

Abstract components are built as connected subgraphs of the static graph of

a problem. Clustering starts with abstract components of size 1, containing

one node each, th a t are generated based on a randomly selected domain type

t, the seed type. For each node of type t in the static graph, a new abstract

component is created. Abstract components are then iteratively extended with

a greedy approach.

2In many current domains, unary static facts have been replaced by types associated
with variables.

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Step Current
Predicate

Used
Pred.

c o m p o n e n t O c o m p o n e n t I
Consts Facts Consts Facts

1 c a m O CAMl

2 (s u p p o r t s

?c - c a m e r a

?M - MODE)

NO c a m O CAMl

3 (CALIBR_TARGET
?C - CAMERA

? 0 - o b j e c t i v e)

NO c a m O CAMl

4 (ON_BOARD
?C - CAMERA
?R - ROVER)

YES c a m O
r o v e r O

(o n _b o a r d

c a m O
r o v e r O)

CAMl
ROVERl

(o n _b o a r d

CAMl
ROVERl)

5 (STORE_OF
?S - STORE

?R - ROVER)

YES c a m O
r o v e r O
s t o r e O

(o n _b o a r d

c a m O
r o v e r O)

(s t o r e _o f

s t o r e O
r o v e r O)

CAMl
ROVERl
STORE1

(o n _b o a r d

CAMl
ROVERl)

(STORE_OF
STORE1

ROVERl)

Table 3.1: Building abstract components for the Rovers example.

Next the clustering procedure is run on the Rovers example. A more formal

description, including pseudo-code, is provided in Appendix A .3. As said

before, Figure 3.3 shows the two abstract components built for the example.

The steps of applying the clustering procedure to the example are summarized

in Table 3.1, and correspond to the following actions:

1. Randomly choose a seed type (CAMERA in this example), and create one

abstract component for each constant of type CAMERA: c o m p o n e n t O

contains c a m O, and c o m p o n e n t I contains C A M l. Next, iteratively

extend the components created at this step. One extension step uses a

static predicate th a t has at least one variable type already encoded into

the components.

2. Choose the predicate (SUPPORTS ?C - CAMERA ?M - M O D E), which has

a variable of type c a m e r a . Since ending up w ith a large component

containing the whole graph is not desired, this m ethod does not allow

merging two existing components. Hence a test is performed whether

the static facts based on this predicate keep the existing components

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

separated. These static facts are (SUPPORTS c a m O c o l o u r) , (s u p

p o r t s c a m O h i g h j r .e s) , (s u p p o r t s C A M l c o l o u r) , and (s u p p o r t s

C A M l h i g h _r e s) . The test fails, since constants COLOUR and HIGH_RES

would be part of both components. Therefore this predicate is not used

for component extension.

3. Similarly, the predicate (c a l i b r a t i o n _t a r g e t ? c - c a m e r a ? o - o b

j e c t i v e) is not used, as it would add the constant O B J l to both com

ponents.

4. Predicate (o n _b o a r d ? c - c a m e r a ? r - r o v e r) is used for component

extension. The components are expanded as shown in Table 3.1, Step 4.

5. Predicate (s t o r e _o f ? s - s t o r e ? r - r o v e r) , whose type r o v e r

has previously been encoded into the components, is considered. This

predicate extends the components as presented in Table 3.1, Step 5.

After Step 5, no further component extension can be performed. There are

no other static predicates using at least one of the component types to be

tried for further extension. At this moment the quality of the decomposition

is evaluated. In this example it is satisfactory (see discussion below), and

the process terminates. Otherwise, the decomposition process restarts with

another domain type.

The quality of a decomposition is evaluated according to the size of the

built components, where size is defined as the number of low-level types in

a component. In experiments, the size was limited to values between 2 and

4. The lower limit is trivial, since an abstract component should combine at

least two low-level types. The upper limit was set heuristically, to prevent the

abstraction from building just one large component. These relatively small

values are also consistent with the goal of limiting the size and number of

macro operators. More details on this issue are provided in Section 3.2.

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

f S T O R E R O V E R C A M E R A ^

 ̂ □---------- 1— i--------- Ca]N S T O R E _ O F Ti— r O N _ B O A R D ----- /

Figure 3.4: A bstract type in Rovers.

3.1 .3 A ssign in g T yp es to A b stract C om ponents

Following the standard of typed planning domains, where each object has a

type, abstract components are assigned abstract types. Figure 3.4 shows the

abstract type assigned to the components of the Rovers example. As shown

in this figure, the abstract type of a component is a graph obtained from the

component graph by changing the node labels. The constant symbols used as

node labels have been replaced w ith their low-level types (e.g., constant CAMO

has been replaced by its type CAMERA).

The example also shows th a t components with identical structure have the

same abstract type. As shown below, the concept of identical structure is a

strong form of graph isomorphism, which preserves the edge labels as well as

the types of constants used as node labels. Assume Nodes(ac) is the set of con

stants (subgraph nodes) and Facts(ac) is the set of static facts associated with

a component ac. The arguments c1, ..., ck of a fact / (c 1, ..., ck) G Facts(ac) are

nodes of ac: cl G Nodes(ac).

Two abstract components aci and ac2 have identical structure if:

1. \Nodes{aci)\ = \Nodes(ac2)\', and

2. \Facts(ac-i)\ = |Facfs(ac2)|; and

3. there is a bijective mapping p : Nodes(aci) —> Nodes(ac2) such that

• Vc G Nodes(aci) : Type(c) = Type(p(c));

• V /(cJ,...,cJ) G Facts{ac\) : /(p (c j) , ...,p(cf)) G Facts{ac2);

• V /(c2 , ..., ck) G Facts(ac2) : / (p - 1(c^),...,p _1(4)) G Facts(aci).

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

DROP

▼

Figure 3.5: Example of a macro in Rovers.

For each abstract type a local analysis is performed with the goal of im

proving planning at the component level. In CA-ED, local analysis is used to

generate macro operators. This is only one possible way to exploit component

abstraction. Other ideas are mentioned in the last section of this chapter.

3.2 C reating M acro-O perators

Similar to a regular STRIPS operator, a CA-ED macro-operator m has a name

N (m), a set of variables V(m), a set of preconditions Prec(m), a set of add

effects Add(m), and a set of delete effects Del(m). Hence macro operators can

be added as new operators to an initial domain formulation. Figure 3.5 shows

an example of a macro in Rovers. It collects a soil sample into a rover’s store,

and drops it back, with the overall effect of having analyzed tha t soil sample.

Figure 3.6 shows complete STRIPS definitions for the sample macro and the

operators tha t it contains.

Macro operators are obtained in a two-step process. First, an extended

set of macros is built and, second, the macros are filtered in a quick training

process. Since empirical analysis indicates th a t the extra information added

to a domain definition should be quite small, the methods described next tend

to minimize the number of macros and their size, measured by the number of

variables, preconditions and effects. Static macro generation uses many con

straints for pruning the space of macro operators, and discards large macros.

Finally, dynamic filtering keeps only a few top macros for solving future prob

lems.

SAMPLE SOIL

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(: act ion SAM PLEJ30IL_JDR0P
.■parameters

(?r - rover ?s - store ?p - waypoint)
precondition

(and (equipped_for_soil_analysis ?r) (empty ?s)
(store_of ?s ?r) (at_soiLsample ?p) (at ?r ?p))

: effect
(and (not (at_soil_sample ?p)) (have_soil_analysis ?r ?p))

)
(:action SAMPLE_SOIL

param eters
(?r - rover ?s - store ?p - waypoint)

precondition
(and (equipped_for_soil_analysis ?r) (empty ?s)
(store_of ?s ?r) (at_soil_sample ?p) (at ?r ?p))

: effect
(and (not (empty ?s)) (not (at_soil_sample ?p)
(full ?s) (have_soil_analysis ?r ?p))

)
(:action DROP

param eters
(?r - rover ?s - store)

precondition
(and (full ?s) (store_of ?s ?r))

: effect
(and (not (full ?s)) (empty ?s))

)

Figure 3.6: STRIPS definitions of macro SAMPLE_SOlL__DROP and the opera
tors th a t it contains.

3.2.1 M acro G eneration

For each abstract type at, macros are generated that perform local processing

within a component of type at, according to the locality rule detailed below.

Macro generation is a forward search in the space of possible macro operators.

The root state is an empty macro, with empty sets of operators, variables,

preconditions, and effects. Each search step appends an operator to the current

macro, and fixes the variable mapping between the operator and the macro.

Adding a new operator o to a macro m modifies P rec(m), Add(m), and D el(m)

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

void addOperatorToMacro(operator o,
macro m,
variable-mapping a) {

for (each precondition p G Prec(o)) {
if (p (ji Add(m) U Precim))

Prec(m) = Prec(m) U { p } ;

}
for (e a c h d e l e t e e f f e c t d G Del(o)) {

if (d G Add(m))
Add{m) = Add(m) — {d};

Del(m) = D el(m) U { d } ;

}
for (e a c h a d d e f f e c t a G Add{o)) {

if (a G D el(m))
Del(m) — D el(m) — {a};

Add(m) = Add(m) U { a } ;

}
}

Figure 3.7: Adding operators to a macro.

as shown in Figure 3.7. The variable mapping a in the procedure is used to

check the identity between operator’s predicates and macro’s predicates (e.g.,

in p ^ Add(m) U Prec(m)). Two predicates are considered identical if they

have the same name and the same set of parameters. The variable mapping

a shows what variables (parameters) are common in both the macro and the

new operator.

The search is selective: it uses a set of rules for pruning the search tree

and for validating a built macro operator. Validated macros are goal states in

this search space. The following pruning rules are used for static filtering:

• The negated precondition rule prunes operators with a precondition tha t

matches one of the current delete effects of the macro operator. This

rule avoids building incorrect macros where a predicate should be both

true and false.

• The repetition rule prunes operators th a t generate cycles. A macro con

taining a cycle is either useless, producing an empty effect set, or it can

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

be written in a shorter form by eliminating the cycle. A cycle in a macro

is detected when the effects of the first k\ operators are the same as for

the first k2 operators, with k\ < k2. In particular, if ki = 0 then the first

k2 operators have no effect.

• The chaining rule requires tha t for consecutive operators 0 \ and o2 in a

macro, 0 2 ’s preconditions must include at least one positive effect of o\.

This rule is motivated by the idea tha t the action sequence of a macro

should have a coherent meaning.

• The size of a macro is limited by imposing a maximum length and a

maximum number of preconditions. Similar constraints could be added

for the number of variables or effects, but this was found unnecessary.

Limiting the number of preconditions indirectly limits the number of

variables and effects. Large macros are generally undesirable, as they

can increase by a large margin the cost of evaluating a state with the

relaxed graphplan algorithm.

• The locality rule is an im portant criterion th a t controls how component

abstraction can be used to generate macro-operators. The following

high-level discussion provides the intuitive idea and the motivation of

this rule. Then a formal definition is given.

Intuitively, macros generated component abstraction should perform lo

cal processing at the level of one component. Macros tha t change two

or more abstract components a t the same time are pruned. To moti

vate this, consider planning with component abstraction as a hierarchi

cal planning framework, where each component defines a local problem.

To limit the complexity of planning, it is desirable th a t local problems

do not interact with each other directly i.e., each local problem interacts

only with the next level in the hierarchy. This assumption is made in

many hierarchical models described in the literature [3, 10, 12, 72].

The formal definition of the locality rule is the following. Given an

abstract type at and a macro m, let the local static preconditions be

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the static predicates th a t are part of both m ’s preconditions and atfs

edges. Local static preconditions and their parameters in m ’s definition

define a graph structure (different variable bindings for the operators

th a t compose m can create different graph structures). Locality requires

th a t this graph is isomorphic w ith a subgraph of at. In other words, all

local static preconditions are part of the same abstract component.

3.2.2 M acro R anking and F ilter in g

The goal of ranking and filtering is to reduce the number of macros and use

only the most efficient ones for solving problems. The overhead caused by poor

macros can exceed their benefit. This is known as the utility problem [69].

A simple but efficient and practical approach to dynamic macro filtering

can be effective at selecting a small set of useful macro operators. This method

counts how often a macro operator is instantiated as an action in solution

plans. The more often a macro has been used in the past, the greater the

chance tha t the macro will be useful in the future.

For ranking, each macro operator is assigned a weight tha t estimates its

efficiency. All weights are initialized to 0. Each time a macro is present in

a plan, its weight is increased by the number of occurrences of the macro in

the plan plus 10 bonus points. No effort was spent on tuning parameters such

as the bonus. For common macros th a t are part of solutions of all training

problems, any bonus value v > 0 will produce the same ranking among these

common macros. No m atter what the value v is, each common macro will

receive v x T bonus points, where T is the number of training problems. Hence

the occurrence points decide the relative ranking of common macros.

The simplest problems in a domain, which are usually the first ones in a

collection, are used for training. For these simple problems, all macro operators

are added to the domain, giving each macro a chance to participate in a

solution plan and increase its weight. After the training phase, the best macro

operators are selected to become part of the enhanced domain definition. In

experiments, 2 macros, each containing two steps, were added as new operators

to the initial sets of 9 operators in Rovers, and 5 operators in Depots and

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Satellite. In these domains, such a small value was observed to be a good

tradeoff between the benefits and the additional preprocessing and run-time

costs. See the next section for an analysis of the benefits and the additional

costs, and Chapter 5 for an empirical evaluation. In more domains with larger

initial sets of operators, using more macros could probably be beneficial.

3.3 A nalysis

3.3 .1 H ow M acros A ffect P lan n in g in C A -E D

This section analyzes the impact of macro-operators in planning. The dis

cussion focuses on how macros change the heuristic evaluation of states, the

search space, the cost per node, and the preprocessing costs.

In experiments, enhanced domains and problem instances were solved using

Hoffmann’s planner FF [42]. When added as new operators to the initial

domain formulation, macros affect F F ’s relaxed graphplan algorithm. When

a state is evaluated w ith relaxed graphplan, a relaxed problem is solved th a t

achieves a goal state starting from the current state. Relaxation is performed

by ignoring all delete effects of actions. The length of the relaxed plan is used

as a heuristic evaluation of the real distance from the current state to a goal

state.

To illustrate the benefits of macros in relaxed graphplan, consider the ex

ample in Figures 3.5 and 3.6. Operator s a m p l e _s o i l has one add effect (f u l l)

and one delete effect (e m p t y) th a t update the status of a store. Similarly,

operator d r o p updates the store status with two such effects. However, when

macro SAMPLE_SOlL__DROP is used, the status of the store does not change:

it was empty before, and it will be empty after. No effects are necessary to

express changes in the store status. Hence two delete effects (one for each

operator) are safely eliminated from the real problem before relaxation is per

formed. The relaxed problem is more similar to the real problem and the

information loss is less drastic.

A well-known property of macros is th a t they change the search space by

adding new transitions between states. This is called an embedding abstrac-

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

tion [46]. A node tha t normally needs several steps to reach becomes a direct

successor when the macro is applied. From the perspective of a search algo

rithm, embedding abstraction increases the branching factor but can reduce

the distance between the initial state and a goal state. The trade-off is impor

tant for the overall performance of a search algorithm. See Section 5.1.1 for

an empirical evaluation of the effects of macros on heuristic state evaluation

and search depth.

Many planners expand operators into instantiated actions by replacing all

parameters and quantifiers with constant symbols. This is done once for each

problem, as a preprocessing step. Given an operator o, let (v i ,v2, with

Type(vi) = ti, be the set of all its parameters and quantifiers (the latter can

be present in ADL domains). Assume that, in a problem, each type t has

a number of n t objects. An upper bound of the complexity of instantiating

operator o is 0 (n tl x nt2 x ... x ntk). FF optimizes this by computing only a

superset of the reachable actions. An action is reachable if its preconditions

are true in a state reachable from the initial state. See [42] for details.

CA-ED macros increase the number of domain operators. Furthermore,

since macros tend to have slightly more variables than regular operators, their

instantiation cost can be higher.

Macros often increase the average cost per node in a search as well. Pro

cessing a node is usually dominated in cost by calling the evaluation function.

Using macros makes relaxed graphplan more expensive, since an increased

number of actions will be involved. See Section 5.1 for an empirical evalua

tion.

3.3.2 L im ita tion s o f C A -E D

The architecture of CA-ED has two main limitations. First, component ab

straction is currently applied only to domains with static facts. Second, adding

macros to the original domain definition is limited to simple subsets of the

standard planning language PDDL such as STRIPS. The reason is th a t when

a macro is added to a domain as a new operator, its complete definition is

required, including precondition and effect formulas. This is easy to achieve

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

in STRIPS, as illustrated in Figures 3.6 and 3.7

However, if more complex PDDL subsets such as ADL are used, adding

macros to a domain file becomes impractical for two main reasons. First, the

precondition and effect formulas of a macro are hard to infer from the formulas

of contained operators. Second, even if the previous issue is solved and a macro

with complete definition is added to a domain, the costs for preinstantiating

it into ground macro-actions can be large.

Figure 3.8, which shows operator MOVE from the Airport domain used in

IPC-4 [40], illustrates how challenging the formula inference is in ADL. The

preconditions and the effects of this operator are quite complicated formulas

tha t include quantifiers, implications and conditional effects. The formulas

of a macro MOVE— MOVE with a given param eter mapping a would have

to be autom atically composed from the preconditions and effects of the two

contained operators.

Even if the above issue is solved and macros can be added as new do

main operators, preinstantiating an ADL macro into ground actions can be

costly. Action instantiation was discussed in Section 3.3.1. The cost of this

preprocessing step can be much higher in ADL than in STRIPS because of the

existence of quantifiers. ADL macros tend to have larger sets of parameters

and quantifiers than regular ADL operators, and therefore their instantiation

can significantly increase the to tal preprocessing costs. ADL Airport is a good

illustration of how im portant this effect can be. As shown in Section 5.2, the

preprocessing is so costly as compared to the main search th a t it dominates

the to ta l cost of solving a problem in this domain. Further increasing the

preprocessing effort with new operators is not desirable in such domains.

3.4 C onclusion and Future W ork

This section has presented CA-ED, a m ethod th a t learns information about

the structure of a planning domain and exploits it in new searches. Learning

is performed in a training step that uses one or several sample problems from

a domain. For each sample problem, abstract components are created tha t

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(: action move
: parameters

(?a - airplane ?t - airplanetype ?d l - direction
?sl ?s2 - segment ?d2 - direction)

:precondition
(and (has-type ?a ?t) (is-moving ?a)

(not (= ?sl ?s2))
(facing ?a ?dl) (can-move ?sl ?s2 ?dl)
(move-dir ?sl ?s2 ?d2) (at-segment ?a ?sl)
(not

(exists (?al - airplane)
(and (not (= ?al ?a)) (blocked ?s2 ?al))))

(forall (?s - segment)
(imply (and (is-blocked ?s ?t ?s2 ?d2)

(not (= ?s ?sl)))
(not (occupied ?s))))

)
: effect

(and (occupied ?s2) (blocked ?s2 ?a)
(not (occupied ?sl))
(when (not (is-blocked ?sl ?t ?s2 ?d2))

(not (blocked ?sl ?a)))
(when (not (= ?d l ?d2))

(not (facing ?a ?dl)))
(not (at-segment ?a ?sl))
(forall (?s - segment)

(when (is-blocked ?s ?t ?s2 ?d2)
(blocked ?s ?a)))

(forall (?s - segment)
(when (and (is-blocked ?s ?t ?sl ?dl)

(not (= ?s ?s2))
(not (is-blocked ?s ?t ?s2 ?d2)))

(not (blocked ?s ?a))))
(at-segment ?a ?s2)
(when (not (= ?dl ?d2))
(facing ?a ?d2))

)

)

Figure 3.8: Operator MOVE in ADL Airport.

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

group together related low-level objects. Analysis of the components is used

to generate macro-operators th a t perform local processing at the level of one

component. Macros are filtered down to a few top candidates th a t are added

as new operators to the initial domain.

The applicability of CA-ED is limited to domains that are expressed in

STRIPS and contain static facts in their definition. The next chapter shows

how CA-ED can be extended around these limitations.

A challenging long-term goal of component abstraction would be auto

matic reformulation of planning domains and problems. When a real-world

problem is abstracted into a planning model, the corresponding formulation is

expressed at an abstraction level th a t a human designer considers appropriate.

However, choosing a good abstraction level could be a difficult problem for hu

mans. Planning domains and problems may be generated automatically as a

translation from other areas of computing science. For example, the Promela

domains in IPC-4 [40] have been obtained from the area of model checking.

As shown in Section 3.3.1, a macro added to an original domain formulation

as a regular operator influences the results of the heuristic function. This is

convenient (no changes are necessary in the planning engine), b u t limited

only to STRIPS domains. For other subsets of PDDL, the relaxed graphplan

algorithm can be extended with special capabilities to handle macros when no

enhanced domain definition is provided.

To explain the behavior of the relaxed graphplan heuristic, Hoffmann an

alyzes topological features of planning domains both empirically and theoret

ically [38, 39]. This work could be extended to explore how macro-operators

affect the topology of planning benchmarks.

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

Solution Abstraction in AI
Planning

This chapter presents SOL-EP (Solution Abstraction - Enhanced Planner),

an approach similar to CA-ED but more general. SOL-EP was designed with

the goal of eliminating the limitations of CA-ED. First, the applicability is

extended from STRIPS domains to ADL domains. Second, CA-ED generates

macros only from component abstraction, which is limited to domains with

static predicates. The new method generates macros from solutions of sample

problems, increasing its generality. Third, the size of macros increases from

2 moves to arbitrary values. Fourth, the definition of macros is generalized,

allowing partially ordered sequences.

As in CA-ED, the four main steps of SOL-EP are the ones shown in Figure

3.1: analysis, generation, filtering and planning. However, each step is per

formed differently than in CA-ED. At step 1, domain knowledge is acquired

with solution abstraction, rather than component abstraction as in CA-ED.

Solution abstraction builds a structure called a solution graph from the lin

ear action sequence th a t a planner produces for a problem. A solution graph

contains one node for each step in the plan. Edges model the causal effects

that an action has on subsequent actions of the linear plan. At step 2 , partial-

order macro-operators (i.e., macros with partial ordering of their operators)

are extracted from a solution graph. Steps 1 and 2 can be repeated for several

problem instances as part of a training process. In step 3, the set of generated

macros is filtered such th a t only the most promising macros are kept for future

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Enhanced
Planner

Domain

Domain

Real
Instances

Sample
Instances

Macro
Operators

Figure 4.1: The general architecture of SOL-EP. Enhanced Planner means a
planner with capabilities to handle macros.

use. Finally, in step 4, the selected macros are used to improve planning in

new problems.

The general architecture of this approach is shown in Figure 4.1. For com

parison with classical planning and CA-ED, see Figure 3.2. As before, the

module Abstraction implements steps 1-3. Macros produced with abstrac

tion are distinct input data for the planner rather than being added to the

original domain formulation. This allows the generalization from STRIPS to

ADL domains. As discussed in Section 3.3.2, inferring the precondition and

effect formulas of a macro from the formulas of contained operators is hard

in ADL. Hence the precondition and effect formulas of a SOL-EP macro are

not explicitly stated. For this reason, macros cannot be added to the original

domain formulation anymore. For step 4, the planner is enhanced with code

to handle macro operators.

Using macro-actions at run-time can potentially introduce the utility prob

lem [69], which appears when the savings are dominated by the extra costs

of macros. The potential savings come from the ability to generate a useful

action sequence with no search. On the other hand, macros can increase the

branching factor. Many instantiations of a selected macro-operator could be

applicable to a state, but only a few would actually be shortcuts towards a goal

state. If all these instantiations are considered, the induced overhead can be

larger than the savings achieved by the useful instantiations. To select what

macro instantiations to use for state expansion, heuristic techniques such as

helpful macro pruning and goal macro pruning are introduced. See Section

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.2.3 for details.

The rest of this chapter is structured as follows: The next two sections

provide details about building a solution graph, and how to extract and use

macro-operators. Macro-FF, a planner th a t implements SOL-EP and CA-ED

on top of FF, participated in the fourth international planning competition

IPC-4. The results are highlighted in Section 4.3. The last section contains

conclusions and future work ideas.

4.1 Solution Graph

This section describes how to build the solution graph for a problem, start

ing from the solution plan and exploiting the effects tha t an action has on

the following plan sequence. First the discussion framework is set with some

preliminary comments and definitions. Next a high-level description of the

method, an example, and the algorithm in pseudo-code are presented.

In the general case, the solution of a planning problem consists of a partially

ordered sequence of steps. When actions have conditional effects, a step in the

plan should be a pair (state, action) rather than only an action. This allows

for a precise determination of what effects a given action has in the local

context. The implementation of this m ethod handles domains w ith conditional

effects in their actions and can be extended to partial-order plans. However,

for simplicity, the following discussion assumes th a t the initial solution is a

totally-ordered sequence of actions. W hen an action occurs several times in a

solution, each occurrence is a distinct solution step.

To introduce the solution graph, the causal links in a solution have to be

defined. Let < ai, . . . ,an > be a solution. A positive causal link between cq
| p

and dj by p. written as at -—> dj, exists in the solution if: (1) i < h (2) V is

a precondition of dj and a positive (add) effect of Oj, and (3) no a*,, % < k < j

adds p. A positive causal link is the same as a causal link in partial-order

planning [73].

A negative causal link between a* and dj by p, written as a* —l-> dj , exists

if: (1) i < j , (2) p is a precondition of dj and a negative (delete) effect of a*,

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

) . S W IT C H _ O N IN STR O SA TO
^R E C : PO W ER_ A V A IL (SATO)
ADD: POW ER_ON (INSTO)
DEL: C A L IB R A T E D (INSTRO)

POW ER_A V A IL (SATO)

. C A L IB R A T E SA TO INSTRO
G RO U N D 2

R E C : P O W E R .O N (INSTRO)
P O IN T IN G (SATO GROUND2)

ADD: C A L IB R A T E D (INSTRO)
DEL:

j l . T U R N _ T O SA TO G ROUND2
PH E N 6

=»REC: PO IN T IN G (SATO PHEN6)
ADD: P O IN T IN G (SATO GROUND2)
DEL: P O IN T IN G (SATO PH EN 6)

{ D - ® — ► = l

3. T A K E _ IM A G E SATO PH EN 6
INSTRO THERM O

R E C : PO W ER _O N (INSTRO)
P O IN T IN G (SATO PH EN 6)
C A L IB R A T E D (INSTRO)

ADD: H A V E JM A G E (PH EN 6
THERMO)
DEL:__________________________________

T A K E _JM A G E SATO STA R 5
IN ST R O T H E R M O

9R E C : PO W ER _O N (INSTRO)
P O IN T IN G (SATO STA R S)
C A L IB R A T E D (INSTRO)

ADD: H A V ELIM A G E (ST A R 5
THERM O)
D EL:_______________________________________

□ = ADD

T A K E _ IM A G E SATO PH EN 4
IN STRO T HERM O

3R E C : PO W ER _O N (INSTRO)
P O IN T IN G (SATO PH EN 4)
C A L IB R A T E D (INSTRO)

ADD: H A V E .IM A G E (PH E N 4 THERM O)
D E L :

7 . T U R N _T O SATO PH EN 6 STA R S
3REC: PO IN T IN G (SATO STA R S)

' ADD: PO IN TIN G (SATO PHEN6)
DEL: PO IN T IN G (SA T 0 STA R5)

. T U R N _T O SATO S T A R 5 PH EN 4
REC: PO IN TIN G (SATO PHEN4)

ADO: PO IN T IN G (SATO STA RS)
DEL: PO IN T IN G (SATO PH EN 4)

I
J. T U R N _T O SATO PH E N 4 GROUND2
=»REC: PO IN T IN G (SATO GROUND2)

- ADD: PO IN T IN G (SATO PH EN 4)
DEL: PO IN TIN G , (SATO GROUND2)

Figure 4.2: The solution graph for problem 1 in the Satellite benchmark.

and (3) no a ^ , i < k < j deletes p . a ^ a j denotes th a t there exists a causal

link (either positive or negative) from a, to a,j.

For each step in the linear solution, a node in the solution graph is created.

The graph edges model causal links between the solution actions. An edge

between two nodes ai and a2 is created if Oi —> a 2. An edge has two labels:

The ADD label is the (possibly empty) list of all facts p such th a t ai — > a2.

Similarly, the DEL label is the list of negative causal links.

Figure 4.2 shows the solution graph for problem 1 in the Satellite bench

mark. See Appendix B for details on Satellite. The graph has 9 nodes, one for

each step in the linear solution. Each node contains a numerical label showing

the step in the linear solution, the action name and arguments, the precondi

tions and the effects. Static preconditions are safely ignored: no causal link

can be generated by a static fact, since such a fact is never part of an action’s

effects. Graph edges have their ADD labels shown as square boxes, and DEL

labels as circles. Consider the edge from node 0 to node 8 . Step 0 adds the

first precondition of step 8 , and deletes the third. Therefore, the ADD label

of this edge is 1 (the index of the first precondition), and the DEL label is 3.

The pseudo-code for building a solution graph is given in Figure 4.3. A time

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

upper bound is 0 (L 2 x m), where L is the length of the solution at hand, and

m is the maximum number of preconditions in a step. The methods are in gen

eral self explanatory, and follow the high-level description provided before. The

method findAddActionId(p, id, s) returns the most recent action before the cur

rent step id tha t adds precondition p. The method addEdgeInfo(ni, n2, t, / , g)

creates a new edge between nodes n\ and n 2 (if one didn’t exist) and concate

nates the fact / to the label of type t 6 {ADD, DEL}. An integer nodes(a),

used in method buildNodes, provides information extracted from the search

tree generated while looking for a solution. A search tree has states as nodes

and actions as transitions. For each action a in the tree, nodes (a) is the num

ber of nodes expanded in the search right before exploring action a. The node

heuristic (N H) associated with an instantiated macro sequence m = a\...a,k is

defined as follows:

N H (m) = nodes{a,k) — nodes(a\).

N H measures the effort needed to dynamically discover the given sequence

at run-time. As shown in the next section, the node heuristic is used to rank

macro-operators in a list.

In this work, preconditions of solution steps are given in a STRIPS-like

fashion: they are conjunctions of positive facts. Hence it is im portant to

show why this method works for ADL domains, where preconditions can be

more complicated formulas (e.g., have disjunctions). The explanation is th a t

an ADL operator can be compiled down into a set of STRIPS1 operators.

This compilation is part of the preprocessing th a t FF and other planners

perform [42].

A brief analysis of the graph in Figure 4.2 reveals interesting insights

about the problem and the domain structure. The action sequence TURN_TO

t a k e j m a g e occurs three times (between steps 3-4, 5-6, and 7-8), which takes

6 out of a total of 9 actions. For each occurrence of this sequence, there is a

graph edge tha t shows the causal connection between the actions: applying op-

Tn practice, the compiled operators are a little more general than STRIPS, since they
can have conditional effects too.

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

void buildSolutionGraph(Solution s, Graph & g) {
buildNodes(s, g):
buildEdges(s. g):

\
void buildNodes(Solution s, Graph & g) {

for (int id = 0 ; id < length(s); ++id) {
Action a = getSolutionStep(id, s);
addNode(zd. a, nodes(a), g);

}
\
void buildEdges(Solution s, Graph & g) {

for (int id = 0 ; id < length(s); ++id) {
Action a — getSolutionStep(id, s);
for (each precondition p € Precs(a)) {

idadd = find Add ActionId(p, id, s);
if {idadd != NO-ACTIONJD)

addEdgelnfo^oUd, id, ADD, p, g)\
iddei = findDeleteActionId(s, id, p):
if (iddei != NO-ACTIONJD)

addEdgeInfo(?drfe/, id, DEL, p, g);
}

}

Figure 4.3: Pseudo-code for building the solution graph.

erator TURN_TO satisfies precondition 2 of operator t a k e _i m a g e . In addition,

the sequence SW ITCH_o n t u r n _t o c a l i b r a t e (steps 0 - 2) is im portant for

repeatedly applying macro t u r n _t o t a k e _i m a g e . This sequence establishes

two of the preconditions of operator TAK E-IM AG E. The graph also shows that

operator c a l i b r a t e should be applied between s w i t c h _ON and t a k e _i m a g e .

It restores the fact (c a l i b r a t e d i n s t r O), deleted by s w i t c h _o n but needed

by TAKE-IM AGE. Finally, there is no ordering constraint between SW ITCH -O N

and TU R N -T O , so the ordering of the actions of this sequence is partial. SOL-

EP performs this type of analysis to learn useful information about a domain.

5 2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.2 M acro-O perators

A SOL-EP macro-operator is a structure m = (O , -<,cr), where O is a bag of

domain operators, -< a partial ordering of the elements in O, and a a mapping

that defines the macro’s variables from the operators’ variables. In particular,

if -<t is a to tal ordering, then m = (O, -q, a) is a sequential macro-operator.

A domain operator can occur several times in O. A macro’s preconditions

and effects are not explicitly given. They are determined at run-time, when a

macro is dynamically instantiated by applying its actions in sequence.

This section focuses on how SOL-EP learns and uses macro-operators.

Generation, filtering, and run-time instantiation are discussed. A global set

of candidate macros is generated from the solution graphs of several training

problems. This set is reduced to a small number of selected macros, com

pleting the learning phase. Finally, the selected macros are used to speed up

planning in new problems.

4.2 .1 G en eratin g M acro-O perators

Macros are extracted from the solution graphs of one or more training prob

lems. SOL-EP enumerates and selects subgraphs from the solution graph(s)

and builds one macro for each selected subgraph. Two distinct subgraphs can

produce the same macro. All generated macros are inserted into a global list

th a t will later be filtered and sorted. The list contains no duplicates. When

an extracted macro is already part of the global list, relevant information as

sociated with th a t element is updated. The algorithm increments the number

of occurrences, and adds the node heuristic N H (m i) of the extracted instan

tiation mi.

Figure 4.4 presents the procedure for extracting macros from the solution

graph. Parameters m i n _l e n g t h and m a x _l e n g t h limit the length I of a

macro. The minimal size is trivial: each macro should have at least two

actions. The upper bound is set to speed up macro generation. In the most

general setup, the upper bound could be the plan length of the problem at

hand, provided th a t the whole solution might be an useful macro. This is

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

void generateAllMacros(Graph g , MacroList & macros) {
for (int I = MIN_LENGTH; I < MAXJLENGTH; ++1)

generateMacros(<?, Z, macros);
}
void generateM acros(Graph g, int Z, MacroList & macros) {

selectSubgraphs(Z, g , subgraphList);
for (each subgraph s £ subgraphList) {

buildMacro(s, m);
int pos = findMacroInList(m, macros);
if (pos != NCLPOSITION)

updateInfo(pos, m, macros);
else

addMacroToList(m, macros);
}

}

Figure 4.4: Pseudo-code for generating macros.

usually not the case in practice. This thesis focuses on identifying a few local

patterns th a t are generally useful, rather than caching many complete solutions

of solved problems.

In Figure 4.4, method seleetSubgraphs{l,g, subgraphList) finds valid sub

graphs of size I of the original solution graph. It is implemented as a back

tracking procedure th a t produces all the valid node combinations and prunes

incorrect partial solutions early.

To describe the validation rules, consider a subgraph sg w ith I arbitrary

distinct nodes am, , am2, ..., amr Node ami is the m j-th step in the linear solution

< a i , ..., an >. Assume th a t the nodes are ordered according to their position

in the linear solution: (Vi < j) : m i < rrij. A subgraph sg is valid if:

• mi — mi T 1 < I + k. The nodes of sg are obtained from a sequence

of consecutive steps in the linear solution by skipping at most k steps,

where k is a parameter. Skipping actions allows irrelevant actions to

be ignored for the macro at hand. The upper bound k captures the

heuristic th a t good macros are likely to have their steps “close” together

in a solution. In the Satellite example, consider the subgraph with nodes

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

{0 ,1 ,2 ,6 }. For this subgraph, I = 4, mi = 6 , and m\ = 0. The subgraph

is invalid for k = 2, since mi — + I = 7 > 6 = I + k, but it would be

valid for k > 3.

• A valid subgraph must be connected, since two separated connected com

ponents are assumed to correspond to two independent macros. Consider

the example in Figure 4.2. Nodes 2 and 3 do not form a valid subgraph,

since there is no direct link between them, and therefore this subgraph is

not connected. However, nodes 3 and 4 are connected through a causal

link, so this subgraph will be validated.

• When selecting a subgraph, a solution step ar (mi < r < m{) can

be skipped only if ar is not connected to the current subgraph: (Vi G

{1 j 0) • 1'iP’m.i V ar > Q-mi)-

Method buildMacro(s1m) in Figure 4.4 builds a partially ordered macro rri

based on the subgraph s. For each node of the subgraph, the corresponding

action is added to the macro. At this step, actions are still instantiated:

they have constant arguments rather than generic variables. After all actions

have been added, all constant arguments are replaced with generic variables,

obtaining a variable identity map a. The partial order between the operators

of the macro is computed using the positive causal links of the subgraph. If a

positive causal link exists between two nodes o,t and cij, then a precondition of

action aj was made true by action a,. Therefore, action at should come before

a,j in the macro sequence. The ordering has no cycles, since the ordering

constraints are determined using a subgraph of the solution graph, and the

solution graph is acyclic. A graph edge can exist from a, to a:i in the solution

graph only if i < j .

As an example, from the solution graph in Figure 4.2, 24 distinct macros are

extracted. The largest contains all nodes in the solution graph. One macro oc

curs 3 times (t u r n _t o t a k e _i m a g e), another twice (t u r n _t o t a k e _i m a g e

t u r n _t o), and all remaining macros occur once.

The upper bound on complexity of generating macros of length I from a

55

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

solution graph with L actions is

° X f +l ^ X L X 1

The first factor is the cost to build one macro, where the number of ordering

constraints can be quadratic on the number of steps. The second factor is

the cost to enumerate all macros of length I within a window of size I + k

(i.e., a subgraph with I + k nodes th a t are consecutive in the initial sequential

solution - see the first validation rule). The window slides along the solution

plan, obtaining the third factor (assume l + k < L). I is the cost to find/insert

a macro into the global set of macros.

The value of k controls the trade-off between the speed of the algorithm and

the number of enumerated subgraphs. A small k speeds up the computation

but misses macros th a t are too widely spread over the solution sequence. In

contrast, a large k increases the processing time exponentially, and allows

enumerating subgraphs with nodes far away from each other. In experiments,

a small value of k turned out to be a good trade-off: processing is fast, and

most useful macro-occurrences are caught, since the steps of useful macros

usually form a local sequence in the plan. However, for domains where useful

macro-sequences are often spread out across a solution, increasing k can result

in a much better set of macros.

4.2 .2 F ilter in g and R anking

Filtering addresses the utility problem. After all training problems have been

processed, the global list of macros is statically filtered and sorted, so tha t only

the most promising macros will be used to solve new problems. W hen the se

lected macros are used in future searches, they are further filtered dynamically

by evaluating their run-time performance.

Static filtering uses an overlap rule. A macro is removed from the list

when two occurrences of it overlap in a given solution. Consider the following

sequence in a solution:

. . . a i a 2. . . a ; a i a 2. . .a /a i02 .. .a ;. . .

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Assume both m \ = aia^-.-di and m 2 = aia^-.-onai are macros. When m\ is used

in the search, applying this macro three times could be enough to discover the

given sequence with little effort. Consider now using m 2 in the search. This

macro cannot be applied twice in a row, since the first occurrence ends beyond

the beginning of the next occurrence. The sequence a^.-.ai in the middle has

to be discovered with low-level search.

An im portant property of the overlap rule is the capacity to automatically

limit the length of a macro. For example, a ^ - . - a i is kept in the final list, while

larger macros such as a ^ - . -d id i or a ^ - . - d i a ^ are rejected. As an exception

to the overlap rule, a macro that is a double occurrence of a small (i.e., of

length 1 or 2) sequence will not be rejected. In Satellite, a macro such as

(t u r n _t o t a k e u m a g e t u r n . t o) is removed because of the overlap, but the

macro (t u r n _t o t a k e _i m a g e t u r n _t o t a k e _i m a g e) , a double occurrence

of a short sequence, is kept.

Macros are ranked according to the total node heuristic T N H (m) associ

ated with each macro m, with ties broken based on the occurrence frequency

F. For a generic macro m in the list, T N H (m) is the sum of the node heuristic

values (N H) for all instantiations of th a t macro in the solutions of all training

problems. The average node heuristic A N H and estimates the average search

effort needed to discover an instantiation of this macro a t run-time:

T N H (m) = A N H (m) x F(m).

The to tal node heuristic is a robust ranking method, which combines two

factors th a t influence the performance of a macro. Since T N H is proportional

to F, it favors macros tha t occur frequently in the training set, and may be

more likely to be applicable in the future. T N H directly depends on A N H ,

which evaluates the search effort tha t one application of the macro could save.

T N H depends on the search strategy. For instance, changing the order in

which moves are considered in the search can potentially change the ranking

in the macro list. How much the search strategy affects the ranking, and how

a set of macros selected based on one search algorithm would perform in a

different search algorithm are still open questions.

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

After ranking and filtering the list, only a few elements from the top of the

list are kept for future searches. The precise number is not crucial, since the

dynamic filtering process defined below further tunes its value. In the Satellite

example, the selected macros are (s w i t c h _o n TURN-TO c a l i b r a t e t u r n . t o

t a k e _i m a g e) and (t u r n _t o t a k e j m a g e t u r n _t o t a k e _i m a g e).

For dynamic filtering, the following values are accumulated for each macro

m. I N { m) is the number of search nodes in which at least one instantiation of

m is applicable and is not rejected by the helpful macro pruning test. I S (m)

is the number of times when an instantiation of m occurs in a solution. The

efficiency rate is
E R (m) =

v ' I N { m)

Dynamic filtering evaluates each macro after solving a number of problems

N P given as a parameter. If I N (m) = 0 or ER{m) < T for a threshold T, m

is removed from the list.

T ’s value was set based on the empirical observation th a t there is a gap be

tween the efficiency rate of successful macros and the efficiency rate of macros

th a t should be filtered out. The efficiency rate of successful macros has been

observed to range roughly from more than 0.05 to almost 1.00. For inefficient

macros, E R < 0.01. T is set to 0.03.

4 .2 .3 In stan tia tin g M acros a t R u n -T im e

A classical search algorithm expands a node by considering low-level actions

th a t can be applied to the current state. In addition, SOL-EP adds to the

successor list states th a t can be reached by applying a sequence of actions

th a t compose a macro. This enhancement affects neither the completeness

nor the correctness of the original algorithm. Completeness is preserved since

no regular successors are deleted. Since macros have no explicit preconditions

and effects, a run-time function verifies their correctness. Given a state so and

a sequence of actions m = a ^ . - . a k , m can correctly be applied to s0 if ai can

be applied to Sj_i, i 6 0 , where s* = 7 (sj_ i,a j) and 7 (s,a) is the state

obtained by applying a to s.

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In principle, the definition of a SOL-EP macro at the beginning of Sec

tion 4.2 allows that: (1) only part of the possible step orderings of a macro

instantiation could be applicable in a state and (2) different orderings of the

steps in a macro instantiation could result in different destination states. For

the sake of efficiency, only one ordering of steps is considered when a macro

is instantiated at run-tim e .2 Searching for an ordering tha t corresponds to an

instantiation applicable to a state is significantly more expensive, but it can

succeed more often. How to best balance this trade-off is an open question.

Two heuristic methods, helpful macro pruning and goal macro pruning, are

introduced with the goal of pruning macro instantiations th a t guide the search

in a wrong direction. The next paragraphs discuss these heuristics in detail.

H elpful M acro P runing

Helpful macro pruning uses the relaxed plan RP(s) tha t FF performs for each

evaluated state s, and hence is available at no additional cost. See Section

2.1.2 for details on RP. The relaxed plan is used to decide what macro

instantiations to select in a given state. Since actions from the relaxed plan

are often useful in the real world, a selected macro and the relaxed plan should

match partially or totally (i.e., have common actions). To formally define

the matching, consider a macro m (v \ , v „) , where vi, .. .,vn are variables,

and an instantiation m (c \ , ..., cn), w ith c i,...,c n constant symbols, applicable

in s. Match{m(c\ , ..., cn), RP{s)) is the number of actions present in both

m (c i , ..., c„) and RP(s).

If total matching is required (i.e., each action of the macro is mapped to

an action in the relaxed plan) then it will often happen th a t no instantiation

can be selected, since the relaxed plan can be too optimistic and miss actions

needed in the real solution. On the other hand, a loose matching can signifi

cantly increase the number of selected instantiations, with negative effects on

the overall performance of the search algorithm. The solution is to select only

those instantiations which have the best matching seen so far for the given

2No particular ordering is preferred. In the implemented system, this is the ordering of
the first instantiation discovered in the solutions of the training problems, but this is just
an implementation detail.

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

macro in the given domain. A macro instantiation is selected only if

Match(m(ci, .. . ,Cn),RP(s)) > MaxMatch(m(v 1, . . . ,vn)). (4 .1)

MaxMatch(m(vi , ..., vn)) is the largest value of M a t c ^ m ^ , ..., c'n), RP(s')),

with m(c [, ..., c'n) applicable in s', th a t has been encountered so far in tha t

domain.

E x p e r im e n ts s h o w t h a t MaxMatch(m(v i, ...,vn)) q u ic k ly c o n v e r g e s t o a s t a

b le v a lu e . In t h e S a t e l l i t e e x a m p le , M a x M a tc h (sw iT C H _ O N TURN_TO CAL

IBRATE t u r n _t o t a k e _i m a g e) c o n v e r g e s t o 4, a n d M a x M a tch (T U R N _ T O

TAKE-IM AGE TU R N _TO TAKE_IM AGE) c o n v e r g e s t o 3.

If necessary, helpful macro pruning could be further refined to allow differ

ent values of Match for different instantiations of the same macro-operator.

Assume a single large match sets MaxMatch to such a high value th a t no

further matches can be made. A possible solution would be to replace the

condition 4.1 by the following two-phase rule: Given a state s and a macro m,

first build the set M of all instantiations m{c \ , ..., cn) applicable in s for which

Match(m(ci , ..., cn), R P (s)) > Tm,

where Tm is a threshold. Then, keep only instantiations

m i G a,rgmaxmi,eMMatch(mi ' , RP(s)).

G oal M acro P run ing

As shown in Section 2.1.2, FF implements two search algorithms. Planning

starts with Enforced Hill Climbing (EHC), a fast but incomplete algorithm.

When EHC fails to find a solution, the search restarts with a complete Best

First Search (BFS).

In experiments it was observed tha t, in domains where macros are very suc

cessful, EHC is robust enough to solve problems and BFS does not need to be

called. As shown in Section 5, such domains include Promela Dining Philoso

phers, Promela Optical Telegraph and Satellite. In this scenario, helpful macro

pruning is powerful enough to filter instantiations of macros at runtime.

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In domains such as Power Supply Restoration (PSR), where the benefits

of macros are more limited, problem instances can be hard for both EHC and

BFS. See Appendix B for a brief description of PSR. Often in this domain,

EHC quickly fails and most of the search effort is spent in BFS. For such hard

problems, macros can have either positive or negative effects on the overall

planning effort.

Goal macro pruning is a very selective heuristic used in BFS in order to

reduce the fluctuations in the performance of macros. Goal macro pruning

keeps a macro instantiation only if the number of satisfied goal conditions

is greater in the destination state as compared to state where the macro is

applied. In BFS, an instantiated macro has to pass both the helpful macro

pruning and the goal macro pruning tests.

4 .2 .4 D iscu ssion

Desirable properties of macros and trade-offs involved in combining them into

a filtering m ethod are discussed in [64]. The authors identify five factors that

can be used to predict the performance of a macro set. The next paragraphs

briefly introduce these factors and discuss how SOF-EP deals with each of

them.

T N H includes the first two factors (“the likelihood of some macro being

usable at any step in solving any given planning problem” , and “the amount

of processing (search) a macro cuts down”). Factor 3 (“the cost of searching

for an applicable macro during planning”) mainly refers to the additional cost

per node in the search algorithm. At each node, and for each macro, it must

be tested if instantiations of the macro are applicable to the current state, and

satisfy the macro pruning tests. The costs are greatly reduced by keeping only

a small list of macros, but there often is an overhead as compared to searching

with no macros. No special care is taken of factor 4 (“the cost (in terms of

solution non-optimality) of using a macro”). Chapter 5 contains an empirical

analysis of factors 3 and 4.

Factor 5 refers to “the cost of generating and m aintaining the macro set” .

In SOF-EP, the costs to generate macros include, for each training problem,

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

solving the problem instance, building the solution graph, extracting macros

from the solution graph, and inserting the macros into the global list. The

only maintenance operations th a t SOL-EP performs are to dynamically filter

the list of macros and to update MaxMatch for each macro, which need no

significant cost.

4.3 Participating in th e International Planning
C om petition

F F was enhanced with macros and implementation enhancements to reduce

memory and CPU time requirements. The resulting program, Macro-FF [6 , 9],

com peted in the fourth international planning competition IPC-4 [40]. An

overview of FF was presented in Section 2.1.2. This section describes the

features of Macro-FF and summarizes its participation in the competition.

4 .3 .1 M acro-F F

M acros in th e C om petition S ystem

Macro capabilities are based on a version of the SOL-EP model, which has

broader applicability than CA-ED. Since, at the competition time, SOL-EP

was not fully developed as described in the previous sections, a preliminary

version was implemented in the competition system. The differences between

the preliminary version and the final version of SOL-EP are summarized next.

Macros in the competition system were limited to only 2 actions. This

choice removed many challenges th a t have to be solved for arbitrary-length

macros. Operations such as building and processing a solution graph, and

run-tim e macro instantiation axe considerably simplified. Another difference

is in the ranking method (see discussion below). The ranking method based

on a node heuristic had not been developed at the competition time.

The competition system used a first implementation of the solution graph,

where causal edges can be defined only between two consecutive actions of a

plan. Hence only sequences of two consecutive actions can be considered as

possible macros. Local chaining is enforced by the rule th a t the actions oi and

62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

a 2 of a macro should have at least one common variable, unless a i and/or a 2

have no parameters. Macros with null effects are discarded.

Run-time macro instantiation uses helpful macro pruning. A macro instan

tiation is used only if both its actions are part of the relaxed plan computed

for the current state. The competition system implemented neither goal macro

pruning nor dynamic macro filtering based on efficiency rate.

For ranking, macro-operators are stored in a global list ordered by their

weight, with smaller being better. Weights are initialized to 1.0 and updated

using a gradient-descent method.

For each macro-operator m extracted from the solution of a training prob

lem, the problem is re-solved with m in use. Let L be the solution length when

no macros are used, N the number of nodes expanded to solve the problem

with no macros, and N m the number of expanded nodes when macro m is

used. The difference N — Nm is used to update wm, the weight of macro m.

Since N — N m can take arbitrarily large values, it is mapped to a new value

in the interval (—1 , 1) by

(—1,1). In particular, the symmetry property ensures that, if N m = N, the

weight update of m at the current training step is 0. The size of the boundary

interval has no effect on the ranking procedure, it only scales all weight updates

by a constant multiplicative factor. The interval (—1,1) is used as a canonical

representation, which limits the absolute value of 5m between 0 and 1 .

The update formula also contains a factor th a t measures the difficulty of

the training instance. The harder the problem, the larger the weight update

should be. The reason is tha t macros th a t appear to be effective in very simple

training instances could in fact be useless for larger problems. The difficulty

factor is estimated by the solution length L ra ther than N, since the former

where

- 1

is the sigmoid function shown in Figure 4.5, centered in (0,0) and bounded to

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1

0

-10 0 5 10

Figure 4.5: Sigmoid function.

has a smaller variance over a training problem set. The formula for updating

Wm IS

IVm = 'Wm Ct5mL

where a = 0.001. The value of a does not affect the ranking of macros. It is

used only to keep macro weights within the vicinity of 1 .

Im plem entation E nhan cem ents

The enhancements described below have the goal of reducing the space and

CPU requirements of the planner, and affect neither the number of expanded

nodes nor the quality of found plans. However, when the memory or CPU

time necessary to solve a problem are larger than the available resources, these

improvements can make the difference between failure and success in solving

a problem. The three enhancements described below affect the open queue

in best-first search, the memory requirements in the preprocessing phase, and

state hashing. The first two were implemented by Enzenberger [9].

The open queue in BFS was originally implemented as a single linked list.

This was changed into a linked list of buckets, one bucket for each heuristic

value. The time to find/insert an element reduces from linear in the to tal

number of states in the list to linear in the number of different heuristic values

of the states in the list. The buckets are implemented as linked lists and need

constant time for insertion, since they no longer have to be sorted.

As part of preprocessing, FF builds a lookup table with all facts of the

64

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

initial state. In the original implementation, this table is sparsely populated

but the allocated memory is equal to the number of constants to the power

of the arity of each predicate summed over all predicates in the domain. The

lookup table was replaced by a balanced binary tree with minimal memory

requirements and a lookup time proportional to the logarithm of the number

of facts in the initial state.

In the original implementation of F F ’s state hashing, each fact of a planning

problem is assigned a unique 32-bit random number. The hash code of a

problem state is the sum of all random numbers associated with the facts

th a t characterize the given state. When two states have the same hash code,

a full fact-by-fact comparison checks whether the states are identical. The

original implementation was replaced by a 64-bit Zobrist hashing [63]. Facts

are assigned 64-bit random numbers, and the hash key of a state is obtained by

computing the XOR of all random numbers corresponding to the facts true in

the state. The larger size of the hash key and the better randomization make

hash conflicts so improbable th a t full state comparison is no longer necessary.

4.3 .2 C o m p etitio n R esu lts

The fourth international planning competition IPC-4 had a classical part and a

probabilistic part. For detailed information about the classical part, including

domain description and results in each domain, see [2 2 , 40]. As shown in [40],

19 competitors participated in the classical part (21 if all system versions are

counted).

The organizers performed the ranking of systems by hand, since it is hard

to obtain a meaningful ranking using strict formal rules. A distinct ranking

was performed for each version (i.e., temporal, non-temporal, numeric, etc.)

of each domain. Moreover, optimal and satisficing (suboptimal) planners were

evaluated separately. In each domain version, the ranking was based on a

visual analysis of the data charts. Apparently, the CPU time m attered the

most. For each planner, a performance record (W , N2) was computed. l\Ti

counts how many times th a t planner took first place, and N 2 is the number of

second-place rankings.

65

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

M acro-FF entered the classical part and competed in the following seven

domains: Promela Dining Philosophers - ADL (containing a to tal of 48 prob

lems), Promela Optical Telegraph - ADL (48 problems), Satellite - STRIPS

(36 problems), PSR Middle Compiled - ADL (50 problems), Pipesworld No

tankage Nontemporal - STRIPS (50 problems), Pipesworld Tankage Nontem

poral - STRIPS (50 problems), and Airport - ADL (50 problems). See Ap

pendix B for details on these benchmarks. The performance record of Macro-

FF was (3,0). It took the first place in Promela Optical Telegraph, Satellite

(tied w ith YAHSP [8 8]), and PSR Middle Compiled.

4.4 C onclusions and Future W ork

This chapter presented SOL-EP, a technique th a t automatically learns a small

set of macro-operators from previous experience in a domain, and uses them

to speed up the search in future problems.

Exploring this m ethod more deeply and improving the performance in more

classes of problems are major directions for future work. Also, the learning

method could possibly be generalized from macro-operators to more complex

structures such as hierarchical task networks. Little research focusing on learn

ing such structures has been conducted, even though the problem is of great

importance.

Another interesting topic is to use macros in the graphplan algorithm,

rather than the current framework of planning as heuristic search. The mo

tivation is th a t a solution graph can be seen as a subset of the graphplan

associated to the initial state of a problem. Since SOL-EP learns common

patterns th a t occur in solution graphs, it seems natural to try to use these

patterns in a framework tha t is similar to solution graphs.

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5

Experiments in AI Planning

This chapter presents experiments tha t evaluate the CA-ED and SOL-EP ab

straction techniques. All experiments were run on a AMD Athlon 2 GHz

machine. The experiments were designed at the standards of the international

planning competition. As in IPC-4, the time and memory resources are limited

to 30 minutes and 1 GB of memory for each problem. All domains used as

testbeds were used in either IPC-3 or IPC-4 or both. For most domains, the

problem sets are the same as in the. competition. The exceptions are Satellite

and Rovers, where additional problems were generated on top of the com

petition problem sets. More details are provided for each experiment in its

corresponding section.

Section 5.1 analyzes and compares CA-ED and SOL-EP in a common ex

perimental framework. Section 5.1.1 provides an empirical evaluation of how

CA-ED macros can affect the heuristic evaluation of states and the depth of

goal states. Section 5.2 focuses on the performance of the competition system,

which implements the preliminary version of SOL-EP described in Section

4.3. Section 5.3 includes an analysis of the full-scale SOL-EP and a compar

ison between the preliminary and the full-scale versions of SOL-EP. Section

5.4 concludes Chapters 3, 4 and 5, dedicated to AI planning research.

5.1 Evaluating C A -E D vs. SOL-EP

This section compares classical planning, CA-ED, and SOL-EP. The analysis

is restricted to match CA-ED’s constraints: STRIPS domains with static facts

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

are used, and the size of macros is limited to only 2 actions. Therefore, this

section is not a detailed analysis of SOL-EP, which was included mainly for

comparison reasons.

Four program setups are compared in this experimental evaluation. Setup

1 is the planner FF with no macros. Setup 2 is FF + CA-ED, the method

described in Chapter 3. Setup 3 is FF + SOL-EP, the m ethod described in

C hapter 4. The preliminary version of SOL-EP is used in this experiment, so

th a t both CA-ED and SOL-EP limit the size of macros to 2 actions. Setup 4

is a combination of 2 and 3. Since both methods have benefits and limitations,

it is interesting to analyze how they perform when applied together. In setup

4, first CA-ED is applied, obtaining an enhanced domain. Next this is treated

as a regular domain, and SOL-EP is applied to generate a list of macros

w ith incomplete definitions. Finally, the enhanced planner uses as input the

enhanced domain, the list of macros, and regular problem instances.

Since CA-ED can be applied only to STRIPS domains w ith static facts in

their formulation, Rovers, Depots and Satellite, which satisfy these constraints,

were used as testbeds. All three domains were used in the th ird international

planning competition. Satellite was re-used in the fourth edition with a larger

problem set.

The set of 22 Depots problems used in the third competition contains both

easy and hard instances, so no problems were added for this experiment. The

Rovers and Satellite problem sets used in the third competition can easily be

solved by FF. Hence, for the experiments reported below, they were extended

from 20 to 40 problems each [13]. The additional instances were created with

the same problem generator as for the competition. The generator takes as

parameters the number of objects of each type, the number of goals, and the

value of the random seed. In addition, the fourth competition included 16

new Satellite problems. These were added, obtaining a final set of 56 Satellite

problems. Problems 1-36 are from the fourth competition, and problems 37-56

were additionally generated.

Figures 5.1-5.5 and Table 5.1 summarize the results. Each figure shows the

number of expanded nodes and the CPU time for one domain on a logarithmic

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Rovers - Nodes

10000

1000 r

(1) No Macros
(2) CA-ED

(3) SOL-EP
(4) 2 + 3

1 -a- <\

Problem

Rovers - CPU Time (seconds)

100

10

0.01

(1) No Macros
(2) CA-ED

(3) SOL-EP
(4) 2 + 3

Problem

Figure 5.1: Evaluating abstraction techniques in Rovers. Problems 1-20 are
shown.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Rovers - Nodes

10000

1000

(1) No Macros
(2) CA-ED

(3) SOL-EP
(4) 2 + 3

Prob em

Rovers - CPU Time (seconds)

100

(1) No Macros 1
(2) CA-ED E

(3) SOL-EP I
(4)2 + 3

Problem

Figure 5.2: Evaluating abstraction techniques in Rovers. Problems 21-40 are
shown.

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Depots - Nodes

le+08

le+07 r

le+06 -

le+05

le+04

le+03

le+02

le+01

le+00

(1) No macros
(2) CA-ED

(3) SOL-EP
(4) 1 + 2

Problem

le+04

le+03

le+02

le+01

le+00

le-01

le-02

Depots - CPU Time (seconds)

(1) No macros < i
(2) CA-ED

(3) SOL-EP
(4) 1 + 2

Problem

Figure 5.3: Evaluating abstraction techniques in Depots.

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Satellite - Nodes

le+06

100000

(1) No Macros
(2) CA-ED

(3) SOL-EP
(4) 2 + 3

10000

Problem

Satellite - CPU Time (seconds)

10000

1000 r

(1) No Macros C
(2) CA-ED S

(3) SOL-EP
(4) 2 + 3

0.01
20 25

Problem

Figure 5.4: Problems 11-33 are shown.

72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Satellite - Nodes

le+06

100000

10000

(1) No Macros
(2) CA-ED I

(3) SOL-
(4)2

Problem

1000

Satellite - CPU Time (seconds)

10000

1000

—i-------------------------r
(1) No Macros I I

(2) CA-ED I = 3

(4)2 + 3 H I M

Problem

Figure 5.5: Evaluating abstraction techniques in Satellite. Problems 34-56 are
shown.

73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

^

scale. The results show consistent performance improvement when macros

are used. Interestingly, combining CA-ED and SOL-EP often leads to better

performance than each abstraction method taken separately. In Rovers, all

three abstraction setups produce quite similar results, with a slight plus for

the combined setup. In Depots, CA-ED is more effective than SOL-EP in

terms of expanded nodes. The differences in CPU time become smaller, since

adding new operators to the original domain significantly increases the cost

per node in Depots (see the discussion below). Again, the overall winner in

this domain is the combined setup. In Satellite, adding macros to the domain

reduces the number of expanded nodes, but has significant impact on cost per

node (see Table 5.1) and memory requirements. Note tha t setups 2 and 4,

which add macros to the original domain, fail to solve three problems (32,

33, and 36) because of large memory requirements in the preprocessing phase.

The classical system fails on two problems (43 and 54), so SOL-EP is the only

system th a t solves all Satellite problems.

Domain CA-ED vs. No Macros SOL-EP vs. No Macros
Min Max Avg Min Max Avg

Depots 3.27 8.56 6.06 0.93 1.14 1.04
Rovers 0.70 0.90 0.83 0.85 1.14 1.00

Satellite 0.98 14.38 7.70 0.92 1.48 1.11

Table 5.1: Rate of cost per node.

The average cost per node in search for a problem p is defined as

«"<■' - S i r

where Nodes(p) is the number of expanded nodes, and T im e(p) is the search

time. C P N is mostly determined by the relaxed graphplan algorithm that

computes the heuristic value of states. Note th a t using a domain-independent

heuristic comes w ith a high price in terms of cost per node. In Figures 5.1-5.5,

a typical value for planning speed is in the range of 1,000 nodes per second.

In other AI applications, where much faster heuristics can be used, algorithms

such as A* could expand 1,000,000 nodes per second.

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The to tal cost of the relaxed graphplan algorithm for a state is a combina

tion of three main factors: (1) the cost to build one graphplan level, (2) the

number of levels, and (3) the cost to extract a relaxed plan after all levels have

been built. Factor 1 depends upon the number of actions tha t have been in

stantiated during preprocessing for a given problem, which in turn depends on

both the number of operators and the number of objects defined for a problem.

See Section 3.3.1 for details.

Table 5.1 evaluates how macros can affect the cost per node in search. A

value in the table is the cost per node in the corresponding setup (i.e., CA-ED

or SOL-EP) divided by the cost per node in the setup with no macros. For

each of the two methods the minimum, the maximum, and the average value

are shown.

The right part of the table shows relatively small values and variation for

the cost rate in SOL-EP. In contrast, the cost rate in CA-ED shows both

small and large values, varying both inside the same domain (e.g., Satellite)

and across domains (e.g., from Rovers to Satellite).

In CA-ED, using macros as new operators often reduces the number of

levels in the relaxed graphplan of a state s, but never increases it. Also,

relaxed plans with macros are usually shorter, so extracting a relaxed plan

after the relaxed graphplan has been built can be faster.

In contrast, building one graphplan level can be more expensive. Adding

new operators to a domain increases the number of preinstantiated actions.

Since macros tend to have more variables than a regular operator, the corre

sponding number of instantiations can be large. Let the action instantiation

rate be the number of actions instantiated for a problem when macros are

added to a domain (CA-ED) divided by the number of actions instantiated in

the original domain formulation. Experiments show th a t the average action

instantiation rate is 6.03 in Satellite, 3.20 in Depots, and 1.04 in Rovers.

The way these effects of macros combine determines how large the cost

rate is. In Satellite and Depots, it can reach relatively high values, showing

th a t the overhead of factor 1 (building one level) is higher than the savings of

factors 2 and 3. This is not surprising, given the relatively high instantiation

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

rates of these domains. On the other hand, the cost rate is less than 1 in

CA-ED Rovers, showing that, in this domain, factors 2 and 3 are dominant.

Figure 5.2 shows a big jum p in the CPU tim e starting with problem 31,

but a smaller increase in terms of expanded nodes. The explanation is th a t the

cost per node is significantly higher for the last 10 problems of this dataset, as

shown next. Since the last 10 problems were generated with a larger number

of objects than the previous ones, the number of instantiated actions is larger.

As explained before, building graphplan levels gets more expensive as more

actions are present, so the cost of processing a node is higher.

The experiments show no significant im pact of macro-operators on the

solution quality. W hen macros are used, the length of a plan slightly varies in

both directions, with an average close to the value of the classical system.

5.1 .1 E ffects o f C A -E D M acros on Search

As shown in Section 3.3.1, macros added to a domain as new operators affect

both the structure of the search space (the embedding effect) and the heuris

tic evaluation of states with relaxed graphplan (the evaluation effect). This

section presents an empirical analysis of these.

Figure 5.6 shows results for Depots, Rovers and Satellite. For each domain,

the chart on the left shows data for the original domain formulation, and the

chart on the right shows data for the macro-enhanced domain formulation.

For each domain formulation, the d a ta points are extracted from solution

plans as follows. Each state along a solution plan generates one data point.

The coordinates of the data point are the s ta te ’s heuristic evaluation on the

vertical axis, and the number of steps left until the goal state is reached on the

horizontal axis. Note th a t the number of steps to a goal state may be larger

than the distance (i.e., length of shortest path) to a goal state. The reason

why states along solution plans were used to generate data is th a t for such

states, both the heuristic evaluation, and the number of steps to a goal state

are available after solving a problem.

The first conclusion from Figure 5.6 is th a t macros added to a domain

improve the accuracy of heuristic state evaluation of relaxed graphplan. The

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

closer a data point is to the diagonal, the more accurate the heuristic evaluation

of the corresponding state. In each of the three domains, the da ta cloud on

the right, obtained with macro-operators, is clearly closer to the diagonal than

its correspondant on the left.

As a second conclusion, the projection of data clouds on the horizontal axis

is shorter in macro-enhanced domains. This is a direct result of the embedding

effect: since each macro counts as one step, the distance from a state to a goal

state becomes shorter. The largest reduction is in Satellite, where the length

of the projection (i.e., the number of steps in the longest solution) drops by a

factor of two. A similar situation is observed in Depots, where the projection

reduces by about 40%. For the da ta points (states) corresponding to the

Rovers domain, a typical reduction is within the range of 10-20%.

5.2 Evaluating th e C om petition System

This section evaluates the preliminary version of SOL-EP th a t was used in the

planning competition IPC-4. The seven domains th a t Macro-FF competed in

as part of IPC-4, shown in Section 4.3.2, are used as testbeds.

Planning with macros (Macro-FF) is compared against classical planning

(FF). Both planners contain the implementation enhancements reported in

Section 4.3.1 tha t deal with open queue management, state hashing, and pre

processing. The new 64-bit state hashing is especially effective in the PSR and

Promela Dining Philosophers domains. Figure 5.7 shows a speedup of up to a

factor of 2.5. As a result, 3 more problems were solved in PSR, contributing

to Macro-FF’s success in this domain.

In Figures 5.8-5.10, the number of expanded nodes and the to ta l CPU time

are shown for each of the seven domains on logarithmic scales. A CPU time

chart shows no distinction between a problem solved very quickly (within a

time close to 0) and a problem th a t could not be solved. To determine what

the case is, check the corresponding node chart, where the absence of a data

point always means no solution.

Figure 5.8 summarizes the results in Satellite, Promela Optical Telegraph,

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

O riginal D epots D epots + C A -E D M acros

o
2

73>u

<DX

3UE

120

100

0 20 40 60 80 100 120
N um ber o f steps to goal

O riginal Rovers

160

140

120

100

80

60

40

20

0
0 20 40 60 80 100 120 140 160

Num ber o f steps to goal

Original Satellite

350

300
ao 250Cj
_3a>

CL)O
200

150

100

0 50 100 150 200 250 300 350

30>
X

GO
cS
-H
"53><uo

3<D

Num ber o f steps to goal

Figure 5.6: Effects of CA-ED macros on
of goal states.

120

100

80

60

40

20

0
0 20 40 60 80 100 120

Num ber o f steps to goal

Rovers + C A -E D M acros

160

140

120

100

80

60

40

20

0
0 20 40 60 80 100 120 140 160

Num ber o f steps to goal

Satellite + C A -E D Macros

350

300
co 250ct

_3

>uo
200

150

100

0 50 100 150 200 250 300 350
Num ber o f steps to goal

heuristic state evaluation and depth

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

P S R -C P U T im e (seconds) Philosophers - C P U T im e (seconds)

le+ 0 4
FF hashing

New hashing
le+03

le+00

5 10 15 20 25 30 35 40 45

Problem

le+ 0 4
FF hashin

New hashing
le+03

le+02

le+01

le+00

Problem

Figure 5.7: Comparison of the two implementations of state hashing in
PSR (left) and Promela Dining Philosophers (right).

and Promela Dining Philosophers. In Satellite and Promela Optical Telegraph,

macros greatly improve performance over the whole problem set, allowing

Macro-FF to win these domain formulations in the competition. In Promela

Optical Telegraph macros led to solving 12 additional problems. The savings

in Promela Dining Philosophers are limited, resulting in one more problem

being solved.

In Satellite and Promela Optical Telegraph, the CPU time grows faster

than the number of expanded nodes as problem instances become larger, show

ing th a t state evaluation with relaxed graphplan is more expensive in large

problems. The explanation is the following: Larger problems typically are

characterized by more objects and /or longer solutions. As shown in Section

5.1, more objects result in more instantiated actions, which in turn increase

the cost to build one graphplan level. Long solutions suggest an increased

average number of steps from a state s in the search space to a goal state

s q . Unless the heuristic is of very poor quality, this often results in a longer

relaxed plan of s, which is more expensive to compute.

Figure 5.9 shows the results in the ADL version of Airport. The savings

in terms of expanded nodes are significant, but they have little effect on the

total running time. In this domain, the preprocessing costs dominate the to tal

running time. The preprocessing also limits the number of solved problems

to 21. The planner can solve more problems when the STRIPS version of

79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

01

S atellite - N odes S atellite - C P U T im e (seconds)

le + 0 8

le + 0 7

le + 0 6

le + 0 5

le + 0 4

le + 0 3

le+02

le+ 0 1

le+OO

le + 0 8

le + 0 7

le + 0 6

le + 0 5

le + 0 4

le + 0 3

le + 0 2

le+ 0 1

le + 0 0

FF enhanced
With macros

10 15 20 25

Problem

Optical - Nodes

FF enhanced
W ith macros

'HAil

10 15

Problem

Philosophers - Nodes

20 25

le + 0 8
FF enhanced
With macrosle + 0 7

le+ 0 6

le+ 0 5

le+04

le + 0 3

le + 0 2

le+OO
6 8 10

Problem

le+ 0 4
FF enhanced
With macros

le+03

le+02

le + 0 0

le-01
le-02

20 25 30 3510

le + 0 4

le + 0 3

le + 0 2

le+ 0 1

le+OO

le-0 1

le -0 2

Problem

Optical - CPU Time (seconds)

le+04
FF enhanced
With macros

le+ 0 3

le+ 0 2

le+ 0 1

le-0 1

le -0 2
2510 15 20

Problem

Philosophers - CPU Time (seconds)

FF enhanced i
With macros i

6 8 10
Problem

14

Figure 5.8: Comparison of FF with and without competition macros in Satel
lite, Promela Optical Telegraph and Promela Dining Philosophers.

80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

9

A irport - Nodes A irport - CPU T im e (seconds)

le+ 0 8
FF enhanced
With macrosle+07

le+06

le+05

le+04

le+03

le+02

le+01

le+00
Problem

le+ 0 4

le+03

le+02

le+01

le+OO

le-01

le-02

FF enhanced
With macros

i
10 15

Problem

Figure 5.9: Comparison of FF with and without competition macros in Air
port.

A irport is used, but no macros could be generated for this domain version.

STRIPS Airport uses separate domain definitions for each problem instance,

whereas the learning process requires several training problems for one domain

definition.

Figure 5.10 contains the results in Pipesworld Non-Temporal No-Tankage,

Pipesworld Non-Temporal Tankage, and PSR. In Pipesworld Non-Temporal

No-Tankage, macros often lead to significant speed-up. As a result, the system

solves four new problems. On the other hand, the system with macros fails in

three previously solved problems. The contribution of macros is less significant

in Pipesworld Non-Temporal Tankage. The system with macros solves two

new problems and fails in one previously solved instance. Out of all seven

benchmarks, PSR is the domain where macros have the smallest impact. Both

systems solve 29 problems using similar amounts of resources. In the official

run on the competition machine, M acro-FF solved 32 problems in this domain.

Table 5.2 shows the number of training problems and the training time

in each domain. The training phase used 10 problems for each of Airport,

Satellite, Pipesworld Non-Temporal No-Tankage, and PSR. The training sets

were reduced to 5 problems for Promela Optical Telegraph, 6 problems for

Promela Dining Philosophers, and 5 problems for Pipesworld Non-Temporal

Tankage. In Promela Optical Telegraph, the planner with no macros solves

13 problems, and using most of them for training would leave little room for

81

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

P ipesw orld N o-Tankage N on-T em poral - N odes P ipesw orld N o-T ankage N on -T em p o ra l - C P U T im e (seconds)

le+08
FF enhanced
With macrosle+07

le+06

le+05

le+04

le+03

le+ 0 2

le+ 01

le+ 0 0
30 40 5010 20

Problem

Pipesworld Tankage Non-Temporal - Nodes

le+ 0 8
FF enhanced
With macrosle+ 0 7

le + 0 6

le+ 0 5

le + 0 4

le + 0 3 V

le + 0 2 V

le+ 0 1 ;

10 15 20 25 30 35 405

Problem

PSR - Nodes

le+ 0 8

le+07

le+06

le+05

le+04

le+03

le+02

le+01

le+ 0 0

FF enhanced i
With macros i

5 10 15 20 25 30 35 40 45

Problem

FF enhanced
With macros

le+ 03

le+ 0 2

le+OO

le-01

le-0 2 2010 30 40 50

Problem

Pipesworld Tankage Non-Tem poral - CPU Time (seconds)

FF enhanced
With macros

le+ 0 3

le+ 0 2

le+ O l

le+ 0 0

le-01

le-0 2
5 1 0 15 20 25 30 35 40

Problem

PSR - CPU Time (seconds)

le+ 0 4

le+ 0 3

le+ 0 2

le+ O l

le+OO

le-01

le-0 2

FF enhanced
With macros

5 10 15 20 25 30 35 40 45

Problem

Figure 5.10: Comparison of FF with and without competition macros in
Pipesworld No-Tankage Non-Temporal, Pipesworld Tankage Non-Temporal
and PSR.

82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

75

Domain Number of
training problems

Training time
(seconds)

Airport 10 365
Promela Optical Telegraph 5 70

Promela Dining Philosophers 6 10
Satellite 10 8

Pipesworld
Non-Temporal No-Tankage

10 250

Pipesworld
Non-Temporal Tankage

5 4,206

PSR 10 1,592

Table 5.2: Summary of training in each domain.

evaluating the learned macros. The situation is similar in Promela Dining

Philosophers; the planner with no macros solves 12 problems. In Pipesworld

Non-Temporal Tankage, the smaller number of training problems is caused by

both the long training time and the structure of the competition problem set.

The first 10 problems use only a part of the domain operators, so these were

not included into the training set. Out of the remaining problems, the planner

with no macros solves 11 instances.

5.3 Evaluating SOL-EP

The main goal of this section is to evaluate the full-scale version of SOL-EP,

which extends the version used in the IPC-4 competition. Full-scale SOL-EP

is compared with the preliminary SOL-EP and with planning with no macros.

The same seven domains as in the previous section are used. Detailed per

formance analysis is shown for Promela Dining Philosophers, Promela Optical

Telegraph, Satellite, and PSR. Then brief comments are made on Pipesworld

Notankage, Pipesworld Tankage and Airport.

Figures 5.11-5.14 show three da ta curves each. The curves are not cumula

tive: each data point shows a value corresponding to one problem in the given

domain. The horizontal axis preserves the problem ordering as in the compe-

83

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Expanded Nodes

xn0->TJO
Z

CO

COo<u
D
S
H

le+08
PO Macros —

IPC-4 -
Classical —

le+07

le+06

100000

10000

1000

100

0 5 10 15 20 25 30 35 40 45 50

Problem

CPU Time

1000
PO Macros —

IPC-4
Classical -100

0.1

0.01
0 5 10 15 20 25 30 35 40 45 50

Problem

Figure 5.11: Experimental results in Promela Dining Philosophers.

84

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Expanded Nodes

l e + 0 6

100000

10000

1000

100 PO Macros —
IPC-4

Classical -
10

0 5 10 15 20 25 30 35 40 45 50

Problem

CPU Time

10000

1000

100

10

1

PO Macros —
IPC-4 -

Classical -

0.1

0.01
0 5 10 15 20 25 30 35 40 45 50

Problem

Figure 5.12: Experimental results in Promela Optical Telegraph.

85

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Expanded Nodes

00D
O
£

coo0)
<t>
a

• t H

H

10000
PO Macros -

IPC-4
Classical -

1000

100

10 15 20 25 30 35 4050
Problem

CPU Time

Problem

Figure 5.13: Experimental results in Satellite.

10000
PO Macros —

IPC-4 -
Classical1000

100

0.1

0.01
10 15 20 25 30 35 400 5

86

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

tition domains. The data labeled with “Classical” are obtained with FF plus

the implementation enhancements, but no macro-operators. “PO Macros”

(partial-order macros) corresponds to a planner th a t implements full-scale

SOL-EP on top of “Classical” . “IPC-4” shows results with the preliminary

SOL-EP.

Figures 5.11 and 5.12 show the results for Promela Dining Philosophers and

Optical Telegraph. The new extended model leads to a massive improvement.

In Dining Philosophers, each problem is solved in less than 1 second, while

expanding less than 200 nodes. In both domains, the new system outperforms

by far the top performers in the competition for the same domain versions. If

the new version of Macro-FF had been used in the competition, it would have

taken the first place in one more domain (Dining Philosophers). No difference

was observed in terms of average solution quality between “Classical” and “PO

Macros” .

Given a problem p, let C P N po(p) be the cost per node C P N (p) when

partial-order macros are used, and C PN ci(p) be C P N (p) in the classical set

ting, with no macros. See formula 5.1 for the definition of C PN (p). Let the

cost rate of problem p be

CR{V) = C P N ci(p) '

Statistics were collected about the cost rate from problems solved by both

planners. In Optical Telegraph, the cost ra te varies between 1.40 and 1.47,

with an average of 1.43. Since problems in Dining Philosophers are solved very

easily (e.g., 33 nodes in 0.01 seconds) in the “PO Macros” setup, it is hard to

obtain accurate statistics about the cost rate. The reason is th a t the reported

CPU time always has a small amount of noise partly caused by truncation to

two decimal places. When the to tal time is small too, the noise significantly

affects the s ta tistic ’s accuracy.

Figure 5.13 summarizes the experiments in Satellite. In the competition

results for this domain, Macro-FF and YAHSP tied for first place. The new

model further improves M acro-FF’s result, gaining up to about one order of

magnitude speedup compared to classical search. In Satellite, the heuristic

87

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

evaluation of a state becomes more expensive as problems grow in size, with

interesting effects for the system performance. The rate of the extra cost per

node th a t macros induce is greater for small problems, and gradually decreases

for larger problems since, in large problems, the cost of heuristic evaluation

dominates. The cost rate varies from 0.83 to 2.04 and averages 1.14. The

solution quality slightly varies in both directions, with no significant impact

for the system performance.

Figure 5.14 shows experiments in PSR Middle Compiled. Partial-order

macros solve 33 problems, as compared to 32 problems in “Classical” (i.e.,

planning with no macros). In Section 5.2, 29 problems were reported solved

by bo th the classical system and the competition system. The difference,

which comes from a small modification in the memory management module of

the planner, has little relevance for these experiments.

For th is problem set, partial-order macros often achieve significant savings,

but never result in more expanded nodes. This is mainly due to the goal

macro pruning rule, which turned out to be very selective in PSR. There are

problems where the number of expanded nodes is exactly the same in both

setups, suggesting th a t no macro was instantiated at run-time. The cost rate

averages 1.39, varying between 1.01 and 1.87.

Compared to the previous three testbeds, the performance improvement

in PSR is rather limited. A probable explanation is th a t the definition of

macro equivalence is too relaxed and misses useful structural information in

PSR. W hen checking if two action sequences are equivalent, the current algo

rithm considers the set of operators, their partial ordering, and the variable

binding. The algorithm ignores w hether conditional effects are activated cor

respondingly in the two compared sequence instantiations. However, in PSR,

conditional effects encode a significant part of the loqal structure of a solution.

There are operators with zero param eters but rich lists of conditional effects

(e.g., operator AXIOM). Further exploration of this insight is left as future

work.

In Pipesworld, the generated macros have a very small efficiency rate E R ,

and the dynamic filtering drops all of them, reducing the search to the classical

88

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Expanded Nodes

on<D"dO
£

T3Cood

§

100000

10000

1000

PO Macros
Classical

100
0 5 10 15 20 25 30 35 40 45 50

Problem

CPU Time (seconds)

10000

1000

100

10

1
PO Macros

Classical
0.1

0 5 10 15 20 25 30 35 40 45 50

Problem

Figure 5.14: Experimental results in PSR Middle Compiled.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

algorithm. No experiments were run in Airport. In the ADL version of this

domain, the classical algorithm quickly solves the first 20 problems, leaving

little room for further improvement. The preprocessing phase of the remaining

problems is so hard th a t only one more instance can be solved within 30

minutes.

An im portant problem is to evaluate in which domains SOL-EP works

well, and in which classes of problems this approach is less effective. Several

factors affect the m ethod’s performance. The first factor is the efficiency of the

macro pruning rules, which control the set of macro instantiations at run-time

and influence the planner performance. Efficient pruning keeps only a few

instantiations th a t are shortcuts to a goal state (one such instantiation in a

state will do). The performance drops when more instantiations are selected,

and many of them lead to subtrees tha t contain no goal states. The efficiency

of helpful macro pruning directly depends on the quality of both the relaxed

plan associated w ith a state, and the macro-schema th a t is being instantiated.

Since the relaxed plan is more informative in Promela and Satellite than in

PSR or Pipesworld, the performance of SOL-EP is significantly better in the

former applications.

As a second factor, experience suggests th a t SOL-EP performs better in

“structured” domains rather than in “flat” benchmarks. Intuitively, a domain

is more structured when more local details of the domain in the real world are

preserved in the PDDL formulation. In such domains, local move sequences

occur over and over again, and SOL-EP can catch these as potential macros.

In contrast, in a “flat” domain, such a local sequence is often replaced with

one single action by the designer of the PDDL formulation.

5.4 C onclusions

Chapters 3, 4 and 5 have presented contributions to domain-independent

planning. CA-ED and SOL-EP, two abstraction methods th a t learn macro

operators based on autom atic domain analysis, were described and evaluated

in detail.

90

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Future work ideas directly related to CA-ED and SOL-EP were previously

expressed. At a higher level, planning research should faster expand from the

narrow area of pure research towards solving more classes of real-life prob

lems. Planning has many applications, from an autom ated personal agenda

to complex industrial or research projects. Any problem th a t exhibits fre

quent multiple-choice decisions generates a search space and can potentially

be modeled with planning. Hence excellent opportunities for integrating plan

ning solutions into multi-disciplinary projects exist.

An example from commercial games illustrates this. The behavior of game

characters is often encoded with scripts, which are in fact rigid plans. The

rigidity means th a t in some circumstances a script might be used innapropri-

ately. As an example, consider a character th a t enters a tavern, steps to the

counter and says “One drink, please!” . This is totally unreasonable if nobody

is at the counter to answer the request. Scripts could be replaced by a plan

ning engine th a t dynamically generates plans according to the given context.

There is no need to spend useful resources to generate long and complicated

plans. Even quickly-found short plans th a t make sense to users would make a

big difference in the quality of a game.

91

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6

Hierarchical Path-Finding with
Topological Abstraction

The problem of path-finding in commercial computer games has to be solved

in real time, often under constraints of limited memory and CPU resources.

The industry standard is to use A* [83] or iterative-deepening A*, IDA* [56].

A* is generally faster, but IDA* uses less memory. There are numerous en

hancements to these algorithms to make them run faster or explore a smaller

search tree. For many applications, especially those w ith multiple moving units

(such as in real-time strategy games), these time and /o r space requirements

are limiting factors.

Hierarchical search is acknowledged as an effective approach to reduce the

computational effort needed to find path-finding solutions. Recently, varia

tions of hierarchical search appear to be in use in several games. However,

no detailed study of hierarchical path-finding in commercial games had been

published before [12]. P art of the explanation is tha t game companies usually

do not make their ideas and source code available.

This chapter describes Hierarchical Path-Finding A* (HPA*), a new method

for hierarchical search on grid-based maps. HPA* decomposes a map into a

collection of local clusters. Each cluster has a small set of entrances. W ithin

each cluster, distances between all pairs of entrances are precomputed and

cached. Search is done at an abstract level, where a cluster can be crossed

in one single step. Several such abstractions can hierarchically be applied,

making this approach scalable for large problem spaces. A cluster at a new

92

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

abstraction level groups several adjacent clusters at the previous level, so that

a higher level abstracts the map into fewer clusters of larger size.

After clustering, path planning starts with an abstract search at the highest

level. An abstract path can gradually be refined until a complete low-level path

is obtained.

Compared to low-level A*, problem decomposition has two main benefits.

Finding a solution a t a high level of abstraction is usually solved much faster

than the original problem while producing only slightly sub-optimal results.

Second, increased execution flexibility is possible, allowing for parts of a prob

lem to be solved only if and when it is necessary. This is useful in several cir

cumstances. First, when memory is available, results of popular local searches

can be cached for future reuse. This can be the case when many searches have

the same origin and/or destination, or more generally when many paths share

a common portion such as a bridge. Second, for many real-time path-finding

applications, the complete path between two points is not needed beforehand.

Quickly obtaining the first few steps of a valid path often suffices, allowing a

mobile unit to start moving in the right direction. Subsequent path refinement

can be solved as needed, providing additional moves. If a unit has to change

its plan, for example because of collisions with other mobile units, then no

effort has been wasted on computing a detailed path to a goal node th a t was

never used.

In contrast, A* must complete its search and generate the entire path from

start to destination before it can determine the first steps of a correct path.

Using a partial solution th a t A* can provide in a limited amount of time is not

guaranteed to work. Since partial solutions do not reach the target location,

the direction of a partial solution may be wrong.

The hierarchical framework is suitable for both static and dynamically

changing environments. In the la tter case, assume th a t local topology changes

can occur (e.g., a bomb destroys a bridge). HPA* will recompute the infor

mation extracted from the modified cluster locally and keep the rest of the

framework unchanged.

HPA* is simple, easy to implement, and independent of the map properties.

93

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

No implementation changes are required to handle variable cost terrains and

various topology types such as forests, open areas with obstacles of any shape,

or building interiors.

Section 6.1 presents this new approach to hierarchical A*. Performance

tests are presented in Section 6.2, showing up to 10 times speed-up and 1%

solution degradation as compared to A*. Section 6.3 presents conclusions and

topics for further research. Appendix C provides algorithmic details of HPA*,

including pseudo-code.

6.1 H ierarchical P ath-F inding A*

HPA* starts with a preprocessing phase, which uses map abstraction to build

a hierarchical search space called an abstract graph. Then a path can be

computed with the so-called on-line search phase. An abstract graph can

be re-used for many online searches, amortizing its com putational cost. This

section discusses in more detail how the framework for hierarchical search is

built (preprocessing) and how it is used for path finding (on-line search). The

initial focus is on building a two-level hierarchy. Adding more hierarchical

levels is discussed at the end of this section. The 40 x 40 map shown in Figure

6.1 (a) serves as an illustrative example.

A few assumptions are made with respect to the grids and the search algo

rithms used by HPA*, as shown below. HPA* is by no means limited to these

settings, they are used only for a simpler and more clear presentation. A grid

uses octiles, which are tiles th a t define the adjacency relationship in 4 straight

and 4 diagonal directions. The cost of vertical and horizontal transitions is 1.

Diagonal transitions have the cost set to 1.42.1 Diagonal moves between two

blocked tiles are not allowed.

All searches th a t HPA* performs (e.g., during preprocessing, abstract search,

refinement, etc.) are assumed to use A* with the following heuristic. Given

two grid locations h (x i ,y i) and ^ (£ 2 , 2/2), consider M = m ax (|x i—x%\, \yi— 2/2 1)

xThe path-finding library used to implement HPA* utilizes this value for approximating
y / 2 . A slightly more appropriate approximation would probably be 1.41.

94

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 1 1 1

___ 1
::::: «

"" 1
1

11 r l.

------- — - -

-

..__
T

—
r! 1

(a) (b)

Figure 6.1: (a) The 40 x 40 grid g used as an example. The obstacles obs(g)
are painted in black. S and G are the start and the goal nodes, (b) The bold
lines show the boundaries between 10 x 10 clusters.

and m = m in(|xi — x2|, \y\ — 2/2 1) - The heuristic distance between l\ and I2 is

d(h, h) = 1-42 x m + (M — m).

This is in fact the length of a shortest path between li and I2 on an octile grid

with no obstacles.

6.1.1 P rep rocessin g a G rid

Preprocessing is performed in two steps: (1) apply topological abstraction to

the map and (2) build the abstract graph. Topological abstraction partitions

the space into a set of disjunct rectangular areas called clusters. In this exam

ple, the 40 x 40 grid is partitioned into 16 clusters of size 10 x 10, as shown

in Figure 6.1 (b). No domain knowledge is used to do this abstraction, other

than the presence of a map and, perhaps, tuning the size of the clusters.

For each border line between two adjacent clusters, a (possibly empty) set

of entrances connecting the clusters is identified. An entrance is a maximal

obstacle-free segment along the common border of two adjacent clusters C\

and C2 , formally defined below. Consider the two adjacent rows (or columns)

of tiles l\ and I2 , one in each cluster, tha t are separated by the border edge

95

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

b between c\ and c^. For a tile t G l\ U let sym(t) be the symmetrical tile

of t w ith respect to b. Tiles t and sym (t) are adjacent and never belong to

the same cluster. An entrance e is a set of tiles tha t respects the following

conditions:

1. e is connected.

2. The border limitation condition: e C l\ U I2 . This condition states that

an entrance is defined along and cannot exceed the border between two

adjacent clusters.

3. The symmetry condition: Vi G l\ U I2 ■ t G e <=> sym (t) G e.

4. An entrance contains no obstacle tiles: e PI obs(g) = 0.

5. Maximality: no superset of e satisfies conditions 1 - 4 .

Figure 6.2 shows a zoomed-in picture of the upper-left quarter of the sam

ple map. The picture shows details on how entrances are identified and used to

build the abstract problem graph. In this example, the two clusters on the left

side are connected by two entrances of width 3 and of w idth 6 respectively. For

each entrance e, one or two transitions are defined, depending on the entrance

width. A transition is a pair of symmetrical tiles (f, sym (t)) G e x e th a t allows

communication between clusters. Let Te be the set of all tiles th a t belong to

transitions of e. Only tiles t G Te are used for communication between clusters.

If the width of the entrance is less than a predefined constant (6 in the exam

ple), then one transition is defined at the middle of the entrance. Otherwise,

two transitions are created, one on each end of the entrance. Defining such a

small number of transitions preserves the completeness and the correctness of

the algorithm. However, solutions can be suboptimal, since there can be an

entrance e and a node pair (S , G) such th a t all optimal paths between S and

G must intersect e \ T e.

Transitions are used to build the abstract problem graph. Each transition

generates two nodes in the abstract graph, and an edge th a t links them. Since

96

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 6.2: Abstracting the top-left corner of g. All abstract nodes and inter
edges are shown in light grey. For simplicity, intra-edges are shown only for
the top-right cluster.

such an edge represents a transition between two clusters, it is called an inter

edge. Inter-edges always have length 1. For each pair of nodes inside a cluster,

an edge linking them, called an intra-edge, is defined. The length of an intra

edge is obtained by searching for an optimal path inside the cluster area. In

this work, optimality is defined with respect to path length. The length of

a path is the sum of the weights of its steps (edges). In particular, when all

edges on a path have weight 1, its length is the number of steps.

Figure 6.2 shows all nodes (light grey squares), all inter-edges (light grey

lines), and part of the intra-edges (for the top-right cluster). Figure 6.3 shows

the details of the abstracted internal topology of the cluster in the top-right

corner of Figure 6.2. The data structure contains a set of nodes as well as

distances between them. For example, going from B to D has a minimal cost

of 10.94, the result of 7 diagonal moves and one move to the right. This m ethod

currently caches distances between nodes and discards the actual optimal paths

corresponding to these distances. If desired, the paths can also be stored, for

the price of more memory usage.

Figure 6.4 (a) shows the abstract graph for the running example. The

picture includes the result of inserting the start and goal nodes S and G into

the graph (the dotted lines), which is described in the next subsection. The

graph has 68 nodes, including S and G, which can change for each search. At

this level of abstraction, there are 16 clusters with 43 interconnections and 88

97

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 6.3: Cluster-internal path information.

(a)

Figure 6.4: (a) The abstract problem graph in a hierarchy with one low level
and one abstract level, (b) Level 2 of the abstract graph in the 3-Level hier
archy.

intraconnections. There are 2 additional edges tha t link S and G to the rest

of the graph. For comparison, the low-level (non-abstracted) graph contains

1,463 nodes, one for each unblocked tile, and 2, 714 edges.

Once the abstract graph has been constructed and the intra-edge distances

computed, the grid is ready to use in a hierarchical search. This information

can be precomputed (before a game ships), stored on disk, and loaded into

memory at run-time. This is sufficient for static (non-changing) grids. For

dynamically changing grids, the precomputed da ta has to be modified a t run

time. When the grid topology changes (e.g., a bridge blows up), only the intra-

and inter-edges of the affected local clusters need to be re-computed.

98

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6.1 .2 O n-line Search

HPA* first searches for a path in the abstract graph. The abstract path can

subsequently be refined, as well as improved in quality (e.g., aesthetics and

length) as needed.

Searching for an A b stract P ath

Searching for an abstract solution in the hierarchical framework is a three-step

process based on the following strategy: First, discover how to travel from the

start to each node on the border of its neighborhood. Second, discover how

to travel from each node on the border of the goal neighborhood to the goal

position. Third, search for a path from the border of the start neighborhood

to the border of the goal neighborhood. This is done at an abstract level,

where search is simpler and faster. A single action traverses a relatively large

area.

At step 1, S' is temporarily inserted into the abstract graph by adding

edges to all reachable nodes on the border of the cluster containing S. Local

searches are run for each pair (S, n), where n is a graph node on the border

of S ’s cluster. Such a local search is restricted to the area of the cluster. An

intra-edge between S and n is added if a local path exists between them. Each

edge is weighted by the length of an optimal path between the two nodes. In

Figure 6.4 these edges are represented with dotted lines. The paths can also

be cached and reused in the refinement phase, allowing a mobile unit to start

moving as soon as the on-line search finishes. Step 2, which connects G to its

cluster border, is similar to step 1.

In experiments, S and G are assumed to change for each new search. There

fore, the cost of inserting S and G is added to the to ta l cost of finding a solu

tion. After a path is found, S and G are removed from the graph. However,

in practice this com putation can be done more efficiently. Consider a game

where many units have to find a path to the same goal. In this case, G can be

inserted once and reused in several searches, amortizing the insertion cost. In

general, a cache can be used to store connection information for popular start

99

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

and goal nodes.

At step 3, a search in the abstract graph computes a path between S and

G. The last two steps of the on-line search are optional:

• Path-refinement can be used to convert an abstract path into a sequence

of moves on the original grid. Each abstract edge is mapped to a shortest

low-level path between its two end nodes. Note th a t global optimality

is not ensured, because of the small number of nodes defined for each

entrance.

• Path-sm oothing can be used to improve the quality of the path-refinement

solution.

P ath R efinem ent

Path refinement translates an abstract path back into a low-level path. Each

intra-edge in the abstract path is replaced by an equivalent sequence of low-

level moves. If the move sequence attached to an abstract step has been

cached, then its refinement is simply a table look-up. Otherwise, a small

search is performed inside the corresponding cluster to rediscover the low-level

move sequence.

There are two factors th a t keep the refinement search simple. First, ab

stract solutions are guaranteed to be correct, provided th a t the environment

does not change after finding an abstract path. This means th a t neither back

track nor re-planning for correcting an abstract solution are necessary. Second,

path-refinement is a sum of small searches, one for each intra-edge on an ab

stract path. The to tal effort to solve all subproblems is often smaller than the

effort to solve the original problem.

P ath S m ooth in g

Topological abstraction defines only one or two transition points per entrance.

While efficient, this gives up the optim ality of the com puted solutions. So

lutions are optimal in the abstract graph but not necessarily in the initial

problem graph. Path smoothing improves the solution quality (i.e., cost and

100

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Search
Technique SG Main

T o ta l
A b s tra c t

Refinement
(optional)

L-0 0 1,462 1,462 0
L-l 17 67 84 145 .
L-2 44 7 51 161

Table 6.1: Number of expanded nodes in the running example.

aesthetics). The technique for path smoothing is simple, but produces good

results. Assume n 1n 2...n; are the nodes of a path. Path-smoothing detects

pairs (n i , r i j) , i < j such th a t ra* and rij can be connected by a straight line,

and niTii+i...nj is sub-optimal. Then riini+i...n j is replaced by a straight line.

When all pairs (n i .n f i f i < j are considered, an upper bound on the com

plexity of path-smoothing is 0 (l2), where I is the number of low-level path

nodes. In practice, better performance is achieved based on a few simple

ideas. First, no check is necessary between two nodes inside the same cluster,

since all interior local paths are optimal. Second, an effective heuristic is that,

after a local sequence has been corrected, the process continues from rij

rather than n i+1. Third, if a path is optimal beforehand, or becomes optimal

after one or several smoothing steps, no further smoothing is necessary. How

ever, a challenge is how to quickly determine whether a given path is optimal.

A simple but partial solution is to check whether the cost of a path is the

same as the heuristic distance between S and G. If so, the path is proven to

be optimal, as the heuristic is admissible. Otherwise, no conclusion can be

drawn on this m atter.

6 .1 .3 E xp erim en ta l R esu lts for th e R un n ing E xam ple

The experimental results for the running example are summarized in the first

two rows of Table 6.1. SG is the effort for inserting S and G into the graph.

Main represents searching for an abstract path. Total Abstract is the sum

of the previous two columns. This measures the effort for finding an abstract

solution. Refinement shows the effort for complete path-refinement. L-0 repre

sents running A* on the low-level graph (called level 0). L-l uses two hierarchy

101

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

levels (level 0 and level 1), and L-2 uses three hierarchy levels. For now the

focus is only on L-0 and L-l. L-2 will be described in Section 6.1.5.

Low-level (original grid) search using A* has poor performance. The ex

ample has been chosen to show a worst-case scenario. W ithout abstraction,

A* will visit all the unblocked positions in the map. The search expands 1, 462

nodes. The only factor tha t limits the search is the map size. A larger map

with a similar topology represents a hard problem for A*.

The performance is greatly improved by using hierarchical search. When

inserting S into the abstract graph, it can be linked to only one node on the

border of the starting cluster. Therefore one node (corresponding to S) and

one edge tha t links S to the only accessible node in the cluster are added.

Finding the edge cost uses a search th a t expands 8 nodes. Inserting G into

the graph is almost identical (9 nodes expanded).

A* is used on the abstract graph to search for a path between S and

G. Searching a t level 1 expands all the nodes of the abstract graph. The

problem is also a worst-case scenario for searching at level 1. However, the

search effort is much smaller: The main search expands 67 nodes. Inserting

S and G expands 17 nodes. In total, finding an abstract path requires 84

node expansions. If desired, this abstract path can be refined, partially or

completely, for additional cost. The cost is higher when the pa th has to be

refined completely and no actual paths for intra-edges were cached. For each

intra-edge in the path, a search computes a corresponding low-level action

sequence. In the example, there are 12 such small searches, which expand a

total of 145 nodes.

6.1 .4 A dd in g L evels o f H ierarchy

The hierarchy can be extended to several levels, transforming the abstract

graph into a multi-level graph. In a multi-level graph, nodes and edges have

labels showing their level in the abstraction hierarchy. HPA* performs path-

finding as a combination of small searches in the graph at various abstraction

levels. Additional levels in the hierarchy can reduce the search effort, especially

for large maps. See Appendix C.2.2 for details on efficient searching in a

102

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

multi-level graph. To build a multi-level graph, map abstraction is structured

on several levels. The higher the level, the larger the clusters in the map

decomposition. Clusters a t level / are called /-clusters. Each new level is built

on top of the existing structure. Building the 1-clusters has been presented in

Section 6.1.1. For / > 2, an /-cluster is obtained by grouping together n x n

adjacent (/ — l)-clusters, where n is a parameter.

If two nodes and an inter-edge at level / — 1 make a transition between two

newly created /-clusters, all three elements update their level to /. (Nodes at

level / are called /-nodes, and edges at level / are called /-edges.) Note that

/-nodes and /-inter-edges, / > 2, are inherited from the previous level. Not

introducing new nodes with a new graph level is beneficial for both building

new intra-edges at level /, and refining an abstract solution, as detailed below.

Intra-edges with level / (i.e., /-intra-edges) are added for pairs of commu

nicating /-nodes placed on the border of the same /-cluster. Since both ends

of a new intra-edge were present at level / — 1 too, such an edge is quickly

computed with a search at level / — 1 inside the current /-cluster. More details

are provided in Appendix C.2.2.

Inserting S into the graph iteratively connects S to the nodes on the bor

der of the /-cluster th a t contains it, w ith / increasing from 1 to the maximal

abstraction level. Searching for a path between S and a /-node is restricted to

level / — 1 and to the area of the current /-cluster th a t contains S. An identical

processing is performed for G too.

The number of abstract levels can affect the computation speed, bu t not

the solution itself. In particular, adding a new level / > 2 to the graph does

not diminish the solution quality. The intuition behind this is the following:

All nodes and inter-edges at level / are obtained from nodes at level / — 1. A

new intra-edge added at level / corresponds to an existing shortest path at

level / — 1. The weight of the new edge is set to the cost of the corresponding

path. Searching at level / finds faster the same solution as searching a t level

/ — 1 (only more abstracted), since the added edges do not change shortest

distances.

In the example, adding an extra level with n = 2 creates 4 large clusters,

103

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

one for each quarter of the map. Figure 6.2 is an example of a single 2-

cluster. This cluster contains 2 x 2 1-clusters of size 10 x 10. Besides 5, the

only other level-2 node of this cluster is the one in the bottom-left corner.

Compared to level 1, the total number of nodes at the second abstraction level

is reduced even more. Level 2, where the main search is performed, has 14

nodes (including S and G). Figure 6.4 (b) shows level 2 of the abstract graph.

The edges pictured as dotted lines connect S and G to the graph at level 2.

Abstraction level 2 is a good illustration of how the preprocessing solves

local constraints and reduces the search complexity in the abstract graph. The

2-cluster shown in Figure 6.2 is large enough to contain the large dead end

“room” th a t exists in the local topology. At level 2, the algorithm avoids any

useless search in this “room” and goes directly from S to the cluster exit in

the bottom-left corner.

After inserting S and G, the graph can be searched for a path between these

two nodes. Search is performed at the highest abstraction level. If desired,

the abstract path can repeatedly be refined to the previous level until the low-

level solution is obtained. A solution refined from level I to level k, 1 < k < I

is identical to the solution computed in a hierarchy with only k levels. As

shown before, refinement from level 1 to the original grid is not guaranteed to

produce an optimal solution.

6.1 .5 E xp erim en ta l R esu lts for E xam p le w ith 3-Level
H ierarchy

The third row of Table 6.1 shows numerical d a ta for the running example with

a 3-Level hierarchy. As shown in Section 6.1.3, connecting S and G to the

border of their 1-clusters expands 17 nodes in total. Similarly, S and G are

connected to the border of their 2-clusters. These searches a t level 1 expand

5 nodes for S and 22 nodes for G.

The main search at level 2 expands only 7 nodes. No nodes other than the

ones in the abstract path are expanded. This is an im portant improvement,

considering th a t search in the level 1 graph expanded all nodes in the graph.

In total, finding an abstract solution in the extended hierarchy requires 51

104

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

nodes.

After adding a new abstraction level, the cost for inserting S and G dom

inates the main search cost. This illustrates the general characteristic of the

m ethod tha t the cost for inserting S and G increases with the number of levels,

whereas the main search becomes simpler. Finding a good trade-off between

these searches is im portant for optimizing performance.

Table 6.1 also shows the costs for a complete solution refinement. Refining

the solution from level 2 to level 1 expands 16 nodes and refining from level 1

to level 0 expands 145 nodes, for a to ta l of 161 nodes.

6.1 .6 S torage A nalysis

Besides the computational speed, the amount of storage is another important

performance indicator for path-finding. This section analyzes the size of the

problem graph and the size of the open list used by A*.

G raph Storage R equirem ents

Table 6.2 shows the average size of a problem graph for a set of maps extracted

from the B a l d u r ’s G a t e game. See Section 6.2.1 for details on this dataset.

The original low-level graph is compared to the abstract graphs in hierarchies

with one, two, and three abstract levels (not counting level 0). The table

shows the number of nodes N , the number of inter-edges E i, and the number

of intra-edges E 2- For the multi-level graphs, both the to tal numbers and the

numbers for each level L i , i £ {1, 2, 3} are presented.

The data shows th a t the abstract graph is small compared to the size of

the original problem graph. Adding a new graph level does not create new

nodes and inter-edges. The only overhead consists of the new intra-edges.

In the data set, at most 1,846 intra-edges (when three abstract levels are

defined) are added to an initial graph having 4,469 nodes and 16, 420 edges.

Assuming tha t a node and an edge occupy about the same am ount of memory,

the overhead is less than 10%.

The way that the abstract graph translates into bytes is highly dependant

on factors such as implementation, compiler optimizations, or size of the prob-

105

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Graph 0 Graph 1 Graph 2 Graph 3
u Total u U Total Li l 2 L 3 Total

N 4,469 367 367 186 181 367 186 92 89 367
E l 16,420 198 198 100 98 198 100 50 48 198
e 2 0 722 722 722 662 1,384 722 622 462 1,846

Table 6.2: The average size of the problem graph in the B a l d u r ’s G a t e
test set. N is the number of nodes, E\ is the number of inter-edges, and E 2

is the number of intra-edges. Graph 0 is the initial low-level graph. Graph
1 represents a graph w ith one abstract level (Li), Graph 2 has two abstract
levels (Li, L 2) , and Graph 3 has three abstract levels (Li, L 2j L 3).

lem map. For instance, if the map size is at most 256 x 256, then storing the

coordinates of a node takes two bytes. More memory is necessary for larger

maps.

Since abstract nodes and edges are labeled by their level, the memory

necessary to store an element might be larger in the abstract graph than in

the initial graph. This additional requirement can be as little as 2 bits per

element, corresponding to a largest possible number of levels of 4. Since most

compilers round up the bit-size of objects to a multiple of 8, this overhead

might not exist in practice.

The storage utilization can be optimized by keeping in memory (e.g., the

cache) only those parts of the graph th a t are necessary for the current search.

In the hierarchical framework, only the sub-graph corresponding to the level

and the area of the current search is required. For example, when the main

abstract search is performed, the low-level problem graph can be dropped,

greatly reducing the memory requirements for this search.

The worst case scenario for a cluster is when blocked tiles and free tiles

alternate on the border, and any two border nodes can be connected to each

other. Assume the size of the problem map is m x m, the map is decomposed

into c x c clusters, and the size of a cluster is n x n. In the worst case, a number

of 4n/2 = 2n nodes per cluster is obtained. Since each pair of nodes defines an

intra-edge, the number of intra-edges for a cluster is 2 n (2 n — l) /2 = n(2n — 1).

This analysis holds for clusters in the middle of the map. No abstract nodes

106

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Low level Abstract
Main Refinement

Open list size 51.24 17.23 4.50 5.48

Table 6.3: Average size of the open list in A*. For hierarchical search, the
average size for the main search, the SG search (i.e., search for inserting S
and G into the abstract graph), and the refinement search are shown.

are defined on the map edges, so marginal clusters have a smaller number of

abstract nodes. For the cluster in a map corner, the number of nodes is n and

the number of intra-edges is n(n — l)/2 . For a cluster on a map edge, the

number of nodes is 1.5n and the number of intra-edges is 1.5n(1.5n — l)/2 .

There are 4 corner clusters, 4c — 8 edge clusters, and (c — 2)2 middle clusters.

Therefore, the to tal number of abstract nodes is 2m (c — 1). The to tal number

of intra-edges is n(c—2)2(2n—l)+ 2 n (n —l)+ 3 n (c —2)(1.5n—1) ~ 2n 2c2 = 2m2,

having the same order as the number of original nodes and edges. The number

of inter-edges is m (c — 1).

Storage for th e A * O pen List

Since hierarchical path-finding decomposes a problem into a sum of small

searches, the open list in A* usually is smaller in hierarchical search than in

low-level search. Table 6.3 illustrates this for searches run on the B a l d u r ’s

G a t e testset described in Section 6.2.1. The data shows a three-fold reduc

tion of the list size between the low-level search and the main search in the

abstracted framework.

6.2 E xperim ental R esults

6.2 .1 E xp erim en ta l Setup

Experiments were performed on a set of 120 maps extracted from Bio W are’s

game B a l d u r ’s G a t e , varying in size from 50 x 50 to 320 x 320. For each

map, 100 searches were run using randomly generated S and G pairs for which

a valid path between the two locations existed. The atomic map decomposition

107

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

uses octiles. Entrances with width less than 6 have one transition. For larger

entrances two transitions are generated.

The code was implemented using the University of Alberta Path-finding

Code Library available at [25]. This library is used as a research tool for quickly

implementing different search algorithms using different grid representations.

Because of its generic nature, there is some overhead associated with using the

library. All times reported in this section should be viewed as generous upper

bounds on a custom implementation.

6 .2 .2 A nalysis

Figure 6.5 compares low-level A* to abstract search on hierarchies with the

maximal level set to 1, 2, and 3. The top graph shows the number of expanded

nodes and the bottom graph shows the time. For hierarchical search, the

figures display the total effort, which includes inserting S and G into the graph

(the SG effort), searching at the highest level (the main effort), and refining

the path (the refinement effort). The real effort can be smaller since the SG

effort can be amortized for many searches, and path refinement is not always

necessary. The graphs show that, when complete processing is performed, the

first abstraction level is good enough for the m ap sizes used in this experiment.

For larger maps, the benefits of more levels could be more significant.

Even though the reported times are for a generic implementation, it is im

portant to note tha t for any solution length the appropriate level of abstraction

was able to provide answers in less than 10 milliseconds on average. Through

length 400, the average time per search was less than 5 milliseconds on a 800

MHz machine.

A* is slightly better than HPA* for easy search problems, when the solution

length is very small. The overhead of HPA* (e.g., the SG cost) in such cases

is larger than the potential savings th a t the algorithm could achieve. A* is

also better when S and G can be connected through a “straight” line on the

grid. In this case, the heuristic provides perfect information, and A* expands

no nodes other than those tha t belong to the solution.

The CPU times reported for A* are under 0.1 seconds, and hence one could

108

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Total expanded nodes

<DT3OCM-ho
<3
'a

o<Dco
<D
a

• i-H

H

E
U

o
H

12000

10000 low -level
1-level abstract
2-level abstract
3-level abstract

8000

6000

4000

2000
- X — -X

100 200 300 400

Solution Length

CPU Time

low -level
1-level abstract
2-level abstract
3-level abstract

100 200 300

Solution Length

400

Figure 6.5: Low-level A* vs. hierarchical path-finding.

109

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

wonder why bother to improve a result tha t already looks good. There are

several reasons tha t motivate this. First off, the performance of A* is expected

to decrease as the size of a problem map increases. Second, in a game with

mobile units, many path-finding problems (say, one for each unit) have to be

solved on a map within a limited time interval. The difference in performance

between A* and HPA* multiplies with the number of problems being solved.

Third, in a game, many CPU cycles are taken by other game modules (e.g., the

graphics engine), and waiting until the AI module gets a share of 0.1 seconds

of CPU for each mobile unit could be impractical.

Figure 6.6 shows how the to tal effort for hierarchical search is composed

of the main effort, the S G effort, and the refinement effort. The charts show

th a t more levels are useful when path refinement is not necessary and S or G

can be used for several searches.

Figure 6.7 shows the solution quality. Solutions obtained with hierarchical

path-finding are compared to optimal solutions computed by low-level A*.

The difference from the minimal cost solution before and after path-smoothing

is plotted. The difference is independent of the number of hierarchical levels.

The only factor th a t generates sub-optimality is not considering all the possible

transitions for an entrance.

The cluster size is a param eter th a t can be tuned. The experiments were

run using 1-clusters w ith size 10 x 10. This choice is supported by the data

presented in Figure 6.8. This graph shows how the average number of ex

panded nodes for an abstract search changes with varying cluster size. While

the main search reduces w ith increasing cluster size, the cost for inserting S

and G increases faster. The expanded node count reaches a minimum around

cluster size 10.

For higher levels, an /-cluster contains 2 x 2 (I — l)-clusters. When larger

values are used, the cost for inserting S and G increases faster than the reduc

tion of the main search. This tendency is especially true on relatively small

maps, where smaller clusters achieve good performance and the increased costs

for using larger clusters might not be justified. The overhead of inserting S

and G results from having to connect S and G to many nodes placed on the

110

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 -Level Abstract
1500 : - ------ --- ---------------------

T J 1 0 0 0 - Oz

Solution L eng th

2-Level Abstract
1500

1000

t3

500

100 200 300 400

Sdiicn Length

3-Level Abstract

200 300

S olution Length

Figure 6.6: The effort for hierarchical search in hierarchies with one, two, and
three abstract levels. The to ta l effort is split into the main effort (gray), the
SG effort (black), and the refinement effort (w hite)..

I l l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Solution Quality

10

9
before smoothing

after smoothing
8
7

6
5
4

3

2
1
0

100 200 300 400

Solution Length

Figure 6.7: Solution quality.

border of a large cluster. The longer the cluster border, the more nodes to

connect to.

6.3 C onclusions and Future W ork

This chapter presented a hierarchical technique for efficient near-optimal path-

finding. This approach is easy to apply and works well for different kinds of

map topologies. The method adapts to dynamically changing environments.

The hierarchy can be extended to several abstraction levels, making it scalable

for large problem spaces. As seen in planning, adding some simple abstraction

allows for significant performance improvement. On maps extracted from a

real game, HPA* produces near-optimal solutions much faster than low-level

A*.

This work can be extended in several directions. Inserting S and G into

the abstract graph can be optimized. As Figure 6.6 shows, these costs increase

significantly with adding a new abstraction layer. One strategy for improving

the performance is to connect S only to a sparse subset of the nodes on the

border, maintaining the completeness of the abstract graph. For instance, if

each “unconnected” node (i.e., a node on the border to which no connection

from S is attem pted) is reachable in the abstract graph from a “connected”

node (i.e., a node on the border already connected to S), then completeness is

112

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 6.8: The search effort for finding an abstract solution.

preserved. Another idea is to consider for connection only border nodes that

are in the direction of G. However, this does not guarantee completeness. If

the search fails because of incompleteness, it should be restarted with a larger

subset of border nodes.

The currently-used clustering m ethod is simple and produces good results.

However, more sophisticated strategies can be explored. For example, au

tomatically minimize measures such as number of abstract clusters, cluster

interactions, and cluster complexity (e.g., the percentage of internal obsta

cles).

An interesting topic is to extend HPA* to non-grid maps. Finally, ex

periments can be run on classes of problems characterized by either multiple

agents, apriori unknown domains, or mobile targets. All these require re

planning, and the ability of HPA* to save resources by postponing unneeded

refinements could be very beneficial.

113

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 7

U sing Abstraction for Planning
in Sokoban

Heuristic search has led to impressive performance in games such as Chess

and Checkers. However, for some two-player games like Go, or puzzles like

Sokoban, approaches based on low-level heuristic search are limited. Alter

native approaches are needed to deal with such hard domains, where humans

still perform much better than the best existing programs.

The Sokoban domain was described in Section 2.3. The problem is diffi

cult for several reasons including deadlocks (positions from which no goal state

can be reached), the large branching factor (can be over 100), long optimal

solutions (can be over 600 moves), and an expensive lower-bound heuristic esti

m ator which limits search speed. Sokoban problems are especially challenging

since the domain is PSPACE-complete. Many problems are combinations of

wonderful and subtle ideas, and finding their solution may require substantial

resources - for humans and especially for computers.

Sokoban is so hard for computers th a t a standard algorithm such as A*

would fail even on problems th a t humans can easily solve. Humans plan their

moves at a high strategic level, rather than performing exhaustive search at

the level of atomic actions. Based on this example, abstraction might be

the answer to improve an autom ated solver. This chapter introduces abstract

Sokoban, an approach th a t combines planning and abstraction. Ideas such

as topological abstraction, hierarchical problem decomposition, and macro

moves, which are part of the overall theme of this thesis, are explored in an

114

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

application-specific context.

Similarly to map decomposition in HPA*, a Sokoban maze is decomposed

into rooms connected by tunnels, resulting in a two-level hierarchical repre

sentation of the problem. At the higher level of the hierarchy, a maze is seen

as a small graph where nodes are rooms and edges are tunnels. The solving

strategy is planned at this level, using abstract actions such as transferring a

stone between two connected rooms, and rearranging the stones inside a room

so tha t the man can cross it. Planning the solving strategy, also called the

global problem, uses TLPlan [2], a standard planner. Details of abstract ac

tions are solved at the low level of the hierarchy. Each room is assigned a local

problem th a t deals with issues such as the stone configuration of tha t room,

moves inside the room, and local deadlocks. Sokoban-specific functionality is

implemented on top of Rolling Stone [49].

In Sokoban, the solution length can be defined in two ways: either man

movements or stone pushes can be counted. Solutions in abstract Sokoban are

not guaranteed to be optimal by either criterion. Giving up optimality allows

for the definition of equivalence relationships between configurations of a given

room or tunnel. Elements of an equivalence class are merged into one abstract

local state, reducing the search space. If desired, non-optimal solutions can be

improved in a post-processing phase.

The rest of this chapter is structured as follows: Section 7.1 contains a

discussion of planning in Sokoban. Section 7.2 provides details about hier

archical problem abstraction in Sokoban. Section 7.3 presents experimental

results, and Section 7.4 contains conclusions and ideas for further work.

7.1 P lanning in Sokoban

The first part of this section focuses on how to formulate Sokoban as a stan

dard planning problem. The impact of using domain-specific knowledge and

abstraction is discussed. Three domain representations, each at a different

level of abstraction, are considered. The conclusion of this analysis is th a t

planning in Sokoban greatly improves as application-specific information and

115

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

abstraction are used.

The second part explains why a planner such as TLPlan was chosen to

address the global problem in abstract Sokoban.

7.1.1 R ep resen tin g Sokoban as a P lan n in g P rob lem

Several formulations of Sokoban as a planning domain are possible, depending

upon factors such as the abstraction level and the application-specific infor

m ation used. A first, naive approach is to use neither abstraction nor domain-

specific knowledge. All properties of the domain are translated into a standard

planning language such as STRIPS. For instance, a regular low-level move in

Sokoban becomes an action in the planning domain. Previous planning experi

ments based on such a naive Sokoban representation showed poor performance

even for very small problems [51, 66].

Planning in Sokoban significantly improves when domain-specific knowl

edge and an abstracted problem formulation are employed. The main Sokoban-

specific functions implemented in this work deal with:

• Deadlock: Since deadlocks affect the search efficiency, a quick test to

detect local deadlock patterns is used. Deadlocks are detected using

Rolling Stone’s database, which contains all local deadlock patterns that

can occur in a 5x4 area [49]. Although this enhancement is an important

gain, the problem of deadlocks is far from being solved.

• Heuristic evaluation function: Since the heuristic function has a big im

pact on the quality of a search algorithm, a custom heuristic, called

Minmatching, was used. This is also reused from Rolling Stone [49].

• State equivalence with respect to the m an’s position: Suppose that two

states have identical stone configurations but different man positions,

and th a t the man can walk from one position to the other. The two states

are equivalent, unless optimal solutions th a t minimize man movements

are sought.

116

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To illustrate how performance improves as more abstraction is used, two

domain formulations, each with a different level of abstraction, are introduced

in addition to naive Sokoban. Tunnel Sokoban is a partially abstracted repre

sentation, where all tunnels present in a maze are treated as atomic entities.

All possible configurations of a tunnel are reduced to a few abstract states and

planning actions such as parking a stone inside a tunnel or pushing a stone

across a tunnel are defined as atomic actions. See Section 7.2.1 for details.

Tunnel Sokoban with the domain-specific functionality presented above is

difficult for the planner. The system could not solve even moderately complex

puzzles. Only one from the standard test suite of 90 problems [48] can be

solved by this approach. Tunnel abstraction reduces the search space, but

the reduction is not big enough to achieve reasonable performance. Moreover,

although small deadlocks are detected, there are many larger deadlock patterns

th a t still have to be dealt with. Hence further reducing the search space and

dealing with deadlocks more efficiently are desired. For this reason, abstract

Sokoban, which abstracts not only tunnels but also the rest of a maze, is

introduced. Abstract Sokoban is described in detail in Section 7.2.

7.1 .2 U sin g a Standard P lan ner in Sokoban

To solve the global problem in the two-level hierarchy of abstract Sokoban,

the TLPlan [2] planner was chosen, primarily since it allows users to plug-in

libraries tha t contain custom functions tailored for the application at hand. In

addition, TLPlan supports utilizing domain-specific knowledge encoded with

tem poral logic formulas, as mentioned in Section 2.1.3. However, the ability

of TLPlan to reason with tem poral logic was not exploited in this Sokoban

project. TLPlan is a forward chaining planner and implements several search

strategies such as best-first search, depth-first search, and breadth-first search,

in experiments, a best-first search algorithm with nodes ordered according to

their heuristic (pure heuristic search) was used. The heuristic is Minmatching.

Custom code is necessary in two im portant parts of the planning model

described in this chapter. First, domain-specific knowledge such as deadlock

detection, heuristic state evaluation and state equivalence can efficiently be

117

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 7.1: Toy Sokoban problem used as an example.

implemented. Second, custom functions can be used to model a hierarchical

planning framework. In principle, hierarchical planning can be modeled in

STRIPS, but this would result in a tremendous performance decay. When

an abstract action such as transferring a stone from one room to another is

applied, a Sokoban-specific function is called th a t verifies tha t the action is

possible given the current state (i.e., check the action preconditions), maps

the action to a sequence of low-level moves, and computes the changes on the

maze (i.e., the action effects). This mechanism simulates hierarchical planning.

Following standard terminology of hierarchical task networks [32], an abstract

action is similar to a nonprimitive task and the associated custom function

implements a method tha t tells how the task can be decomposed into a finer

granularity level.

7.2 A bstraction in Sokoban

This section focuses on abstract Sokoban. Section 7.2.1 provides details on

puzzle decomposition and abstract states of tunnels. Two-level hierarchical

problem representation is discussed in Section 7.2.2. The following sections

focus on one hierarchical level each: Section 7.2.3 describes room processing

performed at the local level. Finally, Section 7.2.4 presents the global plan

ning architecture. The toy problem shown in Figure 7.1 is used as a running

example.

118

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A B

C D

Figure 7.2: Various types of tunnels.

7.2.1 P u zz le D eco m p o sitio n

Before decomposition, a simple preprocessing detects two types of “dead”

squares. This is also performed in Rolling Stone. First, useless parts of a

maze such as tunnels with one end closed are safely removed from the prob

lem. Second, stone-dead squares, where the man can go but stones cannot be

pushed because of deadlock, are marked.

A puzzle is decomposed in two steps. The first step is to identify its tunnels.

Any contiguous sequence of interior (i.e., unblocked) tiles such th a t each tile

has exactly two interior neighbours is a tunnel. Patterns A and B in Figure

7.2 are examples of such tunnels. The white lines th a t separate an end of a

tunnel from the rest of the maze are called separation lines. In addition to the

previous tunnel definition, the patterns C and D are considered tunnels too.

Tunnel C contains one tile and four separation lines. It is the central tile of a

3 x 3 area where only two opposite corners are blocked. Tunnel D contains no

tiles - only one separation line. It is created by a 3 x 2 area where only two

opposite corners are blocked. These two patterns are useful when rooms are

identified, since they act as room separators (see details below).

As a second step of puzzle decomposition, rooms are detected as areas

separated by tunnels. All separation lines and interior tiles th a t already belong

119

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 7.3: Abstract states of a tunnel.

to tunnels are considered walls. Rooms are maximal contiguous collections of

interior tiles. The maze in Figure 7.1 decomposes into two rooms linked by a

tunnel.

Tunnels are simple objects whose properties can be obtained with little

computational effort. All stone configurations of a tunnel can be mapped to

a few abstract states while preserving completeness. As an example, consider

the top-left tunnel configuration in Figure 7.3. The left stone can be on any

of the three squares at the left of the man, w ithout changing abstract state of

the tunnel.

Figure 7.3 shows the graph of abstract states and transitions for a tunnel.

Each transition has preconditions that may depend on the rest of the maze. For

instance, pushing a stone out of the tunnel is possible only if the configuration

of the destination room allows it. The two states a t the top can exist only

in the initial state of a problem. The two states at the bottom are deadlock

configurations (assume the man is outside the tunnel). The three states in the

middle ignore the man position. Correctness is preserved by considering the

man position in the preconditions of the transitions th a t initiate from these

states.

120

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TO T2R2RO R3

GLOBAL PROBLEM

LOCAL PROBLEMS

Figure 7.4: Hierarchical representation of a problem as a global component
and a local component.

7.2 .2 H ierarchical P rob lem R ep resen ta tion

Once the maze is split into rooms and tunnels, the initial problem can be

decomposed into several smaller ones, as shown in Figure 7.4. At the global

level, a maze is mapped into a graph () , where the nodes Ri represent

rooms and the edges Tj represent tunnels. A global planning problem focuses

on how to transfer all stones to goal rooms through the graph. In addition,

several local search problems, one for each room, are defined. The complexity

of a local problem depends on both the size and the shape of a room. The

local problem attached to the one-square room R2 is much simpler than the

one attached to the largest room R3. While the complexity of the initial

problem increases exponentially with the size of the maze, the complexity of

the local problems increases exponentially with the size of the rooms only.

Moreover, the results of local computation can be reused many times during

the global-level search.

7.2 .3 L ocal P rob lem s

Local problems provide information about the preconditions, effects, and low-

level refinements of global planning actions. In addition, they detect local

deadlocks th a t can occur inside a room. The following paragraphs provide

121

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1. Build local move graph;
2. Mark deadlock configurations with retrograde analysis;
3. Find strongly connected components;
4. Compute properties of each strongly connected component.

Figure 7.5: Local processing of a small room.

Figure 7.6: A few equivalent configurations of a room.

more details on local processing. Small rooms with no goal squares, large

rooms with no goal squares, and goal rooms are separately discussed.

Sm all R oom s

For small rooms, with up to 15 non-dead squares, complete preprocessing is

possible. Figure 7.5 summarizes the steps of preprocessing At step 1, the local

move graph is computed. This includes all configurations, regardless of the

number of stones, th a t can be reached from the initial configuration of the

room.

In this work, a room configuration is called deadlocked if no path exists

to the goal state in the local move graph. In general, a goal state of a room

has one stone on each goal square and no stones on other squares. For rooms

with no goal squares, a configuration is deadlocked if the room cannot be

cleared of stones from th a t configuration. Otherwise, the configuration is legal.

According to this definition, a legal room configuration does not exclude the

existence of a larger-scale deadlock, involving a larger maze area.

At step 2, local deadlock configurations are detected in the local move

graph. Positions are labeled as legal or deadlocked using retrograde analysis,

starting from the empty position, which is marked as legal.

At step 3, a graph of abstract states and transitions is computed for each

122

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

room, as in the case of tunnels. An abstract state of a room represents a

collection of equivalent configurations. Two or more configurations are equiv

alent if they can be obtained from one another in such a way th a t neither the

man nor any stone leaves the room. Merging several equivalent configurations

into one abstract state greatly reduces the state space of a local problem. The

abstract states of a room are computed as strongly connected components of

the local move graph. In this computation, graph edges th a t involve interac

tions with the rest of the maze (i.e., the man or a stone leaving the room) are

ignored. Figure 7.6 illustrates how one abstract state of the left room in the

toy problem represents several equivalent configurations. This abstract state

contains 45 equivalent configurations, but only three are shown in the picture.

At step 4, for each abstract state, predicates used to check action precon

ditions are also computed (e.g., “can push one more stone inside the room

through entrance X”). When the value of such a predicate is true, several

ways to accomplish the corresponding action can exist, each with a different

resulting abstract state. However, in the prototype implementation used in

experiments, only one such state is stored and used to update the problem

state after performing an action. This speeds up search for the price of los

ing completeness. How to best balance this trade-off is an im portant open

problem, whose more thorough study is left as future work.

Large R oom s

Local computation for large rooms is performed dynamically, as the planner

requests new information, and consists of two main types of searches. Action

search computes the preconditions, effects, and refinements of planning actions

tha t involve a large room (e.g., transfer a stone from a large room to a tunnel).

Deadlock search detects deadlocks th a t can occur in a room.

Action search implements a breadth-first strategy and includes the follow

ing enhancements. W hen the goal is to take out a stone, pull macros, which

eliminate a stone without touching any other stone, are added as regular moves.

A local transposition table, which is re-initialized for each local search, tells

whether a given state has already been visited. During an action search, no

123

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

stones leave or enter the room, except perhaps for a goal state of tha t search.

Hence, only configurations with the same number of stones as the initial state

have to be hashed. W hen the number of such configurations allows, a perfect

hashing uniquely maps each configuration to one bit in the table. Otherwise,

a classical hash table is used. At the global level, transposition tables store

the results of precondition searches, so th a t they can be reused by the planner

during the global search.

A deadlock search tries to take out all stones of a room configuration. As

in action search, a local transposition table and pull macros are used as en

hancements. W hen a pull macro can be applied, all the other moves generated

from that position are safely ignored.

Two tables, L w ith legal configurations and D with minimal deadlock

patterns, are used for prunning. A deadlock pattern d is minimal if

Vs -< d : s is legal.

Relation ci -< c2 exists between two room configurations cx and C2 if the

first can be obtained from the latter by ignoring one or more stones. At the

beginning, D is empty and L contains the configuration of the room in the

initial problem state.

Assume a room configuration c is encountered in a deadlock search. If

3d G D : d -< c,

then c is deadlocked and no further expansion of this state is necessary. If

desired, minimal deadlock patterns d -< c are detected and added to D. If

31 G L : c -< /,

then c is legal and hence the root state is legal. Legal configurations c so tha t

(V/ G L) : —>(c -< I) are added to L.

Goal R oom s

For a goal room with only one stone-traversable entrance (i.e., an entrance

through which a stone can be pushed in and out), a reduced set of macro

actions that fill the goal squares is precomputed. Each time a new stone is

124

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

pushed into the room, it is automatically placed on its designated position.

A similar approach is implemented in Rolling Stone too. For a small goal

room with multiple stone-traversable entrances, a complete preprocessing is

performed, as in the case of small regular rooms. Many puzzles in the stan

dard testset [48] have more general goal rooms than the ones described above.

Coping with more types of goal rooms would be a major step in the effort of

scaling the application to more complex puzzles.

7 .2 .4 G lobal P roblem

The global problem is formulated as a planning problem. In the example in

Figure 7.1, the objects are declared as follows:

(room 1000)

(room 1001)

(l in e a r_ tu n n e l 0).

Room 1000 is the leftmost one, and room 1001 is the goal room in the right.

The global state space S is a cross-product of the local state spaces of all

rooms and tunnels:

S = Si x S2 x ... x S k.

As this equation suggests, the local space reduction achieved with abstract

states for tunnels and small rooms results in a global space simplification. In

the example, global states are triples th a t describe the local states of the two

rooms and the tunnel. The initial state is

(= (s t a t e 1000) 27)

(= (s t a t e 1001) 33)

(em pty_tunnel 0).

The number th a t describes the state of a room (i.e., 27 and 33 in the example)

is an index into an array of abstract states. At th a t index, a complete descrip

tion of the state can be found, including the resulting abstract state of the

room after an action has been applied. The linear tunnel in this problem can

have only two legal abstract states: it either is empty or has a stone parked

inside.

125

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To express the goal state, one condition, which states the final state of the

goal room, is enough: since all stones have to be on goal squares, it is obvious

th a t th e left room and the tunnel should be empty after the puzzle has been

solved. The goal state is

(= (state 1001) 37).
Four types of actions are defined in this model:

• Man-walk takes as arguments one room and two entrances. This action

is only considered when the m an can reach the first entrance but cannot

reach the other one. The result is to re-arrange the stones so th a t the

m an can cross the room from one entrance to another. This action is also

defined for the case when the man is already inside a room and needs to

leave via a particular entrance.

• Room-to-room transfers a stone from one room to another via a specified

tunnel th a t links the two rooms.

• Room-to-tunnel takes a stone from a room and parks it in an adjacent

tunnel.

• Tunnel-to-room takes a stone from a tunnel and pushes it to an adjacent

room.

Rooms and tunnels involved in a stone movement change their abstract states

after the corresponding action is completed. To be able to move one stone

from one room to another, stones in both rooms may have to be re-arranged.

The exact way to do this is computed at the local level.

In the example, the abstract solution is a sequence of 4 macro operators.

In this case, each macro transfers one stone from room 1000 onto a free goal

square in the goal room 1001, via the linear tunnel 0:

room-to-room 1000 0 1001
room-to-room 1000 0 1001
room-to-room 1000 0 1001

126

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

room-to-room 1000 0 1001.
Each abstract action has a corresponding sequence of atomic moves. For in

stance, the first abstract move consists of 12 stone pushes.

Compared to plain and tunnel Sokoban, the abstract representation shows

greater promise for addressing the game as a planning problem. As will be

shown in Section 7.3, some problems th a t cannot be solved by the first two

approaches are easily handled in the abstract one. The improvement is ex

plained by the hierarchical formulation, search space reduction, and deadlock

detection.

A well-known property of hierarchical task networks [72] is tha t higher

abstraction levels guide the planning at lower levels. A similar effect is present

in abstract Sokoban: low-level searches have precise goals such as moving a

stone from a room to another, or changing the local configuration so th a t the

man can cross the room.

In abstract Sokoban the global search space is much smaller than in plain

and tunnel Sokoban. Both branching factor and distance to a goal state are

greatly reduced as a result of abstraction. Planning in abstract Sokoban is

also simpler because there are fewer deadlocks to deal with. Deadlocks inside

a room are detected by the local analysis. Still, large deadlocks th a t involve

interactions between several rooms and tunnels remain undetected.

7.3 E xperim ental R esu lts

This section describes experiments designed to empirically evaluate planning

and abstraction in Sokoban. First, abstract Sokoban is compared to the state-

of-the-art application-specific solver Rolling Stone. Second, to evaluate how

planning in Sokoban improves as more abstraction is used, abstract Sokoban

is compared against tunnel Sokoban. Experiments were run on 10 problems

from the standard test suite [48]. These problems, shown in Appendix D,

are the ones th a t can be solved by the abstract Sokoban system used in the

experiments.

As in the case of abstract Sokoban, Rolling Stone also uses two types of

127

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

search and, to perform a measurement, a one-to-one correspondence is con

sidered between the search spaces in the two approaches. At the global level,

Rolling Stone performs the so-called top-level search, whose purpose is to find

a goal state. This is compared with the global planning in abstract Sokoban.

There is also the pattern search in Rolling Stone, whose main goal is to de

termine deadlock patterns and find better bounds for the heuristic function

[50]. Pattern search in Rolling Stone is compared with local preprocessing in

abstract Sokoban, as they both are means to simplify the main search.

Figure 7.7 illustrates how abstraction reduces the depth of the global search

in both abstract Sokoban and Rolling Stone. S P represents the number of

stone pushes in the solutions found by Rolling Stone. In this experiment,

S P estimates the depth of a search tree when no abstraction is used. R S is

the length of the solutions found by Rolling Stone when tunnel macros and

goal macros count as one step each. A S is the number of planning actions

in solutions found in abstract Sokoban. A S is much smaller than SP , as one

planning action in abstract Sokoban corresponds to several regular moves. The

graph suggests th a t the global search space in abstract Sokoban is smaller than

the main search space used in Rolling Stone. This is an im portant result, as

it promises an exponential reduction in the search space.

W hen using tunnel Sokoban, TLPlan can seldom solve a problem entirely.

In the 10-problem subset, only the simplest problem, which has 6 stones, can

be solved. For this reason, comparison against tunnel Sokoban is made on

subproblems of Sokoban puzzles. A subproblem is obtained by removing from

the initial configuration some stones as well as an equal number of goal squares.

Figure 7.8 shows results for solving subproblems of Problem # 6 . The number

of expanded nodes in the main search is plotted on a logarithmic scale. Tunnel

Sokoban is only able to solve subproblems with 7 or less stones. Compared to

Rolling Stone, abstract Sokoban achieves a reduction th a t remains stable over

the whole set of subproblems of Problem # 6 .

Table 7.1 presents a more detailed comparison between abstract Sokoban

and tunnel Sokoban. Subproblem x(y) is obtained from problem x by keeping y

stones in the maze. The subproblems listed are the largest th a t tunnel Sokoban

128

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

■ C

cL

o1-
cdu

00

SP
RS
AS300

200

100

0
7 1 6 2 5 17 80 2 43

Problem Number

Figure 7.7: Depth of the main search in abstract Sokoban (AS) and Rolling
Stone (RS). SP is the number of stone pushes.

100000
TS

| 10000
oC
<D

c
cx
X <D

<4-1o »- 0)
-D
6 3
£

1000

100

2 3 4 51 6 8 9 107

Number of stones

Figure 7.8: Nodes expanded in the main search for abstract Sokoban (AS),
tunnel Sokoban (T S), and Rolling Stone (R S) for subproblems of Problem
#6.

129

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Subproblem
A bstract Sokoban Tunnel Sokoban

PIN PPN Time PIN Time
1 (6) 71 1,044 1.57 10,589 126.24
2 (6) 24 61,113 0.93 80,740 9,490.21
3(7) 8 482 0 .1 2 77,919 12,248.66
4(6) 9 41,065 0.80 27,514 3,061.94
5(6) 7 404 0 .2 0 53,141 11,733.83
6(7) 19 54,317 1.06 71,579 8,189.77
7(8) 13 26,011 0.75 132 0 .8 8

9(6) 13 245 0.25 35,799 4,883.55
17(5) 1,047 306,224 29.63 14,189 391.42
80(6) 1 0 395,583 3.02 14,266 949.98

Table 7.1: Abstract Sokoban vs. tunnel Sokoban.

Problem
Abstract Sokoban Rolling Stone

PIN PPN Time TLN PSN Time
1 71 1,044 1.57 50 1,042 0.14
2 635 62,037 16.10 80 7,530 0.63
3 12 19,948 2.04 87 12,902 0.23
4 128 69,511 3.20 187 50,369 3.27
5 36 297,334 23.14 2 0 2 43,294 1.72
6 36 54,414 1.37 84 5,118 0.31
7 54 35,813 1.57 1,392 28,460 1.37
9 35 7,607 1.01 1,884 436,801 22.17
17 8,091 444,073 166.98 2,038 29,116 2.23
80 47 877,914 4.56 165 26,943 2.25

Table 7.2: Abstract Sokoban vs. Rolling Stone.

can solve. P IN is the number of nodes expanded in the global search, and

P P N are nodes in local room preprocessing. No local processing is performed

in tunnel Sokoban. The time is measured in seconds. The data demonstrates

a huge difference in terms of efficiency between the two approaches. Even if

the values of P P N seem to be relatively large, preprocessing is fast, since no

heuristic function has to be computed in a local search.

Table 7.2 shows a comparison between abstract Sokoban and Rolling Stone.

For Rolling Stone, T L N is the number of nodes expanded in the top-level

search and P S N is the number of expanded nodes in the pattern search. For

130

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

many problems, the number of planning nodes P IN is smaller than T L N ,

which supports the claim that the global search space in abstract Sokoban is

smaller than the one considered by Rolling Stone. In contrast, when compar

ing P S N and P P N , abstract Sokoban shows larger local searches, with the

notable exception of problem # 9 . This is an effect of complete preprocessing

of small rooms, even though only a small part of it will be required at the

global planning level. Problem # 9 shows th a t on-demand local computation

can be very fast. This suggests th a t a better approach could be to compute

local information on demand, as needed by the planner, for all (i.e., both small

and large) rooms with no goal squares.

Rolling Stone is faster, with the exceptions of problems # 4 and #9 . Note

th a t abstract Sokoban solves problem # 9 20 times faster than Rolling Stone,

for the reasons explained in the previous paragraph. The overhead of abstract

Sokoban is determined by the local processing as well as the utilization of a

general purpose planner. TLPlan uses a generic propositional representation

of states, while the Sokoban-specific library represents states in a way tha t

encodes knowledge about the domain. At each node in the main search, a

conversion is made between the two representations, increasing the processing

time per node. This is an inherent cost th a t has to be paid for using a generic

planning engine. On the other hand, abstract Sokoban has the advantage tha t

other planners tha t accept customized code can be used to solve the global

planning problem, whereas Rolling Stone is a special-purpose system.

Abstract Sokoban can solve 10 problems from the standard set, while

Rolling Stone solves 57. The difference is explained by the research and de

velopment effort invested in each system. Rolling Stone is a finely tuned ap

plication, developed in about two and a half years. A bstract Sokoban solved

10 problems after a development of about 6 months. In his thesis, Junghanns

shows how the number of problems solved by Rolling Stone evolved as more

effort was spent on research and development [49]. The da ta indicates that, af

ter one year of effort, 12 problems were solved, with a jum p from one problem

to 12 problems within a two-month period at the half of the one-year interval.

When Rolling Stone is restricted to a version based on a similar amount of

131

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

effort as for abstract Sokoban, the two systems show similar performance in

term s of number of problems solved.

To summarize the experiments, the results clearly show th a t abstract Sokoban

is much more efficient than other planning representations of the game. No

previous known planning attem pts in Sokoban led to solving problems within

the complexity range of the standard test suite [48]. In addition, abstract

Sokoban is competitive with Rolling Stone on the 10-problem subset. How

ever, parts of the abstracted architecture need improvement to scale up its

performance. A few ideas are discussed in the next section.

7.4 C onclusions and Future W ork

This chapter presented an approach th a t applies planning and abstraction to

Sokoban. Abstract Sokoban is introduced as a hierarchical formulation of the

domain obtained by decomposing a maze into rooms and tunnels. A global

problem, solved with a standard planner such as TLPlan, provides a high-level

solving strategy where stones are transferred between rooms and tunnels. Each

room constitutes a local problem th a t solves the local constraints of abstract

planning actions.

Many directions can be explored for future work. Many problems in the

standard testset were not attem pted because their goal rooms could not be

processed with the current system. Better decomposition of a maze into rooms

and tunnels is a challenging task th a t is expected to have great impact on

the overall system performance. Treating several inter-connected rooms and

tunnels as a single room can be beneficial, since all their interactions are

removed from the global level. While the current decomposition process is

quite rigid, it can be enhanced with a strategy aiming to optimize parameters

such as the number of rooms and tunnels, and the interactions between rooms

and tunnels. As pointed out previously, better study of the completeness

is desirable. Finally, the global space can be further simplified by detecting

deadlocks across several rooms and tunnels.

132

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 8

Conclusions

Planning and heuristic search are fundamental areas of artificial intelligence

reasearch, with a great number of potential real-life applications. Despite re

cent progress in these research areas, many problems of general interest remain

too computationally challenging for the capabilities of current technology.

The topic of this thesis has been improving planning and search with auto

matic abstraction. Three frameworks, each with a different level of application-

specific knowledge, served as testbeds for this research.

The first framework, domain-independent AI planning, is the topic of

Chapters 3-5. A planner takes as input a domain and a problem expressed

in a standard input language. Since one planner addresses many domains,

including previously unseen ones, no additional application-specific knowledge

can be provided by hand. This thesis introduced techniques th a t autom at

ically learn new information about a domain and use it for faster planning

in future problems. Empirical evaluation shows an improvement of orders

of magnitude, as compared the state-of-the-art planner FF [42], in domains

where specific knowledge can automatically be inferred. Participation in the

international planning competition IPC-4 resulted in taking first place in 3 out

of 7 attem pted domains.

The second framework, path-finding on grid maps, is the topic of Chapter

6 . Partial application-specific knowledge is assumed, since application do

mains in this class contain a topological structure tha t can be exploited by a

solver. In principle, one program can tackle multiple applications with topo-

133

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

logical structure. Hierarchical Path-Finding A*, the main contribution to this

domain, is shown to be up to 1 0 times faster in exchange for a 1 % degradation

in path quality, as compared to A*.

Chapter 7 has introduced an approach th a t applies planning and abstrac

tion to Sokoban. No limitation is imposed on the amount of domanin-specific

knowledge th a t can be used. A topological abstraction strategy decomposes

a map into rooms connected by tunnels. This allows for the decomposition

of a hard initial problem into several simpler sub-problems. A prototype im

plementation of abstract Sokoban is shown to be competitive with the state-

of-the-art specialized solver Rolling Stone, on problems th a t the abstracted

planning system can tackle.

Future work ideas were presented in previous chapters. In AI planning,

ideas for new theoretical contributions are contained in Sections 3.4 and 4.4.

A claim is made in Section 5.4 th a t planning research should faster expand

from the narrow area of pure research towards solving more classes of real-life

problems. Section 6.3 suggests ideas for improving the performance of HPA*.

Similar ideas can be applied to related applications such as robot navigation,

transportation, etc. Finally, Section 7.4 points out directions for future work

in abstract Sokoban.

134

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bibliography

[1] F. Bacchus. AIPS’OO Planning Competition. A I Magazine, 22(3):47-56,
2001 .

[2] F. Bacchus and F. Kabanza. Using Temporal Logics to Express Search
Control Knowledge for Planning. Artificial Intelligence, 16:123-191, 2000.

[3] F. Bacchus and Q. Yang. Downward Refinement and the Efficiency of Hi
erarchical Problem Solving. Artificial Intelligence, 71(1):43-100, Novem
ber 1994.

[4] A. Blum and M. Furst. Fast Planning Through Planning Graph Analysis.
Artificial Intelligence, (90):281-300, 1997.

[5] B. Bonet and H. Geffner. Planning as Heuristic Search. Artificial Intelli
gence, 129(1—2):5—33, 2001.

[6] A. Botea. Macro-FF Website, http://www.cs.ualberta.ca/~adib/
macroff/.

[7] A. Botea. Using Abstraction for Heuristic Search and Planning. In
S. Koenig and R. Holte, editors, 5th International Symposium on Abstrac
tion, Reformulation, and Approximation, volume 2371 of Lecture Notes
in Artificial Intelligence, pages 326-327. Springer, August 2002.

[8] A. Botea. Reducing Planning Complexity with Topological Abstraction.
In ICAPS-03 Doctoral Consortium, pages 11-15, Trento, Italy, June 2003.

[9] A. Botea, M. Enzenberger, M. Muller, and J. Schaeffer. Macro-FF. In
Booklet o f the Fourth International Planninq Competition IPC-4, pages
15-17, June 2004.

[10] A. Botea, M. Muller, and J. Schaeffer. Using Abstraction for Planning
in Sokoban. In J. Schaeffer, M. Muller, and Y. Bjornsson, editors, 3rd
International Conference on Computers and Games (C G ’2002), volume
2883 of Lecture Notes in Artificial Intelligence, pages 360-375, Edmonton,
Canada, July 2002. Springer.

[11] A. Botea, M. Muller, and J. Schaeffer. Extending PDDL for Hierarchi
cal Planning and Topological Abstraction. In ICAPS-03 Workshop on
PDDL, pages 25-32, Trento, Italy, June 2003.

[12] A. Botea, M. Muller, and J. Schaeffer. Near Optimal Hierarchical Path-
Finding. Journal of Game Development, l(l):7 -28 , 2004.

135

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.cs.ualberta.ca/~adib/

[13] A. Botea, M. Muller, and J. Schaeffer. Using Component Abstraction
for Automatic Generation of Macro-Actions. In Fourteenth International
Conference on Automated Planning and Scheduling ICAPS-04 , pages 181-
190, W histler, Canada, June 2004. AAAI Press.

[14] A. Botea, M. Muller, and J. Schaeffer. Learning Partial-Order Macros
Prom Solutions. In Fifteenth International Conference on Automated
Planning and Scheduling ICAPS-05, pages 231-240, Monterey, CA, USA,
June 2005.

[15] A. Botea, M. Enzenberger M. Muller, and J. Schaeffer. Macro-FF: Im
proving AI Planning with Automatically Learned Macro-Operators. Jour
nal o f Artificial Intelligence Research, 24:581-621, 2005.

[16] T. Bylander. The Computational Complexity of Propositional STRIPS
Planning. Artificial Intelligence, 69(1-2): 165-204, 1994.

[17] D. Z. Chen, R. J. Szczerba, and J. J. Urhan Jr. Planning Conditional
Shortest Paths Through an Unknown Environment: A Framed-Quadtree
Approach. In Proceedings of the 1995 IE E E /R S J International Confer
ence on Intelligent Robots and System Human Interaction and Coopera
tion, volume 3, pages 33-38, 1995.

[18] A. Coles and A. Smith. Marvin: Macro Actions from Reduced Versions
of the Instance. In Booklet o f the Fourth International Planning Compe
tition, pages 24-26, June 2004.

[19] J. Culberson. SOKOBAN is PSPACE-complete. Technical Report
TR97-02, Departm ent of Computing Science, University of Alberta,
Edmonton, A lberta, Canada, 1997. f t p : / / f t p . c s .u a l b e r t a . c a / p u b /
TechReports/1997/TR97-02.

[20] J. Culberson and J. Schaeffer. Efficiently Searching the 15-puzzle. Tech
nical Report TR94-08, Department of Computing Science, University of
Alberta, Edmonton, Alberta, Canada, 1994.

[21] J. Culberson and J. Schaeffer. Pattern Databases. Computational Intel
ligence, 14(4):318—334, 1998.

[22] S. Edelkamp. Website of the Fourth International Planning Competition
IPC-4. h t t p : //ls5 -w w w .c s .u n i-d o rtm u n d .d e /~ e d e lk a m p /ip c -4 /.

[23] S. Edelkamp. Planning with Pattern Databases. In Proceedings of Euro
pean Conference on Planning ECP-01, pages 13-34, Toledo, Spain, 2001.

[24] S. Edelkamp. Symbolic Pattern Databases. In Proceedings o f Interna
tional Conference on A I Planning and Scheduling AIPS-02, pages 274-
293, Toulouse, France, 2002.

[25] M. Enzenberger. Path Finding in Computer Games Website, h t t p : / /
www. c s .u a l b e r t a . c a /~ g a m e s /p a th f in d /.

[26] K. Erol, J. Hendler, and Dana S. Nau. HTN Planning: Complexity and
Expressivity. In AAAI-94, volume 2 , pages 1123-1128, Seattle, Washing
ton, USA, 1994. AAAI Press/M IT Press.

136

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ftp://ftp.cs.ualberta.ca/pub/
http://ls5-www.cs.uni-dortmund.de/~edelkamp/ipc-4/
http://www.cs.ualberta.ca/~games/pathfind/

[27] A. Felner, U. Zahavi, J. Schaeffer, and R. Holte. Dual Lookups in Pattern
Databases. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 103-108, Edinburgh, Scotland, July - August 2005.

[28] R. E. Fikes and N. Nilsson. STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving. Artificial Intelligence, 5(2): 189-
208, 1971.

[29] M. Fox and D. Long. The detection and exploitation of symmetry in
planning problems. In Proceedings o f IJ C A I’99, pages 956-961, 1999.

[30] M. Fox and D. Long. Extending the Exploitation of Symmetries in Plan
ning. In Proceedings of A IP S ’02, pages 83-91, 2002.

[31] M. Fox and D. Long. PDDL2.1: An Extension of PDDL for Expressing
Temporal Planning Domains. Journal o f Artificial Intelligence Research,
20:61-124, 2003.

[32] M. Ghallab, D. Nau, and P. Traverso. Automated Planning Theory and
Practice. Elsevier, 2004.

[33] P. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. EEE Trans, on Systems Science
and Cybernetics, 4(2): 100-107, 1968.

[34] M. Helmert. A Planning Heuristic Based on Causal G raph Analy
sis. In Fourteenth International Conference on Automated Planning and
Scheduling ICAPS-04, pages 161-170, Whistler, Canada, June 2004.

[35] M. Helmert and S. Richter. Fast Downward - Making Use of Causal
Dependencies in the Problem Representation. In Booklet o f the Fourth
International Planning Competition IPC-4, pages 41-43, June 2004.

[36] B. Helmstetter and T. Cazenave. Searching with Analysis of Dependencies
in a Solitaire Card Game. In J. van den Herik, H. Iida, and E. Heinz,
editors, Advances in Computer Games 10, pages 343-360, November 2003.

[37] I. Hernadvolgyi. Searching for Macro-operators with Automatically Gen
erated Heuristics. In Fourteenth Canadian Conference on Artificial Intel
ligence, pages 194-203, 2001.

[38] J. Hoffmann. Local search topology in planning benchmarks: An em
pirical analysis. In IJCAI-01, pages 453-458, Seattle, Washington, USA,
2001 .

[39] J. Hoffmann. Local search topology in planning benchmarks: A theoreti
cal analysis. In M. Ghallab, J. Hertzberg, and P. Traverso, editors, Sixth
International Conference on Artificial Intelligence Planning and Schedul
ing A IP S-02, pages 379-387, Toulouse, France, 2002.

[40] J. Hoffmann and S. Edelkamp. The Classical Part of IPC-4: An Overview.
Journal o f Artificial Intelligence Research, 24:519-579, 2005.

[41] J. Hoffmann, S. Edelkamp, R. Englert, F. Liporace, S. Thiebaux, and
S. Triig. Towards Realistic Benchmarks for Planning: the Domains Used
in the Classical P art of IPC-4. In Booklet o f the Fourth International
Planning Competition, pages 7-14, June 2004.

137

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[42] J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Genera
tion Through Heuristic Search. Journal o f Artificial Intelligence Research,
14:253-302, 2001.

[43] R. Holte, C. Drummond, M. Perez, R. Zimmer, and A. MacDonald.
Searching W ith Abstractions: A Unifying Framework and New High-
Performance Algorithm. In Proceedings of the Canadian Artificial Intel
ligence Conference, pages 263-270, 1994.

[44] R. Holte, T. Mkadmi, R. Zimmer, and A. MacDonald. Speeding up Prob
lem Solving by Abstraction: A Graph Oriented Approach. Artificial In
telligence, 85:321-361, 1996.

[45] R. Holte, J. Newton, A. Felner, R. Meshulam, and D. Furcy. Multiple
P a tte rn Databases. In Fourteenth International Conference on Automated
Planning and Scheduling ICAPS-04 , pages 122-131, W histler, Canada,
June 2004. AAAI Press.

[46] R. Holte, M. Perez, R. Zimmer, and A. MacDonald. Hierarchical A*:
Searching Abstraction Hierarchies Efficiently. In AAAI-96, pages 530-
535, 1996.

[47] Glenn A. Iba. A Heuristic Approach to the Discovery of Macro-Operators.
Machine Learning, 3(4):285-317, 1989.

[48] A. Junghanns. Sokoban Website, h t t p : //www. c s . u a l b e r t a . ca/~gam es/
Sokoban/.

[49] A. Junghanns. Pushing the Limits: New Developments in Single-Agent
Search. PhD thesis, University of A lberta, 1999.

[50] A. Junghanns and J. Schaeffer. Single-Agent Search in the Presence of
Deadlock. In AAAI-98, pages 419-424, Madison, WI, USA, July 1998.

[51] A. Junghanns and J. Schaeffer. Domain-Dependent Single-Agent Search
Enhancements. In IJCAI-99, pages 570-575, Stockholm, Sweden, August
1999.

[52] A. Junghanns and J. Schaeffer. Sokoban: Enhancing Single-Agent Search
Using Domain Knowledge. Artificial Intelligence, 129(1-2):219-251, 2001.

[53] S. Kambhampati. Machine Learning Methods fo r Planning, chapter Sup
porting Flexible Plan Reuse, pages 397-434. Morgan Kaufmann, 1993.

[54] H. Kautz and B. Selman. Planning as Satisfiability. In ECAI, pages
359-363, 1992.

[55] Craig A. Knoblock. Automatically Generating Abstractions for Planning.
Artificial Intelligence, 68(2):243-302, 1994.

[56] R. Korf. Depth-first Iterative Deepening: An Optimal Admissible Tree
Search. Artificial Intelligence, 97:97-109, 1985.

[57] R. Korf. Macro-Operators: A Weak M ethod for Learning. Artificial
Intelligence, 26(1):35—77, 1985.

138

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[58] R. Korf. Linear-Space Best-First Search. Artificial Intelligence, 62(1):41-
78, 1993.

[59] R. Korf. Finding Optimal Solutions to Rubik’s Cube Using Pattern
Databases. In Proceedings o f the l^ th National Conference on Artifi
cial Intelligence and 9th Innovative Applications of Artificial Intelligence
Conference (AAAI-91 /IA A I-97), pages 700-705, 1997.

[60] J. Kvarnstrom and P. Doherty. TALplanner: Temporal Logic Based For
ward Chaining Planner. Annals o f Mathematics and Artificial Intelli
gence, 30:119-169, 2001.

[61] D. Long and M. Fox. The 3rd International Planning Competition: Re
sults and Analysis. Journal o f Artificial Intelligence Research, 20:1-59,
2003. Special Issue on the 3rd International Planning Competition.

[62] S. Markovitch. Applications of Macro Learning to Path Planning. Tech
nical report CIS9907, Technion, 1999.

[63] T. A. Marsland. A Review of Game-Tree Pruning. International Com
puter Chess Association Journal, 9(1):3—19, 1986.

[64] T. L. McCluskey and J. M. Porteous. Engineering and Compiling Plan
ning Domain Models to Promote Validity and Efficiency. Artificial Intel
ligence, 95:1-65, 1997.

[65] D. McDermott. PDDL, the Planning Domain Definition Language. Tech
nical report, Yale Center for Com putational Vision and Control, 1998.
f tp : / / f tp .c s .y a le .e d u /p u b /m c d e rm o t t /s o f tw a r e /p d d l . t a r . g z .

[6 6] D. McDermott. Using Regression-Match Graphs to Control Search in
Planning. Artificial Intelligence, 109(1-2):111-159, 1999.

[67] D. McDermott. The 1998 AI Planning Systems Competition. A I Maga
zine, 21(2):35-55, 2000.

[6 8] S. Minton. Selectively Generalizing Plans for Problem-Solving. In IJC AI-
85, pages 596-599, 1985.

[69] S. Minton. Learning Search Control Knowledge: An Explanation-Based
Approach. Hingham, MA, 1988. Kluwer Academic Publishers.

[70] R. Mooney. Generalizing the Order of Operators in Macro-Operators.
In Fifth International Conference on Machine Learning ICML-88, pages
270-283, June 1988.

[71] A. Moore, L. Baird, and L. Kaelbling. Multi-Value-Functions: Efficient
Automatic Action Hierarchies for Multiple Goal MDPs. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJC A I ’99),
pages 1316-1323, Stockholm, Sweden, 1999.

[72] D. Nau, T. Au, O. Ilghami, U. Kuter, J. Murdock, D. Wu, and F. Yaman.
SHOP2: An HTN Planning System. Journal o f Artificial Intelligence
Research, 20:379-404, 2003.

139

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ftp://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz

[73] X. Nguyen and S. Kambhampati. Reviving Partial Order Planning. In
B. Nebel, editor, IJCAI-01, pages 459-466, Seattle, Washington, USA,
2001 .

[74] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

[75] I. Pohl. Heuristic Search Viewed as P ath Finding in a Graph. Artificial
Intelligence, (l):193-204, 1970.

[76] D. Precup, R. Sutton, and S. Singh. Planning with Closed-loop Macro
Actions. In Working notes o f the 1997 A A A I Fall Symposium on Model-
directed. Autonomous Systems, pages 70-76, 1997.

[77] S. Rabin. A* Aesthetic Optimizations. In Mark Deloura, editor, Game
Programming Gems, pages 264-271. Charles River Media, 2000.

[78] S. Rabin. A* Speed Optimizations. In Mark Deloura, editor, Game
Programming Gems, pages 272-287. Charles River Media, 2000.

[79] B. Reese and B. Stout. Finding a Pathfinder, h t t p : / / c i t e s e e r . nj . nec .
co m /reese9 9 fin d in g .htm l.

[80] E. Sacerdoti. The Nonlinear Nature of Plans. In Proceedings IJCAI-75,
pages 206-214, 1975.

[81] H. Samet. An Overview of Quadtrees, Octrees, and Related Hierarchical
D ata Structures. NATO ASI Series, Vol. F40, 1988.

[82] S. Shekhar, A. Fetterer, and B. Goyal. Materialization Trade-Offs in
Hierarchical Shortest Path Algorithms. In Symposium on Large Spatial
Databases, pages 94-111, 1997.

[83] B. Stout. Smart Moves: Intelligent Pathfinding. Game Developer Maga
zine, October/November 1996.

[84] A. Tate. Generating Project Networks. In Proceedings o f IJCAI-77, pages
888-893, 1977.

[85] P. Tozour. Building a Near-Optimal Navigation Mesh. In Steve Rabin,
editor, A I Game Programming Wisdom , pages 171-185. Charles River
Media, 2002.

[8 6] M. Veloso and J. Carbonell. Machine Learning Methods for Planning,
chapter Toward Scaling Up Machine Learning: A Case Study with Deriva
tional Analogy, pages 233-272. Morgan Kaufmann, 1993.

[87] V. Vidal. A Lookahead Strategy for Heuristic Search Planning. In Four
teenth International Conference on Automated Planning and Scheduling
ICAPS-04, pages 150-159, W histler, Canada, June 2004.

[8 8] V. Vidal. The YAHSP Planning System: Forward Heuristic Search with
Lookahead Plan Analysis. In Booklet o f the Fourth International Planning
Competition IPC -f, pages 56-58, June 2004.

[89] D. Wilkins and M. desJardins. A Call for Knowledge-Based Planning. A I
Magazine, 22(1):99-115, 2001.

140

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[90] A. Yahja, A. Stentz, S. Singh, and B. Brummit. Framed-Quadtree Path
Planning for Mobile Robots Operating in Sparse Environments. In Pro
ceedings, IE E E Conference on Robotics and Automation, (ICRA), pages
650-655, Leuven, Belgium, May 1998.

[91] P. Yap. Grid-Based Path-Finding. In R. Cohen and B. Spencer, editors,
Proceedings of the 15th Conference of the Canadian Society for Compu
tational Studies of Intelligence, pages 44-55, Calgary, Canada, May 2002.

141

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A ppendix A

Algorithm ic Details of CA-ED

This appendix auguments Section 3 with the following details: The pseudocode

of static graph construction is provided in Section A.I. Section A .2 describes

how static facts are determined in domains with hierarchical types. Section

A.3 shows pseudocode for the component abstraction method, in addition to

the high-level description provided in Section 3.1.2.

A .l P seu d ocod e o f S tatic G raph C onstruction

Pseudocode for building the static graph of a planning problem is shown in

Figure A.I. In the main method buildStaticGraph{), the first step is to identify

static domain predicates. A predicate is static if no operator includes it among

its effects. For simplicity, the STRIPS domain formulation is assumed so tha t

each operator o has a list of add effects Add(o) and a list of delete effects

Del(o). Unary facts and facts with two variables of the same type are ignored

as discussed in Section 3.1.1.

The next step of the main m ethod labels with “static” all facts in the

initial problem state s0 th a t are instantiations of static predicates. Finally, a

static graph is generated based on the problem static facts. Each argument

of a static fact becomes a node in the graph. Arguments of each static fact

are linked pairwise by graph edges. Each edge is labeled w ith the name of the

corresponding fact.

For simplicity, m ethod identifyStaticPredicates() is called each time a static

graph is built. However, an actual implementation can be optimized. The

142

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

void buildStaticGraph(Graph kg) {
identifyStaticPredicates (kstPreds)]
identifyStaticFacts(stPreds, fost Facts)',
for (each static fact / G stFacts) {

/ / add nodes to the graph
for (each constant c G Args(/)) {

if (c ^ Nodes(g))
addNode(c, &Nodes(g));

}
/ / add edges to the graph
for (each cx,c2 G Args(/) , Cj ^ c2) {

addEdge(ci, c2, N am e(/), &Edges(g));
}

}
}

void identifyStaticPredicates(Preds k s tP re d s) {
stP reds = 0;
for (each domain predicate p) {

static = true;
if(Arity(p) = = 1 V Symmetric(p))

continue;
for (each domain operator o) {

if(p G Add(o) U Del(o))) {
static = false;
break;

}
}
if (static)

stP reds = stP reds U {p};
}
void identifyStaticFacts(Preds stPreds, Facts k s tF a c ts) {

stF acts = 0;
for (each fact / G so) {

if(P red (/) G stPreds)
stF acts = stF acts U { /} ;

Figure A .l: Static graph construction in pseudo-code.

143

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

results of this method depend only on the current domain, not on the current

problem instance. Therefore, it is enough to call it once and reuse its results

for several instances in a domain.

A .2 S tatic Facts in D om ains w ith H ierarchical
T ypes

In a domain with hierarchical types, instances of the same predicate can be

bo th static and fluent. Consider the Depots domain, a combination of Logistics

and Blocksworld. This domain uses such a type hierarchy. Type LOCATABLE

has four atomic sub-types: p a l l e t , h o i s t , t r u c k , and c r a t e . Type p l a c e

has two atomic sub-types: d e p o t and d i s t r i b u t o r . Predicate (a t ? l -

LOCATABLE ? P - p l a c e) , which indicates th a t object ?L is located at place ?P ,

corresponds to eight specialized predicates a t the atomic type level. Predicate

(a t ? p - p a l l e t ? d - d e p o t) is static, since there is no operator th a t adds,

deletes, or moves a pallet. However, predicate (a t ?C - CRATE ?D - d e p o t)

is fluent. For instance, the l i f t operator deletes a fact of this type.

To address the issue of hierarchical types, a domain formulation is used

where all types are expressed a t the lowest level in the hierarchy. Each predi

cate is expanded into a set of low-level predicates whose arguments have low-

level types. Similarly, low-level operators have variable types from the lowest

hierarchy level. Component abstraction and macro generation are done at the

lowest level. After building the macros, the type hierarchy of the domain is

restored. W hen possible, a set of two or more macro operators th a t have low-

level types is replaced with one equivalent operator w ith hierarchical types.

A .3 P seudocode o f C om ponent A bstraction

Figure A.2 shows pseudo-code for component abstraction, which identifies

small clusters in a problem static graph g given as a parameter. Types(g)

contains all types of the constant symbols used as nodes in g. Given a type

t , Preds(t) is the set of all static predicates tha t have a param eter of type

144

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

component Abstraction (Graph g) {
for (each t G Types(g) chosen in random order) {

reset A llStructures();
Open £;
for (each q G Nodes(g) with type £)

A C <— createComponent(cj);
w hile (Open 7 ̂0) {

ti <— O pen;
Closed <— ti]
for (each p G Preds(t{) \ T r ied)

T ried <— p;
if -i(predConnectsComponents(p, AC)) {

extendComponents(p, AC)]
for (each £2 £ Types(p))

if (£ 2 ^ Open U Closed)

Open <— £2;
}

}
if (evaluateDecomposition() = OK)

return AO;
}
return 0;

}

Figure A .2: Component abstraction in pseudo-code.

t. Given a static predicate p, Types(p) includes the types of its parameters.

Facts (p) are all facts instantiated from p.

Each iteration of the main loop tries to build components starting from a

seed type £ G Types(g). The sets Open, Closed, Tried, and A C are initialized

to 0. Each graph node of type £ becomes the seed of an abstract component

(method createComponent). The components are greedily extended by adding

new facts and constants, such th a t no constant is part of any two distinct

components. The m ethod predConnectsComponents(p, AC) verifies if any fact

/ G Facts (p) merges two distinct abstract components in AC . If so, no fact

from Facts(p) will be used for component extension.

Method extendComponents(p, AC) extends the existing components using

all static facts / G Facts (p). For simplicity, assume th a t a fact / is binary and

145

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

has constants c\ and c2 as arguments. In the most general case, four possible

relationships can exist between the abstract components and elements / , ci,

and c2:

1. Both Ci and c2 already belong to the same abstract component ac:

3(ac e AC) : Ci 6 Nodes(ac) A c2 e Nodes(ac).

In this case, / is added to oc as a new edge.

2. Constant ci is already part of an abstract component ac (i.e., ci €

Nodes (ac)) and c2 is not assigned to a component yet. Now ac is ex

tended with c2 as a new node and / as a new edge between ci and c2.

3. If neither C\ nor c2 are part of a previously built component, a new

component containing / , ci and c2 is created and added to AC.

4. Constants Ci and c2 belong to two distinct abstract components:

3(aci, ac2) : Ci 6 Nodes(aci) Ac2 G Nodes(ac2) A aci ^ ac2.

While possible in general, this last alternative never occurs at the point

where method extendComponents is called. This is ensured by the pre

vious test with m ethod predConnects Components.

The result is evaluated at the end of each iteration. If a good decomposition

is found starting from t , the procedure returns with success. Otherwise, the

process restarts from another seed type.

Consider the case when a static graph has two disconnected (i.e., with no

edge between them) subgraphs sgi and sg2 such th a t Types(sgi)C\ Types(sg2) —

0. In such a case, the algorithm shown in Figure A.2 finds abstract components

only in the subgraph th a t contains the seed type. To perform clustering on

the whole graph, the algorithm has to be run on each subgraph separately.

146

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix B

Dom ains used in Planning
Experim ents

This appendix summarizes the planning domains used in experiments in Chap

ter 5. Rovers, Depots and Satellite were used in the th ird international plan

ning competition IPC-3 [61]. Satellite, Promela, Airport, PSR and Pipesworld

were benchmarks in the fourth competition IPC-4 [40, 41].

B .l Rovers

In the Rovers domain, rovers can be equipped with photo cameras and stores

where rocks and soil can be collected and analyzed. Rovers have to gather

pictures and data about rock and soil samples, and report them to their base.

Waypoints and connections between them define a map on which rovers nav

igate between locations of interest. Such locations include waypoints that

contain rock and/or soil samples, waypoints tha t photo objectives are visible

from, and waypoints th a t allow communication with the base.

B .2 D ep ots

In Depots, crates have to be transported by truck between locations of two

types: depots and distributors. A truck can move between any two locations

in one step and transport any number of crates at a time. Each location has

one or more pallets, where crates can be stacked, and one or more hoists tha t

can transfer a crate from a truck to the top of a stack and back. A hoist can

147

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

hold a t most one crate at a time. To transfer a crate from a truck to a stack

or back, the stack, the hoist and the truck have to be at the same location.

B .3 Satellite

In the Satellite domain, satellites have instruments that can take pictures in

different modes. When a satellite is equipped with several instruments, only

one instrum ent can be powered on at a time. A satellite together with an

instrum ent on board can take an image of an objective in a given mode when

the satellite is oriented into the direction of the objective, and the instrument

is calibrated, powered on, and supports th a t picture mode.

B .4 Prom ela

Prom ela is the input language of a model checker called SPIN [40]. A model

defined in Promela is a set of processes (i.e., autom ata) th a t communicate

through message queues. A Promela planning problem is a PDDL representa

tion of a Promela model. Promela Dining Philosophers and Promela Optical

Telegraph, the two domains used in IPC-4 and in this thesis research, are

PDDL adaptations of two original Promela models.

B .5 A irport

The goal of an Airport problem is to schedule the incoming and outgoing traffic

on an airport. The topology of an airport is modeled as a set of segments and

an adjacency relationship between segments. A segment can host one plane at

a time. If the engines of a plane are running, one or several segments behind

the plane cannot be occupied by another plane.

The available actions in this domain are to move an airplane between two

adjacent segments, to start or stop the engines of a plane, to push a plane

back from its parking position, and to take off.

148

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

B .6 Power Supply R estoration

Power Supply Restoration (PSR) models a power distribution network where

electric lines are connected by switches that can be opened or closed. One or

several power sources provide the network with electricity. W hen an electric

line becomes faulty, its power source is disconnected from the network and

all lines supplied by this source lose power. The goal of a PSR problem is

to restore the power supply on all non-faulty lines by changing the status of

network switches.

B .7 P ipesw orld

In Pipesworld, batches of different types of oil products have to be transported

through a network of pipes and reservoirs. A pipe contains a constant number

of batches. Inside a pipe, two batches can be adjacent only if their types are

compatible with each other. W hen a batch is pushed in at one end of a pipe,

all batches inside the pipe are shifted and the batch at the other end is pushed

out.

Several versions of Pipesworld were introduced in IPC-4. See [40] for de

tails. This thesis work contained experiments w ith two versions of this domain:

Pipesworld Notankage Nontemporal and Pipesworld Tankage Nontemporal. In

the first version, reservoirs have unlimited capacity, whereas tankage restric

tions exist in the la tter version.

149

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A ppendix C

Algorithm ic Details of HPA*

This appendix provides low-level details about HPA*, including the main func

tions in pseudo-code. The code can be found at [25]. First preprocessing, which

abstracts a grid map into a multi-level graph is presented. Then details about

on-line search, which performs hierarchical search in a multi-level graph are

provided.

C .l P reprocessing

Figure C .l summarizes the preprocessing. The main m ethod is preprocessing(),

which abstracts a map, builds a graph with one abstract level and, if desired,

adds more levels to the graph.

C .1.1 A b stractin g th e M aze and B u ild in g th e A bstract
G raph

In the initial stage, abstraction consists of building the 1-clusters (i.e., clusters

at level 1) and the entrances between clusters. Later, when more levels are

added to the hierarchy, the maze is further abstracted by computing clusters

of higher levels. In m ethod abstractMazeQ, C[1] is the set of 1-clusters, and

E is the set of all entrances defined for the map.

Method buildGraph() creates the abstract graph of the problem. First

it creates the nodes and the inter-edges, and next builds the intra-edges.

Method newNode(e,c) creates a node contained in cluster c and placed at

the middle of entrance e. For simplicity, assume there is one transition per

150

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

void preprocessing(int m a x L e v e l) {
abstractMazeQ;
buildGraph();
for (I = 2; I < m a x L e v e l ; 1 + +)

addLevelToGraph (I) ;

void abstractMaze(void) {
E = $;

C [1] = buildClusters(l);
for (each ci,C2 G C[l]) {

if (adjacent(ci, C2))
E = E U buildEntrances(ci, C2);

}

void addIntraEdges(int I) {
for (each c G C [l])

for (each n i ,n 2 € lV[e],7ii ^ n 2) {
d = searchForDistance(n1, ri2 , c);
if (d < 00)

addEdge(ni, 7 1 2 , 1, d, INTRA)
}

}

void buildGraph(void) {
for (each e G E) {

Ci = getClusterl(e, 1);
C2 = getCluster2(e, 1);
n i = newNode(e, ci);
ri2 = newNode(e, C2);
addNode(ni, 1);
addNode(ri2 , 1);
addEdge (n 1 , n 2,1,1, INTER);

}
addlntraEdges (1);

void addLevelToGraph(int I) {

C [l \ = buildClusters(?);
for (each ci,C2 G C [l]) {

if (adjacent(ci, C2)) {
for (each

e G getEntrances(ci,C 2)) {
setLevel(getNodel(e), I) ;

setLevel(getNode2(e), I) ;

setLevel(getEdge(e), I) ;

}
}

}
addIntraEdges(£);

Figure C.l: The preprocessing phase in pseudo-code. This phase builds the
multi-level graph, except for S and G.

151

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

entrance, regardless of the entrance width. Methods getClusterl (e, /) and

getC luster2(e,l) return the two adjacent /-clusters connected by entrance e.

M ethod addNode(n, /) adds node n to the graph and sets the node level to /.

M ethod addEdge(ni,n2,l ,w ,t) adds an edge between nodes n x and n2. Pa

ram eter w is the weight, I is the level, and t £ {IN TE R , IN TR A } the type of

the edge.

M ethod searchForDistanceQ searches for a path between two nodes and

returns the path cost. This search is optimized as shown in Section C.2.2.

C . l . 2 C reating A d d ition a l G raph Levels

The hierarchical levels of the multi-level abstract graph are built incrementally.

Level 1 has been built at the previous phase. Assuming th a t the highest current

level is I — 1, level / is built by the m ethod addLevelToGraph(l). Groups of

clusters a t level / — 1 form a cluster at level / in method buildClusters(l), I > 1.

C[l] is the set of /-clusters.

C.2 O n-line Search

C .2 .1 F in d in g an A b stract S o lu tion

Figure C.2 summarizes the steps of the on-line search. The main method is

hierarchicalSearch(S,G, m axLevel), which performs the on-line search. First

S and G are inserted into the abstract graph, using m ethod insertNode(n,l).

M ethod connectToBorder (n, c) adds edges between node n and the nodes

placed on the border of cluster c th a t are reachable from n. M ethod de-

termineCluster(n, I) returns the /-cluster th a t contains node n.

M ethod searchForPath(S,G, m axLevel) performs a search at the highest

abstraction level to find an abstract path from S to G. If desired, the path is

refined to a low-level representation by m ethod refinePath(absPath) . Finally,

m ethod smoothPath(UPath) improves the quality of the low-level solution.

152

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

void connectToBorder(node s , cluster c) {
I = getLevel(c);
for (each n £ lV[c])

i f (getLevel(n) > I) {
d = searchForDistance(s, n, c);
if (d < oo)

addEdge(s, n, d , I, INTRA);
}

}
vo id insertNode(node s , int m a x L e v e l) { }

for (I = 1; I < m a x L e v e l ; Z++) {
c = determineCluster(s,Z);
connectToBorder(s, c);

}
setLevel(s, m a x L e v e l) ;

path hierarchicalSearch(node s , g , int I) {

insertNode(s, I) ;

insertNode((j, I) ;

a b s P a t h — searchForPath(s,^,/);
U P a t h — refinePath (a b s P a t h , I) ;

s m P a t h = smoothPath [U P a t h) ;

remove (s);
remove (g) ;

return s m P a t h ;

Figure C.2: On-line processing in pseudo-code.

C .2 .2 Searching in a M ulti-L evel G raph

In a multi-level graph, search can be performed at various abstraction levels.

Searching at level I reduces the search effort by exploring only a small subset

of the nodes. The higher the level, the smaller the part of the graph th a t

can potentially be explored. W hen searching at a certain level I, only nodes

having level > Z, intra-edges having level Z, and inter-edges having level > Z

are considered.

The search space is further reduced by ignoring the nodes outside a given

cluster. This applies to situations such as connecting S or G to the border of

their clusters, connecting two nodes placed on the border of the same cluster,

or refining an abstract path.

153

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A ppendix D

Sokoban Test Suite

Problem #1 Problem #2 Problem #3

Problem #5Problem #4 Problem #6

Problem #7 Problem #9 Problem #17

Problem #80

154

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

