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ABSTRACT 

 

Operational maintenance of the wastewater collection system is an important part of urban 

infrastructure management. It involves various activities, such as visual inspection, low-pressure 

flushing (LPF), high-pressure flushing (HPF), catch basin cleaning, and hydro-mechanized 

cleaning. Large cities require significant budget and resources to perform the necessary cleaning 

activities at various locations around the city at regular intervals. For instance, the collection 

system in Edmonton, Canada, comprises over 5,500 km of sewer pipes, and as of 2014 there are 

over 1,400 prescheduled HPF locations. However, planning and scheduling these activities can 

be challenging because of the wide variation of actual on-site flushing duration, which depends 

on a number of factors such as length and diameter of the pipes, frequency of flushing, structural 

condition, age, and season. Moreover, travelling between these locations results in a large 

amount of unproductive time. Reviews of the literature and of current industry practice reveal 

that the existing models and algorithms do not specifically address these issues. This research, 

therefore, develops a framework for improving the productivity of these activities by optimizing 

operational maintenance schedule. The research consists of two primary modules: (i) developing 

a forecasting model to estimate the on-site duration of activities, and (ii) developing an 

optimization algorithm to maximize productivity. The models are developed and tested using 

historical data of HPF activity from the Drainage Operations group at the City of Edmonton. The 

forecasting model captures the majority of the variations in on-site flushing duration and 

provides useful insight into the factors affecting on-site productivity. For optimization, this 

research formulates the drainage operations scheduling problem (DOSP) as a special class of the 
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stochastic and capacitated vehicle routing problem (VRP), where the objective is to maximize 

value-added on-site flushing time while minimizing travel. Alongside existing algorithms (such 

as integer programming, genetic algorithm), a heuristic algorithm is developed to meet the 

specific needs of this complex combinatorial problem. The proposed optimization algorithm is 

tested and compared with other algorithms by simulating a monthly HPF schedule. The results 

show that accurate estimation of on-site duration, coupled with schedule optimization can 

improve daily productivity by a considerable margin. The outcome of this research makes 

significant academic, economic, and environmental contributions by proposing a systematic 

approach to planning and scheduling operational maintenance for wastewater collection systems. 
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1 INTRODUCTION 

 

1.1 Background/Motivation 

The sewer network is a critical component of urban infrastructure, consisting of sanitary, storm, 

and/or combined pipelines, lift stations, force mains, and other elements to collect wastewater 

from residential, industrial, and commercial sources and convey it to facilities that provide 

treatment prior to discharge to the environment (Poltak 2003). The construction, condition 

assessment, repair, rehabilitation, operations and maintenance of this particular type of 

infrastructure are difficult and expensive due to the fact that substantial portions of these large 

and complex systems are buried in the ground (Vanier 2001; Tafuri et al. 2002). However, like 

other asset types, wastewater collection systems in many developed countries are now facing 

age-associated deterioration, which is a growing concern among professionals and the 

researchers. According to the 2013 Report Card published by the American Society of Civil 

Engineers (ASCE), America’s wastewater and stormwater systems received an average grade of 

‘D’. Improving the conditions of that nation’s wastewater system alone will require $298 billion 

over the next 20 years, of which the pipes account for three-quarters of total needs (ASCE 2013). 

In Canada, about 40% of wastewater plants, pump stations, and storage tanks are in “fair” to 

“very poor” condition, and 30.1% of pipes are in “fair” to “very poor” condition. The 

replacement cost of this infrastructure is $39 billion, or $3,136 per Canadian household 

(Canadian Infrastructure 2012). Although the water and wastewater sector in the UK currently 

stands in a slightly better condition with an average grade of ‘B’, regular preventive maintenance 

of the system is required to prevent rapid deterioration (ICE 2010). 
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Because the performance of a wastewater collection system directly affects the quality of urban 

life and the environment, the entire system needs to be maintained at the required level of service 

at all times. However, drainage infrastructure has a very high replacement value; hence, the 

rehabilitation and replacement of even a small portion of the system requires extensive capital 

investment. For instance, the replacement value of Edmonton’s drainage system was estimated at 

$15.1 billion (as of 2012), which includes the large collection system comprising over 5,500 km 

of pipes (2,365 km of storm, 2,180 km of sanitary, and 946 km of combined sewer lines); 

332,128 service connections; 68,496 manholes; and 74 pump stations (City of Edmonton 2013). 

Understandably, the entire system is not at optimum structural or operational condition at all 

times, and hence the City spends significant budget and resources to carry out the necessary 

operational maintenance work to ensure that the system is operationally functional. These 

operational activities mainly involve pre-scheduled periodic inspection and cleaning of various 

components, such as pipes, catch basins, manholes, and lift stations. 

 

In recent years, many researchers have emphasized the importance of proactive and improved 

operation and maintenance activities (Pleau et al. 2005; Strauch & Wetzel 2006; Halfawy & 

Hengmeechai 2013). Although the effectiveness of these activities has increased significantly 

over the years with advancements in maintenance tools and techniques, aging and the associated 

deterioration of the system, coupled with urban growth, necessitates continuous improvement in 

O&M performance (Gaudreault & Lemire 2006). This research, therefore, aims to develop a 

framework to improve the productivity of operational activities for wastewater collection 

systems 
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.  

1.2 Problem Statement 

Today, most municipalities (interchangeably referred to as WWC operators) around the world 

carry out comprehensive operational activities throughout their jurisdictions on a regular basis in 

order to maintain the hydraulic functionality of the system. Established techniques and state-of-

the-art equipment are used for various O&M activities, such as visual inspection (VI), low-

pressure flushing (LPF), high-pressure flushing (HPF), catch-basin cleaning (CBC), televising 

(CCTV), and hydro-mechanized cleaning (also known as chain flail, or CHF). The selection of 

the necessary inspection or cleaning activities and their frequencies mainly depend on the 

operational conditions of the system components. It is evident that pipes in poor operational 

condition require more frequent flushing than those in good condition. For example, as of 2014, 

Edmonton has over 1,400 scheduled HPF locations across the city, selected based on their 

conditions and trouble history. Each of the locations is pre-scheduled for periodic HPF at a 

particular frequency, such as every 1 month, 3 months, 6 months, or 12 months. At the beginning 

of each month, a query to a central database generates a list of HPF work orders for the locations 

that are due that month. These work orders, grouped by neighbourhood, are then assigned to the 

individual crews.  

 

The on-site durations of these flushing activities typically range from 10 minutes to several hours 

per location, and are stochastic in nature. Hence, the daily work flow for the operational crews 

follows a pattern where the crews start from a yard at the beginning of work shift, travel to the 

pre-scheduled locations and perform flushing one after another, and then return to the yard by the 

end of the shift. The number of locations completed in a typical 8-hour shift varies widely, 
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depending on the flushing duration at each location and travel time between the locations. 

Because there is no reliable model currently available to estimate the flushing durations, the 

crews are often unable to predict how long the next location may actually take to flush. Hence, 

the crews can either return to the yard prior to the end of the shift time, which leads to un-used 

(or waste) time, or they can run overtime. Moreover, in large cities, travel can account for a 

significant amount of unproductive time. It is easily conceivable that reducing these non-value-

added time can improve the daily productivity of operational activities. 

 

This can be accomplished by optimizing the sequence of the scheduled flushing locations, which 

is conceptually similar to the well-known vehicle routing problem (VRP). However, unlike 

traditional route optimization problems where the objective is to minimize travel time or distance 

only, the “Drainage Operations Scheduling Problem” (DOSP) should also minimize the un-used 

time at the end of work shifts. Hence, there is a need to formally describe and formulate DOSP 

as a combinatorial optimization problem which maximizes daily productivity for a given 

schedule. 

 

1.3 Research Objectives 

The primary goal of this research is to improve daily productivity of drainage operations 

activities by achieving the following specific objectives: 

 Reducing travel time (or distance)  

 Reducing un-used time (or overtime) at the end of work shift 

This is accomplished by developing two primary modules: 

1. A forecasting model to estimate the on-site flushing duration at various locations 
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2. Suitable Optimization algorithms for DOSP 

 

The efficacy of the optimization algorithms and the sensitivity of the on-site duration model are 

tested using simulation. In addition, the general framework proposed in this research includes the 

following supplementary modules to support the development of the primary modules.  

 Review of operational preventive maintenance practice and productivity analysis 

 Data collection and descriptive analysis 

 Implementation strategy  

 

1.4 Organization of the Thesis 

This thesis is organized as follows: chapter 1 (Introduction) presents the background and 

motivation, and a brief description of the problem studied in this research. The specific 

objectives of this study are also listed here. Chapter 2 (Literature Review) presents a summary of 

the existing literature that has helped identify the research need, as well as to provide the 

theoretical basis of this research. The next chapter (Methodology) describes the development of 

the on-site duration estimation model and the schedule optimization algorithms for DOSP. In this 

chapter, the algorithms are developed for hypothetical graphs and their performances are 

compared through simulation. The proposed methodology is then applied to a case study in the 

Drainage Operations group at the City of Edmonton, which is presented in chapter 4 (Case 

Study). The detailed data collection, analysis, and results are also presented and discussed in this 

chapter. Finally, chapter 5 (Conclusion) summarizes the research findings and provides 

recommendations for future studies. 
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2 LITERATURE REVIEW 

A thorough literature review has been conducted during this research in order to obtain a good 

understanding of the current practice, existing studies, recent advancements, and to identify the 

research needs. The literature review mainly focuses on the following areas, with particular 

emphasis on wastewater collection systems and related fields: infrastructure asset management; 

productivity analysis and improvement; and optimization algorithms for vehicle routing and 

scheduling.  

 

2.1 Infrastructure Asset Management 

Infrastructure asset management has been a widely studied field in recent decades. Recent 

literature related to water and wastewater systems addresses various important issues such as 

condition assessment and failure modelling, rehabilitation planning, design and construction, 

environmental protection, and pollution control (Hollenbeck 2004; Halfawy et al. 2006; Clark et 

al. 2007; Vallabhaneni 2010; Vallabhaneni 2011; Vallabhaneni 2012).  

 

Hao et al. (2012) have conducted a review of condition assessment technologies and their 

relative advantages and challenges. Chughtai & Zayed (2011) developed classification protocol 

and condition assessment models for sewer pipelines that can be useful for standardizing sewer 

condition assessment. Studies both by Guo et al. (2009) and Halfawy & Hengmeechai (2014) 

developed visual pattern recognition techniques for defect reporting and condition assessment of 

drainage pipes, while Khazraeializadeh et al. (2014) compared different existing condition 

assessment protocols.  
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For operational condition of sewer network, Chughtai & Zayed (2008) developed a regression 

model based on pipe attributes such as age, length, diameter, slope, and roughness coefficient. 

The model was later simulated by Khan et al. (2009) in a study which explores the effect of these 

parameters on operational condition. In a recent study in Austria, Plihal et al. (2014) presented a 

case study where manhole zoom camera inspection is effectively used to optimize the schedule 

of operational activity (e.g., cleaning).  

 

For failure analysis, Achim et al. (2007) and Moselhi & Fahmy (2008) developed Neural 

Network (NN) models for the prediction of water pipe failure, while studies both by Salman & 

Salem (2012), and Younis & Knight (2008) used ordinal regression models for the same purpose. 

Rostum (2000) developed statistical models for pipe failure in water networks, and Hoffman et 

al. (2010) performed statistical analysis to predict sewer blowouts during high-velocity jet 

cleaning operations. These studies identified important parameters (such as diameter, slope, and 

flow capacity) that affect wastewater collection system deterioration.  

 

For rehabilitation planning, Selvakumar & Tafuri (2012) addressed the key challenges and issues 

in rehabilitation of aging water infrastructure, providing useful recommendations in terms of 

standardizing and improving management practice for wastewater collection systems. Becker et 

al. (2009) developed a decision support system for rehabilitation planning for sewers, where the 

reliability analysis-based system makes use of inspection results and considers important factors 

such as pipe material properties, loading system, and soil properties. Abraham (2003) used life 

cycle cost analysis for prioritizing the rehabilitation of wastewater infrastructure. Sample & 
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Kilpatrick (2006) presented an integrated “find and fix” approach for prioritizing the repair and 

maintenance schedule in a manner which makes effective use of condition assessment data 

integrated with GIS. Caldwell (2007) also addressed issues related to prioritization of 

rehabilitation and replacement of wastewater collection systems. 

 

For overall operation and maintenance (O&M) aspects, Hassanein & Khalifa (2008) performed a 

comparative analysis for the performance of water and wastewater utilities in different countries. 

The study focused on operational indicators such as number of staff per thousand connections, 

labour cost, and operational cost. Ugarelli et al. (2010) discussed the concepts, methodologies, 

and limitations of current asset management practice with a particular focus on wastewater 

collection systems. Their paper addressed important aspects, such as asset management (AM) 

methodologies, condition assessment, level of service (LOS), life cycle cost analysis (LCCA), 

risk estimation, and different PM approaches (reactive, proactive, and predictive). Hannan 

(2000) addressed maintenance issues, with a particular focus on recent maintenance trends, 

program developments, and challenges, along with design, construction, and rehabilitation 

aspects of wastewater collection system. Ratliff et al. (2008) discussed improvements to O&M 

planning and management to reduce sanitary sewer overflow. 

 

Many researchers have also emphasized improving maintenance operations through the 

development of an intelligent system. For instance, Hammond & Horton (1997) presented an 

automated system for lift station maintenance using bar-codes, while Loucks & Stahr (2007) 

implemented an integrated data management system for optimal use of the Little Rock 

Wastewater Utility in terms of its capacity. Several other researchers have also underscored the 
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importance of improved and integrated planning and optimization of maintenance activities 

(Dekker 1996; Fenner 2000; Gamisch et al. 2010). 

 

2.2 Sewer Asset Maintenance and Productivity Analysis 

Oxford defines preventive maintenance (PM) as maintenance that is performed regularly to 

prevent or detect incipient failures. For wastewater collection system operation, PM can be 

described as the activities performed, on a predetermined schedule, on select components of the 

system to prevent operational failure (blockage), and to ensure that the operating components 

meet the system goals. Operational PM, which, according to the Water Environment Federation 

(WEF), refers to proactive flushing and cleaning of pipes, manholes, catch basins, and other 

system components, is performed to address general collection system function and recurring 

problems where rehabilitation or reconfiguration is not immediately feasible (WEF 2009). The 

effectiveness of PM has been well established through many studies; however, it is imperative 

for the purpose of this research to have a clear understanding of current O&M practice for 

wastewater collection systems.  

 

There are a number of different operation and maintenance (O&M) approaches for sewer asset 

management. Plihal et al. (2014) categorized these approaches into the three following strategies: 

(1)  A reactive strategy, where a sewer line is cleaned only when necessary due to an 

operational failure such as a blockage caused by excessive grease or debris. While this 

approach reduces the cost of PM, it may result in poor system performance, blockage 

and sewer overflow, environmental pollution, and expensive repairs. Hence, this 
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approach is not considered an efficient and feasible strategy, and therefore is omitted 

from the scope of this research.  

(2)  A proactive strategy, where all the sewer lines in the jurisdiction are cleaned at pre-

defined regular intervals. This approach requires adequate budget and resources to 

perform the PM activities on a regular basis, especially for large systems. 

(3)  A selective strategy, where a sewer line is cleaned based on its problem history and 

operational condition. This approach involves proactive inspection and condition 

assessment of the system, and analyzing data related to pipe properties (such as 

diameter, age, and material), spatial properties (such as industrial/residential zone, 

restaurant/carwash, type and amount of debris, grease, or tree roots), historical 

maintenance, and failure records in order to prioritize the PM schedule. 

 

In addition to the above-mentioned approaches, recent research has focused on predictive 

maintenance, which involves failure analysis to forecast the likelihood of failure of an asset 

component. A periodic maintenance schedule is developed based on such probabilistic models. 

 

The Water Environment Federation (WEF 2009) provided useful guidelines on establishing 

O&M strategies for wastewater collection systems, recommending the use of computerized 

maintenance and management system (CMMS) and geographic information system (GIS) to 

record and analyze five categories of data: structural, maintenance, inspection, hydraulic 

capacity, and condition assessment. Analysis of periodic (weekly, monthly, yearly) productivity 

reports is explicitly mentioned in the manual; however, no specific directions with respect to 

schedule optimization can be found. 
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The preliminary review of existing literature and current industry practice reveals that no well-

documented objective rule or strategy exists that an operator can follow. Considering the 

environmental, economic, policy, and legal aspects at play, it is understood that this is a decision 

problem that involves strategic and subjective judgement. Nonetheless, as mentioned in the 

introduction of this thesis, age-associated deterioration and the expansion of the system lead to 

increased maintenance needs every year, which can result in either backlog in the PM schedule 

or an increase in resource requirements.  

 

Various activities are performed as operational maintenance measures for a wastewater 

collection system. The United States Environmental Protection Agency summarizes inspection 

and cleaning activities (also referred to as methods or techniques) applicable for different system 

components such as pipes, manholes, and catch basins. The effectiveness, advantages, and 

limitations of the various methods are also discussed (EPA 1999). Some of the common 

inspection techniques include visual inspection, CCTV inspection, while some of the common 

cleaning activities are high-pressure flushing (HPF) (or jetting), and hydro-mechanized cleaning. 

 

Among the studies focused on the performance measurement and productivity improvement of 

O&M activities, Bowen et al. (2003) have developed productivity standards for various 

maintenance activities for collection systems, where daily accomplishments and reported man-

hours are used to determine the daily productivity (expressed as metres/man-hour for flushing 

activities). Mohamed et al. (2002) and Agbulos et al. (2006) have applied simulation and lean 
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concepts to break down operational activities into smaller value added and non-value added tasks 

in order to improve productivity by reducing time waste. Navab-Kashani et al. (2015) have 

shown the potential of improving the productivity of CCTV inspection through time study and 

route optimization. 

 

2.3 Route and Schedule Optimization 

As for optimization, several studies have applied state-of-the-art optimization tools and 

techniques in planning and design of wastewater collection systems. For example, Boomgaard et 

al. (2004) applied Genetic Algorithm (GA) to optimize the cost and capacity of a wastewater 

collection system. Gupta et al. (1983) and Botrous et al. (2000) used dynamic programming to 

optimize the design of a wastewater collection network, while Maier et al. (2003) used ant 

colony optimization for design of a water distribution system, and Yeh et al. (2011) applied tabu 

search algorithm for optimization of sewer networks. 

 

The drainage network maintenance scheduling problem at hand is a variant of the well-known 

Travelling Salesman Problem (TSP) or Vehicle Routing Problem (VRP), widely studied 

problems in the field of operations research (OR). Numerous articles are available in the 

literature which tackle various types of optimization problems, using different tools and/or 

developing various algorithms according to the given problem type. Among earlier studies, 

Laporte (1992) presented an overview of algorithms developed over the years, where the author 

discussed the methodologies of several exact and approximate route optimization algorithms 

(direct tree search method, dynamic programming, integer linear programming, heuristic 

approach, tabu search algorithm, etc.) and their suitability for solving various problems. 



13 

 

 

The increasing complexity of route networks and the quest for optimal solutions (especially 

under specific constraints) have led researchers to improve previous algorithms or to propose 

new approaches. For instance, Desrochers et al. (1992) presented VRP with time window, which 

is particularly effective for school bus service. Vijay et al. (2008) presented a study on GIS-

based location analysis of collection bins for municipal solid waste management, where the 

results suggested improvement in the efficiency of collection and transport of solid waste 

towards bins and disposal sites. Apaydin & Gonullu (2007) developed a shortest path model 

(integrated with GIS elements) for solid waste collection which reportedly reduces time, travel 

distance and cost by a significant margin. In another study, they also presented the benefits of 

route optimization from the sustainability point of view; i.e., minimizing harmful gas emissions 

by optimizing travel distances for solid waste collection (Apaydin & Gonullu 2008). 

 

Thus, wide applications of various route optimization techniques can be found in the existing 

literature. However, the efficacy of a particular optimization technique depends largely on the 

characteristics of the problem at hand. As opposed to some other VRPs, such as mail delivery 

service, school bus service, or solid waste collection, drainage operations has a unique 

characteristic where the operational crews perform maintenance activities at pre-scheduled 

locations one by one and then return to the yard by the end of the work-shift. Hence, optimizing 

the sequence of the locations to be flushed (or destinations) depends on the travel time as well as 

the activity duration at each location, which is stochastic in nature. Therefore, this problem 

becomes similar to the stochastic VRP described by Bertsimas (1992). Although several 

techniques of stochastic VRP are described in the literature (Huang & Louks 2000; Kleywegt et 
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al. 2001; Bertsimas et al. 2011; Lei et al. 2011), their suitability for drainage operations 

scheduling and routing has not been studied. 

 

2.4 Summary of Literature Review 

In summary, it can be concluded that although the planning, design, failure, cost, operation and 

maintenance aspects of wastewater collection systems have been covered in numerous studies, 

the improvement potential in O&M productivity through optimized scheduling has not been 

studied in detail. This is a specific optimization problem encountered in every municipality and 

the existing optimization algorithms do not serve its specific needs. However, with the 

advancements in real-time data collection technology and integrated management system, there 

exists an excellent opportunity to develop a systematic approach to improving the scheduling of 

operational activities for wastewater collection systems. 
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3 METHODOLOGY 

3.1 Introduction 

This chapter describes the methodology of this research, which is built upon the following 

hypothesis: “Schedule optimization based on accurate estimation of on-site duration can 

improve the productivity of operational maintenance activities for wastewater collection 

systems”. The primary components of this research are the development of an on-site duration 

estimation model, and the formulation and development of a schedule optimization model. These 

components are complemented by data collection, analysis, and simulation modules. Fig. 3-1 

illustrates the methodological flowchart and the components (or modules) of this study, showing 

that the analysis and modelling modules utilize inputs from existing databases, perform the 

necessary analyses, and then provide outputs to achieve outcomes aligned with the research 

objectives. 

Analysis Modules OutcomesInputs

Reduced Travel 

Distance

Reduced Unproductive 

Waste (Unused) Time

Increased Operational 

PM Productivity

Integrated Data 

Collection

Review of Operational PM Practice 

and Productivity Analysis

Data Collection and Descriptive 

Statistics

On-Site Duration Estimation Model

Optimization of PM Schedule

Simulation and Sensitivity Analysis

Policy, Manuals, and 

Guidelines

Network Attributes

Existing Methods, 

Tools & Technologies

Resources

Environmental Factors

Urban Attributes

Operation & 

Maintenance History

 

Fig. 3-1. Overall methodology of the research 
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The first step in the methodology is to study the current practice and guidelines in order to gain 

an understanding of operational preventive maintenance (PM) strategies, and to analyze the 

current performance trends of PM crews in order to identify the factors that affect productivity. 

Then, the data collection and preliminary analysis module examines the existing databases 

maintained by the operators, and establishes the data requirements for the estimation and 

optimization models. The next component, the on-site productivity estimation model, develops 

statistical models to predict on-site flushing duration, which is stochastic in nature. The output 

from this model becomes a vital input in the schedule optimization, which develops algorithms 

to minimize travel time and waste time. Because of the stochastic nature of the on-site duration, 

the algorithms are then tested for their robustness by running simulation models. Each of these 

modules is discussed separately in the following sub-sections.  

 

It is to be noted that some of the material in this chapter has been presented at CSCE conferences 

(Zaman et al. 2012; Zaman et al. 2013), and published in the Journal of Infrastructure Systems 

(Zaman et al. 2014) and Urban Water Journal (Zaman et al. 2015). However, more elaborate 

discussion on the methodology of this research is provided here. 

 

3.2 Review of Operational PM Practice and Productivity Analysis 

The PM strategy adopted by an operator depends on the size and age of the network, availability 

of data, capital and operational budget, and resources. However, regardless of the method used 

for selecting the pipes and their frequencies for operational maintenance, the operators 

implement flushing/cleaning activities for a pre-scheduled list of pipes within a given period 
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(e.g., month), and efficient productivity of these activities is critical in achieving the necessary 

performance indices. 

 

In general, productivity is expressed as a ratio between input and output (Park et al. 2005). 

However, Bowen et al. (2003) defined productivity of drainage operations activities as 

accomplished per unit time: for example, locations/day for visual inspection, or metres/man-hour 

for flushing activities. Based on that definition, the productivity of flushing activity can be 

expressed as Eq. (3.1): 

CT

L

P
d

n

i

i

d




1

 

(3.1) 

where 

 = daily productivity; 

n = number of locations flushed in a day; 

Li = total length of pipes (metres) in location i; 

Td = man-hours consumed to flush n locations; and, 

C = size of crew (typically one operator and one assistant). 

 

Td in Eq. (3.1) can be broken down into four parts: (i) start-up time at the beginning of work 

shift; (ii) transportation time from the yard to the first location and, subsequently, between 

locations; (iii) on-site flushing and cleaning at locations; and (iv) clean-up time at the end of the 

work shift. The sequence of these activities during a typical work shift follows the pattern 

expressed in Eq. (3.2): 

  (3.2) 
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where 

 = beginning-of-shift start-up time; 

 = transportation time from yard to location 1; 

= on-site flushing time at location 1; 

 = transportation time from location 1 to location 2; 

 = on-site flushing time at location n; 

 = transportation time from location n to yard; and, 

= end-of-shift clean-up time. 

Now, Eq. (3.1) and Eq. (3.2) can be combined as: 

 

(3.3) 

where  is the on-site flushing duration at location i. In this equation,  and  can be assumed 

to be constant, while the transportation times ( ) can be derived from the travel distance 

between the consecutive locations. And, since the total length of pipes for a specific location is 

constant, the only unknown variable on the right-hand side of Eq. (3.3) is the on-site flushing 

duration ( , which varies across locations depending on various factors. For productivity 

improvement, it is imperative to identify the factors causing such variations, which can be 

accomplished by collecting historical data for productivity and related factors. 
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3.3 Data Collection and Descriptive Statistics 

Today, many municipalities use computerized maintenance and management systems (CMMS) 

or comprehensive business solution packages to maintain a variety of information related to 

system attributes, condition of assets, maintenance schedule, work order history, human 

resources, and equipment. This wealth of data is useful for many purposes such as budgeting, 

accounting, scheduling, and performance measures; however, not all of the data or information is 

used for productivity modelling and schedule optimization. For instance, the daily reported man-

hour data may be useful for accounting purposes, but not for performance measurement, since 

the total man-hours includes transportation time, which varies across flushing locations. The 

necessary dataset can be created either by collecting the necessary information from the field, or 

by combining existing databases, or a combination of both. Either way, it is important to consult 

industry experts and existing literature to comprehend and plan the collection process. For 

example, collecting input from field operators may be valuable in ascertaining how oil and 

grease in the flow affects on-site productivity, which types of tree roots are more likely to 

penetrate the pipes, or how climate affects productivity. The level of impact of these factors 

varies across geographical locations and seasons, which makes it imperative to incorporate the 

appropriate factors in order to build efficient models. 

 

Because database management systems and data availability vary across municipalities, this 

chapter provides only a general overview of the data requirements for productivity analysis, on-

site flushing duration estimation, optimization, and simulation modelling. However, the next 

chapter presents a detailed summary of data collection steps followed during the case study 

implementation of the methodology. 
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Fig. 3-2 presents the four types of databases and the variables drawn from each data source 

necessary for this study. The “Drainage Pipes Properties” database provides the physical 

properties of the pipe segments, such as diameter, length, slope, material, year of construction, 

and location coordinates. The “Work Order” database is used to collect the scheduled 

maintenance information, such as pipe segments, flushing frequency, location, and scheduled 

flushing date. The “Field Environment Data” includes useful feedback from field crews 

regarding any blockage or presence of fats, oil, grease, tree roots, or debris in the pipes during 

flushing. Correlating this information with geographical locations of specific types of trees or 

grease sources (e.g., restaurant) will allow the collection and documentation of the effects these 

items have on on-site flushing duration. In addition, climate- or weather-related data such as 

historical rainfall or spring runoff may be useful in terms of exploring the effect of weather on 

storm and combined sewers. 

 

The actual on-site flushing duration data can be collected either by field time study or from 

Automatic Vehicle Locators (AVL) sensors connected with the flushing trucks. Travel-time data 

may be available from Google maps, geographic information system (GIS) software, or a 

regional travel model. All of these databases can be merged by using primary and secondary 

keys such as pipe ID and vehicle ID. 
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Field Environment Data

Flushing date, crew ID, vehicle ID, 

reported man-hour, presence of FOG, 

tree roots, debris, 

Drainage Pipes Properties

Pipe ID, size, length, slope, age, 

materials, location, structural and 

operational conditions ....

GPS and Travel Time Data

Time, Vehicle ID, vehicle capacity, 

location, speed,  stop locations, stop 

durations, estimated travel time...

Workorder Data

Periodic PM schedule: Route ID, Pipe 

ID, location, flushing frequency, 

scheduled date, flushing date...

Productivity Analysis

Descriptive Statistics

On-Site Duration Model

Optimization Model

Simulation Model

 

Fig. 3-2. Data collection schematic 

 

Chughtai & Zayed (2008) developed structural and operational condition prediction models for 

sewer pipes, where various factors that affect the deteriorations are discussed (Fig. 3-3), and it is 

fairly reasonable to assume that the on-site flushing duration is directly proportional to a pipe’s 

operational condition. Thus, the factors shown in the figure can be contributory factors for 

variation in daily productivity, and a reliable model for estimating  for a given location can 

thus be used to calculate the productivity of the flushing activity. 
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Fig. 3-3. Factors affecting the structural and operational conditions of sewer pipes (Chughtai & 

Zayed 2008) 

 

The relationship between on-site flushing duration and these factors (predictor variables) can be 

obtained from descriptive statistics of collected data. Previous studies have shown that the 

productivity (or on-site flushing duration) has both spatial and temporal variations. To 

investigate that, field data of actual on-site duration is to be collected by means of direct field 

observation or automated process (such as AVL connected with flushing motor). Then the 

collected on-site duration data can be plotted against different factors to explore the relationship. 

For example, Fig. 3-4 shows linear relationship between flushing duration and length of pipes 

flushed. 
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Fig. 3-4. Length of pipes vs. duration of high-pressure flushing 

 

 

3.4 On-Site Duration Estimation Model 

The following procedure lays out the formulation used to estimate the on-site flushing duration 

for a given location, i. To begin with, it is important to obtain a complete understanding of the 

factors that influence the on-site flushing duration. Once the factors influencing on-site duration 

are identified, the relationships between predictor variables (such as length of pipe, diameter, 

slope, location, and age) and the response variable (on-site duration in this case) are obtained 

from descriptive statistics. These relationships aid in the selection of the appropriate model to 

capture the variation in the response variable. For example, Zaman et al. (2013) have shown that 

the on-site duration has a linear relationship with the predictor variables, and thus that a multiple 

regression can capture the majority of the variation. 
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3.4.1 Multiple Regression Analysis 

The general form of a multiple linear regression model can be expressed satisfying Eq. (3.4) 

(Kutner et al. 2005): 

   (3.4) 

where  

Yi = flushing duration for location i; 

Xik = predictor variable k for location i; 

βk = parameter for variable k; 

Ԑi = independent N(0,σ
2
) error term for location i; 

i = 1,2,3…….., n; where n is the total number of observations; and, 

p-1 = number of predictor variables. 

 

However, since   0iE  , the response function of Eq. (3.4) for a particular location becomes:  

  (3.5) 

Therefore, models in the form of Eq. (3.5) are developed with the sequential addition of 

variables. The inclusion or exclusion of each factor is determined based on its sign, t-stat, and its 

impact on the model’s overall goodness-of-fit value (adjusted R
2
). Previous research (Agbulos et 

al. 2006; Navab-Kashani et al. 2015) show that the actual on-site duration can be affected by the 

number of stops, which refers to the number of times a crew stops to flush a given set of pipes. 

This variable has a significant effect on the on-site duration of flushing activities, and it differs 

from the number of pipes depending on many factors such as the location of pipes, their 
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upstream facility types, and crew judgement. Because this variable is unknown to the planner at 

the time of scheduling, it should be modelled separately rather than being included in the model 

as a predictor. 

 

3.4.2 Ordered Probit Analysis 

Let, a crew is to flush a number of consecutive sewer pipes (referred to as “number of pipes”, or 

Np) at a particular location, where each of the pipes has an access manhole. Under ideal 

conditions, the number of times the crew should stop to flush all the given pipes (referred to as 

“number of stops”, or Ns) should be equal to Np. However, analysis shows that the difference 

between the number of stops and number of pipes varies within as well as across locations, and 

follows a normal distribution pattern. For example, the number of stops for a 3-pipe location may 

range from 1 to 5 (resulting in Ns – Np varying between −2 and +2), while the same for a 7-pipe 

location may range from 4 to 11 (resulting in Ns – Np varying between −3 and +4). If this 

difference between Ns and Np is assumed to be the error (Ԑ), then, owing to the ordered nature of 

Ns and normally distributed Ԑ, an ordered probit model can be used to estimate the number of 

stops for a given location (McKelvey and Zavoina 1975; Baik et al. 2006). Therefore, the 

probability of the number of stops is first estimated using an ordered probit model, and is then 

used in the primary multiple regression model to estimate the on-site flushing duration. 

 

The basic idea of the probit model is that there is a latent continuous metric underlying the 

observed ordinal responses, partitioned by a series of regions corresponding to the various 

ordinal categories (Baik et al. 2006). This can be mathematically expressed as follows: 

    (3.6) 
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where j=1,2,…..m;  is a latent continuous variable having linear relations with some 

predictors, and µ defines the range ( = −∞, = +∞) for  between which Ns takes the value 

of j. Therefore,  satisfies an equation similar to Eq. (4), and can be written as:  

   (3.7) 

In turn, the probability of a given ordinal outcome (in this case, number of stops) is expressed as:  

  (3.8) 

Substituting from Eq. (7),  

 

 

Therefore,       (3.9) 

Similarly,     (3.10) 

And,      (3.11) 

 

The model can be estimated using maximum likelihood estimation (MLE), satisfying the 

following equation: 

,   (3.12) 

 

The selection of variables for the “number of stops” estimation model requires careful 

consideration. Stepwise regression is a systematic procedure to select variables based on their 

statistical significance; however, because the output from the probit model is used as a predictor 

variable in the multiple regression, the factors used in the former model may also be statistically 

significant for the latter. For example, “work interruption” affects both “number of stops” and 
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“flushing duration”, either directly or indirectly. However, if this factor is included in the probit 

model, it should not be used in the multiple regression, which would imply that the factor 

indirectly affects the duration. Therefore, the selection of variables for the two models is to be 

done not only based on their statistical significance but also on the work procedure, experience, 

and judgement. Hence, trials are performed to select the optimum variables for the probit model 

in such a manner that it provides reliable output without compromising the goodness-of-fit of the 

multiple regression model. 

 

3.5 Schedule Optimization 

This section presents the formal description and formulation of the Drainage Operations 

Scheduling Problem (DOSP) as a schedule or route optimization problem, and then compares 

existing exact and meta-heuristic algorithms with a proposed heuristic algorithm. 

 

3.5.1 Problem Statement 

From a theoretical perspective, DOSP can be viewed as a fully connected graph, G, with n 

vertices that represent the scheduled O&M locations across the city, where each closed tour 

represents the locations visited by a crew in a single work shift. If the location of the yard is 

denoted by 0, there exist n! possible tours (sequences of locations to visit) among which the 

optimal tour (representing the least travel time) is to be determined. In addition, DOSP requires 

partitioning of the feasible tours for each day. Hence, if n locations are scheduled to be flushed in 

j days, there exist  splitting possibilities for each combination of TSP. For example, if 5 

locations are to be flushed in (a maximum of) 2 days, with location 0 denoting the yard, there can 

be {5! * (4C1)} = 480 different combinations of routing sequences. Fig. 3-5 illustrates examples 
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of three different combinations for flushing 5 locations in 2 days, each of which may have 

different travel time and unused time.  

1
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Fig. 3-5. Examples of different combinations of 5 locations flushed in 2 days 

 

This complexity can be reduced by some margin based on the following consideration: the 

following two partitions result in the same amount of travel and unused time, provided that 

different days do not affect the travel and flushing time, and that unused time is considered at the 

end of both days. 

 Partition 1 Day 1: {0-1-2-0}, Day 2: {0-3-4-5-0}  

 Partition 2 Day 1: {0-3-4-5-0}, Day 2: {0-1-2-0} 

However, depending on the travel distance and on-site flushing duration, these locations could 

also be flushed in 1 day. In this context, the number of days could be either 1 or 2, which results 

in calculating the total feasible combinations using the following expression: 

�𝑛!  
 𝑛−1
𝑗−1

 

 𝑗 !

𝑘

𝑗=𝑙

 

 

 

(3.13) 

 

where 

n = number of locations; 

k = maximum expected number of days to flush all locations;  
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l = minimum expected number of days to flush all locations; and, 

l ≤ k ≤ n, assuming that no single location takes longer than one day.  

 

From Eq. (3.1), it is easily understood that the total feasible combinations grows rapidly (faster 

than exponentially) as the number of locations increases, making the optimization problem 

difficult to solve within a reasonable amount of time. For instance, if 150 locations (n) can be 

flushed in 20 to 30 crew-days (k), the total possible combinations calculated using Eq. (3.1) is 

found to be 1.62E+268, which is a large problem to solve in reasonable time. 

 

Many exact and approximate algorithms (such as integer programming, evolutionary algorithms, 

and heuristic algorithms) have been proposed and implemented over the years for similar 

problems (Laporte 1992). However, some practical situations may not have the sufficient time 

available to run lengthy algorithms. For DOSP, municipalities can run the schedule optimization 

model daily, weekly, or monthly. In any case, the model should be fast enough to quickly 

generate an optimal (or near-optimal) sequence of locations to be visited by the crews. The 

advantage of running a monthly schedule optimization model (say, for n = 150) at the beginning 

of the month is that it can produce a better result because the splitting portion offers more 

options from which to choose. However, the actual work may deviate from the planned sequence 

as the month progresses due to the stochastic nature of flushing duration. On the other hand, 

running the model every day for fewer locations can generate a sequence fairly quickly; this, 

however, compromises the quality of the results. Either way, it may be necessary to re-optimize 

the sequence intermittently in order to avoid propagation of schedule deviation. Therefore, it is 
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more realistic from a practical perspective to use an optimization algorithm that can quickly 

generate a solution that is reasonably close to optimality. 

 

 

3.5.2 Problem Formulation 

The primary objective of this study, to improve the productivity of drainage network 

maintenance activities, can be realized by facilitating efficient utilization of daily effective work 

time (i.e., minimizing travel and end-of-shift unused times). The integer programming 

formulation of the problem can be written as follows: 

Let,  

N = {1,2,3,4,…..,n} is the set of locations scheduled to be flushed in a given month; 

, containing the locations flushed on the k
th

 day; 

K = number of days taken to flush all the scheduled locations; 

T = shift length (typically 8 hours); 

T
w

k = end-of-shift unused time for k
th

 day; 

Tij = travel time between location i to j, i ≠ j;  

γ = relative importance of saving end-of-shift unused time vs. travel time, 0 ≤ γ ≤ 1; and 

= expected on-site flushing duration at location i.   

 

Thus, the objective function can be expressed as follows: 

min �𝛾�𝑇𝑘
𝑤

𝐾

𝑘=1

+ (1 − 𝛾) � 𝑇0𝑖𝑥0𝑖𝑘 + 𝑇𝑗0𝑥𝑗0𝑘 + ��𝑇𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝑥𝑖𝑗𝑘 

𝐾

𝑘=1

  ;  𝑖 ≠ 𝑗 

 

 

(3.14) 
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Subject to, 

  

𝑥𝑖𝑗𝑘 = �
1      𝑖𝑓 𝑡ℎ𝑒 𝑐𝑟𝑒𝑤 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑗
0                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(3.15) 

 

𝑥𝑜𝑖𝑘 = �1      𝑖𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑘𝑡ℎ  𝑑𝑎𝑦 
0                                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(3.16) 

 

𝑥𝑗0𝑘 = � 1      𝑖𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑘𝑡ℎ  𝑑𝑎𝑦 
0                                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(3.17) 

 

0 ≤ 𝑥𝑖𝑗𝑘 ≤ 1 ;      𝑖, 𝑗 ∈  𝑆𝑘  𝑎𝑛𝑑 ∉  𝑆𝑘
′  

 
(3.18) 

 

��𝑥𝑖𝑗𝑘

𝑛

𝑖=1

𝐾

𝑘=1

= 1;     𝑖 ≠ 𝑗;    ∀𝑗 

 

(3.19) 

 

��𝑥𝑖𝑗𝑘

𝑛

𝑗=1

𝐾

𝑘=1

= 1;     𝑖 ≠ 𝑗;    ∀𝑖 

 

(3.20) 

 

�𝑥0𝑖𝑘

𝑛

𝑖=1

= �𝑥𝑗0𝑘

𝑛

𝑗=1

= 1;     ∀𝑘 

 

(3.21) 

 

And, the disjoint sub-tour elimination constraint within each day,  

𝑢𝑖 −𝑢𝑗 + 𝑛𝑥𝑖𝑗 ≤ 𝑛 − 1;      ∀𝑘 
 

(3.22) 

 

where ui and uj are alternate variables; ui = t if location i is the t
th

 location visited on the tour 

(Papadimitriou and Steiglitz 1982). Understandably, the number of disjoint sub-tour elimination 
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grows rapidly as the number of locations increases. However, an important practical assumption 

that may reduce this number significantly is that an 8-hour shift can typically accommodate 5-6 

high-pressure flushing (HPF) locations. Under this consideration, it may be feasible (in most 

cases) to eliminate disjoint sub-tours totalling only up to 3 or 4 locations. 

 

In addition, a flusher truck has certain capacities for its debris and water tanks. The water tank 

empties as water is used to flush the pipes, and the debris tank fills as debris is pumped out of the 

pipes. Both of these rates vary across locations depending on many factors such as pipe length, 

diameter, and the amount and type of debris; however, it is fairly reasonable to assume that these 

rates are proportional to the flushing duration. In any case, the trucks have to travel to the nearest 

dumping yard if the debris tank reaches its capacity, or travel to the nearest water filling station if 

the water tank requires refilling, each case resulting in additional travel. These capacity 

constraints can be added to the formulation by the following equation: 

        

       (3.23) 

 

where 

ωi = amount of water used at location i; 

δi = amount of debris collected from location i; 

Ŵ = capacity of water tank; and 

Ḋ = capacity of debris tank. 
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It is to be noted that, although this is a non-linear problem due to the daily split of tours and the 

capacity constraints, the above formulation allows the problem to be solved using a simplex 

algorithm, resulting in a guaranteed optimal solution. Also, due to the stochastic nature of the on-

site flushing duration, the formulation uses expected duration during the optimization process. 

The actual routing and work flow is then simulated against the optimized schedule, which is 

described in section 3.6 of this chapter.  

 

3.5.3 Tour Splitting 

The daily split of tours can be executed in several different ways, depending on the following 

two conditions: (i) overtime policy—whether the crews are allowed to work beyond the end of 

the shift,; and (ii) location splitting—whether the crews are allowed to leave an incomplete 

location at the end of the shift and return to complete the job the following day. Based on these 

conditions, the daily tour splitting is performed by one of three methods: 

1) In the “no overtime, no location split” option, the crews will return to the yard if the 

expected travel plus the on-site duration for the next location is greater than the time 

available (i.e., time remaining before the end of the shift). The other condition to consider 

in this option is that, once a location is visited, the crew must complete the job before 

going to the next location or the yard. This condition restricts crews from leaving an 

incomplete location at the end of the shift and returning the next day to finish the job. 

Understandably, this will result in more end-of-shift waste time. 

2) The second option allows overtime when necessary; however, no location splitting is 

allowed. Hence, if a location with a long expected duration is visited near the end of the 
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shift, the crew must finish the job before returning to the yard. This option will result in 

increased overtime. 

3) The third option consists of a mix of options one and two, where both overtime and 

location splitting are allowed, depending on the situation. For this option, the crews 

utilize anticipated duration of the locations, as well as their experience and judgement to 

decide when to return to the yard. If a location has not been completed by the end of the 

shift, the crew may return to the yard and return to that location to complete it the 

following day. This option may reduce the amount of end-of-shift waste time or 

overtime; however, it will result in more travel due to visiting the same location twice. 

Moreover, the on-site duration model presented in the previous section reveals that “work 

interruption” results in a higher number of stops, which will eventually increase the on-

site duration.  

 

3.5.4 Integer Linear Programming (ILP)  

Although this formulation guarantees optimal solution, it is not feasible to apply this method for 

a large number of locations due to runtime or space limitation. Therefore, the formulation is 

tested on a small dataset, comprising 12 locations (and the yard as 0). The locations and their 

expected on-site durations are presented in Table 3-1 and Fig. 3-6. As can be seen in the figure, 

the locations are spread across four quadrants to resemble different zones or neighbourhoods 

within an operator’s jurisdiction. 
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Table 3-1. Randomly generated test locations (with coordinates and expected flushing durations) 

Location 

ID X Y 

Expected 

Duration (min) 

0 0 0 0 

1 4 5 27 

2 18 9 81 

3 13 17 115 

4 17 −10 59 

5 7 −19 94 

6 3 −13 38 

7 −5 18 68 

8 −19 11 71 

9 −3 1 32 

10 −17 −5 86 

11 −6 −16 84 

12 −10 −18 23 

 

 

1{(4,5),27}
2{(18,9),81}

3{(13,17),115}

4{(17,-10),59}

5{(7,-19),94}

6{(3,-13),38}

7{(-5,18),68}

8{(-19,11),71}

9{(-3,1),32}

10{(-17,-5),86}

11{(-6,-16),84}

12{(-10,-18),23}

0{(0,0),0}

 
Fig. 3-6. Graph showing randomly generated locations {(X,Y), duration} 

 

For routing, it is assumed that a single given crew has been assigned to flush all 12 locations, and 

the effective length of shift is 6 hours. Each day, the crew will start from the yard, flush as many 

locations as possible and return to the yard before the end of the shift. A common approach to 
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accomplishing this is neighbourhood-based routing, where the crew starts with a specific 

neighbourhood, finishes all the locations within it, and then moves to the next neighbourhood. If 

overtime is not allowed, the crew must return to the yard when the remaining time within a shift 

is not sufficient to perform the cleaning activity at the next location. Fig. 3-7 shows the routing 

for this approach, where the different colours represent different days. 

  

 

Fig. 3-7. Neighbourhood-based routing of scheduled locations 

 

It can be seen that the crew starts from location 1 (Fig. 3-1), and follows a routing to the next 

location within the neighbourhood. When a neighbourhood is completed and there is still 

sufficient time remaining to start the next neighbourhood, the nearest location to the 

neighbourhood just completed is selected. However, because the on-site duration of the locations 

is not taken into account in this approach, it can result in either overtime or unused time. For 

instance, as presented in Table 3-2, the unused time at the end of day 2 is 62 minutes, because 

the next location within the neighbourhood (location 10) has a lengthy expected on-site duration, 

and the crew cannot finish before the end of the day. Therefore, this routing option results in a 
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total of 199 minutes of travel, and 70 minutes of unused time; adding these together, the total 

non-value added time (NVA) is 269 minutes. As a general expression, this NVA time can be 

expressed as a percentage of total value-added time for the scheduled period, which equals the 

total flushing time of all 12 locations (778 minutes). Thus, the NVA/VA ratio is 34.58%. This 

ratio is used in further analysis of optimization results, as it can serve as a representative 

comparative measure for all of the randomly generated graphs.  

 

It is to be noted that the last day’s unused time is not added to the calculation of unused time, as 

O&M activities are a continuous process and more locations can be added to the schedule before 

the end of the period. Moreover, it is evident that this effect diminishes for longer schedule 

periods (e.g., 1 week or longer), where the optimization is performed for a larger number of 

locations (e.g., over 30 locations). 

 

Table 3-2. Daily travel time and unused time for neighbourhood-based routing option 

Day 
Daily Flushing Time 

(minutes) (DFT) 

Daily Travel Time 

(minutes) (DTT) 

Daily Unused Time 

360-DFT-DTT 

1 282 70 8 

2 239 59 62 

3 257 70 - 

TOTAL 778 199 70 

Total VA 778 - - 

Total NVA - 269 

NVA/VA% 269/778 = 34.58% 

 

Now, the same dataset is optimized by means of integer linear programming (ILP) formulation 

using the Premium Solver software platform, which employs simplex algorithm to solve linear 

problems. The results of the optimized routing are presented in Fig. 3-8 and Table 3-3. It can be 

seen that the overall non-value added time (222 minutes) is reduced significantly by the 
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optimization, although the travel time has increased. This is because of the fact that no relative 

weighting between travel and unused times has been assigned to the optimization. Therefore, the 

algorithm reduces the overall NVA time. 

 

 

Fig. 3-8. Optimized routing by ILP formulation using simplex algorithm 

 

Table 3-3. Daily travel time and unused time for optimized routing using ILP 

Day 
Daily Flushing Time 

(minutes) (DFT) 

Daily Travel Time 

(minutes) (DTT) 

Daily Unused Time 

360-DFT-DTT 

1 281 77 2 

2 272 87 1 

3 225 55 - 

TOTAL 778 219 3 

Total VA 778 - - 

Total NVA - 222 

NVA/VA% 222/778 = 28.53% 

 

Assigning a higher importance on travel time saving (i.e., γ > 0.5 in Eq. [3.14]) can improve the 

solution in terms of travel. Thus, the ILP provides a different solution, where the overall NVA is 
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the same as before; however, travel is reduced relative to unused time. The solution results are 

presented in Fig. 3-9 and Table 3-4.  

 

 

Fig. 3-9. Optimized routing by ILP formulation (with higher relative weighting on travel) 

 

Table 3-4. Daily travel time and unused time for optimized routing using ILP (with higher 

relative weighting on travel) 

Day 
Daily Flushing Time 

(minutes) (DFT) 

Daily Travel Time 

(minutes) (DTT) 

Daily Unused Time 

360-DFT-DTT 

1 281 77 2 

2 272 73 15 

3 225 55 - 

TOTAL 778 205 17 

Total VA 778 - - 

Total NVA - 222 

NVA/VA% 222/778 = 28.53% 

 

This provides the proof of concept of the ILP formulation of DOSP. However, as discussed 

above, this formulation can only be realistically applied to small datasets. This research, 

therefore, explores the suitability of a meta-heuristic algorithm to solve the problem. 
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3.5.5 Genetic Algorithm 

Genetic Algorithm (GA) is a widely used meta-heuristic search algorithm inspired by the process 

of evolution (Holland 1992). Although GA does not guarantee optimality, it can be easily applied 

to a variety of large, practical problems where quick runtime is important and a near-optimal 

solution is acceptable. A GA model has thus been developed for the DOSP, as per the flowchart 

presented in Fig. 3-10. The process involves generating several “parents”, each having a 

randomly generated sequence of all the locations. Thus, starting from day 1, the sequence is 

followed until the day’s remaining time is less than the time necessary to travel to and flush the 

next location. The end-of-shift unused time is calculated as the unused time at the end of the shift 

after the crew has returned to the yard, and the daily travel time (or distance) is recorded. The 

next day begins with travelling to and flushing the next location in the sequence, and so on, until 

all the scheduled locations are completed. The total unused time is calculated by adding the daily 

wastes for k-1 days, since the time remaining after completing all the given locations is not 

considered unused time. Thus, each parent has total travel and total unused times for the 

scheduled period, and the fitness of the parent is calculated by adding these together. However, 

in this case, a lower value of the fitness function yields more desirable results. After repeating 

the previous steps for all the parents, they are sorted according to their fitness values. Then, 

elitist selection is used to preserve the best solution, and parents with high fitness are selected for 

crossover. 
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Update best solutionKeep previous solution

Generate p number (user given) of parents (each 
with random route sequence)

For each parent, follow the generated sequence 
and finish flushing all the routes

Calculate Fitness = TT + TW 
sort parents according to fitness; Select fittest 

parent from current generation

Current 
Fitness >

Previous? 

Termination 
criteria 

satisfied? 

Select the fittest parent (unaltered) as the first 
child (Elitist selection); Select remaining (p-1)  

children by  roulette wheel algorithm based on 
fitnesses for crossover

Crossover between parents - Partially Matched 
Crossover (PMX)

Mutate randomly selected (based on mutation 
rate) children out of (p-1), by randomly 

swapping & reversing partial sequence

Each child becomes parent for next generation

Stop and report results

Notes: 

TT = Total travel time 

TW = Total waste time 

 

 

Yes 

Yes 

No 

No 

 

 

Fig. 3-10. Genetic algorithm flowchart for DOSP 
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For combinatorial problems such as DOSP, a partially-matched crossover (PMX) technique is 

used to avoid the repetition of locations in the schedule, and thus a new generation of children is 

obtained (Fig. 3-11). Mutation operation is performed for a few randomly selected children to 

prevent the algorithm from becoming stuck in the local optimal. Following this step, the fitness 

of all children are calculated again, the best one is kept unaltered, and the remaining children 

(ordered according to their fitness) are carried over as parents to the next generation (or trial). 

Thus, progress toward an improved solution is expected over the course of the trials (Fig. 3-12). 

 

Parents 3 6 5 7 4 1 2 4 3 7 1 5 6 2

Crossover points 3 6 5 7 4 1 2 4 3 7 1 5 6 2

3 6 5 1 5 6 2 4 3 7 7 4 1 2

Parents 3 6 5 7 4 1 2 4 3 7 1 5 6 2

Crossover points 3 6 5 7 4 1 2 4 3 7 1 5 6 2

3 6 5 7 4 1 2 4 3 7 1 5 6 2

3 7 4 1 5 6 2 5 3 6 7 4 1 2

Conventional crossover - 

results in duplication 

or omission

PMX

 

Fig. 3-11. Partially-matched crossover (PMX) process 
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Fig. 3-12. GA convergence 

 

The algorithm is coded using MS Visual Studio, and the same graph G (Fig. 3-6) is used for 

optimization. Fig. 3-13 and Table 3-5 present the results of the optimization using GA. Equal 

weighting is applied to travel and unused times, and the results show that GA provides a greater 

reduction in NVA than the neighbourhood-based approach. As expected, it does not provide the 

optimal solution; however, at 30.38%, the NVA/VA ratio is close to the optimal value obtained 

from ILP. The performance of GA largely depends on the number of trials (generations), 

population size, cross-over rate, and mutation rate. Understandably, conducting more trials can 

lead to a better solution; however, more trials also necessitates longer runtime. Nonetheless, the 

main advantage of this algorithm is that it can be applied for a large number of locations, and a 

near-optimal solution can be obtained within a reasonable time. 
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Fig. 3-13. Optimized routing using GA 

 

Table 3-5. Daily travel time and unused time for optimized routing using GA 

Day 
Daily Flushing Time 

(minutes) (DFT) 

Daily Travel Time 

(minutes) (DTT) 

Daily Unused Time 

360-DFT-DTT 

1 282 70 8 

2 271 62 27 

3 225 68 - 

TOTAL 778 200 35 

Total VA 778 - - 

Total NVA - 235 

NVA/VA% 235/778 = 30.21% 

 

However, several researchers have stated the shortcomings of traditional GA in solving 

combinatorial problems similar to VRP, as binary representations and classical crossover 

techniques can lead to invalid tours with missing or duplicate locations (Prins 2004; Potvin 

2009). The limitation is observed for DOSP as well, when the model has been tested for 

randomly generated locations. Although the algorithm works reasonably well for a small number 
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of locations (e.g., fewer than 50), its performance declines as the number of locations increases. 

Prins (2004) recommended several techniques to improve the performance of GA, such as 

efficient splitting procedure, or inclusion of a good heuristic for initial population. This study 

thus develops a heuristic algorithm, which is described in the following section.  

 

3.5.6 Heuristic Algorithm 

For the integer programming formulation of DOSP, it is evident that the problem size grows 

rapidly with increasing number of locations in the schedule. However, since the objective value 

in Eq. (2) is equivalent to , and assuming γ = 0.5, a simplified expression 

of the objective function can be written as: 

 

𝑚𝑎𝑥 �� �𝐸 𝑇𝑖𝑘
𝑓
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(3.25) 

 

 

According to this formulation, it is possible to maximize the work time for daily subsets while 

minimizing the total travel for the scheduled period. Because of rapid runtime requirements for 

daily operations, this study proposes to use a meta-heuristic or heuristic algorithm for this 

problem. It should be noted that another assumption which simplifies DOSP formulation is that 
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the productivity does not vary significantly across crews. This allows for the development of the 

model for a single vehicle, and each daily subset (or closed tour) of the optimized sequence can 

then be assigned to an individual crew.  

 

From Eq. (3.24) and Eq. (3.25), it is clear that the objective of DOSP is essentially to maximize 

flushing time while minimizing travel time, which can be achieved by prioritizing the locations 

with longer flushing durations and shorter travel. Hence, a greedy approach is applied where the 

algorithm prioritizes the next location by the proportion of its flushing duration to the travel time. 

The algorithm flowchart is presented in Fig. 3-14, which shows that  is used as the 

priority function (PF) at each step in order to rank all of the remaining locations. However, the 

constraint function is also checked for each remaining location to determine whether or not the 

remaining time within the shift is greater than its travel and flushing time. Once the location is 

flushed, it is assigned a negative priority value so that it appears at the bottom of the list of next 

possible locations. It should be mentioned that the expected flushing duration at location 

i+1,E(Duri+1) can be obtained from an on-site flushing duration estimation model (Zaman et al. 

2015). Although the algorithm does not guarantee an optimal solution, the primary advantage of 

this algorithm is that it has a brief runtime (as it does not require any trials) and can be easily 

updated along the progress of the day if necessary.  
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No

Update TW

 

Fig. 3-14. Heuristic algorithm for DOSP 

Notes: 

 

TT = Total travel time 

TR = Time remaining 

TW = Total waste time 
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When the heuristic algorithm is used to optimize the above-mentioned set of locations, it is found 

that the result is not satisfactory. The NVA/VA ratio is found to be 38.1%, which is higher than 

neighbourhood-based, genetic algorithm, and ILP optimization (the results are presented in Fig. 

3-15 and Table 3-6). This happens due to the fact that the algorithm attempts to prioritize the 

locations with higher value (longer on-site duration) and lower NVA time (travel time). In other 

words, there is a higher likelihood of choosing larger (longer-duration) locations at the beginning 

of a shift, and leaving the smaller locations to fill the bins toward the end. The small dataset used 

to test the algorithm does not offer sufficient options to fill the bins, and therefore the algorithm 

fails to realize its full potential in terms of performance. However, in reality, large municipalities 

have hundreds of locations in the schedule for which the heuristic is expected to perform better. 

Hence, the performance of the heuristic algorithm is evaluated for an increasing number of 

locations. 

 

 

Fig. 3-15. Optimized routing using heuristic algorithm 
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Table 3-6. Daily travel time and unused time for optimized routing using heuristic algorithm 

Day 
Daily Flushing Time 

(minutes) (DFT) 

Daily Travel Time 

(minutes) (DTT) 

Daily Unused Time 

360-DFT-DTT 

1 255 56 49 

2 275 77 8 

3 248 106 - 

TOTAL 778 240 56 

Total VA 778 - - 

Total NVA - 296 

NVA/VA% 296/778 = 38.10% 

 

 

3.5.7 Performance of Heuristic Algorithms for Increasing Number of Locations 

This experiment entails creating randomly generated graphs with increasing number of locations. 

Different graphs are created, from a small 10-location graph to a 100-location graph, with the 

number of locations increasing by 10 for each consecutive graph. The size of the graph is kept 

the same to avoid the bias of excessive travel time with larger graphs. However, the expected 

durations vary between 20 and 200 minutes, following uniform distributions. This represents the 

situation where optimization is done for a longer period (e.g., 1 month). The graphs are then 

optimized by the greedy heuristic, and the traditional GA, and the expected NVA/VA% ratios are 

compared. The results are presented in Fig. 3-16 and Fig. 3-17, which are obtained from two 

different datasets. The effective shift lengths are 7 hours and 6 hours for datasets 1 and 2, 

respectively. 
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Fig. 3-16. Algorithm performance with increasing number of locations (random dataset 1) 
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Fig. 3-17. Algorithm performance with increasing number of locations (random dataset 2) 
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It is found that the performance of traditional GA decreases for larger graphs, while the 

performance of the heuristic shows improvement with increasing number of locations. This is 

clearly observed by reduction in expected NVA/VA% ratio for heuristic algorithm. This 

complies with the expectation that the heuristic algorithm improves when it has a greater 

selection of locations to fill the smaller timeslots toward the end of a shift. On the other hand, the 

NVA/VA% ratios increase for larger graphs when traditional GA is used. This occurs because 

the same number of iterations (20,000) is allowed for all the datasets. It is expected that the 

performance of GA is likely to improve by allowing more trials and larger population size, 

although that would necessitate longer runtime. However, as suggested by Prins (2004), the 

performance of GA to solve combinatorial problems can also be improved by incorporating a 

strong heuristic as the initial population. To do so, a hybrid GA can be developed where the 

optimized sequence obtained from the heuristic algorithm is used as the initial population. The 

following section describes the hybrid algorithm. 

 

3.5.8 Hybrid Genetic Algorithm 

Genetic algorithm is a meta-heuristic stochastic search approach that can produce reasonably 

good solutions for a variety of problems. The algorithm can also be refined to improve its 

performance for particular needs. Over the years, researchers have developed many different 

variants of GA. In some cases, it has been combined with other search algorithms to develop 

hybrid GA (El-Mihoub et al. 2006). In the present study, a hybrid GA is developed by combining 

GA with the heuristic algorithm, which provides the generation of the initial population. The 

remaining steps of the algorithm are kept the same.  
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Heuristic

 

GA with Heuristic

 

Fig. 3-18. Test case 1 - Optimum routing by (top) heuristic, and (bottom) hybrid GA 
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Table 3-7. Results for test case 1 

Number of locations = 30 

Total on-site duration = 2039.22 

 Heuristic Hybrid (Heuristic + GA) 

Total Travel Time 274 232 

Total Unused Time 28 13 

Total NVA  302 245 

NVA/VA 14.79% 12.02% 

 

The hybrid GA is tested on several randomly generated graphs (test cases), and the improvement 

is compared with the heuristic algorithm. Results from two different datasets are presented here. 

Fig. 3-18 and  

Table 3-7 present the routing results for the heuristic algorithm and hybrid GA for test case 1, 

where it can be seen that the hybrid GA makes a few modifications in the heuristic routing, 

which reduces the NVA/VA ratio from 14.79% to 12.02%. A similar result is observed for test 

case 2, where the NVA/VA ratio is reduced from 18.50% to 15.11% (Fig. 3-19 and Table 3-8).  

 

This provides a clear indication that it is possible to improve the GA by using the heuristic 

sequence as the initial population. However, all of the random datasets used for testing the 

hybrid algorithm are relatively small (30 locations), with 100,000 trials (generations) required to 

reach this level of improvement; it is evident that achieving similar improvement for larger 

datasets will necessitate longer runtime. 
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Heuristic

 

GA with Heuristic

 

Fig. 3-19. Test case 2 - Optimum routing by (top) heuristic, and (bottom) hybrid GA 

 

 



55 

 

Table 3-8. Results for test case 2 

Number of locations = 30 

Total on-site duration = 3123 

 Heuristic Hybrid (Heuristic + GA) 

Total Travel Time 397 372 

Total Unused Time 181 100 

Total NVA  578 472 

NVA/VA 18.50% 15.11% 

 

An interesting finding while producing improved solution in hybrid GA is the combination of 

cross-over and mutation probabilities. It is known that the success of evolutionary algorithm 

largely depends on these operators, and previous studies have reported a wide range of values for 

crossover and mutation probabilities (Nagata & Kobayashi 2013). A common combination is a 

relatively high crossover rate and a low mutation rate, and the traditional GA described in 

Section 3.5.5 in this study used values in the ranges of 0.8 to 0.9 and 0.1 to 0.2 for the two 

operators respectively. However, the optimum values for the hybrid GA is found to be 0.5 for 

both. A possible explanation for this is that when an already good solution (obtained from 

heuristic) is used as the initial population, it is not likely to be improved by crossover with a 

randomly generated inferior solution. Instead, setting a higher mutation probability increases its 

chances to improve by swapping locations within itself. The length of the mutation operator also 

plays an important role, which, in this case was done for a small portion of the sequence. This 

results in small changes in the route sequence which is clearly observable from the Figures. 

However, this aspect can be studied in further detail in future studies. 

 

3.6 Simulation and Sensitivity Analysis 

As described above, one of the unique properties of DOSP is the variation in on-site duration, 

which occurs across locations as well as across observations within a location. The on-site 
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duration estimation model described in Section 3.4 is expected to capture the majority of the 

variations across locations, which is considered during the optimization process by means of 

expected value for each location. However, the uncaptured stochasticity for each location in the 

optimized schedule may still vary from the expected values. When multiple locations are 

scheduled for a shift, the duration variations in each location may compensate for each other, and 

the crews may still be able to finish the shift’s work on time. However, large variations from 

expected values may cause deviation from the schedule and lead to overtime or unused time at 

the end of the shift. It is thus necessary to check the robustness of the proposed algorithms for 

variation in the on-site durations.  

 

In the literature, several strategies exist to optimize stochastic process, which falls under the field 

of stochastic programming. Some examples of available methods include sample average 

approximation method (Kleywegt et al. 2001), two stage stochastic programming (Huang and 

Loucks 2000), a priori strategies (Bertsimas 1992), and robust optimization (Bertsimas et al. 

2011). The basic idea underlying these methods is the combination or integration of optimization 

and simulation. In this study, the optimization is performed using expected on-site duration 

values for the locations to be scheduled, and then simulation is performed to evaluate the 

robustness of the proposed algorithm. 

 

3.6.1 Effect of Variation in On-site Duration  

Once the optimized schedule is available, the first step in simulating the effect of variation in on-

site duration is to sample data from the appropriate distribution. For this purpose, it is assumed 

that the on-site duration for a given location is normally distributed with a known variance. Thus, 
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it is possible to sample on-site duration for each location in the schedule using the inverse 

transform method. 

 

0

10

20

30

40

50

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

F
re

q
u

en
cy

On-site Duration in minutes 

Normal Distribution Sampling of On-Site Duration

(Expected duration 82 min, COV 10%)

 

0

5

10

15

20

25

30

35

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

F
re

q
u

en
cy

On-site Duration in minutes 

Normal Distribution Sampling of On-Site Duration

(Expected duration 143 min, COV 10%)

 

0

5

10

15

20

25

30

35

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

F
re

q
u

en
cy

On-site Duration in minutes 

Normal Distribution Sampling of On-Site Duration

(Expected duration 82 min, COV 20%)

 

0

5

10

15

20

25

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

F
re

q
u

en
cy

On-site Duration in minutes 

Normal Distribution Sampling of On-Site Duration

(Expected duration 143 min, COV 20%)

 

0

5

10

15

20

25

30

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

F
re

q
u

en
cy

On-site Duration in minutes 

Normal Distribution Sampling of On-Site Duration

(Expected duration 82 min, COV 30%)

 

0

2

4

6

8

10

12

14

16

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

F
re

q
u

en
cy

On-site Duration in minutes 

Normal Distribution Sampling of On-Site Duration

(Expected duration 143 min, COV 30%)

 

Fig. 3-20. Normal distribution sampling of on-site duration for two different locations 

 

In reality, each location would have its own mean and variance; however, the expected duration 

(used during the optimization process) can be utilized as the mean for the simulation. And, then 

sampling is performed for each location using three different coefficient of variation (COV) 

levels—10%, 20%, and 30%. This allows exploring the sensitivity of schedule deviation on the 
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variation in on-site duration. Fig. 3-20 presents normal distribution sampling results for two 

different locations for varying coefficient of variation. 100 runs are performed for sampling each 

location for each COV value. Here, the charts on the left of the figure represent a location having 

an expected duration of 82 minutes. The top chart shows the distribution for 10% COV, which 

can be seen to vary between 60 and 110 minutes. As expected, this range becomes wider with 

increasing COV. The center-left shows the sampled duration for 20% COV which ranges from 

50 to 120 minutes. The bottom-left shows a variation between 30 to 140 minutes, which is highly 

unlikely for an 82-minute expected-duration location. However, majority of samples stay within 

the range between 70 and 110 minutes. The charts on the right show the distribution of sampled 

data for a location having an expected duration of 143 minutes. It is clearly observed that using 

the same COV ranges (10% to 30%) results in even wider ranges, where the data range from 70 

to 200 minutes for 30% COV.  

 

The next step is to simulate an actual shift’s work by following the given optimized sequence by 

using the sampled on-site duration. Travel times are calculated by Euclidean distances between 

locations in the graph, and elapsed times are calculated at the end of each shift. If the elapsed 

time is less than the effective shift length, it is considered as unused time, while overtime time is 

considered when elapsed time exceeds the effective shift length. This way, unused or overtimes 

are recorded for each simulation run. This method is applied for a graph containing 100 

locations, which has first been optimized using the heuristic algorithm. The result from the 

optimization provided with closed routes for 37 shifts. Travel times and unused/overtimes are 

recorded for each of these 37 shifts for each run of simulation. It is assumed during the 



59 

 

simulation that the crews will adhere to the given sequence regardless of variations observed 

during the progress of the shift. 

 

Fig. 3-21 presents the scheduled deviations obtained from 100 simulation runs. It can be seen 

that the variations in on-site durations may cause unused time (positive values in the figure) or 

overtime (negative values in the figure) at the end of the shift. As expected, the deviations are 

more probable for larger variations (higher COV value, e.g., 30%) in on-site duration. For 10% 

COV, the majority of the observations are within acceptable limits. However, an interesting 

finding at this point is that the mode of the schedule deviation data occurs on the positive side 

(unused time).  
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Fig. 3-21. Schedule deviation due to variations in on-site duration 

 

The reason for this is the shift-length constraint used in the optimization algorithm. Because the 

effective shift length is used as a hard constraint, each optimized sequence has an expected 
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unused time. Hence, a certain amount of unused time is always generated at the end of a shift, 

which causes the mode to appear on the positive side. It is common practice in operation 

research to assign penalties (as soft constraints) to reduce such occurrences. However, allowing a 

certain amount of leeway during the optimization can also shift the mode toward zero (Fig. 

3-22). For example, it is found from Fig. 3-21 that the modes of all three distributions appear 

around the value of +20, which represents 20 minutes of unused time.  
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Fig. 3-22. Schedule deviation due to variation in on-site duration (with 20 minute leeway during 

optimization) 

 

Therefore, the schedule is re-optimized using an effective shift length of 6 hours and 20 minutes, 

which provides a new optimized schedule. This schedule is then simulated for an effective shift 

length of 6 hours. The results are presented in Fig. 3-22, which clearly shows that the modes 

have shifted to the left and appear closer to zero. Hence, allowing leeway during the optimization 

process can effectively reduce the likelihood of having more unused time at the end of the shift. 
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However, on the contrary, this may result in more overtime. Therefore, the amount of leeway to 

be considered in the optimization depends on the operator’s overtime policy, length of shift, size 

of municipality, and distribution of on-site duration. Notwithstanding, the probability of schedule 

deviation can be significantly reduced if the work process is standardized and a reliable on-site 

duration model is available. 

3.6.2 Effect of Shift Length 

In this section, the effect of shift length on expected daily productivity is explored. The analysis 

is performed for 10 different randomly generated graphs, each having 100 locations. The 

schedules are optimized using the heuristic algorithm for three different shift lengths: 8 hours, 9 

hours, and 10 hours. 
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Fig. 3-23. Effect of shift length on non-value added time 

 

For all cases, effective shift lengths are considered to be 2 hours less than total shift length to 

allow sufficient time for start-up, cleanup, lunch, and other breaks. As daily productivity is 

inversely proportional to NVA/VA ratio, it is expected that a lower ratio will result in higher 
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productivity. For all 10 datasets, the results show that longer shifts can produce higher 

productivity (Fig. 3-23). However, this does not consider reduced productivity as a consequence 

of longer working hours. 

 

3.7 Summary of Methodology 

The basic framework of this research is presented in this chapter, including productivity analysis, 

data collection and descriptive statistics, development of an on-site duration estimation model, 

formulation and development of algorithms for schedule optimization, and simulation. The 

optimization and simulation is performed for randomly generated, fully-connected graphs. It is to 

be noted that the values of NVA or NVA/VA ratios are not to be taken as representative or 

conclusive values, as they depend on the properties of a randomly generated graph and Euclidean 

distance. However, the simulation results provide useful insight into the comparative 

performance of different algorithms that can be used to solve the drainage operations scheduling 

problem. 
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4 CASE STUDY 

 

4.1 Introduction 

The framework described in the Methodology chapter is applied to a case study in Edmonton, 

Alberta, Canada. Along with the results of the on-site duration model, schedule optimization 

using a heuristic algorithm, and simulation, this case study includes a review of operation and 

maintenance (O&M) practice at the City of Edmonton, productivity analysis, data collection, and 

descriptive statistics. Portions of this chapter have been presented at CSCE Annual Conferences 

(Zaman et al. 2012; Zaman et al. 2013), and published in the Journal of Infrastructure Systems 

(Zaman et al. 2014), and Urban Water Journal (Zaman et al. 2015). However, a more elaborate 

discussion of the research and case study is provided here. 

 

4.2 Review of O&M Practice and Productivity Analysis 

The Drainage Operations group at the City of Edmonton performs various O&M activities to 

operate and maintain its large collection system. These include inspection activities such as 

visual inspection, channel inspection, and CCTV inspection, as well as cleaning activities such as 

low-pressure flushing (LPF), high-pressure flushing (HPF), catch basin cleaning, and hydro-

mechanical cleaning. Historical data reveals that, among these activities, HPF consumes the 

largest amount of time and resources; therefore, this case study particularly focuses on HPF (Fig. 

4-1).  
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Fig. 4-1. Reported man-hours for various O&M activities at the City of Edmonton (2011) 

 

4.2.1 Operational Preventive Maintenance Strategy 

For large networks such as the one in Edmonton, it is not always feasible to proactively flush all 

of the pipes in the network on a regular basis. Hence, the City currently employs a selective 

approach where a pipe is selected for scheduled flushing based on its age, condition, relative 

importance, and problem history. Several inspection and judgment decisions are performed in 

order to select the cleaning activity and frequency necessary to maintain the operational 

condition of a pipe. Fig. 4-2 presents the process of selecting the scheduled operational 

maintenance for a pipe, where the activities are shaded in grey. The flowchart also shows the 

degrees of effectiveness for various activities, the interactions among them, and the continuous 

evaluation cycle. The development of this flowchart provides useful understanding of the 

selection process that establishes the total maintenance volume (i.e., demand) for the operator.  
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Fig. 4-2. Flowchart showing selection of pipes for operational preventive maintenance 
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4.2.2 High-Pressure Flushing (HPF) 

High-pressure flushing (HPF) (also known as jetting) is employed to remove debris, grease, 

calcium deposit, and small roots from inside sewer pipes using water blasted at a pressure over 

2,000 psi (EPA 1999; Bowen et al. 2003). State-of-the-art flushing vehicles (also known as 

flusher trucks, or combo units), equipped with various sizes of nozzles, pump, water tank, and 

debris tank, are used to perform flushing operations (Fig. 4-3). 

 

 

Fig. 4-3. High-pressure flushing truck 

 

HPF requires a crew of two people, who begin their shift at the yard (there is only one yard in 

Edmonton), travel to the pre-scheduled locations in a flusher truck, and perform the necessary 

tasks at each location. Upon completion of the flushing at one location, the crew travels to the 

next location, and so on, until the shift ends. On a typical day, 5-6 HPF crews work 

simultaneously at different locations throughout the city. The number of locations flushed in a 

typical 8-hour shift varies greatly, depending on the flushing duration at each location and travel 

time between them. Thus, the effective on-site maintenance time is significantly reduced by the 

large amount of travel time. Furthermore, the on-site flushing durations at different locations 
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vary from less than 10 minutes to several hours, and are stochastic in nature (Zaman et al. 2013). 

Because there is no reliable model currently in practice by which to estimate this variable 

flushing duration, the crews are unable to predict the flushing duration of the next location. 

Hence, crews often return to the yard prior to the end of the shift time, which leads to 

unproductive unused time (also referred to as end-of-shift waste time in this thesis).  

 

In 2014, the City of Edmonton performed scheduled HPFs at over 1,400 pre-designated locations 

across the city as part of its annual preventive maintenance (PM) regimen. Because some 

locations require more frequent flushing than others, each is pre-scheduled for periodic HPF at a 

particular frequency such as every 1 month, 3 months, 6 months, or 12 months. Fig. 4-4 shows 

the locations of scheduled HPF, where red, purple, green, and yellow dots represent the above-

mentioned frequencies, respectively. As seen in the figure, older neighbourhoods and those with 

combined sewer systems (near the center of the city) require a higher frequency of scheduled 

flushing than do newer neighbourhoods. At the beginning of each month, a query to a central 

database generates a list of HPF work orders for the locations that are due that month. These 

work orders, grouped by neighbourhood, are passed on to the crew supervisor, who then assigns 

sets of locations to the individual crews. Monthly scheduled HPF locations for four different 

months are shown in Fig. 4-5. It is found that some months can have scheduled locations well 

distributed across the city, while some other months can have locations more concentrated in 

particular neighbourhoods. Either way, each of the monthly HPF schedules has over a hundred 

locations where there is an opportunity to apply the proposed framework.  
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Fig. 4-4. Scheduled HPF locations in the City of Edmonton (as of 2014) 
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Fig. 4-5. Monthly scheduled HPF locations in four different months 
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4.2.3 Productivity Analysis 

The productivity of these O&M activities is expressed as accomplishments per unit time, e.g., 

locations/day for VI, and m/man-hour for LPF, HPF, and CHF. In a benchmarking study at the 

City of Edmonton, Bowen et al. (2003) have developed daily productivity standards for each 

activity. Fig. 4-6 presents year-long daily productivity charts for HPF, which have been created 

using historical data from the City of Edmonton. It can be observed that although the average 

annual productivity exceeds the target (33 m/man-hour), there are wide-ranging variations across 

observations. 

 

The primary cause of such variation is that each productivity observation is calculated based on 

the reported man-hours, which include start-up preparation, end-of-shift cleaning, lunch and 

coffee breaks, and travel time. Agbulos et al. (2006) have applied lean principles in order to 

improve the efficiency of drainage operations, having identified travel as a non-value added task 

that consumes a high proportion of daily work time. However, it is easily understood that travel 

time for a particular maintenance location is dependent upon its distance from the yard and from 

other locations. For a large city, the flushing locations that are nearer to the yard require much 

less travel time than more distant locations. The on-site flushing duration also varies across 

maintenance locations depending on several factors (Chughtai & Zayed 2008; Zaman et al. 

2013). Thus, both on-site flushing duration and travel time contribute to variations in daily 

productivity, and it is evident that consideration of these two factors during maintenance 

scheduling leads to more efficient use of resources. 
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Fig. 4-6. Daily productivity charts for HPF at the City of Edmonton 
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4.3 Data Collection and Descriptive Statistics 

4.3.1 Data Collection 

The dataset required for the case study is created by merging several databases maintained by the 

City of Edmonton, as well as by collecting necessary data. Fig. 4-7 illustrates the data collection 

schematic for the on-site duration estimation model. The “Drainage Pipes Properties” database 

provides the physical properties of the pipe segments—diameter, length, slope, material, year of 

construction, and location coordinates. The “Timesheet” and “Workorder” databases are used to 

collect the scheduled location information (location number, pipe segments within the location, 

flushing frequency, location, scheduled flushing date, etc.) and crew information (the specific 

crew assigned to a particular location, vehicle ID, and flushing date). 

Field Environment Data

Flushing date, crew ID, vehicle ID, 

reported man-hour, presence of FOG, 

tree roots, debris, 

Drainage Pipes Properties

Pipe ID, size, length, slope, age, 

materials, location, structural and 

operational conditions ....

GPS Data

Time, Vehicle ID, location, speed,  

stop locations, stop durations,.....

Workorder Data

Periodic PM schedule: Route ID, Pipe 

ID, location, flushing frequency, 

scheduled date, flushing date...

Modeling Dataset

Workorder no., route ID, pipe 

IDs, size, length, slope, 

material, number of stops, 

date and time of flushing, 

location, duration of flushing

 80%  for estimation

 20%  for validation 

 

Fig. 4-7. Dataset preparation schematic for on-site duration model 
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The actual on-site flushing duration data is collected from the “GPS” database, which records the 

location, time, and speed for each of the flushing vehicles. Then, the on-site flushing durations 

for all scheduled locations are linked with the parameters obtained from the other databases. The 

challenge during this phase is that the GPS database does not share any primary or foreign key 

with the other databases. Accordingly, connection of the GPS data with other data repositories 

(flushing date, location, and vehicle ID) is carried out manually and consists of searching for the 

vehicle used by a particular crew on a given day and identifying that vehicle’s stop near the job 

location. This process assumes that a crew is performing flushing activities when its vehicle is 

found to be idle (in a stationary position with the engine running) at a location scheduled for that 

day. In addition, the modelling dataset contains information such as crew experience, (with 

regular HPF crews marked as 1 and used in the model as a dummy variable), types of trees 

located near the pipes, location type (e.g., residential, commercial, institutional), and the 

presence of restaurant or carwash facility in the vicinity. 

 

The dataset collected for the on-site flushing duration model contains observations at various 

locations across the city between 2009 and 2012. After necessary noise cleaning, the final dataset 

contains 448 observations. Among these, 85% of the observations (381) are randomly selected 

for model estimation, while the remainder (67) are used for model validation. The list and 

descriptions of the variables in the dataset are presented in Table 4-1.  
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Table 4-1 List and description of variables in the modelling dataset 

Variable Name Description Range 
Variable 

Type 

    

Flushing_duration Total time taken to flush  10 ~ 339 minutes Continuous 

    

Number_of_pipes Total number of pipes  1 ~ 18 nos. Discrete 

    

Total_length Total length of pipes  3 ~ 1132 m Continuous 

    

Number_of_stops 

Number of times the vehicle 

stops in order to complete 

flushing  

1 ~ 14 nos. Discrete 

    

Average_diameter Average diameter of all pipes  15 ~ 67.5 cm Continuous 

    

Average_depth 
Average depth of downstream 

manholes of the pipes  
2 ~ 10 m Continuous 

    

Age_of_pipes Average age of all pipes  14 ~ 105 years Continuous 

    

Flush_per_year 
Number of flushes per year  

= (12/frequency) 
12, 4, 2, 1 Discrete 

    

Month Month of flushing Jan ~ Dec Discrete 

    

Day Day (of the week) of flushing Mon ~ Sun Discrete 

    

Time Time (of the day) of flushing 

Morning, 

Midday, 

Afternoon, 

Evening, Night 

Categorical 

    

Neighbourhood_type Neighbourhood type  

Residential, 

Commercial, 

Industrial 

Categorical 

 

Material 

 

Material of pipes Concrete, Clay Categorical 

Crew Experience Regular HPF Crew 1 or 0 Categorical 
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It should be noted that the dataset is an unbalanced panel dataset where each of the five 1-month-

frequency locations contains multiple observations, which provides the opportunity to explore 

the seasonal variation in on-site productivity. Because the 1-month-frequency locations are 

flushed more frequently, it is easier to collect a large amount of data for these locations. 

Nevertheless, the data is taken from independent flushing instances that have taken place at 

different points in time (i.e., different months); hence, the responses are independent from one 

another. 

 

In addition to these data, the optimization model requires travel time information. As mentioned 

above, this study uses randomly generated coordinates for flushing locations, and Euclidean 

distances as travel time (assuming travel time is proportional to distance for constant speed) 

during the development stage of the optimization algorithms. However, in practical scenarios, 

the travel time between two locations is dependent upon a number of variables, including 

existing road network, route assignment, speed limits, traffic volume, and time of day. Moreover, 

the drainage maintenance vehicles must follow the designated truck routes for most of the trips.  

 

This study collects these travel time data from two different sources: the first data source is 

Google API, which provides reliable travel times and distances between two locations. The 

advantage of using Google API is that the input can be a physical address, latitude-longitude 

coordinates, or even a neighbourhood (for cases in which accurate location data is not available). 

However, implementation of this method reveals that the optimization runtime increases 

significantly due to the time necessary for extraction of this data from the Internet. Also, there is 

a daily limit of data extraction, which restricts its applicability to problems of a moderate to large 
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size. This can be overcome using regional travel model data obtained from the city’s 

transportation authority. 

 

The City of Edmonton’s Regional Travel Model (RTM) is developed and maintained by the 

city’s transportation department. The model divides the city into 666 transportation zones and 

provides the travel time matrix. If the zone number of each maintenance location, which can be 

obtained by performing geographic information system (GIS) overlay analysis, is known, it is 

possible to easily extract the travel time from the matrix. Although this method uses approximate 

locations (through zoning) instead of actual, there are several advantages of using this source: (i) 

rapid extraction of data during optimization run; (ii) inter-zonal, as well as intra-zonal, travel 

times; (iii) different travel times for AM/PM peaks, and off-peak hours; and (iv) explicit travel 

time data for trucks that considers the use of designated truck routes. RTM is thus used in order 

to optimize the following case study. The data preparation steps for the optimization model are 

presented in Fig. 4-8. 
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Fig. 4-8. Dataset preparation steps for schedule optimization 

 

 



78 

 

4.3.2 Descriptive Statistics 

Initially, descriptive statistical analyses are performed in order to obtain a complete 

understanding of the dataset and the correlation between the variables. Preliminary results show 

that the on-site flushing duration varies from 10.00 to 339.00 minutes, with an average value of 

70.93 minutes. The standard deviation, median, and mode of the data are 58.42, 51.00, and 29.00 

minutes, respectively. In order to investigate the cause of such wide variance, flushing duration 

is plotted against the system attributes (an excerpt of which is shown in Fig. 4-9). As expected, 

flushing duration has a strong linear correlation with number of pipes and total length of 

location; however, the pipe diameter and depth do not seem to affect the flushing duration. It is 

of interest at this juncture to explore the effect of the other predictor variables by analyzing 

subsets of the data. When the flushing durations are grouped by frequency, different patterns for 

1-, 3-, 6-, and 12-month-frequency locations can be observed. Analysis of the means (of on-site 

duration) for each of these location frequencies exhibits different variance, revealing 

heteroskedasticity in the data, especially for 12-month-frequency locations. The cause of such 

variation is that the frequent locations are flushed more regularly, which results in more 

consistent on-site durations. Moreover, many of the 12-month-frequency locations are performed 

by temporary crews during the summer months, causing similar variations when the dataset is 

grouped by month (Fig. 4-10). This heteroskedasticity violates the assumption of linear 

regression, and thus suggests that either separate models should be developed for each 

frequency, or that the variations should be captured in the model by including these factors. 
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Fig. 4-9. Flushing duration vs number of pipes, total length, average diameter, and average depth 

 

 

(a) 

 

(b) 

Fig. 4-10. Histogram of Flushing_duration by (a) frequency and (b) month 

 

Fig. 4-11 presents the scatterplots for flushing duration versus the “number of stops” and “total 

length”, whereby strong linear relationships can be observed. Interestingly, the “number of 

stops” has a stronger correlation with flushing duration than does the “number of pipes”. 
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Theoretically, the crews are expected to stop at every manhole to access all of the pipes in that 

location; however, in practice, experienced crew members flush two stretches of pipes from the 

same manhole whenever possible, which allows them to complete their job with fewer stops. On 

the other hand, crews must occasionally make additional stops in order to check the map for 

manhole locations, for a short break during flushing of a large location, (e.g., a location of five or 

more pipes), or when work is interrupted due to an emergency task arising which requires the 

crew’s attention, (i.e., the crew must leave a location unfinished and return later to complete the 

flushing task).  
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(a) 1-month-frequency locations 
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(b) 3-month-frequency locations 
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(c) 6-month-frequency locations 
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(d) 12-month-frequency locations 

Fig. 4-11. Scatterplots showing Flushing_duration versus No_of_stops and Total_length 

 

All of these situations can lead to variation in “number of stops” for a given location. Because 

the on-site duration data collected from GPS is based on the number of stops at a particular 

location, this factor is more significant than the number of pipes. Thus, it is important to 
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introduce factors such as crew experience and location layout (whether each of the pipes in a 

location has an upstream channel that provides continuous access to the next pipe) in order to 

estimate the probability of “number of stops” for a particular location, and then to input that 

value into the duration estimation model. Another important consideration during GPS data 

collection is to avoid the bias caused by interdependent multiple observations. When work orders 

are issued, they are often grouped together by location so that the designated crew is able to flush 

multiple adjacent locations consecutively. Fig. 4-12 shows two adjacent 12-month-frequency 

locations that were flushed on the same day by the same crew, making it difficult to identify the 

number of stops (and, hence, the duration) for individual locations. This kind of bias should be 

avoided during data collection. 

 

Fig. 4-12. GPS data collection interface at the City of Edmonton (Interfleet.com) 

 

4.4 On-site Flushing Duration Estimation Model 

From the descriptive statistics, it is evident that the on-site duration has a strong linear 

relationship with the predictor variables, and thus that a multiple regression model should be able 

to capture the majority of the variation. However, owing to the fact that location frequency has a 
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considerable effect on the flushing duration in the estimation dataset, separate models for each 

frequency must first be developed. Moreover, the 1-month-frequency location subset of data 

contains panel observations, which must be modelled separately in order to explore the temporal 

variation of flushing duration. 

 

The results for individual frequency models as well as a combined model are presented in Table 

4-2. It can be seen from the table that the 1-month-frequency location model contains temporal 

variables with p-values < 0.05. Both 1-month and 3-month-frequency location models have R
2
 

values greater than 0.85, which implies that more than 85% of the variability of flushing duration 

is captured by the models. The 6-month and 12-month models have reasonable goodness-of-fit 

values (76% and 71.6%, respectively). It is also observed that the frequent locations have higher 

R
2
 values, which underscores the fact that these locations are flushed on a regular basis, resulting 

in consistency in on-site productivity. 

 

While separate models may be more efficient for estimating purposes, the planner may be 

interested in the application of a single model for all frequencies in the case where significantly 

higher annual man-hours are consumed by the locations having a certain frequency. At the City 

of Edmonton, the total lengths (of pipe) flushed under 1-, 3-, 6-, and 12-month frequencies are 

12,180 m, 36,289 m, 99,083 m, and 280,272 m, respectively; this represents a situation which, in 

the interest of convenience, warrants the use of a single, frequency-independent model. A 

frequency-independent model is thus developed which has a reasonable goodness-of-fit value of 

73.6%. The model contains seven statistically significant parameters with expected signs and 

values (see Table 4-2). For example, the “midday” coefficient (used as a dummy variable in the 

model) implies that the flushing takes approximately 20 minutes longer than usual when an 
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operation takes place between 11:00 a.m. and 1:00 p.m. This captures the fact that crews usually 

take a short break for lunch within this timeframe. The model also captures the variability of all 

four location-frequencies by virtue of the “flushing_per_year” parameter. The negative 

coefficient for this factor supports the previously-mentioned finding that more frequent locations 

have shorter flushing times if all other factors remain constant.  

 

One major limitation of this model is that it includes the “number_of_stops” as a predictor 

variable, which refers to the number of times a crew stops to flush a given set of pipes. This 

variable has a significant effect on the on-site duration of flushing activities, and it differs from 

the number of pipes depending on a number of factors, such as location of pipes, their upstream 

facility types, and crew judgment. Because this variable is unknown to the planner at the time of 

scheduling, an ordered probit model is developed in order to estimate the number of stops for a 

given location. 
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Table 4-2 Multiple linear regression model results 

Model Predictor Variable Coefficient T-stat P-value 

 

1-month Routes 

Constant ‒41.26 ‒3.26 0.002 

Number_of_stops 12.966 6.53 0.000 

Total_length 0.12044 5.26 0.000 

Dia_square 0.05585 3.26 0.002 

Jan 23.988 2.59 0.013 

Feb 19.117 1.95 0.058 

Adjusted R
2
 = 85.3% 

  

3-month Routes 

Constant ‒27.14 ‒3.57 0.001 

Number_of_stops 21.42 8.69 0.000 

Total_length 0.121 3.77 0.001 

Midday 16.858 1.91 0.067 

Adjusted R
2
 = 87.9% 

 

6-month Routes 

Constant ‒5.873 ‒1.09 0.277 

Number_of_stops 20.194 11.24 0.000 

Total_length 0.0595 3.85 0.000 

Midday 23.925 3.9 0.000 

Adjusted R
2
 = 76.0% 

 

12-month Routes 

Constant 11.624 1.38 0.178 

Number_of_stops 7.085 2.019 0.052 

Total_length 0.147 4.051 0.000 

Splits 

Regular_crew 

22.290 

15.160 

2.774 

2.396 

0.009 

0.022 

 Adjusted R
2
 = 71.6% 

 

All Routes 

Constant ‒12.106 ‒2.15 0.032 

Number_of_stops 19.015 17.10 0.000 

Total_length 0.05711 5.69 0.000 

Flushing_per_year ‒0.8724 ‒1.94 0.053 

Age_of_pipe 0.1792 1.94 0.053 

Midday 19.35 5.63 0.000 

Feb 14.82 2.22 0.027 

Dec 11.087 2.07 0.039 

Adjusted R
2
 = 73.6% 
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4.4.1 Ordered Probit Model Results 

As described in the methodology chapter, under ideal conditions the “number of stops” (Ns) for a 

given location should be equal to the “number of pipes” (Np). However, analysis shows that the 

difference between the number of stops and number of pipes varies within as well as across 

locations, and follows a normal distribution pattern. For example, the number of stops for a 3-

pipe location may range from 1 to 5 (resulting in Ns – Np varying between −2 and +2), while the 

same for a 7-pipe location may range from 4 to 11 (resulting in Ns – Np varying between −3 and 

+4). If this difference between Ns and Np is assumed to be the error (Ԑ), then, owing to the 

ordered nature of Ns and normally distributed Ԑ, an ordered probit model can be used to estimate 

the number of stops for a given location (McKelvey & Zavoina 1975; Baik et al. 2006). 

Therefore, the probability of “number of stops” is first estimated using an ordered probit model, 

and it is then used in the primary multiple regression model to estimate the on-site flushing 

duration (as illustrated in Fig. 4-13). 

 

Fig. 4-13. On-site flushing duration estimation modelling schematic 
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The results of the model are presented in Table 4-3, from which it can be observed that the 

number of stops for a specific location depends on the number of pipes, work interruptions 

(described above), location type (internal road or main street), and layout type (described above). 

The Pearson Chi-square goodness-of-fit test is significant and the Pseudo R
2
 values are 

acceptable (see Greene & Hensher 2008); however, it is found during the trials that the model 

does not yield satisfactory results when the number of stops differs considerably from the 

number of pipes. Discussion with the operators reveals that, in theory, the “number of stops” for 

a specific location should be equal to the “number of pipes”. Although it varies in practice, 

however, the difference (Ns ‒ Np) in most cases should not exceed the range of ±4. For example, 

if a certain location has 7 pipes, flushing may be completed in a minimum of 3 stops (by flushing 

more than one consecutive stretch of pipes from the same manhole, if the pipe layout allows), or 

it may be completed with a maximum of 11 stops (considering 7 stops for accessing 7 pipes, plus 

additional stops for map checking, initial inspection, discussion, and work preparation). 

Therefore, any observations with wider variation are considered non-standard, and are excluded 

from further analysis. This potentially leads to standardization of the operating procedure, which, 

if implemented, could reduce the likelihood of any future observations similar to those already 

excluded from the analysis. Hence, this study uses smaller subsets of data for model estimation 

(249 observations) and validation (45 observations), where the absolute value (Ns ‒ Np) is 

limited to 4. 

 

 

 

 



87 

 

Table 4-3 Ordered probit model results 

Parameter Estimate Significance 

[stops = 1] −3.536 0.000 

[stops = 2] −2.522 0.000 

[stops = 3] −1.361 0.014 

[stops = 4] −0.592 0.280 

[stops = 5] 0.708 0.185 

[stops = 6] 1.398 0.009 

[stops = 7] 2.097 0.000 

[stops = 8] 2.785 0.000 

[stops = 9] 3.896 0.000 

[pipes = 1] −2.932 0.000 

[pipes = 2] −2.780 0.000 

[pipes = 3] −1.921 0.000 

[pipes = 4] −1.325 0.002 

[pipes = 5] −1.007 0.012 

[pipes = 6] −0.221 0.622 

[pipes = 8] 0.867 0.035 

[pipes = 9] 0
a
 - 

[Work_interruption = 0] −1.889 0.000 

[Work_interruption = 1] 0
a
 - 

[Main_street = 0] 0.780 0.006 

[Main_street = 1] 0
a
 - 

[U/S_other_than_manhole = 0] 0.680 0.002 

[U/S_other_than_manhole = 1] 0
a
 - 

Notes: 

 a
 Parameters set to zero 

-2 Log Likelihood: Intercept only model = 528.869; Final model = 205.435 

Goodness-of-Fit: Pearson Chi-Square = 105.066; Significance = 1.0 

Pseudo R
2
: Cox and Snell = 0.706; McFadden = 0.321 
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4.4.2 Multiple Regression Model Results 

Once the number of stops for a particular location is forecasted by taking the stop number 

corresponding to the highest probability, this value can be used as a predictor variable in the 

multiple regression model described above. The results of this model are presented in Table 4-4, 

which shows that the model has a reasonable adjusted R
2
 value of 0.703. The estimated number 

of stops possesses the highest t-stat value among the predictors, suggesting the efficacy of the 

probit model. An interesting observation from the model results is that “regular crew” (denoting 

crews that regularly perform HPF), is included as a predictor, and has a positive coefficient. This 

counter-intuitively implies that a regular, experienced crew would take longer to flush a location. 

A possible cause may be the difference in perception between regular and non-regular crews. 

The nature of the work is such that the crews use their judgment to perceive the cleanliness of the 

pipe during flushing in order to determine when to stop, and perhaps the regular crew members 

flush the pipes more meticulously. The result also suggests that there is seasonal variation in on-

site productivity of HPF, where the winter months are found to correspond to an increase in 

flushing duration. Further investigation of this finding reveals that in some cases the manholes 

are covered with ice and snow during the winter, which necessitates additional time for clearing 

the snow and ice in order to open them. Another possible cause is a data collection bias: on a 

cold day, the truck engines are usually left running even during breaks in order to ensure that the 

water used for flushing does not freeze; however, this break time cannot be identified and 

separated from actual flushing time data. 
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Table 4-4 Multiple regression using estimated number of stops 

Parameter Coefficient t-stat Significance 

Constant −3.761 −0.764 0.446 

Tot_length 0.117 5.132 0.000 

Estimated_number_of_stop 13.849 6.794 0.000 

Regular_crew 10.514 2.568 0.011 

Midday 25.814 6.172 0.000 

Flush_per_year −0.860 −2.004 0.046 

Aug −27.427 −2.819 0.005 

Feb 10.288 1.585 0.114 

Note: Model Goodness-of-Fit: R
2
 = 0.711; Adjusted R

2
 = 0.703 

 

 

The model is validated using the validation dataset. It can be observed from the resulting plot 

(Fig. 4-14a) that the estimated versus observed points are moderately close to the 45º reference 

line, although some individual points deviate from this line. It is understood that the model may 

not be appropriate for micro-level estimation, i.e., the use of this model to estimate the on-site 

productivity for an individual location may lead to errors. However, the model can conveniently 

be used for weekly or monthly schedules. Here, it is of interest to check whether or not the model 

errors follow the assumed normal distribution. To do so, the probability density function (PDF) 

of the model errors (estimated minus observed) from each observation is determined, based upon 

which it is found to have a slightly skewed normal distribution pattern (µ = 2.64, and σ = 16.46), 

which satisfies the regression assumption. The P-P plot for errors is shown in Fig. 4-14b. 
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Fig. 4-14. (a): Estimated vs observed flushing duration; (b): Normal P-P plot of error 

 

 

4.4.3 Duration Estimation Model using SAP Enterprise Mobile Data 

As mentioned before, the accuracy of the estimation model largely depends on the quality of 

data. The models described in the preceding section were developed based on the data available 

at the time. However, in 2014, drainage operations group at the City of Edmonton implemented 

mobility in SAP ERP environment (SAP 2015), where the field crews receive work orders (one 

for each scheduled location) electronically, and have the ability to charge time to individual 

orders. Thus, the flushing duration charged against the orders can be directly linked with 

inventory databased (Drains properties data) through unique pipe IDs. This eliminates the need 

for extraction of AVL data and model the number of stops for each location.  

 

Therefore, multiple regression model has been developed to estimate flushing duration using 

data from SAP mobility system, and the results are presented in Table 4-5. It is found that the 

model goodness of fit is improved significantly, and the model also captures important attributes 

such as material and diameter of pipes as predictor variables. Fig. 4-15 presents the line plots for 
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flushing duration vs number and length of pipes for each location. Linear relation between the 

variables confirms the observation found the preceding section of this research. 

 

Table 4-5 Flushing duration estimation model using SAP Mobile data 

Regression Statistics 

   Multiple R 0.887 

   R Square 0.786 

   Adjusted R Square 0.777 

   Standard Error 3.377 

   Observations 279 

   

 

Coefficients Standard Error t Stat P-value 

Intercept 1.304 1.717 0.759 0.448 

Work_split 1.151 0.560 2.057 0.041 

Number_of_pipes 1.285 0.166 7.721 0.000 

Total_length_of_pipes 0.005 0.002 2.125 0.034 

Avg_dia_of_pipes 0.012 0.004 2.938 0.004 

PVC -5.576 1.546 -3.607 0.000 
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Fig. 4-15 Line plots showing relations between duration and number-of-pipes and pipe-length  
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It is to be noted that the mobility data is based on hours reported by field crews and may be 

verified using AVL data if necessary. Also the charged times include morning start-up time, end-

of-shift cleaning time, travel and break times, which are distributed to all the locations flushed in 

a day. Therefore, the model does not represent the actual on-site duration for each location; 

however, the model can be effectively used to estimate daily productivity. Moreover, electronic 

work order system helps in better management of accounting data charged against different asset 

components, which is valuable in terms of asset management perspective. This also eliminates 

the hard copy paper orders, and the duplication in data entry for work order assignments and 

timesheet recording.  

 

 

4.5 Schedule Optimization 

The optimization models are applied to a case study from the City of Edmonton, which involves 

optimizing a monthly HPF schedule to improve productivity. For this purpose, the optimization 

models are developed in a .NET framework, and are connected with the necessary databases. 

The case study comprises 179 scheduled HPF locations, represented by the red dots in Fig. 4-16. 

The maintenance locations are well distributed throughout the city, while the yard is located in 

the north-east area of the city (represented by the blue circle in the figure). Select pertinent 

statistics and assumptions of the case study are outlined below: 

Number of locations = 179 

Total shift length = 8 hours 

Preparation, cleaning, break time = 2 hours 

Effective shift length = 6 hours (used for optimization) 

Source of travel data: Edmonton regional travel model 

On-site flushing duration data: Expected value derived from estimation model 
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  Minimum Maximum Average 

Sum of 

all 

locations 

Number of pipes at each location  1 13 3.73 669 

Length of pipes at each location (m)  13.35 1,100.55 245.75 43,989.00 

Expected value of on-site flushing 

duration at each location (minutes) 
 20 204 73 13,117 

 

 

Fig. 4-16. Monthly scheduled HPF locations for the case study 

 

4.5.1 Neighbourhood-based Routing 

At first, expected daily productivities for the given schedule are estimated using neighbourhood-

based routing, which is the current practice at the City of Edmonton. For this purpose, expected 

on-site duration of each location (derived from the on-site duration model described in the 

previous section) and travel time matrix obtained from Edmonton’s regional travel model are 

Yard 
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used. It is assumed that these expected durations and travel times are known to the 

planner/scheduler as well as to the flushing crews prior to implementation. The scheduled 

locations are grouped by neighbourhood, and the routing follows the sequence one by one. When 

all locations in a neighbourhood are completed, the crews move to the next (nearest) 

neighbourhood, and so on. However, it may not be possible to complete all the locations in some 

neighbourhoods within the 6-hour effective shift length, while other neighbourhoods may not 

have a sufficient amount of work to fill an entire shift. Therefore, the monthly schedule is split 

into multiple closed tours, each representing a daily route that is expected to be completed within 

a shift.  

 

Daily expected productivities for each of these overtime and location-splitting options are 

determined by running a simple discrete-event simulation (DES) model, where an entity (crew) 

travels to and flushes each of the locations one by one. Both the elapsed and remaining time are 

recorded after each event—leaving from the yard, arriving at location 1, completing flushing for 

location 1, arriving at location 2, and so on. The crew covers as many location as possible while 

remaining within the effective shift length and the given conditions (i.e., the options mentioned 

above), and then returns to the yard. Daily travel time, end-of-shift waste time, overtime, and 

daily accomplishments (total length of pipes flushed) are recorded at the end of each day. If the 

total shift length is 8 hours and one crew comprises 2 persons, the daily total man-hours is 16. 

Thus, the unused times do not directly affect the productivity calculation. However, overtimes 

(in terms of man-hours) are two times costlier than regular time, and therefore are doubled and 

added to the man-hours. And, finally, the productivity for each day is calculated by dividing the 

accomplishments by the total incurred man-hours. For example, if 800 m of pipe is flushed in an 
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8-hour shift, the productivity would normally be calculated as  = 50 m/man-hour. However, 

in the case of 20 minutes of overtime for the same job, the productivity becomes  = 

47.05 m/man-hour. 

 

Results of neighbourhood-based routing using the above-mentioned splitting options are 

presented in Table 4-6. Interestingly, it is found that the average expected daily productivity is 

approximately 50 m/man-hour for all three options, each case exceeding the current productivity 

target. This is due to the assumption that the expected on-site durations for all locations are 

known to the crew. It is evident that availability of this information will enable the crews to 

manage their times more efficiently, and thus the productivity will be increased; (however, the 

model was not yet available when the benchmarks were developed). This finding strongly 

supports the importance of having a reliable duration estimation model for productivity 

improvement. 

Table 4-6 Results from neighbourhood-based routing 

 Option 1 Option 2 Option 3 

Overtime Allowed? No Yes No 

Location Splitting Allowed? No No Yes 

Total Expected On-site Duration (minutes) 13,117 13,117 13,631 

Total Crew-days  55 41 53 

Total Travel Time (minutes) 4,173 3,714 4,406 

Total Expected Unused/Overtime 

(minutes) 
2,727 (2,071) OT 1,259 

Min. Expected Daily Productivity  24.31 37.44 32.14 

Max. Expected Daily Productivity  79.01 86.15 84.91 

Avg. Expected Daily Productivity  49.42 55.56 50.62 

Standard Deviation  11.65 10.99 10.92 
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Comparing the results from different overtime and location-splitting options, it can be observed 

that option 2 (i.e., overtime allowed when necessary, but location splitting not allowed) produces 

the highest average expected daily productivity (55.56 m/man-hour). This option also allows the 

completion of all the scheduled locations in fewer crew-days, (where “crew days” refers to the 

number of days required for one crew to finish the given schedule). For instance, if four crews 

are available, this work can be finished in 10 working days (plus one additional day for one 

crew). However, as expected, this option results in a great amount of overtime. On the other 

hand, allowing location splitting (option 3) provides the crews the flexibility to leave an 

incomplete location at the end of the shift, which significantly reduces the end-of-shift waste 

time. Furthermore, returning to the same location the following day not only leads to more travel 

but also increases the total on-site duration due to activities such as parking, securing the job-

site, and opening of manholes. This is evident in the increase in total on-site duration for option 

3, which is approximately 4% more than the time necessary to flush the same locations without 

interruption.  

 

4.5.2 Schedule Optimization by Heuristic Algorithm 

The given schedule is now optimized by the proposed heuristic algorithm, with the results 

presented in Table 4-7. Tour splitting has been performed by allowing no overtime or location 

splitting. It is found that the expected average productivity is improved, while the total travel and 

unused times are reduced by significant margins. As explained above, because the case study 

contains 179 locations of various sizes, the heuristic algorithm has a number of options to fill the 

bins, which improves the tour splitting. This is clearly observed when the total expected unused 

time is compared with those from the neighbourhood-based routing. Fig. 4-17 presents the 



97 

 

distribution of expected daily productivities for the three options using neighbourhood-based 

routing. It is found that options 1 and 3 produce similar results in terms of productivity 

distribution, while option 2 shows slightly higher productivity. When the heuristic algorithm is 

applied for option 1, it results in marked improvement from neighbourhood-based routing for the 

same option (Fig. 4-18). The 95% confidence intervals of daily productivities for the two routing 

algorithms are calculated using Eq. (4.1), and the results are as follows: 

 

   (4.1)     

 

 Neighbourhood-based routing:  49.2 ± 3.15 = 46.3 ~ 52.6 metres/man-hour 

 Heuristic algorithm:    58.1 ± 3.22 = 54.9 ~ 61.3 metres/man-hour 

 

 

Table 4-7 Results from optimized schedule using heuristic algorithm 

Overtime Allowed? No 

Location Splitting Allowed? No 

Total Expected On-site Duration (minutes) 13,117 

Total Crew-days  47 

Total Travel Time (minutes) 3,451 

Total Expected Unused/Overtime 

(minutes) 
597 

Min. Expected Daily Productivity  31.24 

Max. Expected Daily Productivity  79.28 

Avg. Expected Daily Productivity  58.10 

Standard Deviation  10.99 

 

𝑋 ± 𝑡𝛼
2

,𝑛−1
× 

𝑆

 𝑛
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Fig. 4-17. Distribution of expected daily productivities for neighbourhood-based routing 
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Fig. 4-18. Distribution of expected daily productivity for neighbourhood-based routing and 

heuristic algorithm (splitting option 1) 
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4.6 Simulation 

The results presented in the previous section are based on expected on-site durations, as well as 

on the assumption that is no deviation from the optimized schedule with the progress of each 

day. However, deviation from the planned schedule is very likely to occur due to stochasticity in 

the on-site flushing duration as well as in travel time. It is thus necessary to simulate the actual 

work flow to test the impact of schedule deviation and the robustness of the optimization 

algorithm. For this purpose, the on-site flushing duration at each location is simulated using the 

probit model (described in section 4.4). Simulation is then performed by following the given 

optimized sequence of locations, and the end-of-shift waste times are recorded for each day. Fig. 

4-19 presents the results from 100 simulation runs, where positive values indicate unused time at 

the end of the shift, and negative values represent overtime. 
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Fig. 4-19. Distribution of schedule deviation due to variation in on-site duration 
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As expected, the distribution of schedule deviation is normally distributed and is slightly skewed 

toward positive values (representing unused times at the ends of shifts). However, most of the 

observations show 0 to 20 minutes of unused time. In any case, it is of interest to explore the 

impact of such variations on daily productivity. The productivity of each simulated day is 

illustrated in Fig. 4-20. Quite interestingly, the schedule deviations result in only a negligible 

impact on daily productivity. This is due to the fact that the effect of a small overtime value is 

diminished during productivity calculation. Nevertheless, it is not desirable to allow the daily 

work time to extend to overtime, so further improvement can be made by introducing schedule 

overrun penalties during optimization. 
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Fig. 4-20. Distribution of simulated daily productivities 
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4.6.1 Standardization of Flushing Activity 

Another way to reduce the likelihood of schedule deviation is to standardize the flushing process. 

For this particular case study, it is evident that the stochasticity in the on-site duration comes 

from the probit mode, which estimates the number of stops for the given locations. The probit 

model provides probabilities of each possible stop option for each location, from which the 

options with the highest probabilities are chosen to represent the expected number of stops. 

 

However, in reality the number of stops varies significantly, which is observed from the 

historical data (Fig. 4-21). When the probit model is simulated, it generates probabilities for all 

possible values for the number of stops, and hence the large variations in on-site duration are 

created. If the process is standardized, the field crews will be advised to reduce the variability in 

their number of stops. For instance, the allowable stops for a 5-pipe location may range from 2 to 

5, depending on various factors, whereas historical data confirms between 2 and 8 observed 

stops. It is evident that creating boundaries (marked as green and red lines in Fig. 4-22) for the 

number of stops can significantly reduce the variability.  
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Fig. 4-21. Number of pipes versus expected (top) and observed (bottom) number of stops 
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Fig. 4-22. Number of stops possibilities after standardizing process 

 

To test the effect of process standardization, the on-site duration estimation model is simulated 

again, this time using boundary conditions for possible number of stops. The results from 100 

runs of simulation are presented in Fig. 4-23, which shows a marked reduction in schedule 

deviation. The standardized process reduces variability in on-site duration and thus reduces the 

likelihood of end-of-shift unused time or overtime. As can be seen from the distribution, 

possibilities of large deviations are eliminated. Now, it is of interest to see how this affects the 

daily productivity distribution. Productivity simulation reveals that some wide variations in 

productivity distributions are reduced by standardizing the process (Fig. 4-24). 
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Fig. 4-23. Distribution of schedule deviation after process standardization 
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Fig. 4-24. Distribution of simulated daily productivities after process standardization 
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4.6.2 Implementation Strategies 

From the case study results, it is understood that there exist many different ways of optimizing 

the routing, splitting the tours, or standardizing the process, and all of these contribute to 

improved productivity. However, implementation strategies for the above-mentioned models or 

options are subject to a specific context and existing policies. A review of industry practice and 

of recent advancements in technology and software solutions reveals that integrated data and 

O&M management systems are currently available and have been implemented by many 

operators at various capacities. However, the implementation approach depends on the accuracy 

of the estimation model and the efficiency of the optimization model. For example, if the 

estimation of on-site flushing duration is fairly accurate and the daily schedule optimization can 

be performed within a reasonable amount of time, it is expected that the crews may only deviate 

slightly from the optimum sequence. In such a case, real-time dynamic sequence updating may 

not be required. On the contrary, a less reliable (or conservative) estimation model may lead to 

time deviation, which warrants the real-time updating of optimum sequence. 

 

This raises the issue of how to develop a reliable estimation model. The model formulation 

described in the methodology chapter is based on established statistical techniques. However, the 

accuracy of the forecast is largely dependent on the availability of a large quantity of high quality 

historical data. Therefore, an automated data collection process is crucial to improving 

efficiency. As mentioned above, the flushing vehicles in many cities are now equipped with 

automatic vehicle locator (AVL) devices. Connected the sensors with flushing and pumping 

motors can eliminate manual work in the data collection process and thereby improve the quality 

of data. The data collected from the flushing and pumping motors can also be used in the 
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development of water usage estimation and sediment deposition models respectively, which can 

provide valuable information for developing operational schedules.  

 

The selection of the appropriate algorithm for schedule optimization requires a trade-off between 

optimality and run-time. While ILP may not be a feasible option for municipalities due to longer 

run-time, the hybrid GA presented in the methodology can be reasonably effective. However, the 

case study results show that the quick heuristic also will improve the daily productivity by a 

significant margin. The advantage of the heuristic algorithm is its fast run-time, which allows the 

planner to re-optimize the schedule even during working hours if large schedule deviation is 

experienced by a crew. However, the real-time updating of a PM schedule during flushing 

operation can be challenging, especially when multiple trucks are simultaneously operating at 

different locations across the city. For such cases, all the vehicles should have access to a central 

server that has the capacity to run an optimization algorithm every time a crew completes the 

flushing of their current location. Although it is possible to do so using existing technology, the 

concern is that generating an updated sequence for one vehicle may affect the current sequence 

of the other vehicles.  

 

4.7 Summary of Case Study 

This chapter has presented a case study from the drainage operations group at the City of 

Edmonton, where a monthly HPF schedule has been optimized. The expected on-site durations 

for the flushing locations have been estimated using an ordered probit model combined with 

multiple regression. Simulation reveals that the proposed methods effectively improve daily 

productivity compared to the existing neighbourhood-based routing. However, the variations 
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produced by on-site duration may result in schedule deviations. Nonetheless, accurate data 

collection and forecasting of on-site duration and standardization of the process can reduce such 

variability. 
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5 CONCLUSION 

 

This research has developed a framework for improving the productivity of drainage operations, 

with a primary focus on preventive operational activities such as high-pressure flushing (HPF). 

These activities are carried out at regular intervals at various prescheduled locations across the 

given jurisdiction. For large municipalities, travelling between these locations results in a large 

amount of non-value added travel time. Moreover, the operational activities are typically of short 

duration, depending on several factors, and are stochastic in nature. This may lead to unused time 

or overtime at the end of work shifts. Therefore, this research proposes to optimize operational 

schedules by taking these factors into consideration. The framework includes two primary 

components: (i) developing a statistical model for the estimation of on-site duration, and (ii) 

developing suitable optimization algorithms to minimize travel time and end-of-shift 

unused/overtime. 

 

5.1 Conclusion 

The methodology presented in this thesis has been applied to a case study taken from the 

Drainage Operations group at the City of Edmonton. On-site duration data for HPF activity have 

been collected from historical automatic vehicle locator (AVL) records, and have been used to 

develop the on-site duration estimation model. For optimization, this study has formally 

described and formulated the Drainage Operations Scheduling Problem (DOSP) as a special case 

of the stochastic vehicle routing problem. Along with applying several established optimization 

algorithms (such as integer linear programming and genetic algorithm), this study develops a 
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greedy heuristic and a hybrid genetic algorithm which explicitly serve the needs. As a general 

rule of thumb, the daily schedule can be optimized by prioritizing the locations with larger 

work/travel ratios at the beginning of the shift and leaving the smaller ones to fill the bins toward 

the end. The algorithms have been tested by optimizing a monthly HPF schedule, and their 

performances have been verified by simulation.  

 

Results from the optimization models show that the proposed heuristic algorithm perform 

reasonably well within a very quick runtime. The hybrid GA uses the optimum schedule 

obtained from the heuristic and can further improve the results; however, it requires longer 

runtime. Although the expected daily productivity can be improved significantly through 

schedule optimization, results from simulation suggest that the stochasticity in on-site duration 

can still cause deviation from the planned schedule and lead to unused time or overtime. The 

likelihood of such deviation can be reduced by increasing the accuracy of the on-site duration 

estimation model and/or by standardizing the on-site process. 

 

5.2 Research Contributions 

The framework described in this thesis can be used for other drainage operations activities, such 

as visual inspection or low-pressure flushing (LPF). However, additional criteria for specific 

processes may be required to be incorporated in the models. The framework is also applicable for 

other jurisdictions; however, the on-site duration estimation model is not readily transferrable, as 

the tools & techniques and factors affecting the duration may vary from one jurisdiction to 

another. In addition, the framework presented in this thesis can be used for O&M of other 
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infrastructure assets, provided there are scheduled short-duration activities at different locations 

across a jurisdiction. 

 

This research makes the following academic contributions: 

1) describes and formulates the drainage operations scheduling problem as a 

combinatorial optimization problem, thereby minimizing travel time and 

unused/overtime—or, in other words, maximizing effective work time; 

2) develops heuristic and hybrid GA algorithms in order to quickly obtain near-optimal 

solutions; and 

3) applies ordered probit analysis, combined with multiple regression model, in order to 

forecast the on-site flushing duration for a given set of pipes. 

 

In addition, this research makes the following contributions to industry practice: 

1) reduces travel and unused/overtime, resulting in improved productivity of operational 

activities; 

2) reduces travel distance, resulting in savings in fuel and carbon emissions; and  

3) provides guidelines to improve data collection and integration.  

 

5.3 Limitations of the Study 

This research has the following limitations: 

1) The on-site duration estimation model does not capture the variations due to some 

expected predictor variables (such as slope, diameter, and operational conditions) due 

to the lack of sufficient amount of quality data. 

2) The proposed heuristic and hybrid GA do not guarantee an optimal solution. 
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3) The runtime comparison between the algorithms is only relative, and does not report 

the actual runtimes. The runtimes may be improved by more efficient coding and data 

connection. 

4) The optimization algorithms have been verified by simulation only and not through 

field tests. 

5) This study focuses only on the preventive (or proactive) operational schedule. 

Interruptions in scheduled work due to emergency reactive work (if any) are not 

considered. 

 

5.4 Recommendations for Future Work 

Based on the findings and limitations of this research, the recommendations for future work are 

as follows: 

1) There is a need to collect high quality on-site duration data by connecting sensors with 

flushing and pumping motors. This will permit the capture not only of the actual on-site 

duration for the flushing of a set of pipes, but also the amount of water usage or debris 

collected during flushing. This information can be effectively used for future operational 

planning. 

2) There is a great potential to further improve productivity by applying or developing other 

existing or improved algorithms. 

3) Further productivity improvement can be possible if two different activities sharing the 

same resources (i.e., a combination unit is used for both catch basin cleaning and high-

pressure flushing activities) are combined in one schedule. 
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