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Abstract

This research deals with the modeling and control of a plasticating twin screw

extruder (TSE) that will be used to obtain consistent product quality. The TSE

is a widely used process technology for compounding raw polymers. Compounding

creates a polymer with improved properties that satisfy the demand of modern

plastic applications. Modeling and control of a TSE is challenging because of its

high nonlinearity, inherent time delay, and multiple interactive dynamic behavior.

A complete methodology is proposed in this thesis to design an advanced control

scheme for a TSE. This methodology was used to develop a model predictive control

scheme for a laboratory scale plasticating TSE and to implement the control scheme

in real-time. The TSE has a processing length of 925 mm and a length to screw

diameter ratio (L/D) of 37. High density polyethylenes with different melt indices

were used as processing materials.

Manipulated variables and disturbance variables were selected based on knowl-

edge of the process. Controlled variables were selected using a selection method

that includes a steady state correlation between process output variables and prod-

uct quality variables, and dynamic considerations. Two process output variables,

melt temperature (Tm) at the die and melt pressure (Pm) at the die, were selected

as controlled variables.

A new modeling approach was proposed to develop grey box models based on

excitation in the extruder screw speed (N), one of the manipulated variables. The

extruder was excited using a predesigned random binary sequence (RBS) type exci-

tation in N and nonlinear models relating Tm and Pm to N were developed using this

approach. System identification techniques were used to obtain model parameters.



The obtained models have an autoregressive moving average with exogenous (AR-

MAX) input structure and the models explain the physics of the extrusion process

successfully.

The TSE was also excited using a predesigned RBS in the feed rate (F ) as

a manipulated variable. Models relating Tm and Pm to F were developed using a

classical system identification technique; both models have ARMAX structures. The

model between Pm and F was found to give excellent prediction for data obtained

from a stair type excitation, indicating that the obtained models provide a good

representation of the dynamics of the twin screw extruder.

Analysis of the TSE open loop process indicated two manipulated variables,

N and F , and two controlled variables, Tm and Pm. Thus, a model predictive

controller (MPC) was designed using the developed models for this 2×2 system and

implemented in real-time. The performance of the MPC was studied by checking

its set-point tracking ability. The robustness of the MPC was also examined by

imposing external disturbances.

Finally, a multimodel operating regime was used to model Tm and N . The

operating regime was divided based on the screw speed, N . Local models were

developed using system identification techniques. The global model was developed

by combining local models using fuzzy logic methodology. Simulated results showed

excellent response of Tm for a wide operating range. A similar approach was used

to design a global nonlinear proportional-integral controller (n-PI) and a nonlinear

MPC (n-MPC). Both the controllers showed good set-points tracking ability over

the operating range. The multiple model-based MPC showed smooth transitions

from one operating regime to another operating regime.
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Chapter 1

Introduction

1.1 Introduction

Polymers are used with increasing frequency in many industrial fields such as

food, electronics, and automobiles manufacture and repair. In 1995, plastics pro-

duction in the world was about 100 million tons (Kiparissides 1996). Plastics are

typically polymers of high molecular weight, and may contain other substances to

improve performance and/or reduce cost. In the United States from 1976 to 1994,

the growth of plastics production increased five-fold (Rodriguez 1996). The use

of plastics in Asia has also been increasing in the last few decades, and increas-

ing demand of plastics is expected to continue for new and expanded applications;

examples are the use of polyethylene to make plastic bags and the incorporation

polypropylene in automobile manufacture. Thus, it is necessary to develop tech-

nologies that improve polymer properties and increase polymer production. Origi-

nally, polymer properties were controlled by selection of appropriate monomers. The

diverse use of today’s plastics require more stringent quality specifications, which

are difficult to achieve with individual base polymers (Potente et al. 2001a). Thus,

polymers are usually blended or compounded with other polymers, fibers, or com-

posites. Polymer compounding is more economical and expedient than synthesis of

new polymers to meet the requirements of specific applications. In most cases, the

products we see in the market today are made of a blend of polymers.

Polymer extrusion is a major compounding process used in the plastics indus-

try for the continuous production tubing, pipe, film, sheet, coated wire, and other

polymer products (Rauwendaal 2004, Fisher 1976). About 60% of all polymers pass

through extruders before the final product is made (Levy and Carley 1989). In the

polymer extrusion process, suitable raw material is pushed across a metal die to

produce a melt in a desired shape (Tadmor and Gogos 1979). Several unit oper-

ations can be performed in a single machine, including mixing, heating, kneading,

shearing, reaction, and shaping.
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1.2 Polymer Blends

The concept of polymer blending is not new. As the cost of developing and

industrializing new polymers increased sharply, the value of polymer blending began

to attract ever-increasing attention. For the past few decades, more than 4,000

patents on polymer blends have been published every year (Utracki 1990). Recently,

the number of patents has risen to nearly 10,000 per year. Also, increased uses

for compounds that comprise high molecular weight polymers with low molecular

organic and inorganic substances has accelerated the development of new polymer

materials.

Material performance is one of the most important factors in the design of new

polymer blends. The performance of a polymer blend depends on two main factors:

blend components and the blending process. The components of a polymer blend

are the individual polymer(s) and different additives or agents. Interactions among

components under certain processing conditions result in a particular morphology

of a polymer blend. This morphology varies under different processing conditions,

even with identical components. That is, the process is strongly correlated to the

properties and morphology of the polymer blend (Utracki 1990, Tadmor and Gogos

1979, Imagawa and Qui 1995, Pesneau et al. 2002, Huang et al. 2003, Fortelny et al.

2003, Premphet and Paecharoenchai 2002). Thus, to obtain a polymer blend with

desired properties, the selection of components and processing method is extremely

important.

Three methods are widely used in industry to prepare polymer blends: melt

mixing, solution mixing, and dry mixing. Melt mixing is the dominant method used

in extruders to make polymer blends in industry (Tadmor and Gogos 1979). A num-

ber of researchers have attempted to correlate the properties of polymer blends with

their morphologies (Bai et al. 2004, Lee et al. 1998, Thongruang et al. 2002, Luo and

Daniel 2003, Yeo et al. 2001). Improvements in new polymers include mechanical

properties such as toughness, tensile strength, temperature resistance, stiffness, and

elongation at breaks; functional properties such as permeability, conductivity, and

antistatic, flame retard, and antibacterial properties (Lee 1992, Zhang and Chen

2004, Sohn et al. 2003).

1.3 Extruders

The earliest industrial extruder was a hand operated plunger and die combination

invented by Joseph Bramah in 1797 and used for continuous manufacturing of lead

pipe (Janssen 1977). The first twin screw extruder (TSE) was developed by Follows

and Bates in 1873 (Janssen 1977). The first screw extruder designed specifically for
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thermoplastic materials was invented in Germany by Paul Troester in 1935 (Tadmor

and Klein 1970). Three types of extruders: screw, drum or disk, and reciprocating

are used for material processing.

Screw extrusion is essentially a screw of special form rotating in a heated cylin-

drical barrel and material is pushed forward by the screw rotation. The screw

extruder converts solid polymer into melt and continuously pumps the very high

viscosity melt through a die at high pressure (Tadmor and Klein 1970). At least

95% of thermoplastics products are produced by using screw extruders (Levy and

Carley 1989). Although there are a variety of different types of screw extruders,

the main division is between the single screw extruder (SSE) and the twin screw

extruder (TSE).

A single screw extruder consists of one screw rotating in a closely fitting barrel.

Materials are transported due to their friction with the channel walls. If the polymer

materials slip at the barrel wall, the material will rotate with the screw without being

pushed forward. Moreover, the effect of extrusion is null if the material adheres to

the screw. The pressure buildup by the SSE is poor because of the backflow of

material.

1.4 The Twin Screw Extruder

The first objective of twin screw technology was to overcome the problems faced

by the SSE. The presence of two screws makes it possible to force materials to

move forward in the machine, making the propulsion of materials less dependent on

friction. The TSE has several advantages over the SSE:

• Better feeding and more positive conveyance characteristics allow the machine

to process “hard-to-feed” materials (powders, slippery materials, etc.);

• Better mixing and a large heat transfer surface area allow good control of the

stock temperature;

• Residence time distribution is short and narrow;

• There is a good control over residence times and stock temperatures for the

profile extrusion of thermally sensitive materials; and

• Interchangeable screw and barrel sections can be arranged to serve distinct

and precise processing requirements.
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1.4.1 Process Description of a TSE

Figure 1.1 shows a schematic of a generic TSE. Screw shafts are coupled with

the motor to rotate the screw. The barrel has electrical heating and water cooling

systems. Usually, the feed is charged in to the extruder at room temperature through

the hopper. More than one feed can be charged from different feeders using a feed

controller to maintain a certain feed composition. Feed is transported from the

hopper to the end of the barrel, i.e., die by the drag force because of the friction and

by the screw rotation. The twin screw essentially acts as a positive displacement

pump. Solid feed gets melted as it travels along the heated barrel because of the

applied heat, viscous dissipation and friction.

The feed material is almost solid at the conveying zone. Because of the screw

rotation and friction, material is transported from the conveying zone to the melting

zone where feed is partially melted and a number of processes such as mixing and

reaction happen (Chen et al. 2004). The pumping or melt conveying zone is next

to the melting zone; here the feed is essentially considered a complete melt. The

pressure of the melt in this zone is increased by the screw rotation to extrude the

melt polymer across the die.
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Figure 1.1: Schematic diagram of a generic TSE.
(www.polymerprocessing.com/operations/tscrew/ts1.gif).

1.4.2 Classification of TSEs

As its name indicates, a TSE contains two parallel screws that rotate inside a

heated barrel. However, according to the direction of rotation and engagement of

the screw, a TSE can be classified as follows:

• Direction of rotation: When the two screws have the same direction of

rotation, the extrusion machine is known as a co-rotating extruder. In a
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counter-rotating extruder, the screws rotate in opposite directions.

• Interpenetration: Based on the degree of penetration of the two screws

into each other, a TSE is classified as an intermeshing or nonintermeshing

twin screw extruder. Intermeshing screws imply that C-shaped chambers are

present which positively convey the process material to the die end of the

extruder.

1.4.3 Principle Elements of a TSE

A TSE consists of a drive section and a processing section. The drive section

usually consists of a gear and a motor. The processing section comprises the screws

enveloped by a barrel. The screw section and the barrel section are described below:

• Screw section: The screw section is made by combining different elements

of a screw module. Each screw module provides a distinct conveying, mix-

ing, shearing, or pressure buildup action. This makes it possible to compose

the geometrical configuration to fit the application. There are three types of

screws: a screw element for direct flow (positive helix angle), a screw element

for reverse flow (negative helix angle), and a kneading block. Kneading blocks

are combinations of any desired number of kneading disks of different widths

and offset angles. In addition, special mixing elements are used to increase

the degree of mixing. Figure 1.2(a) shows different types of screw modules.

• Barrel section: The barrel section is a fixed outer jacket in which the screws

rotate. Like the screw section, the barrel unit is assembled in a modular

way. This modularity allows great flexibility. The barrel section can be made

of different barrel modules depending on the particular function (food, vent-

ing, etc.). The geometrical shape of the barrel can be either rectangular or

cylindrical. Figure 1.2(b) shows a photograph of rectangular modular barrel

elements.

1.4.4 Geometry of a TSE

The screw geometry of a TSE was studied by Booy (1978) and Potente et al.

(1994). The following four parameters are sufficient to completely describe the

geometry of a TSE.

• External diameter of the screw (Dext);

• Distance between screw axes (Cl);

• Screw pitch (B); and
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(a) Modular screw 

(b) Modular barrel 

Figure 1.2: Principle elements of the processing section of a TSE (Tadmor and
Gogos 1979).

• Number of screw flights (S).

Table 1.1 shows the geometric relationships of a TSE.

Table 1.1: Geometric relationships in a tightly intermeshing TSE.

Geometrical parame-
ter

Description Relation

Channel width (W) Distance between two suc-
cessive flights of a screw

W=BCosφ
S

− e

Helix or pitch angle (φ) Angle of a screw flight φ = arctan B
πDext

Tip width (e) Width of flight tip e=αRextsinφ

Intermeshing angle (ψ) Angle of the zone of inter-
penetration

ψ = arccos Cl

Dext

Flight angle (α) Flight angle with the nor-
mal of the screw surface

α = π
S
− 2ψ

1.5 Introduction to Advanced Control Schemes

In the 1960s, advanced control was used to describe any algorithm or strategy

other than the classical proportional-integral-derivative (PID) controller. At that
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time, NASA used real-time programming and remote-control using models. Over the

last 50 years, significant research has been done on advanced control, the underlying

theory, implementation, and the benefits that its applications will bring. The ad-

vent of modern computers and digitalization made the execution of algorithms easier

than was possible using analog technology. Now a days, advanced control is synony-

mous with the implementation of computer based technologies. Advanced control

techniques include a number of methods from model-based predictive controllers to

intelligent sensors to neuro-fuzzy control and expert systems. Model predictive con-

trol, feedforward control, multivariable control, and optimal control strategies are

practical alternatives. These methods have been used in chemical and petrochemical

industries (Linko and Linko 1998). Advanced control can improve product yield,

reduce energy consumption, increase capacity, improve product quality and consis-

tency, reduce product giveaway, increase responsiveness, improve process safety, and

reduce environmental emissions. Advanced process control techniques using digital

computers have significant potential to improve the operation of extruders (Wang

et al. 2008).

Advanced control is a multi-disciplinary technique. It describes an exercise that

draws elements from a number of disciplines ranging from control engineering, sig-

nal processing, statistics, decision theory, artificial intelligence, and hardware and

software engineering. Advanced control requires an engineering appreciation of the

problem, an understanding of the process, and judicious use of control technolo-

gies. Dynamic relationships between variables are used to predict how variables will

behave in the future. Based on this prediction, necessary action can be taken im-

mediately to maintain variables within their limits before a deviation occurs. Thus,

such schemes are mainly model based. Advanced control strategies have been suc-

cessfully used in unstable processes such as aerospace, robotics, radar tracking, and

vehicle guidance systems. Advanced controllers are also used in processing plants

in order to increase efficiency or reduce costs. However, processing plants are rela-

tively stable processes. Thus, advanced control strategies for processing plants are

different than that of unstable systems.

1.6 Control of Twin Screw Extrusion Processes

Molecular and morphological properties of a polymer product strongly influence

its physical, chemical, rheological, and mechanical properties as well as properties of

the final product. These properties are affected by the processing conditions. Poly-

mer industries aim to produce polymers or polymer blends that meet specifications

such as impact strength and melt index. However, on-line measurement of end use

properties is very difficult. Parameters that are measured relatively easily and that
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correlate with end use properties are usually reported in the specifications. For ex-

ample, melt index (MI) or intrinsic viscosity is reported instead of molecular weight.

The MI has an inverse power law relationship with the weight average molecular

weight of the product. The MI of a polymer melt is usually measured according

to ASTM D 1238 . In most cases the MI is measured off-line and infrequently.

Therefore, in most plants, a polymer process is controlled without a real-time qual-

ity indicator for several hours. Lack of on-line measurement is a major challenge to

advanced and automatic control in an extrusion process.

In addition, an extrusion process has an inherently significant transportation

delay. For example, a temperature sensor located at the die takes considerable

time to sense any effect due to any change in feed rate. Moreover, a change in

one process variable causes changes in several other variables, depending on the

particular conditions used at that time (Tadmor et al. 1974a). Thus, the process

is highly interactive and has significant time delay. However, it is very important

to have a stable extrusion process to establish consistent product quality. Any

fluctuation in operating variables can cause variations in the quality of the final

product. Thus, a closed loop with an advanced control strategy is imperative to

overcome this problem.

1.7 Scope of the Research

Although the TSE is very common in compounding technology, its smooth op-

eration is hard to achieve. A number of researchers (Kulshreshtha et al. 1991a, Kul-

shreshtha et al. 1995, Hofer and Tan 1993) have highlighted the following challenges

in controlling product quality in TSEs:

• interactions among mass, momentum, and energy transfer, and little under-

standing of these interactions;

• inherent time delay of the process;

• multiple inputs and multiple outputs process;

• highly nonlinear processes;

• lack of real-time measurement of quality variables; and

• disturbances.

Extrusion is a complex process. Control of the twin screw extrusion process is

an active area of research. Characteristics of extrusion processes reveal a need for

advanced control schemes for consistent product quality. Researchers have developed
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some advanced control strategies for twin screw food extruders, but advanced control

for the plasticating twin screw extruder is very limited and much research is needed

in this area of polymer processing.

1.8 Objectives

The objective of this project was to design and implement advanced control

schemes that provide consistent operation of a plasticating twin screw extruder.

The objective was accomplished by performing the following steps:

• The most sensitive product quality parameters were identified and related to

available and measurable process variables to select candidate variables as

indicators. These relations were obtained using statistical methods and were

validated with experimental data.

• Variables that gave better prediction of product quality parameters were se-

lected as controlled variables.

• Dynamic models were developed using controlled variables and available ma-

nipulated variables.

• Advanced control schemes were designed based on the obtained models and

closed loop simulations.

• Control schemes were implemented in real-time and controller performance

was evaluated.

1.9 Structure of the Thesis

A brief literature review on modeling and control of twin screw extrusion pro-

cesses is given in chapter 2. Research and development of twin screw extrusion

process control are explained with emphasis on the plasticating TSE. Based on

the literature review, challenges and perspectives leading to research objectives are

identified.

The experimental setup is explained in chapter 3. Work performed to automate

an existing TSE is described, where data from the extruder’s programmable logic

controller is sent to the computer and then to the extruder in real-time. Modification

and mounting of new sensors to obtain more process output variables is explained.

In chapter 4, a systematic approach is detailed for developing a dynamic grey

box model to predict the behavior of output variables due to changes in screw

speed in a plasticating TSE. This approach comprises the selection of controlled
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variables among a number of process variables and the development of grey box

models relating the selected controlled variables and the screw speed.

Black box models relating the selected controlled variables and the feed rate

are explained in chapter 5. Different excitation methods were used and the effects

of excitation on model predictions are described. Frequency domain analyses were

performed with the obtained models.

In chapter 6, closed loop control of a laboratory scale plasticating TSE is detailed.

A multiple-input multiple-output model predictive controller (MPC) was designed

for this closed loop control. This controller regulates polymer melt temperature and

melt pressure by manipulating screw speed and feed rate. The control scheme was

implemented in real-time. Both servo and regulatory performances of the MPC are

discussed in chapter 6.

Multimodel approaches are used to model and control a TSE. The operating

range is divided based on the screw speed and local models are developed. De-

velopment of a global model by combining local models is described in chapter 7.

A similar approach is used to design nonlinear proportional-integral controller and

nonlinear MPC. Design of nonlinear controllers and simulated closed loop responses

are presented in chapter 7.

The necessary steps for closed loop control are outlined in chapters 3 to 6. The

major findings of this work are summarized in chapter 8, and recommendations for

future work are presented.
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Chapter 2

Literature Review

2.1 Introduction

Significant research has been done in many areas of extrusion process such as

study of flow behavior inside a twin screw extruder (TSE), modeling of extrusion

processes, and control of product quality parameters. Modeling and control (espe-

cially advanced control strategies) of TSEs are reviewed in this chapter with a focus

on plasticating twin screw extrusion processes. A TSE control system ensures con-

sistent product quality despite disturbances and process upsets. In section 2.2, an

extrusion process is described from a control point of view and depicted in an open

loop block diagram (Figure 2.1). The diagram provides information about controlled

variables, manipulated variables, disturbance variables, and product quality param-

eters. The state of the art in modeling using manipulated and controlled variables

is explained. A detailed review of available literature on modeling TSEs is pre-

sented. A review on control strategies developed and/or implemented in real-time

is discussed with an emphasis on modeling and control of TSEs used for polymer

processing.

2.2 Process Analysis

The extrusion process is characterized by strong interactions between mass, en-

ergy, and momentum transfer. Such interactions are coupled with physiochemical

transformations which predominantly determine the properties of the final products.

An extrusion process is essentially a multiple-input multiple-output (MIMO) sys-

tem. Conventional control strategies are not effective in controlling MIMO systems.

Identification or selection of manipulated variables, disturbance variables, and

controlled variables is required for the proper design of control systems. Figure

2.1 depicts an open loop block diagram of a typical plasticating TSE with manipu-

lated variables, disturbance variables, process output variables, and product quality
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Figure 2.1: Open loop diagram of a plasticating TSE.

2.2.1 Manipulated Variables

For a plasticating extruder, the available input variables are screw speed, barrel

temperature, and feed rate. If there is more than one raw material, then composition

is another input variable. Input variables can be used as manipulated variables

(MVs) as well as to control the extrusion process. Seborg et al. (2004) discussed

the criteria for selecting MVs. For instance, due to the slow speed of correction,

barrel temperature is the least suitable MV. In addition, heating and cooling have

different dynamics in many cases. Costin et al. (1982a) mentioned some innovative

MVs such as take up speed, restrictor valve, and plunger, but these MVs are not

commonly used in industry. In food extrusion processes, moisture content is used

as a MV along with other previously mentioned MVs.

2.2.2 Disturbance Variables

If systems were not affected by disturbances, there would be no need for control.

Disturbances are inevitable in any process. One must know what type of distur-

bances are associated with a particular system before designing a control scheme to

regulate the process. Three major disturbances associated with extrusion processes

are discussed below.

Fluctuations

A steady flow rate, constant pressure, constant temperature, and uniform ex-

trudate composition are required for a good quality extrusion. Thus, stability of

these variables determines the quality of the extrudate. However, these fluctuations

are interrelated. Pressure fluctuation will induce flow rate fluctuation; temperature
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fluctuation will cause viscosity fluctuation, which eventually will induce pressure

fluctuation as well as flow rate fluctuation. The type and source of these fluctu-

ations, commonly referred to as surging, were summarized by Tadmor and Kelin

(1970):

• High frequency fluctuation: This fluctuation happens at the same frequency

as the rotational speed of the screw. Such a fluctuation is easily detected in

pressure data. It is caused by the periodic changes in the feed rate due to

the passage of the flights at the hopper opening. This kind of fluctuation

usually occurs when an extruder operates at a very low back pressure, for

example extremely cooled screws and screws with an inadequate compression

ratio. High frequency fluctuations are picked up by a pressure transmitter if

it is mounted close to the tip of the screw. In this case, the fluctuations are

due to the periodic passing of the screw flights and have nothing to do with

instability.

• Intermediate frequency fluctuation: This kind of fluctuation occurs at fairly

constant frequency (1-15 cycles/min) and is one of the main reasons of poor

quality product. The origin of this fluctuation can be related to the melting

mechanism of polymer in the extruder. The solid bed formed by the unmelted

polymer pellets breaks up at a certain point in the melting zone and the steady

state melting process goes into an unstable process. This process makes blocks

of solid polymer which continue to melt for a period, after which they float

down the channel and slowly melt by conduction. This breaking up process

is a function of the type of polymer, the pellet size, and the screw geometry.

However, steady state operating conditions have little effect on this process.

This variation in the length of the melting region causes a surging effect in the

extruder. Thus, intermediate frequency fluctuations originate in the melting

zone. One of the ways that might help to overcome this problem is to move

the originating point as far from the delivery end of the extruder as possible.

High back pressures and high heat levels on the rear zones are also helpful to

overcome this surging effect.

• Low frequency fluctuation: This kind of fluctuation has a period of the order

of magnitude of an hour. It is caused by external reasons such as variation in

cooling water pressure, heater cycling, variation in plant voltage, etc.

Sometimes high frequency fluctuations due to the rotation of the screw are super-

imposed on lower frequency fluctuations, making the amplitude of the fluctuations

even higher.
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Bulk density

This disturbance happens at the feed end due to variations in feed bulk density

and the nature of the feed itself. The feed end disturbances can lead to poor product

quality and need to be controlled. Thus, feed related input variables, for example,

feed rate, can be used as MVs to reduce the effects of this variable.

Die resistance

This disturbance occurs due to sudden changes in die resistance. Changes in

die resistance are due to partial or complete blockage of the die. In TSEs, die end

disturbances are often dramatic in nature, sometimes leading to sudden shut-down.

In most cases, die end disturbances occur during start-up or after sudden changes

in operating conditions.

Screw wear, heat loss from the extruder, and changes in the value of the heat

transfer coefficient between barrel wall and melt are typically responsible for a slow

drift in extrusion processes. These disturbance variables are important to the quality

of the final product. Fluctuations are the predominant disturbances associated with

the extrusion process (Iqbal et al. 2010a). Any kind of fluctuation makes the flow

rate unstable and the quality of the extrudate poor.

2.2.3 Controlled Variables

In most cases, process output variables are used as controlled variables (CVs) in

an extrusion process due to difficulties in using product quality variables as primary

controlled variables. The usual measured process output variables of a plasticat-

ing TSE are polymer melt pressure and polymer melt temperature. Torque and

energy, which are calculated from available process information, are also process

output variables. For example, an increase in a polymer melt temperature decreases

viscosities and an increase in a polymer melt pressure increases viscosities. Torque

required to rotate a screw shaft decreases with an increase in a temperature and

increases with an increase in a pressure.

These output variables can be used as controlled variables as well to design a

closed loop control scheme. The selection of process output variables as controlled

variables also serves to take care of stability considerations. It is worthwhile to

mention that although process output variables have a strong correlation with actual

product quality, the final controlled variables are the product qualities. Selection

of the process output variables to be used as controlled variables needs to be based

on their influence on the quality parameters most characteristic of the product. For

example, torque may be the most pertinent controlled variable for one product and

melt pressure at the die for another.
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2.2.4 Product Quality Variables

The ultimate goal of any control system in a plasticating TSE is to control the

product quality variables (PQVs) such as melt index, rheological properties, molecu-

lar weight distribution, and mechanical properties within a specified range. However,

these parameters are often not measured on-line due to cost, operational effort, and

maintenance, and it is possible to evaluate these parameters only after a delayed lab-

oratory analysis. Control of PQVs requires good understanding of the process and

prediction of PQVs from available process variables. A number of techniques can be

used to predict PQVs from available process variables (Sharmin et al. 2006, Wang

et al. 2001a, Zhang et al. 1997, McAuley et al. 1990, McAfee et al. 2003). In the

studies cited, relations between product quality variables and process variables are

developed using statistical techniques or first principles. For example, melt index

has a logarithmic relationship with a temperature. Such relations allow us to pre-

dict or infer the values of PQVs from the process data. The obtained relations are

known as the inferential model or soft-sensor. This is an active area of research but

is beyond the scope of this work.

2.3 Process Model

The model of a process should encapsulate dynamic information. However, some

analysis and design techniques require only steady-state information. In general,

models use simplified properties of the system, and retain only information relevant

to the problem statement or objective. Therefore, the use of models reduces the

need for real experiments and facilitates the achievement of many different purposes

at reduced cost, risk, and time. From a control point of view, a model must contain

information that enables the prediction of the consequences that will result from

changes in the process operating conditions. Within this context, a model can be

formulated on the basis of physiochemical or mechanistic knowledge of the process,

it can be obtained from process data or it can be derived from a combination of

knowledge and measurement. It can also be in the form of qualitative descriptions

of process behavior. Figure 2.2 shows a classification of model forms. The model

type to be employed depends on the task or objective.

The main purpose of a control system is to ensure consistent product quality

despite disturbances and process upsets. A control scheme needs to be based on an

understanding of the process to be controlled. A good mathematical model for the

process is therefore extremely important and a prerequisite for the design of control

systems for extrusion processes (Haley and Mulvaney 2000b).
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Figure 2.2: Classification of models for process monitoring and control.
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2.3.1 First Principles or Mechanistic Models

First principles or mechanistic models are developed from basic principles of

physics and chemistry such as conservation of mass, momentum and energy. If a

process and its characteristics are well defined, a model can be developed using

first principles. The structure of the final model may be represented by a lumped

parameter or a distributed parameter depending on the process. Lumped parameter

models are described by ordinary differential equations (ODEs) while distributed

parameter systems are represented by partial differential equations (PDEs). For

example, a change in liquid height in a tank with time can be presented by an ODE,

and a change in temperature in a tank with time and at different locations can be

represented by PDEs.

A distributed parameter model is more complex than a lumped parameter model,

and hence harder to develop. In addition, solving PDEs is less straightforward than

solving ODEs. However, a distributed model can be approximated by a series of

ODEs given simplifying assumptions. Both lumped and distributed parameter mod-

els can be further classified into linear or nonlinear descriptions. Usually nonlinear

differential equations are linearized to enable tractable analyses. Many researchers

have tried to develop first principle models for TSEs in steady state or dynamic

conditions.

Steady State Models

Potente and other groups developed steady state models for plasticating TSEs

(Poulesquen and Vergnes 2004a, Poulesquen et al. 2004b, Vergnes and Berzin 2004,

Carneiro et al. 2002, Potente et al. 2001a, Vergnes et al. 2001, Carneiro et al. 2000,

Delmare and Vergnes 1996, Wang and White 1989, Booy 1978, Booy 1980, Booy

1981, Denson and Hwang 1980, Mohamed and Ofoli 1990). The melting mecha-

nism of a polymer in the melt section of a TSE was modeled and compared with

experimental values (Potente et al. 2001a, Potente et al. 2001b, Potente et al. 1996).

Variables such as volume, maximum width and maximum depth of a screw channel,

and free cross-sectional area were evaluated from machine geometry according to

Potente et al. (1994). Moreover, models for power consumption and temperature

(Potente et al. 2004) development were obtained and a simulation software, SIGMA

(Potente et al. 2001b), was developed to simulate the pressure profile, temperature

profile, etc. In another research group, White and coworkers (Wang and White

1989, Wang et al. 1989, Szydlowski and White 1988, Szydlowski et al. 1987, White

and Chen 1994, White et al. 1987, White and Szydlowski 1987, Hong and White

1998, Szydlowski and White 1987, Bawiskar and White 1997, Bawiskar and White

1998) did extensive work on plasticating TSEs to construct a mechanistic model
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for steady state flow behavior. Vergnes et al. (1998) developed a global model to

simulate pressure, mean temperature, residence time, and shear rate of a molten

polymer in a co-rotating TSE. Rios et al. (1998) simulated the mixing behavior in

a co-rotating TSE to increase the quality of mixing. In other studies, mechanistic

models were developed for steady state reactive extrusion processes (Poulesquen et

al. 2004, Gimenez et al. 2001, De Loor et al. 1996).

Extensive research has also been done by a number of researchers to develop

a first principles model for a twin screw food extrusion process (Della Valle et al.

1993, Vergnes et al. 1992, Barrès et al. 1991, Kulshreshtha et al. 1991b, Della Valle et

al. 1987, Yacu 1985). Tayeb et al. (1988b) obtained a steady state model for a twin

screw food extruder to compute isothermal flow through the reverse screw element

of a twin screw extrusion cooker. In this study, some of the model parameters were

obtained from screw and barrel geometry according to Booy (1978). In each study,

a drift from experimental values was observed because of a number of restrictive

assumptions and some classical assumptions.

Steady state models can be used to predict performance corresponding to a given

set of operating conditions and are very useful in designing TSE performance mon-

itoring, etc. But if the set of operating conditions changes to different values, then

the process moves to a new steady state that is not possible to predict by the steady

state model. Steady state models also can not predict the path followed by the ex-

truder during the transition, or the rate at which the change occurs. For example,

it is not possible for steady state models to predict the response of the process and

the influence of various fluctuations on extruder performance. Therefore, a dynamic

extrusion model is very important in the design of a control system (Akdogan and

Rumsey 1996).

Dynamic Models

The main objective of dynamic modeling is to understand how physical transport

phenomena, operating conditions, etc., affect the polymer quality of the final prod-

uct. A number of research groups have attempted to model the process behavior

of plasticating single screw extrusion processes but work on plasticating twin screw

extrusion processes is limited. Dynamic models of TSEs have been investigated

theoretically over the last few decades. Table 2.1 summarizes some major published

articles on dynamic mechanistic models of twin screw extrusion processes. In most

cases, models are developed to predict melt pressure, melt temperature, residence

time distribution, and filling factor. Conservation of mass, momentum balance, and

energy balance are used to develop the models. Power law and geometric relation-

ships are also used to develop the models. Mechanistic models are developed based

on both classical and conservative assumptions.
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Kim and White (2000a, 2000b) developed models to predict output flow rate

and length of the fill in front of the die and kneading block in cases of isothermal

and non-isothermal transient start up. The study was done using Newtonian fluids

which are hardly used as processing materials in commercial TSEs. Kulshreshtha

and Zaror (1992) developed dynamic models to predict shaft power and the melt

pressure at the die for a twin screw food extruder. In another study, Li (2001)

developed a one-dimensional model to predict pressure, temperature, fill factor,

residence time distribution, and shaft power from available operating conditions

such as feed rate, screw speed, feed temperature/moisture, barrel temperature, etc.,

for cooking extrusion processes. This model was similar to Kulshreshtha and Zaror

(1992) model, but Li developed a faster solution algorithm. Lack of simulated

results presented in the article makes the accuracy of the predictions questionable.

A literature survey on mechanistic models shows that much more research on twin

screw extrusion process modeling has been performed for food extruders than for

plasticating extruders.

Despite the availability of mechanistic models for extrusion processes, it is a

challenge to use such models as a basis for automatic control systems. In fact,

no mechanistic models were used to design and implement control schemes by the

researchers, probably for the following reasons:

• Mechanistic models need good understanding and knowledge of physical, chem-

ical, rheological, and thermodynamic properties of the polymer melt and its

interactions within the extruder. In many cases, these properties and their

transport behaviors are either unknown or not well defined for the extreme

process conditions that exist within an extruder during operation.

• Such models do not consider stochastic disturbances derived from nonhomoge-

neous feed stock components, transient surging behavior, vibration at different

frequencies (Costin et al. 1982a), and sensor noises, which are inherent in ex-

trusion processes and very important considerations in the design of control

schemes.

• Mathematical models are developed based on a number of assumptions; hence,

simulation gives biased values. Thus, there are always difference between

predicted and experimental values.

• Mechanistic models contain parameters that are time consuming and some-

times hardly possible to measure.
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Table 2.1: Summary of literature on first principles modeling of twin screw extrusion
processes.

References Summary Comments
Tadmor et al.
(1974a)

Models were developed for the tran-
sient solid bed profile, temperature pro-
file, and pressure profile of a plasticat-
ing extruder due to the changes in the
screw speed, feed rate, and barrel tem-
perature.

Only qualitative ex-
planations were given
without model valida-
tion.

Tayeb et al.
(1988a)

Models were developed to predict tem-
perature in the conveying section,
isothermal evolution of pressure in the
melt pumping and reverse screw ele-
ments, and residence time distribution
in a plasticating TSE.

Considerable mis-
match was observed
between model pre-
dicted pressure and
experimental pres-
sure.

Kim and
White
(2002, 2001)

Models were developed for transient
output composition variation due to
input disturbances from feeders and
surging due to superposed disturbances
from feeders.

Models predictions
were not validated
or compared with
experimental values.

Kulshreshtha
and Zaror
(1992)

Mathematical models were developed
for die pressure and shaft power to pre-
dict dynamic behavior of die pressure
and shaft power of a twin screw food
extruder due to step change in feed
rate, feed moisture content and screw
speed.

Predicted values
showed significant
deviation from experi-
mental values.

Li (2001) Models were developed to predict pres-
sure, temperature, fill factor, residence
time distribution, and shaft power
from feed rate, screw speed, feed tem-
perature/moisture, barrel temperature,
etc., for cooking extrusion processes.

Lack of simulated re-
sults presented in the
article questions the
goodness of predic-
tion.

Choulak et al.
(2004)

Models were developed to predict tran-
sient and stationary behavior for pres-
sure, temperature, filling ratio and mo-
lar conversion profile as well as resi-
dence time distribution under different
operating conditions for a reactive ex-
trusion process.

No model predicted
output was validated
with experimental
data except pres-
sure. Considerable
mismatch between
model prediction and
experimental values
was observed.
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2.3.2 Black Box or Empirical Models

Extrusion is a complex process and use of first principle models is severely limited

especially in real-time control applications. Another way to model dynamic extru-

sion processes is an empirical or black box modeling approach. Dynamic black box

models offer an understanding of the extrusion process during transition from one

steady state to another steady state. These models are valuable tools for analyzing

the performance of an existing control system (Seborg et al. 2004) and designing

model-based control schemes (Kulshreshtha and Zaror 1992, Haley and Mulvaney

2000a). These are also promising tools for product development and quality im-

provement. Thus, recent research has focused on obtaining black box models and

designing control systems based on these models.

Transfer Function Models

A transfer function expresses algebraically a dynamic relation between selected

input and output values of a process. Transfer function models are developed from

observations of input-output behavior of a process. Consider the process depicted

in Figure 2.3 with process input, output, and disturbance.

 

Input Data, u(t) Output Data, y(t) Process 

Disturbances, e(t) 

Figure 2.3: Process input, output, and noise.

The transfer function between input and output data can be written according

to equation 2.1,

G(s) =
Y (s)

U(s)
=
bms

m + bm−1s
m−1 + · · · + b0

ansn + an−1sn−1 + · · ·+ a0
. (2.1)

where Y(s) and U(s) are Laplace transfer functions of y(t) and u(t), respectively. A

Laplace domain transfer function is assumed from the response of an output variable

due to the excitation of an input variable. Then, the values of the parameters of

the transfer function are obtained from the response. For example, consider an

output variable that follows a first order trajectory due to the step change in an

input variable. Two parameters, time constant and process gain, are required to

model this response. There are a number of techniques available to obtain transfer

function models from responses (Seborg et al. 2004).
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Transfer function modeling has been done extensively for plasticating single

screw extruders by a number of researchers (Hassan and Parnaby 1981, Costin et al.

1982b, Chan et al. 1986, Yang and Lee 1988, Previdi et al. 2006). However, transfer

function modeling of plasticating twin screw extrusion processes is very limited. A

summary of the published work on transfer function modeling of twin screw extrud-

ers is presented in Table 2.2. A review of transfer function modeling reveals the

following:

• Step type excitation is the most common perturbation method to develop

transfer function models of twin screw extruders.

• Transfer function modeling has been done mostly for twin screw food extruder.

To develop black box models for a process or a system, sufficient excitation is

imposed to capture the underlying process behavior. Thus, it is necessary to use

well designed excitation methods to model complex extrusion processes. Parnaby et

al. (1975) explained the step, impulse, and random binary sequence type excitation

to identify extrusion processes. It has been observed experimentally that following

a step change in screw speed, there is a rapid pressure change followed by a slower

temperature change. However, subsequent step changes in the screw speed require

further modification to the temperature so that the pressure continues to alter due

to the changes in viscosity of the polymer flowing through the die. This behavior is

difficult to model using a single step change in screw speed.

Step and impulse type excitations are classical approaches to evaluate a transfer

function from the resulting transient response. However, step tests only excite low

frequency components of the process. Obtaining models that adequately describe

the process requires excitation of the process across all the important frequencies.

Thus, developed models using step excitation can not predict the responses at high

frequencies. In addition, in practice, sufficient random changes in raw material prop-

erties occur continuously to distort and make nonstationary the transient responses.

Therefore, while a step change is useful in building up a basic understanding of the

process, it provides inaccurate transfer functions. Incorrect modeling of dynam-

ics can result in derived controller parameters that provide unstable closed loop

behavior.

Well designed random binary sequence (RBS) and pseudo random binary se-

quence (PRBS) are good methods to excite (Hofer and Tan 1993, Schonauer and

Moreira 1995) the desired frequency components of an extrusion process. Usually,

RBS or PRBS design is based on the step responses of a process. Relay-feedback,

another excitation method, is usually used in closed loop systems.

22



Table 2.2: Summary of literature on transfer function modeling of twin screw ex-
trusion processes.

References Process Excitation
method

Summary

Moreira et
al. (1990)

Food
extrusion
process

Step changes
in feed rate,
screw speed,
and moisture
content were
performed.

Dynamic responses of the die pres-
sure due to the step changes in screw
speed, moisture content, and feed rate
were modeled by first order, first order
plus lead-lag, and second order transfer
functions, respectively.

Lu et al.
(1993)

Food
extrusion
process

Step changes
in moisture
content, screw
speed, barrel
temperature,
and feed rate
were imposed.

Responses of product temperature were
modeled by overdamped second order
models for step changes of all the vari-
ables. Responses in the die pressure
and motor torque were modeled by sec-
ond order transfer functions with non-
minimum phase zero due to changes in
screw speed, feed rate, and barrel tem-
perature. Overshoot responses were
found for die pressure and motor torque
due to step changes in feed moisture.

Cayot et
al. (1995)

Food
extrusion
process

Step changes in
feed rate, mois-
ture content,
and screw speed
were imposed.

Process stability, stationarity, and lin-
earity were studied. No response was
modeled.

Akdogan
and Rum-
sey (1996)

Food
extrusion
process

Step changes in
feed rate and
screw speed
were made.

Dynamic responses of die pressure and
motor torque were modeled. Responses
to a feed rate change were modeled by a
first order transfer function model and
responses to a screw speed change were
modeled by inverse response for both
the outputs.

Nabar and
Narayan
(2006)

Food
extrusion
process

Step changes
were made in
starch feed
rate, moisture
content, screw
speed, and poly
hydroxy amino
ether (PHAE)
feed rate.

Responses of the die pressure due to
changes in input variables were mod-
eled by first order plus time delay trans-
fer functions.

23



Time Series Models

Time series analysis deals with experimental data measured at different time

instants for statistical modeling and prediction (Shumway and Stoffer 2005). An

intrinsic feature of time series analysis is the nature of the dependence between

adjacent observations of a time series (Box et al. 1994). Time domain and frequency

domain are used in time series analysis. The time domain approach focuses on

modeling future values of a time series as a parametric function of current and

past values. The frequency domain approach assumes the primary characteristics of

interest in time series analysis relate to periodic or systematic variations. However,

models developed using the time domain approach are generally used to design

control schemes.

The signals obtained from the sensors in extrusion processes are very noisy. For

example, disturbances caused by pressure surges can be almost as large as those

caused by a step of six rpm in screw speed (Costin et al. 1982b). When the process

disturbances are such a large part of the overall process behavior, they need to

be modeled so that an effective control strategy to eliminate these disturbances

can be implemented. It is possible to model both process and noise using time

series modeling. The noise model can then he used to predict the next value of the

disturbance allowing for improved control.

Processes regulated by digital controllers are often modeled in discrete time

domain. It is possible to rearrange Figure 2.3 in a discrete time domain according

to Figure 2.4, where two additional blocks G(q, θ) and H(q, θ) have been introduced.

Now, the output can be written according to equation 2.2.

 

u(t)  y(t) G(q,θ) 

e(t) 

H(q,θ) 

+ 

+ 

Figure 2.4: Process input, output and noise in discrete domain.

y(t) = G(q, θ)u(t) +H(q, θ)e(t)

Or, y(t) =
B(q)

F (q)
u(t) +

C(q)

D(q)
e(t) (2.2)
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where the parameter vector θ contains the coefficients bi, ci, di and fi of the transfer

function. This time series model is known as the Box-Jenkins model. Here,

G(q, θ) =
B(q)

F (q)
=
b1q

−nk + b2q
−nk−1 + · · ·+ bnbq

−nk−nb+1

1 + f1q−1 + · · · + fnfq−nf
(2.3)

and

H(q, θ) =
C(q)

D(q)
=

1 + c1q
−1 + · · · + cncq

−nc

1 + d1q−1 + · · · + dndq−nd
(2.4)

Equation 2.2 is described by five structural parameters: nb, nc, nd, nf , and

nk(delay). The q-transform exhibits a time shift property. For example, q−1y(k) =

y(k − 1). This property makes the q-transform an extremely valuable tool for the

study of discrete time systems. In equation 2.2, polynomials D and F describe the

present value of output in terms of past values of output. The discrete time model

with these polynomials has an autoregressive nature. The polynomial B shows

the present output in terms of present and past values of input. A model with

this polynomial is referred to as having external or exogenous components. The

polynomial C describes the present output in terms of present and past values of

process disturbances. Models with this polynomial are considered to have moving

average characteristics. Equation 2.2 is named according to the structure of the

polynomials.

• When F (q) = D(q) = A(q), then equation 2.2 is known as autoregressive

moving average with extra input (ARMAX),

A(q)y(t) = B(q)u(t) + C(q)e(t) (2.5)

• If F (q) = D(q) = A(q) and C(q) = 1, then equation 2.2 is called autoregressive

with extra input (ARX),

A(q)y(t) = B(q)u(t) + e(t). (2.6)

• Incase of C(q) = D(q) = 1, the model is known as an output error (OE) model

and the structure is

y(t) =
B(q)

F (q)
u(t) + e(t) (2.7)

Limited work has been done to develop time series models for twin screw extru-

sion processes. Published articles on time series modeling of twin screw extruders

are summarized in Table 2.3.

The following comments are based on a literature review of time series modeling:

• Twin screw food extrusion processes have been studied for the last couple

of decades, but work on plasticating twin screw extrusion processes is very

limited.
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Table 2.3: Summary of literature on time series modeling of twin screw extrusion
processes.

References Process Excitation
method

Summary

Hofer and
Tan (1993)

Food
extru-
sion
process

PRBS in cooling
rate and heating
rate.

Responses of extrudate temperature
were modeled by a third order ARX
structure and responses of specific me-
chanical energy were modeled by a sec-
ond order ARMAX structure.

Haley and
Mulvaney
(2000a)

Food
extru-
sion

Relay-feedback
excitation in
screw speed.

Dynamic responses of the motor load
due to changes in screw speed were cap-
tured by a first order ARMAX model.

Schonauer
and Moreira
(1995)

Food
extru-
sion
process

PRBS in feed
rate, water rate
and screw speed.

Moisture content and color B responses
were modeled by second order ARX
structures. However, a second or-
der ARMAX structure provided white
residuals and independence of inputs
and residuals.

Iqbal et al.
(2007)

Plastic
extru-
sion
process

RBS in screw
speed.

Melt temperature was modeled by a
first order Box-Jenkins structure.

• The plasticating extruder usually operates at high temperatures compare to

the food extruder. Since plastic has complex rheology, models of food extrusion

processes are not adequate to understand the behavior of the plasticating

extruder.

2.3.3 Neural Network Models

Recent developments in control technology have focused on user friendliness and

on techniques in which exact mathematical modeling of the process is not required.

With the advancement of modern computers, fuzzy control, neural networks and

various hybrid systems are being used in real plants (Willis et al. 1992, Chiu 1997).

Fuzzy control can deal well with nonlinear and task-oriented problems which has

led to the wide availability of hybrid PID-fuzzy controllers. Linko and coworkers de-

veloped neural network and fuzzy logic control systems for food extrusion processes

(Linko et al. 1997, Linko and Linko 1998, Eerikinen et al. 1994). Chiu and coworkers

(Chiu and Pong 1999, Chiu and Pong 2001) applied a fuzzy control strategies to pre-

dict viscosity in a single screw extrusion molding process, and a fuzzy gain-scheduled

26



PID controller was developed to control the melt viscosity during extrusion process.

Artificial intelligence can predict the behavior of a nonlinear system. However,

such an approach is computationally demanding and has limited application in plas-

ticating twin screw extruders in real-time. In addition, a control scheme without a

process model does not explain the process intuitively.

2.3.4 Grey Box Models

In recent years, significant advances have been made in incorporating a greater

level of intelligence and process knowledge in system identification techniques. The

obtained model is known as a hybrid model or a grey box model. Grey box modeling

approach develops models on prior knowledge of the system and uses appropriate

linear/nonlinear empirical techniques to refine the predictions (te Braake et al. 1998).

McAfee and coworkers (McAfee and Thompson 2007, McAfee 2007) developed

grey box models for a plasticating single screw extruder. Gaussian type excitations

were imposed on screw speed and barrel temperature. Nonlinear models were de-

veloped to predict responses of melt viscosity and melt pressure. In another study,

Tan et al. (2004) developed grey box models to predict dynamic responses of poly-

mer melt temperature and melt pressure due to changes in screw speed and barrel

temperature for a plasticating single screw extruder. Only simulated results were

presented and the models were not validated with experimental data. Garge et al.

(2007) developed a hybrid transfer function model for a co-rotating TSE to quan-

tify the effect of operating conditions on the melting process. Moreover, obtained

model parameters were used to predict tensile strength of the final product. The

results showed significant differences between predicted and experimental values.

No attempt was made to control the quality of the final product.

Recently, Iqbal and coworkers developed a grey box model to predict polymer

melt temperature (Iqbal et al. 2008, Iqbal et al. 2010a) and polymer melt pressure

(Iqbal et al. 2010a) from screw speed. Nonlinear relations between melt tempera-

ture and melt pressure with screw speed were formulated based on first principles.

However, the model parameters were estimated using a system identification tech-

nique. A predesigned RBS excitation was imposed on the screw speed to excite

the process. Second and third order models with ARMAX structures were obtained

to capture the dynamics of melt temperature and melt pressure, respectively due

to changes in screw speed. Based on the melt temperature, a PID controller was

designed using direct synthesis method (Iqbal et al. 2008). Simulated results showed

good performance in set-point tracking and disturbance rejection.

Development of grey box models to predict responses of plasticating twin screw

extruders are limited but such models are able to incorporate process knowledge and
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are expected to capture process dynamics more accurately than empirical models.

Thus, control schemes based on the grey box models are more likely to give better

control over the processes than control schemes based on empirical models.

2.4 Control of TSEs

Polymers undergo very complex thermo-mechanical transformations inducing

strong changes in the physical properties of the material during the extrusion pro-

cess. Extrudate quality is essentially characterized by a precisely regulated output

volumetric flow, which can be achieved by finely regulating the melt temperature

and the melt pressure at the die at the output of the extruder (Previdi et al. 2006).

Table 2.4 summarizes the current literature on control schemes of twin screw extru-

sion processes.

Previdi et al. (2006) developed a multiloop feedback controller for a plasticating

single screw extruder. Melt temperature and melt pressure at the die were con-

trolled by manipulating a screw-engine inverter command voltage and heater power

commands. First order plus time delay transfer function models between the con-

trolled variables and manipulated variables were developed according to Previdi and

Lovera (2003). Two proportional-integral-derivative (PID) controllers were designed

with a standard model-based indirect approach. Experimental results showed sat-

isfactory regulatory performance of the PID controllers. No set-point tracking by

the controllers was studied. In some studies, other final quality related problems,

e.g., viscosity, have been studied and control schemes have been designed to reg-

ulate product qualities (Broadhead et al. 1996, Scali et al. 1997, Wellstead et al.

1998, Chen et al. 2003).

Kamal and coworkers studied the dynamics of a single screw injection molding

machine (Kalyon et al. 1980). Transfer function and time series models were devel-

oped between hydraulic pressure and nozzle pressure (Fara et al. 1980, Kamal et al.

1984, Kamal et al. 1987). Using the models a discrete proportional, a proportional-

integral (PI), and a PID controller were designed. Only simulated results were

reported.

As model predictive controllers (MPCs) have been used successfully in process-

ing industries, research has been focused to develop an MPC as an advanced con-

troller for extrusion processes. Wang and coworkers modeled and designed control

schemes for twin screw food extrusion processes (Wang and Cluett 1996, Wang and

Cluett 1997, Wang et al. 2001a, Wang and Gawthrop 2001b, Wang 2001c, Wang

2004a, Wang et al. 2004b, Gawthrop and Wang 2004, Gawthrop and Wang 2005).

In a recent work, Wang et al. (2008) designed a continuous time MPC for a twin

screw food extruder. The MPC was designed for two controlled variables: mo-
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tor torque and specific mechanical energy, and two manipulated variables: screw

speed and liquid pump speed, according to the methodology developed by Wang

and Young (2006). Transfer function models between the controlled variables and

the manipulated variables were used to design the MPC. The obtained MPC was

implemented in real-time to control the two-input two-output process. Results from

real-time implementation showed good set-point tracking and disturbance rejection.

The following notes have been summarized from a literature review of control

schemes for extrusion processes:

• The empirical or black box model has good potential for controlling twin screw

extruders.

• Significant research has been done on the control of twin screw food extrusion

processes and single screw plasticating extrusion processes.

• Control schemes for plasticating twin screw extrusion processes have not been

reported to our knowledge.

• Implementation of control schemes in real-time is limited.

2.5 Challenges and Motivation

Many papers have been published on the application of process control to extru-

sion processes. Many commercial products are extruded and plastics are constantly

finding new applications. With more exacting product specifications, it is crucial to

minimize fluctuations in the operating conditions of the extruder. In fact, the ex-

truder must be operated under precisely controlled conditions for persistent product

quality and to avoid degradation of certain polymers. It is imperative to understand

dynamic behaviors of a process to design control schemes.

Development of dynamic mechanistic models has been performed extensively for

plasticating single screw extrusion processes and twin screw food extrusion processes.

Very limited work has been done for plasticating twin screw extrusion processes. In

most cases, only mechanistic models are used to predict the behavior of the extrusion

processes. No attempt has been made to design and implement control schemes in

real-time using mechanistic models.

Empirical models can be used effectively in designing control schemes for an

extrusion process and thus are the focus of recent work. Methods of excitation

are important in empirical modeling. Step change, random binary sequence, and

pseudo random binary sequence are the most common excitation methods for open

loop systems. Step type excitation is commonly used in extrusion processes, but

excites only the lower frequency components. A properly designed RBS or PRBS
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Table 2.4: Summary of literature on control schemes of extrusion processes.

References Process Control
scheme

Control objective

Kochhar
and Parn-
aby (1977)

Plasticating
single
screw
extruder

Feedforward
controller

Melt pressure and melt temperature at
the die were controlled by manipulating
screw speed.

Moreira et
al. (1990)

Twin
screw food
extruder

Feedforward-
feedback con-
troller

Disturbance on die pressure due to vari-
ations in feed rate and moisture content
was reduced.

Wagner
and Mon-
tague
(1994)

Plasticating
single
screw
extruder

PI controller Extrudate viscosity was controlled by
manipulating screw speed.

Tan and
Hofer
(1995)

Twin
screw food
extruder

MPC Extrudate temperature was regulated.

Elsey et al.
(1997)

Twin
screw food
extruder

PI controller and
MPC

Product gelatinization was controlled
by manipulating screw speed.

Haley and
Mulvaney
(2000b)

Twin
screw food
extruder

MPC Specific mechanical energy was reg-
ulated by manipulating screw speed.
Only simulated results are presented.

Wang and
Tan (2000)

Twin
screw food
extruder

Dual-target pre-
dictive controller

Die pressure and die temperature
were controlled by manipulating screw
speed, feed rate, and moisture addition
rate.

Chiu and
Lin (1998)

Single
screw plas-
ticating
extruder

Constrained
minimum vari-
ance controller

Viscosity of the polymer melt was con-
trolled by manipulating screw speed.

Previdi et
al. (2006)

Single
screw plas-
ticating
extruder

Multiloop feed-
back controller

Melt pressure and melt temperature at
the die were regulated by manipulating
heater power and screw engine inverter
voltage.

Wang et al.
(2008)

Twin
screw food
extruder

Continuous time
MPC

Motor torque and specific mechanical
energy were controlled by manipulating
screw speed and liquid pump speed.
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can excite the full range frequency components. Thus, models developed using data

obtained from RBS or PRBS excitation capture more information about a process.

Few researchers have used RBS or PRBS excitation methods in modeling twin screw

food or single screw plasticating extrusion processes. To the best of our knowledge,

no work has been published on the dynamic modeling and control of a twin screw

plasticating extruder where RBS or PRBS has been used as an excitation method.

In recent years the grey box modeling approach has been used to develop models

for extrusion processes. Grey box models explain processes more intuitively than

empirical models. A literature survey showed that grey box models have been used

for the prediction of extruder behavior only. No attempt has been made to design

control schemes using such models.

According to the literature, there have been many attempts to construct dy-

namic models for extrusion processes. However, very few researchers have tested

their models or control schemes by attempting to regulate an actual extruder. Feed-

back, feedforward, minimum variance, adaptive, and predictive control schemes have

been reported in the literature. In most cases, control schemes have been designed

for plasticating single screw extruders or twin screw food extruders as single-input

single-output process. Extrusion is inherently a multiple-input multiple-output pro-

cess. In addition, process variables interact among themselves. So, model-based con-

trol schemes might be a better choice to control extrusion process. Thus, multiple-

input multiple-output (MIMO) model-based predictive controller should control an

extrusion process better than conventional control schemes. Such a control scheme

was reported recently for a twin screw food extruder (Wang et al. 2008). Much work

is needed to develop MPC for twin screw plasticating extruders as MIMO systems.
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Chapter 3

Process Data Access and
Automation

3.1 Introduction

One of the important requirements in modeling a process is to validate the

model with real plant data. Thus, it is necessary to establish an infrastructure for

data gathering. An important prerequisite for model building and validation is the

availability of process data. In addition, this infrastructure can be exploited with

some extensions for process automation. Process automation involves using com-

puter technology and software engineering to help processes operate more efficiently

and safely. In process automation, process data is acquired by a computer and

computer controlled commands are sent to the process. This automation comprises

both hardware and software development.

The twin screw extruder used in this study is described at the beginning of

this chapter. Necessary work performed to gather process output variables is also

discussed. To implement a computer control scheme, it is important to establish

process automation as well. This process automation is detailed in this chapter.

3.2 Extruder

This work has been performed on a ZSK-25 World Lab co-rotating twin screw

extruder with intermeshing screws. The screw profile is designed so that the crest

of one screw wipes the flank and root of the other screw resulting in a self-wiping

action.

The extruder has interchangeable screw and barrel sections that can be arranged

to serve distinct and precise processing requirements to provide optimum laboratory

and processing flexibility. The ZSK-25 extruder consists of a drive section and a

processing section mounted on a common base cabinet; a schematic is shown in

Figure 3.1.
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Figure 3.1: Schematic diagram of a ZSK-25 extruder.

3.2.1 Drive Section

The extruder drive section consists of a reduction and distribution gear with

integrated oil lubrication, a motor, and a torque limiting coupling with a coupling

disengagement sensor.

Motor: An AC motor with its matching AC vector drive is designed to provide

a 10:1 constant torque over its base speed range. The motor and drive system

selected provides full starting torque and excellent speed regulation.

Torque limiting coupling: The torque limiter is a spring loaded ball-detent

device which is set to disengage the motor shaft from the gearbox input shaft when

the motor torque exceeds 115% of the rated gearbox input torque.

Extruder gear box: The extruder gearbox is a multi stage split torque gear

unit common to co-rotating TSEs; it consists of a reduction and a distribution

section. On the output side a lantern connects the extruder barrel section to the

gearbox housing. The gearbox housing is cast construction (grey cast iron). The

gearbox gears are heavy duty, constructed of case hardened alloy steel. The tooth

flanks are ground. Thrust bearings are employed to take up the thrust generated by
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the extruder screws. All bearings are anti-friction type. Radial seals on the input

and output shafts prevent oil leakage. The gear intermeshes and the bearings of the

gearbox are splash lubricated. Internal circulating oil lubrication is incorporated for

the thrust bearings and for the bearings situated higher than the general oil level in

the gearbox. The ZSK-25 gearbox with a 3.22 ratio for up to 600 rpm screw speed is

normally cooled by air convection. The gearbox with a 2.5 ratio for screw speed up

to 1200 rpm has water cooling connections provided which are piped to the extruder

water cooling manifold.

3.2.2 Processing Section

The modular construction principle of the screws and barrel makes it possible

to build up successive conveying, plastification, homogenization, venting, and pres-

surization zones to suit the particular process application. Table 3.1 shows mea-

surements of a processing section of a ZSK-25 TSE. The intermeshing co-rotating

twin screws are designed with a sealing profile. The processing section consists of a

barrel section and a screw section.

Table 3.1: Data for the processing section.

Number of barrels 9
Length of processing section 925 mm
Speed of screw shafts 1200 rpm
Length of screw element set 925 mm
Shaft centerline spacing 21.1 mm
Diameter of screw 25 mm
Admissible torque on screw shaft 82 N-m/shaft
Depth of flight 4.15 mm
Processing volume (per meter) 0.32 L/m

Barrel section: The barrel section consists of individual replaceable barrels.

Depending on the process, solids feed connections, liquid feed connections, vent

connections, or side connections for side feeders can be provided. Most barrels

are drilled longitudinally for heating or cooling with water and have two piping

connections. The closed barrels have temperature wells and, if required, openings

for measuring the pressure or temperature of the product. Figure 3.2 shows a

photograph of the barrel section of a ZSK-25 extruder. Individual barrel sections

are assembled to obtain the desired process length. Different barrel designs are

available to allow multiple feeding of ingredients, injection of liquids, and venting of

moisture or removal of other volatiles along the process section.
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Figure 3.2: Photograph of the barrel section of a ZSK-25 extruder.

The ZSK-25 World Lab Extruder is supplied with electric barrel heaters and a

cooling manifold with a solenoid valve for each barrel for cooling water (see Figure

3.2). The temperature control scheme provides for controlled heating and cooling

of the extruder. The temperature controller is a dual output heat/cool type with

adaptive auto-tuning suitable for an extrusion process. The heating output controls

the electric heater and the cooling output controls the cooling water solenoid valve

for a particular zone via time-proportioned algorithms. The barrel is divided into

five temperature zones and the temperature of each zone is controlled separately.

Table 3.2 shows power consumptions by different zones.

Table 3.2: Data for electrical heating of a ZSK-25 extruder.

Zone Barrel Power
1 2 and 3 3.2 kW
2 4 and 5 3.2 kW
3 6 and 7 3.2 kW
4 8 and 9 3.2 kW
5 Die 0.8 KW

When the temperature controller for a particular zone (1 or more barrels) calls

for heating, the heater “on” time is increased with demand. When the temperature

controller for a particular zone calls for cooling, the barrel cooling solenoid valve is

time-proportioned to open and close to pulse water to the barrel. The water flashes

to steam and heat is removed from the barrel. This pulsing action provides space in

the cooling bores of the barrel to allow for the expansion of the water as the change

of state to steam occurs. The steam produced is condensed back to water in the
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return tubing or immediately as it enters the water return header.

The temperature of each zone is controlled by a local proportional-integral-

derivative (PID) controller. However, barrel temperature at zone 4 is not controlled

properly. At higher screw speeds, temperature at zone 4 fluctuates. Temperatures

of polymer melt increases at higher screw speeds because of higher shear rates. If

temperature difference between polymer melt temperature and zone 4 temperature

is more than 6oC, then this fluctuation occurs which indicates poor temperature

control at this zone. Thus, a higher screw speed (> 200 rpm) is not recommended

to use for this TSE. It is also not recommended to use too high barrel temperature

to process a polymer since a high barrel temperature might degrade a polymer.

Screw section: The screw section can be made up from a wide selection of

different types of screw bushings, kneading blocks and special mixing elements, all

of which slide onto splined shafts. Each individual screw element provides a distinct

conveying, shear, or pressure buildup action which can be controlled. Figure 3.3

shows the schematic diagram of a screw of a ZSK-25 co-rotating twin screw extruder.

A part of the arrangement of the barrel section is also shown in Figure 3.3.

Figure 3.3: Schematic diagram of a screw of a ZSK-25 extruder.

Figure 3.3 shows the notations of the different screw arrangements for ZSK-25

screw that are explained in Table 3.3.

The extruder has a touch screen man machine interface to set the barrel tem-

perature at five zones and a lever to set the screw speed. The ZSK-25 TSE has one

Dynisco pressure transmitter at the die to measure melt pressure at the die. The

melt pressure and the torque along with the five zone temperatures can be observed

in the the man machine interface.
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Table 3.3: Explanation of ZSK-25 screw notations.

Screw type Notation Explanation Application
Forward con-
veying screw

36x36 Conveying element 36 mm
long with 36 mm pitch

Pushes materials
forward.

Reverse con-
veying screw

24x12 LH Left hand screw 12 mm long
with 24 mm pitch

Pushes materials
backward.

Kneading
block

KB45/5/12 Two flights kneading block
contains 5 disks with 45o

stagger angle between adja-
cent disks; the block has a
length of 12 mm

Increases degree
of mixing.

Kneading
block

KB45/5/18N-
3F

Kneading block contains 5
disks with 45o stagger angle
between adjacent disks; the
block has a length of 18 mm.
This block also contains a
transition from a two flight
disk to a three flight disk

Increases degree
of mixing.

3.3 Feeder

Loss-in-weight feeders (LWFs) are used in this study to feed polymers in the ZSK-

25 extruder. A loss-in-weight feeding system includes a supply hopper or tank, a

metering feeder or pump, a supporting scale system, and a microprocessor controller.

The system electronically balances tare weight so the controller senses only the

weight of the material in the supply hopper. Advantages of using a LWF are:

• It handles floodable, hot, and difficult materials.

• It is unaffected by dust and materials accumulation.

• It works well at low feed rates.

• There are no errors from belt tensioning and tracking, since the entire system

is weighed.

• It uses only one process input for reduced error in operation.

• There is no transportation lag, the entire weight is sensed at all times.

• The feed accuracy can always be checked during normal operation without a

need for sampling.
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The feeders are controlled by a KSL/KLCD multiple feed controller manufac-

tured by K-Tron America. The KSL/KLCD provides the capability to interface

with a maximum of 8 feeders within 1 line.

3.4 Modification of Barrel Section

Two process output variables, melt pressure at the die and torque, were available

at the beginning of this project. This number of process output variables was not

adequate. It was necessary to measure more process output variables related to the

extrusion process to correlate with the final product quality. Thus, some pressure

and temperature measuring devices had to be mounted. However, it is important

to have a fully filled region to get a stable pressure reading of the product. Such a

region is available at the left hand screw element, the kneading block, or the die.

Thus, the kneading block, 625 mm away from the feeder end, was selected as a

potential location for the new measuring devices.

The existing barrel section did not have any option to mount new measuring

devices. Thus, it was necessary to design and prepare a new barrel section with

these facilities. Figure 3.4 shows a photograph of the modified barrel section. An

old barrel section was replaced with the modified barrel section. The modified barrel

section can also be seen in Figure 3.2.

Two holes for measuring devices

Figure 3.4: Modified barrel section.

The modified barrel section has two holes, location A and location B, at the
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same cross section. The centers of these holes are 625 mm from the feeder end with

this arrangement. A pressure transmitter with built-in thermocouple in location A

was mounted to measure both melt pressure and temperature at the same location.

In location B, one pressure transmitter was mounted to get melt pressure at that

location. All the transmitters are manufactured by Dynisco. Mounting both pres-

sure transmitters at the same cross section will show the effect of direction of screw

rotation on pressure. In addition, one more thermocouple was mounted at the die

to measure melt temperature in the die section. These measuring devices give 4

more process output variables.

3.5 Data Access

The ZSK-25 extruder has a man machine interface to observe data. There was

no option for data collection and dissemination at the beginning of this project.

However, it is important to have data access for modeling, validation, control, and

monitoring of extruder operation, the objectives of this study.

3.5.1 OPC Data Communications

Object linking and embedding for process control is the standard for plant floor

communications between data servers and client applications. It is a standard de-

veloped by the OPC Foundation for process data communication between systems.

Each standard has its application depending on the function required. There are

many regulatory control vendors and advanced control vendors of systems used in

plants. These systems make use of plant data through OPC communication. OPC

allows the end user to have the freedom to choose a mix of systems without sys-

tem inter-connectivity issues. The OPC Foundation has published a number of

standards; the following three are the standards used mainly in industries:

• Real-time Data Access-OPC DA;

• Alarm and Event-OPC AE; and

• Historical Data Access-OPC HDA.

3.5.2 Process Data Access

The extruder has a programmable logic controller (PLC). It is possible to acquire

data from the PLC using OPC DA. An OPC server and an OPC client are neces-

sary to establish a complete OPC DA setup. A PC with an RSLinx OPC server is

connected to the extruder’s PLC using RS232 cable. RSLinx is an OPC-compliant
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data server supporting the OPC DA. LabVIEW 7.1 acts as the OPC client. Fig-

ure 3.5 shows the details of the data acquisition setup between the PC and the

extruder. This acquisition setup obtains all the data available from the PLC: barrel

temperatures at five different zones, melt temperature at the die, melt temperature

at location A, melt pressure at the die, melt pressures at locations A and B, motor

torque and screw speed.

The K-Tron feed controller has a Modbus RTU protocol. Modbus RTU is an

open, serial (RS-232 or RS-485) protocol derived from the client/server architecture.

It is a widely accepted protocol due to its ease of use and reliability. A Modbus

RTU Master Driver was installed in the PC to communicate with the feed controller

using RS232 cable. Again, LabVIEW 7.1 was used as a client to communicate with

this protocol. Figure 3.5 shows details of the communication between the PC and

the feed controller.

Data for all process variables could be acquired as fast as every 0.1 sec and

logged in spreadsheets for further use. Figure 3.5 shows that data were collected

from two different sources, the extruder’s PLC, and from the K-Tron feed controller.

However, all data were synchronized and logged in the spreadsheet with the same

time stamp.

3.6 Process Automation

It is necessary to establish two-way communication between computer and process

to implement computer controlled schemes, i.e., process automation. In advanced

control strategy, control algorithms are executed in the computer and the resulting

output is sent to the process. In this study, the control algorithm was executed in

the MATLAB script of LabVIEW. LabVIEW sends the necessary input arguments

to MATLAB. MATLAB executes the control algorithm and sends the controller

outputs to LabVIEW. Finally, these controller outputs are sent from the PC to the

extruder’s motor drive and feed controller.

Figure 3.5 shows the communications established between the feed controller and

the PC. That is, any command from the PC can be sent to the feed controller and the

feed controller will take the necessary action to control the feed rate. However, no

such communication was established for PC-PLC communication, rather only data

acquisition from the extruder’s PLC was performed. The PLC has complicated inter-

locking programs that make it difficult to send control commands from the computer

to control process input variables, e.g., screw speed, through the PLC. Moreover,

understanding and rewriting the PLC program for sending control commands is not

a trivial task. Thus, screw speed was controlled bypassing the PLC. Output (screw

speed) of a control algorithm was sent directly from the PC to the motor drive using
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Figure 3.5: System diagram for data access and control.
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an RS232 cable. In this route, a digital to analog converter was used to send analog

input to the motor drive (see Figure 3.5). It is worthwhile to mention that the PC

to motor drive communication was one-way.

A graphical user interface (GUI) was developed in LabVIEW to acquire data in

the PC. Data were acquired from the extruder’s PLC using this interface. Figure

3.6 shows the PC-extruder data acquisition interface. This interface shows melt

pressures at three locations (die, location A and location B), melt temperatures at

two locations (die and location A), torque, screw speed, and barrel temperatures at

five zones. This GUI shows all the process variables in a table format and in plots

to check process abnormality. Data acquisition frequency can be changed from this

interface.

Another GUI was developed to acquire data from the feeder’s PLC. Figure 3.7

shows PC-feeder data acquisition interface. This interface was also used for closed

loop control. Bumpless transfer from manual to auto mode was done using this GUI.

PC-feeder interface pulled necessary data from PC-extruder interface to execute any

control algorithm. Outputs from algorithms, manipulated variables, were sent to

the final control elements from this interface.
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Figure 3.6: PC-extruder data acquisition interface.
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Figure 3.7: PC-feeder data acquisition interface.
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Chapter 4

Grey Box Modeling

4.1 Introduction

Grey box modeling incorporates both a fundamental knowledge of the process and

access to the process data. Incorporation of a greater level of intelligence about the

system and process knowledge in system identification technique has showed signif-

icant advancement in modeling techniques. It is imperative to incorporate product

quality attributes in the modeling techniques as well for extrusion processes. The

objective of any control system in a plasticating TSE is the control of product prop-

erties. Product properties are often not measured online; hence, product qualities

cannot be controlled directly in most cases. A number of researchers have devel-

oped grey box models for plasticating extrusion processes (McAfee and Thompson

2007, McAfee 2007, Garge et al. 2007), but none of the modeling techniques have

been used to control the processes.

In this chapter, a systematic approach is detailed for developing dynamic grey

box models to predict the behavior of output variables due to changes in input

variable-screw speed (N ) for a co-rotating TSE. Controlled variables were selected

based on steady state and dynamic analyses, then developed dynamic grey box

models relating the controlled variables to N. The selection procedure, based on

product quality parameters, is described in this chapter. Models developed using

this approach were used to design advanced control schemes.

4.2 Theory

It is imperative to understand the underlying behavior of process variables using

fundamental knowledge of the twin screw extrusion process. Incorporation of such

mechanistic knowledge makes the model more robust. The effect of a change in

Portions of this chapter: was published in Mohammad H. Iqbal, Uttandaraman Sundararaj,
Sirish L. Shah, Ind. Eng. Chem. Res., 49, 648-657, (2010) and was presented in the 58th Confer-
ence of Canadian Society for Chemical Engineers, (2008).
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screw speed on different process output variables, e.g., melt temperature and melt

pressure, can be modeled based on first principles knowledge of the extrusion process.

4.2.1 Effect of Screw Speed on Melt Temperature

In a TSE, the shear rate for any screw speed can be defined according to equation

4.1:

γ̇ =
πDextN

H
(4.1)

where γ̇ is the shear rate, Dext is the diameter of the screw, and H is the screw

channel depth. In an extrusion process, polymer melts experience high shear rates

and thus are in the shear thinning regime where the viscosity follows a power law

relationship with shear rate according to equation 4.2:

η = kγ̇n−1 (4.2)

where η is the viscosity, k is the consistency index, and n is the power law index.

The required power (Ė) per unit volume to rotate the screw at a certain speed can

be expressed as:

Ė = ηγ̇2 (4.3)

Polymer melt temperature increases mainly due to energy dissipation provided there

is no energy loss in the system. Thus, the power heats the polymer melt and is

proportional to the change in melt temperature (Tm):

Ė = ṁcp∆Tm (4.4)

where ṁ is the mass flow rate and cp is the heat capacity of the polymer melt. By

combining equations 4.1, 4.2, 4.3 and 4.4, the following relation between Tm and N

is obtained:

∆Tm ∝ Nn+1 (4.5)

Equation 4.5 indicates a nonlinear relation between Tm and N. However, a linear

relation can be obtained using a variable transformation such as u1 = Nn+1.

4.2.2 Effect of Screw Speed on Melt Pressure

A change in N affects both the throughput and the viscosity. Melt pressure (Pm)

has a linear relation with throughput and viscosity. Thus, the effect of a change in

N on Pm is likely to be a product of the dual effects of throughput and viscosity.

However, the effect of throughput is instantaneous for a TSE. Because a TSE is

starve-fed, the throughput returns to its original value immediately. That is, the

effect of filling in the extruder changes when N is changed but a new steady state is
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achieved fairly quickly. So, the behavior of Pm due to a change in N is assumed to

be mainly due to a change in viscosity. This relation can be written as:

Pm ∝ η (4.6)

By combining equations 4.1, 4.2, and 4.6, the following relation between Pm and N

is obtained:

Pm ∝ Nn−1 (4.7)

Like the relation between Tm and N, equation 4.7 shows the nonlinear relationship

in Pm due to a change in N. Screw speed can be transferred as u2 = Nn−1 to obtain

a linear relationship with Pm.

Equations 4.5 and 4.7 show that the models for Tm and Pm are lumped parameter

models. However, model parameters can be estimated using experimental data.

Use of experimental data to estimate model parameters eliminates the potential

shortcomings of models developed based solely on first principles. For example,

the effect of throughput due to a change in N was not considered in developing

equations 4.5 and 4.7 to keep the models as simple as possible. However, it is

possible to capture the effect of the throughput by estimating model parameters

using the experimental data.

4.3 System Identification

From a modeling point of view, a system is an object in which variables of dif-

ferent kinds interact and produce observable signals. Typically, these observable

signals are called outputs. Different external stimuli affect the system. The sig-

nals, which can be manipulated, are called inputs. System identification means the

development of a model of a dynamic system from measured input-output data. Es-

sentially, it is an experimental approach for modeling dynamic systems. The term

system is a wide and broad concept, which plays an important role in modern sci-

ence. Knowledge of the model is important for many industrial processes as it is

required for design and simulation of the plant. System identification develops a

model of a system without any prior knowledge of the physical process. It allows us

to model a high order process to obtain a lower order one with a very good fit using

only the input and output data of the system, provided the input data has sufficient

excitation. Even when the significant process parameters cannot be calculated, or

the process is too complicated to be expressed analytically, system identification can

be applied successfully.

Ljung et al. (2006) explained the basics steps in the system identification pro-

cedure to develop a model from data:
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• Experiment with data collection using pre-designed experimental procedures.

• Preprocess data to remove noise, outliers, etc., from measured data.

• Select a set of candidate models.

• Estimate model parameters using the data.

• Validate the model preferably with a different set of data.

Model flexibility allows use of the same model to describe the dynamics of the

plant under various situations and operating conditions. That is, the model should

be able to cover the true system. However, the existence of disturbances that cannot

be controlled by the user makes it difficult to achieve the parameters of the true

system.

The type of model structure and its order should be selected based on the factors

outlined below:

• A good fit between model predicted outputs and experimental data is desir-

able. This model fit indicates how close model predictions are to the measured

states.

• Statistical tests on model prediction errors should be performed. If a model

captures the process dynamics quite well, prediction errors should be white

noise.

• The model with the smallest number of independent parameters is chosen

(parsimony principle).

• The model with the smallest value of final prediction error is selected.

• The model with the smallest value of Akaike’s Information Criterion is selected.

The model fit is calculated according to equation 4.8

Modelfit = 100 × [1 − norm(ymeasured − ypredicted)

norm(ymeasured − yaverage)
] (4.8)

where y is the process output.

4.4 Experimental Section

4.4.1 Process Variables

This work was performed on the ZSK-25 twin screw extruder. Figure 4.1 shows

the location of one thermocouple and one pressure transmitter at the end of the
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processing section (i.e., at the die) to measure the temperature and pressure, re-

spectively, of the polymer melt. In addition, two more pressure transmitters, one

with an integrated thermocouple, were mounted 625 mm away (locations A and B)

from the feeder end to measure the temperature and pressures of the polymer melt.

All the temperature and pressure sensors were manufactured by Dynisco (Akron,

Ohio, USA). Five output variables, three melt pressures, and two melt tempera-

tures are measured using these sensors. Torque is another process output variable.

All together there are six output variables available to correlate with the product

quality variables (PQVs), and these output variables can be used also as controlled

variables.

Locations A &  B
Pm at die

Tm at die

625 m m

Figure 4.1: Schematic of a ZSK-25 TSE with sensors.

4.4.2 Materials

Two high density polyethylenes (HDPEs) generously donated by Nova Chemicals

(Calgary, Alberta, Canada) were used in this study. The commercial names of these

polymers are SCLAIR 2907 and SCLAIR 19G but are named HDPE1 and HDPE2,

respectively, in this study. According to the manufacturer, the melt index of HDPE1

is 4.9 g/10 min and that of HDPE2 is 1.2 g/10 min. Both the polymers have a
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melting point of 135oC.

4.5 Experimental Procedures

4.5.1 Steady State Operation

For the correlation analyses between the six process output variables and PQVs,

the steady state operation of the TSE was performed for blends of the two HDPEs.

A barrel temperature of 200oC, a screw speed of 150 rpm, and a feed rate of 5 kg/h

were used as nominal operating conditions. Three compositions of HPDE1 (30%,

50%, and 70%) were blended with HDPE2 in the TSE. The TSE was allowed to

run for sufficient time to achieve all the operating conditions at their nominal values

before collecting samples of extrudate. Samples were collected in pellet form in a

container for 50 sec. A total of 20 containers of samples were collected to measure

the PQVs. Process data were acquired every 0.1 sec. Two different types of PQVs

were studied for the correlation analysis: melt index and rheological properties.

4.5.2 Melt Index

The melt index (MI) of extrudate samples was measured according to the ASTM

D1238 procedure. A temperature of 190oC and a weight of 2.16 kg were used. The

melt indexer used in this analysis was manufactured by Tinius Olsen, Horsham,

PA, USA and generously made available by AT Plastics Inc., Edmonton, Alberta,

Canada.

4.5.3 Rheological Characterization

At identical operating conditions, rheological properties will vary with the blend

concentration of the samples (Hussein et al. 2005). Thus, two samples from each

composition of the HDPE1 blend were considered for rheological characterization.

For rheological analysis, 25 mm circular discs with a thickness of 2 mm were pre-

pared at 200oC using a Carver press (Wabash, IN). A Rheometrics RMS800 rheome-

ter with parallel plate geometry was used for dynamic rheological characterization.

Frequency sweeps were performed from 0.1 to 100 rad/s with 10% strain at 200oC.

Nitrogen was used to avoid any possible degradation of materials during the ex-

periment. A similar procedure was followed to determine the power law index for

HDPE1.
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4.5.4 Input Excitation

The classical excitation method for an open loop process is to subject the process

to a step change in each of the manipulated variables and subsequently measure the

responses of the output variables. Both positive and the negative step tests in screw

speed were performed to get an estimate of the time constants for melt pressure

and melt temperature at die. Nominal operating conditions for barrel temperature

and feed rate were 210oC and 6 kg/h, respectively. Only HDPE1 was used as

the processing material for the dynamic analysis. The screw speed was excited

between 120 rpm to 160 rpm to get better signal to noise ratio in the process output

variables. Responses in process output variables due to a smaller change in screw

speed might be confounded with fluctuations. Starting from the central set point

of the screw speed (140 rpm), a magnitude of 10 rpm was used in each step in the

positive direction up to 160 rpm and sufficient time was given to settle the response

of the process variables between two successive steps. Similar magnitude of step

and the same procedure were used in the negative direction down to 120 rpm. Time

constants (τp ) of 50 sec and 10 sec were estimated for melt temperature at die and

melt pressure at die, respectively, from the step test in screw speed.

Step response tests mainly excite low frequency components of the process;

hence, dynamic models developed from these experiments do not fit the process

well at higher frequencies. Therefore, a random binary sequence (RBS) type exci-

tation was designed for the screw speed with minimum and maximum screw speed

rates of 120 rpm and 160 rpm to obtain a set of meaningful data. Such an exci-

tation is completely random. The estimated time constant from the step test data

showed that the response of Pm is quite fast compared to that of Tm. To capture

the dynamics of Pm properly, a RBS signal was designed based on the response of

Pm. Thus, τp obtained from the response of Pm was used to design the RBS for N.

A sampling interval (ts) of 1 sec was selected according to τp

20
≤ ts ≤ τp

10
. The

Nyquist frequency (fN) is then one half of the sampling frequency (fs ). A value

of zero was used for a lower bound of input frequency (ωL ) to get a good estimate

of the gain. The normalized upper bound of the input frequencies was calculated

according to equation 4.9,

ωU = K
ωCF

ωN
(4.9)

where K is any value between 2 and 3, ωCF is the corner frequency of the process

( 1
τp

) in rad/time, and ωN is the Nyquist frequency ( 2πfN) in rad/time. From the

range of input frequencies obtained from equation 4.9, a value of 0.08 was selected

as an upper bound of input frequency for the experimental design. A total of 120

RBS samples of N were generated between 120 rpm and 140 rpm within the bound

of input frequencies. Figure 4.2 shows the designed RBS excitation in screw speed.
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The mean and standard deviation of this excitation were 141 rpm and 20 rpm,

respectively. Each sample of N was excited for 1 min so, in Figure 4.2, when the

RBS sequence shows the first five samples are at 120 rpm, the TSE was run at 120

rpm for the first five minutes. This excitation covered both low frequency and high

frequency spectra. The process data were acquired every 0.1 sec (10 Hz).
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Figure 4.2: Random binary sequence excitation in screw speed.

4.5.5 Data Preprocessing

In most cases, measurement of process variables is corrupted with different types

of process noise or disturbances resulting from a number of sources mentioned previ-

ously. In addition, measured data might have outliers, which can have a significant

effect on the process modeling. Essentially, data preprocessing is the key to obtain

a desirable final application. The effects of noise can be reduced by signal condi-

tioning or filtering. There are a number of techniques available in the literature for

filtering. In this analysis, an exponentially weighted moving average (EWMA) filter

was used to reduce the noise level from the measured data. The analog version of

this filter can be represented by a first order differential equation,

τf
dyf(t)

dt
+ yf(t) = yr(t) (4.10)

where yr is the raw data (measured), yf is the filtered data, and τf is the time

constant of the filter. τf is chosen to be much smaller than the dominant time

constant (τdo) of the process to avoid introducing any dynamics from the filter into

the process. Usually, τf < 0.1τdo is used to meet with this requirement (Seborg et

al. 2004). Equation 4.10 can be approximated by a first order backward difference
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equation at the kth step and the final filter equation in the discrete time domain can

be written as follows:

yf(k) = αyr(k) + (1 − α)yf(k − 1) (4.11)

where α = ts
τf +ts

, and ts is the sampling time. Equation 4.11 is the form of an

EWMA filter. Equation 4.11 shows that if α = 1, there is no filtering, and if α → 0,

data is heavily filtered and the measurement is ignored.

4.6 Results and Discussions

4.6.1 Steady State Analysis

Analysis of Melt Index

Figure 4.3 shows the log-log plot of the melt index of 20 samples with six process

output variables. HDPE1 compositions of 30%, 50%, and 70% were represented by

open triangles, circles, and squares, respectively. No considerable variation in MI

measurement was observed for any HDPE1 composition. The MI of the polymer

blend increased with an increase in HDPE1 composition, as HDPE1 has a higher MI

than that of HDPE2. However, in general, with an increase in MI, the values of the

six process output variables decrease. MI has an inverse relationship with viscosity.

Thus, an increase in MI leads to a decrease polymer viscosity. Polymers of lower

viscosity provide less viscous heat dissipation and less frictional heat generation;

hence, melt temperatures also decrease with increases in MI. Pressure is proportional

to viscosity, therefore, an increase in MI is accompanied by a decrease in melt

pressure. These behaviors are reflected in Figure 4.3.

Figure 4.3 shows a significant variation in melt pressures, especially in Pm at

A and in Pm at B. This is reasonable since these two pressure transmitters are

mounted in the zone of kneading blocks and on top of the screw flights. The periodic

passing of the screw flights over the transmitters introduces significant noise in the

data. In addition, continuous mixing and breaking down of the solid polymer bed

into the melt in the kneading blocks increases the noise level. It is observed that

the variabilities of Pm at A and Pm at B increase with an increase in HDPE1

composition. HDPE1 has lower viscosity than that of HDPE2; hence, the viscous

heat dissipation of HDPE1 is lower than that of HDPE2. Thus, for blends with

higher HDPE1 composition, more solid polymer comes to the kneading block zone.

The extra solid material melts in this zone and increases the noise level. On the

other hand, the higher viscosity of HDPE2 generates more heat via viscous heat

dissipation. Therefore, less solid polymer reaches this zone and thus there is less

noise. Neither of these two output variables showed a correlation with MI. Torque
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data did not give good correlation with MI either. The 50% HDPE1 concentration

blend showed lower torque than the 30% and 70% HDPE1 blends. However, the

Pm at the die showed little variation and correlated well with the MI. Both melt

temperatures showed good correlation with the MI. However, the Tm at location A

has considerable variation, especially at 70% HDPE1.
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Figure 4.3: Logarithmic plots of melt index vs. output variables.

Rheological Analysis

Dynamic rheological data were obtained using frequency sweeps performed on

two samples from each blend. Using this data, a power law model was developed for

each sample invoking the Cox-Merz rule that states that the viscosity versus steady

shear rate curve is identical to the dynamic viscosity versus dynamic frequency curve.

A power law index of pure HDPE1 was determined to be 0.8. The shear rate of

the TSE at steady state was calculated to be about 48 sec−1 according to equation

4.1. Steady shear viscosity at this shear rate was calculated using the obtained

power law model and the average viscosities were (1270±7) Pa-s and (1155±7) Pa-s

for 50% HDPE1 and 70% HDPE1, respectively. The standard deviations in the

viscosities were very small for 50% HDPE1 and 70% HDPE1. However, slightly

higher standard deviations in viscosity were observed among 30% HDPE1 samples.

Thus, two more samples were used for the rheological test to calculate the average

viscosity. The obtained average viscosity was (1570±35) Pa-s for the 30% HDPE1

blend. It was observed that the variability in viscosity between samples decreased

with an increase in HDPE1 concentration. This essentially indicates that mixing

becomes more uniform as the proportion of HDPE1 in the blend increases.
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Figure 4.4 shows a logarithmic plot of viscosity versus the six process output

variables. It was found that values of Pm at A, Pm at B, and torque did not show

any trend with changes in viscosity. Note that plots of viscosity vs. melt temper-

ature in Figure 4.4 showed that changes in melt temperature and viscosity were

due to changes in HDPE1 composition only. The plots did not indicate any change

in viscosity with changes in temperature, a relation usually modeled by the Ar-

rhenius equation. Two samples with 50% and 70% HDPE1 and four samples with

30% HDPE1 were used in this plot to observe the trend of the viscosity change

with the process output variables. Viscosity of HDPEs in general does not have a

strong dependence on temperature. An increase in HDPE1 in the blend decreased

the viscosity; hence, the melt temperature also decreased. Both the melt tempera-

tures showed good correlations with the viscosity. However, Tm at A showed more

variation than that of Tm at the die.
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Figure 4.4: Logarithmic plots of viscosity vs. output variables.

From a correlation analysis between product quality variables and process output

variables at steady state, Pm at the die, Tm at A, and Tm at the die were selected

as potential controlled variables. However, the dynamic behaviors of these variables

were also considered for the final selection of controlled variables. Eventually, the

dynamic model will be used to design a model-based control scheme, thus it is

necessary to check the dynamic behaviors of the variables.

4.6.2 Dynamic Analysis

Figure 4.5 shows the time trend of the six output variables due to the pre-

designed RBS excitation in N. It was observed that Tm at the die increased with an
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increase in N and Tm at the die decreased with a decrease in N. However, a slow

drift was noticed, which made this variable non-stationary. This drift could be due

to loss of heat from the extruder during operation. However, this drift is so slow

that it was neglected. Tm at A was also found to change with N but not as the

same magnitude as Tm at the die. Thus, Tm at the die was selected as the controlled

variable among the two melt temperatures. Significant variations in pressure and

torque data were observed due to noise. Therefore, Pm at A, Pm at B, and torque

were not considered for further analysis.
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Figure 4.5: Time plots of the output variables.

Pm data were filtered because of noise prior to developing a model using these

data. The mean residence time was calculated to be 98 sec for the TSE with the

given screw configurations and the steady state operating conditions. This residence

time was considered to be the dominant time constant. Thus, τf = 8 sec was used to

avoid introducing filter dynamics into the process, which gives 0.012 as a preliminary

estimation of α. However, some fine tuning of this filter parameter was performed

based on the level of noise in the measured data. Different values of α were used to

filter the data and the level of noise in the data was used to select the final value of
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α. The obtained final discrete filter is presented in equation 4.12,

yf(k) = 0.03yr(k) + 0.97yf(k − 1) (4.12)

Pm at the die was filtered using the EWMA filter to remove noise. The filtered

Pm at the die (Figure 4.6) was found to change inversely with changes in N. This

is quite reasonable since an increase in screw speed increases shear rate; hence,

viscosity decreases and, thus, Pm decreases. Therefore, Pm at the die was also

selected as controlled variable. Peaks with significant magnitude were observed in

this variable. No filtering was performed on data for Tm at the die data.
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Figure 4.6: Time plot of the filtered Pm at the die.

Based on both the steady state and the dynamic analyses, Tm and Pm at the

die were selected as controlled variables. Development of dynamic grey box models

between these two process output variables and N is detailed in the following sections

of this chapter.

To develop a dynamic model relating melt temperature and screw speed, a non-

linear transformation of N was performed according to equation 4.5. However, to

make the data stationary, the linear trend from the data was removed, i.e., the data

were detrended. As the complete response to thermal changes due to any input exci-

tation is much slower compared to other process variables, the use of high-frequency

data hinders modeling of the low and mid-frequency dynamics of the process. Thus,

data were downsampled to every 1 sec. Such a sampling rate was used to design the

RBS excitation in N. A nonlinear transformation of N was also performed according

to equation 4.7 to develop a model between filtered Pm and N. Linear trends from

the dataset was removed. Like the Tm dataset, data for Pm at the die were also

downsampled to every 1 sec.
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4.6.3 Impulse Response

To get an estimate of the possible time delay and the order of the process, an

impulse response between detrended Tm at the die and N was estimated and is

presented in the Figure 4.7(a). The impulse response estimate shows that the first

peak outside the 99% confidence interval appears at the seventh lag, which indicates

that the time delay between the input and the output is 7 samples. However, the

physics of the process indicates that there should not be any significant time delay.

Whenever any change in N is implemented, this change happens simultaneously

over the entire screw shaft. The thermocouple at the die also senses this change

immediately. Moreover, a gradual increase in the co-efficient of impulse response

was observed from the second lag. This supports the claim that there might not

be any time delay in this process except for the minimum one lag delay due to

discretization of the process with a zero-order hold (ZOH) device. Thus, there is

only one sample time delay between Tm and N. The shape of the impulse response

coefficients indicated that the model order is at least second order.

The impulse response estimate for the filtered and detrended Pm at the die was

also checked and is depicted in Figure 4.7(b). It was observed that the first statically

nonzero peak, i.e., the peak outside the 99% confidence interval, appeared at the

second lag. So, the possible time delay between Pm at the die and N is 1 sample.

However, this is the inherent time delay due to discretization using the ZOH device.

The arrangement of the impulse response coefficient indicated an inverse response

of Pm due to the change in N and that the model order was second order or higher.
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Figure 4.7: (a) Impulse response of the detrended Tm at the die. (b) Impulse
response of the detrended filtered Pm at the die.
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4.6.4 Spectral Analysis

Spectral estimation is used to describe the distribution of the power contained in

a signal based on a finite set of data. Such an analysis describes how the energy (or

variance) of a signal or a time series is distributed with frequencies. An estimated

power spectrum of Tm and Pm was made using the MATLAB supplied spectral

analysis function contained the script file ‘spa.m’. Figure 4.8 shows the spectral

density plot of Tm and Pm data. The plot shows that the experiment was performed

over a wide range of frequencies. Both Tm and Pm time series data contain a bit

more energy in the low frequency region compared to that of the high frequency

region. It can be observed that Pm data contains more energy than that of Tm data

over the entire range of frequencies.
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Figure 4.8: Power spectrum plot of Tm (broken line) and Pm (dotted line).

4.6.5 Model Development

The first half of the complete data set was used to estimate the model. The

whole dataset was used in validating the obtained model to avoid initialization

errors. Different model structures and orders were tried and the final model was

selected based on the model selection criteria. The selected models between Tm at

the die and N, and Pm at the die and N , are shown in equations 4.13 and 4.14,

respectively.

T ′
m(t) =

−4.372 × 10−6(±1.3 × 10−6)q−1 + 8.409 × 10−6(±1.4 × 10−6)q−2

1 − 1.85(±0.011)q−1 + 0.853(±0.011)q−2
u1(t)

+
1 − 0.366(±0.02)q−1 − 0.088(±0.02)q−2

1 − 1.85(±0.011)q−1 + 0.853(±0.011)q−2
e(t) (4.13)
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P ′
m(t) =

−153.2(±12.99)q−1 + 155(±13.11)q−2

1 − 2.59(±0.026)q−1 + 2.229(±0.052)q−2 − 0.636(±0.025)q−3
u2(t)

+
1 − 1.265(±0.034)q−1 − 0.2911(±0.033)q−2

1 − 2.59(±0.026)q−1 + 2.229(±0.052)q−2 − 0.636(±0.025)q−3
e(t)

(4.14)

where T ′
m and P ′

m are in the deviation forms, i.e., detrended. Values in the paren-

theses of equations 4.13 and 4.14 show the standard errors of the corresponding

parameters. Equation 4.13 shows that the obtained model has an autoregressive

moving average with an exogenous input (ARMAX) structure. The order of the

model shows that the dynamics of Tm due to changes in N are second order. Both

plant and disturbance transfer functions of the developed model have identical de-

nominators. This indicates that screw speed and disturbance affect Tm in the same

way.

This phenomenon can also be explained mechanistically. Only HDPE1 was used

in the dynamic study. The feed rate was within the practical operating range for this

small-scale extruder. Thus, the effect of bulk density as a potential disturbance on

the output variables may not be significant. The change in Pm at the die was about

±10 psi only, which indicates that the effect of die resistance may not be significant.

Therefore, it can be assumed that the disturbance comes into play predominantly

because of fluctuations due to the rotation of the screw, i.e., screw speed. Thus,

it is assumed that the way the screw speed affects the output variables is similar

to the way the disturbance affects the output variables. Thus, the physics of the

process indicates that Tm should show dynamics similar to N due to changes in

the disturbance because the noise affects Tm through the same channel as it affects

N . Based on the physics of the extrusion process, the ARMAX structure is quite

reasonable.

Equation 4.13 also shows the presence of right-half plane zeros that indicates an

inverse response dynamics of Tm with changes in N. This means that an increase in

N causes a sudden increase in throughput in the die section. Thus, more polymer

melt from upstream, which has relatively lower temperature than that of the melt

at the die section, is pushed into the die section and decreases the temperature

of the melt in that location. Since the TSE is starve-fed, the throughput returns

to its original value after the system recovers from its initial dynamic stage. The

shear rate increases with the screw speed; hence, there will be more viscous heat

dissipation. So, the temperature of the melt initially decreases for a short duration

and then increases. This initial stage of the dynamics has a very short period. Such

inverse dynamics were not observed in the time trend data of Tm at the die; however,

the estimated grey box model was able to capture this successfully.

The model structure of equation 4.14 is also ARMAX. The obtained model for
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Pm is the third order. Again, this model structure indicates that the change in N

and disturbance affects the dynamics of Pm in the same way, which is in agreement

with the physics of the twin screw extrusion process. Equation 4.14 also shows

non-minimum phase zeros, which indicates an inverse response. Such response was

indeed observed, as shown in Figure 4.6. A sudden increase in throughput at the die

section due to an increase in N increases Pm at the die. Again, due to the starve-fed

nature of a TSE, the throughput returns to its original value immediately. Since

an increase in screw speed increases the shear rate, viscosity decreases and thus so

does Pm.

Figure 4.9 shows the Tm at the die model fit for the infinite prediction horizon

and almost 89% of model fit was obtained. There was a small mismatch in the

gain; however, the predicted output from the model was still excellent. Comparison

between Pm at the die model output and measured data is presented in Figure 4.10.

The model fit was almost 59% for the infinite prediction horizon. Clearly, such a

moderate model fit is due to the presence of significant noise even in the filtered

data. Of course, it is tempting to increase the model fit by using heavily filtered

data, but in such a case, the filter dynamics would confound the process dynamics.

The steady state part of the data has significant noise and the model tries to fit those

data as well. Thus, the model fit is moderate. However, the model predicted output

agrees with the measured data satisfactorily, which is important for the design and

implementation of a model-based control scheme online.
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Figure 4.9: Comparison between the simulated melt temperature model output and
the experimental data.

Model prediction errors, i.e., residuals, were analyzed to check the performance

of the model. Note that if the model captures all the information from the data,
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Figure 4.10: Comparison between the simulated melt pressure model output and
the experimental data.

the residuals should look like white noise. It is also worthwhile to mention that

in autocorrelation analyses, white noise shows nonzero peak at zero lag and zero

peaks at other lags. On the other hand, white noise shows no peaks at any lag in

cross correlation analyses. The top part of Figure 4.11 shows the autocorrelation

between the residuals, and the bottom part of Figure 4.11 shows the cross correlation

between the residuals and the input for the model for Tm at the die. Only one peak

outside the 99% confidence interval was observed at lag zero, which indicates that

the residuals are essentially white noise. In the bottom part of Figure 4.11, no peak

was found outside the 99% confidence interval, which again suggests that there is no

linear relation between the residuals and the input, i.e. the model extracted almost

all the information from the measured data.

Residual analysis for the melt pressure model is presented in Figure 4.12. Au-

tocorrelation (top part of Figure 4.12) of the residuals showed that almost all the

peaks at any lag are within the 99% confidence interval except lag zero, i.e., the

nature of the residuals was white noise. Cross correlation (bottom part of Figure

4.12) also showed that all the peaks were within the 99% confidence interval, indi-

cating that there is no linear relation between the input data and the residuals. The

white noise nature of the residuals suggests that the melt pressure model captured

the process dynamics successfully.

4.7 Analysis of the Models

The obtained models were simulated to check their quality and robustness. This

is done by checking the step response, the pole zero map, the bode plot, etc. It is
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Figure 4.11: (a) Correlation function of residuals from the Tm model output, (b)
Cross correlation function between u1 and residuals from the Tm model output.

imperative to check such criteria to design a model-based control scheme using a

model.

4.7.1 Melt Temperature Model

One of the applications of an open loop step test is to check the boundness

of a process. Figure 4.13 shows the simulated response in Tm due to a unit step

change in u1. Both data and model predicted outputs come to a steady state value

indicating the boundness of the system, i.e., the system is controllable. A slight

mismatch between data and model predicted output was observed, which could be

due to nonlinearity of the data.

Figure 4.14 shows the pole-zero map for the Tm model. Poles are shown by

crosses (×) and zeros are shown by circles (◦). It can be observed that all the poles

are inside the unit circle, which indicates that the system’s poles are negative in the

continuous s-domain. Also, poles inside the unit circle indicate the boundness of

the system. Similar behavior was observed in the step response. The poles are not

clustered on the unit circle. A concentration of the poles at the circumference of the

unit circle indicates a fast sampling rate and a concentration of poles at the origin

of the unit circle indicates a slow sampling rate. The poles are not concentrated at

either locations; however, one pole is close to the circumference. Thus, the sampling

rate for the model development was reasonable. Figure 4.14 also shows one zero

outside the unit circle. Such a zero is known as an unstable zero. The obtained

model has no pole zero cancelation or redundancy of parameters, which is good in

the sense of controller design.

63



0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

(a)

lag

−40 −30 −20 −10 0 10 20 30 40
−0.04

−0.02

0

0.02

0.04

(b)

lag

Figure 4.12: (a) Correlation function of residuals from the Pm model output, (b)
Cross correlation function between u2 and residuals from the Pm model output.

4.7.2 Melt Pressure Model

Figure 4.15 shows the step responses of experimental data and Pm model output

due to a unit step change in u2. Both responses come to a steady state which

indicates boundness. Responses show a considerable inverse response, which was

also observed in the time series Pm data obtained from the excitation in N.

Figure 4.16 shows the pole-zero plot of the Pm model. Poles are shown by crosses

(×) and zeros are shown by circles (◦). All the poles are inside the unit circle, which

indicates the boundness of the system. Figure 4.16 shows that poles are clustered

neither on the circle circumference nor at the origin. Thus, the sampling rate is quite

good. One zero is inside the unit circle and another zero is on the unit circle; no

unstable zero is observed. Like the Tm model, no pole zero cancelation is observed

for the Pm model.

4.8 Summary

A systematic approach was detailed to select controlled variables and to develop

grey box models between the selected controlled variables and screw speed to design

a control scheme for a plasticating TSE. Controlled variables need to be selected

based on both steady state and dynamic considerations. Tm at the die and Pm at

the die were finally selected as controlled variables and were used for further study.

Pre-designed random binary sequences were successfully used to give persistent exci-

tation in screw speed to yield a good and meaningful data set. The given excitation

covered a wide frequency spectrum. In addition, the range of screw speed (120 rpm

to 160 rpm) was large and covered a significant operating region.
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Figure 4.13: Comparison of step responses between experimental data and the Tm

model predicted outputs.

The impulse response provided good preliminary estimation of the model struc-

ture. However, the time delay was estimated based on the physics of the extrusion

process. Time delay of one sample was observed between Tm at the die and N, and

Pm at the die and N which was due to discretization. However, the physical insight

of the extrusion process suggested that there was indeed no time delay between the

selected controlled variables and N in the continuous time domain.

The estimated grey box models with ARMAX structure for Tm at the die and Pm

at the die explained the physics of the twin screw extrusion process quite successfully.

For example, the inverse response of Tm at the die was captured and explained from

the physics of the process. The model fit with experimental data for Tm at the die

was almost 89%. Due to the significant noise level, the Pm at the die model showed

about 59% fit with measured data. However, the prediction from the Pm at the die

model agreed with the measured data quite satisfactorily.

The models’ effectiveness in the design of model-based control schemes were

checked. Simulated step responses for both models showed boundness of the systems,

which indicates the systems were controllable. Similar conclusions were derived from

observations pole-zero plots, which showed all poles inside the unit circle in both

models.

65



−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

T
o 

T m

Figure 4.14: Pole-zero map for the Tm model.
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Figure 4.15: Comparison of step responses between experimental data and the Pm

model predicted outputs.
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Chapter 5

Process Identification Using Feed
Rate Excitation

5.1 Introduction

Plasticating extrusion is a multiple interactive process for which interactions be-

tween inputs and outputs can be modeled. The total response of the extrusion

process is a function of the individual component responses. A TSE has a num-

ber of input variables, which are also used as manipulated variables. Studying and

modeling the effect of one input or manipulated variable is not adequate to design

multiple-input multiple-output control schemes. In most cases, the behavior of a

plasticating TSE has been studied by changing screw speed and different types of

models were developed relating the behavior of the process variables to screw speed.

An increase in screw speed increases throughput instantaneously. Since a TSE is a

starved feed machine, the throughput backs to its initial value within a short pe-

riod of time. Thus, it is also important to study the effect of feed rate on process

variables. Very limited research has been performed to study the effect of feed rate

on the extrusion process. In a commercial extrusion process, feed rate is usually

maximized and controlled separately. However, varying feed rate offers greater flex-

ibility to design and implement a process control scheme and may offer possibilities

to optimize product properties. In the case of an extruder at the end of a polymer-

ization process, the feed rate is always based on the reactor output. Thus, it is also

important to develop a model relating extrusion process variables and feed rate.

Dynamic responses of process output variables due to the change in the feed

rate (F ) of a plasticating co-rotating TSE was studied in this work. In this chapter,

models of the transient responses between process output variables and feed rate

are detailed. Empirical models relating responses of process variables and F were

developed using a classical system identification approach.

Portions of this chapter have been accepted for publication in Poly. Eng. Sci.
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5.2 Dynamic Modeling Technique

5.2.1 Input Excitation

In order to identify or model any process behavior, excitation in the input is

very important. Real processes have higher dimension than the models developed

for them. To capture as much information from the data as possible, it is imperative

to impose persistent excitation on the process (Ljung 2006).

The classical input excitation method for any open loop system is step or impulse

type perturbation in the input followed by measurement of the response of one or

more process output variables. Step type excitation is frequently done in TSEs used

for food processing (Moreira et al. 1990, Cayot et al. 1995, Akdogan and Rumsey

1996). Such excitation was also used in a plasticating single screw extruder by

Chan et al. (1986). However, step response tests are often unable to excite the high

frequency components; hence, dynamic models developed from these experiments

do not predict well the process behavior at the higher frequencies. Because of the

complex nature of plasticating extrusion processes, it is important to excite the

process over a wide range of frequencies. In some studies, a Gaussian sequence type

of excitation in the input was used for plasticating single screw extruders (McAfee

and Thompson 2007, McAfee 2007). In another study, pulse type perturbation was

used in a plasticating TSE to develop a grey box model (Garge et al. 2007).

Another widely used input excitation method for an open loop system is the

random binary sequence (RBS). The RBS excitation method is capable of exciting

a process over a wide spectrum of frequencies. Use of RBS excitation in plasticating

TSE is limited. However, RBS excites the process both above and below the central

set-point, which reduces some of the nonlinearity associated with the process.

5.2.2 Model Development

Classical linear system identification techniques are used to develop process

model using process input-output data. The generic form of such a model in discrete

time domain can be written according to equation 5.1:

A(q−1)y(k) =
B(q−1)

F (q−1)
u(k) +

C(q−1)

D(q−1)
ε(k) (5.1)

where y(k), u(k), and ε(k) are the discrete value of output, input and disturbance,

respectively, at the kth sampling instant and q−1 is the backshift operator. In equa-

tion 5.1, A, F, C and D are monic polynomials, i.e., the leading coefficient of these

polynomials is 1. The time delay in units of sampling interval is presented in poly-

nomial B as a number of leading zero-valued coefficients.
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In equation 5.1, polynomials A, D, and F describe the present value of output

in terms of past values of output. The discrete time model with these polynomials

has an autoregressive nature. A model with polynomial B is considered to have ex-

ternal or exogenous components. Models with polynomial C are considered to have

moving average behavior. Thus, model structure for a specific process is selected by

combining some autoregressive, moving average and exogenous components based

on model fit, statistical analysis of the model prediction errors, the parsimony prin-

ciple, and the final model prediction errors. Details of model selection criteria are

described in chapter 4. The model fit is calculated using the following relation:

Modelfit = 100 × [1 −
√

(ymeasured − ypredicted)
2√

(ymeasured − yaverage)2
] (5.2)

5.3 Experimental Section

5.3.1 Extrusion System

The ZSK-25 twin screw extruder, used in this study, is described in previous

chapters. Correlation analyses between six process output variables and final prod-

uct quality variables, melt index and steady shear viscosity at steady state condition

were performed and is detailed in chapter 4. Better correlations with product quality

variables were obtained for the melt pressure at the die (Pm) and the melt tempera-

ture at the die (Tm) compared to other output variables. In addition, the transient

behavior of the output variables was studied, and Pm and Tm were found to be

suitable control variables.

The high density polyethylene (HDPE) used in this study was generously do-

nated by Nova Chemicals (Calgary, Alberta, Canada). The commercial name of this

polymer is SCLAIR 2907. According to the manufacturer, the melt index of HDPE

is 4.9 g/10 min. The melting point of this polyethylene is 135oC. A loss-in-weight

feeder was used to feed the polyethylene to the TSE. The feed rate was controlled

by a KSL/KLCD feed controller. This feed controller is cable of communicating

with a PC to store data and send command for new set-points.

5.3.2 Feed Rate Excitation

Feed rate was excited between 4 kg/h and 8 kg/h. Nominal operating conditions

for the barrel temperature and screw speed were 210oC and 140 rpm, respectively.

To get an estimate of the process time constant, step tests in F were performed in

both positive and negative directions from the central set-point. A step of 2 kg/h

was imposed in F from 6 kg/h in the positive direction. The process was run at

a particular condition for sufficient time to equilibrate the response of the process
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variables. After completing the step test in the positive direction, the process was

brought back to the original operating conditions. The same magnitude of step was

imposed in the negative direction to bring feed rate down to 4 kg/h. The response of

Pm was much faster than that of Tm. Thus, a time constant (τp) of 16 sec estimated

from the response of Pm was used to design the RBS.

A sampling time (ts) of 1 sec was selected based on τp

20
≤ ts ≤ τp

10
. A value of

zero was used for lower bound of input frequency (ωL) to get a good estimate of

the process gain. However, the normalized upper bound of input frequency (ωU)

was calculated based on the relation given in equation 4.9. From the range of input

frequencies, a value of 0.06 was selected as an upper bound of input frequency for

the experimental design. A total of 150 RBS samples of F were generated between 4

kg/h and 8 kg/h within the bound of input frequencies. Process data were acquired

every 0.1 sec (10 Hz).

Figure 5.1(c) shows RBS excitation of the feed rate. Figures 5.1(a) and 5.1(b)

show the responses of Pm and Tm, respectively, due to the RBS excitation in F. It

was observed that both process output variables increased with an increase in F and

decreased with a decrease in F. However, Pm has significant noise. It was necessary

to filter the noise prior to further analysis. The change in Pm with a change in F

was quite large and showed faster response compared to that of Tm. Thus, if the

objective was to control Pm, there would be better resolution and faster set-point

tracking. Figure 5.1(b) shows a long-term drift in Tm. Since the drift is very small,

it was neglected.
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Figure 5.1: (a) Response of the melt pressure at the die. (b) Response of the melt
temperature at the die. (c) A random binary sequence type excitation in the feed
rate.

To observe the process behavior, the TSE was also excited by stair type step
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changes in the feed rate. Figure 5.2(c) shows the stair type excitation in feed rate.

Starting from the central set-point of 6 kg/h, a step change in F of 1 kg/h was

made and held for sufficient time to let the process come to a new steady state.

A complete stair type excitation was imposed by changing F in both positive and

negative direction. This excitation was limited within 4 kg/h to 8 kg/h to provide

operating conditions similar to the RBS excitation. This comparison allowed us to

observe the effects of the type of input excitation on output process variables. Like

the RBS excitation procedure, process data were collected every 0.1 sec. Figure

5.2(b) shows the response of the melt temperature at the die. It was observed that

Tm did not follow the changes in F, which clearly indicates existence of nonlinearity.

However, Pm was found to follow the change quite nicely; however, with a high level

of noise (Figure 5.2(a)).
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Figure 5.2: (a) Response of melt pressure at die. (b) Response of melt temperature
at die. (c) Stair type type excitation in feed rate.

By comparing the responses of Tm to both types of excitation, it can be observed

that the RBS type excitation reduced the effect of inherent process nonlinearity com-

pared to that of the stair type excitation. This outcome indicates that the response

of a nonlinear extrusion process can be modeled satisfactorily by a linear model

using the data obtained from RBS excitation in the input variable. It is common

practice to develop a process model that is as simple as possible to design and im-

plement a control scheme in real-time. For example, a first order process can be

satisfactorily controlled by using a proportional-integral controller in a closed loop.

Thus, the type of excitation is important in identifying the response of a process

variable, and RBS was observed to be a very good excitation method for nonlinear

processes. Note that although RBS excitation reduced the effect of nonlinearity,
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the degree of persistent excitation should not be so high that it enters the nonlinear

region from the central set-point. Thus, it is important to design the RBS excitation

properly before imposing it on the process.

Since RBS excitation reduced the effect of process nonlinearity within the given

operating conditions, a part of these data were used to estimate process models

relating Pm and Tm with F. However, the estimated models were validated using the

dataset obtained from both types of excitation.

5.4 Results and Discussions

5.4.1 Data Preprocessing

Data preprocessing is one of the most important steps in developing a model with

measured data. Measured data might be corrupted with different types of process

noise or disturbances resulting from different sources. For example, screw speed

introduces high frequency noise and the periodic change in cycling heater power

gives low frequency noise in the measured data. Filtering or signal conditioning

reduces the effect of noise on the data. There are a number of filtering techniques

available in the literature. In this study, an exponentially weighted moving average

(EWMA) filter was used to reduce the level of noise and prepare the measured

data to develop the process model. As mentioned in chapter 4, such a filter can be

represented by equation 5.3.

yf(k) = αyr(k) + (1 − α)yf(k − 1) (5.3)

where yr is the raw data (measured), yf is the filtered data, and α is any value

between 0 and 1. As detailed in chapter 4, a value of 0.012 was used as a preliminary

estimation of α. Different values of α were used to filter the data and the level of

noise in the data was visualized. Finally, a value of 0.01 was selected. Note that data

obtained either from RBS or stair type excitation were filtered using EWMA with

the stated value of α. The linear trend from both time series data was removed, i.e.,

data were detrended, to make it stationary. Figures 5.3(a) and (b) show the time

trends of filtered and detrended Pm and Tm data obtained from RBS excitation.

The advantage of such detrending is that the developed model does not depend on

the initial conditions.

Modeling of the low and mid-frequency dynamics of a process is hindered by the

use of high frequency data. Thus, it is common practice to downsample data to

reduce an overabundance of high frequency data. The time trend of the variables

shows that the response of Pm was faster than the response of Tm. Thus, Pm data

were downsampled to every 1 sec to reduce the overabundance of data. The complete
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Figure 5.3: (a) Time trend of filtered and detrended melt pressure at the die (filtered
with α = 0.01). (b) Time trend of filtered and detrended melt temperature at the
die (filtered with α = 0.01).

response to thermal changes due to a change in F is relatively slower. Thus, Tm

data were downsampled to every 2 sec.

5.4.2 Impulse Response

The impulse response between an output variable and an input variable of a

process estimates the time delay and the model order. To estimate the time delay

and model order, the impulse response was estimated between preprocessed Pm

and F, and preprocessed Tm and F, and the results are represented in Figure 5.4.

Figure 5.4 (a) shows the estimation between Pm and F. It was observed that the

first nonzero appears outside the 99% confidence interval at the 25th lag. As the

sampling time is 1 sec, the estimated time delay between Pm and F is 25 sec. The

shape of the impulse response coefficients suggests that the model order relating

Pm and F is second order. The impulse response estimate between Tm and F is

presented in Figure 5.4 (b). The first peak outside the 99% confidence interval

appears at the 29th lag, which indicates a possible time delay between F and Tm

of 58 sec (since the data were downsampled to 2 sec). Again, the orientation of

the coefficients indicates that the model order between Tm and F should be at least

second order.

5.4.3 Melt Pressure Model

The first half of the dataset was used to develop the model between Pm and F.

However, the complete dataset was used in validating the model to avoid initializa-
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Figure 5.4: (a) Impulse response of Pm. (b) Impulse response of Tm.

tion errors. The model was also validated with the experimental data obtained from

stair type excitation. Different model orders and structures were tried, and the final

model was selected based on the model selection criteria detailed in section 5.2.2.

Equation 5.4 shows the obtained melt pressure model.

P ′
m(t) =

0.0879(±0.058)q−25 + 0.488(±0.065)q−26

1 − 1.796(±0.009)q−1 + 0.809(±0.008)q−2
F ′(t)

+
1 − 0.15(±0.009)q−1

1 − 1.796(±0.009)q−1 + 0.809(±0.008)q−2
ε(t) (5.4)

where P ′
m and F are in deviation forms, i.e., detrended, and ε is disturbance. Values

in the parentheses of equation 5.4 show the standard error of the corresponding

parameters. Equation 5.4 shows that the obtained model has an autoregressive

moving average with exogenous input (ARMAX) structure. By comparing with

equation 5.1, the orders of polynomials A, B, C, D and F are 0, 2, 1, 2, and 2,

respectively. Therefore, the dynamics of Pm due to change in F are second order.

Polynomials D and F are identical. Polynomial B contains time delay of 25 samples.

The model order gives us an intuitive explanation of the extrusion process. The

identical denominator for both process and noise models indicates that the feed rate

and disturbances are processed in the same way, which is reasonable. The obtained

discrete domain plant model was converted to Laplace domain using a zero-order

hold and is shown in equation 5.5. A dynamic model can be explained better in

Laplace domain compared to discrete domain.

P ′
m(s)

F ′(s)
=

−0.2341s+ 0.6405

s2 + 0.2116s+ 0.01437
e−24s (5.5)

It can be observed that the plant model in equation 5.5 contains a right half
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plane zero, indicating an inverse response. The value of the parameter is small,

which shows that such a response is instantaneous; however, a root cause diagnosis

of such a response is imperative. In this study, excitation only in the feed rate

was performed while screw speed and barrel temperature were assumed constant.

It was observed that screw speed varied within ±2 rpm from the central set-point

(140 rpm) in the course of the experiment. For example, when an RBS change in

F was made from 4 kg/h to 8 kg/h, screw speed changed from 138 rpm to 142 rpm

instantly. Any change in feed rate takes time to affect the melt pressure at the die

because of the transportation delay of the material from the feed end to the die end.

On the other hand, an increase in screw speed increases shear rate immediately and

decreases viscosity; and hence, melt pressure decreases. Whenever more material

reaches the die due to an increase in F, melt pressure increases. Thus, an inverse

type of response was observed that was intuitively captured by the obtained model.

This is an example of useful process dynamics information being captured by the

model and being explained using process knowledge.

Figure 5.5 shows a comparison between the experimental data and the model

simulated output for an infinite horizon. Almost 93% model fit was obtained with

measured data, which indicates that the obtained model captured the dynamics

quite satisfactorily. A small mismatch in gain was observed between the simulated

value and the experimental value due to the existence of lower level noise in the

dataset. However, this model is quite good and is simple enough to use for designing

a control scheme.
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Figure 5.5: Validation of melt pressure model output with RBS excitation data set.

To check the amount of information captured by the model from the measured

data, model prediction errors (i.e., residuals) were analyzed. An autocorrelation
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function (ACF) among the residuals and a cross-correlation function (CCF), between

the input and the residuals, are widely used for such analysis. As mentioned earlier,

if the model captures almost all the information from the data, the prediction errors

will be white noise type. An ACF of white noise has unit value at lag zero and

zero at other lags. A CCF of white noise is zero at all lags. Figure 5.6 shows the

ACF and CCF of the Pm model prediction error. The top plot shows that the ACF

has a unit value (1) at zero lag and is almost within the 99% confidence interval of

other lags. The bottom plot indicates that the CCF at all lags is within the 99%

confidence interval. Thus, the prediction errors are essentially white noise.
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Figure 5.6: Analysis of residuals for the melt pressure model: (a) Correlation func-
tion of residuals from output P ′

m, (b) Cross correlation function between input F’
and residuals from output P ′

m.

Figure 5.7 shows the comparison between Pm model simulated outputs with

the outputs obtained from stair type excitations in F. Almost 90% model fit was

obtained. Such a model fit indicates that the developed model can predict the output

satisfactorily. Note that the model was developed using the data obtained from an

RBS excitation in F. However, the model gives excellent fit with data obtained from

another type of excitation. This is exciting in that it gives us confidence to use the

data not only for a range of operating conditions but also for a range of operating

protocols.

It was observed that the response of melt pressure due to changes in feed rate

was quite fast. However, the impulse response shows the existence of considerable

time delay. This time delay was quite large compared to the time constant. In such

a case, the dynamic of the process can be ignored and a nonparametric model can

be obtained. Thus, the melt pressure model was considered as a delay-gain model
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Figure 5.7: Validation of the melt pressure model output with stair type excitation
data.

only. Steady state gain (K ) is defined as:

K =
∆(output)

∆(input)

or,K =
∆Pm

∆F
or,∆Pm = K × ∆F. (5.6)

The value of the steady state gain is 45, which was obtained from RBS excitation.

Figure 5.8 shows the comparison between the delay-gain melt pressure model and the

measured data. About 65% model fit was obtained. Such a model fit was achieved

while ignoring the process dynamics. However, the delay-gain model simulated

output gives a fairly satisfactory prediction. Such a simple model is also very useful

for process control.

5.4.4 Melt Temperature Model

Similar to the melt pressure model development, the first half of the melt temper-

ature dataset was used to develop a dynamic model relating Tm and F. The obtained

model is presented in equation 5.7:

T ′
m(t) =

1.37 × 10−3(±6.6 × 10−4)q−29 + 1.63 × 10−3(±7.1 × 10−4)q−30

1 − 1.581(±0.037)q−1 + 0.588(±0.036)q−2
F ′(t)

+
1 − 0.05(±0.04)q−1

1 − 1.581(±0.037)q−1 + 0.588(±0.036)q−2
ε(t) (5.7)

where T ′
m is in deviation form. Values in the parentheses show the standard devia-

tion of the corresponding parameter. Equation 5.7 shows that the obtained model
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Figure 5.8: Validation of the delay-gain melt pressure model output with data ob-
tained from RBS excitation.

has ARMAX structure with orders of polynomial A, B, C, D, and F of 0, 2, 1, 2,

and 2, respectively. Polynomials D and F are similar in the Tm model. Therefore,

the dynamics of Tm due to changes in F are second order. Leading zero-valued

coefficients in polynomial B indicate the time delay is 29 samples. Like the melt

pressure model, the melt temperature model provides us insight and intuition into

the twin-screw extrusion process. Identical polynomials for both process and dis-

turbance models indicate that the feed rate and disturbance affect Tm in a similar

way.

Figure 5.9 shows the model validation with the whole dataset obtained using

RBS excitation. The model was simulated for an infinite prediction horizon. More

than 70% model fit was obtained, which is quite good from a control point of view.

A very small gain mismatch was observed, which was attributed to the nonlinear

nature of melt temperature and the existence of low level noise in the data. However,

the simulated output of the model agreed the experimental value well. Figure 5.10

shows the residual analysis of the melt temperature model. Both the ACF and

CCF show that the model prediction errors are white noise. So, the developed melt

temperature model captures the process dynamics from the data quite successfully.

The melt temperature model was also validated with data obtained from stair

type excitation. Figure 5.11 shows a comparison between melt temperature model

simulated outputs and stair type excitation data. A noticeable discrepancy is ob-

served between the model outputs and experimental data. Experimental data clearly

shows the existence of nonlinearity in the melt temperature. Thus, a linear melt

temperature model is not able to give a good fit for data with considerable nonlin-
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Figure 5.9: Validation of the melt temperature model output with RBS excitation
data.

earity. However, the model is good enough to track the trend of the measured data.

5.5 Analysis of Models

The purpose of modeling is to use the obtained models for designing model-based

control schemes. Thus, step tests, analyses of poles and zeros, Bode plots, Nyquist

diagrams, etc., were performed.

5.5.1 Melt Pressure Model

The parametric Pm model, i.e., equation 5.5, has been used for further analysis.

Figure 5.12 shows the responses of experimental data and Pm model predicted output

due to unit step changes in feed rate. The Pm model predicted outputs are almost

the same as the values of experimental data. It is noticed that the responses are

bounded, i.e., the responses attain a new steady state. Thus, Pm is controllable with

changes in F.

Figure 5.13 shows the pole-zero map of the Pm model. All the poles are inside

the unit circle, which indicates all the poles are in the negative region of the s-

domain. A system with negative poles in the s-domain is a bounded system. Thus,

the response of Pm is a bounded response with changes in F. The location of the

poles in the unit circle indicates the sampling rate is reasonable since the poles are

concentrated neither at the origin nor at the circumference. Figure 5.13 also shows

no pole-zero cancelation or redundancy of model parameters. One unstable zero can
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Figure 5.10: Analyses of residuals for the melt temperature model: (a) Correlation
function of residuals from output T ′

m, (b) Cross correlation function between input
F’ and residuals from output T ′

m.

be observed outside the unit circle in Figure 5.13.

Time domain Pm data were converted to frequency domain data by using MAT-

LAB supplied spectral analysis functions and the command ‘spa’. A Bode plot was

generated for this frequency domain data and is represented in Figure 5.14 by a

dotted line. A Bode plot for the Pm model is represented in Figure 5.14 by a solid

line. Figure 5.14 (a) shows a good match in amplitude between the model and data

in the low frequency region. Considerable mismatch is noticed at higher frequencies.

This is due to insufficient excitation at higher frequencies. According to the experi-

mental design, the process was excited with a upper limit frequency of 0.06. Usually,

chemical processes are not operated in too high frequency regions. An excitation at

these frequencies was not considered at the predesigned experimental step. Thus,

the obtained Pm model is good enough to use for a model-based control scheme.

Figure 5.14 (b) shows good match in phase shift between the model and data in

low frequency and high frequency regions. A mismatch is observed in the interme-

diate frequency region. However, the model fits well with experimental data up to

the frequency range of interest for the designing of control schemes.

Two different RBSs for feed rate were generated with two different input fre-

quency spectra: [0 0.1] and [0 0.006]. The first spectrum has much higher frequency

than the frequency (0.06) used for the experimental design. On the other hand,

the second spectrum has much lower frequency. The Pm model was simulated using

these inputs. Simulated outputs were used to developed two ARMAX models for

the melt pressure with the same structure as the Pm model. Nyquist plots of the

two newly developed ARMAX models and the Pm model are shown in Figure 5.15.

81



0 1000 2000 3000 4000 5000
−1.5

−1

−0.5

0

0.5

1

1.5

Sample no.

T
’ m

 (
o C

)

 

 

Data
Model output
 fit: 46.77%

Figure 5.11: Melt temperature model validation with stair type excitation data.

It can be observed that the two models developed from the simulated data with

different input spectra and the Pm model overlap in the Nyquist plot. It can be

concluded that the Pm model is a robust model and represents the process well even

at other input frequencies.

5.5.2 Melt Temperature Model

Step responses of experimental data and Tm model predicted output are pre-

sented in Figure 5.16. Both the responses attain a new steady state after unit step

changes in F. Thus, Tm is controllable with the changes in F. However, a little mis-

match can be observed due to nonlinearity of Tm data. Such mismatch was also

observed in Figure 5.9.

Locations of poles and zeros for the Tm model are shown in Figure 5.17. Since

all the poles are inside the unit circle, the response of Tm due to changes in F

is bounded. Such a bounded response was also noticed in the step test analysis.

Figure 5.13 shows that one of the poles is close to the circumference of the unit

circle. However, the location of another pole indicates that the sampling rate was

quite good. One unstable zero is located outside the unit circle.

Bode plots of the experimental data and Tm are presented in Figure 5.18. The

dotted line represents a Bode plot for the experimental data and the solid line repre-

sents a Bode plot for the Tm model. Figure 5.18 (a) shows a mismatch in amplitude

between model and data. This could be due to the existence of nonlinearity in Tm.

A mismatch in amplitude at lower frequencies indicates that the process was not

allowed for sufficient time for the Tm to respon completely. Insufficient excitation

results in mismatch even at low frequencies.
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Figure 5.12: Comparison of step responses between experimental data and Pm model
predicted outputs.

Figure 5.18 (b) shows that the model followed the phase shift trend with the

experimental data at medium to higher frequencies with considerable mismatch.

Again, this could be due to the nonlinearity in Tm. However, a good match can be

observed at lower frequencies. Thus, the model can be satisfactorily used to design

a model-based control scheme.

Like the Pm model, the Tm model was simulated using feed rates at different

spectra: [0 0.1] and [0 0.006]. Models with order and structure similar to the Tm

model were developed using the simulated outputs. Figure 5.19 shows Nyquist

plots of the two models developed from the simulated outputs and the Tm model.

Overlapping of all the models in the Nyquist plot indicates that the Tm model is

robust.

5.6 Summary

Transient responses of process variables due to changes in feed rate were studied

and modeled in this work. Random binary sequence and stair type excitations were

used to excite F. Data obtained from RBS excitation were used to develop a model

for dynamic behavior.

Random binary sequences gave persistent excitation in the feed rate. Such ex-

citation covered a wide frequency spectrum. Moreover, the operating range of the

feed rate was large enough to observe transient effects in process output variables.

RBS excitation, compared to that of the stair type excitation, was found to reduce

more effectively the effect of process nonlinearity on the responses of process vari-

ables. The reduction of process nonlinearity was clearly observed in the data for
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Figure 5.13: A pole-zero map for the Pm model.

melt temperature at the die. Models developed from RBS excitation were also able

to predict the output obtained from stair type excitation.

The melt pressure model gave about 93% fit and 90% fit for RBS excitation data

and stair type excitation data, respectively. Thus, the developed Pm model captures

the process dynamics well. The melt temperature model gave about 71% fit with

RBS excitation data. However, only moderate model fit (about 47%) was obtained

for stair type excitation data, due mainly to nonlinear effects in the measured data

Developed models for melt pressure and melt temperature have autoregressive

moving average with exogenous input structures. Such models intuitively explain

the physics of the extrusion process. For example, both plant and disturbance

models have similar denominators, which indicates that feed rate and disturbance

affect melt pressure and melt temperature in the same way.

Responses in melt pressure due to changes in feed rate are quite fast. Thus,

a delay-gain model was proposed and was found to capture the response of melt

pressure fairly satisfactorily for control purposes.

A Bode plot showed insufficient excitation in Tm, which resulted in gain mismatch

between experimental data and model predicted outputs. A Nyquist plot showed

that both Pm and Tm models are sufficiently robust and represent the process at

different input frequencies. Such robustness is very useful for process control because

a process is high dimensional and a developed model is low dimensional. In addition,

there might have uncertainty in the model parameters. Thus, a robust model is

imperative for model-based process control.
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Figure 5.14: Bode diagrams of the Pm model and experimental data: (a) Amplitude
vs. frequency, (b) Phase shift vs. frequency.
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Figure 5.15: Nyquist plots of Pm model (broken line), Pm model with [0 0.1] input
frequency spectrum (square) and Pm model with [0 0.006] input frequency spectrum
(circle)
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Figure 5.16: Comparison of step responses between experimental data and Tm model
predicted outputs.
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Figure 5.17: A pole-zero map for the Tm model.
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Figure 5.18: Bode diagrams of the Tm model and experimental data: (a) Amplitude
vs. frequency, (b) Phase shift vs. frequency.
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Figure 5.19: Nyquist plots of the Tm model (solid line), the Tm model with [0
0.1] input frequency spectrum (broken line) and the Tm model with [0 0.006] input
frequency spectrum (dotted line)
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Chapter 6

Model Predictive Controller

6.1 Introduction

It is very important to have a stable extrusion process to establish consistent

product quality. Off-specification products can be produced due to any fluctuation

in the operating variables. Thus, it is imperative to have an automatic control sys-

tem. However, control of a twin screw extrusion process is mainly manual (Wang

et al. 2008). Manual control of a TSE is tedious, slow, and unreliable. Thus, re-

cent interest in controlling TSEs has prompted the investigation of various design

methods for automatic extruder control. Success in the development of automatic

control systems for extrusion processes is limited because of complex dynamic behav-

ior, multivariable interaction, nonlinear dynamics, time-delay, sensor noise, varying

feedstock composition, and other factors. In addition, multiple hardware configura-

tions increases the complexity of automatic control.

Some work has been reported on control of plasticating extrusion processes

(Costin et al. 1982a, Costin et al. 1982b, Kochhar and Parnaby 1977, Previdi et

al. 2006). Costin et al. (1982b) designed a proportional-integral (PI) controller and

self-tuning controller for a single screw extruder in which controllers were designed

to control melt pressure by manipulating screw speed. Extrusion is a multivari-

ate process; hence, control of a single process variable is not adequate for effective

control of the whole process. In another study, Previdi et al. (2006) designed and

implemented a prototype feedback controller for a plasticating single screw extruder

to control volumetric flow through the die, which was achieved by regulating the

melt pressure and the melt temperature at the die by manipulating screw speed

and barrel temperature. Good set-point tracking and disturbance rejection by the

controller were reported. However, no quality variable was considered in the de-

sign of the control scheme. Limited work has also been reported on the control

of product quality variables, especially viscosity, for plasticating extruders (Broad-

Portions of this chapter have been submitted for review in Control Engineering Practice.
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head et al. 1996, Chiu and Lin 1998, Chiu and Pong 2001). Most of these studies

were performed on single screw extrusion processes and the control schemes were

designed as single-input single-output systems. Research on control of twin screw

food extrusion processes has been performed more extensive than that on twin screw

plasticating extruders (Haley and Mulvaney 2000b, Tan and Hofer 1995, Hofer and

Tan 1993, Kulshreshtha et al. 1991a, Singh and Mulvaney 1994). Thus, there is

much scope for research on control of plasticating TSEs.

Design and implementation of a multiple-input multiple-output (MIMO) model

predictive control (MPC) scheme for a plasticating twin screw extruder is detailed in

this chapter. A MIMO MPC computed the trajectories of manipulated variables to

optimize the future behavior of a plant (Richalet et al. 1978). The objective of this

work was to develop a real-time MPC system for a plasticating TSE. This work was

a part of a project to achieve advanced control of a plasticating twin screw extruder;

it included setup for process data access, modeling of the extrusion process, system

development for process automation, design and implementation of an advanced

control scheme in real-time. The MPC was designed to control melt temperature

(Tm) at the die and melt pressure (Pm) at the die by manipulating screw speed and

feed rate. Essentially, the designed MPC controlled a 2X2 system.

6.2 Model Predictive Controller

Model predictive control (MPC) is an advanced control technique for difficult

multi-variable control problems. An MPC scheme refers to a class of algorithms that

compute a sequence of manipulated variable adjustments in order to optimize the

future behavior of a process. MPC was originally developed to meet the specialized

control needs of power plants and petroleum refineries (Qin and Badgwell 2003).

With the improvement in modern computers, MPC technology has been successfully

used in a wide variety of industries including chemical, petrochemicals, automotive,

food processing, aerospace, metallurgy, and pulp and paper.

A reasonably accurate dynamic model of a process is a prerequisite for MPC.

The model and current measurements can be used to predict future values of the

outputs. Appropriate changes in input variables can be calculated based on both

predictions and measurements. Essentially, changes in individual input variables

are coordinated after considering the input-output relationships represented by the

process model. Model predictive control has a number of important advantages over

other methods:

• A process model captures dynamic and static interactions between manipu-

lated, controlled, and disturbance variables.
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• Constraints on manipulated and controlled variables are taken care of in a

systematic manner.

• Control calculations are optimized.

• Model predictions can provide early warnings of potential problems.

6.2.1 Basic Concepts of MPC

The basic concepts of model predictive control are presented in Figure 6.1. MPC

calculates a sequence of control moves so that the predicted response moves to the

set-point in an optimal manner. The manipulated input (u), actual output (y), and

predicted output (ŷ) are shown in Figure 6.1. At the current sampling instant k,

the MPC scheme calculates a set of M values of the input u(k+ i−1), i = 1, 2, ..,M .

The set consists of current input u(k) and (M − 1) future inputs. After M control

moves, the input is held constant. The inputs are calculated so that a set of P

predicted outputs ŷ(k + i), i = 1, 2, ..., P reaches the set-point in an optimal manner.

The control moves are calculated based on optimizing an objective function. The

number of predictions P is referred to as the prediction horizon and the number of

control moves M is called the control horizon.

Although a sequence of M control moves is calculated at each sampling instant,

only the first one or two moves is implemented. Then a new sequence of moves is

calculated at the next sampling instant, after a new measurement is available. This

procedure is called the receding horizon approach and the approach is repeated at

each sampling instant.

6.2.2 Fundamentals of an MPC

The basic elements are same for any MPC algorithm. Different options can be

chosen for each one of these elements resulting in different algorithms. These basic

elements are:

• prediction model,

• objective function, and

• algorithms to obtain the control law.

Process and Disturbance Models

A prerequisite of MPC is a model. The process model typically represents the

input-output relationship of a process. The disturbance model is often used to

represent disturbance, or is used simply to approximate model-plant mismatch.
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Figure 6.1: Basic concepts of MPC.

Predictions

Models are not used directly in an MPC scheme. Predictors are designed first,

according to the models, and then control laws are designed according to the predic-

tions. In the prediction step, future outputs are predicted based on past inputs and

outputs. MPC determines future inputs in order to drive the process to a desired

target. Thus, future inputs are critical components of the predictors. In MPC, the

process does not follow the set-point at one specific point. It follows a trajectory of

the set-point instead. Thus, prediction is not simply one step ahead, but multiple

steps ahead of the process.

Objective Function

Different MPC algorithms propose different objective or cost functions for ob-

taining the control law. The issues considered to design the objective functions can

be summarized as:

• The future output should follow a reference trajectory over the horizon of
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interest.

• The necessary control action should be included in the objective function.

Typically, the objective function penalizes squared input changes and output de-

viations from the set-point and includes separate output and input weight matrices.

Equation 6.1 shows the objective function, which needs to be minimized to calculate

a sequence of moves for manipulated variables. The general expression for such an

objective function for a single-input single-output (SISO) system is:

J =

N2∑
j=N1

(rt+j − ŷt+j)
′Qj(rt+j − ŷt+j) +

M∑
j=1

[�ut+j−1]
′Rj[�ut+j−1] (6.1)

where rt is the reference trajectory, yt is the output, ut is the input, M is the control

horizon, Qj is the weighting matrix reflecting the relative importance of y and Rj

is the weighting matrix penalizing the relative big changes in u.

Prediction starts at N1, and N2 is the maximum prediction horizon. N2−N1 +1

determines a prediction window in which it is desirable for the predicted output to

follow the set-point. A large value of N1 implies that it is not important if there

are errors in the first few instants up to N1. However, a large value of N2 −N1 + 1

implies that the output errors extend over a long time horizon.

Reference Trajectory

The reference trajectory is a series of set-points. It is a sequence of future

desired targets. The desired target may not be the same as the actual output

due to performance limitations of control systems such as hard constraints on the

actuator, time delay of the process, model-plant mismatch, etc. The ultimate goal

of actual process output is to reflect the desired process. Most objective functions

use a reference trajectory that does not necessarily follow the real reference, but is a

smooth approximation of the current values of output yt toward a known reference.

Constraints

Every process has constraints. Many process outputs are subject to constraints

for economic or safety reasons. For example, higher screw speed may be desirable

for better mixing of different polymers in a twin screw extruder, but high screw

speed causes an increase in polymer melt temperature, which may degrade the

quality of the polymer blend. Thus, in almost all practical model predictive controls,

constraints in the amplitude, in the slew rate of the control signal, and in the output
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are considered. Equation 6.2 shows such constraints.

umin ≤ ut ≤ umax ∀t
∆umin ≤ ∆ut ≤ ∆umax ∀t

ymin ≤ ŷt+j ≤ ymax N1 ≤ j ≤ N2, ∀t (6.2)

where umin is minimum value of the input, umax is the maximum value of the input,

∆umin is the minimum rate of change of the input, ∆umax is the maximum rate

of change of the input, ymin is the minimum value of the output, and ymax is the

maximum value of the output.

Control Law

Control actions ∆ut+j are calculated by minimizing the objective function. By

taking derivatives of J with respect to ∆ut, ∆ut+1, ..., ∆ut+M−1, and equating

the derivatives to zero, an analytical solution can be obtained. This is a typical

least square problem. However, analytical solutions are not possible if there are

constraints on ut, ∆ut, or ŷt+j. In that case, numerical optimization is necessary.

All computation is completed within the sampling interval.

In a nutshell, the design of model predictive control involves specification of

prediction models, objective functions, and optimization to obtain control laws.

6.2.3 Controllability Test

Before designing a control scheme, the controllability of a system is checked by

computing the rank of a controllability matrix. Consider a linear time-invariant

system which has n states and p inputs in a continuous time domain. Such a

system can be represented in a state-space model according to equation 6.3.

ẋ = Ax + Bu (6.3)

where A has dimension n× n and B has dimension n× p. For such a linear system

the controllability matrix can be obtained according to equation 6.4:

Co =
[
B AB A2B · · · An−1B

]
(6.4)

For a system to be controllable, the number of states of the system must be

equal to the rank of the controllability matrix, i.e., n = rank(Co).

6.3 Experimental section

This work was performed on a ZSK-25 TSE manufactured by Coperion and de-

scribed in chapter 1. An extrusion process usually has three input variables: screw
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speed, feed rate, and barrel temperature. These input variables can be used as

manipulated variables as well. The heating and cooling dynamics of the barrel

temperature are rarely identical, and the barrel temperature is dynamically slow

compared to screw speed and feed rate. Thus, screw speed and feed rate were se-

lected as potential manipulated variables. The extrusion process was reduced to

a two-input and two-output process based on the steady state and the dynamic

analysis performed by Iqbal et al. (2010a).

6.4 Process models

Inherently, twin screw extrusion is a multiple-input multiple-output (MIMO)

process. Controlled variables, manipulated variables, and disturbances are selected

prior to designing a control scheme for a process. Variables for a twin screw extruder

are detailed in chapter 4. Two process output variables, Tm and Pm, were selected

as controlled variables based on a correlation with product quality attributes. Two

input variables, screw speed (N) and feed rate (F ), were used as manipulated vari-

ables. Figure 6.2 shows the open loop block diagram for a ZSK-25 TSE with a

reduced number of process variables.

 Twin screw 
extruder 

Screw speed (N) 
Feed rate (F) 

Melt temperature at die (Tm) 
Melt pressure at die (Pm) 
 

Figure 6.2: Open loop block diagram for a ZSK-25 TSE.

Screw speed was excited using a predesigned random binary sequence (RBS)

excitation to develop models relating Tm and Pm with N . Grey box models were

developed using a new approach introduced in chapter 4. The obtained models re-

lating Tm and Pm with N were nonlinear. Equation 4.13 shows the relation between

Tm and N and equation 4.14 shows the relation between Pm and N in discrete time

domain. Equations 6.5 and 6.6 were converted to Laplace domain using zero order

hold (ZOH), that is, they depict the grey box models in s-domain:

g11(s) =
Tm

u1
=

−6.972 × 10−6s+ 4.367 × 10−6

s2 + 0.1586s+ 0.003288
(6.5)

g(s) =
Pm

u2
=

−89.23s2 − 191.3s+ 2.259

s3 + 0.4518s2 + 0.05643s+ 0.002522
(6.6)

where, u1 = N1.8 and u2 = N−0.2.

The feed rate was excited using a predesigned RBS excitation. Details of the

modeling is explained in chapter 5. Developed models relating Tm and Pm with F
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are represented in equations 5.7 and 5.4, respectively, in the discrete time domain.

These models were converted to a continuous s-domain using a ZOH. Tm and Pm

s-domain models are described by equations 6.7 and 6.7, respectively.

g12(s) =
Tm

F
=

−1.7 × 10−4s+ 9.7 × 10−4

s2 + 0.265s+ 0.002571
e−56s (6.7)

g22(s) =
Pm

F
=

−0.2341s+ 0.6405

s2 + 0.2116s+ 0.01437
e−24s (6.8)

Equations 6.5 and 6.6 show Tm and Pm have linear relation with u1 and u2, respec-

tively. However, both u1 and u2 have nonlinear relations with screw speed with

different powers. Such relationships appeared because of the application of first

principles knowledge in the modeling. However, dealing with different nonlinearities

evaluating from a single variable is not a trivial in a control scheme. A nonlin-

ear MPC can be designed for such a process. However, real-time applications of

nonlinear MPCs are limited in industries.

RBS excitation of N and the corresponding response of Pm are presented in Fig-

ure 6.3. Screw speed was excited between 120 rpm and 160 rpm in that experiment.

Operating conditions were: 210oC barrel temperature, 6 kg/h feed rate, high den-

sity polyethylene feed. Details of this experiment are described in chapter 4. The

value of Pm varied within ±10 psi with significant noise. Instantaneous peaks with

a significant magnitude were observed with changes in N . If these peaks are not

considered, then the effect of changes in N on Pm can be neglected and it can be as-

sumed that the transfer function model between Pm and N is zero, i.e., g(s) = 0. In

this case, the continuous-time model for the extruder can be presented by equation

6.9.

y = Gu (6.9)

where y =

[
Tm

Pm

]
, G=

[
g11 g12

0 g22

]
and u =

[
u1

F

]
.

It is worth mentioning that relative gain array (RGA) analysis is an another

measure of interactions between input and output variables for a multiple-input

multiple-output process. However, this analysis measures interactions at steady

state conditions only. In addition to that RGA analysis for this TSE is not trivial

since the models have different nonlinearities with the same input variables, screw

speed. Thus, it is important to consider dynamic interactions, which can be observed

from dynamic behaviors between input and output variables.

The transfer function model in equation 6.9 was converted to discrete time state-

space model (Equation 6.10) using the MATLAB command “[A,B,C,D]=ssdata(c2d(G,ts)),”

where ts is the sampling time. A ts of 1 sec was used in this work. The obtained
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Figure 6.3: (a) Response of melt pressure due to RBS excitation of screw speed, (b)
RBS excitation in screw speed.

discrete state-space model is represented by equation 6.10.

xk+1 = Axk + Buk

yk = Cxk (6.10)

where A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.8503 −0.8533 0 0 0 0
1 0 0 0 0 0
0 0 1.7649 −0.7672 0 0
0 0 1 0 0 0
0 0 0 0 1.7964 −0.8093
0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0039 0
0 0
0 0.0313
0 0
0 1
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

C =

[−0.0011 0.0022 0.0094 0.0178 0 0
0 0 0 0 0.088 0.4886

]

Equation 6.10 was used as the basis for the design of discrete time model pre-

dictive controller. The obtained discrete state space model had a total of 6 states.

Since these are identified models, it is hard to explain the states physically. How-

ever, the state space model shows that the melt temperature is a linear combination

of first 4 states and the melt pressure is a linear combination of last two states. The

controllability matrix for this system was obtained using equation 6.4 as follows:

Co =
[
B AB A2B A3B A4B A5B

]
(6.11)
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A rank of 6 was calculated for the controllability matrix of this system. Since,

the rank of the controllability matrix is equal to the number of states of the process,

the system was controllable.

6.5 Designed Control Scheme

The objective of the MPC scheme was to design a multiple-input multiple-

output (MIMO) system. Equation 6.12 shows the objective function that needed to

be minimized to a calculate sequence of moves for manipulated variables:

J =
P∑

j=1

(‖ rt+j − yt+j ‖2
Q +

M∑
j=1

(‖ �ut+j−1 ‖2
R)) (6.12)

where P is the prediction horizon, M is the control horizon, r is the reference variable

or set-point, Q is the weighting matrix for y, and R is the weighting matrix for u.

The output weighting matrix Q was selected according to the relative importance

of the output variables. In a similar way, R allowed the manipulated variables to

be weighted according to their relative importance. Both Q and R were chosen to

be diagonal matrices. The norm terms in equation 6.12 were defined as:

‖ r − y ‖2
Q= (r − y)′Q(r − y) (6.13)

The extrusion system explained in state-space form by equation 6.10 has two

inputs and two outputs. An MPC scheme was designed for this extruder to control

Tm and Pm by manipulating N and F . A description of MPC tuning parameters

follows:

Prediction horizon, P: It is recommended that the prediction horizon be larger

than the time delay. Equations 6.7 and 6.8 show time delays of 24 sec and 56 sec,

respectively. Thus, a prediction horizon of 70 sec was chosen in designing the MPC.

Control horizon, M: MPC predicts control action for up to 70 sec after the first

action is implemented. Thus, a control horizon of 1 was selected for the MPC.

Weighting matrices: Weighting matrices Q and R were chosen for the MPC. The

objective of this MPC is to control the temperature and pressure of the polymer melt.

Temperature has more effect than the pressure on the properties of the polymer melt;

hence, temperature was given more weight than pressure. A change in screw speed

affect outputs faster than a change in feed rate. Thus, less weight was given to N

than F. Equation 6.14 shows Q and R weighting matrices. Note that the weight for

screw speed in R is actually not for N, it is for u1. However, u1 was converted to N

to get the actual screw speed since N = (u1)
1/1.8.
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Q =

[
3 0
0 1

]

R =

[
0.01 0
0 0.1

]
(6.14)

MPC algorithm: The model predictive control algorithm was written in MATLAB

(version 7.5) using the Model Predictive Control Toolbox. The followings steps were

used to execute the algorithm and to calculate the control moves:

• Step 1: Nominal values of the output variables (yss=[T̄m P̄m]
′
) and manipu-

lated variables (uss=[N̄ F̄ ]
′
) were selected.

• Step 2: The MPC objective function, the initial states of the process, and the

tuning parameters were defined.

• Step 3: The reference trajectory r was selected.

• Step 4: The process output variables were measured and noise was removed

using an exponentially weighted moving average (EWMA) filter.

• Step 5: The output variables were converted to deviation form, i.e., y=[(Tm-

T̄m), (Pm-P̄m)]
′
.

• Step 6: The move for manipulated variables in deviation form (u) was com-

puted using the MATLAB command ‘mpcmove’ based on y, r, and the MPC

objective function.

• Step 7: The actual manipulated variables were calculated for implementation,

i.e., ua=u+uss

• Step 8: The states were updated using the state-space equation to calculate

the next move and execute steps 4 to 8.

This algorithm was executed in LabVIEW matlab script online. Signals corre-

sponding to algorithm outputs (screw speed and feed rate) were sent from LabVIEW

to the corresponding terminals.

6.6 Real-time Experiments

The designed MPC was tested by conducting several closed loop experiments

in real-time. The objective of these experiments was to evaluate the controller

performance in terms of disturbance rejection and set-point tracking. The robustness

of the controller was also examined.
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All experiments were conducted using similar nominal values. A feed rate of

6 kg/h, a screw speed of 140 rpm, and a barrel temperature of 210oC were used

as the nominal operating conditions. A high density polyethylene (SCLAIR 2907)

provided by Nova Chemicals was used as a processing material. This material has a

melt index of 4.9 g/10 min and a melting point of 135oC. Nominal values of 211oC for

Tm and 350 psi for Pm were used. After making a change in the process under closed

loop control, experiments were conducted for sufficient time to allow the process to

come to a new steady state. Since only one high density polyethylene was used for

real-time experiments, no product quality, e.g., melt index, analysis was done.

In designing the MPC, the operating range of the screw speed was constrained

between 110 rpm and 170 rpm with a rate of change of 5 rpm/sec. The feed rate

was constrained to operate between 2 kg/h and 10 kg/h with a rate of change of

0.1 kg/h. The process was operated for sufficient time (∼= 20 minutes) to bring

all the variables to their nominal values. Then, model predictive control action

was activated for closed loop operation. It was observed that the melt temperature

decreased slowly due to heat loss from the extruder. This decrease was ignored when

developing models relating melt temperature to screw speed and feed rate. Thus,

the nominal value for Tm was considered pseudo-steady state. Data were collected

every 1 sec.

Responses of controlled or output variables Tm and Pm are presented in Figures

6.4(a) and 6.4(b), respectively. The dotted lines represent experimental values and

the solid lines show the set-points. Both the controlled variables stayed at their

set-points; however, the Pm response was noisy. The MPC algorithm calculated

values of screw speed and feed rate for the closed loop operation of the extruder.

Changes in screw speed and feed rate and outputs of the MPC algorithm are shown

in Figures 6.4(c) and 6.4(d), respectively. The dotted lines show measured value

and the solid lines represent outputs from MPC algorithm. The obtained responses

indicate that the transfer from open loop to closed loop processes was bumpless.

Figure 6.4(c) shows that N increased over the course of experiment. To overcome

the drift in Tm, MPC increased screw speed and kept Tm at its set-point. Thus,

Figure 6.4(c) showed a small increasing trend in screw speed. A slight difference

was observed between the actual screw speed and the screw speed calculated with

the MPC algorithm. This could be due to the one-way communication between the

PC and the motor drive. Figure 3.5 shows that the algorithm output was sent from

computer to the motor drive only, no feedback was observed from the motor drive

to the PC. Thus, no corrective action was taken to compensate for this difference.

This difference was very small (∼= 1 rpm) compared to the actual value of the screw

speed. Figure 6.4(d) shows that the response of F was almost at the nominal value

and did not vary significantly.
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Figure 6.4: Responses of variables in closed loop operation: (a) Melt temperature,
(b) Melt pressure, (c) Screw speed, (d) Feed rate.

6.6.1 Disturbance Rejection

The robustness of the controller was tested by imposing an external disturbance

in the extrusion process. A handful of polypropylene (PP) with a melt index of 30

g/10 min was fed to the extruder along with the HDPE processing material. The

addition of PP to the HDPE changed the bulk density of the feed material and the

total feed rate in the extruder. PP was fed to the extruder 5 min after activating

the MPC. The controlled and manipulated variables were y=[0 0]
′

and u=[0 0]
′
,

respectively, in deviation form. Again, the reference variables were r=[0 0]
′
. Initial

conditions of the estimated state variables were assumed to be x̂(0)=[0 0 0 0 0

0]
′
. Figure 6.5 shows the responses of the controlled variables and changes in the

manipulated variables due to the external disturbance.

Figure 6.5(a) shows that the melt temperature decreased and Figure 6.5(b) shows

that the melt pressure increased due to the disturbance. However, the MPC brought

both the controlled variables to their set-points. Figures 6.5(c) and (d) show that

an increase in N and a decrease in F, respectively, overcome the effects of the

disturbance. However, the increase in N was observed to continue after the effect of

the disturbance had been mitigated. This was because of the slow drift in Tm. The

feed rate was observed to return almost to its nominal value after recovering from

the effect of the disturbance.
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Figure 6.5: Response of variables due to an external disturbance: (a) Melt temper-
ature, (b) Melt pressure, (c) Screw speed, (d) Feed rate.

6.6.2 Servo Control

The performance of the model predictive controller was also studied by examin-

ing its ability to automatically adjust the process outputs to new set-points. Two

experiments were performed for this study.

Set-point Change in Melt Temperature

A positive step change in Tm was imposed to observe the set-point tracking ability

of the MPC. Melt temperature was increased from 211oC to 212oC after 2 min of

closed loop operation. The melt pressure was maintained at its nominal value. In

deviation form, the controlled and manipulated variables were y=[0 0]
′

and u=[0

0]
′
, respectively. For the unit step change in Tm, the reference variables became

r=[1 0]
′
. Similar initial conditions for estimated state variables were considered.

Figure 6.6 shows the responses of controlled variables and changes in manipulated

variables.

Figure 6.6(a) shows that the new Tm set-point was automatically adjusted by

the MPC within a few minutes of the disturbance. The response of Tm was a bit

slow that can be overcome by doing some fine tuning. Besides, control action can

be made faster by relaxing constraints imposed on manipulated variables. The

change in response of Pm due to the step change in Tm was hard to observe because

of the noise in Pm . However, it seems that there was no considerable change in

Pm. Figure 6.6(d) shows that the feed rate decreased but eventually returned to its
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nominal value. Figure 6.6(c) shows a considerable change in the screw speed than

in the feed rate. In fact, the step change in Tm produced more change in the screw

speed than in the feed rate.
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Figure 6.6: Responses of variables due to a step change in melt temperature: (a)
Melt temperature, (b) Melt pressure, (c) Screw speed, (d) Feed rate.

This study indicated that a change in N had almost no effect on Pm in the closed

loop operation. Thus, the assumption made in the designing of the MPC, the effect

of changes in N on Pm can be ignored, was a reasonable assumption.

Set-point Change in Melt Pressure

The set-point tracking ability of the MPC was examined by imposing a step

change in Pm. Because Pm had significant noise, a step of 20 psi was imposed to

ensure the step change in Pm was higher than the noise, so the response in Pm could

be observed. In this case, the melt pressure increased from its nominal value of 350

psi to 370 psi. The controlled variables and manipulated variables in deviation form

were y=[0 0]
′
and u=[0 0]

′
, respectively. The reference variables became r=[0 20]

′

because of the 20 psi step change in Pm. Similar initial conditions for estimated

state variables were used. Figure 6.7 shows the responses of controlled variables and

changes in manipulated variables.

Automatic adjustment of Pm to the new set-point by the MPC action can be

observed in Figure 6.6(b). Figure 6.6(a) shows no change in Tm owing to the step

change in Pm. Figure 6.6(c) shows a slight increase in N because of the slow drift

in Tm. A sudden change in F was observed as shown in Figure 6.6(d). However,

this change was within the physical limit.
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Figure 6.7: Responses of variables due to a step change in melt pressure: (a) Melt
temperature, (b) Melt pressure, (c) Screw speed, (d) Feed rate.

All experiments performed in real-time indicated that the designed model pre-

dictive controller successfully controlled Tm and Pm by manipulating N and F. The

MPC algorithm changed the manipulated variables within the physical limits to

overcome any process upset. Bumpless transfer from the manual mode to the auto

mode was implemented using the MPC scheme.

6.7 Summary

In this work, a model predictive controller was designed for a plasticating twin

screw extruder. Melt temperature at the die and melt pressure at the die were

controlled using this controller by manipulating screw speed and feed rate. In this

case, four transfer functions were obtained from a laboratory scale twin screw ex-

truder and were converted to a state-space model to perform the model predictive

control algorithm. Performance and robustness of the MPC scheme were examined

by conducting real-time experiments. Experimental outcomes showed that real-time

regulation and set-point tracking performance by the designed control scheme were

achieved. The MPC was found to be robust to an external disturbance. Since the

objective was to design and implement an advanced controlller for the TSE, no

classical controller, e.g., PI or PID was studied in real time.
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Chapter 7

Multimodel Approaches for
Modeling and Control

7.1 Introduction

The control of processes for a wide range of operating conditions has attracted a

great deal of attention from the process control community in recent years (Ozkan

et al. 2000). Fixed and specific linear controllers are generally not adequate for

such applications, especially for chemical processes that have nonlinear behavior. A

controller with varying structure and/or parameters is needed to meet the control

demands at multiple operating points. A basic approach for controlling multiple

regimes in complex systems is based on a multiple-model approach. In this ap-

proach, a nonlinear system is represented as a combination of multiple linear mod-

els. A number of techniques have been proposed in the literature to approximate

a nonlinear system using multiple-linear models. However, the approaches differ

mainly in the choice of model weights.

The extrusion process is a nonlinear process (Haley and Mulvaney 2000b, McAfee

and McNally 2006). It is most likely that controllers designed for one operating

range might not work in the other operating conditions. Thus, there is huge scope to

apply multimodel approaches to extrusion processes. In this chapter, the multimodel

approach has been used to design nonlinear control schemes to control a twin screw

extruder over a wide range of operating conditions. Nonlinear behavior in the melt

temperature (Tm) due to changes in the screw speed (N ) was detailed in chapter 4

and a nonlinear grey box model was developed. A model predictive controller was

designed using this nonlinear model and successfully implemented in real-time in

chapter 6. The capture of this nonlinear behavior of Tm due to changes in N using

multimodel approach is described in this chapter. Also, design and simulation of a

nonlinear proportional-integral controller (n-PI) and a nonlinear model predictive

controller (n-MPC) are detailed in this chapter.
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7.2 Operating Regime Approaches

Any model or controller has a limited range of operating conditions in which it

is sufficiently accurate to serve its purpose. This range may be restricted for several

reasons, for example, linearization of a nonlinear process, modeling assumptions, or

experimental conditions. Such a model or controller is known as a local model or

controller. However, the ultimate goal is a global model or controller.

The operating modeling approach is based on the decomposition of a system’s

full range of operation into a number of possibly overlapping operating regimes as

depicted in Figure 7.1. A simple local model or controller is used in an operating

regime. These local models or controllers are combined to obtain a global model

or controller. It is not always easy to find a natural sequence in which these tasks

should be approached. Several iterations of the same tasks are usually needed before

a satisfactory model or controller is found.

Operating
Regime 4

Operating
Regime 2

Operating
Regime 3

Operating
Regime 1

Figure 7.1: Operating range of a complex process decomposed into a number of
operating regimes.
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7.2.1 Combining Local Models or Controllers

An operating regime approach consists of a family of local models or controllers

and a scheduler. The simplest form of scheduling is hard switching between models

or controllers, but control action is not smooth with this method. In some cases,

sudden changes between operating regimes may not be convenient. For example, if a

system’s operating regimes are characterized by different behaviors or mechanisms,

these behaviors or mechanisms will change with a change in operating regimes; most

physical systems have this property. In such cases, the operating regimes can be

described as overlapping sets and a smooth scheduler can be implemented between

regimes.

Fuzzy sets and fuzzy logic can be applied to describe the soft boundaries between

operating regimes. Fuzzy sets are characterized by gradual membership and are a

natural way of describing an operating regime. The basic concepts of fuzzy logic

state the natural ways of making inference. The resulting inference mechanism

can be applied to form an interpolation that gives more or less weight to the local

models or controllers in different operating regimes, depending on the operating

points (Takagi and Sugeno 1985).

For example, local PID controller outputs or the local PID controller parame-

ters can be interpolated (Kuipers and strm 1994). The controller structure has to

be assumed homogeneous to interpolate controller parameters. At each sampling

instant, the scheduler will assign a weight to each controller and the weighted sum

of the outputs will be applied as an input to the system for interpolation of local

controller outputs.

7.2.2 Fuzzy Logic

Consider a nonlinear system represented by the following differential equations:

ẋ = f̄ [x, u, d], (7.1)

y = ḡ[x, u, d]. (7.2)

Equation 7.1 describes a dynamic system and equation 7.2 describes the relationships

between outputs and states. Linearization or identification of this system at different

central points yield a number of local models. The Takagi and Sugeno (T-S) fuzzy

approach can be used to obtain a weight for each local model or controller (Takagi

and Sugeno 1985). The T-S fuzzy dynamic model is a piecewise interpolation of local

linear models through a membership function. This dynamic model is described by

IF-THEN rules which represent local linear input-output relations of the nonlinear

system.
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If the nonlinear system is linearized around M number of central points, the

transfer function models obtained at each operating point (ūi, ȳi) can be represented

as Gi(z) = ∆yi(z)
∆ui(z)

, where ∆yi(z) are output variables in deviation form, ∆ui(z) are

input variables in deviation form and i = 1 · · · M.

The global output of the fuzzy dynamic model can be obtained according to

equation 7.3:

ym(k) =

M∑
i=1

hi[z(k)][∆yi + ȳi] (7.3)

where hi[z(k)] is a relative grade of membership function of ith regime and is defined

as

hi[z(k)] =
µi[z(k)]

µ(k)
(7.4)

In equation 7.4, µi[z(k)] is a grade of membership function of ith regime µ(k) =∑N
i=1 µi[z(k)].

It should be noted that the relative grade of membership should be hi[z(k)] ∈
[0, 1] and

∑N
i=1 hi[z(k)] = 1.

7.3 Experimental Procedure

A ZSK-25 twin screw extruder was used in this study. Previous studies showed

that polymer melt temperature had a nonlinear relationship with the input variables.

For example, melt temperature at the die showed a nonlinear relationship with screw

speed. Thus, a multimodel approach was used to model Tm due to changes in N . An

operating range of 120 rpm to 140 rpm was used in developing the grey box model

between Tm and N in chapter 4. A much higher screw speed is used in industry.

The ZSK-25 can operate up to 1200 rpm according to the manufacturer; that is

considerably higher than the speed used in this work. We did not operate the ZSK-

25 at such high speeds for a number of reasons. For example, barrel temperature

at zone 4 fluctuated if the extruder operated at 200 rpm, with a feed rate of 6 kg/h

and a barrel temperature of 210oC for all zones. This temperature fluctuation was

due to poor temperature control at that zone. The barrel temperature at each zone

was controlled by a local PID controller.

High density polyethylene (SCLAIR 2907) was used as a processing polymer

in this study. The operating conditions for feed rate and barrel temperature were

6kg/h and 210oC, respectively. The range of screw speed covered in this study was

100 rpm to 160 rpm. The overall operating range was divided into three regimes

with 20 rpm intervals. Thus, regime 1 covered 100 rpm to 120 rpm, regime 2 covered
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120 rpm to 140 rpm, and regime 3 covered 140 rpm to 160 rpm. The central points

of regime 1, regime 2, and regime 3 are 110 rpm, 130 rpm, and 150 rpm, respectively.

Step tests were performed both in positive and negative directions for each regime

starting from the central point of the corresponding regime. A sampling time of 2

sec was selected to design a random binary sequence (RBS) in screw speed for all

the regimes. The extruder was excited using the predesigned RBS in screw speed

for each operating regime. Data were collected every 2 sec in all runs.

Figure 7.2, Figure 7.3, and Figure 7.4 show time plots of melt temperature and

designed RBS screw speeds for regime 1, regime 2, and regime 3, respectively. The

time trend of Tm in each regime shows that Tm increased with an increase in N and

Tm decreased with a decrease in N. A slow drift in Tm was observed in all regimes.

Such a trend can be neglected to make the time series stationary. This decreasing

trend was compensated by the controller in a closed loop operation, as described in

chapter 6. Time plots showed no considerable noise in the data.
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Figure 7.2: Regime 1: (a) Response of melt temperature to changes in N, (b) RBS
in N.

Figure 7.5 shows the impulse response estimates for all the three regimes. It can

be observed that some of the coefficients fall outside the 99% confidence interval

at the lower value of lags. Such an orientation indicates existence of time delay in

the process. However, this peak appears outside the confidence interval mainly be-

cause of the noise. Such a phenomenon was explained mechanistically using process

knowledge in chapter 4. In fact, there were no time delays in Tm due to changes in

N for this extruder.

The orientation of the impulse response coefficients for each regime indicates

that the model order should be first order.
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Figure 7.3: Regime 2: (a) Response of melt temperature to changes in N, (b) RBS
in N.

7.4 Model Development

7.4.1 Local Models

A model for each operating regime was developed using system identification,

a technique detailed in chapter 4. The complete response of Tm due to changes in

N was observed to be slow. Thus, data were downsampled to every 4 sec. Such

downsampling eliminates the clustering of poles at the circumference of the unit

circle in the discrete z -domain.

The first half of the dataset was used to develop the model and the whole dataset

was used to validate the obtained model. Different model structure and order were

tried to obtain a process model based on the criteria used in chapters 4 and 5.

Finally, a first order autoregressive moving average with exogenous input (ARMAX)

structure was selected for each regime. Equation 7.5 shows the generic form of the

model. Local model parameters are presented in Table 7.1.

T ′
m(t) =

γq−1

1 + βq−1
N ′(t) +

1 + δq−1

1 + βq−1
e(t) (7.5)

where T ′
m and N ′(t) melt temperature and screw speed, respectively, in deviation

form, and e(t) is noise. β, γ, and δ are model parameters. Values and standard

errors of these parameters are provided in Table 7.1.

Figure 7.6 shows a comparison between model predicted output and experimental

data for regime 1. It can be observed that the model predicted outputs and the

experimental data almost overlap. Nearly 90% model fit was obtained that is the

obtained model predicts Tm quite well in regime 1.
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Figure 7.4: Regime 3: (a) Response of melt temperature to changes in N, (b) RBS
in N.

Table 7.1: Local model parameters.

Operating regime β γ δ
Regime 1: 100 to 120
rpm

−0.9204 ± 0.004 0.01077± 0.0005 −0.4906±0.0046

Regime 2: 120 to 140
rpm

−0.9179 ± 0.004 0.01054± 0.0005 −0.5535±0.0047

Regime 3: 140 to 160
rpm

−0.9309 ± 0.005 0.00793± 0.0005 −0.4241±0.0049

A comparison between model predicted output and experimental data for regime

2 is shown in Figure 7.7. A model fit of almost 88% was obtained. So, the developed

ARMAX model was good enough to capture the dynamics of Tm within the operating

conditions of this regime.

Experimental data and model predicted output were also compared for regime

3, as shown in Figure 7.8. The developed Tm model gives about 86% fit with the

experimental data. Such a model fit is also good.

Comparison between model predicted outputs and the experimental data were

made for an infinite prediction horizon for each local model. Comparison in all the

local model fits showed that model fit decreased when screw speed increased. This

was mainly due to the nonlinearity in Tm and was not considered significant. Note

that the operating range for screw speed covered in this study is not as wide as the

range used in industry. In case of a significantly wide range of operating conditions,

this nonlinearity might affect model fit considerably.

110



0 10 20 30 40 50 60 70 80 90 100
−5

0

5
x 10

−3

(a)

0 10 20 30 40 50 60 70 80 90 100
−5

0

5
x 10

−3

(b)

0 10 20 30 40 50 60 70 80 90 100
−5

0

5
x 10

−3

(c)

lags

Figure 7.5: (a) Impulse response estimate for regime 1, (b) Impulse response esti-
mate for regime 2, (c) Impulse response estimate for regime 3.

Table 7.2 shows the central operating conditions of output and input variables,

gain (K), and time constant (τp) of each local model. No significant change in gain

among local models was observed. Also, changes in time constant among models

was not significant. However, these changes could be significantly higher for systems

with a wider range of operating conditions.

Table 7.2: Operating conditions, gains, and time constants of identified models.

Operating
regime

Central points Gain (Ki) Process time
constant (τp,i)

Regime 1 N = 110 rpm, Tm = 209oC 0.135 51
Regime 2 N = 130 rpm, Tm = 209.5oC 0.128 46
Regime 3 N = 150 rpm, Tm = 211oC 0.114 55

7.4.2 Global Model

A dynamic global model was developed by combining the local models to cover

the overall operating range of screw speed. The global dynamic model was developed

using fuzzy logic. Multiple local linear input-output models were weighted using a

fuzzy membership function. Screw speed was selected as a premise or scheduling

variable to partition the operating space. The domain of each operating regime was

characterized by a fuzzy set of membership functions to express smooth transitions

between adjacent regimes. Triangular shape was selected for the fuzzy membership

function as shown in Figure 7.9.
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Figure 7.6: Comparison of experimental data and melt temperature model output
for regime 1.

In this work, the operating space was divided on a single parameter, screw speed,

and three local linear models (M = 3) have been developed. Figure 7.10 shows the

simulated open loop responses of Tm global model due to the changes in screw speed.

7.5 Nonlinear Controller

In multimodel approach, local controllers are designed for each regime that

combine the control laws over the range of operating conditions. In this work, a

nonlinear proportional-internal (n-PI) controller and a nonlinear model predictive

controller (n-MPC) were designed to control the process over the entire operating

range of the study. Closed loop performances of the controllers were evaluated and

compared.

7.5.1 n-PI Controller

Local PI controllers were designed on the basis of local linear models. Global

PI controller outputs were developed by combining local PI controller actions. A

discrete PI controller is represented by equation 7.6 in the discrete time domain.

∆ui(k) = Kc[e(k) − e(k − 1)] +
Kcts
τI

e(k) (7.6)

where Kc and τI are proportional gain and integral time constant, respectively, of a

PI controller and ts is sampling time. Like the global model, fuzzy logic was used to

combine the local linear PI controller outputs to obtain the global controller outputs.

The following rules were applied to determine global controller output u(k):
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Figure 7.7: Comparison of experimental data and melt temperature model output
for regime 2.

If z1(k) is Mi,j and · · · zg(k) is Mi,g then

∆ui(k) = Kc,i[e(k) − e(k − 1)] +
Kc,its
τI,i

e(k) (7.7)

where, Kc,i and τI,i are proportional gain and integral time constant, respectively

of ith PI controller. The global controller output is calculated by fusion of all linear

PI controller outputs with membership functions as follows:

∆u(k) =

N∑
i=1

hi[z(k)]∆ui(k)

u(k) =
M∑
i=1

hi[z(k)]∆ui(k) + u(k − 1) (7.8)

Three local PI controllers were designed based on local models. Tuning param-

eters for each PI controller were determined using direct synthesis method. Closed

loop time constant for a local PI controller chosen as 2/3 of the process time con-

stant. Table 7.3 shows the tuning parameters for the local controllers.

Table 7.3: PI controller parameters

Operating regime Proportional gain
(Kc,i)

Integral time constant
(τI,i)

Regime 1 11.08 48.24
Regime 2 11.68 46.68
Regime 3 13.06 55.86

113



500 1000 1500 2000 2500 3000
−3

−2

−1

0

1

2

3

Sample no.

T
’ m

 

 

Data
Model output
 fit: 86.15%

Figure 7.8: Comparison of experimental data and melt temperature model output
for regime 3.

7.5.2 Closed Loop Response of n-PI Controller

The closed loop performance of the global (n-PI) controller was evaluated by

simulating the set-point tracking ability of the controller as shown in Figure 7.11. It

can be observed that the set-point tracking is quite good using the n-PI controller

over the entire operating range. Figure 7.11(a) shows that the controller brought

Tm to its new set-point quite well. However, considerable inverse response was

observed for some set-point changes due to the changes in operating regime. The

open loop response showed no inverse response in the entire operating range but

drastic changes were observed in closed loop response. Such a drastic change in

Tm suggests the use of a membership function that is smoother than the triangular

membership function.

Figure 7.11 (b) shows the changes in the manipulated variables screw speed.

Reasonable changes in N were observed, but considerable proportional kicks were

observed in some cases to compensate the inverse responses in Tm.

7.5.3 n-MPC

Global MPC (n-MPC) output was obtained by fusing local MPC outputs. Local

MPCs were designed using the local models. The philosophy of an MPC was ex-

plained in chapter 6. Global MPC outputs were obtained by fusing the local MPC

outputs with fuzzy membership function.

Local MPCs were designed using state space approach. This approach was de-

tailed in chapter 6. Local models were converted to discrete state-space models

114



90 100 110 120 130 140 150 160 170
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Screw speed (rpm)

M
em

be
rs

hi
p 

va
lu

e

Regime 1 Regime 3Regime 2

Figure 7.9: Fuzzy membership function of N.

according to equation 7.9:

xk+1 = Axk +Buk

yk = Cxk (7.9)

where A, B, and C are state-space parameters of a local model. Table 7.4 shows the

state-space model parameters of the local models. It can be observed that the poles

of the local models fall in the negative side of s-domain indicated bounded response

of Tm due to changes in N . So, the process was controllable.

Table 7.4: State space parameters of local models.

Operating regime Ai Bi Ci

Regime 1 0.9204 0.1250 0.0862
Regime 2 0.9179 0.1250 0.0843
Regime 3 0.9309 0.1250 0.0635
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Figure 7.10: Open loop response of the global Tm model.

7.5.4 Closed Loop Response of n-MPC

The closed performance of n-MPC was evaluated by simulating the set-point

tracking ability of the controller. A sampling time of 4 sec was used for this simu-

lation. Following tuning parameters were used for local MPCs:

• prediction horizon = 10 samples,

• control horizon = 1 samples,

• weight in N = 0.01,

• weight in rate of change of N = 1,

• weight in Tm = 1.

The set-point tracking performance of n-MPC is shown in Figure 7.12(a). n-MPC

showed excellent set-point tracking performance. No drastic change was observed in

Tm over the range of operating conditions. Bumpless transitions from one operating

regime to another regime were observed. Changes in N are presented in Figure
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Figure 7.11: (a) Set-point tracking of n-PI controller, (b) Changes in manipulated
variable N with time.

7.12(b). Smooth changes in screw speed were also observed. Slower changes in N

were observed in closed loop response indicated no aggressive control action was

performed by N.
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Figure 7.12: (a) Set-point tracking of the n-MPC, (b) Changes in manipulated
variable N with time.

Fusion of local MPC outputs using triangular membership function was a good

approach to design the n-MPC. n-MPC showed better set-point tracking perfor-

mance compared to that of n-PI controller. Smoother transition from one operating

regime to another operating regime was observed by n-MPC compared to n-PI con-

troller. n-MPC showed less aggressive control action than that of n-PI controller.
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7.6 Summary

A multimodel approach was used to develop a global model between melt tem-

perature and screw speed. The global model represented the relationship between

Tm and N over a screw speed range of 100 rpm to 160 rpm. The overall range was di-

vided into three regimes and three local first order ARMAX models were developed

using system identification approach. The global model was developed by combin-

ing the three local models using fuzzy logic. Triangular membership functions were

used to weight the local models for fusion. Simulated results over a wide range of

screw speeds showed excellent model prediction. No drastic changes in output were

observed, i.e., transfer from one regime to another regime was bumpless.

A nonlinear PI controller was designed using the multimodel approach. This

n-PI controller was used to control Tm by manipulating N . Closed loop response

showed good set-point tracking by this controller, but drastic changes were observed

in some cases due to the transition from one regime to another regime.

The multimodel approach was also used to design nonlinear model predictive

controller. The n-MPC showed good set-point tracking ability with smooth tran-

sition from one regime to another regime. n-MPC showed less aggressive control

action.
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Chapter 8

Concluding Remarks and Future
Work

8.1 Summary

The development of advanced controller for twin screw extrusion processes is in-

spired by industrial applications and involves research in many chemical engineering

fields. This thesis describes the creation and implementation of an advanced con-

trol scheme for a plasticating twin screw extruder (TSE) including data acquisition

setup, model development, controller design, and implementation of the controller

in real-time. The advanced control scheme was designed for a laboratory scale ZSK-

25 co-rotating intermeshing TSE used for polymer processing. Two high density

polyethylenes with different melt indices were used as processing materials.

An in-depth review of modeling and control of a twin screw extrusion process was

done and a number of process control challenges were identified including multiple-

input multiple-output, process nonlinearity, time delay, interaction between pro-

cess variables, and real-time measurement of product qualities. To the author’s

knowledge no other work has been reported regarding real-time implementation of

advanced control schemes for a plasticating TSE.

An infrastructure for data gathering was developed and an upgrade of the ex-

truder automation was done. Such structures are imperative for the modeling,

validation, control, and monitoring of extruders in real-time. Data acquisition was

performed using RSlinx as an OPC server and LabVIEW as an OPC client. Process

automation allows control of the motor drive and feed rate by sending commands

to the system from a PC.

The manipulated variables, screw speed and feed rate, were selected based on

the process knowledge. Controlled variables were selected based on a steady-state

correlation analysis and dynamic considerations. The correlation analyses were per-

formed between process output variables and the product quality variables melt

index and viscosity. Based on these selection criteria, melt temperature (Tm) and

119



melt pressure (Pm) at the die location were finally selected as controlled variables.

A new approach to develop two dynamic grey box models relating Tm and Pm

with screw speed was presented utilizing first principles knowledge and empirical

data. A predesigned random binary sequence (RBS) screw speed was used to excite

the extrusion process. Nonlinearity in Tm data and considerable noise in Pm data

were observed. Both the obtained models had autoregressive moving average with

exogenous input (ARMAX) structure. The second order Tm model and the third

order Pm model explained the physics of the extrusion process successfully. An

excellent fit was obtained between the Tm grey box model predicted output and

experimental data. The fit obtained between Pm grey box model predicted output

and experimental data was only moderate due to the presence of considerable noise

in the pressure data.

The extruder was excited using a predesigned RBS in feed rate to develop models

relating Tm and Pm with feed rate using system identification technique. The devel-

oped Pm model was second order with ARMAX structure. An excellent model fit

was found between Pm model predicted outputs and experimental data. This model

was validated with another dataset obtained from stair type excitation in feed rate

and almost 93% model fit was obtained. Since the response of Pm to changes in feed

rate was fast, a non parametric delay-gain model was developed for Pm and good

fit with experimental data was observed. A second order ARMAX model was also

obtained for Tm. Validation tests showed good fit with the data obtained from a

RBS excitation. However, due to the nonlinearity the Tm model gave only moderate

fit with the data obtained from stair type excitation.

A multiple-input multiple-output model predictive control (MPC) scheme was

designed for a ZSK-25 extruder. Analysis of the extruder showed two inputs: screw

speed and feed rate, and two outputs: melt temperature and melt pressure at the

die. The inputs could also be used as manipulated variables. Thus, a two-input and

two-output MPC was designed. As changes in Pm with changes in screw speed were

small, the transfer function between these two variables was neglected in designing

the MPC scheme. No effect of this assumption was observed in real-time experi-

ments. The performance and robustness of the MPC were studied in real-time by

testing its ability to reject disturbances and track set-points; excellent performance

was observed.

The response of Tm to excitation in screw speed and feed rate showed nonlin-

earity. Therefore, a multimodel approach was used to investigate the relationship

between Tm and screw speed over a wide operating range. The operation was di-

vided into three regimes based on screw speed, and first order ARMAX models

were developed for each regime. Fuzzy logic and a triangular membership function

were used to combine the local models. Simulated results showed good response of
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Tm over the entire range of screw speed. A nonlinear proportional-integral (n-PI)

controller and a nonlinear model predictive controller (n-MPC) were designed using

this approach. Simulated results showed good set-points tracking capability of the

nonlinear controllers.

8.2 Major Contributions

This research contributes in the following ways:

• A ZSK-25 twin screw extruder was designed and modified to mount new pres-

sure and temperature sensors. A data acquisition set-up was established to

gather process data from the extruder PLC and a feed controller. The extruder

was automated to enable control from a PC.

• A new approach was used to select controlled and manipulated variables for a

TSE. Such an approach considers both the product quality attributes and the

dynamic analysis.

• A detailed and practical methodology was proposed for developing dynamic

grey box models relating melt pressure and melt temperature to screw speed

for a plasticating TSE.

• Random binary sequence type excitation was experimentally shown to be a

good method of excitation for a nonlinear process such as twin screw extrusion.

• A novel model predictive control scheme was designed and implemented in

real-time. Performance and robustness of the controller were evaluated by

checking its ability to reject disturbances and track set-points.

• A multimodel approach was used to develop a global model for melt temper-

ature to cover a wide operating range. Use of such an approach in a TSE is a

novel idea. A nonlinear proportional-integral controller and a nonlinear model

predictive controller were also developed using the same approach to control

Tm in a wide range of operating conditions.

8.3 Recommendations for Future Works

Additional work is needed in many areas of polymer development. Several ideas

for future studies are summarized below.
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8.3.1 Inferential Model Development

In this study, correlation between product quality variables and process output

variables was one of the criteria used to select controlled variables for closed loop

operation. However, set-points from the controlled variables rather than the set-

points from the product quality variables were used in the closed loop control. The

ultimate objective of an extrusion process is to control the final product quality

variables. If the final product quality variable to be controlled is the melt index,

the melt index should be the set-point. Thus, inferential models relating on-line

measured variables, for example Tm or Pm, with final product quality are imperative.

If inferential models or soft sensors determine the values of variables measured on-

line for set-points of product quality variables, the control schemes will keep the

on-line measured variables at model-determined values. Much work is needed to

develop sensors that can allow control of product quality variables in real-time.

8.3.2 Barrel Temperature Excitation

An open loop diagram of a TSE (see Figure 2.1) shows that the barrel temperature

is one of the input variables. From a control point of view, it is known that the

barrel temperature has a significant effect on the quality of the final product and the

energy efficiency of the process (McAfee and McNally 2006). For example, viscosity

is strongly related with temperature.

The barrel temperature of a ZSK-25 TSE is controlled zone-wise. Each zone

has a local PID controller to keep the barrel temperature at a set-point. However,

in dynamic analyses these local controllers could not maintain barrel temperature

set-points properly. Thus, barrel temperature has not been used as a manipulated

variable in this study. It would be interesting to see how process variables respond

to RBS excitation of barrel temperature and models could be developed that express

this relationship.

8.3.3 Control of Polymer Blends

In this study an advanced control scheme was designed to control Tm and Pm.

Only one high density polyethylene was used as a processing material in the dynamic

analysis. One important use of a TSE is to blend different polymers. Considerable

future work needs to be done to control the quality of polymer blends.

Experiments in this research employed polymers in pellet form. In practice,

different polymer forms may be used, e.g., polymer powder (Anderson 1994). A

standard screw configuration was used for the ZSK-25 TSE; however, a number of

screw configurations are possible. Testing of closed loop control with different screw

configurations and different forms of processing materials could advance the field.
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8.3.4 Implementation of Multimodel Approach

Multimodel approaches are used to cover a wide range of nonlinear operations

for instance, to model and control a twin screw extruder. To our knowledge this

approach has not been used in plasticating TSEs, which are used over a wide op-

erating range in industry. Thus a multimodel approach could be applied to control

TSEs.

A multimodel based operating regime was used in this study and a global model

relating melt pressure and screw speed was developed. A global proportional con-

troller was also developed using this approach. Simulated results showed good model

prediction and closed loop control. However, the controller has not been imple-

mented in real-time. Implementation of such a controller in real-time and over a

wide operating range is highly recommended for future work.

8.3.5 Commercial Evaluation

Companies suffer substantial economic losses when off-specification materials are

produced, because industrial extruders are usually very large and are used over a

wide operating range. Polymers with different grades are produced extensively and

frequently in industries. During transition from one grade to another grade, a signifi-

cant amount of off-specification materials are produced. Fluctuations in die pressure

causes fluctuations in melt viscosity which may induce viscoelastic instability in the

polymer product. In industry, small variations in final product properties can result

in many off-specification materials. Thus, proper control of the extrusion process is

extremely important in plastic processing industries. Modeling of dynamic behavior

and developing a control scheme using the model would manipulate the extrusion

process in such a way that grade transition could be completed in minimal time.

In this work, a complete methodology for closed loop control of a plasticat-

ing twin screw extruder with an advanced control scheme was developed for a

laboratory-scale extruder. The same methodology could be used in commercial

extruders. This methodology explores the design of dynamic models for plasticat-

ing extruders and proposes an advanced control scheme to reduce grade transition

time. More work using a commercial extruder is needed to evaluate the proposed

methodology.
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