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Abstract

This thesis deals with the problem proposed by Ye and Zhou (2007): Is a Q-optimal

minimax design still symmetric if the requirement of
∫
χ

xm(x)dx = 0 is removed?

We have shown that for the simple linear regression, considering only the vari-

ance, a Q-optimal minimax design is necessarily symmetric; we have also made

an attempt of addressing the symmetry problem considering only the bias which is

much more difficult to achieve. However, the numerical results using three differ-

ent algorithms, Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and

Expected Improvement Algorithm (EIA), indicate that the claim is true. We have

also applied the three algorithm on a non-linear cases correspondingly and make

the comparison.
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Chapter 1

Introduction

1.1 Robust Design

Statistical inferences are based only partly upon the observations. Even under the

simplest situations, there are some explicit or implicit assumptions being made:

randomness and independence, distributional models, sometimes a certain prior dis-

tribution for the unknown parameters and so on.

As in other branches of statistics, these assumptions are usually introduced to serve

the purpose of rationalization and simplification. They are fundamentally impor-

tant. However, they are not necessarily true. If some assumptions were not exactly

true or just slightly violated, do those minor deviations from the assumptions cause

merely a small change of the inference?

In general the answer is no. As mentioned in Huber and Rochetti (2009), since the

mid 20th century, statisticians have been increasingly aware of the excessive sen-

sitivity of many statistical procedures against seemingly minor deviations from the

1



assumptions. To address such a problem, the concept of “robustness” is introduced.

And a definition is proposed by Huber and Rochetti (2009) of such a new statistical

terminology: robustness signifies insensitivity to small deviations from the assump-

tions.

Before talking about the robustness of design, we firstly clarify the concept of de-

sign. As explained in Wu and Hamada (2009), (an) experimental design is a body

of knowledge and techniques that enables an investigator to conduct better experi-

ments, analyze data efficiently, and make the connections between the conclusions

from the analysis and the original objectives of the investigation. Design is the

guidebook of data collecting and analyzing.

A robust design is required not only to make the connections between the conclu-

sions from the analysis and the original objectives but also to make such connec-

tions robust, or insensitive, against certain assumption contaminations. Take simple

linear regression as an example. Though assuming the linear fitted model to be

approximately true, we still expect to see that a corresponding design can tolerate

some deviations from that model of the actual observations.

There are many ways to generate a robust design. In this thesis, three methods are

applied and compared.

The first one is Genetic Algorithm (GA) (for an application, see Karami and Wiens

(2012)), which is a search heuristic that mimics the process of natural evolution.

After introducing some genetic sharing and mutation rules, we expect to see an op-

timal design winning out after several generations of propagation.
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The second method is Particle Swarm Optimization (PSO) (for an application, see

Chen, Chang, Wang and Wong (2011)), which is inspired by social behaviour of

bird flocking or fish schooling. It sorts out an optimal design by mimicking during

searching for food the birds’ social activities such as information sharing and flock-

ing. PSO generates a globally best design by collection information out of locally

best designs.

The last one is Expected Improvement Algorithm (EIA) (originally from the paper

of Jones, Schonlau and Welch (1998)) which is a sequential optimization method

to obtain a best design using only a few evaluations of optimized function. It is

extremely useful when the optimized function evaluation is extremely expensive.

I am going to illustrate these three methods by applying them to two different prob-

lems. One is for linear regression and the other one is for non-linear regression.

After that I will compare the corresponding results among all three methods.

In this thesis I also include a symmetry problem which was partly solved by Ye and

Zhou (2007). I will investigate the question of whether robust designs for straight

line regression are necessarily symmetric by proposing the analytic attempts which

have been made so far. Using the three methods mentioned above, we can give

numerical evidence for that problem.

3



1.2 Chapter Structure

The thesis is organized as follows. In Chapter 2, I will describe the ideas of the

three numerical algorithms, i.e. GA, PSO and EIA. I will also make a brief review

of the pertinent literature for these three methods. In Chapter 3, I will describe the

symmetry problem, and the analytic attempts which have been made. For Chapter

4, the symmetry problem of a simple linear case is numerically investigated by

using all three of these algorithms. For Chapter 5, a numerical solution of a non-

linear problem is given by using all three algorithms. And Chapter 6 will give the

summary and conclusions, and make an outlook.
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Chapter 2

Optimization Strategies

In this chapter, firstly I will give a brief introduction of problems related to ro-

bustness of design. Afterwards I will describe the ideas of the three numerical

algorithms, i.e. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and

Expected Improvement Algorithm (EIA). I will also make a brief review of the per-

tinent literature for these three methods.

2.1 Robustness of Design

Generally speaking, a design is specified by a probability mass function on the

design space. More specifically, a design is a specification of (z(1), · · · , z(N)) :=

( n1
n , · · · ,

nN
n ), where ni ∈ N for i = 1, · · · ,N and

∑N
i=1 ni = n. Implementing the de-

sign, the experimenter makes ni observations {Yi j}
ni
j=1 at location xi - a q-dimensional

vector of covariates chosen from a design space χ = {xi}
N
i=1. We note that N,

though finite, can be arbitrarily large, approximating a continuous design space,

while ni ≥ 0 indicates no requirement that observations should be made at every

location, or design point.

5



After sampling, a known regression response function f (x|·) will be fitted, i.e.

Ŷ(x) = f (x|θ̂). The parameter θ is chosen to minimize an L2-distance between

the true regression response E[Y(x)] and the fitted response f (x|η), i.e.

θ = argminη

∫
χ

(E[Y(x)] − f (x|η))2dx,

or

θ = argminη
N∑

i=1

(E[Y(xi)] − f (xi|η))2.

While the fitted response f (x|θ) might be inadequate, the difference ψ(x) is evalu-

ated, or defined as

ψ(x) = E[Y(x)] − f (x|θ).

Then an experimenter could take observations on a random variable Y obeying the

model as

Y(x) = f (x|θ) + ψ(x) + ε,

for some p-dimensional parameter vector θ, errors ε and unknown contaminations,

or misspecifications, ψ(x).

In this thesis, we are looking for designs that are robust against model misspeci-

fications, ψ(x), that to each design is assigned a loss value L (detailed deduction

can be found in Chapter 3) reflecting the mean squared error of the estimates or

fitted values. In other words, the robustness of a design is measured by a loss value
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L and an optimal design is desired to minimize L. Now we can explain the three

algorithms in terms of searching for optimal densities, or designs.

2.2 Genetic Algorithm

Inspired by the ideas of “evolutionary systems” which had been studied by com-

puter scientists in the 1950s and the 1960s, Genetic Algorithms (GAs) were invented

by John Holland in the 1960s and were developed by Holland and his students and

colleagues at the University of Michigan in the 1960s and the 1970s (for complete

history of evolutionary computation, see Mitchell (1996)).

The idea of solving the optimization problem in “evolutionary systems” was to

evolve a population of candidate solutions......, using operators inspired by natural

genetic variation and natural selection (Mitchell (1996)).

As a search heuristic that mimics the process of natural evolution, the genetic algo-

rithm used in this thesis is as in Welsh and Wiens (2013) (for complete background

material see Mandal, Johnson, Wu and Bornemeier (2007)). It was also applied for

a nonlinear regression by Karami (2011) and Karami and Wiens (2012). The basic

idea is as explained in section 3 of Karami and Wiens (2012):

...Such algorithms have been developed by using notions of evolution-

ary theory: we generate ‘populations’ of designs that evolve over ‘gen-

erations’. In the evolutionary processes ‘fit parents’ are combined to

produce ‘children’ via stochastic process of ‘crossover’ and ‘mutation’.

In GAs, there are two important parameters - crossover and mutation. Each of them

uses a probability to control the homogeneity and heterogeneity between parents
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and children. Crossover is made in hopes that the children should inherit the best

parts from the parents in order to get closer to the optimized solution to the problem.

On the other hand, mutation changes some characteristics inherited from parents to

prevent all the children from becoming the same and falling into a locally optimized

solution.

As the common sense of evolutionary theory, the homogeneity should dominate

over heterogeneity. As suggested by Coley (1999), a typical choice of the probabil-

ity of crossover ranges from 0.4 to 0.9, while the probability of mutation is of the

order of 0.001. However, in this thesis, I am going to use a much larger probability

of mutation, suggested by Karami and Wiens (2012), which varies linearly from 0

to 0.5 by generations since the last occurrence of an improved design.

After introducing the genetic sharing and mutation rules by using the parameters

of crossover and mutation, we expect to see an optimal crossover solution winning

out after several generations of propagation and robust against mutation.

Get back to our design problem. According to Welsh and Wiens (2013) and the

explanation in Section 2.1, we assume a loss function L to be minimized, the cor-

responding GA can be implemented as follows: (In this algorithm, there are some

tuning constants, which could be chosen arbitrarily, but they turned out not to affect

much the algorithm performance.)

1. Start by randomly generating the first ‘generation’ of fixed K (e.g. 40) de-

signs, ξ1, . . . ξK . For our design space χ = {xi}
N
i=1, each design (density) can
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be identified with a multinomial vector of length N, with sum n.

2. For the current generation of designs, evaluate the loss Rk for each design ξk,

viz. Lν(ξk), k = 1, 2, . . . ,K, and the corresponding ‘fitness levels’

fitnessk =
1

(Rk − 0.99Rmin)2 , k = 1, 2, . . . ,K.

where Rmin is the minimum value of the loss in the current generation. Then

we scale the fitness levels to form a probability distribution φk,

φk =
fitnessk∑K
j=1 fitness j

, k = 1, 2, . . . ,K.

3. Form a new generation (children) of K designs to replace the current genera-

tion (parent).

(a) The best (fittest) Nelite = KPelite in the current generation always survive

to the next generation. The remaining K −Nelite members are formed by

crossover and mutation. (e.g. If we use K = 40 and Pelite = .05, then

Nelite = 2. In other words, we are going to generate K − Nelite = 38 new

designs as the next generation.)

(b) Crossover proceeds as follows:

• Choose two members of the current generation to be parents with

probability proportional to their fitness level: If ζ1,ζ2 ∼ independent

Uniform (0, 1), then choose to be parents the current generation
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members i?1 and i?2 , where

i?1 = min
{
i :

i∑
j=1

φ j ≥ ζ1
}
;

i?2 = min
{
i :

i∑
j=1

φ j ≥ ζ2
}
.

This is the so-called roulette-wheel selection method. It ensures

that the most fit members of the current population are the most

likely to be chosen as parents. The same parent can be chosen

twice without posing difficulties for the algorithm.

• With probability 1 − Pcrossover, the child is identical to the fittest

parent.

• With probability Pcrossover, the parents both contribute towards the

child, in the following manner. Each member of the current genera-

tion can be represented by its vector nξ of design point allocations.

The two vectors of allocations arising from the parents are aver-

aged, and then any fractional allocations are rounded down. This

results in a vector S with integer elements, with sum s possibly less

than n. If s < n then n − s design points are randomly chosen from

S (with replacement) and added to the design. The child formed in

this way is added to the new generation.

(c) Mutation is applied independently to each child. With probability Pmutation,

κ elements of child design are randomly chosen, and replaced by a

multinomial vector of length κ with the same sum as the elements be-

ing replaced. The value of κ is chosen by the user; we typically use

2 ≤ κ ≤ 6. With probability 1 − Pmutation we do nothing.

10



4. Step 3 is carried out repeatedly until the next generation has been formed. The

loss is guaranteed to decrease, although weakly, in each generation, because

of the inclusion of the best two parents. We run the algorithm until the best

design does not change for G generations.

Empirically, without introducing any mutation, the final generation of children

achieved by crossover are always identical with each other which was an unseemly

feature we expect. An optimal design, as a strong species in biological terminology,

should win out due to its own genetic advantage. And this advantage should be held

robustly against most genetic mutation. Hence mutation should be introduced.

2.3 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) is inspired by social behaviour of bird

flocking or fish schooling. It was firstly proposed by Eberhart and Kennedy (1995)

to deal with the optimization of nonlinear functions.

Since the method was generated, it has gained considerable popularity by its numer-

ous applications to many disciplines (see details in Chen, Chang, Wang and Wong

(2011)). According to Chen, Chang, Wang and Wong (2011), there are already

books, such as Clerc (2006), devoted entirely to PSO, though there were already

some earlier books talking about the idea of swarm intelligence in general such as

Eberhart, Shi and Kennedy (2001).

As a stochastically iterative procedure to function optimization, the idea of PSO can

be explained by an analogy as proposed by Chen, Chang, Wang and Wong (2011),
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One may consider a scenario where there is only one piece of food in

the area being searched and all the birds do not know exactly where

the food is. However, they increasingly know how far the food is with

each iteration. The effective strategy is to share information constantly

among the flock and follow the bird which is nearest to the food. In

our PSO setup, each single solution is a ”bird” or a ”particle” in the

search space. All of the particles have fitness values which are evalu-

ated by the fitness function to be optimized, and have velocities which

direct particles where to fly. The particles fly through the problem space

by following the current optimum particles.

In abbreviation, PSO sorts out a globally optimal solution by collecting informa-

tion out of locally best solutions. A fixed size of population of flock is given. After

choosing an initial position for each “bird”, it begins by moving around searching

out a local optimal solution. The direction and size of each movement is repre-

sented by a vector called particle velocity. This particle velocity is determined by

a hybrid of the former velocity and the distance between the former position and

either locally or globally optimal solutions by now.

Particle velocity reflects the information shared among flock and the action which

should be taken afterwards. After every step of movement, each bird memorizes the

locally better (or no-worse) solution by comparing the new solution with the local

best solution in memory. In the meantime, the flock memorizes the globally better

(or no-worse) solution by using by comparing the new solution with the global best

solution in memory.
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After a given number of steps of flock moving, if the globally best solution is ob-

served to be stable or unchanged, we would take that solution to be the optimal.

Getting back to our design problem, using the similar framework as previous by as-

suming a function L to be minimized, the corresponding PSO can be implemented

using the algorithm mentioned as in Chen, Chang, Wang and Wong (2011) (similar

to previous algorithm, there are some tuning constants, which could be chosen ar-

bitrarily, but they turned out not to affect much the algorithm performance.):

1. Initialize “particles” (or “locations” of “birds”).

(a) Initialize designs (“particles”) ξk indexed by k, where k = 1, . . . ,K. As

the number of “particles” or the size of “flock”, K is given fixed (e.g. 40). For

our design space χ = {xi}
N
i=1, each design (density) ξk can be identified with a

multinomial vector of length N, with sum n.

(b) Calculate the loss function value for each design, denoted as Lν(ξk).

(c) Initialize the local best designs pk by pk = ξk for all the k from 1 to K.

Here pk records the “locally” memorized best “location” (design) by each in-

dividual “bird” indexed by k. A “bird” k can move through multiple locations

which are reflected by a varied ξk. After each step of movement, there is al-

ways a new ξk to be arrived. But pk records only the best location memorized

by “bird” k. After “bird” k arriving a new ξk, a new pk can be obtained by

simply comparing the existed pk and the new ξk. Initially, in the memory of

each “bird”, there is only one “location” (design) ξk being memorized, hence

we make that one the initialization of pk.

13



(d) Initialize the global (through all the k from 1 to K) best design pg =

argmin1≤k≤KLν(pk).

Here pg is the “globally” memorized best “location” (design) by all the “birds”

indexed by k through 1 to K. In principle, pg should be the best “location”

(design) out of all the “locations” (designs) having been arrived by the “flock”.

Under the condition that pk has already recorded the “locally” memorized best

“location” by each “bird”, a “globally” memorized best “location” pg can be

obtained by simply picking up the best design out of pk’s.

(e) Initialize “particle velocity” vk by Uniform (−1, 1) for all the k from 1

to K.

The velocity is a vector representing the speed, including direction and mag-

nitude, of the current design towards the next design. It is determined by the

relative positions of current design, local best design and global best design.

Here Uniform (−1, 1) is just used to initialize the vk’s.

2. Move particles, change velocity and update the globally and locally best

designs pk and pg.

(a) Calculate particle velocity according to

vk+1 = wkvk + c1β1 ∗ (pk − ξk) + c2β2 ∗ (pg − ξk), k = 1, . . . ,K − 1;

v1 = wKvK + c1β1 ∗ (pK − ξK) + c2β2 ∗ (pg − ξK).

where vk is the particle velocity, wk is the inertia weight modulating the in-

fluence of the former velocity which can be chosen as an either constant or

decreasing function indicating the constant and shrinking influence of former

velocity. ξk is the current particle (design). The variables β1 and β2 are ran-
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dom vectors, each component independently and identically following Uni-

form (0, 1), with the same dimension as ξk and are multiplied “component-

wise” represented by the operator ∗. c1 and c2 are local and social learning

factors, which were assigned fixed c1, c2 (e.g. c1 = c2 = 2). We do not require

nonnegativity for each component of velocity. In other words, the probability

mass on any specific design point could either increase or decrease. But if any

component of vk+1 is smaller than −1, we will shift it to −1. And if any compo-

nent of vk is greater than 1, we will shift it to 1. These velocity re-assignments

assure vk+1 will not go beyond a reasonable boundary (e.g. [−1, 1]).

(b) Update particle position according to

ξ(new)
k+1 = ξ(old)

k + vk+1, k = 1, . . . ,K − 1;

ξ(new)
1 = ξ(old)

K + v1.

Here if any of the ξk+1, where k is from 0 to K−1, has any element of negative,

we can shift it to 0 and for any element greater than 1, we will shift it to 1.

Similarly to the re-assignments of the particle velocity, these re-assignments

assure vk+1 not go beyond a reasonable boundary (e.g. [0, 1]). After the shift,

if the sum of the components of ξk+1 = (z(1)
k+1, z

(2)
k+1, . . . , z

(N)
k+1) do not equal to 1,

we can standardize it by

ξk+1

1′ξk+1
.

Similar to the genetic algorithm, each member of the current generation can

be represented by its vector nξ of design point allocations. Any fractional

allocations are rounded down. This results in a vector S with integer elements,

with sums possibly less than n. If s < n then n − s design points are randomly
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chosen from S (with replacement) and added to the design.

(c) Calculate the loss function value for each design, denoted as Lν(ξk).

(d) Update local best design p(new)
k = argmin{Lν(p(old)

k ),Lν(ξ
(new)
k )} and global

best design p(new)
g = argmin1≤k≤KLν(p

(new)
k ).

3. Step 2 is carried out repeatedly until certain stopping criteria are satisfied.

For example the best design does not change for GK times of running step 2.

The output pg is as our best design with loss function value Lν(pg).

For each k, pk is the design with minimum loss, among all locations through which

the designs “moved”. A diagram is given below, where the arrow without any note

means “calculate”:
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v2

ξ2

...

vK−1

ξK

vK

p1

p2
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pK
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Output

update

update

update

update

update

if criteria satisfies

update

update

update

2.4 Expected Improvement Algorithm

Expected Improvement Algorithm (EIA) method (originally from the paper of Jones,

Schonlau and Welch (1998)) is a sequential optimization method to obtain a best de-

sign using only a few evaluations of the optimized function. It is extremely useful

when the optimized function evaluation is very expensive or the number of opti-
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mized function evaluations, say Lν(ξ), is limited.

Using the same framework as previous, the intuition is as follows. Instead of di-

rectly making “expensive” function evaluations Lν(·) on various locations ξk’s , we

choose to evaluate only on the most probably optimal location. EIA is a sequential

searching strategy such that each new evaluation point is made to maximize the ex-

pected difference between the new evaluation (a random value) and the best of the

sequence of old evaluations (fixed values).

Making a predictor L̂ν(·) of the “expensive” function Lν(·) interpolating the existing

data pairs {ξk,Lν(ξk)}
m
k=1, we can get the standard error of the predictor which pro-

vides confidence intervals on the function’s value at un-sampled points. Here we

intend to minimize the function Lν(·). A new design ξ? is said to make improve-

ment, if it can achieve a positive value of I(ξ?) = max(Rmin − R?, 0), where Rmin is

the minimum value of the sequence {Lν(ξk)}
m
k=1 and R? = Lν(ξ?) . Intuitively we

want to maximize such improvement. Since R?, or Lν(ξ?), was not yet observed,

it is a random value. But if only we can get the distribution of this random value,

we can make the compromise to maximize only the expected improvement, i.e.

E[max(Rmin − R?, 0)] .

It indicates two important tasks which should be be carried out: the choice of an

appropriate model for prediction and generating the new evaluation point ξ?, which

is denoted as ξm+1.

Following the recommended by Jones, Schonlau and Welch (1998), the prediction

model we apply here is DACE, an acronym for Design and Analysis of Computer
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Experiments, model. It is a stochastic process model named according to Sacks,

Welch, Mitchell and Wynn (1989-1) and making prediction of a single point using

the surrounding observations in the neighbourhood. Here we just give a brief look

at DACE predictor and the details for the deduction can be found in Sacks, Welch,

Mitchell and Wynn (1989-1) and Jones, Schonlau and Welch (1998).

Let {ξk}
m
k=1 be the current designs for the design space χ = {xi}

N
i=1 ,with ξk =

(z(1)
k , z(2)

k , . . . , z(N)
k ) be the corresponding values of “expensive” function l(ξk) or lk

(i.e. Lν(ξk) as we spoke of previously). Let l denote the m-vector of losses of

designs {ξk}
m
k=1 which is l = (l1, . . . , lm)′. For a new design ξ?, DACE model, using

l(ξk) = µ + ε(ξk) k = 1, . . . ,m, (2.1)

where ε(ξk) ∼ N(0, σ2) identically and independently for all k, gives the best linear

unbiased predictor of l(ξ?) by

l̂(ξ?) = µ̂ + r′R−1(l − 1µ̂).

The derivation can be found in Sacks, Welch, Mitchell and Wynn (1989-2). And

µ̂ =
1′R−1 l
1′R−11

,

σ̂2 =
(l − 1µ̂)′R−1(l − 1µ̂)

n
,

are the maximum likelihood estimators of µ and σ2 and R is a n× n correlation ma-

trix for errors of current designs. And for any two designs ξi and ξ j, the correlation
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of the error terms of two designs is defined as

Corr[ε(ξi), ε(ξ j)] = exp[−d(ξi, ξ j)], (2.2)

where the “distance” between two designs ξi and ξ j is given as

d(ξi, ξ j) =

N∑
h=1

θh|z
(h)
i − z(h)

j |
ph , θh ≥ 0, ph ∈ [1, 2]. (2.3)

r is a n × 1 correlation vector between the errors of new design ξ? and current

designs {ξk}
m
k=1. And the mean squared error (MSE) s2(ξ?) which is used to measure

the uncertainty of the predictor of ξ? can be written as:

s2(ξ?) = σ2
[
1 − r′R−1r +

(1 − 1′R−1r)2

1′R−11

]
.

And the full derivation can also be found in Sacks, Welch, Mitchell and Wynn

(1989-2).

As suggested in Jones, Schonlau and Welch (1998), the correlation function defined

in (2.2) and (2.3) has all the intuitive properties one would like it to have. In partic-

ular, when the “similarity” between ξi and ξ j is small (the “distance” is large), the

correlation is near one. Similarly, when the similarity between designs is large (the

“distance” is small), the correlation will approach zero. The parameter θh in the dis-

tance formula (2.3) can be interpreted as measuring the importance or “activity” of

the variable z(h). To see this, note that saying “variable h is active” means that even

small values of |z(h)
i − z(h)

j | should imply a low correlation between the errors ε(ξi)

and ε(ξ j). Looking at Equations (2.2) and (2.3), we see that, if θh is very large, then
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it will indeed be true that small values of |z(h)
i −z(h)

j | translate to large “distances” and

hence low correlation. The exponent ph is related to the smoothness of the function

in coordinate direction index h, with ph = 2 corresponding to smooth functions and

values near 1 corresponding to less smoothness (see Jones, Schonlau and Welch

(1998)).

It turns out that modeling the correlation in this way is so powerful that we can

afford to dispense with the regression terms, replacing them with a simple constant

term. This gives us the model we use ... (see Jones, Schonlau and Welch (1998)) as

(2.1).

The second task can be solved by simply transforming expected improvement into

a more solvable form by applying only some simple integration by parts, under the

condition that the DACE model is validated and can be applied.

Let lmin = min(l1, . . . , lm) be the current best (i.e. minimal) function value. The

random value l(ξ), denoted as L, for an un-sampled design ξ follows a normal dis-

tribution with mean and standard deviation given by the DACE predictor l̂ and its

root mean squared error (RMSE) s. As discussed previously, the expected improve-

ment is given as

E[I(ξ)] = E[max(lmin − L, 0)].

Using integration by parts we can get a closed form of expected improvement. Ac-

tually by denoting the probability density function of L as g(·), we can deduce as

21



follows:

E[I(ξ)] =

∫ ∞

−∞

max(lmin − y, 0)g(y)dy

=

∫ lmin

−∞

(lmin − y)g(y)dy

= s ·
∫ lmin

−∞

(lmin − y) · φ(
y − l̂

s
)d(

y − l̂
s

).

Replacing y−l̂
s by t, we get

E[I(ξ)] = s ·
∫ lmin−l̂

s

−∞

(lmin − l̂ − st) · φ(t)dt.

Applying integration by parts, we get

E[I(ξ)] = s(lmin − l̂) ·
∫ lmin−l̂

s

−∞

φ(t)dt − s2 ·

∫ lmin−l̂
s

−∞

tφ(t)dt

= s(lmin − l̂)Φ(
lmin − l̂

s
) +

s2

√
2π
·

∫ lmin−l̂
s

−∞

d(e−
t2
2 )

= s(lmin − l̂)Φ(
lmin − l̂

s
) + s2φ(

lmin − l̂
s

).

In abbreviation,

E[I(ξ)] ∝ (lmin − l̂)Φ(
lmin − l̂

s
) + sφ(

lmin − l̂
s

). (2.4)

Then we can get a new design ξ? maximizing E[I(ξ)] and add it as a new design

ξm+1 into the design sequences. Afterwards we can get the global optimal design by

comparing the function values l1, . . . , lm, lm+1.

We repeat the steps above by adding one more design each time. If the global op-
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timal design does not change for certain number of steps, say the number is 10,

we stop and output the global optimal design. After only a few steps of probable

optimal point generating and evaluating, a globally optimal and stable solution can

be expected.

The explicit algorithm is given below:

1. Start by randomly generating the initial set D of designs with size K (e.g.

K = 40), i.e. D = {ξk}
K
k=1. For our design space χ = {xi}

N
i=1, each design

(density) ξk can be identified with a multinomial vector of length N, with

sum n.

2. Calculate the loss function value for each design of D denoted as Lν(ξk),

where k = 1, . . . ,K. Denote ξmin = argmin1≤k≤KLν(ξk).

3. Denote the size ofD as K.

(a) Calculate the loss function value for each design ofD denoted as Lν(ξk),

where k = 1, . . . ,K.

(b) Get a new design ξ? maximizing E[I(ξ)], i.e.

ξ? = argmaxξE[I(ξ)],

and add ξ? as a new design ξK+1 into the design sequencesD = {ξk}
K+1
k=1 .

(c) Update ξmin by using ξmin = argmin1≤k≤K+1Lν(ξk).

4. Step 3 is carried out repeatedly until certain stopping criteria are satisfied.

For example the best design ξmin does not change for G times of running step
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3 (e.g. G = 25). The output ξmin is as our best design with loss function value

Lν(ξmin).
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Chapter 3

Symmetric Designs

3.1 Symmetry of Design in SLR

As discussed in Section 2.1, a discrete design space χ = {xi}
N
i=1, where N can be

arbitrarily large, can be made to approximate a continuous design space. For a

Multiple linear regression (MLR) as

Y(x) = f ′(x)θ + ψ(x) + ε, s.t. var(ε) = σ2,

∫
χ

ψ2(x)dx ≤ τ2/n

where f (x) =

 1

x

, the vector of covariates, and θ is the vector of parameters.

Intuitively, if we wanted to have E[Y] ≈ f ′θ, we can choose the parameter θ to

minimize an L2-distance between the true regression response E[Y(x)] and the fitted

response f ′(x)η, i.e.

θ = argminθ

∫
χ

(E[Y(x)] − f ′(x)η)2dx.
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Taking the first derivative of the right hand side by η and make it zero, i.e.

−2
∫
χ

f (x){E[Y(x)] − f ′(x)η}dx = 0.

then according to the definition of ψ(x), i.e. ψ(x) = E[Y(x)] − f ′(x)η,

∫
χ

f (x)ψ(x)dx = 0.

For n observations y1, y2, . . . , yn at locations x1, . . . , xn correspondingly, denoting

Y as (y1, . . . , yn)′, the vector of observations, and X as ( f (x1), . . . , f (xn))′, θ̂ is the

minimizer of ||Y − Xθ||2, which can be written as θ̂ = (X′X)−1X′Y:

Ŷ(x) = f ′(x)θ̂ = f ′(X′X)−1X′Y.

Replacing by Y = Xθ + ψ + ε, we get

Ŷ(x) = f ′(X′X)−1X′[Xθ + ψ + ε].

And expanding the part for X′[Xθ + ψ + ε] and simplifying the form we get

Ŷ(x) = f ′(X′X)−1
n∑

i=1

f (xi){ f ′(xi)θ + ψ(xi) + ε i}

= f ′(X′X)−1{(X′X)θ +

n∑
i=1

f (xi)[ψ(xi) + ε i]}

= f ′(x)θ + f ′(x)(
X′X

n
)−1 1

n

n∑
i=1

f (xi)ψ(xi) + f ′(x)(X′X)−1X′ε.
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Denoting

Mξ =
X′X

n
=

∫
f (x) f ′(x)ξ(dx),

bψ,ξ =
1
n

f ′(x)ψ(x) =

∫
f ′(x)ψ(x)ξ(dx)

= f ′(x)θ + f ′(x)(
X′X

n
)−1 1

n
f ′(x)ψ(x) + f ′(x)(X′X)−1X′ε,

and replacing f ′(x)θ by E[Y(x)] − ψ(x), we get

Ŷ(x) = [E[Y(x)] − ψ(x)] + f ′(x)M−1
ξ bψ,ξ + f ′(x)(X′X)−1X′ε. (3.1)

In the case of Simple Linear Regression (SLR), the fitted model is

E[Y(x)] = f ′(x)θ = θ0 + θ1x,

and the alternative fitted model is

E[Y(x)] = f ′(x)θ + ψ(x) = θ0 + θ1x + ψ(x).

And the Integrated Mean Squared Error (IMSE) can be calculated by

IMSE =

∫
χ

MS E[Ŷ(x)]dx

=

∫
χ

E{Ŷ(x) − E[Y(x)]}2dx.
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Plugging (3.1) in, and expanding the part inside the expectation, we get

IMSE =

∫
E{−ψ(x) + f ′(x)M−1

ξ bψ,ξ + f ′(x)(X′X)−1X′ε}2dx

=

∫
{b′M−T f f ′M−1b + ψ2 + f ′(X′X)−1X′E(εε′)X(X′X)−1 f }dx.

Then due to cov(ε) = σ2I, we can get

IMSE =

∫
{b′M−1 f f ′M−1b + ψ2 +

σ2

n
f ′(

X′X
n

)−1 f }dx

=

∫
{b′M−1 f f ′M−1b + ψ2 +

σ2

n
tr( f ′M−1 f )}dx.

Since tr(AB) = tr(BA), we have

IMSE =

∫
{b′M−1 f f ′M−1b + ψ2 +

σ2

n
tr(M−1 f f ′)}dx.

In total we have

IMSE = b′ψ,ξM−1
ξ AM−1

ξ bψ,ξ +

∫
ψ2(x)dx +

σ2

n
tr(M−1

ξ A),

where

A :=
∫

f (x) f ′(x)dx,

Mξ :=
∫

f (x) f ′(x)m(x)dx,

bψ,ξ :=
∫

f (x)ψ(x)m(x)dx.

By observing the expression of IMS E(ψ, ξ), we can see how each factor of ξ, ψ

and f influence the IMSE. Here m(x) is the associated density function of measure
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ξ, i.e. m(x)dx = ξ(dx). The reason why it is necessary to talk about the density in

our problem is as discussed in Section 2.1, a probability mass function on a discrete

design space χ = {xi}
N
i=1, or a design, can approximate a density on a continuous

design space when N is large enough. Hence it would be meaningful to talk about

design density in more general cases.

Now we intend to find a design ξ to minimize the IMSE maximized by some ψ i.e.

minimize the worst case of ψ, where the integral of ψ is bounded above by τ2/n.

The design here is called a Q-optimal minimax design.

After imposing the restriction that
∫
ψ2(x)dx ≤ τ2/n for a given constant τ, we can

write the maximum of IMSE as (according to Heo, Schmuland and Wiens (2001))

maxψIMSE =
σ2 + τ2

n
· [(1 − ν)tr(AM−1

ξ ) + νchmax(KξH−1
ξ )]

where

Hξ := MξA−1 Mξ,

Kξ :=
∫

f (x) f ′(x)m2(x)dx,

ν :=
τ2

σ2 + τ2 .

Hence we have maxψIMSE ∝ Lν(ξ), where

Lν(ξ) := (1 − ν)tr(AM−1
ξ ) + νchmax(KξH−1

ξ ). (3.2)

Note that it is the choice of experimenter to determine ν, the relative importance of
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errors due to bias rather than variance. The limiting cases ν = 0 and ν = 1 corre-

spond to ‘pure variance’ and ‘pure bias’ problems, respectively.

In straight line regression on χ = [−1, 1],

Mξ =

 1 µ1

µ1 µ2

 .
with

µk(ξ) =

∫
χ

xkm(x)dx,

and

A =

∫
χ

f (x) f ′(x)dx =

∫ 1

−1

1

x


(
1 x

)
dx

=

 x x2/2

x2/2 x3/3

 |1−1=

2 0

0 2/3

 .
Ye and Zhou (2007) has given an important result about symmetry of the Q-optimal

minimax design for the case of the simple linear regression. That is a Q-optimal

minimax design is necessarily symmetric if we require that
∫
χ

xm(x)dx = 0. At the

end, they propose that even if the condition
∫
χ

xm(x)dx = 0 is removed, the claim

may still be true that Q-optimal minimax design is symmetric. However they can-

not provide a proof. Here is where we start investigating the question of whether

robust designs for straight line regression are necessarily symmetric by proposing

the analytic attempts which have been made so far.
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3.2 Symmetry of Design in SLR for Pure Variance

We can start to verify that tr(AM−1
ξ ) is minimized by a symmetric design, where A

and Mξ are defined in the previous section. If ν = 0, we are interested in the case

of “pure variance”. We have

tr(AM−1
ξ ) = 2 + 2

1/3 + µ2
1

µ2 − µ
2
1

.

After observing the forms that (which was indicated from Huber and Rochetti

(2009)),

µ1 =

∫ 1

−1
xm(x)dx,

µ2 =

∫ 1

−1
x2m(x)dx,

an obvious and only solution is a design putting the equally (minimizing |µ1|) the

design points on both ends (maximizing µ2) of [−1, 1].

Actually for µ2 − µ
2
1 ≥ 0, in order to minimize tr(AM−1

ξ ), we want to minimize µ2

and maximize µ2 − µ
2
1 ≥ 0 at the same time. And µ1 = 0 is the global minimizer of

tr(AM−1
ξ ) . Under the restriction of µ1 = 0 we can rewrite tr(AM−1

ξ ) = 2 + 2
3µ2

. then

we find µ2.
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We can also show the symmetry in the other way. Firstly we write

Φ(ξ) := tr(AM−1
ξ )

φ(t) := Φ(ξt),

where

ξt = (1 − t)ξ0 + tξ1 and t ∈ [0, 1].

Then

φ(t) = Φ(ξt) = tr(AM−1
ξt

) = tr(A1/2 M−1
ξt

A1/2) =
∑
i=1,2

e′i A1/2 M−1
ξt

A1/2ei.

Lemma 2 of Wiens (1993) stated that for fixed i = 1, 2, if A1/2 and Mξt
are matrices

each of whose elements is a linear function of a real variable t, and if Mξt
is positive

definite, then φ(t) is a sum of two convex functions of t hence convex.

And from the property of convexity, one can check that

Φ(ξt) = φ(t) = φ((1 − t) · 0 + t · 1) ≤ (1 − t)φ(0) + tφ(1) = (1 − t)Φ(ξ0) + tΦ(ξ1).

Now we just need to verify the convexity of φ(t). In fact, each of the elements of
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Mξt
is indeed a linear combination of t,

µk,ξt
=

∫
χ

xkd(ξt(x))

=

∫
χ

xk((1 − t)d(ξ0(x)) + td(ξ1(x)))

= (1 − t)
∫
χ

xkm0(x)dx + t
∫
χ

xkm1(x)dx,

and A1/2 is independent of t. According to Sylvester’s criterion, if all of the leading

principal minors are positive, we can claim Mξt
as positive definite. Since µ2,ξt

and

µ2,ξt
−µ2

1,ξt
are both greater than 0 for t ∈ [0, 1]. Hence Mξt

is positive definite. Here

we have verified the convexity of φ(t).

Denoting ξ0 as any design on a symmetric interval χ, w.l.o.g. χ = [−1, 1], with

density m(x) and ξ1 as the design with density m(−x). The design ξ1 used here is

just to replace x with −x everywhere. And the design ξ1 has the same loss as the

original ξ0. Hence ξ̃ with associated density as m̃(x) := m(x)+m(−x)
2 is a symmetric

design. And

Φ(ξ̃) ≤ 1/2Φ(ξ0) + 1/2Φ(ξ1) = Φ(ξ0) = Φ(ξ1).

Here we have already shown that for the case of the simple linear regression, Q-

optimal minimax design is symmetric, when ν = 0. In other words, for the simple

linear regression, considering only the variance, a Q-optimal minimax design is

necessarily symmetric.
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3.3 Symmetry of Design in SLR for Pure Bias

Secondly, we can let ν = 1 and think about only the bias part, chmax(KξH−1
ξ ). For an

arbitrary measure ξ(x) associated to a density m(x), we can have a new measure ξ̃(x)

associated to the density m̃(x) := m(x)+m(−x)
2 , which is obviously symmetric. We have

already shown in Section 3.2, for the case of pure variance, design ξ̃ tends to have

no greater loss value than ξ. If we can show the measure ξ̃(x) will always achieve a

no greater chmax(KξH−1
ξ ), i.e. chmax(KξH−1

ξ ) ≥ chmax(Kξ̃H−1
ξ̃

), the claim is true that

any arbitrary design density m(x) can be improved by taking m̃(x) =
m(x)+m(−x)

2 .

According to basic Algebra, we know that KξH−1
ξ − Kξ̃H−1

ξ̃
being p.s.d. would be

a sufficient condition for chmax(KξH−1
ξ ) ≥ chmax(Kξ̃H−1

ξ̃
). We have

Kξ =

k0 k1

k1 k2


where

ki =

∫ 1

−1
xim2(x)dx.

We can also get that

Kξ̃ =

 k̃0 k̃1

k̃1 k̃2

 ,
where

k̃i =

∫ 1

−1
xim̃2(x)dx.
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Knowing that k̃1 =
∫ 1

−1
xm̃2(x)dx = 0, and

∫ 1

−1
m2(−x)dx =

∫ 1

−1
m2(x)dx∫ 1

−1
x2m2(−x)dx =

∫ 1

−1
x2m2(x)dx

we can get

Kξ̃ =


∫ 1

−1
m̃2(x)dx 0

0
∫ 1

−1
x2m̃2(x)dx


=


1
2

∫ 1

−1
[m2(x) + m(x)m(−x)]dx 0

0 1
2

∫ 1

−1
x2[m2(x) + m(x)m(−x)]dx

 .
And we have

H−1
ξ =

h0 h1

h1 h2


=

1
(µ2 − µ

2
1)2


2
3µ

2
1 + 2µ2

2 −2µ1µ2 −
2
3µ1

−2µ1µ2 −
2
3µ1 2µ2

1 + 2
3

 .
And

H−1
ξ̃

=

 h̃0 h̃1

h̃1 h̃2


=

2 0

0 2
3µ̃2

2


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where

µ̃i =

∫ 1

−1
xim̃(x)dx.

We can show that for a density as m(x) = 3
4 x2 + 1

4 + 0.45x, the KξH−1
ξ − Kξ̃H−1

ξ̃
is

not p.s.d. Hence that sufficient condition may not be fulfilled.

Since the sufficient condition mentioned above seems too strong, we come back to

checking the original form of the eigenvalues. For the Kξ̃H−1
ξ̃

, i.e.

Kξ̃H−1
ξ̃

=

2k̃0 0

0 2k̃2
3µ̃2

2


=


∫ 1

−1
[m2(x) + m(x)m(−x)]dx 0

0
∫ 1
−1 x2[m2(x)+m(x)m(−x)]dx

3[
∫ 1
−1 x2[ m(x)+m(−x)

2 ]dx]2

 .
Is there a relationship that one eigenvalue larger than the other one? Actually in

many cases, the first eigenvalue is larger than the second one, i.e. the inequality

holds as

∫ 1

−1
[m2(x) + m(x)m(−x)]dx ≥

4
∫ 1

−1
x2[m2(x) + m(x)m(−x)]dx

3[
∫ 1

−1
x2[m(x) + m(−x)]dx]2

.

However the equivalent inequality

LHS
RHS

=

∫ 1

−1
m(x)[m(x) + m(−x)]dx · 3 · [

∫ 1

−1
x2[m(x) + m(−x)]dx]2

4
∫ 1

−1
x2m(x)[m(x) + m(−x)]dx

≥ 1

does not necessarily hold. While m(x) = n
2χ[− 1

n ,
1
n ](x), one can easily show that the

otherwise if n is large (not necessarily to go infinity, e.g. n = 100 is enough to

sabotage the above inequality).
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Now we start to compare directly the maximal eigenvalues of KξH−1
ξ and Kξ̃H−1

ξ̃
:

KξH−1
ξ = KξM−1

ξ AM−1
ξ .

Abbreviating H−1
ξ and Kξ (H−1

ξ̃
and Kξ̃ could be abbreviated similarly) by

H−1
ξ =

h0 h1

h1 h2

 ,
Kξ =

k0 k1

k1 k2

 .
Then

KξH−1
ξ =

k0 k1

k1 k2


h0 h1

h1 h2


=

k0h0 + k1h1 k0h1 + k1h2

k1h0 + k2h1 k1h1 + k2h2

 .
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From here we can get

|λI − KξH−1
ξ | =

λ − (k0h0 + k1h1) −k0h1 − k1h2

−k1h0 − k2h1 λ − (k1h1 + k2h2)


= [λ − (k0h0 + k1h1)][λ − (k1h1 + k2h2)] −

−(k0h1 + k1h2)(k1h0 + k2h1)

= λ2 − (k0h0 + 2k1h1 + k2h2)λ +

+k2
1h2

1 + k0h0k2h2 − k0k2h2
1 − k2

1h0h2

= λ2 − (k0h0 + 2k1h1 + k2h2)λ + (k2
1 − k0k2)(h2

1 − h0h2).

And the maximal eigenvalue for the equation above has the expression of

chmax(KξH−1
ξ )

=
(k0h0 + 2k1h1 + k2h2) +

√
(k0h0 + 2k1h1 + k2h2)2 − 4(k2

1 − k0k2)(h2
1 − h0h2)

2

=
(k0h0 + 2k1h1 + k2h2) +

√
(k0h0 − k2h2)2 + 4(k0h1 + k1h2)(h0k1 + h1k2)

2
.

Hence for the ξ̃ case,

chmax(Kξ̃H−1
ξ̃

) =
(k̃0h̃0 + k̃2h̃2) + |k̃0h̃0 − k̃2h̃2|

2
.

However, when we take m(x) = 3
4 x2 + 1

4 +0.45x, we found that chmax(Kξ̃H−1
ξ̃

) = 1.20

which is larger than chmax(KξH−1
ξ ) = 1.17. Hence the claim is not true that an arbi-

trary design density m(x) can be improved by taking m̃(x) =
m(x)+m(−x)

2 .
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After giving this counterexample, we may need take a new direction of the design

symmetrization. Actually if we can show for a symmetric density with m̃(x) =

m(x)+m(−x)
2 , if

d
dt

Φ((1 − t)m(x) + tm̃(x))|t=0

is negative, then the loss decreases as one starts to move away from a nonsymmetric

design, in the direction of its symmetrization.

For t = 0, the term of (1 − t)m(x) + tm̃(x) is actually m(x). For any t > 0, replacing

m̃(x) by m(x)+m(−x)
2 , that term becomes (1 − t

2 )m(x) + t
2m(−x). Our problem is equiv-

alent to verify whether Φ(m(x)) − Φ((1 − t
2 )m(x) + t

2m(−x)) ≥ 0, when t → 0+. It

can be further simplified by showing for all x

Φ(m(x)) − Φ((1 − t)m(x) + tm(−x)) ≥ 0, t → 0+.

Denoting the new measure as ξ?t associated to the density (1 − t)m(x) + tm(−x), in

order to show that chmax(Kξ) ≥ chmax(Kξ?t
) when t → 0+, there are several different

methods.

The first one is to check whether KξH−1
ξ − Kξ?t

H−1
ξ?t

is p.s.d.. Actually, it seems not

to be the case. In fact, using the same density m(x) = 3
4 x2 + 1

4 + 0.45x above, taking

even a very small value of t, say t = 0.0001, we cannot assure KξH−1
ξ − Kξ?t

H−1
ξ?t

p.s.d..

Now we start to compare directly the maximal eigenvalues of KξH−1
ξ and Kξ?t

H−1
ξ?t

.
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After carrying out the similar steps for ξ, denoting

H−1
ξ?t

=

η0 η1

η1 η2

 ,
Kξ?t

=

κ0 κ1

κ1 κ2

 ,
we can easily get the similar form of maximal eigenvalue for Kξ?t

H−1
ξ?t

as

chmax(Kξ?t
H−1
ξ?t

)

=
(κ0η0 + 2κ1η1 + κ2η2) +

√
(κ0η0 − κ2η2)2 + 4(κ0η1 + κ1η2)(h0κ1 + η1κ2)

2
.

We may want to compare it term by term with

chmax(KξH−1
ξ )

=
(k0h0 + 2k1h1 + k2h2) +

√
(k0h0 − k2h2)2 + 4(k0h1 + k1h2)(h0k1 + h1k2)

2
.

After some try, I guess for the simplest cases we can only decompose the compari-

son above by claiming: k0h0 +2k1h1 +k2h2 ≥ κ0η0 +2κ1η1 +κ2η2 and (k0h0−k2h2)2 +

4(k0h1 +k1h2)(h0k1 +h1k2) ≥ (κ0η0−κ2η2)2 +4(κ0η1 +κ1η2)(h0κ1 +η1κ2). In fact there

is an example with (k0h1 + k1h2)(h0k1 + h1k2) ≤ (κ0η1 + κ1η2)(h0κ1 + η1κ2), which

indicates further term decomposition might not be possible.
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Chapter 4

Optimal Design for SLR

In this chapter, we will numerically investigate the symmetry problem of sim-

ple linear regression (SLR) using the three algorithms introduced in Chapter 2.

Here the loss function is given as (3.2). And for the convenience of comparison

of three algorithms, I will choose some parameters for the general framework in

Section 1.1. Here we will choose N = 10 and n = 10, then the design space is

as χ = {−1.00,−0.78,−0.56,−0.33,−0.11, 0.11, 0.33, 0.56, 0.78, 1.00}. The reason

why we cannot make here n and N very large is due to the method of Expected Im-

provement. As indicated in Section 2.4, in order to save the expense of evaluating

the optimized function, we need to evaluate the expected improvement function (2.4)

more. And (2.4) will be evaluated as many as
(

n+N−1
N−1

)
times, which could be very

large when N and n are chosen to be large. In other words, in EIA algorithm, there

is a trade-off of sacrificing the time of evaluating expected improvement function in

return for saving the expense of evaluating optimized function.

The optimized function here is our loss function, whose form for the case of simple

linear regression is given as (3.2): after determining the value of ν and the design
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ξ, we can easily calculate out the value of loss. For each algorithm, an optimized

design, which minimizes the loss function, is obtained.

4.1 Genetic Algorithm

As mentioned at the beginning of this chapter, we would like to get an n = 10

point design minimizing the expression (3.2). The algorithm is as indicated in Sec-

tion 2.2 with the tuning parameters chosen as follows. We use generations of size

K = 40, and vary Pmutation linearly from 0 to 0.5. We also consider Pcrossover = 0.90,

Pelite = 0.05, G = 200. The algorithm restricted to the SLR case is as follows (for a

detailed explanation of each term, please see Section 2.2):

1. Randomly generate the first ‘generation’ of fixed K = 40 designs, ξ1, . . . ξK ,

each of which can be identified with a multinomial vector of length N, with

sum n.

2. Evaluate the loss Rk for each design ξk, viz. Lν(ξk), k = 1, 2, . . . ,K, and the

corresponding ‘fitness levels’

fitnessk =
1

(Rk − 0.99Rmin)2 , k = 1, 2, . . . ,K.

where Rmin = min1≤k≤KRk. Then we scale the fitness levels to form a proba-

bility distribution φk,

φk =
fitnessk∑K
j=1 fitness j

, k = 1, 2, . . . ,K.

3. Form a new generation of K designs to replace the current generation.
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(a) Using Pelite = .05, we get that Nelite = KPelite = 2. The remaining

K − Nelite = 38 members are formed by crossover and mutation.

(b) Crossover proceeds as follows, where Pcrossover = 0.90:

• Choose two members of the current generation to be parents with

probability proportional to their fitness level: If ζ1,ζ2 ∼ independent

Uniform (0, 1), then choose to be parents the current generation

members i?1 and i?2 , where

i?1 = min
{
i :

i∑
j=1

φ j ≥ ζ1
}
;

i?2 = min
{
i :

i∑
j=1

φ j ≥ ζ2
}
.

The same parent can be chosen twice without posing difficulties for

the algorithm.

• With probability 1 − Pcrossover = 0.10, the child is identical to the

fittest parent.

• With probability Pcrossover = 0.90, the parents both contribute to-

wards the child, in the following manner. Each member of the cur-

rent generation can be represented by its vector nξ of design point

allocations. The two vectors of allocations arising from the par-

ents are averaged, and then any fractional allocations are rounded

down. This results in a vector S with integer elements, with sum s

possibly less than n. If s < n then n − s design points are randomly

chosen from S (with replacement) and added to the design. The

child formed in this way is added to the new generation.

(c) Mutation is applied independently to each child. With probability Pmutation,
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where Pmutation changes linearly from 0 to 0.5, κ elements of child design

are randomly chosen, and replaced by a multinomial vector of length κ

with the same sum as the elements being replaced. The value of κ = 4

is chosen by the user. With probability 1 − Pmutation we do nothing.

4. Step 3 is carried out repeatedly until the next generation has been formed.

We run the algorithm until the best design does not change for G = 200

generations.

As is shown in Figure 4.1, we use different value of ν to investigate the optimal

design under different weight of bias. we can see from (f) that, the loss deceases by

generation at the beginning and remains fixed after certain number of generations.

From (a) to (e), we see how the value of ν, i.e. the weight on bias, influences the

minimal design. Considering only the case of ’pure variance’, we are going to split

our observations on the both end of the design space χ equally. With the increase

of weight on bias, the observations will become more and more equally distributed

over the whole design space. And for the case of ’pure bias’, all the observations

should distribute equally over the whole design space. Last but not the least, the

result here indicates the claim which was raised at the end of Section 3.1 may prob-

ably be true: for the simple linear regression, even if the condition
∫
χ

xm(x)dx = 0

is removed, a Q-optimal minimax design is still symmetric.

4.2 Particle Swarm Optimization

Using the same framework as last section, we would like to get an n = 10 point

design minimizing the expresssion (3.2). As indicated in Section 2.3, we need to
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Figure 4.1: The minimax design with n = 10, N = 10, K = 40 generated by Genetic
Algorithm. (a) ν = 0.0, loss = 2.67; (b) ν = 0.25, loss = 2.21; (c) ν = 0.50,
loss = 1.65; (d) ν = 0.75 , loss = 0.99; (e) ν = 1.0, loss = 0.20. (f) shows minimal
loss against generation for the case of ν = 0.5.
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specify some parameters before using the algorithm. Taking the suggestions from

a research paper Kang, Cai, Yan and Liu (2008), we would like to choose K = 200

as the size of the initial designs (‘particles’), and decrease wk linearly from 0.9 to

0.4. We all consider c1 = c2 = 1.49, G = 500. The algorithm restricted to the SLR

case is as follows (for a detailed explanation of each term, please see Section 2.3):

1. Initialize design.

(a) Choose initial designs ξk, represented by a N-dimensional vector, in-

dexed by k, where k = 1, . . . ,K. The number of initial designs K is

given fixed as K = 200. Each design ξk can be identified with a multi-

nomial vector of length N, with sum n.

(b) Calculate the loss function value for each design, denoted as Lν(ξk).

(c) Initialize the local best designs pk by pk = ξk for all the k from 1 to K.

(d) Initialize the global (through all the k from 1 to K) best design pg =

argmin1≤k≤KLν(pk).

(e) Initialize velocity vk, represented by a N-dimensional vector, by Uni-

form (−1, 1) for all k from 1 to K.

2. Move designs, change velocity and update the globally and locally best de-

signs pk and pg.

(a) Calculate design velocity according to

vk+1 = wkvk + c1β1 ∗ (pk − ξk) + c2β2 ∗ (pg − ξk), k = 1, . . . ,K − 1;

v1 = wKvK + c1β1 ∗ (pK − ξK) + c2β2 ∗ (pg − ξK).
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where vk is the velocity, and wk decrease linearly from 0.9 to 0.4. ξk

is the current design. The variables β1 and β2 are N-dimensional ran-

dom vectors, each component independently and identically following

Uniform (0, 1), with the same dimension as ξk and are multiplied “com-

ponentwise” represented by the operator ∗. c1 and c2 are assigned fixed

c1, c2 (e.g. c1 = c2 = 1.49). If any component of vk+1 is smaller than

−1, we will shift it to −1. And if any component of vk is greater than 1,

we will shift it to 1.

(b) Update new designs according to

ξ(new)
k+1 = ξ(old)

k + vk+1, k = 1, . . . ,K − 1;

ξ(new)
1 = ξ(old)

K + v1.

Here if any of the ξk+1, where k is from 0 to K − 1, has any negative

element, we can shift it to 0 and for any element greater than 1, we will

shift it to 1. After the shift, if the sum of the components of ξk+1 =

(z(1)
k+1, z

(2)
k+1, . . . , z

(N)
k+1) do not equal to 1, we can standardize it by

ξk+1

1′ξk+1
.

Similar to the genetic algorithm, each member of the current generation

can be represented by its vector nξ of design point allocations. Any

fractional allocations are rounded down. This results in a vector S with

integer elements, with sums possibly less than n. If s < n then n − s

design points are randomly chosen from S (with replacement) and added

to the design.
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(c) Calculate the loss function value for each design, denoted as Lν(ξk).

(d) Update local best design p(new)
k = argmin{Lν(p(old)

k ),Lν(ξ
(new)
k )} and global

best design p(new)
g = argmin1≤k≤KLν(p

(new)
k ).

3. Step 2 is carried out repeatedly until the best design does not change for

GK = 100, 000 times of running step 2. The output pg is as our best design

with loss function value Lν(pg).

The results are as shown in Figure 4.2. Similarly as previous, we use different value

of ν to investigate the optimal design under different weight of bias. We can see

from (f) that, the loss deceases, by the times of going through all the designs, at

the beginning and remains fixed after certain number of times. From (a) to (e), the

results are consistent with what we have got from Genetic Algorithm which were

shown in Figure 4.2.

Compared with Genetic Algorithm, the efficiency of Particle Swarm Optimization

is largely controlled by the choice of parameters such as c1, c2 and wk and K. The

reason why the size of initial designs K is chosen much larger (200 v.s. 40) than the

one for Genetic Algorithm is quite obvious. In order to mimic the birds flocking,

the initial designs should spread as widely as possible. In our case, the ‘birds’ flock-

ing happens in a space of dimension N = 10, hence K should be chosen relatively

large. The choice of K = 200 here was mostly based on the practice of carrying out

the Particle Swarm Optimization method.
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Figure 4.2: The minimax design with n = 10, N = 10, K = 200 generated by
Particle Swarm Optimization. (a) ν = 0.0, loss = 2.67; (b) ν = 0.25, loss = 2.21;
(c) ν = 0.50, loss = 1.65; (d) ν = 0.75 , loss = 0.99; (e) ν = 1.0, loss = 0.20. (f)
shows minimal loss against generation for the case of ν = 0.5.
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4.3 Expected Improvement Algorithm

Using the same framework as previous sections, we would like to get a n = 10

point design minimizing the expression (3.2). Here we choose K = 40 to be the

initial designs. As indicated in Section 2.4, there are two steps of carrying out a Ex-

pected Improvement Algorithm: the choice of an appropriate model for prediction

and generating the new evaluation point ξ?. Let us discuss the first one.

4.3.1 Model Validation

To employ the DACE model expressed as (2.1), we need to firstly verify our re-

sponses, i.e. losses, to be approximatively normal distributed. Unfortunately, as

shown in (a) of Figure 4.3, under the original scale, the losses exhibit no normality

at all. Hence we use a Box-Cox transformation, which is one particular way of

parameterising a power transform.

Power transform (see Box and Cox (1964)) is a family of transformation functions

that are applied to create a rank-preserving transformation of data. This is a use-

ful data (pre)processing technique used to stabilize variance, make the data more

normal distribution-like, improve the correlation between variables and for other

data stabilization procedures. The Box-Cox transform, named after the statisticians

George E. P. Box and David Cox (see Box and Cox (1964)) is one particular way

of parameterising a power transform that has advantageous properties.
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The transform chosen here is defined as

l(λ)
i =


(lλi − 1)/(λ ·GM(l)λ−1) if λ , 0,

GM(l) · lnli if λ = 0;

where

GM(l) =

 M∏
i=1

li


1
K

.

And by taking λ = −1.5, the transform made the original responses {li}
M
i=1 to be

{l(λ)
i }

K
i=1, and ordering relation does not change. In other words, if li ≤ l j, the rela-

tion holds that l(λ)
i ≤ l(λ)

j . And the transformed responses follow an approximately

normal distribution as shown in (b) of Figure 4.3.

Figure 4.3: The normality plots for the losses. (a) The normality plots for the losses
under the original scale; (b) The normality plots for the power transformed losses.

To assess the accuracy of the DACE model without sampling any points beyond

those used to fit the model, we are going to use the procedure of ‘cross validation’.
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The basic idea of cross validation is to leave out one observation, say l(λ)
i , and then

predict it back based only on the n− 1 remaining points. We call this prediction the

‘cross validation’ prediction of l(λ)
i and denote it by l̂(λ)

−i . The subscript −i empha-

sizes that observation i is not used in making the prediction. When making these

cross-validated predictions, one should re-estimate all the DACE parameters using

the reduced sample.

In addition to the cross-validated prediction l̂(λ)
−i , we also get a cross-validated stan-

dard error of prediction shown as (for the derivation, see Sacks, Welch, Mitchell

and Wynn (1989-2))):

s2
−i = σ̂2

[
1 − r′R−1r +

(1 − 1′R−1r)2

1′R−11

]
.

It is convenient to compute the number of standard errors that the actual value is

above or below the predicted value:

l(λ)
i − l̂(λ)

−i

s2
−i

.

We will refer to this quantity as the ‘standardized cross-validated residual’. If the

model is valid, the value should be roughly in the interval [−3,+3]. To illustrate,

Figure 4.4 shows the diagnostic tests for the DACE model fitting the transformed

losses. The surface was based on the initial K = 40 designs. In Figure 4.4, (a) plots

the actual function value versus the cross-validated prediction. If the model were

good, the points should lie on a 45-degree line; in this case, the relationship is very

good; (b) plots the standardized cross-validated residuals versus the cross-validated
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predictions. All of residuals are distributed evenly around 0 and all of them fall

within the interval [−3,+3]; Moreover the Q-Q plot in (c) indicates a fairly normal

distribution for the standardized residuals. The diagnostic plots suggest that DACE

model is fairly accurate of making predictions.

Figure 4.4: Diagnostic tests for DACE model fitting transformed losses. (a) The
normality plots for the losses under the original scale; (b) The normality plots for
the power transformed losses.
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4.3.2 Expected Improvement Maximization

Then we can get a new design ξ? by maximizing the expected improvement E[I(ξ)]

given as (2.4) and add it as a new design ξm+1 into the design sequences. Af-

terwards we can get the global optimal design by comparing the function values

l1, . . . , lm, lm+1. We can repeat the steps above by adding one more design each time.

If the global optimal design does not change for certain number of steps, say the

number is G = 10, we stop and output the global optimal design. The explicit al-

gorithm restricted to the SLR case is as follows (for a detailed explanation of each

term, please see Section 2.4):

1. Start by randomly generating the initial set D of designs with size K = 40,

i.e. D = {ξk}
K
k=1. And each design (density) ξk can be identified with a

multinomial vector of length N, with sum n.

2. Calculate the loss function value for each design of D denoted as Lν(ξk),

where k = 1, . . . ,K. Denote ξmin = argmin1≤k≤KLν(ξk).

3. Denote the size ofD as K.

(a) Calculate the loss function value for each design ofD denoted as Lν(ξk),

where k = 1, . . . ,K.

(b) Get a new design ξ? maximizing E[I(ξ)], i.e.

ξ? = argminξE[I(ξ)],

and add ξ? as a new design ξK+1 into the design sequencesD = {ξk}
K+1
k=1 .

(c) Update ξmin by using ξmin = argmin1≤k≤K+1Lν(ξk).
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4. Step 3 is carried out repeatedly until certain stopping criteria are satisfied. For

example the best design ξmin does not change for G = 10 times of running

step 3. The output ξmin is as our best design with loss function value Lν(ξmin).

The results for varied ν are shown in Figure 4.5. We can see from (f) that, the min-

imal loss deceases, by the times of evaluating original loss functions, at the begin-

ning and remains fixed after certain number of times. From (a) to (e), the results are

consistent with what we have got using two algorithms previously. Compared with

the methods of Genetic Algorithm and Particle Swarm Optimization, the efficiency

of Expected Improvement Algorithm is very weak. As indicated at the beginning of

this chapter, in order to save the number of times of evaluating optimized function,

we need to go through evaluating the expected improvement function (2.4) at each

possible point, i.e. for each possible design density. And (2.4) will be evaluated as

many as
(

n+N−1
N−1

)
times, which could be very large when N and n are chosen to be

large.

However it does save the number of evaluations of the original loss function. In-

stead of evaluating the loss function by a huge amount of times in order to get an

optimal design (2000 times for GA and 10000 times for PSO), EIA algorithm only

makes 30 times of loss function evaluating. It is extremely useful when the loss

function evaluation is extremely expensive. Actually in the algorithm of EIA, there

is a trade-off of sacrificing the time of evaluating expected improvement function in

return for saving the expense of evaluating loss function.

Considering the computing time for the loss function of SLR case with with ν = 0.5,

the GA takes 0.83 seconds, the PSO takes 9.75 seconds and EIA takes 329.09 sec-
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onds. The GA is the most efficient one compared with other two methods and EIA

is the least efficient due to its need of large amount of evaluations of expected im-

provement function.

Figure 4.5: The minimax design with n = 10, N = 10, K = 40, G = 10 generated
by Expected Improvement Algorithm. (a) ν = 0.0, loss = 2.67; (b) ν = 0.25,
loss = 2.21; (c) ν = 0.50, loss = 1.65; (d) ν = 0.75 , loss = 0.99; (e) ν = 1.0,
loss = 0.20. (f) shows minimal loss against number of evaluations for the case of
ν = 0.5.
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Chapter 5

Optimal Design for Exponential

Model

In this chapter, we will numerically investigate the minimax design problem for

a non-linear regression which is given in Karami (2011) and Karami and Wiens

(2012), using three algorithms introduced in Chapter 2. The results are shown to be

consistent.

Let the model error d(x|η) evaluated at η be defined as d(x|η) = E[Y(x)] − f (x|η).

The approximate nature of the model that E[Y(x)] ≈ f (x|θ) for some p-dimensional

θ - is characterized by

θ = argminη
N∑

i=1

(E[Y(xi)] − f (xi|η))2.

Then the probability model is

Y(x) = f (x|θ) + d(x|θ) + ε,
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with random error ε assumed to be independently and identically distributed with

mean 0 and variance σ2.

Assume that f (x|·) is differentiable with respect to η, define Z(η) to be N× p matrix

with i-th row as

z′(xi|θ) =
∂ f (xi|θ)
∂θ

,

and assume that Z(θ) has full column rank. If d(η) = (d(x1|η), . . . , d(xN |η))′, then

Z′(θ)d(θ) = 0p×1. (5.1)

Here we impose a bounded requirement of d(θ) as

||d(θ)||≤
τ
√

n
, (5.2)

for a non-negative constant τ.

We are intent to evaluate the asymptotic Mean Squared Error (MSE) of the pre-

dicted values, to maximize this MSE over a class of models defined above, and

then to average this maximized loss with respect to a prior on θ. Given the least

squared estimate θ̂n, a measure of loss here we use over χ is Average Mean Squared

Error(AMSE):

AMSE =
1
N

N∑
i=1

E
[
{ f (xi|θ̂n) − E[Y(xi)]}2

]
. (5.3)
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Given the definition that ξi = ni/n, Dξ = diag(ξ1, . . . , ξN) and

Rξ(θ) = Z(θ)(Z′(θ)DξZ(θ))−1Z′(θ),

Karami (2011) proves that an asymptotic, first order approximation to (5.3), max-

imized over the neighbourhood given by vector d satisfying (5.1) and (5.2), is

τ2+σ2

nN Lν(θ|ξ), where

Lν(θ|ξ) = (1 − ν)tr[Rξ(θ)] + νchmax[Rξ(θ)D2
ξ(θ)Rξ(θ)]. (5.4)

Similarly to the case of SLR, the weight of bias is ν = τ2

τ2+σ2 . And let p(θ) be a

density on the parameter space Θ, integrate (5.4) over Θ, we can have the loss of

the form of

Lν(ξ) =

∫
Θ

Lν(θ|ξ)p(θ)dθ. (5.5)

Let us consider a nonlinear function of the form

f (x; θ) = exp (−θx); 0 < θ < 1, x ≥ 0.

After assuming the prior distribution on θ as U(0, 1) and equal weights of variance

and bias, i.e. ν = 0.5, the loss function from (5.5) is of the form

L(ξ) =
1
2

∫ 1

0

[
f (θ; ξ)
g(θ; ξ)

+
h(θ; ξ) f (θ; ξ)

(g(θ; ξ))2

]
dθ, (5.6)

where f (θ; ξ) =
∑N

i=1 x2
i exp(−2θxi), g(θ; ξ) =

∑N
i=1

ni
n x2

i exp(−2θxi), h(θ; ξ) =∑N
i=1

n2
i

n2 x2
i exp(−2θxi) (The detailed deduction can be found in Karami (2011)).
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And for the convenience of comparison of three algorithm, we will choose some pa-

rameters for the general framework in Section 1.1. Here we will choose N = 10 and

n = 10 over [0, 10], then the design space is as χ = {0, 1.11, 2.22, 3.33, 4.44, 5.56, 6.67,

7.78, 8.89, 10.00}.

The optimized function here is the new loss function, whose form for the case of

equal weighted exponential model is given as (5.6): after determining the design

density ξ, we can easily calculate out the value of loss. Similarly as chapter 4, for

each algorithm, an optimized design density, which minimized the loss function. is

expected.

5.1 Genetic Algorithm

As mentioned at the beginning of this chapter, we would like to get a n = 10 point

design minimizing the expresssion (5.6). As indicated in Section 2.2, we use gen-

erations of size K = 40, and vary Pmutation linearly from 0 to 0.5. We all consider

Pcrossover = 0.90, Pelite = 0.05, G = 200. The algorithm restricted to the exponential

case is the same as shown in Section 4.1 except for the loss function is as (5.6).

Given the tuning values above, the result is as shown in Figure 5.1. In Figure

5.1(a), the loss deceases by generation at the beginning and remains fixed after cer-

tain number of generations. Moreover, the design density have been shown in plot

(b). It is observed that larger masses are made at around the site of x = 1, x = 2 and

x = 3.
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Figure 5.1: The minimax design with n = 10, N = 10, K = 40 generated by Genetic
Algorithm for exponential model. (a) shows minimal loss against generation. (b)
Best design density with loss = 4.25.

61



5.2 Particle Swarm Optimization

Using the same framework as last section, we would like to get a n = 10 point de-

sign minimizing the expresssion (5.6). As indicated in Section 2.3, we need to spec-

ify some parameters before using the algorithm. Using similar structure as Section

4.2, we would like to choose K = 200 as the size of the initial designs (“particles”),

and wk decrease linearly from 0.9 to 0.4. We all consider c1 = c2 = 1.49, G = 500.

Similarly to the previous section, the explicit algorithm is as the same as Section

4.2 except for the loss function.

After giving the tuning values above, the results are shown in Figure 5.2. Simi-

larly as previous, we can see from (a) that, the loss deceases, by the times of going

through all the particles, at the beginning and remains fixed after certain number

of times. The result in (b) are consistent with what we have got from Genetic

Algorithm shown in Figure 5.1. For the exponential minimax design we got the

conclusion as for the simple linear model: Compared with Genetic Algorithm, the

efficiency of Particle Swarm Optimization is largely controlled by the choice of

parameters such as c1, c2 and wk and K. Here the choice of K = 200 here was

still mostly based on the practice of carrying out the Particle Swarm Optimization

method.

5.3 Expected Improvement Algorithm

Using the same framework as previous sections, we would like to get a n = 10 point

design minimizing the expression (5.6). Here we choose K = 40 to be the initial
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Figure 5.2: The minimax design with n = 10, N = 10, K = 200 generated by
Particle Swarm Optimization for exponential model. (a) shows minimal loss against
generation. (b) Best design density with loss = 4.25.
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designs. As section 4.3, here are still two steps of carrying out a Expected Improve-

ment Algorithm: the choice of an appropriate model for prediction and generating

the new evaluation point ξ?. Let us see the first one.

5.3.1 Model Validation

By taking λ = −1.5, the transform made the original responses {li}
K
i=1 to be {l(λ)

i }
K
i=1,

and ordering relation does not change. In other words, if li ≤ l j, the relation holds

that l(λ)
i ≤ l(λ)

j . And the transformed responses follow an approximately normal

distribution as shown in (b) of Figure 5.3.

Figure 5.3: The normality plots for the losses. (a) The normality plots for the losses
under the original scale; (b) The normality plots for the power transformed losses.

To assess the accuracy of the DACE model without sampling any points beyond

those used to fit the model, we still use here the procedure of ‘cross validation’ (see

Section 4.3 for details) .
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Figure 5.4 shows the diagnostic tests for the DACE model fitting the transformed

losses. The surface was based on the initial K = 40 designs. In Figure 5.4, (a) plots

the actual function value versus the cross-validated prediction. If the model were

good, the points should lie on a 45-degree line; in this case, the relationship is very

good; (b) plots the standardized cross-validated residuals versus the cross-validated

predictions. All of residuals are distributed evenly around 0 and all of them fall

within the interval [−3,+3]; Moreover the Q-Q plot in (c) indicates a fairly normal

distribution for the standardized residuals. The diagnostic plots suggest that DACE

model is fairly accurate of making predictions.

5.3.2 Expected Improvement Maximization

Then we can get a new design ξ? by maximizing the expected improvement E[I(ξ)]

given as (2.4) and add it as a new design ξm+1 into the design sequences. Af-

terwards we can get the global optimal design by comparing the function values

l1, . . . , lm, lm+1. We can repeat the steps above by adding one more design each time.

If the global optimal design does not change for certain number of steps, say the

number is G = 25, we stop and output the global optimal design. The explicit algo-

rithm is the same as Section 5.3.2 with replacing only the loss function.

The results are shown in Figure 5.5. We can see from (a) that, the minimal loss

deceases, by the times of evaluating original loss functions, at the beginning and

remains fixed after certain number of times. The plot (a) is consistent with what we

have got using two algorithms previously. Even for the exponential model, com-

65



Figure 5.4: Diagnostic tests for DACE model fitting transformed losses. (a) The
normality plots for the losses under the original scale; (b) The normality plots for
the power transformed losses.
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pared with the methods of Genetic Algorithm and Particle Swarm Optimization,

the efficiency of Expected Improvement Algorithm is still very weak. As indicated

at the beginning of Chapter 4, in order to save the number of times of evaluating

optimized function, we need to go through evaluating the expected improvement

function (2.4) at each possible point, i.e. for each possible design density. And

(2.4) will be evaluated as many as
(

n+N−1
N−1

)
times, which could be very large when N

and n are chosen to be large.

However it does save the number of evaluating the original loss function. Instead

of evaluating the loss function by a huge amount of times in order to get an optimal

design (2000 times for GA and 10000 times for PSO), EIA algorithm only makes 27

times of loss function evaluating. It is extremely useful when the loss function eval-

uation is extremely expensive. Actually in the algorithm of EIA, there is a trade-off

of sacrificing the time of evaluating expected improvement function in return for

saving the expense of evaluating loss function.

Considering the computing time for the loss function of exponential function case

here, the GA takes 15.19 seconds, the PSO takes 188.25 seconds and EIA takes

290.50 seconds. The GA is still the most efficient one compared with other two

methods and EIA is the least efficient due to its need of large amount of evaluations

of expected improvement function.

However, it is of great interest to point out that comparing with the computing time

of the SLR case, the GA and PSO take substantially longer time, while EIA takes

even shorter. This is probably due to the longer time of evaluating the loss function.

This indicates the advantage for taking the method of EIA in the first place. When
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the loss function evaluation is very expensive or costs a lot of time, the EIA may

probably a better method compared to the method of the other two.

Figure 5.5: The minimax design with n = 10, N = 10, K = 40, G = 25 generated
by Expected Improvement Algorithm for exponential model. (a) shows minimal
loss against number of evaluations; (b) Best design density with loss = 4.25.
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Chapter 6

Conclusions and Discussions

Ye and Zhou (2007) have given an important result about symmetry of the Q-

optimal minimax design for the case of the simple linear regression. That is a

Q-optimal minimax design is symmetric if we require that
∫
χ

xm(x)dx = 0. At the

end, they propose that even if the condition
∫
χ

xm(x)dx = 0 is removed, the claim

may still be true that Q-optimal minimax design is symmetric. In Chapter 3.1, we

have shown that for the simple linear regression, considering only the variance, a

Q-optimal minimax design is necessarily symmetric; we have also made an attempt

of addressing the symmetry problem considering only the bias which is much more

difficult to achieve.

However, the numerical results in Chapter 4 using three different algorithms indi-

cate that the claim is true that: for the simple linear regression, even if the condi-

tion
∫
χ

xm(x)dx = 0 is removed, a Q-optimal minimax design is still symmetric.

Actually, making no requirement of symmetry for the initial design densities, the

Q-optimal design densities are always symmetric. To prove it mathematically is

still of interest.
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And in Chapter 4 and Chapter 5, we apply the three algorithms on a linear and a

non-linear cases correspondingly and make the comparison. Generally speaking,

considering the time of program running, Genetic Algorithm and Particle Swarm

Optimization are very efficient. Compared to Particle Swarm Optimization, Ge-

netic Algorithm requires fewer number of initial designs. Compared to Genetic

Algorithm, Particle Swarm Optimization is more sensitive against parameter choos-

ing. However, since Particle Swarm Optimization requires a largely spread initial

designs, the final optimal solution would surely be a global optimal one, while un-

der some extreme situation, Genetic Algorithm might only achieve a locally best

solution. Compared with the methods of Genetic Algorithm and Particle Swarm

Optimization, the efficiency of Expected Improvement Algorithm is very weak. In

order to save the number of times of evaluating optimized function, we need to go

through evaluating the expected improvement function (2.4) at each possible point,

i.e. for each possible design density. It requires a huge amount of calculating. On

the other hand. Expected Improvement Algorithm does save the number of evalu-

ating the original loss function. Instead of evaluating the loss function by a huge

amount of times in order to get an optimal design, EIA algorithm only makes only a

few times of loss function evaluating. It is extremely useful when the loss function

evaluation is extremely expensive. In the algorithm of EIA, there is a trade-off of

sacrificing the time of evaluating expected improvement function in return for sav-

ing the expense of evaluating loss function.

70



Bibliography

Box, G. E. P., and Cox, D. R. (1964), “An Analysis of Transformations”, Journal

of The Royal Statistical Society, Series B, 26 (2): 211-252.

Chen, R. B., Chang, S. P., Wang, W. C., and Wong, W. K. (2011), “Optimal

Experimental Designs via Particle Swarm Optimization Methods”, Preprint, De-

partment of Mathematics, National Taiwan University, 2011-03.

Clerc, M. (2006), “Particle Swarm Optimization ”(1st ed.), London, U.K.: Wiley-

ISTE.

Coley, D.A. (1999), “An Introduction to Genetic Algorithms For Scientists and

Engineers”, Singapore: World Scientific Publishing Co..

Eberhart, R., and Kennedy, J. (1995), “A New Optimizer Using Particle Swarm

Theory”, Micro Machine and Human Science, 1995. MHS’95., Proceedings of

the Sixth International Symposium, IEEE, 39-43.

Eberhart, R., Shi, Y., and Kennedy, J. (2001), “Swarm Intelligence ”, Singapore:

Elsevier Science Press.

Heo, G., Schmuland, B., and Wiens, D. P. (2001), “Restricted Minimax Robust De-

signs for Misspecified Regression Models”, The Canadian Journal of Statistics,

29, 117-128.

71



Huber, P. J., and Ronchetti, E. M. (2009), “Robust Statistics”(2nd ed.), New York:

Wiley, 1-21, 239-248.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998), “Efficient Global Optimiza-

tion of Expensive Black-Box Functions”, Journal of Global Optimization, 13,

455-492.

Kang, L., Cai, Z., Yan, X., and Liu, Y. (2008), “Advances in Computation and

Intelligence: Third International Symposium on Intelligence Computation and

Applications”, ISICA 2008 Wuhan, China, December 19-21, 2008 Proceedings,

101-105.

Karami, J. H. (2011), “Designs for Nonlinear Regression With a Prior on the Pa-

rameters”, unpublished MSc thesis, University of Alberta, Department of Math-

ematical and Statistical Sciences.

Karami, J. H. and Wiens, D. P. (2012), “Robust Static Designs for Approximately

Specified Nonlinear Regression Models”, Journal of Statistical Planning and In-

ference, in press.

Mandal, A., Johnson, K., Wu, J. C. F., and Bornemeier, D. (2007), “Identifying

Promising Compounds in Drug Discovery: Genetic Algorithms and Some New

Statistical Techniques”, Journal of Chemical Information and Modeling , 47,

981-988.

Mitchell, M. (1996), “An Introduction to Genetic Algorithms”, Cambridge, MA

MIT Press.

Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989), “Design and Anal-

ysis of Computer Experiments”, Statistical Science, 4, 409-435.

72



Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989), “Design and Analy-

sis of Computer Experiments ”(with discussion), Statistical Science, 4, 409-435.

Wu, C. F. J., and Hamada, M. S. (2009), “Experiments: Planning, Analysis, and

Optimization”(2nd Ed.), New York: Wiley , 1-2.

Wiens, D. P. (1993), “Designs For Approximately Linear Regression: Maximizing

the Minimum Coverage Probability of Confidence Ellipsoids”, Canadian Journal

of Statistics, 21, 59-70.

Welsh, A. H. and Wiens, D. P. (2013), “Robust Model-based Sampling Designs ”,

Statistics and Computing, 23, 689-701.

Ye, J. J., and Zhou, J. (2007), “Existence and Symmetry of Minimax Regression

Designs ”, Journal of Statistical Planning and Inference, 137, 344-354.

73


	Introduction
	Robust Design
	Chapter Structure

	Optimization Strategies
	Robustness of Design
	Genetic Algorithm
	Particle Swarm Optimization
	Expected Improvement Algorithm

	Symmetric Designs
	Symmetry of Design in SLR
	Symmetry of Design in SLR for Pure Variance
	Symmetry of Design in SLR for Pure Bias

	Optimal Design for SLR
	Genetic Algorithm
	Particle Swarm Optimization
	Expected Improvement Algorithm
	Model Validation
	Expected Improvement Maximization


	Optimal Design for Exponential Model
	Genetic Algorithm
	Particle Swarm Optimization
	Expected Improvement Algorithm
	Model Validation
	Expected Improvement Maximization


	Conclusions and Discussions

