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Abstract

The main focus of this thesis is on developing parsimonious models using measured

process data and subsequent use of these models in the design of controllers for

chemical engineering processes, in particular, for processes with large dead times.

The application case studies presented and discussed in this thesis include diverse

examples such as a classical heat transfer wall problem, a continuous stirred tank

heater with transportation delays, an industrial scaled primary separation cell, and

froth heaters.

Two different types of processes are discussed in this thesis: 1) processes that

can be described by fractional order transfer function models and 2) industrial

processes that are modeled using conventional rational (integer) order models, as is

the normal practice in industry. For fractional order systems, this thesis proposes a

nested loop optimization method where model parameters including time delay are

estimated iteratively in the inner loop and the fractional order model is estimated

in the non-linear outer loop. The proposed method is applied in simulation on

distributed parameter systems such as a classical heat transfer wall problem and

on identification data obtained from laboratory experiments of a continuous stirred

tank heater (CSTH) with transportation delays and industrial froth heater process.

A fractional order PI controller tuning method using Bode’s ideal transfer function

as the reference system is also developed for fractional and integer order systems.

The proposed tuning method is evaluated by simulation on fractional and integer

order systems and experimental application on a computer-interfaced pilot scale



CSTH process.

Application examples, related to conventional (integer order) models, discussed

in the thesis involve two industrial case studies in the oil sands industry. The first

of these is the regulation of the froth bitumen and middlings Interface level in

a separation cell process which is part of the oil-sands extraction unit. Internal

model control (IMC) and model predictive control (MPC) using linear models are

designed, implemented and tested in real time on the industrial separation cell.

These controllers yielded better performance over the existing control strategy

which uses PID control. The second application is concerned with temperature

control of the bitumen froth which is part of the froth treatment unit. Using the

linear models obtained from the industrial data, a gain scheduling multivariable

MPC is designed, and tested in simulations and compared with the current opera-

tion which uses a number of local PID controllers. Results presented in the thesis

illustrate the first successful industrial implementation of an MPC controller on

a separation cell in the oil sands extractions unit at Suncor Energy Inc. in Fort

McMurray, Alberta.

Overall, this thesis presents results on identification and model based control

design case studies on fractional order systems, distributed parameter systems and

two industrial oil sands processes.



Acknowledgements

I express my most sincere thanks and appreciation to my supervisors, Dr. Sirish.

L. Shah and Dr. Tongwen Chen, who enthusiastically encouraged and guided me

throughout all the stages of my thesis work. It really means a lot to work with

people who are so understanding and supportive. Dr. Shah and Dr. Chen super-

vised my research for more than four years and with them I learned a lot about

everything and it has been a wonderful experience working with them. Their in-

terest in my work, careful reading and corrections, helpful suggestions, helped me

immensely throughout the course of my research work. I really enjoyed the inde-

pendence they gave me to pursue new ideas, learn and teach new subjects. I also

want to acknowledge the financial support through the NSERC Strategic Grant

and NSERC-Matrikon-Suncor-Icore Industrial research chair program in computer

process control that Dr. Chen and Dr. Shah have provided me throughout my

graduate studies. I would also like to thank them for providing me the opportuni-

ties to present my research at technical conferences and giving me more exposure

to the current research fields.

Another person I would like to thank is Artin Afacan. It has been a wonderful

experience working with him as a teaching assistant for process data analysis course

and writing educational papers. I learned a lot from him about the practical aspects

of teaching and enjoyed all the great talks. He always motivated me to do good

work.

I would also like to thank Dr. J. Prakash, who visited University of Alberta

several times over the last couple of years during the summer term. My numerous

discussions with him and his invaluable suggestions always motivated me in my

research.



I would also like to thank Dr. Ramesh Kadali at Suncor Energy Inc., for

introducing the two industrial case studies to me and for all the useful discussions

about the process and how to approach the problem. I am also grateful to Eliyya,

Elom and Jamie at Suncor Energy for being so helpful in running the industrial

experiments and sharing their expertise.

I would also like to thank Dr. Sachin Patwardhan, he has been and will always

be a motivation for me on how to reach top level of excellence in both teaching

and research. He is one of the main reason on why I decided to pursue PhD after

my masters degree.

I met some really interesting people during the course of my studies and made

some close friends. I would like to thank all the CPC group members and Dr. Dave

Shook for some great interactions and critical reviews during the group presenta-

tions. I sincerely thank all my friends: Chirag Gupta, Aditya Tulsyan, Xing Jin,

Nima Danesh, Samidh Pareek, Sandeep Reddy, Arjun V. Shenoy, Yashasvi Pur-

war, Saneej B.C., Venkat Nadadoor, Fari Kiasi, Iman Izadi, Fan Yang, Yuri Shardt,

Yue Yang, Ulagendran Venukrishnan, Siddhartha Kumar, Manjeet Singh, Deban-

jan Chakrabarti, Abhijit Badwe, Vinay Bavdekar, Swanand Khare, Hector Siegler,

Kartik Surisetty, Mohammad Iqbal, Sankar Mahadevan, Phanindra Varma, Naseeb

A. Adnan, Salman, Amal Mehrotra, Rahima Bhanji, Prakash Bhalavi, Lalit Ku-

mar, Palash Panja for their valuable suggestions, constant help and support. I

wish you all the very best for future endeavors.

Last but not the least, I would like to thank my parents, my sister and my

jiju for being so understanding and for their constant support and encouragement

throughout my studies.



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Continuous-time model identification of fractional order models

with time delays 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Definitions and FO models . . . . . . . . . . . . . . . . . . . 13

2.2.2 Stability condition . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Integer order approximation . . . . . . . . . . . . . . . . . . 15

2.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Identification formulation . . . . . . . . . . . . . . . . . . . 16

2.3.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Summary of the proposed algorithm . . . . . . . . . . . . . 23

2.3.4 Convergence issues for the proposed method . . . . . . . . . 25

2.4 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Application to Thermal diffusion in a wall . . . . . . . . . . . . . . 31

2.5.1 Transfer function for the wall problem . . . . . . . . . . . . 32

2.5.2 Identification results . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Tuning of fractional PI controllers for processes with and without

time delays using particle swarm optimization 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



3.2 Fractional order PI controller . . . . . . . . . . . . . . . . . . . . . 44

3.3 FO-PI tuning formulation . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Bode’s ideal transfer function and design of a FO-PI controller 46

3.3.2 Imposing constraints . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 Algorithm for the proposed method . . . . . . . . . . . . . . 52

3.3.4 Particle Swarm Optimization . . . . . . . . . . . . . . . . . 53

3.3.5 Performance and Robustness comparison . . . . . . . . . . . 54

3.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 FO-PI design for lag/delay dominant processes . . . . . . . . . . . 61

3.6 Control strategy applied to Thermal diffusion in a wall . . . . . . . 64

3.7 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7.1 Case-1: Balanced lag/delay process . . . . . . . . . . . . . . 71

3.7.2 Case-2: Delay dominant process . . . . . . . . . . . . . . . . 73

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Fractional order modeling and distributed parameter systems 80

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Fractional order models . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Distributed parameter systems . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Thermal diffusion in a wall . . . . . . . . . . . . . . . . . . 83

4.3.2 Diffusion in a semi-infinite slab . . . . . . . . . . . . . . . . 85

4.4 Model identification of DPS . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Thermal diffusion in a wall . . . . . . . . . . . . . . . . . . . 88

4.4.2 Industrial froth heater process . . . . . . . . . . . . . . . . . 90

4.4.3 Continuous stirred tank heater process . . . . . . . . . . . . 92

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Model based predictive controllers design for interface level reg-

ulation in oil sands separation cells 98

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Process description . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Model development for Separation Cells . . . . . . . . . . . . . . . 105

5.3.1 Identification data . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.2 Model identification . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Model based predictive control . . . . . . . . . . . . . . . . . . . . 112



5.4.1 IMC control design . . . . . . . . . . . . . . . . . . . . . . . 114

5.4.2 Model predictive controller design . . . . . . . . . . . . . . 115

5.5 Control strategy applied to industrial setup . . . . . . . . . . . . . 116

5.5.1 Internal model control . . . . . . . . . . . . . . . . . . . . . 117

5.5.2 Model predictive control . . . . . . . . . . . . . . . . . . . . 118

5.6 Economic benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Model based predictive control of bituminous froth heaters in oil

sands extraction 131

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Process description . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 Model development for the froth heater process . . . . . . . . . . . 135

6.3.1 Linear time invariant (LTI) modeling . . . . . . . . . . . . . 136

6.3.2 Model identification . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Gain scheduling MPC . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.5 Control strategy applied in simulations . . . . . . . . . . . . . . . . 147

6.5.1 MIMO gain scheduling MPC . . . . . . . . . . . . . . . . . . 147

6.6 Economic benefits and Conclusions . . . . . . . . . . . . . . . . . . 149

7 Concluding Remarks and Future Work 155

7.1 Major Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . 155

7.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . 157

7.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A Particle Swarm Optimization 160



List of Tables

2.1 Step input : Estimated parameters for process GFO1(s) . . . . . . . 27

2.2 PRBS input : Estimated parameters for process GFO1(s) . . . . . . 28

2.3 PRBS input : Estimated parameters for process GFO1(s) . . . . . . 29

2.4 PRBS input : Estimated parameters for process GFO2(s) . . . . . . 31

3.1 Properties of open loop Bode’s ideal transfer function . . . . . . . . 46

3.2 Properties of feedback system with Bode’s ideal transfer function . 47

3.3 Controller parameters for process GFO5 . . . . . . . . . . . . . . . . . 59

3.4 Comparison of servo and regulatory performance for the closed loop

systems for GFO5 using modified reference mode . . . . . . . . . . . 60

3.5 Comparison of maximum sensitivity function for controllers for GFO5 60

3.6 Comparison of servo and regulatory performance for the closed loop

systems for GFO5 using Smith predictor . . . . . . . . . . . . . . . . 61

3.7 Controller parameters for process GIO6 . . . . . . . . . . . . . . . . 62

3.8 Comparison of servo and regulatory performance for the closed loop

systems for GIO6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.9 Controller parameters for process GIO7 . . . . . . . . . . . . . . . . 63

3.10 Comparison of servo and regulatory performance for the closed loop

systems for GIO7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.11 Comparison of servo and regulatory performance for the closed loop

systems for CW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.12 Controller tunings for the three controllers for CSTH for balanced

lag/delay process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.13 Performance comparison for the controllers at nominal process con-

dition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.14 Performance comparison for the controllers at second operating con-

dition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.15 Controller tunings for the three controllers for CSTH for delay dom-

inant case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



3.16 Performance comparison for the controllers for CSTH for delay dom-

inant case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 PPE values for models for CW example . . . . . . . . . . . . . . . . 90

4.2 Models at two operating conditions, C-1 and C-2 for FHC . . . . . 92

4.3 PPE values for models for FHC example . . . . . . . . . . . . . . . 94

4.4 Identified models and PPE values for CSTH . . . . . . . . . . . . . 95

5.1 Comparison of regulatory performance (s) with and without IMC

at operating condition-1 . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Comparison of regulatory performance (s) with and without SISO

MPC at operating condition-1 . . . . . . . . . . . . . . . . . . . . 121

5.3 Comparison of regulatory performance (s) for MPC FF at operating

condition-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Comparison of regulatory performance (s) for MPC with and with-

out feed forward at operating condition-2 . . . . . . . . . . . . . . . 124

6.1 Process models at OC-1 . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Process models at OC-2 . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3 Process models at OC-3 . . . . . . . . . . . . . . . . . . . . . . . . 143

6.4 ρ at different operating conditions . . . . . . . . . . . . . . . . . . 143



List of Figures

2.1 Time series process input curve . . . . . . . . . . . . . . . . . . . . 20

2.2 Algorithm for estimating parameters for CFOTDS . . . . . . . . . 24

2.3 Step response for GFO1 . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Generic input excitation data for GFO1 . . . . . . . . . . . . . . . . 28

2.5 Effect of noise level on parameter estimates . . . . . . . . . . . . . . 30

2.6 Bode plots for 200 MC simulation runs : (-) true process, (- -) 200

FO models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Generic input excitation data for GFO2 . . . . . . . . . . . . . . . . 31

2.8 Classical wall problem . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Step response of the process . . . . . . . . . . . . . . . . . . . . . . 33

2.10 Time response for the wall process . . . . . . . . . . . . . . . . . . 34

2.11 Model predictions on the validation set: (- -) black dotted line is

model prediction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.12 Step response of the estimated models(- -) and true process (-) . . . 36

2.13 Frequency responses of the estimated models (- -) and the true pro-

cess (-) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Nyquist plot for Bode’s ideal transfer function . . . . . . . . . . . . 47

3.2 Step response for closed loop reference model . . . . . . . . . . . . . 48

3.3 Structure for FO-PI controller tuning . . . . . . . . . . . . . . . . 50

3.4 Smith Predictor formulation . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Closed loop step responses for GFO4 with CFO4(s) under different

process gain variations . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Open-loop Bode diagram (with K=1) for GFO4 with CFO4(s) controller 57

3.7 Closed loop step responses for GFO5 with CFO51(s) under different

process gain variations . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Servo and regulatory controller performance for process GFO51 . . . 59

3.9 Servo and regulatory controller performance with Smith predictor

for GFO5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



3.10 Servo and regulatory controller performance for GIO6 . . . . . . . . 63

3.11 Servo and regulatory controller performance for GIO7 . . . . . . . . 64

3.12 Open-loop Bode diagram at nominal condition for CW example . . 66

3.13 Servo and regulatory controller performance for CW . . . . . . . . . 67

3.14 Continuous stirred tank heater (CSTH) process . . . . . . . . . . . 68

3.15 Experimental setup for CSTH at University of Albert . . . . . . . . 69

3.16 Temperature variation to changes in steam flow at nominal condition 70

3.17 Model predictions on the validation set: (- -) black dotted line is

model prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.18 Temperature variation to changes in steam flow at operating condition-

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.19 Servo and regulatory response for the CSTH process for balanced

lag/delay process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.20 Servo response for the CSTH process at operating condition-2 . . . 74

3.21 Servo and regulatory response for CSTH for delay dominant case . . 76

4.1 Step response for Gsimp for different values of γ . . . . . . . . . . . 82

4.2 Model validation for GFO9(s) and GIO9(s) models for the CW example 89

4.3 Model validation for fractional order and rational order models . . . 91

4.4 Model validation for fractional order and rational order models . . . 93

4.5 Time response for CSTH process . . . . . . . . . . . . . . . . . . . 94

4.6 Model predictions for CSTH process . . . . . . . . . . . . . . . . . 96

5.1 Flowsheet of the separation cell process . . . . . . . . . . . . . . . . 103

5.2 Top view of the industrial separation cell at Suncor Energy Inc. The

lighter bitumen froth overflows from the top of the separation cell

and transported for further processing. . . . . . . . . . . . . . . . . 104

5.3 Separation cell: Sight glass window showing the interface between

the Bitumen froth (dark surface) and the Middlings (light surface).

For each sight glass window, the green portion is the non-overlapping

part with the remaining glasses, the red boundary shows the overlap

between the first and second glasses and the blue boundary shows

the overlap between the second and third glasses. . . . . . . . . . . 105

5.4 Process structure for SISO control design . . . . . . . . . . . . . . . 108

5.5 Interface level response to changes in the pump speed at operating

condition-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



5.6 Interface level response to step change in pump speed at operating

condition-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.7 Model predictions at operating condition-1 . . . . . . . . . . . . . . 110

5.8 Model predictions at operating condition-2 . . . . . . . . . . . . . . 111

5.9 Process structure for MISO control design . . . . . . . . . . . . . . 112

5.10 Effect of measured disturbances and middlings flow on interface level 112

5.11 Internal model control control strategy . . . . . . . . . . . . . . . . 114

5.12 Closed loop performance of IMC at operating condition-1 . . . . . . 118

5.13 Histograms of process variables for IMC at operating condition-1 . . 119

5.14 Closed loop performance of MPC at operating condition-1 . . . . . 120

5.15 Histograms of process variables at operating condition-1 . . . . . . 121

5.16 Closed loop response along with feed flow condition for the SISO

MPC test at operating condition-1 . . . . . . . . . . . . . . . . . . 122

5.17 Closed loop performance of MPC FF at operating condition-2 . . . 123

5.18 Histograms of process variables at operating condition-2 . . . . . . 124

5.19 Closed loop performance comparison for MPC with and without

feed forward at operating condition-2 . . . . . . . . . . . . . . . . . 125

5.20 Histograms of process variables for MPC with and without feed

forward at operating condition-2 . . . . . . . . . . . . . . . . . . . . 126

5.21 Closed loop performance comparison at operating condition-2 for

MISO MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1 Flowsheet of the froth steam heater process . . . . . . . . . . . . . 135

6.2 Process structure for MIMO control design . . . . . . . . . . . . . . 137

6.3 Model validation at OC-1: T2 and T4 for changes in V1 . . . . . . . 138

6.4 Model validation at OC-1: T2 and T4 for changes in V4 . . . . . . . 139

6.5 Model validation at OC-1: P2 for changes in V1 and V4 . . . . . . . 139

6.6 Model validation at OC-2: T2 and T4 for changes in V1 . . . . . . . 140

6.7 Model validation at OC-2: T2 and T4 for changes in V4 . . . . . . . 141

6.8 Model validation at OC-2: P2 for changes in V1 and V4 . . . . . . . 141

6.9 Model validation at OC-3: T2 and T4 for changes in V1 . . . . . . . 142

6.10 Model validation at OC-3: T2 and T4 for changes in V4 . . . . . . . 142

6.11 Model validation at OC-3: P2 for changes in V1 and V4 . . . . . . . 143

6.12 Froth feed temperature, Tin at the three operating conditions . . . . 144

6.13 Process gain variation with incoming froth feed temperature . . . . 145

6.14 MIMO MPC for froth heater process-simulation 1 . . . . . . . . . . 151

6.15 Current operations for FHC: Industrial data . . . . . . . . . . . . . 152



6.16 MIMO MPC for froth heater process-simulation 2 . . . . . . . . . . 153

6.17 MIMO MPC for froth heater process-simulation 3 . . . . . . . . . . 154



List of Symbols

Dα Fractional differentiation or integration of order ι

Γ(.) Euler’s Gamma function

£(.) Laplace transform operator

£−1(.) Inverse Laplace transform operator

γ or α Commensurate fractional order

G(s) Transfer function

L Time delay or dead time

sλ Fractional order (with λ) operator in Laplace domain

ω frequency (per sec)

F(sλ) Filter transfer function

yt Sampled output(s) at tth sampling instant

ut Sampled input(s) at tth sampling instant

an and bm Constant model parameters of fractional order transfer func-

tion.
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Chapter 1

Introduction

1.1 Motivation

Over the last few decades, automatic ‘process control’ systems have emerged as the

standard technology in use in all major process industries, be it oil & gas, chemical

or manufacturing. These systems are crucial for safe plant operation, improved

product quality and production efficiency and also help in reducing environmental

footprints. The word process control contains two important key words, ‘process’

and ‘control’. Understanding the process and its behavior is equally important as

the control aspect for safe plant operation.

To be able to predict something in the near future has always been part of

human thinking and this idea is used in every sphere of human living, science and

technology. In this regard, we have developed process understanding based on

past experience and present knowledge, to predict something in the near future.

Understanding requires complete analysis of the process and models are the most

appropriate tools to analyze any system or process. In the rest of the thesis, the

terms process and system will be used interchangeably.

Mathematical models of a dynamic process take various forms, such as dif-

ferential equations, partial differential equations, state-space equations, difference

equations, transfer functions, etc. Most of the real processes are modeled by con-

structing mathematical equations based on physical laws that govern the behavior

of the process also known as being modeled using first principles. These include use

of physical laws based on mass, energy or momentum balance. The development of

first principle models is usually time-consuming and needs a lot of effort, especially

for a complex process (Henson, 1998). In practice, a large number of processes are,

firstly, poorly understood, and secondly, too complicated to be modeled from first

principles. Also, it is not easy to estimate first principle models directly from
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process data. This is because of identifiability problems which are encountered by

over-parametrization of the model. Process or system identification is an impor-

tant tool for modeling dynamic processes from measured data with a reasonable

degree of accuracy in the absence of detailed first principle models.

In the field of mathematical modeling, based on the amount of a-priori infor-

mation used or available for a process, models can be classified into black box or

white box models. In black box models, no a priori information is available for

a process while for a white box model, all necessary information is available for

model design. Practically all processes have different shades of grey, meaning that

they lie somewhere between the black box and white box models. Ljung (1999)

in his famous book on system identification quoted that “ ...Our acceptance of

models should thus be guided by ‘usefulness’ rather than ‘truth’...”. Thus, system

identification methods that use data from the process are popular in the industry

because these models are easy to understand, and often provide quick solutions.

The practical application of a model has to be taken into consideration before

their use in industry. The identified models based on the nature of the relationship

can be broadly classified as: linear and nonlinear models. It is well known that a

majority of the real world processes are nonlinear by nature; however, the objective

is always to get a reasonably accurate representation of the true process, which at

times can be obtained using localized linear models. Also, it is easier to obtain a

representation of a process if the process is assumed to be locally linear. System

identification methodology in the area of linear models is well developed (Ljung,

1999; Söderström and Stoica, 1989). For linear time series models, a wide variety

of model structures are available for capturing the dynamics of a system with

respect to known inputs and unmeasured disturbances (Ljung, 1999). However,

handling time delays in modeling has always been challenging. It is not possible

to identify an accurate model of the process because of a number of reasons. In

practice, the true model order of the process is not always exactly known and also

data length for identification is finite and data contains unmeasured disturbances/

noise. In this respect, the stochastic nature of the process makes the identification

problem challenging.

For linear models, discrete time models are very well researched. However,

most often the model parameters for a discrete model have no physical interpreta-

tion compared to the continuous-time models. In contrast, continuous-time model

identification (CMI) is increasingly becoming more popular. The parameters of the

identified model are estimated in continuous domain and thus each of the model
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parameters is associated with some physical significance. The physical systems are

inherently continuous in nature; the use of continuous-time models in controller de-

sign and the strong relation between model parameters and the system properties

are the major forces for developments in continuous time identification. Details on

the CMI can be found in Sinha (1991); Unbehauen and Rao (1998); Young et al.

(2003).

Fractional order systems which are described by continuous fractional order

transfer functions have become an increasingly interesting topic of research in the

scientific and industrial communities over last decade. However, identifying a given

system from data becomes more difficult when the physical systems are character-

ized by fractional-order models instead of classical integer order models. Again,

the idea is simple; here we want to build fractional order models for fractional order

systems when it is not possible to use first principle’s models. The models are build

using CMI identification techniques. CMI for rational (or integer) order models are

very well researched and the recent book by Garnier and coworkers (Garnier et al.,

2008) presents the preliminary results in this area and discusses some of the existing

methods. Unlike CMI for integer order models, for fractional order systems, some

work has been carried out in the last few years but the proposed models and algo-

rithms are still in a preliminary stage of establishment. Also, Chen (Chen, 2006)

has argued that fractional order control is ubiquitous when the dynamic system is

of distributed parameter nature (DPS). Whenever material or energy is physically

moved in a process or a plant, there is usually a time delay associated with the

movement. Apparent time delays may result in the identification exercise when

a higher order process (or DPS) is approximated by a lower order model. Both

the equation error based and output error based approaches have been explored in

the literature for fractional order models. However, none of the studies discusses

methods for identification of fractional order system models with time delays. It is

of our belief that fractional calculus and integral calculus will be synonymous in a

few years because of the generic nature of fractional calculus. Thus, in the present

context, the work in this thesis explores continuous-time models for parsimonious

parameter representation of systems, including distributed parameter systems.

The developed model based on the process data could be used for a number of

purposes: control, fault detection and isolation, prediction, etc. In this work, the

focus is on the control design using the identified model(s) for chemical processes.

Even though most industrial processes are nonlinear and highly complex, linear

models are often sufficient to approximate a process around a single operating
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point. A common approach for modeling nonlinear processes is to use multiple

linear models which when combined together can cover the entire operating range

of the nonlinear process. The assumption here is that the process is locally lin-

ear within each of these operating regimes. Also, with so much theory that has

been developed in the area of linear control design and the fact that linear models

simplify the control design, linear models are easy to work with when the control

involves rejection of small disturbances. All simple control schemes such as indus-

trial PID controllers to more advanced predictive controls like model predictive

controller (MPC) use linear empirical models of the process for control design.

Building data based input-output linear models is one of the most widely used

method to design a model based control scheme for industrial processes.

PID controllers are still widely used in the industry because they are easy to

implement and perform well for wide class of processes. It is argued that fractional

order systems require much more than classical PID controllers to achieve good

closed loop performance. A fractional-order PID controller is considered as the

generalization of the conventional PID controllers (Podlubny, 1999a). Fractional

order PID controllers, which provide additional tuning parameters, can provide

better closed loop performance and robustness features compared to classical PID

controllers. PID controllers in general are not very well suited for control of pro-

cesses with long dead time characteristics since they can cause stability issues for

these closed loop systems. The controller design of these processes is a challenging

problem. The most popular and very effective dead-time compensator in use today

is the Smith predictor (Smith, 1957). For processes with time delays, the Smith

predictor structure and the internal model controller (IMC) structure are equiva-

lent. Even for fractional order PID controllers, modifications in the control scheme

such as the Smith predictor, can be made to handle time delays. IMC works well

for single input single output (SISO) processes; however, to deal with process inter-

actions and constraints in multivariable processes, more advanced control schemes

such as model predictive control have gained significant industrial adoption. In

contrast to other controllers, MPC computes optimal control moves by solving an

optimization problem over a finite horizon, taking into account dynamic behav-

ior of the process as well as the operational constraints (Qin and Badgwell, 2003;

Rawlings, 2000). They also present the ease for continuous operation over long

periods of time without expert intervention.

There are a lot of complex and challenging problems found in the process in-

dustries, and this in turn has led to significant research activities in the field of
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model predictive control over past three decades. Given a dynamic model of the

system under consideration, the issues such as controller design to ensure stability

of MPC schemes (Rawlings and Muske, 1993) and efficient online computations

have been very well researched in the process control literature. The key com-

ponent of any MPC scheme is the dynamic model used for carrying out on-line

predictions. Development and maintenance of the dynamic model is of paramount

importance for achieving good closed loop performance. Industrial applications of

MPC rely mainly on linear empirical models obtained by employing time series

analysis (Qin and Badgwell, 2003). Control design based on linearized dynamics

need not exhibit good performance or even stabilizing when operating away from

the equilibrium. In the case of changing operating conditions for a process, one

way to handle the problem of maintaining the stability and/or performance of a

linear MPC scheme is by employing multiple model based controller design. Gain-

scheduling (GS) control using set of linear models can then be used to cover the

entire operating range of the process.

The focus of this thesis is that identification and control go hand in hand and

it is equally important to have a high fidelity and parsimonious model (model with

fewer parameters), to design a good model based controller. The objective is to

build data based models (parsimonious models) for integer and fractional order

systems which can represent a process sufficiently well and use the model(s) to

design controllers (simple PID, fractional order PID, IMC, MPC etc.) to provide

good robustness and closed loop performance.

1.2 Thesis Overview

1.2.1 Thesis Contributions

The research presented in this thesis and the major contributions that distinguishes

it from the other existing work are listed below:

1. Formulation of a continuous-time model identification method for fractional

order system with time delays. Using the proposed method, time delays are

simultaneously estimated along with other model parameters for a commen-

surate fractional order model with time delays (CFOTDS).

2. Evaluation of the proposed identification method is performed on a simulated

heat transfer problem of classical wall, an example of distributed parameter

systems. The proposed method is also applied to two other distributed pa-
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rameter systems, industrial froth heater and experimental setup of stirred

tank heater with transportation delays, and the results are compared with

the rational (integer) order models.

3. Formulated a servo control strategy for tuning of fractional order PI (FO-PI

or PIλ) controllers for fractional order and integer order systems using a ref-

erence model, whose open-loop transfer function is given by the Bode’s ideal

transfer function. A global optimization tool, namely particle swarm optimi-

zation (PSO) is used for optimization based on minimization of a quadratic

cost function satisfying the constraints.

4. Evaluation of the proposed fractional order PI controller tuning method is

performed on a simulated heat transfer problem of classical wall, lag and

delay dominant processes as well as on a computer-interfaced pilot scale con-

tinuous stirred tank heater (CSTH) process. The controller performance is

compared with some of the existing methods to tune conventional PI con-

trollers and fractional PI controllers.

5. A case study application of identification and model based predictive control

design for an industrial separation cell process: Internal model control and

model predictive control using linear models are designed, implemented and

tested in real time on the industrial separation cell.

6. A gain scheduling model predictive controller is designed for a non-square

multi-variable problem of industrial froth heater process. The process has

more controlled variables than manipulating variables; using linear models at

different operating conditions, a gain scheduling MPC is designed and tested

in simulations to see the benefits of multivariate MPC.

1.2.2 Thesis Outline

This thesis has been prepared as per the guidelines from the Faculty of Graduate

Studies and Research (FGSR) at the University of Alberta. The rest of the thesis

is organized as follows.

Chapter 2 describes the identification method for fractional order models with

time delays and presents Monte Carlo simulations on fractional order systems in

the presence of noise as well as simulations to identify a process of thermal diffusion

in a wall. These dynamic models using fractional order transfer functions are built

using little a priori knowledge about the process.
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Chapter 3 describes a tuning method to design fractional order PI controllers

for both integer order and fractional order systems using Bode’s ideal transfer

function as the reference system. The simulation and experimental case study is

presented to validate the benefits of designing fractional order PI controllers.

Chapter 4 provides details on distributed parameter systems and using frac-

tional order models as a plausible way to model these infinite dimensional systems.

Chapter 5 presents industrial case studies on modeling and designing model

based predictive controllers for a separation cell process. Model based predictive

controllers are designed, implemented and tested in real time on the industrial

separation cell.

Chapter 6 presents industrial case studies on modeling and design of a gain

scheduling MPC for an industrial froth heater process. The benefits of this scheme

is discussed using simulations based on models obtained from industrial data.

Chapter 7 draws the conclusion based on the work that has been done in

this thesis and provides some perspectives for future research related to the work

presented in this thesis.
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Chapter 2

Continuous-time model
identification of fractional order
models with time delays 1

Modeling of real physical systems having long memory transients and infinite di-

mensional structures using fractional order dynamic models has attracted signif-

icant interest over the last few years. For this reason, many identification tech-

niques both in the frequency domain and time domain have been developed to

model these fractional order systems. However, in many processes time delays are

also present and estimation of time delays along with continuous time fractional

order model parameters have not been addressed anywhere. This chapter deals

with the continuous-time model identification (CMI) of fractional order systems

with time delays. In this chapter, a new linear filter is introduced for simultaneous

estimation of all model parameters for commensurate fractional order systems with

time delays (CFOTDS). The proposed method simultaneously estimates time de-

lays along with other model parameters in an iterative manner by solving simple

linear regression equations. For the case when the fractional order is unknown,

we also propose a nested loop optimization method where the time delay along

with other model parameters are estimated iteratively in the inner loop and the

fractional order is estimated in the non-linear outer loop. The applicability of the

developed procedure is demonstrated by Monte Carlo simulations on fractional

order models in the presence of white noise. The proposed algorithm has also been

applied to identify a process of thermal diffusion in a wall in simulation, which are

1The work reported in this chapter has been published as: “Continuous-time model identifica-
tion of fractional order models with time delays, IET Control Theory and Applications, DOI:
10.1049/iet-cta.2010.0718”. A condensed version of this chapter was presented at the 15th IFAC
Symposium on System Identification (SYSID 2009), July 2009, France (Narang et al., 2009)
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characterized by fractional order behavior.

2.1 Introduction

Fractional calculus is a generalization of the traditional integer order integral and

differential calculus to non-integer orders. With the growing power of computers,

fractional calculus now has become an increasingly interesting topic of research in

the scientific and industrial communities. In the last two decades there has been a

considerable development in the use of fractional operators in various fields. Before

the 20th century, the theory of fractional calculus developed mainly as a pure the-

oretical field of mathematics useful only for mathematicians. A significant amount

of discussions aimed at this subject has been presented by Oldham and Spanier

(1974) and Podlubny (1999). However, recently it has been observed that many

real-world physical systems are well characterized by fractional-order differential

equations rather than using classical integer order models. In particular, materials

having long memory and hereditary effects (Bagley and Torvik, 1984) and dynam-

ical processes such as mass diffusion and heat conduction (Jenson and Jeffreys,

1974) in fractal porous media can be more adequately modeled by fractional-order

models rather than integer-order models. Some of the other examples of fractal

systems include transmission lines, electrochemical processes, dielectric polariza-

tion and viscoelastic materials. Diffusive interfaces are particularly characterized

by fractional order dynamic behavior, such as it appears in the case of an induc-

tion machine, with Foucault currents inside rotor bars (Benchellal et al., 2004)

and heat transfer model relating flux and the temperature at the diffusive inter-

face (Cois, 2002; Benchellal et al., 2006; Gabano and Poinot, 2011). The special

issue of signal processing (Ortigueira and Tenreiro, 2006) discusses in detail many

applications of fractional calculus in different fields.

System identification has become a standard tool for modeling unknown sys-

tems. However, identifying a given system from data becomes more difficult when

the physical systems are characterized by fractional-order differential equations in-

stead of classical integer order models. Thus, fractional models, using fractional

differentiation, have been developed. The identified models for fractional order

systems can also be used to design controllers for these systems which may not be,

just classical integer order controllers. For integer-order systems, the parameters

of the model equation can be optimized directly once the maximum order of the

system to be identified is fixed, while for fractional-order systems, identification

10



requires the choice of the fractional powers (orders) of the operators, and also the

coefficients of the operators. Thus, loss of integer order significantly complicates

the identification process. Time-domain system identification using fractional dif-

ferentiation models is initiated by Lay (Lay, 1998), Lin (Lin, 1998) and Cois (Cois,

2002), in their PhD thesis work in the late 1990s. The two model identification ap-

proaches developed were: Equation error based and output error based approaches,

both of which are very well studied in the literature for integer order models. As

in the case of continuous model identification for integer order models, fractional

differentiation of noisy signals also amplifies noise. Hence, a linear transformation

using low-pass filter can be applied to the model equation. As for the integer case,

continuous time model identification using linear filter methods have also been

proposed for FO models such as fractional integral filter, Poisson’s state variable

(SVFs) filters (Cois et al., 2001), and Refined Instrumental Variable for Continu-

ous systems (RIVC) (Malti et al., 2008a). Using the iterative instrument variable

(IV) approach it has been shown in Malti et al. (2008a) that the simplified RIVC

method is asymptotically unbiased, given the true system is in the right model

class. They also proposed an algorithm for optimizing the commensurate frac-

tional order using a gradient based method (Victor et al., 2009). Many of these

identification methods have already been applied to model some real physical pro-

cesses for example see Benchellal et al. (2004); Malti et al. (2009); Sabatier et al.

(2006). Use of fractional calculus theory for building parsimonious models can

be found in Muddu et al. (2009, 2010). Also, identification methods based on or-

thogonal basis functions such as fractional Laguerre and Kautz basis functions,

have been proposed (Aoun et al., 2007). The recent paper by Malti et al. (2008b)

discusses briefly all these advances in time-domain system identification using frac-

tional models.

However none of these studies discuss methods for identification of fractional

order system models with time delays. Whenever material or energy is physically

moved in a process or a plant, there is usually a time delay associated with the

movement (Seborg et al., 1989). Time delay is also referred to as dead time, trans-

portation lag or distance-velocity lag. Also, apparent time delays may result due

to measurements or actuators in a process or in the identification exercise when

a higher order process is approximated by a lower order model. It is reported in

Manabe (2003) that due to actuator limitations in some systems such as motion

control, the system can be well modeled with a FO open-loop transfer function

model with time delay. Malti et al. (2009) noticed the time-lag in flux diffusion
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while modeling a thermal rod process (a fractional order system) from experi-

mental data. In this work, the focus is to develop a linear filter method based

on the equation error (EE) approaches for direct identification of continuous-time

transfer function models. In this thesis, we describe a scheme for continuous time

identification of commensurate fractional order models with time delays. The pro-

posed algorithm is a extension of the authors’ previous work (Narang et al., 2009).

We propose two formulations based on the type of input signal excitation. The

first formulation is based on step input excitation and the second one applies to

more generic (RBS, PRBS, Sinusoidal etc) kind of input signal excitation. In this

scheme the delay is estimated simultaneously with all other model parameters. The

formulation as developed in Ahmed et al. (2007) for integer order continuous-time

systems is extended to identification of fractional system models. Wang and Zhang

(2001) proposed a method to estimate time delay along with other parameters for

integer order models using a step input. To the best knowledge of the author no

formulation for estimating all model parameters including delays has been pro-

posed for fractional models. The formulation is based on the low pass filtering

operation where the filter is chosen as the combination of RIVC and a linear inte-

gral filter, to make the delay term appear as explicit parameter along with other

parameters. The proposed method estimates the time delay along with constant

model parameters in an iterative manner by solving simple linear regression equa-

tions. In the presence of noise, a modified scheme using instrument variable method

where instruments are build based on auxiliary model is developed. For fractional

models the aim is also to identify fractional powers along with other model pa-

rameters. Here, we also propose a nested loop optimization method where the

time delay along with constant model parameters are estimated iteratively in the

inner loop and the commensurate order is estimated in the non-linear outer loop

for commensurate type transfer function models. The advantage of working with

commensurate order models is that all fractional powers in the model are integer

multiple of a single fractional order and therefore we need to estimate only one

term in the outer loop. The proposed method is generic in the sense that it can

also be applied to integer order transfer function models.

The remainder of this chapter is organized as follows. Section 2.2 presents

a brief mathematical background of fractional calculus with an introduction to

fractional order models. The continuous time model identification algorithm for

CFOTDS using step input and any other generic kind of input excitation is pre-

sented in Section 2.3. To study the efficacy of the proposed strategy developed
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in the Section 2.3, different examples of fractional order models in the presence

of noise are outlined in Section 2.4. Section 2.5 discusses the results for the pro-

posed algorithm applied to a real process of thermal diffusion in a wall, followed

by concluding remarks in Section 2.6.

2.2 Mathematical background

2.2.1 Definitions and FO models

Fractional calculus is a generalization of integration and differentiation to non-

integer orders. The two most popular definitions used to describe fractional dif-

ferentiation and integration are the Grünwald-Letnikov (GL) discrete form of the

definition and the Riemann-Liouville (RL) definition (Oldham and Spanier, 1974).

The GL definition for a function f(t) is given as

Dαf(t) = lim
h→∞

1

hα

∞∑
i=0

[(−1)i
(

α
i

)
f(t− ih)], (2.1)

where (
α
i

)
=

Γ(α + 1)

Γ(i+ 1)Γ(α− i+ 1)
, (2.2)

and the operator Dα defines fractional differentiation or integration depending on

the sign of α, Γ(.) being the well known Euler’s Gamma function and h is the finite

sampling interval. This definition is particularly useful for digital implementation

of the fractional operator. The RL definition is given as

Dαf(t) =
dm

dtm

[
1

Γ(m− α)

∫ t

0

f(τ)

(t− τ)α+1−m
dτ

]
(2.3)

where m is an integer such that (m − 1 < α < m) and t > 0 ∀ α ∈ R+. For

convenience, the Laplace domain notation is usually used to describe fractional

differentiation-integration operation. When the initializations are assumed to be

zero,

£{Dαf(t)} = sαF (s) (α ∈ R) (2.4)

The generic single-input single-output (SISO) fractional order system represen-

tation in the Laplace domain is given as

G(s) =
Y (s)

U(s)
=
κ0s

β0 + κ1s
β1 + ....... + κms

βm

1 +
1sα1 + ...... +
nsαn
(2.5)

where κ0, κ1, ......, κm and
1, 
2, ......, 
n are constant model parameters or model

coefficients, while β0 < β1 < ..... < βm and α1 < α2 < ..... < αn are the
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fractional powers or fractional orders (real numbers). The transfer function (2.5)

is called non-commensurate when βj , αi can take any arbitrary values.

The transfer function as given by equation (2.5) can be classified as a com-

mensurate transfer function. A transfer function G(s) is commensurable of order

γ if and only if it can be written as G(s) = F (sγ), where F = T/R is a ratio-

nal function, with T and R as two coprime polynomials. Assuming that G(s) is

commensurate transfer function of order γ, then it can be written as

G(s) =

∑m
j=0 bjs

jγ

1 +
∑n

i=1 ais
iγ

(2.6)

Therefore, for commensurate transfer function all fractional powers are integer

multiple of a real number, γ. Commensurate transfer function models represent

more generic class of polynomial type transfer functions where γ = 1 gives standard

integer order transfer function models. The analytical expression for fractional

order systems in the transfer function form is most commonly (more than 50%)

described by commensurate transfer functions. A commensurate transfer function

of order γ for fractional-order time delay system is given as

G(s) =

∑m
j=0 bjs

jγ

1 +
∑n

i=1 ais
iγ
e−Ls (2.7)

where L is the time delay. In this work we will be working only with commensurate

transfer function models with delays as described in equation (4.2).

2.2.2 Stability condition

Stability condition for a class of transfer function of the form (2.6) has been es-

tablished by Matignon (1998). The theorem is as follows:

Stability Theorem: A commensurable γ− order transfer function G(s) =

F (sγ) = T (sγ)/R(sγ), where T (.) and R(.) are two coprime polynomials, is

BIBO stable if and only if

0 < γ < 2

and ∀ σ ∈ C such that R(σ) = 0

|arg(σ)| > γ
π

2
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2.2.3 Integer order approximation

The modeling and simulation of fractional order systems are complicated due to

their long memory behavior (Oustaloup, 1995) and are based on the approxima-

tion (approximating the infinite dimensional nature) of the fractional derivative

operator. For digital implementation of the fractional order operator, the key step

is numerical evaluation or discretization of this operator. In most of the cases, it is

not easy to obtain analytical expressions of the output for a given input excitation

for a fractional order transfer function model. Two classes of methods developed

over the last few years to approximate the fractional derivative operator can be

classified as: direct methods - based on the approximation of a fractional derivative

operator by a rational discrete time one, and indirect methods - based on the ap-

proximation of a fractional derivative operator by a rational continuous-time one.

Power series expansion and continuous fraction expansion (CFE) of the Euler’s,

Tustin and Al-Alaoui operators give different discrete approximations of the frac-

tional operator. The power series expansion of Euler’s operator gives numerical

approximation of the GL definition as in equation (2.1). The details for the dis-

cretization schemes can be found in (Vinagre et al., 2002; Chen and Moore, 2002).

One of the good continuous approximation for this fractional order operator com-

pared to GL definition is the Oustaloup continuous approximation (Oustaloup,

1995) where it makes use of a recursive distribution of poles and zeros. In this

work, we will be using the Oustaloup continuous approximation for the simulation

of fractional order transfer functions. Additional details on this appear below.

Many real physical systems generally have bandlimited fractional behavior and

also due to the practical limitations of input and output signals (Shannons cut-

off frequency for the upper band and the spectrum of the input signal for the

lower band), fractional operators are usually approximated by high order rational

models. As a result, a fractional model and its rational approximation have the

same dynamics within a limited frequency band. The Oustaloup approximation of

sλ in the frequency band [ωA, ωB] has been defined as

sλ → sλ[ωA,ωB] = C0

(
1 + s

ωA

1 + s
ωB

)λ

≈ C0

N∏
k=1

1 + s
ώk

1 + s
ωk

(2.8)

where

ωi = α ώi, ώi+1 = η ωi and λ = 1− log α

log αη
(2.9)

where the parameter C0 is chosen such that the approximation shall have a unit

gain at 1 rad/s.
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Note that the developed method is independent from the way fractional differ-

entiation and integration are simulated in the time domain. However, approxima-

tion error will arise if we don’t use a good approximation to simulate the fractional

order operator. We have used the Oustaloup approximation in this chapter.

2.3 Problem Statement

2.3.1 Identification formulation

The transfer function for CFOTDS of commensurate order α is given as

G(s) =

∑m
j=0 bjs

jα

1 +
∑n

j=1 ajs
jα
e−Ls (2.10)

For integer order models, α = 1 and only the model coefficients aj, bj and L

are estimated. However, here we are interested in estimating α as well. For the

present case, initial conditions are assumed zero and the model in the vector form

can be represented as

ans
nαY (s) = bms

mαU(s)e−Ls + e(s) (2.11)

where

an = [an an−1 .... a1 1] ∈ R1×(n+1) (2.12)

bm = [bm bm−1 .... b1 b0] ∈ R1×(m+1) (2.13)

snα = [snα s(n−1)α .... sα s0]T ∈ R(n+1)×1 (2.14)

smα = [snα s(m−1)α .... sα s0]T ∈ R(m+1)×1 (2.15)

and Y (s),U(s) and e(s) are the Laplace transforms of output y(t), input u(t) and

e(t) respectively. The term e(t) accounts for the noise which is assumed to be

uncorrelated with y(t). Note that here we are using an equation error approach

for estimating a continuous time model.

Parameter estimation using a filtering approach has been very well established

method available in the literature; however, to estimate only the parameters (an

and bm) but not the delay. Victor et al. (2009) proposed a continuous-time iden-

tification method with optimal fractional differentiation order for fractional order

systems. The estimation of delay is mathematically different from the estimation

of other parameters because the other parameters appear explicitly in the model
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while the delay appears implicitly as can be seen in equation (2.10). Next, we de-

vise a linear filter method for estimation of model parameters. To obtain explicit

appearance of the delay term in the estimation equation and have it appear as an el-

ement in the parameter vector, we introduce a linear filter method with a structure

of the filter as a combination of RIVC and a linear integral filter. This structure

of a filter has been introduced by Ahmed et al. (2007) for rational order models.

This low pass filter not only serves the purpose of removing noise amplification

but it also makes the delay term appear as a explicit parameter to be estimated

along with the other parameters. The filter transfer function is represented as

F (sα) =
1

sA(sα)
(2.16)

where A(sα) is the denominator of the model equation. Now applying the filtering

operation on both sides of equation (2.11) yields

ans
nαF (sα)Y (s) = bms

mαF (sα)U(s)e−Ls + F (sα)e(s) (2.17)

or

ans
nα 1

sA(sα)
Y (s) = bms

mα 1

sA(sα)
U(s)e−Ls + ς(s) (2.18)

where ς(s) = F (s)e(s). Here F(s) can be factored as

1

sA(sα)
=

C(sα)

sA(sα)
+

1

s
(2.19)

where

C(sα) = −(ans
nα + an−1s

(n−1)α + .....+ a1s
α) (2.20)

Also, ans
nα and bmsmα can be factored as

ans
nα = (āns

(n−1)αsα + 1) (2.21)

and

bms
mα = (b̄ms

(m−1)αsα + b0) (2.22)

where ān and b̄m are the an and bm vectors respectively with the last element

removed. Now defining the filtered output and input variables as

Yf(s) =
Y (s)

sA(sα)
and YfD(s) =

sαY (s)

sA(sα)
(2.23)

Uf (s) =
U(s)

sA(sα)
and UfD(s) =

sαU(s)

sA(sα)
(2.24)
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Thus equation (2.18) becomes

Yf(s) = −āns
(n−1)αYfD(s) + b̄ms

(m−1)αUfD(s)e
−Ls

+ b0

(
C(sα)

sA(sα)
+

1

s

)
U(s)e−Ls + ς(s) (2.25)

Defining additional filtered variables as

UfC (s) = C(sα)Uf(s) =
C(sα)

sA(sα)
U(s) (2.26)

UI(s) =
U(s)

s
(2.27)

Then equation (2.25) can be written as

Yf(s) = −āns
(n−1)αYfD(s) + b̄ms

(m−1)αUfD(s)e
−Ls

+ b0UfC (s)e
−Ls + b0UI(s)e

−Ls + ς(s) (2.28)

Before taking the Laplace inverse on both sides, we define the Laplace inverse for

various terms

£−1(Yf(s)) = yf(t) (2.29)

£−1(YfD(s)) = yfD(t) (2.30)

£−1(UfD(s)) = ufD(t) (2.31)

£−1(ς(s)) = ς(t) (2.32)

£−1
(
s(n−1)αYfD(s)

)
= y

(n−1)α
fD

(t) (2.33)

£−1
(
s(m−1)αUfD(s)e

−Ls
)
= u

(m−1)α
fD

(t− L) (2.34)

£−1(UfC (s)) = ufC(t) (2.35)

£−1(UfC (s)e
−Ls) = ufC(t− L) (2.36)

and

£−1(UI(s)) =

t∫
0

u(t)dt (2.37)

£−1(UI(s)e
−Ls) = uI(t− L) (2.38)

Now, depending upon the type of input signal used for perturbation we propose

two different formulations for estimating the model parameters.
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Using step input signal

In continuous model identification, by using a step input signal we can estimate

all the parameters of a higher dimensional model. If we have a step input signal

of step size h, then

U(s) =
h

s
(2.39)

then equation (2.38) becomes

£−1(UI(s)e
−Ls) = £−1

(
1

s

h

s
e−Ls

)
= h(t− L) ∀ t > L (2.40)

and equation (2.36) can be written as

£−1(UfC (s)e
−Ls) = £−1

(
C(sα)

sA(sα)

h

s
e−Ls

)
= ufC (t− L) (2.41)

Now taking inverse Laplace transform of equation (2.28) we have

yf(t) = −āny
(n−1)α
fD

(t) + b̄mu
(m−1)α
fD

(t− L)

+b0hufC (t− L) + b0h(t− L) + ς(t) for t > L (2.42)

If we define Gf1 as

Gf1 =

⎡⎣ u
(m−1)α
fD

(t− L)

hufC(t− L) + ht

⎤⎦T

(2.43)

then

yf(t) =
[
−y

(n−1)α
fD

(t) Gf1 − h
]⎡⎣ ān

bm

b0L

⎤⎦+ ς(t) (2.44)

or equivalently

ψ(t) = φ(t)θ + ς(t) (2.45)

where θ =

⎡⎣ ān

bm

b0L

⎤⎦. Note that a0 = 1. Similarly, we can consider model (2.45) for

all t = tk where k = t, t + 1, ......N , such that t > L, N being the total number of

data points. The stacked terms in this equation then yield the following estimation

equation

Ψ = Φθ +Δ (2.46)

which is linear in parameter equation and can be solved using linear least squares.

However, the delay, L appears as b0L but since b0 is estimated simultaneously in θ,

we can estimate delay using this fact. In practice, the selection of the output y(t)
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after t > L can be made as follows (Bi et al., 1999). When the process output is

stationary, the process output will be monitored for a period, the ’listening’ period,

during which the noise band Bn can be found. Then, y(t) satisfying

arg(y(t)) > 2Bn (2.47)

can be treated as the process response after t > L, and thus can be used for the

model (2.46).

Generic input signal

For any other kind of input signal we use graphical information from the time

series input curve. From Fig. 2.1 it can be seen that, for the input signal U(t),

the UI(t−L) term corresponds to area under the U(t) curve over the time instant

(t − L). This can be written as the sum of three terms (or representing areas on

the curve) as

t - L t

U(t)

t

U(t)

L

 Area II

Area I

Figure 2.1: Time series process input curve

area I

uI(t− L) = uI(t)−

︷ ︸︸ ︷
t∫

t−L

[u(tk)− u(t)]dtk −u(t)L︸ ︷︷ ︸
area II (2.48)

Here, for demonstration purpose we have used a sinusoidal input but the above

relationship can be used for any type of input signal excitation. Using the above
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defined relation (2.48) and taking Laplace inverse of equation (2.28), we have

yf(t) = −āny
(n−1)α
fD

(t) + b̄mu
(m−1)α
fD

(t− L) + b0ufC(t− L)

+b0

⎡⎣uI(t)− t∫
t−L

[u(tk)− u(t)] dtk − u(t)L

⎤⎦+ ς(t) (2.49)

Now if we again define the augmented Gf2(t) as

Gf2(t) =

⎡⎢⎣ u
(m−1)α
fD

(t− L)

ufC(t− L) + uI(t)−
t∫

t−L

[u(tk)− u(t)] dtk

⎤⎥⎦ (2.50)

then

yf(t) =
[
−y

(n−1)α
fD

(t) Gf2(t) − u(t)
]⎡⎣ ān

bm

b0L

⎤⎦+ ς(t) (2.51)

The model equation (2.51) can be written as a linear regression equation of the

form

ψ(t) = φ(t)θ + ς(t) (2.52)

where

θ =

⎡⎣ ān

bm

b0L

⎤⎦ (2.53)

Similarly, we can consider model (2.52) for all t = tk where k = 1, 2, ......N . The

stacked terms in this equation for different times then yield the following estimation

equation

Ψ = Φθ +Δ (2.54)

Thus, using all the filtered variables and approximating the area for the input

curve, we are able to make time delay term appear as an explicit term in the form

of a parameter vector in the regression model. Now given any input-output data

we can formulate this identification problem as given above and estimate all the

parameters using linear least square method.

2.3.2 Parameter estimation

When α is known:

For the case when the commensurate order α is known, we only need to estimate

an, bn and L. Since the filter itself involves the coefficients an and we need L in

order to formulate the above linear regression equation, we start with some initial
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values of an and L, then solving the linear model developed in the previous section

using linear least squares we can get a new estimate of the parameter vector θ. This

parameter vector also gives us updated estimates of an (note that a0 = 1) and L.

The updated values are again used to get the new estimates. The proposed algo-

rithm is similar to the RIVC algorithm except the proposed algorithm formulates

an iterative procedure to simultaneously estimate the parameters and the delay, L.

However, the delay L appears as b0L but since b0 is estimated separately in θ, we

can estimate the delay using this and do it iteratively until until the convergence

is achieved for all the parameters. Note that we still have L term coupled with the

b0 term, so any error in estimating one term translates to another.

Instrument variable method

For the cases when the data is corrupted with white noise, the filtering operation

converts the white noise signal to colored noise and this algorithm gives biased

estimates in the presence of colored noise. Therefore, in order to get unbiased

estimates of the parameters, we use the bootstrap instrumental variable (IV) algo-

rithm (Young, 1970) where the instruments are built based on the auxiliary model

(using predicted y(ŷ) instead of measured y values). The instrument variable for

the first formulation is then defined as

φIV (t) =

⎡⎣ −ŷ
(n−1)α
fD

(t)

Gf1(t)
−h

⎤⎦T

(2.55)

and for the second formulation it is defined as

φIV (t) =

⎡⎣ −ŷ
(n−1)α
fD

(t)

Gf2(t)
−U(t)

⎤⎦T

(2.56)

Using this, we can construct the instrumental variable matrix as ΦIV (t) and we add

this IV scheme within the iteration steps of our proposed method thus requiring

no additional steps, and the parameter estimation step is then given by

θ̂
(i)
IV =

(
ΦIV (θ̂

(i−1)
IV )TΦ(θ̂

(i−1)
IV )

)−1

ΦIV (θ̂
(i)
IV )

T Ψ(θ̂
(i−1)
IV ) (2.57)

where (i) gives the iteration count, and ΦIV (θ̂
(i−1)
IV ), Φ(θ̂

(i−1)
IV ) and Ψ(θ̂

(i−1)
IV )

constructs ΦIV , Φ and Ψ respectively for the parameter vector θ̂
(i−1)
IV .
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When α is unknown:

For cases when the commensurate order α needs to be estimated along with other

parameters, we can get an estimate of α by posing the problem as a nested loop

optimization problem. We start with an initial value of α in the outer loop and in

the inner loop we iteratively estimate the model parameters (an,bm) and the delay

term (L), as discussed in the previous section. Once convergence is achieved in the

inner loop for a fixed α, we update α in the outer loop in a non-linear fashion.

2.3.3 Summary of the proposed algorithm

The iterative procedure for the parameter estimation for both the formulations

can be summarized as

STEP 1: OUTER LOOP

Initialization 1: Initialize the algorithm with some initial value for α.

STEP 2: INNER LOOP

Initialization 2: Initialize the inner loop with some initial values for â
(0)
n and

L̂(0).

1. LS Step: i = 1

Construct Ψ and Φ by replacing an and L with the estimates, as â
(0)
n

and L̂(0) and get new estimates of the parameters as

θ̂(1) = (ΦTΦ)−1(ΦTΨ)

Get values of â
(1)
n ,b̂

(1)
m and L̂(1) from θ̂(1).

2. IV Step: i = i+1 to convergence

Construct Ψ,Φ and ΦIV by replacing an,bm and L with estimates as

â
(i−1)
n , b̂

(i−1)
m and L̂(i−1) and get new θ̂(i) estimates as

θ̂(i) = (ΦT
IVΦ)

−1(ΦT
IVΨ)

Get the values of â
(i)
n , b̂

(i)
m and L̂(i) from θ̂(i) and repeat this step till

convergence.

STEP 3: Update value of α based on the minimization of the objective function

(i.e repeat steps 1 and 2 till this objective function is minimized).

α̂ = argmin
α

(ΔTΔ)
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The algorithm stops when ∥∥α̂(i) − α̂(i−1)
∥∥
2
< ε

the norm of the difference in the parameter vector for two consecutive iterations

is less than, ε which is chosen as equal to 10−4.

For the cases when α is known, we will only have the inner loop where the

model parameters an,bm and L are estimated iteratively. Usually if an integer

order approximation is available for a fractional order transfer function model,

the values of parameters from these models are used as initial guesses for this

algorithm. Also, since we are only dealing with single input single output models,

a finite impulse response for the data set can provide a good initial guess for the

time delay. The algorithm for the proposed scheme is sketched in Fig. (2.2). The

Assume an, bm and L

Fix filter order α

LS STEP : Estimate the 
parameters solving linear 

regression equation. 

IV STEP : Get updated 
values of parameters, again 
solving the linear regression 

equation

Convergence Optimal α

Update L and an

NO

NO

Update α

FO model with 
delay 

YES

YES

Figure 2.2: Algorithm for estimating parameters for CFOTDS

optimization toolbox in MATLAB is used for solving the outer non-linear loop.
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2.3.4 Convergence issues for the proposed method

The initialization of the inner loop involves choices of an,bm and L. It is very

difficult to prove theoretically the convergence of the proposed algorithm and this

is beyond the scope of this work. In practice any initial choice is good except that

the filter should not be unstable. As the filter is updated in every step, the final

estimate of the parameters is not found to be much sensitive to the initial choice.

However, for the outer loop some knowledge on the commensurate fractional order

is necessary. This is the limitation of the proposed algorithm that if the outer loop

is initialized with a poor initial guess, the convergence of inner loop is not always

guaranteed. For the case when the fractional order is known, extensive simulation

study shows that the parameter estimates obtained in the inner iterative loop

converges to the true parameter values.

2.4 Simulation Examples

To illustrate the utility of the proposed algorithm, the identification exercise is

carried out on some simulation examples. For the formulation using step input

type excitation, we present the result for the case when all model parameters

including commensurate order are unknown. Using the second formulation, we

present the results for the following two cases: when the commensurate order is

known and when it is unknown. The identification exercise is carried out using

two transfer functions of the form given below:

G(s) =
b0

a1sα + 1
e−Ls (2.58)

G(s) =
b0

a2s2α + a1sα + 1
e−Ls (2.59)

where α is the commensurate fractional order for this model. A zero initial con-

dition is assumed for all cases. The sampled noise free outputs generated from

simulations for a given input excitation are corrupted by discrete-time white noise

sequences with a signal to noise ratio (SNR) given as

SNR =
var(signal)

var(noise)
(2.60)

In presence of noise, Monte Carlo simulation analysis (number of runs is more for

less computational expensive case) is done to evaluate the efficacy of the proposed

algorithm. The integral in equation (2.50) is evaluated numerically. A fast sam-

pling rate is chosen to reduce the estimation error because of the approximations

25



involved in using fractional operator and a continuous time model in general as-

sumes that a sufficiently fast sampling rate data is used for parameter estimation.

2.4.1 Example 1

For this case, we considered the following fractional order system described in

equation (2.61) where we are also estimating the commensurate order α along

with a1,b0 and L.

GFO1(s) =
1

s0.5 + 1
e−0.5s (2.61)

Thus, the true parameters are b0 = 1, a1 = 1, L = 0.5 and α = 0.50. The integer

order model approximation for (2.61) is available for this process and is given as

GIO1(s) =
1

1.5s+ 1
e−0.1s (2.62)

The fractional order term is approximated with Oustaloup’s approximation with

N = 15 in the frequency interval [10−3, 103].

Step input excitation

The sampled data is generated by simulating the system using a unit step input

with sampling time of 0.1 sec. Fig. 2.3 shows the response of the process to two

successive steps. The output y(t) is corrupted with noise having the following

values of SNR: ∞(deterministic case), 10 and 5; and for each SNR, for different

noise realizations we perform 200 Monte Carlo (MC) simulations. For each case

we estimated the fractional order (α) as well as other model parameters (a1,b0,L)

simultaneously using the proposed nested loop optimization algorithm. Table 2.1

gives the the average (
¯̂
θ) and the sample standard deviation (s(θ̂)) of each param-

eter for these MC simulations. We started with an initial guess of α = 0.4 for all

the cases. As can be seen the estimated parameters including the fractional order

α are quite close to the true values, thus indicating that the proposed algorithm

gives unbiased estimates of all the parameters in the presence of noise and the

uncertainty associated with each parameter is more for lower SNR. However, there

are some computational issues with the outer non-linear loop, as for some other

guess value of α, the inner loop does not always converge. Therefore, having some

process knowledge regarding the fractional order α is important.

Generic input excitation

The input excitation is chosen to be a pseudo random binary sequence (PRBS)

generated using the ‘idinput’ function in MATLAB with levels [-1, 1]. As we don’t
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Figure 2.3: Step response for GFO1

Table 2.1: Step input : Estimated parameters for process GFO1(s)

True SNR = ∞ SNR = 10 SNR = 5
¯̂
θ s(θ̂)

¯̂
θ s(θ̂)

α 0.50 0.500 0.498 0.027 0.492 0.039

a1 1.00 1.001 1.000 0.025 1.001 0.06

b0 1.00 1.000 1.003 0.009 1.01 0.026

L 0.50 0.501 0.490 0.023 0.488 0.05

have any rule of thumb available for fractional order processes, here a rule of thumb

which is commonly used in many identification techniques is used: the frequency

band for PRBS perturbation is used according to the following rule, Frequency

Band � [0, 30
Ts

]
, where Ts is the settling time. The frequency band for PRBS

excitation is chosen as [0, 0.02] and the sampled data is generated using a sampling

time of 0.1 sec. Fig. 2.4 shows the input-output data used for identification for

this type of excitation. For this example we performed the identification exercise

for these two cases

• When α is known and

• When α is unknown
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Figure 2.4: Generic input excitation data for GFO1

The same three values of SNR (∞,10,5) are chosen and for each SNR, Monte Carlo

(MC) simulations are performed for different noise realizations. The algorithm is

initialized with values of a1,b0,L from the integer order model and for the case

with unknown α it is initialized with a value of 0.55 and the inner loop with the

parameters from the integer order model.

Case 1 - When α is known: For this case we estimated the model parameters

(a1,b0,L) assuming the commensurate order α is known and equal to 0.5. Table

2.2 gives the average and the sample standard deviation of each parameter for 200

MC simulations. As can be seen, the estimated parameters are quite close to the

true values, thus indicating that the proposed algorithm gives unbiased estimates

even in the presence of noise.

Table 2.2: PRBS input : Estimated parameters for process GFO1(s)

True SNR = ∞ SNR = 10 SNR = 5
¯̂
θ s(θ̂)

¯̂
θ s(θ̂)

a1 1.00 1.001 1.011 0.017 1.007 0.044

b0 1.00 1.000 1.001 0.006 1.000 0.015

L 0.50 0.500 0.502 0.012 0.490 0.039
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Case 2 - When α is unknown: For this case we estimated the fractional

order (α) as well as other model parameters (a1,b0,L) simultaneously using the

proposed nested loop optimization algorithm. Table 2.3 gives the average and the

sample standard deviation of each parameter for 100 MC simulations. Some error

in estimating fractional order in the outer loop is present because of the approxima-

tions involved. Fig. 2.5 presents the ratios of estimated to true parameters along

with their confidence intervals (average ± one standard deviation) in a graphical

form. As can be seen, the estimated parameters are quite close to the true values,

and the scaled confidence intervals include the ratio of one, thus indicating that

the proposed algorithm gives unbiased estimates in the presence of noise.

Table 2.3: PRBS input : Estimated parameters for process GFO1(s)

True SNR = ∞ SNR = 10 SNR = 5
¯̂
θ s(θ̂)

¯̂
θ s(θ̂)

α 0.50 0.499 0.502 0.019 0.509 0.036

a1 1.00 1.000 1.01 0.013 1.018 0.029

b0 1.00 1.001 1.003 0.009 0.998 0.018

L 0.50 0.499 0.506 0.01 0.515 0.029

Fig. 2.6 presents the Bode plots for parameter estimates from all the 200

realizations. As can be seen the 200 models fit the Bode diagram of the simulated

system (2.61) really well.

2.4.2 Example 2

The process with the following transfer function is used:

GFO2(s) =
1

8s2×0.75 + 5s0.75 + 1
e−4.8s (2.63)

Thus, the true parameters are b0 = 1, a1 = 5, a2 = 8, L = 4.8 and α = 0.75. The

input excitation is chosen to be a pseudo random binary sequence (PRBS) gener-

ated using the ‘idinput’ function in MATLAB with levels [-1, 1]. The frequency

band for PRBS excitation is chosen as [0, 0.015] and the sampled data is generated

using a sampling time of 0.1 sec. Fig. 2.7 shows the input-output data used for

identification for this type of excitation.

Table 2.4 gives the average and the sample standard deviation of each parameter

for 100 MC simulations. As can be seen, the average ± one standard deviation of
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Figure 2.5: Effect of noise level on parameter estimates
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Figure 2.6: Bode plots for 200 MC simulation runs : (-) true process, (- -) 200 FO
models

the parameters include the true value of parameters. The algorithm is initialized

with the value of α as 0.5 for all cases.
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Figure 2.7: Generic input excitation data for GFO2

Table 2.4: PRBS input : Estimated parameters for process GFO2(s)

True SNR = ∞ SNR = 20 SNR = 10
¯̂
θ s(θ̂)

¯̂
θ s(θ̂)

α 0.75 0.750 0.744 0.022 0.740 0.025

a1 5.00 5.010 4.896 0.254 4.821 0.511

a2 8.00 8.004 8.149 0.331 8.110 0.415

b0 1.00 0.999 1.008 0.002 1.000 0.031

L 4.80 4.793 4.701 0.108 4.689 0.151

2.5 Application to Thermal diffusion in a wall

For many real processes, fractional differentiation appears naturally when the sys-

tem transients are governed by a diffusion equation, and particularly between the

variables governing the functioning of the interface. Benchellal et al. (2006) has

shown that the transfer function H(s) relating heat flux and the temperature, on

the front face of the heated wall (which is governed by classical heat conduction

equation), is a fractional order transfer function with half integer order. This

classical wall (CW) problem is considered as a process for this simulation study

to illustrate the importance of our proposed algorithm on a real physical system.

Fig.2.8 represents the classical wall problem used to analyze heat transfer. The

governing equation relating heat flux, Ω(x, t) and the temperature, T (x, t) for this
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Figure 2.8: Classical wall problem

process as:

∂T (x, t)

∂t
= ζ

∂2T (x, t)

∂x2
(2.64)

Ω(x, t) = −	∂T (x, t)
∂x

(2.65)

where ζ is the thermal diffusivity (= �
ρc
), 	 is the thermal conductivity, ρ is the

mass density, and c is the specific heat. The boundary conditions are such that

the temperature at face B is kept constant and equal to zero during the overall

heating experiment and the external heat is added at face A, that is

T (l, t) = 0 (2.66)

Ω(0, t) = Ωin(t) (2.67)

where ‘l’ is the distance between two walls.

2.5.1 Transfer function for the wall problem

If SA is the cross-sectional area of the wall and we define y(t) = T (x∗, t) and heat

input (not flux) as, u(t) = Ωin(t)SA, then an analytical expression for the transfer

function, H(s) relating Y (s) and U(s) can be formulated as

H(s) =
Y (s)

U(s)
=

1

SA	
√

s
ζ

exp

(
(2l − x∗)

√
s
ζ

)
− exp

(
x∗
√

s
ζ

)
1 + exp

(
2l
√

s
ζ

) (2.68)

The detailed derivation of this is presented in chapter-4. Once the exponential

series expansion is done, the transfer function relating temperature and heat input
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is a commensurate fractional order model with commensurate order 0.5. Thus, it

would require an infinite number of terms in both the numerator and denominator

to model this process accurately, and working with a reduced model structure will

always result in some modeling errors.

Based on the first principle model, a time delay or dead time will not appear

in a process transfer function until and unless there is mass or energy flow. Since

this process involves energy flow, and depending on the location of the process

measurement device (which is represented by x∗ here), a dead time may appear

in the process. Malti et al. (2009) noticed the time-lag in flux diffusion while

modeling thermal rod process from experimental data. Thus, apparent time delay

may be present in this process. Using this fact into consideration, and the fact that

the process dynamics involve non-integer behavior, it is assumed that this system

can be approximated by fractional order model with a time delay using a fewer

number of parameters. So, we are trying to model this process as a parsimonious

in parameter model using fractional order dynamic model with a delay term.
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Figure 2.9: Step response of the process

Sampled data is generated by performing numerical simulations using the finite

difference method. The following properties of Brass are used for simulations: ρ

= 8.522× 103 kg/ m3, c = 385 J/kg 0C, λ = 111 W/m 0C. The distance between

the walls, l is chosen as 5 cm and surface area of the wall(SA) is 100 cm2. Temper-

ature is measured at a distance of 2 cm from the front face of the wall (x∗). 300

discretization points are chosen. For a step input of 10KW in heat input, if we see

the zoomed in Fig. 2.9 for the initial time, it shows why we are trying to model
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this as fractional order model with delay.

2.5.2 Identification results

The sampled data (15000 data points) for the identification exercise is generated

using sampling time of 0.1 sec with PRBS type input excitation with levels of [-0.1,

0.1] KW in the frequency band of [0, 0.02]. A Gaussian white noise signal with

SNR = 20 is added into the simulated noise free output sequence. This process is

known to exhibit fractional order dynamics for frequencies less than 103 rad/sec

(Benchellal et al., 2006). Here, we use the Oustaloup approximation with N =

15 in the frequency interval [10−3, 103] to approximate the fractional differential

operator. The overall data is partitioned into two parts : (a) an identification
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Figure 2.10: Time response for the wall process

set: First 8000 data points and (b) the validation data set: next 7000 data points.

The identification data set is shown in Fig. 2.10. Next, the proposed algorithm

is used to fit a fractional order model with time delay to the identification data.

The model structure of the commensurate model (4.1) is varied to find a model

which gives the best predictions. The estimated continuous time FO model (using

average parameter value) along with sampled standard deviation for all parameters
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using 50 Monte Carlo simulations is given as (4.42)

GFO3(s) =
0.0273(±0.003)

46.239(±6.211)s2×(0.585±0.035) + 2.263(±1.265)s0.585(±0.035) + 1
e−0.899(±0.058)s

(2.69)

It is not possible to show the predictions from all the 50 models, so only predictions

from the average model has been presented in Fig. 2.11. It shows the model

predictions of GFO3(s) (infinite step ahead predictions) and the process output for

all 50 realizations on the validation data set. As can be seen, FO model (GFO3(s))

fits the measured output quite well. Next we compare the step response (for a
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Figure 2.11: Model predictions on the validation set: (- -) black dotted line is
model prediction)

step change of 10 KW in heat input) of all the 50 estimated models, to the step

response from the actual process as shown in Fig. 2.12. As can be seen from Fig.

2.12, GFO3(s) estimates both gain and delay very accurately. The Bode plot for

the model GFO along with the actual frequency response of the process is shown

in Fig. 2.13. It can be seen that the frequency response of the model GFO3(s) is

nearly the same as the true process at low frequencies, however at high frequencies

the delay term in the model starts to dominate and there is mismatch between the

true and model behavior. The frequency response plot indicates that our proposed

modeling scheme is able to capture the deterministic part of the process quite well

at low as well as moderate frequency regions. Thus, the proposed algorithm can

be used to model the low frequency behavior of this process. This process which
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Figure 2.13: Frequency responses of the estimated models (- -) and the true process
(-)

is described by half integer order model behavior is discussed here to emphasize

the importance of the developed algorithm to model fractional order processes

without requiring an integer order approximation of the process. The developed

fractional order model can then further be used to design rational or fractional

order controllers.
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2.6 Conclusion

A continuous-time identification method for commensurate fractional order models

with time delay is developed in this chapter. The proposed method works with any

kind of input signal excitation. It is based on a linear filter method where the filter

is chosen as a combination of RIVC and a linear integral filter. Using this kind of

filter, we can make the delay term appear as explicit parameter similar to other

constant model parameters and can form a linear regression model to estimate the

parameters in an iterative manner. For the case when the commensurate order

α is unknown, a nested loop optimization method is developed to estimate the

time delay along with constant model parameters in an iterative way in the inner

loop and the fractional order in the outer loop. The applicability of the developed

procedure is demonstrated on a CFOTDS for the cases when α is known and

when it is unknown. In the presence of noise, Monte Carlo simulation analysis for

different noise realizations has been carried out to demonstrate that the proposed

algorithm gives unbiased estimates even in the presence of noise. The proposed

algorithm is also applied on a fractional order system of classical wall heat transfer

problem which is described by fractional behavior. Future work proposed is to

extend this algorithm for non-commensurate models.
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Chapter 3

Tuning of fractional PI controller
for processes with and without
time delays using particle swarm
optimization 1

In this chapter, a servo control strategy for tuning of fractional order PI (FO-PI

or PIλ) controllers is proposed for fractional order and integer order systems. The

proposed strategy is based on a reference model, whose open-loop transfer function

is chosen to be Bode’s ideal transfer function. Bode’s ideal transfer function is a

fractional order system and provides an infinite gain margin and a constant phase

margin. To come up with satisfactory tuning parameters of the controller, an

iterative optimization method using particle swarm optimization (PSO) has been

used, based on minimization of a quadratic cost function with constraints. This

cost function is defined as weighted sum of squares of control input moves and sum

of square of error between the time response of the reference model and the closed

loop system with the FO-PI controller. The resulting closed-loop system is shown

to exhibit features of robustness to process gain variations and the step responses

exhibit iso-damping property as would be expected from a constant phase margin

closed loop process. The applicability of the proposed algorithm is demonstrated

by application to simulation examples as well as on a computer-interfaced pilot

scale continuous stirred tank heater (CSTH) process.

1The full version of this chapter has been submitted to Journal of Process Control for possible
publication. A condensed version of this chapter was presented at the 2010 American Control
Conference, ACC2010, June 2010, USA (Narang et al., 2010). The first part of this chapter was
presented as a poster presentation at ICORE Summit 2009, Banff, Canada.
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3.1 Introduction

Recently, there has been an increasing amount of interest in applying fractional

calculus to model and control physical systems. Several applications of fractional

calculus can be found in Axtell and Bise (1990); Shantanu (2008); Monje et al.

(2010). In the area of automatic control systems, the application of the FC can be

found in Podlubny (1999b). ASME, IEEE and IFAC had organized International

symposiums and workshops over the last couple of years to promote and exchange

interest in the fractional calculus and its applications.

PID controllers are the most commonly used control algorithms in industry.

Since Ziegler Nichols (Ziegler and Nichols, 1942) proposed their tuning method

for designing PID controllers there has been significant development in the area

of tuning and designing PID controllers. So, a search for new algorithms for

better design of these controllers has never been an unreasonable demand for the

research community. Bode (Bode, 1945) while working on a problem to design

feedback amplifiers mentioned the use of fractional integro differential operator in

a feedback loop. The purpose was to obtain the performance from the feedback

loop such that it is invariant to changes in the amplifier gain. Bode presented

an elegant solution to this robust design problem, which he called the Ideal cutoff

characteristic, nowadays known as ideal loop transfer function, whose Nyquist plot

is a straight line through the origin giving a phase margin invariant to gain changes.

However, the idea of fractional-order algorithms for the control of dynamic systems

was first introduced by Oustaloup (1995) where he also demonstrated the superior

performance of the CRONE (French abbreviation for Commande Robuste d’Ordre

Non Entier) method over the classical PID controller. Later, Podlubny (1999a)

proposed a generalization of the PID controller, namely the fractional order PID

(FO-PID or PIλDμ) controller, involving an integrator of order λ and differentiator

of order μ (the orders λ and μ may assume real non-integer values). The author

also demonstrated better performance of this type of controllers, in comparison

with the classical PID controllers, when used for the control of fractional-order

systems.

In the last decade many tuning rules have been proposed for designing FO-PID

controllers. Some of these techniques are based on an extension of the classical

PID control theory. Several analytical ways to tune such controllers have been pro-

posed in Caponetto et al. (2002, 2004). The recent book by Monje et al. (2010)

describes fundamentals, applications and challenges in fractional order modeling

and control design in sufficient detail. The tuning of fractional order controllers in
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frequency domain has been studied by Vinagre et al. (2002). Monje et al. (2004a)

proposed the technique to tune fractional PID controllers by requiring the closed

loop system to satisfy certain conditions on the phase margin, gain crossover fre-

quency and sensitivity functions. The tuning parameters for the FO-PID is then

obtained by solving the linear numerical optimization problem. In another paper

by Monje et al. (2004b), the authors proposed a scheme to tune FO-PI controllers

in order to fulfill three different robustness design specifications for the compen-

sated system; an optimization method based on a nonlinear minimization function

subject to nonlinear constraints is used to tune the controller. Chen et al. (2008)

proposed a generalized MIGO (Ms constrained integral gain optimization) based

controller tuning method called F-MIGO, to handle the FO-PI case when the frac-

tional integral order for the controller is known. Also, Valério and Costa (2006)

proposed two sets of tuning rules for FO-PID with the proposed rules bearing simi-

larities to the rules proposed by Ziegler and Nichols for integer PID controllers, and

made use of the plant time response data. Leu et al. (2002) designed an optimal

fractional order PID controller based on specified gain and phase margins with a

minimum integral squared error criterion. Luo et al. (2009) proposed FO-PI tuning

rule for a class of fractional order systems. Cao and Cao (2006) designed fractional

order controller by minimizing weighted combination of ITAE and control input

using particle swarm optimization tool. Barbosa et al. (2004) proposed algorithm

to tune classical PID controllers using Bode’s Ideal transfer function. Recently,

Padula and Visioli (2011) proposed a tuning rule to optimally design PID and frac-

tional order PID controllers for first order plus time delay models. The experimen-

tal validation of some of these techniques include work by Luo et al. (2010, 2011).

Most of these proposed tuning algorithms have been applied to many physical pro-

cesses. A fractional-order control strategy known as fractional sliding mode control

has also been successfully applied in the control of a power electronic buck con-

verter (Calderon et al., 2006). Li et al. (2010) proposed a FO-PD motion controller

for dc motor position servo system. Delavari et al. (2010) applied a fractional or-

der sliding mode control to a level control in a nonlinear coupled tank. Robust

control of irrigation canals has been applied by Feliu et al. (2009) and fractional

control of thermal systems has been applied by Sabatier and Oustaloup (2002);

Vinagre et al. (2001); PetrPetráš and Vinagre (2002). Monje et al. (2008) paper

summarizes many of the recent advances and applications for tuning of fractional

order controllers.

In this chapter we propose a tuning strategy to design fractional order con-
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trollers, in particular, fractional PI controllers for processes to enhance robust-

ness and closed loop system performance. It is intuitively true, as also argued in

Podlubny (1999b), that the fractional order models require much more than clas-

sical PID controllers to achieve good closed loop performance. A tuning strategy

for fractional order PI controllers is proposed for fractional order as well a classi-

cal integer order system models. This chapter extends the authors previous work

(Narang et al., 2010). The proposed strategy is based on a reference model, whose

open-loop transfer function is given by Bode’s ideal transfer function. To obtain

the tuning parameters of the controller, an iterative optimization method is used,

based on minimization of a quadratic cost function. This cost function is defined

as weighted sum of squares of control input moves and sum of the square of error

between the time responses of the reference model and the fractional system with

the FO-PI controller. Thus, we want to match the closed loop response to that of

a reference system and also penalize the control input moves. This work extends

the tuning strategy proposed by Barbosa et al. (2004) where the authors designed

classical integer order PID controllers for integer order models. The resultant

closed-loop systems (with the FO-PI controllers) exhibit the features of robustness

to gain variations and the step responses exhibit the iso-damping property. The

proposed algorithm is also extended to handle time delays in the system.

This chapter is organized as follows. Section 3.2 presents a brief theory of

fractional calculus with an introduction to fractional order PI controllers. The

proposed tuning strategy for designing FO-PI controllers based on Bode’s ideal

transfer function is presented in Section 3.3. To study the efficacy of the proposed

strategy developed in Section 3.3, some examples of fractional order system models

are studied in Section 3.4 to illustrate its applicability. Section 3.5 presents simula-

tion study on lag/delay dominant processes. Section 3.6 presents simulation study

on the thermal diffusion in a wall. Section 3.7 presents the experimental results

for the designed FO-PI controller on continuous stirred tank heater (CSTH) setup.

Concluding remarks appear in Section 3.8.

3.2 Fractional order PI controller

In Chapter 2 we introduced the generic transfer function form of fractional order

systems (see equation 2.5). The same type of models are used in this chapter for

designing fractional order PI controllers.

A fractional-order PIλDμ controller is considered as the generalization of the
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conventional PID controllers involving an integrator of order λ and a differentiator

of order μ, where both λ and μ can assume non-integer values. The structure of a

PIλDμ controller with the transfer function, C(s) is given as

C(s) = Kc +
Ki

sλ
+Kds

μ (3.1)

where Kc, Ki and Kd are the proportional gain, integral gain and derivative gain,

respectively, of the fractional order controller. All classical types of PID controllers

are special cases of such FO-PID controllers. The main advantage of using a

fractional-order PID controller for a linear control system is that we have two

additional degrees of freedom in the controller design. Using these additional

parameters of the integral and differential orders, it is expected that the use of

FO-PID controllers can enhance the feedback control loop performance compared

to integer-order controllers, however it also means that the tuning of the controller

can be much more complex. In this work, we study the problem of designing a

fractional order proportional-integral controller (FO-PI) (μ = 0) of the form,

C(s) = Kc +
Ki

sλ
(3.2)

as a result now we have three controller tuning parameters compared to two, for

classical PI controllers. The role of 1/sλ is to provide integral action to ensure

there is no offset in the closed loop system.

For digital implementation of the fractional order operator, the key step is

numerical evaluation or discretization of the operator. Again, we will be using

Oustaloup continuous approximation (equation 2.8) for the simulation of fractional

order controllers as well as the closed loop systems. The bigger N , the better the

approximation of the differentiator sλ in its frequency band: low values result in

simpler approximations, but also cause the appearance of a ripple in both gain

and phase behaviors and ripples may be eliminated by increasing N, but the ap-

proximation will be computationally heavier. In order to implement the controller

in real practice, discretization has to be done and sampling is an issue; however,

it is not explored in this work. Note that the proposed method discussed in the

next section is independent of the way in which fractional differentiation and in-

tegration are simulated in the time domain. Also, the focus of this work is not on

which approximation is better but rather on developing an algorithm for tuning

fractional order PI controllers.
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3.3 FO-PI tuning formulation

3.3.1 Bode’s ideal transfer function and design of a FO-PI
controller

Bode in his study on design of feedback amplifiers (Bode, 1945), suggested an ideal

shape of the open-loop transfer function of the form:

Gref(s) =
Kr

sγ
(1 < γ < 2) (3.3)

The purpose was to obtain the performance from the feedback loop such that it is

invariant to changes in amplifier gain. This open loop transfer function with gain

Kr and fractional order γ shows very interesting properties as listed in Table 3.1.

Table 3.1: Properties of open loop Bode’s ideal transfer function

Property Relation
Magnitude curve Constant slope of −20γ dB/dec

Gain cross-over frequency, ωc (Kr)
1
γ

Phase angle curve Horizontal line at −γπ
2

Nyquist curve Straight line at argument −γπ
2

The Nyquist plot for Bode’s ideal transfer function is shown in Fig. 3.1. As

can be seen from the figure that this open loop transfer function gives a constant

phase plot at all frequencies. Thus, this closed loop system is robust to process

gain variations.

Closed loop TF:

GrefCL(s) =
1

( 1
Kr

)sγ + 1
(3.4)

If we consider a feedback system with Bode’s ideal transfer function inserted in

the forward path, then based on the frequency domain analysis, this closed loop

system exhibits important properties such as infinite gain margin and constant

phase margin (dependent only on γ). These properties are listed in Table 3.2.

Also, the magnitude of overshoot for the closed loop system is independent of

process gain and thus, the step response of the closed loop system exhibits the

iso-damping property. As for this reference system, the order γ and the gain Kr

establishes the overshoot and the speed of the output response, respectively, as

can be seen from the Fig. 3.2. Therefore, these two parameters are used to decide

the desired characteristics of the closed loop response.
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Figure 3.1: Nyquist plot for Bode’s ideal transfer function

Table 3.2: Properties of feedback system with Bode’s ideal transfer function

Property Relation
Gain margin ∞
Phase margin π(1− γ

2
)

Overshoot � 0.8(γ − 1)(γ − 0.75)

The motivation behind exploring Bode’s ideal transfer function is to exploit

these useful properties of Bode’s ideal transfer function to tune a fractional order

controller which makes the closed loop system robust to process gain variation and

the closed loop step response shows an iso-damping property. Consider if C(s) is a

controller transfer function and G(s) is the plant transfer function; then to utilize

these important properties of Bode’s ideal transfer function we would like to have

the open loop transfer function (GOL(s) = G(s)C(s)) close to Bode’s ideal transfer

function Gref . Doing so will ensure that the closed loop response of this system

will also behave like the closed loop response of the reference system giving us the

important properties of the reference system. The idea behind using Bode’s ideal

transfer function can be demonstrated with the following examples. If GOL(s) is

close to Gref then

G(s)C(s) ∼ Gref(s) (3.5)
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Figure 3.2: Step response for closed loop reference model

For a system with the transfer function model

G(s) =
K

τs+ 1
(3.6)

then

C(s) ∼ Kr

K

(
τ

sγ−1
+

1

sγ

)
∀ γ > 1 (3.7)

which is a FO-PI controller with two fractional integrators. Now, for the system

represented by the transfer function model

G(s) =
K

a2.sβ + a1.sα + a0
(3.8)

then

C(s) ∼ Kr

K

( a2
sγ−β

+
a1
sγ−α

+
a0
sγ

)
, ∀ γ > β > α (3.9)

which is again a FO-PI controller with three fractional integrators. The purpose of

demonstrating these examples is that we will always get a fractional order controller

(assuming no plant model mismatch) if we want the open loop transfer function

close to open loop Bode’s ideal transfer function. However, the controller structure

changes for different process models. To overcome this disadvantage, in our study

we looked at designing a fractional order PI controller such that we match the

closed loop response with the reference system or

GCL =
G(s)C(s)

1 +G(s)C(s)
∼ GrefCL(s) (3.10)
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The most common control structure often found in the process industry is the

PI type. It is a common practice in industry to turn off the derivative gain. We are

interested in a tuning strategy in a set point tracking scenario, so we considered

FO-PI controller for this study. For our case if we fix the structure of the controller

as the FO-PI controller with the transfer function given by

C(s) = Kc +
Ki

sλ
(3.11)

then we are interested in finding controller parameters such that we get a closed

loop response which resembles the closed loop response of the reference system.

Thus, fixing γ andKr fixes the gain and phase margins for the reference system and

if the closed loop system (with FO-PI controller) closely resembles the reference

system, then it also implicitly implies fixing the phase and gain margins of the

required closed loop system.

Here we extend the tuning strategy proposed by Barbosa et al. (2004) for tun-

ing classical integer order PID controllers to designing FO-PI controllers for frac-

tional as well as integer order models. We are interested in a tuning strategy for a

set point tracking scenario. For the step change in the set point, the tuning param-

eters of the FO-PI controller (Kc, Ki, λ) are obtained by minimizing a quadratic

cost function. This cost function is defined as weighted sum of squares of control

input moves and sum of square of error between the time responses of the ref-

erence model and the process with the FO-PI controller. An iterative non-linear

optimization algorithm is used to simultaneously estimate all parameters of the

FO-PI controller. The feedback loop of Fig. 3.3 shows the details of this proposed

scheme. The first step involves fixing the parameters of the reference model. The

controller design is an iterative process, so the next step is the initialization of

FO-PI controller parameters. This initialization can be done by designing clas-

sical PI controller using any standard tuning rule. Then, the step response of

the reference model (Eq. (3.4)) is computed along with the closed-loop response

and controller output (with FO-PI controller) for the process model. These values

are used to compute the quadratic cost function and gradient based optimization

technique can be used to minimize this cost function. Alternatively, we can de-

fine the search space for the tuning parameters and use global optimization tool

like particle swarm optimization (PSO) to solve for the controller parameters and

can even use this in combination with the optimization toolbox in MATLAB. The

controller parameters that minimize this cost function give the required FO-PI

controller settings. The algorithm has also been discussed in detail in Section 3.3

while the some details on PSO is discussed in Section 3.4.
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Figure 3.3: Structure for FO-PI controller tuning

Time delays as transportation lags or apparent time delays may be present

in a process due to actuator limitations or process measurements. Presence of a

time delay in a process limits the performance of a conventional feedback control

system. We need to modify the control structure to tune the controller for models

with time delays. We can either change the structure of the reference model or

use smith predictor technique to overcome time delays that characterizes these

systems. Thus, the two methods are:

1. Based on the modified reference model

2. Using the Smith predictor

If the time delays are known with a good degree of precision, we can incorporate

this knowledge into our reference system and modify the structure of GrefCL as

GrefCL1(s) =
1

( 1
Kr

)sγ + 1
e−Ls (3.12)

Then the parameters are tuned according to this modified reference model (eq.

(3.12)).

In the context of the closed-loop control of time-delay systems, Smith (1957)

proposed a control scheme called the Smith predictor that leads to the improved
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closed loop performance compared to the conventional controller. Fig. 3.4 shows

a configuration for the Smith predictor. Here, G0(s) is the nominal model of the

C(s)
Y(s)R(s)

D(s)

U(s)+

-

+
+

G0(s) – P0(s)

G(s)

+

-

Figure 3.4: Smith Predictor formulation

time-delay system G(s) and P0(s) is the time-delay free model. If G0(s) models the

plant G(s) perfectly, the closed-loop stability depends on the controller C(s) and

on the delay-free model P0(s) only, and any closed-loop dynamics can be obtained.

The closed loop transfer function relating response y(t) with the set point r(t) and

input disturbance d(t) is given as

y(t) =
C(s)G(s)

1 + C(s) [G(s) + P0(s)−G0(s)]
r(t) +

G(s) [1 + C(s) ( P0(s)−G0(s) )]

1 + C(s) [G(s) + P0(s)−G0(s)]
d(t)

(3.13)

It is not really important to choose an accurate high-order model G0 for the control

of an uncertain plant G. The Smith predictor technique provides a time-delay

compensation to eliminate the actual delayed output and makes it possible to

design the primary controller (C(s)) assuming no time-delay in the control loop.

Smith predictor has been shown to provide closed loop performance improvement

over conventional feedback control if the model errors are not too large. Using

Smith predictor in the proposed formulation, for systems with time delays, FO-

PI controller is tuned using the delay free part of the system model while it is

implemented using the Smith predictor framework (see Fig. 3.4). When there is

a mismatch between true and estimated time delay, the closed loop performance

using Smith predictor deteriorates.

51



3.3.2 Imposing constraints

Additional constraints can also be introduced to the above optimization problem.

The constraints could be limits on the sensitivity function (S) and the complimen-

tary sensitivity function (T ):

S =
1

1 + C(s)G(s)
(3.14)

T =
C(s)G(s)

1 + C(s)G(s)
(3.15)

In order to reject high-frequency noise, the closed loop transfer function (T ) must

have a small magnitude at high frequencies; thus it is required that at some speci-

fied frequency ωh or for a range of frequencies ωi < ωh, its magnitude be less than

some specified gain: ∣∣∣∣ C(jωh)G(jωh)

1 + C(jωh)G(jωh)

∣∣∣∣ < H (3.16)

Also, the sensitivity function must have a small magnitude at low frequencies

in order to reject output disturbances and closely follow references; thus it is

required that at some specified frequency ωl or for a range of frequencies ωi <

ωl, its magnitude be less than some specified gain:∣∣∣∣ 1

1 + C(jωl)G(jωl)

∣∣∣∣ < P (3.17)

Please note that the optimization algorithm is independent of whether we work in

the time domain or frequency domain, that is to say imposing these constraints

in frequency domain where the objective function is defined in the time domain

doesn’t affect the optimization algorithm. Although the computational burden

would be more to compute the tuning parameters using the proposed algorithm,

it should be noted that the controller parameters are computed offline.

3.3.3 Algorithm for the proposed method

The algorithm for finding the parameters for FO-PI controller (θ = [Kc, Ki, λ]
T )

by imposing the constraints is given below.

Step 1 Fix Kr and γ.

Step 2 Initialize the algorithm with some initial value for θ. We can start with

tuning parameters for classical PI controller based on integer order approxi-

mation of the fractional order process.
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Step 3 Iterate on θ based on the minimization of this constraint optimization

problem

θ̂ = argmin
θ

[
wy

∑Ns

k=1 [y(k, θ)− yref(k)]
2 +

wu

∑Ns

k=1 [Δu(k, θ)]2

]
subject to

0 < λ < 2

|T (jωh)| < H and |S(jωl)| < P

where y(t, θ) and yref(t) are the closed loop step responses of the system with

FO-PI controller (with tuning parameter vector θ) and the reference system,

respectively. Δu(k, θ) = u(k, θ)−u(k−1, θ) represents the change in control

input moves while wy and wu are weights or penalties for the two terms in

the cost function.

The weighting matrices wy and wu can be effectively used to specify relative

importance of errors and manipulated input moves. Choosing the appropriate

parameters for the reference system decides both the robustness (for example,

phase margin) and the performance (set point response) of the closed loop system.

There is no simple way to choose these tuning parameters.

The closed loop response depends on the weights and since the tuning parame-

ters are computed offline, setting weights to improve controller performance can be

done according to process requirements. The sensitivities of the cost function to

these two weights can be computed to determine if the individual weights should

be increased or decreased to improve controller performance. The weights can then

be adjusted and the cost function can be computed again and this is repeated till

one can optimize the controller performance. This is all done offline and therefore

is convenient.

3.3.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is relatively new population-based evolution-

ary computational technique based on group communication behavior between

swarms flocks to achieve some optimum property such as nest location or search

for food. It was introduced by Kennedy and Eberhart (1995). In PSO, the ‘swarm’

is initialized in the searching space with a population of random solutions and the

objective is to search the solution space by directing the particles towards the best

solution encountered in the previous iterations with the intention to observe better
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solutions over the course of the process and eventually converging on a single opti-

mum. The details on the algorithm can be found in Kennedy and Eberhart (1995)

and a modified improved version has been discussed in Liu et al. (2004). More

details on the PSO algorithm used in this work has been presented in Appendix

A.

In this work, we use the modified PSO algorithm proposed by Liu et al. (2004),

with c1 = c2 = 2.5, mc = 0.4 and number of particles = 60 with inertia factor

decreasing linearly between 0.9 and 0.4. The defined search space for each param-

eter is used to find the optimum using the PSO algorithm. PSO requires rigorous

search over the defined space and for the present study, this has been proved to be

very effective to find the global optimum.

3.3.5 Performance and Robustness comparison

While comparing the performance of different controllers, the trade-off between

robustness and performance has to be taken into account. The performance of the

controllers can be assessed in many ways: by comparing the integral square error

(ISE) or by comparing the standard deviation of the error signal if the set point is

a stationary signal. ISE is defined as

ISE =

Ns∑
k=1

[y(k)− r(k)]2 (3.18)

where Ns is the length of the simulation trial and r(k) represents the set point.

A controller that provides minimum ISE for a closed loop response gives the good

closed loop performance. Alternatively, the standard deviation of the error signal

(y(k)− r(k)) or a cost function, Jc (defined in eq. 3.20) can be used as a measure

of the performance of the closed loop system.

Je = std[y(k)− r(k)] (3.19)

Jc = std[y(k)− r(k)] + std[Δu] (3.20)

The lower the value of these indices, the better the performance of the closed loop

system for that controller.

In recent years the maximum sensitivity function has been more and more

accepted as an exclusive robustness measure, see Åström and Hägglund (1995).

||S(s)||∞ = max
ω

|S(jω)| = max
ω

∣∣∣∣ 1

1 + C(jω)G(jω)

∣∣∣∣ (3.21)
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As ||S(s)||∞ decreases, the closed loop system becomes more robust.

It is not entirely fair to compare the closed loop performance of the designed

FO-PI controller with some of the classical PI controller settings or tuning de-

sign from other methods such as Monje et al. (2004b); Chen et al. (2008) and

Padula and Visioli (2011), as all the tuning rules are based on different perfor-

mance and/or robustness criterions. The comparison is presented to give an idea

about the benefits for designing a FO-PI controller. For fractional order systems,

modeling errors will arise by using the approximate rational model to tune classi-

cal PI controllers while the actual process is a fractional order system. This can

deteriorate the closed loop performance of a classical PI controllers tuned using

standard methods even with using a Smith predictor.

3.4 Simulation Study

The efficacy of the proposed tuning method is demonstrated by carrying out FO-PI

controller design on two different FO models. Here, the Oustaloup approximation

with N = 12 over a wider frequency interval [10−3, 103] is used for simulating the

fractional order system. We have compared both the regulatory and the servo

performance of the designed controllers and for regulatory control, we introduced

a step change in input type disturbance for the examples presented below.

3.4.1 Example 1

The example of a heating furnace as considered in Podlubny (1999a), can be

modeled by an integer as well as a fractional order differential equations. The

fractional model is given as

GFO4(s)(s) =
1

14994s1.31 + 6009.5s0.97 + 1.69
(3.22)

The reference model in Eq. (3.4) can be selected by fixing Kr and γ. We can

shape the output response, close to the desired response, by varying the reference

tuning parameters (Kr, γ). The design specifications for the reference system are

chosen as

• γ = 7/6, or phase margin ∼ 75o.

• Kr= 0.005

We did not impose any constraints on the closed loop system. For this process,

we kept wy = 1 and wu = 0. For PSO the initial range of parameters are selected
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as Kc ∈ [0,500], Ki ∈ [0,100], λ ∈ [0.01,2]. For these specifications, the FO-PI

controller obtained based on the proposed algorithm is

CFO4(s) = 73.67 +
9.123

s0.313
(3.23)

Next we examined the robustness property of this closed loop system by varying

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 R
es

po
ns

e,
 Y

(t
) 

 Time(sec)

 

 

 K = -40%

K = -20%

K = nominal

K = +20%

 K = +40%

Figure 3.5: Closed loop step responses for GFO4 with CFO4(s) under different
process gain variations

the process gain (K) by +40% to −40% i.e. K = {0.6, 0.8, 1, 1.2, 1.4}. The closed
loop step responses and the Bode plots for the open loop systems (G(s)C(s)) are

illustrated in Figures 3.5 and 3.6 respectively. These plots show that the closed

loop system with the FO-PI controller tuned by the proposed method is robust

against process gain variations and the step responses exhibit the iso-damping

property. In the open-loop Bode plots it is seen that the phase curve is flat around

the gain crossover frequency ωc and other low and moderate frequency region and

that the system has a phase margin of approximately 75o.

3.4.2 Example 2

A fractional system model with time delays is considered here. The FO sys-

tem model and its integer model approximation (using the plant’s step response
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Figure 3.6: Open-loop Bode diagram (with K=1) for GFO4 with CFO4(s) controller

(Valério and Costa, 2006) are given as

GFO5(s) =
K

s0.5 + 1
e−0.5s (3.24)

GIO5(s) =
K

1.5s+ 1
e−0.1s (3.25)

with nominal K = 1. The design specifications for the reference system are chosen

as

• γ = 9/8,

• Kr= 2.0 or 1/Kr = 0.5.

• |S(jωl)| < −20dB at ωl = 0.01 rad/s.

Equal weighing matrices (wy = wu = 1) are used here in the objective function.

For PSO the initial range of parameters are selected as Kc ∈ [0,5], Ki ∈ [0,5], λ

∈ [0.01,2]. As the process model include time delays, for these specifications we

design two different FO-PI controllers based on the two methods discussed in the

previous section:

1. Based on the modified reference model

2. Using the Smith predictor
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Based on the modified reference model

The FO-PI controller obtained based on this scheme from the algorithm is

CFO51(s) = 0.44 +
1.77

s0.88
(3.26)

The robustness property of this closed loop system is examined by varying the
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Figure 3.7: Closed loop step responses for GFO5 with CFO51(s) under different
process gain variations

process gain (K) by +40% to −40% i.e. K = {0.6, 0.8, 1, 1.2, 1.4}. Fig. 3.7 shows

that the closed loop system with the FO-PI controller tuned by the proposed

method is fairly robust against process gain variations although the iso-damping

property is lost because of the presence of delays in the system.

We have an integer order approximation available for this system, so we can

compare the performance of this controller with results from standard tuning rules

such as IMC-PI (Chien and Fruehauf, 1990) and H&A (Hägglund and Åström,

2002) for classical PI controller settings. Also, the tuning rules for fractional PI

controller from Chen et al. (2008) and Monje et al. (2004b) are used for comparison

purpose. The IMC-PI tuning is obtained using a closed loop time constant of 0.5

sec and the tuning rule for Chen et al. (2008) is obtained using an integer model

while the controller from Monje et al. (2004b) is obtained using wc = 1.4 with a

phase margin of 70o.
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Table 3.3: Controller parameters for process GFO5

Tuning algorithm Kc Ki λ
FO-PI 0.440 1.78 0.88
IMC-PI 2.500 1.667 1.00
H&A 4.340 1.055 1.00
Chen et al. (2008) 0.318 0.023 1.00
Monje et al. (2004b) 1.195 2.971 1.265
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Figure 3.8: Servo and regulatory controller performance for process GFO51

Fig. 3.8 shows the closed loop responses from these settings. The H&A con-

troller tuned based on integer order approximation has not been shown as it gave

unstable response if implemented on the actual fractional order transfer function

model while the Chen et al. (2008) controller gave a sluggish response. Table 3.4

gives the ISE and Je, Jc values for the closed loop systems using all the controllers.

Table 3.5 gives the maximum sensitivity functions using the three controllers. As

can be seen FO-PI controller provides both good servo control and regulatory

performance. Although, fractional order PID controller from Chen et al. (2008)

provides better robustness compared to other controllers, it gives sluggish servo

and regulatory performance. FO-PI controller provides sufficient robustness to the

closed loop system with good servo and regulatory performance (for step change

in input disturbance). The IMC-PI controller provides an oscillatory closed loop
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Table 3.4: Comparison of servo and regulatory performance for the closed loop
systems for GFO5 using modified reference mode

Tuning algorithm Servo Regulatory
Jc Je Jc Je

FO-PI 0.512 0.418 0.062 0.058
IMC-PI 0.978 0.437 0.063 0.049
H&A Unstable response
Chen et al. (2008) 1.205 1.159 0.115 0.108
Monje et al. (2004b) 0.633 0.381 0.053 0.046

Table 3.5: Comparison of maximum sensitivity function for controllers for GFO5

Tuning algorithm || S(s) ||∞
FO-PI 1.586
IMC-PI 6.252
H&A 8.169
Chen et al. (2008) 1.117
Monje et al. (2004b) 2.079

response for these fractional system models and the H&A controller provides an

unstable response.

Using the Smith predictor

For this scheme the controller is designed using the delay free part of the process

model, however it is implemented in the Smith predictor framework. We can

compare the performance of FO-PI controller with results from standard tuning

rules like IMC (Chien and Fruehauf, 1990) for classical PI controller settings and

the tuning rules for fractional PI controllers from Monje et al. (2004b). The IMC

tuning is obtained using a closed loop time constant of 0.5 sec and Monje et al.

(2004b) controller is obtained using wc = 1.4 and phase margin = 70o. The IMC-

PI controller is designed using the delay free part of integer order approximation,

however it is implemented on the fractional order model. Fig. 3.8 shows the closed

loop response from these settings. Table 3.6 gives the ISE and Je, Jc values for

the closed loop systems using all the controllers. There is not much improvement

in the servo closed loop performance compared to the results without the Smith

predictor, however, the regulatory performance is slightly better using the Smith

predictor. The closed loop response (both servo and regulatory) for the IMC-PI

controller is still oscillatory as compared to the FO-PI controller performance.
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Figure 3.9: Servo and regulatory controller performance with Smith predictor for
GFO5

Table 3.6: Comparison of servo and regulatory performance for the closed loop
systems for GFO5 using Smith predictor

Tuning algorithm Servo Regulatory
Jc Je Jc Je

FO-PI 0.510 0.419 0.031 0.018
IMC-PI 1.044 0.436 0.081 0.033
Monje et al. (2004b) 0.524 0.446 0.037 0.025

The deterioration in performance is mainly attributed due to the approximations

involved in tuning integer order controllers.

3.5 FO-PI design for lag/delay dominant pro-

cesses

Lag dominant and delay dominant cases are studied using the integer order model.

The two cases are presented below.

• Lag dominant case:
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GIO6(s) =
1

s+ 1
e−0.1s (3.27)

Here τ = L
T+L

= 0.0909.

The FO-PI controller is designed using γ = 9/8, Kr= 2.0 or 1/Kr = 0.5 and

wy = 1, wu = 0.5. For PSO the initial range of parameters are selected as Kc ∈
[0,5], Ki ∈ [0,5], λ ∈ [0.01,2]. Again, IMC-PI and H&A for classical PI controller

settings and fractional PI controllers from Chen et al. (2008) and Monje et al.

(2004b) are used for comparison purpose. The IMC-PI tuning is obtained using a

closed loop time constant of 0.5 sec and the controller from Monje et al. (2004b)

is obtained using wc = 0.5 with a phase margin of 60o. Table 3.8 gives the Je

Table 3.7: Controller parameters for process GIO6

Tuning algorithm Kc Ki λ
FO-PI 1.186 2.010 0.95
IMC-PI 1.667 1.667 1.00
H&A 2.940 0.856 1.00
Chen et al. (2008) 3.265 8.008 0.70
Monje et al. (2004b) 0.409 0.509 1.229

and Jc values for the closed loop system using different controllers for servo as

well as regulatory control and Fig 3.10 shows the closed loop responses from these

settings. As can be seen FO-PI controller like other controller tuning method,

Table 3.8: Comparison of servo and regulatory performance for the closed loop
systems for GIO6

Tuning algorithm Servo Regulatory
Jc Je Jc Je

FO-PI 0.320 0.260 0.065 0.061
IMC-PI 0.335 0.247 0.066 0.060
H&A 0.389 0.232 0.077 0.059
Chen et al. (2008) 0.374 0.185 0.028 0.021
Monje et al. (2004b) 0.469 0.447 0.158 0.155

provide good servo and regulatory performance, comparable to well tuned IMC-

PI, and better than fractional order controller using Monje et al. (2004b) tuning

rule; however, Chen et al. (2008) tuning provides the better servo and regulatory

performance compared to other tuning rules for this lag dominant process.

• Delay dominant case:
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Figure 3.10: Servo and regulatory controller performance for GIO6

GIO7(s) =
1

s+ 1
e−2.5s (3.28)

Here τ = L
T+L

= 0.714.

The design specifications for FO-PI controller are: γ = 9/8, Kr= 0.33 or 1/Kr

= 3 and wy = 1, wu = 0.5 are used in the objective function. For PSO the initial

range of parameters are selected as Kc ∈ [0,5], Ki ∈ [0,5], λ ∈ [0.01,2]. Again,

IMC-PI and H&A for classical PI controller settings and fractional PI controllers

from Chen et al. (2008) and Monje et al. (2004b), are used for comparison purpose.

The IMC-PI tuning is obtained using a closed loop time constant of 3sec and the

controller from Monje et al. (2004b) is obtained using wc = 0.5 with a phase margin

of 60o. Table 3.10 gives the Je and Jc values for the closed loop systems using all

Table 3.9: Controller parameters for process GIO7

Tuning algorithm Kc Ki λ
FO-PI 0.340 0.184 1.072
IMC-PI 0.154 0.154 1.00
H&A 0.252 0.232 1.00
Chen et al. (2008) 0.417 0.236 1.10
Monje et al. (2004b) 0.910 0.223 1.295

63



the controllers for servo as well as regulatory control and Fig. 3.11 shows the closed

loop responses from these settings. Again, FO-PI controller provides both good

Table 3.10: Comparison of servo and regulatory performance for the closed loop
systems for GIO7

Tuning algorithm Servo Regulatory
Jc Je Jc Je

FO-PI 0.542 0.515 0.189 0.185
IMC-PI 0.584 0.570 0.213 0.205
H&A 0.537 0.515 0.198 0.184
Chen et al. (2008) 0.532 0.499 0.184 0.178
Monje et al. (2004b) 0.545 0.475 0.171 0.166
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Figure 3.11: Servo and regulatory controller performance for GIO7

servo control and regulatory performance, and comparable to fractional order PI

controller using Monje et al. (2004b) and Chen et al. (2008) tuning rule.

3.6 Control strategy applied to Thermal diffu-

sion in a wall

For many real processes, fractional differentiation appears naturally when the sys-

tem transients are governed by a diffusion equation, and particularly between the
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variables governing the functioning of the interface. Benchellal et al. (2006) has

shown that the transfer function H(s) relating heat flux and the temperature, on

the front face of a heated wall (which is governed by classical heat conduction

equation), comes out as fractional order transfer function with half integer order.

We consider a classical wall (CW) problem as a process for this simulation study

as introduced in Chapter 2 to illustrate the importance of our proposed algorithm

on a real physical system.

For this study, we define the input and output as y(t) = T (0, t) and heat input

(not flux) as, u(t) = Ωin(t)SA, then the transfer function relating y(t) and u(t) is

given as (Gabano and Poinot, 2011)

ĤR(s) =
1

SA

∑R−1
i=0 bis

i
2∑R−1

i=0 ais
i
2 + s

N
2

(3.29)

where the constants are defined as

a0 =
R!

2R−1

(
ζ

R
2

lR

)
(3.30)

ai =

(
R!

i!2R−1lR−i

)
ζ

R−i
2 , 1 ≤ i ≤ R− 1 (3.31)

bi =

(
R!

(i+ 1)! 2R−i−1lR−i−1

)
ζ

R−i
2

	
, 0 ≤ i ≤ R − 1 (3.32)

The detailed derivation of this is presented in Chapter 4. This model for classical

wall problem in Eq. (3.29) with R= 8 is used to design the FO-PI controller using

the proposed algorithm. The design specifications for the reference system are

chosen as

• γ = 9/8,

• Kr= 0.030 or ωc = 0.0495 rad/s.

The sampling time is chosen as 0.1sec. We do not impose any constraints on the

sensitivity and complementary sensitivity functions for this closed loop system.

Also, equal weighing matrices (equal to identity matrix) are used in the objective

function. For these specifications, the estimated tuning parameters of the FO-PI

controller is

CFO8(s) = 1.462 +
2.475

s0.844
(3.33)

In the open-loop Bode plot Fig. 3.12, the phase curve is flat for most of the

frequencies and the system has a phase margin of approximately 78o at crossover
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Figure 3.12: Open-loop Bode diagram at nominal condition for CW example

frequency of ωc = 0.044. An approximate integer order model (first order plus time

delay model) is developed for this system to design a classical PI controller and

to compare the closed loop performance for these controllers. The integer order

approximation is

GIO8(s) =
0.045

29.5080s+ 1
e−4.0499s (3.34)

For comparison purpose, we design a classical PI controller using IMC tuning and a

fractional PI controller designed using Chen et al. (2008) and Monje et al. (2004b)

settings. The IMC-PI controller is designed using a closed loop time constant of 50

sec while the FO-PI controller designed using Monje et al. (2004b) is obtained using

wc = 0.05 with a phase margin = 60o. The tuning parameters are derived from the

approximate integer order model for this system but is implemented on the real

fractional order system. The servo and regulatory performance from the controllers

is shown in Fig. 3.13. Table 3.11 gives the Je and Jc values for the closed loop

system using different controllers for servo as well as regulatory control. As can

be seen FO-PI controller like other controller tuning method, provide both good

servo control and regulatory performance, better than well tuned IMC-PI, and

fractional order controller using Monje et al. (2004b) tuning rule and Chen et al.

(2008) tuning. Even though with Chen et al. (2008) tuning, the set point tracking

is faster, there is excessive control action as reflected in the Jc value for the same.
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Figure 3.13: Servo and regulatory controller performance for CW

Table 3.11: Comparison of servo and regulatory performance for the closed loop
systems for CW

Tuning algorithm Servo Regulatory
Jc Je Jc Je

FO-PI 0.556 0.303 0.019 0.0051
IMC-PI 1.336 0.318 0.011 0.0057
H&A 2.710 0.130 0.027 0.0012
Chen et al. (2008) 3.091 0.154 0.012 0.0021
Monje et al. (2004b) 0.891 0.389 0.020 0.007

3.7 Experimental validation

The FOPI controller designed using the proposed algorithm is applied to a contin-

uous stirred tank heating (CSTH) process. A schematic of the process is shown

in Fig. 3.14. The experimental setup is located at the Computer Process Control

laboratory in Department of Chemical and Materials Engineering at University of

Alberta. The cylindrical glass tank is equipped with steam coil with a controlled

input facilitating the manipulation of steam flow to control temperature of water

coming out of the tank. The level of water inside the tank is controlled by manip-

ulating the inlet water flow. The water outlet and condensate flow is controlled

only manually. The outlet water flows through a big pipeline and a number of
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thermocouples (two for this case study) are placed at different distances in this

pipe to introduce time delay into the system. The laboratory has Emerson Delta-V

distributed control system (DCS) to control this process. For this study, the steam

flow rate to the tank is used as the manipulated variable and the outlet water tem-

perature is used as the controlled variable. The changes in the room temperature

and the steam supply pressure can be considered as disturbances. The hot water

flow valve is kept closed for this experiment.

LT

LC

FT

FC

T1

Cold water

Hot water

Steam

Outflow through 
pipe

FC

FT

FT

T2

Figure 3.14: Continuous stirred tank heater (CSTH) process

To design FO-PI controller or PI controller we need to model this process first.

For generating data for model identification, input perturbations in steam flow

(U(t)) are introduced into the process and the temperature measurements (T1 or

T2) are used as process output to model the process. The steam flow controller is

set in auto mode and set point to the steam flow controller is used as the process

input. During this experiment the tank level was kept constant at 40% filled

using a level controller (PI) cascaded with the cold water flow controller and the

output flow manual valve was set at 50% open position. Fig. 3.15 presents the

experimental setup of CSTH located at Computer Process Control laboratory at

University of Alberta.
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Figure 3.15: Experimental setup for CSTH at University of Albert

The overall data as shown in Fig. 3.16 was partitioned into two parts : (a) an

identification set: comprising of the first 60% data points and (b) the validation

data set: comprising of the last 40% data points. The temperature from both the

thermocouples is measured and is shown in Fig. 3.16. The process is modeled by a

first-order transfer function with time delay. The identified model for T1 in transfer

function form is given in equation (3.35) and the model validation is shown in Fig.

3.17.

GT1(s) =
T1(s)

U(s)
=

1.441

41.12s+ 1
e−37.3s (3.35)

This transfer function model represents a balanced lag/delay dominant process

( 37.3
37.3+41.12

= 0.476). If we write the transfer function for T2, the process dynamics

for T2 is essentially same as T1 except that the time delay has increased.

GT2(s) =
T2(s)

U(s)
=

1.441

41.12s+ 1
e−67s (3.36)

This nominal process model (Eq. 3.35 and Eq. 3.36) is now used to design FO-PI

controller using the proposed algorithm as well as designing classical PI controllers

for the comparison purposes. In order to test the robustness property of the two
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Figure 3.16: Temperature variation to changes in steam flow at nominal condition
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Figure 3.17: Model predictions on the validation set: (- -) black dotted line is
model prediction

controllers, we also estimated the process model at a second operating condition.

The output flow manual valve was changed from 50% open to 33% open and this

causes changes in the dynamics of the water flow inside the tank and in turn
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changes the dynamics of the temperature loop. Fig. 3.18 shows the open loop

data at this operating condition and the identified model at this condition is given

as the following transfer function (eq. 3.37)

GCSTH1(s) =
1.973

64.81s+ 1
e−39s (3.37)

Notice that for the second operating condition, all model parameters change by a
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Figure 3.18: Temperature variation to changes in steam flow at operating
condition-2

significant amount. The process gain increases by 37%, the time constant increases

by 57% and the time delay changes by 5%. We studied two cases here, where

individual controllers are designed and tested using T1/U(s) as one process (Case-1)

and T2/U(s) as another process (Case-2); however, the robustness of the controller

at second operating condition is tested only for Case-1. Note that this process

is forced to be modeled as first order plus time delay model; however, the same

model is used for the tuning methods for classical PI and fractional PI controllers.

3.7.1 Case-1: Balanced lag/delay process

For this case, the controllers are designed using T1 as the controlled variable and

GT1(s) as the process model.
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The FO-PI controller using the proposed algorithm is designed with the initial

range of parameters for PSO selected as Kc ∈ [0,2], Ki ∈ [0,2], λ ∈ [0.01,2] and

the design specifications for the reference system chosen as

• γ = 7/6,

• Kr= 1/50 = 0.02.

Also, we kept wy = 1 and wu = 0. For comparison purpose, we design a classical

PI controller using IMC-PI tuning (Chien and Fruehauf, 1990) and a fractional PI

controller designed using Chen et al. (2008) settings and compare the performance

of these controllers with the designed FO-PI controller at both nominal and second

operating condition. The IMC-PI controller is designed using a closed loop time

constant of 50 sec while the FO-PI controller designed using Monje et al. (2004b)

is obtained using wc = 0.01 with a phase margin = 60o. The controllers were

Table 3.12: Controller tunings for the three controllers for CSTH for balanced
lag/delay process

Tuning algorithm Kc Ki λ
FO-PI 0.576 0.0088 1.053
IMC-PI 0.327 0.0079 1.00
Chen et al. (2008) 0.43 0.013 1.00
Monje et al. (2004b) 0.444 0.0024 1.26

Table 3.13: Performance comparison for the controllers at nominal process condi-
tion

Tuning algorithm ISE Je Jc
FO-PI 3195 1.067 1.113
IMC-PI 4184 1.224 1.257
Chen et al. (2008) 3538 1.127 1.163
Monje et al. (2004b) 4208 1.235 1.271

implemented in MATLAB and connected to the Delta-V control system using an

OPC interface. The sampling time of 1 sec is used to implement these controllers

(using discrete version) on the real process. The execution time for the controllers

could be increased because of the slow temperature dynamics. Fig 3.19 shows the

closed loop servo responses from these settings. For regulatory control, the position

of the manual valve was changed from 50% open to only 33% open at roughly 1800
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sec and this acts as a disturbance (changes in the level also affects the temperature

and more significantly changes the process dynamics) to the process. As can

be seen, the FO-PI controller provides both good servo control and regulatory

performance compared to other controllers providing minimum Je and Jc. To test
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Figure 3.19: Servo and regulatory response for the CSTH process for balanced
lag/delay process

the robustness of the controllers, we looked at the servo performance of the two

controllers at the second operating condition. Fig. 3.20 shows the closed loop servo

response at the second operating condition where there process-model mismatch

and process dynamics are different.

As can be seen from Fig. 3.20 that even though the amount of overshoot is more

using FO-PI controller, the settling time of the closed loop response is much smaller

compared to the other controllers. This shows that the designed FO-PI controller

also provides sufficient robustness without affecting the closed loop performance.

3.7.2 Case-2: Delay dominant process

For this case, the controllers are designed using T2 as the controlled variable and

GT2(s) as the process model.

To design FO-PI controller parameters for PSO are selected as Kc ∈ [0,2], Ki

∈ [0,2], λ ∈ [0.01,2] and the design specifications for the reference system chosen
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Figure 3.20: Servo response for the CSTH process at operating condition-2

Table 3.14: Performance comparison for the controllers at second operating con-
dition

Tuning algorithm ISE Je Jc
FO-PI 3528 1.144 1.19
IMC 3965 1.214 1.25
Chen et al. (2008) 3876 1.213 1.25
Monje et al. (2004b) 3988 1.218 1.26

as γ = 7/6, Kr= 1/75. Also, we kept wy = 1 and wu = 0.0. For comparison pur-

pose, we design a classical PI controller using IMC-PI tuning (Chien and Fruehauf,

1990) and a fractional PI controller designed using Chen et al. (2008) settings and

compare the performance of these controllers with the designed FO-PI controller at

both nominal and second operating condition. The IMC-PI controller is designed

using a closed loop time constant of 75sec while the FO-PI controller designed

using Monje et al. (2004b) is obtained using wc = 0.01 with a phase margin = 60o.

The controllers were implemented in MATLAB and connected to the Delta-

V control system using an OPC interface. The sampling time of 1sec is used

to implement these controllers (using discrete version) on the real process. Fig.

3.21 shows the closed loop servo responses from these settings. For regulatory

74



Table 3.15: Controller tunings for the three controllers for CSTH for delay domi-
nant case

Tuning algorithm Kc Ki λ
FO-PI 0.484 0.0043 1.089
IMC-PI 0.200 0.0049 1.00
Chen et al. (2008) 0.333 0.064 1.10
Monje et al. (2004b) 0.571 0.0016 1.374

Table 3.16: Performance comparison for the controllers for CSTH for delay domi-
nant case

Tuning algorithm ISE Je Jc
FO-PI 6519.2 1.229 1.284
IMC 8104.1 1.372 1.396
Chen et al. (2008) 15368 1.891 1.933
Monje et al. (2004b) 8652.1 1.418 1.484

control, the position of the manual valve was changed from 50% open to only 33%

open at roughly 3300sec and this acts as a disturbance (changes in the level also

affects the temperature and more significantly changes the process dynamics) to

the process. As can be seen, the FO-PI controller provides both good servo control

and regulatory performance compared to other controllers providing minimum Je

and Jc.

3.8 Conclusions

A fractional order PI controller design method is proposed for fractional order

models in this chapter. The proposed strategy is based on a reference model,

whose open-loop transfer function is given by Bode’s Ideal transfer function. The

parameters of the controller are estimated by formulating a constrained non-linear

optimization problem. The performance of the fractional order PI controller de-

signed based on the proposed method has been demonstrated through three frac-

tional order dynamic models. The resultant closed-loop system is robust to process

gain variations and the step responses exhibit iso-damping property. Simulation

results have been presented and analyzed to illustrate the effectiveness of the pro-

posed algorithm. Experimental evaluation of the proposed algorithm has been

conducted by designing a FO-PI controller for a computer-interface pilot-scale

continuous stirred tank heater (CSTH). The results have shown that the FO-PI
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Figure 3.21: Servo and regulatory response for CSTH for delay dominant case

controller tuned with the proposed method provides both good servo control and

regulatory performance compared to other controllers in terms of lower Je and Jc.
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K. J. Åström and T. Hägglund. PID Controllers: Theory, Design, and Tuning.

Instrument Society of America, Research Triangle Park, NC, 1995.

J. Kennedy and R. C. Eberhart. Particle swarm optimization. Proc. of the IEEE

International Conference on Neural Networks, pp. 1942-1948, 1995.

Y. Liu, Z. Qin and X. S. He. Supervisor student model in particle swarm optimi-

zation. Proc. of the IEEE Congress on Evolutionary Computation, pp. 542-547,

2004.

I. L. Chien and P. S. Fruehauf. Consider IMC tuning to improve controller

performance. Chem. Eng. Progress, vol. 86(10), pp. 33-41, 1990.
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Chapter 4

Fractional order modeling and
distributed parameter systems

The application of fractional calculus in the modeling and design of automatic

control systems is relatively new. In order to model fractional order dynamical

systems, some work has been carried out in the last couple of years; but the

proposed models and algorithms are still in a preliminary stage of establishment.

For infinite dimensional distributed parameter systems (DPS), it is argued that

fractional order calculus will play an important role in modeling and analysis. In

this chapter, the identification algorithm proposed in Chapter 2 is used to study

the benefits of modeling some of the distributed parameter systems using fractional

order models. The objective in this work is to represent a distributed parameter

systems using parsimonious fractional order transfer function models.

4.1 Introduction

Mathematical models of a dynamic process takes various forms, such as ordi-

nary differential equations (ODE), partial differential equations (PDE), state-space

equations, difference equations, etc. It is well known that the transfer functions of

systems modeled by ODEs, often called lumped-parameter systems, are rational

functions while the irrational transfer functions are the outcome from PDE mod-

els for distributed parameter systems (DPS). Consequently, DPS are also called

infinite dimensional systems. It is common practice to describe processes using

lumped parameter models; however, many important process units are inherently

distributed parameter in nature. These processes are described by partial dif-

ferential equations, where the output variables are function of both time and

the coordinate position. The real world is of distributed parameters in nature;
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and with growing power of computing technology, the lumped parameter mode

of representation of our world is no longer efficient enough for increasingly de-

manding performance (Chen, 2006). Fractional order models based on fractional

order differentiation appear in variational formulation of dissipative systems, in

the analysis of diffusive interface, in elasticity theory, in dielectric polarization and

in many other areas (Sabatier et al., 2009). Distributed parameter systems where

fractional operators appear in the analysis include long transmission lines, heat

transfer and diffusive processes in general. Analytical expressions of these sys-

tems show the appearance of half integer order derivatives in the transfer function

form. Curtain and Morris (2009) presents a good survey on transfer functions of

distributed parameter systems.

Fractional order models are superset of integer order models and they exhibit

richer behavior in both time and frequency domains. The fractional order deriva-

tive of a variable can be viewed as a limit of an infinite series involving integer

order derivatives. Consequently, a fractional order model can be viewed as a par-

simonious representation of infinite order ODE models. Muddu et al. (2009, 2010)

have used the fractional calculus theory for building parsimonious models for the

packed bed distillation column.

For highly complex DPS, a closed-form expression of the transfer function of

a system cannot be obtained, and consequently the design of controllers may be

difficult. In this chapter, fractional order models are developed for capturing the

dynamics of high dimensional and distributed parameter systems. The models

are built with the aim to reduce the number of parameters to be estimated. The

algorithm proposed in Chapter 2 to estimate all the model parameters including

time delay for commensurate fractional order models is used to model these sys-

tems. The objective is to present examples of systems with dynamics modeled

by partial differential equations in one space dimension; all the examples used are

single-input single-output.

This chapter is organized as follows. In Section 4.2, the simplest fractional

order model and its step response are presented to differentiate its behavior from

integer order models. Section 4.3 presents the derivation of the analytical trans-

fer functions obtained for two DPS, namely the thermal diffusion in a wall and

diffusion in a semi-infinite slab. FO models along with rational order models are

compared for the thermal diffusion wall problem, an industrial scale froth heater

and a laboratory scale stirred tank with transportation delay problem, in Section

4.4. Section 4.5 summarizes the major concluding remarks from these application
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studies.

4.2 Fractional order models

As discussed in Chapter 2, a commensurate transfer function of order γ for a

fractional-order time delay system is given as

G(s) =

∑m
j=0 bjs

jγ

1 +
∑n

i=1 ais
iγ
e−Ls (4.1)

where L is the time delay.

Let us consider a simplest fractional order transfer function (with m = 0 and

n = 1) as

Gsimp(s) =
b0

1 + a1sγ
e−Ls (4.2)

The analytical expression for the step response for this transfer function is:

y(t) =

⎧⎨⎩
0 ∀ t ≤ L

b0
a1
tγ

∞∑
k=0

(
−1
a1

tγ
)k

Γ(γk+k+1)
∀ t > L

⎫⎬⎭ (4.3)

where Γ(.) denotes the gamma function. Fig. 4.1 presents the step response (for
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Figure 4.1: Step response for Gsimp for different values of γ

unit change in input) for a1 = 1, b0 = 1 and L = 1. The different response for

different values of γ are clearly visible. According to the final value theorem, the
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output response for each γ value will settle at b0 = 1; however, the response is

slower for γ value not equal to one. This kind of behavior is often found in some

distributed parameter systems where the response reaches steady state after a long

period of time because of the irrational nature of the DPS, as will be seen in the

examples presented in the next section.

We have used the Oustaloup approximation defined in equation (2.8) for sim-

ulating the fractional order operator.

4.3 Distributed parameter systems

4.3.1 Thermal diffusion in a wall

In Chapter 2 we discussed the classical wall problem for simulation study to illus-

trate the application of the proposed algorithm for a fractional order delay model.

In this section we will show with the detailed derivation on how this distributed

parameter system presents a fractional order transfer function model. Fig. 2.8

presented in Chapter-2 represents the classical wall problem used to analyze heat

transfer.

To demonstrate the fractional behavior of this thermal system, the following

assumptions are used: (i) the wall is perfectly isolated; (ii) the wall is initially at

ambient temperature, so that there is no thermal exchange with the surroundings;

(iii) heat losses on the surface where the thermal flux is applied is neglected. Let

us consider again the governing equation for this process as given by the heat

diffusion equation:

∂T (x, t)

∂t
= ζ

∂2T (x, t)

∂x2
(4.4)

Ω(x, t) = −	∂T (x, t)
∂x

(4.5)

where Ω(x, t) is the heat flux ( W
m2 ), T (x, t) is the temperature (0C), ζ = �

ρc
is the

thermal diffusivity (m
2

s
), 	 is the thermal conductivity ( W

m 0C
), ρ is the mass density

( kg
m3 ), and c is the specific heat constant (

J
kg 0C

). The boundary conditions are such

that the temperature at face B is kept constant and equal to zero during the overall

heating experiment and the external heat is added at face A (Ω(0, t) = Ωin). The

boundary conditions are

T (x, 0) = 0 (4.6)

T (l, t) = 0 (4.7)
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where ‘l’ is the distance between two walls. If SA is the cross-sectional area of

the wall (m2) and we define y(t) = T (x, t) and heat input (not flux) as, u(t) =

Ω(0, t) SA. Taking Laplace transforms on both sides of equation (4.4) leads to the

ordinary differential equation:

£

(
∂T (x, t)

∂t

)
= ζ £

(
∂2T (x, t)

∂x2

)
(4.8)

s T (x, s)− T (x, 0) = ζ
d2T (x, s)

dx2
(4.9)

where £(T (x, t)) = T (x, s). Using the first boundary condition in (4.6) we have,

d2T (x, s)

dx2
− s

ζ
T (x, s) = 0 (4.10)

Solving with respect to x yields:

T (x, s) = K1(s) e
−x
√

s
ζ +K2(s) e

x
√

s
ζ (4.11)

where K1(s) and K2(s) are two constants. Now, using the first boundary condition

in (4.7),

T (l, s) = 0 = K1(s) e
−l
√

s
ζ +K2(s) e

l
√

s
ζ (4.12)

K1(s) = −K2(s) e
2l
√

s
ζ (4.13)

Therefore,

Y (s) = T (x, s) = −K2(s) e
2l
√

s
ζ e

−x
√

s
ζ +K2(s) e

x
√

s
ζ (4.14)

= −K2(s)
[
e
(2l−x)

√
s
ζ − e

x
√

s
ζ

]
(4.15)

U(s) = SA Ω(0, s) = −	 SA

[
∂T (x, s)

∂x

]
x=0

(4.16)

U(s) = −	 SA

[
−K1(s)

√
s

ζ
e
−x
√

s
ζ +K2(s)

√
s

ζ
e
x
√

s
ζ

]
x=0

= 	 SA

√
s

ζ
[K1(s)−K2(s) ]

= −	 SA

√
s

ζ
K2(s)

[
1 + e

2l
√

s
ζ

]
(4.17)

The transfer function relating Y (s) and U(s) is given as

H(s) =
Y (s)

U(s)
=

1

	 SA

√
s
ζ

e
(2l−x)

√
s
ζ − e

x
√

s
ζ

1 + e
2l
√

s
ζ

(4.18)
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The exponential function is then replaced by its series expansion:

ez =

∞∑
i=0

zi

i!
(4.19)

As can be seen from the transfer function in (4.18), this is an irrational transfer

function with infinite many poles and zeros. For the case when y(t) = T (0, t), after

truncating the infinite series to a finite number of terms, the truncated fractional

transfer function ĤR(s) (Gabano and Poinot, 2011) is given as

ĤR(s) =
1

SA

∑R−1
i=0 bis

i
2∑R−1

i=0 ais
i
2 + s

N
2

(4.20)

where the constants are defined as

a0 =
R!

2R−1

(
ζ

R
2

lR

)
(4.21)

ai =

(
R!

i!2R−1lR−i

)
ζ

R−i
2 , 1 ≤ i ≤ R− 1 (4.22)

bi =

(
R!

(i+ 1)! 2R−i−1lR−i−1

)
ζ

R−i
2

	
, 0 ≤ i ≤ R − 1 (4.23)

Therefore, the analytical expression of this system shows the appearance of half

integer order derivatives in the transfer functional form. It would require an infinite

number of terms in both the numerator and denominator to model this process

accurately; and working with a reduced model structure will always result in some

modeling errors.

4.3.2 Diffusion in a semi-infinite slab

Diffusion is the net migration (mass transfer-transport) of molecules from regions

of high to low concentration. Fick’s laws are extensively used as a model for

describing tracer diffusion in porous media. For molecular diffusion in 1-D, the

Fick’s second law is
∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
(4.24)

where, c is the concentration
(
mol
m3

)
, t is time (sec), D is the diffusion coefficient(

m2

sec

)
, x is the position (m). Using the Fick’s first law

J(x, t) = −D∂c(x, t)
∂x

(4.25)
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J is the diffusion flux
(

mol
m2sec

)
. The boundary conditions for this semi-infinite slab

is considered as

c(x, 0) = c∞

As x → ∞, c(x, t) = c∞ (4.26)

If we define a new variable

c1(x, t) = c(x, t)− c∞ (4.27)

then the boundary conditions become

c1(x, 0) = 0 (4.28)

c1(∞, t) = 0 (4.29)

and
∂c1(x, t)

∂t
= D

∂2c1(x, t)

∂x2
(4.30)

If we define a system with input defined as flux at x = 0, J(0, t) and the system out-

put as c(x, t) i.e. u(t) = J(0, t) and y(t) = c1(x, t), then taking Laplace transforms

on both sides of equation (4.24) leads to the ordinary differential equation:

£

(
∂c1(x, t)

∂t

)
= D£

(
∂2c1(x, t)

∂x2

)
(4.31)

s C1(x, s)− C1(x, 0) = D
d2C1(x, s)

dx2
(4.32)

where £(c1(x, t)) = C1(x, s) and using the first boundary condition in (4.28),

d2C1(x, s)

dx2
− s

D
C1(x, s) = 0 (4.33)

Solving with respect to x yields:

C1(x, s) = a(s) ex
√

s
D + b(s) e−x

√
s
D (4.34)

where a(s) and b(s) are two constants. Based on the second boundary condition

in (4.29),

a(s) = 0 (4.35)

Therefore,

C1(x, s) = b(s) e−x
√

s
D (4.36)
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and

U(s) = J(0, s) = −D
[
∂C1(x, s)

∂x

]
x=0

= D b(s)

√
s

D

[
e−x

√
s
D

]
x=0

(4.37)

u(t) = D b(s)

√
s

D
(4.38)

The transfer function relating Y (s) and U(s) is given as

H(s) =
Y (s)

U(s)
=
b(s) e−x

√
s
D

D b(s)
√

s
D

=
1√
s D

e−x
√

s
D (4.39)

where U(s) and Y (s) are the Laplace transform for the input and the output

respectively. If we consider heat transfer in a semi-infinite metal rod as a system,

we get a transfer function similar to model (4.39) (Malti et al., 2009).

Using the Pth order Padé approximation of e−z (where z = x
√

s
D
) yields:

e−z �

P∑
k=0

(2P−k)!
k!(P−k)!

(−z)k

P∑
k=0

(2P−k)!
k!(P−k)!

(z)k
(4.40)

Therefore,

HP (s) =
1√
s D

P∑
k=0

(2P−k)!
k!(P−k)!

(−x√ s
D
)k

P∑
k=0

(2P−k)!
k!(P−k)!

(x
√

s
D
)k

(4.41)

As can be seen, half integer order derivatives appear in the transfer function form.

Again we see that diffusive processes are described with fractional order behavior

and it is more appropriate to model these systems using fractional order models.

In summary, Distributed parameter systems are ubiquitous and so is fractional

order calculus.

4.4 Model identification of DPS

A time delay is also referred to as dead time, transportation lag or distance-velocity

lag. Whenever material or energy is physically moved in a process or a plant, there

is usually a time delay associated with the movement (Seborg et al., 1989). For

the examples considered in this chapter, time delays are present in the systems. In

this chapter, for DPS examples with and without delays, we will attempt to find

a parsimonious in parameter model using fractional order dynamic models. For
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comparison purpose, CONTSID (Garnier et al., 2006) toolbox is used to identify

continuous-time OE models; and process models (first order or second order plus

time delay) are obtained using MATLAB system identification toolbox. For ratio-

nal models the time delays are estimated using ‘cra’ function is MATLAB prior to

estimating other model parameters.

4.4.1 Thermal diffusion in a wall

In this section we present the comparison study of the fractional order model with

a rational order (integer order) model for the thermal diffusion in a wall (CW).

The open-loop perturbation data is used for identifying fractional order and integer

order models using an identical data set. For building models, we use the same

data that is used in Chapter 2 (see Fig. 2.10) to identify a fractional order plus

delay model for the wall problem. The overall data is partitioned into two parts :

(a) an identification set: First 8000 data points, and (b) the validation data set:

next 7000 data points. The fractional order model (FO model, GFO9) identified in

Chapter 2 using 50 Monte carlo simulation is given as:

GFO9(s) =
0.0273(±0.003)

46.239(±6.211)s2×(0.585±0.035) + 2.263(±1.265)s0.585(±0.035) + 1
e−0.899(±0.058)s

(4.42)

A continuous-time rational output error (OE) model (IO model, GIO9) is used

for the identification purpose. For a fair comparison, a second order model with

delay is identified with the same number of parameters (= 5) as the fractional

model GFO9(s). The ‘coe’ function of the CONTSID toolbox is used and the

model obtained using the average value of the parameters is :

GIO9(s) =
0.00067(±0.000002)s+ 0.000278(±0.000003)

s2 + 0.3228(±0.00399)s+ 0.00971(±0.00013)
e−1.7s (4.43)

The time delay for GIO9(s) was estimated explicitly using the correlation anal-

ysis, function ‘cra’ in MATLAB while the other parameters were obtained from

the CONTSID toolbox. It is not possible to show the predictions from all the

50 models; so only predictions from the average model is presented in Fig. 4.2.

It shows the model predictions (infinite step ahead predictions) of GFO9(s) and

GIO9(s) and the process output for one realization on the validation data set. It is

not easy to differentiate which model provides better predictions but if we see the

step responses for the two models and compare them with the true step response,

we see that the FO model captures both the delay and the gain part better than

the rational model. In order to compare two average models, we define a criterion
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(b) Step responses of the identified models

Figure 4.2: Model validation for GFO9(s) and GIO9(s) models for the CW example

known as percent prediction error (PPE) when the model is used on a validation
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data set as:

PPE =

NS∑
k=1

[y(k)− ŷ(k)]2

NS∑
k=1

[y(k)− ȳ(k)]2
× 100 (4.44)

where y here represents the mean value of data {y(k)} and ŷ(k) represents the

predicted value of y(k). A model with a lower value of PPE is a better model.

Table 4.1 presents the percent prediction error (PPE) for the two models. As

can be seen from Table 4.1, the fractional order model provides lower value of PPE

compared to the integer order model. In Section 4.3.1, we had shown that this

Table 4.1: PPE values for models for CW example

PPE # of parameters

GFO9 0.414 5

GIO9 0.474 5

process is described by fractional order behavior. As can be seen from the results

fractional order models do indeed provide better representation of the process

compared to rational (integer) order models. Usually, high order rational models

are necessary to represent a fractional order system to obtain comparable results.

We can also add one more pole and add no zeros (total five parameters) to see if

this form of rational model provides any better predictions.

4.4.2 Industrial froth heater process

A heat exchanger is a pertinent example of distributed parameter system. The

temperature of the fluid flowing through the heat exchanger which is being heated

by the steam or any heating fluid is distributed in nature. The temperature of the

fluid is a function of time as well as the distance from the fluid inlet.

Here we present the data from an industrial froth heater (FHC) process which

is an interstage between primary and secondary extraction units in the oil sands

industry. The desired objective of the heater (or heat exchanger) is to increase the

temperature of the incoming bitumen froth before it is sent to the next stage of

the process. High pressure steam is used to heat the froth. The process has been

described in detail in Chapter 6 where the objective is to design a MPC controller.

Here we present real industrial data which was obtained by performing the

controlled identification test on the setup for only one of the heat exchangers. The
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outlet temperature from the first heat exchanger (T2) is measured (process out-

put) and the steam valve position (V1 valve position) is used as the manipulating

variable (process input) for the study presented here. Again, we present a com-

parative study of fractional order versus integer order models for this DPS. Fig.

4.3 presents the step response data at two different operating conditions (C-1 and

C-2) for the froth heater. The process dynamics are different at two operating
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(b) Identification data at C-2

Figure 4.3: Model validation for fractional order and rational order models
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conditions. Again, continuous-time rational output error (OE) models are used

for the comparison purpose based on the data presented in Figure 4.3. Since the

data length is not enough, 100% of the data was used for identification purpose.

A process model using prediction error method (G
IO

(1)
10
(s)) using the MATLAB

system identification toolbox is estimated along with OE models. A first order OE

model (G
IO

(2)
10
(s)) as well as a second order OE model (G

IO
(3)
10
(s)) are computed for

comparative study. The ‘coe’ function of the CONTSID toolbox is used to esti-

mate continuous-time OE models. This function is different from MATLAB system

identification toolbox function as ‘coe’ is a continuous time model identification

method and is based on the linear filtering algorithm.

Table 4.2: Models at two operating conditions, C-1 and C-2 for FHC

C-1 C-2

GFO10(s)
0.353

58.76s0.93 + 1
e−24.94s 0.533

32.34s0.758 + 1
e−45.82s

G
IO

(1)
10
(s) 0.325

66.9s + 1
e−27s 0.515

121.9s + 1
e−32s

G
IO

(2)
10
(s) 0.0042

s + 0.01266
e−27s 0.0041

s + 0.0080
e−32s

G
IO

(3)
10
(s) 0.00162

s2 + 0.3833s + 0.00491
e−27s 2.45x109

s2 + 5.92x1011s + 4.75x109
e−32s

The time delay for integer order models were estimated explicitly using the

correlation analysis, function ‘cra’ in MATLAB. For the fractional order model,

the time delay was estimated simultaneously with the other model parameters

using the algorithm proposed in Chapter 2. Infinite step ahead predictions for all

the models are shown in Figure 4.4. As can be seen the fractional order model

captures the process dynamics really well.

Table 4.3 presents the PPE values for all the models. As can be seen from

Table 4.3, fractional order model provides a lower value of PPE compared to the

integer order models and thus we can say that the fractional order model with

delay (GFO10(s)) provides a parsimonious parameter model for this process.

4.4.3 Continuous stirred tank heater process

We discussed a continuous stirred tank heating (CSTH) process in Chapter 3.

The same process is used again to model the process as a fractional order system.

If the temperature inside the stirred tank is assumed to be uniform, the CSTH
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Figure 4.4: Model validation for fractional order and rational order models

can be modeled as a simple lumped parameter system using integer order models;

however, for CSTH, the outlet water from the tank flows through a long pipeline

and a number of thermocouples are placed at different distances in this pipe to

introduce time delay into the system. If radial heat losses are assumed negligible

and distributed nature of flow inside the pipe is ignored, then flow through a pipe

is assumed to be modeled as a pure time delay system as used in the experimental

93



Table 4.3: PPE values for models for FHC example

PPE # of parameters

C-1 C-2 C-1/C-2

GFO10(s) 0.351 0.285 4

G
IO

(1)
10
(s) 0.509 0.904 3

G
IO

(2)
10
(s) 0.493 0.863 3

G
IO

(3)
10
(s) 0.491 0.846 4

validation in Chapter 3. However, for this study some modifications are made in

the experiments to enhance the distributed flow dynamics inside the pipe, which

includes slower flow rates and use of an air fan outside the pipe to promote heat

losses. The combined tank and pipe flow process for this study is assumed to be

modeled using a fractional order model with a delay term.

Again, the steam flow rate to the tank is used as the manipulated variable and

the outlet water temperature at the far end of the pipeline is used as the controlled

variable. The data presented in Figure 4.5 is used to build and validate models.

Again, we present the comparison study of the fractional order model with a ra-

tional order (integer order) model for this DPS. For comparison purpose, process
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Figure 4.5: Time response for CSTH process
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models (G
IO

(1)
11
(s), G

IO
(2)
11
(s)) using the prediction error method in MATLAB and

G
IO

(3)
11
(s) is estimated using CONTSID. The overall data as shown in Fig. 4.5 was

partitioned into two parts : (a) an identification set: comprising of the first 3000

data points, and (b) the validation data set: comprising of all data points. Table

4.4 presents the identified models for this process and their corresponding PPE

values.

Table 4.4: Identified models and PPE values for CSTH

Models # of parameters PPE

GFO11(s)
2.75

229.7s1.065 + 1
e−137.5s 4 14.80

G
IO

(1)
11
(s) 2.458

148.97s + 1
e−135s 3 15.37

G
IO

(2)
11
(s) 2.338

2183.3s2 + 140.87s + 1
e−135s 4 15.30

G
IO

(3)
11
(s) 0.00228

s2 + 0.133s + 0.000875
e−135s 4 14.73

The time delay for integer order models were again estimated using the correla-

tion analysis, via the function ‘cra’ in MATLAB; however, for the fractional order

model, the time delay was estimated simultaneously with the other model param-

eters using the algorithm proposed in Chapter 2. Infinite step ahead predictions

for all models are shown in Figure 4.6. As can be seen, all models including the

fractional order model capture the process dynamics equally well. As can be seen

from Table 4.3, the fractional order model provides slightly lower value of PPE

compared to the integer order models, G
IO

(1)
11
(s) and G

IO
(2)
11
(s); however the advan-

tage of using fractional derivative model is not very prominent in this example as

the process can be modeled easily via linear differential equations. Even an integer

order model (G
IO

(3)
11
(s)) provides comparable PPE using the same number of pa-

rameters. We need to make conditions more favorable to enhance the distributed

nature of the pipe flow for further model testing. This is something which could

be explored in the future.

4.5 Conclusions

In this chapter, we used the identification method proposed for commensurate

fractional order models with time delay in Chapter 2 and applied it to a number
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Figure 4.6: Model predictions for CSTH process

of distributed parameter systems. Both simulation and experimental studies were

carried out to build fractional order models. The DPS are treated as black boxes

and both fractional order as well as rational order (integer) models are identified

from input-output perturbation data. For some cases, fractional order models with

time delay were found to be very effective in dealing with distributed parameter

systems, especially the diffusive interface problem. In the future, the interesting

perspective would be to carry experimental evaluation of the proposed method

to diffusive interface examples such as heat conduction in a wall and metal rod.

Also, if an identification algorithm for non-commensurate fractional order models

is proposed, applying the same on DPS could provide additional flexibility.
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Chapter 5

Model based predictive
controllers design for interface
level regulation in oil sands
separation cells 1

Large-scale separation cells, used in the primary extraction in the oil sands indus-

try, are integral parts of the overall process of bitumen extraction. Good regulation

of the interface level between the bitumen froth and the middlings in these cells

can result in a significant improvement in bitumen recovery and throughput and

heavily influence process economics. This chapter details a case study application

of identification and design of a model based predictive controllers for the sep-

aration cell process. IMC and MPC schemes using linear models are designed,

implemented and tested in real time on the industrial separation cell. The testing

result shows that both IMC and MPC schemes provide significant benefits over the

current operations which uses a PID controller. The benefits include significant

reduction in the variance of the interface level and underflow pump movement,

resulting in higher bitumen recovery, smoother operations downstream and pump

energy savings.

1Industrial case study-1: The results presented in this chapter has been submitted to Control
Engineering Practice. A condensed version of this chapter has been accepted for presentation
at American Control conference, ACC2012. A condensed version of this chapter has also been
submitted to International Mineral Processing Conference, IMPC’ 2012. First part of this chap-
ter was presented at 60th Canadian chemical engineering conference (CSCHE 2010), held at
Saskatoon, Saskatchewan, Canada on October 24 27, 2010
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5.1 Introduction

Oil sands mainly contain mineral solids (silica sands and clays), water, and bi-

tumen, a highly viscous petroleum-like hydrocarbon. The Athabasca oil sands

reserves in Northern Alberta, Canada, has huge deposits of oil and makes Canada

the second largest oil reserves only after the Saudi Arabia (Alberta-Energy, 2011).

A majority of the oil sands industries that use surface mining to prepare the

feed uses hot water based extraction to extract bitumen from the oil sands. One of

the earliest papers in this regard was Clark (1944). The economic benefits from the

extraction of oil from oil sand deposits in Alberta are huge (Dougan and McDowell,

1997) and with such huge quantities of material being processed in an oil sands

extraction operation, even a small improvement in process efficiency and operation

can greatly influence bitumen recovery, reduce environmental impact and influence

process economics. The extraction process is the next step after mining and most

of the variability in the oil sands feed is channeled to the extraction process. There

is tremendous scope for improvement in the way advanced process control is used

in oil sands processing; and the extraction process is an ideal candidate for the

application of dynamic model based control (Dougan and McDowell, 1997).

The extraction process consists of large gravity vessels known as primary sepa-

ration vessels (PSV) or just separation cells (SepCell). Inside the cell three layers

are formed due to density of the slurry mixture; the interface level between the top

layer (bitumen froth) and the middle layer (middlings) is particularly important as

it influences froth quality and process economics. In the oil sands industry, control

of this interface at an optimum level to improve bitumen recovery is of particular

interest to the operating engineers. However, interface level control in separation

cells presents a lot of challenges for controller design. Modeling of these separa-

tion cells to control the interface level based on the physical laws is difficult not

only because of the constantly changing nature of the oil sands entering the plant

(disturbances in the feed quality and quantity), but also because of the lack of

plant information due to lack of available measurement systems which can reliably

track the various process and disturbance variables. In the last few years, reliable

estimation of the interface level has been obtained from an image based soft sensor.

Recent development in the area of soft sensors and their industrial implementation

includes Jampana et al. (2010); Fortuna et al. (2006); Domlan et al. (2011). Us-

ing the image based soft sensor developed in Jampana et al. (2010, 2011), interface

level estimation is currently available every second and may be used to design a

suitable model based predictive control scheme.
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The complex flow dynamics, because of the multi-phase flow inside the sepa-

ration cell, presents a big challenge. Inside the SepCell, the interface dynamics

are distributed in nature because of the presence of three layers. Modeling of

the interface dynamics is non-trivial. The phenomenon is highly nonlinear and

fundamental understanding of the interface level is a multidisciplinary area that

overlaps with colloid science and surface chemistry, and requires understanding of

the interfacial properties of oil/water and water/sand grain layers at the molecular

level. In contrast to this, building a data based input-output model offers a rela-

tively simple way to design a model based control scheme for such processes. Even

though some of the measurements of flow and densities are available for mass bal-

ance calculations and validation, since there is a lot of wear and tear due to nature

of the slurry that is being transported, the quality of these measurements are not

reliable and depends heavily on maintenance programs. Therefore, the operating

strategy for the separation cell efficiency is totally dependent upon the quality of

the information used to build models and the control design schemes which use

these models. For this study, linear multiple models are built at different operating

conditions to model the SepCell.

It is important to understand the process and instrumentation constraints to

have a successful application of advanced model based control schemes. The sep-

aration cell process has large and variable time delays, and in addition to this,

because of the disturbances upstream and downstream of the process, the process

gain and delay vary significantly. A varying feed flow (disturbance) because of

improper design at the upstream, is one shortcoming commonly found in the min-

ing and oil sands industries. The ore quality, which translates into the amount

of bitumen and sand grain particles present in the oil sands slurry being carried

to the SepCell, has a direct effect on the process gain between the interface level

and the pump speed. Also, if there is too much back pressure in the underflow

line which occurs at one operating condition, it becomes difficult to pump heavy

sands and it adds up as a significant dead time for the interface level dynamics.

Because of these limitations it is important to have multiple models at different

operating conditions because the interface level dynamics change very quickly with

changes in feed conditions (upstream) as well as downstream changes. If there is

too much turbidity or the fuzziness due to the presence of too many fine particles,

the interface level is generally not well defined and measurements from the image

based soft sensors are not available. Sometimes the operator workload and behav-

ior also has an effect on process operations and this clearly does not offer favorable
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conditions to reap automation benefits. A recent paper by Bergh and Yianatos

(2011) highlights some of the challenges for multivariable predictive control in

the mineral processing industry. The challenges discussed in Bergh and Yianatos

(2011) are also applicable in the oil sands industry. Model-based control, or more

specifically MPC, is appropriate for these highly complex processes. However, the

conditions in the oil sands processing plant are not commensurate for a regular

MPC application due to the challenges discussed above. Such issues are not com-

monly encountered in the refining and petro-chemical industries where MPCs is

now commonly employed.

The widespread adoption of MPC methods in the process industry is a clear

indication of its success and these ideas are now starting to attract interest in other

process industries as well. For single-input single-output (SISO) systems, internal

model control (IMC) proposed in Rivera et al. (1986) archives good robustness and

predictive controller capabilities. However, it cannot explicitly handle constraints.

In contrast to any other controllers, MPC computes optimal control moves by solv-

ing an optimization problem over a finite horizon, taking into account dynamic

behavior of the process as well as the operational constraints (Qin and Badgwell,

2003; Rawlings, 2000). MPC techniques have been explored and implemented in

various forms, some of which have found their way to the market place. The review

by Qin and Badgwell (Qin and Badgwell, 2003) describes some of these implemen-

tation algorithms. Some of the recent industrial MPC applications include appli-

cations as reported in Stanler et al. (2011); O’Brien et al. (2011). Even though

most industrial processes are nonlinear, locally linear models are often sufficient to

approximate a process around single set point. Also, since linear models simplify

the control design, they are easy to work with when the control involves rejection

of disturbances. Industrial application of MPC rely mainly on linear empirical

models obtained by employing time series analysis (Qin and Badgwell, 2003). Lin-

ear time series model development from operating data is a well researched area

and a wide variety of model structures are available for capturing the dynamics

of a system with respect to known inputs and unmeasured disturbances (Ljung,

1999; Garnier et al., 2008).

The main objective of this work is to assess the benefits of using advanced

process control algorithms to regulate the interface level in an oil sands separation

cell. Model based predictive controllers, IMC for SISO design and MPC controllers

for SISO as well as Multi-input single-output (MISO) processes, are designed for

the interface level control and experimentally evaluated on a separation cell. The
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online testing was carried out at the primary extraction unit at Suncor Energy

Inc.’s, operation in Fort McMurray, Alberta, Canada. The objective of the control

is to regulate the interface level when subjected to process feed rate changes, and

provide reduction in the variance of the main controlled variable, the forth bitumen

and middlings interface, and thereby improve bitumen recovery and also save on

pump energy with smoother operations downstream. Both feedback and feedback

plus feed forward control are applied to operate the process dynamically using

MPC.

The organization of this chapter is as follows: Section 5.2 provides a brief

description of the investigated process. The model identification approach to build

reduced order linear models for control purpose is described in Section 5.3. The

formulation of the control algorithms used for testing on the process is described

in Section 5.4. The closed loop results for the on-line testing on the SepCell are

presented in Section 5.5. Section 5.6 presents the economic benefits followed by

concluding remarks in Section 5.7.

5.2 Process description

An overview of an industrial hot water based extraction process can be found

in Masliyah et al. (2004); Dougan and McDowell (1997). The extraction process

flowsheet at Suncor Energy Inc., Fort McMurray, is shown in Fig. 5.1.

The surface mining of the oil sands is done using big trucks and shovels at the

mining site. The mined oil sand lumps are crushed, moved on to the conveyor and

then mixed with process water in slurry boxes, stirred tanks, and rotary breakers.

This forms the oil sands slurry which is send to hydro-transportation pipelines or to

tumblers, where the oil sand lumps are sheared, and reduced in size. Some chemical

additives are also added during the slurry preparation stage. Within these hydro-

transport pipelines, bitumen is liberated from the sand grains and entrained air

attaches to the bitumen particles. The flow from these hydro-transport pipelines

is transferred to large gravity separation vessels, normally referred to as separation

cells (SepCell), as shown in Fig. 5.1. Inside these cell the slurry separates into

three different layers: 1) primary bitumen froth, 2) middlings and 3) underflow

(also known as tailings). Typically, a 600C or 650C slurry temperature is used in

the current operations. Hot process water is also added to the top of the SepCell

to enhance the extraction process and cold water is added into the cone section of

the SepCell to help with the underflow flow. The aerated bitumen floats on the top
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Figure 5.1: Flowsheet of the separation cell process

and is subsequently skimmed off from the slurry. In this layer very small quantities

of fine sand particles called fines can also be present. The bitumen froth recovered

is then de-aerated, and transported to the later stages of the process for upgrading

to synthetic crude oil. The second layer known as middlings mainly contains a

high percentage of sand and fines, along with considerable quantities of bitumen.

The last layer is the heavier part and is made of sand, clay and water. Small

amount of bitumen droplets (usually un-aerated bitumen) remaining in the slurry

(in the middlings and underflow stream) are further recovered using induced air

flotation in mechanical flotation cells (primary and secondary flotation units) and

cyclones separators. The recovered bitumen is recycled and added to the oil sands

feed line going into the separation cell. The heavier product from the mechanical

flotation cells and cyclones separators are directly rejected into the tailings ponds.

More details of the extraction process can be found in Masliyah et al. (2004). Fig.

5.2 presents the view of the industrial separation cell where the bitumen froth is

overflowing from the top.

In the extractions process, the interface level between the bitumen-froth and

the middlings is known to affect bitumen froth quality and thus heavily influences

process economics. For example, when this level is too high, fines (fine sand parti-
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Figure 5.2: Top view of the industrial separation cell at Suncor Energy Inc. The
lighter bitumen froth overflows from the top of the separation cell and transported
for further processing.

cles) escape with the bitumen-froth, degrading its quality and adversely affecting

the downstream upgrading process; and when the level is too low, bitumen is lost

to the tailings ponds, causing financial losses and environmental problems. For

these reasons, there has been much interest in the oil sands industry to control

this interface at an optimum level for good bitumen recovery. Presently, an image

based soft sensor developed in Jampana et al. (2011), is used to detect and mea-

sure the froth bitumen and middlings interface by using the image obtained from 3

sight-glass windows as shown in Fig. 5.3. The image from the sight glass window

is processed in the image based soft sensor algorithm (Jampana et al., 2011) and

an estimate of the interface level is used for inferential control.

The process is complex and highly dynamic in nature and due to the large

volumes being processed in the mining operation, most of the oil sand variability is

propagated to the froth bitumen and middlings in the separation cell. Good model

based control of the interface level between the bitumen froth and the middlings in

these cells can result in a significant improvement in bitumen recovery and have a

favorable impact on process economics. Stabilization of the interface level results
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Figure 5.3: Separation cell: Sight glass window showing the interface between the
Bitumen froth (dark surface) and the Middlings (light surface). For each sight
glass window, the green portion is the non-overlapping part with the remaining
glasses, the red boundary shows the overlap between the first and second glasses
and the blue boundary shows the overlap between the second and third glasses.

in much smoother operation of the separation vessel and provides conditions that

are more favorable for froth treatment and bitumen recovery from middlings and

the underflow.

5.3 Model development for Separation Cells

Model based advanced control methods applied to the extraction process could

reduce the variability in plant operating conditions which could consequently lead

to much smoother plant operations downstream while maintaining safety margins.

Also, these techniques could improve plant efficiency by compensating for external

disturbances that separation cells are routinely subjected to. However, modeling

these processes is a big challenge.

In extraction, some of the physical and chemical mechanisms are not completely

understood. Building models based on physical laws such as mass and energy

balances is difficult due to multi-phase or slurry flows in the large gravity separation

vessel. In the SepCell, the aerated bitumen floats to the top as froth while heavy

sands settle at the bottom of the cell due to gravity. Thus, the distributed nature

of the flow inside the SepCell makes it difficult to model the process based on first
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principles model using physical laws. The dynamics of the interface level between

the bitumen froth and the middlings is governed by a lot of factors. These include:

1. Feed composition (or feed quality): If the oil sands feed contains higher

content of fines, due to hindered settling, it takes longer time for heavier

coarse material to settle. Similarly, if the fines are low, the settling is much

quicker. This influences the dynamics between the interface level and the

underflow flow.

2. Rate of settling of sands from the Bitumen froth to the Middlings layer:

The aerated bitumen separates from lighter middlings and heavy components

by gravity. So, the rate at which heavy components settle at the bottom also

influences the interface level between the bitumen froth and the middlings.

3. Flow rate of oil sands feed: Fluctuations in the oil sands feed flow entering

the SepCell causes fluctuations in the interface level. The feed flow also

includes the recycle flow, which is added to the oil sands feed before it

enters the SepCell.

4. Middlings flow rate: The middlings stream is one of the outflows from the

SepCell. If there is more middlings output from the SepCell, the interface

level would go down; however, the middling flow draw is a gravity flow, hence

the influence on the interface level would be less when the interface level is

low.

5. Underflow flow rate: The underflow flow rate is varied by varying the

pump speed and for normal operation this pump speed is used as a manip-

ulating variable to control the interface level between the bitumen froth and

the middlings in the SepCell.

Since the objective is to design a model based predictive controllers, building

data based input-output models is the best way to model SepCell. To build an

accurate model using input-output data, it is necessary to excite the plant and

collect a rich data set. In this respect model identification is a costly affair as it

requires the plant to be perturbed for sufficient period of time and during this

period the bitumen yield may be poor leading to poor recovery. To balance the

requirements for good signal to noise ratio and yet have the plant run at normal

operating conditions, the plant excitation is kept to a minimum level. To start off,

a simple step change is first conducted followed by rigorous excitation, with more
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information gained at each step of this exercise. The controlled plant tests were

done to include a sufficiently wide operating range, while still remaining in the safe

operation. To design a model based controller, system identification tools (Ljung,

1999) were used to identify a linear model relating the controlled variable, the

interface level, with the manipulating variable, the pump speed. The image-based

soft sensor proposed by Jampana et al. (2011) is used to obtain an estimate of the

interface level which is the controlled variable.

5.3.1 Identification data

The operating conditions inside the SepCell differ mainly because of the feed qual-

ity and hence the process has to be operated at different regimes or zones. In

addition, the process dynamics also change in terms of the amount of the oil sands

fed being hydro-transported to the SepCell. Relative to the quantity of feed being

feed to the SepCell, the operating condition do not change for long periods of time.

In this respect a majority of the plant operation is carried out in either one of two

operating conditions: 1) operating condition-1: when either LINE-1 or LINE-2

are operational and 2) operating condition-2: when LINE-1 and LINE-2 both are

operational. Favorable conditions downstream helps process operation inside the

SepCell and at operating condition-1, the bypass line in the downstream side is

closed (see Fig. 1) while it is open at operating condition-2 to ensure there is not

too much back pressure. Therefore the main objective of this study was to build

linear models at these two different operating conditions.

Fig. 5.4 shows the process structure for the SISO control design where the

control variable (CV) is the interface level and the manipulating variable (MV) is

the pump speed. Feed flow (DV1) represents a measured disturbance which can be

used as feed forward disturbance for the feedforward component of the feedback

plus feedforward SISO MPC scheme. Open loop experiments were performed with

step signals of various step sizes, to collect a rich data set. Fig. 5.5 presents the

time-series data from the step test at the operating condition-1. As can be seen,

the data quality is not very good, due to the fuzzy image characteristics inside the

cell. There is therefore a loss of interface measurement as evident from the flat

line on the interface level sensor plot (see right plot in Fig. 5.5) over the sampling

instant period from 9000-9500. If there is a loss of interface, the measurement

is held at the last value. Fig. 5.6 presents the plot for step test at operating

condition-2.
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Figure 5.4: Process structure for SISO control design
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Figure 5.5: Interface level response to changes in the pump speed at operating
condition-1

5.3.2 Model identification

Due to the size of these SepCells and the distributed nature of the flow to and

from the cell, time delays are present in the process and the process behaves as

a higher order system. Apparent time delays also appear in the identification

exercise when such a higher order process is modeled by a low order model to

design a reduced-complexity model based controller. The input-output response

data presented above is used with the MATLAB system identification toolbox and

CONTSID toolbox (Garnier et al., 2006) to identify a number of best fit linear

parametric models.

108



 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-20

-10

0

10

     

In
te

rf
ac

e 
le

ve
l (

%
)

Input and output signals

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-15

-10

-5

0

5

10

Time (sec)

Pu
m

p 
sp

ee
d 

(%
)

Figure 5.6: Interface level response to step change in pump speed at operating
condition-2

The process has a large dead time and the dead time is modeled by careful

examination of the step response plots. If the bypass line is open in the downstream

side (operating condition-2), it is easy to pump the underflow and consequently

the interface level responds faster to changes in the pump speed. The time delays

in the process are of the order of 6-8 minutes at operating condition-1 and there

is a delay of approximately 2 minutes at operating condition-2. The overall data

set was partitioned into two parts : (a) an identification set: consisting of the first

70% data points and (b) the validation data set: consisting of 100% of the data.

Model validation was carried out by not just looking at the model predictions but

also by checking with the plant engineers if the model actually makes sense. For

example, a model with a positive gain would clearly be an incorrect model, since

interface level should go down if we increase pump speed. Also, can get rough

estimates of the magnitude of the process gain by looking at the step response for

different models.

At operating condition-1, for the model identification exercise, the data is down

sampled to 15 second sample period. An autoregressive exogenous (ARX) model

of second order and a first order continuous-time OE model using CONTSID are

fitted to the data set and they provide good models for the control design at

operating condition-1. Fig. 5.7 shows the model predictions for both the models.
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The two models are:
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Figure 5.7: Model predictions at operating condition-1

ARX : (1− 1.85q−1 + 0.855q−2) y(t) = −0.00468 q−32 u(t) + e(t) (5.1)

OE : y(t) =
−0.0024

s+ 0.0017
e−480s u(t) + e(t) (5.2)

For operating condition-2, a first order continuous-time OE model using CONTSID

and second order ARX model were obtained. They both provide parsimonious

models for control design purposes. For this condition, the data is down sampled

to 5 seconds to build models. Fig. 5.8 shows the model predictions at operating

condition-2. The two models are:

ARX : (1− 1.53q−1 + 0.534q−2) y(t) = −0.00884 q−24 u(t) + e(t) (5.3)

OE : y(t) =
−0.004263

s+ 0.003992
e−120s u(t) + e(t) (5.4)

As evident from Figures 5.7 and 5.8, the models are not perfect under the infinite-

step ahead prediction. This is the acid-test for model validation. These models do

perform much better at the 10-step ahead prediction clearly indicating that the

process has many unmeasured disturbances. In summary, the models do capture

the major transients and direction in the data, which is sufficient to provide fairly

reliable model predictions and therefore these models can be used for the design

of predictive control schemes with a prediction horizon of 10 to 20 sample periods.

There are a lot of disturbances which affect this process. In mineral process-

ing, Hodouin et al. (2001) emphasizes that the optimization and control cannot
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Figure 5.8: Model predictions at operating condition-2

be performed without some information on the input disturbances (the material

properties), the process states, and the final product quality. This is very also true

in the oil sands industry. The operating efficiency is dependent on the quality of

information used, which is used to build models and subsequently design model

based control algorithms. Inside the SepCell, interaction effects of the mined feed,

recycle flow, and other variables, with the interface level are needed, in order to

study the effect of the changing disturbances that affects the SepCell. These are

fast scanned measured disturbance variables unlike the feed quality which is ob-

tained using lab analysis. For current process operations, there are frequent drop

in the feed flow for LINE-2 compared to LINE-1 and this in turn also affects the

interface level dynamics.

Fig. 5.9 shows the process structure for the MISO control design. We studied

the effect of the recycle flow and the feed flow on the interface level as the potential

measured disturbances and middlings flow as an additional manipulating variable;

however, the middlings flow is be manipulated to a limited extent because of the

process operational constraints. Fig. 5.10 presents the plots for a step test for

these variables. During the tests for these variables, the pump speed was kept

constant. First order plus dead time models are build for these variables and the

models for recycle flow and feed flow were used as feedforward signals as will be

described later.
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Figure 5.9: Process structure for MISO control design
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(b) Recycle flow
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Figure 5.10: Effect of measured disturbances and middlings flow on interface level

5.4 Model based predictive control

In order to obtain good overall control of separation cells, one needs good control

of the local variables such as flow rates, feed density. Only after these are satis-
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factory, can one integrate them with the interface level control and the primary

and secondary floatation cells to obtain specific grades for the outflows from the

separation cell such as middlings and the underflow tailings. However, with cur-

rent process operations, it is not easy to change the set points of a majority of

the local controllers and also one should not upset the process much by ‘experi-

menting’ with so many factors at the same time. Thus, the objective here is to

apply advanced control schemes to improve the regulatory interface level control

compared to current operations, and move in a sequential manner to integrate the

local controllers, for example, feed flows, feed characteristics and plant constraints

to achieve performance close to the target requirements.

One can find examples of many important industrial control loops in process

industries which exhibit long dead time characteristics and very large dominant

time constants. The reason for very slow dynamic responses of these control loops

is the presence of dead time. The controller design of such processes is a challeng-

ing problem. PID controllers are still widely used in the industry because they are

easy to implement and they perform well for a wide class of processes. However,

PID controllers are not very well suited for control of processes with large time

delays since it can cause stability issues for the closed loop systems. The most

popular and effective dead-time compensator in use today is the Smith predictor

(Smith, 1957). The controller can be designed as if the process is delay free and

the output response to a reference input can be adjusted as desired. Åström et al.

(1994); Watanabe and Ito (1981) present some of the early works on how to tune

controllers using Smith predictors for processes with time delays. For processes

with time delays, the Smith predictor structure and the internal model control

(IMC) structure are equivalent. These simple modifications in the control struc-

ture work very well for SISO processes; however, for multi-variable systems more

advanced control schemes such as MPC, which can handle process constraints, are

more practical and present an opportunity for long term operation without expert

intervention. In the overall operation of the process, MPC presents significant

advantages over other multi-variable controllers which primarily include handling

interactions and constraints. The real economic benefits accrue when the dynamic

control allows the set points to be moved closer to the constraints without violat-

ing them (Prett and Gillett, 1980); and this is what we expect to achieve in the

SepCell by using MPC. The final objective for this case study is to implement

MIMO MPC and this is the first step in achieving this objective and therefore the

use of MPC controller.
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5.4.1 IMC control design

Internal model control (IMC) was developed by Rivera et al. (1986). The distin-

guishing characteristic of the IMC structure is the incorporation of the process

model which works in parallel with the actual process, and leads to analytical ex-

pressions for the controller setting. The IMC method is based on the simplified

feedback structure as shown in Fig. 5.11. A process model Ĝ(s) (of order n)

C(s)
Y(t)Ysp(t)

d(t)

U(t)+

-

+
+

Ĝ(s)

G(s)

+

-

Ŷ(t)

Figure 5.11: Internal model control control strategy

appears in the control structure for the process G(s) and if G(s)=Ĝ(s), that is,

perfect modeling, and there are no disturbances present, the system behaves like

an open loop system. The controller C(s) is designed as the inverse of the pro-

cess model Ĝ(s). This means perfect set point tracking and asymptotic rejection

of disturbances can be achieved if there is no plant-model mismatch. However,

in practice a filter is introduced in order to make the IMC controller physically

realizable. Thus, the first step in the IMC controller design is to factor the process

model as

Ĝ(s) = Ĝ+(s)Ĝ−(s) (5.5)

where Ĝ+ contains all the time delays and right-half plane zeros. Then the IMC

controller is defined as

C(s) = Ĝ−1
− (s)F (s) (5.6)

where F (s) is a low pass filter and the simplest design is given as Rivera et al.

(1986)

F (s) =
1

(τs + 1)n
(5.7)
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For processes with time delays, the Smith predictor structure and the internal

model control structure are equivalent and by suitably selecting the tuning param-

eter τ , we can design the closed loop performance of the system.

5.4.2 Model predictive controller design

A class of control algorithms that use dynamic process models to incorporate

process knowledge into the controller structure are known as predictive control

algorithms. Model predictive controllers are good for highly complex and in-

terconnected dynamic systems. In contrast to a standard PID controller, MPC

attempts to minimize the sum of squares of future control errors over a user speci-

fied time horizon with some regard for the control energy. It calculates an optimal

control action by taking into account process dynamic behavior and operational

constraints (Qin and Badgwell, 2003; Rawlings, 2000).

Model predictive algorithms utilize the moving horizon approach, computing a

set of control moves over a horizon. The initial control moves are implemented,

while the remaining calculated moves are discarded. The process is then repeated

at subsequent sampling times. Implementations of MPC in industry commonly

use linear process models. MPC techniques have been implemented in various

forms, some of which have found their way to the market place. Examples of

such implementation algorithms are available in the review by Qin and Badgwell

(2003).

The objective in MPC consists of minimizing the following dynamic objective

function:

J(uCH) =

PH∑
j=1

{∥∥eyk+j

∥∥2
Q
+ ‖sj‖2T

}
+

CH−1∑
j=0

{∥∥euk+j

∥∥2
R
+ ‖Δuk+j‖2S

}
(5.8)

subject to model constraint (model could be linear):

xk+j = f(xk+j−1,uk+j−1) ∀ j = 1, 2, ...PH. (5.9)

yk+j = g(xk+j,uk+j) ∀ j = 1, 2, ...PH. (5.10)

and subject to inequality constraints:

yL − sj ≤ yk+j ≤ yU + sj ∀ j = 1, 2, ...PH

sj ≥ 0 ∀ j = 1, 2, ...PH

uL ≤ uk+j ≤ uU ∀ j = 0, 1, ...CH − 1

ΔuL ≤ Δuk+j ≤ ΔuU ∀ j = 0, 1, ...CH − 1 (5.11)
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Thus, the objective function penalizes the deviation from the desired output trajec-

tory yr
k+j, defined as eyk+j = yk+j - y

r
k+j, over the prediction horizon, PH . Output

constraint violations are penalized by minimizing the size of the output constraint

slack variables sj . Also, for the manipulating inputs, future input deviations from

the desired steady-state input us are controlled using input penalties defined as

euk+j = uk+j - us, over a control horizon of length CH . Rapid input changes are

penalized with a separate term involving the moves Δuk+j . The relative impor-

tance of each terms in the objective function is defined by the weighting matrices

Q, T, R and S. The MPC dynamic optimization is formulated as a quadratic

programming (QP) problem and the solution to the quadratic objective function

(5.8) is a set of CH input moves

uCH = (uk,uk−1, ...,uk+CH−1) (5.12)

Only the first input uk is implemented on the process and the calculation is re-

peated at every execution interval. Also, note that the MPC is designed to account

for any plant-model mismatch by introducing the integral action in the controller

which is achieved by using the difference between the measured and predicted

controlled variable from the model.

5.5 Control strategy applied to industrial setup

Before implementing the control scheme (both IMC and MPC) on the real pro-

cess, a number of off-line simulation studies were undertaken to identify suitable

parameters for the controller and achieve the required closed loop performance

and provide some robustness to the controller. Finally, the controllers were tested

and implemented at the Suncor’s Extraction unit. On-line implementation of the

controllers was performed using OPC (Object Linking and Embedding for Process

Control) objects as the communication channel between the commercial software

Controller Performance Optimizer (CPO) and the DCS (distributed control sys-

tem). Thus, the calculations were done in CPO and the results of the calculations

are sent back to the DCS through an OPC client object that connects to an OPC

server. The results presented here are actual field test results to show the benefits of

the advanced process control application to the extraction unit. The performance

of the controllers (regulatory performance) is assessed by comparing the standard

deviation (s̄) of the process variables around the mean value; the interface level,

the pump speed and the underflow. Here s̄ is defined as

s̄ = std(PV ) (5.13)
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5.5.1 Internal model control

Fig. 5.12 shows the closed loop performance for a period of 7.5 hrs where the

IMC (blue line) was tested, along side conventional closed loop performance of

the same process (PID Control) a few days earlier as well as after the IMC test

(black dotted line). The results are for testing at operating condition-1. The plot

shows the interface level along with the pump speed (manipulated variable) and

the underflow (flowrate through underflow line). The data as shown in Fig. 5.12

is not contiguous. As is the case in industry, one has to make do with whatever

opportunity is available to test the proposed control schemes, therefore, we have

just compared the closed loop performance of the IMC controller with the current

operation which uses PID including some manual control as evident by constant

pump speeds in the right portion of fig. 5.12. IMC is configuration for this case

by keeping closed loop time constant (λ) for the process same as open loop time

constant.

As can be seen, the IMC controller delivers satisfactory performance and keeps

the process variable near the set point while keeping the pump movement to the

minimum compared to the results before and after the testing period. Validation

and comparison of controllers in an industrial setting are difficult as the variabili-

ties of the influences (disturbances) from outside are significant and differ during

different times. Fig. 5.13 shows the histograms for the interface level and the un-

derflow. It is clearly evident that using IMC, we get much tighter regulatory control

compared to the current operations using PID control. The time delay compen-

sation of the IMC controller helps to reduce the variance of the process variables.

Table 5.1 shows the comparison of all the key performance indices (KPI) with and

without the IMC control.

Table 5.1: Comparison of regulatory performance (s) with and without IMC at
operating condition-1

KPI (unit) During IMC testing Current operations (PID) -
After IMC testing

Interface level (%) 3.23 8.89
Pump speed (%) 3.55 13.68
Underflow (%) 3.70 11.86

Therefore, there is a significant improvement in the regulatory closed loop

response with an IMC and this provides encouraging results to further test and

improve process operations. As can be seen, the advanced process control benefits
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Figure 5.12: Closed loop performance of IMC at operating condition-1

are visible and it is important to get a feel for the potential benefit a control

system like the one presented here may have in comparison to current operation.

However, to handle process constraints and feedforward disturbance along with

further moving the set point closer to the limits, we tested industrial an MPC, the

results for the same are presented next.

5.5.2 Model predictive control

Using MPC, we added process constraints for both the interface level and the pump

speed. We used the estimated models as obtained at two operating conditions to

design MPC with and without feedforward control.

118



40 60 80
0

50

100

Level (%)

Fr
eq

ue
nc

y

During IMC testing

40 60 80
0

50

100

150

Underflow (%)

Fr
eq

ue
nc

y

40 60 80
0

50

100

Level (%)

Fr
eq

ue
nc

y

Current operations- PID (After IMC testing)

40 60 80
0

50

100

Underflow (%)

Fr
eq

ue
nc

y

SP = 65

Figure 5.13: Histograms of process variables for IMC at operating condition-1

MPC at operating condition-1

Fig. 5.14 shows the closed loop performance for roughly 15 hours of testing data

(blue line). The plot shows the interface level along with the pump speed (manipu-

lated variable) and the underflow, before (black dashed line) as well as after (black

dotted line) the MPC testing. The data as shown in Fig. 5.14 is not continuous

as configuration steps were required before and after the switch from current op-

erations to ‘MPC on/off’ was done. The execution time for the MPC was chosen

to be 10 sec. For MPC, the prediction horizon was set to be 150 and the control

horizon as 35. The weighting matrices Q, R, S and T were set to the following:

Q = 1.75,T = 2.0,R = 0.0,S = 2.0.

These settings were chosen such that we achieve the required closed loop perfor-

mance from the controller. The desired output trajectory is built using a time

constant of 600 sec. The constraints on MV and CV are shown in the Fig. 5.14.

As can be seen, the benefits of the MPC are clearly visible, the control effort (pump

movement) is small with the interface level within the constraints for 95% of the

time. The interface level violates the constraints when there is a significant drop
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in the feed flow rate as will be explained later. A fair and perfect comparison is

difficult as the disturbances might be different during the three periods when these

tests were carried out. Fig. 5.15 shows the histograms for the interface level and

underflow in the order of testing. It is clearly evident that the MPC controller

gives much tighter regulatory control compared to the current operations using

PID control. Table 5.2 shows the comparison of all the key performance indices

(KPI) with and without the SISO MPC control.
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Figure 5.14: Closed loop performance of MPC at operating condition-1

As can be seen, there is significant reduction in the standard deviations of

all three key performance indices using MPC. The pump speed is also relatively

constant using MPC, resulting in a smoother operation of the controlled system

downstream. Fig. 5.16 shows the SISO MPC closed loop response along with the

feed flow conditions. As can be seen from Fig. 5.16, whenever there is significant

change in the feed flow, it affects the interface level. The time when the interface

level violates the constraints is the time when there is a loss of feed or significant
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Figure 5.15: Histograms of process variables at operating condition-1

Table 5.2: Comparison of regulatory performance (s) with and without SISO MPC
at operating condition-1
KPI (unit) Current During MPC test Current

operations (PID)- operations (PID)-
Before MPC test After MPC test

Interface level (%) 7.71 4.80 10.95
Pump speed (%) 9.14 4.53 8.78
Underflow (%) 9.48 4.99 9.12

drop in feed flow. Even though the pump speed reaches the minimum, it cannot

prevent the upset in the interface level when there is this extent of feed loss. There-

fore, we need to add some of the measured disturbance variables as feedforward

signals and add additional manipulating variables such as middlings flow to further

make the closed loop control proactive with respect to the disturbances. This is

the main reason for designing the MISO MPC.

MPC at operating condition-2

The execution time for the MPC at this operating condition was also set to 10sec.

At this operating condition, the prediction horizon was set to be 100 and the
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Figure 5.16: Closed loop response along with feed flow condition for the SISO
MPC test at operating condition-1

control horizon as 25. The weighting matrices, Q, R, S and T were set to the

following:

Q = 1.5,R = 0.0,T = 2.0,S = 2.0.

Again, these settings were chosen such that we achieve good performance from

the controller. The desired output trajectory is built using a time constant of

300 sec. The constraints on MV and CV are shown in the Fig. 5.17. At this

operating condition we tested the MPC with feedforward (MPC FF) for LINE-

2 and compared the performance with the current operations. The switch from

MPC FF to PID is instantaneous in Fig. 5.17. Fig. 5.17 shows the closed loop

performance comparison of MPC FF (blue line) with PID control (black dashed

line) for roughly 3 hours of process operation. A fair and perfect comparison is

difficult as the disturbances might be different for the two cases; however we have

presented the changes in feed flow (major disturbance) in Fig. 5.17 along with the

closed loop performance. The numbers of feed drops for the two cases are almost

same.

Table 5.3 shows the comparison of all the key performance indices (KPI) and

as can be seen the MPC with feedforward control performs better than current

operations which uses PID control. Fig. 5.18 shows the histogram plots for the

122



0 50 100 150 200 250 300

40

60

80

In
te

rf
ac

e 
L

ev
el

 (%
)

0 50 100 150 200 250 300
40

60

80

100

 P
um

p 
sp

ee
d 

(%
)

0 50 100 150 200 250 300

40

60

80

100

 U
nd

er
flo

w
 (%

) 

Samples (mins)

 

 

During MPC FF testing
Current operations- PID 

(a) Closed loop performance

0 50 100 150 200 250 300

20

30

40

50

60

70

80

LI
NE

-2 
flo

w 
(%

)

Samples (mins)

Measured disturbances

(b) Feedforward disturbance, LINE-2 flow

Figure 5.17: Closed loop performance of MPC FF at operating condition-2

interface level and underflow for these two controllers.

Fig. 5.19 shows closed loop performance comparison for current operation

(PID), MPC without feedforward (MPC), and MPC with feedforward (MPC FF).

Even though there are more feed flow drops for the MPC FF case, the MPC with

feed forward helps keep the interface level between the constraints. Again as can be

seen from Table 5.4, the MPC with feedforward performs better in providing better

interface regulation and is able to reduce the variability of the process variables.
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Table 5.3: Comparison of regulatory performance (s) for MPC FF at operating
condition-2

KPI (unit) During MPC FF Current operations - PID
testing

Interface level (%) 5.57 7.86
Pump speed (%) 6.57 9.23
Underflow (%) 6.40 8.23
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Figure 5.18: Histograms of process variables at operating condition-2

Fig. 5.20 shows the histograms for the interface level and underflow rates for the

three controllers.

Table 5.4: Comparison of regulatory performance (s) for MPC with and without
feed forward at operating condition-2

KPI (unit) Under current Under MPC Under MPC FF
operations (PID)

Interface level (%) 10.24 11.43 7.37
Pump speed (%) 11.02 9.64 7.94
Underflow (%) 10.49 9.25 7.33

Therefore, we see that feed forward control really helps in regulating in the
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Figure 5.19: Closed loop performance comparison for MPC with and without feed
forward at operating condition-2

presence of one of the major disturbance to the process and helps to improve the

closed loop performance of the MPC. The reduced variance of these process vari-

ables results in smoother operations downstream and therefore, the result suggests

that there are financial benefits in using the MPC strategy.
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Figure 5.20: Histograms of process variables for MPC with and without feed for-
ward at operating condition-2

MISO model predictive control

The testing using MISO MPC is ongoing research for this process and more detailed

testing at the two operating conditions will be done to have a multivariate MPC

application in the extraction unit. The results presented in this section are some

of the initial testing results. We do not have closed loop response data before and

after MISO MPC testing and the results are presented to show our approach for

more testing.

Fig. 5.21 shows the closed loop performance for roughly 3.3 hours of testing

data when we used the middlings as a second manipulating variable and the re-

cycle flow and feed flow as feed-forward disturbances. We expect to achieve much

better closed loop performance by adding an additional manipulating variable, the

middlings flow. However, due to process restrictions, the middlings flow is only

changed by ± 5% and we cannot fully exploit the middlings flow. Therefore, the

closed-loop response hits the constraints more often. MPC controllers can pro-

vide much better and safer responses to disturbances and we expect to see that in

further testing on the process.
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5.6 Economic benefits

In the introduction we discussed that a small improvement in the process efficien-

cies and operation can greatly influence bitumen recovery, reduce environmental

impact and influence process economics. The test results using IMC and MPC have

been very positive and show significant reduction in the variance of the interface

level compared to current operations. As a result of this the overall variability of

the process and manipulated variables were shown to be considerably reduced when

using IMC and MPC controllers. Since there is also significant reduction in the

pump movement, this translates into pump energy savings and hence significant

cost reduction. Since the extraction process is a continuous process, a smoother

operation of the separation cell ensures smoother operation downstream, and all

these benefits are directly related to increased bitumen recovery and throughput.

5.7 Conclusions

In this chapter, a case study application of identification and model based pre-

dictive control design for the interface level control in an industrial separation cell

process in the oil sands industry has been discussed. IMC and MPC were designed,

implemented and tested in real time on the industrial separation cell to observe the

benefits of using advanced process control schemes in the extraction unit. The test

results show that both IMC and MPC schemes provide significant benefits over

the the current operations which uses PID (plus manual) control. The benefits

include significant reduction in the variance of the interface level and underflow

pump movement, leading to higher bitumen recovery and reduced losses at the

tailings and also pump energy savings and smoother operation downstream.

In future studies, a multi-input single output (MIMO) control formulation,

incorporating additional CVs and MVs would be tried and tested. This is expected

to make the control problem more challenging.
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Figure 5.21: Closed loop performance comparison at operating condition-2 for
MISO MPC
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Chapter 6

Model based predictive control of
bituminous froth heaters in oil
sands extraction

In a majority of oil sands operations, the hot-water floatation based extraction

process is used for extracting bitumen hydrocarbon from the ore. In order to

de-aerate the bitumen froth obtained from the hot water based flotation method

and make it less viscous and easy to handle, it needs to be heated before being

passed on to the next stage. This chapter details a case study application of

identification and model based predictive control design for the bitumen froth

steam heater (FHC) process. The process represents a non-square multi-variable

problem with more controlled variables than manipulating variables; and a gain

scheduling model predictive controller (MPC) using linear models obtained from

industrial data is designed, and tested in simulations. The industrial testing is

in progress. Simulation results shows that the multi variable MPC scheme can

provide significant benefits over the current operation which uses a number of local

PID controllers. These benefits include better handling of process interactions and

better regulatory performance resulting in the reduction of the variance of exit

froth temperature and steam usage (steam energy savings).

6.1 Introduction

In the oil sands industry, the process of bitumen production from oil sands involves

various inter-related unit operations such as mining, utilities, extraction, froth

treatment, water management and upgrading (Masliyah et al., 2004). The mining

operation directly affects extraction, which in turn affects the froth treatment and
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the upgrading process. Only through proper integration of all these units, can the

bitumen be efficiently and economically recovered. There is tremendous scope for

improvement in the way advanced process control is used in the oil sands operation

and there are a number of potential candidates for application of dynamic model

based predictive control schemes.

The Clark hot water floatation method is one of the methods to extract Bitu-

men from oil sands ore. One of the earliest papers in this regard can be found in

Clark (1944). The aerated froth produced from the large floatation cells is diffi-

cult to work with and has properties similar to roofing tar. It is highly viscous,

does not readily accepts heat and needs to be de-aerated before it can move to

the next stage of the process. This is done by passing the froth through a series

of froth steam heaters where superheated steam is injected and mixed with the

bitumen froth (direct contact) resulting in solution at a homogenous temperature.

The development of first principle models is usually time-consuming and needs a

lot of effort, especially for a complex process (Henson, 1998). The froth heater

operation is highly nonlinear and dynamic in nature. The aerated froth coming

from the primary extraction does not readily accepts heat; the temperature as

well as flow of the incoming bitumen froth to the heaters affects the dynamics of

the two heaters and thus the process behaves differently when operated at differ-

ent operating conditions. In addition, the heaters work in series, and hence the

presence of interactions between the temperature loops for the two heaters. MPC

based on data-based models seems to be an appropriate control methodology for

this complex, interconnected dynamic system.

MPC computes optimal control moves by solving an optimization problem over

a finite horizon, taking into account dynamic behavior of the process and the op-

erational constraints (Qin and Badgwell, 2003; Rawlings, 2000). MPC techniques

have been explored and implemented in various forms, some of which have found

their way to the market place as discussed in Chapter 5 (introduction). Industrial

applications of MPC rely mainly on linear empirical models obtained by employing

time series analysis (Qin and Badgwell, 2003) which however can quickly become

obsolete. Both the development and the maintenance of the dynamic model is

of paramount importance for achieving good closed loop performance. Classical

control design based on linearized dynamics may not exhibit good or even sta-

bilizing performance when operating away from the equilibrium. In the case of

changing operating conditions for a process, the problem of maintaining the sta-

bility and/or performance of a linear MPC scheme is handled in the following ways
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(Morari and Lee, 1999): (a) incorporating robustness at controller design, (b) em-

ploying multiple models based controller design, and (c) updating the parameters

of the linear prediction model either intermittently or on-line.

Incorporating robustness in the controller design to uncertainties in the process

is an attractive option. However, for a chemical process, suitable modeling of the

uncertainties to the process and then designing a controller that can deal with

large variations in the operating conditions is a non-trivial task. Let us assume

that if such a robust controller exists and can be designed, it may turn out to be

quite conservative and may not provide uniformly satisfactory performance over

the entire operating range. The second approach to handle changes in the operating

conditions is to develop multiple linear models. For this, we need to perturb the

plant at different desired operating conditions. The last option is updating linear

model parameters intermittently, which is another attractive strategy. In this work,

we use the second approach.

Leith and Leithead (2000) describe the important theoretical results and de-

sign procedures for gain-scheduling (GS) control by decomposing nonlinear design

problems into linear sub-problems. Conventional GS methods employ divide and

conquer approach where the parameter space is divided into small operating re-

gions, where the process is regarded as a linear time invariant (LTI) system and

LTI controllers (fairly robust) are designed for each of these operating conditions.

The operating point is parameterized by a scheduling variable, and scheduling of

controller gains is established based on this scheduling variable. At each interval of

time, one of the linear controllers is activated based on the value that the scheduling

variable achieve during closed-loop operation. This is a good compromise between

performance and robustness and the stability question in the switching zone has

been solved in Shamma and Xiong (1999). In general, the scheduling variable is

time-varying and may either be an internal plant variable, or a function of internal

plant variables, called endogenous variables, or an externally prescribed exogenous

variable. It is assumed that the model based on first principles is not available

and therefore empirical models are used, which are directly identified from the

experimental data. In this work, the focus is on using the linear models, as linear

system and control theory is well developed.

The main objective of the work in this chapter is to assess the benefits of

using advanced process control algorithms to regulate the exit temperature of the

bitumen froth from froth heaters. MPC is designed for this multi-input multi-

output (MIMO) process. The main focus is on the application; therefore, the
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stability or robustness of gain scheduling linear controllers are not discussed in this

chapter. The process represents a non-square multi-variable problem with more

controlled variables, than manipulating variables and a gain scheduling MPC using

linear models is designed, and tested in simulations. The industrial testing is in

progress. The objective of the control is to regulate the exit froth temperature

during process feed changes, and provide reduction in the variance of the process

variables that result in steam energy savings and smoother operations downstream.

The organization of this chapter is as follows: Section 6.2 provides a brief

description of the investigated process. The model identification for the control

design is described in Section 6.3. Section 6.4 describes briefly the formulation

of the control algorithms used for testing on the process. Section 6.5 presents the

closed loop results in simulations for the gain scheduling MPC. Section 6.6 presents

the economic benefits and the conclusions.

6.2 Process description

The Froth heater process represents an interstage between primary and secondary

extraction units in the oil sands industry. The desired objective of these heaters

is to increase the temperature of the incoming bitumen froth before it is sent to

the next stage of the process. Traditionally, processing of aerated bitumen froth

requires the froth to be heated to 1900F to 2000F (Gaston et al., 2011). This is

done in order to make the froth less viscous and easy to handle in the later stages.

The froth steam heater process flowsheet is shown in Fig. 6.1. The aerated

froth produced from the large floatation cells in the primary extraction is difficult

to work with; it is highly viscous, does not readily accepts heat, and needs to be de-

aerated before it can move to the next stage of the process. This bituminous froth

is pumped and passed through a series of inline froth steam heaters to increase the

temperature of the froth. The froth heater is a multistage unit that injects and

thoroughly mixes the superheated steam with bitumen resulting in a solution at

some homogeneous temperature. High pressure steam is injected directly into the

bitumen froth flowing in a pipeline where initial contact takes place. The heaters

allow direct contact between the two inputs, and the steam loses its heat to the

froth and condenses at the bottom. The reduction in bitumen viscosity allows

the release of entrapped air. The froth passes through heater-1 (H-1) and then

through heater-2 (H-2) and the heated bitumen froth from H-2 is discharged to

a downstream holding tank (Tank-1) and then sent for further froth treatment.
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Figure 6.1: Flowsheet of the froth steam heater process

Pressure control valves V1 and V4 are designed to control the pressure of the input

steam measured using pressure transmitters P1 and P2 respectively. The high

pressure steam is mixed with the condensate to reduce the steam temperature

to its saturation point and the temperature control valves V2 and V5 provide the

control for the temperatures of the steam entering the heaters which are monitored

by temperature sensors T1 and T3. Temperature control valves V3 and V6 are used

to maintain the temperatures of the froth exiting from H-1 and H-2 respectively.

In current operations, the steam pressure is controlled using two PID loops with V1

and V4 as the manipulating variables. Also, exit temperatures of the froth from H-1

and H-2 are controlled by manipulating the V3 and V6 respectively. The changing

nature of the incoming froth feed flow and the froth temperature are disturbances

to the process and affects the dynamics of the froth heaters.

6.3 Model development for the froth heater pro-

cess

The process clearly represents a multi-input multi-output process with significant

process interactions between various control loops. Modeling this MIMO process

is a big challenge. The froth heater process is highly complex and involves direct

contact of the bitumen froth with the steam; it is a tedious task to model this
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process using first principles. The process dynamics change with the quality of feed

and the feed conditions (flow and temperature). The objective is to design linear

MPC; and thus data based input-output models are identified for the MIMO froth

heater process. To build an accurate model using input-output data, it is necessary

to excite the plant and collect a rich data set. The controlled identification tests

were done at different operating conditions to collect data and build models.

6.3.1 Linear time invariant (LTI) modeling

The process is nonlinear, however local linear models at different operating condi-

tions can capture the dynamics of the process. After talking to the plant operators

and plant engineers, the operating conditions inside the froth heaters differ mainly

because of the input feed conditions (both flow and temperature). The operating

condition, in regard to the temperature of the input bitumen froth being feed to

the froth heaters, does not change for a long period of time. Hence, we are looking

at developing linear models at different operating conditions with respect to the

input froth temperature.

Let Σnl describes the nonlinear plant dynamics:

Σnl :

{
ẋ(t) = f(x(t), u(t))
y(t) = g(x(t), u(t))

}
(6.1)

where x(t) ∈ Rn represents the states of the system, u(t) ∈ Rm is the input and

y(t) ∈ Rp denotes the measured output. When a nonlinear model is not available,

a set of linear black-box models may be used to describe the process dynamics over

the operating range of the process. A set of linear plant models Σ(ρ) is given by

Σ(ρ) :

{
ẋ(t) = A(ρ)x(t) +B(ρ)u(t)
y(t) = C(ρ)x(t) +D(ρ)u(t)

}
ρ ∈ Ξ (6.2)

or

Σ(ρ) : {G(s, ρ)} ρ ∈ Ξ (6.3)

where ρ is the scheduling variable and is regarded as constant for modeling purpose,

Ξ gives the operating envelope and G gives the process transfer function matrix.

Therefore, we are looking at building these sets of linear models, Σ(ρ). For this

study, froth feed temperature (Tin) is used as the scheduling variable and the

process model is represented in the transfer function form.

6.3.2 Model identification

Model identification experiments were conducted at three operating conditions

with respect to Tin. The main objective is to monitor bitumen froth temperatures
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T2 and T4 as well as the pressures, P1 and P2 of the steam lines. For heater-1, we

have two control valves, V1 and V3 to monitor the steam flow to the heaters. After

running some preliminary tests on the industrial setup and talking to operators

to study the effect of these on T2 and T4, we found that small movements in

control valve V3 has no effect on bitumen froth temperature T2. Also, in current

operations, valve V3 is kept almost fully open and exit temperatures from the two

heaters are adjusted using valve V1 and V4 positions. Similar conclusion holds for

T4 for changes in valve position V6.

During the model identification testing period, pressure transmitter P1 was

down for maintenance. After talking to process engineers, the steam line with

valves V1 and V4 are very similar and since the source of the steam is the same for

both the heaters, modeling pressure P1 for changes in V1 is essentially the same as

modeling pressure P2 for changes in V4. Therefore, we can only build models for P2

and models for P1 are assumed to be the same as those for P2. The valve positions

V2 and V5 for condensate flow were kept constant during the experiments.

Fig. 6.2 shows the process structure for the MIMO control design where the

controlled variables (CV) are P1, P2, T2 and T4 and the manipulating variables

(MV) are valve V1 and V4 positions. Since the experiments are performed during

normal operations, each manipulating variable is perturbed separately and in this

way useful process information was gained.

V1

(CVs)

Froth Heater

Control

Target requirement: Good regulatory performance

V4

Feed Flow

(DV1)

Feed temperature

(DV2)

P1

P2

T2

T4

(MVs)

V1

(CVs)

Froth Heater

Control

Target requirement: Good regulatory performance

V4

Feed Flow

(DV1)

Feed temperature

(DV2)

P1

P2

T2

T4

(MVs)

Figure 6.2: Process structure for MIMO control design

The input-output response data for each operating condition is used with the

MATLAB system identification toolbox and CONTSID toolbox to identify best fit
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linear process models. Fig. 6.3, 6.4 and 6.5 present the plots for step tests for the

operating condition 1 (OC-1) along with the model predictions.
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Figure 6.3: Model validation at OC-1: T2 and T4 for changes in V1

Table 6.1 shows the process models relating CVs with MVs for this MIMO

process at operating condition-1. As V1 is opened, the pressure P1 goes up and P2

goes down. Please note that these models are identified considering the fact that

in industrial practice parsimonious models are preferred and these models captures

the major transients and the time delays present in the process, which is typically

sufficient to provide accurate model predictions and design of predictive control

schemes.

Table 6.1: Process models at OC-1

V1 valve position (%) V4 valve position (%)

T2(
0F) 0.54

85.26s+1
e−35s 0

T4(
0F) 0.60

92.90s+1
e−40s 0.69

91.3s+1
e−20s

P1(psi)
2.48

9.1s+1
e−6s −0.12

50s+1
e−5s

P2(psi)
−0.12
50s+1

e−5s 2.48
9.10s+1

e−6s
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Figure 6.4: Model validation at OC-1: T2 and T4 for changes in V4
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Figure 6.5: Model validation at OC-1: P2 for changes in V1 and V4
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Figures 6.6, 6.7 and 6.8 present the plots for step tests for the operating

condition-2 along with the model predictions. Table 6.2 presents the process mod-

els at operating condition-2 (OC-2).
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Figure 6.6: Model validation at OC-2: T2 and T4 for changes in V1

Table 6.2: Process models at OC-2

V1 valve position (%) V4 valve position (%)

T2(
0F) 0.49

141.50s+1
e−35s 0

T4(
0F) 0.55

101.77s+1
e−40s 0.56

85.70s+1
e−20s

P1(psi)
2.83

7.35s+1
e−6s −0.09

33s+1
e−5s

P2(psi)
−0.09
33s+1

e−5s 2.83
7.35s+1

e−6s

Figures 6.9, 6.10 and 6.11 present the plots for step tests for the operating

condition-3 along with the model predictions. Table 6.3 presents the process mod-

els at OC-3.

Figures 6.12 presents the inlet froth temperature at the three operating condi-

tions. The inlet temperature is fairly constant during the experiments at particular
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Figure 6.7: Model validation at OC-2: T2 and T4 for changes in V4
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Figure 6.8: Model validation at OC-2: P2 for changes in V1 and V4

141



 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-4

-3

-2

-1

0

1

2

3

4

Time (sec)

T2
 (d

eg
F)

Measured and simulated model output

 

 

data

model

(a) T2 with model prediction

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-6

-5

-4

-3

-2

-1

0

1

2

3

4

Time (sec)

T4
 (d

eg
F)

Measured and simulated model output

 

 

data

model

(b) T4 with model prediction
 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-15

-10

-5

0

5

10

15

V1
 V

alv
e p

os
itio

n(%
)

Time(sec)

(c) Valve V1 position (%)

Figure 6.9: Model validation at OC-3: T2 and T4 for changes in V1
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Figure 6.10: Model validation at OC-3: T2 and T4 for changes in V4
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Figure 6.11: Model validation at OC-3: P2 for changes in V1 and V4

Table 6.3: Process models at OC-3

V1 valve position (%) V4 valve position (%)

T2(
0F) 0.33

66.90s+1
e−35s 0

T4(
0F) 0.35

59.94s+1
e−40s 0.37

82.77s+1
e−20s

P1(psi)
2.62

8.1s+1
e−6s −0.03

10s+1
e−5s

P2(psi)
−0.03
10s+1

e−5s 2.62
8.1s+1

e−6s

operating condition. Thus, ρ value at different operating conditions is given in Ta-

ble 6.4.

Table 6.4: ρ at different operating conditions

Process condition ρ(0F )

OC-1 137.5

OC-2 144.5

OC-3 151
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Figure 6.12: Froth feed temperature, Tin at the three operating conditions

As can be seen from Tables 6.1, 6.2, 6.3, the process gain increases as the

temperature of the incoming froth feed goes down. Figure 6.13 presents the process

gain for changing incoming froth feed temperature. It is difficult to heat the

bitumen froth if it is coming at a lower temperature and therefore, the magnitude

and the direction of the process gain relating the temperature to steam flow is as

we expect. The process delays are the same at all the operating conditions because

the time delays are not affected by changes in froth feed conditions; however, the

changes in the time constant of the process can be explained in terms of change

in dynamics at these three operating conditions. Now the objective is to design

local linear controllers at these three operating conditions and make them robust

enough around the ρ value for that operating condition.
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Figure 6.13: Process gain variation with incoming froth feed temperature

6.4 Gain scheduling MPC

Since the oil sands extraction process is a continuous process, a good temperature

control in the froth heater process results in favorable conditions in the later stages

of the process. Stabilization of the exit froth temperature and reduction in the

steam valve movement results in significant steam energy consumption and thus

huge energy savings.

Multiloop PID controllers with feedforward action for incoming froth temper-

ature will not be able to handle this highly nonlinear process and the interactions

between the two heaters. In contrast, MPC can handle the process constraints and

the interactions in a much better way.

The design of a gain scheduling controller involves the following steps:

1. A set of LTI approximations of a nonlinear plant at constant operating con-

ditions, parameterized by constant values of the scheduling variable ρ, is

computed. It is assumed that the scheduling variable is measured.

2. LTI controllers corresponding to the derived set of local LTI models are

designed to achieve required closed-loop performance and robustness. These

controllers are also parameterized by the same scheduling variable, ρ.
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3. Design the scheduling algorithm.

4. Implement the family of LTI controllers such that the controller coefficients

are scheduled based on measured value of the scheduling variable.

The linear models are already built in Section 6.3. Based on the models developed

at different operating conditions, a set of LTI controllers Π(ρ) is designed, which is

parameterized by the same scheduling variable ρ. The same operating conditions as

defined in the modeling ρ ∈ Ξ are used. The parameterized set of linear controllers

is defined by:

Π(ρ) : {Gc(s, ρ)} ρ ∈ Ξ (6.4)

Gc represents the controller, in our case Gc is a model predictive controller. If

required, the controllers Π(ρ) can be designed to provide different closed-loop dy-

namics at different operating points.

In case of discrete scheduling, the implementation of the LTI controllers involves

the design of a scheduled selection procedure that is applied to the set of LTI

controllers, rather than the design of a family of scheduled controllers. This comes

down to the definition of regions for which members of the set of LTI controllers

are valid. However, discontinuities (jumps) may appear in the controlled output,

or in the controller coefficients in case of discrete scheduling of the coefficients

rather than the total controller. In practice, ad hoc interpolation of the local point

controllers is adopted to arrive at a gain-scheduled controller.

A class of control algorithms that use dynamic process models to incorpo-

rate process knowledge into the controller structure are known as predictive con-

trol algorithms. The Generalized Predictive Control (GPC) method proposed by

Clarke et al. (1987) is a reasonable representative of model based predictive con-

trol (MPC) methods and one of the most general way of posing the process control

problem in time domain. Model predictive controllers are good for highly complex

and interconnected dynamic systems. In contrast to a standard PID controller,

MPC calculates an optimal control action by taking into account process dynamic

behavior and operational constraints (Qin and Badgwell, 2003; Rawlings, 2000).

MPC can be an effective tool to design a gain scheduling policy for these sys-

tems. In fact, bounds in parameter variations can be explicitly considered in the

optimization step of MPC, guaranteeing stability, robustness and performance.

Section 5.4.2 in Chapter 5 presented some discussion on MPC. In the overall

operation of the process, especially for this process, MPC presents significant ad-

vantages over other multi-variable controllers which primarily include handling the

146



interactions and the flexible constraint handling capacity. Also, for this process

we have only two MVs compared to four CVs. The MPC algorithm is modified

to allow set point tracking for T2 and T4 while do a constraint control for P1 and

P2. Only if either P1 or P2 violates the constraint, the objective function penalizes

the violation and MVs move, otherwise MVs change only to maintain T2 and T4

at their respective set points. Again, the real economic benefits are more promi-

nent when real dynamic control allows the set points to be moved closer to the

constraints without violating them; this is something we expect to achieve in the

froth heater process by using MPC.

6.5 Control strategy applied in simulations

A number of off-line simulation studies were undertaken to identify suitable pa-

rameters for the controllers at the three operating conditions and get the required

closed loop performance. The controllers have to be tested and implemented at the

extraction unit at SUNCOR Energy Inc., Fort McMurrary, Albert, Canada but so

far we have simulation results and which are presented here. Honeywell/Matrikon’s

Controller performance optimizer (CPO) is used to do offline simulations for MPC.

6.5.1 MIMO gain scheduling MPC

Using MPC, we added process constraints in all the MVs and CVs. Since we have

less MVs compared to CVs, only the temperature loops, T2 and T4 are kept under

set point control while range control is carried out for the pressure loops P1 and

P2. The mode of operation is defined using the scheduling variable measurement

and they are defined as: ‘0’ for operating condition-1, ‘1’ for operating condition-2

and ‘2’ for operating condition-3.

Fig. 6.14 presents simulation results for the gain scheduling MPC using the

set of identified models. The scheduling variable is Tin. For this simulation, no

plant-model mismatch is assumed that is the plant is assumed to be the same

as the process model. The three MPC controllers are tuned to provide sufficient

robustness locally around their operating conditions. If the incoming froth is at a

lower temperature, the set point of T2 is also lowered to allow equal steam usage

from both the heaters. The set point for T4 and the incoming froth temperature,

Tin, is used to calculate the set point for T2. This also helps maintain the pressure

measurements, P1 and P2, in the two steam lines. As expected we get perfect set

point tracking.
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Although scheduling from one controller to another is discrete, it has been kept

smooth and there is no abrupt jump in the MVs. However, for simulation, since

the process is represented as a set of models, when there is a change in operating

conditions, there is a switch from one model to another, which sometimes causes

sudden jump in CVs. This however will not be encountered for testing using real

process which is continuous. This can even be alleviated by using a weighted sum

of MVs from the three models.

The industrial data set for current operations which uses a couple of localized

PID controllers is shown in Fig. 6.15. This data is from real current operations.

In current operations, P1 is controlled by manipulating valve V1 position and P2 is

controlled by manipulating valve V4 position. The temperature loops for T2 and

T4 are run in the manual mode. As can be observed from the figure, valves V1 and

V4 are used to maintain pressures as well as do some control of the temperature.

The offline simulation uses ‘process’ to be the same as the ‘model’; we tried

to generate results using the gain scheduling MPC controller on how it would

have performed had it been online. The perfect model conditions are assumed

and the real industrial data for Tin (Fig. 6.14 (c)) is used to simulate different

operating conditions. Since in our control scheme, we have scheduling variable

(Tin) which takes discrete values, we defined the range for Tin which corresponds

to a particular operating condition and the controller at that operating condition

is used for control purpose. Also, Tin is filtered to remove high frequency noise.

As can be seen from Fig. 6.16, the designed gain scheduling MPC handles the

switching from OC-2 to OC-3 really well. There is smooth transition of MV from

one controller to another and we obtain perfect set point tracking. The pressure

transmitter readings P1 and P2 in simulations are way off compared to the real

industrial settings probably because in current operations these transmitters have

been re-calibrated again.

Fig. 6.17 presents another case using the industrial data for Tin. For this study,

change in the set point for T2 does not allow MVs to move since the pressure P1

hits the upper constraint. Maintaining the pressure within the limits is higher

priority compared to set point tracking for the outlet temperature from the heater.

These simulation results are encouraging and present an excellent opportunity to

do some real testing on the industrial setup. The comparison of the results from

the gain scheduling MPC with the current operations would justify the need for

this multivariable application.
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6.6 Economic benefits and Conclusions

MPC can exploit the interactions and the variation in plant conditions and can

help reduce the variance of the froth temperature and pressure in the presence

of changing operating conditions compared to using a couple of PID controllers.

If the variability of manipulated variables can be reduced, it results in reduction

in steam usage, leading to steam energy savings; and good temperature control

results in smoother operation in the downstream.

In this Chapter, a case study application of identification and model based

predictive control design for the bitumen froth steam heater (FHC) process is

presented. The process is a multivariable application example and presents the

challenge of regulating more controlled variables than manipulating variables, that

is there are not enough degrees of freedom to asymptotically regulate all the con-

trolled variables. A gain scheduling model predictive control (MPC) using linear

models is designed and tested in simulations. The advantage of the multivariable

scheme compared to current operations which uses localized PID controllers is very

obvious. The industrial testing would help in establishing the benefits of using gain

scheduling controllers for this application.
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Figure 6.14: MIMO MPC for froth heater process-simulation 1
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Figure 6.16: MIMO MPC for froth heater process-simulation 2
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Chapter 7

Concluding Remarks and Future
Work

7.1 Major Thesis Contributions

This thesis is concerned with the identification and control of chemical processes

and the main contributions of this thesis are summarized below:

• Chapter 2 presented a continuous-time identification algorithm for com-

mensurate fractional order models with time delays. The proposed method

was developed for the following cases: (a) using step input excitation, (b) us-

ing RBS/PRBS or any other kind of input signal excitation. The proposed

algorithm estimates the time delay along with constant model parameters

in an iterative way in the inner loop and the unknown fractional order in

the outer loop. The efficacy of the proposed algorithm was demonstrated

by performing Monte Carlo simulation analysis on the examples. The pro-

posed algorithm was also applied in simulations on a fractional order system

of a classical wall heat transfer problem, which is described by fractional

behavior. Using the proposed algorithm, this process was represented as a

parsimonious fractional order model with a delay term.

• An algorithm for tuning fractional order PI controller using the Bode’s ideal

transfer function for fractional order and integer order systems was presented

in Chapter 3. A control strategy based on a reference model, whose open-

loop transfer function is given by the Bode’s ideal transfer function was

proposed where the parameters of the controller are estimated by formulating

a constrained non-linear optimization problem. Global optimization tool,

particle swarm optimization, was used to solve the optimization problem.

155



Simulation studies were presented and analyzed to illustrate the effectiveness

and efficacy of the proposed algorithm. The proposed algorithm was also

applied in simulation to design an FO-PI controller for the classical wall

problem. Also, the proposed method is extended to examples for lag/delay

dominant processes. The efficacy of the controller tuned using the proposed

algorithm was also demonstrated on an experimental setup of a continuous

stirred tank heater process. For CSTH, the FO-PI controller designed using

the proposed algorithm was compared with some of the standard methods

available in literature for designing FO-PI as well as traditional PI controllers

and was shown to give better closed loop performance than other tuning

methods.

• The application of the identification method proposed in Chapter-2, was ap-

plied on distributed parameter systems in Chapter 4 . Three application

studies were considered for the following single-input single-output DPS ex-

amples: (a) a simulated heat transfer wall problem, (b) an industrial scale

froth heater, and (c) a laboratory scale heater mixer plus pipe flow setup.

Both simulation and experimental studies are carried out to build fractional

order models. The unknown DPS was treated as a black box and both

fractional order as well as continuous-time rational order (integer) models

were identified from input-output perturbation data. For the applications

presented, fractional order models with time delay were found to be very

effective to deal with infinite order distributed parameter systems.

• Chapter 5 presented a case study application of identification and model

based predictive control design for the interface level control in the separation

cell process, found in the oil sands industry. Handling large dead time and

other process constraints using internal model control and model predictive

control was discussed. Both IMC and MPC were designed, implemented and

tested in real time on the industrial separation cell to observe the benefits of

using advanced process control schemes in the extraction unit. Using the real

testing data on the industrial setup, it was shown that both IMC and MPC

schemes provide significant benefits over the the current operations which

uses PID (plus manual) control. These benefits included significant reduction

in the variance of the interface level and underflow pump movement, further

resulting in the pump energy savings and smoother operation downstream.

• Chapter 6 presented the second case study application of identification and
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gain scheduling model predictive control design for the bitumen froth steam

heater process. The process represented a non-square multi-variable prob-

lem with more controlled variables than manipulating variables and a gain

scheduling MPC using linear models was designed and tested in simulations.

The simulation results were very encouraging compared to current operation

which uses a number of local PID controllers. Industrial implementation of

the gain scheduling MPC could help in reducing the variance of the exit froth

temperature and steam usage, resulting in steam energy savings.

7.2 Directions for Future Work

There is still scope for further exploration on the work presented in this thesis and

in this section, I would like to share our perspective on the fields and directions

that are worthy of future investigation.

1. In Chapter 2, we discussed the identification method for commensurate order

fractional order models with time delay. Although, for most of the fractional

order systems, this type of transfer functional form is encountered, the lim-

itation of this representation is that all fractional powers in the model are

integer multiples of a single real number. Extending the proposed algorithm

to non-commensurate models is not very straight forward as it further com-

plicates the formulation, especially the outer nonlinear loop; but at the same

time the advantage is that each fractional powers is chosen independently.

The discussion to non-commensurate models would be worth exploring in

future where the parameters from commensurate order models could be used

as good initial guesses for these models.

2. From theory and as seen from analytical expressions in Chapter 4, we know

that the diffusive interface examples like classical heat conduction in a wall

or metal rod are ideal examples of fractional order systems. In Chapter 2 and

Chapter 3, the proposed algorithm has only been applied in simulation on

such examples. The interesting future perspective would be to carry out ex-

perimental evaluation of the proposed identification algorithm by designing

an experimental setup for heat conduction in a wall or metal rod. If a labo-

ratory scale process for fractional order process is available, other areas such

as model based control design could be explored. Fractional order controllers

could be designed and tested on the setup and could be compared with some
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of the existing methods to design fractional order controllers. In addition to

this, empirical relations could be derived to relate the tuning parameters of

FPI controllers with the process model for both fractional and integer order

systems.

3. For DPS we know that we obtain irrational transfer function, the model pa-

rameters are functions of some spatial variables. The area of continuous-time

model identification for DPS has not been significantly explored. The frac-

tional order models could provide a parsimonious representation for these

systems and could tremendously help in designing the model based con-

trollers. The algorithms for modeling using non-commensurate type models

would be worth exploring in future for other DPS.

4. In oil sands industry, the APC applications are relatively new and provide

tremendous opportunity to apply developed theory and tailor them as the

requirement demands. The application of MPC could improve process effi-

ciency by handling the constraints, process interactions and combining feed

forward plus feedback control in the extraction units. Additional informa-

tion from the local controllers could be added into the MPC setup to design

a MIMO application. MIMO MPC testing on the SepCell by incorporating

additional CVs and MVs would make the control problem more challenging.

In the future, a MIMO MPC industrial testing on SepCell can be studied.

Once MIMO MPC is implemented, we can explore how to optimally chose

the set point of this controller.

5. The benefits of multivariable MPC for the froth heater process are very

obvious. If the approval for online testing can be obtained, gain scheduling

MPC testing on the real industrial setup for the froth heater process and its

comparison with the current operations would be the next immediate task.

A comparative study could then easily establish the benefits and the need

for APC application in the oil sands industry.

7.3 Concluding Remarks

Overall, this thesis has presented results on identification and model based control

design case studies on fractional order systems, distributed parameter systems and

two industrial processes. The focus of the thesis has been that identification and

control go hand-in-hand. The model lies at the heart of the controller; we can
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expect a high performance from a controller using a high fidelity model. New

methods and new tools for building models and design control schemes will always

be required to make life easier for process control engineers and practitioners. Also,

with so much developed theory in process control, the application of these ideas

on real complex chemical processes and tailoring them for the industrial need will

have to be taken into account. Applied research of the existing and new methods

in the area of model based control design is essential to improve current process

operations and bring theory much closer to practice.
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Appendix A

Particle Swarm Optimization

In PSO, suppose we have N particles in a D-dimensional search space, and each

particle position be represented by a position vector Xi = (xi1, xi2, ..., xiD), and

a velocity represented by a velocity vector Vi = (vi1, vi2, ..., viD). Each particle

remembers its best position (pbest) so far in a vector Pi = (pi1, pi2, ..., piD). Also,

the best solution achieved so far by the whole swarm (gbest) is represented as

Pg = (pg1, pg2, ..., pgD). At each time step, each particle moves toward the pbest

and gbest locations. The fitness function evaluates the performance of particles to

determine whether the best fitting solution is achieved. The particles are updated

according to the following equations:

v
(k+1)
id = v

(k)
id + c1r1(pid − x

(k)
id ) + c2r2(pgd − x

(k)
id )

x
(k+1)
id = x

(k)
id + v

(k+1)
id ∀ d = 1, 2, ...D (A.1)

where: c1 and c2 are two positive constants, also known as acceleration constants;

r1 and r2 are random numbers in the range of [0,1] and ‘k’ defines the current

iteration count (kmax being maximum iteration count).

This type of PSO algorithm had shortcomings such as velocity control mech-

anism and no limits on the positions of the particles. An improved PSO was

proposed to solve many shortcomings of the old PSO algorithm. The updated

position and the velocity using the modified version of PSO (Liu et al. (2004)) are

manipulated as

v
(k+1)
id = wv

(k)
id + c1r1(pid − x

(k)
id ) + c2r2(pgd − x

(k)
id )

x
(k+1)
id = (1−mc)x

(k)
id + (mc)v

(k+1)
id ∀ d = 1, 2, ...D (A.2)

where: ‘mc’ is the momentum factor (0< mc <1) and ‘w’ is the inertial factor.
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The inertia factor, w, in general can be set according to the following equation:

w = wmin +
(wmax − wmin)

kmax
(kmax − k) (A.3)

This new improved PSO algorithm ensures that the particles are in the limits of

the defined search space without checking the boundary at every iteration. The

maximum velocity is set to ‘max(Xi)’ and minimum velocity is set to ‘min(Xi)’.
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