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Abstract 

A new multiple feature-based method of object detection in sequences of digital im­

ages is introduced. The proposed method, unlike most existing feature-based com­

puter vision methods, uses features that correspond to perceptual grouping princi­

ples of the Gestalt theory of psychology: similarity, common motion and goodness 

of shape. Gestalt features have been shown to be perceptually significant and di­

rectly related to geometric structure of real world scenes. There has been only a 

limited amount of research done on using multiple Gestalt features, which are im­

portant for the detection of salient objects. The proposed method applies Gestalt 

ideas to a computer vision problem (detection of large oil sand lumps) and confirms 

that using multiple gestalt features improves the object detection performance com­

pared to using a smaller number of features. The new method employs decision 

trees to address the problem of a partial gestalt collaboration and conflict (i.e., the 

problem of feature fusion), which is still a subject of ongoing computer vision re­

search. The proposed method could also be generalized to other object recognition 

problems, since it uses universal grouping principles of Gestalt theory integrally 

with automated machine learning decision-making. 
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Chapter 1 

Introduction 

One of the main goals of computer vision is to create artificial systems that are equal 

to or surpass human biological vision. A central philosophical issue of biological 

vision is "the question whether the world we see around us is the real world itself, 

or whether it is merely a copy of the world presented to consciousness by our brain 

in response to input from our senses" ([23], p.l). Computer vision ideas seem to be 

formulated in a latter way. The Gestalt1 theory also does a very good job describing 

how sensory input creates various perceptions from the perceptual psychology point 

of view. So far, Gestalt ideas showed a great potential to be successfully used to 

solve computer vision problems. 

1.1 Motivation 

Object recognition and segmentation of digital images is a challenging area of com­

puter vision research. It turns out that another discipline, in addition to computer 

vision, is also studying how the objects are formed from their parts. The disci­

pline is the Gestalt theory of psychology. Gestaltists describe a fixed set of princi­

ples (i.e., partial gestalts2) that govern object perception (i.e., creation of a global 

gestalt). An important property of Gestalt principles is that they reflect the geomet­

rical structure of the real world, which should be useful while detecting/recognizing 

'A gestalt is defined by [19] as "a structure, configuration, or pattern of physical, biological, or 
psychological phenomena so integrated as to constitute a functional unit with properties not deriv­
able by summation of its parts." 

2In this thesis, the word "gestalt" is capitalized when it implies an expression "Gestalt theory" 
and use lower case when it implies an object or a Gestalt principle. 

1 



objects in digital images of the real scenes [27, 10]. Many computer vision ap­

proaches do not use more than one or two partial gestalts. However, Desolneux et 

al. ([10], p.20) state that "most salient objects of groups come to sight by several 

grouping laws". Therefore, it needs to be shown that using multiple features based 

on Gestalt principles has more potential than using just one or two partial gestalts. 

This idea is going to be tested on an object recognition task: detection of large oil 

sand lumps. 

Two definitions of partial gestalts are used: according to the first definition a 

partial gestalt corresponds to the Gestalt principle of perceptual organization, and 

according to the second one a partial gestalt is the implementation of a correspond­

ing Gestalt principle or, in computer vision terminology, a. feature. Thus, a Gestalt 

feature is a Gestalt law/principle of pereceptual organization adopted and used in 

the proposed method (see Section 2.3.3 for more information on correspondences 

between Gestalt laws and features in the proposed method). 

1.2 Application Domain 

Figure 1.1: A sample image containing two large lumps. Notice uneven texture and bright­
ness within and between the lumps. 

One of the most ambiguous pieces of digital image data that have been seen to 

2 



date are images of oil sand. Oil sand particles may have high variability of texture 

and brightness within and between themselves (see Figure 1.1 for a sample image). 

The general quality of images is poor, since the production line is situated outdoors 

and is subject to changing weather and lighting conditions. The appearance of oil 

sand and the quality of the image data make oil sand segmentation a very complex 

task even for humans. 

Detection of large lumps of oil sand is also an important production issue for 

Syncrude Canada Ltd. Some large lumps can block the main production lines, 

which requires manual removal of lumps causing significant production down­

time [12]. This typically happens during winter, when large frozen lumps fall into 

the oil sand crushing mechanism (see Figure 1.2 for an example). Timely detec­

tion of oversized lumps would allow the plant operators to avoid crusher jams by 

stopping the conveyor before the lump reaches the crusher. 

The problem of large lump detection can be viewed as an object recognition via 

segmentation problem, where large lump objects have to be separated from the rest 

of the oil sand. Large lump detection was chosen to be the application domain of 

this thesis, since it is both a complex and a useful segmentation task. 
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1.3 Method Structure 

Image edges were chosen as the basic input elements for the proposed method, be­

cause edges are a Gestalt quality as outlined by Desolenux et al. in [6, 9]. The 

definition of a gradient edge seems to follow the law of connectedness,3 where gra­

dient pixels of higher values are grouped together. Edges are an important general 

application-specific feature based on observations of large lump image data. 

The proposed method exhaustively goes through all possible combinations of 

edges in each digital image. Edges in each combination are then connected to each 

other forming a contour (this way the partial gestalt of closure is imitated). Thus, 

there is a number of candidate contours for each image and the main task becomes 

grouping these candidates in two sets: large lumps and non-large (i.e., smaller) 

lumps. The grouping is performed using Gestalt features (i.e., partial gestalts). The 

following partial gestalts were chosen to be used in the proposed method: similarity, 

common motion and goodness of shape. Hence, candidates are assigned into the 

large lump set (i.e., detected as large lumps) by their intensity similarity, velocity 

and their shape characteristics. 

The collaboration of partial gestalts is a major problem in related research and 

is still under investigation [10,4]. In the proposed work the collaboration of Gestalt 

features is provided by using a priori information about their relationships, which is 

embodied into decision trees. So, a decision tree is trained on a limited set of Gestalt 

features' data and then the trained model is used to solve the conflicts between the 

partial gestalts. Using a machine learning method together with multiple Gestalt 

features4 also makes the proposed method both novel and generalizable to other 

applications. 

1.4 Hypothesis And Results 

The proposed method tested if using multiple Gestalt features (similarity of inten­

sity, common velocity and good shape) improves the detection performance of large 

3The Gestalt law of connectedness: elements that are connected tend to be grouped together. 
4Which are perceptually relevant, and this is important, since not all features are perceptually 

relevant [6]. 
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oil sand lumps. The results obtained using different numbers of features were com­

pared to each other. There was a tendency of better performance for a higher num­

ber of Gestalt features used in the experiments. More specifically, the proposed 

method had statistically better large lump detection performance with increasing 

number of Gestalt features in three out of four chosen performance measures. 

The results confirm the prediction of Gestalt theory, which states that salient 

objects have a high probability to be detected using several partial gestalts [4]. Em­

ploying a machine learning method to model the relations between separate partial 

gestalts addresses the problem of Gestalt collaboration, which is still an open re­

search topic. 

1.5 Summary 

The thesis addresses the general issue of how to detect global objects from local 

low-level information contained in the image. Unfortunately, the efforts of com­

puter vision seem to be aimed at computing partial gestalts and the problem of 

feature combination (i.e., a problem of partial gestalt collaboration and conflicts) is 

rarely addressed [7]. The work presented here uses three partial gestalts (i.e., Gestalt 

features) to detect large lumps of oil sand. The problem of feature combination 

is addressed by using the machine learning inference engine. The novelty of the 

method is in its design and in its application. Design-wise novelty is that multi­

ple perceptually significant features are used integrally with a decision tree-based 

model of feature interaction. The detection results obtained using the proposed 

method show experimentally that multiple Gestalt features improve detection per­

formance, which was predicted by the Gestalt theory. 

The next chapter will provide some background information on object recogni­

tion, segmentation. It will also discuss history and basic principles of Gestalt theory 

of psychology. 
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Chapter 2 

Background Information 

Object recognition is an important area in computer vision. Many computer vision 

techniques could be applied to perform object detection. Gestalt theory of psychol­

ogy can enhance existing techniques with perceptual grouping laws for better object 

recognition. 

2.1 Computer Vision Versus Image Processing 

Computer vision and image processing are very important areas of computing sci­

ence research. The main goal of computer vision could be defined as creating 

an artificial vision system that would mirror or exceed the performance of a hu­

man [44]. Computer vision contains both high-level and low-level processing of 

image data. High-level computer vision is typically knowledge-based and deals 

with object identification and detection. It uses many artificial intelligence meth­

ods. Low-level computer vision techniques are essentially image processing tech­

niques. Image processing usually deals with extraction and conversion of digital 

image data. It does not involve recognition of objects or other similar ways of data 

interpretation. 

2.2 Object Recognition Via Segmentation 

Segmentation is one of the most complex problems in computer vision. It can be 

defined as dividing an image into parts so that there the parts correspond to objects 

or areas of the real world depicted in the image [44]. Object recognition applies al-
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ready known information to segmented parts to select the objects of interest. Thus, 

object recognition can be viewed as segmentation combined with previous knowl­

edge. 

Sonka et al. [44] define and describe the following main categories of segmen­

tation methods in computer vision: 

1. Thresholding. 

2. Edge-based segmentation. 

3. Region-based segmentation. 

4. Matching. 

5. Mathematical morphology 

Thresholding is probably the simplest segmentation method. The changes to 

the image data are performed based on the values of a single or multiple thresholds. 

Single thresholding involves one gray-level threshold value for the whole image 

(global thresholding). Multiple thresholds could be used for for different subimages 

(adaptive or local thresholding) for a range of intensities (band thresholding). 

The proposed method works exceptionally well for well-defined homogeneous 

regions. It is also efficient and, therefore, is good for real-time processing. The 

result of thresholding is usually a binary image, but it also can be a gray-level 

output. For example, in semi-thresholding different gray-level thresholds can be set 

for different conditions. 

Edge-based segmentation is another important way of segmenting images. A 

classical definition of an edge1 is as follows: "an edge is the boundary between 

two regions with relatively distinct gray-level properties" [15]. The shortest edge 

can also be defined as a point in the image, where a significant intensity of texture 

change takes place. There are different methods to extract edge information. Edge 

'in the thesis the term "edge" is used either to define a part of the object's contour visible by 
human eye or to define a connected component consisting of a set of 8-connected white or gray 
pixels. The term "contour" refers to the closed edge. 
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image thresholding uses edge-detectors to get an edge image, and then the edge im­

age is thresholded. This method may have noise problems but that can be improved 

by combining spatially close edges together. 

Region-based segmentation consists of region growing techniques and water­

shed segmentation. Region growing splits and merges subregions and needs some 

stopping criteria. Watershed method operates on region formation using local max­

ima (watersheds) and minima (catchment basins) values, and needs good initial­

izations for these values. Region-based segmentation is sensitive to image noise. 

However, it requires the homogeneity of the regions to be quite high. 

Other methods of edge segmentation include graph structures to search the im­

ages using dynamic programming techniques. A Hough transform could be used 

to identify certain edges: lines or circles, for example. Matching is usually used 

to locate objects by using already known data about the structure of the object: 

sub-images, patterns, or other descriptors and features. Mathematical morphology 

methods use nonlinear algebra and point sets to change image data. Morphological 

operations can successfully be used to segment images. 

2.3 Gestalt Theory Of Psychology 

Even given the most current advances in computer vision, artificial vision systems 

do not have the accuracy and depth of human perception. Humans are very success­

ful at delineating various objects in complex scenes (i.e., performing segmentation 

of the scenes). Therefore, it should be useful to look for object recognition ideas 

from the science that studies humans and how they see the world around them: psy­

chology. It is important to know how humans detect objects in visual scenes, or, 

in other words, how they perform object recognition. The Gestalt theory of psy­

chology is especially useful in this context. The theory discusses how human mind 

creates object perceptions from smaller elements. Gestaltists outlined a set of prin­

ciples that govern element grouping. Several of these principles were used in the 

proposed method to show the importance of Gestalt ideas in computer vision. 
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2.3.1 History Of Gestalt Theory 

Gestalt psychology emerged in Germany in early 1900s as a holistic theory alterna­

tive to the elementalistic bottom-up approach. The founders of Gestalt theory Max 

Wertheimer, Kurt Koffka, and Wolfgang Kohler were involved into research on ap­

parent motion phenomenon: a person perceived motion when identical objects were 

sequentially displayed in different locations and each preceding object was deleted 

from the scene as soon as a new object appeared. In this experiment, the perception 

of motion was something more than just a sum of stimuli. Another example of ap­

parent motion would be a movie: the viewer sees a sequence of static images on a 

film but perceives image contents as moving objects. The main inference was that 

the whole percept is not equal to the sum of its sensory parts [47]. 

Wertheimer using his experiments with several types of stimuli (lines, dots, etc) 

argued that humans perceive objects as unified wholes rather than elemental sen­

sations [47]. Wertheimer published his "Productive Thinking" that was partially 

based on interviews with people known for their problem-solving abilities such as 

Albert Einstein who was Wertheimer's friend [49]. Wertheimer believed that prob­

lem solving should proceed from the whole problem down to its parts [47]. The 

assumption was that this approach would help to organize the details into meaning­

ful form or Gestalt. This approach contradicted the behaviouristic idea of trial-and-

error problem solving. Gestalt theory suggests learning the structure or relationship 

first instead of learning all the underlying details. For example, it is difficult to re­

member this sequence of numbers: 1 4 9 1 6 2 5 3 6 4 9 6 4 8 1 unless you notice 

that the numbers are just the squares of the numbers from 1 to 9. 

Kurt Lewin, another famous Gestalist, applied Gestalt principles to the study of 

motivation, personality, and social principles by developing field theory, according 

to which a person interacts continuously within a field of psychological forces. The 

formula he used was B = f(PE), where B was behaviour, P was a person, and E 

was environment. Lewin also studied group dynamics, within group communica­

tion and group decision process. His field theory influenced industrial psychology 

and personality theory [47]. Kurt Koffka studied child psychology from the Gestalt 

theory point of view. Wolfgang Kohler created the Gestalt learning principles and 
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studied insight as a learning phenomenon performing research on animals [47]. 

The decline of Gestalt psychology can be explained by an unfortunate historical 

situation: when the Nazis came to power all the major Gestaltists departed from 

Germany for Scandinavia, Russia, North America or other countries leaving their 

students and well-established labs behind. Also, most of the founders of Gestalt 

theory had very few opportunities to supervise Ph.D. students. In addition to all 

that, their arrival to America coincided with the heyday of behaviourism and that, 

along with their criticizing of behaviourism [49], did not help their careers in North 

America. 

Henley and Thorne [47] state that by 1969 the Gestalt school of psychology was 

gone yielding a place to cognitive psychology that can be viewed as a combination 

of Gestalt theory and behaviourism. However, Gestalt theory still lives in social 

psychology and perceptual theory and it still continues to influence modern science, 

as it could be seen from its applications in computer vision field. 

2.3.2 Basic Principles Of Gestalt Theory 

The concept of field lies at the heart of Gestalt theory [35]. This notion is adopted 

from Einstein's "field theory" and views phenomena (such as thinking, perception 

and mind in general) as arising from a network or field of forces as opposed to 

simplified cause-effect explanation of the nature of phenomena. The concept of 

field seems to determine the holistic approach of Gestalt theory. 

The fundamental principle of Gestalt psychology is the law of Pragnanz. It 

asserts that we perceive observed phenomena as organized in the neatest, tightest, 

most meaningful way [35] or, in other words, as good Gestalt [47] in the given 

situation. The law of Pragnanz is a basis for all principles of perceptual grouping 

described further in the text. 

Isomorphism (iso=identical, morphism=form) is one of principles. It was adopted 

from mathematical topology and assumes that conscious, phenomenological expe­

rience is isomorphic (or shares a common structure) with underlying physiologi­

cal processes [35]. Wertheimer proposed that in the case of apparent movement 

(also known as phi-phenomenon) humans perceive motion because in this situation 
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something isomorphic is happening at the physiological level that is similar to what 

would happen with the real movement. This implies that the nervous system does 

not have to possess an explicit mechanism of interlocking/successive elements for 

phenomena detection. This idea is consistent with recent advances in such area of 

machine learning as neural networks [47]. 

The Zeigarnik effect is also an illustration of the law of Pragnanz. According 

to this effect people tend to remember incomplete events better than complete ones 

(they strive for a good, complete Gestalt). Zeigarnik effect is used in Gestalt ther­

apy that assumes incomplete tasks could be a reason for psychological dysfunction 

and the therapy itself is aimed at finishing this task (also known as completing the 

Gestalt in psychotherapy). 

Harry Helson identified 114 laws of perception and thinking structure [17, 47]. 

Some of the principles discussed by [47, 35] are introduced below and examples 

can be observed in Figure 2.1 

Q 
(a) 

F F 
f f 
e F 
F F 
F • F 
F F 
F F 
F F 

(c) 

Figure 2.1: An illustration of some of Gestalt principles of perceptual organizaton. Fig­
ure 2.1(a) illustrates the principle of figure-ground separation. Figure 2.1(b) shows the 
example of how the principle of closure works. Figure 2.1(c) is en example of the prox­
imity principle. Figure 2.1(d) shows grouping by similarity of element shapes (redrawn 
from [14, 5, 36]). 

I 1 

(b) 

(d) 
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Figure-ground relationship was borrowed from Danish psychologist Edgar Ru­

bin and, according to it, the perceptual field is divided into figure and ground and 

the same object may either be figure or ground depending on if the observer is con­

centrated on this object or not [47]. In Figure 2.1(a) the observer can see two face 

profiles or a single vase depending which part of the image he/she concentrates 

on. The closure principle implies that there is a tendency to ignore minor breaks 

in a figure. Dashed line in Figure 2.1(b) are perceived as a square, even though 

its boundary consists of disjoint segments. The principle of proximity states that 

elements that are close to each other (in time or space) are seen as belonging to­

gether. In Figure 2.1(c) letters are seen as grouped vertically and not horizontally, 

since the vertical distance between letters is the smallest. The similarity principle 

says that elements, which are similar (in shape, color, texture, etc.,) are seen as 

belonging together. Figure 2.1(d) depicts an example of similarity, by the shape of 

constituent elements. The importance and application of Gestalt principles in object 

recognition will be discussed in the next chapter. 

2.3.3 Gestalt Theory In The Proposed Method 

Gestalt theory views the world in terms of objects {i.e., Gestalts) that makes it in­

teresting for object recognition. Gestalt laws of perceptual organization describe 

how object perceptions are created from smaller constituent elements. Gestalt laws 

could be important for successful object recognition, since they were perceptually 

significant (and, therefore, potentially generalizable to a number of different object 

recognition tasks) and corresponded to geometrical structure of the real world. 

Several Gestalt laws have been chosen to be used in the proposed method. These 

laws were adopted as Gestalt features that were expressed by two or more parame­

ters (see Table 2.1 for mapping between Gestalt laws, features and parameters and 

Figure 2.2 for illustration of chosen laws). 

The law of similarity was chosen, because it was a very important law in Gestalt 

theory. The same reason was true for choosing the law of good shape. In addition, 

the benefit of using the goodness of shape was that it provided a high-level infor­

mation about an object. The law of common motion was chosen, because it was 
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Gestalt Law 

Similarity 

Common motion 

Good shape (Pragnanz) 

Gestalt Feature 

Similarity of intensity 

Motion 

Shape 

Parameters 

Mean intensity 
STD intensity 

Mean velocity 
Max velocity 

Solidity & Roughness 
(convexity) 
Eccentricity & Compactness 
(ellipticity) 
Extent 
(rectangularity/tri angularity) 

Table 2.1: The table shows mapping of Gestalt laws to Gestalt features and parameters 
used in the proposed method. More detailed explanation of parameters can be found in 
Section 4.2.4. 

(a) 
(b) 

O r / • • C'j # • 
(c) 

Figure 2.2: An illustration of Gestalt laws of perceptual organization that were used in 
the proposed method. Figure 2.2(a) illustrates the principle of good shape (the law of 
Pragnanz), where convex, elliptic, rectangular and triangular objects are preferred. Fig­
ure 2.2(b) is an example of the common motion law, where top three circles are grouped 
together, because they they have the same speed (indicated by the length of an arrow). 
Figure 2.2(c) shows grouping by similarity of element intensity (redrawn from [53]). 
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not usually used with other Gestalt laws, even though it seemed to have a lot of 

potential. 

The Gestalt law of similarity was used as a Gestalt feature of intensity simi­

larity. Intensity similarity implied that the brightness should be similar for large 

lump objects and different for non-large lump objects. The law of common motion 

was adopted as a Gestalt feature of motion and implied that the velocity of large 

lumps should be similar. The law of good shape (i.e., the law of Pragnanz) implied 

that elements are organized in as good, balanced, simplest and efficient manner 

as possible. In the proposed method the goodness of shape (i.e., a Gestalt feature 

of shape) implied convexity and ellipticity/rectangularity/triangularity of large oil 

sand lumps. 

Another Gestalt law was used implicitly: the law of of closure was realized 

by creation of closed contours from disjoint edges (similar to the example in Fig­

ure 2.1(b)). Proximity was also used implicitely by limiting the active detection 

area with a region of interest. 

2.4 Summary 

The chapter gave some brief background information pertaining to the current work. 

Segmentation techniques for object recognition were discussed. The reader was 

introduced to the history and main concepts of the Gestalt theory of psychology. 

Gestalt laws used by the proposed method were also reviewed. The next chapter 

will discuss research literature that is relevant to the proposed study. 
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Chapter 3 

Related Work 

The usage of Gestalt ideas can be traced to early computer vision. However, the 

descriptive and abstract nature of Gestalt principles did not seem to facilitate their 

application in later research. Nevertheless, there were a few approaches that uti­

lized at least some Gestalt features. In addition, some scientists conducted studies 

that quantitatively validated the importance of Gestalt principles. In this chapter 

some fundamental research related to Gestalt theory is reviewed that is followed by 

Gestalt theory applications in computer vision. 

3.1 Selected Fundamental Research In Gestalt Psy­
chology 

In his work Harry Helson [17] discussed the fundamental ideas of Gestalt psychol­

ogy. He also identified more than 100 laws that govern human perception. 

He defined several results of object perception: configurations and totalities.1 

Configurations were denoted as segregated wholes that were governed by inner 

laws. A configuration was distinguishable from a totality which was a summative 

whole, whereas a configuration was an organic whole. Configurations were not 

seen by Helson as sums of their parts, and were not parts and relations between 

them, and did not have a strong dependency on the parts. Here Helson seemed 

to refer to the reconstructive ability of human perception, when object perception 

occurred even if sensory input is very limited. He mentioned that each configuration 

'Helson seemed to refer to partial gestalts as "totalities" and to the whole Gestalts (i.e., objects) 
as "configurations." 
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was based on a law/principle of organization or a principle of structure. If more 

than one configuration was possible from a complex of configuration, the more 

meaningful tended to be perceived. "Several configurations, if put together, may 

have one dominant configuration or may fuse", stated Helson, which seemed to 

imply a recursive nature of object perception. 

Configurations might also be temporal. For example, a melody was described 

as a temporal configuration, as it needed time to be completed. A chord of melody 

was not a temporal configuration. Thus, dynamic processes were a basis of all 

configurations, and configurations were either an outcome of dynamic processes 

or are dynamic processes themselves. Configurations could be homogeneous, but 

Helson was not sure if they were configurations in that case, since there were no 

well-defined members or structure (single tone in music). Configurations could 

be complete or incomplete and combinations of elements could not be just called 

Gestalts, they needed the right conditions for that. Helson mentioned that good­

ness (meaningfulness) of perceived objects might change for the same configura­

tion when different criteria were applied. Thus, Helson stated that using various 

partial gestalts changed the object's perception. Helson expressed an idea that con­

figurations were not absolute and we could have levels of "gestaltness", though he 

did not mention how these levels could be identified. 

Helson discussed many laws/principles governing human perception. Some of 

them are mentioned below. The law of inner necessity implied that a Gestalt usually 

changed due to inner forces. The law of Pragnanz suggested that a Gestalt "tends to 

become as good, precise, and impressive as possible." The law of simplicity meant 

that Gestalts tend to become as simple as possible; changes that occurred to Gestalts 

happened so that the least amount of energy was spent. The law of completeness 

was phrased as Gestalts tend to become complete in time. 

Helson denoted the principle of figure and background separation, implying 

that every configuration must have a figure and a background. His definition was 

somewhat different from current understanding of the principle, which implied that 

a Gestalt can either be a figure or a background. Helson claimed that Gestalts have 

a tendency to resist changes that was expressed via the law of compensation and the 
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law of interchangeability. The law of compensation suggested that "a change in one 

part of configuration can be made only at the cost of or change in another" and the 

law of interchangeability implied that some aspects of a Gestalt may have influence 

on another aspect. For example, brighter objects were judged to weigh less than 

darker objects. Objects that leave the ground with higher speed were decided to be 

lighter. 

The law of symmetry was discussed by Helson as a tendency of Gestalts to 

symmetry, balance, and proportion. The tendency of Gestalts to leave after-effects 

was mapped to the principles of familiarity (familiar objects are perceived better 

than unfamiliar). The law of likeness (or similarity) stated that alike parts tend to 

form wholes. The law of nearness (or proximity) implied that parts that are closer 

together tend to be seen as wholes. The law of continuing curve stated that "if 

several possibilities are present by which a part may be continued in a whole, the 

simple, more regular will be chosen." The law of common fate argued that "any 

change in a part contrary to the general tendency of the whole will be resisted." 

3.2 Selected Fundamental Research In Computer Vi­
sion 

David Marr's book "Vision" [26] was at the very foundations of computer vision 

research [10]. Marr's approach was a natural computational approach to vision. 

Marr's computational approach studied the mind as an information processor. He 

applied natural constraints, such as rigidity, to object recognition theory. Marr real­

ized that the functional analysis of the central nervous system performed in neuro­

physiology and psychophysics was missing something. He implied that it is more 

important to answer the question "why" instead of "what" or "how" something 

works. 

Marr's emphasis seemed to be on a integrated approach to vision, despite some 

criticism for having too much emphasis on neurophysiology and binocular vision [10] 

Marr stated that in order to understand the information processing device it should 

be analyzed at these three levels: computational theory, representation and algo-
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rithm, and hardware implementation. The strategy was to start from the computa­

tional level and work your way down. Marr proposed that the early visual process­

ing (i.e., determination of the components of the image) consists of two stages: raw 

primal sketch and full primal sketch. Raw primal sketch was viewed as a bottom-

up process using such concepts as contour, texture, shading, occlusion. Full primal 

sketch was explained as a top-down process, which combined boundaries and re­

gions into larger entities - surfaces. Marr used Gestalt grouping laws to explain how 

surfaces are created from their constituents. 

In Marr's theory the early visual processing was followed by 2^D sketch. 2 | D 

sketch was not yet a full 3D representation of the world. It gave information about 

the slant of the surfaces and about their relative depth. 2^D sketch had relative 

depth information but the scene in the mind was not yet perceived as 3D. It was 

based on the full primal sketch, retinal disparity (stereopsis), and structure from 

motion. Marr proposed using 2 | D sketch to create the 3D model of the object 

by employing generalized cones (i.e., using generalized conic shapes to model real 

objects) and matching them with the previous knowledge about 3D shapes. 

Marr's work heavily influenced computer vision research. For example, Ull-

man [48], one of former Marr's students, also studied the structure from motion 

problem using Gestalt theory. He formulated the structure from motion theorem 

as follows: "given three distinct orthographic views of four non-coplanar points in 

a rigid configuration the structure and motion compatible with the three views are 

uniquely determined." The connection to Gestalt theory was in simplifying assump­

tions of object rigidity and orthographic views (that implies parallel perspective) 

that were viewed as the law of Pragnanz. The law of Pragnanz implied that human 

perception strives for as good an organization as the conditions allow. Thus, the 

law of Pragnanz may encompass many other Gestalt laws (for example, regularity, 

symmetry, simplicity, closure, good continuation, and good shape). 

Ullman did not use motion cues (such as velocity and direction) to compute the 

structure from motion. He used geometrical cues (views and corresponding points) 

to create 3D structure. Ullman also talked about motion from structure, when the 

visual system fills in the perceptual gap between elements of 3D structure with 
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motion. The condition for that was that the correspondences should be detected, 

which was done in accordance with the Gestalt principle of common motion. For 

example, one edge of a cube was highlighted. Later the edge was dimmed and a 

new edge having a common vertex with the old one was highlighted. The observer 

did not perceive two different edges, instead radial motion of a single edge around 

its vertex was observed. 

Watson et al. [50] seemed to follow Marr's raw and full primal sketch stages 

while developing a model of velocity sensing in moving images by humans. Their 

model was applied to the Fourier frequency domain. Watson et al. started with the 

creation of a motion sensor model. They knew that human sensors do not assign an 

explicit value of speed at the threshold but that assignment happens if the speed is 

above the threshold. Using this knowledge the authors decided their sensor model 

would be based on two stages that corresponded to the at-threshold and above-

threshold motion sensing. In the first stage the sensors (which were essentially a 

set of filters) that had the same scale and location but may have a different direction 

were grouped into the same velocity component {i.e., velocity group). In the second 

stage the same direction responses of sensors were combined. Then the speed was 

calculated from the temporal and spatial frequencies, as the temporal frequency 

equals the dot product of the spatial frequency and the velocity. The drawback of 

their model was that it considered only translational motion. 

3.3 A Conflict Between Computer Vision And Gestalt 
Theory Research 

Infiltration of Gestalt theory into computer vision might have been slowed down by 

the very abstract nature of Gestalt ideas. Wertheimer [51] discussed the relation­

ships between Gestalt-based perception and computer simulations. He suggested 

that computer models do not address the fundamental issues of insight and under­

standing and the emphasis should be made on productive (with deep understanding, 

for example, using prior knowledge) thinking when trying to solve any problem. 

He proposed a solution for successful computer systems implying that the follow-
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ing criteria should be satisfied: "(a) the representation corresponds to the actual 

structure of the problem (and this may be the crux of the issue), (b) the represen­

tation is well-integrated in the sense that all of its components are appropriately 

interconnected ... (c) the representation is well integrated with the problem solver's 

other knowledge". Max Wertheimer also suggested that similarity between objects 

is crucial for object recognition. 

Wertheimer's article was later criticized by Simon [41], who stated that there 

were computer systems, which were more creative than Wertheimer suggested and 

could learn from given data, unlike Wertheimer stated. He also criticized the lack 

of operation definitions in Gestalt theory for such terms as intuition, insight, under­

standing, and good Gestalt. 

The ideas discussed by Gestaltists indeed seem to be quite abstract. However, 

further research was successfully able to extend the ideas to different application 

domains and even quantitatively measure the importance of some of the Gestalt 

principles. 

3.4 Non-Probabilistic Methods 

The methods described below did not require a priori knowledge of image content 

to perform successful detection/segmentation of salient structures. The saliency 

was provided by perceptual and geometrical relevance of Gestalt analysis. Com­

bination of Gestalt principles was typically done by applying iterative methods to 

mathematical formulas. 

3.4.1 Salient Region Extraction Using The Centre Of Gravity 
Partial Gestalt 

Ma and Zhang [25] used the Gestalt principle of the centre of gravity to identify 

most general salient regions {i.e., attended views) in arbitrary images. The salient 

or attended views were defined as image rectangles having the most contrast in­

formation. Regions of interest were extracted from images using contrast features. 

Gestaltists said "visual forms may possess one or several centers of gravity about 

which the form is organized" ([40], p. 113). Therefore, Ma and Zhang used this idea 
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to find the salient view (i.e., one "most interesting" area that is a centre of gravity of 

the saliency map, determined via the method of moments) that is later subdivided 

into smaller areas. An interesting observation was made that humans were more 

perceptive to changes in smooth areas than in textured areas. 

However, using contrast to measure the centre of gravity does not explain the 

issue of masking, when object perception changes depending on where attention is 

concentrated. For example, in Figure 2.1(a) we can choose to see either a vase or a 

face (depending where we concentrate), even though contrast information does not 

change. 

3.4.2 Multiscale Detection Of Perceptually Relevant Objects 

Tabb and Ahuja [45] proposed a multiscale image segmentation method, where 

the final segmented image contained only the most perceptually relevant structures. 

The authors defined perceptually relevant structures as ones that appeared at multi­

ple scales. The method used homogeneity within an increased range of neighbour­

hoods as a main criterion. Homogeneity and space scales were the main parameters 

of the proposed segmentation model. Homogeneity scale was defined as the dif­

ference (sum of differences) between a pixel and its neighbourhood. Space scale 

was identified as the neighbourhood of a pixel. Homogeneity and space scales 

selection determined the zone of attraction: inward force vectors. As space and ho­

mogeneity scales increased the attraction zones appeared and disappeared. Edges 

were detected in attraction zones as places, where vectors along the boundaries 

diverged from each other. Structures (i.e., segmented objects) were identified as 

closed boundaries. 

Tabb and Ahuja claimed that their method performed Gestalt analysis, since it 

did not make any assumptions about the objects' geometry and used similarity to 

perform segmentation. Edge detection was performed using neighbourhood and 

homogeneity (similarity) notions and the region was detected as the area within 

the closed boundary. Therefore, region detection seemed to be a result of edge 

detection, not a parallel process. 

An important advantage of the method introduced by Huart and Bertolino [18] 
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was that it used multiple scales for object segmentation. First, a region-growing 

technique was applied to image pixels. The image was presegmented into homo­

geneous regions using a colour distance threshold. Region-growing was applied 

iteratively to the local pyramid graph structure until no more homogeneous regions 

(homogeneity was based on a colour distance threshold) were identified. Second, 

the homogeneous regions from step one were further grouped applying Gestalt prin­

ciples of proximity, similarity, closure, continuity and symmetry. 

3.4.3 Region-Growing Using Combination Of Common Motion 
And Intensity Similarity 

The method described by Lee et al. [22] was region-based and used a region-

growing algorithm to perform segmentation. Region growing was based on the 

watershed algorithm. Motion and intensity information was used to create water­

shed seeds and to merge the subregions. The details of their approach were as fol­

lows. The segmentation started with the second frame of the image sequence, since 

the first frame was used for motion field estimation. First, the method created seeds 

for region-growing. The intensity criterion was used to extract initial seeds via a 

homogeneity measure based on the manual threshold. Intensity seeds were then re­

fined (using motion information also based on a manual threshold) into more seeds. 

The seeds, which were obtained using intensity and motion, were further used in 

watershed region-growing. Region growing also combined intensity and motion in­

formation to create a distance measure used to create final segmentation. Temporal 

tracking was used after the first couple frames to improve segmentation results. The 

method assumed that there was "no important change in the scene contents", since 

temporal tracking would fail if drastic changes in motion were present between two 

consecutive frames. 

Even though the method proposed by Lee et al. [22] did not explicitly mention 

Gestalt features it could be viewed that the authors used Gestalt features of similar­

ity by intensity and common motion. A strong side of the method was that Lee et 

al. combined motion and intensity information to segment objects. A drawback of 

the method seemed to be the necessity to set parameters manually, and this usually 
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makes a method very application-dependent. 

3.5 A Posteriori Approaches 

The methods described below rely on a posteriori knowledge of image content. 

Partial gestalts were typically combined using previous knowledge along with prob­

abilistic or machine learning techniques. 

3.5.1 Contour Modelling 

Zhu [52] introduced an approach that creates a learning-based model of an object's 

contour. The model is defined and trained on the Markov random field2 (an MRF). 

Here MRF was defined as a structure (i.e., field) containing probabilities of the 

shape, where each probability corresponds to a point on object's contour and en­

capsulates several Gestalt laws: co-linearity, co-circularity, parallelism, symmetry, 

and proximity. Co-linearity and co-circularity implied grouping of elements that 

formed a line or a circular arc. Parallelism/symmetry implied grouping of elements 

that were parallel/symmetrical with respect to each other. The Gestalt laws were 

defined using notions of curvature (contour information) and distance (region in­

formation) on artificially extracted primitives (linelets). The model learning was 

performed using MRF created from the statistical data of already known contours. 

The main problem with the method seemed to be that it was computationally 

expensive. Zhu found an experimental evidence that the principle of co-linearity 

was more important than the principle of co-circularity. The learned models of 

object's contour could be used to generate the random shapes that are matched 

to the initial shape or some other shape. The results could also be used for object 

recognition and image segmentation, as in the work by Litvin and Karl showed [24]. 

Litvin and Karl [24] used a probabilistic shape modelling method developed by 

Zhu [52] to perform segmentation of noisy data. A shape model was trained on two 

sets of non-noisy images: one set contained sharp-cornered shapes and the other 

one contained smooth shapes. Curvature was used to define MRF probabilities, 
2An important property (Markov property) of a Markov random field is that each probability in 

the field depends only on the probabilities of its neighbours. 
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although Litvin and Karl did not mention Gestalt laws specifically. Gaussian noise 

was added to the binary image (one of the images from each training set), which was 

used for segmentation using a known shape model. Segmentation was performed 

by "maximizing the posterior density for the shape given the data" on two data sets. 

The results were good since segmentation with prior shape information produced 

smoother boundaries and good corners versus segmentation that did not use a shape 

model. The main problem of the method was high computational price. Also, there 

seemed to be a drawback that both training and test images were artificial, which 

did not allow to make any claims about suitability of Gestalt features in natural 

scene segmentation. 

3.5.2 Extraction Of Salient Edge-Based Structures 

MaBmann et al. [28] also used a manually labelled training set and Gestalt princi­

ples to select most salient contours. The initial input consisted of edges. Edges were 

then approximated by arcs and lines (i.e., image primitives). Arcs and lines within 

areas of certain size and shape (i.e., areas of perceptual attentiveness) were used to 

form groups of primitives. Areas of perceptual attentiveness were essentially masks 

that restricted the number of primitives' combinations. The number of groupings 

was further reduced by applying orientation and distance thresholds to arcs and lines 

of each group. Areas of perceptual attentiveness and thresholds were determined 

from the hand labelled training set. Application of the areas of perceptual atten­

tiveness and orientation and distance thresholds seemed to be the way of authors' 

implementation of Gestalt laws of proximity and good continuation (curvilinearity, 

collinearity). The groupings using laws of symmetry/parallelism and closure were 

created using a proximity graph, where each node corresponded to a curvilinear or 

collinear grouping. The most salient groups of lines and arcs were further selected 

using MRF energy function minimization, which resulted in a final segmentation 

containing most salient structures. 

Thus, MaBmann et al. [28] addressed the problem of partial gestalt conflict by 

creating a fixed hierarchy based on a principle's complexity. The lowest level was 

occupied by proximity, collinearity and curvilinearity. The middle level contained 
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symmetry and parallelism. The most complex top level consisted of the laws of clo­

sure (creation of a final object's contour). The conflicts between Gestalt principles 

were solved using MRF. The main problem with the method seemed to be the need 

to manually determine thresholds (from training data) for Gestalt laws. 

Sarkar [38] also applied machine learning and Gestalt laws to extract salient 

edges from digital images. The following Gestalt principles were used: proximity, 

similarity, continuity, co-circularity, and parallelism. The image primitives were 

edge segments represented as arcs and lines. Each pair of primitives was defined 

by a weighted combination of Gestalt laws applied to the pair. The value of the 

weighted combination of each edge pair was extracted using Bayesian inference 

on a set of training images, which consisted of original images and ground truth 

segmentations. Weighted combinations for each pair were put into a graph. The 

larger groups were formed from the graph partitioning using its eigenvectors. The 

input into the Bayesian networks was computed for every pair of lines and arcs 

and consisted of: min/max distance between two given primitives, min distance 

between the endpoints of primitives, overlap, slope difference, and photometric at­

tributes. There were different networks for lines, arcs and corresponding Gestalt 

laws. For example, for lines their parallelism, continuity, T-junction, L-junction 

were characterized by min/max distance between two given primitives, min dis­

tance between the endpoints of primitives, overlap, and slope difference. For arcs 

parallelism and co-circularity were defined by min/max distance, min endpoints 

distance, and overlap. Proximity was predicted by min endpoints distance. Region 

similarity was predicted by photometric attributes. 

It seemed that Sarkar [38] used manually set weights for each Gestalt principle 

to identify its strength. Thus, the problem of the conflict between different Gestalt 

principles was addressed by explicitly assigning Gestalt feature importance, which 

did not seem to be justified. Sarkar determined that the good continuation principle 

in tested images (variable, from different domains) did not play an important role 

and had "low ability to segregate objects from each other and from the background". 

He also found that proximity and similarity were important Gestalt features. 
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3.5.3 3D Spatio-Temporal Edges In Object Detection 

Korimilli and Sarkar [21] and Sarkar et al. [39] used Gestalt principles of proximity, 

continuity and parallelism to segment long (containing more than twenty images) 

sequences of digital images. They represented each sequence of images as a 3D 

spatio-temporal volume. A 3D version of a classical Canny edge detector (see 

Section 4.2.1 for more information on a Canny edge detector) was applied to the 

volume. Resulting edges were approximated and grouped into temporal regions 

using the Hough transform. Temporal regions were further grouped (now using 

Gestalt features and Bayesian inference) to form so called temporal envelopes. Each 

temporal envelope corresponded to a single moving object. The strong points of the 

method were as follows: (1) the authors used Gestalt principles for both spatial and 

temporal grouping (for example, the partial gestalt of parallelism in time implied 

the law of common motion: if two or more lines were parallel in time that mean 

they were moving in a similar fashion and could be grouped together to form a 

single object); (2) the method used Bayesian networks to combine partial gestalts. 

The method seemed to work quite well with noisy data, multiple moving objects, 

occlusions and changing illumination. 

3.5.4 Region-Growing Segmentation Based On Gestalt Features 

Ren and Malik [33] proposed a linear regression classification technique that used 

Gestalt laws to segment natural images. They used following Gestalt principles: 

similarity of texture and intensity, good continuation, closure and proximity. Good 

continuation was defined by the tangents' difference in a point between two su-

perpixels/regions. Similarity was defined for texture, intensity and contour energy 

within and outside each region. Closed contours were determined via computing 

each pixel's orientation energy. 

The method was as follows. First, similar to the paper by Huart and Bertolino[18], 

the image was oversegmented into a predetermined number of superpixels (small 

homogeneous regions). Second, Gestalt cues were computed for each region. Third, 

the regions are grouped iteratively, taking a random region each time. The grouping 
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was done using linear regression learning that solved an optimization problem for 

a function that maximized the sum of Gestalt features' values. The training group 

consisted of a number of human-segmented images (from [27]) depicting natural 

scenes. Ren and Malik found that presence of real-world edges in the region-

grouping hypotheses was the most important cue for image segmentation. Good 

continuation and similarity were found to be very important Gestalt features too. 

3.5.5 Application-l\ined Usage Of Gestalt Features 

Nattkemper et al. [31] applied selected Gestalt features to detect more or less con­

vex/circular objects (tissue cells) in images obtained using fluorescence micro­

scope. Nattkemper et al. proposed to segment images via binding chosen features 

(image coordinates and intensity gradients) to salient groups. Saliency of the groups 

was measured using the following Gestalt principles of perceptual organization: co-

circularity3 and convexity.4 Binding was performed training a neural network on 

image coordinates and intensity gradients. Intensity gradient of a pixel could be 

defined as a direction of maximum growth (i.e., a direction in which some neigh­

bourhood of a pixel changes the most). Experimenters obtained the image gradient 

using simple edge detection. The Gestalt principle of convexity was described by 

collinear or co-oriented gradients. The measure of co-circularity was provided by 

collinear and reverse-oriented gradients. Thus, the method proposed by Nattkem­

per et al. produced figure-background separation via grouping pixels into salient 

groups using Gestalt features of co-circularity and convexity. The method appeared 

to be resistant to image noise. However, using neural networks might be a draw­

back, since they may require more parameters to be set. 

Galkin et al. [13] applied the Gestalt principles of proximity, smoothness and 

cocircularity within a neural network framework to preclassify a database of radar 

images of Earth's magnetosphere (i.e., plasmagrams). The objects of interest in 

plasmagrams were line-like or smoothly curved structures. Therefore, grouping of 

plasmagram primitives to form final objects called traces was done using continuity, 

JIn Gestalt theory co-circularity implied element grouping if they formed an arc. 
4Convex objects were considered to be good Gestalts (a specific case of the law of good shape). 
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smoothness and proximity partial gestalts. Continuity and smoothness were mea­

sured based on orientation of primitives. The general structure of the method was 

also consistent with David Marr's vision paradigm [26]. 

3.6 Other Applications Of Gestalt Theory 

The usage of Gestalt ideas was not limited by vision problems. For example Chang et 

al. [5] used a wide set of Gestalt laws for visual screen design: symmetry, contin­

uation, closure, figure-ground, focal point, isomorphic correspondence, Pragnanz, 

proximity, similarity, simplicity, and harmony. They also introduced an additional 

law of focal point, which implies that the points that are different from the sur­

roundings are points of interest from which the viewer starts visual processing and 

follows further in his/her observation (this law could also be called a principle of 

dissimilarity). Chang et al. also reintroduced the law of familiarity as the law of 

isomorphic correspondence (it implies the importance of previous knowledge in 

interpretation of the visual scene). 

Reybrouck [34] discussed using Gestalt ideas in music analysis. Reybrouck 

stated that perception of separate pieces of music was governed by Gestalt grouping 

laws. He emphasized the importance of temporal Gestalts, where the layers of 

music were viewed in terms of Gestalt figure-ground separation. 

3.7 Analysis Of Gestalt Laws 

Martin et al. [27] were able to show quantitatively that the usage of Gestalt laws in 

object recognition is objectively justified. They showed quantitatively that Gestalt 

laws of proximity, similarity and convexity were useful for object segmentation and 

recognition (which they considered the main problems in computer vision). They 

used a set of ground truth segmentations of natural scenes (50 images, 150 seg­

mentations by 10 people, each image was segmented 1-5 times by different people, 

time to segment was less or equal to 5 minutes, number of segments in each image 

was 2-20) to validate numerically (using the probability theory) that the aforemen­

tioned Gestalt laws are applicable to computer vision domain. More specifically, 
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they have shown that the probability of points belonging to the same objects in­

creases when: (1) distance between them decreases (the law of proximity) and (2) 

intensity between them decreases (similarity). They showed that intensity by itself 

is not enough to segment/represent a generic natural scene object (a maximum of 

60% of pixels pairs were identified correctly as belonging to the same object based 

on their intensity). They have also shown that there were many more segmented 

objects that had a high convexity (which they computed by the mathematical for­

mula of solidity) compared with objects with lower convexity. Thus, their results 

confirmed that the chosen Gestalt laws work for natural images.5 

Ben-Av et al. [2] studied how humans perform visual grouping and found that 

using the law of proximity is most important, when stimuli are presented for a 

very short time. However, similarity seemed to be a more important principle than 

proximity, when more time was allowed for visual processing (which is the case 

in digital image processing). Max Wertheimer [51] suggested that the principle of 

similarity is crucial for object recognition. He also predicted the importance of prior 

knowledge for a successful computer model, which might explain a higher number 

of "a posteriori" methods that use Gestalt features compared to non-probabilistic 

methods. 

Martin et al. [27] stated that only the good continuation law has been shown 

to be useful scientifically via usage of probability distributions. Their results were 

consistent with observations of Ren and Malik [33]. However, Sarkar [38] found 

that the good continuation principle had a "low ability to segregate objects from 

each other and from the background." Cao [4] also stated that in natural images 

there was a smaller number of good continuations, since natural images were very 

irregular. Thus, the good continuation law (unlike other Gestalt principles) received 

conflicting assessments from different researchers. 

Martin et al. [27] supported the idea that there is only a limited amount of re­

search on Gestalt laws. Their opinion was consistent with views of Desolneux et 

al. [9, 10, 6, 7] who thought there should be more attention to Gestalt principles and 
5The importance of convexity and intensity was later used in the thesis algorithm for parameter 

selection. 
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their usage in computer vision research. 

3.8 Renaissance Of Gestalt Theory In Computer Vi­
sion 

Research conducted by Desolneux et al. [9, 10, 6, 7] seemed to have a potential to 

give a powerful impulse to further development of Gestalt theory in computer vi­

sion. They reformulated Gestalt theory within computer vision not only in terms of 

grouping principles, but also raised such important issues, as partial gestalt collabo­

ration, conflicts, masking,6 their recursive nature and the necessity of using multiple 

partial gestalts. 

3.8.1 A Contrario Approach To Gestalt Theory 

Desolneux et al. [8] proposed a systematic approach "aimed at adapting Gestalt 

theory to Computer Vision" ([4]), p.l). Their partial gestalt computation was based 

on the Helmholtz principle, which implied that the relevant object can be found by 

comparing their structures to random noise. Essentially, they used random noise 

as a prior for their model (hence, a contrario approach). The method checked if 

having a certain feature (for example colour or orientation) for a certain group of 

objects was a coincidence or not, which seemed to be in agreement with the Gestalt 

principle of meaningfulness. Desolneux et al.proposed minimal description length 

to address partial gestalt collaboration and conflicts. 

They showed experimentally that human detection of objects also operates in 

a way similar to Helmholtz principle. The importance of previous knowledge was 

incorporated into their model as the law of past experience. One of method's ad­

vantages was that it had only a single threshold that had to be set up manually. 

Cao [4] successfully applied the method of partial gestalt creation proposed by 

Desolneux et alio detection of perceptually relevant smooth boundaries. He created 

a specialized edge detector that detected good continuations and corners/terminations 

using Helmholtz principle. Thus, he defined a model of an irregular random curve 

6A phenomenon that occurs when one partial gestalt completely dominates object's perception 
(also might be known as the Gestalt principle of emergence). 
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using the Helmholtz principle and employed the model to detect curves that did not 

follow the model. 

Cao mentioned that the Gestalt principle of good continuation could be used for 

motion analysis, since trajectory of a moving object was a smooth curve. However, 

the idea seemed to have already been implemented by Korimilli and Sarkar [21] 

and Sarkar et al. [39] (see Section 3.5.3). 

Another contribution of Cao's work was that he essentially created an alterna­

tive edge detector - a detector that did not explicitly use high contrast to detect 

boundaries. It detected good continuations in level lines.7 Therefore, the extracted 

boundaries were not edges by image processing definition (which were defined by 

Cao as high contrast lines). They were a different type of boundaries, since they 

were non-contrast edges which were also smooth. Cao noted that the coincidence 

of his good continuation edges with perceptual edges was very good. Cao [4] also 

stated that results were not sensitive to smoothing, which implied that the method 

would work well for multiscale edge extraction. 

3.8.2 Importance Of Gestalt Theory In Contemporary Computer 
Vision 

Desolneux et al. mentioned that "computer vision used very little and almost noth­

ing of the Gestalt theory results" ([8], p.l), even though "grouping is the main 

process in our visual perception" ([8], p.2) and "not all geometric structures are 

perceptually relevant; a small list of relevant ones is given in Gestalt theory" ([6], 

p.3). 

The main problem with computer vision seemed to be that its efforts in using 

Gestalt theory were mainly aimed at computing different partial gestalts [8], leav­

ing out the fact that collaboration of partial gestalts and their conflicts were "seldom 

addressed" ([7], p.3). Sometimes it might have seemed that a partial gestalt (or a 

feature) was enough, but the final results were always incomplete since "in natural 

world images partial gestalts often col laborate" ( [7] , p.4) . Thus , a single Gestalt 

7They are contrast invariant curves - pixel subsamples extracted from the level sets of a grayscale 
image, where level sets are essentially graylevels of a quantized (every 3,5, or 10 levels are com­
pressed together) image. 
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feature could provide a fix to a limited problem but probably not to a general prob­

lem. They also mentioned that good detection could not be a result of partial gestalt 

summation. It needed to be a synthesis, since some gestalts could be stronger and 

some could be weaker [10]: "only a global synthesis of all partial gestalts can give 

the correct result" ([7], p-21). 

Ideally, there should be a program that would first compute all known gestalts 

and, second, combine them according to their hierarchy [4]). However, it is an 

ongoing research. The problem of partial gestalt collaboration is theoretically and 

computationally challenging and interactions of features are nonlocal according to 

Cao [4]). 

3.8.3 Importance of Multiple Partial Gestalts 

According to Gestalt theory multiple partial gestalts are very important for success­

ful object detection: "objects that are conspicuous8 are very likely to be detected 

by several partial detectors (as predicted by Gestalt Theory), and a single detector 

does not give a definitive answer." ([4], p. 12). 

Desolneux et al. also emphasized the importance of using multiple Gestalt fea­

tures: "most salient objects or groups come to sight by several grouping laws ... 

The outcome of a partial gestalt detector is valid only when all other partial gestalts 

have been tested and the eventual conflicts dealt with" ([10], p.20). 

3.9 Summary 

There were many perceptually and geometrically relevant Gestalt principles iden­

tified, which played a significant role in early computer vision. Many computer 

vision methods used Gestalt principles for object recognition and segmentation. 

Not many computer vision researchers seemed to apply full Gestalt theory knowl­

edge. Many studies were limited to using partial gestalts for element grouping only, 

without referring to such important issues of Gestalt theory as partial gestalt collab­

oration, conflicts, masking and the importance of using multiple Gestalt features. 
8 Obvious to the eye or mind [19]. 
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There seemed to be a limited amount of research that studied and compared mul­

tiple partial gestalts. The latter was unexpected, since using as many as possible 

partial gestalts was an important point in Gestalt theory [4]. 

Most of the reviewed methods used either spatial or temporal Gestalt group­

ing. There were both region-based and edge-based methods, which used Gestalt 

features. However, there seemed to be more edge-based methods, which could be 

usually explained by higher computational cost of region-related algorithms. Also, 

according to Ren and Malik [33], edges might be the most important cue in natural 

images. 

Many reviewed methods used prior knowledge (which is an important Gestalt 

principle according to Max Wertheimer [51]) to fuse different partial gestalts. Their 

drawback might be that, without re-learning and resetting of the parameters, those 

methods are not very generalizable to other applications. On the other hand, non-

probabilistic methods did not seem to be very strong in object segmentation/detection. 

Their output could be considered as good postprocessed input for recognition algo­

rithms. 

Analysis of Gestalt features showed that similarity was a very important partial 

gestalt, which was followed by the proximity principle [27, 33, 38, 2, 51]. Evalua­

tion of the good continuation principle received conflicting assessment from differ­

ent authors [27, 33, 38, 4]. The usage of the motion within Gestalt framework did 

not seem to be common. Korimilli et al. [21] and Sarkar [39] stated that only few 

scientists used Gestalt principles with motion data. 

Shape-related Gestalt features also were deemed to be quite important. For 

example, Desolneux et al. [7] mentioned the law of similarity of shape as one of the 

main perceptual grouping principles. The work of Martin et al. [27] showed that 

convexity {i.e., solidity) is a very important shape feature too. 

Some methods used application-specific Gestalt features. For example, Nat-

tkemper et al. [31] used features that were tuned to detect elliptic objects (closed 

contours), whereas Galkin et al. [13] used features that favoured continuity and 

smoothness (disconnected objects). 

The next chapter will describe the structure of the proposed object detection 
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method, which is based on using multiple Gestalt features. 
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Chapter 4 

Gestalt Features Model 

This chapter describes the proposed model of large lump detection. The proposed 

method uses Gestalt features of intensity similarity, common motion and goodness 

of shape to detect large lumps of oil sand. 

4.1 Assumptions 

It was assumed that large lumps were moving and the camera was stationary. It was 

also supposed that there were no significant problems with input data: no steam was 

present in images and lighting conditions did not vary a lot.1 It was expected that 

large lumps are not covered by oil sand material (i.e., there were no occlusions). It 

was assumed that large lumps have wider (i.e., thicker) edges than smaller pieces 

of oil sand ore. It was decided that large lump edges should be strong enough to 

appear in two consecutive frames. 

4.2 Proposed Method 

The outline of the proposed method is shown in Figure 4.1 (a detailed diagram 

is depicted in Figure 4.2). First, an edge detector is used to find edges in two 

consecutive frames. Second, edges between frames are matched and only those 

edges are selected that appear in both frames. Edge velocity is also computed during 

that step. Third, regions are formed based on edges from the previous step. Chosen 

'Some images that did not have significant problems were still difficult to segment even for 
human experts. 
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edges 

T 
motion edges 

i 
regions 

i 
learned model 

i 
detection decision 

Figure 4.1: The outline of the proposed method. Each box corresponds to a single module 
in the main application. 

parameters, being quantitative measures of Gestalt features, are computed for each 

region.2 Then a learned model is applied to each region's parameters to determine 

if it could be a large lump. If at least one region is labeled as having a large lump, 

then the entire frame (the first of two) is marked to have a large lump. 

4.2.1 Edge Extraction 

Edges were used as basic input elements (i.e., primitives). Wider edges were con­

sidered more important. Canny edge detector (discussed in the next subsection) was 

chosen to extract edges being both a reliable and optimal edge detector that was also 

capable to extract edges at different scales. Canny was also used because it is quite 

resistant to edge noise: the method does not discard weaker edges if they are con­

nected to stronger ones. To the human eye edge images seemed to contain enough 

information for identification of large lumps (see Figure 4.3 for an example). 

2The parameters of the model are in accordance with Gestalt principles. Motion parameters are 
used in accordance with the Gestalt principle of common motion (i.e., motion parameters express 
the Gestalt feature of motion). Intensity parameters are used in accordance with the Gestalt principle 
of similarity by intensity (i.e., intensity parameters express the Gestalt feature of intensity). Shape 
parameters are used in accordance with the Gestalt principle of good shape (i.e., shape parameters 
express the Gestalt feature of shape). 
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Figure 4.3: The original image (top) and edges (bottom) extracted from it at six different 
Gaussian smoothing levels (i.e., scales). 

The edge extraction algorithm is shown in Figure 4.4. 

Description Of Canny Edge Detector 

Canny edge detection is one of the most robust and widely used edges detection 

methods. It has a very good precision and efficiency. Canny edge detector is an 

optimal edge detection method, which compares favourably to other edge detection 

techniques [1, 16]. In the proposed method a Matlab [29] implementation of a 

Canny edge detector was used. The Canny method detects the edges by using the 

local maxima of the intensity gradient of the input image. 

First, the magnitude of the gradient3 (expressed as |V/ |) is computed at each 

pixel of the input image / . |V/ | is defined as follows: 

|V/ | 
si 
dx 
dy _ 

'diy (di_ 
KdxJ \dy 

(4.1) 

where |^ and j - are partial derivatives of / along X-axis and Y-axis, respectively. 

They are computed as follows: 

dx 
dl_ 
dy 

= I(x,y)*VGx 

= I(x,y)*VGy 

(4.2) 

(4.3) 

3The image gradient VI at a specific image location is usually defined as the rate of intensity 
change at that location. 
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Algorithm ExtractEdges(In) 
Input: In = 64Cte480 array of 8-bit pixels; a grayscale image In, which is a video 

sequence frame number n 
Output: Ledgesn '• a variable size list that consists of edges extracted from frame 

number n, which are sorted in decreasing order from widest to narrowest. 
(* Demonstrates how edge extraction module works *) 
1. a*-12 
2. while a > 2 
3. do 
4. compute a Canny edge image Inc from In using a as a Gaussian smooth­

ing parameter 
5. extract all 8-connected edges Ledgesff from/„c 

6. add Ledges<J to the list of all edges LedgeSn 

7. cr<- c r - 2 
8. return Ledg 

esn 

Figure 4.4: An algorithm describing the edge extraction module of the proposed 
method, a is the scale parameter for Gaussian smoothing, which controls the width 
of extracted edges. Higher value of a implies more smoothing, and, therefore, more 
wider edges to be detected. The range of a values from 12 to 2 and with the step 
—2 were determined experimentally. 

where VGX and VGy are the directional derivatives of 2D Gaussian function along 

X-axis and Y-axis, respectively. VGX is computed as follows: 

VGX = — ^ e x p _ £ i S - (4.4) 

where c and r are columns and rows numbers of a square matrix, where each row 

is equal to the vector t.4 VGy is computed as a transpose of VGX. The input image 

/ is also smoothed by derivatives of Gaussian. The rate of smoothing is controlled 

by the a value. 

Gradient's magnitude values of the image are further normalized by their max­

imum value: 

iwi--!^, («) 
max \vl\ 

Second, the Matlab implementation applies non-maxima suppression to thin the 4t is a vector of values from -1 to 1 (3 elements) up to -30 to 30 (61 elements), t is computed 
based on the width of the Gaussian filter. The width of the filter is computed using a, which is preset 
by the user. In the proposed method following a values are used: 2, 4, 6, 8, 10, 12. These values 
were determined experimentally using the training sample mentioned above. 
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gradient edges. Each positive VI is checked against its two neighbours along the 

direction of VI. If the value of VI is smaller or equal then it is set 0. 

Third, a lower T\ and a higher T2 thresholds are computed. Matlab creates an 

intensity histogram of the gradient. T2 is set to be the value corresponding to a bin 

with the highest number of members that is then 0.7x(size of I along X-axis) x 

(size of I along Y-axis). Tl is set to 0.4 x T2. Computed thresholds are used to 

create two binary images: image T\ includes weaker edges and image T2 includes 

stronger edges. In the final image edges from T\ (weaker edges) are included only 

if they are connected to the edges from T2 (stronger edges). Thus, more accurate 

edges are obtained by including both stronger edges and weaker edges in the final 

edge output. However, stronger edges must be connected to weaker edges for the 

latter to be included. 

4.2.2 Motion Matching 

Edge matching between two consecutive frames was used to select the more impor­

tant edges (ones that appear in two consecutive frames) and to compute the velocity 

of edges that was later used for a motion Gestalt feature. A combination of edge 

characteristics {i.e., a signature) was used to perform the matching. An example 

result of motion matching is shown in Figure 4.5. Motion matching seems to work 

especially well with images that do not contain large lumps. It tends to eliminate 

false or weaker edges (see Figure 4.6). The algorithm of motion matching is shown 

in Figure 4.7. 

Matching Using Edge Signature 

A unique representation for each edge was needed, so that the edge could be cor­

rectly matched to another edge in the next frame. It was decided to test the idea that 

a certain number of edge descriptors would create a unique 1-D signature of that 

edge from Gonzalez et al. [15]. Following descriptors were used: coordinates of the 

centre of gravity of the edge, its orientation, solidity, eccentricity, extent, major axis 

length, mean intensity within a convex hull of the edge, and a standard deviation of 
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(a) Original image - frame 1 (b) Canny edges for frame 1 

(c) Canny edges for frame 2 (d) Motion matched edges for frame 1 

Figure 4.5: Motion matching for large lump images. Motion matching (Figure 4.5(d)) 
leaves only the strongest edges - ones that appear in both frames (the first frame is displayed 
in Figure 4.5(b) and the second one is in Figure 4.5(c)). Original frame 2 is not shown here. 
Both frames were shot using the same camera. 1 second elapsed between frames. Note: 
Some edges (that appear matchable to the human eye) might not be matched, since they may 
have spurious connections (not easily visible in images shown here) that prevent proposed 
ID signature matching. 
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(a) Original image 

(b) Canny edges (c) Motion matched edges 

Figure 4.6: Motion matching for non-large lump images. Motion matching (Figure 4.6(c)) 
eliminates some false edges that appear after Canny edge detection (Figure 4.6(b)). 
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Algorithm MatchEdges(LedgeSn, LedgeSn+1) 
Input: Lec[gesn

 an<i LedgeSn+1 returned by the algorithm in Figure 4.4. 
Output: A list of edges Lmoving_edgeSn that contains edges that appear in both frames 

n and n + 1; a list of corresponding edge velocities Vn. 
(* Demonstrates how the edge matching module works *) 
1. compute normalized edge descriptor vectors dn+l for all edges in LedgeSn+1 

2. for e is an edge in LedgeSn 

3. do 
4. compute its normalized edge descriptor vector de 

5. compute SSD errors errorSSSD between de and each descriptor vector 
contained in dn+\ 

6. minSSDError «— mm(errorsssD) 
7. b <— an edge corresponding to minSSDError 
8. if minSSDError < 15% 
9. compute Euclidian distance ve between the centres of gravity of 

e and b 
10. normalize ve 

11 • add e to L/moVing_edgeSn 

12. add we to Vn 

l-J- r e t u r n J-imoruing-edgesni Vn 

Figure 4.7: An algorithm describing the extraction of moving edges from two con-
sequtive frames. The following descriptors were used for each edge descriptor vec­
tor: coordinates of the centre of gravity of the edge, its orientation, solidity, eccen­
tricity, extent, major axis length, mean intensity within a convex hull of the edge, 
and a standard deviation of intensity within a convex hull of the edge. 
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intensity within a convex hull of the edge.5 The descriptors were computed using 

standard Matlab [29] functions. 

The choice of descriptors was motivated by uniqueness of edge's shape, location 

and size. The values of the descriptors were normalized by their maximum values 

in the traning sample. Matching was performed by comparing edge descriptors 

and choosing ones with the smallest sum of squared differences that did not exceed 

some threshold (determined manually by trial-and-error). 

Motion Matching Evaluation 

The performance of the proposed matching technique was analyzed using one im­

age with 40 matchable edges (Figure 4.5(b)). The analysis resulted in 8 true pos­

itive matches, 26 true negatives, 2 false positives and 4 false negatives. Thus, the 

accuracy (computed using Formula 5.1 from Section 5.3) of matching was 0.89, 

which was quite good, but not enough to make a strong claim. Therefore, matching 

accuracy was qualitatively assessed by having a human expert to look at several 

randomly selected images. Matching also appeared to be good in the latter case. 

Velocity Computation 

For each pair of matched edges the velocity of the first edge was approximated as 

a distance between their centres of gravity. The centre of gravity (or centroid) was 

computed using a standard Matlab [29] function. The centre of gravity is well-

described by Sonka et al. [44]. For binary objects it is a sum of either x or y pixels 

coordinates divided by the number of pixels [44]. 

There was also an issue of velocity and scale normalization. Objects that were 

closer to the camera appeared to be wider and have a higher velocity than objects 

situated farther away. The issue was addressed by assigning a normalization co­

efficient to each horizontal line of the image. Computed edge velocity and the 

5Solidity, eccentricity, extent, mean intensity and a standard deviation of intensity were com­
puted for the edge in the same way as outlined in Section 4.2.4. Edge's orientation and major 
axis were computed as, respectively, orientation and major axis of an ellipse fitted over the edge. 
X/Y-coordinates of edge's centre of gravity were defined as the sum of edge pixels' X/Y coordi­
nates divided by the number of pixels in the edge. The actual computations were performed using 
corresponding Matlab [29] functionality. 
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maximum dimension of a large lump6 were multiplied by the coefficient's value to 

achieve normalization. 

The value of the coefficient NC for each horizontal line k was computed by 

dividing the width of the largest conveyor belt opening (closest to the camera) 

Largest-Width by the width of the belt at the location of that horizontal line 

Widthk:NCk = LaZSm-

4.2.3 Candidate Region Creation 

To create a region from edges, every edge endpoint was connected to every other 

edge endpoint (except ones that belong to the same edge) together. The chosen 

method of endpoints connection created a shape that preserved all main concavities 

and convexities of constituent edges. Edge images seemed to contain enough infor­

mation for identification of large lumps. The algorithm of candidate region creation 

is shown in Figure 4.8. 

Motivation For Chosen Method 

Initially, candidate shapes were created via fitting a convex hull over their edges. 

However, it was later noticed that the configuration of candidate edges was not al­

ways convex, and fitting a convex hull sometimes would give an incorrect impres­

sion that the resulting shape is convex (see Figure 4.9). Therefore, it was decided 

that a new method of shape creation from an edge combination (i.e., configuration) 

was needed, a method that would not cover up the true shape of the configuration 

of edges (see Figure 4.10). 

Edge Connection 

The proposed method of edge connection connected all endpoints of all edges in 

a configuration, except endpoints from the same edges. Every edge configuration 

consisted of 1 to N edges. N was chosen to be 3, because there were usually no more 

than 3 edges detected for a single large lump outline according to observations. 

6The maximum dimension of a large lump was used in the final detection decision module to 
decide how large the lump really is. 

45 



Algorithm CreateCandidateRegions(Lmoving_edgesn, Vn) 
Input: A list of motion matched edges Lmoving_eiigeSn for frame n; a list of corre­

sponding edge velocities Vn. 
Output: A list Cn of candidate regions' contours for frame n; a list /„ of corre­

sponding intensity parameters; a list Sn of corresponding shape parameters; a 
list Mn of corresponding motion parameters. 

(* Demonstrates how the candidate creation module works *) 
1. fori <— 1 to 7 
2. do 
3. for j <— 1 to 7 
4. do 
5. for k <— 1 to 7 
6. do 
7. connect all endpoints of Lmoving_edgeSn (UNIQUE (i, j , k)) 
8. fill in the interior of the resulting region 
9. extract the contour C„. ., of the filled region 
10. compute intensity parameters from Cnijk and add them 

to /„ 
11. compute shape parameters from CniJk and add them to 

12. compute motion parameters from VUi. k and add them to 
Mn 

13. add Cjj^ to C„ 
14. return Cn, In, Sn,Mn 

Figure 4.8: An algorithm describing the creation of candidate contours for large 
lump detection. The algorithm searches through all unique combinations of 7 
widest edges, where each combination can have up to 3 edges (the choice of num­
bers 7 and 3 is discussed in a paragraph before Section 4.2.5). 
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(c) (d) 

Figure 4.9: The marked area in 4.9(a) corresponds to the edge images in 4.9(b), 4.9(c), 
and 4.9(d). The darker line denotes a convex hull fitted over the candidate region's edges. 
The input edges are depicted in white. It can be observed that using a convex hull (instead 
of the proposed edge connection method) falsifies the true shape of edges. 
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(c) (d) 

Figure 4.10: The marked area in 4.10(a) corresponds to the edge images 
in 4.10(b), 4.10(c), and 4.10(d). Solid white region corresponds to the candidate that was 
created via connecting its edges' endpoints (a proposed method). The darker contour around 
white regions corresponds to the candidate's contour that was created via fitting a con­
vex hull over its edges. Notice how the proposed edge connection method performs well 
in 4.10(b) and 4.10(c). 
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From observations 3 edges were usually enough to identify a large large lump in 

the given set. 

Only widest M edges participated in region creation. "Top widest edges" im­

plied most important edges, in the sense that they were the widest among those 

that were detected. When using the motion feature, the top edges importance was 

reinforced by an additional requirement that each of them had to appear in at least 

two consecutive frames. M was chosen to be 7, because this number seemed to pro­

vide sufficient edge information and triple combinations of 7 edges also yielded a 

computationally reasonable number of 637 possible candidates for each image. For 

example the algorithm would have to go through 41 triplets if using top 6 edges, 92 

triplets if using top 8 edges. 

4.2.4 Selection Of Features And Parameters 

Gestalt features and parameters (via which features are numerically expressed) were 

selected using perceptual psychology ideas, relevant literature review and experi­

mental observations. Following Gestalt features were selected: similarity of inten­

sity, common motion and goodness of shape. Each feature was represented by two 

or more parameters. The intensity similarity Gestalt feature contained mean and 

standard deviation of intensity inside the large lump candidate. The motion feature 

consisted of mean and maximum velocity of edges. The shape feature consisted of 

roughness, solidity, eccentricity, compactness and extent of the candidate's contour. 

Preliminary Analysis Of Large Lump Events 

To understand the nature of the problem large lump events were first visually ana­

lyzed using following characterization: size, shape, presence of rotation, smooth­

ness of texture, flatness, smoothness of contours, and amount of edge information of 

large lumps present in the frame. It was found that observed large lumps had more 

or less elliptic shape, but could also be triangular, rectangular or oblong. There­

fore, ellipticity was not enough by itself. A number of lumps were rotating while 
7The number of combinations for 7 edges with up to 3 members is computed as follows: (3) + 

(2) + ll) = (7-3)!3! + (7-2)!2! + (7-l)!l! = 35 + 21 + 7 = 63. 
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progressing through the apron feeder. Most lumps had uneven texture, smooth and 

well-defined edges. The results of observation can be viewed in Figure 4.11. The 

data from the analysis was later used in shape parameters selection. 
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Parameter Explanation And Computation 

Mean intensity (i.e., Intensitymean) was computed as an arithmetic mean of all 

pixel intensities contained inside the candidate region. Standard deviation of inten­

sity (i.e., IntensitySTD) was set to be a standard deviation of intensity of all pixels 

inside the candidate region. 

Mean velocity (i.e., Motionmean) was an arithmetic mean of all constituent 

edges' velocities. Maximum velocity (i.e., Motionmax) was set to be the maximum 

of all constituent edges' velocities. 

Roughness (i.e., Shaperough) was computed as the ratio of candidate's perime­

ter over its convex hull's perimeter. Solidity (i.e., Shapesoi) was estimated as the 

ratio of candidate's area over its convex hull's area. Thus, roughness and solidity 

were measures of candidate's convexity: the lower the roughness and the higher the 

solidity were, the higher the convexity of the candidate large lump was. Growing 

solidity implies increasing convexity, while growing roughness implies decreasing 

convexity. 

Eccentricity (i.e., Shapeecc)was computed as the ratio of the distance between 

foci of an ellipse fitted over the candidate and the length of candidate's maximum 

diameter. Foci are such points on the major axis of an ellipse that the sum of dis­

tances from these points to any one point on the ellipse is constant [11]. Eccentricity 

may be computed as 

minor Axis Length2 

majorAxisLength2 ^ 

Compactness (i.e., 3hapecomp) was computed as follows: 

4 x n x Area 

Perimeter2 

Eccentricity and compactness both measure how circular the candidate is. Eccen­

tricity of 0 and compactness of 1 show that the candidate is circular. Maximum 

value for eccentricity is 1 and maximum value for compactness is not limited. 

Extent (i.e., Shapeext) was computed as the ratio of the candidate's area and 

its bounding box's area. Note that the bounding box was defined as a minimal 

bounding box is the direction of the x-axis. It was expected that extent will help to 

detect rectangular or triangular shapes. 
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An important property of chosen parameters is that they are invariant to candi­

date's rotation and scaling. A more detailed explanation of shape parameters could 

be found in work of Kindratenko [20]. 

Parameter Statistics Of Training Sample 

The parameter statistics for large lump region and non-large lump regions was an­

alyzed using the training sample. The goal was to determine if two groups had sig­

nificant parameter differences. The parameter statistics (see Table 4.1) confirmed 

the fact that chosen parameters are important features for large lump detection. 

Computed statistics could also be used to choose manual parameter thresholds. 

It was decided to characterize the parameters using a 40-image sample. The goal 

was to determine if chosen parameters were sufficient to differentiate between large 

lumps and smaller (or nonexistent) lumps. The idea was to determine if there are 

significant differences in parameters for regions that corresponded to large lumps 

("good" candidates) and for regions that did not correspond to large lumps ("bad" 

candidates). A GUI was created that allowed the experimenter to manually label 

each lump candidate as good or bad (see Figure 4.12). Only those candidates were 

considered, whose major axis length was at least half of the chute width. A good 

lump candidate was assumed to have at least 90% of its area inside the actual large 

lump, had to cover at least 50% of the large lump and had to have reasonable edges 

(i.e., the edges had to be located on or close to the real edges of the lump). 

Using the GUI a set of lump candidates was created that consisted of 67 "good" 

large lump candidates and 913 "bad" candidates. These candidates were further 

used to compute the parameter statistics and, later, to train decision tree models. 

It was assumed that the samples of good and bad large lumps were representa­

tive of their true population. The computed parameter statistics can be observed in 

Table 4.1. Means correspond to the average value for a corresponding parameter 

for either "good" or "bad" class. The standard deviation was computed for each 

parameter. 95% confidence intervals were derived for the means. 95% confidence 

interval implied that in 95% of "good" and "bad" samples the true population mean 

would be inside the respective interval. Therefore, if the confidence intervals for 
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Figure 4.12: A screenshot of a GUI used to select "good" and "bad" regions, which are 
later used to create parameter statistics. Each lump candidate was labeled as "good" or 
"bad" given the candidate's region (lighter area in the image) and original grayscale image. 
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Parameters 

Intensitymean 
IntensitysTD 
Motionmean 

Motionnlax 

Oll&pCrough 

dfiap&comp 

Shapeecc 

Shapesoi 
Shapeext 

"Bad" Large Lumps 
mean 
122.4 
9.35 

13.58 
20.48 

1.02 
1.947 

0.8679 
0.8391 
0.4617 

STD 
20.84 

0.8341 

7.73 
15.55 

0.09114 
1.198 

0.1227 
0.1585 
0.1481 

95% CI 
[ 121; 123.7] 

[ 9.295; 9.404] 

[ 13.08; 14.08] 
[ 19.47; 21.49] 

[ 1.014; 1.026] 
[1.869; 2.025] 

[0.8599;0.8758] 
[0.8288;0.8494] 
[0.4521;0.4713] 

"Good" Large Lumps 
mean 
149.7 
9.468 

12.47 
15.7 

1.007 
1.602 

0.8428 
0.9054 
0.5711 

STD 
31.41 
0.686 

6.606 
8.406 

0.0148 
0.6207 
0.1562 
0.06264 
0.1272 

95% CI 
[ 142.2; 157.3] 
[ 9.303; 9.632] 

[ 10.89; 14.05] 
[ 13.69; 17.72] 

[1.004; 1.011] 
[ 1.453; 1.75] 

[0.8054;0.8802] 
[0.8904;0.9204] 
[0.5407,0.6016] 

Table 4.1: Parameter statistics computed from manually selected blobs. 

some classes for the same parameter did not intersect, it could be stated (with 95% 

confidence) that those classes belong to different distributions. 

Thus, information in Table 4.1 was used to show that the "good" and "bad" 

regions are really different. It could be stated with 95% confidence that "good" 

and "bad" samples belong to different distributions with respect to the following 

parameters: mean intensity, maximum velocity, roughness, compactness, solidity 

and extent. 

Raw Data Plots 

Raw data (see Figures 4.13 and 4.14) showed that a single parameter is not enough 

to separate large lumps from non-large lumps. 

It was decided to plot raw parameter data using normalized histograms. Normal­

ization of data was performed as follows. The number of elements in its largest bin 

was determined for each sample. Then a normalization coefficient was computed 

by dividing the larger number of elements by the smaller one. Then all frequencies 

(i.e., number of elements) in bins of the sample with smaller number of elements 

were multiplied by the normalization coefficient. As a result, the maxima of both 

histograms were set to be equal and histograms became comparable. 

Class separation was confirmed by data histograms for extent and mean inten­

sity (see Figures 4.13 and 4.14). There seemed to be no visible separation for 

other parameters, which showed that most probably single parameters would not 

be sufficient for accurate detection of large lumps. Using combinations of param-
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eters could yield better results. Parameter interactions could be visualized in two-

or three-dimensional space. However, it seemed to be impossible to visualize all 

chosen parameters, since such visualization would imply nine-dimensional space. 

4.2.5 Applying The Learned Model 

Decision Tree Learning 

It would be very resource consuming to use all possible combinations of all nine 

parameters (Table 4.2 shows the mapping between Gestalt features and their pa­

rameters, Section 4.2.4 describes how parameters were calculated) and their values 

to determine the best parameters and their thresholds (i.e., to use manual threshold­

ing). A method was needed to find the optimal values for the chosen parameters 

Gestalt features 

Intensity 

Motion 

Shape 

Parameters 

Mean intensity 
STD intensity 

Mean velocity 
Max velocity 

Roughness 
Compactness 
Eccentricity 

Solidity 
Extent 

Table 4.2: The table shows correspondences between Gestalt features and their parameters. 

automatically and produce the final detection results. Linear regression could be 

useful, since it is a fast and reliable method and previously it seemed to work with 

shape characteristics quite well [30]. However, it was not known if the relationship 

between the current set of parameters/features and the detection result was linear. 

Therefore, it was decided to use the machine learning method of decision trees, 

since it can handle nonlinear data prediction. In addition to handling nonlinear 

prediction, the structure of the decision trees (if-else statements, essentially) corre­

sponds to the preferred design choice of the final region selection process - as an 

intuitive process of manual step-by-step selection. Thus, decision trees modeling 

was chosen, because they it was nonparametric, intuitive and robust. The algorithm 

of applying decision trees to large lump detection is shown in Figure 4.19. 
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(a) Mean intensity 

(c) Mean velocity 

(e) Roughness 
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(b) STD intensity 

50 6 0 7 0 BO 90 

(d) Maximum velocity 

(0 Compactness 

Figure 4.13: Histogram plots of raw data for the following parameters: mean intensity, 
STD intensity, mean velocity, maximum velocity, roughness and compactness. Mean in­
tensity seems to show better separation between two classes of lump candidates. A solid 
line corresponds to "good" lump candidates and a dotted line corresponds to "bad" lump 
candidates. See Table 4.2 for the list of parameters and their correspondence to Gestalt 
features. 
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(a) Eccentricity 
o.i 0.2 0.4 0.5 0.6 0.7 0.8 

(b) Solidity 

Figure 4.14: Histogram plots of raw data for the following parameters: eccentricity, solid­
ity and extent. Extent seems to show better separation between two classes of lump candi­
dates. A solid line corresponds to "good" lump candidates and a dotted line corresponds to 
"bad" lump candidates. See Table 4.2 for a list of parameters and their correspondence to 
Gestalt features. 
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A decision tree representation was first introduced by Raiffa and Schlaifer [32]. 

Any decision tree is a subclass of a general tree data structure. A generic tree is a 

hierarchical graph data structure with a set of linked nodes (see Figure 4.15). Each 

Figure 4.15: An example of a tree data structure. The top node is a root node that is also 
a top parent node in the hierarchy. Bottom nodes are its children nodes. Nodes 7, 9 and 25 
are also leave nodes (i.e., leaves), since they are the end-nodes of the tree. 

node that is higher in hierarchy is a parent node. Each node below the parent one 

is a child node. The top node in the hierarchy is known as the root and the bottom 

nodes are known as leaves. A decision tree is a binary tree. A binary tree is a tree, 

where each parent node has at most two children nodes (see Figure 4.16). 

Figure 4.16: An example of a binary tree data structure. Each parent node (including root) 
can have at most two children nodes. 

A classification decision tree was used in the proposed method (see Figure 4.17). 

The classification decision tree's leaves represented classification decision (1 for 

large lump detection and 0 for no detection) and links between nodes represented 

how Gestalt features' parameters were combined to lead to classification decisions. 

Each non-leaf node (i.e., split) represented a decision rule that used a Gestalt fea­

ture's parameter and a value to decide what link should be followed next. 
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A way to optimize a decision tree is called pruning that implies downsizing 

a tree to avoid overfitting. Two methods could be used to prune a decision tree: 

forward pruning is used to stop the growth of a decision tree, and post-pruning is 

used cut the size of a tree after it has been created [3]. Forward pruning was used: 

the growth of a tree was limited by setting the minimum size of a group that can be 

split. The size of the group was chosen to be the minimum size at which all chosen 

parameters were used. The experimentally determined value was 15. Figure 4.18 

displays an overfitted decision tree that has 39 terminal nodes (i.e., leaves), and 

Figure 4.17) displays a forward-pruned tree that has its number of terminal nodes 

pruned to 20. 

Decision trees use specific criteria to decide which parameter and value should 

be used. More specifically, the method finds the best splits for training data trying 

to minimize a specific criterion. Each split creates two groups of data - left and 

right, by analogy with the binary tree structure. 

Algorithm DetectLargeLumps(Cn, GFDn, GFDtrain,DTM) 
Input: A list Cn of candidate regions' contours for frame n; Gestalt feature data 

GFDn (in one of seven configurations: i,m,s,i+m,i+s, s+m, or i+m+s), 
which corresponds to Cn; Gestalt feature data GFDtrain from the training 
sample; a decision tree splitting method DTM (GDI, MDR or Twoing rule). 

Output: 1 if a large lump was detected among Cn, 0 if there was no detection. 
(* Demonstrates how the detection module works *) 
1. T «— train a decision tree using GFDtrain and DTM 
2. Results *- apply T to GFDn 

3. for r is a detection result for a single candidate contour in Results 
4. do 
5. ifr = 1 
6. MajorAxisLengthr <— compute maximum dimension of Cnr 

7. if MajorAxisLengthr > 50% apron feeder opening 
8. return r 
9. return 0 

Figure 4.19: An algorithm describing the detection process of the proposed method. 
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Splitting Criteria For Decision Trees 

For each experiment three prominent (as per Teeuwsen et al. [46]) decision tree 

splitting criteria were used: Gini's diversity index, maximum deviance reduction 

and twoing rule. 

Gini's diversity index (i.e., GDI) is computed as follows: 

where n is the total number of subjects in both groups, n\ and nr is the number of 

subjects in, respectively, left and right groups, and lt and ri is the number of subjects 

of class i in the left or right group. Gini's diversity index measures the amount of 

impurity in both groups formed after splitting. The goal is to minimize the diversity 

index so that each group has less "impurities" (subjects from another group). 

Let us imagine two groups for a specific parameter and a value. If the left group 

consists of 0,0,0,1 and the right group consists of 0,0,1,1,1,1 then GDI is going 

to be (± ( l - (f)2 - ( | ) 2 ) + £ ( l - ( I ) 2 - ( | ) 2 ) ) = 0.42. If the left group 

consists of 0,0,0,0 and the right group consists of 0,1,1,1,1,1 then GDI is going to 

be (& ( l " ( I f - (!)2) + S ( l - ( I ) ' - ( ! ) 2 ) ) = 0-17. Thus, it can be seen 

that a lower GDI corresponds to a better separation of two classes. 

Maximum deviance reduction (i.e., MDR) minimizes the sum of variances within 

both groups: 

- E ^ - ^)2 + - E (^ - ^)2 <4-9> nl • , " T . , 
.7 = 1 J = l 

where n; and nr are the number of subjects in, respectively, left and right groups, 

Cj and Cfc are j'-th and fc-th values of a corresponding group, and cF = — X f̂eLi cffc> 

cv = £- Y^k=i crk- Deviances within two groups measure their homogeneity. For 

the first example above the sum of variances will be 0.41 and for the second example 

it will be 0.14. As it can be seen, lower deviance yields better class separation. 

Twoing rule, similar to the other two criteria described above, checks if left and 

right groups are homogeneous. The twoing value is computed as follows: 

n2 l ^ 
\ i = 0 
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where n is the total number of subjects in both groups, n/ and nr are the number 

of subjects in, respectively, left and right groups, and /?: and r, are the number of 

subjects of class i in the left or right group. For the examples above the twoing 

values will be 0.17 and 0.67, respectively. Twoing rule is a goodness measure 

rather than impurity measure. Therefore, high twoing value means that there is 

a good separation between two classes. 

4.3 History Of The Proposed Method 

Several ideas were tested that were not used directly in the proposed method. How­

ever, this information was reported for the completeness of the proposed research. 

The Gestalt principle of good continuation was tested and it was found that the 

principle of closure was a better alternative, since the good continuation principle 

was limited by its locality and uses only smoothness during edge selection. Using 

intensity slicing with shape learning, similarly to Lukas-Kanade motion estimation 

also did not seem to provide good results. 

4.3.1 Good Continuation 

The Gestalt principle of good continuation implies that contours, which belong to 

the same object tend to follow a continuous curve. It was assumed that contin­

uous curves will be either lines or arcs. Therefore, the good continuation prin­

ciple was measured by collinearity and cocircularity of the contours. Collinear-

ity/cocircularity was assessed by fitting a line/circle to the points, which are close 

to the endpoints of candidate contours (see Figure 4.20). For each junction of 

branches inside a contour only two branches were joined based on the smallest 

value of collinearity/cocircularity. The value representing collinearity/cocircularity 

was set to be the average minimal distance from chosen points to the closest points 

of fitted line/circle. 

It was noticed that using good continuation principle does not change the edge 

map much (see Figure 4.21). The reason seemed to be that the principle of good 

continuation is applied locally to two edges at a time, which does not allow for a 
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Figure 4.20: An example of the good continuation principle usage. Good continuation was 
expressed via collinearity and cocircularity by fitting, respectively, a line or a circle to points 
close the the endpoints of a pair of tested contours. The measure of collinearity/cocircularity 
was set to be the average distance from the chosen contour points to the closest points of 
the fitted line/circle. The topmost image displays a junction of three branches. Three rows 
below show all (three) possible combinations of edges with fitted lines/circles shown at the 
junctions. The image at the bottom is the combination that yields the smallest fitting error 
value. 
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higher level view of edges. 

Figure 4.21: The left bottom image contains an edge map obtained after applying a Canny 
edge detector. The right bottom image contains the result of applying the good continua­
tion principle to the left bottom image. Notice that the locality of the good contimnuation 
principle does not allow it to make a significant improvement. 

Thus, the main reason that the good continuation principle failed to have a sig­

nificant impact on the edge images seemed to be the local nature of the principle. 

Therefore the proposed method turned to a more global implementation of the good 

continuation principle, which, in addition to smoothness, also takes edges' shape 

into account. The new principle was the principle of closure. The principle of clo­

sure implied that an object was still seen as a whole object even if some parts were 

missing, because previous knowledge about the object allowed to fill the gaps in. 

In the proposed method the principle of closure was realized via filtering configu­

rations of connected edges using their intensity, motion and shape information. 
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4.3.2 Slicing 

Recently, intensity slicing of images followed by region filtering based on learned 

shape characteristics was shown to provide good results on oil sand images [30]. 

Mukherjee et al. [30] used such shape characteristics as eccentricity, solidity, and 

extent to select the best shapes among those that were created after slicing. The 

above mentioned method was applied to large lump detection. Segmentation of 

large lumps based on linear learning of shape features as described by Mukher­

jee et al. [30] did not seem to provide very good results when used by itself (see 

Figure 4.22). 
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Figure 4.22: Using slicing method to segment large lumps. The large lump was not de­
tected in row one. Also, a false large lump was found in a row two image. 
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4.3.3 Motion 

Lukas-Kanade motion estimation was tested to determine the velocity vectors of 

large lumps. However, the velocity vector estimation proved to be very prone to 

numerical errors, and problematic because of the uneven illumination and texture, 

and not very high relative depth for large lumps and other material. Thus, as it 

could be seen from Figure 4.23 pixels-based motion segmentation did not seem to 

provide good results. 

Figure 4.23: Using Lukas-Kanade motion estimation to segment large lumps. The method 
seemed to be prone to numerical errors. 

4.4 Summary 

In the current chapter the proposed method of large lump detection was described. 

The proposed method consisted of four major steps: edge detection, matching of 

moving edges, creation of candidate large lumps and detecting large lumps. The 

most important point of the method was that it used Gestalt features of intensity, 
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motion and shape together with machine learning to detect large lumps. The next 

chapter will review experimental data and performance measures of the proposed 

method. It will also discuss statistical methods that were used to test the hypothesis. 
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Chapter 5 

Experimental Design 

This chapter describes experimental configurations of Gestalt features and input 

data used for experiments. Statistical methods and performance measures used to 

evaluate the proposed method are also discussed. 

5.1 Experimental Data 

The main dataset used in experiments consisted of 2446 images (i.e., frames digi­

tized from large lump video) that contained 46 large lump events. 

5.1.1 The Main Dataset 

Initial data was provided by Dr. Ron Kube of Syncrude Canada Ltd. Five video 

tapes were reviewed. Four video tapes contained approximately twelve days of 

video each (one frame per second) and one video tape contained six days of video 

(four to five frames per second). Most of the videos had poor quality caused by 

poor lighting conditions (video that was taped at night), snow, and large amounts of 

steam (see Figure 5.1). Not all tapes had actual large lumps in them. Thus, much 

of video data was not very useful for the proposed method testing. Considering 

that approximately 41 minutes of large lump video was chosen from the SVHS 

Tape 6. Initial SVHS data was recorded at one frame per second (approximately 

425 lines of horizontal resolution). Therefore, the chosen sample consisted of 2446 

frames. Chosen data was transfered to a digital video (a DV) tape at the rate of 

thirty frames per second creating approximately one minute and twenty two seconds 
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of large lumps video. DV data was digitized using WinDV freeware [43] into a 

single DV Type 2 AVI file. All frames of the file were captured by ImageGrab 3.0 

freeware [42] as BMP 720x480 images of size lmb each. 

(a) (b) 

(c) 

Figure 5.1: Examples of problems with large lump images: uneven lighting in 5.1(a), snow 
in 5.1(b), steam and lighting problems in 5.1(c) and 5.1(d). 

Large Lumps 

All images were visually analyzed and it was determined that they contain 46 large 

lump events. A large lump was defined as a lump of oil sand that had its maximum 

dimension equal to or larger than one-half the chute's width. Every large lump event 

had to consist of at least two frames, where each frame contained one or more large 

lumps. Thus, the largest oil sand lump in each large lump event's frame had to be 

at least half of the chute's width in lump's maximum dimension (see Figure 5.2 for 

an example). 
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Figure 5.2: Visual evaluation of large lumps. The observer labeled a lump as a large lump 
if it were more than a half of chute's width (horizontal line) in its maximum dimension 
(tilted line). The chute's width changes when moving up or down the image, because of the 
perspective projection of the camera. Therefore, scale normalization was performed (it is 
described in "Velocity Computation" subsection of Section 4.2.2). 

5.1.2 The Training Sample 

The training sample was a randomly chosen subsample of the main dataset that 

was later used to train (i.e., create) a decision tree model for each configuration of 

Gestalt features. It consisted of 40 images corresponding to 20 two-frame inputs 

(i.e., tuples) to the main algorithm. Each tuple was selected randomly from a 2446-

image sample. One half of the images contained large lumps and the other half did 

not (i.e. there were only 10 tuples containing large lumps). 

5.2 Experimental Configurations 

Thus, with the selection method in place, seven experiments were designed. The 

experiments would use following combinations of three Gestalt features as input 

data to segment large lumps from the background. The combinations were: inten­

sity (i.e., i), motion (i.e., m), shape (i.e., s), intensity+motion (i.e., i + m), inten-

sity+shape (i.e., i + s), motion+shape (i.e., m + s), and intensity+motion+shape 

72 



(i.e., i + m + s). Each configuration was tested three times (each time corresponded 

to a different splitting criterion of the decision tree) and performance measures (see 

Section 5.3) were computed for each trial. 

5.3 Performance Measures 

The performance measures that were used to assess the experimental results were 

accuracy, precision, recall (i.e., true positive rate) and false positive rate. They were 

computed as follows: 

TP + TN TP + TN 
aCCUraCy = TP + FP + TN + FN = -PTW {5A) 

TP 
precision = Tp + Fp (5-2) 

TP 
recall — —— —— (5.3) 

TP + FN 
FP 

FPrate = pp + TN (5"4) 

where TP are true positives (i.e., situations when a lump was present and it was de­

tected), TN are true negatives (a lump was not present and it was not detected), FP 

are false positives (a lump was not present and it was detected), FN are false nega­

tives (a lump was present and it was not detected), P are all detections (TP + FP), 

and iV are all situations were there were no large lumps detected (TN + FN). 

With respect to the application precision could be considered the most important 

measure, since the primary concern of a large lump detection system would be to 

minimize the number of false alarms (i.e. FPs). However, a good object recogni­

tion system should have a balance between its precision and recall. With respect 

to research not only precision but also accuracy should be the main performance 

measure characteristics, since their combination is traditionally used to measure 

performance of methods. 
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5.4 Statistical Analysis Methods 

5.4.1 Confidence Intervals 

Each configuration of Gestalt features was tested three times (each time corre­

sponded to a different splitting criterion of the decision tree) and a 95% confidence 

interval was computed for three trials. 95% confidence intervals were used to de­

termine if the means of results for each configuration and Gestalt group come from 

the same population. 

5.4.2 T-Test 

Student's t-test was used to compare perfomance of large lump detection when 

using one, two and three Gestalt features. Student's t-test indicated if differences 

between two samples were due to a chance (a null hypothesis1 was accepted for a 

t-test's p-value greater or equal to a statistical significance of 0.05) or not (a null 

hypothesis was rejected for a significance value lower than 0.05). Thus, a rejected 

null hypothesis implied that two samples are statistically different. It was assumed 

that data in samples was normally distributed and group variances were equal. The 

samples were considered to be dependent, since they used the same input data with 

different Gestalt features applied to it. 

One, two, and three-feature results were grouped into three corresponding groups 

that were compared to each other using a t-test. One-feature group contained "inten­

sity", "motion" and "shape" results, two-feature group contained "intensity+motion", 

"motion+shape" and "intensity+shape" results, and three-feature group contained 

"intensity+motion+shape" results. As a result, the size of one and two-feature sam­

ples that had three times more values than a three-feature sample. Therefore, the 

results of "intensity+motion+shape" configuration were used three times to match 

the size of one and two-feature samples, since the size of dependent samples should 

be equal for the t-test. 

'A hypothesis of no differences between two groups. It is presumed to be true until (statistically) 
proved otherwise. 
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5.4.3 Linear Regression 

Linear regression helped to determine if performance measures' values monoton-

ically increased/decreased with higher number of Gestalt features for groups that 

were statistically different. Linear regression was used to supply statistically sig­

nificant differences (results of Student's t-test) with directional information, since 

it did not make sense to evaluate direction for groups that were not statistically 

different. Thus, t-test was used first to determine significance. If statistical signif­

icance was found, then linear regression was applied to evaluate the direction of 

differences between the groups. 

In the proposed linear regression analysis the relationship between each perfor­

mance measure value and the number of Gestalt features was modeled using the for­

mula of a first-degree polynomial: y = j3PM + /?0, where y is a label for a number 

of Gestalt features that corresponds to a performance measure value PM, and /30//3 

are coefficients to be found. Fitting of the linear model to data was performed using 
'PM1 1 

linear least squares' formula: - (VT: (XTX)-1XTy, where X 

PMn 1 
and y is the number of Gestalt features used to obtain a corresponding PM. For 

example, y 

Computed (3 and (30 were used to fit a linear model (graphically expressed as a 

line) for y = 1,2, and 3 to make a decision whether the performance measure PM 

monotonically increased/decreased with increasing number of Gestalt features (y in 

this case). Function y was assumed to be linear just for this part of the statistical 

analysis. 

5.5 Implementation Details 

The application based on the proposed method was implemented in Matlab [29] 

using Image Processing and Statistics Toolboxes. Statistics Toolbox was also used 
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to compute linear regression and t-test results. Matlab's module GUIDE was used 

to create GUIs (see Figure 5.3). GUIs were created for the following modules: edge 

detection, motion matching of edges and candidate region creation. 
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5.6 Summary 

The chapter discussed experimental data, result evaluation measures, and statistical 

methods that were used to validate the hypothesis. The next chapter will focus of 

the review of the proposed method's results. 
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Chapter 6 

Results and Discussion 

It was statistically confirmed that using multiple Gestalt features improved overall 

performance of large lump detection. Student's t-test statistics proved that large 

lump detection results for one, two and three-feature groups were significantly dif­

ferent from each other with respect to three out of four main performance mea­

sures (one performance measure did not show any difference between groups). For 

groups that were statistically different from each other, linear regression showed 

that detection performance improved with increased number of Gestalt features. 

Means, 95% confidence intervals, and analysis of visual output were consistent 

with statistical results. 

6.1 Results 

There were statistically significant differences detected between results obtained 

using one, two and three Gestalt features for the following performance measures: 

accuracy, precision and false positive rate (see Table 6.1). The recall performance 

measure was statistically the same for any number of Gestalt features (see Ta­

ble 6.1). Training and testing errors also showed significant differences with an 

increasing number of Gestalt features. There were no statistically significant differ­

ence between one- and two-feature results for the training error. 

Linear regression results assisted in determination of the direction of statisti­

cally significant differences between groups with different number of Gestalt fea­

tures. Linear regression model suggested that the performance of the proposed 
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method increased with increasing number of Gestalt features (see Figure 6.1) for 

those performance measures that showed statistically significant differences be­

tween groups.1 Thus, t-test and linear regression results show that there was a 

statistically significant overall tendency for increased performance, when the num­

ber of Gestalt features increased. 

Figures2 6.3(a), 6.3(b), and 6.3(d)) help to illustrate that three-feature detection 

had higher performance than one or two-feature detection in terms of 95% confi­

dence intervals. Figures A.9, A. 10, A. 11, and A. 12 show some visual detection 

output, which is consistent with numerical results. 

The combination of all three Gestalt features had the smallest number of false 

detections and the highest mean number of correctly identified images that did not 

contain large lumps. Also, the combination of intensity, motion and shape Gestalt 

features appeared to be the best feature combination, because it had the lowest 

variability across the splitting criteria and the greatest separation from other feature 

combinations. The "i+m+s" combination had better performance measure values 

for the Gini's diversity index decision tree splitting rule. GDI appeared to be a 

better choice compared to other decision tree splitting criteria. GDI (unlike MDR 

- see Formula 4.9) took the group size into account, and (unlike Twoing rule - see 

Formula 4.10) did not favour equal group size. 

Results in the Appendix provide more detailed data for each Gestalt feature used 

in experiments. Figures A. 1 and A.2 contain mean (from three decision tree split­

ting criteria) results for each Gestalt feature combination used in the experiments. 

Figures A.3-A.8 contain results displayed separately for each of three decision tree 

splitting criteria: Twoing, maximum deviance reduction and Gini's diversity index. 

Tables A.l, A.2, and A.3 contain numeric results obtained using Twoing, maximum 

deviance reduction and Gini's diversity index splitting criteria. 

'Directional information provided by linear regression would not make sense if there were no 
statistically significant differences shown by t-test. 

2In all the figures the abbreviations should be understood as follows: "i" - intensity, "m" - motion, 
" s " - shape, "i+m" - intensity and motion, "i+s" - intensity and shape, "m+s" - motion and shape, 
intensity, "i+m+s" - motion and shape. 
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Traning error 
First group 
1 Gestalt feature 
1 Gestalt feature 
2 Gestalt features 

Second group 
2 Gestalt features 
3 Gestalt features 
3 Gestalt features 

p-value 
0.07 
0.00 
0.01 

Ho (ftfirst = l-hecond) rejected? 
No 
Yes 
Yes 

Testing error 
First group 
1 Gestalt feature 
1 Gestalt feature 
2 Gestalt features 

Second group 
2 Gestalt features 
3 Gestalt features 
3 Gestalt features 

p-value 
0.00 
0.00 
0.00 

H0 (M/trst = Second) rejected? 
Yes 
Yes 
Yes 

Accuracy 
First group 
1 Gestalt feature 
1 Gestalt feature 
2 Gestalt features 

Second group 
2 Gestalt features 
3 Gestalt features 
3 Gestalt features 

p-value 
0.00 
0.00 
0.00 

H0 (nfirst = Second) rejected? 
Yes 
Yes 
Yes 

Precision 
First group 
1 Gestalt feature 
1 Gestalt feature 
2 Gestalt features 

Second group 
2 Gestalt features 
3 Gestalt features 
3 Gestalt features 

p-value 
0.03 
0.00 
0.00 

H0 (Mfirst = ^second) rejected? 
Yes 
Yes 
Yes 

Recall 
First group 
1 Gestalt feature 
1 Gestalt feature 
2 Gestalt features 

Second group 
2 Gestalt features 
3 Gestalt features 
3 Gestalt features 

p-value 
0.26 
0.19 
0.51 

Ho (pfirst = ^second) rejected? 
No 
No 
No 

False positive rate 
First group 
1 Gestalt feature 
1 Gestalt feature 
2 Gestalt features 

Second group 
2 Gestalt features 
3 Gestalt features 
3 Gestalt features 

p-value 
0.01 
0.00 
0.01 

#0 (Mfirst = Second) rejected? 
Yes 
Yes 
Yes 

Table 6.1: Student's t-test results for the accuracy performance measure. Three out of 
four main performance measures (accuracy, precision and false positive rate) showed sta­
tistically significant differences between groups with different number of Gestalt features. 
The direction of these differences was shown by linear regression in Figure 6.1. The recall 
performance measure did not show any differences between groups of Gestalt features. 
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Training error; slope = -0.90 Testing error; slope = -3.17 

1 2 3 
Number of Gestalt features 

Accuracy; slope = 3.17 

1 2 3 
Number of Gestalt features 

1 2 3 
Number of Gestalt features 

Precision; slope = 4.57 

1 2 3 
Number of Gestalt features 

False positive rate; slope = -5.42 

1 2 3 
Number of Gestalt features 

Figure 6.1: Linear regression model (described in Section 5.4.3) is represented here 
by a line. The model provides evidence if performance measures monotonically in­
crease/decrease as the number of statistically different Gestalt features increases. The recall 
performance measure did not show any statistically significant differences between groups 
and, therefore, the direction of non-existent differences was not evaluated. The performance 
of the main measures (accuracy, precision and false positive rate) increased with increasing 
number of Gestalt features. The rate of increase/decrease is indicated by the slope of a line. 
The figures are shown on the same scale to make slopes comparable. 
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Figure 6.2: Mean training and testing error, as standard machine learning performance 
measures, for a different number of Gestalt features (1 feature: i, m, or s, 2 features: i + 
m,m + s, or i + s, 3 features: i + m + s). Training error is 1 — accuracy for the training 
group prediction, and testing error is 1 — accuracy for the test group prediction. Both 
errors decrease with the increasing number of Gestalt features. More deatailed results are 
available in Appendix. 

6.2 Discussion 

A greater number of Gestalt features produced statistically better results, as per t-

test and linear regression comparison of one, two and three-feature groups. Training 

sample detection results from Figures A.9 and A. 10 did not show much difference 

between one- and two-feature results. However, two-feature configurations in ran­

domly selected results from Figures A. 11 and A. 12 seemed to detect better lump 

candidates than one-feature configurations. 

There was no statistically significant separation between groups for a recall per­

formance measure. The-absence of separation could imply a higher number of 

missed detections for more Gestalt features (probably due to higher selectiveness 

of two or three-feature detection), even though the most of overall performance 

increased with higher number of Gestalt features. 

Configurations that contained a shape Gestalt feature had a high variance across 

different decision tree splitting criteria and could be responsible for the lower differ­

ence between one-feature results and two-feature results. Most variability seemed 

to have come from MDR decision tree splitting rule. 
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Figure 6.3: Mean results for each group of Gestalt features. There is an evidence that 
the 3-feature result and 1/2-feature results are really two different groups, since the 95% 
confidence intervals (error bars, also numbers in brackets) do not overlap. Each group 
consists of corresponding performance measure values (accuracy, percision, recall, or false 
positive rate) obtained for all Gestalt features of that group and for all three decision tree 
splitting criteria. The breakdown of results by configurations of cues as well as decision 
tree splitting ereteria is available in Appendix. 
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Twoing and Gini's diversity index criteria seemed to have the same or very 

similar results for all combinations of Gestalt features3. However, the maximum 

deviance reduction rule yielded quite different results than other two decision tree 

splitting criteria4. For example, there was approximately 4-16% change in values 

for the performance measures of the shape Gestalt feature and a combination of 

motion and shape (Tables A.l, A.2, and A.3). Recall and false positive rate for 

the shape Gestalt showed the highest increase for the maximum deviance reduction 

rule (of about 16%). The same performance measures for the shape and motion 

Gestalt combination showed an increase of about 9%, which is also quite high. 

Accuracy and precision dropped by approximately 3-6%. Such deviations appeared 

to be caused by a higher number of correct and incorrect detections (i.e., true and 

false positives) and a lower number of correctly identified non-large lump images 

(i.e., true negatives) for the maximum deviance reduction than for GDI or Twoing 

rules. 

The number of incorrect detections (i.e., false positives) was higher (compared 

to an increase in the number of correct detections) for the shape partial gestalt and 

a combination of motion and shape partial gestalts, when using maximum deviance 

reduction (i.e., MDR) splitting criterion. Thus, MDR yielded significantly higher 

number of true and false detections and lower number of true negatives for "s" and 

"m+s" compared to corresponding numbers of GDI and Twoing rules. That did not 

seem to be a good result, since the increase in the number of true positives was 

much lower than increase in the number of false positives. Furthermore, a follow­

ing question was raised: why did MDR results for shape and shape and motion 

noticeably differ from corresponding results of GDI and Twoing rule, while other 

parameter configurations did not have such variation? 

3That makes sense, since their formulas ( 4.8 and 4.10) are somewhat similar. The main differ­
ence is that the Twoing rule measures the purity of two subsamples, and the Gini's diversity index 
measures the impurity, thus making one rule a conceptual inverse of the other. Also, Twoing rule 
seems to encourage equal size of splitted groups. 

4The maximum deviance reduction (i.e., MDR) rule produced more detections (both true and 
false ones) than the other two rules. The reason could be that, unlike other two rules, MDR did not 
take into account the size of the "good" large lumps group (which was significantly smaller than the 
size of the "bad" large lumps group), and the influence of the "good" group on the detection result 
was therefore exaggerated. As a result, the MDR's output had more detections than the output of 
the other two methods. 
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The shape partial gestalt seemed to be very sensitive to the splitting rule selec­

tion. The main difference between MDR and the other two rules was that the error 

measures of GDI and Twoing rule were computed using the size of classification 

groups, which was not the case with MDR. In the training sample the number of 

non-large lump subjects {i.e., "bad" lumps) was substantially higher than the num­

ber of large lump subjects {i.e., "good" lumps), which was also true for the large oil 

sand lump problem in general. Therefore, the large size of the "bad" group would 

give it more influence in the classification tree creation for GDI and Twoing rule. 

In MDR the influence of both groups was equal, thus making the influence of 

"bad" lumps less powerful and the influence of "good" lumps more powerful in 

large lump classification, compared to GDI and Twoing rule results. Many true 

negatives seemed to have been labeled as false positives, since the classification 

power of "bad" large lumps was decreased in MDR. Many false negatives seemed 

to have been labeled as true positives, since the classification power of "good" large 

lumps was increased in MDR. Other Gestalt features had a smaller response to not 

using classification group sizes as error weights in MDR. This, along with higher 

sensitivity of the shape and shape and motion Gestalt features to MDR decision 

tree splitting rule, could imply that the shape Gestalt feature was mostly useful at 

selecting large lump events, and does not favour non-large lump data. 

6.3 Summary 

A statistically significant difference (for three out of four performance measures) 

was found in large lump detection performance for varying number of Gestalt fea­

tures. The difference was also confirmed by observing selected visual detection 

output. Detection performance (based on the majority of most important perfor­

mance measures) increased with larger number of Gestalt features. There was no 

statistically significant difference between feature configurations for the recall per­

formance measure. The absence of differences could be caused by a higher number 

of false detections (that would nullify the influence of increased true detections for 

the recall performance measure). Another reason could be a high variability of 
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shape-containing configurations. The reason of the higher variability of the shape 

Gestalt feature seemed be a greater number of true and false detections when using 

MDR rule. 

The difference between one-feature results and two-feature results did not seem 

to be as large as between one/two-feature results and three-feature results. The 

reason could be a higher variability of results that contained a Gestalt feature of 

shape. The next chapter will draw conclusions about current work and will outline 

future directions of research. 
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Chapter 7 

Conclusions 

7.1 Contributions 

This thesis presents a novel object detection method that uses multiple Gestalt fea­

tures integrally with the machine learning framework to detect large lumps of oil 

sand. To my knowledge there is a limited body of research in computer vision on 

using multiple Gestalt features for various object recognition tasks. Many computer 

vision methods use features, which solve one specific problem or a class of prob­

lems. Gestalt features, being perceptually relevant and having direct relation to the 

geometric structure of the real world [27, 10], should be useful in most if not all 

object recognition problems1. Thus, even though the current work applies Gestalt 

features to one domain, the method can be potentially generalized to various object 

detection problems. 

There seems to be even less research about the importance of using multiple 

partial gestalts2 for better object detection. The proposed research addresses the 

problem by demonstrating experimentally that larger number of Gestalt features 

provides better large oil sand lump detection than smaller number of Gestalt fea­

tures. Thus, the main contribution of the proposed method is in its results, which 

show a definite tendency for better detection performance when using a larger num-

'"not all geometric structures are perceptually relevant; a small list of relevant ones is given in 
Gestalt theory" ([6], p.3) 

2"most salient objects or groups come to sight by several grouping laws ... The outcome of a 
partial gestalt detector is valid only when all other partial gestalts have been tested and the eventual 
conflicts dealt with" ([10], p.20) 
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ber of Gestalt features. The Gestalt theory predicted the results of my research3. 

Nevertheless, to my knowledge, the prediction was not confirmed experimentally 

until now. 

The proposed method also addresses the fundamental problem of Gestalt collab­

oration by employing an automated machine learning framework to resolve Gestalt 

conflicts. More specifically, it uses decision tree classification to select accept­

able detections. An important property of the decision tree method is that it does 

not require any parameters or thresholds to be set during the selection of the best 

candidate for an object that is being recognized/detected. The proposed method 

also uses motion within the Gestalt framework, which did not seem to be common 

among computer vision methods [21, 39]. 

The proposed method seemed to have good detection accuracy with large lump 

data that is a subclass of image depicting natural environments. The real-world im­

ages are, generally, very hard to use for object detection due to various problems: 

changing illumination, blurring due to camera shaking, meteorological conditions, 

etc. Also, using natural borders (edges) as the basic input of my algorithm pre­

serves the natural shape of the objects unlike, for example, mathematical morphol­

ogy methods. 

7.2 Limitations 

The proposed method has a number of limitations in both its design and experimen­

tal data. One of them is that the method requires a priori information about large 

lumps. If that information has substantial errors, then the whole method may have 

problems. For example, the sample of twenty training images may under-represent 

the real large lump characteristics (however, the risk was reduced by using random 

sampling), and this may heavily influence further the performance of the algorithm 

(for example, it might hide the differences between one- and two-feature output). 

Also, the proposed method is limited to using only edge-based information. 

3"objects that are conspicuous {i.e., obvious to the eye or mind [19]) are very likely to be detected 
by several partial detectors (as predicted by Gestalt Theory), and a single detector does not give a 
definitive answer." ([4], p.12) 
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Using edges is well-justified, since such areas of high contrast are usually quite 

important for object detection. However, one could apply multiple Gestalt features 

to other basic input elements (i.e., primitives), such as pixels, regions, and level 

lines that play an important role in object recognition. 

The algorithm is computationally intensive, since it searches through all possi­

ble combinations of selected edges. It also is limited to at most three contours in 

one candidate shape and considers only seven widest edges. Another limitation is 

that the current implementation of the method can detect only one largest object. 

7.3 Future Work 

The proposed algorithm could undergo a number of optimizations and improve­

ments. The method should be tested on additional various types of images to further 

support the claim about the importance of multiple Gestalt features. My work could 

be further extended by including more Gestalt features. The goal would be to com­

pute all (or as many as possible) currently known partial gestalts (as per Cao [4]) 

and test them in other object recognition/detection tasks, in addition to large lump 

detection. For example, a partial gestalt of symmetry could be added, as defined by 

Kindratenko [20]. 

A better edge detector could substantially influence the final result of the pro­

posed method, since edges are basic input elements to the algorithm. An edge 

detector created by Desolneux et al. [6] based on Gestalt principles seems to be a 

good alternative to Canny edge detector used in the current work. The edge de­

tection method created by Cao [4] (which was based on the algorithm outlined 

by Desolneux et al.) could be even better alternative, since it seemed to favour 

good continuation contours that were not sensitive to smoothing. Therefore, Cao's 

method would work well for multiscale edge extraction (as a result, the proposed 

method could get rid of the scale parameter a used in Canny edge detection). Ob­

tained edges could be further simplified by fitting lines and arcs to them, as outlined 

by Rosin and West [37]. 

The selection of the best edges could also be improved. Current implementation 
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does not do much edge filtering. Only edges appearing in two consecutive frames 

are selected for further processing and seven widest edges are set as the input for 

candidate shape creation. Therefore, a more intuitive process of edge selection 

could be devised. For example, edge orientation and concavity (for instance, using 

corresponding formulas from the shape theory described by [20]) could be taken 

into account, based on the assumption that most natural objects are convex. 

Currently the proposed method computes Gestalt features from the edge infor­

mation. Nevertheless, the idea of using multiple Gestalt features along with the 

machine learning decision module could also be applied to other primitives: pixels, 

regions, corners, alignments, texture, etc. These results could be used along with 

the results of the proposed method to increase the detection performance. 

The overall speed of the method could be enhanced by moving the object detec­

tion into another module, which creates candidate shapes. In this case generation of 

all possible shapes could be avoided by stopping at the first acceptable candidate. 

The shape creation module itself could be improved by removing the limit on the 

number of edges used during candidate creation. The proposed method could also 

be expanded to allow for detection of multiple objects. 
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Appendix A 

Additional Results 

Figures A. 1 and A.2 contain mean (from three different decision tree splitting crite­

ria) results for each Gestalt feature combination used in the experiments: intensity 

("i"), motion ("m"), shape ("s"), intensity and motion ("i+m"), intensity and shape 

("i+s"), motion and shape ("m+s"), intensity, motion and shape ("i+m+s")- Fig­

ures A.3-A.8 contain results displayed separately for each of three decision tree 

splitting criteria: Twoing, maximum deviance reduction and Gini's diversity in­

dex. Tables A.l, A.2, and A.3 contain numeric results obtained using Twoing, 

maximum deviance reduction and Gini's diversity index splitting criteria. Fig­

ures A.9, A. 10, A.l l , and A. 12 contain some visual detection results. 
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Gestalt features 

i 
m 
s 

i+m 
i+s 
m+s 

i+m+s 

Accuracy 

0.60133 
0.63928 
0.65304 

0.62636 
0.67848 
0.65513 

0.68307 

Precision 

0.36716 
0.38087 
0.41577 

0.38924 
0.45161 
0.42097 

0.46794 

Recall 

0.44537 
0.31397 
0.37206 

0.42047 
0.30982 
0.38313 

0.37344 

False positive rate 

0.33134 
0.2203 
0.22567 

0.28478 
0.16239 
0.22746 

0.18328 

Table A.l: Results obtained using Twoing decision tree rule. 

Gestalt features 

i 
m 
s 

i+m 
i+s 
m+s 

i+m+s 

Accuracy 

0.61927 
0.62093 
0.59633 

0.64762 
0.63011 
0.60926 

0.696 

Precision 

0.38443 
0.36443 
0.38118 

0.38745 
0.38889 
0.37868 

0.49414 

Recall 

0.43707 
0.34578 
0.54357 

0.29046 
0.39696 
0.46196 

0.34993 

False positive rate 

0.30209 
0.2603 
0.3809 

0.19821 
0.26925 
0.32716 

0.15463 

Table A.2: Results obtained using a maximum deviance reduction rule. 

Gestalt features 

i 
m 
s 

i+m 
i+s 
m+s 

i+m+s 

Accuracy 

0.60133 
0.63928 
0.65304 

0.62636 
0.67848 
0.65513 

0.70475 

Precision 

0.36716 
0.38087 
0.41577 

0.38924 
0.45161 
0.42097 

0.51485 

Recall 

0.44537 
0.31397 
0.37206 

0.42047 
0.30982 
0.38313 

0.35961 

False positive rate 

0.33134 
0.2203 
0.22567 

0.28478 
0.16239 
0.22746 

0.14627 

Table A.3: Results obtained using Gini's diversity index. 
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Figure A. 1: Mean training and testing error for each combination of Gestalt features. 
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Figure A.2: Mean results for each combination of Gestalt features. 
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Figure A.3: Training and testing error obtained using Twoing rule as a decision tree split­
ting criterion. 
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Figure A.4: Results obtained using Twoing rule as a decision tree splitting criterion. 
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Figure A.5: Training and testing error obtained using a maximum deviance reduction rule 
as a decision tree splitting criterion. 
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Figure A.6: Results obtained using a maximum deviance reduction rule as a decision tree 
splitting criterion. 

100 



Training error for GDI rule 
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Figure A.7: Training and testing error obtained using Gini's diversity index as a decision 
tree splitting criterion. 
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Figure A.8: Results obtained using Gini's diversity index as a decision tree splitting crite­
rion. 
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Figure A.9: Detection results of some training sample images that contain large lumps. 
The results were obtained using Twoing decision rule. Each row contains results for one 
configuration of Gestalt features from the following list: intensity, motion, shape, inten-
sity+motion, intensity+shape, motion+shape, intensity+motion+shape. 

102 



m 

l+m 

i+s 

m+s 

l+m+s 

I 

r* 

-5 ;="i~. 

fr '£%'<$ 
•J» 

•r""""-- i • - . 

F ! 

Figure A. 10: Detection results of some training sample images that do not contain large 
lumps. The results were obtained using Twoing decision rule. Each row contains results 
for one configuration of Gestalt features from the following list: intensity, motion, shape, 
intensity+motion, intensity+shape, motion+shape, intensity+motion+shape. 
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Figure A. 11: Detection results of randomly selected images 291, 1073, 1093. The results 
were obtained using Twoing decision rule. Each row contains results for one configura­
tion of Gestalt features from the following list: intensity, motion, shape, intensity+motion, 
intensity+shape, motion+shape, intensity+motion+shape. 
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Figure A. 12: Detection results of randomly selected images 1219,1735,2356. The results 
were obtained using Twoing decision rule. Each row contains results for one configuration 
of Gestalt features from the following list: intensity, motion, shape, intensity+motion, in-
tensity+shape, motion+shape, intensity+motion+shape. 
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