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Abstract

Association studies that attempt to link genes with traits are expected to unearth various

genomic roots for various diseases. Recently, haplotype based association studies have be-

come popular due to the inheritance information innate to haplotypes. In this work, we

provide a summary of recent works that focus on haplotyping and those focusing on asso-

ciation studies. We show that haplotyping is a very promising technique for case−control

association studies on pedigree data. We also present a novel haplotyping algorithm that

relaxes the assumption of many previous rule based algorithms. We extend the algorithm

to compute and enumerate all possible identity-by-state and identity-by-descent sharings.

The algorithm is also able to calculate LOD scores, a metric to measure linkage, for every

chromosomal region that is free of breakpoints. Our algorithm is implemented in iBDD,

which we believe will be highly useful in downstream case−control association studies on

pedigree data.
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Chapter 1

Introduction

As the chairman and president of the J. Craig Venter Institute1 put it in 1998, “We are

now starting the century of biology” [7]. Indeed, the past decade has brought numerous

advancements in genetics research. With so many advancements, the sheer amount of

biological data became prohibitively large for biologists to process. Given the significance of

biological problems and their direct effects on the lives of humans, animals, and healthcare in

general, and as biological databases continue to grow, the need for computational approaches

to solve said problems becomes more pressing. Hence, biological problems quickly became

the focal research interest for numerous statisticians, computer scientists, and computational

biologists.

1.1 Background

One of the major advancements in the field of genomics in the past few years has been

the dissemination of millions of Single Nucleotide Polymorphisms (SNPs) (as mentioned

in [6]), variations of the DNA that account for most of the genomic variety within the

human population [15] (see section 1.2 below). Given their representative powers, SNPs

are expected to play a major role in association studies that aim to unearth the genetic

roots of traits (as mentioned in [6]). In fact, the mapping of human diseases [2] has been

quite successful under the common disease-common variant (CDCV) hypothesis in cases of

diabetes [58], rheumatoid arthritis [50], and obesity [21] (as mentioned in [6]).

Association studies generally fall under three categories: case-control, categorical, or

quantitative (as mentioned in [6]). The latter category, quantitative studies, has proven to

be quite a challenge for researchers as all the success that association studies have witnessed

used case-control or categorical traits (as mentioned in [6]). Quantitative association studies

have mostly used regression and ended up with either erroneous results or were prohibitively
1A merger between The Institute for Genomic Research (TIGR), The J. Craig Venter Science Foundation,

The Joint Technology Center, The Institute for Biological Energy Alternatives (IBEA), and The Center for
the Advancement of Genomics (TCAG).
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slow (as mentioned in [6]). Association studies, in general, still have a long way to go and

many more diseases to tackle, despite the limited success achieved so far (as mentioned in

[6]).

One of the major obstacles hindering the wide success of genome wide association stud-

ies (GWAS) is the few number of samples compared to the number of SNPs available (as

mentioned in [6]). This data dimensionality problem is amplified when the disease under

scrutiny is a rare one, and hence, the number of available samples is quite small (as men-

tioned in [6]). To mitigate the data dimensionality problem, SNP tagging was suggested (as

mentioned in [6]). Unfortunately, tagging came at the expense of losing much of the varia-

tion encompassed by the entire SNP set (as mentioned in [6]). The authors in [6] mentioned

that as an alternative to SNP tagging, the use of haplotypes emerged as an efficient tool

to address the data dimensionality problem, supported by the fact that the human genome

can be partitioned into several regions that are unlikely to contain a recombination event

(zero-recombination region) (as mentioned in [3, 23, 64]). Ideally, the complete haplotype

for every member in the study is needed so that the allele for every zero-recombination re-

gion can be deterministically deduced, setting the stage for the identification of the genomic

region controlling the trait [11].

One major problem with the haplotype based association studies is the unavailability

of the haplotypes for diploid individuals in most cases owing to the cost incurred in col-

lecting the haplotypes [11]. Hence, the majority of haplotype-based association studies use

computational, statistical, and/or other various approaches to phase the genotypes as a

preliminary step to carry on with the study (as mentioned in [6]). The accuracy, or lack

thereof, achieved by haplotyping techniques might have an impact on the effectiveness of

the association study, an impact that is quite hard to measure (as mentioned in [6]). To

overcome such a barrier, the use of haplotype sharing has been used (see [62, 38]).

Li and Jiang [36] showed that the problem of finding a haplotype configuration for

pedigree data with the objective function of minimizing the number of recombinants is NP-

hard, in general. Several advancements, however, have been made on a variant haplotyping

problem that assumes no recombinations known as the “zero-recombination haplotype con-

figuration (ZRHC) problem” [67]. Li and Jiang [36], given a full pedigree with no missing

members, devised a polynomial time algorithm for the ZRHC problem that produces all

solutions assuming no missing genotypes for any member of the pedigree. Liu and Jiang

[42], assuming no mating loops, proposed a linear time algorithm for the ZRHC problem

that (1) outputs a particular solution in O(mn) where m and n represent the number of

SNP loci and the number of pedigree members, respectively and (2) can also provide a

general solution (that describes all other solutions) in O(mn2). In Chapter 2, we give a

more detailed literature review of haplotyping along with shortcomings of the most popular
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haplotyping algorithms.

1.2 Biological Preface

The information in the Biological Preface section (section 1.2) is based on the corresponding

section in [11].

This section covers all biological concepts and terminologies mentioned in the disserta-

tion. A pedigree is a representative chart of a family that shows how many generations,

members, males, and females are there as well as their relationships. Figure 1.1 is an ex-

ample of a pedigree with 3 generations, 11 members (6 males and 5 females). A founder is

a pedigree member whose parents are not revealed in the pedigree. Hence, in Figure 1.1,

members 1, 2, 4, and 6 are founders. In the pedigree, a couple along with all their children

are called a nuclear family while a trio consists of the parents with only one of their children.

For example, in Figure 1.1, members 3, 4, 7, 8, 9, and 10 together form a nuclear family

while members 3, 4, and 9 together form a trio.

Figure 1.1: Sample pedigree, modified from [61]

The genome of humans, also known as deoxyribonucleic acid (DNA), is shaped into

double-helix chromosomes. Humans have 23 pairs of chromosomes, 22 of which are called

autosomes while the last pair consists of the sex chromosomes. Each chromosome of a pair

comes from one parent and consists of two strands shaped into a double-helix structure

as shown in Figure 1.2. The chromosome coming from the father is called the paternal

3



chromosome while that coming from the mother is called the maternal chromosome. Each

strand is a sequence of nucleotides through which it binds to the its sister strand (the

nucleotide adenine (A) binds to thymine (T) while cytosine (C) binds to guanine (G)). The

location of a nucleotide on the chromosome is referred to as a locus2 or site.

Figure 1.2: Depiction of a chromosome along with SNP sites, copied from [66]

A single nucleotide polymorphism (SNP) happens when the same locus on the chromo-

some takes on different values among members of a species as depicted in Figure 1.2. For

example, for locus 10 to be a SNP site, the corresponding bond for some members of the

population would be an A-T bond while others would have, say, the C-G bond. An allele

is a sequence of consecutive nucleotides on the chromosome, the length of which can vary

from 1 to the length of the entire chromosome. In our work, we deal with biallelic SNPs.

Hence, a chromosome is seen as a series of two possible alleles, A and B. We will also refer
2Loci is used as the plural form of locus.
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to alleles A and B as 1 and 2, respectively.

We deal with organisms who, like humans, are diploid i.e. they have two copies of

every chromosome3. For every pair, its corresponding chromosomes are called homologous.

For every locus on the chromosome, the corresponding, unordered set of alleles found on

homologous chromosomes comprise the genotype at that locus. For example, if at site 10,

member F has alleles B and A on his paternal and maternal chromosomes, respectively,

then we say that the genotype for F at locus 10 is AB. Notice that the genotype does not

specify any ordering. In other words, the genotype does not specify whether the paternal

allele (found on the paternal chromosome) is the A or B. It simply provides both alleles

unordered. Hence, the genotype for the entire length of two homologous chromosomes is

the sequence of unordered allele pairs, one for every locus. On the other hand, the haplotype

at every locus specifies the parental inheritance, i.e., it specifies the paternal and maternal

alleles associated with the locus. The paternal (maternal) haplotype for an individual’s

chromosome consists of all the alleles on his paternal (maternal) chromosome. In the case

of biallelic SNPs, a site is called homozygous if the associated alleles found on the paternal

and maternal homologous chromosomes are the same (AA or BB). Otherwise, the site is

called heterozygous.

The process of producing gametes (eggs and sperms in females and males, respectively)

is called Meiosis [8]. Figure 1.3 offers a pictorial representation of a meiosis with two pairs

of chromosomes. Prior to the start of meiosis, the DNA is duplicated such that each chro-

mosome is made of two chromatids (known as sister chromatids) [8]. Consequently, crossing

over (also known as recombination (as mentioned in [13]) or breakpoint (as mentioned in

[6])) occurs during which homologous chromosomes exchange segments of DNA [8]. Ulti-

mately, sister chromatids separate and each, now known as a chromosome [48], ends up in

one gamete [49].

According to the Mendelian laws of inheritance, each of the two alleles associated with the

same locus of two homologous chromosomes, comes from one parent. However, a child does

not necessarily inherit an entire duplicate of his parent’s chromosome owing to recombination

events during Meiosis [11].

1.3 Contributions

1.3.1 Case-Control Studies

In this work we focus on case-control, pedigree-based association studies. Numerous asso-

ciation studies have been based on population data, where not all the relationships among

individuals are known. However, we find that exploiting the relationships among family
3In some cases, not dealt with in this work, humans might have a missing or an extra chromosome.
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Figure 1.3: Pictorial representation of the meiosis process, copied from [14].

members provides a great advantage to phase the genotypes more accurately and deter-

ministically as well as in tracing back the origins of the mutation to a founder. We are

particularly interested in the use of haplotype alleles and their sharing among pedigree

members to find the trait controlling region. We make the following assumption:
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Assumption 1 A region that is shared by all diseased members yet is not found on any

healthy member’s chromosomes, is deemed associated with the trait under scrutiny.

That said, we would like to explore the practicality and advantages of the use of allele

sharing as a basis for association. If indeed, the use of haplotype allele sharing is superior to

previously used methods, what shortcomings does this method suffer from? What would be

the accuracy obtained? How would the accuracy (or lack thereof) of the haplotyping process

affect the associations found?

To that end, we examine the use of haplotyping via two well-known haplotyping algo-

rithms. As discussed in more detail in Chapter 2, the findings are extremely encouraging.

We show that haplotyping is an efficient, highly accurate method for retrieving regions of

interest (those that are solely shared by all diseased members of the pedigree). We provide

extensive simulation results and discussion that demonstrate the effectiveness and potential

of haplotype-sharing based association studies.

1.3.2 Haplotyping

Given the promising potential of haplotype-sharing based association studies, we shifted

our focus towards the study of haplotyping. We realized two major disadvantages of the

available haplotyping algorithms. Firstly, most of them require full pedigree information, a

characteristic that might not be present in real life pedigrees [53]. Rather, it is often the case

that real life pedigrees have some non-genotyped members probably owing to the passing of

one or more individuals prior to collecting their genotypes [53]. Hence, for haplotype-sharing

based association studies on pedigrees to witness any breakthroughs, it is imperative to have

an efficient haplotyping algorithm that can handle pedigrees with missing founders.

With that in mind, we built a novel rule-based algorithm to phase the genotypes of

regions with no recombination. We show that the algorithm is efficient and accurate. We also

extended the algorithm to a parsimonious haplotyping algorithm that phases the genotype

of the entire chromosome for every pedigree member in a single, complete genome scan. The

algorithm runs in polynomial time with a running time of O(m3n3) where m and n refer

to the number of SNPs on the chromosome and the number of individuals in the pedigree,

respectively.

The importance of our algorithm is its applicability. Dropping the requirement for all

members to be genotyped, our algorithm requires that every non-genotyped founder to

appear in only one nuclear family and that every nuclear family has at least one genotyped

parent. Such looser requirements greatly broadens the range of pedigrees to which our

algorithm can be applied, and hence, we believe that it can shed light on associations that

were not discovered before.
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1.3.3 Setting the Stage for More Complex Studies

The second shortcoming of the available haplotyping algorithms, is that most would provide

only one feasible haplotyping configuration. However, given a single set of genotype data

for every individual of the pedigree, numerous haplotyping solutions would be possible. As

mentioned previously, the underlying accuracy of the phase inference stage might greatly

affect the results of the association study (as mentioned in [6]). To make things worse,

even if said accuracy is proven to be quite high in terms of breakpoint recovery for the

haplotyping solution used in the association study, the mere existence of numerous other,

feasible haplotyping configurations is always grounds for questioning the validity of the

associations found. To overcome this, the use of haplotype sharing has been used (see

[38, 62]).

We extended our algorithm to produce all possible haplotyping configurations. The

number of such configurations can be quite vast, sometimes reaching several billions. It

becomes computationally prohibitive to even produce all these solutions let alone compare

them. Hence, we devise a novel way of extrapolating the sharing information without

having to enumerate all possible solutions. We produce two types of sharings, namely,

identity-by-state (IBS) and identity-by-descent (IBD). The former compares the haplotype

alleles for every zero-recombination region without regard to the family relations. The latter,

however, traces back every haplotype allele for every zero-recombination region back to its

pedigree founder. Also, for every distinct IBD sharing, we produce LOD scores for every

zero-recombination region. LOD scores can be quite a powerful technique in linkage studies

[52].

We show that the number of sharings is significantly smaller than the number of fea-

sible haplotyping solutions. The use of a much smaller number of IBS/IBD sharings in

the association as opposed to the complete set of feasible haplotyping solutions serves two

purposes.

1. Such a data dimensionality reduction is very much needed for the association study

to be computationally feasible.

2. The use of sharing empowers the association study to overcome the uncertainty as-

sociated with its results owing to (1) the underlying accuracy of the phase inference

stage (as mentioned in [6]) and (2) the use of a single haplotyping solution while nu-

merous other solutions are disregarded [53]. This provides much needed credibility to

the mined associations.

We implemented all the above algorithms and techniques in a software package, iBDD.

We expect iBDD to be a highly useful tool in pedigree-based association studies given its

efficiency and applicability. iBDD computes, for every zero-recombination region of every

8



feasible solution, the IBS and IBD clusters of alleles and the clusters’ associated members.

Depending on the need, it can enumerate all possible IBS and IBD sharings along with

the associated number of haplotyping solutions for each sharing [53]. It can bypass the

generation of all possible solutions and directly report the number of possible IBS and IBD

sharings. It also provides an overall LOD score (based on a weighted average of the LOD

scores for every IBD sharing) for every zero-recombination region. We expect these tools to

set the stage for carrying out association studies on pedigrees that various popular algorithms

are not able to handle and perhaps, mine interesting, previously unknown associations.
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Chapter 2

Related Work

2.1 Haplotyping

The genotype of an individual provides the unordered pair of alleles for every locus [11]. Hap-

lotypes, on the other hand, sort the alleles for every locus based on the parental inheritance

[11]. Naturally, geneticists would rather work with haplotypes given the recombination,

inheritance, and sharing information all inherent in haplotypes. That said, it comes as a

disappointment that the inexpensive generation of genotypes compared to haplotypes often

makes the latter unavailable [11]. Hence, efficient methods to infer haplotypes from geno-

types become a pressing need [11]. To that end, there has been several attempts in the

literature to efficiently infer haplotypes from genotype data that can be broadly classified

into two categories: population-based and pedigree-based.

2.1.1 Population-Based Methods

Population based methods often adopt a likelihood based approach to infer feasible hap-

lotype configurations. One of the main disadvantage of this approach is the number of

computations required, something that renders the approach inapplicable to large datasets

[11]. Also, it is often the case that some assumptions, like Hardy-Weinberg equilibrium,

should hold true in the data for likelihood based methods to be effective [11].

A very popular approach for population based haplotype inferences has been the Expectation-

Maximization (EM) algorithm (see [17]). In [46], it is mentioned that the first attempt to

use the EM algorithm to find the probabilities of the haplotypes that lead to optimal prob-

abilities of the observed data was presented in [19]. As described in [19], the EM algorithm

follows an iterative process that starts with a set of initial, random values of haplotype

frequencies. These frequencies are assumed to be the true haplotype frequencies and are

used to generate the genotype frequencies. The latter set of frequencies are then used in the

next iteration to estimate a new set of haplotype frequencies. The process goes on until the

difference between consecutive sets of haplotype frequencies is smaller than a set threshold,
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and hence, convergence occurs.

The EM algorithm was utilized in the program HAPLO [29]. HAPLO is used for un-

related members and uses phenotype data to infer the haplotypes. HAPLO makes use of

relevant information about relatives during the phasing process and can deal with missing

genotypes as well. The EM algorithm was also utilized in [43], where the authors described

a log-likelihood function:

ln L =
N∑

i=1

ln Pr(Pi)

where N and Pi represent the total number of sampled individuals and the phenotype for the

ith person, respectively. The probabilities of the genotypes that can lead to the phenotype

are summed to obtain Pi. During every iteration, the EM algorithm bases its processing

of data by person, not by phenotype. The expectation and maximization steps of the EM

algorithm are concerned with the haplotypes’ numbers (expected) and the count of the

aforementioned numbers across all individuals, respectively.

It is worth noting here that the EM algorithm suffers from its inability to work on large

datasets [46]. Another disadvantages of the EM algorithm is that the results are quite

sensitive to the initial, random guess of the haplotype frequencies [46].

Niu et al [47] introduced a divide and conquer approach that they call “partition-ligation

(PL)” [47] and implemented it in the program HAPLOTYPER. They proposed a Monte

Carlo approach, where their first step is to divide the whole genome into blocks. Conse-

quently, Gibbs sampler is used to first infer the haplotypes and then to combine all the

blocks together. They show that their Bayesian approach is tolerant of breaches of the

Hardy-Weinberg equilibrium. Their approach can also be effective in the face of missing

data or the presence of crossover hotspots. In [51], the authors described a combination of

the PL strategy presented in [47] and the EM algorithm producing the software PL-EM.

They argued that the reasoning behind such an approach is to take advantage of EM’s su-

periority in terms of shorter computation times as well as easier checking for convergence

compared to the Gibbs sampler employed in Niu et al [47].

As mentioned in [46], despite its ability to handle a large number of SNPs, the PL

algorithm might not provide the optimal solution if the division is not on the recombination

hot spots. However, [46] did mention that the PL algorithm showed tolerance despite the

division not occurring on the “cutting points” [46].

Stephens et al [60] proposed a novel method to work with population data using Gibbs

sampling. Their method starts with an initial haplotype configuration. It then randomly

picks an individual that it tries to infer her haplotypes assuming that the haplotypes of all

other members are correct and hence, building a Markov Chain. The process is done repet-

itively and enough times so that an “approximate sample from the posterior distribution”

[60] of the set of haplotype pairs is obtained. However, the algorithm is computationally ex-
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tensive and requires millions of iterations [46]. Lin et al [39] introduced a modified method

to that of [60] where, to resolve an individuals ambiguous sites, they consider only the

positions of other members that correspond to the individual’s ambiguous sites. Another

difference introduced in Lin et al [39] is the ability to handle missing data.

Another well known algorithm for population based haplotype inference is that presented

by Clark [12]. As described in [46], Clark’s algorithm is most parsimonious and phases the

population’s genotypes by first inferring the haplotypes for all unambiguous sites. It then

checks if any of the recently inferred haplotypes can be an allele of the unphased genotypes.

The algorithm continues to expand on the pool of known haplotypes by adding any newly

inferred allele. The driving logic of the algorithm is that homozygous alleles are most likely

commonly found, and that unphased genotypes will most probably resolve into one of the

inferred haplotypes.

Niu [46], however, argued that if the input data does not have “homozygotes or single-

site heterozygotes” [46] the algorithm of Clark [12] would not start and that the solution

of Clark’s algorithm is not unique because the order of the unphased genotypes affects the

results. Niu [46] also pointed out that despite the Hardy-Weinberg equilibrium (HWE) not

being one of its assumptions, the performance of Clark’s algorithm is sensitive to violations

of the HWE (as shown in [47]).

Clark [12] mentioned that the solution that has the fewest unresolved haplotypes (hence,

the parsimony rule) is the feasible solution and that a solution is probably unique if it ends

up resolving all haplotypes. Based on the work of Clark [12], Gusfield [25] described the

“the maximum resolution (MR) problem” [25] as “whether efficient rules exist to break

choices in the execution of the algorithm so as to minimize the number of resulting orphans

or (equivalently) maximize the number of resolutions” [25]. Gusfield [25] formulated the

problem as “Given a set of vectors (some ambiguous and some resolved), what is the maxi-

mum number of ambiguous vectors that can be resolved by successive application of Clark’s

inference rule?” [25]. He also showed the aforementioned problem is NP-hard. Gusfield [25]

described a graph view of the MR problem as well as an integer linear programming method

to solve the graph view approach.

Gusfield [26] adopted a coalescent approach, where the evolution of individuals’ haplo-

types is represented by a tree structure. Each haplotype can be traced back to one ancestor

in the tree given there are no recombinations [31]. Therefore, the merger of the upwards

paths of two haplotypes corresponding to two individuals (backwards in time) will necessar-

ily occur at the two individuals’ ancestor. The coalescent approach assumes the infinite-sites

model which means that any site will witness no more than one mutation during the en-

tire historical period of time under study. Therefore, a tree with 2n leaves would describe

the historical evolution of 2n haplotypes, each corresponding to one of the 2n individuals.
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Each site is associated with one edge of the tree. Gusfield [26] then formulated the problem

as given a matrix, where the rows represent the genotypes, we would like to resolve all

heterozygous sites, such that the resulting matrix has a perfect phylogeny [26].

The work of Halperin and Eskin [27] took a different approach than the Perfect Phy-

logeny of Gusfield [26]. They argued that the infinite-sites model assumed in Gusfield [26]

is impractical in reality. Their approach is based on an “imperfect phylogeny” [27] and

allows for recombinations as well as multiple mutations. Their algorithm divides the SNPs

into segments of low diversity since the accuracy of predicted haplotypes deteriorates if the

segment is associated with a high diversity. Each segment is then phased and the corre-

sponding haplotype allele for every individual is determined. Another interesting feature

of the algorithm of Halperin and Eskin [27] is its ability to resolve missing genotypes by

utilizing a maximum likelihood approach.

2.1.2 Pedigree-Based Methods

Kruglyak et al [32] introduced the program genehunter, that among other things performs

pedigree based haplotyping using a maximum likelihood approach. Their method utilizes

“inheritance vectors” [32] that trace back the origins of non-founder alleles back to the

founders, and thus describing the inheritance of every founder allele. Hence, they framed

the problem as finding the inheritance vector that is optimal for the loci to be phased, which

translates to the “hidden-state reconstruction problem” [32]. The implemented two methods

to solve the aforementioned problem, one that considers each locus separately and tries to

find the corresponding optimal vector while the other method considers loci collectively and

tries to find the corresponding set of optimal vectors. One advantage of genehunter is its

ability to handle pedigrees even when it is missing some data.

Becker and Knapp [4] mentioned that genehunter [32] and merlin [1], both employing the

Lander-Green algorithm [33] are well suited only for cases when ambiguities of haplotypes are

not considerable. Becker and Knapp [4] argued that the haplotypes inferred by genehunter,

in the case of SNPs that are tightly linked and families with an associated small number of

individuals, are dependent on the alleles’ order dictated by the input file.

Li and Jiang [36] showed that the problem of finding a feasible haplotype configuration

for pedigree data with the objective function of minimizing the number of recombinants is

generally NP-hard. They also presented a rule-based algorithm that abides by the Mendelian

laws of inheritance, to phase regions with no recombination. Their algorithm defines differ-

ent levels of constraints on the inheritance of alleles. Considering each trio at a time, the

algorithm extrapolates the applicable constraints in the form of a system of linear equa-

tions. The solution(s) to the linear equations, if any, translate to all feasible haplotype

configurations assuming no recombinations. Their algorithm cannot handle missing geno-
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type data and runs in O(m3n3) where m and n represent the number of loci and the number

of individuals in the pedigree, respectively.

Despite the efficiency of the zero-recombination haplotype configuration algorithm pre-

sented by Li and Jiang [36], one main disadvantage is its inability to handle pedigrees with

missing founder(s) [11]. This comes as a disappointment given that a lot of real life pedi-

gree data often involve founders whose genotypes are not collected probably owing to the

passing away of the founder prior to collecting her genotypes [11]. This considerably limits

the applicability of their algorithm and inspired us to develop an efficient algorithm for the

ZRHC problem that can handle pedigrees with missing founders (see [11]).

Chan et al [9] developed an optimal, linear time algorithm to solve the ZRHC problem

when the pedigree does not have any mating loops. Their algorithm adopts a graph based

approach and represents the genotypes of trios by vectors. They accordingly build a graph

where the nodes are the built vectors and the edges are colored.

Xiao et al [67] gave a faster algorithm than that of Li and Jiang [36] to solve the ZRHC

problem. Their improved performance, running in O(mn2 + n3log2nloglogn) originates

from several enhancements. They show that the system of linear equations is reducible

to a system where the number of variables ≤ 2n. They also argue that, in practice, m

is usually at least as large as log2nloglogn and assuming that is true, further algorithmic

enhancement is achieved by reducing the number of linear equations to O(nlog2nloglogn) via

identifying and ridding the system of redundant or unnecessary equations. The elimination

of the unnecessary equations runs in O(mn). When the all members of the pedigree are

heterozygous at a particular locus or when the pedigree does not contain any mating loops,

their algorithm runs in O(mn2+n3). Assuming no mating loops Liu and Jiang [42] presented

an optimal, linear time algorithm running in O(mn) time to generate a particular solution

to the ZRHC problem as well as an optimal, general solution in O(mn2).

Lin et al [38] developed iLinker, a rule based, greedy algorithm to infer a haplotype

configuration for pedigree data with the objective function of minimizing the number of

breakpoints. Starting from the top, iLinker traverses the pedigree one nuclear family (where

a nuclear family is either a trio or a parent along with her child) at a time in a Breadth

First Search fashion. A dynamic programming method is used to phase the genotypes of

the nuclear family while trying to minimize the number of breakpoints. After assigning

breakpoints to children, iLinker might revise the haplotypes of the parents, and by doing

so, transferring breakpoints from some children to their sibling(s), if such a revision would

reduce the total number of breakpoints. If two breakpoints are less than 1 Mb apart and

there is < 3 informative SNPs in between, iLinker deems the breakpoints’ generation as a

result of genotyping error(s).
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2.2 Association Studies

Association studies attempt to unearth the chromosomal region(s) that control traits and

diseases (as mentioned in [6]). In the past, association studies have seen numerous successes

in complex traits of humans [24]. However, most breakthroughs have been achieved in

case control or categorical association studies while numerous, quantitative traits are yet to

witness major breakthroughs (as mentioned in [6]).

2.2.1 Transmission/Disequilibrium Test

Often, associations between a marker and trait are found in the population due to popula-

tion stratification yet without linkage [59]. Spielman et al [59] introduced the Transmission

Disequilibirum Test (TDT) to test for linkage in the presence of an association. The test

examines heterozygous parents (at the regions found to be associated with the trait) and

studies the transmission of the corresponding alleles to affected children. Despite its limita-

tion of being able to find linkage only when association is present, the TDT does not need

information regarding healthy siblings or collective information on several affected members.

Explained in the case where there is one affected child per family and with two marker alleles

A1 and A2, the TDT test is as follows:

TDT =
(x − y)2

(x + y)

where x represents the number of times that a heterozygous parent transmits A1 to the

affected child as opposed to A2 and y represents the opposite scenario i.e. the heterozygous

parent transmitting A2 to the affected child and not A1. Hence what the TDT is testing

is the deviation of the transmission of A1 or A2 to affected children. Spileman et al. also

described how to extend the test to more than one affected child.

2.2.1.1 Lazzeroni and Lange’s Work

Lazzeroni and Lange [34] extended the TDT framework to “multiple alleles, multiple loci,

unaffected siblings, and genotypic rather than allelic associations” [34] (the variables used

in the following explanation are the same as those in Lazzeroni and Lange [34]).

• Multiple Alleles: For the case with more than 2 alleles, they suggested the test

statistic
k∑

i=1

(ti − ci)2

ti + ci
where i is the index of the allele, ti is the number of transmitted

ith allele, and ci is the number of non-transmitted ith allele.

• Multiple Loci: The authors suggested an approach to address the issue of false

positives arising from conducting multiple tests simultaneously on several markers. In

their approach, they use “the joint distribution of the test statistics” [34] to achieve

an acceptable significance of the test.
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• Unaffected Siblings: Lazzeroni and Lange argued that information on unaffected

siblings can also be used for examining disequilibrium. Specifically, they defined tai and

ca
i to represent the number of transmitted and non-transmitted ith allele in affected

offsprings, respectively and tui and cu
i to represent the number of transmitted and non-

transmitted ith allele in unaffected offsprings. Consequently, they defined ti = tai + cu
i

and ci as ci = ca
i + tui and suggested that the test for multiple alleles can be used given

the presented values of ti and ci.

• Genotypic Association: They also discussed the use of genotypes, as opposed to

alleles, in testing for disequilibrium. They use the transmitted genotype of the child

as the case while the non-transmitted, yet possible genotypes of the child as controls.

For example, if the mother, father, and child have the genotypes a/b, c/d, and c/a

respectively, then the controls would be c/b, d/a, and d/b. They also discard trios

with homozygous parents because they are non-informative. Hence, one can calculate

the mean as well as the variance of every ti/j , where i and j represent any of the a, b,

c, or d alleles.

2.2.1.2 Unbiased TDT

Dudbridge et al [18] argued that when the TDT is applied to haplotypes spanning several

loci, a bias might arise in families where, at the same locus, the genotype at both heterozy-

gous parents is the same. The reason behind the bias is the fact that only specific offsprings

are used to infer the haplotypes and hence, the transmission of one parental haplotype is

not independent of the transmission of the other haplotype. Dudbridge et al [18] suggested

an unbiased TDT for “individual haplotypes” [18] by calculating the transmission count

variance in a family by making use of information from several siblings, if possible.

2.2.1.3 TDTs Using Multiple Tightly Linked Markers

Zhao et al [75] proposed a TDT method that works on multiple markers that are tightly

linked. Their method works as follows:

Suppose that the set of all observed genotypes is g where every element of g is a set

representing the genotypes of the trio consisting of two parents and their affected child.

They also define {ik, jl} to represent the event that the haplotypes Hi and Hj are the

transmitted and non-transmitted haplotypes of the father, respectively while Hk and Hl are

the transmitted and non-transmitted haplotypes of the mother, respectively. If we assume

that the group {isks, jsls} of haplotypes are all corresponding to the set of genotypes g,

they then define :

t̂ik,jl
g = ng

hihjhkhl∑
{isks,jsls}∈g

hishjshkshls
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as the estimate of the count of families where the father transmits Hi from his haplotype

pair (Hi, Hj) while the mother transmits Hk from her haplotype pair (Hk, Hl). In the above

equation, ng denotes the count of families with genotype set g and hx represents an arbitrary

frequency of haplotype x. Consequently, they build a table where the rows and columns

indexes are the haplotype number and with entries t̂γδ where:

t̂γδ =
∑

g

∑
k

∑
l

t̂γk,δl
g +

∑
g

∑
i

∑
j

t̂iγ,jδ
g

represents the estimate of the count of parents that transmit haplotype Hγ from their hap-

lotype pair (Hγ , Hδ). They argue that the table T is symmetrical under the null hypothesis

of no linkage. Hence, Pγ,δ = Pδ,γ where Pγ,δ = E(tγδ) and similarly for Pδ,γ = E(tδγ).

Therefore, a test for the symmetry of the built table T̂ can be used to test for linkage.

The authors compare five different test statistics summarized in Table 2.1

Test Statistic Description
Ts Studies each marker separately
Td Discards ambiguous families
Th Assumes that haplotype information is known
Tu Estimates haplotype frequencies only by use of unambiguous fam-

ilies
Tc Estimates haplotype frequencies by use of both unambiguous fam-

ilies and ambiguous families, by assigning each compatible haplo-
type group equal probability for each ambiguous family

Tml Estimates haplotype frequencies by assuming that parents are
a random sample of individuals from a population with Hardy-
Weinberg equilibrium

Table 2.1: The different test statistics used in [75], copied from [75].

Their results show that when the disease is dominant, the best performance is achieved

when the haplotypes of the parents are known. Ts and Td perform the worst compared to all

other tests that do not require parental haplotypes to be known. Among the test statistics

Tc, Tu, and Tml, the latter has the best performance, Tc has the worst performance, and

Tu’s performance is in between those of Tc and Tml. When the disease is recessive, however,

Ts and Th are associated with the lowest and highest performances, respectively. The other

test statistics follow a similar pattern as when the disease is dominant.

2.2.1.4 Evolutionary Tree-TDT

Seltman et al [55] presented an approach to extended the TDT to test for greater-than-

expected transmissions of haplotypes. In an attempt to reduce the number of haplotypes

in haplotype based TDT tests for family data, Seltman et al [55] used the Evolutionary

Tree-TDT (ET-TDT). In particular, Seltman et al combined the TDT and the grouping of
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the haplotypes via utilizing the evolution of the haplotypes, and thus reducing the degrees

of freedom. To that end, they used a cladogram, which is an unrooted tree that depicts

the mutations leading to the currently observed haplotypes. The idea is that all haplotypes

that share the disease causing allele would have the disease causing mutation occurring

somewhere along the path of their evolutionary history.

Hence, the goal is to identify groupings of the haplotypes on the cladogram, after one is

built, such that the members of the same group share a particular inclination to carry the

disease. Such groups are called clads. Building the cladogram can be done most parsimo-

niously with the objective function to minimize the number of mutations necessary. To that

end, the authors presented the “cladogram-collapsing-algorithm” [55], which encompasses

several tests that use the haplotype evolutionary history to form groups of haplotypes char-

acterized by very similar rates of transmission. The algorithm should assign equal chances

to all haplotypes to be associated with disease when the disease is not actually linked to

any of the haplotypes.

When recombination happens frequently in the studied region, however, the built clado-

gram will not accurately reflect the evolution of the haplotypes [55].

2.2.1.5 Haplotype Sharing-Based TDT Tests

Zhang et al [69] used a different approach to reducing the degrees of freedom in haplotype

based TDT. In particular, they suggested haplotype sharing based TDT (HS-TDT) for

markers that are tightly linked. The use of sharing overcomes both the increased degrees

of freedom associated with the use of each haplotype as an allele in standard TDT as well

as the uncertainty of haplotype inference. A powerful feature of their approach is that the

degrees of freedom do not increase with the increase in the number of alleles. Rather, the

degrees of freedom increase in a linear fashion with each marker considered.

At the core of their approach is the notion of similarity between haplotypes around a

marker l. For n sampled families, they define ti as the number of children in the ith family

and yik as the trait value of the the ith family’s kth child. SHi,Hj (l), the similarity between

two haplotype alleles Hi and Hj around marker l, is calculated as the distance between the

farthest markers to the left and right of l for which Hi and Hj are IBS. The calculation

starts from l, if Hi and Hj are IBS, the markers to the left and right of l are examined. If

Hi and Hj are not IBS at l or are IBS only at l but not on the markers adjacent to l, then

SHi,Hj (l) = 0. Accordingly, for n families, they define the score of a haplotype H compared

to all 4n parental haplotypes at marker l as:

XH(l) =
1
4n

n∑
i=1

4∑
j=1

SH,Hij (l)

where i is the index of the family and j is the index of the parental haplotype alleles of
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the current family. They also define Xi1(l), Xi2(l), Xi3(l), and Xi4(l) as the scores of the

first, second, third, and fourth parental haplotype alleles, respectively, of the ith family.

Also, εijk = 1 denotes that the haplotype Hij was transmitted to the kth child. Otherwise,

εijk = 0.

In the case that the haplotypes are known, then for marker l, the difference between the

scores of the parental haplotypes that are transmitted and those of the parental haplotypes

that are not transmitted to the kth child in the ith family can be written as:

xik(l) =
4∑

j=1

εijkXij(l)

The authors then estimate the covariance between yij and xij(l) as:

Ui(l) =
ti∑

k=1

(yik − c)xik(l)

where c is chosen as:

c = y =
1
n

n∑
i=1

1
ti

ti∑
k=1

yik

represents the mean of the trait values across all children in all families. When studying

qualitative traits and when the only sampled individuals are the affected children along with

their parents, they choose c = 0.

The transmission of the disease haplotype will cause high or low trait values, and there-

fore, the value of Ui(l) will be positive or negative, respectively. Hence, the authors adopt

Ui(l) as a basis for their association test as follows:

U(l) =
n∑

i=1

wiUi(l)

where wi is a constant > 0.

Ultimately, their test statistic based on the sharing of haplotypes is presented as:

U = max1≤l≤L|U(l)|

The authors also described how their method can be extended for the case when haplo-

types are not known. Their results show that their method is superior compared to other

popular methods.

2.2.1.6 Dealing With Genotyping Errors

Sha et al [56] introduced a haplotype-sharing based TDT that allows for genotyping errors.

They first show how the performance of the HS-TDT deteriorates when markers breaking

the Mendelian laws of inheritance are treated as missing or when the trios breaking the

Mendelian laws of inheritance are not considered. They argue that the number of haplotypes
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associated with markers that are tightly linked is not large. Hence, when genotyping errors

occur, the resulting haplotype would be rare. Their approach is based on “merging each

rare haplotype to a most similar common haplotype” [56] and can enhance the performance

of the HS-TDT.

Their modified HS-TDT, denoted as HS-TDTm, is based on first trying to infer, for every

family, all possible haplotyping configurations and estimating the frequencies of haplotypes

using the EM-FD algorithm of [10]. Afterwards, every rare haplotype is merged to its most

similar, common haplotype and accordingly, the frequencies of the haplotypes as well as the

possible haplotype configurations for the families are changed. Lastly, the HS-TDT of [69]

can then be followed.

For the purpose of merging a rare haplotype to its most similar, common haplotype, the

authors introduce the “Allele Count (AC)” [56] as a measure of similarity. The AC score

is a count of the number of markers for which their alleles are identical among the two

haplotypes. More formally, for two haplotypes H and h over an interval of L markers, the

AC is defined as
∑L

l=1 IHl=hl
where Hi and hi represent the alleles at marker i of haplotypes

H and h, respectively. IHl=hl
= 1 when Hl = hl and IHl=hl

= 0 otherwise. Accordingly,

the authors use a threshold frequency α0, which, based on their simulations, they suggest

to be α0 = 2%. Any haplotype with frequency ≤ α0 is deemed rare and is merged to the

most similar (based on AC score) haplotype with frequency > α0. In the case that a rare

haplotype Rh has more than one potential match to be merged to, the haplotype with the

highest frequency among all potential matches is chosen as the ultimate match for Rh.

The authors also suggested the use of the similarity measure introduced in [70]. As

explained in [70], the similarity measure used in the HS-TDT [69] is affected by the geno-

typing errors. The authors of [70] introduced a new similarity measure that works as follows.

To compare the two haplotypes H and h around the ith marker, the alleles to the right of

marker i are compared starting from i+1 all the way till marker i+r such that Hi+r �= hi+r

and either of Hi+r+1 �= hi+r+1 or Hi+r+2 �= hi+r+2 is satisfied. Similarly for the left side

of marker i, the two haplotypes are compared starting from i − 1 all the way till marker

i − l such that Hi−l �= hi−l and either of Hi−l−1 �= hi−l−1 or Hi−l−2 �= hi−l−2 is satisfied.

Consequently, the similarity measure is the distance between markers i − l and i + r. They

denoted the HS-TDT test using this similarity measure as HS-TDTs and the HS-TDT that

merges rare haplotypes and uses the similarity measure of [70] as HS-TDTms.

Their results show that the HS-TDTm and HS-TDTms “can control the false positive

due to genotyping errors” [56] and that HS-TDTm has a better performance compared to

HS-TDTms.
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2.3 Epistasis

It is highly believed that the susceptibility of an individual to complex diseases is affected

by the interactions of several SNPs, each of which might affect the disease marginally [68].

Interactions between genes are known epistasis.

2.3.1 Population-Based

2.3.1.1 BEAM

Zhang and Liu [72] presented BEAM (Bayesian Epistasis Association Mapping) a population

based approach that works on case control, genome wide data and extracts all single SNPs

as well as epistatic interactions that likely affect the disease status. BEAM utilizes Markov

chain Monte Carlo (MCMC) simulations to produce, for each marker and for each epistasis,

the posterior probabilities that it is associated with the disease.

As described in [71], the main idea of BEAM is that the SNPs that are associated

with the disease are expected to have a different genotype distribution between cases and

controls. BEAM considers SNPs to have interactive association with the disease if their

joint distribution shows a better fit to the data compared with the independence framework.

BEAM produces three mutually exclusive groups of SNPs. SNPs that are not associated

with the disease are encompassed in the first group. The second group comprises of SNPs

that have marginal associations with the disease. The last group comprises SNPs that

interact together to affect the disease status.

Zhang et al [71] argued that the use of BEAM is clearly advantageous compared to pre-

vious methods owing partly to its ability to handle association studies of a large scale. Par-

ticularly, the authors noted that BEAM is one of the earliest methods capable of extracting

epistatic interactions from 100, 000 SNPs. However, it was mentioned in [71] that treating

markers as being independent in controls constitutes a major disadvantage of BEAM. In

the human genome, Linkage Disequilibrium (LD) among SNPs that are not too far apart

from each other is known to follow a block like structure with a high correlation found be-

tween SNPs within the same block. The authors [71] mention that despite the fact that “a

first-order Markov chain is implemented in BEAM to account for correlations between ad-

jacent SNPs, it is insufficient to capture the important block-like structures among densely

genotyped SNPs.” [71].

2.3.1.2 MegaSNPHunter

In [63], the authors introduced MegaSNPHunter, a program to detect and list trait affecting

interactions between multiple SNPs in GWAS. The authors argue that an approach based

on examining each SNP separately to produce a list of the most important SNPs, and then

ultimately find important interactions between the SNPs will fail to detect interactions
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between SNPs characterized with lower individual effect. Their approach takes as input

genotype data and partitions the entire genome into smaller segments. SNP interactions

are then used to build a boosting tree classifier for each segment and the importance of

SNPs is gauged based on the contribution of each in the classifier’s power of classification.

SNPs that are deemed more important than others then compete amongst each other in the

same way and the process ends when the set of selected SNPs has less SNPs compared to a

subgenome’s size. Lastly, MegaSNPHunter will list and rank the important SNP interactions

it found.

For the purpose of classification, the authors use the classification and regression tree

(CART) classifier. As described in [63], CART adopts a recursive approach to build a tree

while using the selected features to split the data. In order to gauge the effectiveness of

the splitting rule in separating samples in the parent node, CART uses the GINI index.

Upon finding the most effective split, CART moves on to another child for which it applies

the splitting process and the process is continued recursively until it is no longer possible

to split any further. The authors make a note, however, about the model’s instability and

sensitivity to the distribution of the data. Hence, they suggest to use boosting as a means

to enhance the discrimination power of the classifier.

To extract interactions between SNPs, even if the set of SNPs is relatively small, using a

brute force search can still be prohibitively time consuming [63]. Since possible interactions

among SNPs are represented by the tree path that the SNPs are on, the authors suggest

identifying all possible paths from the trees. Afterwards, the SNP interactions on the path

are examined. This offers a huge reduction since, using the authors method, K × 2d−2 ×
(d−1)× (d−2) interactions are examined as opposed to C2

n +C3
n +C4

n + ...+Cd
n interactions

in the brute force method where K, d, and n represent the number of binary trees, the

maximum depth of the trees, and the number of SNPs respectively [63]. Ultimately, the

H-Statistics presented in [22] is used to rank the interactions extracted.

2.3.1.3 SNPHarvester

Another approach to detect epistatic interactions between SNPs was presented in [68] and

implemented in SNPHarvester. SNPHarvester takes as input Nd cases and Nu controls

for which L markers are genotyped and outputs a set S containing k-SNP groups, each of

which passes the statistical test. It first examines the L markers and removes SNPs whose

individual effect, on the basis of χ2-value with 2-df after Bonferroni corrections, is larger

than a set threshold into set S. Afterwards, for a specific number of iterations, the algorithm

does the following.

It initializes an active set A by randomly selecting k SNPs and calculates an associated

score based on the χ2-value. The score is an indication of the association between the group
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and the phenotype. For each SNP s not in A, the algorithm performs all possible swappings

of s with an element in A. After each swap, a new score for A is calculated and the highest

score, H is recorded. If H is greater than the score of the initial set A, then A is modified

such that s replaces the element whose substitution by s lead to H . Hence, every time A

is modified so that its score is the highest possible via incorporating s, a path of groups is

generated where the score of every group is larger than the one before it. Each group whose

score is above a set threshold is recorded in set M . At the end of the path, i.e. when there

is no possible swap that would increase the current score of A, the SNPs in the local optima

group are removed.

The authors then use logistic regression to discard spurious interactions and report sig-

nificant epistatic interactions.

2.3.2 Pedigree-Based

2.3.2.1 MPDT

Zhang et al [73] introduced a Multi-marker Pedigree Disequilibrium Test (MPDT), based

on the pedigree disequilibrium test (introduced by Martin et al in [44]). MPDT is a family

based test and addresses qualitative traits. Their approach can handle markers that are

distributed along the whole genome, does not need the phenotypes of the parents, and can

handle pedigrees of any size. To use MPDT in GWAS, the authors suggest a searching

algorithm, that coupled with MPDT are able to identify, from the entire genome, genes that

affect a complex trait.

In their approach, a genotype code of 0 is associated with genotype aa, 1 is associated

with genotype Aa, and genotype code 3 is associated with AA, where A and a represent the

two possible alleles. The authors treat every affected child as a case and associate it with a

made up, corresponding control. The genotype code of the made up control corresponding

to the ith family’s kth child is uc
ijk where j is the index of the marker. uc

ijk is the code of

the non-transmitted alleles to the kth child. Accordingly, the following equation holds:

uc
ijk = Fij + Mij − uijk

where in the ith family and at the jth marker, Fij represents the genotype code of the father,

Mij represents the genotype code of the mother, and uijk represents the genotype code of

the kth child .

The authors then define Uijk = uijk−uc
ijk = 2uijk−Fij−Mij and for the ith family’s kth

child, they define a score, Uik over multiple markers as UT
ik = (Ui1k, ..., Uimk) for 1 ≤ j ≤ m.

Accordingly, for the ith family, the score is:

Ui =
ni∑

k=1

Uik
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where ni is the number of affected children in the ith family.

Then, for U =
n∑

i=1

Ui as well as V =
n∑

i=1

UiU
T
i , the authors present the MPDT test as:

TC = UT V ⊕U

where the generalized inverse of V being V ⊕

To detect epistasis in GWAS, the authors present the Conditional Search (CS) as well

as the Sequential Forward Search (SFS) algorithms. Every marker is first examined via the

PDT and all markers are then ranked based on their PDT p-values. For markers 1, 2, 3, .., M ,

assuming their associated p-values are in increasing order, a description of the CS and SFS

algorithms follows:

• Conditional Search Algorithm For a defined value L, define a set Ai to contain

markers 1 through i where 1 ≤ i ≤ L. For each set, the MPDT p-value is calculated.

The authors refer to this step’s p-value as the raw p-value.

• Sequential Forward Search Algorithm Starting with set A1 consisting of the

marker 1, the SFS algorithm adds one marker to A1. By doing so, it generates all

the possible combinations of two-loci such that marker 1 is included. For all the

combinations of two-loci, the MPDT is applied and the combination associated with

the lowest p-value is chosen to be set A2. The p-value here is referred to as the raw

p-value as well. Following this procedure, a series of sets A1, A2, . . . , AL is produced.

Each of the CS and the SFS algorithms produces candidate sets of markers along with

the associated MPDT raw p-values. The raw p-values are then adjusted and the final set is

chosen based on the adjusted p-values.
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Chapter 3

Haplotype Allele-Sharing
Determination

The information in the following chapter is based on [6]1.

As mentioned in Chapter 1, the availability of millions of single nucleotide polymorphisms

(SNPs) paved the way for a new generation of association studies based on the use of SNP

data. The importance of SNPs lies in the fact that they encompass numerous, common

DNA variants of a species and hence, can provide insights on the genetic roots of mutations,

diseases, traits...etc. Given the number of available SNPs, however, being able to reduce the

data dimensionality while not losing much of the variations that SNPs capture is a major

issue. SNP tagging, however, failed to achieve the aforementioned goal in practice as a result

of losing considerable portions of the SNP variations.

Recently, haplotype based association studies have shown to be successful and very

promising (see [54, 62, 37]). Driven by the fact that the human genome is partitioned

into long blocks with rare recombinations within said blocks (as mentioned in [3, 23, 64]),

haplotype-sharing emerged as an alternative tool for association studies (see [62, 38]). A key

advantage of haplotype-sharing is that it can considerably reduce the degrees of freedom

in association studies. The idea is to deal with a handful of zero-recombination regions

common to all the pedigree members as opposed to hundreds (or even thousands) of SNPs

for every individual. For every zero-recombination region, an associated, small number of

alleles are inferred. The alleles encompass every member’s paternal and maternal haplotypes

and, given the Mendelian laws of inheritance, are at most twice the number of founders.

Hence it becomes imperative to have an algorithm that would determine the recom-

bination sites on the chromosome and phase the resulting zero-recombination regions. If

the crossover sites are identified and the resulting blocks are phased, this will unearth any

continuous chunk of the chromosome that is shared solely by the diseased members of the
1[6] Z. Cai, H. Sabaa, Y. Wang, R. Goebel, Z. Wang, J. Xu, P. Stothard, and G. Lin. Most parsimonious

haplotype allele sharing determination. BMC Bioinformatics, 10:115, 2009.
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pedigree and non of the healthy members.

There are multiple steps involved to achieve the aforementioned goal. First, we have to

show that phasing the pedigree members’ genotypes is accurate and the resulting haplotypes

are trustworthy. Second, we need to show that by phasing the genotypes, we can preserve

the mutation region (the region associated with the trait) i.e. no recombinations occur

within said region in members whose true haplotypes carry the region intact. And lastly, we

have to show that via haplotyping, one can efficiently determine the allele sharing among

the pedigree members and accurately recover any regions that according to assumption 1,

are associated with the disease.

To that end, we make use of two haplotyping software, iLinker [38] and xPedPhase

[6], an extension of PedPhase [36]. xPedPhase determines the zero recombination regions

as well as the haplotype alleles associated with every zero-recombination region. Despite

both programs being most parsimonious, iLinker tries to minimize the total number of

breakpoints among all pedigree members while xPedPhase’s objective function is to minimize

the number of breakpoint sites. As a result, xPedPhase tries to find the longest possible

zero-recombination regions and hence, the number of said regions is reduced to a minimum.

Using both programs, we show that the haplotype allele sharing determination can not only

accurately recover regions of interest, but can also do it efficiently. Hence, haplotyping is

indeed a very promising tool for case-control association studies based on haplotype allele

sharing determination.

3.1 Methods

3.1.1 xPedPhase

To explain the extension we introduced to PedPhase, we first summarize the key features

of PedPhase [36]. The constraint finding algorithm of PedPhase accepts as input the full

pedigree structure in addition to the associated set of genotypes for all members of the

pedigree i.e. the algorithm cannot handle missing genotypes. Abiding by the Mendelian

laws of inheritance and assuming no recombinations, it then proceeds to write down a system

of linear equations that represent all necessary and sufficient constraints needed to infer all

feasible haplotypes. The set of solutions of the system of linear equations represents all

possible haplotyping configurations while the infeasibility of a solution means that at least

one breakpoint is needed to phase the input genotypes. As mentioned in Chapter 2, the

algorithm runs in O(m3n3) where m is the number of markers and n is the number of

pedigree members [11].

The extension to PedPhase, xPedPhase, works as follows. It starts from the first SNP

on the chromosome and considering the first two SNPs, writes down a system of linear

equations. If the system of equations is solvable and hence, a feasible haplotyping solution
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exists for the first two SNPs, the algorithm considers the next SNP in sequence. The

equations that are written as a result of considering a new SNP site are appended to the

system of linear equations that is built prior to the addition of the last SNP site. The

algorithm proceeds as described until the addition of a SNP site results in a system of

equations that cannot be solved and hence, a breakpoint is needed between the last two

SNP sites considered. Once such a case is reached, the algorithm produces a solution to the

system of equations that was compiled just before considering the SNP that necessitated a

breakpoint. It then proceeds from the last SNP considered until the end of the chromosome

is reached.

The haplotypes for each individual result from fusing together her associated alleles

corresponding to every zero-recombination region, starting from the first region onwards.

In the case that a founder’s breakpoint is shared by more than half of her children, the

maternal and paternal alleles of the founder are swapped such that the breakpoint is shared

by no more than half of her children. And in the case when PedPhase returns multiple

solutions to a given zero-recombination region, xPedPhase chose the first of those solutions

(xPedPhase is able to produce all solutions for a zero-recombination region via a proper

extension of PedPhase). Lastly, after every individual’s genotype is phased, the sharing

status can be revealed by comparing the haplotype alleles and/or inheritance information

for every zero-recombination region.

3.1.2 iLinker

iLinker [38] is most parsimonious in a sense that it tries to minimize the number of break-

points while phasing pedigree genotypes. It starts from the top of the pedigree and employs

Breadth First Search (BFS) to traverse the pedigree considering whichever constitutes the

smallest possible nuclear family, whether it’s a trio or a parent-child pair. In a greedy fash-

ion, it phases the family members’ genotypes and moves on to the next family. The parents’

haplotypes can then be revised to minimize the number of breakpoints. The algorithm halts

when the genotypes of all the pedigree members are phased.

It is worth noting that iLinker can deal with missing founders’ genotypes as well as

genotyping errors. To that end, it utilizes an error correction step that detects unlikely

crossover events that were recovered.

3.1.3 Simulation Study

To gauge the performance of the haplotype allele sharing inference, we develop a simulation

program that simulates haplotype data for a pedigree dataset and provides the correspond-

ing genotypes to xPedPhase and iLinker. The simulation takes as input the pedigree struc-

ture, the haplotypes of the founders, the physical location of SNPs on the chromosome,
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the chromosome’s corresponding genetic map (taken from the HapMap project [16], see

www.hapmap.org), as well as the number of male’s and female’s breakpoints, on average,

for the chromosome under scrutiny.

The simulation program follows the χ2-(m) model of inheritance, which assumes that the

distribution of crossover (C) events per chromosomal interval follows a rate of 2(m+1) over

the four chromatid bundle. Every C event can either be a crossover (Cx) or a non crossover

(Co). Cx’s and Co’s follow a certain distribution where a Cx is always followed by m Co’s

then again by another Cx and so on. As reported in [74] based on [20], the first C event has

equal chances of being either of the Cx or m Co’s. To determine the length of the interval,

the simulation uses the physical loci information and the average number breakpoints (both

obtained from the genetic map) and accordingly sets the length of the interval to be equal

to the genetic distance separating crossovers. The aforementioned distance pertaining to

chromosome 1 in humans differs between males (1.7 Morgans) and females (0.9 Morgans).

Note that the last interval might be shorter than the distance calculated. In our simulation,

m is set to 4 ([5] reported the suggestion of [40] to use 4 as a value for m based on a

study using chromosome 10. [5] reached similar findings). After the crossover sites are

determined, the child randomly inherits any of his parent’s four chromatid bundle (with

exceptions explained below).

For individuals with both parents’ haplotypes known (in case they are founders) or simu-

lated, the simulation follows the above criteria to simulate the child’s haplotypes. However,

in case an individual has a parent whose genotype is missing, the simulation will randomly

simulate the missing founder’s haplotype and consequently, follow the above mentioned cri-

teria to simulate the child’s haplotypes. When all pedigree members have an associated set

of simulated haplotypes, the genotype data is generated by setting every heterozygous site

to AB (since we are dealing with biallelic SNPs, heterozygous sites can only take on the

values of AB or BA).

For the purpose of case-control association studies we simulate a mutation region that is

shared solely by all the diseased members of the pedigree. The mutation region length varies

from 0 to 10 Mbps and is placed close to a randomly chosen SNP site in one of the parent’s

haplotypes. During meiosis, if a crossover site happens to be within the mutation region, the

crossover is pushed towards the first Co event occurring after the mutation region. Hence,

the mutation region is always intact. After the meiosis simulation, two of the parent’s

haplotypes will contain the mutation region. Any diseased child of the parent is forced to

inherit one her parent’s diseased chromatids (i.e. containing the mutation region) while any

healthy child of the parent is forced to inherit one of her parent’s healthy chromatids (i.e.

not containing the mutation region). The choice between the two possible chromosomes for

each healthy and diseased child is randomly made.
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We used 10 pedigrees in the simulation study with a range of two or three generations.

For every pedigree, we used 5 sets of 10K data [65] as well as another 5 sets of 50K data

[38]. For every set of every pedigree, 10 genotype datasets for the pedigree are generated.

Hence, we simulated 500 10K instances as well as 500 50K instances. The haplotypes of the

founders were generated by randomly assigning either an AB or a BA to every heterozygous

site. The 10K data comprised 877 SNPs while the 50K data comprised 4, 658 SNPs.

3.2 Results

3.2.1 Breakpoint Recovery

To better understand how closely the recovered haplotype sharing resembles the true haplo-

type sharing we gauge the accuracy of breakpoint recovery by iLinker, xPedPhase, and the

Block-Extension algorithm [36]. The Block-Extension algorithm, as introduced in [36], first

tries to phase all loci that can be unambiguously resolved. After that step is completed, the

algorithm greedily tries to phase loci that are physically adjacent to already resolved loci.

Hence, blocks of consecutive phased loci are formed. The algorithm then proceeds to resolve

more loci by utilizing the longest phased block while trying to keep recombination to a min-

imum. This may result in blocks of phased loci becoming longer. The algorithm continues

until it cannot find any block that it can extend, at which point it fills the gaps between

phased blocks for every member via utilizing information extracted from the haplotypes of

the corresponding nuclear family members.

We say that a simulated breakpoint, s, is correctly recovered if any of the deduced

breakpoints occurs at the same site of s or alternatively if all SNP sites between s and

a recovered breakpoint site are homozygous. The aforementioned criteria applies to both

iLinker and xPedPhase. We use two metrics, breakpoint precision and recall defined as

follows:

precision =
number of correctly recovered breakpoints

total number of inferred breakpoints

recall =
number of correctly recovered breakpoints

total number of simulated breakpoints

The breakpoint recovery precision and recall values for iLinker, xPedPhase, and the

Block-Extension algorithm [35] (part of the PedPhase package), averaged over the 50 10K

instances for every pedigree are tabulated in Table 3.1. Table 3.2 shows the corresponding

results on the 50K data.

As can be seen from Table 3.1 , on the 10K data, iLinker and xPedPhase achieved an

average precision of 0.984 and 0.912, respectively. iLinker’s recall average was 0.964 while

that of PedPhase was 0.978. On the 50K data, xPedPhase was not able to return the

results for the 2−2 and 2−3 pedigrees, a fact discussed in Section 3.3. Hence, xPedPhase’s

averages shown in Table 3.2 are calculated over the 400 instances and show an average
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iLinker xPedPhase Block-Extension
Pedigree Precision Recall Precision Recall Precision Recall
2-2 0.994 0.936 0.971 0.952 0.253 1.000
2-3 0.982 0.965 0.964 0.966 0.326 0.999
2-3-1 0.985 0.965 0.961 0.972 0.214 0.999
2-3-2 0.989 0.962 0.955 0.972 0.151 0.995
2-3-3 0.972 0.968 0.935 0.976 0.177 0.996
2-3-5 0.977 0.971 0.872 0.989 0.160 0.997
2-4-3 0.984 0.969 0.924 0.978 0.203 0.999
2-5-4 0.989 0.949 0.882 0.976 0.231 0.999
2-5-5 0.991 0.970 0.846 0.989 0.204 0.998
2-6-5 0.986 0.956 0.867 0.984 0.212 0.999
Average 0.984 0.964 0.912 0.978 0.213 0.998

Table 3.1: Average precision and recall over the 10K instances of every pedigree by each of
iLinker, xPedPhase, and the Block-Extension algorithm, copied from [6].

iLinker xPedPhase
Pedigree Precision Recall Precision Recall
2-2 1.000 0.967 – –
2-3 0.994 0.969 – –
2-3-1 1.000 0.971 0.977 0.978
2-3-2 1.000 0.976 0.986 0.981
2-3-3 0.991 0.981 0.969 0.988
2-3-5 0.993 0.973 0.950 0.987
2-4-3 0.992 0.976 0.966 0.981
2-5-4 0.996 0.966 0.932 0.985
2-5-5 0.996 0.965 0.937 0.982
2-6-5 0.997 0.972 0.942 0.983
Average 0.996 0.972 0.957 0.983

Table 3.2: Average precision and recall over the 50K instances of every pedigree by each of
iLinker and xPedPhase algorithm, copied from [6].
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precision of 0.957 and an average recall of 0.983. iLinker, on the other hand was able to

run on all pedigrees and achieved an average precision of 0.996 and an average recall of

0.972. It is interesting to note the low precision values (an average of 0.213) of the Block-

Extension algorithm despite an average recall of 0.998. The low precision is attributed to

the fact that the Block-Extension algorithm’s number of generated breakpoints were five

times those simulated.

3.2.2 Haplotype Sharing Recovery

To gauge the accuracy of recovering the haplotype sharing status, it is imperative to record

all the simulated haplotype alleles that are solely shared by all the diseased pedigree mem-

bers. Denote such a set as S. Since every diseased member was forced to inherit a chro-

mosome containing the mutation region intact, then said region is a part of S. After the

genotypes are phased by iLinker and xPedPhase, the recovered haplotype sharing is deter-

mined as well as the alleles shared by all the diseased members but are not found in any of

the healthy members’ haplotypes. Denote such a set as R. The mutation region is said to

be correctly recovered if it is part of set R.

The recovery accuracy of the simulated mutation regions among all the instances gen-

erated for the 10K data (500 in total) was 97.2% by iLinker and 95.4% by xPedPhase. In

particular, iLinker missed 14 mutation regions while xPedPhase missed 23, 10 of which were

missed by both. On the other hand, the Block-Extension algorithm performed much worse,

missing 102 mutation regions in total and achieving an accuracy of 79.60% only. iLinker

missed 6 mutation regions among the 400 instances of the 50K data that xPedPhase ran on,

4 of which were also missed by xPedPhase. iLinker, however, was able to run and recover

100 more instances and the overall accuracy of the 50K data was 99.0% for xPedPhase and

98.8% for iLinker.

To get a better understanding of the complete haplotype sharing recovery, we compared

all the regions in set S to those in set R. A region in set R is set to [−1,−1] if it does not

contain any region in set S. For the 10K data (500 instances in total), there were 725 elements

in S. xPedPhase missed 9 regions in S, 7 of which were among the 12 missed by iLinker.

Figures 3.1 and 3.3 show, for the 10K data, the starting and ending SNP sites, respectively,

of iLinker’s recovered regions that are shared solely by all the diseased members compared

to the corresponding simulated regions. Figures 3.2 and 3.4 show the corresponding results

achieved by xPedPhase. The correlation coefficient between iLinker’s starting and ending

SNP sites and the corresponding simulation sites were 0.99980 and 0.99981, respectively

while the correlation coefficient between xPedPhase’s starting and ending SNP sites and the

corresponding simulation sites were 0.99981 and 0.99989, respectively. For the 50K data,

iLinker missed only two regions among all the 400 datasets that xPedPhase and iLinker ran
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on while xPedPhase did not miss any. The correlation coefficients of the starting and ending

SNPs achieved by xPedPhase were 0.999993 and 0.999928, respectively. iLinker’s correlation

coefficients of the starting and ending SNPs were 0.999988 and 0.999983, respectively.
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Figure 3.1: Scatter plot of the starting SNP sites of shared regions: simulated v.s. discovered
by i Linker on 500 simulated 10K genotype datasets, copied from [6].

3.3 Discussion

3.3.1 Breakpoint Recovery Accuracy

iLinker and xPedPhase both try to optimize an objective function with the former trying

to minimize the number of breakpoints while the latter trying to minimize the number of

breakpoint sites and thus generating as few zero-recombination regions as possible. iLinker

uses a Breadth-First-Search (BFS) technique to haplotype the smallest possible nuclear

family at a time while xPedPhase tries to maximize the length of the zero-recombination

region.

When comparing the number of simulated breakpoints per meiosis (bpm) to those recov-

ered, we found that compared to the simulated average bpm of 2.38, xPedPhase generated

2.76 bpm on average, 2.35 of which were true positives. That gave xPedPhase a slightly

higher recall compared to iLinker that generated 2.30 breakpoints per meiosis, 2.27 of which

were true positives. iLinker’s greedy algorithm most likely lead to a lower average bpm than

those simulated and those generated by xPedPhase. However, it is interesting to note that
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Figure 3.2: Scatter plot of the starting SNP sites of shared regions: simulated v.s. discovered
by xPedPhase on 500 simulated 10K genotype datasets, copied from [6].
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Figure 3.3: Scatter plot of the ending SNP sites of shared regions: simulated v.s. discovered
by i Linker on 500 simulated 10K genotype datasets, copied from [6].
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Figure 3.4: Scatter plot of the ending SNP sites of shared regions: simulated v.s. discovered
by xPedPhase on 500 simulated 10K genotype datasets, copied from [6].

the number of breakpoints generated by iLinker was most often equal to the number of

breakpoint sites generated by xPedPhase, a fact that lead to the correlation coefficients

between iLinker’s starting and ending SNP sites and those simulated being extremely close

to the corresponding correlation coefficients between xPedPhase and the simulation.

3.3.2 Mutation Region Recovery

On the 10K data, xPedPhase missed 14 mutation regions, 10 of which were among iLinker’s

23 missed mutation regions. When examined, a common pattern was revealed that is shared

by all 10 regions missed by xPedPhase and iLinker. All 10 regions were only 2 to 4 SNPs

long and most importantly, they were not exclusively shared by the chromosome carrying the

mutation region, but rather, another, identical allele was found on the healthy chromosome.

Such a phenomenon was observed because the simulation did not enforce the mutation allele

not to have an exact same copy on the other chromosome. As a result, the mutation allele

was also shared by healthy members as opposed to being solely shared by all the diseased

members, a fact that lead to iLinker and xPedPhase both not recovering the mutation region

of those 10 datasets.
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3.3.3 SNP Density

As the simulation tests showed, both iLinker and xPedPhase performed better and achieved

higher accuracy on breakpoint recovery as well as allele sharing recovery on the 50K data as

opposed to the 10K data. Both programs achieved, on the 50K data, correlation coefficients

of higher than 0.999 between the recovered regions shared solely by the diseased members

and those simulated. But it is important to mention that both iLinker and xPedPhase

performed extremely well even on the 10K datasets, a fact that is very encouraging for

association studies based on cattle or soybean given the absence of high density SNP data

for the mentioned species.

3.3.4 Running Time

The running time was an area where iLinker clearly outperformed xPedPhase. xPedPhase’s

inferior running time is attributed to the O(m3n3) required by the zero-recombination al-

gorithm of PedPhase where m and n refer to the number of SNPs and number of pedigree

members, respectively. xPedPhase ran for hours and even crashed during runs on zero-

recombination regions exceeding 600 SNPs in length using the pedigrees in Table 3.1. In

fact, xPedPhase needed to be restarted several times on the 2 − 2 and the 2 − 3 pedigrees

using the 10K data, while on the 50K data, it most often was not able to return results.

iLinker on the other hand did not have a problem returning the results in seconds on any

pedigree using either of the 10K or 50K data.

3.3.5 iLinker vs. xPedPhase

iLinker outperformed xPedPhase in precision while xPedPhase had a slight advantage in

recall due to the greater number of breakpoints it generated compared to iLinker, some of

which matched the simulated breakpoints. xPedPhase performed better than iLinker in the

allele sharing recovery, also probably because of the more breakpoints it generated.

However, as mentioned in the previous section, iLinker ran in seconds while xPedPhase

occasionally needed minutes or hours to terminate. The duration of time needed by xPed-

Phase to terminate is heavily dependent on the length of the zero-recombination chromo-

somal region. The longer the region, the more time xPedPhase required. Hence, on small

pedigrees xPedPhase required longer running times and occasionally was not able to ter-

minate in days. On larger pedigrees, however, the zero-recombination regions tend to be

shorter and hence, xPedPhase needed only seconds to minutes in order to terminate.

Overall, xPedPhase would be superior if recovering as many breakpoints as possible is

necessary albeit with a longer running time.
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3.3.6 Handling Missing Genotypes

One major advantage of iLinker compared to xPedPhase is the former’s ability to deal

with missing genotype data, something that xPedPhase cannot handle. iLinker does so by

phasing the genotypes disregarding the missing genotypes that are later imputed utilizing

the inheritance information generated. To test the effect of iLinker’s handling of missing

genotype data on its haplotyping performance, we introduced an error rate of 0.5% − 3%

with 0.5% increments to all the 500 10K as well as the 500 50K instances and collected the

precision, recall, and mutation region recovery accuracy. Table 3.3 shows the precision and

recall values on the 10K data while Table 3.4 shows the corresponding results on the 50K

data. As can be seen, the introduced error rates did not have a major effect on iLinker’s

breakpoint recovery. However, one can notice a slight drop in recall accuracy while precision

remained largely unaffected by the introduced errors. This was not the case when it comes

to the mutation region recovery, where iLinker’s performance dropped notably with the

introduction of genotyping errors. In fact, on the 10K data, iLinker missed 23 mutation

regions with 0% error rate, 28 with 0.5%, 29 with 1.0%, 42 with 1.5%, 52 with 2.0%, 56

with 2.5%, and 56 with 3.0% while on the 50K data it missed 6 mutation regions with 0%

error rate, 11 with 0.5%, 9 with 1.0%, 12 with 1.5%, 9 with 2.0%, 11 with 2.5%, and 10

with 3.0%.

3.3.7 Contribution

With the results obtained using two available haplotyping algorithms, we showed that hap-

lotyping can be an extremely effective and efficient method both in terms of breakpoint

recovery and more importantly in mutation region recovery, making it a very promising tool

to carry out case-control association studies. Given that the success of haplotyping-based

association studies will greatly depend on the accuracy of the haplotyping algorithm used

and its applicability, this prompted us to develop a better haplotyping algorithm in terms

of wider applicability and with high precision, recall, and mutation recovery accuracy.
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Chapter 4

A New Haplotyping Algorithm

The information presented in this chapter is taken from [11]1. All theorems, Lemmas, and

their corresponding proofs are taken word for word from [11] (except for the numberings of

theorems and Lemmas which might be different here).

As described in Chapter 2, there has been numerous attempts at developing an efficient,

rule based haplotyping algorithm. It was shown in [36] that finding a haplotype configura-

tion for pedigree data while minimizing the number of recombinants is generally NP-hard. A

similar, more popular problem is the “zero-recombination haplotype configuration (ZRHC)

problem” [67], where haplotyping occurs with the assumption of no-recombination, i.e. phas-

ing the genotypes for every member such that the entire region of a child can be traced back

to it parent(s). Given a complete pedigree, i.e. with every member having both parents

genotyped, the ZRHC becomes solvable in polynomial time [36].

One of the major breakthroughs in solving the ZRHC problem came from Li and Jiang

[36] where they designed a O(m3n3) algorithm, where m and n represent the number of

SNPs on the chromosome and the number of pedigree members, respectively. Li and Jiang’s

algorithm [36] cannot handle missing genotypes. It extrapolates constraints from trios in

the form of linear, binary equations, the solutions of which can be translated into all feasible

haplotyping configurations of the pedigree genotypes. Liu and Jiang [42] described a linear

time algorithm for the ZRHC problem assuming there are no mating loops. Their algorithm

runs in O(mn) to produce a particular solution and in O(mn2) to produce a general solution

that resembles all other solutions.

Despite the success of the above mentioned as well as other attempts, programs lacked

either efficiency and/or applicability. One of the main disadvantage of most previously de-

veloped algorithms is their need for the genotype data for each member in the pedigree. This

comes as a disappointment since it is often the case that the genotypes of some pedigree

members are missing because the member passed away already prior to collecting her geno-
1[11] Y. Cheng, H. Sabaa, Z. Cai, R. Goebel, and G. Lin. Efficient haplotype inference algorithms in one

whole genome scan for pedigree data with non-genotyped founders. Acta Mathematicae Applicatae Sinica
(English Series), 25:477-488, 2009.
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types. In this chapter, we describe a novel algorithm to solve the ZRHC problem, based on

the work of Li and Jiang [36]. Our algorithm is rule-based and does not require the genotype

information for all pedigree members. Rather, it only requires that each missing founder

(i.e. we do not have her corresponding genotypes) appears in one nuclear family and that

for each nuclear family, the genotypes for at least one parent are present. Our algorithm

runs in O(m3n3) where m and n represent the number of SNPs on the chromosome and the

pedigree size, respectively.

We also describe an enhancement of the algorithm making it a haplotyping algorithm

that phases the entire chromosome in one complete genome scan. Our extension has an

objective function of minimizing the number of breakpoint sites. Our algorithm tries to find

the longest, hence fewest, possible zero-recombination regions along with their correspond-

ing haplotype alleles. The extension to the haplotyping algorithm has a running time of

O(m3n3) as well.

4.1 A New ZRHC Algorithm

As mentioned previously, the main problem with most previous algorithms (like [35, 36,

67, 42]) to solve the ZRHC problem is their need to have full genotype information for all

pedigree members. Our algorithm relaxes the aforementioned constraint in a way and hence

enabling it to be applicable to a wider array of real data sets.

4.1.1 Overview

Li and Jiang [36], presented an algorithm to the ZRHC problem that generates all pos-

sible haplotype configurations for pedigree members given the assumptions of no recom-

binations, no missing genotypes, and the Mendelian laws of inheritance. They defined a

binary parental source (PS) value for every locus. The PS value takes the value of 0 if

the locus allele is homozygous or if it is heterozygous AB2. Otherwise, if the allele at that

locus is heterozygous BA, the associated PS value would be 1. They defined different levels

of PS value constraints for trios, based on the Mendelian laws of inheritance and the as-

sumption of zero-recombination [36]. The constraints are written down as linear equations

over the cyclic group Z2 [36]. The solution(s) to the system of linear equations obtained

via Gaussian-elimination, would translate into all feasible haplotype configurations for the

zero-recombination region.

Our algorithm makes use of the fact that the PS constraints based on trios can also

be expressed for pairs3 for which the parent is genotyped. Thus, the algorithm does not

need the genotype data for the whole trio and can deal with non-genotyped founders. We
2Throughout the dissertation, alleles A and 1 will be used interchangeably while alleles B and 2 will be

used interchangeably as well.
3A pair comprises a parent and her child.
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prove that, if the pedigree is complete with no missing founders, the constraints for trios

(those of PedPhase) and for pairs are equivalent. Table 4.1 lists all the constraints over

pairs where one parent is genotyped. As in [36], the first two constraints are for one locus

p for which the parent x and child z are homozygous and heterozygous, respectively. The

rest of the constraints are for two loci p and q for which the parent x is heterozygous yet x

is homozygous for every loci in between p and q, if any. In Table 4.1, the genotypes of loci p

and q are represented by the first and second lines inside a pair of brackets, respectively. The

format ij represents the PS value at loci j for member i. All the constraints presented in

Table 4.1 satisfy the Mendelian laws of inheritance and the assumption of no recombination.

Case Parent x Child z Constraint equations

1 [ 1 1 ] [ 1 2 ]
zp = 0, if x is the father;
zp = 1, if x is the mother

2 [ 2 2 ] [ 1 2 ] zp = 1, if x is the father;
zp = 0, if x is the mother

3
[

1 2
1 2

] [
1 1
1 1

]
or

[
2 2
2 2

]
xp + xq = 0

4
[

1 2
1 2

] [
1 1
2 2

]
or

[
2 2
1 1

]
xp + xq = 1

5
[

1 2
1 2

] [
1 2
1 2

]
xp + xq + zp + zq = 0

6
[

1 2
1 2

] [
1 2
1 1

]
xp + xq + zp = 0, if x is the father;
xp + xq + zp = 1, if x is the mother

7
[

1 2
1 2

] [
1 2
2 2

]
xp + xq + zp = 1, if x is the father;
xp + xq + zp = 0, if x is the mother

8
[

1 2
1 2

] [
1 1
1 2

]
xp + xq + zq = 0, if x is the father;
xp + xq + zq = 1, if x is the mother

9
[

1 2
1 2

] [
2 2
1 2

]
xp + xq + zq = 1, if x is the father;
xp + xq + zq = 0, if x is the mother

Table 4.1: The basic constraints based on pairs, copied from [11].

4.1.2 Handling the Missing Founder Case

The constraints in Table 4.1 are used to extrapolate the constraints for the genotyped parent

and her child. For the missing founder though, the above constraints are not applicable.

To handle such a situation, we examine a nuclear family where the father x is genotyped,

yet the mother y is missing4. Suppose that x and y have d children c1, c2, c3, . . . , cd where d >

2. The Mendelian laws of inheritance states that each of the d children will inherit exactly

one copy of her father’s two haplotype alleles while the zero-recombination assumption

means that the an allele h1 inherited from x is intact and is an exact copy of x’s h1 allele.

The constraints for said inheritance are covered by the constraints presented in Table 4.1.
4The situation can be reversed and hence the father x is the missing founder and the mother y is the

genotyped parent.
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The Mendelian laws of inheritance and the zero-recombination assumption also hold for the

alleles passed from the missing founder, y to her children. However, since the genotypes

of y are missing, any haplotype configuration satisfying the constraint that the maximum

number of distinct alleles inherited from y to all her children is at most 2 is in fact feasible.

In the case that d ≤ 2 the constraint is always satisfied since the number of maternal alleles

of the d children is always less than or equal to 2. Theorem 1 below states that a haplotyping

solution is feasible if and only if for every quadruple (x, ci, cj , ck) the inferred haplotyping

solution is feasible. We define a “claw” [11] as the combination of the genotypes of every

member of a quadruple (x, ci, cj , ck) on two different loci p and q.

Theorem 2 For a nuclear family consisting of parent x and children c1, c2, . . . , cd of x and

y, where y is the other parent not genotyped, a haplotype configuration for x and c1, c2, . . . , cd

is feasible if and only if the haplotype configuration restricted to every claw is feasible.

Proof. Again we assume without loss of generality that x is the father and y is the

mother. The only if part is obvious. For the if part, we prove by contradiction. Suppose

restricted to each claw the haplotype configuration is feasible. Then, the paternal haplotype

of each child much be equal to one of the two haplotypes of x, which can be proved in the

same way as in the proof of Theorem 3 in [36]. Since the haplotype configuration is not

feasible for the whole nuclear family consisting of x and c1, c2, . . . , cd, we conclude that the

number of different maternal haplotypes of c1, c2, . . . , cd is at least three. Further assume

that the three maternal haplotypes of children ci, cj , ck are distinct from each other. Then,

there must exist a locus p at which the three maternal SNP alleles of ci, cj and ck are

not the same. Without loss of generality we can assume that at locus p, ci and cj have

maternal SNP allele 1, and ck has maternal SNP allele 2. A step further, since the maternal

haplotypes of ci and cj are distinct, there must exist another locus q at which the maternal

SNP alleles of ci and cj differ. These indicate that the haplotype configuration restricted to

the claw defined by quadruple (x, ci, cj , ck) and loci p and q is infeasible, a contradiction. �

4.1.3 Three Scenarios for Claws

Consider a quadruple (x, z, u, v) over two loci p and q where x is the father and z, u, v are

the children. If any member w of the aforementioned quadruple is heterozygous at i where

i ∈ {p, q} then let wi be the variable representing the PS value for w at the heterozygous

locus. In what follows, we will describe the additional constraints on wi that any claw

haplotype configuration has to satisfy in addition to satisfying the basic constraints for it

to be feasible. The claw might fall into any of three scenarios:
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4.1.3.1 First Scenario

The first scenario includes cases where the basic constraints suffice i.e. a haplotype con-

figuration for the claw satisfying the basic constraints would be feasible. Hence, no extra

constraints are needed to be added in this case. For instance, if every member is heterozygous

at both p and q (suppose p is before q on the chromosome), then we have: x =
[

1 2
1 2

]
,

z =
[

1 2
1 2

]
, u =

[
1 2
1 2

]
, and v =

[
1 2
1 2

]
From Table 4.1, the following constraints

are deemed applicable in this case: xp + xq + zp + zq = 0, xp + xq + up + uq = 0, and

xp + xq + vp + vq = 0. Hence, one can realize that two haplotype configurations satisfy the

aforementioned constraints for the claw.

(1.1) x =
[

1 | 2
1 | 2

]
, z =

[
1 | 2
1 | 2

]
, u =

[
1 | 2
1 | 2

]
, v =

[
1 | 2
1 | 2

]
;

(1.2) x =
[

1 | 2
2 | 1

]
, z =

[
1 | 2
2 | 1

]
, u =

[
1 | 2
2 | 1

]
, v =

[
1 | 2
2 | 1

]
.

Notice that the paternal and maternal haplotypes for every member can be swapped.

4.1.3.2 Second Scenario

The second scenario includes cases where the basic constraints are not sufficient to guarantee

a feasible haplotype configuration. Rather, additional constraints need to be satisfied as

well. To illustrate, assume that genotypes for x, z, u, v is: x =
[

1 2
1 2

]
, z =

[
1 2
1 1

]
,

u =
[

1 2
1 2

]
, and v =

[
1 2
1 2

]
at the two loci p and q (again here assume that p is

before q on the chromosome). In such a case, the basic constraints that are applicable are:

xp +xq +zp = 0, xp +xq +up +uq = 0, and xp +xq +vp +vq = 0. Given the aforementioned

constraints, the following haplotype solutions are feasible.

(2.1) x =
[

1 | 2
2 | 1

]
, z =

[
2 | 1
1 | 1

]
, u =

[
1 | 2
2 | 1

]
, v =

[
1 | 2
2 | 1

]
;

(2.2) x =
[

1 | 2
2 | 1

]
, z =

[
2 | 1
1 | 1

]
, u =

[
1 | 2
2 | 1

]
, v =

[
2 | 1
1 | 2

]
.

However, one can notice that configuration (2.1) violates the Mendelian laws of inheritance

since there are 3 maternal haplotypes among the children, namely
[

1
1

]
,
[

2
1

]
, and

[
1
2

]
.

Clearly, more constraints are needed. In fact, forcing u and v to have the same allele at q

via the constraint uq + vq = 0 will do the job. Table 4.2 lists all the cases that fall under

this scenario as well as their corresponding constraints for the quadruple x, z, u, v, where

x is the genotyped father, y is a missing founder, and z, u, v are the children of x and y.

The alleles a, b, c can take the value of either 1 or 2 and ∗ being arbitrary. Note that if the

genotypes at p and q are swapped (in cases 1 through 6) and the roles of the children are

exchanged, 6 additional, yet symmetrical cases are introduced.
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Case Parent x z u v Constraint equations

1
[

a a
1 2

] [
a a
b b

] [
a a
1 2

] [
1 2
∗ ∗

]
uq = b, if x is the father;

uq = b + 1, if x is the mother

2
[

a a
1 2

] [
a a
∗ ∗

] [
1 2
b b

] [
1 2
1 2

]
vq = b, if x is the father;

vq = b + 1, if x is the mother

3
[

1 2
1 2

] [
a a
b b

] [
1 2
c c

] [
1 2
1 2

]
vq = b, if x is the father;

vq = b + 1, if x is the mother

4
[

a a
1 2

] [
a a
1 2

] [
a a
1 2

] [
1 2
∗ ∗

]
zq + uq = 0

5
[

a a
1 2

] [
a a
∗ ∗

] [
1 2
1 2

] [
1 2
1 2

]
uq + vq = 0

6
[

1 2
1 2

] [
1 2
a a

] [
1 2
1 2

] [
1 2
1 2

]
uq + vq = 0

7
[

1 2
1 2

] [
a a
1 2

] [
1 2
b b

] [
1 2
1 2

]
xp + xq = a + b + 1

Table 4.2: The extra constraints that fall under scenario 2, copied from [11].

4.1.3.3 Third Scenario

The third scenario deals with cases that are not associated with any feasible haplotype

configuration. Hence, none of the haplotype configurations that satisfy the basic constraints

is feasible. To illustrate, consider the quadruple x, z, u, v with corresponding genotypes:

x =
[

1 2
1 2

]
, z =

[
1 1
1 2

]
, u =

[
2 2
1 2

]
, and v =

[
1 2
1 2

]
. From Table 4.1, the

following constraints are deemed applicable in this case: xp + xq + zq = 0, xp + xq + uq = 1,

and xp +xq + vp + vq = 0. The only haplotype configurations satisfying the aforementioned

constraints are:

(3.1) x =
[

1 | 2
1 | 2

]
, z =

[
1 | 1
1 | 2

]
, u =

[
2 | 2
2 | 1

]
, v =

[
1 | 2
1 | 2

]
;

(3.2) x =
[

1 | 2
2 | 1

]
, z =

[
1 | 1
2 | 1

]
, u =

[
2 | 2
1 | 2

]
, v =

[
1 | 2
2 | 1

]
.

Note that we can swap the paternal and maternal haplotypes of x and v. One can notice that

none of the above haplotypes are feasible since the number of distinct maternal haplotypes

for children a, u, and v is 3. Table 4.3 lists all the cases that fall under this scenario.

4.1.4 Introducing the New Haplotyping Algorithm

Our new algorithm checks whether the genotypes for any claw of the pedigree match any

of the cases that fall under the third scenario specified above. If that is the case, the

algorithm indicates the infeasibility of any haplotyping solution and terminates. However, if

the genotypes of all claws of the pedigree do not fall under the third scenario, the algorithm

writes down all the basic and extra constraints that are applicable based on the cases

presented in Tables 4.1 and 4.2. Accordingly, the algorithm solves the system of equations

via Gaussian Elimination. The solution(s) of the system translate directly into feasible
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Case Parent x z u v

1
[

1 2
a a

] [
1 1
a a

] [
2 2
a a

] [ ∗ ∗
1 2

]

2
[

1 2
a a

] [
b b
a a

] [
1 1
1 2

] [
2 2
1 2

]

3
[

1 2
a a

] [
1 2
a a

] [
1 1
1 2

] [
2 2
1 2

]

4
[

1 2
1 2

] [
1 1
2 2

] [
2 2
1 1

] [
1 2
a a

]

5
[

1 2
1 2

] [
1 1
1 1

] [
2 2
2 2

] [
1 2
a a

]

6
[

1 2
1 2

] [
1 2
1 2

] [
1 1
1 2

] [
2 2
1 2

]

7
[

1 2
1 2

] [
a a
a a

] [
1 1
1 2

] [
2 2
1 2

]

8
[

1 2
1 2

] [
a a
a a

] [
b b
1 2

] [
1 2
b b

]

9
[

1 2
1 2

] [
1 1
2 2

] [
1 1
1 2

]
or

[
1 2
1 1

] [
1 2
2 2

]
or

[
2 2
1 2

]

Table 4.3: The genotype configurations falling under the third scenario, copied from [11].

haplotyping solution(s). However, in case the system of equations does not have a solution,

the algorithm reports the infeasibility of a haplotyping solution and halts.

We first note that there are at most O(m2n3) claws where m and n represent the number

of SNPs and the number of pedigree members, respectively. This comes as a direct result

of the claw comprising a parent and three children. It takes constant time to check if the

genotypes of a claw fall under the third scenario. Hence, we can tell if there’s any claw in

the third scenario in O(m2n3). In case no claw falls under the third scenario, the algorithm

writes down all applicable basic constraints for pairs of parent-child as well as all the extra

constraints for claws, whose associated genotypes match cases of the second scenario. We

also note the following:

• The number of pairs (parent-child) < 2n.

• Table 4.1 shows that the number of basic constraints for every pair is ≤ m for cases 1

and 2.

• Table 4.1 shows that the number of basic constraints for every pair is ≤ m − 1 for

cases 3 through 9.

Hence, the overall basic constraints are < 4mn. The following Lemma 3 shows that the

linear equations resulting from the extra constraints are no more than 3mn.

Lemma 3 All the extra constraints can be written into a system of at most 3mn linear

equations over the binary PS variables.
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Proof. We deal with the seven cases of extra constraints in Table 4.2, the other six

symmetric cases by swapping the genotype configurations at loci p and q in Cases 1–6, not

listed in the table, and other symmetric cases by swapping the genotype configurations of

the three children all together.

Firstly, all extra constraints of Cases 1–3 are of the form wi = 0 or wi = 1, where

w ∈ {z, u, v} and i ∈ {p, q}. We only need to keep a record for each such variable wi and

its value. Clearly, there are at most mn such variables.

Secondly, all extra constraints of Cases 4–6 are of the form wi + w′
i = 0, or equivalently

wi = w′
i, where w, w′ ∈ {z, u, v}. Consider all the children c1, c2, . . . , cd of x (and the other

parent y not genotyped) as a group. At each locus p, based on all the extra constraints

of Cases 4–6 that involve locus p and members of {c1, c2, . . . , cd}, the binary PS variables

wp, w ∈ {c1, c2, . . . , cd}, can be divided into disjoint subsets such that all the variables within

a subset should be equal to each other. This implies that the extra constraints of Cases 4–6

involving members of group {c1, c2, . . . , cd} at each locus can be re-written using no more

than d−1 linear equations. Therefore, at most mn linear equations are necessary to re-write

all the extra constraints of Cases 4–6.

Finally, for extra constraints of Case 7, they are all of the form xp + xq = 0 (i.e.,

xp = xq) or xp + xq = 1 (i.e., xp �= xq), for some single parent x. For x, consider all the

extra constraints of Case 7 of the form xp + xq = 0. Similarly as in the last paragraph, all

the variables involved in these constraints can be divided into disjoint subsets such that all

the variables within a subset should be equal to each other. View each such subset as a

node. Two such nodes are connected by an edge if and only if there is a variable from each

node such that these two variables are in an extra constraint xp + xq = 1 (i.e., xp �= xq) of

Case 7. Let G denote the resulting graph. Clearly, if G is not bipartite, then there is no

feasible haplotype configuration. In the other case, we may similarly re-write all the extra

constraints of Case 7 on single parent x using at most m − 1 linear equations. It follows

that at most mn linear equations are necessary to re-write all the extra constraints of Case

7.

Summing up, all the extra constraints on claws can be re-written into a system of less

than 3mn linear equations. �

Theorem 4 The running time of our new zero-recombination haplotyping algorithm on

general pedigree genotype data sets is O(m3n3), where m is the number of SNPs under

consideration and n is the size of the general pedigree. �

Proof. From Lemma 3, we conclude that the system to be solved via the Gaussian

elimination method contains no more than 7mn linear equations. Therefore, the Gaussian

elimination method will take O(m3n3) time to terminate. Also, by Tables 4.1 and 4.2 and
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the above proof of Lemma 3, collecting all these O(mn) linear equations can be done within

O(m3n3) time. We have thus established the running time of our algorithm. �

4.2 Extending the New Haplotyping Algorithm to a
Complete Genome Scan

Now that we have established the core of our haplotyping algorithm, we show how to extend

it to a maximum parsimony algorithm with the objective function of minimizing the number

of breakpoint sites i.e. minimizing the number of regions without recombination. The need

for the extension stems from the fact that the assumption of zero-recombination usually

holds for regions of the chromosome while an entire chromosome is not necessarily inherited

intact without recombination.

To determine the zero-recombination regions, one approach might be to randomly pick

a region on the chromosome and run the zero-recombination algorithm described earlier.

However, a more effective approach is to move sequentially on the chromosome, calling the

algorithm upon the addition of every SNP site. The latter method requires checking O(m)

sets and thus the running time would be (m4n3). However, the running time can be reduced

to O(m3n3) in the following way.

The algorithm moves sequentially on the chromosome starting from the first SNP site

and considers the next SNP in sequence. Every time the algorithm considers a SNP, the

zero-recombination algorithm is called. If the zero-recombination algorithm returned at least

one feasible haplotype configuration for the region under scrutiny, the algorithm proceeds

to the following locus and again invokes the zero-recombination algorithm. If, however,

the zero-recombination algorithm did not return any feasible solution, the algorithm will

generate a haplotype configuration for the region ending at the last site for which the

zero-recombination algorithm returned at least one feasible solution. The algorithm then

proceeds from the last SNP locus considered and starts the mentioned procedure all over

again until the end of the chromosome is reached. Note that a locus might be considered

with the one before it as well as again with the one ahead of it, so it is considered no more

than two times.

Lemma 5 The whole genome scan haplotyping algorithm achieves the minimum number of

breakpoint sites for any given general pedigree genotype data set.

Proof. Assume the SNP loci are indexed by integers 1 to m, and the whole genome scan

haplotyping algorithm reports k breakpoint sites: p1, p2, . . . , pk, where pi is located between

loci �i and �i + 1 (1 ≤ �1 < �2 < . . . < �k < m). Let �0 = 0. For each i = 0, 1, . . . , k − 1, the

chromosomal region starting with locus �i + 1 and ending at locus �i+1 + 1 is not a zero-
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recombination region, from the fact that our zero-recombination haplotyping algorithm is an

exact algorithm. This says that there are at least k breakpoint sites along the chromosome

(or at least k + 1 maximal zero-recombination chromosomal regions). �

To achieve the O(m3n3) performance, the algorithm is designed in a new cumulative

way. First, the algorithm will check, for every locus considered, if any claws associated

with that locus fall under the third scenario described above. If so, then the site right

before the last locus considered marks the end of a zero-recombination region. If, however,

non of the claws associated with that locus fall under the third scenario, the algorithm will

extrapolate all the applicable linear equations from the basic as well as the extra constraints.

In order to increase efficiency, the algorithm always keeps track of the reduced system of

equations associated with the chromosomal region ending just before the current considered

locus (this system has at least one solution). The algorithm then appends the equations

associated with the last locus considered to the saved matrix, and reduces only the added

equations via Gaussian Elimination. If the whole matrix, now in row echelon form, has at

least one solution, the algorithm will save it and considers the following locus as described.

If, however, the matrix does not have a solution, the locus just before the last SNP site

considered will mark the end of the zero-recombination region. The algorithm then proceeds

from the last SNP locus considered in the same way until the end of the chromosome is

reached.

Theorem 6 The whole genome scan haplotyping algorithm runs in O(m3n3) time and

achieves the minimum number of breakpoint sites on any given general pedigree genotype

data set, where m is the number of SNPs in the data set and n is the size of the general

pedigree. �

Proof. Recall the analysis of the running time of the zero-recombination haplotyping

algorithm in Section 4.1.4. In this whole genome scan haplotyping algorithm to consider

the current locus, the total number of claws to be examined, on whether or not any of them

belongs to the third scenario, is still O(m2n3). If no such existence, the algorithm moves

on to collect the basic and the extra constraints. The number of basic constraints involving

the current locus is trivially O(n). The number of linear equations that together re-write

the extra constraints involving the current locus could be O(mn); Nevertheless, if we only

write down the linear equations that are “independent” of all the previously written linear

equations, from the proof of Lemma 3, for a maximal zero-recombination region containing

m SNPs, the whole genome scan haplotyping algorithm only writes down O(mn) linear

equations to cover all the extra constraints. It follows that again the total number of linear

equations been written down by the whole genome scan haplotyping algorithm is O(mn),

implying an O(m3n3) running time of the algorithm. �
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4.3 Contribution

We presented a novel haplotyping algorithm for pedigree data. Given that the algorithm’s

constraints are based on pairs as opposed to trio, the algorithm can handle pedigrees with

missing founders as long as nuclear families do not share a missing founder and no nuclear

family has both parents missing. Our algorithm enforces the Mendelian laws of inheritance

in families with one missing founder by means of additional constraints on the inheritance

between parents and children. We showed that our algorithm has a running time of O(m3n3).

We also built upon the algorithm, enabling it to phase an entire chromosome in a most

parsimonious fashion with an objective function of minimizing the number of breakpoint

sites.
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Chapter 5

Setting the Stage for Pedigree
based Association Studies

A main assumption while carrying out association studies is that the trait controlling gene is

in Linkage Disequilibrium (LD) with a certain region of the chromosome [53]. Thus, SNPs

that are in LD with the trait controlling gene are considered as the latter’s anchor [53].

A highly popular way to determine the trait controlling allele is the haplotyping of zero-

recombination regions for all members [53]. The success of the aforementioned method has

been clearly seen on pedigree data with case-control traits [53]. An advantage of haplotypes

usage over the use of genotypes is the former’s innate inheritance information, something

which is nonexistent in genotypes [53]. Ideally, therefore, if the true haplotypes can be

inferred, then the allele causing the disease might be deterministically found [53].

With a new pedigree-based haplotyping algorithm that is applicable to a wider array of

pedigrees compared to many of the pedigree, rule based haplotyping algorithms, the next

step was to empower the haplotyping algorithm with features that are important to carry

out association studies. Note that the alleles of each individual in and by themselves, are

not as useful for associating genes to diseases as is the sharing of alleles among the different

members of the study [53]. In particular, identity-by-descent (IBD), identity-by-state (IBS),

and LOD scores are widely known techniques used in linkage and association studies.

If the sharing revealed an allele that is exclusively shared by all diseased members (i.e.

none of the healthy members has it), then the allele is expected to be associated with

the disease [38]. Another important advantage of the use of sharing is that it overcomes

the ambiguity of haplotypes resulting from the phase inference process [53]. For our pur-

poses, identity-by-descent sharing reveals, for every zero-recombination region and each of

its corresponding founder alleles, all pedigree members that share the allele by descent [53].

identity-by-state, on the other hand, determines, for every zero-recombination region and

each of its corresponding alleles, all pedigree members that share the allele [53]. Notice that

the IBS sharing does not take pedigree relationships into account.
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We extend our zero-recombination algorithm to produce the IBS and IBD sharings of

the solution provided [53]. However, for one pedigree and the associated genotype data

set, numerous haplotyping configurations are feasible and association studies based on the

sharing of one haplotyping solution might not be accurate [53]. Hence, we extend our

zero-recombination haplotyping algorithm to produce not one, but all possible haplotyping

solutions given the parsimonious rule of minimizing the number of zero-recombination re-

gions [53]. From the set of all possible solutions, we extract all possible IBS and all possible

IBD sharings, with each sharing associated with its corresponding number of haplotyping

solutions [53].

5.1 All haplotyping, IBS, and IBD Sharings Determi-
nation

As mentioned in Chapter 4, for every zero-recombination region, a corresponding system

of linear equations (or matrix) represent all the constraints on the haplotyping solutions

for said region. The solution(s) for a region’s matrix translate to all feasible haplotyping

configurations for said region. To generate all possible solutions, it is necessary to find all the

free variables in the associated system of linear equations. Every free variable can take the

value of 0 or 1. Hence, all possible combinations of the free variables’ values are listed and

each such combination would lead to a different haplotyping configuration for the region.

The process is repeated for every zero-recombination region. Ultimately, all combinations of

all regions’ solutions are listed while taking into account the order of the zero-recombination

regions on the chromosome.

However, the above approach can be computationally prohibitive given the fact that

there might be trillions of possible haplotyping solutions [53]. Hence, a smarter method is

needed to generate all IBS and all IBD sharings. We adopt the following method. For every

zero-recombination region, generate all the corresponding feasible haplotype configurations.

For the set of feasible solutions, determine all the IBS and IBD sharings. Given the small

number of haplotyping solutions and hence, IBS and IBD sharings, for every region, the

mentioned method can be done very quickly. The method is repeated for every region.

Ultimately, all combinations of all regions’ IBS as well as IBD sharings are listed while

taking into account the order of the zero-recombination regions on the chromosome.

The following information is based on [53]123.

1Sections whose titles are marked by a � are not based on [53] or any other source unless otherwise
specified within the section by means of a citation.

2[53] H. Sabaa, Y. Cheng, Z. Cai, Y. Wang, R. Goebel, S. Moore, and G. Lin. iBDD: all haplotype allele
identity-by-descent determination in one whole genome scan. BMC Bioinformatics, 2011. Unpublished as
of March 2, 2011.

3The data in [53] is not up to date as of March 2, 2011 and may be updated in the future.
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Pedigree No. 1 2 3 4 5 6
#Members 16 19 17 24 10 20

#Generations 3 3 3 5 3 3
#Nuclear families 4 3 4 12 2 4

#Founders 5 4 5 9 3 5
#Non-genotyped 3 2 2 3 1 4

Table 5.1: Characteristics of the 6 pedigrees used in the simulation study of iBDD.

5.2 Results4

We implemented our algorithm in the computer program iBDD. To generate the data in

our simulation studies, we used a real data set corresponding to independent individuals’

chromosome 1. The data set consists of 877 SNPs and was obtained from [65]. We also

applied iBDD on six real pedigrees. Each of the used pedigrees has been utilized in previous

studies (details of the pedigrees can be found in Figures 1, 1, 2, 2, 1, and 1 in [38], [44],

[57], [41], [28], and [30], respectively). As can be seen from Table 5.1, there is considerable

variation in the pedigrees’ number of members, number of generations, number of genotyped

and non-genotyped founders, as well as the number of nuclear families. The same genotype

simulation process based on the χ2-(m) model of inheritance and discussed in Chapter 3 is

employed here to generate 100 genotype instances for each pedigrees.

5.2.1 Breakpoint Recovery�

To gauge the accuracy of phase inference, one main criterion is the recovery of a true

breakpoint [53]. During the simulation of the genotypes, the simulation might simulate a

breakpoint between two homozygous sites [53]. If that is the case, then the breakpoint

is impossible to recover using any algorithm [53]. In our simulation studies, we were not

able to adopt the rule to determine whether a simulated breakpoint was recovered or not

that was explained in Chapter 3. The reason is that applying the same method here would

be prohibitively time consuming given the number of feasible haplotyping configurations.

Hence, we adopted a different method explained as follows. For every individual, we map

her paternal (maternal) simulated breakpoints onto her father’s (mother’s) chromosome. If

two or more siblings have the same breakpoint site, it will result as only one breakpoint

site at the parent. If, between any two sites (denoted as s1 and s2 where s1 is to the left

of s2) of the parent’s resulting breakpoint sites (denoted as set S), the parent’s simulated

haplotypes are all homozygous, then s1 is merged with s2.

Consequently, the set of recovered breakpoint sites is considered in the same way. Denote
4To save time, while collecting the comparison results of iBDD against the simulation, iBDD was killed

when it generated more than 4096 distinct IBS sharings or more than 4096 distinct IBD sharings. Hence,
the results of iBDD compared to the simulation are for cases when the number of distinct IBS sharings is
≤ 4096 and the number of distinct IBD sharings is ≤ 4096.
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Pedigree No. 1 2 3 4 5 6 Average
Precision 0.89±0.05 0.68±0.06 0.86±0.06 0.91±0.04 0.73±0.08 0.68±0.07 0.79
Recall 0.75±0.07 0.88±0.06 0.79±0.06 0.68±0.05 0.89±0.07 0.75±0.07 0.79

Table 5.2: iBDD’s mean precision and recall values (rounded to two decimal places) averaged over
all 100 instances of each of the six pedigrees.

the set as R. For every parent, each breakpoint site s of simulated mapped breakpoints is

considered and is deemed correctly recovered in one of the two following cases:

1. If there is a breakpoint r in R such that s = r.

2. If there is no element r in R such that r = s, then any element p of R where the

parent’s simulated haplotypes are all homozygous between s and p is considered as a

possible match. Among all possible matches, the final match for s is chosen as the one

closest to s in terms of number of SNPs separating s and the possible match.

Whenever a breakpoint site of a parent’s set S is deemed as correctly recovered, its match

from set R is removed from R and the number of correctly recovered breakpoint sites is

incremented by one.

5.2.2 Breakpoint Recovery Results

To gauge the accuracy of iBDD’s breakpoint recovery results we used the precision and

recall metrics described in Chapter 3. Precision is the result of the division of the number

of correctly recovered breakpoint sites by the total number of recovered breakpoint sites

(generated by iBDD). Recall, on the other hand, is the result of the division of the number

of correctly recovered breakpoint sites by the total number of simulated breakpoint sites.

Table 5.2 shows the mean values for precision and recall averaged over all the 100 in-

stances of every pedigree. We conclude that the number of breakpoint sites generated by

iBDD is a bit smaller than the truth (simulation). iBDD achieved an average of approxi-

mately 79% precision and 79% recall. Using pedigree number 1 as an example, Figure 5.1

shows the recall versus precision values of the 100 simulated instances for pedigree 1. Since

the breakpoint recovery does not change much from one instance to another, both per-

taining to the same pedigree, one can conclude that the breakpoint recovery results are

predominantly dependent on the structure of the pedigree.

5.2.3 Recovery of Allele Sharing

To gauge the accuracy of the recovered IBD sharings (generated by iBDD) compared to the

simulation’s, we adopt the following approach. We merge the recovered zero-recombination

regions (determined by iBDD) with the simulated zero-recombination regions. Hence, each

zero-recombination region of the resulting set is non-recombinant according to iBDD as
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Figure 5.1: Recall vs precision values of the 100 simulated genotype instances of pedigree
1.

well as the simulation haplotypes. Henceforth, the simulated IBS and IBD sharings are

generated for each region of the resulting, merged set of zero-recombination regions.

To generate the IBD sharing information, it is essential to track the inheritance of each of

the founders’ alleles. For iBDD we adopt the following method. We use the genotype data

coupled with the corresponding PS values. In the case when the child’s paternal (maternal)

haplotype allele is identical to his father’s (mother’s) paternal and maternal haplotype

alleles, then the child’s allele is assumed to be coming from her parent’s paternal allele.

When such tracking through the pedigree is done, a cluster is formed for every founder’s

allele containing all the founder’s descendants that have inherited that allele by descent.

The founder’s name is used to label said cluster. The simulation’s clusters, just as those of

iBDD, are formed using the simulated inheritance information.

Every founder F is associated with two simulated clusters S1 and S2 as well as two

recovered clusters R1 and R2. Let FA,B denote the F-Score results between clusters A

and B. If FS1,R1 ≥ FS1,R2 then S1 would match R1 and S2 would match R2 with a

corresponding F-Score of FS1,R2 . Otherwise, S1 would match R2 and S2 would match R1
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Pedigree No. 1 2 3 4 5 6 Average

F -score IBD 0.978±0.005 0.968±0.007 0.980±0.003 0.984±0.003 0.986±0.003 0.975±0.004 0.979
IBS 0.996±0.002 0.998±0.001 0.996±0.002 0.999±0.001 0.998±0.002 0.996±0.002 0.997

Table 5.3: The mean F-Score values (rounded to three decimal places) between the simulated and recov-
ered sharings.

with a corresponding F-Score of FS2,R1 . After the matching is done for every founder, the

region’s weighted F-Score is calculated as the weighted average of all F-Scores, where the

weight of an F-Score is the number of members in the corresponding simulated cluster.

Ultimately, the F-Score between the simulated and recovered IBD sharings is calculated

as the weighted average of all regions’ F-Scores, where the weight of an F-Score is the

corresponding region’s length (the length of a regions is equal to the number of SNPs within

the region). The above is calculated for every distinct IBD sharing of iBDD.

Similarly to the IBD sharings recovery accuracy calculations, the same was done to every

distinct IBS sharing of iBDD. Hence, for every simulated instance, we calculated the F-Score

between each of iBDD’s recovered, distinct IBS and IBD sharing with the corresponding

simulated IBS and IBD sharing, respectively. Table 5.3 shows for every pedigree, the mean

of all said IBS and IBD F-Scores. Given the definition of IBS and IBD sharings, for a given

IBS sharing and a corresponding IBD sharing, the latter is a refinement of the former.

Figure 5.2 plots for each of the 100 simulated instances of pedigree 1, the average IBD

F-Scores (over all recovered distinct IBD sharings’ F-Scores) vs the average IBS F-Scores

(over all recovered distinct IBS sharings’ F-Scores) between the recovered and simulated

sharings. Figure 5.2 and Table 5.3 show that the majority of the sharings recovered by

iBDD closely match the truth (simulation). However, some sharings might not be as close

to the corresponding simulated sharings. Hence, the results of association studies that use

only one sharing might not be accurate given that the used sharing might be substantially

far from the truth.

5.3 Discussion

iBDD’s worst case scenario runs in O(m3n3). Using pedigree 1 as an example given its

moderate complexity, iBDD took about two minutes, on average, to terminate. Experiments

were carried out on Intel E6850 3.0GHz processor with 4GB of available RAM space.

5.3.1 Number of Haplotyping Solutions vs Corresponding Number
of Sharings

As mentioned previously, the use of haplotype sharing in association studies can potentially

overcome the problem of haplotype ambiguity resulting from the phase inference process.

Our simulation studies showed that the number of feasible haplotyping solutions is extremely
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Figure 5.2: Mean IBS vs mean IBD F-Scores between the recovered and simulated sharings
for each of the 100 simulated instances of pedigree 1.

immense. However, the number of the associated distinct sharings was comparatively tiny,

with each distinct sharing associated with numerous haplotyping solutions. Again using

pedigree number 1 as an example, there was, on average, 48.24, 235.78, and around 262

distinct IBS sharings, distinct IBD sharings, and haplotyping solutions, respectively. Fig-

ure 5.3 shows the number of haplotyping solutions (y-axis) vs the number of distinct sharings

(x-axis) for the 100 simulated datasets of pedigree number 1.

Hence, we conclude that basing an association study on a few of the possible haplotyping

solutions might not produce accurate results. Here is where iBDD comes in especially handy

given its ability to enumerate all possible distinct IBS and IBD sharings without explicitly

generating all feasible haplotyping configurations.

5.3.2 Reasonable Explanation for Low Breakpoint Recovery

As the simulation studies showed, iBDD performed almost flawlessly in recovering the sim-

ulated sharings. However, the results were not as accurate for precision and recall. When

iBDD was used on full pedigrees (i.e. with all founders genotyped), its breakpoint recovery
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Figure 5.3: Number of haplotyping solutions (y-axis) vs the number of distinct sharings
(x-axis) for the 100 simulated datasets of pedigree 1.

results were much better than on non-full pedigrees (results not shown). One can then rea-

sonably conclude that the existence of missing founders is apparently a main reason behind

the low precision and recall values. This is because when missing founders exist in the pedi-

gree, iBDD’s derived constraints constitute only a subset of the corresponding constraints

that iBDD derives when the same pedigree has all of its founders genotyped. Hence, the

solution space of the case with missing founders can be much larger than the corresponding

solution space when the pedigree has no missing founders. Given the size of the solution

space of pedigrees with missing founders, some haplotyping solutions, despite being feasible,

might be quite far away from the truth and hence, will be associated with lower precision

and recall values.

5.3.3 High Accuracy of Sharing Recovery

The Results section showed the significant impact of the pedigree structure on the breakpoint

recovery results. However, another advantage of the use of sharing is the relative stability of

the accuracy achieved regardless of the pedigree structure with very minor difference of the
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Pedigree No. 1 2 3 4 5 6 7 8 9 10
#Members 4 5 7 9 10 13 11 13 15 16

#Generations 2 2 3 3 3 3 3 3 3 3
#Nuclear families 1 1 2 3 3 4 3 3 4 4

#Founders 2 2 3 4 4 5 4 4 5 5
#Non-genotyped 0 0 1 2 2 3 2 2 3 3

Table 5.4: Characteristics of the 10 pedigrees used to make comparisons between iBDD, iLinker,
and xPedPhase.

IBS and IBD F-Scores across the 6 pedigrees used. A possible explanation is that the sharing

status of many distinct haplotyping configurations is the same. Hence, the sharing is proven

to be quite robust in the face of ambiguities resulting from the haplotyping stage. This

only fortifies the belief that the use of sharing can overcome the problem of uncertainties of

phase inference.

5.3.4 Comparison to Other Haplotyping Algorithms

Since iBDD is based on the algorithm of PedPhase [36], it is natural to compare iBDD’s

performance to PedPhase. However, PedPhase can only run on pedigrees with all founders

genotyped and hence, cannot run on the 6 pedigrees of Table 5.1. Since PedPhase can

haplotype zero-recombination regions, we used xPedPhase [6] (described in Chapter 3) to

make comparisons to iBDD. In addition to xPedPhase, we also used iLinker [38] for com-

parison purposes. Since iLinker produces only one haplotyping solution, we performed the

comparisons between iLinker’s solution, one solution produced by xPedPhase, and the first

returned solution of iBDD.

Given iLinker and xPedPhase’s constraints on the pedigrees that both can run on, we

used 10 pedigrees, different than those in Table 5.1. The 10 pedigrees used for comparisons

between iBDD, iLinker, and xPedPhase are described in Table 5.4.

To perform the comparisons, each of the 10 pedigrees is treated as a full pedigree by

providing the genotypes of the missing founders. Consequently, 100 data sets are generated

for each pedigree on which iBDD and xPedPhase are run. From each of the 100 data sets

that were generated for each full pedigrees, the genotypes of the missing founders are deleted

to produce the corresponding non-full pedigree’s 100 genotype data sets.

5.3.4.1 Results of IBS and IBD Sharing Recovery�

For each run, the IBS and IBD F-Scores between the recovered and the simulated sharings

are calculated for xPedPhase, iLinker, and iBDD on the full pedigrees, non full pedigrees,

and both full and non full pedigrees, respectively. Figure 5.4 plots the average IBD F-Score

(y-axis) vs the average IBS F-Score (x-axis). Red crosses, blue dots, black asterisks, and

green x’s represent the performances of iLinker on non-full pedigrees, iBDD on non-full
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Figure 5.4: Mean IBS vs Mean IBD values for iLinker, iBDD over the 100 simulated for
each pedigree in Table 5.4.

pedigrees, xPedPhase on full pedigrees, and iBDD on full pedigrees respectively. As can be

seen from Figure 5.4, the results on full pedigrees are always better than those on non-full

pedigrees. iLinker and iBDD perform quite similarly on non-full pedigrees while xPedPhase

and iBDD performs very similarly as well on the full pedigrees. On pedigrees 1 and 2 in

Table 5.4, the results of xPedPhase were not collected due to very long running times. It

should also be mentioned that iLinker and xPedPhase sometimes crashed and re-runs on a

different simulated data set was necessary while iBDD was able to run smoothly and collect

the results of every run. Besides the relatively similar sharing recovery accuracy of iLinker,

xPedPhase and iBDD, the latter has the advantage of running on full as well as non-full

pedigrees and can be applied to pedigrees with more than two founders.

5.3.4.2 LOD Score Calculation�

Besides the IBS and IBD recovery, iBDD is also able to calculate for every zero-recombination

region, the associated LOD scores [45], a widely used method for linkage analysis [52]. The

calculation occurs as follows. Per pedigree, we assume only one diseased founder denoted as

Fd. For every zero-recombination region, we consider Fd’s two alleles l1 and l2. Two LOD
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scores are calculated, the first assuming that l1 is Fd’s diseased allele while the second as-

sumes that l2 is Fd’s diseased allele. The highest of the two possible LOD scores is assigned

as the region’s LOD score. The LOD score formula is as follows:

LOD(r) = log10
θr(1 − θ)t−r

0.5t

where r is the number of recombinants, t is the total number of recombinant and non-

recombinant chromosomes coming from genotyped parents, and θ is chosen from a range of

values 0.005 ≤ θ < 0.5 with increments of 0.005 such that the LOD score is maximized. r is

the sum of the number of healthy members who share the diseased allele by descent (IBD)

and the number of diseased members who do not share the diseased allele by descent (IBD).

For every distinct IBD sharing, a LOD score is calculated for every zero-recombination

region. Ultimately, for every zero recombination region we calculate the weighted average,

Lw, of all the corresponding LOD scores of all distinct IBD sharings where the weight of a

LOD score is the number of haplotyping solutions associated with the corresponding IBD

sharing. The final weighted average, Lw, is the region’s final LOD score.

5.4 Applying iBDD on a Real Data Set�

We ran iBDD on a real data set. For confidentiality reasons, we cannot provide the details

of the data set. However, iBDD was able to successfully terminate and found 258 possible

haplotyping solutions, 4096 distinct IBS sharings, and 131, 072 distinct IBD sharings. When

comparing the first IBS sharing to the 4095 other IBS sharings, the mean F-Score was

approximately 0.993 while the mean F-Score of comparing the first IBD sharing with the

131, 071 other IBD sharings was approximately 0.996.
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Chapter 6

Conclusions and Future Work

In this work, we showed that haplotyping can be a very effective means for pedigree-based,

case-control association studies. In particular, haplotyping can very accurately identify

alleles that are solely shared by all the diseased members of the pedigree. Our results

show that both, haplotyping accuracy, measured by precision and recall, and allele sharing

recovery accuracy, can be very high. This renders haplotype-sharing based association

studies on pedigree data using case-control trait values very promising.

Given the potential of haplotype-sharing based association studies on pedigree data

sets, we developed a new zero-recombination haplotyping algorithm [11] that accepts the

pedigree structure along with the corresponding genotype data and produces all possible

haplotyping solutions for the region under scrutiny. The core of our algorithm is a method

that transforms the constraints on the genotype data into binary, linear equations, the

solutions of which represent all the feasible haplotyping solutions for the zero-recombination

region. Our algorithm abides by the Mendelian laws of inheritance, and hence, for any

missing founder Mf , the algorithm does not allow any of Mf ’s children to have more than

2 paternal (maternal) alleles if Mf is the father (mother).

We also extended the algorithm to a maximally parsimonious haplotyping algorithm with

the objective function to reduce the number of zero-recombination regions. In other words,

our algorithm tries to find the longest possible zero-recombination region before a breakpoint

is needed. Our algorithm runs in O(m3n3) where m and n represent the number of SNPs

on the chromosome and the number of pedigree members, respectively. The importance of

our algorithm lies in its applicability to a much wider array of pedigrees compared to many

of the previous haplotyping algorithms like iLinker [38]. Our algorithm does not require

the genotypes for all members of the pedigree. Rather, it only requires that each missing

founder, i.e, her corresponding genotype data is missing, to be in only one nuclear family

and that each nuclear family has no more than one missing founder.

For our algorithm to be useful in downstream association studies, we implemented the

algorithm in the computer program iBDD. iBDD is able to identify, in one complete scan of
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the chromosome, all the zero-recombination regions along with each region’s complete set of

feasible haplotyping solutions. Hence, iBDD is able to compute all the possible haplotype

configurations for the pedigree members, in one scan. It also computes all the possible

identity-by-state (IBS) and all possible identity-by-descent (IBD) sharings, each with its

corresponding number of haplotyping solutions. Since the number of feasible haplotyping

solutions can be in the trillions, the computation of the all IBS and all IBD solutions together

with the corresponding number of haplotyping solutions is non trivial. iBDD is also able to

produce LOD scores for every zero-recombination region. Most previous programs calculate

LOD scores for sites on the chromosome. iBDD’s approach of calculating LOD scores for

each zero-recombination region renders the scores easier to read and analyze.

6.1 Future Work

We plan to equip iBDD with a comprehensive set of utilities hopefully making it the most

commonly used tool for haplotype-sharing based association studies on pedigree data using

case-control traits. To that end we intend to add the following functionalities:

6.1.1 Simulation Study

Our simulation program simulates the haplotypes (and corresponding genotypes) for pedi-

gree members given the genotype data for all the founders. However, simulating the geno-

types for population data is an essential utility to carrying out association studies on popula-

tion data sets. Since population data sets offer numerous, sometimes unrelated individuals,

the Mendelian laws of inheritance cannot be followed to simulate an individual’s genotype.

Rather, the genotypes are simulated based on likelihood functions. We plan to equip iBDD

with population genotype simulation functionalities so that users can use it to simulate

genotype data sets that can be used in downstream analysis.

6.1.2 Haplotyping

iBDD is able to phase genotypes of pedigree members given that every nuclear family has

at most one missing founder and that a missing founder appears in at most one nuclear

family. Even though these two assumptions are relaxed compared to previous algorithm’s

constraints, there might be real pedigrees on which iBDD cannot run. We plan to investigate

more general pedigrees on which iBDD cannot currently run and devise an algorithm with an

ever wider applicability. We also plan to implement population based haplotyping algorithms

as part of the iBDD package.
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6.1.3 Association Studies

Having iBDD able to simulate the genotypes for pedigree and population data sets as

well as perform the haplotyping on both, pedigree and population data sets, it would be

interesting to see how well are the IBS, IBD, and LOD scores suited for population data

compared to pedigree data. Will the IBD sharing be of little use on population data given

the absence of family relations information? Will the IBS sharing be deterministic given

the haplotyping being performed on a likelihood based method? Will LOD scores be useful

in linkage analysis? All these questions, and more, are on the to do list.

Besides IBS, IBD, and LOD scores, we also plan to implement TDT score calculation. We

plan to investigate TDT scores performance on simulated and real data sets, and accordingly,

conclusions can be drawn on its effectiveness.

Another important study is epistatic interactions. Can the IBS and/or IBD sharing

information be used to limit the number of regions that take part in epistatic interactions?

If so, how can we extract epistasis given the reduced set of interacting zero-recombination

regions? What if the interacting genes are located within one zero-recombination region?

Will our approach be more or less effective?

On the long run, we plan to enable iBDD to deal with quantitative data. Quantitative

data, given the range of values it can take, is surely a challenge. However, quantitative

data arises frequently in real life scenarios and effective algorithms to associate genes with

quantitative trait values are a current need.
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