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Abstract

Gauge theory provides a simple and robust way in which to describe the underlying symme-

tries of nature, and the ability to empirically test such theories is of vital importance. Quantum

simulators have found an important application in recent decades, in the generation of artificial

gauge fields. These systems allow researchers to create various fields which would otherwise only

exist in the most exotic systems. In this thesis, we will discuss techniques with which to realize

various artificial gauge fields in spinor Bose-Einstein condensates (BECs), which are coherently

manipulated by external radiation. We derive the affect of radio-frequency (RF) and laser fields on

atomic spins in a BEC, and then later describe how they may be used to generate both Abelian and

non-Abelian gauge fields. We discuss techniques for many-body numerical simulation of BECs in

the presence of artificial magnetic fields, created through laser dressing, and extend the algorithm

to run more efficiently on a graphics processing unit (GPU). Next, we present a technique for using

Floquet engineered RF fields to produce degeneracies in an otherwise nondegenerate spin system;

consequently, geometric phases arise which are well described by the presence of a non-Abelian

gauge field. We also discuss the relevance of this technique to holonomic quantum computing

(HQC). Altogether, we present several theoretical, numerical, and experimental procedures with

which researchers may explore both Abelian and non-Abelian gauge theories in ultracold atomic

systems.
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Preface

The BEC apparatus was designed by Dr.Lindsay LeBlanc, and assembled by Dr.

Lindsay LeBlanc, Greg Popowich, Taras Hrushevskyi, and Dr. Erhan Saglamyurek.

The original procedure for obtaining BEC was optimized by Dr. Lindsay LeBlanc,

Dr. Erhan Saglamyurek, and Taras Hrushevskyi. Upgrades to the imaging system

were done by myself and Benjamin Smith. Raman beams were setup and installed,

initially by myself, Benjamin Smith, and Taras Hrushevskyi, and again later by

myself, Dr. Arina Tashchilina, and Joseph Lindon. Maintenance of the system

over the years, including, MOT alignments, ODT alignments, and modifications to

the laser system, were carried out by myself, Taras Hrushevskyi, Benjamin Smith,

Joseph Lindon, Dr. Arina Tashchilina, and Tian Ooi. Several vacuum bakes were

done by myself, Dr. Lindsay LeBlanc, Greg Popowich, Taras Hrushevskyi, Benjamin

Smith, Joseph Lindon, and Dr. Arina Tashchilina.

The repump laser was replaced by Tian Ooi, Joseph Lindon, and Dr. Arina

Tashchilina. The ODT laser was replaced twice by myself, Joseph Lindon, Dr.

Arina Tashchilina, and Tian Ooi. A SAS locking setup for the Ti:Sapph laser was

installed originally by Dr. Erhan Saglamyurek and Taras Hrushevskyi, and again

later by myself, Dr. Erhan Saglamyurek, and Taras Hrushevskyi.

The BEC apparatus, including the electronics, vacuum system, and laser sys-

tem, were recovered following two independent floods; first, by myself, Benjamin

Smith, Joseph Lindon, and Dr. Arina Tashchilina, and second by myself, Dr. Arina

Tashchilina, Tian Ooi, and Joseph Lindon.

The potassium laser setup was originally designed by Dr. Lindsay LeBlanc, and

adapted by myself and Anindya Rastogi. The potassium lasers were characterized,

and frequency stabilized, by myself and Anindya Rastogi. Anindya Rastogi de-

signed an fabricated the beat-note locking electronics. The potassium oven compo-

nents were designed and fabricated by myself, and installed by myself, Dr. Lindsay

LeBlanc, Taras Hrushevskyi, Anindya Rastogi, and Greg Popowich. Later, a new

design was implemented by myself, and Luca Galler. The potassium setup has since

been finished by Nicholas Milson.

The work in Ch. 3 is predominantly covered in Ref. [1], mainly pertaining to

the spinor BEC simulation software. The original mean-field simulation code was
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written by Dr. Lindsay LeBlanc, and modified by myself and Benjamin Smith. The

code was packaged, and accelerated on GPU hardware by myself. The spinor version

of the code was written and GPU hardware accelerated by myself. Later, both

versions were improved and modified, and fully packaged by Benjamin Smith. The

grant to acquire the NVIDIA TITAN V GPU was written by myself, Dr. Lindsay

LeBlanc, and Benjamin Smith. The benchmarking between devices was carried out

by Benjamin Smith.

The experiments discussed in Ch. 6 is featured in Ref. [2]. The Raman Λ-

Scheme was setup, and early experiments performed by myself, Joseph Lindon, and

Dr. Arina Tashchilina. An additional radio-frequency coil was added to the BEC

vacuum cell by Benjamin Smith, and the electronics were later modified by myself,

Joseph Lindon, and Dr. Arina Tashchilina. The RF impedance-matching circuit

was designed and fabricated by Joseph Lindon. The back-end software for remote

programming of the Tektronix AWG5204 device was written by Joseph Lindon. The

scripts for implementing the Floquet engineered RF pulses was written by myself.

This functionality was later packaged by Joseph Lindon, and further modified by

myself. The AWG was incorporated into the apparatus by myself, Joseph Lindon,

Tian Ooi, and Dr. Arina Tashchilina. The microwave circuit was originally installed

by Dr. Lindsay LeBlanc, Dr. Erhan Saglamyurek, and Taras Hrushevskyi. It was

later modified by Benjamin Smith. The SG imaging technique was optimized by

myself, Benjamin Smith, and Taras Hrushevskyi. The F = 1 imaging system was

installed and tested by myself and Dr. Arina Tashchilina.

The Floquet basis derivations in Ch. 5 were carried out by Mason Protter, based

on the original works. The experimental measurements were verified through nu-

merics written in Python by myself, with additional independent calculations from

Mason Protter. Later, the code was adopted to Julia through a package written

by Mason Protter. Calculations of the holonomies, and Wilson loops, were done by

myself, Mason Protter, and Dr. Arina Tashchilina, and later generalized by Ma-

son Protter. The various analysis techniques were devised by myself, Dr. Lindsay

LeBlanc, Mason Protter, and Dr. Arina Tashchilina. The numerical simulations

featured here were written by myself, and the data processing was performed by

myself.
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CHAPTER 1

Introduction

P
hysicists likely encounter gauge fields for the first time in their undergraduate

studies, in the context of electromagnetism. After familiarizing themselves with

Maxwell’s equations to some extent, they are introduced with the concept that there

is some redundancy seemingly built in, where the electric and magnetic fields may

be expressed through a new set of fields, called the vector and scalar potential. The

important insight here is that the electric and magnetic fields are uniquely deter-

mined by these new gauge fields, but the converse is not true. There are an infinite

set of gauge fields that describe the same electric and magnetic fields, so choosing

any such pair of them therefore describes the same physics. This is akin to choosing

from a set of different style measurement devices, or gauges, which all record the

same observations once utilized1; it is thus known as gauge freedom. This is usually

presented as an interesting, and potentially useful, mathematical tool, which can be

used to simplify calculations in certain circumstances. To this end, these gauge fields

conveniently cannot be measured, as the electric and magnetic fields are the physical

fields. Such a viewpoint, unfortunately, undercuts the significant importance that

gauge theory has in modern physics.

Gauge theories are formulated through group theory2, which provides a useful

framework from which we may understand the properties of gauge fields [3]. Elec-

tromagnetism, for instance, is described by a U(1) Abelian gauge theory, where the

U(1) group is Abelian because its elements, complex numbers of the form eiϕ with

ϕ ∈ R, commute; the values of ϕ are called the generators of the group, which is the

role that the gauge fields play. Even with such seemingly simple fields as in classical

electromagnetism, there are a plethora of interesting implications, not least of which

1Note that we are not suggesting that this is why it is called gauge theory, rather, we are just
providing a potential way to think about it.

2This is a branch of mathematics that this author was unfortunately told explicitly to stay
away from by a certain calculus professor during undergraduate studies. Now, we find ourselves
desperately learning all we can about it.
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is the propagation of electromagnetic waves, i.e. light. Interestingly, in the context

of quantum physics, one does not need to try very hard to find the emergence of

gauge theories. For instance, imposing local gauge-invariance on the wavefunction of

a free electron naturally leads to electromagnetic gauge potentials appearing in the

Schrödinger equation [4]; light, is therefore a consequence of local gauge invariance.

Beyond Abelian gauge theories, there are also non-Abelian ones that are of im-

mense importance in modern physics. Non-Abelian groups are comprised of elements

that do not commute; generally this is because the group elements are matrices. The

consequences of this are significant, and may manifest in several ways. For instance,

in particle physics, quarks and gluons are described through an SU(3) gauge theory,

which is non-Abelian. The non-commuting elements of this group appear in the

Lagrangian, which ultimately results in interacting gluons; the interaction strengths

are related to the commutators, which are called structure factors. In contrast, no

such interaction term appears for photons since they follow an Abelian gauge theory,

and hence the commutators vanish [3]. Additionally, unitary evolution in quantum

mechanics is also well described through groups. The N × N unitary matrices are

members of the group U(N), which is non-Abelian; this is just a statement that the

order in which we apply unitary transformations matters, since these matrices do

not in general commute. While invoking gauge theory in this context is generally

not required, in this work we will find that it is extremely useful in classifying the

types of transformations that are enabled by some Hamiltonian of interest.

Given the significant importance of gauge fields in modern physics, they ought to

be a subject of experimental study. We may of course look at the dynamics of charges

and currents to understand those behind electromagnetism, but once we foray into

the realm of high-energy gauge theories we may find that the experiments are much

more difficult. This is, therefore, a branch of study that quantum simulation is

well equipped to offer value in. Quantum simulation, briefly put, aims to make

highly controllable quantum systems behave in a manner that is equivalent to some

target system of interest [5]. Typically, the target system is one that we do not

have access to, or in some cases may not even exist in nature. Due to our high-

degree of control over the quantum simulator, we are able to realize the physics of

these systems anyways, at least under some constraints (lacking gauge invariance for

instance). This practice usually amounts to Hamiltonian engineering; if the system

Hamiltonian is made equivalent to that of some other system, the dynamics are

directly analogous. Even though the objects described by one such Hamiltonian

may differ greatly from those of the other, it is fair to interpret them as equivalent.

In this thesis, we will discuss the quantum simulation of gauge fields in ultra-

cold neutral atoms. Specifically, we will introduce several ways in which we may

manipulate a Bose-Einstein condensate (BEC) of 87Rb atoms, so as to produce ar-
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tificial gauge fields, that is, gauge fields that do not technically exist, but act as an

appropriate way of describing the system dynamics. In each case there is a more

direct way of describing the dynamics, namely through the typical interactions of

light with atoms, but the existence of an equivalent description through gauge fields

allows us to study such objects in a way that can be generalized to real situations in

which those fields emerge. Conversely, we will find that viewing the problem through

the lens of gauge theory provides some unique insights, which aid in predicting the

behavior of many-body systems of interacting particles, such as a BEC. Altogether,

This work paves a way forward in generating artificial gauge fields that themselves

are objects of immense interest to researchers, as well as tools with which to study

many-body systems.

We begin in Ch. 2 by describing the experimental apparatus in some detail, along

with the procedure used to produce ultracold ensembles of 87Rb. This includes the

laser cooling process, and evaporative cooling in both a magnetic trap and optical

dipole trap. We then describe two ways to use external fields to drive transitions

between the magnetic sublevels of atoms, with either external oscillating magnetic

fields, or laser fields. This is the primary means used to manipulate the ultracold

ensemble in the remaining situations discussed in this thesis. Finally, we close this

chapter by discussing the spin-sensitive measurement technique employed.

In Ch. 3 we discuss a particular implementation of Abelian artificial gauge

fields, using the laser manipulation scheme discussed in the previous chapter. This

scheme motivates a theoretical investigation into the effects of such gauge fields

on BECs where the interactions are important, leading to the development of a

high-performance computing package for such a system. We introduce the relevant

mean-field theory of interacting bosons, followed by an algorithm that may be used

to solve for spinor BEC ground states and dynamics, when subjected to various ex-

ternal fields. The algorithm is accelerated on graphics hardware, and then applied

to determine several interesting ground states under the effects of the artificial gauge

fields discussed prior.

Later, in Ch. 4 we discuss a different way in which gauge theory manifests itself

in quantum systems, namely through geometric phase. We introduce the concept

of geometric phase in systems undergoing adiabatic evolution. This leads to the

emergence of either Abelian or non-Abelian gauge fields as a way of describing the

resulting state transformations. We discuss some properties of each, in addition to a

means of distinguishing them from each other in a gauge invariant manner, through

the Wilson loop. We then describe how geometric phases may be interpreted as

artificial gauge fields, discussing some of the insights we might hope to learn from

them, in addition to what types of phases we hope to some day engineer. The

application of geometric phase as a means of quantum control is then discussed, in
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relation to several quantum computing approaches that rely on it.

Producing non-Abelian gauge fields has historically been challenging, so in Ch. 5

a technique for surpassing some such issues is introduced, using Floquet engineering.

The periodic modulation of Hamiltonians may lead to the generation of non-Abelian

geometric phases, which are described by the presence of artificial gauge fields in

the parameter space of the Hamiltonian. We derive the emergence of such fields,

and demonstrate the resulting transformations numerically. A fairly general source

of error is then considered, the impact of which is also demonstrated numerically.

Chapter 6 goes on to describe the experimental demonstration of this technique in

the ground state spin manifolds of an ultracold ensemble of 87Rb. We discuss how the

necessary periodic driving is accomplished by modulated radio-frequency coupling

between atomic spins. We then describe the procedure for state preparation and

measurement, before showing the results, compared with numerical simulations. A

detailed discussion of the experiment reveals some of the shortcomings, in addition

to the major successes of this preliminary investigation.

Altogether, the work presented in this thesis establishes some powerful tools

and techniques now at the disposal of contemporary researchers, for generating and

studying artificial gauge fields in the lab. The insights gained from such quantum

simulation experiments, in the context of gauge theory, is of tremendous importance

to our current understanding of the universe in which we live.
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CHAPTER 2

Experimental Methods in

Ultracold Ensembles

R
ealizing artificial gauge fields in ultracold atomic ensembles requires several

key methods, experimentally speaking. First, and most obviously, one must be

capable of efficiently producing the ultracold ensembles. Following this, one requires

a means with which to manipulate them. Finally, a means to measure the states

or relevant observables is required. In this section, we aim to address each of these

requirements, to a level of detail that is sufficient for the chapters ahead.

We begin in Sec. 2.1 by giving a general overview of the apparatus that we

have used, maintained, and augmented over the duration of this thesis work. The

apparatus, which was originally assembled and optimized for producing 87Rb BECs

as part of the MSc thesis Hrushevskyi 2017 [6], has seen several changes over time.

In addition to the typical maintenance and periodic replacements or adjustments of

existing infrastructure, it has been modified to also incorporate 39K into the system.

This involved the construction of an additional laser system, and the fabrication of

several more vacuum parts. While the addition of 39K was a primary motivation

for some of the work discussed in Ch. 3, it has yet to be fully integrated into the

apparatus; as such, here we will focus on the parts relevant to the cooling of 87Rb

to quantum degeneracy. The section does not aim to provide a rigorous description

of each component or cooling process used, but rather a general understanding of

the various things that impact the work that follows.

Section 2.2.1 then focuses on the primary means we have to manipulate ultracold

ensembles, namely with external radiation. We derive a Hamiltonian which describes

the coupling of internal spin states by an external oscillating magnetic field. A

similar result is obtained when considering transitions driven in the ensemble by a

bichromatic laser field. Each of these techniques is then applied in later chapters to

produce various artificial gauge fields that act on the spin systems.
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Last, we discuss a way to make projective measurements in the canonical spin

basis. Combining some of the techniques described in the former sections (Sec. 2.1

and Sec. 2.2.1), we are able to measure spin states through standard absorption

imaging. This will become especially relevant in Ch. 6, but also has applications to

the work in Ch. 3. With this, we will have covered all of the necessary ingredients in

the quantum simulation experiments that follow: state preparation, manipulation,

and measurement.

2.1 BEC Production

Since their synthesis in the 1990s [7, 8], BECs have become a hallmark suc-

cess of quantum physics, and precision control technologies. BECs are macroscopic

quantum objects which are almost perfectly pure [9], and may be precisely and co-

herently manipulated in various ways (See Sec. 2.2). Due to many advancements

in their production process, BECs are now even being produced in space, including

during the rocket launch stage [10]. That said, for the efficient production of large

degenerate ensembles, the entire process must be well calibrated. Here we give a

general overview of the BEC apparatus used in the work throughout this thesis, and

the cooling procedure used to produce degenerate ensembles of 87Rb; a complete

description of the apparatus used and the processes mentioned here may be found

in Hrushevskyi 2017 [6].

2.1.1 The Ovens

The ultrahigh vacuum (UHV) system used here consists of three major stages:

the source of 87Rb (the ovens), 2D magneto-optical trap (MOT) stage, and the

3D MOT chamber (the science chamber). A schematic of the apparatus, with

labels indicating these regions along with various other components, is shown in

Fig. 2.1. Sources of 87Rb, which come in glass ampoules, are held in the UHV

system on a custom built ampoule stand. After sealing the system and baking,

a flexible coupling with a metal rod mounted within is used to break the glass

ampoule. The UHV components containing the source are wrapped in resistive

heating tape; warming these elements to 45� increases the vapour pressure of 87Rb

in the system enough to provide the number of atoms needed. A laser beam tuned

above an atomic resonance (called blue-detuning, due to the shorter wavelength) is

transmitted through a viewport on the back of the ovens, to push atoms along into

later stages, eventually loading the 3D MOT; we refer to this beam as the push

beam.

Due to the relatively high pressure in the ovens, there is a custom copper aper-
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Figure 2.1: Schematic of the BEC UHV system, indicating the various key regions. The
ovens contain sources of both 87Rb and 39K, which may be accelerated towards the other
regions by the push beam through a viewport at the end of the apparatus. Past the cold
cup is the 2D MOT region, where atoms are pre-cooled, and focused through a differential
pumping tube towards the 3D MOT, where they are trapped and cooled to quantum
degeneracy. In addition to the gradient coils around the 3D MOT, there are bias coils
along each axis, and radio-frequency (RF) coils along z and x. Figure is adapted from
Ref. [6].
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ture mounted inside, prior to the 2D MOT stage, with an ion pump above. This

aperture, called the cold cup, is thermally coupled to a Peltier cooler and water

cooling line outside the UHV system, and is kept at 16 � at all times. Since the

surrounding UHV components are either room temperature or warmer, the cold cup

acts as the most likely surface to which 87Rb atoms adsorb; it effectively works as a

non-evaporable getter, placed between the ovens and 2D MOT stage, which should

remain at the lowest pressure possible. The aperture allows the push beam to pass

through, carrying atoms with it.

The ion pump mounted above the cold cup, which maintains a low pressure in

the ovens, pumps more 87Rb than it is likely designed to do, given its vicinity to

them. Metallic 87Rb is deposited on the capacitor plates in large enough quantities

that the capacitance changes, which alters the pressure reading of the pump. Over

time the pressure reading from the pump increases, despite no evidence that the

true pressure within has increased. Eventually it may pass a threshold for which

the pump will turn off, to protect itself; if this happens, the pressure in the system

will raise dramatically, perhaps to the point that it would have to be unsealed and

re-baked. For this reason, we added a set of aluminum baffles within the fitting

leading into the ion pump, in an effort to stem the flow of 87Rb into the pump. So

far, it seems to have prolonged the lifetime of the pump, but more time is needed

to be certain of this.

Similar to the ion pumps, the glass push-beam viewport is also susceptible to
87Rb deposition, which etches away at the glass-metal seal. Eventually, this cracks

the glass, causing a leak. For this reason, the window is always kept 5 � higher

than all the surrounding parts, to make it less likely for 87Rb to adsorb there.

Unfortunately this does not seem to be enough to protect it. As such, we machined

and installed a stainless-steel aperture just in front of the window, so that the push

beam may still pass through, but the reduced vacuum conductance reduces the 87Rb

buildup. This measure has been successful in improving the lifetime of the viewport.

2.1.2 2D and 3D MOT

Once atoms make it past the cold cup they enter the 2D MOT stage. We will

first introduce the general principle behind a MOT, and then discuss the details of

the 2D and 3D MOT stages.

Principles of a MOT

A MOT accomplishes two tasks simultaneously: it significantly reduces the av-

erage speed of atoms (the temperature) through the optical molasses process, and

it applies a trapping force that constrains atoms to the minimum of an applied
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magnetic field gradient [11, 12]. The setup consists of pairs of counter-propagating

laser beams which are detuned to a frequency below an atomic resonance (called

red-detuning due to the longer wavelength). In a MOT, they also have opposite

circular polarizations.

The optical molasses protocol can be broken down into two dominant cooling

processes: Doppler cooling, and sub-Doppler cooling. The former relies on the

Doppler shift of atoms bringing one laser within a pair closer to resonance with

the relevant transition; this creates an imbalance of the scattering forces between

the beams. In the case of red-detuning, an atom is more likely to scatter light

from the laser it is moving towards. As such, on average over many absorption and

spontaneous emission cycles, atoms lose momentum, which is dissipated through the

spontaneous emission. The net force on atoms from Doppler cooling is proportional

to their speed, and in an opposing direction. For this reason, the Doppler cooling

model is the same as that for a classical particle moving through a viscous fluid,

hence the name optical molasses. In this case, the laser fields play the role of the

viscous fluid.

Doppler cooling is the dominant force on higher-velocity atoms, but once they

approach the Doppler cooling limit [11, 12] other processes take over. In the config-

uration described above with orthogonal circular polarizations, the relevant process

is called motion-induced orientation cooling [13, 14]. In all sub-Doppler cooling

processes, the structure of the atomic ground states as they vary in the laser fields

become relevant. The counter propagating laser fields create a standing wave with

a linear polarization everywhere, but with an angle that rotates along the beam

axis. Due to the local electric field changing in space, as atoms move along the

standing wave their stationary states change. Atoms moving relatively fast will not

adiabatically follow the local field, and hence non-adiabatic effects dominate, which

result in imbalances in population between the ground state magnetic sublevels. As

in Doppler cooling, this ultimately results in an imbalance of scattering forces on

atoms due to each laser; in this case, atoms are once again more likely to scatter

light from the laser they move towards, resulting in a cooling effect.

The optical molasses protocol acts to cool atoms dramatically. While the Doppler

cooling limit for 87Rb is 146 µK [15], through sub-Doppler processes the temperature

achieved is often much colder. The fundamental temperature limit in laser cooling

is the recoil limit, which is determined by the velocity of atoms after a single spon-

taneous emission event from the lasers; for 87Rb this temperature is 362 nK [15].

Despite this, atoms in an optical molasses continue to expand outside the influence

of the laser fields, reducing their efficiency.

A MOT prevents the expansion of atoms within the beams by the addition

of a magnetic field gradient, which splits the excited state manifolds through the
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Zeeman effect (See Sec. 2.2.1). In the presence of a gradient with a global minima,

the spatial dependence of the Zeeman splitting, along with the circularly polarized

lasers, once again results in an imbalance in scattering forces between lasers. In this

case, if the circular polarizations are chosen properly (according to the direction

of the magnetic field on either side of the minima), atoms preferentially scatter

light from the laser they are closest to, thereby pushing them towards the field

minima (regardless of their velocity). A MOT therefore cools atoms through the

aforementioned optical molasses processes, and confines them to an applied gradient

minimum thus preventing their expansion outside the cooling beams. Additionally,

MOTs have significantly higher capture velocities, as compared to standard optical

molasses setups, allowing them to be loaded from hotter sources, typically resulting

in a much higher number of trapped atoms [12].

2D MOT

The 2D MOT stage consists of a rectangular glass cell, with two pairs of counter-

propagating circularly-polarized laser beams transmitted through in the directions

orthogonal to the push beam path. The beams are made highly elliptical with cylin-

drical lenses, so that they extend over a large length of the cell. Additionally, there

are two pairs of copper coils arranged in anti-Helmholtz configurations, to provide

the necessary magnetic field gradient. As atoms move along the push beam towards

the 3D MOT stage, the 2D MOT beams cool them in the orthogonal directions to

this path, focusing them into a narrow atomic “beam”. Individually controlling the

currents in each coil also allows us to roughly align the atomic beam to the 3D MOT

position.

Just before the 3DMOT chamber there is a differential pumping tube in the UHV

system, reducing the vacuum conductance between the two stages; additionally,

there is a second ion pump just above the tube. The pre-cooling and focusing

accomplished by the 2D MOT is essential to efficiently loading the 3D MOT, by

guiding atoms through the narrow tube, in addition to keeping the pressure in the

3D MOT chamber low. Only atoms with sufficiently low transverse velocities make

it through the tube, and onwards to the 3D MOT. With the push beam and 2D

MOT operating optimally, we achieve a factor of 7-10 times more atoms in the

3D MOT than without them. This is a considerable increase in the overall atom

number, which is essential for the latter evaporative cooling stages that take place

after the 3D MOT processes.
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3D MOT

As with the 2D MOT, the 3D MOT cell is rectangular and made entirely of

glass for maximum optical access. The cell is shrouded in several sets of magnetic

coils: one pair of Helmholtz coils along each Cartesian axis to provide tuneable bias

fields, two sets of RF coils for driving RF transitions between atomic spin states

(Sec. 2.2.1), and a large set of water-cooled coils in anti-Helmholtz configuration to

create the gradient used in the MOT and for magnetic trapping. The optics for the

MOT beams are mounted on a custom rigging which fits around the cell, directing

the light towards the center of the gradient coils. The 3D MOT has three pairs of

counter-propagating beams with opposing circular polarizations, to cool and trap

atoms in all dimensions.

There are several requirements of the laser system in order to implement optical

molasses cooling in 87Rb. For alkali atoms, it is common to use the D2 line for

cooling, which is the transition between S1/2 and P3/2 manifolds. This transition

is at a wavelength of about 780 nm, for which there are commercial diode lasers

available. In particular, we use the common |F = 2⟩ → |F ′ = 3⟩ transition, with
F the total atomic angular momentum quantum number. This transition is useful

because, due to selection rules [12], atoms are forbidden from falling into the other

ground state hyperfine level, F = 1; this is said to be a closed-cycle transition for

this reason.

The laser frequency must be tuned precisely; the theoretically optimum red-

detuning for a MOT is 3Γ, where Γ is the natural linewidth of the atomic excited

state used in the cooling cycle [12]. All transitions within both the D1 and D2 lines

have a natural linewidth of 6.1 MHz. As such, the laser frequency must be stable to

within approximately one linewidth for efficient and consistent cooling. Despite the

fact that we purposefully use a closed-cycle transition, being red-detuned from the

excited state hyperfine level means the lasers are still relatively close to resonance

with the neighboring level below; through off-resonant scattering with this lower

level, atoms may fall out of the cooling cycle by spontaneously emitting into the

lower ground state hyperfine manifold, F = 1. The ground state hyperfine splitting

in 87Rb is 6.8 GHz, which is much larger than the laser linewidth. As such, there

is an additional laser resonant with the |F = 1⟩ → |F ′ = 2⟩ D2 transition to pump

atoms that have fallen out of the cooling cycle back in, which we denote the repump

laser.

Locking both lasers to the correct frequency, and keeping them stable to within

300 kHz is accomplished through saturated absorption spectroscopy [12]. This is a

conventionally used technique in which the spectrum from a warm vapour cell is used

in a proportional-integral-derivative (PID) feedback circuit to frequency stabilize

Chapter 2 11 Logan W. Cooke



Artificial Gauge Fields in Ultracold Atomic Ensembles Section 2.1

lasers to the relevant transition. The technique allows us to resolve individual atomic

transitions up to the natural linewidth, allowing us to not only select the right

wavelength, but to stabilize them to the desired precision as well.

We use saturated absorption spectroscopy to lock the repump laser to the indi-

cated repump transition, and then use a beat-note locking system to lock the cooling

laser ≈ 6.8 GHz away. This is done by interfering the repump and cooling beams on

a photodiode, and using PID feedback to match their beat frequency to a reference

signal. The particular lock frequency may be controlled remotely by changing the

reference signal, and is used throughout the cooling procedure at various points de-

scribed below to tune the specific laser frequency. Once a laser is set to the correct

resonant frequency ω, acousto-optical modulators (AOMs) are used to precisely tune

the frequency of each particular beam with respect to one another, within a range

of ω ± 160 MHz.

To load atoms into the science chamber and cool them, the push beam and 2D

MOT are enabled during the entire Doppler cooling stage of the 3D MOT, which

lasts approximately 15 s. We use close to the maximum available power in each

of the four 2D and six 3D MOT beams, which is about 20 mW per beam (the 2D

MOT typically requires more, since it has large elliptical beams). During this time,

the large coils are used to provide a magnetic field gradient. We are typically able

to collect about 109 atoms at a temperature of about 500 µK [6]. This is higher

than even the Doppler cooling limit, since the presence of magnetic fields reduces

the efficiency of sub-Doppler cooling processes, and the trapping forces in a MOT

also apply to atoms which are already cool thus increasing the overall expected

temperature. The trade off, though, is significantly more atoms that may be held

for longer.

Following the MOT cycle, which is optimized for Doppler cooling processes and

trapping, we further reduce the ensemble temperature by optimizing the sub-Doppler

cooling processes. The gradient coils are turned off, and the bias coils are tuned

such that they approximately cancel ambient magnetic fields. The sub-Doppler

processes depend on the standing wave wavelength; longer (shorter) wavelengths

cool faster (slower) atoms more efficiently. As such, the cooling laser frequency is

linearly scanned from a lower frequency to higher, which first cools the faster atoms,

gradually optimizing for the slowest. This results in a much higher cooling efficiency

overall. The entire process takes 20 ms, and captures approximately all of the MOT

atoms, reducing their temperature to about 50 µK [6].
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2.1.3 Forced RF-Evaporation in an MT

Following the 3D MOT, we load atoms into a magnetic trap (MT). Magnetic

fields split atomic energies through the Zeeman effect by an amount

V = gFµBmFB, (2.1)

according to the magnetic sublevels mF , where gF is the total angular momentum

g-factor, µB the Bohr magneton, and B the applied magnetic field amplitude (see

Sec. 2.2.1 for more details). When there is a magnetic field gradient, the energies

depend on space, and hence a trapping (or anti-trapping) force may result, depend-

ing on the sign of gFmF ; for gFmF > 0 atoms seek the magnetic field minimum, and

for gFmF < 0 the maximum. Atoms in the MOT fill all mF levels of the F = 2 hy-

perfine ground state, which has gF = 1/2. The large coils in our apparatus produce

a quadrupole gradient, and so atoms in the mF = 1, 2 states are trapped, while the

mF = −1, −2 states are anti-trapped, and mF = 0 is approximately unaffected.

To trap as many atoms from the MOT as possible, we must prepare the atoms

in the ground state mF = 2 sublevel, which experiences the strongest trapping

potential. This is done with optical pumping [11–13]; a laser addressing the D2

F = 2 → F ′ = 2 transition with circular polarization is applied for about 1 ms,

affecting repeated σ+ transitions in the atoms, pumping them all into the mF = 2

ground state.

In the MOT, the applied gradient is fairly weak, only about 11 G/cm in our

case [6]; this is because the trapping effect in a MOT comes from the interactions

with the lasers, not the magnetic gradient itself. This gradient is produced with

only 26 A flowing through the coil, at 1 V. After optical pumping, we ramp this

gradient up to 27 G/cm [6], which may be accomplished with 65 A of current at

about 2.5 V. This gradient is sufficient to hold the mF = 2 atoms against gravity,

but not the mF = 1 atoms. The ensemble is held in this trap for 100 ms, allowing

the few atoms which remain in other mF levels to fall away from the trap.

Following this stage, the trap is compressed further by ramping up the current

significantly. We apply a gradient of 176 G/cm [6], with 430 A at 15 V. This

drastically increases the atomic density to the point that rate of collisions within

the gas is enough start the forced RF-evaporation.

High-velocity atoms have sufficient kinetic energy to climb the trapping potential,

moving further out from the trap center. Due to the energy splitting from the

Zeeman effect, the energy difference between the various mF levels thus depends on

the distance away from the trap center. An RF coil, is used to drive transitions

directly between adjacent mF levels within the F = 2 ground state manifold, by
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producing an oscillating magnetic field on resonance with the Zeeman splitting (See

Sec. 2.2.1 for details on this coupling mechanism). In this way, we selectively remove

atoms in a particular energy class by coupling them to the anti-trapped mF levels,

just by driving an RF coil at a chosen frequency.

To perform evaporation in this way, we linearly ramp the carrier frequency of an

RF coil aligned along the z-axis of the system (Fig. 2.1) from 25 MHz to 1 MHz,

over about 6.5 s. The high velocity atoms are removed from the trap by the RF

radiation, leaving those remaining to collide and re-thermalize, thus reducing the

overall temperature of the ensemble. As the frequency of the RF drive is reduced,

the temperature is reduced. At the end of the RF evaporation stage, roughly 106

atoms remain, with a temperature of about 10 µK [6].

2.1.4 Evaporation in an ODT

The final stage of the cooling procedure is evaporation in an optical-dipole trap

(ODT). Atoms are trapped at the intersection of two orthogonal laser fields through

the ac Stark shift [11, 12]. The ground state atomic energies are shifted in the

presence of electric fields (See Sec. 2.2.2), and so atoms may be trapped in the

intensity gradients of focused lasers. When the lasers are red-detuned from an

atomic transition, atoms are attracted to the high-intensity regions of the beam. If

the chosen laser is too close to resonance, while it may produce a strong trapping

force for even modest powers, the scattering from off-resonant absorption processes

produces significant heating effects, reducing the trapping lifetime. For this reason,

it is common to use a highly detuned laser for optical trapping, where the lower

trapping potential is offset by high laser powers.

In our case, we use an intensity-stabilized 1064 nm laser, far detuned from both

the D1 and D2 lines, with approximately 2.2 W of power in each of the two trapping

beams. These beams are derived from the same fiber laser with a 10 W total output.

The ability for these beams to trap atoms may be quantified in terms of the trap

depth, which is often given in units of temperature. It is defined by the minimum

energy atoms would need in order to escape the trap potential. For an ODT derived

by lasers with total power P and beam waist w0, the trap depth is [16],

VODT =
ℏΓ2

2

P

πw2
0I0∆

, (2.2)

where Γ is the natural linewidth of the addressed transition. The saturation intensity

I0 is given by,

I0 =
π2hcΓ

3λ3
, (2.3)
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where λ is the trapping laser wavelength. Finally, ∆ is the effective laser detuning,

given by,
1

∆
=

1

∆1

+
2

∆2

, (2.4)

with ∆1, ∆2 the detuning from the D1, D2 lines respectively.

The ODT beams in our system are focused to beam waists of about 70 µm.

They are aligned to a region several micrometers below the MT center, and made to

intersect. The saturation intensity of 87Rb is I0 = 16.7 W/m2 for the D2 line [16],

and the effective detuning of the 1064 nm laser is ∆ = 33.4 THz. This results

in a trap depth (Eq. 2.2) of approximately VODT/kB = 65 µK, far above the final

temperature of the atoms within the MT.

To load the ODT, the beams are ramped linearly to full power over about 4 s at

the start of the RF evaporation stage. Following the RF frequency ramp, the MT is

decompressed by linearly ramping down the coil current to zero in 0.9 s, transferring

atoms into the ODT.

Once loaded, atoms are permitted to evaporate from the ODT similar to the

forced RF evaporation described before (Sec. 2.1.3). In this case, the ODT beam

power is gradually reduced, lowering the trap depth. The higher velocity atoms

have sufficient kinetic energy to escape the trap, leaving the lower velocity atoms

to collide and re-thermalize. The ODT evaporation stage is done in two stages; the

first is an exponential ramp from full power to about 20% power, followed by a linear

ramp to about 13% power [6]. The entire process takes between 2-4 s.

Following the exponential power ramp, atoms are still too hot to have Bose-

condensed. It is during the linear ramp where the ensemble temperature becomes low

enough to observe signs of quantum degeneracy. In both stages, atoms are imaged

at long time-of-flight values, about 20 ms, in order to let the thermal background

expand away from atoms which have condensed.

The key signature of atoms macroscopically filling their ground state is a bi-

modal density distribution. Thermal atoms follow a Gaussian density distribution,

while a BEC approximately follows an inverted parabola (see Sec. 3.2.2) [9], which

is more narrow than the thermal distribution. As the final power of the ODT beams

is lowered, the emergence of a narrow parabolic peak above a Gaussian background

may be observed, until eventually the Gaussian background is negligible, resulting

in a BEC of > 95% purity. The BECs we produce typically have about 104 to 105

atoms. The temperature of the remaining thermal background is less than 40 nK.

Atoms may be held in the ODT for > 5 s without significant losses, which permits

a vast array of potential experiments with varying duration.
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2.2 Dressed Atomic Ensembles

In most ultracold atom experiments, the key means through which the atomic

Hamiltonian is engineered is by external radiation, be it a laser or other field. Ultra-

cold atoms are prepared in ultrahigh vacuum chambers, typically suspended either

by a magnetic field or laser field (as in an optical dipole trap, see Sec. 2.1). Therefore,

essentially the only way to manipulate them is through external fields, with ultra-

cold mixtures being the exception [17, 18]. As such, it is important we understand

how these ensembles interact with radiation.

In this section we do not aim to provide a general description, but will instead

focus on the relevant case of alkali atoms being driven by oscillating fields near

an atomic resonance, colloquially referred to as dressing. We concern ourselves

with transitions within a single hyperfine manifold F , between the sublevels mF =

0,±1, ...± F . In particular we will first look at magnetic dipole transitions, driven

through RF magnetic fields. We then find that electric dipole transitions from

lasers, detuned from excited state resonances, may be treated in a similar way (with

different selection rules, of course), and look at the case of bichromatic lasers driving

Raman transitions.

2.2.1 RF Dressing

Consider the Hamiltonian for an atom with magnetic moment µ̂ in an external

magnetic field B,

Ĥ = −µ̂ ·B. (2.5)

The total magnetic moment of the atom contains contributions from the electronic

orbital angular momentum, spin, and the nuclear magnetic moment. We will assume

that magnetic fields are weak, such that ⟨Ĥ⟩ does not exceed the atomic hyperfine

splitting; we may therefore use the projection theorem to project it along the total

angular momentum F̂ [12, 19], yielding,

Ĥ = gFµBB · F̂ , (2.6)

with µB the Bohr magneton, and gF the total angular momentum g-factor. This

Hamiltonian therefore describes the effect of the magnetic field B on magnetic sub-

levels mF within the hyperfine manifold F . Note that the angular momentum op-

erators, such as F̂, have units of ℏ.
For time-independent fields, Eq. 2.6 is the Hamiltonian describing the linear

Zeeman effect. Assuming the magnetic field is B = Bzez (using the conventional

notation in atomic physics for the unit vector along direction k as ek), the Zeeman
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energy for an atom in state |mF ⟩ is,

ℏωZ = gFµBmFBz. (2.7)

The linear Zeeman effect is used in experiment to split spins in energy through an

applied magnetic field, or bias field, to create the resonance conditions for the time-

dependent fields that follow. For alkali atoms the ground-state hyperfine splitting

is about 1 GHz, in the microwave regime, and the Zeeman shifts typically seen in

experiment are at radio-frequencies of about 1 MHz. The higher-order correction

to the linear splitting, known as the quadratic Zeeman effect, is briefly covered in

App. A.

We will now look at the effects of a time-dependent magnetic field, driving tran-

sitions between magnetic sublevels within a single F manifold. A bias field is applied

along the z-axis, inducing a splitting ℏωZ. In addition to the static field, we apply a

time-dependent magnetic field, B = B(t), with a frequency close to resonance with

the level-splitting. An oscillating magnetic field is applied with amplitude B(t) and

frequency ωRF, which has the form,

BRF(t) = B(t) sin [ωRFt+ ϕ(t)] ex, (2.8)

where ϕ(t) is a time-dependent phase. We have allowed both the amplitude and

phase of this field to vary in time, for generality. Substituting this into Eq. 2.6,

together with the bias field providing the splitting ℏωZ, we obtain the Hamiltonian,

ĤRF = Ω(t) sin [ωRFt+ ϕ(t)] F̂ x + ωZF̂ z, (2.9)

where

Ω(t) =
⟨mF |gFµBB(t)|mF ± 1⟩

ℏ
, (2.10)

is the Rabi frequency, defined through the coupling matrix element for adjacent mF

levels. A schematic of this coupling scheme for an arbitrary F manifold is shown in

Fig. 2.2, where the coupling is between adjacent levels.

Typically, the coupling strength Ω ≪ ωRF, ωZ, and so it is convenient to trans-

form into a basis rotating with the frequency of the driving field, called the rotating

frame. More specifically, since we are allowing the driving field’s phase ϕ(t) to vary

in time, we will choose a basis rotating at frequency ωRF + ∂tγ(t), where γ(t) is an

arbitrary phase which may include some or all frequency modulation terms in ϕ(t);

this gives us the freedom to choose a basis in which the terms in ϕ(t) show up as

either frequency or phase shifts, which will be useful later in Ch. 5. The Hamiltonian
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Figure 2.2: Energy level diagram for RF-dressing scheme, in arbitrary spin manifold F .
Adjacent mF levels are split by ℏωZ by a bias magnetic field, and coupled by an oscillating
field that is detuned from resonance by frequency δ. The driving field couples atoms with
Rabi frequency Ω, and phase ϕ. This figure was adapted from Ref. [2].

(Eq. 2.9) transforms according to,

ĤR = Û
†
ĤRFÛ − iÛ

†
∂tÛ , (2.11)

with the unitary

Û(t) = exp

{︃
−i [ωRFt+ γ(t)]

ℏ
F̂ z

}︃
. (2.12)

It is convenient to express the Hamiltonian (Eq. 2.6) in terms of the raising and

lowering operators, F̂ x =
(︂
F̂+ + F̂−

)︂
/2, using that (App. B),

Û
†
F̂ zÛ = F̂ z, (2.13)

Û
†
F̂±Û = e±i(ωRFt+γ)F̂±. (2.14)

The F̂ z operator is completely unchanged by Û since they commute, and so the spin

eigenstates are still a good representation of the system; this is quite convenient.

We find that (temporarily removing the explicit time-dependencies),

ĤR = Û
†
[︃
Ω

2
sin (ωRFt+ ϕ)

(︂
F̂+ + F̂−

)︂
+ ωZF̂ z

]︃
Û − iÛ † [︂−i (ωRF + ∂tγ) F̂ z

]︂
Û ,

=
iΩ

4

{︂[︁
ei(γ−ϕ) − ei(2ωRFt+γ+ϕ)

]︁
F̂+ +

[︁
e−i(2ωRFt+γ+ϕ) − e−i(γ−ϕ)

]︁
F̂−

}︂
+ [ωZ − (ωRF + ∂tγ)] F̂ z. (2.15)

Since the coupling strength Ω≪ ωRF, ωZ, we may apply the rotating wave approxi-
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mation [20], ignoring terms which rotate at 2ωRF. This leaves

ĤR ≃
iΩ

4

[︂
ei(γ−ϕ)F̂+ − e−i(γ−ϕ)F̂−

]︂
+ δF̂ z, (2.16)

δ = ωZ − (ωRF + ∂tγ) . (2.17)

Rewriting this in terms of the spin operators again, using that F̂± = F̂ x ± iF̂ y, we

find,

ĤR =
iΩ

4

[︂
ei(γ−ϕ)

(︂
F̂ x + iF̂ y

)︂
− e−i(γ−ϕ)

(︂
F̂ x − iF̂ y

)︂]︂
+ δF̂ z,

=
Ω

2

{︃
i

2

[︁
ei(γ−ϕ) − e−i(γ−ϕ)

]︁
F̂ x −

1

2

[︁
ei(γ−ϕ) + e−i(γ−ϕ)

]︁
F̂ y

}︃
+ δF̂ z. (2.18)

Finally, simplifying the complex exponentials and re-inserting the explicit time-

dependencies, we have,

ĤR(t) =
Ω(t)

2

{︂
sin [ϕ(t)− γ(t)] F̂ x − cos [ϕ(t)− γ(t)] F̂ y

}︂
+ δ(t)F̂ z. (2.19)

The Hamiltonian (Eq. 2.19) describes the coupling of magnetic sublevels within

the hyperfine manifold F , from a magnetic field with time-dependent amplitude and

phase (frequency). Due to the linear nature of the Zeeman splitting, this Hamil-

tonian is expressed in terms of the spin algebra, and therefore generates transfor-

mations in SU(2). The field amplitude Ω(t) controls the coupling strength, as it

multiplies the F̂ x and F̂ y terms, while the phase ϕ(t) controls the phase of the

coupling, tuning between F̂ x and F̂ y. The frequency of the field with respect to

the Zeeman resonance, called the detuning δ(t), controls the dressed-state energies,

through the F̂ z term. We can see several example numerical simulations for different

choices of these parameters in Fig. 2.3, demonstrating how this Hamiltonian may

be used to generate interesting dynamics withing the spin manifold. This includes

an example state-preparation scheme, adiabatic rapid passage, in which an adia-

batic change in the detuning through resonance may be used to efficiently transfer

population from one state to another, as shown in Fig.2.3(c).

The arbitrary phase term γ(t) in Eq. 2.19 gives us some flexibility in choosing our

basis. For instance, in the case where we have frequency modulation, we may choose

γ(t) appropriately so that the modulation appears in the Hamiltonian (Eq. 2.19)

either as a frequency detuning in δ(t), or as a time-dependent phase; both cases are

equivalent, but in certain scenarios one may be a more convenient representation

than the other.
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Figure 2.3: Example numerical solutions to Eq. 2.19, showing how the populations in each
mF level evolve over time. (a) Rabi oscillations in an F = 1 manifold, with Ω(t) = Ω0,
ϕ(t) = 0, and δ(t) = 0. Evolution of the spins is shown in the F̂ z eigenbasis, over the dura-
tion T = 10π/Ω0. (b) The effect of amplitude modulation, with Ω(t) = πΩ0 sin (Ω0t/10),
ϕ(t) = 0, and δ(t) = 0. The coupling strength is initially off, brought to a maximum of
πΩ0 at t = T/2, and is then slowly reduced again until it is completely off at time T . (c)
Simulation of adiabatic rapid passage [21–23], plotted on the Bloch-sphere for an F = 1/2
manifold. The coupling strength and phase are kept constant, Ω(t) = Ω0, and ϕ(t) = 0,
while the detuning is varied as δ(t) = δ0 sinh [(t− T/2) /30], with δ0 = 10Ω0. In this case,
the detuning is therefore slowly varied from an initially large (with respect to Ω0) positive
value to a large negative value. The effect is that the eigenstates adiabatically follow the
Hamiltonian, mapping |mF = +1/2⟩ → |mF = −1/2⟩, and vice versa. This demonstrates
an effective way prepare different states with high fidelity and robustness to noise.
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2.2.2 Raman Dressing

Similar to the case of RF-dressing above, we may use laser fields to generate a

similar Hamiltonian to that in Eq. 2.19. With RF-dressing, time-dependent mag-

netic fields were used to directly couple mF levels through a magnetic-dipole tran-

sition. Here, lasers induce electric dipole transitions, and due to selection rules

may not directly couple the magnetic sublevels [12]. Instead, an effective coupling

between mF levels may be produced through intermediate excited states, by the

absorption of light from one laser, and stimulated emission by the other; this is

therefore a coherent process. Two or more laser fields with appropriate polariza-

tions may couple mF levels through a mutual excited state; if the lasers are de-

tuned far from resonance with the excited state transition, the upper level may be

adiabatically eliminated [20], allowing us to neglect them (although, losses due to

spontaneous emission may be significant and are not properly considered in this

reduced model [24]). Transitions of this nature are often refereed to as two-photon

Raman transitions, as the coherence between ground state levels is produced by the

absorption and stimulated emission of two laser modes, though quantization of the

fields is not necessary to describe the process.

In contrast to the RF-dressing discussed earlier, Raman dressing has several dis-

tinct differences. Electric-dipole transitions are much stronger than magnetic-dipole

transitions, and therefore much larger Rabi frequencies (Eq. 2.10) may be obtained,

with even modest laser powers. Furthermore, due to various combinations of beam

polarizations, couplings between different sets of mF levels may be engineered. Two

common coupling schemes are shown in Fig. 2.4. The M -scheme, Fig. 2.4(a), uses

one beam to induce either σ+ or σ− transitions, and another to induce π transitions,

in order to couple adjacent mF levels. Similarly, the Λ-scheme, Fig. 2.4(b), uses two

beams with opposite circular polarizations to couple an mF level with a mF ± 2

level.

Perhaps the most important distinction between RF-dressing and Raman dress-

ing is the significant momentum transferred to atoms from laser fields; this can be

safely ignored in the former, but must be accounted for in the latter. To illustrate

this, consider the recoil energy ER = ℏ2k2/2m imparted on an atom through a sin-

gle scattering event with light having wavenumber k. To get some rough numbers,

we assume a mass of m = 10−26 kg, which is close to the mass of a Li atom, the

lightest alkali to be Bose-condensed. For a 1 MHz RF carrier k ≈ 0.02 m−1 and so

ER/h ≈ 10−12 Hz. Conversely, for a laser with wavelength λ = 1000 nm, k ≈ 6×106

m−1, which yields ER/h ≈ 100 kHz. The relevant energy scale of a BEC with which

to make a comparison is the chemical potential µ, which is typically of the order

µ/h ≈ 1 kHz. As such, we can see that the Raman transitions impart significant mo-
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(b)(a) <latexit sha1_base64="+lgdl7/DmMotwGcOu5FWZm7v/2Y=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoOQU9gVX8eAIB4jmAcma5iddJIhs7PLzKwQlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8Hoeuo3n1BpHsl7M47RD+lA8j5n1Fjp4eYx7cSKhzjpFktuxZ2BLBMvIyXIUOsWvzq9iCUhSsME1brtubHxU6oMZwInhU6iMaZsRAfYtlTSELWfzi6ekBOr9Eg/UrakITP190RKQ63HYWA7Q2qGetGbiv957cT0r/yUyzgxKNl8UT8RxERk+j7pcYXMiLEllClubyVsSBVlxoZUsCF4iy8vk8ZpxbuonN+dlarlLI48HMExlMGDS6jCLdSgDgwkPMMrvDnaeXHenY95a87JZg7hD5zPH7mtkOM=</latexit>

F 0 <latexit sha1_base64="+lgdl7/DmMotwGcOu5FWZm7v/2Y=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoOQU9gVX8eAIB4jmAcma5iddJIhs7PLzKwQlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8Hoeuo3n1BpHsl7M47RD+lA8j5n1Fjp4eYx7cSKhzjpFktuxZ2BLBMvIyXIUOsWvzq9iCUhSsME1brtubHxU6oMZwInhU6iMaZsRAfYtlTSELWfzi6ekBOr9Eg/UrakITP190RKQ63HYWA7Q2qGetGbiv957cT0r/yUyzgxKNl8UT8RxERk+j7pcYXMiLEllClubyVsSBVlxoZUsCF4iy8vk8ZpxbuonN+dlarlLI48HMExlMGDS6jCLdSgDgwkPMMrvDnaeXHenY95a87JZg7hD5zPH7mtkOM=</latexit>

F 0

<latexit sha1_base64="SvBnEfoprYEs/05PwPorMXqFvZs=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovQVUnE17Lixp0V7AOaECbTaTt0ZhJmJkII8VfcuFDErR/izr9x0mah1QMDh3Pu5Z45Ycyo0o7zZVVWVtfWN6qbta3tnd09e/+gp6JEYtLFEYvkIESKMCpIV1PNyCCWBPGQkX44uy78/gORikbiXqcx8TmaCDqmGGkjBXbdu+VkgoLM40hPJc+u8jywG07LmQP+JW5JGqBEJ7A/vVGEE06ExgwpNXSdWPsZkppiRvKalygSIzxDEzI0VCBOlJ/Nw+fw2CgjOI6keULDufpzI0NcqZSHZrKIqJa9QvzPGyZ6fOlnVMSJJgIvDo0TBnUEiybgiEqCNUsNQVhSkxXiKZIIa9NXzZTgLn/5L+mdtNzz1tndaaPdLOuogkNwBJrABRegDW5AB3QBBil4Ai/g1Xq0nq03630xWrHKnTr4BevjGzcolRM=</latexit>

⌦A

<latexit sha1_base64="r1Ibp0vAhIxd2ah683goWbC9aYc=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovQVUnE17Loxp0V7AOaECbTaTt0ZhJmJkII8VfcuFDErR/izr9x0mah1QMDh3Pu5Z45Ycyo0o7zZVVWVtfWN6qbta3tnd09e/+gp6JEYtLFEYvkIESKMCpIV1PNyCCWBPGQkX44uy78/gORikbiXqcx8TmaCDqmGGkjBXbdu+VkgoLM40hPJc+u8jywG07LmQP+JW5JGqBEJ7A/vVGEE06ExgwpNXSdWPsZkppiRvKalygSIzxDEzI0VCBOlJ/Nw+fw2CgjOI6keULDufpzI0NcqZSHZrKIqJa9QvzPGyZ6fOlnVMSJJgIvDo0TBnUEiybgiEqCNUsNQVhSkxXiKZIIa9NXzZTgLn/5L+mdtNzz1tndaaPdLOuogkNwBJrABRegDW5AB3QBBil4Ai/g1Xq0nq03630xWrHKnTr4BevjGziulRQ=</latexit>

⌦B

<latexit sha1_base64="vrbo6I8CM8CoWK/iS0hjxv2YFqU=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYhByCrvi6xjQg8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36Hnfzsrq2vrGZmGruL2zu7dfOjhsGpVqyhpUCaXbITFMcMkayFGwdqIZiUPBWuHoZuq3npg2XMkHHCcsiMlA8ohTglZqdm+ZQNIrlb2qN4O7TPyclCFHvVf66vYVTWMmkQpiTMf3EgwyopFTwSbFbmpYQuiIDFjHUkliZoJsdu3EPbVK342UtiXRnam/JzISGzOOQ9sZExyaRW8q/ud1Uoyug4zLJEUm6XxRlAoXlTt93e1zzSiKsSWEam5vdemQaELRBlS0IfiLLy+T5lnVv6xe3J+Xa5U8jgIcwwlUwIcrqMEd1KEBFB7hGV7hzVHOi/PufMxbV5x85gj+wPn8AVv6juw=</latexit>

�
<latexit sha1_base64="vrbo6I8CM8CoWK/iS0hjxv2YFqU=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYhByCrvi6xjQg8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36Hnfzsrq2vrGZmGruL2zu7dfOjhsGpVqyhpUCaXbITFMcMkayFGwdqIZiUPBWuHoZuq3npg2XMkHHCcsiMlA8ohTglZqdm+ZQNIrlb2qN4O7TPyclCFHvVf66vYVTWMmkQpiTMf3EgwyopFTwSbFbmpYQuiIDFjHUkliZoJsdu3EPbVK342UtiXRnam/JzISGzOOQ9sZExyaRW8q/ud1Uoyug4zLJEUm6XxRlAoXlTt93e1zzSiKsSWEam5vdemQaELRBlS0IfiLLy+T5lnVv6xe3J+Xa5U8jgIcwwlUwIcrqMEd1KEBFB7hGV7hzVHOi/PufMxbV5x85gj+wPn8AVv6juw=</latexit>

�

<latexit sha1_base64="SvBnEfoprYEs/05PwPorMXqFvZs=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovQVUnE17Lixp0V7AOaECbTaTt0ZhJmJkII8VfcuFDErR/izr9x0mah1QMDh3Pu5Z45Ycyo0o7zZVVWVtfWN6qbta3tnd09e/+gp6JEYtLFEYvkIESKMCpIV1PNyCCWBPGQkX44uy78/gORikbiXqcx8TmaCDqmGGkjBXbdu+VkgoLM40hPJc+u8jywG07LmQP+JW5JGqBEJ7A/vVGEE06ExgwpNXSdWPsZkppiRvKalygSIzxDEzI0VCBOlJ/Nw+fw2CgjOI6keULDufpzI0NcqZSHZrKIqJa9QvzPGyZ6fOlnVMSJJgIvDo0TBnUEiybgiEqCNUsNQVhSkxXiKZIIa9NXzZTgLn/5L+mdtNzz1tndaaPdLOuogkNwBJrABRegDW5AB3QBBil4Ai/g1Xq0nq03630xWrHKnTr4BevjGzcolRM=</latexit>

⌦A

<latexit sha1_base64="r1Ibp0vAhIxd2ah683goWbC9aYc=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovQVUnE17Loxp0V7AOaECbTaTt0ZhJmJkII8VfcuFDErR/izr9x0mah1QMDh3Pu5Z45Ycyo0o7zZVVWVtfWN6qbta3tnd09e/+gp6JEYtLFEYvkIESKMCpIV1PNyCCWBPGQkX44uy78/gORikbiXqcx8TmaCDqmGGkjBXbdu+VkgoLM40hPJc+u8jywG07LmQP+JW5JGqBEJ7A/vVGEE06ExgwpNXSdWPsZkppiRvKalygSIzxDEzI0VCBOlJ/Nw+fw2CgjOI6keULDufpzI0NcqZSHZrKIqJa9QvzPGyZ6fOlnVMSJJgIvDo0TBnUEiybgiEqCNUsNQVhSkxXiKZIIa9NXzZTgLn/5L+mdtNzz1tndaaPdLOuogkNwBJrABRegDW5AB3QBBil4Ai/g1Xq0nq03630xWrHKnTr4BevjGziulRQ=</latexit>

⌦B

<latexit sha1_base64="Ut0/8PipP8xMGX5D/1NpQmxk9wE=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoOQU9gVX8eAF48RzAOSJczO9iZjZmeWmVkhhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXmHKmjed9O4W19Y3NreJ2aWd3b/+gfHjU0jJTFJtUcqk6IdHImcCmYYZjJ1VIkpBjOxzdzvz2EyrNpHgw4xSDhAwEixklxkqtXoTckH654tW8OdxV4uekAjka/fJXL5I0S1AYyonWXd9LTTAhyjDKcVrqZRpTQkdkgF1LBUlQB5P5tVP3zCqRG0tlSxh3rv6emJBE63ES2s6EmKFe9mbif143M/FNMGEizQwKulgUZ9w10p297kZMITV8bAmhitlbXTokilBjAyrZEPzll1dJ67zmX9Uu7y8q9WoeRxFO4BSq4MM11OEOGtAECo/wDK/w5kjnxXl3PhatBSefOYY/cD5/AIz6jww=</latexit>

�
<latexit sha1_base64="Ut0/8PipP8xMGX5D/1NpQmxk9wE=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoOQU9gVX8eAF48RzAOSJczO9iZjZmeWmVkhhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXmHKmjed9O4W19Y3NreJ2aWd3b/+gfHjU0jJTFJtUcqk6IdHImcCmYYZjJ1VIkpBjOxzdzvz2EyrNpHgw4xSDhAwEixklxkqtXoTckH654tW8OdxV4uekAjka/fJXL5I0S1AYyonWXd9LTTAhyjDKcVrqZRpTQkdkgF1LBUlQB5P5tVP3zCqRG0tlSxh3rv6emJBE63ES2s6EmKFe9mbif143M/FNMGEizQwKulgUZ9w10p297kZMITV8bAmhitlbXTokilBjAyrZEPzll1dJ67zmX9Uu7y8q9WoeRxFO4BSq4MM11OEOGtAECo/wDK/w5kjnxXl3PhatBSefOYY/cD5/AIz6jww=</latexit>

�

<latexit sha1_base64="Ut0/8PipP8xMGX5D/1NpQmxk9wE=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoOQU9gVX8eAF48RzAOSJczO9iZjZmeWmVkhhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXmHKmjed9O4W19Y3NreJ2aWd3b/+gfHjU0jJTFJtUcqk6IdHImcCmYYZjJ1VIkpBjOxzdzvz2EyrNpHgw4xSDhAwEixklxkqtXoTckH654tW8OdxV4uekAjka/fJXL5I0S1AYyonWXd9LTTAhyjDKcVrqZRpTQkdkgF1LBUlQB5P5tVP3zCqRG0tlSxh3rv6emJBE63ES2s6EmKFe9mbif143M/FNMGEizQwKulgUZ9w10p297kZMITV8bAmhitlbXTokilBjAyrZEPzll1dJ67zmX9Uu7y8q9WoeRxFO4BSq4MM11OEOGtAECo/wDK/w5kjnxXl3PhatBSefOYY/cD5/AIz6jww=</latexit>

�
<latexit sha1_base64="Ut0/8PipP8xMGX5D/1NpQmxk9wE=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoOQU9gVX8eAF48RzAOSJczO9iZjZmeWmVkhhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXmHKmjed9O4W19Y3NreJ2aWd3b/+gfHjU0jJTFJtUcqk6IdHImcCmYYZjJ1VIkpBjOxzdzvz2EyrNpHgw4xSDhAwEixklxkqtXoTckH654tW8OdxV4uekAjka/fJXL5I0S1AYyonWXd9LTTAhyjDKcVrqZRpTQkdkgF1LBUlQB5P5tVP3zCqRG0tlSxh3rv6emJBE63ES2s6EmKFe9mbif143M/FNMGEizQwKulgUZ9w10p297kZMITV8bAmhitlbXTokilBjAyrZEPzll1dJ67zmX9Uu7y8q9WoeRxFO4BSq4MM11OEOGtAECo/wDK/w5kjnxXl3PhatBSefOYY/cD5/AIz6jww=</latexit>

�

<latexit sha1_base64="gEwetz+ydb56zAgVzCvcjdpN7kw=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovQVUnE17LgxmUF+8AmhMl00g6dyYSZiRBC/RU3LhRx64e482+ctFlo64GBwzn3cs+cMGFUacf5tipr6xubW9Xt2s7u3v6BfXjUUyKVmHSxYEIOQqQIozHpaqoZGSSSIB4y0g+nN4XffyRSURHf6ywhPkfjmEYUI22kwK57gpMxCnKPIz2RPH+YzQK74bScOeAqcUvSACU6gf3ljQROOYk1Zkipoesk2s+R1BQzMqt5qSIJwlM0JkNDY8SJ8vN5+Bk8NcoIRkKaF2s4V39v5IgrlfHQTBYR1bJXiP95w1RH135O4yTVJMaLQ1HKoBawaAKOqCRYs8wQhCU1WSGeIImwNn3VTAnu8pdXSe+s5V62Lu7OG+1mWUcVHIMT0AQuuAJtcAs6oAswyMAzeAVv1pP1Yr1bH4vRilXu1MEfWJ8/j96VTA==</latexit>

!Z
<latexit sha1_base64="gEwetz+ydb56zAgVzCvcjdpN7kw=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovQVUnE17LgxmUF+8AmhMl00g6dyYSZiRBC/RU3LhRx64e482+ctFlo64GBwzn3cs+cMGFUacf5tipr6xubW9Xt2s7u3v6BfXjUUyKVmHSxYEIOQqQIozHpaqoZGSSSIB4y0g+nN4XffyRSURHf6ywhPkfjmEYUI22kwK57gpMxCnKPIz2RPH+YzQK74bScOeAqcUvSACU6gf3ljQROOYk1Zkipoesk2s+R1BQzMqt5qSIJwlM0JkNDY8SJ8vN5+Bk8NcoIRkKaF2s4V39v5IgrlfHQTBYR1bJXiP95w1RH135O4yTVJMaLQ1HKoBawaAKOqCRYs8wQhCU1WSGeIImwNn3VTAnu8pdXSe+s5V62Lu7OG+1mWUcVHIMT0AQuuAJtcAs6oAswyMAzeAVv1pP1Yr1bH4vRilXu1MEfWJ8/j96VTA==</latexit>

!Z

<latexit sha1_base64="n25ZXvJzVH6Ghr+hkgeYENX+dug=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMiCGE3+LoIAUE8RjAPSJYwO5lNhszMrjOzQljyE148KOLV3/Hm3zhJ9qCJBQ1FVTfdXUHMmTau++3klpZXVtfy64WNza3tneLuXkNHiSK0TiIeqVaANeVM0rphhtNWrCgWAafNYHgz8ZtPVGkWyQcziqkvcF+ykBFsrNQS3Vt0jU69brHklt0p0CLxMlKCDLVu8avTi0giqDSEY63bnhsbP8XKMMLpuNBJNI0xGeI+bVsqsaDaT6f3jtGRVXoojJQtadBU/T2RYqH1SAS2U2Az0PPeRPzPaycmvPJTJuPEUElmi8KEIxOhyfOoxxQlho8swUQxeysiA6wwMTaigg3Bm395kTQqZe+ifH5/VqoeZ3Hk4QAO4QQ8uIQq3EEN6kCAwzO8wpvz6Lw4787HrDXnZDP78AfO5w8eMI6j</latexit>

mF = +1
<latexit sha1_base64="n25ZXvJzVH6Ghr+hkgeYENX+dug=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMiCGE3+LoIAUE8RjAPSJYwO5lNhszMrjOzQljyE148KOLV3/Hm3zhJ9qCJBQ1FVTfdXUHMmTau++3klpZXVtfy64WNza3tneLuXkNHiSK0TiIeqVaANeVM0rphhtNWrCgWAafNYHgz8ZtPVGkWyQcziqkvcF+ykBFsrNQS3Vt0jU69brHklt0p0CLxMlKCDLVu8avTi0giqDSEY63bnhsbP8XKMMLpuNBJNI0xGeI+bVsqsaDaT6f3jtGRVXoojJQtadBU/T2RYqH1SAS2U2Az0PPeRPzPaycmvPJTJuPEUElmi8KEIxOhyfOoxxQlho8swUQxeysiA6wwMTaigg3Bm395kTQqZe+ifH5/VqoeZ3Hk4QAO4QQ8uIQq3EEN6kCAwzO8wpvz6Lw4787HrDXnZDP78AfO5w8eMI6j</latexit>

mF = +1
<latexit sha1_base64="/NfUc0WawRx/R0woFQhqk3XQvjg=">AAAB7nicbVDLSgMxFL3xWeur6tJNsCiuyoz42ggFQVxWsA9oh5JJM21okhmSjFCGfoQbF4q49Xvc+Tem7Sy09cCFwzn3cu89YSK4sZ73jZaWV1bX1gsbxc2t7Z3d0t5+w8SppqxOYxHrVkgME1yxuuVWsFaiGZGhYM1weDvxm09MGx6rRztKWCBJX/GIU2Kd1JTdO3yDvW6p7FW8KfAi8XNShhy1bumr04tpKpmyVBBj2r6X2CAj2nIq2LjYSQ1LCB2SPms7qohkJsim547xsVN6OIq1K2XxVP09kRFpzEiGrlMSOzDz3kT8z2unNroOMq6S1DJFZ4uiVGAb48nvuMc1o1aMHCFUc3crpgOiCbUuoaILwZ9/eZE0zir+ZeXi4bxcPcnjKMAhHMEp+HAFVbiHGtSBwhCe4RXeUIJe0Dv6mLUuoXzmAP4Aff4AtMeObQ==</latexit>

mF = 0
<latexit sha1_base64="/NfUc0WawRx/R0woFQhqk3XQvjg=">AAAB7nicbVDLSgMxFL3xWeur6tJNsCiuyoz42ggFQVxWsA9oh5JJM21okhmSjFCGfoQbF4q49Xvc+Tem7Sy09cCFwzn3cu89YSK4sZ73jZaWV1bX1gsbxc2t7Z3d0t5+w8SppqxOYxHrVkgME1yxuuVWsFaiGZGhYM1weDvxm09MGx6rRztKWCBJX/GIU2Kd1JTdO3yDvW6p7FW8KfAi8XNShhy1bumr04tpKpmyVBBj2r6X2CAj2nIq2LjYSQ1LCB2SPms7qohkJsim547xsVN6OIq1K2XxVP09kRFpzEiGrlMSOzDz3kT8z2unNroOMq6S1DJFZ4uiVGAb48nvuMc1o1aMHCFUc3crpgOiCbUuoaILwZ9/eZE0zir+ZeXi4bxcPcnjKMAhHMEp+HAFVbiHGtSBwhCe4RXeUIJe0Dv6mLUuoXzmAP4Aff4AtMeObQ==</latexit>

mF = 0

<latexit sha1_base64="1Th+rsIpjQTg/WXCEVUtgi+u+1g=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPixbAbfF2EgCAeI5gHJEuYncwmQ2Zm15lZISz5CS8eFPHq73jzb5wke9DEgoaiqpvuriDmTBvX/XZyS8srq2v59cLG5tb2TnF3r6GjRBFaJxGPVCvAmnImad0ww2krVhSLgNNmMLyZ+M0nqjSL5IMZxdQXuC9ZyAg2VmqJ7i26Rqdet1hyy+4UaJF4GSlBhlq3+NXpRSQRVBrCsdZtz42Nn2JlGOF0XOgkmsaYDHGfti2VWFDtp9N7x+jIKj0URsqWNGiq/p5IsdB6JALbKbAZ6HlvIv7ntRMTXvkpk3FiqCSzRWHCkYnQ5HnUY4oSw0eWYKKYvRWRAVaYGBtRwYbgzb+8SBqVsndRPr8/K1WPszjycACHcAIeXEIV7qAGdSDA4Rle4c15dF6cd+dj1ppzspl9+APn8wchOo6l</latexit>

mF = �1
<latexit sha1_base64="1Th+rsIpjQTg/WXCEVUtgi+u+1g=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPixbAbfF2EgCAeI5gHJEuYncwmQ2Zm15lZISz5CS8eFPHq73jzb5wke9DEgoaiqpvuriDmTBvX/XZyS8srq2v59cLG5tb2TnF3r6GjRBFaJxGPVCvAmnImad0ww2krVhSLgNNmMLyZ+M0nqjSL5IMZxdQXuC9ZyAg2VmqJ7i26Rqdet1hyy+4UaJF4GSlBhlq3+NXpRSQRVBrCsdZtz42Nn2JlGOF0XOgkmsaYDHGfti2VWFDtp9N7x+jIKj0URsqWNGiq/p5IsdB6JALbKbAZ6HlvIv7ntRMTXvkpk3FiqCSzRWHCkYnQ5HnUY4oSw0eWYKKYvRWRAVaYGBtRwYbgzb+8SBqVsndRPr8/K1WPszjycACHcAIeXEIV7qAGdSDA4Rle4c15dF6cd+dj1ppzspl9+APn8wchOo6l</latexit>

mF = �1

Figure 2.4: Example Raman coupling schemes for an F = 1 spin manifold, with ground
state Zeeman splitting ωZ. The mF levels are coupled through an intermediate excited
state manifold F ′, which has been adiabatically eliminated due to the large detuning ∆
of the Raman lasers. Each scheme consists of two laser fields with strengths ΩA and
ΩB, respectively. (a) Raman M -scheme, in which the polarization of the two laser fields
are such that one induces σ+ transitions, and the other π transitions. The result is a
uniform coupling in the entire ground state manifold. (b) Raman Λ-scheme, in which the
polarizations of the two lasers are such that they effect σ± transitions. Due to selection
rules, the mF = 0 level is completely decoupled; the result is a pseudospin-1/2 system,
comprised of the mF = ±1 levels.

mentum to the atoms, which must be accounted for here. This momentum transfer

will be useful in generating artificial gauge fields in Ch. 3.

Light Shifts as Effective Magnetic Fields

We begin by assuming that atoms in hyperfine manifold F are dressed by lasers

which are detuned from any excited states, such that the excited levels may be

adiabatically eliminated [20, 25], as described above. The atomic energies are altered

by the incident electric fields through the scalar and vector light shifts, according

to,

ĤLS = ûs (E
∗ ·E) +

iuv (E
∗ ×E)

ℏ
· Ĵ , (2.20)

where ûs = us1̂ and uv ∝ us are scalar and vector light shifts, respectively; they

are proportional to the ac polarizability of the atoms, which depends on the fine

structure [25]. We will refrain from providing a discussion of these coefficients, but

a detailed calculation may be found in Goldman et al. 2014 [25]; it is worth noting

that us, and uv have units of C2m2J−1, so each of the terms in ĤLS have the correct

units of energy.

The scalar light shift does not depend on the atomic state, while the vector light
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shift is given in terms of the total electronic angular momentum Ĵ . We will assume

instead that the vector shift acts on the total atomic angular momentum F̂, ignoring

the extra contributions from the nucleus Î [26]. In this way, the vector light shift

takes the form of the Zeeman Hamiltonian, Eq. 2.6, with the effective magnetic field,

Beff =
iuv (E

∗ ×E)

µBgJ
, (2.21)

where gJ is the total electronic angular momentum g-factor. In the presence of a

bias magnetic field B = B0ez, the Raman coupling Hamiltonian is therefore,

ĤL = ûs (E
∗ ·E) +

µBgF
ℏ

(B +Beff) · F̂. (2.22)

Bichromatic Laser Fields

Suppose we have two external laser fields with frequencies ω and ω + ω∆, which

we denote as Raman A and B, respectively. The total electric field produced by

these beams is,

E = EAe
−iωt +EBe

−i[(ω+ω∆)t+ϕ(t)], (2.23)

where the Raman B laser has a relative phase ϕ(t) with respect to the Raman A

beam; this may be accomplished by deriving both beams from the same laser, and

frequency modulating them, as is common. The amplitude and polarization of the

beams are contained within EA(r, t) and EB(r, t), which we will introduce later.

The effective magnetic field produced by the two lasers according to Eq. 2.21 is,

Beff = Bδ +BΩe
i(ω∆t+ϕ) +B∗

Ωe
−i(ω∆t+ϕ), (2.24)

where,

Bδ =
iuv
µBgJ

(E∗
A ×EA +E∗

B ×EB) , (2.25)

BΩ =
iuv
µBgJ

(E∗
B ×EA) . (2.26)

We will assume that the frequency difference between the lasers, ω∆, is close

to the mF level splitting, ωZ, provided by the bias field. As in the case of RF-

dressing, it is convenient to remove the dependence of ω∆ by changing into the

rotating frame, and applying the rotating wave approximation. As before (Eq.2.11),

the Hamiltonian ĤL (Eq. 2.22) transforms according to,

ĤR = Û
†
ĤLÛ − iℏÛ

†
∂tÛ , (2.27)
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with the unitary,

Û(t) = exp

{︃
−i [ω∆t+ γ(t)]

ℏ
F̂ z

}︃
, (2.28)

with γ(t) an arbitrary phase, as in the case of RF-dressing (Sec. 2.2.1).

We will once again take advantage of the raising and lowering operators, F̂±,

and F̂ z, which transform as (App. B)

Û
†
F̂ zÛ = F̂ z, (2.29)

Û
†
F̂±Û = e±i(ω∆t+γ)F̂±. (2.30)

Rewriting ĤL in terms of these operators, we have,

ĤL = ûs (E
∗ ·E) +

µBgF
2ℏ

(B +Beff) ·
[︂
(ex − iey) F̂+ + (ex + iey) F̂− + ezF̂ z

]︂
.

(2.31)

Computing the transformation (Eq. 2.11) yields,

ĤR = ûs (E
∗ ·E) +

µBgF
2ℏ

(B +Beff) ·
[︂
(ex − iey) e

i(ω∆t+γ)F̂+

+(ex + iey) e
−i(ω∆t+γ)F̂−

]︂
+
[︂µBgF

ℏ
(B +Beff) · ez − (ω∆ + ∂tγ)

]︂
F̂ z. (2.32)

Before applying the rotating wave approximation, we must substitute in the

expressions for E and Beff [20], which gives,

ĤR = ûs
(︁
E∗

A ·EA +E∗
B ·EB +E∗

A ·EBe
−i(ω∆t+ϕ) +E∗

B ·EAe
i(ω∆t+ϕ)

)︁
+
µBgF
2ℏ

[︂
Bδ · (ex − iey) e

i(ω∆t+γ)F̂+ +Bδ · (ex + iey) e
−i(ω∆t+γ)F̂−

+BΩ · (ex − iey) e
2iω∆tei(ϕ+γ)F̂+ +BΩ · (ex + iey) e

i(ϕ−γ)F̂−

+B∗
Ω · (ex − iey) e

−i(ϕ−γ)F̂+ +B∗
Ω · (ex + iey) e

−2iω∆te−i(ϕ+γ)F̂−

]︂
+
{︂µBgF

ℏ
[︁
B0 +Bδ · ez +BΩ · eze

i(ω∆t+ϕ) +B∗
Ω · eze

−i(ω∆t+ϕ)
]︁
− (ω∆ + ∂tγ)

}︂
F̂ z.

(2.33)

We then apply the rotating wave approximation, ignoring all terms which rotate

with frequency ω∆, 2ω∆, which leaves,

ĤR ≃ ûs (E
∗
A ·EA +E∗

B ·EB) +
µBgF
2ℏ

[︂
+BΩ · (ex + iey) e

i(ϕ−γ)F̂−

+B∗
Ω · (ex − iey) e

−i(ϕ−γ)F̂+

]︂
+
[︂µBgF

ℏ
(B0 +Bδ · ez)− (ω∆ + ∂tγ)

]︂
F̂ z. (2.34)
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Similar to the RF-dressing case, the detuning (Eq. 2.17) is then defined as,

δ(t) =
µBgF
ℏ

B0 − [ω∆ + ∂tγ(t)] , (2.35)

and the scalar light shift,

V̂s(r, t) = ûs (E
∗
A ·EA +E∗

B ·EB) . (2.36)

We may then write ĤR in a more compact form as,

ĤR = V̂s +Ω · F̂, (2.37)

with,

Ω · F̂ =
Ω∗

2
F̂+ +

Ω

2
F̂− + ΩzF̂ z, (2.38)

Ω =
µBgF
ℏ

BΩ · (ex + iey) e
i(ϕ−γ), (2.39)

Ωz =
µBgF
ℏ

(Bδ · ez)− δ. (2.40)

Here we’ve expressed Ω in the circular basis, that is, in terms of the circular polar-

izations of Beff , ex± iey, and the component oscillating along the bias field axis, ez.

Looking at the operators accompanying the components of Beff , we can see that the

circular parts effect raising and lowering operations on the mF states, F̂+ and F̂−,

respectively. The component of Beff parallel to the bias field affects the mF level

splitting, through F̂ z.

While the circular basis gives us some intuition for how the various components of

Beff may couplemF levels, as in the RF-dressing case, it is generally more convenient

to work in the conventional spin, or Cartesian basis. Rewriting ĤR (Eq. 2.37) in

this basis, we have,

ĤR = V̂s +
Ω+ Ω∗

2
F̂ x − i

Ω− Ω∗

2
F̂ y + ΩzF̂ z,

= V̂s + ℜ(Ω)F̂ x + ℑ(Ω)F̂ y + ΩzF̂ z, (2.41)

with ℜ(z̃) the real and ℑ(z̃) the imaginary parts of z̃, respectively. From this, we

may therefore express the various terms of the Hamiltonian (Eq. 2.37) in whichever

basis.

M-Scheme Configuration

To complete the analogue between Raman and RF dressing, we will look at a

particular spatial configuration of Raman lasers to arrive at a Hamiltonian which is
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equivalent to that of the RF-dressing case, Eq. 2.19. This configuration is a variant

of the M -scheme depicted in Fig. 2.4(a). The spatial parts of the electric fields for

Raman A and B are,

EA(r, t) = ẼA(t)e
ikLxez, (2.42)

EB(r, t) = ẼB(t)e
ikLxey, (2.43)

where we have chosen both beams to be parallel along the x-direction, with or-

thogonal linear polarizations. Raman A drives π-transitions, with its field oriented

along the quantization axis defined by the bias field B0. Raman B drives both σ±

transitions, with its linear polarization orthogonal to the quantization axis. Since

both beams are parallel, after the scattering of light from one beam and stimulated

emission into the other by atoms, there is no net momentum transfer to the atoms;

this will result in a coupling scheme similar to in the RF-dressing case, where the

momentum was negligible. In a later chapter (Ch. 3) we will look at a different

configuration in which the momentum transferred to atoms through this process is

the essential ingredient in generating artificial gauge fields.

To compute the Hamiltionian ĤR (Eq. 2.37), we start with the effective magnetic

fields,

BΩ =
iuv
µBgJ

ẼAẼBex, (2.44)

Bδ = 0. (2.45)

From this, we have,

Ω =
iuvgF
ℏgJ

ẼAẼBe
i(ϕ−γ), (2.46)

Ωz = −δ. (2.47)

Next, the scalar light shift term is,

V̂s = ûs

(︂
Ẽ

2

A + Ẽ
2

B

)︂
. (2.48)

The Hamiltonian is therefore,

ĤR(t) = ûs

(︂
Ẽ

2

A(t) + Ẽ
2

B(t)
)︂
+
uvgF
ℏgJ

ẼA(t)ẼB(t)
{︂
sin [ϕ(t)− γ(t)] F̂ x

+cos [ϕ(t)− γ(t)] F̂ y

}︂
− δ(t)F̂ z, (2.49)

which is equivalent to the RF-dressed Hamiltonian (Eq. 2.19) up to a phase. We may
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therefore use two laser fields to affect the same dynamics as an RF field, but with

potentially much larger effective Rabi frequencies due to the relative higher strength

of electric dipole transitions, when compared to magnetic dipole transitions.

2.3 Spin-Ensemble Measurement

After using either RF (Sec. 2.2.1) or Raman (Sec. 2.2.2) dressing to couple mF

levels, we need a means to perform measurements within the spin manifold. De-

pending on the specific experiment we are trying to perform, there are various other

requirements we may have, such as resolving the spatial structure of the spins (See

Ch. 3). Here we will focus on a method for performing projective measurements in

the spin manifold, discerning the relative populations between spins in time-of-flight

(TOF) measurements. Together with the spin tomography described in App. C, we

are able to perform a series of such projective measurements in order to fully recon-

struct an arbitrary spin wavefunction.

2.3.1 Stern-Gerlach TOF Measurements

A useful resource in spin-sensitive measurement, which we have already taken

advantage of for the purposes of the MOT (Sec. 2.1.2) and MT (Sec. 2.1.3), is the

effect of magnetic field gradients on the mF levels, which we wish to resolve. A

magnetic field gradient may be applied during TOF, resulting in a spin-dependent

force on atoms through the linear Zeeman effect (Eq. 2.6). Over time, the spins

spatially separate, and are individually imaged; this is a manifestation of the Stern-

Gerlach (SG) effect, in ultracold atoms.

More specifically, consider a magnetic field gradient along the z-axis during TOF,

B = B(z)ez. Using the linear Zeeman effect once again, Eq. 2.6, the classical force

on the mF levels is,

FB = −gFmFµB∇B,

= −gFmFµB∂zBez, (2.50)

which points along the z-axis according to the sign of gFmF . As before, this applies

individually to each atom in the ensemble; we are ignoring many-body effects here.

In our system, we use the main gradient coils used in the MOT and MT stages

(Sec. 2.1) which applies a gradient in the vertical direction. Therefore, as atoms fall

in TOF they spatially separate. By controlling both the duration of the fall and

the strength of the gradient, we may capture each spin within a single absorption

image. For a set of sample images, see Fig. 2.5.
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Figure 2.5: Series of SG-TOF images, demonstrating an RF-coupled BEC in the F = 1
manifold (See Sec. 2.2.1). The mF levels are separated in space as they fall in a magnetic
field gradient (Eq. 2.50). Gravity points downwards in the imaging plane. Each image
is a destructive measurement of both the state and the BEC itself, so each image in the
series consists of a completely new BEC produced, and dropped in TOF after an RF pulse
with a different duration; together they show a full Rabi oscillation over about 50 µs. The
“hole” appearing in the middle of several BEC images are an imaging defect, due to the
diffraction of the imaging laser around the BEC with high optical depth.

Imaging atoms with a TOF greater than about 25 ms is difficult, as they reach

the edge of the imaging beam in this time; as such, the SG gradient must be applied

in a time shorter than this. Conversely, due to the inherent difficulties in quickly

switching on a large amount of current, we are unable to apply a gradient in an

amount of time shorter than about 12 ms. Despite these restrictions, we find that

during a 20 ms TOF, a current pulse roughly 10 ms in duration, with an amplitude

comparable to that used in the uncompressed MT (27 G/cm, see Sec. 2.1.3), the

mF components separate enough that there is no overlap between the expanded

density distributions for either the F = 1 or F = 2 manifolds. The components

may therefore be individually fit, discerning the atom numbers and thus the relative

populations.

This technique amounts to a projective measurement in the eigenbasis of F̂ z,

where the relative populations give the amplitudes for each eigenstate. Oftentimes,

it is also important to determine the relative phases of the wavefunction, for which

quantum state tomography is required (App C). Measurements must be made in

other bases for this to be accomplished, so the SG technique has to be adapted to

more than just projections into the z-basis.

The simplest way to imagine this would be to generate a field gradient along

other axes; a gradient along x-would, in principle, correspond to a projection onto

the eigenbasis of F̂ x. However, carefully controlling gradients in this way would

either require additional coils along each projection axis, or the ability to displace
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the center of the main coil gradient consistently; both approaches provide unique

challenges. The former would require many coils along non-trivial directions, since

spin tomography in manifolds F > 1/2 require many different basis measurements

(App. C). The alignment of these coils would need to be carefully calibrated for,

and could change with each new optimization of the BEC due to periodic alterations

of the MOT and ODT alignment. Similarly, the latter could be accomplished by

the appropriate application of bias fields to shift the minimum of the gradient, but

this would be sensitive to the coil currents, and background fields. Both approaches

would also suffer from the fact that the BEC falls in TOF through the field, so when

the gradient is oriented at some arbitrary angle the fields sampled could alter the

results.

To overcome these challenges, we use RF pulses to change the measurement basis

prior to TOF. Using the RF-dressed Hamiltonian, Eq. 2.19, we may apply a short

pulse that maps the eigenbasis of the operator F̂ v to those of F̂ z, where v is the

basis in which we want to measure.

To see this we first look at the simplest case, when F = 1/2. We may apply

resonant RF pulses with varied phase and duration (pulse area) to produce the

desired transformations. From the Hamiltonian, Eq. 2.19, we thus set the amplitude

of the pulses to Ω, detuning δ = 0, and phase reference γ = 0.

Looking first at the eigenstates of F̂ x, expressed in the z-basis they are,

|→⟩ = 1√
2
(|↑⟩+ |↓⟩) , (2.51)

|←⟩ = 1√
2
(|↑⟩ − |↓⟩) , (2.52)

where |↑⟩, and |↓⟩ are the eigenstates of F̂ z. To measure in this basis, an RF pulse

with phase ϕ = 0 and duration T = π/Ω yields the evolution operator Ûx

RF =

exp
(︂
−iπF̂ y/2ℏ

)︂
. This pulse therefore transforms the x-eigenstates as,

Ûx

RF |→⟩ = |↓⟩ , (2.53)

Ûx

RF |←⟩ = |↑⟩ . (2.54)

Hence, the populations in each of these eigenstates map to those of F̂ z. Following a

SG-TOF measurement, the resulting spin populations therefore correspond to those

in the x-basis. Similarly, the eigenstates of F̂ y expressed in the canonical basis are,

|⟳⟩ = 1√
2
(|↑⟩+ i |↓⟩) , (2.55)

|⟲⟩ = 1√
2
(|↑⟩ − i |↓⟩) . (2.56)
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Applying an RF pulse with phase ϕ = π/2 and duration T = π/Ω produces the

evolution operator Ûy

RF = exp
(︂
iπF̂ x/2ℏ

)︂
. The basis therefore transforms as,

Ûy

RF |⟳⟩ = i |↓⟩ , (2.57)

Ûy

RF |⟲⟩ = |↑⟩ , (2.58)

which coincide with the eigenbasis of F̂ z up to a global phase. Hence, the populations

in each of the y-eigenstates map to the z-eigenstates. For spin state tomography in

an F = 1/2 manifold, these are the only measurements necessary to full reconstruct

an arbitrary spin state (App. C).

For higher spin systems the same procedure holds, in principle, but discerning

a set of informationally complete basis measurements is more difficult. In gen-

eral, pulses with varied phases and pulse areas are required. The RF pulses only

generate transformations in SU(2), which limits the available bases; the ability to

perform transformations in SU(2F + 1) would likely make this process easier, but

such coupling schemes are significantly more complicated, and an active area of

research [27].
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CHAPTER 3

Simulating Gauge-Fields in BECs

T
he eager experimentalist is always in search of new tools to put in their toolbox,

though not every addition must be a literal tool or new device. The apparatus,

and RF and laser-dressing methods described in the previous chapter, Ch. 2, have

introduced some very powerful tools already at our disposal. Access to macroscopic

quantum systems such as BECs is highly sought after, and our apparatus is capable

of manipulating such a system in various different ways. With the aim of studying

interesting artificial gauge fields in ultracold atoms, however, we are always in search

of new techniques, methods of quantum control, or theoretical insights. In this

chapter, we will discuss two such additions to our metaphorical toolbox, which are

demonstrated together.

We begin in Sec. 3.1 by describing how the laser-dressing technique described

in Sec. 2.2.2 may be used to generate Abelian artificial gauge fields in ultracold

ensembles [28–30]. We begin by adopting a particular spatial and polarization con-

figuration of the Raman lasers, in which the momentum transferred to atoms by two

coherent scattering events becomes important. The Hamiltonian is well represented

in a new basis, where the spin and momentum degrees of freedom are coupled. The

resulting spectra is well described by two bands, consisting of mixtures between the

spin components at different momenta. We go on to describe in Sec. 3.1.2 how in

certain parameter regimes, the dynamics of the neutral atoms is analogous to that

of a charged particle under the influence of Abelian electromagnetic gauge fields.

With the aim of implementing such a scheme in an ultracold ensemble, in

Sec. 3.2 we discuss the mean-field properties of BECs, particularly through the

Gross-Pitaevskii equation (GPE), which serves as the nonlinear Schrödinger equa-

tion for interacting gases. We derive the time-independent GPE by minimizing the

mean-field energy functional, demonstrating how its solutions are the ground states

of such a system. We then describe the Thomas-Fermi (TF) approximation, which

allows us to calculate several important properties of the many-body ground states
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with relative simplicity, and reasonable accuracy. We end this section by briefly dis-

cussing the generalization of these results to spinor BECs, which will be necessary

to consider in the study of Raman-dressed artificial gauge fields.

In Sec. 3.3, we then describe a numerical technique for finding solutions to the

GPE, both for ground states and real-time dynamics. After describing the algorithm,

as implemented in a custom Python package [1], we discuss its extension to spinor

BECs with Raman dressing, enabling us to simulate the effects of the artificial gauge

fields described in the prior sections. Simulations of this nature are computationally

expensive, so we finish this section by describing how the program was accelerated on

a graphics processing unit (GPU), resulting in significant increases to performance.

We discuss some nuances of hardware acceleration, and show some results comparing

the performance across several available devices [1].

Finally, we end this chapter by combining the subjects of all the previous sec-

tions into a series of simulations. Specifically, we use the GPU accelerated spinor

GPE solver to simulate the many-body grounds states of a BEC, subjected to the

Raman-dressing described in Sec. 3.1. The Raman parameters are chosen so as to

produce an artificial magnetic field in the BEC, which produces circulating currents

of atoms, resulting in interesting vortex structures [31]. We offer some intuition be-

hind the ground state solutions for various choices of parameters, before providing

some concluding remarks.

3.1 Producing Abelian Gauge Fields in BECs

In Sec. 2.2.2 we described a means to use bichromatic laser fields to dress the

hyperfine manifolds of alkali-metal atoms, to induce coupling between spins. For

co-propagating lasers, we showed that the resulting Hamiltonian, Eq. 2.49, is re-

markably similar to that of RF-dressed spins, Eq. 2.19 (Sec. 2.2.1). In the case of

Raman coupling, the momentum transferred to atoms from the laser fields cancels

out; this is because the coherence between spins is produced by absorption of light

from one laser, followed by stimulated emission into the other. For co-propagating

beams, the momenta therefore cancel1. If the beams are not co-propagating, then

this momentum transfer will become important; in fact, it is useful in engineering

various artificial gauge fields of interest, as described in the seminal work of Lin

et al. 2009 [28], and the studies that followed [29, 32–34].

In this section we will describe how, for a particular configuration of Raman

beams, we may produce simple artificial gauge fields in an ultracold ensemble, start-

1Technically there is a difference between wavevectors of each laser, as they have different
frequencies. Typically, this difference is on the order of about 1 MHz, and so this momentum is
negligible as discussed in Sec. 2.2.2.
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ing from the laser-dressed Hamiltonian, Eq. 2.37. Due to the momentum transfer

from the Raman lasers, we will find a convenient basis in which to represent the full

atomic Hamiltonian; the dynamics in this basis are well understood by the pres-

ence of an Abelian vector and scalar potential, as from classical electrodynamics.

Through this coupling scheme, the physics of neutral atoms is made equivalent to

charged particles moving in gauge potentials [28–30, 32–35].

3.1.1 Spin-Momentum Coupling by Raman Dressing

Consider the laser-dressed Hamiltonian, Eq. 2.37, which was previously derived

in Sec. 2.2.2. This Hamiltonian describes an atom in the ground state hyperfine

manifold F , subjected to a bias magnetic field B = B0ez, and two laser fields

defined through their electric fields. The lasers have a frequency difference that is

similar to the Zeeman splitting induced by the bias field, allowing us to move into a

rotating frame where the Hamiltonian is stationary2. Starting from this result, we

will now consider the case where the lasers are counter-propagating, with opposite

linear polarizations. The spatial parts of the electric fields are,

EA(r, t) = ẼA(t)e
ikLxey, (3.1)

EB(r, t) = ẼB(t)e
−ikLxez. (3.2)

The first laser, Raman A, propagates along the positive x-axis with a linear polar-

ization along y; this laser will therefore induce σ± transitions in the atoms. The

second beam, Raman B, propagates along the negative x-axis with a linear polar-

ization along z; this field therefore induces π-transitions in atoms. Both beams are

assumed to have the same wavevector, kL. Together, these beams form a Raman

M -scheme (see Fig. 2.4). From these, the effective magnetic fields are (Sec. 2.2.2),

BΩ =
iuv
µBgJ

(E∗
B ×EA) ,

=
iuv
µBgJ

ẼAẼBe
2ikLxex, (3.3)

and Bδ = 0. The components of the vector Ω are thus,

Ω =
µBgF
ℏ

BΩ · (ex + iey) e
i(ϕ−γ),

= −iuvgF
ℏgJ

ẼAẼBe
2ikLxei(ϕ−γ), (3.4)

2We have allowed the field amplitudes and phases to change in time still.
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and Ωz = −δ. We have retained the phase difference between the beams, ϕ, and the

term γ that describes the freedom to choose the phase of the rotating basis.

The Raman coupling Hamiltonian, expressed in the circular basis of F̂± and F̂ z,

is therefore,

ĤR = V̂s +
iuvgF
2ℏgJ

ẼAẼB

[︂
e−2ikLxe−i(ϕ−γ)F̂+ − e2ikLxei(ϕ−γ)F̂−

]︂
− δF̂ z, (3.5)

with V̂s = ûs

(︂
Ẽ

2

A + Ẽ
2

B

)︂
the scalar light shift from the beams. The e±2ikLx indicates

a rotation in phase with motion along the x-axis, on a length scale defined by kL.

We may think of the Raman beams imprinting a phase grating on the spins, where

the spin quantization axis varies along x. We will move into a basis that rotates

with this quantization axis, through the unitary,

Û(x̂) = exp

[︃
− i
ℏ

(︂
2kLx̂−

π

2

)︂
F̂ z

]︃
. (3.6)

Note that we have promoted the position coordinate to an operator x̂; previous to

this, the position and momentum could be neglected, as all of the coupling dynamics

were described by the spin degrees of freedom. Since this basis transformation

depends on space, there will be a corresponding shift in the momentum of atoms, in

a way that depends on spin. We will no longer be able to separate translational and

spin degrees of freedom. As such, we will need to consider the kinetic and potential

energies of the atoms as well.

For now we will continue with the Raman coupling Hamiltonian, which trans-

forms as Ĥ◦
R = Û

†
(x̂)ĤRÛ(x̂), where the “◦” superscript denotes the new basis

rotating in space. As before, the operators F̂± and F̂ z transform according to

(App. B),

Û
†
(x̂)F̂ zÛ(x̂) = F̂ z, (3.7)

Û
†
(x̂)F̂±Û(x̂) = e±i(2kLx̂−π/2)F̂±. (3.8)

The Raman coupling Hamiltonian becomes,

Ĥ◦
R = V̂s +

iuvgF
2ℏgJ

ẼAẼB

[︂
e−2ikLxe−i(ϕ−γ)ei(2kLx̂−π/2)F̂+

−e2ikLxei(ϕ−γ)e−i(2kLx̂−π/2)F̂−

]︂
− δF̂ z,

= V̂s +
uvgF
2ℏgJ

ẼAẼB

[︂
e−i(ϕ−γ)F̂+ + ei(ϕ−γ)F̂−

]︂
− δF̂ z. (3.9)
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Substituting in for F̂±, we find in the Cartesian spin basis,

Ĥ◦
R = V̂s +

uvgF
ℏgJ

ẼAẼB

[︂
cos(Φ− γ)F̂ x + sin(ϕ− γ)F̂ y

]︂
− δF̂ z. (3.10)

Thus, in this basis, the Raman coupling once again looks similar to the case of

co-propagating beams, or of RF-dressing (Eq. 2.19). However, as stated prior, due

to the positional dependence of this basis, we must also consider the kinetic and

potential energies of the atoms.

The full atomic Hamiltonian is,

ĤF =
ℏ2k̂2

2m
1̂+ V̂ (r̂)1̂+ ĤR. (3.11)

The first term represents the kinetic energy, with ℏk̂ the atomic momentum operator,

and m the mass. We assume that atoms are confined in an external potential V̂ (r̂).

Neither of these terms depend on spin, so they are ∝ 1̂. In the new basis defined by

Û(x̂), the Hamiltonian becomes Ĥ
◦
F = Û

†
(x̂)ĤFÛ(x̂). We have already computed

how the Raman coupling Hamiltonian transforms, and since the potential energy

commutes with both x̂ and F̂ z, it remains unchanged. For unitary transformations

of the form Û(r̂) = exp (−iq · r̂/ℏ), we may make use of the identity,

Û
†
(r̂)Ĥ(p̂)Û(r̂) = Ĥ(p̂− q) (3.12)

for constant vector q, and with p̂ the momentum operator. The kinetic energy

therefore becomes,

Û
†
(x̂)

ℏ2k̂2

2m
Û(x̂) =

ℏ2

2m

(︂
k̂x1̂− 2kLF̂ z/ℏ

)︂2

+
ℏ2

2m

(︂
k̂
2

y + k̂
2

z

)︂
1̂. (3.13)

In this basis, the full Hamiltonian is therefore,

Ĥ
◦
F =

ℏ2

2m

(︂
k̂x1̂− 2kLF̂ z/ℏ

)︂2

+
uvgF
ℏgJ

ẼAẼB

[︂
cos(Φ− γ)F̂ x + sin(ϕ− γ)F̂ y

]︂
− δF̂ z + V̂s +

ℏ2

2m

(︂
k̂
2

y + k̂
2

z

)︂
1̂+ V̂ (r̂)1̂, (3.14)

In this configuration, k̂y and k̂z remain separable from spin, and the trapping poten-

tial is also unchanged. We can see in the above that there is a mixture of spin and

momentum degrees of freedom, along the x-axis, due to the momentum imparted on

atoms by the Raman lasers through the coherent scattering process. Note that, for

the remainder of this thesis, we will refer to k̂ directly as momentum, since k̂ = p̂/ℏ.
Intuitively, an atom in some mF level may change its state to mF ± 1 through the

Chapter 3 35 Logan W. Cooke



Artificial Gauge Fields in Ultracold Atomic Ensembles Section 3.1

absorption and spontaneous emission of light from the Raman laser fields, just as in

the previous coupling schemes (Sec. 2.2); Ĥ◦
R is the same as in the co-propagating

case, describing the coupling of adjacent spins in the manifold. The difference here

is that, by undergoing this process, the momentum of the atom must also change by

±2ℏkL (depending on whether it increased or decreased its spin), due to the recoil

from the two scattering events required to make such a change; kL is called the

recoil momentum for this reason. Therefore, to understand this Hamiltonian more

completely we must consider momentum, as well as spin.

3.1.2 Interpretation as Artificial Gauge Field

Looking at the Raman-dressed Hamiltonian, Eq. 3.14, we can focus on the spin-

momentum coupled terms, i.e. those that are not proportional to 1̂. We will make

the additional assumption that the phase difference between the Raman beams,

ϕ = 0, and similarly γ = 0; these parameters only act to define the phase reference

of the coupling, which is unimportant here. Last, for simplicity, we will assume that

the spin manifold F = 1/2; in this case, we can replace the spin matrices with the

Pauli matrices by F̂ q = ℏσ̂q/2, q ∈ {x, y, z}. The Hamiltonian becomes,

Ĥ◦
F =

ℏ2

2m

(︂
k̂x1̂− kLσ̂z

)︂2

+
ℏΩ
2
σ̂x −

ℏδ
2
σ̂z, (3.15)

where the detuning,

δ =
µBgF
ℏ

B0 − ω∆, (3.16)

is the difference between the Zeeman splitting due to the bias magnetic field, and

the frequency difference between the lasers. Similarly, we define the Rabi frequency

of the Raman coupling as,

Ω =
uvgF
ℏgJ

ẼAẼB. (3.17)

Due to the spin-momentum coupling, the eigenstates of this Hamiltonian will be

labeled by both degrees of freedom. We may understand it further by computing

the eigenvalues as a function of kx (i.e. the dispersion curves), for different choices

of Ω and δ. The recoil momentum kL imposes a natural scale for momentum, and

energy; it is convenient then to work in units of kL for momentum, and for energy

we define the corresponding recoil energy EL = ℏ2k2L/2m.

First, in the absence of Raman fields, Ω = δ = 0, only the kinetic energy term

survives, but the spins are still shifted in momentum by 2kL with respect to each

other, due to our choice of basis. Looking at the dispersion, we see two parabolas

corresponding to the nominal kinetic energies of the atoms, with their respective

shifts, as shown by the curves in Fig. 3.1 for Ω = 0. Each spin has equal and
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ħΩ/EL = 0
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ħΩ/EL = 4
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Figure 3.1: Energy eigenvalues of the Hamiltonian Eq. 3.15, for various values of Ω and δ,
as a function of the momentum kx; results are reminiscent of band structure in crystals.
(a) For Ω = 0, the dispersion consists of the bare atomic kinetic energies, separated by
2kL due to our choice of basis. For Ω > 0, an avoided-crossing between bands opens,
separating into an upper and lower curve, where the spacing between upper and lower
bands at kx = 0 is Ω. If Ω/EL < 4 the lower band has two minima, and if Ω/EL ≥ 4 they
merge into a single minimum. (b) The detuning acts to shift the minimum of the bands
from kx = 0, as shown here for Ω/EL = 5. In all cases, the regions near the band minima
are approximately parabolic, as with the bare atomic dispersions.

opposite momentum.

Once the Raman coupling is enabled, Ω > 0, the energies of the new eigenstates,

dressed states, exhibit avoided-crossings due to the coupling, as seen in Fig. 3.1(a).

The dressed states are superpositions of the bare atomic spins, where the relative

population of each spin component depends on the values of Ω and δ. The dispersion

thus consists of an upper and lower curve, the energies of the associated dressed

states, with a gap between them. The spacing at kx = 0 is Ω (with no detuning),

representing the coupling strength between the dressed states. The dispersion is now

reminiscent of band structure in solids. For Rabi frequencies Ω/EL < 4, the lower

band has two minima, which move closer together with increasing Ω; once Ω/EL ≥ 4

they merge. We therefore define Rabi frequencies Ω/EL > 4 as the strong coupling

regime, as the physics here are quite different from the case with two minima [30,

34]. We will mainly focus on the strong coupling regime for the remainder of this

chapter.

The effect of the detuning δ is to shift the minima of the upper and lower bands

away from kx = 0, according to its sign. This may be understood as one spin state

becoming more energetically favorable than the other. Since the spins have oppos-

ing momenta, there is a corresponding shift in the minima away from kx = 0. We
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Figure 3.2: Dressed state dispersions, with the state composition in terms of the spin
components indicated by line coloring; |↑⟩ and |↓⟩ are the ±1 eigenstates of σ̂z, respectively.
Due to each spin state having equal and opposite momenta, an imbalanced superposition of
spins leads to a corresponding momentum. In both (a) and (b), Ω/EL = 5. (a) δ/EL = 0,
no spin component is energetically favorable over the other, so each dressed state has
minimum energy when comprised of an equal superposition of both, and therefore have
no net momentum. (b) δ/EL = 2, detuning imposes a spin imbalance in the composition
of the minimum energy dressed states, with a corresponding shift to finite momenta;
each band is shifted in opposite directions, as the spin imbalance in each dressed state is
opposite (though not equal).

may see this by looking at the relative population between spin components along

the bands, as shown in Fig. 3.2. For the uncoupled case, each band is comprised

entirely of one spin or the other. With coupling, the new eigenstates, the dressed

states, are mixtures of the spin components. Since the spin components carry op-

posing momenta, a dressed state with some finite momentum must be comprised

predominantly of the corresponding spin. Conversely, a dressed state with some

spin superposition must have a corresponding momentum, determined by the rela-

tive amplitudes of each spin. When δ = 0 specifically, the dressed states are equal

mixtures of the spins, for kx = 0. These states have no net momentum, since they

are comprised equally of the two spin components, with equal and opposite mo-

menta. Each dressed state therefore has minimum energy when they are an equal

superposition of the spins, in the absence of detuning. When detuning is added, the

minima of each band are shifted to opposite sides in k-space, indicating that the

dressed states now energetically prefer one spin to the other, and have corresponding

momenta due to this imbalance.

We now focus our attention to the lower band specifically, which is approximately

parabolic in shape. The energy therefore takes the form,

E ≈ ℏ2

2m∗

(︃
k̂ − qA

ℏc

)︃2

+ qφ. (3.18)
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This expression for a parabola in k-space is purposefully evocative, since it represents

the energy of a particle with charge q, and mass m∗, subjected to vector potential

A and scalar potential φ; c here is the speed of light. This system of Raman

dressed neutral atoms is therefore akin to that of a charged particle moving in an

electromagnetic field. Atoms obtain a new effective mass m∗ > m, given by the

curvature of the band. Since the momentum of atoms is only shifted along the x-

axis, the vector potential here has a single component, A = Aex. The magnitude

A is determined by the location of the band minimum, kmin.; it is more convenient

to work in units of momentum here, so we will neglect c and the charge q, writing

A = ℏkmin.. To be explicitly clear, these are Abelian gauge fields acting on the

lower dressed state, which is a mixture of spins. The upper band follows a similar

prescription, so it could also be described by a different set of Abelian gauge fields,

but we will ignore the upper band here, assuming states may be prepared purely

in the lower band. The important point is that, in either dressed state, spins are

subjected the same gauge field; if they were to differ, then this would be akin to a

non-Abelian gauge field, though there are additional criteria for this (see Ch. 4). In

the weak-coupling regime, with Ω/EL < 4, spins are split into two separate minima,

creating a form of synthetic spin-orbit coupling as from solid-state systems [29, 34];

in this case, each spin is subject to a different set of fields, but we will not discuss

such a situation here any further.

From this representation, we should expect that from the vector and scalar po-

tentials, effective electric and magnetic fields may emerge according to the usual

relations from classical electromagnetism,

E = −∇φ− ∂A

∂t
, (3.19)

B = ∇×A. (3.20)

If all the parameters of the Hamiltonian (Eq. 3.15) remain fixed, the vector and scalar

potentials are uniform in space-time, resulting in no effective electric or magnetic

fields [28]. Alternatively, if by tuning the parameters of the Hamiltonian we are

able to engineer either a time-dependent vector potential, or gradient of the scalar

potential, then an electric field may be produced. Similarly, a vector potential with

a non-zero curl will produce an effective magnetic field. Both of these situations

have been realized in experiment [32, 33].

To see how such fields may be engineered, consider the effect of Ω and δ discussed

above, and shown in Fig. 3.1: in the absence of detuning, Ω shifts the spacing

between bands, which is akin to tuning the scalar potential. The detuning shifts
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Figure 3.3: Properties of the lowest energy dressed state (band) of the Hamiltonian
Eq. 3.15. (a) For various choices of Rabi frequency Ω in the strong-coupling regime, we
plot the momentum corresponding to the band minimum for different detunings, which is
the artificial vector potential A = ℏkmin.; results are given in units of the recoil momentum
kL. The resulting vector potentials are approximately linear near δ = 0. (b) The energy
surface of the lower band as it varies with detuning, with Ω/EL = 4, and the minimum
indicated by the solid red line.

the minima of the bands along kx, which resembles changes to the vector potential3.

Therefore, producing an Ω or δ with a spatial dependence, or detuning with a time-

dependence, effective electric and magnetic fields may be engineered to act upon

neutral atoms.

As an example of this, in Fig. 3.3(a) we calculate kmin. = A/ℏ with varied

detuning, and Ω/EL ≥ 4; we find that in the vicinity of δ = 0, the vector potential

is approximately linear. Suppose then that a spatial gradient of the detuning is

applied along the y-axis; we will assume its linear, with slope β, and centered at

y = 0, i.e. δ(y) = βy. The vector potential thus has the form, A = Aex, with

A ∝ βy, and hence a magnetic field, B = −∂yAez will arise. This will result in a

Lorentz force acting on atoms in the ensemble, producing circulating currents.

The pragmatist might point out that there is no need to identify effective gauge

potentials in the Hamiltonian, Eq. 3.15, in order to explain the physics at hand,

and they would be correct; however, since this effective description is possible (at

least in a particular gauge, since we do not have independent control of scalar and

vector potentials [36, 37]), either explanation is valid. This is the core argument

of quantum simulation. There are many extensions of these fairly simple ideas

of tuneable electromagnetic potentials in ultracold atoms, as the seminal work of

Lin et al. 2009 [28] has inspired a generation of physicist (such as this author) to

implement various interesting alterations to these protocols [38–42]. To this end, we

developed a flexible package in Python to simulate the effects of various such fields

3In both cases, changing Ω or δ, the effective mass m∗ also changes slightly.
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in BECs [1], with the hope of some day implementing them in the lab. We instead

found that these artificial gauge fields, which are well understood through classical

electromagnetism, are in fact an interesting way to probe the many-body physics of

large interacting systems. The remainder of this chapter will focus on these efforts.

3.2 Bose-Einstein Condensates

As we alluded to in the previous section, Sec. 3.1, the rather simple Abelian

gauge fields from classical electromagnetism may equip us with a means to study

the many body physics underlying a system of interacting particles, i.e. a BEC.

Some of the earliest experiments in BECs looked at the effects of rotation, which

permitted the nucleation of quantized vortices in the gas [43]. Vortices are excitations

resulting from the BEC having angular momentum (hence the rotation experiments),

permitting circulating currents of atoms. Since atoms in a BECs are described

together through a single macroscopic wavefunction, the motion of atoms in the

gas is the result of a spatial gradient in the phase of the wavefunction. The phase

profile in a BEC must remain continuous at all times for the wavefunction to be

coherent. A circulating current is therefore caused by a phase winding; for it to

remain continuous, it must therefore wind an integer multiple of 2π times. In such

a case, within such a winding, there must be a discontinuity in the phase, and

hence the BEC density drops to precisely zero at this location. This is the nature

of a quantized vortex: an integer multiple of 2π phase winding, wherein the BEC

density drops sharply to zero, where this location is called the vortex core. Such

effects are manifestations of interactions in the gas, and are of immense interest. As

we discussed in Sec. 3.1.2, artificial gauge fields may provide a means to study such

phenomena.

In this section we will cover the mean-field theory of interacting Bose gases,

only to the extent required to understand the numerical techniques used to compute

the density profiles of such gases in Sec. 3.3. There are many excellent reviews of

BECs [9, 44, 45], so here we aim to introduce only the basic concepts, and provide

some intuition along the way.

3.2.1 Gross-Pitaevskii Equation

In the work that follows, we will mainly be concerned with finding the ground

state wavefunction of BECs subjected to various external conditions, such as Raman-

dressed artificial gauge fields. We will model the BEC through mean-field theory,

wherein we approximate the macroscopic wavefunction of the gas as a complex

scalar field [9]; this is essentially a classical field approximation of the quantized
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bosonic field operators. Excitations of the gas outside of the ground state, called

the condensate depletion, will be ignored.

To start, we will derive the energy functional for a system of identical bosons,

which are interacting. Understanding the energy of the gas in this way will allow us

to derive some useful expressions. We will assume that the interactions are low en-

ergy (s-wave), so the scattering is constant throughout momentum space, resulting

in a Dirac-delta potential in coordinate space. For dilute gases, with interactions

mostly over large scales, this approximation holds well [9]. The many-body Hamil-

tonian for N atoms is,

Ĥ =
N∑︂
i=1

(︃
−ℏ2∇2

i

2m
+ V (ri)

)︃
+ g

∑︂
i<j

δ (ri − rj) (3.21)

where V is the external trapping potential, and the interaction strength in terms of

the atomic scattering length a is [9],

g =
4πℏ2a
m

. (3.22)

We write the many-body wavefunction Ψ as a product state of the single-particle

wavefunctions ϕ,

Ψ (r1, . . . , rN) =
N∏︂
i=1

ϕ (ri) , (3.23)

with
∫︁
dr |ϕ(r)|2 = 1.

Computing the energy expectation value E = ⟨Ψ| Ĥ |Ψ⟩, we have,

E =

∫︂
dr1 . . . drNϕ

∗(r1) . . . ϕ
∗(rN)

{︄
N∑︂
i=1

[︃
−ℏ2∇2

i

2m
+ V (ri)

]︃

+g
∑︂
i<j

δ (ri − rj)

}︄
ϕ(r1) . . . ϕ(rN),

=
N∑︂
i=1

∫︂
dri

[︃
− ℏ2

2m
ϕ∗(ri)∇2

iϕ(ri) + V (ri) |ϕ(ri)|2
]︃
+ g

∑︂
i<j

∫︂
dri |ϕ(ri)|4 ,

(3.24)

where to obtain the second line, we were able to carry out the integration of all

wavefunctions not acted upon by each of the energy operators, all yielding unity due

to normalization. For the first term, involving the kinetic and potential energies, we

notice that each term is identical, and there are N such terms. The same is true

of the interaction term, except that there are N(N − 1)/2 such terms. The energy
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becomes,

E = N

∫︂
dr

[︃
− ℏ2

2m
ϕ∗(r)∇2ϕ(r) + V (r) |ϕ(r)|2 + N − 1

2
g |ϕ(r)|4

]︃
. (3.25)

We write the mean-field wavefunction as ψ(r) =
√
Nϕ(r), such that the density

distribution of all particles is n(r) = |ψ(r)|2. The field ψ(r) is often called the

condensate wavefunction, or BEC order parameter. It is normalized by the total

particle number as, ∫︂
dr |ψ(r)|2 =

∫︂
drn(r) = N. (3.26)

It is this wavefunction ψ that we eventually aim to solve for, by minimizing the

energy functional.

In the thermodynamic limit, where N ≫ 1, the energy functional becomes,

E(ψ) ≈
∫︂
dr

[︃
− ℏ2

2m
ψ∗(r)∇2ψ(r) + V (r) |ψ(r)|2 + g

2
|ψ(r)|4

]︃
, (3.27)

representing the energy for a condensate with order parameter ψ(r). To determine

the lowest energy state, we may minimize it under the constraint that there are N

particles. Specifically, we compute,(︃
∂E

∂ψ∗ − µ
∂N

∂ψ∗

)︃
+

(︃
∂E

∂ψ
− µ∂N

∂ψ

)︃
= 0, (3.28)

with the Lagrange multiplier µ associated with particle number conservation being

the chemical potential. Both terms yield the same result, so here we will look only

at the derivatives with respect to ψ∗. We have,

∂E

∂ψ∗ − µ
∂N

∂ψ∗ = 0 =

∫︂
dr

[︃
− ℏ2

2m
∇2ψ(r) + V (r)ψ(r) + g |ψ(r)|2 ψ(r)− µψ(r)

]︃
.

(3.29)

Setting the integrand to zero and rearranging, we obtain,

µψ(r) =

[︃
− ℏ2

2m
∇2 + V (r) + g |ψ(r)|2

]︃
ψ(r). (3.30)

This is the time-independent GPE, which bears striking similarity with the time-

independent Schrödinger equation, aside from the nonlinear interaction term (and

the energy eigenvalue is replaced by the chemical potential). There is a time-

dependent version of the GPE as well, which is,

iℏ
∂

∂t
ψ(r, t) =

[︃
− ℏ2

2m
∇2 + V (r) + g |ψ(r)|2

]︃
ψ(r). (3.31)
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The former, Eq. 3.30, may be derived from the latter, Eq. 3.31, by assuming

the condensate wavefunctions acquire phase according to their energy, ψ(r, t) =

ψ(r) exp (−iµt/ℏ) [9]. As such, we may utilize either version just as we do the

time-independent Schrödinger equation and time-dependent Schrödinger equation

(TDSE): the first gives the eigenstates of the system in question, while the sec-

ond is used to propagate those eigenstates in time, where each state acquires phase

according to its energy. Here, we may use Eq. 3.30 to solve for the ground state

wavefunctions of the BEC, and then use Eq. 3.31 to propagate the resulting complex

wave packet in time. Together, both versions of the GPE give us immense compu-

tational power, though this requires us to solve a nonlinear differential equation,

potentially in both space and time; a method for accomplishing this is discussed in

Sec. 3.3.

3.2.2 Thomas-Fermi Approximation

In the absence of a nonlinear differential equation solver, or known analytical

solution to Eq. 3.30, there are still ways in which me may predict various properties

of BECs; in particular, through the TF approximation. This consists of assuming

that the kinetic energy term in Eq. 3.30 is negligible. We might argue that the atoms

are cold, and therefore have low kinetic energy, but to be more precise, the kinetic

energy is only large where the density gradients are high, which is near the edges

of the gas (for trapped atoms). In the regions where the density n(r) is high, we

therefore expect the interactions to have a more substantial role in the energetics.

Under this approximation, the GPE becomes,

µ = V (r) + g |ψ(r)|2 , (3.32)

and therefore,

n(r) = |ψ(r)|2 = µ− V (r)

g
. (3.33)

Typically, BECs are confined in ODTs with an approximately harmonic potential,

V (r) =
1

2
m

(︁
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)︁
, (3.34)

where ωq for q ∈ {x, y, z} are the trap frequencies. These are the rates at which

atoms oscillate in the ODT, along the indicated directions4. The density profile of

the gas under the TF approximation is therefore an inverted parabola, owing its

shape to the trapping potential. Where the density reaches zero along any given

4In fact, observing such oscillations in the lab is precisely how the trap frequencies are measured.
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direction q, we define the TF radii,

Rq =
1

ωq

√︃
2µ

m
. (3.35)

Beyond Rq the density is assumed to be zero.

The density profile thus has the form,

n(r) =
µ

g

(︃
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)︃
. (3.36)

From its normalization condition, N =
∫︁
drn(r), we may also derive an expression

for the chemical potential. The integral may be performed in generalized spherical

coordinates, with dr = RxRyRzρ
2 sin θdρdθdϕ, radius ρ ∈ [0, 1], polar angle θ ∈

[0, π), and azimuthal angle ϕ ∈ [0, 2π). The Cartesian coordinates assume the

typical form,

x = Rxρ sin θ cosϕ, (3.37)

y = Ryρ sin θ sinϕ, (3.38)

z = Rzρ cos θ, (3.39)

such that the integrand in Eq. 3.36 is just 1 − ρ2. Integrating, and substituting in

our expressions for the TF radii (Eq. 3.35) we obtain,

N =
8π

15

µ

g

(︃
2µ

mω̄2

)︃3/2

, (3.40)

where we have defined the geometric average of the trap frequencies as ω̄ = (ωxωyωz)
1/3.

Rearranging for the chemical potential,

µ =
ℏω̄
2

(︃
15Na

ā

)︃2/5

, (3.41)

where we have substituted in for g (Eq. 3.22), and ā =
√︁

ℏ/mω̄ is called the harmonic

oscillator length. This is a convenient form for µ, in terms of experimentally available

parameters, namely the trap frequencies along each axis ωq, the atom number N ,

and the scattering length a that has been measured in various cold atomic species;

for 87Rb, the scattering interactions are repulsive, a > 0. The chemical potential

sets the relevant energy scale in the BEC. In our experiments, µ is typically on the

order of 1 kHz, mainly depending on the atom number, which varies between about

104 to 105.

To demonstrate the effectiveness of the TF approximation, Fig. 3.4 shows a com-
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Figure 3.4: (a) Slices of BEC densities along x-axis, from the center of the BEC outwards,
comparing results from the TF approximation (points) to the numerical simulations (lines)
described in Sec. 3.3. Results show good agreement between density profiles, deviating
most at the condensate edge where the kinetic energy is most significant. Curves are
shown for BECs with three different interaction volumes; for larger values, interactions
play a bigger role in the energetics, as seen by the repulsive interactions forcing atoms
outwards to reduce the peak density. The x-axis is normalized by the TF radius of the
Na/ā = 1 curve, and the densities by its peak density. A similar plot may be found in
Ref. [9]. (b) Full density distribution in 2D, for condensate with Na/ā = 1, solved for
numerically.

parison between the TF density (Eq. 3.36) and results from numerical integration

of the GPE (Eq. 3.30). The density profile in the x-direction is shown in this case,

from the center of the BEC outwards, but the results generalize to the other spatial

dimensions. We can see that the TF density follows the numerical solutions well,

deviating the most at the edge of the condensates where the kinetic energy (spa-

tial gradient) is the largest. Effectively, adding the kinetic energy into the picture

acts to “round off” the edges. An example density distribution found numerically

(see Sec. 3.3) in 2D is shown in Fig. 3.4(b), displaying the full density profile for a

uniform trap.

From Fig. 3.4(a), the density profiles are shown for three different interaction

volumes, Na/ā, which determines the extent to which interactions play a role in the

energetics, as compared to the kinetic energy and confinement [9]. For N atoms

interacting over lengths a, the relative size of these interactions depends on how

many are packed within the scale of their confinement, given by ā. The larger

the interaction volume, the more significant interactions are; this may be seen in

Fig. 3.4(a) where for higher values, the repulsive interactions in the gas minimize

the energy by reducing the peak density, resulting in a larger condensate.
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3.2.3 Spinors

The BECs discussed so far have no spin degree of freedom, or rather the spin has

been ignored. To implement the artificial gauge fields described in Sec. 3.1.1, this

must remedied. Thankfully, generalizing the results to spinor gases (that is, those

with a spin degree of freedom) is relatively easy [46].

Consider an ensemble with two spin components; we may describe the system

through two wavefunctions, ψ↑ and ψ↓, one for each spin. Each wavefunction in-

dependently follows the GPE shown before (Eq. 3.30): their kinetic and potential

energies have the same form, in addition to the interactions between atoms in each

component. Atoms from different components, however, are also permitted to in-

teract. This results in two coupled GPEs [47, 48],

µψ↑(r) =

[︃
− ℏ2

2m
∇2 + V (r) + g↑ |ψ↑(r)|2 + g↕ |ψ↓(r)|2

]︃
ψ↑(r), (3.42)

µψ↓(r) =

[︃
− ℏ2

2m
∇2 + V (r) + g↓ |ψ↓(r)|2 + g↕ |ψ↑(r)|2

]︃
ψ↓(r), (3.43)

where g↑ and g↓ are the intra-atomic interaction strengths for each spin, and g↕

is the inter-atomic interaction strength. Interactions between atoms in the same

spin scale with their density, while the interactions between spins scale with the

density of the other. For larger spin manifolds we may continue adding interactions

in this manner, resulting in many coupled equations that will become expensive to

solve, especially in 3+1 dimensions. In general though, it is possible. With the aim

of simulating artificial electromagnetic potentials in BECs, we will be looking at

solving the spinor GPEs, Eq. 3.42 and Eq. 3.43, numerically.

3.3 Numerical Methods

The role of interactions in ultracold gases are substantial, and yet even in the

context of mean-field theory where the quantization of matter fields is ignored,

solving the resulting GPEs to determine properties of the system remains difficult.

The GPE contains a cubic nonlinearity in the wavefunction ψ, due to the density

dependence of the mean-field interactions. Solutions to such a differential equation

are not easily accessible, especially in cases where the trapping potentials or other

external fields lack symmetries to aid in determining solutions. Hence, numerical

techniques provide significant value to researchers, though highly performant code

is not ubiquitous in the community, especially among experimentalists.

In this section, we will cover one of the common numerical techniques for solving

both time-dependent and independent GPEs (Eq. 3.31 and Eq. 3.30). The technique
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will then be adapted to solving spinor GPEs (Eqs. 3.42- 3.43), with functionality

to add Raman-dressing as in Sec. 3.1.1, with the purpose of exploring many-body

ground states of trapped atoms subjected to such artificial gauge-fields. Last, the

data-parallel nature of the algorithm permits it to be accelerated on GPUs, resulting

in substantially faster run-times than on central processing units (CPUs); this allows

researchers to spend more time in the lab performing experiments, rather than

running and debugging BEC simulations [1].

3.3.1 Time Splitting Spectral Method

A common numerical technique for solving GPEs, and closely related nonlinear

Schrödinger equations, is the time-splitting spectral method (TSSM) [49]. It is

widely known that finite-difference derivatives are computationally expensive; the

kinetic energy, which is a Laplacian operator in coordinate space, therefore imposes

a numerical challenge. The TSSM takes advantage of the fact that, in momentum

space, the kinetic energy is a diagonal operator, with the Laplacian ∇2 → k2.

Wavefunctions in coordinate-space ψ are related to those in momentum space ψ̃ by

a Fourier transform. Computationally, performing fast Fourier transforms (FFTs)

is significantly less expensive than numerical gradients. This is the key observation

that the TSSM takes advantage of.

We will describe the TSSM as applied to the time-dependent GPE, Eq. 3.31; in

this case, we will discuss it as applied to simulations in quasi-2D, where in the third

dimension an analytic density profile is considered (such as a Gaussian). This allows

the densities predicted in simulation to correspond well with truly 3D BECs, at low

computational cost, but works best when the confinement along one axis is stronger

than the others5. The simulations presented in this chapter were performed in such

a manner [1], though the algorithm extends to 3D, at significant memory cost.

To start, the wavefunctions must be discretized in both coordinate space and

momentum space, hereafter called r-space and k-space, respectively. We designate

the two spatial dimensions as x and y, with z the out of plane dimension, over which

the density may be assumed as Gaussian, or some other density profile such as that

of the TF approximation. Grids of dimension Nx × Ny are initialized; in r-space,

they extend over the range (±xmax,±ymax), with the corresponding grid spacing of

∆q = 2qmax/Nq, q ∈ {x, y}. From this, the grids in k-space are initialized with the

same dimensions. The limits in k-space are determined by the spatial resolution,

kmax
q = ±π/∆q, and the spacings by the grid size ∆kq = π/qmax. The wavefunctions,

either in r- or k-space, are therefore Nx × Ny arrays of complex numbers (double

5This is particularly applicable to crossed ODTs, such as that in our system, since the trap
frequencies in the plane of the beams are lower than the out of plane trap frequency.
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precision, here), with each element corresponding to the amplitude at a particular

location in that space. We will discuss practical considerations when choosing these

spacings, and other parameters, further below.

To propagate a wavefunction forward in time, we discretize time into small steps

of duration ∆t. We may write the GPE in the following form,

−iℏ ∂
∂t
ψ = Ĥeff.ψ, (3.44)

in terms of an effective Hamiltonian,

Ĥeff. =
ℏ2

2m
∇2

xy + V (x, y) + g |ψ(x, y)|2 , (3.45)

which is itself a function of ψ due to the interactions6. The wavefunction at each

step is therefore computed by the application of the evolution operator,

Û(∆t) = exp

(︃
− i
ℏ
Ĥeff.∆t

)︃
(3.46)

with Ĥeff. computed from the previous step’s wavefunction. The evolution operator

at each time step is therefore a spatial grid, and computing Ûψ is a Hadamard

product (element-wise multiplication of arrays), where the wavefunction amplitude

at each location on the grid obtains phase according to the corresponding element

in Û .

In principle, Ĥeff. could be computed in full at each time step, and then applied

as above, but as stated before this would require the kinetic energy term to be

calculated from gradients (finite-difference or otherwise). The TSSM avoids this

by further decomposing each time step. Specifically, the evolution operator for

the kinetic energy is computed in k-space, and the potential energy and interaction

terms in r-space. The corresponding evolution operators are therefore calculated and

applied to the wavefunction separately. The evolution operator for the potential and

interactions, ÛV,g is applied to the r-space wavefunction ψ. Prior to applying the

kinetic energy, Ûk, we transform the wavefunction to k-space by a 2D FFT, ψ → ψ̃;

the kinetic energy term is applied to ψ̃, and then the state is transformed back to

r-space by an inverse-FFT for the next time-step. This cycle is iterated over for

the desired duration. Importantly, the kinetic energy does not commute with either

the potential or interaction energies, so to reduce the commutation error generated

by assuming Û(∆t) = Ûk(∆t)ÛV,g(∆t) we adopt the common Strang Trotterization

6Note that we have expressed the Laplacian operator ∇2 in 2D here.
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(also called Strang splitting) [50]. This takes the form,

Û(∆t) = Ûk

(︃
∆t

2

)︃
ÛV,g(∆t)Ûk

(︃
∆t

2

)︃
, (3.47)

where the kinetic energy is applied for a half time step ∆t/2, followed by potential

and interaction term for a full time step ∆t, and finished by another half from kinetic

energy. Higher order splittings also exist [51]. Every time step therefore contains

four 2D FFTs, and three Hadamard products.

Here we have described the process for taking a known wavefunction ψ and

propagating it forward in time according to the time-dependent GPE, Eq. 3.31. Of

course, as we mentioned in Sec. 3.2.1, solutions to the time-independent GPE are

not generally accessible. Prior to propagating wavefunctions in time as described,

we must first determine a suitable ground state to start with. Thankfully, the

algorithm described above may also be applied to finding BEC ground states, which

are solutions to Eq. 3.30. This is done by starting with some initial wavefunction that

is approximately the BEC ground state, such as the TF density, and propagating it

forward in imaginary time.

To understand this, consider the evolution of states according to the TDSE;

decomposing the wavefunction into the eigenbasis of the Hamiltonian, we may write

the time evolution as,

|ψ(t)⟩ = Û(t) |ψ0⟩ =
∑︂
j

c̃je
−iϵjt/ℏ |ψj⟩ (3.48)

where the eigenstate |ψj⟩ obtains phase according to its energy eigenvalue ϵj, and

c̃j = ⟨ψ0|ψj⟩. If we make time imaginary, by substituting t → −iτ , then we find

that rather than obtaining phase as τ increases, wavefunctions are exponentially

suppressed according to their energy. States with higher energy are therefore more

suppressed, so the dominant term in the expansion after some “time” τ will be that

with the lowest energy, i.e. the ground state. Imaginary time propagation is akin to

taking the zero-temperature limit [52].

Imaginary time propagation through the TSSM is done this very way, by replac-

ing the discrete time step with a complex one, ∆t → −i∆τ , so that the evolution

operators are no longer complex exponentials. We are free to renormalize the wave-

functions after each time step, so that after many such steps forward in τ , the

wavefunction will converge to the ground state. In the simplest case, starting with

the TF density, one would witness the transition from the sharp inverted parabola,

to a smooth distribution such as those shown in Fig. 3.4. In this way, we may obtain

reasonable ground states to then propagate in real-time through the same algorithm.
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With the algorithm described above, we are able to discretize wavefunctions in

space, solve for the ground states, and propagate them forward in similarly dis-

cretized time. The grid parameters should be chosen so that the boundaries of the

grid extend far beyond the size of the BEC, for all times in the simulation, otherwise

edge effects will occur. A natural choice of length scale is therefore the TF radius,

where the grid size should exceed this. Increasing the grid boundary far beyond the

region occupied by atoms, however, must also be accompanied by an increase in the

grid dimensions, Nx ×Ny, in order to maintain the required resolution (which sets

the k-space dimension). The operations performed by the CPU during each step

mostly consist of Hadamard products between arrays and 2D FFTs, with arrays

comprised of double precision complex floating point numbers7. The time steps, ∆t,

should also be sufficiently small to reduce integration errors; the chemical potential

µ serves as a good energy scale for this, where time steps ∆t ≪ ℏ/µ. Reducing

the time step too much may reduce the numerical error, but at the cost of signif-

icantly longer run-times. Therefore, with better spatial and temporal resolution,

simulations quickly become computationally expensive.

Raman-Coupled Spinors

The TSSM described above may also be generalized to spinor gases, which are

described by coupled GPEs, such as Eqs. 3.42-3.43 for the case of spin-1/2 systems.

The algorithm is similar to before, except that we simultaneously propagate two

components of the full wavefunction, Ψ = (ψ↑, ψ↓)
⊺. Here we are interested in

going beyond the simple case of just kinetic, potential, and interaction energies; we

wish to simulate the effects of Raman-dressed artificial gauge fields, as described in

Sec. 3.1.1. Specifically, we aim to realize the Hamiltonian Eq. 3.15, with a spatially

dependent detuning δ = δ(r) so as to produce interesting artificial gauge fields (see

Sec. 3.1.2). Such a system necessitates the addition of a spin degree of freedom; in

the case of spin-1/2, we may write the coupled GPEs as [1, 31],

µψ↑ =

[︃
− ℏ2

2m

(︁
k2 + kLkx

)︁
+ V (r) +

δ(r)

2
+ g↑ |ψ↑|2 + g↕ |ψ↓|2

]︃
ψ↑ +

Ω

2
ψ↓, (3.49)

µψ↓ =

[︃
− ℏ2

2m

(︁
k2 − kLkx

)︁
+ V (r)− δ(r)

2
+ g↓ |ψ↓|2 + g↕ |ψ↑|2

]︃
ψ↓ +

Ω

2
ψ↑, (3.50)

where several of the terms differ in sign, according to the Pauli matrices in Eq. 3.15.

Additionally, we have expanded the kinetic energy term, ignoring the k2Lσ̂
2
z term

since it is uniform across all degrees of freedom (σ̂2
z = 1̂). While the inter-spin

interaction terms ∝ g↕ assign an energetic cost to atoms in different components

7FFTs are more efficient on arrays whose dimensions are powers of two, so the dimensions
should be set accordingly.
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being near one another, this term does not couple spin components (i.e. these are

not spin-exchange collisions). The additional terms ∝ Ω, on the other hand do

produce coupling.

Looking at the various terms, we can determine in which order and coordinate

representation they should be applied. The term ℏ2 (k2 ± kLkx) /2m is the only one

which is diagonal in k-space, and hence it is applied there while all the others are

applied to the r-space wavefunctions. We determined empirically that, following

the kinetic terms, the interaction and coupling terms should be applied with the

same Strang splitting as the kinetic energy; this is because, though they commute

spatially, they do not commute over the spin degree of freedom [50]. They are

therefore applied as a half step each. Given the spatial dependence of detuning

here, it acts as a spin-dependent potential, and may therefore be applied along with

the trap potential. The remaining half time step of the interaction and coupling

terms is then applied, followed by the remaining kinetic terms.

Overall, adding the spin degree of freedom, along with the new Raman dressing

terms, increases the complexity of each simulation substantially. Each individual

step now consists of eight 2D FFTs, and ≳ 20 Hadamard products. The memory

usage is also substantial, since we must now track two wavefunctions each in both

r-space and k-space, in addition to the grids pertaining to each term in the GPE.

Depending on the complexity of the coupling fields desired, and the desired spatial

resolutions, finding many-body grounds states takes on the order of several hours

with commercially accessible hardware. Hence, the desire for more performant code

is great, so as to drastically speed up the time it takes to devise new experiments,

or explain existing ones.

3.3.2 GPU Acceleration

Throughout the development of a Python package to implement the algorithm

described in Sec. 3.3.1, in both single-component BECs and spinors, we noticed that

both of the key operations performed throughout the iteration loops, Hadamard

products and FFTs, may be run on GPUs with high efficiency. This is because

these operations are both data parallel. For an operation to be data parallel, each

element in a collection may be operated on simultaneously by the same function; the

Hadamard product is an example of this, since the elements in each of two arrays

may be multiplied independently of the others. The 2D FFT is also data parallel,

since it may decomposed into many 1D FFTs. While the iteration loop itself is

inherently serial, since the result of each iteration is the input to the next, the

operations throughout each step are data parallel. The performance may therefore

be readily improved by modern hardware acceleration techniques.
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Over the years, GPUs have become increasingly efficient computational tools,

capable of much more than the graphics processing they were designed to do [53–55];

the various stages of the graphics computation pipeline have been reprogrammed

to also do linear algebra [56–58], FFTs [59], and more [60, 61]. This is in large

part because of the rise of machine learning, which has driven innovation in GPU

production. In contrast to CPUs, which perform tasks sequentially but with low

latency, GPUs perform many tasks simultaneously, but with relatively high latency.

There is at some point a trade-off in the time saved by doing many things at once,

slowly, versus one thing at a time, quickly; this is the contest in which CPUs and

GPU engage8. There is of course no definite victor, as some tasks are inherently

serial in nature, where CPUs still excel. Identifying the strengths and weaknesses

of various devices, to test the situations in which they thrive over the others, is

therefore important.

It is now possible to program essentially all of the operations performed in the

graphics pipeline, and GPUs are capable of performing operations on increasingly

complex types. A such, even through commercially available GPU hardware, signif-

icant performance gains are readily available. Furthermore, due also to the rise of

machine-learning, there are numerous open-source packages that make hardware ac-

celeration relatively straightforward. With these considerations in mind, we adapted

the TSSM to be run on either CPUs or GPUs, with minimal changes9.

Initially, our Python package worked through the NumPy library [62], so in order

to accelerate simulations, the machine-learning library PyTorch [63] was chosen

due to its syntactic similarities. It provides a similar interface as NumPy, offering

wrappers for various CUDA libraries. Much like NumPy, functions in PyTorch are

array based, with the significant difference that in the latter, arrays can be initialized

on a specified device; for instance, if two arrays are initialized on the same device

(such as a GPU), then operations between said arrays are performed by that device.

In this way, execution of code on different devices is easily assigned by passing a

single keyword argument to various array allocations, specifying the device on which

they are stored.

The only drawback with PyTorch at the time the code was originally developed

was that it did not support complex numbers. As such, the most major modifica-

tion to the original code was to define our own data structure to encode the complex

phases of the wavefunctions. We settled on stacking two arrays of double precision

floating point number on top of each other, each array representing either the real or

8Keep in mind that other devices, such as field-programmable gate arrays, or application-specific
integrated circuits, are also used in high-performance computing. Some day, perhaps quantum
computers will be to.

9Specifically NVIDIA GPUs, through their CUDA API.
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imaginary component of the wavefunction. We therefore had to define custom func-

tions for various array operations, to handle the complex amplitudes correctly. Since

then, PyTorch now supports complex data types, making hardware acceleration of

similar code all the more simple.

3.3.3 Hardware Considerations

Unlike what is usually the case for CPUs, before blindly executing code on GPUs

there are some important things to consider, since they are quite different in design

(this is becoming less and less true with future innovations, it seems). Simply put,

not all GPUs are capable of performing operations on all data types efficiently;

there are differences in device architectures, which dictate the operations available

to them. For the NVIDIA GPUs employed here, this is captured by the compute

capability (CC), which is a number assigned to each device by NVIDIA to describe

computational resources. For instance, devices with CC > 6 have the hardware

necessary to perform 64-bit addition operations, while other devices cannot [1]. The

CC is therefore an important metric to look at when choosing devices, as regardless

of any other specifics, it determines the ability of the device to perform the various

operations required. The device architecture, or CC, will become important when

comparing performance between devices.

In addition to architecture, the other specifications that drive device performance

are memory, and the number of virtual cores. Older GPUs are not equipped with

as much memory as CPUs, even of the same era, though with each new generation

this limitation is reduced. The same is true of the number of virtual cores, which

roughly determines how many concurrent operations the GPU is able to perform. On

a more speculative note, it will be interesting to see how the various “ARM64” chips

emerging in recent years will be employed, as they provide unified memory between

the CPU and GPU. Regardless, we are now roughly equipped with the means to

understand the capabilities of GPUs, in order to compare their performance with

each other, and with CPUs.

3.3.4 Results

To test the performance of our GPU-accelerated Python simulations of spinor

BECs, we ran benchmarks on various available devices, summarized in Tab. 3.1. In

each case, we ran simulations repeatedly, for various different grid sizes; as the grid

size is increased, computations become more expensive. Results for each device in

Tab. 3.1 are shown in Fig. 3.5(a). The time required to complete a pre-determined

simulation is measured. We find that, as the array size is increased, the CPU run-

times also increase; this is to be expected, since they perform all operations in a
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GPUs GeForce MX150 GeForce 980 Ti TITAN V
CC 6.1 5.2 7.0
CUDA Cores 384 2816 5120
VRAM [GB] 2 6 12

CPUs Intel-i5-7200U AMD FX-6300 Intel i9-9900K
Clock (Boost) [GHz] 2.5 (3.1) 3.5 (4.1) 3.7 (5.0)
Available RAM [GB] 8 16 32

Table 3.1: List of relevant specifications for the devices used to benchmark spinor GPE
simulations. The devices that share a column were installed on the same workstation. For
the GPUs, the CC, number of virtual cores (CUDA cores), and available memory (VRAM)
are provided. Similarly, the clock speeds of the CPUs are given with and without boost,
along with the memory (RAM) available on the workstation in which they are installed.
Note that the number of CPU cores is not relevant here, since the algorithm may only run
on a single core at a time. A similar table may be found in Ref. [1]

serial manner. With increasing grid size, there are more operations to do so the

process takes longer10.

Conversely, as shown in Fig. 3.5(a), the GPUs are roughly constant with in-

creasing grid size, up to a certain point that differs for each. Each GPU is capable

of performing parallel operations on arrays up to some size, limited by the num-

ber of virtual cores they have. Up to this array size, there is no additional cost to

increasing the grid size, so the computation times are constant. Once arrays pass

beyond this limit, then the device must start batching operations, increasing the

computation time. Note that the GeForce MX150 is a newer architecture than the

older GeForce 980 Ti, as shown by its CC in Tab. 3.1, so for small grid sizes it

outperforms the 980 Ti; however, due to its lower number of virtual core, the 980

Ti eventually surpasses its capability. This demonstrates the importance of archi-

tecture in such benchmarks. Last, we are not capable of running simulations of all

grid sizes on these devices, as they are limited by memory; the CPUs generally have

more memory access, so this was less of an issue for them.

In Fig. 3.5(b), we show the speedup for each CPU-GPU pair, which is the ratio of

the GPU and CPU run-times, τCPU/τGPU. We find that as the array size increases,

the speedup also increases, until the GPUs begin batching operations, producing

diminishing returns. The highest speedup recorded here is 85, though practically

speaking the number is far higher; this is because we determined it would only

be fair to compare devices running on the same workstation, due to other factors

that could be constraining performance. As such, the best GPU, the TITAN V, is

compared against the best CPU, the Intel i9-9900K; the latter boasts an impressive

10Note that the relative performance between the CPUs is not necessarily determined by their
clock speeds, as the device which performed to poorest has the second highest clock speed. This
demonstrates the nuance involved when performing such benchmarks, which is beyond the scope
of this qualitative discussion.
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Figure 3.5: (a) Execution times of the various devices in Tab. 3.1 on spinor GPE sim-
ulations, with increasing grid sizes. Due to the FFT algorithms being more efficient on
grid sizes of base two, the resolution was doubled in each step; the plot therefore has log-
10/log-2 scaling. (b) Speedup of the various device pairs that are installed on the same
workstation, as computed from the curves in (a) as the ratio of CPU to GPU execution
times, τCPU/τGPU. We find that for all physically relevant grid sizes (> 64 in each axis)
the GPUs have significant advantage. This figure is from Ref. [1].

5 GHz clock speed when running a single core, as it does with these simulations.

Despite this, the highest measured speedup between these devices is 36, indicating

just how powerful the TITAN V GPU is when applied in a suitable manner. If

we compare this device to more commonly used CPUs, the results would be far

more substantial. For a more detailed discussion of these benchmarks, and for more

details on the hardware, see Smith et al. 2022 [1].

Based on these results, we may conclude that the TSSM as applied to the problem

of integrating the GPE, for both single-component and spinor gases, benefits highly

from hardware acceleration on GPUs. It is worth noting that, due to the constant

execution times of the GPU up to a certain grid size, there is almost no additional

cost in running higher resolution simulations on such devices. The trade-off between

sufficient resolution and large enough boundaries (Sec. 3.3.1) is therefore nullified

by GPUs up to a threshold grid size, which depends on the particular device. The

same can not be said of CPUs, as their execution times always increase accordingly

with the grid size. Therefore, not only are GPUs faster, but they also require less

of a cost-benefit analysis when planning large sets of simulations.

The path towards the results discussed here was obtained quite easily, all things

considered, by adopting a package that was syntactically similar to the existing code,

with back-end access to CUDA libraries. High performance computing is therefore
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readily accessible, and open-source, allowing researchers more time in the lab, and

shortening the development cycle for powerful numerics.

3.4 Artificial Magnetic Fields in Spinor BECs

We are now equipped with everything needed to solve for the ground states of the

Hamiltonian Eq. 3.15, wherein the gas of neutral atoms behave as charged particles

subject to electromagnetic gauge fields. Here, we show a series of simulations that

were used to verify the spinor code discussed in Sec. 3.3.1 during its development;

results were compared to similar simulations detailed in Radić et al. 2011 [31].

The situation we consider, briefly discussed in Sec. 3.1.2, is of a gradient in the

detuning along the y-axis, δ(y) = βy, where the slope of the gradient is parameter-

ized by β in units of recoil energy per TF radius, EL/Rx. In the strong-coupling

regime, with Ω/EL > 4, the resulting parabolic dispersion of the lower dressed state

band depends on the location along y, in such a way that the artificial vector po-

tential produced, A ∝ βyex, has a non-vanishing curl. The atoms therefore move

according to an artificial magnetic field oriented along the z-axis. We will simu-

late these conditions for various combinations of β and the coupling strength Ω,

finding the ground states through imaginary time propagation of the spinor GPEs

(Eqs. 3.42-3.42).

For each simulation that follows, the parameters Ω and β were varied with all oth-

ers constant (aside from details of the grids, as explained below). The atom number

was fixed at N = 104, with trap frequencies along each direction ωx = ωy = 2π× 50

Hz, and ωz = 2π × 200 Hz. The trapping potential is therefore anisotropic, with

stronger confinement along z. As discussed in Sec. 3.3.1, the quasi-2D GPE simu-

lations employed here are well suited to such a situation. The interaction strengths

were those of 87Rb, with g↑ = g↓ = 4πℏ2a/m; the inter-atomic interaction in 87Rb

is slightly larger, g↕ = 1.04g↑, which causes atoms to energetically prefer interac-

tions within their spin components, rather than between them. Simulations were

performed with grids covering a region 2.4Rx to 3Rx wide along x, and 4.6Rx to

5Rx along y; these sizes were changed slightly to accommodate the wider spatial

extent of the ground states subjected to larger detuning gradients, which forces the

spins apart. The grid dimensions also varied between simulations, in each case with

either 256 or 512 pixels along each axis.

Additionally, in all cases, wavefunctions were initialized in the TF wavefunction

with equal populations in each spin, and propagated in imaginary time without any

Raman coupling or detuning. The result was then propagated again, just in the

presence of the detuning gradient, since it acts as a potential to shift the spatial

Chapter 3 57 Logan W. Cooke



Artificial Gauge Fields in Ultracold Atomic Ensembles Section 3.4

|𝜓 ↑ |2 |𝜓 ↓ |2(a) (b)

(c) (d)
x/Rx

-1.0 -0.5 0.0 0.5 1.0

y/
R x

-2

-1

0

1

2 Ω = 3EL

𝛽 = 0.5EL/Rx

kx/kL

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

k y
/
k L

-0.2

0.0

0.2

x/Rx
-1.0 -0.5 0.0 0.5 1.0

-2

-1

0

1

2

kx/kL

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-0.2

0.0

0.2

Figure 3.6: Numerically determined spinor BEC ground states, with Raman coupling
Ω/EL = 3, and detuning gradient with slope β = 0.5EL/Rx. The r-space densities are
shown for ψ↑ (a), and ψ↓ (b). For the corresponding k-space plots, (c) and (d), a magnified
region near zero is shown. Results show a phase separation due to the interplay between
weak coupling, a potential energy shifted by detuning, and repulsive inter-spin interactions.
In the middle region where the two components overlap, interference effects from the two
oppositely propagating waves may be seen.

distributions of the spins apart. Finally, the result was propagated a third time,

with all of the relevant terms applied, to determine the full ground state. We found

that this process drastically reduced the time taken for results to converge. In this

way, the various terms in the Hamiltonian were applied in sequence, allowing the

result of each propagation loop to begin with a better estimate for the ground state.

This is akin to the adiabatic preparation of states in experiment.

To begin, we will first look at the results for a relatively small detuning gradient,

and in the weak-coupling regime. In Fig. 3.6 we show the ground state for each

spin component in both r-space and k-space, with Ω/EL = 3, and β = 0.5EL/Rx.

In this case, since the coupling is weak, the dispersion is a double well, shifted on

either side of y = 0 due to the small detuning gradient. The spins are therefore

not substantially mixed; the relative populations remain balanced here, due to the

symmetry of δ(y) across the origin. This is true for all other simulations shown here.

The detuning term δ(y) is a spatial gradient, and therefore applies a force on

atoms. Effectively, the parabolic trap potential seen by each spin component has

its minimum shifted away from y = 0; in this case, spins are pulled in different

directions. In Fig. 3.6, with repulsive interactions and without sufficiently strong

coupling, it is therefore energetically favorable for the spins to separate along the
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y-axis. Another way to view this is through an artificial electric field, arising from

the gradient of the scalar potential, since the height of bands changes along y (see

Fig. 3.3). This field is zero at y = 0 and increases away from the origin, but due

to the confining harmonic trap, atoms are still contained to a near central region.

Due to the opposing momenta of each spin, in the region where they overlap slightly

there is a notable interference pattern. This may be understood as two plane waves

propagating in opposing directions, producing an interference pattern with a length

scale given by the difference in their momenta, which here is ≈ 2kL. This simulation,

Fig. 3.6, gives us all the ingredients necessary to understand the others.

In Fig. 3.7 we show the result of a simulation in the strong-coupling regime, with

Ω/EL = 5, and β = 0.8EL/Rx. This situation may therefore be understood through

an Abelian magnetic field acting on the lower energy dressed state (see Sec. 3.1.2).

The results look similar to before, though with the stronger coupling there is sub-

stantially more mixing between the spins. The dispersion being a single minimum

also brings the momentum components closer to zero. The resulting interference

pattern in the middle region is more pronounced as a result. In Fig. 3.8 we take a

closer look at the interference pattern, plotting the total density (sum of the two

spin components), alongside the phase of the spinor wavefunctions in the region near

y = 0. The phase reveals that the interference pattern actually consists of a row of

quantized vortices, each with phase winding 2π. The winding around each vortex,

for both spin components, is in the same direction; this is because both spins in the

lower band feel the same Abelian magnetic field. The Lorentz force has produced

circulation in the spinor gas, resulting in the nucleation of vortices.

Looking now at the case where we increase the strength of the applied magnetic

field, results from simulations with Ω/EL = 4 and β = EL/Rx are shown in Fig. 3.9.

In this case, the coupling is slightly weaker, allowing the repulsive interactions be-

tween spins to overcome it; the resulting ground state is therefore more miscible in

spin. Furthermore, several vortices appear in the high density regions of each spin,

due to the strong artificial magnetic field imparting significant angular momentum

on the gas. The middle row of vortices also persists. It is also worth noting that

the momentum distributions have split into several peaks. The presence of vortices

in the bulk necessitate such behavior, as more momentum components are required

to reproduce the complicated density structure in r-space11.

Finally, we look at the situation with both large coupling, Ω/EL = 6, and a

large artificial magnetic field, with β = EL/Rx. Results of such a simulation are

shown in Fig. 3.10. Here we see a combination of all the previous results. The

strong coupling produces significant mixing between spins, so they are less miscible,

11This is just a statement regarding Fourier series, quite generally. For the structures seen in
the density profiles, more Fourier components are needed to properly represent them.
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Figure 3.7: Ground state solutions in the strong-coupling regime, with Ω/EL = 5, and
detuning gradient with slope β = 0.8EL/Rx, with same layout as in Fig. 3.6. The more
significant role of the coupling Ω has mixed the spins, bringing their momenta closer to
zero. The resulting interference pattern from these oppositely traveling spin waves has a
length scale of ≈ kL, producing a row of vortices where they overlap.
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Figure 3.8: The same simulations as shown in Fig. 3.7, showing the total density (a),
beside the phase distributions of each spin component (b). The full density displays an
interference pattern between the oppositely traveling spin waves. Looking at the phases
of each spin component in (b), with ψ↑ (top) and ψ↓ (bottom) each displaying a 2π phase
winding around the regions where the density vanishes, indicating that these features are
quantized vortices. The winding in each spin component is in the same direction, as they
feel the effects of the same Abelian magnetic field.
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Figure 3.9: Spinor BEC densities in r-space and k-space, with the same layout as in
Fig. 3.6, under similar conditions to Fig. 3.7 but with a stronger magnetic field. The
coupling strength is Ω/EL = 4, and the detuning gradient has slope β = EL/Rx. The
lower coupling strength permits a higher degree of separation between spin components,
but the larger gradient produces a stronger artificial magnetic field. In this case, the field
is strong enough to permit the nucleation of vortices into the high-density regions. As
before, all vortices have the same winding.
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Figure 3.10: Spinor BEC ground states, shown with the same layout as in Fig. 3.6, with
both strong coupling, Ω/EL = 6, and a large detuning gradient, with slope β = EL/Rx.
Results show spins that are less miscible than in other simulations, due to the strong
coupling strength. There are several vortices, including some in the high density regions,
due to the large magnitude of the artificial magnetic field.

and their momenta are brought closer together, increasing the wavelength of their

interference pattern. Additionally, the large magnetic field permits vortex nucleation

in the bulk.

These simulations exemplify the applicability of the GPE integration technique

described in Sec. 3.3 to various complicated Hamiltonians. If many such simulations

are to be performed, especially at high enough resolution to include the small vortex

structures, or large enough boundaries to permit real-time propagation12, the GPU

accelerated code is expected to significantly reduce the time and resources required

to undertake such investigations.

Altogether, the simulations discussed here demonstrate the complicated interplay

between terms in the Hamiltonian, which lead to interesting many-body phenomena.

In this case, we looked at the effect of a relatively simple Abelian electromagnetic

potential, producing circulation in a spinor gas; the results show several different

vortex structures [31], in only a limited region of the full parameter space. In

addition to the simulations shown here, we were also able to simulate artificial

electric fields by changing a spatially-uniform detuning in time, and other such

12If left in the trap, atoms are expected to “slosh” around to some extent, meaning the simulation
boundaries must be extended. Otherwise, simulating the dynamics in TOF would be experimen-
tally applicable, but involves the rapid expansion of the BEC requiring a significant increase in the
grid size and resolution.
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gauge fields. In each case, the artificial gauge fields discussed in Sec. 3.1.2 allow us

to leverage our intuition from classical electromagnetism, and use it to explain the

phases of many-body systems.
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CHAPTER 4

Non-Abelian Geometric Phase

T
he previous chapter, Ch. 3, concerned itself with quantum simulation. A tech-

nique for using Raman dressing (Sec. 2.2.2) to produce gauge-field like terms

in the atomic Hamiltonian, allowed us to probe the many-body physics of an inter-

acting Bose gas. In this case, the rather simple U(1) gauge fields were more a tool,

helping us to understand many-body physics, rather than the object of study itself.

In this chapter, we will cover a different means of producing artificial gauge fields,

wherein they will be the main topic of study and the many-body physics will be

mostly ignored.

In this chapter we will focus our attention on geometric phase, which has a

convenient description in the language of gauge theory. Geometric phase may arise in

systems with a Hamiltonian that varies in time through a set of parameters (usually

ones that can be controlled by the experimenter). One may find that the evolution

of the system can be partitioned into two components: a dynamical component,

which depends on the Hamiltonian and the specific dynamics of the evolution, and

a geometric component, which does not depend on the Hamiltonian, but rather

on the curvature of the Hilbert space as it varies with the parameters. Typically

geometric phases are discussed in terms of adiabatic evolution [64, 65], where the

dynamical component of the phase may be ignored, but there are non-adiabatic

generalizations where they will become important [66].

In light of its connection to gauge theory, it is natural to extend our interest

in generating various gauge fields to the study of geometric phase. Looking at the

evolution of quantum systems, generated by geometric phase, may tell us something

about the underlying gauge fields. For this reason, we will look at how geometric

phases with gauge fields of interesting symmetries may be created in the lab. In

particular, we will focus on non-Abelian gauge fields, which have traditionally been

difficult to synthesize [30, 67]. It turns out phases of this nature also have interesting

connections to several quantum computing (QC) approaches, which will be discussed

64
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as well.

We begin in Sec. 4.1 by introducing the concept of geometric phase, through

the adiabatic evolution of a parameterized Hamiltonian. This Hamiltonian is part

of a family of Hamiltonians, all connected through the continuous variation of pa-

rameters. The instantaneous eigenstates of the Hamiltonian change as it evolves;

these alterations correspond to curvature in parameter space, and so one naturally

arrives at the condition for parallel transport of vectors in curved space. The effects

of curvature are expressed through a vector potential, for which there is an asso-

ciated magnetic field. Generally, both Abelian and non-Abelian geometric phases

may arise, and the difference between the two may not be readily apparent [68]. As

such, we will discuss a means to discern the difference between the two cases in a

gauge-invariant manner, through Wilson loops.

Following this, we will more firmly draw the connection between artificial gauge

fields and geometric phase, in Sec. 4.2. Some of the difficulties in studying non-

Abelian gauge fields specifically will be discussed, as will their applications in var-

ious fields in physics. Later, in Sec. 4.3, we will motivate this work even further

by discussing the implications of geometric phase in several quantum information

processing (QIP) approaches. More specifically, there are several QC schemes that

rely on geometric phase; they will be briefly introduced, in order to distinguish them

from each other.

4.1 Geometric Phase

First we must introduce the concept of geometric phase as it arises from the

Schrödinger equation. Here we will concern ourselves only with the adiabatic limit,

but the result from a non-adiabatic generalization will become important in Sec. 5.3.

Suppose we have some Hamiltonian Ĥ that depends on a set of parameters λ(t),

which will evolve in time. We assume the parameters are under our control at all

times, and take on values λ ∈M. The TDSE equation is

iℏ
∂

∂t
|ψ⟩ = Ĥ [λ(t)] |ψ⟩ . (4.1)

We may write the Hamiltonian in a new basis, which changes with the parameters,

Ĥ(λ)→ Û
†
(λ)ĤÛ(λ)− iℏÛ †

(λ)∂tÛ(λ), (4.2)

for which the TDSE equation becomes,

iℏ
∂

∂t
|ψ⟩ =

(︃
Û

†
ĤÛ − iℏÛ † ∂

∂t
Û

)︃
|ψ⟩ . (4.3)
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All of the time dependence is contained within the parameters λ(t), so we may

change the derivatives to those in parameter space as,

∂

∂t
=
∂λµ

∂t

∂

∂λµ
,

= λ̇
µ
∂µλ, (4.4)

where λ̇
µ
= ∂tλ

µ, and ∂µλ = ∂/∂λµ. Summation over repeated indices is implied

(Einstein summation). Changing the derivatives in Eq. 4.3 and rearranging yields,

iℏ
(︂
∂µλ + Û

†
∂µλÛ

)︂
|ψ⟩ = 1

λ̇
µ Û

†
ĤÛ |ψ⟩ . (4.5)

We define Ĥλ = Û
†
ĤÛ , so then we have,

iℏ∇µ
λ |ψ⟩ =

1

λ̇
µ Ĥλ |ψ⟩ , (4.6)

written in terms of the covariant derivative ∇µ
λ = ∂µλ − iÂ

µ
, where,

Â
µ
(λ) = iÛ

†
(λ)∂µλÛ(λ), (4.7)

is called the connection, which is an anti-Hermitian matrix. At the moment, Eq. 4.6

still contains the influence of Ĥλ on the evolution, but under certain conditions

discussed later, we may assume that Ĥλ |ψ⟩ = 0. In this special case,

∇µ
λ |ψ⟩ = 0. (4.8)

This is the condition for parallel transport of the vector |ψ⟩ through parameter space

M, which has a curvature captured by the connection Â(λ). The evolution is fully

described by the geometric properties of the Hilbert space, as it varies inM. From

the perspective of a physicist, the connection plays the role of a vector potential,

from which we may then define a magnetic field that here is called the curvature.

We will forgo providing further intuition for these relations until a later section,

(Sec. 4.1.2).

4.1.1 Holonomies

To derive the solution to Eq. 4.6, which still contains contributions from the

Hamiltonian Ĥλ, it is convenient to first go back a few steps. Specifically, we begin

with

iℏ
∂

∂t
|ψ⟩ =

(︂
Ĥλ − ℏλ̇µÂ

µ
)︂
|ψ⟩ , (4.9)
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for which the solution is Ûλ(t) |ψ⟩, where Ûλ(t) is the time-ordered exponential1,

Ûλ(t) = T exp

{︃
− i
ℏ

∫︂ t

0

dt′
[︂
Ĥλ(t

′)− ℏλ̇µÂ
µ
(λ)

]︂}︃
, (4.10)

where T is the time ordering operator. We will look at the case where the evolution

is cyclic, so that after some time T , we have traversed a loop in parameter space

such that λ(T ) = λ(0).

Next, we consider the case where the family of Hamiltonians, connected through

λ, are iso-degenerate, meaning that the degeneracy structure of Ĥ is consistent

throughout the entire loop in M [69]. Hence, there is no crossing of eigenstates.

Furthermore, we assume that the evolution is sufficiently adiabatic, so that there

is no dynamical coupling between states due to changes in λ. In this case, the

integrand in the above evolution operator, Eq. 4.10, is block-diagonal ; the nth block

acts on anNn dimensional degenerate subspace, with quasi-energy ϵn(λ). Each block

thus takes the form ϵn(λ)1̂
Nn − ℏλ̇µÂ

µ

n(λ), with 1̂
Nn

the Nn dimensional identity

operator. The evolution operator may then be expressed as a direct sum between

subspaces,

Ûλ(T ) =
D⨁︂

n=1

T exp

[︃
− i
ℏ

∫︂ T

0

dt′ϵn(λ)1̂
Nn

+ i

∫︂ T

0

dt′λ̇
µ
Â

µ

n(λ)

]︃
, (4.11)

for D many subspaces [69]. Through the direct sum, each term acts on its own

subspace, with no mixing between them. Since the first term in the exponential is

proportional to identity, we can separate this into the product of two exponentials,

by the Baker-Campbell-Hausdorff formula. Additionally, the second term may be

changed to a closed line integral2 over the loop ℓ inM, and the time-ordering may

therefore be changed to path-ordering, via operator P . We have

Ûλ(T ) =
D⨁︂

n=1

exp

[︃
− i
ℏ

∫︂ T

0

dt′ϵn(λ)

]︃
P exp

[︃
i

∮︂
ℓ

dλµÂ
µ

n(λ)

]︃
,

=
D⨁︂

n=1

e−
i
ℏϕn(t)Γ̂

n

A(ℓ). (4.12)

The dynamical contribution to the phase in subspace n is contained within ϕn(t) =

1Time-ordering is necessary because the integrand may not commute with itself at all times.
Really, a time-ordered exponential is just a re-expression of the original differential equation, as
the integration of the Hamiltonian has not yet been carried out. Path-ordering, which comes up
later in this section, is similar.

2If we relaxed the constraint that the evolution is cyclic, the result would just be a line integral
instead.
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∫︁ t

0
dt′ϵn [λ(t)]. The corresponding geometric contribution is,

Γ̂
n

A(ℓ) = P exp

[︃
i

∮︂
ℓ

dλ · Ân(λ)

]︃
, (4.13)

which is called a holonomy3 [69]. Each subspace of the Hamiltonian therefore evolves

with a dynamical phase according to the energy of the subspace, and a geometric

contribution from the curvature.

4.1.2 Some Intuition

To develop further intuition on the geometric Schrödinger equation, Eq. 4.6,

and the resulting form of the evolution operator (holonomy), we will remove the

dynamical contribution to the phase. This is traditionally a choice that is made much

earlier in the derivation of geometric phase, but the dynamical part is important to

consider in many applications [71, 72]. Looking at a single subspace, we have that

Ĥλ |ψ⟩ = ϵ |ψ⟩. This Hamiltonian, with Hilbert space of dimension Nn, therefore

has an Nn-fold degeneracy (in the case where Nn = 1, we are concerning ourselves

then with just a single state). We are free to shift the Hamiltonian in energy by

ϵ such that Ĥ
′
λ |ψ⟩ = 0, with Ĥ

′
λ = Ĥλ − ϵ. The Schrödinger equation therefore

becomes the parallel transport condition, Eq. 4.8.

Rearranging Eq. 4.8 we obtain,

∂µλ |ψ⟩ = iÂ
µ |ψ⟩ . (4.14)

The above equation is fully geometric; by eliminating the energetics of the states,

what remains does not depend on the spectral properties of the Hamiltonian. For

the typical dynamical Schrödinger equation (Eq. 4.1), we see that the action of

changing the state vector in time is the same as a rotation by the Hamiltonian.

Here we have a similar result: the action of moving the state vector in parameter

space (the derivative on the left), is the same as a rotation by the connection. This

is, therefore, the geometric equivalent of the typical Schrödinger equation that we

are familiar with, where the connection has taken the place of the Hamiltonian as

the generator of transformations. From the above, Eq. 4.14, we may also write the

3Also called anholonomy in the original work on geometric phase, as described in
Berry 1988 [70]. This refers to a system in which quantities driving the evolution are returned
to their original values, but several others are changed in this process. The system dynamics are,
therefore, not fully captured by the driving quantities (nonintegrability). More recently, the term
holonomy has been adopted, particularly in the quantum information community, so we will use
this convention throughout the thesis.
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connection in the conventional manner [65],

Aµ
nm = −i ⟨ψn| ∂µλ |ψm⟩ , (4.15)

defined through the matrix elements for each vector component.

These points are made more clear by examining the form of the holonomy,

Eq. 4.13. The holonomy, which is directly the solution to the above Schrödinger

equation (Eq. 4.14), depends exclusively on the path ℓ taken in parameter spaceM,

as described by the connection Â. It is important to understand this relationship;

the holonomy is not a function of the connection, but of the path ℓ. The connec-

tion is pre-established by the structure of the eigenstates of Ĥ(λ) as they vary in

parameter space. Through this lens, the structure of the Hilbert space defines the

form of the connection, from which the various choices of path determine which

transformations are generated.

Following this, if we consider the set of all possible loops L, we obtain the

holonomy group G =
{︂
Γ̂A (ℓ) ∀ℓ ∈ L

}︂
[69]. In general, the holonomy group G is a

subset of U(Nn), where Nn is the subspace space dimension. This indicates that,

based on the form of the connection, a subset of all possible unitary transformations

in the subspace may be generated by the set of loops4. Similarly, when the holonomy

group coincides with U(Nn) then all possible unitaries may be generated, and the

connection is said to be irreducible.

4.1.3 Abelian vs. Non-Abelian

Putting everything together, the evolution of the system is fully characterized

by the connection; by studying this object, and the various forms it may take, we

may obtain the rest of the results. There are two important cases to consider:

nondegenerate and degenerate subspaces.

In the nondegenerate case, evolution of states is constrained to each subspace

of dimension Nn = 1. The components of Ân must therefore be real numbers5,

which commute making the connection Abelian. Looking then at the form of the

holonomy, Eq. 4.13, we can ignore the path ordering since the connection commutes

with itself everywhere along the path. The result is that the holonomy group for

each subspace is a subset of U(1). Each eigenstate therefore obtains a global phase

(global in the subspace), with a dynamical contribution from the energy of the state,

and a geometric contribution from the curvature in the subspace. Altogether, an

4Note that the composition of several loops, such as ℓ1 ◦ ℓ2, is itself a loop. The corresponding
holonomy may be written Γ̂A (ℓ1 ◦ ℓ2) = Γ̂A (ℓ2) Γ̂A (ℓ1). Therefore, members of the holonomy
group may be generated as products of holonomies, by the composition of loops.

5Looking at the holonomy in Eq. 4.13, for it to be unitary the result of the integration must be
real.
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arbitrary state across several subspaces would therefore obtain some relative phase

through this process, but the population in each eigenstate would remain the same

since there is no coupling between subspaces. In nondegenerate systems, in the

adiabatic limit, the geometric phase is therefore always Abelian.

The result for the simple Nn = 1 dimension subspace is instructive, as it is rea-

sonably easy to see that the only possibility is for the state to obtain a global phase.

This can be seen from the time-independent Schrödinger equation, Ĥ(λ) |ψ⟩ = ϵ |ψ⟩.
Since the evolution is adiabatic and cyclic, at time T the state has to have returned

to the initial eigenstate, as this is the only solution to the eigenvalue problem here,

but a global phase is always permitted. Therefore, the only possible solution is

|ψ(T )⟩ = eiϕ |ψ⟩. This is the case originally studied by Berry [64], and describes the

geometric origin of the global phase seen in the seminal Aharonov-Bohm effect [73,

74].

The other case to consider is what form the phase takes on in degenerate mani-

folds, that is in subspaces with dimension Nn > 1. In this case the dynamical phases

accumulated by all states in the manifold are the same, as they have identical quasi-

energies throughout λ ∈M due to the iso-degenerate property of the Hamiltonian.

The geometric contribution is matrix-valued, and in general need not be diagonal in

the subspace eigenbasis. It may then be the case that the connection’s components

do not commute, making it non-Abelian, but this depends specifically on the form

of the curvature; there may yet be matrix-valued Abelian phases, if the components

of the connection always commute in all gauges. Degeneracy is therefore a necessary

but insufficient condition for the existence of non-Abelian geometric phase. Later,

in Sec. 4.1.4 we will introduce a means to distinguish these two cases.

Due to the non-commutative property of non-Abelian geometric phases, the cou-

pling of states within a degenerate subspace is permitted; as with the Nn = 1 case,

this is reasonably easy to see. Once again consider the time-independent Schrödinger

equation Ĥ(λ) |ψk⟩ = ϵ |ψk⟩, which now has a set of degenerate eigenstates {|ψk⟩}.
Suppose, e.g. at time t = 0 the system was prepared in one of the eigenstates, |ψ1⟩
(this choice is arbitrary). Following cyclic adiabatic evolution (and ignoring the

global dynamical phase), there is no reason that the state must return to the initial,

as any arbitrary superposition of the basis states satisfies the Schrödinger equation,

|ψ(T )⟩ = 1
N
∑︁

k c̃k |ψk⟩. The holonomy is therefore, in general, a unitary opera-

tor which couples the degenerate manifold; which couplings are permitted therefore

depend on the particular form of the connection, but as stated above, when it is

irreducible, any arbitrary unitary transformation on the initial state is permitted.

Unlike their Abelian counterparts, non-Abelian holonomies are therefore useful in

quantum control, being the key ingredient in several approaches to QC (see Sec. 4.3).
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4.1.4 Wilson Loops

The holonomy, Eq. 4.13, demonstrates that for the geometric phase to be non-

Abelian, a degenerate subspace is required; however, as pointed out in Sec. 4.1.3,

this is a necessary but insufficient condition. Depending on the structure of the

degenerate eigenbasis in parameter space, i.e. the connection, the geometric phase

could be matrix-valued, yet still Abelian [68]. This could result from a connection

that is expressed in terms of only a single generator of the group, though, since the

connection is gauge-dependent it is difficult to say based on this alone. Computing

the field (curvature) from the connection may also be misleading; the field is only

gauge invariant in Abelian cases, while in the more general non-Abelian case they

are gauge covariant, due to the presence of a commutator between components of

the connection, the structure factor. This means that the field does in general

change with the choice of gauge (basis). In both of these situations, measurement is

made difficult because observables are always gauge invariant6. As such, we require

a rigorous way of distinguishing the two cases through available measurements.

Furthermore, this method must be gauge-invariant, as the choice of basis can in

several ways deceive us, as briefly described above.

The appropriate quantity of interest here is the Wilson loop [68, 75], which is

relevant only in the case of cyclic evolution, where the system Hamiltonian, Ĥ(t =

0) = Ĥ(t = T ), returns to its initial form after some time T . From the corresponding

evolution operator Û◦, where we have used the subscript to denote cyclic evolution,

the Wilson loop is defined as

W = tr
(︂
Û◦

)︂
. (4.16)

This quantity is gauge invariant [76]. Under a global change of basis by unitary Û ,

this is easy to demonstrate: due to the cyclic invariance of the trace, we have

W = tr
(︂
Û

†Û◦Û
)︂
,

= tr
(︂
Û Û

†Û◦

)︂
,

= tr
(︂
Û◦

)︂
, (4.17)

and hence the result doesn’t depend on the basis chosen. In the case where non-

cyclic evolution is considered, this may be referred to as the Wilson line, which is

no longer gauge invariant.

6Consider in classical electrodynamics that the electric and magnetic fields may be measured;
since this is an Abelian theory, the fields are gauge invariant. In the non-Abelian case this is no
longer true. Observables then, must be comprised of several terms, each gauge covariant, such
that together through the cancellation of terms, the observable itself is gauge invariant. Therefore,
determining the degree to which the fields are only gauge covariant is a significant challenge.
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Conceptually, the Wilson loop is a gauge-invariant sum of eigenvalues of the

transformation Û◦, whatever that transformation may be. The corresponding eigen-

vectors describe states that are unchanged by the evolution. We are mainly con-

cerned about transformations Û◦ that are holonomic (Eq. 4.13). In this context, the

evolution operator Γ̂A (ℓ) arises from the adiabatic change of an eigenbasis through

parameter space; the Wilson loop thus encodes the residual distortions of that eigen-

basis over the path ℓ.

The importance of the Wilson loop here is that it may be used to distinguish

Abelian phases from non-Abelian. The typical manifestation of a non-Abelian gener-

ator, be it dynamical, geometric, or some combination of the two, is path-dependence

of the transformations7. For a particular Hamiltonian, different choices of parame-

ters varied in time, effecting either dynamical or geometric transformations, result

in different unitaries (this is essentially the dynamical extension of the holonomy

group discussed in Sec. 4.1.2). If applied to some initial state, the result will depend

on the order of such operations in the case of a non-Abelian phase. This is a direct

consequence of the non-commutativity between the generators of such transforma-

tions. Unfortunately, this result is once again not necessarily gauge invariant [68];

however, this is where the Wilson loop comes in. Demonstrating path-dependence of

the Wilson loop, rather than the evolution operators themselves, is a gauge invariant

manifestation of non-Abelian generators.

To see how it may be used for this purpose, consider the evolution of a single

degenerate subspace; as described above (Sec. 4.1.2), the dynamical contribution to

the phase is global and may therefore be ignored. What remains is a purely geometric

phase, described by the holonomy Γ̂A (ℓ). A path dependence of the Wilson loop

implies that, for at least two different orderings of available loops, the corresponding

Wilson loops are different. This therefore requires a minimum of three loops, due

to the cyclic invariance of the trace8. Therefore, to demonstrate a path dependence

of the Wilson loop we require a minimum of three loops, ℓ1, ℓ2, and ℓ3, with their

corresponding holonomies. The Wilson loop for a chosen path order is therefore,

Wijk = tr
(︂
Γ̂A (ℓk) Γ̂A (ℓj) Γ̂A (ℓi)

)︂
. (4.18)

If for some non-cyclic permutation of these loops,

Wijk −Wjik ̸= 0, (4.19)

7We use the word “path” quite generally here: for dynamical phases, the path refers to time-
ordering of operations, while for geometric phase it is path-ordering.

8With just two loops, ℓ1 and ℓ2, the Wilson loop is tr
[︂
Γ̂A (ℓ1) Γ̂A (ℓ2)

]︂
= tr

(︂
Γ̂A (ℓ2) Γ̂A (ℓ1)

)︂
.

There is no non-cyclic permutation of just two elements, so the Wilson loop will never depend on
the ordering of these operations, even though the holonomies Γ̂A (ℓ1 ◦ ℓ2) ̸= Γ̂A (ℓ2 ◦ ℓ1).
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then the phase is non-Abelian, otherwise it is Abelian. Expressed in terms of the

holonomies themselves,

Wijk −Wjik = tr
{︂
Γ̂A (ℓk)

[︂
Γ̂A (ℓj) , Γ̂A (ℓi)

]︂}︂
, (4.20)

where we refer to this quantity as the trace-commutator hereafter. While this is a

special case of how one would test the path dependence of the Wilson loop, with

three loops, this is just the minimum requirement. More generally, any non cyclic

permutation of equal to or greater than three loops will suffice.

There is, however, an important caveat to the condition in Eq. 4.20: even for

a truly non-Abelian connection, one can not use any arbitrary set of loops. The

easiest way to see this is if each of the loops produce the same generator (even if

they are different loops) then the holonomies in Eq. 4.20 trivially commute, and one

would incorrectly infer that the connection is Abelian. The three chosen loops must

in fact produce three distinct non-commutative generators for the trace-commutator

to not vanish; this is akin to having a linearly independent set of holonomies. In

some restricted control circumstances, it may not be possible to produce enough

generators, in which case this method will not work. Otherwise, an appropriate set

of loops should be identified. The numerical value of the trace-commutator will also

depend on the magnitude of the generated phases and their commutators, so it is

also possible that from the chosen loops, the non-Abelian signature is arbitrarily

small, which will also pose experimental difficulties.

Applying the Wilson loop in this way equips us with the necessary test to distin-

guish Abelian from non-Abelian transformations. If the trace-commutator (Eq. 4.20)

does not vanish, this is a gauge-invariant manifestation of the non-commutativity

between the components of the connection. Importantly though, the Wilson loop

does not indicate whether these transformations resulted from geometric phase or

otherwise. As such, if one is looking to infer the nature of the connection, all

non-trivial dynamical contributions to the phase must be eliminated or precisely

accounted for; this point will become important later in Ch. 5 and Ch. 6.

With the necessary and sufficient condition identified, one is left with the task

of performing such a measurement. Measuring the holonomy Γ̂A (ℓi ◦ ℓj ◦ ℓk), for
different orders of the path composition is necessary. This requires some fairly so-

phisticated state-tomography (App. C), which will not scale well with the size of the

subspace as many more measurements are required. Furthermore, it is not always the

case that projections within the subspace in question are available, which will pose

additional complications for the experimenter. For each subspace basis state, |ψn⟩,
the state following the transformation, |ψ′

n⟩ = Γ̂A (ℓi ◦ ℓj ◦ ℓk) |ψn⟩, must be fully

characterized. Knowing how the basis transforms yields the full transformation; the
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result from the nth state is the nth column of the holonomy. Once both holonomies

are measured, the difference in their traces may be computed. Thankfully, in the

case where one is attempting to demonstrate a non-Abelian phase, we are looking

for the trace-commutator to not vanish; it is much easier to experimentally show

that something is not zero than otherwise9.

4.2 Geometric Phases as Artificial Gauge Fields

The importance of gauge theory to quantum systems, and its deeply geomet-

ric origins, was made apparent through the Aharonov-Bohm effect [73, 74], where

a charged particle may obtain a phase by encircling a solenoid containing a mag-

netic field, which remains confined inside the solenoid. Despite the particle never

encountering the magnetic field itself, as it is confined to the solenoid, the vector

potential extends beyond, resulting in a geometric phase that was first described in

Berry 1984 [64]. This phase is the result of real electromagnetic fields, in this case,

though the entire notion of geometric phase as described in Sec. 4.1 follows the same

fundamental principles. The motion of a particle through some parameter space,

be it coordinate space or otherwise, may obtain geometric phase arising from the

curvature in that space. The quantum simulation aspect to this is therefore that

parameter space is treated quite literally as coordinate space, so even the evolution

of neutral atoms may be made equivalent to that of charged particles moving in a

manifestly real gauge field [38, 77].

Thus far we have mainly concerned ourselves with discussing the connection, but

just as in classical electromagnetism we may also look at the associated magnetic

fields (curvature) [77]. Looking at the form of the holonomy, Eq. 4.13, the geometric

phase is expressed through a line integral around the loop ℓ in parameter space. In

the Abelian case, for instance, using Stokes’ theorem we may re-write this integral

as, ∮︂
ℓ

dλ ·A =

∫︂∫︂
S
dS ·Ω, (4.21)

Ω = ∇λ ×A, (4.22)

whereΩ is the curvature (Berry curvature, more specifically). In this representation,

we may think of geometric phase as arising from the magnetic flux through the

surface S enclosed by the loop ℓ. This extends beyond Abelian geometric phases,

9Consider making a measurement with the corresponding uncertainty. When attempting to
show that a quantity vanishes, how small must the error bar be to demonstrate this? Conversely,
when demonstrating that a quantity does not vanish, the success is easily determined by the relative
distance of the value from zero, weighted by the uncertainty.
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for which this form is quite directly analogous with those from electromagnetism,

as there are non-Abelian generalizations of Stokes’ theorem10 [78].

The Abelian Berry connection [64] from the original Aharonov-Bohm effect, for-

mulated in the context of particles without internal structure, was generalized to

degenerate systems, resulting in the Wilczek-Zee connection [65], contained within

the holonomy (Eq. 4.13 discussed here). Similarly, this was further generalized to

non-adiabatic systems, resulting in the Anandan connection [66] (see Sec. 4.3.1 for

further discussion). It should be no surprise then, that this was generalized even

further to open quantum systems, with the Uhlmann connection [79], and corre-

sponding holonomy that acts on density matrices instead of state vectors. As a

result, gauge fields (non-Abelian ones in particular) have played a crucial role in

understanding the evolution of quantum systems, across many disciplines.

As mentioned prior, geometric phase can serve as a tool with which to understand

other phenomena, such as the many body physics described in Ch. 3. Furthermore,

it is interesting in its own right as a means of quantum control, as we will discuss in

the next section in the context of QC, Sec. 4.3. In addition to these applications, the

gauge fields themselves are also of immense interest [30, 77, 80]. In particular, the

ultimate goal for many is the realization of dynamical gauge theories in quantum

simulators [81–83]. The fields described so far act on particles, imparting transfor-

mations on them; there is, however, a missing ingredient for this to be a full gauge

theory: the particles must, in turn, act back on the gauge fields. For instance, in

classical electromagnetism, magnetic fields arise from current density, and electric

fields from charge density; these fields are inextricably connected to the matter upon

which they act.

The scheme for producing artificial electromagnetic potentials acting on neutral

atoms, discussed in Ch. 3, is limited in this respect [28, 29, 32–34]. Changing laser

parameters allows us to tune the fields produced, and the neutral atoms behave as

charged particles, responding to such fields in the expected way. This gauge theory

is, however, incomplete, because these artificial charges only respond to the fields we

produce; there is no notion of charge or current density producing their own fields

here.

Simulating a complete gauge theory is difficult, as allowing particles to create

gauge fields of their own requires interactions. One approach involves the generation

of density-dependent gauge fields [84]; these are fields that depend on the density

distribution of the particles they act on, therefore including the necessary feedback in

dynamical gauge theories. In one such study, researchers demonstrated a topological

gauge theory in an optically dressed BEC [85]. They produced a gauge-field that

10The non-Abelian curvature includes the commutators between the components of the connec-
tion (structure factors), and is therefore only gauge covariant.
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depends on the density of atoms in the ensemble. Allowing the BEC to expand

in 1D, for instance, produces an electric field due to the time-changing density.

As the condensate expands, atoms feel an electric force along the expansion axis,

resulting in asymmetric expansion. Relatedly, researchers produced artificial gauge

fields in shaken optical lattices (periodically modulated), which appear in the system

Hamiltonian in a similar way as those discussed in Ch. 3, but the magnitude of the

fields are density-dependent [86]. These experiments provide impactful steps forward

in simulating complete gauge theories, though the fields produced in both cases are

Abelian; a non-Abelian extension of this would be a significant step forwards.

Quantum simulators capable of producing artificial dynamical gauge fields would

permit the controlled study of many systems that are otherwise experimentally

inaccessible. For instance, there is immense interest in the simulation of lattice

gauge theories for understanding materials [81, 82, 87], synthetic spin-orbit interac-

tions [34, 80, 88, 89], and aspects of high-energy physics such as quantum chromo-

dynamics [83]. In all cases, the models being simulated may be both dynamical and

non-Abelian, making such experiments technically demanding.

Many challenges remain in realizing such gauge-fields, though there have been

several promising experimental demonstrations, for density-dependent gauge fields [85,

86], and lattice gauge theories [90]. There has, therefore, been significant interest

in realizing increasingly sophisticated geometric phases, with the ultimate goal of

finding ways to engineer the desired gauge fields. Despite the numerous proposals

for realizing both Abelian and non-Abelian gauge fields [91–103], including through

digital quantum simulators [104–106], there have been remarkably few experimental

demonstrations [39, 67, 107–110] in the context of artificial gauge fields11. As such,

there is more work to be done in finding ways to generate even non-dynamical fields,

to eventually realize quantum simulation of dynamical gauge theories. This is the

primary motivation for the work discussed in Ch. 5 and Ch. 6.

4.3 Geometric Quantum Computing

In addition to their interpretation as artificial gauge fields (Sec. 4.2), geometric

phases also have their applications in quantum control. We have seen how, even in

the Abelian case, the adiabatic motion of a state through parameter space can effect

transformations that are independent of system dynamics. The natural extension of

this is to see how geometric phases might be used to impart specific transformations

that could be useful in QIP, and determine what benefits there may be to this

approach over more conventional dynamical ones, if any. It turns out that there

11There has, however, been significant progress in generating various geometric phases for quan-
tum computing, as discussed in Sec. 4.3, but the interests there lie more in robust quantum control.
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are several approaches to QC that rely on geometric phase; we will refer to these

approaches, together, as geometric quantum computing (GQC). Before we discuss

several of these geometric approaches, we will very briefly introduce some of the

important principles of more conventional circuit-based QC; this is not intended to

be an exhaustive description, there are many great reviews with such treatment [111–

113].

We ought to be aware of the binary nature of classical computing, where infor-

mation is encoded into bits, and processed through gate operations between bits.

Due to the inherent binary nature of classical bits, there are a limited set of opera-

tions that may be done. When designing an algorithm, eventually it must be broken

down into this set of primitive gate operations. A direct analogue of this to quantum

systems would be to encode information into two orthogonal quantum states of a

system, {|ψ1⟩ , |ψ2⟩}. Through evolution under the TDSE, all of the same primitive

gates may in general be applied to these quantum states. Various quantum control

techniques may be used to generate unitary transformations that are equivalent to

classical gates, i.e. classical computing can be done with the quantum states of a

system (whatever the states may physically represent, such as spin). The broad

interest in QC comes from the notion that, perhaps with resources only available

to quantum systems, we may be able to perform computations much faster than on

classical devices [5, 114–116]; this is referred to as quantum advantage.

The key insight with QC is that quantum systems can go beyond binary encoding;

states are not limited to having full population in one constituent level or the other,

they may be in a superposition. The quantum bit, or qubit, more generally can be

written as,

|ψ⟩ = c1 |ψ1⟩+ c2e
iϕ |ψ2⟩ , (4.23)

where the coefficients c1, c2 are the probability amplitudes for each of the qubit levels,

and ϕ is a relative phase. Since a qubit may be in a superposition of its levels, this

already introduces more available gate operations that can be done. This on its own

though is not enough to see computational advantages over classical computers.

The true power of a QC comes from having multiple qubits. Due to entanglement

between states, the size of the full Hilbert space scales as 2N , for N many qubits.

The amount of information that can be encoded into just a handful of qubits may

therefore far exceed the capacities of classical machines. In practice, this compression

advantage is complicated though. Algorithms that would require this information to

be read out from the QC after processing (such as performing full state tomography

of the output register) would not have avoided the storage issue at all. This form of

quantum advantage may only be considered in cases where only a small part of the

output is necessary.
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The other key idea behind QC is that entanglement may be used to generate non-

trivial correlations in systems, which can be leveraged for computational speedup.

This ultimately comes down to the fact that, due to the size of the Hilbert space,

and the notion of superposition, there are more primitive gates available in quantum

systems. Since quantum computers have these additional capabilities, more sophis-

ticated algorithms may be designed, in principle, which may have more favorable

scaling in problem size when compared to their classical counterparts. This is still

an active area of research [117–119].

Despite all of the significant progress in this field, there remains a lot of work to

be done before quantum advantage is conclusively demonstrated on large-scale for

broadly-applicable problems. This is made more complicated by the fact that new

classical algorithms are still being created, so much of the remaining work must be

spent on the development of quantum algorithms. Aside from this, existing devices

have limited capabilities. Much of this inefficiency can be attributed to the qubits

themselves, which suffer from decoherence. Furthermore, the control schemes are

prone to noise and miscalibration, reducing the fidelity of gate operations. Remark-

ably, there are error correction schemes which can drastically reduce the influence

of errors [120], but they require multiple “physical” qubits to be combined together

into a single “logical” qubit; sometimes, even 10-1000 physical qubits are necessary,

which already far exceeds the number available on even the largest devices.

There are, therefore, many areas of QC that need attention before quantum

advantage is demonstrated. Here we introduce three main GQC approaches that

each address different issues in the more conventional schemes; they all differ in

significant ways, but ultimately share a dependence on geometric phase. We place

particular emphasis on the first, holonomic quantum computing (HQC), as it is

the most relevant to the experiments composing the primary work in Ch. 6. We

then briefly discuss topological quantum computing (TQC), and adiabatic quantum

computing (AQC), in order to distinguish the three from each other. Together, these

techniques are of great interest, identifying yet another way in which geometric phase

is worthy of further study.

4.3.1 Holonomic Quantum Computing

The first QC scheme to introduce, which is also the most relevant to this work,

is HQC [69, 72, 121, 122]. This protocol aims to perform gate operations geomet-

rically, rather than the more conventional dynamical gates. In HQC, logical qubits

are encoded onto degenerate manifolds. Through the adiabatic change of a param-

eterized Hamiltonian, the unitary evolution is described precisely by the holonomy,

Eq. 4.13, with a non-Abelian connection. As discussed in Sec. 4.1.3, a non-Abelian
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geometric phase is capable of coupling states within the degenerate manifold, which

is a necessary requirement for performing even classical gates, such as a bit flip op-

eration. This can not be accomplished by Abelian geometric phases. Gates between

multiple qubits are generally more complicated, but there are holonomic approaches

to this as well following the same structure: engineer a degeneracy in the entangled

Hilbert space, and subsequently couple qubits through non-Abelian holonomies.

For both single-qubit and multiple qubits, different gates are performed by the

choice of path ℓ in parameter space. The requirement for universal HQC is that

any unitary transformation on the set of qubits is possible, i.e. the holonomy group

should coincide with U(2N) for N qubits. As stated in Sec. 4.1.3, this means that the

connection should be irreducible. Practically, we do not need to concern ourselves

with every possible loop in order to produce arbitrary unitaries. As with dynamical

gates, applying consecutive holonomies (loop composition) can lead to the desired

results. This is advantageous, since computing the path-ordered exponential in

Eq. 4.13 for arbitrary paths is challenging. It has been demonstrated that a universal

set of gates is achievable on many different platforms [72].

Holonomic QC requires that qubits host degenerate levels; as stated before this is

a necessary but insufficient condition for there to be non-Abelian geometric phases.

Oftentimes, this is the most complicated requirement to meet. The degeneracies

must be robust to perturbations, and the energetic structure must also be consis-

tent throughout the parameter space of the control Hamiltonian (iso-degenerate).

For this reason, intermediate levels are often required; multiple internal levels are

mutually coupled, such that the Hamiltonian permits a degenerate subspace, com-

posed of dressed states (Sec. 2.2). Dressed states are superpositions of the more

physically accessible bare states of a system12, that is, the eigenstates permitted

by the Hamiltonian in the absence of control fields (such as the eigenstates of F̂ z

in atomic systems). This presents new challenges, as performing measurements a

subspace composed of non-trivial superpositions of bare states can be difficult [106].

Furthermore, the necessity for intermediate levels allows for additional errors and

decoherence mechanisms.

Supposing the required degeneracies have been acquired, there are some more

general concerns in performing measurements in the subspace, since degenerate

states can not be energetically distinguished13. As such, at the time of measure-

ment, it is often necessary to coherently lift the degeneracy [69, 122]; having this

capability inherently means that the degeneracy is not robust to certain controls that

12In order to couple the bare states of a system, the control (dressed) Hamiltonian must be
off-diagonal. It therefore does not commute with the bare Hamiltonian, hosting a new eigenbasis
composed of superpositions of the bare levels.

13In a nondegenerate system, control pulses resonant with one qubit level but not the other can
be used to read out the relative populations.
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are in place (noise in those controls can perturb the degeneracy during operations,

contributing to computational errors).

Despite these complications, there are some potentially valuable advantages to

performing gates holonomically. Specifically, HQC is thought to host intrinsic fault

tolerance when compared to dynamical gates [72]. This can be attributed to the

adiabatic and geometric nature of the holonomy. First, due to the adiabaticity,

holonomies are impervious to changes in the rate at which loops are traversed, so long

as the adiabatic condition holds. This is because the holonomy does not depend at

all on the duration of the gate. Furthermore, geometric gates are generally tolerant

to high frequency fluctuations of parameters; these fluctuations average out over the

loop. Intuitively, consider the description in Sec. 4.2 of the holonomy in terms of

the curvature, where the integration of the flux through the surface enclosed by the

loop yields the resulting phase. Continuous perturbations of the loop that leaves

the flux unchanged has no impact on the phase. In the non-Abelian case, this is

a complicated condition to uphold, but generally this is the intuition ascribed to

holonomic evolution.

There are, however, reasons to doubt the truth behind this intuition. In partic-

ular, a study by Colmenar et al. 2022 [123] investigated whether there are funda-

mental differences between dynamical and geometric gates, when it comes to errors

arising from imperfect control. They developed an analytical means to transform

fully geometric gates into fully dynamical ones; the transformation was continuous,

so that the two extremes are connected by a family of gates that contain both ge-

ometric and dynamical contributions to the phase. This family of gates had, by

construction, precisely the same duration, resulting unitary operation, and most

importantly, identical noise spectra with respect to control parameters. Therefore,

the fault tolerance ascribed to any given gate has nothing to do with the nature

of the phase, be it geometric or dynamical, or some combination of the two, but

rather with the details of the control scheme itself. The result strongly challenges

the thought that geometric gates are intrinsically fault tolerant; whatever degree of

fault tolerance there may be has nothing to do with the geometric nature of the

phase, but everything to do with the particular control environment that enables

such transformations. It should be noted that this result does not discredit the

numerous studies that have quantified the degree of fault tolerance in holonomic

gates against their dynamical counterparts [124–131], it merely puts the reasoning

for such relative tolerance into question. Regardless, holonomic gates are gener-

ally more tolerant to faults than their dynamical counterparts, though perhaps the

mechanism by which this is true may be debated.
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Non-Adiabatic Holonomic Quantum Computing

Despite the proposed advantages of HQC over conventional dynamical tech-

niques, one of its sources of strength is simultaneously perhaps its greatest weakness:

holonomic gates are adiabatic, and are therefore slow, in comparison to dynamical

gates. Unlike classical computers that can store bits almost indefinitely, quantum

computers suffer from decoherence effects. The longer gates take to perform, the

fewer that can be done within the coherence time of the device. In the language

of QC, this affects the circuit depth, which can be defined as, among all the qubits

in the circuit, the highest number of gates applied to any given one of them. The

circuit depth therefore sets the minimum duration of the computation14. The adia-

batic condition for holonomic gates is problematic for practical implementations in

the current noisy intermediate-scale quantum era.

In response to this limitation, a protocol that is closely related to HQC has been

introduced, in which the adiabatic condition has been relaxed; this protocol is re-

ferred to as non-adiabatic holonomic quantum computing (NAHQC) [71]. Removing

the adiabatic condition has several interesting consequences. First, and most ob-

viously, loops may be performed faster. Although, the resulting dynamical effects,

such as the coupling between subspaces, may no longer be ignored. Gates are con-

structed in specific ways so that these dynamical effects effectively cancel out; this

imposes more strict conditions on the gates, but result in fully geometric gates as in

traditional HQC. Furthermore, it turns out that the need for a degenerate subspace

is also no longer necessary, and yet there remains a non-Abelian connection. More

specifically, this connection is not the same as that of Wilczek and Zee [65] (Eq. 4.7).

The holonomy takes on a new form [66],

Γ̂A (t) = T exp

{︃
− i
ℏ

∫︂ t

0

dt′
[︂
Ĥ(t′)− ℏ∂t′λ · Â (λ)

]︂}︃
, (4.24)

where λ = λ(t).

The geometric term in Eq. 4.24 looks generally as it did before, though it may now

act across subspaces; this is the Anandan connection [66]. It is still fully geometric,

in that it does not depend on the details of the Hamiltonian, and is non-Abelian since

its components do not, in general, commute. Furthermore, the Hamiltonian can no

longer be factored out, as it does not commute with the connection. As a result,

14In general there are far more complicated optimizations to be done. A computation typically
has a pre-defined target error threshold. In addition to the error rates of the qubits themselves
(which may depend on the specific qubit, due to fabrication imperfections), the various gates have
different error rates. In order to achieve the target error threshold, not only does the total time of
the computation matter, but also the gates that the circuit is composed of. There are, therefore,
optimizations to be done here, such as choosing a longer circuit with better gates as opposed to
the converse.
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the form of this non-adiabatic holonomy is generally quite complicated; it may be

expressed as an infinite series expansion of the products of these two terms15, at each

point in time. While it may seem that we can write the two terms separately, as the

integrand in Eq. 4.24, due to the time ordering and this complicated exponential

expansion, the effects of the two parts are inextricably linked. In NAHQC, specific

loops are chosen over which the dynamical term vanishes [71].

Since the original seminal work on traditional (adiabatic) HQC [69, 121, 122],

there have been many developments. In addition to many general characteriza-

tions of holonomies [132], different qubit encodings [133], and more fault-tolerant

approaches [134, 135], there have also been various more specific proposals for practi-

cal implementation [136–141], even including a quantum memory protocol in neutral

atoms [142]. The approach has been experimentally realized in liquid nuclear mag-

netic resonance (NMR) systems [143], trapped ions [144], photonics devices [145],

nitrogen-vacancy centers [146, 147], and neutral atoms [107, 148, 149].

More recently, NAHQC [71] has seen increased attention in the literature due not

only to its speed advantage over traditional HQC, but also because it does not rely on

degeneracy. Much work has been done in speeding up gates even further [150–152],

making them more robust to error [153–155], adapting new qubit (or qudit) encod-

ings [156–160], and making it more generally applicable [161–163]. Advances in con-

trol techniques include using shorter paths [164–168], inverse engineering [169], and

optimal control [170]. Various fault-tolerant approaches have also been proposed,

utilizing dynamical techniques [171–175], tailored paths [176, 177], measurement-

based techniques [178], or addressing coherence issues [179, 180]. In addition to

all of these improvements, there are proposals to realize NAHQC in optical cav-

ities [152, 181], nitrogen-vacancy centers [182, 183], superconducting qubits [184–

187], and Rydberg atoms [188–192]. The NAHQC approach has been experimentally

demonstrated in some of the same platforms as HQC mentioned above, including

liquid NMR systems [193–195], trapped ions [196], nitrogen-vacancy centers [197,

198], photonics systems [199], and neutral atoms [200], in addition to several other

systems including, Rydberg atoms [201], and superconducting qubits [202–205].

4.3.2 Adiabatic and Topological Quantum Computing

There are two other main GQC methods worth mentioning, so as to distinguish

them all from each other. First, AQC [206] is intuitively the most related to quantum

simulation, such as the work described in Ch. 3. The technique relies on finding some

Hamiltonian, Ĥsol, for which the ground state is the solution to a target problem; if

15The matrix exponential eX̂ =
∑︁∞

k=0
1
k!X̂

k
, is an infinite series of the powers of the matrix. For

X̂ = Â+ B̂ where
[︂
Â, B̂

]︂
̸= 0 this quickly becomes intractable.
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one can find the ground state then they have the solution. Adiabatic QC approaches

this by first preparing the ground state of a different Hamiltonian, ĤG, that is

easier to realize, and then adiabatically evolving the system through the family

of Hamiltonians that connect ĤG to Ĥsol. Through the adiabatic theorem, the

system will follow the ground state of the system at all times, so once the target

Hamiltonian is obtained, the answer may be found through measurement of the state.

This is highly reminiscent of the evolution captured by Eq. 4.11. Methods such as

quantum annealing are derived from this idea [207]. Unlike quantum annealing, AQC

more generally has been shown to be equivalent the the circuit model of quantum

computing, and is therefore universal [206].

The important distinctions between AQC and HQC are twofold: first, the evolu-

tion is non-cyclic. The starting Hamiltonian is evolved adiabatically to some target,

without returning. Second, the computation is (more or less) independent of the

chosen initial state, and the means of evolution. The entire computation relies on

identifying the Hamiltonian for which the ground state is the solution; once this is

accomplished, the rest are just experimental details. As such, this differs greatly

from the logic-gate based HQC, having more semblance to analog quantum compu-

tation [5].

The other GQC technique worth mentioning here is TQC, which is often confused

with HQC since it also relies on non-Abelian holonomic evolution as its working

principle [208–211]. The fundamental ingredient in TQC is the anyon, a quasi-

particle that has more complicated exchange statistics than bosons and fermions.

Under exchange, fermions acquire a global Abelian phase of π, while bosons obtain

a phase of 0; in three spatial dimensions (3D), these are the only possibilities [208].

This fact relies on a topological argument: if the particles are exchanged twice, this

is equivalent to one making a loop adiabatically around the other. In 3D, this loop

is equivalent to that which does not encircle the other particle, and hence the phase

from two consecutive exchanges must cancel. The key insight that enables particles

with more complicated exchange statistics is that, in 2D, a loop that encircles a

particle is no longer equivalent to one that does not. This permits more exotic

phases to be possible. The anyon, therefore, is a particle that only exists in 2D,

which obtains a phase different from that of bosons and fermions under exchange.

Importantly, the phase need not be Abelian.

From the description of exchange as the adiabatic evolution of particles in loops

around one another, geometric phase naturally emerges. For TQC, the specific

interest is in non-Abelian anyons. These particles evolve according to a holonomy

with a non-Abelian connection (Eq. 4.13), when making loops in 2D space. In this

case, unlike in HQC, the phase depends only on the presence (or lack thereof) of
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other charges within the loops16.

The motion of particles in loops around each other is referred to as braiding ;

these operations serve as the logic gates in TQC. Specifically, qubits are encoded

onto the internal states of several paired non-Abelian anyons, called fusion results.

Particles are then braided around each other, effecting holonomic transformations

that, when strung together, result in a series of logic gates. It has been shown that

a universal gate set is possible through these processes [211].

Topological quantum computers rely on remaining in a many-body ground state

comprised of anyons, which are immune to local perturbations. Furthermore, the

gate operations are also mostly immune to error since they rely only on the topology

of the loops, and not the detailed geometry or dynamics [208]. As such, TQC is

thought to be intrinsically fault-tolerant, to a much larger extent than other ap-

proaches to QC. There are, however, noise sources that are unique to these systems,

but the error rates are as yet unknown since these systems have yet to be verifiably

realized in the lab. It is thought that some of the ground states of fractional quan-

tum Hall systems may host non-Abelian anyons, though it is unclear if they will

be controllable in the manner needed for TQC, nor are all of the states thought to

exhibit universal gate sets. Other quantum simulation platforms, boasting advanced

control capabilities, may hold the advantage here [213].

Altogether, the GQC methods discussed here demonstrate that geometric phases

have important applications outside of their description through artificial gauge

fields (Sec. 4.2). This idea will serve as a primary motivation behind the work in

Ch. 5 and Ch. 6, where non-Abelian geometric phases are produced in a way that

circumvents the need for explicit degeneracies, or intermediate level couplings. The

technique presented there may be interpreted as a means to realize single-qubit

holonomic gates, as in HQC, and may be potentially extended to multi-qubit gates.

As such, QC has framed the way in which results are discussed, so the ideas presented

here will be revisited in later sections.

16This is due to a localization of the gauge fields on the charges. In infinite dimensional Hilbert
spaces, such as states in coordinate-space, the localization of these gauge fields is guaranteed. In
finite sized systems, it approximately holds [212].
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CHAPTER 5

Floquet-Engineered Non-Abelian

Gauge Fields

N
on-Abelian geometric phases have interesting applications in high-energy

physics, and in QIP (particularly for its role in HQC), as discussed in Sec. 4.2

and Sec. 4.3. Producing such phases, however, has traditionally been difficult [67].

In the case of adiabatic evolution, the Wilczek-Zee connection 4.1, this is in part be-

cause of the necessity for robust degeneracies. As previously mentioned, the degen-

eracy structure must remain consistent in parameter space, and any perturbations

of this degeneracy result in non-trivial dynamical contributions to the phase. Fur-

thermore, measurements in degenerate subspaces may be difficult, often requiring

the intentional lifting of degeneracy [106].

In this chapter, we discuss a promising workaround to this issue, using Floquet

engineering [214–216]. For periodically driven Hamiltonians, there is a representa-

tion in the Floquet basis in which the Hamiltonian is fully degenerate; its responses

to slow changes (slow with respect to the driving frequency) through a set of tune-

able parameters may result in non-Abelian geometric phases [217, 218]. Importantly,

the entire Hamiltonian must be periodic for this to occur. The Floquet Hamilto-

nian will be derived, and the resulting geometric transformations will be explored

through some numerical simulations.

Next, the robustness of these transformations will be investigated; the effects of

undriven terms in the Hamiltonian will be considered. Such terms ultimately result

in a breaking of the adiabatic degeneracies in the Floquet basis, leading to large

dynamical contributions to the phase. These results are important to any practical

implementation of such a technique, such as that covered in Ch. 6. Furthermore,

these implications generalize to various other non-Abelian geometric phases, such

as those used in HQC or related techniques.
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5.1 Floquet Engineered Holonomies

The preliminary work in Floquet engineering for producing non-Abelian geomet-

ric phases [217] investigated fairly generic periodic Hamiltonians, with slow modu-

lations. This was later generalized, resulting in a more complete adiabatic condition

for the modulations [218]; the example of a spin in an oscillating magnetic field was

studied, and authors demonstrated that non-Abelian geometric phases can be pro-

duced in this way. Following this, there was a proposal to realize Hamiltonians of

this nature in ultracold neutral atoms, using a Raman Λ-scheme (Sec. 2.2.2) [219],

and another related proposal for universal holonomic gates (Sec. 4.3.1) using Floquet

engineering in Rydberg atom arrays [220].

Here, we will begin with the driven Hamiltonian, deriving its Floquet basis rep-

resentation and the subsequent holonomy; this derivation follows closely1 to those

presented in previous work [2, 218]. Consider the Hamiltonian for a spin in a mag-

netic field

Ĥ0(t) = Ω0λ(t) · F̂ , (5.1)

where λ(t) is a unit vector describing the time-dependent orientation of the magnetic

field with effective strength Ω0. The properties of this Hamiltonian are similar to

those in Sec. 2.2, specifically Eqs. 2.19 and 2.37. The dynamics may therefore be

understood as a set of nondegenerate spins undergoing Rabi oscillations, depending

on the particular orientation of the field.

Suppose now that the Hamiltonian, Eq. 5.1, is driven by a periodic envelope,

Ĥλ(t) = Ĥ0 [λ(t)] cosωt, (5.2)

where we have chosen a cosine function for the driving. The drive frequency ω is

referred to as the Floquet frequency, which will remain much larger than any rate

of change to λ(t). The basis in which this Hamiltonian is currently represented

will hereafter be referred to as the rotating frame, due to its correspondence with

that in Eq. 2.19. We will go through the steps, in detail, to arrive at the effective

Hamiltonian in the Floquet basis, which is described by a non-Abelian connection

in the parameter space of λ ∈M.

5.1.1 Micromotion

The Hamiltonian (Eq. 5.2) may be analyzed through Floquet theory. We may

express the system in a new basis defined by the periodicity of the driving, in a

way that is analogous to Bloch’s theorem in spatially-periodic systems. Floquet-

1Credit for the version shown here goes to Mason Protter.
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engineering is used in many different systems to realize physics beyond conventional

capabilities [77, 87], but a key difference here is that the entire Hamiltonian is driven,

rather than just a few terms. We will change basis according to the unitary,

Û(t) = exp

[︃
− i
ℏ
sinωt

ω
Ĥ0(t),

]︃
(5.3)

which is colloquially referred to as the micromotion operator 2. This transformation

commutes with the modulated Hamiltonian Ĥ0, and sinωt/ω was chosen since its

derivative is equal to the Floquet drive, cosωt. Furthermore, for every t = nπ/ω

with n ∈ Z, the micromotion operator Û = 1̂; the Floquet basis is therefore strobo-

scopically equivalent to the initial basis.

Similar to how we derived geometric phase in Sec. 4.1, we may write the TDSE

in this basis as,

iℏ
∂

∂t
|ψ⟩ =

(︃
Û

†
ĤλÛ − iℏ Û

† ∂

∂t
Û

)︃
|ψ⟩ . (5.4)

Since the micromotion operator Û is just Ĥ0 exponentiated,
[︂
Ĥλ, Û

]︂
= 0. To

compute the term Û
†
∂tÛ we can use the Baker-Campbell-Hausdorff lemma,

e−Â(x)∂xe
Â(x) = ∂xÂ(x) −

1

2!

[︂
Â(x), ∂xÂ(x)

]︂
− 1

3!

[︂
Â(x),

[︂
Â(x), ∂xÂ(x)

]︂]︂
− . . .

(5.5)

Expanding the full Hamiltonian, ĤU = Ĥλ− iℏÛ
†
∂tÛ , and writing s = sinωt/ω for

simplicity, yields,

ĤU = Ĥ0 cos(ωt)− iℏ
{︄
− i
ℏ
∂tsĤ0 −

1

2!
s

(︃
i

ℏ

)︃2 [︂
Ĥ0, ∂tsĤ0

]︂
− 1

3!
s2

(︃
i

ℏ

)︃3 [︂
Ĥ0,

[︂
Ĥ0, ∂tsĤ0

]︂]︂
− . . .

}︄
. (5.6)

The commutator [︂
Ĥ0, ∂tsĤ0

]︂
= s

[︂
Ĥ0, ∂tĤ0

]︂
+ ∂ts

[︂
Ĥ0, Ĥ0

]︂
, (5.7)

where the second term is zero. Inserting this into Eq. 5.6, and performing the first

2It is called micromotion, separating the fast oscillations of the basis states from the slow
changes to the Hamiltonian, akin to the motion of ions in a Paul trap [215].
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derivative in the curly brackets yields,

ĤU = Ĥ0 cos(ωt)− iℏ
{︃
− i
ℏ

[︂
Ĥ0 cos(ωt) + s∂tĤ0

]︂
− 1

2!

(︃
is

ℏ

)︃2 [︂
Ĥ0, ∂tĤ0

]︂
− 1

3!

(︃
is

ℏ

)︃3 [︂
Ĥ0,

[︂
Ĥ0, ∂tĤ0

]︂]︂
− . . .

}︄
,

= iℏ

{︄
i

ℏ
s∂tĤ0 +

1

2!

(︃
is

ℏ

)︃2 [︂
Ĥ0, ∂tĤ0

]︂
+
1

3!

(︃
is

ℏ

)︃3 [︂
Ĥ0,

[︂
Ĥ0, ∂tĤ0

]︂]︂
− . . .

}︄
. (5.8)

Looking now at the form of the nested commutators, we have for the first one in

the series, [︂
Ĥ0, ∂tĤ0

]︂
= Ω2

0

[︂
λ · F̂ , ∂tλ · F̂

]︂
. (5.9)

We may use the identity,

[a · x̂, b · x̂] = aµbν [x̂µ, x̂ν ] . (5.10)

Therefore, [︂
Ĥ0, ∂tĤ0

]︂
= Ω2

0λ
µ∂tλ

ν
[︂
F̂

µ
, F̂

ν
]︂
,

= Ω2
0λ

µ∂tλ
ν
(︂
iℏεµναF̂

α
)︂
,

= iℏΩ2
0 (λ× ∂tλ) · F̂ , (5.11)

where we have used the definition of the cross product, in terms of the Levi-Civita

symbol εµνα.

Similarly, we have for the second commutator in the series,[︂
Ĥ0,

[︂
Ĥ0, ∂tĤ0

]︂]︂
= iℏΩ3

0

[︂
λ · F̂ , (λ× ∂tλ) · F̂

]︂
,

= −ℏ2Ω3
0 [λ× (λ× ∂tλ)] · F̂ ,

= −ℏ2Ω3
0 [(λ · ∂tλ)λ− (λ · λ) ∂tλ] · F̂ . (5.12)

We assume that the field described by the Hamiltonian Eq. 5.1 may only change its

orientation, not its magnitude; therefore, λ · ∂tλ = 0. This, together with the fact

that λ is of unit length, yields,[︂
Ĥ0,

[︂
Ĥ0, ∂tĤ0

]︂]︂
= ℏ2Ω3

0∂tλ · F̂ . (5.13)
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For the third commutator in the series,[︂
Ĥ0,

[︂
Ĥ0,

[︂
Ĥ0, ∂tĤ0

]︂]︂]︂
= ℏ3Ω4

0

[︂
λ · F̂ , ∂tλ · F̂

]︂
,

= ℏ3Ω2
0

[︂
Ĥ0, ∂tĤ0

]︂
, (5.14)

and so the commutators form a recurrence relation. Putting these results together,

we have,

ĤU = i

{︄
∂tλ · F̂

∞∑︂
n=0

(isΩ0)
2n+1

(2n+ 1)!
+ i (λ× ∂tλ) · F̂

∞∑︂
n=1

(isΩ0)
2n

(2n)!

}︄
,

= i

{︄
i∂tλ · F̂

∞∑︂
n=0

(−1)n(sΩ0)
2n+1

(2n+ 1)!
+ i (λ× ∂tλ) · F̂

∞∑︂
n=1

(−1)n(sΩ0)
2n

(2n)!

}︄
,

(5.15)

and so, in the transformed basis the Hamiltonian is,

ĤU = − sin(sΩ0)∂tλ · F̂ − [cos(sΩ0)− 1] (λ× ∂tλ) · F̂ . (5.16)

5.1.2 Bloch’s Theorem

Since the Hamiltonian is temporally periodic, with changes to λ(t) slow in com-

parison to ω, we may assume that the states follow this periodicity [2, 217, 218]. The

wavefunctions may thus be expanded in a Fourier series; this is in direct analogy

to Bloch’s theorem in condensed matter systems with spatial periodicity. We may

decompose the wavefunctions as

|ψ(t)⟩ =
∞∑︂

n=−∞

einωt
⃓⃓
ϕ(n)(t)

⟩︁
, (5.17)

where n ∈ Z denotes the harmonics of ω, and label states reminiscent to bands in

condensed matter systems3. This constitutes an expansion of the Hilbert space into

an infinite set of states, which will eventually allow us to describe the time-evolution

of the system through a set of time-independent Hamiltonians acting on the new

basis states. The Hamiltonian has a similar decomposition,

ĤU(t) =
∞∑︂

n=−∞

einωtĤ(n)
(t). (5.18)

3Time is playing the role of momentum, in this analogy, where for each time t there are a family
of states (bands) denoted by n.
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The Fourier components are computed over a single period of the Floquet frequency,

Ĥ(n)
(t) =

ω

2π

∫︂ 2π
ω

0

dt′ĤU(t, t
′)e−inωt′ . (5.19)

Since λ(t) is approximately static over a single Floquet period, we may separate the

time-dependence of the Hamiltonian ĤU into the fast and slow parts; the slow parts

may be factored out of the integral, while the fast parts are integrated over. For this

reason, we call this a quasi-static Fourier series [2]. We will hold off from computing

these components for now, to first examine their action on the states
⃓⃓
ϕ(n)(t)

⟩︁
. The

TDSE becomes,

iℏ
∞∑︂

n=−∞

∂

∂t
einωt

⃓⃓
ϕ(n)(t)

⟩︁
=

∞∑︂
m,n=−∞

eimωtĤ(m)
(t)einωt

⃓⃓
ϕ(n)(t)

⟩︁
. (5.20)

To reveal some more useful information about the components Ĥ(n)
(t) we will look

at the matrix elements, multiplying both sides by
∑︁∞

l=−∞ e−ilωt
⟨︁
ϕ(l)(t)

⃓⃓
, and inte-

grating over a single Floquet period. Starting with the left-hand side, we have,

iℏ
ω

2π

∞∑︂
l,n=−∞

∫︂ 2π
ω

0

dt′
⟨︁
ϕ(l)(t)

⃓⃓
e−ilωt′∂te

inωt′
⃓⃓
ϕ(n)(t)

⟩︁
= iℏ

ω

2π

∞∑︂
l,n=−∞

∫︂ 2π
ω

0

dt′
⟨︁
ϕ(l)(t)

⃓⃓
ei(n−l)ωt′ (inω + ∂t)

⃓⃓
ϕ(n)(t)

⟩︁
,

= iℏ
ω

2π

∞∑︂
l,n=−∞

⟨︁
ϕ(l)(t)

⃓⃓
(inω + ∂t)

⃓⃓
ϕ(n)(t)

⟩︁ ∫︂ 2π
ω

0

dt′ei(n−l)ωt′ ,

=
∞∑︂

l,n=−∞

⟨︁
ϕ(l)(t)

⃓⃓
(iℏ∂t − nℏω)

⃓⃓
ϕ(n)(t)

⟩︁
δl,n,

=
∞∑︂

n=−∞

⟨︁
ϕ(n)(t)

⃓⃓
(iℏ∂t − nℏω)

⃓⃓
ϕ(n)(t)

⟩︁
, (5.21)

where δln is the Kronecker delta, and the second to last step in the above uses that,∫︂ 2π

0

dθei(j−k)θ = 2πδjk, (5.22)

for j, k ∈ Z.
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Looking now at the right-hand side we have,

ω

2π

∞∑︂
l,m,n=−∞

∫︂ 2π
ω

0

dt′
⟨︁
ϕ(l)(t)

⃓⃓
e−ilωt′Ĥ(m)

(t)eimωt′einωt
′ ⃓⃓
ϕ(n)(t)

⟩︁
,

=
ω

2π

∞∑︂
l,m,n=−∞

⟨︁
ϕ(l)(t)

⃓⃓
Ĥ(m)

(t)
⃓⃓
ϕ(n)(t)

⟩︁ ∫︂ 2π
ω

0

dt′ei(m+n−l)ωt′ ,

=
∞∑︂

l,n=−∞

⟨︁
ϕ(l)(t)

⃓⃓
Ĥ(l−n)

(t)
⃓⃓
ϕ(n)(t)

⟩︁
. (5.23)

where in this case, the only non-vanishing terms after integration are for m = l−n.
Putting the left- and right-hand sides together, we see that the equality must also

hold element-wise, yielding,

iℏ
∂

∂t

⃓⃓
ϕ(n)(t)

⟩︁
=

∞∑︂
l=−∞

(︂
nℏωδnl + Ĥ

(n−l)
(t)

)︂ ⃓⃓
ϕ(l)(t)

⟩︁
. (5.24)

This reveals the structure of the Hamiltonian, Eq. 5.16, in terms of the individual

Fourier components.

The operator Ĥ(0)
(t) acts within a single band, while the element Ĥ(m)

(t) couples

bands that are m units apart [218]. The “band-structure” in this case is thus

an infinite ladder of identical bands, with structure determined by Ĥ(0)
(t), each

separated in quasi-energy by ℏω.

5.1.3 Fourier Components

Now, we may compute the explicit form of the Fourier components of the Hamil-

tonian, Eq. 5.16, through Eq. 5.19. We have,

Ĥ(n)
(t) =

ω

2π

∫︂ 2π
ω

0

dt′e−inωt′
{︃
− sin

[︃
Ω0 sin(ωt

′)

ω

]︃
∂tλ · F̂

−
(︃
cos

[︃
Ω0 sin(ωt

′)

ω

]︃
− 1

)︃
(λ× ∂tλ) · F̂

}︃
,

= −
(︂
∂tλ · F̂

)︂ ω

2π

∫︂ 2π
ω

0

dt′ sin

[︃
Ω0 sin(ωt

′)

ω

]︃
e−inωt′

−
[︂
(λ× ∂tλ) · F̂

]︂ ω

2π

∫︂ 2π
ω

0

dt′ cos

[︃
Ω0 sin(ωt

′)

ω

]︃
e−inωt′

+
[︂
(λ× ∂tλ) · F̂

]︂ ω

2π

∫︂ 2π
ω

0

dt′e−inωt′ , (5.25)

where we have factored the “slow” time-dependence out of the integral, leaving only

the parts that change notably over a Floquet period. The final term in the above
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is only non-vanishing for n = 0. For the remaining terms, we make use of the

identities,

1

2π

∫︂ 2π
ω

0

dθe−inθ sin [a sin(θ)] = i

[︃
1− (−1)n

2

]︃
Jn(|a|), (5.26)

1

2π

∫︂ 2π
ω

0

dθe−inθ cos [a sin(θ)] =

[︃
1− (−1)n+1

2

]︃
Jn(|a|), (5.27)

where Jn(a) is the n
th order Bessel function of the first kind. The Fourier components

are therefore

Ĥ(n)
(t) =

{︃
δn0 −

[︃
1− (−1)n+1

2

]︃
Jn

(︃
Ω0

ω

)︃}︃
(λ× ∂tλ) · F̂

− i
[︃
1− (−1)n

2

]︃
Jn

(︃
Ω0

ω

)︃
∂tλ · F̂ . (5.28)

The odd terms are

Ĥ(n)

odd(t) = −iJn(Ω0/ω)∂tλ · F̂ , (5.29)

while the even terms are

Ĥ(n)

even(t) = [δn0 − Jn(Ω0/ω)] (λ× ∂tλ) · F̂ ; (5.30)

in both cases, the magnitude of the matrix elements are bounded,

⟨︁
ϕ(n)(t)

⃓⃓
Ĥ(n−m)

(t)
⃓⃓
ϕ(m)

⟩︁
≤ F |∂tλ| , (5.31)

since Jn(a) ≤ 1, and λ has unit length. In the limit that changes to the parameters

are slower than the Floquet period, the energetics within the bands are therefore

more significant than the couplings between them; this is the condition for adia-

baticity, written explicitly as, ⃓⃓⃓⃓
∂λ

∂t

⃓⃓⃓⃓
≪ ω. (5.32)

If this condition is met, then we may restrict our attention to the the 0th order term,

Ĥ(0)
(t) =

[︃
1− J0

(︃
Ω0

ω

)︃]︃
(λ× ∂tλ) · F̂

=

[︃
1− J0

(︃
Ω0

ω

)︃]︃
∂tλ ·

(︂
F̂ × λ

)︂
. (5.33)

In the adiabatic limit, the Floquet Hamiltonian is therefore,

ĤFloq.(t) = ∂tλ · Â (λ) , (5.34)
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with the non-Abelian connection,

Â (λ) = g
(︂
F̂ × λ

)︂
. (5.35)

The magnitude of Â is g = 1−J0 (Ω0/ω). The Hamiltonian, Eq. 5.34, is adiabatically

degenerate, since as ∂tλ → 0 ⇒ ĤFloq. → 0. If slow changes to λ(t) are permitted,

then the quasi-energy structure of the Hamiltonian is described by the connection,

given in terms of the spin matrices (Eq. 5.35).

The connection, Eq. 5.35, is not diagonal, due to the appearance of both F̂ x and

F̂ y in its vector components, resulting in coupling between Floquet states (depending

on the loop). The Floquet basis is therefore not the eigenbasis of Â. Furthermore, if

we look at the instantaneous eigenvalues of the Hamiltonian (Eq. 5.34) we find that

there is, in general, an energy splitting between the eigenstates, which may seem

confusing given that we have just claimed that the Hamiltonian is degenerate. For

there to be coupling in quantum systems, there must be some splitting in energy

between the states being coupled, proportional to the coupling rate. The splitting

between eigenstates is therefore a necessary condition for non-Abelian phases to

couple states in the degenerate manifold, though it seems to contradict the notion

of degeneracy here. We must consider that for time-dependent Hamiltonians, we

may only define quasi-energies, hence the specification before that the Hamiltonian

is adiabatically degenerate. In this context, the magnitude of the splitting between

states is proportional to |∂tλ|, which vanishes in the adiabatic limit.

To see more clearly that this is the connection, responsible for a fully geometric

phase, we may write the evolution operator for this Hamiltonian (Eq. 5.34),

Û(t) = T exp

{︃
− i
ℏ

∫︂ t

0

dt′∂t′λ · Â [λ(t′)]

}︃
,

= P exp

[︃
− i
ℏ

∫︂
ℓ

dλ · Â (λ)

]︃
. (5.36)

For cyclic evolution, over a loop ℓ in the parameter space λ ∈M, this becomes the

holonomy (Sec. 6.2.2),

Γ̂A (ℓ) = P exp

[︃
− i
ℏ

∮︂
ℓ

dλ · Â (λ)

]︃
. (5.37)

Since the connection is given in terms of the spin matrices, it covers the su(2) algebra,

therefore generating transformations in SU(2). This is a result of the specific form

of the Hamiltonian in the rotating frame. In general, such a technique could be

applied to any Hamiltonian. The form of the connection in other instances will

similarly depend on the original Hamiltonian, and while they are not guaranteed
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to host interesting or useful curvature, the application of Floquet driving to other

systems is worthy of study.

5.2 Simulated Evolution

To compare the evolution of the system in the rotating basis, Eq. 5.2, with the

Floquet basis, Eq. 5.34, we have performed a variety of numerical simulations in

Julia [221], using a custom package for integrating the TDSE4. Specifically, for the

Hamiltonian of interest Ĥ(t), we integrate,

∂

∂t
Û(t) = −iĤ(t)Û(t), (5.38)

solving for the evolution operator Û(t), with the initial condition that Û(t = 0) =

1̂. The package provides several functions with which to use a generic ordinary

differential equation solver, OrdinaryDiffEq.jl [222], to solve for the evolution

operator in time, given a time-dependent Hamiltonian. Additionally, it includes

functionality to work in any spin manifold F . Using this, we can simulate the

evolution in both bases, to better understand the differences in these representations.

The Hamiltonian Eq. 6.8 is parameterized by λ(t), a vector that describes the

orientation of the magnetic field on the unit sphere. We may therefore write λ in

polar coordinates as,

λ(t) = [sinΘ(t) cosΦ(t), sinΘ(t) sinΦ(t), cosΘ(t)]⊺ , (5.39)

with Θ(t) the polar angle, and Φ(t) the azimuthal angle. The parameter spaceM
is therefore the collection of points on the unit sphere, defined through {Θ,Φ}, with
Θ ∈ [0, π] and Φ ∈ [0, 2π). If we were to allow the amplitude of the fictitious field

to change, Ω0, then the parameter space would include points within the sphere; an

alteration to the Hamiltonian in the Floquet basis would have to accompany this

addition [218].

There is a large degree of freedom in choosing the various control parameters

in the Hamiltonian, Eq. 6.8, aside from choosing the loops themselves. There are

three important parameters to consider setting: the amplitude of the fictitious field,

Ω0, the Floquet frequency, ω, and the duration of the loops, T . For the duration of

the loops, it is often more convenient to specify the corresponding frequency of the

loop, Ω = 2π/T , where this can be thought of as the rate of loop traversal, but also

carries additional significance. The frequency Ω corresponds to the coupling rate

between states in the Floquet basis, as seen by the ∂tλ coefficient in the Floquet

4The base functions of the package were developed by Mason Protter.
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Hamiltonian (Eq. 5.34) described before.

From a practical viewpoint, the amplitude of the fictitious field. Ω0, determines

the scale for every other parameter. Based on the choice of Ω0, the other parameters

may be chosen so that they maintain the adiabatic condition, Eq. 5.32. When this

condition holds, the inter-band coupling in the Floquet basis may be neglected [2,

217, 218]. After choosing either ω or Ω, the other may be appropriately set so as to

satisfy this condition.

Conceptually, Ω0 is the Rabi frequency of the undriven Hamiltonian, controlling

the rate at which spins are coupled. Together with the Floquet frequency, this

controls the strength of the connection, g (Eq. 5.35), which ultimately defines the

magnitude of the acquired geometric phase. Therefore, based on the choice of Ω0,

the Floquet frequency should be set so as to obtain the desired amount of phase over

the loops. For the demonstrations considered here (informed by the experiments in

Ch. 6), we set Ω0/ω = 1, yielding g ≈ 0.23. Given this choice, Ω may be adjusted

to reduce the significance of non-adiabatic corrections. The other consideration is

that the spin-basis and Floquet basis are stroboscopically equivalent, that is, at

times t = 2πm/ω, m ∈ Z, the bases coincide [219]. Therefore, setting Ω as the

nth subharmonic of ω is of practical relevance; measurements of states following

these loops will thus be made simultaneously in both bases, which may reduce

some experimental complexities (see Ch. 6, Sec. 6.1.2), though this is not explicitly

necessary.

With these considerations in mind, there are several choices for primitive loops;

here we focus on those of relevance to the experiments presented later in Ch. 6,

summarized in Tab. 5.1 along with their corresponding holonomies. These loops are

also shown in parameter space5 in Fig. 5.1. Importantly, a closed-form solution of

the holonomy (Eq. 5.37) is not always evident; if the connection does not commute

with itself at each point along the loop, then the path-ordering makes it difficult to

obtain an analytical solution (see App. E). For this reason, the numerical methods

are particularly useful. Paths that follow a geodesic, on the other hand, have readily

available analytic solutions [78].

The three loops shown in Fig. 5.1(a), ℓ1, ℓ2, and ℓ3, all geodesics, are significant

in that they produce a phase each with one of the spin matrices, as shown by

their corresponding holonomies in Tab. 5.1; this demonstrates that the connection

generates transformations in SU(2) (although this is not proof that it is irreducible).

The loop ℓ4, also a geodesic, demonstrates that combinations of such generators may

5Note that in each case, both Θ and Φ are permitted to vary over the interval [0, 2π]. Allowing
Θ to vary over this extended interval permits simpler parametrizations of the loops in which the
angles vary smoothly, avoiding the use of step functions that would accomplish the same task. This
is especially relevant to the experimental demonstration in Ch. 6 where these parameters must be
controlled by physical devices.
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Loops Θ(t) Φ(t) Γ̂A (ℓ)

ℓ1 Ωt 0 exp
(︂
−i2πgF̂ y/ℏ

)︂
ℓ2 Ωt π/2 exp

(︂
i2πgF̂ x/ℏ

)︂
ℓ3 π/2 Ωt exp

(︂
−i2πgF̂ z/ℏ

)︂
ℓ4 Ωt π/4 exp

[︂
i
√
2πg

(︂
F̂ x − F̂ y

)︂
/ℏ

]︂
ℓ5 π/4 Ωt -
ℓ6 Ωt Ωt -

Table 5.1: Summary of the loops ℓ implemented in experiment (Ch. 6), parameterized
by {Θ(t), Φ(t)}, and the corresponding holonomies Γ̂A (ℓ). Loops are performed over a
single period of Ω = ω/10, acquiring a phase proportional to g = 1 − J0(Ω0/ω); for the
ratio Ω0/ω = 1 used here, g ≈ 0.23. The loops 1-4 are geodesics, so the holonomies
may be computed analytically (App. E). For loops 5 and 6, closed form solutions of the
corresponding holonomies are not known, due to the connection not commuting with itself
at the various points along the path. The geometric phases are given in terms of the spin
matrices, making these holonomies members of SU(2). These loops are also depicted in
Fig. 5.1.

(a) (b)

ℓ1ℓ2ℓ3
ℓ4ℓ5ℓ6

(a) (b)

ℓ1ℓ2ℓ3
ℓ4ℓ5ℓ6

(a) (b)

ℓ1ℓ2ℓ3
ℓ4ℓ5ℓ6
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Figure 5.1: Loops in parameter space, denoting the orientation of the magnetic field
in Eq. 6.8 over time, as parameterized by the polar and azimuthal angles. Example
parametrizations of these loops are shown in Tab. 5.1, along with the corresponding
holonomies. (a) Geodesic loops, each a great circle oriented along the various Carte-
sian planes. The holonomies for these loops each may be expressed by one of the three
spin matrices, demonstrating how the choice of path may generate different transforma-
tions. (b) Some more complicated loops, which generate more non-trivial combinations of
spin matrices.
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Figure 5.2: Numerical simulations comparing the evolution of spin-1/2 basis states in the
Floquet basis (Eq. 5.34) and rotating basis (Eq. 5.2), shown on the Bloch sphere, for
loops (a) ℓ1, (b) ℓ2, and (c) ℓ3. Parameters are Ω0/ω = 1, and Ω = ω/10. The axes are
indicated by the +1 eigenstates of the spin matrices: |→⟩, |⟳⟩, and |↑⟩ for F̂ x, F̂ y, and
F̂ z respectively. State trajectories in the rotating frame are depicted by the oscillatory
lines, with points (circles) sampled stroboscopically at times t = 2πn/ω, n ∈ Z; color
gradient depicts time, or progress along the loop through Θ(t) for (a), (b), and Φ(t) for
(c). Evolution in the Floquet basis is indicated by the solid (red) line, and markers (square)
are stroboscopic samples. The markers for each basis do not perfectly coincide, due to a
violation of the adiabatic condition from finite loop durations, which may be mitigated by
reducing the rate of loop traversal, Ω.

also be produced. The loops ℓ5 and ℓ6 do not have known closed-form solutions,

due to path-ordering, but ℓ6 in particular was motivated by the experiments, for the

sake of measuring the Wilson loop (see Sec. 4.1.4) trace-commutator, which will be

discussed later in Sec. 5.4.

From these choices of loops, we may simulate the evolution. The simplest case,

for an F = 1/2 manifold, the state trajectories may be displayed on the Bloch-sphere.

The results for loops 1-3 in Tab. 5.1 are shown in Fig. 5.2. The axes on the Bloch

sphere are indicated by the +1 eigenstates of F̂ x, F̂ y, and F̂ z, where the initial state

in each case is |↑⟩. The calculations in the Floquet basis result in a straight path (or

in the case of ℓ3, no movement), while in the rotating basis the states exhibit highly

oscillatory behavior. For loops ℓ1 and ℓ2, the holonomy couples the eigenstates of

F̂ z, resulting in a superposition at the end of the loops. These trajectories take on

the same basic form, but the rotations occur over orthogonal axes as indicated by

the respective generators (Tab. 5.1); this ultimately results in states that differ only

in relative phase. For loop ℓ3, the initial state is an eigenstate of the generator for

this transformation, and so it remains in the initial state throughout the loop, in the

Floquet basis; in the rotating basis, this is only true stroboscopically. From Fig. 5.2

we may also see the non-adiabatic error, due to the finite duration of the loops.

The evolution in the rotating basis is sampled stroboscopically, along with that in

the Floquet basis; these point do not coincide due to violations of the adiabatic

condition (Eq. 5.32). A decreased loop rate Ω will mitigate these errors.
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In order to experimentally reproduce the state trajectories depicted in Fig. 5.2,

the state would need to be fully reconstructed through state tomography at each

point in time (or a large sample of points). Perhaps a more convenient way of

visualizing the evolution throughout the loop is to look at the populations in each

eigenstate of F̂ z in time; this corresponds more closely with the typical measurement

capabilities, as it constitutes a projective measurement in the spin basis for times

along the loop. This projection, however, will erase information of the relative

phase. An example for loop ℓ1 in F = 1/2 is shown in Fig. 5.3(a). Furthermore, this

representation allows us to demonstrate the evolution in larger spin manifolds, which

may not be displayed on the Bloch sphere. Examples for two experimentally relevant

(hyperfine ground states of 87Rb) manifolds are shown in Fig. 5.3(b) and Fig. 5.3(c),

with F = 1 and F = 2 respectively. The former is for loop ℓ1, while the latter shows

ℓ2, to demonstrate that the phase information is lost in these projections.

The results in Fig. 5.3 aid in demonstrating the SU(2) symmetry of the holon-

omy; as the spin manifold is altered, the transformations still follow a predictable

pattern. The loops used in Fig. 5.3, starting from a maximally polarized spin state

|±F ⟩, result in states that are approximately eigenstates of F̂ x or F̂ y; the popula-

tions at the end correspond to symmetric superpositions of the spins, each essentially

equivalent to one another. This demonstrates that the spin manifold F really only

changes the details, but the transformations themselves are fully understood by

considering the minimal case of F = 1/2, as it is the lowest dimensional represen-

tation of SU(2). Therefore, regardless of whichever spin manifold this technique is

implemented in, the results may be easily generalized to any other spin manifold.

Together, Fig. 5.2 and Fig. 5.3 (inconclusively) demonstrate the non-Abelian nature

of the phase; a fully geometric phase results in the coupling of states in the manifold,

which may only be accomplished through the existence of a non-Abelian connection

(Sec. 4.1.3). This must be validated by a gauge-invariant measurement, however,

such as the Wilson loop (Sec. 4.1.4, and Sec. 5.4).

To further demonstrate some more non-trivial loops, and our ability to numer-

ically simulate relatively complicated time-dependent Hamiltonians, the evolution

of spins through several more loops not given in Tab. 5.1 are shown in Fig. 5.4.

The loops themselves are depicted in Fig. 5.4(a) along with their parametrizations;

the closed form solution of the holonomy is not known for any of them. Due to

these loop parametrizations containing frequency components that are larger than

in all the previous simulations, non-adiabatic effects are more significant. These

effects are mitigated in the simulations depicted in Fig. 5.4(b) by setting Ω = ω/20,

demonstrating how the non-adiabatic error may be reduced by choice of parameters.

Together, the simulations in this section provide some insight into the connection,

and the holonomic transformations it generates. If we consider the representation of
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Figure 5.3: Simulated state evolution in the rotating frame and Floquet basis, shown
through the relative populations in the spin eigenbasis, F̂ z, for different spin manifolds:
(a) F = 1/2, (b) F = 1, and (c) F = 2. Lines display results in the rotating frame, while
points are stroboscopically sampled populations in the Floquet basis. (a) and (b) show
results for loop ℓ1. (c) depicts ℓ2, demonstrating that the difference in relative phase is
erased by the projections onto spin states, since these trajectories are the F = 2 equivalent
to those in (a, b). Loop parameters are Ω0/ω = 1 and Ω = ω/10.
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y

Figure 5.4: (a) Several non-trivial loops in parameter space, and their parametrizations;
closed-form solutions to the corresponding holonomies are unknown. (b) Evolution of the
spin-populations in time for the loops depicted in (a), for F = 1/2, and with Ω0/ω = 1.
Each of the loops shown here result in some amount of coupling between spins. Due to
the structure of these loops, if performed in the same duration as in prior simulations, the
non-adiabatic error is significant. As such, the loop rate was adjusted to Ω = ω/20, to
reduce these effects.

Logan W. Cooke 100 Chapter 5



Section 5.3 Artificial Gauge Fields in Ultracold Atomic Ensembles

the geometric phase through the curvature, as discussed in Sec. 4.2, the generated

phase is given by the integrated flux through the surface enclosed by the loop.

Looking at the orientation of these loops in Fig. 5.1 and Fig. 5.4, we can see that

the relative orientation of this surface determines whether there is coupling between

states or not. If the surface has some projection in either the xz- or yz-planes, the

loop generally results in coupling between states, as the integrated flux contains

components of F̂ x and F̂ y. Alternatively, if the surface only has a projection in the

xy-plane, then it generally results in no net transfer of population. Importantly,

this is only approximately true, since loops that do not follow geodesics produce

non-commutative effects along the loop that deviate from this intuition; the loop

ℓ5 for instance produces a small amount of phase ∝ F̂ y for this reason (verified

numerically).

5.3 Detuning

The Floquet driving scheme presented in Sec. 5.1 is a way of taking a decid-

edly nondegenerate system, and through periodic modulation of the Hamiltonian,

producing an equivalent representation in the Floquet basis that is adiabatically de-

generate; subsequently, non-Abelian geometric phases may be permitted, depending

on the form of the driven Hamiltonian. For the one considered there, the connection

was given in terms of spin matrices, thus generating transformations in SU(2). A

key assumption behind this protocol is that the entire Hamiltonian is driven by a

periodic function with zero time-average, over a Floquet period. Such a requirement

will challenge experimenters, as imperfections in the control of quantum systems will

impact the results. Motivated by the experiments in Ch. 6, here we will introduce,

quite generally, an undriven term in the Hamiltonian. The form of this term in the

Floquet basis, and its subsequent Fourier decomposition will reveal the impact of

such control errors, which will be useful for any practical implementation of this

protocol [2]. To demonstrate the impact more clearly, some additional simulations

of these transformations with this source of error will be shown, for comparison with

those in Sec. 5.2 without.

To start, we write the total Hamiltonian as the sum of the modulated Hamilto-

nian in the rotating basis, Eq. 5.2, and an additional unmodulated term,

Ĥtot.(t) = Ĥλ(t) + Ĥ
∆
, (5.40)

where,

Ĥ
∆
= ∆ · F̂ . (5.41)
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We assume ∆ = (∆x,∆y,∆z)
⊺ is independent of time, or rather, that any changes

to its components are much slower than the time scales we are concerned with. This

term contains each spin matrix, and is therefore the most general unmodulated

term (time-independent, that is) for a spin-1/2 system. For higher spin systems,

unmodulated terms could be comprised of different matrices, such as the quadratic

Zeeman shift which generates SU(2F + 1) contributions to the phase (App. A); to

compute the impact of such terms in the Floquet basis will follow the same procedure

as that which follows, and generally will produce similar results.

This term is meant to resemble a systematic source of error in the control of the

system, or a miscalibration. In the current basis, this term corresponds to some

residual field ∆, shifting the time-average of the driven part from zero.

5.3.1 Micromotion

To determine the impact of an unmodulated term (detuning) on the evolution

in the Floquet basis, we will go through a similar procedure as that in Sec. 5.1,

starting with applying the micromotion operator (Eq. 5.3). Once again, we employ

the Baker-Campbell-Hausdorff lemma (Eq. 5.5), yielding,

Û
†
Ĥ

∆
Û = Ĥ

∆
+
i

ℏ
s
[︂
Ĥ0, Ĥ

∆
]︂
+

1

2!

(︃
i

ℏ

)︃2

s2
[︂
Ĥ0,

[︂
Ĥ0, Ĥ

∆
]︂]︂

+ . . . , (5.42)

with s = sinωt/ω. Looking at the commutators, the first is,[︂
Ĥ0, Ĥ

∆
]︂
= Ω0

[︂
λ · F̂ ,∆ · F̂

]︂
,

= iℏΩ0 (λ×∆) · F̂ , (5.43)

where we have made use of the identity Eq. 5.10 once again. The second commutator

is, [︂
Ĥ0,

[︂
Ĥ0, Ĥ

∆
]︂]︂

= iℏΩ2
0

[︂
λ · F̂ , (λ×∆) · F̂

]︂
,

= −ℏ2Ω2
0 [(λ ·∆)λ− (λ · λ)∆] · F̂ ,

= −ℏ2Ω2
0 [(λ ·∆)λ−∆] · F̂ . (5.44)

Finally, for the third commutator,[︂
Ĥ0,

[︂
Ĥ0,

[︂
Ĥ0, Ĥ

∆
]︂]︂]︂

= −ℏ2Ω3
0

[︂
λ · F̂ , (λ ·∆)λ · F̂

]︂
+ ℏ2Ω3

0

[︂
λ · F̂ ,∆ · F̂

]︂
,

= −ℏ2Ω3
0 (λ ·∆) (λ× λ) · F̂ + ℏ2Ω2

0

[︂
Ĥ0, Ĥ

∆
]︂
,

= ℏ2Ω2
0

[︂
Ĥ0, Ĥ

∆
]︂
, (5.45)
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where once again we have found a recurrence relation.

Putting all of the commutator results together yields,

Û
†
Ĥ

∆
Û = Ĥ

∆
+
i

ℏ
s
[︂
iℏΩ0 (λ×∆) · F̂

]︂
+

1

2!

(︃
is

ℏ

)︃2 {︂
−ℏ2Ω2

0 [(λ ·∆)λ−∆] · F̂
}︂

+
1

3!

(︃
is

ℏ

)︃3 [︂
iℏ3Ω3

0 (λ×∆) · F̂
]︂
+ . . . ,

= ∆ · F̂ − sΩ0 (λ×∆) · F̂ +
1

2!
s2Ω2

0 [(λ ·∆)λ−∆] · F̂

+
1

3!
s3Ω3

0 (λ×∆) · F̂ + . . . ,

= ∆ · F̂ − (λ×∆) · F̂
∞∑︂
n=0

(−1)n
(2n+ 1)!

(sΩ0)
2n+1

− [(λ ·∆)λ−∆] · F̂
∞∑︂
n=1

(−1)n
(2n)!

(sΩ0)
2n. (5.46)

Therefore, in the Floquet basis the detuning term transforms to,

Û
†
Ĥ

∆
Û = ∆ · F̂ − sin(sΩ0) (λ×∆) · F̂ − [cos(sΩ0)− 1] [(λ ·∆)λ−∆] · F̂ . (5.47)

5.3.2 Fourier Components

Now we may decompose the detuning term into its Fourier components, Eq. 5.19,

as we did in Sec. 5.1.3 to the modulated part of the Hamiltonian. Up until this

point, it has not mattered that ∆ is time-independent. When we computed the

Fourier components of the modulated Hamiltonian (in the Floquet basis) we assumed

that changes to λ(t) were approximately static over a single Floquet period, 2π/ω.

Therefore, if we wish to consider a detuning that depends on time, either a similar

assumption must be made, or the explicit time-dependence must be known in order

to proceed; here we are considering constant detuning, but the results would also

apply to slowly varying detuning due to the former of these options.

Chapter 5 103 Logan W. Cooke



Artificial Gauge Fields in Ultracold Atomic Ensembles Section 5.3

The Fourier components are,

Ĥ(n)

∆ (t) =
ω

2π

∫︂ 2π
ω

0

dt′e−inωt′Û
†
Ĥ

∆
Û ,

= δn0 (λ ·∆)
(︂
λ · F̂

)︂
− (λ×∆) · F̂ ω

2π

∫︂ 2π
ω

0

dt′e−inωt′ sin

[︃
Ω0 sin(ωt

′)

ω

]︃
− [(λ ·∆)−∆] · F̂ ω

2π

∫︂ 2π
ω

0

dt′e−inωt′ cos

[︃
Ω0 sin(ωt

′)

ω

]︃
,

= δn0 (λ ·∆)
(︂
λ · F̂

)︂
− i

[︃
1− (−1)n

2

]︃
Jn

(︃
Ω0

ω

)︃
(λ×∆) · F̂

−
[︃
1− (−1)n+1

2

]︃
Jn

(︃
Ω0

ω

)︃
[(λ ·∆)−∆] · F̂ , (5.48)

where in the last step we made use of the integral identities, Eq. 5.26 and Eq. 5.27.

The even components are,

Ĥ(n)

∆,even(t) = δn0 (λ ·∆)
(︂
λ · F̂

)︂
− Jn

(︃
Ω0

ω

)︃
[(λ ·∆)−∆] · F̂ , (5.49)

for which the matrix elements are once again bounded,⃓⃓⃓⟨︁
ϕ(n)(t)

⃓⃓
Ĥ(n)

∆,even(t)
⃓⃓
ϕ(m)(t)

⟩︁⃓⃓⃓
≲ F |∆| . (5.50)

Similarly, the odd terms are,

Ĥ(n)

∆,odd(t) = −iJn
(︃
Ω0

ω

)︃
(λ×∆) · F̂ , (5.51)

whose matrix elements are also bounded in the same way. Therefore, in the limit

that the detuning is small with respect to the splitting between Floquet bands,

|∆| ≪ ω, we may once again narrow our attention ot the zeroth order term. We

have,

Ĥ(0)

∆ (t) = (λ ·∆)
(︂
λ · F̂

)︂
− J0

(︃
Ω0

ω

)︃
[(λ ·∆)−∆] · F̂ . (5.52)

Rearranging, and expressing in terms of the magnitude of the connection (Eq. 5.35),

g = 1− J0 (Ω0/ω), the detuning in the Floquet basis is,

Ĥ∆

Floq.(t) = (1− g)∆ · F̂ + g (λ ·∆)
(︂
λ · F̂

)︂
. (5.53)

The first term in the detuned Hamiltonian, Eq. 5.53, is fully dynamical; when

integrated over time, it does not depend at all on the location on parameter space

M. Depending on the components of ∆, this term both breaks the degeneracy in
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the Floquet band, and couples states within6. The second term in the detuning has

a similar impact, though it does depend on the specific loop in parameter space.

Importantly, however, the second term is also fully dynamical, in that the evolution

operator may not be expressed through an integral7 over the loop ℓ. Therefore,

terms in the Hamiltonian that are unmodulated by the Floquet drive correspond to

dynamical terms in the Floquet basis, which break the adiabatic degeneracy, and dy-

namically couple states in the band. In more traditionally degenerate systems, small

perturbations of the energetics break the degeneracy; here, unmodulated terms play

the same role, but due to the time-dependence of the Floquet basis representation

(the micromotion operator, Eq. 5.3), even static terms become time-dependent, and

may result in dynamical coupling between states as well.

For the full Floquet Hamiltonian, the combination of the geometric Hamiltonian,

Eq. 5.34, and the detuning, Eq. 5.53, the evolution operator takes the form of the

non-adiabatic generalization of the holonomy (Eq. 4.24),

Γ̂
∆

A (t) = T exp

{︃
− i
ℏ

∫︂ t

0

dt′
[︃
∂λ

∂t′
· Â (λ)− Ĥ∆

Floq.(t
′)

]︃}︃
, (5.54)

written in the time-ordered from. The connection Â is therefore that of Anan-

dan [66], which takes on the same form as the Wilczek-Zee connection [65] from

before, but now since the detuning has broken the adiabatic degeneracy, it acts

across subspaces.

As discussed in Sec. 4.3.1, the form of this holonomy may be deceiving; the

geometric phase term is unchanged from before (Eq. 5.37), and we have simply

added a dynamical phase described by Ĥ
∆

Floq.. Although it may seem that the two

contributions to the phase may be separated in this way, in general they do not

commute. The expansion of this exponential must be expressed as a time-ordered

sum of the nested commutators between each. The impact from each term on

the generated transformations are therefore inextricably linked, depending on the

specific path in parameter space, and the timing of the evolution. The detuning has

fundamentally changed the nature of these transformations.

5.3.3 Detuned Simulations

Here we perform more numerical simulations to illustrate the impact of detuning

on the holonomic evolution. To start, we may look at each of the components of ∆

independently, as applied to a particular loop. In Fig. 5.5 we show the results for

6The F̂ z matrix is responsible for degeneracy breaking, and F̂ x and F̂ y for coupling.
7The time dependence is contained within λ(t); though this may therefore appear to be geo-

metric, the absence of a ∂tλ coefficient reveals its dynamical nature, since we may not trivially
change the time-integral to a path-integral as we could before (Eq. 5.34).
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Figure 5.5: Detuned holonomy Γ̂
∆
A (ℓ1) shown on the Bloch sphere, with various detuning

components. The viewing angle is directly along |⟳⟩. State trajectories in the rotating
frame are depicted by lines, with points (circles) sampled stroboscopically at times t =
2πn/ω, n ∈ Z, and color gradient that depicts time, or progress along the loop through
Θ(t). Evolution in the Floquet basis is indicated by the solid (red) line, and markers
(square) are stroboscopic samples. The detuning ∆ is (a) (δ, 0, 0)⊺, (b) (0, δ, 0)⊺, and (c)
(0, 0, δ)⊺, where δ = Ω0/50. Other loop parameters are Ω0/ω = 1, and Ω = ω/10.

loop ℓ1 on the Bloch sphere, as it contrasts with the undetuned result in Fig. 5.2(a).

Without detuning, we expect Γ̂A (ℓ1) to rotate the state from |↑⟩ to approxi-

mately |←⟩; the phase is ∝ −F̂ y thus rotating the state around the |⟲⟩ axis, with a

nearly π/2 pulse area. The results in Fig. 5.5(b) show Γ̂
∆

A (ℓ1) with a ∆y component;

from Eq. 5.53 we can see that only the first detuning term is non-zero in this case,

and commutes with the geometric contribution to the phase, Eq. 5.34 for the entire

loop. As such, the state still rotates around |⟲⟩, but the pulse area is effectively

larger due to the additional F̂ y phase accumulated from detuning, resulting in a

state that has “over-rotated” (gone past the target). If the sign of the detuning was

inverted, the state will have “under-rotated”, as the detuning reduces the effective

coupling strength instead. This example generalizes to situations in which the de-

tuning commutes with the geometric contribution to the phase; the result is lesser

or greater effective pulse area, depending on the relative sign between the dynamical

and geometric contributions.

In the case that the detuning does not commute with the geometric phase, the

results are more difficult to discern, but follow similar intuition. For Fig. 5.5(a),

the results for Γ̂
∆

A (ℓ1) with a ∆x component are shown. Similar to the case of a ∆y

component, there is additional coupling strength in this case due to the detuning,

resulting in a larger effective pulse area (over-rotation); however, since the detuning

no longer commutes with the geometric phase, the axis of rotation is shifted slightly

towards |→⟩, deflecting the state-trajectory. Similarly, Fig. 5.5(c) has shifted the

rotation axis towards |↑⟩, resulting in the accumulation of more relative phase. In

both cases, since the dynamical phase does not commute with the geometric con-

tribution, the path-ordering of the holonomy makes an analytic solution to Γ̂
∆

A (ℓ1)
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intractable.

The examples in Fig. 5.5 generalize to other loops, illustrating how the various

detuning components impact the evolution, depending on whether they commute

or not with the geometric contribution. Practically speaking, we may expect a

mixture of all three detuning components simultaneously. In Fig. 5.6 we display the

impact on spin populations over time, for loops ℓ1, ℓ3, and ℓ6. The results in both the

Floquet and rotating bases are shown. In each case, 5000 detunings∆ are simulated,

with each component sampled from a Gaussian distribution with mean µ = 0 and

standard deviation σ = Ω0/80. At each point in time, the interquartile range is

computed from the distribution of results8, and is plotted as the colored bands over

the results for no detuning, Γ̂A (ℓ). In addition to major deviations throughout the

loop, the final populations are broadly distributed, as expected from the conclusions

made from Fig. 5.5. With all three detuning components, the dynamical phase is

responsible for breaking the degeneracy, causing relative phase errors between states,

and coupling, resulting in both relative phase and pulse-area errors.

These simulation demonstrate the non-trivial nature of Γ̂
∆

A (ℓ), where the inter-

play between the dynamical and geometric phase contributions follow some intuition,

but the path-ordering makes quantitative conclusions available only through numer-

ics. For larger spin systems, this may quickly become intractable. Furthermore, it is

prudent to point out the scale of detuning considered in the simulations above, which

are on the order of Ω0/50 (or equivalently ω/50)9. A residual magnetic field signifi-

cantly smaller than the driven field still results in major deviations from the desired

transformations. Any practical demonstration of the Floquet engineering technique

presented here must therefore very carefully isolate any residual detuning, else it

will have a dramatic impact on the results.

5.4 Wilson Loops

To substantiate the claims that the connection produced by Floquet driving,

Eq. 5.35, is non-Abelian, we may use the Wilson loop as outlined in Sec. 4.1.4.

Specifically, we consider the trace-commutator (Eq. 4.20); if, for three different loops,

this quantity is non-zero (and is thus path-dependent), this constitutes a gauge-

8This is the appropriate statistical metric for data that is bounded, as is the case for spin
populations defined in the range [0, 1]. From a set of observations, the interquartile range is
computed by taking the median, and separating the data into values larger than, and smaller than
this value. The median of each sub-set is then computed, yielding the spread of values on either
side of the combined median.

9In the case of Fig. 5.6, since we sampled each detuning component from a Gaussian with
mean µ = 0 and standard deviation σ = Ω0/80, the magnitude |∆| follows a Maxwell-Boltzmann

distribution with a mean of 2
√︂

2
πσ ≈ Ω0/50.
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Figure 5.6: Numerical simulations of spin populations for the detuned holonomy Γ̂
∆
A (ℓ),

demonstrating the impact of a generalized detuning on the transformations, for loops (a)
ℓ1, (b) ℓ3, and (c) ℓ6. The results for no detuning, Γ̂A (ℓ) are shown as the solid lines,
in the Floquet basis (left) and rotating basis (right). In each case, a collection of 5000
detunings ∆ were simulated, by sampling each component from a Gaussian with mean
µ = 0 and standard deviation σ = Ω0/80. For each point in time, the interquartile range
of the population distributions was computed, and plotted as the colored bands. These
show the spread of populations for detunings in this range. Other loop parameters are
Ω0/ω = 1, and Ω = ω/10.

Logan W. Cooke 108 Chapter 5



Section 5.4 Artificial Gauge Fields in Ultracold Atomic Ensembles

invariant manifestation of the non-Abelian connection. The trace-commutator ought

to be measured in experiment, but here we will provide some theoretical predictions

for such measurements.

As stated in Sec. 4.1.4, the Wilson loop is not unconditionally path-dependent;

the paths chosen must be different, and consist of three distinct non-commutative

generators. We may demonstrate this in the particular case of F = 1/2, where the

holonomies take the form (after integration over the loop),

Γ̂A (ℓ) = exp
[︂
2iγ

(︂
q · F̂

)︂
/ℏ

]︂
,

= exp [iγ (q · σ̂)],
= cos γ1̂+ i sin γ (q · σ̂) , (5.55)

where q is a unit vector, and γ is the amplitude of the acquired phase. Furthermore,

we have expressed the operator in terms of Pauli matrices via F̂ i = ℏσ̂i/2 for i =

x, y, z. The last line of Eq. 5.55 is true only of spin-1/2; for higher spins F > 1/2,

there are additional terms in the expansion with various powers of the spin matrices,

with 2F being the largest power (for the generators of SU(2), higher powers than

this recursively become lower ones, making this infinite series converge to a finite

set of terms) [223]. As such, the result shown here is for F = 1/2 only, but a more

general treatment may be found in Cooke et al. 2024 [2].

For holonomies of this form (Eq. 5.55), the trace-commutator is,

Wabc −Wbac = tr
{︂
Γ̂A (ℓc)

[︂
Γ̂A (ℓb) , Γ̂A (ℓa)

]︂}︂
, (5.56)

for three loops labeled ℓa, ℓb, and ℓc. The commutator inside the trace is,[︂
Γ̂A (ℓb) , Γ̂A (ℓa)

]︂
= −2i sin γa sin γb (qb × qa) · σ̂. (5.57)

The trace-commutator is therefore,

Wabc −Wbac = tr
{︁[︁

cos γc1̂+ i sin γc (qc · σ̂)
]︁
[−2i sin γa sin γb (qb × qa) · σ̂]

}︁
,

= tr {−2i sin γa sin γb cos γc (qb × qa) · σ̂
+2i sin γa sin γb sin γc (qc · σ̂) [(qb × qa) · σ̂]} . (5.58)

We may ignore terms that contain only a single Pauli matrix, since they are traceless.

This leaves only the terms ∝ 1̂, yielding,

Wabc −Wbac = 4 sin γa sin γb sin γc [qc · (qb × qa)] . (5.59)
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We can see from the form of the trace-commutator above, for it to not vanish the

loops must generate transformations that satisfy qc · (qb × qa) ̸= 0. Based on the

holonomy Eq. 5.55 this requires each loop to generate transformations with the

resulting vectors q linearly independent. The loops ℓ1, ℓ2, and ℓ3 (Tab. 5.1) meet

this criteria, and fortunately the holonomies are known, (App. E). For these loops,

we have that γ1 = γ2 = γ3 = πg, and q1 = −ey, q2 = ex, and q3 = −ez (using

the conventional notation in atomic physics for unit vectors once again). The trace

commutator becomes,

W123 −W213 = 4 sin3 (πg) ̸= 0, (5.60)

hence, the Wilson loop is path-dependent for holonomies of this form, enabled by a

Floquet-engineered degeneracy. This is a gauge-invariant manifestation of the non-

Abelian character of the connection. For the parameters used in the simulations in

Sec. 5.2, and experiments in Ch. 6, g ≈ 0.23, so W123 −W213 ≈ 1.22.

The loops 1-3 may therefore be used to verify the non-Abelian character of the

connection in experiment, although from the standpoint of quantum simulation in

which we take the motion in parameter space to be that of a particle in real space,

it would not be possible to take these loops subsequently, because they do not share

a common origin. After performing two of the loops, the position of the particle will

not be located anywhere on the third loop. Another way of saying this is, at no point

in parameter spaceM do loops 1-3 intersect simultaneously; we would therefore have

to move the particle some distance to then start the other loop, but such a move will

impart a transformation of its own. It is for this reason that the loop ℓ6 was studied

here, and in experiments (Ch. 6); this loop produces the necessary F̂ z phase, so that

together with ℓ1 and ℓ2 it produces a non-vanishing trace-commutator, and unlike

ℓ3 shares a common origin with the other loops. Unfortunately, the connection

does not commute with itself along the path, so only a numerical value for the

trace-commutator may be found. For the relevant parameters, as above, we find

that W126 − W216 ≈ 0.47, for F = 1/2. Both sets of loops, either with ℓ3 or ℓ6,

may be used to demonstrate the non-Abelian character of the connection, but from

a quantum simulation standpoint, ℓ6 (or some other loop like it) is perhaps more

physical.

5.4.1 Detuning

The results discussed above rely on the assumption that there is no detuning

present in the holonomies, i.e. that the phase is purely geometric. In Sec. 4.1.4, it

was pointed out that any dynamical contribution to the phase may also produce
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a non-vanishing trace-commutator. The Wilson loop captures the nature of the

transformation, but gives no indication as to the source of the phase being geometric

or dynamical in nature. Therefore, to make any certain claims on the property of

the geometric phase specifically, the dynamical components must either be strictly

known, or entirely suppressed. In either case, if one wishes to measure the trace-

commutator under the influence of detuning, its sensitivity to detuning must be

analyzed.

Here, we provide some numerical simulations looking at the impact of each de-

tuning component individually, for several relevant spins; the results are shown in

Fig. 5.7. In all cases, the trace-commutator varies significantly over relatively small

ranges of detuning. There are also regions in which the trace-commutator vanishes,

meaning the transformations for these detunings are effectively Abelian. These sim-

ulations demonstrate the sensitivity of this quantity to detuning.

With dynamical phase, such as detuning here, the degree to which the Wilson

loop is useful in discerning Abelian from non-Abelian gauge fields is diminished. The

Wilson loop is the gauge-invariant sum of the eigenvalues of a transformation; it does

not indicate whether such transformation was geometric or dynamical in origin. This

issue is not specific to the Floquet-engineered holonomies considered here, but rather

any situation in which there is a dynamical phase. Even so, the simulations shown

here demonstrate yet another complication in applyingWilson loops for this purpose:

their path-dependence is sensitive to detuning. Any attempted experiments must

take both of these points into consideration.

5.5 Summary

In this chapter, we have investigated the use of Floquet-engineering as a means

to produce adiabatically degenerate states from otherwise explicitly nondegenerate

systems; the resulting manifold exhibits non-Abelian geometric phases. This is

accomplished by the periodic driving of a parameterized Hamiltonian [217, 218]. In

this case, we looked specifically at driving the Hamiltonian for a spin in an external

magnetic field. The results were a set of holonomies that span SU(2). We then

demonstrated the evolution of the system under such driving in both the rotating

and Floquet bases, through some numerical simulations. Overall, such a technique

may be applied to any such Hamiltonian, producing similar results.

Later, we introduced an undriven term to the Hamiltonian, to study its impact on

the geometric phase. We found that such terms result in a dynamical contribution to

the phase that breaks the adiabatic degeneracy, and couples states in the manifold.

This fundamentally changes the nature of the connection from that of Wilczek-
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Figure 5.7: Numerical simulations in the Floquet basis of the trace-commutator, for loops

1-3 with detuned holonomies Γ̂
∆
A (ℓ). Each detuning component is simulated individually,

with (a) ∆x, (b) ∆y, and (c) ∆z. For each, Ω0/ω = 1. In each case, results are shown
for F = 1/2, 1, 2, demonstrating the dependence on the particular spin-manifold. In all
cases, results show large amplitude oscillations over relatively small ranges of detuning,
and exhibit regions where the trace-commutator becomes arbitrarily small, within which
the transformations become effectively Abelian.
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Zee [65] to Anandan [66]. The impact of this detuning was investigated numerically.

Last, we described a means through which the non-Abelian character of the

connection may be experimentally verified, through the use of Wilson loops. Three

holonomies applied consecutively, in two non-cyclic permutations, may be used for

this purpose. For the holonomies produced here, we computed the general form of

the trace-commutator. Results indicate that for there to be a signature of a non-

Abelian connection, the three chosen loops must produce linearly independent sets

of spin matrices for the phases. The loops 1-3 in Tab. 5.1 meet this criterion. Next,

we demonstrated through numerical simulations that such a signature of the non-

Abelian connection is sensitive to detuning. Altogether, this chapter has covered

a powerful technique for generating non-Abelian geometric phases, and hopefully

provided some insight into such phases in practical settings.

Chapter 5 113 Logan W. Cooke



CHAPTER 6

Periodically Driven Ultracold

Ensembles

T
hough it may seem that all of the “engineering” required to realize non-Abelian

geometric phases, through the Floquet driving technique presented in Ch. 5,

is done, for a practical realization there are still many missing ingredients. In this

chapter we present the results of our experimental investigation of this technique [2],

which is based on the previous proposal of Chen et al. 2020 [219], with several

major modifications. In attempting to implement the initial proposal based on an

optical Raman Λ-scheme [219], we encountered several unavoidable issues, which are

discussed in App. D. Due to the similarities of laser- and RF-dressing, we were able

to adapt the technique to instead use modulated RF coupling. This modulation

scheme was then implemented in both ground state hyperfine manifolds of ultracold
87Rb.

We begin in Sec. 6.1 by detailing the experimental procedure, following the

production of the ultracold ensemble (see Ch. 2). We discuss the use of chirped

microwave pulses to prepare states in the F = 1 manifold. The pulse sequences used

to prepare each state are set up so that they can be iterated through in a randomized

order, by synchronizing the primary control software (responsible for producing the

ultracold ensembles) with the source of our microwave and RF-pulses (responsible

for applying the control fields that effect holonomic transformations). We then finish

this section by discussing the measurement procedures, to elucidate various pieces of

information from the holonomic transformations that are the subject of study here.

Next, in Sec. 6.2 we discuss the details of how the holonomies themselves were

engineered, through modulated RF-dressing. We begin with a Hamiltonian in the

lab frame, with spins driven by modulated RF fields, and transform into the rotating

frame. The necessary modulations to realize the periodically-driven parameterized-

Hamiltonian in this basis are derived, demonstrating how such a coupling scheme
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may be used to produce the necessary driven system. We then discuss some of the

practical considerations to be made when selecting the various parameters, and how

the corresponding RF waveforms may be produced programmatically by an arbitrary

waveform generator (AWG). We finish this section by considering detuning, and how

it may manifest itself in this coupling scheme; some techniques for calibrating the

holonomies against this are described.

Our experimental results for the Floquet-engineered holonomies are then pre-

sented in Sec. 6.3, with measurements compared to the numerical simulations de-

scribed in Sec. 5.2 and Sec. 5.3.3. The time-evolution throughout loops are verified

in both F = 1 and F = 2 spin manifolds, in addition to phase imparted on the states.

These results demonstrate the path-dependence of these transformations, indicating

the geometric, rather than dynamical nature. In each case, residual detuning pro-

duces significant error, following the theory described in Sec. 5.3. We then present

results for measurements of the holonomies themselves, which are characterized by

the fidelity, that is, the operator inner product between measured and expected

holonomies. Results are once again tarnished by detuning, but by accounting for

it in the numerics we show, through the fidelity, that detuning is by and large the

most significant source of error. The levels of detuning observed are too substantial

to characterize the holonomies further, such as through the Wilson loop (Sec. 4.1.4).

Finally, in Sec. 6.4 we discuss the results of our experiments. We start by address-

ing the impact of detuning, and how it may be suppressed in future implementations.

We then discuss various other sources of error, including the quadratic Zeeman ef-

fect (App. A), and errors in imaging the ensembles. The experiment is then viewed

through the lens of quantum simulation of artificial gauge fields, where we briefly

propose some extensions of the technique to fields of other symmetries. Despite

our inability to characterize the gauge fields produced here (the connection) in full,

our results pave the way for this technique to be used in other systems, and our

experiences may be invaluable in such efforts. We finish this section by framing the

experiment in the context of HQC, where the holonomies implemented here may be

considered as single-qubit gate operations. Extensions of this protocol to universal

QC are discussed, before concluding in Sec. 6.5.

6.1 Experimental Procedure

Here we discuss the practical implementation of non-Abelian geometric phases

in the ground state hyperfine manifolds of an ultracold ensemble of 87Rb, enabled by

the Floquet engineering scheme detailed in Ch. 5. The entire experimental sequence

following the ODT evaporation that produces the ultracold ensemble may be broken
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Time

Figure 6.1: Experimental pulse sequence, showing the various stages of the procedure
with their respective durations, and externally applied fields; time axis is not to scale.
After preparing the BEC, the bias field B0 is turned on during a trigger halt step, in
which the system awaits a trigger from the 60 Hz “wall” before proceeding. The bias field
remains on to maintain the splitting between mF levels until measurement. Afterwards,
state preparation using microwave fields Ωµw is performed. Next, the holonomy Γ̂A (ℓ) is
applied via a modulated RF-field, ΩRF; the duration of these pulses changed over time
due to alterations with the hardware, but always remained less than 1 ms. Last, atoms
are released from the ODT in TOF in a magnetic field gradient ∇B, for spin-dependent
projective measurements; this step may be preceded by an RF-field ΩRF to change the
readout basis.

down into several steps (see Fig. 6.1): state preparation, holonomic evolution, and

measurement. The details of engineering the holonomies and implementing them

are described in a later section, Sec. 6.2. Here, we describe the state preparation

and measurement procedure in detail.

6.1.1 State Preparation

We begin by preparing the ensemble according to the techniques detailed in

Ch. 2, Sec. 2.1. Following these procedures, we obtain an ultracold ensemble of
87Rb with about 105 atoms, purely in the |F = 2,mF = +2⟩ ground state hyperfine

level, held in the ODT.

Immediately following evaporation in the ODT, we apply a background bias field

that splits the mF levels in both F manifolds by 1.25 MHz, along what we define

as the y-axis (Fig. 2.1). This bias field will remain present for the entire duration

of the experiment, playing a role in each of the steps that come after. All of the

steps in the experimental sequence that follow are sensitive to background magnetic

fields, which shift the various resonances they rely on. One of the biggest sources

of such fields are from the 60 Hz “wall” lines, the circuits that power almost every

device in the lab. Since there is no magnetic shielding or feedback installed on our

apparatus, this noise must be accounted for by triggering the entire sequence on

the 60 Hz line. Therefore, while the 1.25 MHz bias field is turned on, we await a

trigger from the 60 Hz line; this step thus has a variable duration, between 1-18

ms, which we refer to as the trigger halt step. After receiving the trigger signal, the

control program continues the sequence. This protocol does not ensure that the field
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from the various wall circuits are negligible over the course of the experiment, only

that it is consistent. We may then calibrate all of our resonances, accounting for this

background source in a consistent manner since we are in phase with it. Furthermore,

any individual step should not exceed a few milliseconds, as resonances will drift

notably over this period.

Following the 60 Hz trigger step, we may wish to prepare atoms in either the F =

1 or F = 2 hyperfine manifold. This may be accomplished by utilizing a magnetic-

dipole transition between them. The splitting between manifolds is about 6.8 GHz,

in the microwave regime. Depending on the polarization of the microwave field,

atoms may be distributed among the variousmF levels; however, the linewidth of the

transition is narrow, and so with even meager Zeeman splitting from a background

bias field (about 1 MHz), the individual |F,mF ⟩ → |F ′,m′
F ⟩ transitions may be

distinguished through the frequency of the microwave field [27]. In this way, with

an unpolarized microwave source, we may transfer atoms back and forth through the

various magnetic sublevels by a series of pulses that differ in frequency by integer

multiples of the Zeeman splitting. This permits us to prepare atoms in any of the

available |F,mF ⟩ states. As such, the state preparation is varied according to the

specific experiment we employ, namely, depending on which particular |F,mF ⟩ state
we wish to apply the Floquet-engineered holonomies to. Regardless of this choice,

the duration of the step is always the same, to keep the resonance calibrations

during the holonomic evolution step consistent; all that changes are the particular

microwave fields applied.

For the microwave source we employ a truncated wave-guide1, which points in at

an angle from the top of the cell, along the xz-plane. With respect to our bias field

along the y-axis, the microwave field is comprised of a mixture of all polarization

components, and may therefore be used to effect transitions from the initialmF state

to m′
F = mF , mF ± 1. As described above, we change the frequency of the applied

pulse to address a particular target transition; the atoms are therefore only resonant

with a particular polarization component of the field at any given time, according to

the carrier frequency. To drive these transitions, we use a microwave source which

is tuned 100 MHz below resonance with the clock transition, |F = 1,mF = 0⟩ →
|F ′ = 2,m′

F = 0⟩. This signal is mixed with the output of an AWG, with a carrier

frequency set around 100 MHz. The combination is then amplified, passed through

a stub tuner, and transmitted through the waveguide towards the atoms. Altering

the carrier of the AWG allows us to tune frequency as needed.

With the microwave source in place, we determined a series of pulses that pre-

pares atoms in any of the magnetic sublevels of the F = 1 hyperfine manifold, with

1A microwave waveguide that has been cut in half, allowing the directed waves to exit the guide
in a fairly directional manner.
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near perfect purity. In principle, a similar technique could be used to do the same for

F = 2, but a full characterization of this manifold was deemed unnecessary2. This

procedure consists of a series of microwave pulses, in concert with resonant laser

pulses that remove atoms remaining in a given hyperfine level after an attempted

transfer. The full sequence is broken down in Fig. 6.2, as it differs for each state

in the F = 1 manifold we wish to prepare. The microwave transfer technique used

in each pulse is adiabatic rapid passage, where the frequency of the AWG is swept

through resonance over 1 ms effecting near complete transfer from one state to the

other; this technique is generally more robust to shifts in resonance than a typical

resonant π-pulse. The intermediate laser pulses are essential to ensure the purity

of prepared states, at the cost of a slightly reduced atom number. The procedure

is the same for preparing both mF = ±1 states, up until the very end where a

resonant RF π-pulse is used to transfer atoms from |mF = +1⟩ to |mF = −1⟩; for
this, and all other RF control described in this chapter, we use the RF-coils aligned

along the x-axis (Fig. 2.1). The long duration of these steps may be attributed to

opening and closing the laser shutters, which mechanically block the beams when

not being used; even small amounts of leaked light are enough to completely destroy

the atomic ensemble.

This state preparation sequence allows us to change between the various ini-

tial states, programmatically, via the waveforms sent to the microwave and RF

sources. This may be done in an automated, and even randomized fashion by pre-

programming the AWG. As such, a Python script is used to pre-generate all the

necessary waveforms for a desired sequence of measurements. These waveforms are

uploaded to the AWG, which then iterates through them with the experimental

cycle. An ultracold ensemble is produced, state prepared, holonomy applied, and

measurement performed, before switching to the next waveform uploaded, while the

next ensemble is produced. This greatly reduces the amount of time each set of

measurements takes, and allows us to perform scans over various parameters in a

truly randomized fashion, to avoid any systematic related to the ordering of mea-

surements. Crucially, the sequence always has the same duration, and the microwave

pulses are staged such that we do not need to alter when the resonant laser pulses

are applied; the software that controls the BEC apparatus may not be synchronized

with the AWG in the manner required for this3. In this way, atoms may be prepared

2Preparing each individual mF level is only necessary to reconstruct the holonomies in full
(Sec. 6.3.3), and is not required for a more proof-of-concept demonstration. Furthermore, as
discussed in Sec. 5.2, the results from one spin manifold are easily generalized to the others, due
to the SU(2) symmetry of the holonomies.

3The BEC control software allows one to set up a procedure broken down into steps. Each step
has a duration, and a set of digital triggers and analogue outputs sent to various devices. We are
able to perform automated scans of analogue outputs, even multiple channels at a time, but the
digital channels and basic structure of the procedure are fixed. In this case, we would be required
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<latexit sha1_base64="Jbkv5T5Iu6QIcphf1BZbpvxOOJs=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBS8GHbF1zHgxWMU84BkCbOT3mTI7OwyMyuEJX/gxYMiXv0jb/6Nk2QPmljQUFR1090VJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4O/GbT6g0j+WjGSXoR7QvecgZNVZ6OPO6pbJbcacgi8TLSRly1Lqlr04vZmmE0jBBtW57bmL8jCrDmcBxsZNqTCgb0j62LZU0Qu1n00vH5MQqPRLGypY0ZKr+nshopPUoCmxnRM1Az3sT8T+vnZrwxs+4TFKDks0WhakgJiaTt0mPK2RGjCyhTHF7K2EDqigzNpyiDcGbf3mRNM4r3lXl8v6iXD3O4yjAIRzBKXhwDVW4gxrUgUEIz/AKb87QeXHenY9Z65KTzxzAHzifP94cjNg=</latexit>�1

<latexit sha1_base64="bSozfJe432wrf0k5UMtkvkfGF5s=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBQEIeyKr2PAi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/naXlldW19cJGcXNre2e3tLff0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8HwduI3n1BpHstHM0rQj2hf8pAzaqz0cOZ1S2W34k5BFomXkzLkqHVLX51ezNIIpWGCat323MT4GVWGM4HjYifVmFA2pH1sWypphNrPppeOyYlVeiSMlS1pyFT9PZHRSOtRFNjOiJqBnvcm4n9eOzXhjZ9xmaQGJZstClNBTEwmb5MeV8iMGFlCmeL2VsIGVFFmbDhFG4I3//IiaZxXvKvK5f1FuXqcx1GAQziCU/DgGqpwBzWoA4MQnuEV3pyh8+K8Ox+z1iUnnzmAP3A+fwDbEozW</latexit>

+1

<latexit sha1_base64="nJ2JgZ0bzNxvBrmZhfHd6pHIECM=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBqMgCGE3+DoGvHiMYh6QhDA7mU2GzM4uM71CWPIHXjwo4tU/8ubfOEn2oIkFDUVVN91dfiyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0y6eGS6F4HQVK3oo1p6EvedMf3U795hPXRkTqEccx74Z0oEQgGEUrPZxXesWSW3ZnIMvEy0gJMtR6xa9OP2JJyBUySY1pe26M3ZRqFEzySaGTGB5TNqID3rZU0ZCbbjq7dEJOrdInQaRtKSQz9fdESkNjxqFvO0OKQ7PoTcX/vHaCwU03FSpOkCs2XxQkkmBEpm+TvtCcoRxbQpkW9lbChlRThjacgg3BW3x5mTQqZe+qfHl/UaqeZHHk4QiO4Qw8uIYq3EEN6sAggGd4hTdn5Lw4787HvDXnZDOH8AfO5w/clozX</latexit>

+2
<latexit sha1_base64="QuQVuEzKRwq2DLG6GvH8r0U/lvs=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBQ8hV3xdQx48ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5s0qfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrz1My6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibNi4p3XbmqX5arp3kcBTiGEzgHD26gCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDc1OMoA==</latexit>

0

<latexit sha1_base64="K6TM4jks2gx1a2pOOaAkx/Xg2bo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKr4sQEMRjRPOAZAmzk0kyZHZ2mekVwpJP8OJBEa9+kTf/xkmyB00saCiquunuCmIpDLrut5NbWl5ZXcuvFzY2t7Z3irt7dRMlmvEai2SkmwE1XArFayhQ8masOQ0DyRvB8GbiN564NiJSjziKuR/SvhI9wSha6eH22usUS27ZnYIsEi8jJchQ7RS/2t2IJSFXyCQ1puW5Mfop1SiY5ONCOzE8pmxI+7xlqaIhN346PXVMjq3SJb1I21JIpurviZSGxozCwHaGFAdm3puI/3mtBHtXfipUnCBXbLaol0iCEZn8TbpCc4ZyZAllWthbCRtQTRnadAo2BG/+5UVSPy17F+Xz+7NS5SiLIw8HcAgn4MElVOAOqlADBn14hld4c6Tz4rw7H7PWnJPN7MMfOJ8/hgWNOA==</latexit>

F = 1

<latexit sha1_base64="ExO7K4uzi51FxNVlZJk9Tcd1NqY=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBQ8hd3g6yIEBPEY0TwgWcLspJMMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glhwbVz321laXlldW89t5De3tnd2C3v7dR0limGNRSJSzYBqFFxizXAjsBkrpGEgsBEMbyZ+4wmV5pF8NKMY/ZD2Je9xRo2VHm6vy51C0S25U5BF4mWkCBmqncJXuxuxJERpmKBatzw3Nn5KleFM4DjfTjTGlA1pH1uWShqi9tPpqWNyYpUu6UXKljRkqv6eSGmo9SgMbGdIzUDPexPxP6+VmN6Vn3IZJwYlmy3qJYKYiEz+Jl2ukBkxsoQyxe2thA2ooszYdPI2BG/+5UVSL5e8i9L5/VmxcpzFkYNDOIJT8OASKnAHVagBgz48wyu8OcJ5cd6dj1nrkpPNHMAfOJ8/h4mNOQ==</latexit>

F = 2

<latexit sha1_base64="Jbkv5T5Iu6QIcphf1BZbpvxOOJs=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBS8GHbF1zHgxWMU84BkCbOT3mTI7OwyMyuEJX/gxYMiXv0jb/6Nk2QPmljQUFR1090VJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4O/GbT6g0j+WjGSXoR7QvecgZNVZ6OPO6pbJbcacgi8TLSRly1Lqlr04vZmmE0jBBtW57bmL8jCrDmcBxsZNqTCgb0j62LZU0Qu1n00vH5MQqPRLGypY0ZKr+nshopPUoCmxnRM1Az3sT8T+vnZrwxs+4TFKDks0WhakgJiaTt0mPK2RGjCyhTHF7K2EDqigzNpyiDcGbf3mRNM4r3lXl8v6iXD3O4yjAIRzBKXhwDVW4gxrUgUEIz/AKb87QeXHenY9Z65KTzxzAHzifP94cjNg=</latexit>�1

<latexit sha1_base64="bSozfJe432wrf0k5UMtkvkfGF5s=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBQEIeyKr2PAi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/naXlldW19cJGcXNre2e3tLff0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8HwduI3n1BpHstHM0rQj2hf8pAzaqz0cOZ1S2W34k5BFomXkzLkqHVLX51ezNIIpWGCat323MT4GVWGM4HjYifVmFA2pH1sWypphNrPppeOyYlVeiSMlS1pyFT9PZHRSOtRFNjOiJqBnvcm4n9eOzXhjZ9xmaQGJZstClNBTEwmb5MeV8iMGFlCmeL2VsIGVFFmbDhFG4I3//IiaZxXvKvK5f1FuXqcx1GAQziCU/DgGqpwBzWoA4MQnuEV3pyh8+K8Ox+z1iUnnzmAP3A+fwDbEozW</latexit>

+1

<latexit sha1_base64="QuQVuEzKRwq2DLG6GvH8r0U/lvs=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBQ8hV3xdQx48ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5s0qfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrz1My6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibNi4p3XbmqX5arp3kcBTiGEzgHD26gCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDc1OMoA==</latexit>

0

<latexit sha1_base64="o/CcrktL8K2RyzmXOy/7Qr5264s=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBqPgxbAbfB0DXjxGMQ9IQpidzCZDZmeXmV4hLPkDLx4U8eofefNvnCR70MSChqKqm+4uP5bCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa65VPDpVC8jgIlb8Wa09CXvOmPbqd+84lrIyL1iOOYd0M6UCIQjKKVHs4rvWLJLbszkGXiZaQEGWq94lenH7Ek5AqZpMa0PTfGbko1Cib5pNBJDI8pG9EBb1uqaMhNN51dOiGnVumTINK2FJKZ+nsipaEx49C3nSHFoVn0puJ/XjvB4KabChUnyBWbLwoSSTAi07dJX2jOUI4toUwLeythQ6opQxtOwYbgLb68TBqVsndVvry/KFVPsjjycATHcAYeXEMV7qAGdWAQwDO8wpszcl6cd+dj3ppzsplD+APn8wffoIzZ</latexit>�2

<latexit sha1_base64="Jbkv5T5Iu6QIcphf1BZbpvxOOJs=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBS8GHbF1zHgxWMU84BkCbOT3mTI7OwyMyuEJX/gxYMiXv0jb/6Nk2QPmljQUFR1090VJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4O/GbT6g0j+WjGSXoR7QvecgZNVZ6OPO6pbJbcacgi8TLSRly1Lqlr04vZmmE0jBBtW57bmL8jCrDmcBxsZNqTCgb0j62LZU0Qu1n00vH5MQqPRLGypY0ZKr+nshopPUoCmxnRM1Az3sT8T+vnZrwxs+4TFKDks0WhakgJiaTt0mPK2RGjCyhTHF7K2EDqigzNpyiDcGbf3mRNM4r3lXl8v6iXD3O4yjAIRzBKXhwDVW4gxrUgUEIz/AKb87QeXHenY9Z65KTzxzAHzifP94cjNg=</latexit>�1

<latexit sha1_base64="bSozfJe432wrf0k5UMtkvkfGF5s=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBQEIeyKr2PAi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/naXlldW19cJGcXNre2e3tLff0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8HwduI3n1BpHstHM0rQj2hf8pAzaqz0cOZ1S2W34k5BFomXkzLkqHVLX51ezNIIpWGCat323MT4GVWGM4HjYifVmFA2pH1sWypphNrPppeOyYlVeiSMlS1pyFT9PZHRSOtRFNjOiJqBnvcm4n9eOzXhjZ9xmaQGJZstClNBTEwmb5MeV8iMGFlCmeL2VsIGVFFmbDhFG4I3//IiaZxXvKvK5f1FuXqcx1GAQziCU/DgGqpwBzWoA4MQnuEV3pyh8+K8Ox+z1iUnnzmAP3A+fwDbEozW</latexit>

+1

<latexit sha1_base64="nJ2JgZ0bzNxvBrmZhfHd6pHIECM=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBqMgCGE3+DoGvHiMYh6QhDA7mU2GzM4uM71CWPIHXjwo4tU/8ubfOEn2oIkFDUVVN91dfiyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0y6eGS6F4HQVK3oo1p6EvedMf3U795hPXRkTqEccx74Z0oEQgGEUrPZxXesWSW3ZnIMvEy0gJMtR6xa9OP2JJyBUySY1pe26M3ZRqFEzySaGTGB5TNqID3rZU0ZCbbjq7dEJOrdInQaRtKSQz9fdESkNjxqFvO0OKQ7PoTcX/vHaCwU03FSpOkCs2XxQkkmBEpm+TvtCcoRxbQpkW9lbChlRThjacgg3BW3x5mTQqZe+qfHl/UaqeZHHk4QiO4Qw8uIYq3EEN6sAggGd4hTdn5Lw4787HvDXnZDOH8AfO5w/clozX</latexit>

+2
<latexit sha1_base64="QuQVuEzKRwq2DLG6GvH8r0U/lvs=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBQ8hV3xdQx48ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5s0qfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrz1My6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibNi4p3XbmqX5arp3kcBTiGEzgHD26gCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDc1OMoA==</latexit>

0

<latexit sha1_base64="K6TM4jks2gx1a2pOOaAkx/Xg2bo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKr4sQEMRjRPOAZAmzk0kyZHZ2mekVwpJP8OJBEa9+kTf/xkmyB00saCiquunuCmIpDLrut5NbWl5ZXcuvFzY2t7Z3irt7dRMlmvEai2SkmwE1XArFayhQ8masOQ0DyRvB8GbiN564NiJSjziKuR/SvhI9wSha6eH22usUS27ZnYIsEi8jJchQ7RS/2t2IJSFXyCQ1puW5Mfop1SiY5ONCOzE8pmxI+7xlqaIhN346PXVMjq3SJb1I21JIpurviZSGxozCwHaGFAdm3puI/3mtBHtXfipUnCBXbLaol0iCEZn8TbpCc4ZyZAllWthbCRtQTRnadAo2BG/+5UVSPy17F+Xz+7NS5SiLIw8HcAgn4MElVOAOqlADBn14hld4c6Tz4rw7H7PWnJPN7MMfOJ8/hgWNOA==</latexit>

F = 1

<latexit sha1_base64="ExO7K4uzi51FxNVlZJk9Tcd1NqY=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBQ8hd3g6yIEBPEY0TwgWcLspJMMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glhwbVz321laXlldW89t5De3tnd2C3v7dR0limGNRSJSzYBqFFxizXAjsBkrpGEgsBEMbyZ+4wmV5pF8NKMY/ZD2Je9xRo2VHm6vy51C0S25U5BF4mWkCBmqncJXuxuxJERpmKBatzw3Nn5KleFM4DjfTjTGlA1pH1uWShqi9tPpqWNyYpUu6UXKljRkqv6eSGmo9SgMbGdIzUDPexPxP6+VmN6Vn3IZJwYlmy3qJYKYiEz+Jl2ukBkxsoQyxe2thA2ooszYdPI2BG/+5UVSL5e8i9L5/VmxcpzFkYNDOIJT8OASKnAHVagBgz48wyu8OcJ5cd6dj1nrkpPNHMAfOJ8/h4mNOQ==</latexit>

F = 2

<latexit sha1_base64="Jbkv5T5Iu6QIcphf1BZbpvxOOJs=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBS8GHbF1zHgxWMU84BkCbOT3mTI7OwyMyuEJX/gxYMiXv0jb/6Nk2QPmljQUFR1090VJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4O/GbT6g0j+WjGSXoR7QvecgZNVZ6OPO6pbJbcacgi8TLSRly1Lqlr04vZmmE0jBBtW57bmL8jCrDmcBxsZNqTCgb0j62LZU0Qu1n00vH5MQqPRLGypY0ZKr+nshopPUoCmxnRM1Az3sT8T+vnZrwxs+4TFKDks0WhakgJiaTt0mPK2RGjCyhTHF7K2EDqigzNpyiDcGbf3mRNM4r3lXl8v6iXD3O4yjAIRzBKXhwDVW4gxrUgUEIz/AKb87QeXHenY9Z65KTzxzAHzifP94cjNg=</latexit>�1

<latexit sha1_base64="bSozfJe432wrf0k5UMtkvkfGF5s=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBQEIeyKr2PAi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/naXlldW19cJGcXNre2e3tLff0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8HwduI3n1BpHstHM0rQj2hf8pAzaqz0cOZ1S2W34k5BFomXkzLkqHVLX51ezNIIpWGCat323MT4GVWGM4HjYifVmFA2pH1sWypphNrPppeOyYlVeiSMlS1pyFT9PZHRSOtRFNjOiJqBnvcm4n9eOzXhjZ9xmaQGJZstClNBTEwmb5MeV8iMGFlCmeL2VsIGVFFmbDhFG4I3//IiaZxXvKvK5f1FuXqcx1GAQziCU/DgGqpwBzWoA4MQnuEV3pyh8+K8Ox+z1iUnnzmAP3A+fwDbEozW</latexit>

+1

<latexit sha1_base64="QuQVuEzKRwq2DLG6GvH8r0U/lvs=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBQ8hV3xdQx48ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5s0qfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrz1My6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibNi4p3XbmqX5arp3kcBTiGEzgHD26gCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDc1OMoA==</latexit>

0

<latexit sha1_base64="o/CcrktL8K2RyzmXOy/7Qr5264s=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBqPgxbAbfB0DXjxGMQ9IQpidzCZDZmeXmV4hLPkDLx4U8eofefNvnCR70MSChqKqm+4uP5bCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa65VPDpVC8jgIlb8Wa09CXvOmPbqd+84lrIyL1iOOYd0M6UCIQjKKVHs4rvWLJLbszkGXiZaQEGWq94lenH7Ek5AqZpMa0PTfGbko1Cib5pNBJDI8pG9EBb1uqaMhNN51dOiGnVumTINK2FJKZ+nsipaEx49C3nSHFoVn0puJ/XjvB4KabChUnyBWbLwoSSTAi07dJX2jOUI4toUwLeythQ6opQxtOwYbgLb68TBqVsndVvry/KFVPsjjycATHcAYeXEMV7qAGdWAQwDO8wpszcl6cd+dj3ppzsplD+APn8wffoIzZ</latexit>�2

<latexit sha1_base64="Jbkv5T5Iu6QIcphf1BZbpvxOOJs=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBS8GHbF1zHgxWMU84BkCbOT3mTI7OwyMyuEJX/gxYMiXv0jb/6Nk2QPmljQUFR1090VJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4O/GbT6g0j+WjGSXoR7QvecgZNVZ6OPO6pbJbcacgi8TLSRly1Lqlr04vZmmE0jBBtW57bmL8jCrDmcBxsZNqTCgb0j62LZU0Qu1n00vH5MQqPRLGypY0ZKr+nshopPUoCmxnRM1Az3sT8T+vnZrwxs+4TFKDks0WhakgJiaTt0mPK2RGjCyhTHF7K2EDqigzNpyiDcGbf3mRNM4r3lXl8v6iXD3O4yjAIRzBKXhwDVW4gxrUgUEIz/AKb87QeXHenY9Z65KTzxzAHzifP94cjNg=</latexit>�1

<latexit sha1_base64="bSozfJe432wrf0k5UMtkvkfGF5s=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBQEIeyKr2PAi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/naXlldW19cJGcXNre2e3tLff0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8HwduI3n1BpHstHM0rQj2hf8pAzaqz0cOZ1S2W34k5BFomXkzLkqHVLX51ezNIIpWGCat323MT4GVWGM4HjYifVmFA2pH1sWypphNrPppeOyYlVeiSMlS1pyFT9PZHRSOtRFNjOiJqBnvcm4n9eOzXhjZ9xmaQGJZstClNBTEwmb5MeV8iMGFlCmeL2VsIGVFFmbDhFG4I3//IiaZxXvKvK5f1FuXqcx1GAQziCU/DgGqpwBzWoA4MQnuEV3pyh8+K8Ox+z1iUnnzmAP3A+fwDbEozW</latexit>

+1

<latexit sha1_base64="nJ2JgZ0bzNxvBrmZhfHd6pHIECM=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBqMgCGE3+DoGvHiMYh6QhDA7mU2GzM4uM71CWPIHXjwo4tU/8ubfOEn2oIkFDUVVN91dfiyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0y6eGS6F4HQVK3oo1p6EvedMf3U795hPXRkTqEccx74Z0oEQgGEUrPZxXesWSW3ZnIMvEy0gJMtR6xa9OP2JJyBUySY1pe26M3ZRqFEzySaGTGB5TNqID3rZU0ZCbbjq7dEJOrdInQaRtKSQz9fdESkNjxqFvO0OKQ7PoTcX/vHaCwU03FSpOkCs2XxQkkmBEpm+TvtCcoRxbQpkW9lbChlRThjacgg3BW3x5mTQqZe+qfHl/UaqeZHHk4QiO4Qw8uIYq3EEN6sAggGd4hTdn5Lw4787HvDXnZDOH8AfO5w/clozX</latexit>

+2
<latexit sha1_base64="QuQVuEzKRwq2DLG6GvH8r0U/lvs=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBQ8hV3xdQx48ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5s0qfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrz1My6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibNi4p3XbmqX5arp3kcBTiGEzgHD26gCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDc1OMoA==</latexit>

0

<latexit sha1_base64="K6TM4jks2gx1a2pOOaAkx/Xg2bo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKr4sQEMRjRPOAZAmzk0kyZHZ2mekVwpJP8OJBEa9+kTf/xkmyB00saCiquunuCmIpDLrut5NbWl5ZXcuvFzY2t7Z3irt7dRMlmvEai2SkmwE1XArFayhQ8masOQ0DyRvB8GbiN564NiJSjziKuR/SvhI9wSha6eH22usUS27ZnYIsEi8jJchQ7RS/2t2IJSFXyCQ1puW5Mfop1SiY5ONCOzE8pmxI+7xlqaIhN346PXVMjq3SJb1I21JIpurviZSGxozCwHaGFAdm3puI/3mtBHtXfipUnCBXbLaol0iCEZn8TbpCc4ZyZAllWthbCRtQTRnadAo2BG/+5UVSPy17F+Xz+7NS5SiLIw8HcAgn4MElVOAOqlADBn14hld4c6Tz4rw7H7PWnJPN7MMfOJ8/hgWNOA==</latexit>

F = 1

<latexit sha1_base64="ExO7K4uzi51FxNVlZJk9Tcd1NqY=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBQ8hd3g6yIEBPEY0TwgWcLspJMMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glhwbVz321laXlldW89t5De3tnd2C3v7dR0limGNRSJSzYBqFFxizXAjsBkrpGEgsBEMbyZ+4wmV5pF8NKMY/ZD2Je9xRo2VHm6vy51C0S25U5BF4mWkCBmqncJXuxuxJERpmKBatzw3Nn5KleFM4DjfTjTGlA1pH1uWShqi9tPpqWNyYpUu6UXKljRkqv6eSGmo9SgMbGdIzUDPexPxP6+VmN6Vn3IZJwYlmy3qJYKYiEz+Jl2ukBkxsoQyxe2thA2ooszYdPI2BG/+5UVSL5e8i9L5/VmxcpzFkYNDOIJT8OASKnAHVagBgz48wyu8OcJ5cd6dj1nrkpPNHMAfOJ8/h4mNOQ==</latexit>

F = 2

<latexit sha1_base64="Jbkv5T5Iu6QIcphf1BZbpvxOOJs=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBS8GHbF1zHgxWMU84BkCbOT3mTI7OwyMyuEJX/gxYMiXv0jb/6Nk2QPmljQUFR1090VJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4O/GbT6g0j+WjGSXoR7QvecgZNVZ6OPO6pbJbcacgi8TLSRly1Lqlr04vZmmE0jBBtW57bmL8jCrDmcBxsZNqTCgb0j62LZU0Qu1n00vH5MQqPRLGypY0ZKr+nshopPUoCmxnRM1Az3sT8T+vnZrwxs+4TFKDks0WhakgJiaTt0mPK2RGjCyhTHF7K2EDqigzNpyiDcGbf3mRNM4r3lXl8v6iXD3O4yjAIRzBKXhwDVW4gxrUgUEIz/AKb87QeXHenY9Z65KTzxzAHzifP94cjNg=</latexit>�1

<latexit sha1_base64="bSozfJe432wrf0k5UMtkvkfGF5s=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBQEIeyKr2PAi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/naXlldW19cJGcXNre2e3tLff0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8HwduI3n1BpHstHM0rQj2hf8pAzaqz0cOZ1S2W34k5BFomXkzLkqHVLX51ezNIIpWGCat323MT4GVWGM4HjYifVmFA2pH1sWypphNrPppeOyYlVeiSMlS1pyFT9PZHRSOtRFNjOiJqBnvcm4n9eOzXhjZ9xmaQGJZstClNBTEwmb5MeV8iMGFlCmeL2VsIGVFFmbDhFG4I3//IiaZxXvKvK5f1FuXqcx1GAQziCU/DgGqpwBzWoA4MQnuEV3pyh8+K8Ox+z1iUnnzmAP3A+fwDbEozW</latexit>

+1

<latexit sha1_base64="QuQVuEzKRwq2DLG6GvH8r0U/lvs=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBQ8hV3xdQx48ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5s0qfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrz1My6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibNi4p3XbmqX5arp3kcBTiGEzgHD26gCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDc1OMoA==</latexit>

0

<latexit sha1_base64="o/CcrktL8K2RyzmXOy/7Qr5264s=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBqPgxbAbfB0DXjxGMQ9IQpidzCZDZmeXmV4hLPkDLx4U8eofefNvnCR70MSChqKqm+4uP5bCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa65VPDpVC8jgIlb8Wa09CXvOmPbqd+84lrIyL1iOOYd0M6UCIQjKKVHs4rvWLJLbszkGXiZaQEGWq94lenH7Ek5AqZpMa0PTfGbko1Cib5pNBJDI8pG9EBb1uqaMhNN51dOiGnVumTINK2FJKZ+nsipaEx49C3nSHFoVn0puJ/XjvB4KabChUnyBWbLwoSSTAi07dJX2jOUI4toUwLeythQ6opQxtOwYbgLb68TBqVsndVvry/KFVPsjjycATHcAYeXEMV7qAGdWAQwDO8wpszcl6cd+dj3ppzsplD+APn8wffoIzZ</latexit>�2

<latexit sha1_base64="Jbkv5T5Iu6QIcphf1BZbpvxOOJs=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBS8GHbF1zHgxWMU84BkCbOT3mTI7OwyMyuEJX/gxYMiXv0jb/6Nk2QPmljQUFR1090VJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4O/GbT6g0j+WjGSXoR7QvecgZNVZ6OPO6pbJbcacgi8TLSRly1Lqlr04vZmmE0jBBtW57bmL8jCrDmcBxsZNqTCgb0j62LZU0Qu1n00vH5MQqPRLGypY0ZKr+nshopPUoCmxnRM1Az3sT8T+vnZrwxs+4TFKDks0WhakgJiaTt0mPK2RGjCyhTHF7K2EDqigzNpyiDcGbf3mRNM4r3lXl8v6iXD3O4yjAIRzBKXhwDVW4gxrUgUEIz/AKb87QeXHenY9Z65KTzxzAHzifP94cjNg=</latexit>�1

<latexit sha1_base64="bSozfJe432wrf0k5UMtkvkfGF5s=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBQEIeyKr2PAi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/naXlldW19cJGcXNre2e3tLff0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8HwduI3n1BpHstHM0rQj2hf8pAzaqz0cOZ1S2W34k5BFomXkzLkqHVLX51ezNIIpWGCat323MT4GVWGM4HjYifVmFA2pH1sWypphNrPppeOyYlVeiSMlS1pyFT9PZHRSOtRFNjOiJqBnvcm4n9eOzXhjZ9xmaQGJZstClNBTEwmb5MeV8iMGFlCmeL2VsIGVFFmbDhFG4I3//IiaZxXvKvK5f1FuXqcx1GAQziCU/DgGqpwBzWoA4MQnuEV3pyh8+K8Ox+z1iUnnzmAP3A+fwDbEozW</latexit>

+1

<latexit sha1_base64="nJ2JgZ0bzNxvBrmZhfHd6pHIECM=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBqMgCGE3+DoGvHiMYh6QhDA7mU2GzM4uM71CWPIHXjwo4tU/8ubfOEn2oIkFDUVVN91dfiyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0y6eGS6F4HQVK3oo1p6EvedMf3U795hPXRkTqEccx74Z0oEQgGEUrPZxXesWSW3ZnIMvEy0gJMtR6xa9OP2JJyBUySY1pe26M3ZRqFEzySaGTGB5TNqID3rZU0ZCbbjq7dEJOrdInQaRtKSQz9fdESkNjxqFvO0OKQ7PoTcX/vHaCwU03FSpOkCs2XxQkkmBEpm+TvtCcoRxbQpkW9lbChlRThjacgg3BW3x5mTQqZe+qfHl/UaqeZHHk4QiO4Qw8uIYq3EEN6sAggGd4hTdn5Lw4787HvDXnZDOH8AfO5w/clozX</latexit>

+2
<latexit sha1_base64="QuQVuEzKRwq2DLG6GvH8r0U/lvs=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBQ8hV3xdQx48ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5s0qfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrz1My6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibNi4p3XbmqX5arp3kcBTiGEzgHD26gCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDc1OMoA==</latexit>

0

<latexit sha1_base64="K6TM4jks2gx1a2pOOaAkx/Xg2bo=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBqPgKeyKr4sQEMRjRPOAZAmzk0kyZHZ2mekVwpJP8OJBEa9+kTf/xkmyB00saCiquunuCmIpDLrut5NbWl5ZXcuvFzY2t7Z3irt7dRMlmvEai2SkmwE1XArFayhQ8masOQ0DyRvB8GbiN564NiJSjziKuR/SvhI9wSha6eH22usUS27ZnYIsEi8jJchQ7RS/2t2IJSFXyCQ1puW5Mfop1SiY5ONCOzE8pmxI+7xlqaIhN346PXVMjq3SJb1I21JIpurviZSGxozCwHaGFAdm3puI/3mtBHtXfipUnCBXbLaol0iCEZn8TbpCc4ZyZAllWthbCRtQTRnadAo2BG/+5UVSPy17F+Xz+7NS5SiLIw8HcAgn4MElVOAOqlADBn14hld4c6Tz4rw7H7PWnJPN7MMfOJ8/hgWNOA==</latexit>

F = 1

<latexit sha1_base64="ExO7K4uzi51FxNVlZJk9Tcd1NqY=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBQ8hd3g6yIEBPEY0TwgWcLspJMMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glhwbVz321laXlldW89t5De3tnd2C3v7dR0limGNRSJSzYBqFFxizXAjsBkrpGEgsBEMbyZ+4wmV5pF8NKMY/ZD2Je9xRo2VHm6vy51C0S25U5BF4mWkCBmqncJXuxuxJERpmKBatzw3Nn5KleFM4DjfTjTGlA1pH1uWShqi9tPpqWNyYpUu6UXKljRkqv6eSGmo9SgMbGdIzUDPexPxP6+VmN6Vn3IZJwYlmy3qJYKYiEz+Jl2ukBkxsoQyxe2thA2ooszYdPI2BG/+5UVSL5e8i9L5/VmxcpzFkYNDOIJT8OASKnAHVagBgz48wyu8OcJ5cd6dj1nrkpPNHMAfOJ8/h4mNOQ==</latexit>

F = 2

<latexit sha1_base64="Jbkv5T5Iu6QIcphf1BZbpvxOOJs=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBS8GHbF1zHgxWMU84BkCbOT3mTI7OwyMyuEJX/gxYMiXv0jb/6Nk2QPmljQUFR1090VJIJr47rfztLyyuraemGjuLm1vbNb2ttv6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4O/GbT6g0j+WjGSXoR7QvecgZNVZ6OPO6pbJbcacgi8TLSRly1Lqlr04vZmmE0jBBtW57bmL8jCrDmcBxsZNqTCgb0j62LZU0Qu1n00vH5MQqPRLGypY0ZKr+nshopPUoCmxnRM1Az3sT8T+vnZrwxs+4TFKDks0WhakgJiaTt0mPK2RGjCyhTHF7K2EDqigzNpyiDcGbf3mRNM4r3lXl8v6iXD3O4yjAIRzBKXhwDVW4gxrUgUEIz/AKb87QeXHenY9Z65KTzxzAHzifP94cjNg=</latexit>�1

<latexit sha1_base64="bSozfJe432wrf0k5UMtkvkfGF5s=">AAAB6XicbVDLSgNBEOz1GeMr6tHLYBQEIeyKr2PAi8co5gHJEmYnvcmQ2dllZlYIS/7AiwdFvPpH3vwbJ8keNLGgoajqprsrSATXxnW/naXlldW19cJGcXNre2e3tLff0HGqGNZZLGLVCqhGwSXWDTcCW4lCGgUCm8HwduI3n1BpHstHM0rQj2hf8pAzaqz0cOZ1S2W34k5BFomXkzLkqHVLX51ezNIIpWGCat323MT4GVWGM4HjYifVmFA2pH1sWypphNrPppeOyYlVeiSMlS1pyFT9PZHRSOtRFNjOiJqBnvcm4n9eOzXhjZ9xmaQGJZstClNBTEwmb5MeV8iMGFlCmeL2VsIGVFFmbDhFG4I3//IiaZxXvKvK5f1FuXqcx1GAQziCU/DgGqpwBzWoA4MQnuEV3pyh8+K8Ox+z1iUnnzmAP3A+fwDbEozW</latexit>

+1

<latexit sha1_base64="QuQVuEzKRwq2DLG6GvH8r0U/lvs=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBQ8hV3xdQx48ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivV3V6p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5s0qfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrz1My6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibNi4p3XbmqX5arp3kcBTiGEzgHD26gCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDc1OMoA==</latexit>

0

<latexit sha1_base64="pk153Uund8GVN5dcHNKLYaE9frI=">AAACAHicbVC7TsMwFHV4lvIKMDCwWBQkpipBvMZKLGwUiT6kJooc12mt2k5kO6AqysKvsDCAECufwcbf4LQZoOVIlo/OuVf33hMmjCrtON/WwuLS8spqZa26vrG5tW3v7LZVnEpMWjhmseyGSBFGBWlpqhnpJpIgHjLSCUfXhd95IFLRWNzrcUJ8jgaCRhQjbaTA3vduORmgIPM40kPJzZ/CxzwP7JpTdyaA88QtSQ2UaAb2l9ePccqJ0JghpXquk2g/Q1JTzEhe9VJFEoRHaEB6hgrEifKzyQE5PDZKH0axNE9oOFF/d2SIKzXmoaks1lSzXiH+5/VSHV35GRVJqonA00FRyqCOYZEG7FNJsGZjQxCW1OwK8RBJhLXJrGpCcGdPnift07p7UT+/O6s1jso4KuAAHIIT4IJL0AA3oAlaAIMcPINX8GY9WS/Wu/UxLV2wyp498AfW5w9P/pbL</latexit>

⌦µw<latexit sha1_base64="pk153Uund8GVN5dcHNKLYaE9frI=">AAACAHicbVC7TsMwFHV4lvIKMDCwWBQkpipBvMZKLGwUiT6kJooc12mt2k5kO6AqysKvsDCAECufwcbf4LQZoOVIlo/OuVf33hMmjCrtON/WwuLS8spqZa26vrG5tW3v7LZVnEpMWjhmseyGSBFGBWlpqhnpJpIgHjLSCUfXhd95IFLRWNzrcUJ8jgaCRhQjbaTA3vduORmgIPM40kPJzZ/CxzwP7JpTdyaA88QtSQ2UaAb2l9ePccqJ0JghpXquk2g/Q1JTzEhe9VJFEoRHaEB6hgrEifKzyQE5PDZKH0axNE9oOFF/d2SIKzXmoaks1lSzXiH+5/VSHV35GRVJqonA00FRyqCOYZEG7FNJsGZjQxCW1OwK8RBJhLXJrGpCcGdPnift07p7UT+/O6s1jso4KuAAHIIT4IJL0AA3oAlaAIMcPINX8GY9WS/Wu/UxLV2wyp498AfW5w9P/pbL</latexit>

⌦µw

<latexit sha1_base64="pk153Uund8GVN5dcHNKLYaE9frI=">AAACAHicbVC7TsMwFHV4lvIKMDCwWBQkpipBvMZKLGwUiT6kJooc12mt2k5kO6AqysKvsDCAECufwcbf4LQZoOVIlo/OuVf33hMmjCrtON/WwuLS8spqZa26vrG5tW3v7LZVnEpMWjhmseyGSBFGBWlpqhnpJpIgHjLSCUfXhd95IFLRWNzrcUJ8jgaCRhQjbaTA3vduORmgIPM40kPJzZ/CxzwP7JpTdyaA88QtSQ2UaAb2l9ePccqJ0JghpXquk2g/Q1JTzEhe9VJFEoRHaEB6hgrEifKzyQE5PDZKH0axNE9oOFF/d2SIKzXmoaks1lSzXiH+5/VSHV35GRVJqonA00FRyqCOYZEG7FNJsGZjQxCW1OwK8RBJhLXJrGpCcGdPnift07p7UT+/O6s1jso4KuAAHIIT4IJL0AA3oAlaAIMcPINX8GY9WS/Wu/UxLV2wyp498AfW5w9P/pbL</latexit>

⌦µw
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Step 2

Figure 6.2: Diagram of pulse sequences for preparing atoms in any state in the F = 1
hyperfine manifold, starting from |F = 2,mF = +2⟩. States in both manifolds are labeled
by their mF values. Separation between manifolds is about 6.8 GHz. A bias field splits
mF levels by ωZ = 1.25 MHz, permitting specific transitions to be targeted. The atomic
population is denoted by the shaded circle. Microwave pulses, Ωµw, utilize adiabatic rapid
passage to transfer population between target states, with 1 ms pulse duration. Resonant
intermediate laser pulses, denoted by the shaded boxes, remove atoms remaining in the
indicated manifold; these pulses take 4 ms, due to the laser shutters taking 3 ms to close.
The pulse sequences for each state must have the same duration, and laser pulses must
occur at the same times, due to constraints in hardware control. (a) Procedure for the
|F = 1,mF = 0⟩ state. (Top) two microwave pulses in series are used to transfer atoms
to |F = 2,mF = 0⟩, through the |F = 1,mF = +1⟩ level. Immediately after, a laser pulse
removes atoms remaining in the F = 1 manifold. (Bottom) atoms are then transferred to
the target state by another microwave pulse, and all remaining atoms in the F = 2 manifold
are removed by a laser pulse. (b) Pulse sequences for both |F = 1,mF = ±1⟩ states, which
only differ in the final step. (Top) atoms left in the initial state, until after the first resonant
laser pulse. (Bottom) next, they are transferred to |F = 1,mF = +1⟩ by a microwave
pulse, and remaining atoms in F = 2 are removed by the second laser pulse. Atoms may
either remain here if it is the target state, or are transferred to |F = 1,mF = −1⟩ by a
resonant RF π-pulse, with a duration of about 10 µs.
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in any of the magnetic sublevels in F = 1, or the |F = 2,mF = 2⟩ state specifically;
the flexibility in the former will be used to measure the holonomies directly, while

the latter is still useful in demonstrating the generalization of results to higher spin

manifolds.

6.1.2 Measurement Procedure

After initializing some state and applying an RF control pulse to transform it (be

it a holonomy, or some other calibration pulse), measurements must be performed,

from which we may verify the nature of such transformations. We employed several

measurement sequences, all of which relied on the SG-TOF technique described in

Sec. 2.3.

Following the control pulse that produces a transformation of interest, the ODT

holding the ensemble in place is turned off, allowing the ensemble to expand and

fall due to gravity. In this time, a magnetic field gradient is applied, separating the

atoms by their spin components. After about 20 ms, the various spin components

have separated enough to be distinguished from each other in an absorption image

(see Fig. 2.5). The number of atoms in each component is extracted through a

Gaussian fit, so the relative populations can be determined. This is a projective

measurement in the F̂ z basis, where the advantage of working with an ensemble is

made apparent in that we measure a statistically significant sample size in a single-

shot. Furthermore, by applying an additional readout RF pulse prior to turning off

the ODT, immediately after the transformation of interest, we are able to change

the measurement basis in which the projections are made (Sec. 2.3).

To characterize the transformations fully, we require a series of measurements,

but this measurement technique is destructive; after each projection, the entire

experiment sequence must be repeated, including the production of a new ultracold

ensemble, which altogether takes about 25 s. Measuring the time-dependence of

transformations may be accomplished by interrupting the transformation of interest

at various times, making a measurement without a readout pulse (looking in the F̂ z

basis). This allows us to ascertain how the spin populations vary over time for a given

transformation. In order to infer the phase of a state following the transformation,

we apply readout pulses with varied phase and pulse area, to project the state in

different bases. Putting these results together allows us to fully characterize the

transformed wavefunction, through state tomography (App. C).

to change digital channels with the scan, and synchronize such changes with the fields produced
by the AWG, which is not possible with the current software.
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6.2 Engineering the Floquet Hamiltonian

Section 6.1 described how to prepare the atomic ensemble in various mF levels

with a combination of microwave and RF pulses. Here we describe the details of

applying various holonomic transformations to the prepared states with RF-dressing,

though the modulation scheme presented here may be generalized to other similar

coupling mechanisms, in cold atoms or other systems. We describe the modulation

scheme that results in the driven Hamiltonian (Eq. 5.2), followed by the specific

parameters and hardware used to generate such RF pulses in the lab. Together

with the measurement procedure described in Sec. 6.1.2, the holonomies may be

characterized.

6.2.1 Modulated RF-Dressing

In order to realize the Floquet-driven Hamiltonian in Eq. 5.2 in an ultracold

ensemble, we used the RF-dressing methods discussed in Sec. 2.2.1. As with the

theory description in Sec. 5.1, this modulation scheme is fairly general, and could

be adapted to many other systems with similar level structure with adjacent level

couplings. In the context of ultracold ensembles, the modulations derived here

readily apply to a Raman M -scheme as well (Sec. 2.2.2). We will reiterate the

important equations here, for convenience. The Hamiltonian in the lab frame is

(Eq. 2.9) [2],

ĤLab = Ω̃(t) sin
[︂
ωRFt+ ϕ̃(t)

]︂
F̂ x + ωZF̂ z, (6.1)

where a bias magnetic field is applied resulting in the Zeeman splitting ωZ, therefore

lifting the degeneracy between spin levels. An oscillating magnetic field is then

applied, through a set of RF-coils (Sec. 2.1.3), resulting in the coupling above. Both

the amplitude Ω̃(t) and phase ϕ̃(t) of the driving field are modulated in time.

In the frame rotating at ωRF+∂tγ (Sec. 2.2.1), the Hamiltonian becomes (Eq. 2.19),

ĤRot.(t) =
Ω̃(t)

2

{︂
sin

[︂
ϕ̃(t)− γ(t)

]︂
F̂ x − cos

[︂
ϕ̃(t)− γ(t)

]︂
F̂ y

}︂
+ δ(t)F̂ z, (6.2)

where δ(t) = ωZ − ωRF − ∂tγ(t), and γ(t) is an arbitrary phase associated with the

transformation to the rotating frame; here, it will help us derive the form of phase

modulations needed to match the target Hamiltonian, Eq. 5.2.

Looking at the target Hamiltonian, Eq. 5.2, we can determine what the various

parameters need to be in order to realize this Floquet-engineered system. First, the

amplitude of the driving RF field should be,

Ω̃(t) = 2Ω0 sin [Θ(t)] cosωt, (6.3)
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where ω is the Floquet frequency, Ω0 is the amplitude of a fictitious magnetic field

acting on the spins4, and Θ(t) is the polar angle for the orientation of the fictitious

field. Looking now at the F̂ z term, we require

δ(t) = Ω0 cos [Θ(t)] cosωt. (6.4)

Ideally, the driving RF field should be on resonance with the Zeeman level split-

ting, ωZ − ωRF = 0; if this condition is not met, there will be major dynamical

consequences. Such effects would be described by a z-component of the detuning,

discussed in Sec. 5.3. Assuming we are able to meet the resonance condition, this

leaves

∂tγ(t) = −Ω0 cos [Θ(t)] cosωt, (6.5)

⇒ γ(t) = −Ω0

∫︂ t

0

dt′ cos [Θ(t′)] cosωt′. (6.6)

The RF driving phase must therefore be

ϕ̃(t) = Φ(t) + γ(t) +
π

2
, (6.7)

where Φ(t) is the azimuthal angle of the fictitious field. The extra π/2 term must

be included to shift the phases so that we have the correct signs in front of F̂ x and

F̂ y. We therefore obtain the target Hamiltonian,

Ĥλ(t) = Ω0λ(t) · F̂ cosωt, (6.8)

where,

λ(t) = [sinΘ(t) cosΦ(t), sinΘ(t) sinΦ(t), cosΘ(t)]⊺ . (6.9)

Loops in parameter space are therefore controlled through the phase of the RF-

carrier, Φ(t), and a parameter relating to both the amplitude and frequency modu-

lations of the carrier, Θ(t).

From the form of ϕ̃(t) and δ(t), we can see that γ(t) is accounting for the fre-

quency modulations in the basis transformation. The instantaneous frequency of a

wave is given by the derivative of its phase; therefore, to modulate the frequency

of a field, one simply needs to modulate the phase as the integral of the desired

modulation, as in Eq. 6.6. However, when picking a rotating basis we are left with

4The Hamiltonian Eq. 5.1 is that of a spin in a magnetic field Ω = Ω0λ, where the spins undergo
Larmour procession around Ω. In our case, the field is artificial, as it results from representing the
real fields from the Lab frame in the rotating frame. For this reason we refer to it as a fictitious
field. This is only the first such artificial field here, as the Floquet representation produces yet
another, different, artificial magnetic field: the curvature.
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a choice: to rotate with the carrier frequency alone, in this case ωRF, or to include

the frequency modulations. The choice determines whether the frequency modula-

tions appear in the detuning term, δ(t), or in the phase of the couplings; both are

equivalent. In this particular case, to obtain the target Hamiltonian, we want the

frequency modulations to appear in the detuning term; going through these steps

has let us identify the correct basis for this to be the case.

Based on this RF modulation scheme, which as stated above may be readily ap-

plied to other systems with similar level structures and control capabilities, we are

able to implement the holonomies discussed in Sec. 5.1. The form of the amplitude

modulations Ω̃(t) (Eq. 6.3) and phase modulations (Eq. 6.7) prescribe how to gen-

erate the RF waveform necessary to effect an arbitrary loop ℓ in parameter space,

parameterized through the angles {Θ(t),Φ(t)}. The waveform may be programmed

into an AWG, directly computed from these relations. Next, we discuss the specific

implementation of this technique in each of the ground state hyperfine manifolds of

an ultracold ensemble of 87Rb.

6.2.2 Holonomies

Following the state preparation step, we are able to implement the holonomies

described in Sec. 5.1, Tab. 5.1, through the RF-dressing technique introduced above.

The modulation scheme allows us to take any desired loop, parameterized through

the parameters Θ(t) and Φ(t), and generate the corresponding RF waveform. As

discussed in Sec. 5.2, there are several considerations to be made when choosing the

holonomy parameters. In our case, we are primarily limited by Ω0, the effective Rabi

frequency of the RF-driving. The relation between this and the Floquet frequency

ω sets the magnitude of the geometric phase, through g = 1 − J0(Ω0/ω), so while

there is some degree of tunability in ω, it has an impact on the acquired phase.

We found that setting Ω0 = ω produced transformations with close to π/2 pulse

area, which is favorable for the application of this technique to HQC (Sec. 4.3.1).

As such, in order to still satisfy the adiabatic condition (Eq. 5.32), the loop rate

Ω≪ Ω0, ω. Therefore, the smaller Ω0 is, the longer the loop durations are; at some

point, drifts in background fields due to the 60 Hz line, and eventually even spin

decoherence from collisions in the ultracold ensemble, or scattering losses from the

ODT will become relevant. These errors are mitigated by making Ω0 as large as

possible, which is done by increasing the amplitude of the RF field.

Given this constraint in Ω0, we are left with setting Ω to be small enough to

maintain adiabaticity, while avoiding unnecessarily long evolution times that build

up large error. As described in Sec. 5.2, it is prudent to set Ω as a subharmonic of ω,

so that measurements at the end of the holonomy are done directly in the Floquet
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basis, due to its stroboscopic equivalence with the rotating frame [219]. As such, we

chose Ω = ω/10 = Ω0/10; in our case, we found this to be sufficiently adiabatic, but

this could easily be decreased if non-adiabatic corrections became important, at the

expense of other errors potentially growing.

RF Waveforms

Due to the required coordination the microwave pulses used in state prepara-

tion and the RF pulses used to produce the holonomies and readout pulses, it was

necessary to generate both waveforms with the same AWG. A single Python script

was used to generate all the necessary waveforms, and coordinate the timings be-

tween them to produce the correct initial states, and apply the desired holonomies

to them. Specifically, we used a Tektronix AWG5204, which has a sampling rate of 6

GSa/s; this is more than sufficient to realize the fastest frequency in the waveforms,

ωRF = 1.25 MHz, in addition to the ≈ 100 MHz microwave carrier (mixed with the

6.8 GHz source). The AWG has four output channels, and two independent triggers,

which permitted all the required operations. The device may be interfaced with over

an Ethernet connection, allowing remote operation in tandem with the other control

software5. Some example waveforms are shown in Fig. 6.3, for different loops.

The output of the AWG is limited to 750 Vpp, which is insufficient to generate a

large enough field in the RF coils to perform the experiment within the coherence

time of the ensemble. The output of the AWG was therefore sent through a 1.5 W

amplifier6, before being transmitted to the coils. Additionally, a custom circuit was

made7 to better match the impedance of this long transmission line (about 15 ft)

with the RF-coils, resulting in more efficient use of the power (stronger fields). This

produced sufficiently high RF Rabi frequencies to implement the desired holonomies

well within the coherence time of the ensemble8, and the 60 Hz wall-circuit drift

(Sec. 6.1.1). Together, these devices allowed us to obtain Rabi frequencies on the

order of 10 kHz, making the loop durations about 1 ms.

The value of Ω0 was measured by observing Rabi oscillations in the spins with-

out any Floquet modulations, such as those simulated in Fig. 2.3(a); the trend in

spin populations over time could be fit for the value of Ω0, with more oscillations

leading to a more precise value. We found Ω0 to be remarkably consistent, though

5Specifically, Joseph Lindon wrote a Python package to handle the serial communication proto-
cols needed, in order to upload waveforms and cycle between them in a way that was coordinated
with the software that controls the BEC production, and all other devices.

6Mini-circuits model ZHL-72A+.
7Design and fabrication of this device is credited to Joseph Lindon.
8An ≈ 50 W amplifier was installed at some point to increase this even further, but not only did

it distort the RF-waveforms notably, the various cables radiated significant RF power throughout
the lab, ultimately crippling the BEC production. The high RF power also produced AC Stark
shifts, making atomic resonances unstable.
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Figure 6.3: Sample RF-waveforms which may be loaded into an AWG, to produce Floquet-
driven holonomic transformations of atomic spins. Both waveforms shown are parameter-
ized by Θ(t) = Ωt, but differing values of Φ(t); they would produce the loops ℓ1 and ℓ2 de-
picted in Fig. 5.1(a). In this case the waveforms are V (t) = sin(Θ) cos(ωt) sin (ωRFt+ φ),
where φ(t) is a function of both Θ and Φ (Eq. 6.7). (a) The RF-carrier frequency is 1.25
MHz, making the individual oscillations difficult to resolve, but the structure of the mod-
ulations can be discerned. The slow frequency envelope is a single period of Ω, while the
faster envelopes are due to the Floquet drive ω = 10Ω. (b) Looking closer at the central
zero-crossing, we can see that the waveforms differ only by a constant phase of the driving
RF carrier.
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it changed over several maintenance cycles of the apparatus9. It was, therefore,

carefully calibrated often, especially between any maintenance cycles of the system

or other such alterations.

Calibrating Against Detuning

In Sec. 5.3 we introduced a generic undriven term in the rotating basis, that

resulted in significant dynamical contributions to the phase in the Floquet basis;

this detuning broke the established adiabatic degeneracy, and coupled Floquet bands

dynamically. In the rotating frame (Eq. 5.2), this term corresponds a background

magnetic field ∆. The Floquet driving ideally results in a magnetic field that is zero

on average over many Floquet periods, but since the detuning is undriven it shifts

the average from zero, resulting in dynamical effects on top of the desired geometric

ones.

For the experiments presented here, the magnetic field in the rotating frame is

fictitious. The real fields are produced in the lab frame, with a static bias field and

fast RF carrier. This basis is transformed under the rotating wave approximation

(see Sec. 2.2.1) to rotate with the fast oscillations; this yields the Hamiltonian in the

rotating frame, Eq. 6.8, a basis representation in which the field is roughly static.

As such, the detuning terms in this basis are not necessarily caused by a static

external field. Due to the time-dependence of the rotating basis with respect to the

lab frame, the detuning terms are caused by more complicated fields.

In the current basis, the z-component of the detuning, ∆z, corresponds to a

mismatch between the level splitting and the frequency of the driving field. The

modulations of the F̂ z terms are ideally centerted on resonance with the transition,

but this unmodulated term shifts that drive off resonance; this was the motiva-

tion for calling the ∆ term detuning, as it is literally a detuning of the RF carrier

from atomic resonance (the z-component of ∆, specifically). This term could arise

through a miscalibration of the resonance, or an external field outside of the exper-

imenter’s control that perturbs the spin state energies. The other components of

the detuning, ∆x and ∆y, must originate from additional RF fields in the lab frame.

A potential source could be from leaked control fields, or external oscillating-fields

near resonance; generally, fields of this nature would produce all three detuning

components since they are not likely to be directly on resonance, thus producing a

∆z component as well.

In the experiments discussed here, we have excellent extinction of unwanted

RF fields; there are multiple signals that must be dispatched to drive the various

RF coils, including triggers to RF switches and mixers, and for gating amplifiers.

9Between ODT alignments, for instance, as the location of the ensemble within the vacuum cell
changes with this.
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Additionally, the RF carrier signals themselves are produced by digital devices,

such as our AWG, which are also gated, and produce fields with pre-programmed

durations. Altogether, we detected no leaked control fields from any of our sources.

This was verified by observing the stability of spin states when undriven; if there

were external RF fields near resonance, we would expect to see background-induced

Rabi oscillations. No evidence of this was observed over durations much longer than

the 1 ms holonomies. Additionally, we verified that the Rabi oscillations under RF

driving were also consistent with expectations. This was done by applying Ramsey-

like sequences in which multiple RF pulses with varied phase were applied, separated

by a variable delay. Phase measurements (Sec. 6.1.2) were done to verify that the

populations and relative phase match that expected for such pulses, with delay

times on the order of 1 ms. Based on these calibrations, the only component of the

detuning ∆ considered in the experiments that follow are due to miscalibrations or

drifts in the RF resonance, ∆z.

The carrier frequency of the RF waveforms was fixed at 1.25 MHz throughout

the experiments. As such, the resonance condition was controlled by adjusting the

applied bias field, along the y-axis. Drifts in the RF resonance contributed the

largest uncertainty in the results that follow, as quantified in Sec. 5.3. Prior to each

set of measurements, the resonance was calibrated by observing a single RF π-pulse,

applied to the |F = 1,mF = +1⟩ state; the bias field was manually tuned so that

there was no remaining spin population in the initial state, with all of the atoms

having been transferred to |F = 1,mF = −1⟩. This method served as only a rough

calibration of the resonance since a π-pulse has a duration of less than 50 µs, in

comparison to the 1 ms holonomy duration. As such, after setting the field in this

way, we applied the holonomy Γ̂A (ℓ1) in Table 5.1, tuning the bias further until the

expected populations were observed. We found that the multi-spectral nature of the

modulated RF pulses produced results that are much more sensitive to detuning from

resonance than standard unmodulated RF (as in the rough calibration step), even

for the same pulse durations; this is demonstrated theoretically by the simulations

shown in Fig. 6.4. A comparison between Γ̂
∆

A (ℓ1) and a standard RF-pulse of the

same duration with detuning error-bands are shown in Fig. 6.4(a); the bands are

barely visible on the unmodulated pulse, but significant on the holonomy. This

was investigated further by plotting the fidelity (the operator inner product, see

Sec. 6.3.3 for further details) of the detuned operators versus the undetuned; the

fidelity of the holonomies falls much faster.

Attempts at using longer standard RF pulses with odd-integer pulse areas did

not result in calibrations with similar fidelity. We believe that, in addition to the

lack of sensitivity shown in Fig. 6.4, the cause of this method not working as well is

likely due to the heating of the RF amplifier over the duration of the pulse. Unlike
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Figure 6.4: Numerical simulations comparing the detuning sensitivity of the holonomy

Γ̂
∆
A (ℓ1) to an unmodulated RF-pulse ÛR of the same duration. (a) Simulations of the

populations over time for the holonomy in the Floquet basis (top) and unmodulated pulse
in the rotating basis (bottom). The pulse durations are a single period of Ω = Ω0/10. For
the holonomy, Ω0/ω = 1, and for the unmodulated pulse, ω = 0, Θ(t) = π/2, Φ(t) = 0.
Detuning bands for both show the interquartile range of results from 5000 detunings sam-
pled from a Gaussian with a mean of zero and standard deviation Ω0/20; bands are barely
visible for the unmodulated pulse, but significant for the holonomy. (b) Fidelity (Eq. 6.13)

of operators as a function of detuning for holonomy Γ̂
∆
A (ℓ1) (dashed) and unmodulated

RF-pulse ÛR (solid), demonstrating the drastic difference in sensitivity between transfor-
mations.
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with the holonomies, the RF carrier is at full amplitude for the entire pulse in this

case. This likely caused heating in the amplifier, which changes the field amplitude

over the pulse duration, causing inconsistent timing of the population transfer. As

such, due to their sensitivity to detuning, we found that by setting the bias field

based on the holonomy Γ̂A (ℓ1), this produced an excellent calibration for resonance.

To produce a Zeeman splitting of 1.25 MHz in 87Rb, a bias field of 1.79 G is

required; this corresponds to a current of about 4 A in our y-bias coil. For the Rabi

frequency Ω0 (or equivalently, the Floquet frequency ω) used in experiment, on the

order of 10 kHz, a detuning of 0.2 kHz would produce dynamical errors equivalent

to those depicted in Fig. 5.5 and Fig. 5.6, which are significant. This corresponds to

a field of 0.3 mG, or less than 1 mA of current in the bias coil. Therefore, not only is

it difficult to detect such a detuning through the techniques available to us, but even

controlling the resonance to this tolerance is challenging. The bias coil supply in

our system10 operates in constant-current mode, with an internal stability reported

to be < 0.5 mA, which is close to this level of sensitivity. We therefore expect the

detuning to drift between each measurement by about 0.2 kHz, with other sources

potentially producing even larger detunings; the detuning seen in measurements

(Sec. 6.3) match these expectations, as they are all under about 0.8 kHz.

6.3 Results

There are three main ways in which we characterized the holonomies in Table 5.1:

by observing their time-evolution, looking at the relative phase imparted by the

transformations as it depends on the loop, and finally, by measuring the fidelity of the

applied holonomies. The latter of these required a measurement of the holonomies

in full. In each case, results were compared to numerical simulations (Sec. 5.2),

performed in the lab frame11.

Each of the parameters discussed above (Sec. 6.2) was set in a Python script,

which generated all of the waveforms for the AWG (Sec. 6.2.2), including the state-

preparation microwave pulses (Sec. 6.1.1). The measurement sequences were pre-

programmed, with the ordering often randomized to avoid any bias. Each mea-

surement sequence, hereafter referred to as a scan, therefore consisted of a pre-set

combination of holonomies and readout RF pulses, applied to either the same initial

spin state, or several. Aside from the shot-to-shot drift in detuning, likely caused

by the bias supply itself, we found the resonance to be stable for periods of time

> 10 minutes, with some exceptions. As such, the resonance calibration discussed

10KEPCO BOP 20-20M.
11The lab frame was chosen so that the same RF waveform uploaded to the AWG could be

integrated to predict results. This kept proper track of the phase throughout experiments.
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in Sec. 6.2.2 was implemented before and after every scan; this way, we were able

to detect any noticeable changes to resonance that may have occurred over a single

scan, and re-adjust before the next. The scans were typically kept to less than 20

operations, to avoid letting the detuning vary too much between measurements.

6.3.1 Time Evolution

Observing the time-evolution of the spin populations, in the F̂ z basis, can be done

by applying a holonomy, and interrupting it at various times with a measurement.

This was our initial method of verification for several reasons: first, the bare-spin

basis is insensitive to the relative phase. If there are any errors in the phase of

the generated RF waveforms, or in our calibrations of the readout RF pulses, they

have no impact here. Second, this allows us to verify the stroboscopic equivalence

between the Floquet basis (Eq. 5.34) and the rotating basis (Eq. 6.8). Observing

the high-frequency oscillations provides strong evidence that the pulses we apply are

correct, aside from the relative phase imparted. Last, and perhaps most importantly,

this method allows us to observe the build up of detuning error over time. For short

durations, the detuning error is negligible, but as the measurements get closer to

the end of the loop, noticeable deviations from the ideal undetuned holonomy arise.

Detuning has a particularly noticeable effect on the relative phases, as it is essentially

an error in choice of rotating frame, leading to a different rate of phase accumulation

than expected. Therefore, since the time scans are insensitive to phase, the impact

of detuning is smaller.

Despite these advantages, the number of measurements required to fully char-

acterize the time evolution is significant, due to the high frequency oscillations re-

quiring many samples. As such, these scans were either taken with an insufficient

number of points, or have many taken over a long period of time in which the

detuning may vary dramatically. Neither case is ideal.

Here we include several examples for both F = 1 (Fig. 6.5), and F = 2 (Fig. 6.6).

In both cases, the data was fit for a particular detuning, ∆z, with this as the only free

parameter; the lines are therefore the detuned holonomy (Eq. 5.54), computed with

this value of detuning, Γ̂
∆

A (ℓ). On top of this model, we also compute an estimate for

the error in this detuning. We numerically sampled 1000 detunings from a Gaussian

distribution with a mean of ∆z, and a standard deviation12 of 2π × 0.4 kHz. The

time evolution of the spin populations was then computed for each of these sampled

detunings, resulting in a set of trajectories for each spin population; the spread of

these results is then shown by computing the interquartile range.

12This particular choice for the standard deviation was determined from the distribution of all
measured detunings, and roughly coincides with the expected stability of our bias field supply.
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Figure 6.5: Measurements of spin populations (points) on top of numerical calculations
(lines) as they vary in time throughout a loop, in F = 1. Theory lines were computed by
fitting the population data for a value of detuning, ∆z, which was then used to compute the
detuned holonomy from Eq. 5.54. For each measurement, Ω0/ω = 1, with Ω0/2π = 14.27
kHz, and Ω = ω/10. Colored bands display the interquartile range of populations subject
to detuning, numerically computed from a Gaussian sample of detunings with mean ∆z

and standard deviation 2π×0.4 kHz. Results are shown for ℓ1 (a) and ℓ3 (b). Simulations
include the quadratic Zeeman shift (see Sec. 6.4.2 and App. A).
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Figure 6.6: Measurements of spin populations (points) on top of numerical calculations
(lines) as they vary in time throughout a loop, in F = 2. Theory lines were computed by
fitting the population data for a value of detuning, ∆z, which was then used to compute the
detuned holonomy from Eq. 5.54. For each measurement, Ω0/ω = 1, with Ω0/2π = 14.27
kHz, and Ω = ω/10. Colored bands display the interquartile range of populations subject
to detuning, numerically computed from a Gaussian sample of detunings with mean ∆z

and standard deviation 2π×0.4 kHz. Results are shown for ℓ1 (a) and ℓ6 (b). Simulations
include the quadratic Zeeman shift (see Sec. 6.4.2 and App. A).
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The results for the holonomies Γ̂A (ℓ1), and Γ̂A (ℓ3) are shown, in Fig. 6.5(a)

and Fig. 6.5(b), respectively, both for F = 1. The initial state for both was

|F = 1,mF = +1⟩. Loop ℓ1 demonstrates the non-Abelian character of these trans-

formations, as the initial state has been coupled to the other spins over the duration

of the loop, ultimately ending in a superposition. This is not conclusive evidence of

a non-Abelian connection, as discussed in Sec. 4.1.4, but provides strong evidence

nonetheless, and gives some insight into how such phases may be used in the con-

text of QIP (Sec. 4.3). The loop ℓ3 only couples spins intermittently throughout the

transformation, due to the micromotion of the spin basis, stroboscopically coinciding

with the Floquet basis in which the state remains polarized for the entire loop.

For loop ℓ1 the impact of detuning is apparent in the final populations, while

loop ℓ3 is somewhat impervious to the detuning. This may be understood by looking

at the form of the detuning in the Floquet basis, Eq. 5.53. The detuning does

not commute with the geometric phase for ℓ1. As such, both terms impact this

loop, resulting not only in phase error, but also the dynamical coupling between

Floquet states. Since these measurements, are insensitive to relative phase, we

observe the latter source of error. For loop ℓ3, however, the detuning commutes

with the geometric phase. This results only in phase error, which may not be

observed through these measurements.

Similarly, the results for loops ℓ1 and ℓ6 are shown in Fig. 6.6(a) and Fig. 6.6(b),

respectively, for the F = 2 manifold. The results are remarkably similar for ℓ1, as the

impact of detuning results in dynamical coupling between spins, as it accumulates

over the course of a loop. At first glance, the loop ℓ6 seems to result in effectively

the same transformation as ℓ3, only differing throughout the loop (but not at the

end). Due to the connection not commuting with itself at various points along this

path, however, there is a small amount of coupling from this holonomy, but it is

eclipsed entirely by the effects of the detuning. Furthermore, unlike ℓ3, the detuning

results in both phase and dynamical coupling errors here.

Altogether, the results from these time-scans serve as an initial verification that

the holonomies work as expected, and they also emphasize the impact of what would

otherwise be near negligible detuning. To better understand these transformations,

we must also look at the relative phases imparted on the spin states, and how they

too are impacted by detuning.

6.3.2 Phase Control

Having verified the time evolution of spins over the duration of a loop, the

relative phases imparted on them must also be verified. After applying a holonomy,

a readout RF π/2-pulse was applied with a varied phase, to alter the basis in which
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the projective measurement is made. Scanning the phase of the readout pulse in the

range [0, 2π] reveals a portion of the phase information13. For loops which result in

the same spin populations, such as ℓ1, ℓ2, and ℓ4, this is the only way to discern the

difference they have on the holonomies.

Similar to the time scans discussed prior, we collected a set of population mea-

surements for varied readout RF phases. The results were fit for a single value of

detuning, ∆z, the only free parameter. This value was then used to numerically

compute a detuned holonomy from Eq. 5.54, to which we applied the corresponding

readout RF operators to model the sequence of measurements14. The uncertainty

bands on these theory calculations are also computed in the same way, through sam-

pling 1000 other detunings in the vicinity of ∆z and plotting the interquartile range.

In this case, due to the phase sensitivity of these measurements, the detunings were

sampled from a Gaussian with a standard deviation of 2π × 0.2 kHz.

In Fig. 6.7 and Fig. 6.8, we demonstrate the difference in phase of the states

resulting from holonomies Γ̂A (ℓ1) and Γ̂A (ℓ2), for F = 1 and F = 2, respectively.

These holonomies, along with Γ̂A (ℓ4), produce identical results in the F̂ z basis,

with states differing only in relative phase; this can be distinguished through the

phase sensitive measurements discussed here, as shown by a shift in the population

trend with readout RF phase. The phase imparted onto the states may therefore

be controlled just by altering the loop taken. Unfortunately, the same shifts may

be caused by detuning as well, though with the additional effect of reducing the

amplitude of the observed crests, and dynamical coupling of spins. For this reason

it was essential that detuning be the only free parameter in fitting, as almost any

other parameter could result in a similar phase shift, preventing us from discerning

the true origin as arising from the path-dependence of the holonomy.

The scans shown in Fig. 6.7 and Fig. 6.8 are only a small representative sample

of several hundred such scans, which were collected gradually over the course of

the project to verify that the holonomies were implemented correctly. These scans,

along with the time evolution scans, formed the backbone of our verification efforts,

with the help of the numerical model (Sec. 5.2) that was developed concurrently. It

is through the phase scans in particular that the impact of detuning was identified.

Once these results match expectations, we were left with the task of performing a

more complete characterization of the transformations, by measuring the holonomies

in full.

13The redundancy of using readout pulses with both 0 and 2π phases was intentional, as any
difference between these measurements potentially demonstrates a drift in detuning over the course
of the scan.

14The evolution operator for a readout RF pulse can be computed analytically from Eq. 2.19.
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Figure 6.7: Measurements of spin populations (points) in different bases, as defined by the
phase of a readout RF pulse following a holonomic transformation, in F = 1. Numerical
calculations (lines) are overlaid, computed by fitting the population data for a value of
detuning, ∆z, which was then used to compute the detuned holonomy from Eq. 5.54,
and analytically modeling the measurement sequence. For each measurement, Ω0/ω = 1,
with Ω0/2π = 10.64 kHz, and Ω = ω/10. Coloured bands display the interquartile range
of populations subject to detuning, numerically computed from a Gaussian sample of
detunings with mean ∆z and standard deviation 2π × 0.2 kHz. (a) shows the results for
holonomy Γ̂A (ℓ1), while (b) shows that for Γ̂A (ℓ2). The shift in population data with
respect to the readout RF phase between (a) and (b) is indicative of the path-dependence
of the holonomies. Simulations include the quadratic Zeeman shift (see Sec. 6.4.2 and
App. A).
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Figure 6.8: Measurements of spin populations (points) in different bases, as defined by the
phase of a readout RF pulse following a holonomic transformation, in F = 2. Numerical
calculations (lines) are overlaid, computed by fitting the population data for a value of
detuning, ∆z, which was then used to compute the detuned holonomy from Eq. 5.54,
and analytically modeling the measurement sequence. For each measurement, Ω0/ω = 1,
with Ω0/2π = 14.27 kHz, and Ω = ω/10. Colored bands display the interquartile range
of populations subject to detuning, numerically computed from a Gaussian sample of
detunings with mean ∆z and standard deviation 2π × 0.2 kHz. (a) shows the results for
holonomy Γ̂A (ℓ1), while (b) shows that for Γ̂A (ℓ2). The shift in population data with
respect to the readout RF phase between (a) and (b) is indicative of the path-dependence
of the holonomies. Simulations include the quadratic Zeeman shift (see Sec. 6.4.2 and
App. A).
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6.3.3 Fidelity of Holonomies

Motivated by computing the Wilson loops to characterize the holonomies in a

gauge-invariant manner (Sec. 4.1.4), we measured the holonomies in full. Performing

state tomography (App. C) on a transformed basis state yields a single column of

the evolution operator (holonomy). Therefore, if we perform a series of tomographic

measurements on the results of each basis state after a transformation, we obtain

the full evolution operator.

For each holonomy in Tab. 5.1 we performed such a scan, wherein each basis

state was prepared, transformed, and a series of tomographic measurements were

performed. We repeated these scans many times for each holonomy, due to the

presence of detuning in each trial. Furthermore, the measurements in each scan

were made in a randomized order, including which basis state and measurement

pulse was applied, to avoid potential bias from ordering. More measurements than

explicitly necessary for tomographic reconstruction of the states were also taken, for

better fitting, and to account for occasional mis-triggers of our AWG in which the

pulses were not applied15. From these scans we reconstructed the holonomies.

Holonomy Fitting

Each holonomy scan consists of a series of population measurements from several

readout RF-pulses, on the state resulting from a holonomy applied to each spin basis

state. The results for each independent basis state may be used to reconstruct the

wavefunction and corresponding column of the holonomy, but performing the fits in

this way would make the residuals in each scan have no impact on the others; for a

more comprehensive analysis, the entire matrix may be fit all at once.

To fit a matrix to each scan, we need a parameterized evolution operator from

which the various measurements may be simulated. The holonomy produced here

may be decomposed into the basis of spin matrices as,

Γ̂A (ℓ) = exp
(︂
−iq · F̂ /ℏ

)︂
, (6.10)

where the components of the vector q parameterize the transformation. For some q

the holonomy may be computed, and the various readout RF-pulses are simulated to

compute the resulting set of populations. We may then fit for q by comparing these

simulated measurements with the data. This choice of decomposition (Eq. 6.10) is

problematic in higher spin systems, however, as it neglects potential effects outside

15Occasionally the AWG did not properly trigger, therefore not applying any control pulses;
due to the intermediate resonant laser pulses in the state-preparation step, this would result in no
atoms whatsoever. These points are easy to remove, but the resulting scan would be missing a
data point, which inhibits state tomography.
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of SU(2). Applying such a decomposition would only serve to validate our initial

assumptions that the holonomies induce SU(2) transformations. Therefore, to re-

main as general as possible, the decomposition used for spin manifold F should be

in terms of the generators of SU(2F + 1).

In the case of our measurements, in F = 1, we expressed the holonomy as,

Γ̂A (ℓ) = exp
(︂
−iq · Λ̂/ℏ

)︂
(6.11)

with Λ̂ the vector of Gell-Mann matrices, generators of SU(3). This decomposition

describes the most general evolution operator in F = 1, and therefore captures any

potential coherent sources of phase16. The norm-squared difference between the

simulated measurements and the data were then used as the objective function for

the Nelder-Mead nonlinear optimization algorithm, which we implemented with the

Optim.jl package in Julia [224]. Since the holonomy is generated in this way, it

has no information about the actual Hamiltonian that produced the data, and so it

is inherently unbiased.

Before implementing these fits on the data, we numerically simulated a set of

measurements for each holonomy, and added measurement noise in varying amounts.

The efficacy of this fitting routine was then characterized against this data. We found

that for moderate levels of noise in the populations, even less than the deviations

caused by detuning throughout our scans, the initial “guess” for the vector q (thus,

the holonomy) was important in having the fit converge properly. This is likely due

to the number of parameters versus data points; there are eight Gell-Mann matrices,

making these fits consist of eight parameters fit to about 15 points in each scan. A

good initial guess may be found by taking the natural logarithm of the expected

holonomy, and computing the inner products of the result with each Gell-Mann

matrix, resulting in the corresponding components of q. When this routine was

applied to the data, we used the detuned holonomy Γ̂
∆

A (ℓ) to generate the initial

guess, following a fit of detuning ∆z to the scan.

To summarize, we collected a series of scans for each holonomy in Tab. 5.1 that

consisted of an informationally complete set of measurements, which may be used

to reconstruct the holonomies in full. For each scan, we fit for a single value of

detuning, ∆z, as in the other scans described in Sec. 6.3.1 and Sec. 6.3.2. We then

fit each scan with a single holonomy, through an SU(3) decomposition to avoid

introducing any bias. From this we are able to analyze the characteristics of the

each holonomy, for which we have a set of measurements with various detunings.

16This still assumes that the evolution is unitary.
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Fidelity

To compare the measured holonomies with expectations, we used a common

quantitative method used in QIP applications, inspired by the overlap of these ex-

periments with HQC. A simple way to quantify the success (or failure) of our quan-

tum control is to compute the inner product between the operator we measured,

and the one we attempted to implement (the target). In the QIP community this

has been formalized into the fidelity of an operation, defined through the Frobenius

inner product between matrices.

Supposing we wish to apply the transformation Â to a state, and measure the

resulting transformation B̂, the fidelity of this operation may be defined as [225],

F =

⃓⃓⃓
tr
(︂
Â

†
B̂
)︂⃓⃓⃓

√︃
tr
(︂
Â

†
Â
)︂√︃

tr
(︂
B̂

†
B̂
)︂ , (6.12)

where in this definition, the operators Â and B̂ need not be unitary. This is the gen-

eral form of fidelity as applied in various QIP applications, to determine the quality

of quantum control protocols in the presence of systematic noise, and decoherence.

For our purposes, the latter effects may be ignored; in this case, the operators Â

and B̂ are unitary, so the pure-state fidelity becomes,

F =

⃓⃓⃓
tr
(︂
Â

†
B̂
)︂⃓⃓⃓

2F + 1
, (6.13)

where the denominator is now the subspace dimension. This is just the Frobenius

inner product, normalized by the size of the matrices. If F = 0, then the two

operators Â and B̂ are orthogonal, and if F = 1 then Â = B̂. This gives a simple

metric for success.

Conveniently, the definition of fidelity is also reminiscent of the Wilson loop

(Sec. 4.1.4). In this context, we may imagine the Wilson loop for the transformation

Â
†
B̂, where Â

†
is the same as performing the transformation Â backwards; the

fidelity is thus a gauge-invariant measure of the net distortions following these loops.

In the case where Â = B̂, then Â
†
B̂ = 1̂, meaning there is no net distortion beyond

identity; this is because we simply performed loop B̂ and immediately reversed the

operation. Of course, the fidelity only includes two loops so it does not speak to the

non-Abelian character of the loops, but this serves as useful insight into the physical

meaning behind the quantity.

From the holonomies measured in experiment we computed the fidelities, com-

paring them with the holonomies Γ̂A (ℓ) without detuning; these fidelities are labeled
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ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6
N 17 13 13 8 8 11
F̄ 0.4(3) 0.5(3) 0.3(2) 0.6(3) 0.5(2) 0.5(2)

F̄∆
0.7(2) 0.8(2) 0.8(2) 0.90(6) 0.9(1) 0.8(1)

Table 6.1: Statistics on fidelities of measured holonomies. N is the number of measure-
ments for each loop, F̄ is the mean fidelity without detuning considered, while F̄∆

is the
mean with detuning included. Results are shown with the uncertainty in the last digit
given from the corresponding standard deviation. When detuning is properly accounted
for in the target operator, fidelities are higher, and more narrowly distributed with respect
to the mean.

as F . The results are shown as a raincloud plot in Fig. 6.9, which consists of a density

distribution (histogram) plotted over the individual points17 The resulting fidelities

are broadly distributed, with some transformations that closely match predictions,

and others that are entirely different. This indicates overall low-quality quantum

control through the Floquet engineering approach, but does not suggest a reason for

why. The statistics from Fig. 6.9 are summarized in Tab. 6.1.

To investigate the cause of our lack of control, each set of holonomy measure-

ments were also fit for the detuning, ∆z. We then re-computed the fidelities, com-

paring measurements with the detuned holonomy Γ̂
∆

A (ℓ); these fidelities are labeled

as F∆. These results are more narrowly distributed, closer to higher fidelities, as

summarized in Tab. 6.1. This indicates that detuning is the most significant source

of error in our control, as when it is properly accounted for then the transformations

mostly follow what is expected by our detuning model (Sec. 5.3). A histogram of

the magnitudes of all detunings from holonomy fits is shown in Fig. 6.10; the dis-

tribution has a mean of µ = 0.45 kHz, and standard deviation of σ = 0.37 kHz,

which are consistent with expectations from the noise level in our bias-coils supply

(Sec. 6.2.2).

It is important to note that the results for F∆ being generally higher that those

for F is only an indication of the impact of detuning; the detunings were only

extracted after-the-fact, and so the results for F represent the true limits to our

control capability. We have merely used fidelity here to demonstrate, through our

model of detuning (Sec. 5.3), that it accounts for the largest source of error in our

control.

17This format was necessary due to the low number of measured operators, providing poor
statistics.

Logan W. Cooke 140 Chapter 6



Section 6.4 Artificial Gauge Fields in Ultracold Atomic Ensembles

Fidelity
0.0 0.5 1.0

ℓ6

ℓ5

ℓ4

ℓ3

ℓ2

ℓ1

Figure 6.9: Density distributions of the measured fidelities for each loop in Tab. 5.1.
Black vertical bars represent the means. The purple (dark) distributions are results when
measured fidelities are compared with the undetuned holonomy, Γ̂A (ℓ) (Eq. 5.37). Due
to the significant impact of detuning on the transformations, the fidelities are generally
low, and broadly distributed. Each set of holonomy measurements is fit for a single value

of detuning ∆z, which is then used to compute the detuned holonomy, Γ̂
∆
A (ℓ) (Eq. 5.54).

The corresponding distribution of fidelities are shown in yellow (light). Theses results are
grouped much closer to unity, and are more narrowly distributed as the effects of detuning
have been accounted for.
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Figure 6.10: Magnitude of detunings extracted from fits to measured holonomies, displayed
as a histogram. The mean detuning magnitude is µ = 0.45 kHz, with a standard deviation
σ = 0.37 kHz. These values are consistent with the level expected from the bias coil power
supply (Sec. 6.2.2) Total number of measurements is 70.

6.4 Discussion

The results presented in the previous section (Sec. 6.3) demonstrate several im-

portant features of the holonomic transformations investigated here, enabled by

Floquet engineering, but fall short of a full characterization due to the limitations

imposed by detuning. Here we discuss several important aspects of the prelimi-

nary investigation presented here, starting by addressing the issue of detuning (and

relatedly, the quadratic Zeeman shift), and how it may be circumvented in future

implementations. We then discuss the generality of this approach, in regards to

applying the Floquet-engineering technique in other systems, and for using it to

generate other interesting artificial gauge fields. Finally, we comment on the rela-

tion of this scheme to QIP, as a means to perform HQC in nondegenerate systems.

6.4.1 Detuning Sensitivity

Utilizing the scheme as described, we were able to implement each of the holonomies

in Tab. 5.1. Our results (Sec. 6.3) agree with simulations in both the time-domain,

and in phase of the prepared states, if the significant impact of detuning is consid-

ered; specifically, a z-component of the detuning. Detuning was identified as the

primary source of error in these measurements by measuring the holonomies, and

computing the fidelities both with and without detuning considered; the latter re-

sulted in significantly lower, and more broadly distributed fidelities. As such, this

preliminary investigation has verified several important aspects of this technique,

through the agreement with our model, but the presence of detuning has signifi-

cantly hampered our full characterization of the connection; measurement of the

trace-commutator would provide a gauge-invariant confirmation of the non-Abelian
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character of the connection, but such a manifestation is undermined by dynamical

effects beyond the experimenter’s control (Sec. 4.1.4).

In light of the role that detuning played in these experiments, it is prudent to

address how one could attempt to overcome these difficulties. First and foremost,

we will reiterate here that the current setup has no active feedback control of reso-

nance, aside from that built-in to our bias coil supply18. One could envision an array

of magnetic field sensors placed in various locations near the ensemble to actively

sense ambient fields, forming a feedback loop with the current supply to adjust the

coil current in real time. This is an active research direction in our group, but find-

ing sensors and corresponding algorithms for determining fields with the sensitivity

required here will prove to be challenging. Alternatively, using the ensemble itself

as a magnetic antennae is a promising approach, as through Faraday magnetometry

or other optical magnetometry techniques [226, 227]. Some such protocols are non-

destructive and operate with excellent sensitivity. In either case, such an upgrade

to the system, in addition to some magnetic shielding, could prove useful.

Relatedly, our means of resonance calibration as described in Sec. 6.2.2 is lim-

ited by the tools we have available. We found that the holonomies themselves are

more sensitive to ambient fields than traditional RF pulses. Even still, results show

that our resonance detection capability was insufficient to remove the dynamical

contributions, despite every scan beginning “on resonance”, as far as this researcher

could tell. It is only after a full scan, with many data points, that a fit to the

set of measurements could reveal a detuning. In the absence of more sophisticated

magnetometry techniques discussed above, perhaps a longer pulse, or ones curated

more specifically for this purpose could be utilized to obtain better sensitivity; in

any case, our bias field control would also need to be improved.

Altogether, we believe some selection of the improvements discussed here would

be sufficient to eliminate the detuning to a degree high enough to enable application

of the Wilson loops to these transformations. There are other similar ultracold atom

platforms boasting much higher resonance fidelity [67, 228, 229]. For instance, the

field stability reported in Sugawa et al. 2021 [67] is 2.5 ppm for a bias field of 19.8

G, in a remarkably similar system to ours. This corresponds to 35 Hz stability in

the mF level splitting, in 87Rb. With detuning reduced to this level, the fidelity

expected for each of the loops in Tab. 5.1 would exceed 0.99, as verified through

numerical calculations.

18The supply is operated in constant-current mode, which has provided notably more stable
resonances than constant-voltage mode, as expected. The inner workings of the supply in either
case are beyond our control.
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6.4.2 Other Sources of Error

In addition to detuning, there is another important source of error that requires

mention: the quadratic Zeeman shift. Briefly, this term arises as the next leading

order correction to the splitting of mF levels in a magnetic field, as described in

App. A. Unlike the linear Zeeman effect (Eq. 2.6), the quadratic shift ϵ does not

split states linearly, as implied by the name. Rather, it imparts an additional shift

of an amount proportional to m2
F . Looking at the F = 1 manifold for instance, the

additional splitting ϵ for levels mF = ±1 is the same, and in the same direction.

The mF = 0 level, on the other hand, is unaffected. As such, the manifold no longer

has uniform spacing, so the resonance condition differs by transition. The quadratic

Zeeman Hamiltonian is therefore described by a su(3) term in this case.

In regards to the impact of the quadratic shift in this experiment, its magnitude

ϵ is similar in size to the detuning. Specifically, for a linear splitting of 1.25 MHz,

ϵ ≈ 0.228 kHz (App. A). While it depends on the Zeeman splitting, it is insensitive

to the detunings observed here. For instance, if a background detuning alters the

level splitting from the nominal 1.25 MHz by 0.8 kHz, ϵ is only changed by 1 Hz.

Therefore, for the sake of our experiments, it is constant for all measurements.

Similar to the detuning, this term is also undriven by the Floquet envelope. The

impact of such terms in the Floquet basis, as covered in Sec. 5.3, is a dynamical phase

that breaks the degeneracy between states in the bands, and couples them. This

result was computed for undriven terms proportional to the spin-matrices, but to

provide a similar description for the quadratic shift this calculation must be carried

out again for other generators. Specifically, the commutators computed to re-sum

the expansion in Sec. 5.3.1, Eq. 5.43 - 5.45, would take on a different form, but

overall it is expected to result in similar dynamical terms as in the case of detuning.

We expect, therefore, that the effect of this term on the holonomies is comparable

to the detuning, with one major difference; it does not vary substantially between

measurements. As such, this term may be treated as systematic source of error.

Based on the above arguments, the quadratic Zeeman shift was considered in

all analyses of measurements, numerically. The theoretically predicted value for

ϵ = 0.228 kHz was used in all fits to the data. This also is part of the motivation

for the holonomy fits to be done with a decomposition in terms of the Gell-Mann

matrices (see Sec. 6.3.3), since a spin-matrix decomposition would be insufficient to

capture the impact of the quadratic shift19. Since the quadratic shift is a systematic

19While testing the fitting routine on numerically generated data, it was found that a spin-
matrix decomposition fit to holonomies with a quadratic shift resulted in fidelities limited to a
threshold that was determined by the strength of ϵ. Therefore, depending on ϵ, the relative SU(3)
contribution it generates was not captured by the spin-matrices, resulting in fidelities constrained
by a related value.
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error it may be treated in this way, unlike the detuning which varied between each

measurements, making it a random source of error.

The static nature of the quadratic shift allows us to conveniently “factor it out”

of our investigation, in the sense that it must absolutely be considered in analy-

ses, but ultimately does not alter our ability to make quantitative conclusions on

the nature of the holonomies, as the detuning does; its impact may be computed

numerically with minimal uncertainty, though since it does not commute with the

geometric phase in general, time-ordering becomes important. With a set value of ϵ,

measurements of the Wilson loop could, for instance, be performed, and compared

with numerical calculations for the given value of ϵ. This was not possible in the case

of detuning, because of its random variation between scans resulting in significant

uncertainty (see Fig. 5.7). The desired properties of the non-Abelian connection

could therefore be deduced, having a thorough understanding of the dynamics im-

posed by the quadratic shift.

Aside from the interference of external fields or higher order corrections to the

Hamiltonian, our attempts at high-fidelity quantum control are prone to several

other sources of error. In particular, the measurements used in all analyses are based

off absorption images of the ultracold ensembles in TOF. There are several ways

in which the population data extracted from these images may encode systematic

errors. To understand this, we will first describe the imaging procedure in more

detail, though for a more complete understanding, see Hrushevskyi 2017 [6].

Absorption imaging is done by illuminating the atomic ensemble with a resonant

laser, and imaging the beam on a camera. Atoms in the ensemble scatter light from

the laser field, and so the beam wavefront encodes the spatial distribution of the

atoms; the denser regions of atoms scatter more light, resulting in lower intensity

in the corresponding regions of the wavefront. To account for the inherent intensity

pattern of the beam from this result, a second image is taken once the atoms have

fallen away, due to the significant momentum imparted onto them from the beam

in the first image. In our case, we also capture a third image with no beam or

exposure time, to estimate the contribution from dark counts in our camera. These

three images are combined to yield a spatial distribution of the optical depth,

OD = − ln

(︃
IA − ID
IB − ID

)︃
, (6.14)

where IA, IB, and ID are the intensity fields from the images with atoms, without,

and of the dark counts, respectively. This is computed element-wise, for each pixel

in the set of images. For a BEC, it is expected that the density distribution of atoms,

and thus the corresponding OD, approximately follows an inverted parabola20 as

20For a parabolic trapping potential, as in the case of our ODT.
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discussed in Sec. 3.2.2 in regards to the TF-approximation. If atoms are imaged at

long TOF, the distribution may be further approximated as Gaussian.

From these images of the optical depth we extract all of the information used in

our analysis. Our measurements consist of images displaying several spatially sepa-

rated distributions of atoms, due to the SG fields that split the spin-components. To

each distribution, a 2D-Gaussian fit is performed; from the pixel size, the number

of atoms in each may be extracted. These atom numbers are normalized with each

other, resulting in the relative spin populations. This step is performed automati-

cally by the custom imaging software employed in the lab.

Based on the imaging process as described above, there are several potential

sources of error. First, the relative populations are extracted from Gaussian fits

to the atomic density distributions; the error in these fits produce a corresponding

error in the relative populations. It was found that these counting errors were

insignificant in comparison to the detuning, accounting for at most a few percent in

the populations; it becomes more significant the lower the atom number is in a given

distribution, as in these cases the density distributions were closer to background

noise than when there are many atoms. As such, this error would predominately

affect measurements in which the populations are close to zero, or measurement

sequences in which the overall atom number was low. The latter case was avoided

by only performing measurements when the number of atoms was high; due to

significant fluctuations and instabilities in the atom number throughout the day,

this dramatically reduced the amount of data that could be collected, which also

explains the relatively small number of holonomies measured (see Tab. 6.1).

The other potentially important effect to consider is that, for images taken at

long TOF (about 20 ms in this case), the atoms have fallen close to the edge of our

imaging beam, where its intensity is low. The slope of the beam intensity profile in

this region is higher than at the beam center, and therefore the intensity used to

image each spatially-separated spin component is different. While this effect may

be at least partially accounted for in calculating the optical depth (Eq. 6.14), we

found empirically that the atom number extracted from fits depended slightly on

the location of the atoms within the beam, only near its edge. That said, this effect

was difficult to confirm: in order to verify this, atoms with a known atom number

must be imaged at various different locations in the beam (say, by varying the

TOF). The imaging process is destructive though, so such a measurement sequence

is subject to drifts in the atom number between measurements. For a quantitative

understanding, some numerical modeling would likely suffice. Regardless, this source

of error was also mitigated by tuning the strength of the SG field, making the spacing

between spins as small as possible without them overlapping, so that they may still

be distinguished. This error is therefore most significant for measurements in the
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F = 2 manifold, since there are five spin components that must remain spatially

separated.

Last, we have neglected the effects of interactions between atoms in the ensemble,

which would have an impact on the fidelity. Most obviously, spin-exchange collisions

are a decoherence mechanism for spin states; if they are significant, this would have

to be accounted for in the fidelity. Additionally, if the intra-spin interaction strengths

(see Sec. 3.2) vary with mF , this would result in a mean-field shift, changing the

splitting between spin levels. For instance, the intra-spin interactions for 87Rb atoms

in the F = 1 manifold differ slightly between themF = ±1 andmF = 0 levels, which

would produce such an effect. In either case, such an effect would present itself in

a similar way to detuning, since the interactions are not modulated by the Floquet

drive. In the experiments discussed here, the ensemble is dilute, so all interactions

are suppressed over the relatively short time-scales of these experiments (< 1 ms).

If other errors are reduced, the effects of interactions may eventually need to be

considered.

Overall, we found that the sources of error from imaging discussed above were

insignificant when compared with the detuning, since they could be suppressed by

working with larger atom numbers, and small spacing between spin components. As

such, the fluctuations in population between measurements was attributed in full to

the detuning, stemming from our lack of control over background magnetic fields,

and uncertainty in the bias power supply current. If the impact from detuning is

reduced, such as by implementing some of the suggestions in Sec. 6.4.1, then these

imaging errors must be revisited.

6.4.3 Floquet-Engineered Artificial Gauge Fields

The theory described in Ch. 5 demonstrates that, for a periodically modulated

Hamiltonian, a degenerate set of states may be found in the Floquet basis, wherein

non-Abelian geometric phases may arise. This notion was applied specifically to

the Hamiltonian of a spin in a magnetic field (Eq. 5.1), resulting in a connection

that generates SU(2) transformations; this is expected, since the original Hamilto-

nian also produces such transformations. More generally, it is expected that any

Hamiltonian driven in this way would result in similar physics. It is therefore worth

investigating the dynamics of other, similarly parameterized Hamiltonians driven in

a similar manner. For instance, a natural extension ot the Hamiltonian for a spin

in a magnetic field may be the SU(3) equivalent, given by,

ĤSU(3) = Ω0λ(t) · Λ̂, (6.15)
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with Λ̂ the vector of Gell-Mann matrices. In this case, the orientation of this field in

time would be described by the eight-dimensional unit vector λ(t). The derivation

of this Hamiltonian in the Floquet basis will follow a similar process as that in

Sec. 5.1; the commutator expansion, Eq. 5.6, will converge differently for Gell-Mann

matrices than for spin matrices. Supposing the Hamiltonian transforms in a similar

manner to the case in SU(2), the connection here would correspondingly generate

transformations in SU(3). This is, therefore, an interesting topic for future study,

due to its application in high-energy physics [83]. Similar extensions to fields of

other interesting symmetries may also be enabled by such the Floquet-engineering

technique demonstrated here.

As with the theory of the Floquet-engineering technique, the modulations scheme

presented in Sec. 6.2.1 is purposefully general, and may be extended to other systems

with similar level structure and coupling control. For instance, in alkali-metal atoms

the RF-coupling used there may be immediately replaced with a Raman M -scheme

coupling, with minimal changes to the effective Hamiltonian (Sec. 2.2.2), though

with much higher Rab -frequencies due to the relative strength of electric-dipole

to magnetic-dipole transitions. This modulation technique may be readily adopted

in other platforms with similar control capabilities, such as trapped ions, Rydberg

atom arrays, and superconducting qubits.

In all cases, the present scheme enables SU(2) transformations, regardless of

the spin manifold F , but this too may potentially be extended to other symmetries

by introducing more couplings (and subsequently more control parameters). For

instance, in the case of the SU(3) Hamiltonian Eq. 6.15, it may be possible to realize

such a system in the F = 1 manifold of ultracold atoms. Such a Hamiltonian would

require individually tuneable couplings between each of the three mF levels, with

amplitude and phase control, in addition to control over the energies of each state.

In this circumstance, the quadratic Zeeman shift may act more as a resource than a

source of error, since for large linear Zeeman splitting it will result in non-uniform

spacing between states. If the non-linearity in this splitting is brought outside of

the RF-transition linewidths, then the couplings between levels may be individually

addressed through frequency selection, in a similar way to the microwave transitions

we used for state-preparation (Sec. 6.1.1). The difficult part of this adaptation

would be to engineer a coupling between the mF = ±1 states, since they may not

be directly coupled by a magnetic dipole transition due to selection rules [12]. As

such, this coupling would require an intermediate level, such as in a Raman Λ-

scheme (Fig. 2.4). As such, the modification of this coupling scheme to generate

other Hamiltonians of interest also requires further investigation.
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6.4.4 Floquet-Engineered HQC

It was pointed out in Sec. 4.3.1 that holonomies are the essential ingredient in

HQC. In this context, the holonomies studied here may be interpreted as single-

qubit gate operations, since they are members of SU(2). A true single qubit is

comprised of only two internal states, so with the additional levels in the hyperfine

manifolds studied here, more information may be encoded, potentially permitting a

d level qubit, or qudit. Despite this, the SU(2) nature of the transformations restrict

our ability to manipulate these levels in the manner required for full qudit control,

effectively making it a qubit system. In fact, we can go one step further and claim

that there is a representation of the higher spin systems used here in terms of several

qubits; due to the SU(2) symmetry of these gates, the evolution of the qubits are

inextricably linked, making each qubit essentially a redundant copy of the others.

Hence, these experiments quite literally demonstrate single-qubit gate operations.

An example way in which higher spin manifolds may be split into multiple spin-

1/2 systems is through the Majorana-stellar representation [100]. In the Majorana-

stellar representation, each unique spin state is decomposed into a set of spin-1/2

states, or qubits; these states may be represented on the Bloch-sphere, for instance,

not as a single vector but as a “constellation” of the individual qubit vectors. Every

unique spin state has a correspondingly unique constellation. Under arbitrary uni-

tary transformations, each qubit may evolve independently of the others, but here

the transformations have a more restricted symmetry. In this case, the evolution of

each qubit is linked in such a way that they are not independently tuneable, so all

qubits in the decomposition move together with a pre-defined relationship. There-

fore, through the Majorana-stellar representation, we may consider the holonomies

applied here to effect transformations on single qubit, with several redundant copies.

A natural extension of the Floquet-engineering technique would be to multi-qubit

gate operations, which has already been proposed in Rydberg atom arrays [220]. As

described in Sec. 6.4.3, the evolution of states by any modulated Hamiltonian may

be represented by a similar non-Abelian geometric phase. The Hamiltonian for

an entangling interaction between qubits may therefore be modulated in a similar

manner, to be made holonomic. It may therefore be possible that the Floquet-

engineering approach studied here can be used for universal QC, but specific gate

architectures need to be developed, and fault-tolerance investigated, to determine if

there are any advantages over other schemes. It is likely that this will depend on

the system in which it is implemented.

The detuning observed in experiments also has interesting implications when

viewed through the lens of HQC, namely in regards to fault-tolerance. As discussed

in Sec. 4.3, geometric gates are thought to be inherently robust to various forms
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of noise or error [72]. Here, we have identified detuning as a source of error that

these gates seem to be sensitive to. While the specific form of the detuning in the

Floquet basis is somewhat complicated, the result of adding a similar dynamical term

to the desired geometric phase is fairly general to HQC overall. Geometric gates

are typically resilient to errors in the rate of loop traversal, and to high-frequency

fluctuations of the path since they tend to average out [124–131]; the detuning

considered here is neither, and suffice to say, does not seem to have an apparent

geometric interpretation as its purely dynamical in nature. These results seem to

indicate one of the ways in which holonomies used in HQC are not fault-tolerant.

Relatedly, and similar to the arguments presented in Sec. 6.4.1, in the context

of HQC, the effects from the quadratic Zeeman shift may be ignored here too.

This is because in a two-level system, no such term may exist; the Hamiltonian is

fully described by the spin matrices, and hence any error from unmodulated terms

are captured by the generalized detuning (Sec. 5.3). Hence, if this protocol were

implemented in a true two-level system then there is no quadratic shift to consider.

As such, if the protocol presented here is implemented in qubits, it will have no

impact on the resulting gate fidelities.

6.5 Conclusion

Our experimental results, presented in Sec. 6.3, substantiate aspects of the theory

that these transformations arise from a non-Abelian connection in parameter space

(Ch. 5) through their excellent agreement with our numerical models; we were able

to verify that the state evolution in time, and phase imparted on states, both follow

that predicted by holonomies as a function of the path chosen. Furthermore, we

demonstrated that the holonomies measured, when detuning was accounted for,

match those expected to greater than 70 %.

Overall, our experiments provide evidence that Floquet-engineering may indeed

be used to generate non-Abelian holonomic transformations, but falls short of a

gauge-invariant verification. This is due to our lack of control over the detuning,

which hampered our ability to implement Wilson loops to truly verify the non-

Abelian character of the connection. As such, more work is required. Despite this

our experiments do demonstrate the efficacy of this technique as a means of quantum

control, perhaps with applications in QIP. The practical technique to realize these

driven Hamiltonians, as described in Sec. 6.2.1, may be generalized to other systems

with similar level structure and coupling control. This work has therefore introduced

another means of adiabatic quantum control, regardless of the underlying symmetry

of the geometric phase. With more complicated parametrizations, it is possible that
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such a scheme could be used to generate other non-Abelian geometric phases, for

instance generating transformations in SU(3), which would be of great interest to the

artificial gauge-field and quantum simulation communities. We anticipate that the

Floquet-engineering technique will become an important member of the quantum

simulation toolbox for generating interesting artificial gauge fields, and potentially

find its use in implementations of HQC as well.
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CHAPTER 7

Conclusion

I
n conclusion, we have described several ways in which artificial gauge fields may

be produced in ultracold ensembles of alkali-atoms, using various forms of spin-

dressing by external radiation. The thesis was organized into three main parts: first,

we summarized the procedure used throughout the thesis work to produce BECs of
87Rb, along with the primary techniques for manipulation of their ground state spin

levels, and measurement thereof. Second, in Ch. 3 we investigated the use of such

artificial gauge fields in understanding the many-body states of the interacting en-

semble through numerical simulations. Third, Chs. 4-6 looked at how geometric

phases may be interpreted through the lens of gauge theory, and how more compli-

cated gauge fields may therefore be studied in this manner; we focused specifically

on the production of non-Abelian gauge fields through Floquet engineering, which

was then implemented in experiment. Here we will independently summarize these

primary contributions, before concluding overall.

The methods discussed in Ch. 2 describe a procedure for reliably producing

large ultracold ensembles of 87Rb, which may then be manipulated in various dif-

ferent ways to perform quantum simulation experiments. Of these techniques, we

described both RF- and laser-dressing in detail; together, they establish a means to

manipulate spins within the ground state hyperfine levels of alkali-metal atoms, with

readily available hardware. While the techniques introduced here produce transfor-

mations in SU(2), they quite generally describe the interactions between magnetic

sublevels through either source of radiation. In each case, they may be extended

to more complicated transformations, such as through the quadratic Zeeman shift

(App. A). This chapter was completed by describing the SG-TOF technique used to

readout the relative spin populations from an ultracold ensemble, in various differ-

ent bases obtainable through RF-pulses. Altogether, Ch. 2 establishes the necessary

ingredients to perform complicated manipulations of spinor BECs, for use in a broad

range of quantum simulation experiments.
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The second primary part of this thesis was contained within Ch. 3, which dis-

cussed artificial gauge fields that were generated by engineering a Hamiltonian with

Raman dressing (Sec. 2.2.2). The engineered Hamiltonians generated transforma-

tions in spinor BECs, coupling the spin and momentum degrees of freedom. This

coupling could be described by the presence of Abelian vector and scalar poten-

tials in the Hamiltonian, for which there are corresponding electric and magnetic

fields. We concerned ourselves with finding the many-body ground states of this

system in various configurations, using our intuition from the behavior of charged

particles in classical fields to explain the results. The goal of these studies was

to learn something about quantum many-body systems, which remain intractable

even within mean-field theory due to the nonlinear interactions. As such, we de-

scribed a numerical algorithm for finding ground state solutions of spinor BECs, by

integrating the GPE; this algorithm was implemented in Python, and accelerated

on GPU hardware, which drastically improved its performance. Equipped with the

GPU accelerated code, we were able to simulate a variety of different artificial gauge

fields at low computational cost; we included the example of an artificial magnetic

field, which permitted the nucleation of quantized vortices in the BEC. Chapter 3

describes a powerful numerical technique for predicting ground states and dynam-

ics of BECs under the effects of complicated external fields, such as those used to

produce artificial gauge fields, which provides an indispensable tool for researchers

looking to find exciting new experiments to perform, or to explain existing ones.

The final major part of this thesis was split between Chs. 4-6, which described

how the study of geometric phase in quantum systems is synonymous with that of

artificial gauge fields. We introduced the concept of geometric phase in Ch. 4 as

resulting from the condition for parallel transport of states through an adiabatically

evolving Hilbert space, with curvature; the transformations of states are described

by a holonomy. We placed particular emphasis on non-Abelian geometric phases,

which have traditionally been difficult to synthesize in experiment. The differences

between Abelian and non-Abelian phases were discussed, as well as a means to ex-

perimentally distinguish them, by the measurement of a gauge-invariant quantity

called the Wilson loop. We then described some of the close relations between geo-

metric phase and the gauge fields of interest to the quantum simulation community,

in addition to its application to QIP, where it serves as the primary resource for

several forms of QC, most notably HQC.

An effort to circumvent many of the challenges faced by the community in pro-

ducing non-Abelian geometric phases is discussed in Ch. 5. Here, we describe a

means to use periodic driving of a parameterized Hamiltonian in order to engineer

an adiabatically degenerate set of states, comprised of a mixture of explicitly non-

degenerate spin states. Through the adiabatic evolution of parameters, non-Abelian
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geometric phases may be observed. We also found that if the periodic modulations

are shifted from a zero time-average, this detuning leads to a significant alteration

of the transformations; the geometric phase remains unchanged, but there are ad-

ditional dynamical contributions resulting in a broken degeneracy, and dynamical

coupling between states. The holonomy takes on a new, more generalized form, in

terms of the Anandan connection [66]. Chapter 5 establishes Floquet engineering

as a powerful quantum control technique for surpassing the explicit need for degen-

eracy in producing non-Abelian geometric phase, and goes further to describe its

sensitivity to time-independent shifts of the periodic driving; this latter point is of

substantial interest to those who aim to implement such a technique in experiment.

Finally, we conclude the third major part of the thesis in Ch. 6, where we intro-

duced a way to realize such transformations in the ground state hyperfine manifolds

of ultracold alkali-metal atomic ensembles, through RF-dressing (Sec. 6.2.1). We

then described a particular implementation in 87Rb, and a means for measuring the

non-Abelian holonomies through a set of informationally complete measurements.

Our results verify the time-dependence of the holonomies, and the imparted phase,

both in the presence of detuning, caused by a mismatch between the RF-resonance

and level splitting. The holonomies were further characterized in terms of their

fidelity, which were all low due to the significant impact of this detuning; through

modeling, we verified that detuning was the largest source of error. Due to the level

of detuning observed, we were unable to perform a gauge-invariant characterization

of the geometric phase, as through the Wilson loop.

Despite these limitations, the preliminary investigation in Ch. 6 has identified

many important practical considerations when implementing such a technique in

ultracold ensembles. While we are not able to rigorously conclude that the geomet-

ric phase is non-Abelian, as through the Wilson loop, our results provide extensive

evidence, through the path-dependence of the holonomies, and the observed relation

between the Floquet basis and rotating frame; together with the analysis of the de-

tuning against our numerical model, we have shown a detailed understanding of the

system and our quantum control capabilities. Thinking ahead to future implementa-

tions, the RF-modulation scheme is purposefully general, in terms of spin matrices,

and we anticipate that such a scheme could be adapted to a plethora of other sys-

tems with similar control capabilities, such as trapped ions, superconducting qubits,

Rydberg atoms, or liquid NMR systems; the insights established here would prove

invaluable in such efforts. We expect that the Floquet-engineering approach will be

extended to produce artificial gauge fields beyond SU(2), and perhaps may also find

application in HQC.

Overall, this thesis establishes several techniques for producing and probing arti-

ficial gauge fields that manifest in different ways in ultracold ensembles. This work
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covers all of the necessary components, from the production of such ensembles, to

their manipulation an measurement. We have also provided a means to numerically

simulate such systems, including the effects of interactions, with low computational

cost. Finally, we have introduced a path towards generating non-Abelian artificial

gauge fields, through geometric phase. Each aspect provides substantial value to

the community, for each part of the research pipeline, all the way from theory to

experiment. This author hopes that the thesis will serve as a useful resource to the

interested researcher seeking to produce their own artificial gauge fields, or to aid

in other quantum simulation endeavors.
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37. LeBlanc, L., Jiménez-Garćıa, K, Williams, R., Beeler, M., Phillips, W. &

Spielman, I. Gauge matters: observing the vortex-nucleation transition in a

Bose condensate. New Journal of Physics 17, 065016 (2015).

38. Galitski, V. & Spielman, I. B. Spin–orbit coupling in quantum gases. Nature

494, 49–54 (2013).

39. Wu, Z. et al. Realization of two-dimensional spin-orbit coupling for Bose-

Einstein condensates. Science 354, 83–88 (2016).

40. Su, S., Gou, S., Liu, I., Spielman, I., Santos, L., Acus, A, Mekys, A, Ruseckas, J
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56. Krüger, J. & Westermann, R. in ACM SIGGRAPH 2005 Courses 234–es

(2005).

57. Galoppo, N., Govindaraju, N. K., Henson, M. & Manocha, D. LU-GPU: Ef-

ficient algorithms for solving dense linear systems on graphics hardware in

SC’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing

(2005), 3–3.

58. Bolz, J., Farmer, I., Grinspun, E. & Schröder, P. Sparse matrix solvers on
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APPENDIX A

Quadratic Zeeman Effect

Z
eeman shifts of magnetic sublevels in alkali-atoms are essential to all of the

work presented in this thesis, although the linear form we utilized (Eq. 2.6) is

only approximate. The next leading-order correction to the energies of the mF levels

is given by the quadratic Zeeman shift. The Hamiltonian for the quadratic shift ϵ

is,

Ĥϵ = ϵ
(︂
ℏ1̂− F̂ 2

z/ℏ
)︂
, (A.1)

in terms of the total angular momentum operator F̂ z, assuming the applied magnetic

field is B = Bzez [29, 46]. The magnitude of the quadratic shift in terms of the

field strength is,

|ϵ| = (gsµB − gIµN)
2

ωHF (1− 2I)2
B2

z , (A.2)

where gs ≈ 2 is the electron g-factor, gIµN/ℏ is the nuclear gyromagnetic ratio,

ℏωHF is the hyperfine splitting, and I is the angular momentum quantum number

of the nucleus.

From the matrix form of Ĥϵ, we can see than, unlike the linear Zeeman effect, the

quadratic effect shifts mF levels in the same direction; levels are shifted according

to |mF |. For this reason, Ĥϵ breaks the symmetric splitting between mF levels,

as some are shifted closer together than others. If F = 1/2 then the Hamiltonian

vanishes, and hence there is no such shift in spin-1/2 systems.

In the case of 87Rb, we may express ϵ in terms of the linear Zeeman shift ωZ =

ωBBz, with ωB ≈ 0.7 MHz/G. Substituting in the other values, µB/h = 1.4 MHz/G,

µN/h ≈ 7.7× 10−4 MHz/G, gI ≈ 1× 10−3, I = 3/2, and ωHF = 6.8 GHz, we find,

|ϵ|/h =
(︁
1.5× 10−7 kHz−1

)︁
ω2
Z, (A.3)

which is useful in quickly estimating the size of this effect for a given Zeeman split-

ting.
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APPENDIX B

Rotating Basis Transformations of

Spin Operators

T
ransformations between the lab and rotating frames are a crucial part of

the work presented in this thesis, in order to remove rapidly rotating terms in

the Hamiltonian due to the fast carrier frequencies of driving fields (see Sec. 2.2.1

and Sec. 2.2.2). A key piece in making these basis transformations easier to com-

pute is utilizing the raising and lowering momentum operators, which have a simple

transformation under the rotating basis unitary. Here we will compute these trans-

formations from the Baker-Campbell-Hausdorff lemma,

eÂB̂e−Â = B̂ +
[︂
Â, B̂

]︂
+

1

2!

[︂
Â,

[︂
Â, B̂

]︂]︂
+ ... . (B.1)

The rotating wave unitary transformation has the form,

Û = exp

[︄
−iω(t)F̂ z

ℏ

]︄
. (B.2)

We are interested in how F̂ z and F̂± transform under this unitary. Starting with

F̂ z we have,

Û
†
F̂ zÛ = F̂ z +

iω

ℏ

[︂
F̂ z, F̂ z

]︂
+ ... , (B.3)

= F̂ z, (B.4)

since Û commutes with F̂ z.

174



Artificial Gauge Fields in Ultracold Atomic Ensembles

For F̂± we recall that
[︂
F̂ z, F̂±

]︂
= ±ℏF̂±. From this we have,

Û
†
F̂±Û = F̂± +

iω

ℏ

[︂
F̂ z, F̂±

]︂
+

(iω)2

2ℏ2
[︂
F̂ z,

[︂
F̂ z, F̂±

]︂]︂
+ ... , (B.5)

= F̂± +
iω

ℏ

(︂
±ℏF̂±

)︂
+

(iω)2

2ℏ2
(︂
ℏ2F̂±

)︂
+ ... , (B.6)

= F̂±

[︄
1 + (±iω) + (±iω)2

2!
+ ...

]︄
, (B.7)

= e±iωF̂±, (B.8)

hence, we have the necessary relations.
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APPENDIX C

Spin-State Tomography

S
tate tomography is a process for reconstructing the states of a quantum sys-

tem. In this case, we will consider spin states, which are superpositions of the

eigenstates of angular momentum operators. For spins in a manifold with angular

momentum quantum number F , an arbitrary state may be expressed as,

|ψ⟩ = 1

N

F∑︂
f=−F

c̃f |F,mF = f⟩ , (C.1)

where c̃f are complex coefficients, and N is the normalization factor. The goal in

state tomography is to determine the coefficients c̃f , typically in as few measurements

as possible.

The measurements considered here will consist of projections onto the eigenstates

of various spin operators; in each case, the relative populations in each eigenstate

must be determined, which requires good statistics. The measurements must there-

fore be performed many times over, and the same state |ψ⟩ must be prepared before

each measurement, as they are destructive. This is not realistic for many systems,

but spinor BECs have an advantage here because a single projective measurement

may be applied to the entire atomic ensemble simultaneously, giving the relative

populations directly. We are therefore only need to change measurement bases, and

are not required to repeat each one many times to gather statistics.

Here we will describe the process for a spin-1/2 system, as it is the simplest to

consider. Then, we will compute the results for spin-1, finding that more measure-

ments are needed.
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C.0.1 Spin-1/2

An arbitrary spin-1/2 superposition, expressed through the eigenstates of F̂ z,

{|ψz
1⟩ , |ψz

2⟩}, is
|ψ⟩ = a |ψz

1⟩+ beiϕ |ψz
2⟩ , (C.2)

where a, b ∈ R, and ϕ is the relative phase between states. We have placed all of the

relative phase on the second eigenstate, which we are free to do by gauge symmetry.

The notation used here is perhaps excessive for spin-1/2, but will be useful later for

higher spin systems.

We start by taking the state |ψ⟩ and projecting it into the eigenbases of F̂ x,

F̂ y, and F̂ z, which are denoted as {|ψq
1⟩ , |ψq

2⟩} with q ∈ {x, y, z}. We define the

population in the jth eigenstate of F̂ q as qj ≡
⃓⃓
⟨ψq

j |ψ⟩
⃓⃓2
. The populations in the

x-basis are,

x1 =
1

2

(︁
a2 + b2 + 2ab cosϕ

)︁
, (C.3)

x2 =
1

2

(︁
a2 + b2 − 2ab cosϕ

)︁
. (C.4)

From the normalization of |ψ⟩, we can simplify, and taking the difference x1−x2 we
find,

cosϕ =
x1 − x2
2ab

. (C.5)

Similarly for the y basis,

y1 =
1

2

(︁
a2 + b2 + 2ab sinϕ

)︁
, (C.6)

y2 =
1

2

(︁
a2 + b2 − 2ab sinϕ

)︁
. (C.7)

Once again, taking the difference y1 − y2 and simplifying we find,

sinϕ =
y1 − y2
2ab

. (C.8)

Last, the z populations are,

z1 = a2, (C.9)

z2 = b2. (C.10)

The state coefficients are therefore known only up to a sign, a = ±√z1 and b =

±√z2. Thankfully, we may assume that a, b ≥ 0, since if they have the same sign

it is a global phase, and if they differ in sign this amounts to a relative phase of π,
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which we can capture in ϕ. Therefore, the state coefficients are just,

a =
√
z1, (C.11)

b =
√
z2. (C.12)

We can solve for the phase ϕ by taking the ratio of the Eqs. C.5 and C.8,

ϕ = arctan

(︃
y1 − y2
x1 − x2

)︃
. (C.13)

Hence, from the populations measured in each basis, we may fully reconstruct each

parameter of an arbitrary spin superposition. Here, we have chosen to project the

state into the eigenbases of the typical spin operators, but this choice is arbitrary;

we would find the same results with any three orthogonal spin matrices.

C.0.2 Spin-1

Following the same procedure as above (Sec. C.0.1), we may express an arbitrary

spin-1 superposition as,

|ψ⟩ = a |ψz
1⟩+ beiϕb |ψz

2⟩+ ceiϕc |ψz
3⟩ (C.14)

in the eigenbasis of F̂ z. Once again, we have factored out the phase from the |ψz
1⟩

term, leaving two relative phases remaining in this case. Projecting first into the

x-basis, the populations are,

x1 =
1

4

{︂
1 + b2 + 2ac cosϕc − 2

√
2b [c cos (ϕc − ϕb) + a cosϕb]

}︂
, (C.15)

x2 =
1

2

(︁
1− b2 − 2ac cosϕc

)︁
, (C.16)

x3 =
1

4

{︂
1 + b2 + 2ac cosϕc + 2

√
2b [c cos (ϕc − ϕb) + a cosϕb]

}︂
. (C.17)

From these populations, we find two useful relations,

x3 − x1 =
√
2b [c cos (ϕc − ϕb) + a cosϕb] , (C.18)

cosϕc = −
2x2 − 1 + b2

2ac
. (C.19)
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Looking at the y-populations,

y1 =
1

4

{︂
1 + b2 − 2ac cosϕc + 2

√
2b [c sin (ϕc − ϕb) + a sinϕb]

}︂
, (C.20)

y2 =
1

2

(︁
1− b2 + 2ac cosϕc

)︁
, (C.21)

y3 =
1

4

{︂
1 + b2 − 2ac cosϕc − 2

√
2b [c sin (ϕc − ϕb) + a sinϕb]

}︂
, (C.22)

which yield similar relations as before,

y1 − y3 =
√
2b [c sin (ϕc − ϕb) + a cosϕb] , (C.23)

cosϕc = −
2y2 − 1 + b2

2ac
. (C.24)

Combining the expressions for x3 − x1 and y1 − y3 we obtain,

tan (ϕc − ϕb) =
(y1 − y3)−

√
2ab sinϕb

(x3 − xw1)−
√
2ab cosϕb

. (C.25)

The z-populations are,

z1 = a2, (C.26)

z2 = b2, (C.27)

z3 = c2. (C.28)

As in the case of spin-1/2 above (Sec. C.0.1), we may assume that a =
√
z1, taking

only the positive solution, which amounts to factoring out a global phase of π. Unlike

in the previous case, however, we are not permitted to do the same for the other

coefficients since the various potential sign combinations result in different relative

phases. Therefore, even if we determine ϕb and ϕc, we will only know them up to

a factor of π, unless we can further constrain the populations b and c. Hence, for

now,

a =
√
z1, (C.29)

b = ±√z2, (C.30)

c = ±√z3. (C.31)

Looking at the remaining equations, there is not much more we can determine

without adding additional measurements. We will thus add another set of projec-

tions, in the eigenbasis of the spin matrix F̂ v =
(︂
F̂ x + F̂ y

)︂
/2, where we have used

the subscript v for notation simplicity. As before, there are any number of combi-

nations of spin matrices we could have chosen, but we found through trial-and-error
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that this one is useful. The populations in this basis are,

v1 =
1

4

{︁
1 + b2 + 2ab (sinϕb − cosϕb)

−2c [b {cos (ϕc − ϕb)− sin (ϕc − ϕb)}+ a sinϕc]} , (C.32)

v2 =
1

2

(︁
1− b2 + 2ac sinϕc

)︁
, (C.33)

v3 =
1

4

{︁
1 + b2 − 2ab (sinϕb − cosϕb)

+2c [b {cos (ϕc − ϕb)− sin (ϕc − ϕb)} − a sinϕc]} . (C.34)

Rearranging the expression for v2, we obtain,

sinϕc =
2v2 − 1 + b2

2ac
. (C.35)

From this, and either form of cosϕc from above, we may solve for the phase ϕc as,

ϕc = arctan

(︃
− b

2 + 2v2 − 1

b2 + 2x2 − 1

)︃
= arctan

(︃
b2 + 2v2 − 1

b2 + 2y2 − 1

)︃
. (C.36)

We now have each of the superposition amplitudes, a, b, and c up to a sign, and

one of the relative phases ϕc. From these, we may determine the magnitude of the

other phase ϕb by finding the root of,

arctan

[︄
(y1 − y3)−

√
2ab sinϕb

(x3 − x1)−
√
2ab cosϕb

]︄
− (ϕc − ϕb) = 0. (C.37)

Generally, finding the roots of transcendental equations is not easy, even numerically.

Furthermore, there is still some remaining ambiguity in the relative phase, due to

us knowing the coefficients only up to a sign. Despite this, we are at least able

to determine the magnitude of each parameter through these relations. A primary

reason for this is that we have only considered eigenstates of the spin matrices, but

for higher spin systems there are other more appropriate representations, such as

the Gell-Mann matrices in the case of spin-1. This choice reflects our measurement

capabilities in the experiments discussed in Ch. 6, where the RF-pulses we apply only

produce transformations in SU(2). If we were able to implement transformations

in SU(3), for states in spin-1, we expect that there are some much more useful

projections we could measure, producing similar results to spin-1/2 where the state

was well determined. Regardless, we still expect that more than three bases are

required.

The projections considered here, in the very least, have informed us as to which

projections constitute an informationally complete set of measurements; the four
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projections here are enough for the amplitudes of the parameters, but more are

necessary for complete information. We numerically verified the above analytical

relations to determine the wavefunctions of arbitrary spin states (randomly sam-

pled), testing the accuracy of our results. We found that due to the transcendental

equation for ϕb, the results were unstable. Since spin-1 systems are not yet large

enough to be difficult to simulate (a problem in the QC community due to the large

dimensional Hilbert spaces considered there), we found that numerically simulating

the measurements produced far better results, especially in the presence of noise

(numerically simulated). The results improved drastically when adding additional

measurement bases as well, such as F̂ u =
(︂
F̂ x + F̂ z

)︂
/2. As such, when imple-

mented in the analysis of experiments in Ch. 6, tomography was done by simulating

the measurement process, rather than applying the analytical expressions above. It

is also worth noting that the technique shown here works only on pure-states; in the

presence of decoherence, other methods are required [27, 67].
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Floquet-Engineered Λ-Scheme

T
he original proposal for realizing the Floquet-engineered holonomies [219] in a

BEC, which the experiments presented in Ch. 6 were based on, utilized a Λ-

scheme Raman coupling. The level diagram for this scheme is depicted in Fig. 2.4(b).

If applied to the F = 1 manifold of 87Rb, only the outermost spins are coupled,

mF = ±1, resulting in a pseudospin-1/2 system. The desired Floquet-engineered

holonomies may be obtained through this scheme if the coupling parameters are

modulated in a similar manner as the RF-fields in Sec. 6.2.1. As such, our initial

attempts at the experiment were to utilize such a Raman dressing approach, rather

than RF. Here we will briefly discuss our progress towards this goal, which ultimately

failed due to an unavoidable issue specific to the Λ-scheme, in which spontaneous

emission from the lasers produced significant decoherence in the ensemble.

The experimental setup is essentially the same as that described in Ch. 6, aside

from the replacement of RF fields with laser fields. As discussed in Sec. 2.2, we

assume a bias magnetic field is applied to split the magnetic sublevels, creating a

resonance condition when the frequency difference between the Raman beams is

equal to this level splitting. When the beams are co-propagating, there is no net

momentum transfer to the atoms from the absorption and subsequent stimulated

emission events. As such, the Hamiltonian for this system is a modified version

of Eq. 2.49; since the F = 0 level is left completely uncoupled, the system can

be reduced to a pseudospin-1/2 subspace, consisting of only the mF = ±1 states.

The hyperfine operators in the Hamiltonian (Eq. 2.49) must be replaced by the

spin matrices (Pauli matrices times ℏ/2), as they no longer represent total angular

momentum in this case. Aside from these modifications, the system is effectively a

spin-1/2 version of the unmodulated Hamiltonian Eq. 5.1.

The necessary Floquet driving may be accomplished by simultaneously modu-

lating the amplitude and phase of the Raman beams through AOMs. Both beams,

derived from the same laser, may each be brought through an AOM. The AOMs are
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driven with frequencies that differ by the Zeeman splitting resulting from the applied

bias field; the beams are therefore on resonance with the transition. Furthermore,

the phase difference between the beams may be controlled by driving each AOM

from a common source, with programmable phases; the same AWG described in

Ch. 6 is sufficiently fast to provide the 80 MHz AOM carrier frequencies, with full

phase and frequency control. The phase, frequency, and amplitude of the individual

Raman beams may be modulated in this way. Counter to the original proposal [219],

which suggests performing the frequency modulation through the background bias

field, it was determined that in our setup, we would obtain better control if we

accomplished this by frequency modulating the AOMs instead1.

In this scheme, the relative amplitudes, phases, and polarizations of the Raman

beams must be stable, maintaining the desired relationship. In order to implement

this in such a stable manner, the path lengths of each laser through their AOMs must

match as closely as possible. Furthermore, they must be close in proximity, along

similar directions, so that any perturbations of the free-space optics are common

to both beams, such as wind currents which disrupt the phase and polarizations.

After recombination on a polarizing beam splitter, the beams will have orthogonal

linear polarizations. If transmitted to the experiment through a single-mode optical

fiber, the modes will be properly overlapped (and fluctuations from the fiber will be

common to both beams). The orthogonal circular polarizations can then be obtained

by passing the combined beams through a quarter wave-plate, prior to transmitting

them through the ensemble.

In principle, setting up the beams and modulating them as described above

should be sufficient to realize the Floquet Hamiltonian in Sec. 5.1, however, there

are further practical challenges. We found that, even with the stable free-space op-

tical setup, temperature fluctuations affecting the optical fiber were enough to make

the beam intensities and polarizations unstable over short periods of time (several

minutes). It would be prudent, therefore, to install some active feedback to stabi-

lize the beams. Actively compensating the polarization directly is complicated, but

thankfully for this scheme it should be sufficient to compensate with the beam inten-

sity alone. Near where the beams are transmitted into the atomic ensemble, a small

portion may be split off and analyzed through a polarizing beam splitter. A PID

feedback system could then be tuned to maintain the intensity coming through each

port of the polarizing beam splitter, each corresponding to one of the beams, con-

trolling the driving AOMs. There would thus need to be two independent feedback

systems for this.

1This is due to two reasons: it is not necessarily easy to modulate coil currents, especially in a
synchronized way, and the modulation depth matters here, which may be better controlled through
careful calibration of the AWG channels.
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Even with such an improvement, however, it is unlikely that the Λ-scheme is an

appropriate method to realize the Floquet-engineered Hamiltonian; the spontaneous

emission rates are too significant [24]. Raman coupling schemes rely on the adia-

batic elimination of the excited state levels. In order to properly predict the Rabi

frequencies, and the spontaneous emission rates, all of the excited state manifolds

that may mediate the transition must be accounted for; the interference between

transition paths plays a crucial role in the results. For Λ-transitions, one finds that

the ratio between the Rabi-frequency of transitions Ω0 and the spontaneous emission

rate γ, Ω0/γ, increases with detuning, and then saturates for large detunings. This

means that no matter how large the detuning is, the number of Rabi-oscillations

between levels permitted before a spontaneous emission event is fixed (on average).

For 87Rb the ratio saturates at Ω0/γ = 13, which is among the highest of all other

alkali atoms [24]. This means that decoherence due to spontaneous emission cannot

be avoided by increasing the Rabi-frequency, setting a fundamental “time limit” on

applied pulses.

In the RF implementation of the Floquet-engineered Hamiltonian (Ch. 6), the

duration of the operations was set by a subharmonic of the Rabi frequency; longer,

more adiabatic gates, would be set by choosing a smaller subharmonic. This essen-

tially permits more Rabi-oscillations per gate. In the Raman Λ-scheme described

above, we are constrained by the fixed decoherence rate with respect to the drive.

An example set of data, looking just at the how the populations evolve over time

according to unmodulated Rabi-oscillations, may be seen in Fig. D.1. Over the pulse

duration, a significant number of spontaneous emission events mix the spins between

both ground state hyperfine manifolds, and lead to significant losses from the ODT,

eventually making the atom number so small that they cannot be efficiently imaged.

This may be seen directly in the images at two different pulse times in Fig. D.1(b-c).

Near the end of the pulse, the populations tend towards being equally mixed, due

to spin decoherence. We found this to be completely detrimental to the experiment,

as there was no way to maintain the adiabatic condition, Eq. 5.32, while maintain-

ing coherence, or retaining enough atoms to properly image. For these reasons, we

adopted the RF dressing scheme utilized in Ch. 6.
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Figure D.1: Results of Rabi-oscillations under Raman Λ-scheme, with two co-propagating
beams of equal power (about 33 mW each), opposing circular polarizations, and that
differ in frequency by 2.5 MHz. The beams are red-detuned from the F = 1→ F ′ = 1 D1
transition by 2.28 GHz. (a) populations in the mF = ±1 levels over time, showing several
Rabi-oscillations that are damped, due to decoherence effects from spontaneous emission
events. (b) Sample image from the data set, with pulse duration t = 28 µs, showing
relatively high overall atom number. (c) Sample image with pulse duration t = 122 µs,
plotted on the same scale as (b), showing the significant decrease in atom number over
time.
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Computing Holonomies

H
olonomies play a crucial role in describing the evolution of quantum systems

subjected to non-Abelian connections; despite this, they are often difficult to

compute due to path-ordering, which ensures that, for loops over which the connec-

tion does not commute with itself at various points, the integration includes these

non-commutative effects. Here, we consider the holonomies produced by periodically

driving the Hamiltonian of a spin in a magnetic field (Eq. 6.8), studied in Ch. 5 and

Ch. 6. We will set up the contour integral from the connection, and then carry out

the integrals that result in the holonomies in Tab. 5.1.

Starting with the form of the connection (Eq. 5.35), we have,

Â = g
(︂
F̂ × λ

)︂
,

= g
[︂(︂
λzF̂ y − λyF̂ z

)︂
ex +

(︂
λxF̂ z − λzF̂ x

)︂
ey +

(︂
λyF̂ x − λxF̂ y

)︂
ez

]︂
,

= g
[︂(︂

cosΘF̂ y − sinΘ sinΦF̂ z

)︂
ex +

(︂
sinΘ cosΦF̂ z − cosΘF̂ x

)︂
ey

+
(︂
sinΘ sinΦF̂ x − sinΘ cosΦF̂ y

)︂
ez

]︂
, (E.1)

where λ = (sinΘ cosΦ, sinΘ sinΦ, cosΘ)⊺. Since the loops in this case are param-

eterized by the spherical coordinates {Θ(t),Φ(t)}, with the radius r = 1, we will

change basis according to,

ex = sinΘ cosΦer + cosΘ cosΦeΘ − sinΦeΦ, (E.2)

ey = sinΘ sinΦer + cosΘ sinΦeΘ − cosΦeΦ, (E.3)

ez = cosΘer − sinΘeΘ. (E.4)
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Substituting these in to the above, we obtain,

Â/g =
(︂
− sinΦF̂ x + cosΦF̂ y

)︂
eΘ +

(︂
− cosΘ cosΦF̂ x

− cosΘ sinΦF̂ y + sinΘF̂ z

)︂
eΦ. (E.5)

where the er component has canceled out.

The holonomies take the form,

Γ̂A (ℓ) = P exp

(︃
− i
ℏ

∮︂
ℓ

dλ · Â
)︃
, (E.6)

where dλ = drer + rdΘ eΘ + r sinΘdΦ eΦ. Looking at the integral inside the ex-

ponential, together with the connection above, we can see that for loops in which

Θ = Θ(t) and Φ ≡ const., the eΘ component of the connection is constant over the

loop. This may therefore be integrated explicitly, yielding,∮︂
ℓ

dλ · Â = g
(︂
− sinΦF̂ x + cosΦF̂ y

)︂∫︂ 2π

0

dΘ,

= −2πg
(︂
sinΦF̂ x − cosΦF̂ y

)︂
. (E.7)

With the choices of Φ for the holonomies in Tab. 5.1 this leaves,

Φ = 0⇒ Γ̂A (ℓ) = exp
(︂
−i2πgF̂ y/ℏ

)︂
, (E.8)

Φ =
π

2
⇒ Γ̂A (ℓ) = exp

(︂
i2πgF̂ x/ℏ

)︂
, (E.9)

Φ =
π

4
⇒ Γ̂A (ℓ) = exp

[︂
i
√
2πg

(︂
F̂ x − F̂ y

)︂
/ℏ

]︂
, (E.10)

for loops ℓ1, ℓ2, and ℓ4, respectively.

Similarly, for loops in which Θ ≡ const. and Φ = Φ(t), we are left only with

an integral around Φ. Unlike the case before, the eΦ component does not commute

with itself along the path, except when Θ = π/2 specifically. Therefore, we may

compute this loop, but the path-ordering must be taken into account for any other

values of Θ. We have, ∮︂
ℓ

dλ · Â = gF̂ z

∫︂ 2π

0

dΦ,

= 2πgF̂ z. (E.11)

The holonomy for this loop, ℓ3 in Tab. 5.1, is therefore,

Γ̂A (ℓ) = exp
(︂
−i2πgF̂ z/ℏ

)︂
. (E.12)
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For any other choices of Θ(t) and Φ(t) outside of the forms covered here, path-

ordering must be considered.
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