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ABSTRACT

The critical properties of tne quenched and ;nnea]ed
site diluted spin—% XY models are invesFigated, for tnree
cubic Tattices, using the finite cluster metnod. The lines
of second order transition points for both models in the
temperature-density plane are located. -Benavior of the
Qritica]‘exponent Yy is found not to agrée with the ideas of
uniyersa]ity. The annealed sité XY model is shown to be
equivalent to the Takagi model of H‘e3-He4 mixtures. . Contours
of éonstant reduced density n = ng+ ng in thédeé plane are -
determined and tne tricritical point is approximately located
for the f.c.c. ]attice; The two dimensional quenched and

,annea]ed_site XY models are analysed for the triangular

lattice.' The results seem to indicate that a phase transition

does occur. , -
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CHAPTER 1
) INTRODUCTION

Many different types of phase transition occur in
nature, but it.is only in recent years ‘tnat there nas been
a concerted effort to understand these phenomena collectively.

Van der Waals formulated in 1873 the law of
corresponding states, which asserts that tne equation of
state for all fluids hag the same form. This theory nas
enjoyed con31derqb]e success and 1t nas served to describe
a nu@ber of liguid gas transitions reasonably well.

Magnetic systems however, could only pe explained
from a quantum mechanical viewpoint. In simplistic terms
the Pauli exclusion principle tend§ bo keep electrons with

parallel spins apart and in doing so reduces their Coulomb

repulsion. The.difference in energ,; between the paraliel
and:antiparai‘ﬂ7 configurations is the exchahge energy. If
the increase .n retic energy;associated with a parallel
alignment .~ ' < tnan the decrease im pot- - 1 energy,
then magnetic © ing can accur. The physical mechanisms

involved in[magnetism are discussed in detail in Mattis
(];65). |

One of the simplest, yet most successful models
of magnetism is the Ising model. The free energy of the

Ising ferromagnet on- the square lattice was found



analytically by Onsager (1944). As yet no exact results
concerning tne phase transition for the three dimensional
Ising model are kﬁOWn. Because the Ising Hamiltonian in
the Pauli representation is diagonal, it is often referred
to as a classical model. Tne XY model, wihnich is a special
case of the anisotropic Heisenvery model is "fully" quantum
mechanical. “he XY model has only been solved exactly in
one dimension. |

Since exact solutions are out of the question for
most realistic modé]s of magnetism a number of approximate
metnods have been developed. Tne principle closed form
approximationsxare the metinocds by Weiss (1907), Bethe (1935),
Bragg and Williams (1934) and Kikuchi (1951). Also of
importance are the Green's functions techniques. The§e have
" been reviewed by Zubarev (1960) and Tyablikov (1967).

By far the most successful method of elucidating
the critical properties of direct exchange type models 15
the metnod of serjes expansions. In this method, thermo-
dynamic functions are expanded about. the ordered state or
about the disordered state in powers of a suitable variable
sucn as temperature or density. The series are then'ana]ysed
.using various methods to reveal any\singu]ar benavior which
may indicate..the occurrence of a continuous (or second ~~drr)

phase transition. It is this method we exploit here.



Before brief describing the purpose of this
thesis though, we mention the véry recent development of
renormalisation Qroup theory. This is an approximate method,
but fs enjdyingfconsiderab1e success as an approxiTation
4app1icab1e to classical models. For revdews,the reader 1is
referred to Ma (1973), Wflson and Kogut (1974) and Fisher
(1974). In its original form renormalisation group calcula-
tions are done in a momentum representation, but Niemeyer
and Van Leeuwen (1974) have developed the theory. in
configuration space. This newer formulation appears to
be conducive to calcuiations on duantum systems (Rogiefs and
Dekeyser (1976) and Betts and P]is;hke}(1976)).

Comprehensive reviews ;overing mos t aspects of
criticé1 phenomena are contained in the set of volumes
edited by Domb and Green (1971) and the articles by Domb
(1360) and Fisher (1967). De Jongh and Miedema (1974) have
extensively reviewed fhe experimental situation.

The XY model can be explained from a physical
standpoint as follows. Consider the following mode]l of'a
magnetic crystgj. At each lattice site is located an
elementary magnét which is allowed to rotate in a pre-
determined plane. These magnetic moments can be represented
by two dimensional vectors. If the interaction between

, - _ .

ne nbouring sites is proportional to scalar product of the

vectors representing the magnetic moments at those sites,



then the model is called the plane rotator model. Furthef,
if the elementary magnets are allowed to move in three
dimensions but are still restricted to interact in two
dimensions, then the model becomes the classical or spin‘
infinity XY model. é

The spin-% XY mode1 is the quantum analogue of
the spin infinity XY model. The difference is that the
elementary magAets at each site are spins which interact in
two dimensions only, while there are §ti11 three rotational
degrees of freedom available to each spin. It is perhaps
more enlightening to regard the spin—% XY mo@e] as describing
a Heisenberg magnet in which the crystal field has the
appropriate symmetry and strength so as to prevent inter-
action between spins in one particular direction in spin
" space. Several examples of the spin-% XY model have been
identified experimentally and are listed:in Chapter III.

fhe critical properties of fhe spin—% XY model
have béen considerably elucidated by Betts (1974) and co-
workers and by Dekeyser and Rogiers (1975). |

One of the systems studied in this thesis is the
quenched site spin-% XY model. This is a model for a "dirty"
crystalline magnet 1in which the impurity atoms arevfrozen?
in random distribution, iﬁtd the lattice. Study of such

a system is motivated both from a theoretical and experimen-

tal viewpoint.



fheofetica]]y th: -e has been consideradle specula-
tion as to the nature of the phase transition of diluted
magnets. It has been suggested that phase transitions in
random systems may not occur at a well defined‘temperature
but over a small finite range of temperatures. Also there is
the question whether or not scaling theory and the univer-
sality principle hold for such systems. These questions are
expénded on in Chapters IIl and V, where extensive references
can be found.

| To date experiments on random systems have been

restricted to mixtures of two different types of anti-
ferromagnets. However de'Jongh (pri;ate commuqication) has
begun stgdies of some randomly diluted XY antifgrromagnetS“
and anticipates that he will be able to determine the criti-
cal temperature for a number of different impurity
concentrations.

Besihes being a model for a crysta]]ine“magnet the
XY model can also be used as a 1atfice fluid model for the
normal fluid to superfluid transition in He4. Consider the

He4 fluid as a collection of bosons arranged randomly in

space. i% we then break up the space into cells Targe enough
only to be occupied by a single particle, then some of these
cells will be occupied by He4 atoms and ;ome will be vacant!
The XY model represents such a collection of bosons and

\ .
.allows the He4 atoms to move to unoccupied neighbouring cells

3



6
add in this way accoﬁnts for the kinetic eneréy of the system.
Theoretical results for the critical propertiés of the XY
model have been compared with experimehta] data for the
normal fluid to superfluid transition in He® with excellent
agreement (see’Betts (1974)). The lattice fluid picture of
the XY model is described in much more detail in Chapter TI1.

This brings us to the second mpdel studied in th?s
thesis. This is the annealed site spin—% XY model yhich

corresponds to He4 with classical impurities added. Such a

3 4

model could conceivably be used as a model of He He

mixtures with the kinetic energy and fermi statistics of

3'atoms being disregarded. This approximation is.

the He
presumably best for temperatureé above the tricritical
temperature where phase separation first occurs. The

annealed site XY model of HeS -‘He4 mixtures ignores all

but the hard core He3 - Hé3, He3 - He4 and He4 - He4
interactions. However the critical properties of "interest
to us arise from the kihetic mobility of the He4 atoms and
neglect of thebpotential taﬁ] will not alter the values of
the critical exponehts. This invarience of ciitica] proper-
ties with respect to pe?tﬁrbative effects arises from the
universality principle as stated in Chapter II.

The aim then is to find the phase diagram for

. the spin-% XY model in the temperature-density plane and’

compare this with the experimental result.



The p]an'of the remainder of\this thesis is as
fo]]oys. In Chapter II some definition§ and phenomenalogical
theories of critical‘phenomena are outlined. The XY model
of both magnet§ and T.(tice fluids is introduced in Chapter )
III. Also in Chapter III we define precisely the models
studied, namely the quenched and énnea]ed'kite spin-% XY
models. The finite cluster method Qf constructing seriés
expansions is described in Chapter IV. 'In Chapter V the
results of the analysis for the quenched site model in three
dimensions are presented, while the results for the anneq}ed
site model in three dimensions are given in Chapter VI.: The
two dimensional quenched and annea]ed site mbdels are

discussed in Chaptef VII. Final conclusions are given in

Chapter VIII. : .



CHAPTER I1
CRITICAL PHENOMENA

2.1 Introduction

The definitions and general -results from the
_tnéory of critical pnenomena that are referred to in later
cnaptérs are outlined in the following sectfons.

Basic definitions of some thermodynamic functions
and their critical amplitudes and exponents are gjven in
Section 2. Tne theory of tricritcal scaling is briefly
described in Section 3. Section 4 deals with the Fisnher
renormalisation of exponents. Tne concept of universality
of critical phencmena is discussed in Section 5.

| Throughout tnis thesis we will use mainly the
tnermodyﬂamic notation apprbpriaté for magnetic systems.
Tne conversion from magnet fo f]ﬁid 1anguage for any
~/‘ ’

formulta is usually easi]}'faci]itated by making the

substitutions

M+o-oc.

H->p - u

C

where M and H are the magnetisation and tne ordering

magnetic field respective]y. The density and chemical



-

potential of tne fluid system are lavelled o andg n
respectively and nave tne values e and Mo at the cf%tica]
point. Wnen reference to phase separation in fluid mixtures
is‘deéired, tne concentration of one of tne species 1s
related to tne magnetisation and tne difference-ih tne
cnemical potentials of the two species is the ordering

3 4”m1xtures the order

field. In’particular for-He —rHe
parameter 1is tne He3 concentration X3 and tne ordering
field %s By = g the cnemical potential difference.

We 1eave until the next rnapter a discussion of
just now the dilute XY model can be used to test the

phenomenological and tnermodynamic theories given below.

.2 Critical Exponents

Tng thermodynamic functions usua11y dealt with
when investigating @ phase transition are tne order
parameter and v rious response and corre]atioﬁ functions. .
Let F(f,H) be tne free energy of a_system, where H is the
ordering field and irrelevant variables have been

suppressed. Tnen tne following functions can be defined:

tne magnetisation

(2.2.1)

CM(T,H) = (3F(T,H)/3H)
tne isotnermal susceptibf]ity
x(T,H) = (aH(T,H)/aH) (2.2.2)

T
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and the specific neat

EH(T,H)' = (L)ZF(T,H)/JTZ)H (2.2.3)

>

Higier derivatives of the free energy are frequently
encountered in the tneory of critical phenomena and are

usually denoted

?

F,(“(T,H) = (azF(T,H)/dH'&)T (2.2.4)

In addition tne spin-spin correlation functions
characterise the microscopic benavior of the system. Tne
pair correlation function of greatest interest for the XY

‘model is

SX
r

2~)/S(SH) (2.2.5)'

I(r,T,H) = (<S > - <S;>

jo x

X

wnere in (2.2.5) S, is the x compodent of the spin at

a lattice site a distance r from some reference lattice
site at g. Tne quantity S is tne magnitude of tne spin at
each site. For the XY model <$%> is tne order parameter,

Y for.T > ?c (the critical temperature) the self correlation

term <Sg>2 is zero. In terms of tne pair correlation func-
tions the iced susceptibility may be expanded as
I(r,T,H) - (2.2.6)

x(T,H) = 1 +
: - rfo
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~In general the reduced form of any thermodynamic quantity is
formed by dividing that function by the same  function for a

paramagnet at tne same temperature. Tnus ‘we havé
m(T,h) = H(H,T)/H(K»e,T) (2.2.7a)

for tne reduced magnetisation and

C, = C

H T,HJ/NkBT . ' (2.2.7b)

mn
is the reduced specific heat. - The reduced susceptibility is
x(T,h) = X(T,H)/%(T,H>=) . (2.2.7¢)

where h = uH/kBT}is the reduted ordering field énd u’the
magnetisation per particle. 4

The modern theory of critical phenomena is
formulated in terms of critical exponents and critical
amp]itude’ratioé. let t = (T—Tc)/TC be a measure of thé
distancé in temperature from tne critical point. Then the
critical exponentjfor T > TC and h = 0 for’any tnermodynamic
quantity f(t) is

A = Limit{]nf(t)/]nt} : (2.2.8)
t-0, .

with a similar'definition for the Tow temperature critical

exponent A . If the limit A exists and is non-zero the
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implied asymptotic form for f(t) is
R A M
f(t) = At" + LBt ‘ (2.2.9)
i
where A is call:d the high temperature amplitude of f and
My > A for all i. The usual notation for tne more common
exponents and amplitudes is as follows:
m(t,0) = B(-t)® t<0 (2.2.10a)
om(0;h) == pp /8 £=0 ' (2.\i,,10b)
C-(-t)™"  t<0 | -
x(t,0) ={ _ (2.2.10¢)
ct™Y - t>0 ) ,
( AT (-t)" t<0 |
Ch(t,0) =~ { _ : (2.2.10d)
H At™® £>0
and
. Y .
F 00 e ) TR (g gy teg
-24 | |
F(21&)(%0),:/5(22)t “F(”)(t,o) >0
(2.2.70e) -
The correlation function has the form
L(r,t,0) ~ 1/r2390 £=0 (2.2.11)

and  the correlation lengtn «(t) has the asymptotic form
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K(-f) Ct<0

vK(t,O) N - (2.2.12)

Kt . t>0
For an extensive list of gritica1 exponents and their
values for some expce. imental situations the.reader is
referred to Stanley (1971). For the pure sp1n~% XY model’
the results of Betts (1974) and co-workers and uekeyser
and Rogiers (1975) indicate thnat a#O (a near logrithmic

|

divergence) and y = 1.333 + 0.002. Otner lexponents may be

obtained.from scaling tneory as éxp]éimed in the next section.

2.3 Scaling Theory =

2.3.1 -Critica1 p0int sca]igg

Scaling theory.is a pnenomenological fheory of
the behavior of thérmodynamic functions near a brjtfca1
point.ﬁ The theory was origin . i_ formu]ated by w1dbm
(1965a,b) amd Domb and Hunter J65). Kadanoff (1966) nas
given. heuristic arguments in supporf of the tneory. An
outline of critiba]'point éca]fng i's given in 5tan1ey'(1971)
and extensive rev1éws:by Vicentini—MisSoni (1972) and
Léve]t angers (1974) Eecord much of thé knbwn‘experimental
evi&ence Tn sﬁpport»of‘sﬁa1ing. |

-nThé static scaﬁihg hypothesis asserts- tnat the
singular part of-the réduced free’énergy near tne critical

region is a generalised-homogeneous function. This is

/

f



usually expressed mathematically as
FOve, %) = (e (2.3.1)

where tne exponent & 1is thé‘gap exponent whicn 15 equal
to Ai for all ¢.

- By taxing various derivatives of tne free enerqy
equation (2.3,1),every exponent previouslty defined may bve
written in terms of the two exponents & and . As a

consequence of scaling, Rusnbrooke's (1965) thermodynamic

inequality

a’t ot 28+ oy T > 2 (2.3.2)

and Griffith's (1965a,b) thermodynamic inequality
a(5 + 1) > 2 -« (2.3.3)

ére both satisfied as equalities. Scaling theory also
predicts>that corresponding high anc low temperature
exponentE are equal, for exampYe Yy = v, a = a
'Experimenta11;ltbe scaling Hypothesis can be verified

for many substances and fo- ¢ eral different types of -
second order transitions. In particular the scaled
magnetisation;,m(t,h)/(—t)d, has been plotted against tne
scaled magnetic field, h/(-t)sé, by Kouvel and Comley (1968)

- for nickel (metallic ferromagnet) and by Ho and Lister
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(1969) for Cr8r3 (insulating ferromagnet). Their plots Show
that all the poin}é for T - TC fit on one curve and all
point; for T » T; fit on qnotner, verifying the preditted
temperature independence. |

As stated aoove only two exponents are needed to
obtéin the complete set of exponents for tnermodynamic
quantities. For the XY spin-% model, assuming vy=4/3 and

«=0, scaling theory predicis y=2/3, &4=5/3, $=1/3 and n=0.

2.3.2 Tricritical scaling theory

A tricritical point, as defined by Griffiths
(1970), is characterised Ly tne existence of two competing
order parameters whicn simultaneously become critical.
Examp]ég of tricritical bLehavior can be found in metamagnets
like FeCl, (Yelon and Birgeneau (1972)), Ni(N0;),-2H,0
(Scnmidt and Friedberg (1970)) and dysprosium aluminium
garnet (Landau and Keen (1972)). Somé systems wnich display
strugtura] onase fransitions sych as NH4C1 (Garland and
Weiner (1971)) have trfcritical points. Of particular
interest to us is.the tricritical benavior of He3-He4‘
mixtures because, as we show 1ater, the annealed site XY
model is conceivably a good model for this system.

Figure 2.1 shows the phase diagram for Hé3 - He4
mixtures 1in theﬁTA pTane,‘where_A is the chemical potential
difference‘u3 - Mg

-

P
Iy
LI
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Figure 2.1 Temperature T versus chemical potential
difference Ao for He’-He" mixtures (gualitative).
The heavy solid curve represents the second
order phase transition line while the dashed
curve represents the first order transition
lTine. The scaling axes h and g are plotted and
the curve g=hQ with ¢ > 1 divides+«the plane
into regions A and A" (u-like exponents) and

and B® (t-like) exponents. ‘



17

For constant & - A£ tne transition is from the superfluid
to tne normal fluid state of Héd. When & > At the
transition is first order and tne line defines tne.phase-
boundary of the He4—ricn and tne He3-r1ch phases.

Recently tne nombgeneity nypothesis has been
extended to include tricritical points. Riedel (1972, 1974),
driffiths (1973) and Hankey et a '1972) have developed
the theory of tricritical scaling. Let J be the superfluid

order parameter and - tne field conjugate to y. Tne field
z is pnysically unrealisable. Figure 2.1 is the He3-Hel
phase diagram in the =0 plane. In tne field space
(Ta plane) the tangent to the line of critical points
singles out a special direction wnicn is used as one of
the scafing directions. The co-ordinate along this
direction is denoted as h. Anotner co-ordinate, g, can be
chosen so that it makes an arbitrary non-zero angle with
the n direction. In figure 2.1 h and g are drawn at
rignt angles. The tnird scaling variaole is z.

The tricritical point homogeneity nypothesis can

SN

. oA
F(an,1%,n °

then be written as

¢(2-at)' ,
g) = A f(n,g9,2). (2.

where f(h,g,z) is again the most singular part of the

reduced free energy. Griffiths (1973) poLntéd out that the
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above assumption results in two sets of tricritical exponents
depending on path of approach toward tine tricritical point.
The two sets are distinguished by subscripting the exponents
with a t or u. In (2.3.4) the t subscripted exponents are
used and ¢ is called tne cross-over exponent, the value of
which determines the different scaling regions. Tnrougnout
fhe remainder of this discussion we assume'that » > 1. For

3-He4

He mixtures,ekperimental evidence (Godner et fal. (1974))
indicates that ¢ X' 2. c

At this point we make a slignt digression to
degcrfbe some resuTts obtained by Riedel (1974) and co-
workers using renormalisation group techniques on tae
B]umé—Emery—Griffiths (BEG) (]971) model. The BEG mbde]
is essentially a lattice fluid spin-1 Ising model of
“He3—He4 i xtures. In this model a He4 particle, on the
ith lattice site, is represented Qy the S? = +],state, a
e3 particle by the S§=O state and the absence of a
particle by the S? = -1 state. The value "$=2 was obtained
by Riedel and Wegner (1972) for the BEG model. Otner
exponent\va]ues they oStained will be presénted later
in fhis section. |

The role of tne cross-over exponent is illustrated

below by example. Assuming the ansatz (2.3.4) and using

y = -(Bf./ag)T,A
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gives
do
v Rt

i

¢At (ib(z—at) .
;) A v(h,q,¢) (2.3.5)

Putting §=O.ahd X o= L (2.3.5) gives

(2o -ay) _ o

w(h,g) = h w(h/lnl,g/n") (2.3.6)
Equation (2.3.6) is valid winen g « h? which we define as
the region for the u . exponents and bu = ¢(2—at-At). Now
putting ¢=0 and A=g_]/¢ in .(2.3.5) gives

| C-a,t2-4 '
. 1

olin,g) =g © Su(n/e'?,9/09)) (2.3.7)

EqUation (2.3.7) is valid when g > n® which is tne region

fo} the t exponents and

By =2 - oy - by = 8,79 . (2.3.8)

In general the t exponents are related to the u exponents
by a factor ¢, except for the specific neat exponents where

the relation 1is

@, =12 - ¢(2-at) (2.3.9)

The path g=h¢ is called the sca]fng boundary. In figure
2.1 the Tine g=h® is plotted for ¢ > 1 and the different
scaling regions are ideﬁtifjed;' '

| Quantities expected to be singular at the tri-

critical point only are the concentration X5 and tne



concentration susceptibility defined by

W ='(ax3/aA)T,p

where Xy = (aF/aA)T’p

29

(2.3.10)

(2.3.11)

If 73 is the value of Xg at the tricritical point, then

using the now standard notation we have

_ t ¢ g>h¢
Xo=-Xq5 v { W
.3 73 ¢ U g<h¢
and ~A ' ,
t t g>h¢
W { -2
t Y g<h¢

An analogous procedure to that given above gives

»~

€
]

(bwt = (b(‘l"at)

and ¢At,= ¢at

., >~
]

Experimental results for He3

(2.3.12)

(2;3.13)

~He? mixtures by

Goellner et al. (1973) and renormalisation group calcula-

tions on the BEG model (Wegner and Riedel (1973)) yield the.

classical set of tricritical exponents, namely =2, at=1/2,

Yt=1, au=-] and Yu=2.
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Next we look briefly at cross-over effects.
Cross-over arises from the possibility fhat there exists
a region where’both critical and tricritical scaling laws
hold.

Consider the susceptibility in the region near
both the tricritical point and the line of second order
phase transitions. Tricritical scaling predicts that

Yy |
x¢(g,n) = & “x, (A¥g,xh) (2.3.14)

.and critical scaling asserts that

xc(g;h) = AVx (rg;5h) (2.3.15)

- where in (2.3.15) h is a parameter and not a scaling

variable. When 2 ='g-] we get from (2.3.15) that

xc(gsh) = Q-ch(h) ,

where fc(h) is the amplitude of Xco Now X = g'l/¢'imp1ies

from (2.3.14) that

o
x;(9:h) v g Fx (1,h/g"/?)

However near the tricritical region x,(g,h) = Ag~Y which
means that as g ~+ 0
el Coly-vy)
x, (1,078 %) + a(n/g!/®)



The result is that the amplitude of x. varie. .s |

o(y-v,)

A

fc(h) ~ h (2.3.16)

which diverges or converges as h moves closer to éero, ;
depending on the sign of Y Yy In the cross-over region
the observed exponents (say y for example) will not have
either critical or tricritical values, but some effective

value

Yoff = -din x(t,g)/dlInt
“which depends ‘on g (Riedel and Wegner (1974)). Wegner and
Riede1‘(1973) have also found that at the tricritical point

there may be a logrithmic correction to the simple power

law behavior for some thermodynamic functions.

2.4 Fisher Renormalisation

This section dea]s with the renormalisation of
exponents by "hidden" variables. \

The results we quote below are for thermally
diluted systems, where the impurity concentration is the
“hidden" variable. The renormalisation formufae were

derived in general by Fisher (1968) and are summarised by

the formulae
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a, = ~a/(1-a)
3.= 8/(1-a) (2.4.1)
v, = v/(1-a)

where Yy is the exponent y when the system contains a

concentration x of thermal impurities. All ~ exponents
are renormalised as y and 3. The pure expone ues are
found-on1y when x=0. The formulae (2.4.1) are t to
the condition that a > 0. In the event that a < . ot

is the specific heat is discontinuous, but finite (c.
poss;bly non-analytic) at T;, tnen all exponents vy , B,
etc. will be_observed to be greater than their values of
x=0. Only whéhxfhe specific heat has a logrithmic diver-
gence at TC is there no change in the observed value of
exponents from their "pure" values.

The formulae (2.4.1) have been'rigorously shown
to ho]d‘(Essam and Garelich (1967)) for the Syozi (1965)
model, which is transformable to an annéa]ed bond spin-%
Ising sysfem. In the case of tne XY model tnhe specific
heat singularity is logrithmic or nearly so. This means

that the Fisher renormalisation of exponents will be

undetectable even if it is present.
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2.5 UniveFﬁa]itl

he universality hypothesis has been stated by
Kadanoff (1971) as follows.

"A11 phase transition prob]ems can be divided
into a small number of different classes depending on the
dimensiona]ity of the system ahd the symmetries of the
‘ordered state. Witnin each class, all phase transitions
“have identical behavior i the critical region, only the
names 6f'the variables are changed."

The concept of universality is inspired in part
by experimental evidence. Most simple fluids héve a
similar set of exponents for the liquid-gas transition
which are véry close to the 3-D nearest neighbour spin-%
Ising exponent, i.e. y =~ 1.25, a > 0.125 and 8 =~ 0.312.
Many different magnets also have similar exponents.
Specific examples can be found in Kadanoff (1971) and
Stanley (1971). |

In addition to the dimensionality of the system
and the symmetry of tne ordered state the universality |
classes are thought to depend on the range of the interaction
and possib]y for magnetic systems the magnitude of the spin
per 1éttice site. One of the earliest formulations of the
universality principle is due to Betts, Gdttmann aﬁd Joyce

(1971). Let X and Y be two physical systems, thea the most
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singular parts of their free energies near their respective

transitions satisfy

“

) (2.5.1)
with gt =g ty and n h = nh (2.5.2)

where t = T/Tc—], h = mH/kT and 9, and n,are critical
scale factors. An immediate consequence of (2.5.1) and
(2.5.2) is that the critical exponents of X and Y are
equal. For tne spin-spin correlation function the

universality relation is (Ferer and Wortis (1972))

(R .t ,h.) C(2.5.3)

Fx(ﬁx’tk’nx) R Fy y>y'y

with Rx/dxzx = Ry/dyzy ) (2'5'4)

~ where ﬁx is the relative position of the two spins, dx is
the nearest-neighbour separation and RX is a third scale
factor. _

Recently the concept of universality has been
refined by two additional postulates. Firstly Stauffer,
Fer:r_and Wortis (1972) and Ferer and Wortis (1972) assert
that the most sihgu]ar part of the free energy in a valume .

with diameter equal to the coherence lengtn is universal.

As a consequence_of this condition only two independeht scale
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factors are needed. Secondly Betts and Ritchie (1975)
suggest that the most singular part of the energy per bond
length is unfversa]. This conjecture necessitatées only
one scale factor. However the one scalw factor.universality
does not hold for the spinerical model of Ber]in'and Kac
(1952) in the same form as for other mode]é. \

Some theoretical aspects of universality have
been reviewed by Stanley (1974). In general the hypothesis
as given above is consistent with a wide range of experimen—
tal and theoretical data. However there is considerable
doubt as to the app]icébility to systems having more than
two spin interactions. The best example of this is the
eight-ventex model, solved exact]y by Baxter (1971 1972).
The Hamiltonian for this model contains four-spin interac-
tions and the critﬁcal exponents depend 55 the coupling
_strength. This phenomenon appears to be a violation of
Qniversd]fty, but Kadanoff and Wegner (1971) have §hdwn
that the order parameter does have some pecu]iar‘symmeéries
which indicates fhat the eight-vertex model is in an
unusual universa1ity class. However, Suzuki (1974 -has
proposed an a]ternat1ve remedy by us1ng a "weak" universality
pr1nc1p1e. weak un1versa11ty requires that all exponents
should be defined in terms of the correlation length x .and

not t. The result is that the ratio for any two exponents
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for systems in the 'same universality c]as; are aqual. iMore

FAY

particu]aFTy the values 6=5 and n=0 are universal values

for tﬁree dimensional systems and y/v, B/v7, étcl are

e

invarient within each universality class.



CHAPTER T11
THE XY 1OUEL ANU MAGNETIC LILUTION

3.1 Introduction

Before motivating a study of tne XY model let
us first define what it is. ’
| | The anisotropic Heisenberg modeltor Spin*%

systens can be written as

CH =':(452)'1 LgT (s¥s% 4 sYsY) + a5 Zgly
L Sy 1T 17 ij Tivj
—].~' XX YAV
:fs DoAm KT + m KST) (3.1.1)

1

. The indices i and j run over all lattice sites and s
is the o Cartestan component of tne spin vector S of
' ' I
i and Jij are
measures of the. spin-spin coupling strength and tihe

'magnTtude's. The-exchange "integrals” 5

exte?ﬁa] fie]ds:HX'and H? are coupled to the‘spin system

-

.Qia the coqpling.constants m and u
.Threerspeqial cases of'(3.1.1) can be identified.
‘These are the‘lé{hg'Hamiltoniar (when J% .= 0), 'the
‘isotropic Heisehperg‘Hahj}tonian (whenyd“ = Jl) and the XY.
Hamiltonian (when J“Af 0). Both tne Héisenberg and Ising

m&de}s are well established ds models for certain strong

ferromagnets ‘and antiferromagnets. The Ising model is also

28
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used as a model for a’lattice fluid of classical particles.
Recent reviews of Heisenberg and Ising models are given
by Rusnbrooke et al. (1974) and Domb [1974) respectively.
The XY model has been extensively reviewed by Betts (1974)
and much of ‘the description of the XY que] in this
chapter is gleaned from that artic]ef

In the Sections 2 and 3 following we demonstrate
the conditions under which the XY model describes an
insulating magnet and a quantum lattice fluid. Section 4
describes what it means to dilute a spin exchange system
witn classical "impurity atoms and what physical ~“~uations

are described by this process.

3.2 XY ilagnetic Insulators

Betts et al. (1970) have sﬁown, using perturbative
“arguments, how 1n.the presence of avcrystal field of
particﬁ]ar symmétéy, the isotropic HeisenbergAHam11tonian
reduces to-the\XY Hamiltonian. Their argdmeﬁt 1s.as follows.
Consider a crystal-of magnetic ions of high half odd

integer spfn embedded in a lattice of non-magnetic ions.

The non-magnetic crystalline environment will introduce
single ion termsiin the spin Hamiltonian. For most
symmetries (except cubic) the leading single ion anisotropy

is proportional to (SZ)2 . If the magnetic ions are assumed:

A( to interact according to the isotropic Heisenberg model, then
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the Hamiltonian for the complete system is,

Ju S-S, (3.2.1)

Near the critical region and for U >> J > 0 only the lowest
Kramers doublet with S% = + 1/2 will be appreciably
populated resulting in an effective spin—% system. In a

system of two spins for example the XY interaction is

3

XY 2

H = -J(S+1/2) (3.2.2)

/2 /0

0
\o

and the  Ising part of the interaction is

Wl = 2978 Moo o0 - (3.2.3)
G-100 ).
0.0-10 '
0001/

/‘.r

[f the magnetic ion is for iﬁstance Dy3f then the ratio

of the XY non-zero matrix elements to the Ising non-zero
matrix elements is approximately 128:1 . Clearly then
magnets wnich are XY like can conceivably occur-in;nature.
In fact some cobalt-halide compounds définitely have an
antiferromagnetic traﬁsition which is theoretically well

explainedaby thg XY model. Examples include CoBr2-6H20 and
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CoCl -6H20 in two dimensions (de Jongh et al. (1974)).

2
More recently Algracet al. (1976) have investigated the

anﬁiferromagn%tic transition of the cobalt pyridines

Co(CSHSNO) (C10 and Co(C.HSNO) (BF For these

0 4)2 5 6 4)2'
compounds the magnetic lattice is simple cubic and tne
specific heat near TC closely fits the series expansion
results of Betts et al. (1971).

Theoretical work by Jasnow and Wortis (1968) on
the anisotropic classical Heisenberg model (obtained by
taking the limit as S+= in (3.1 1)) indicates that if

J" << 3 then the symmetry of the order parameter is likely

to be XY like. AUniversa]if‘ asserts that this should also

be the case for the spin-% X3 model.

3.3 Quantum Lattice Fluids

Yang and Lee (1952) have shown how the spin-%
Ising model corresponds to a c]assicaL lattice fluid. 1In
this context spin up is identified with the,occupancy bf a
Wigner-Seitz ce11 by avparticle and spin down represents an
empty cell. The Ising Hamiltonian is then essentially the
vpbtentia] energy of the system. In a ]iké manﬁer we show
below how a guantum ]atticé fluid is represented by the’
anisotropic Heisenberg model (fo]]dwjng Matsubara'and

Matsuda (1956))..
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Firstly each site (or cell) is assigned two

possible states such that

U= (g) represents an occupied site

|-

and Vv

- (?) represents a vacant site.

The creation of a particle at the rth site can be effected

by the operator a: defined by

T, . - '
ar—vL = u£ and a.u 0 (3.3.1)

The destruction operator a, is tne Hermitian adjoint of a;,

and in terms of matrices we can write

io_ ;001 _ 4,00

aL = (O O) and aL = (] 0') (3.3.2)
The number of particles in the_gth cell is n. = aiar .
which has eigenvalues 0 or 1. <Creation and annihilation

operators of different sites commute. To ensure that each
cell is only singly occupied, operators on the same site
obey the anticommutation relations

fa_,a} = {al,al} = 0 _
L oL | (3.3.3)

} 1

I= —+ |=

and {ai,a



2 33

The connection between a,. and a; and the continuum quantum.

field creation and annihilation operators y'(r) and y¢(r) is

v]/2 and a_ = w(g)v]/2 (3.3.4)

al = 0 (r)v] .

I
r

and

where Vo is the cell volume. The potential energy between

two particles at Lvand'i’ is assumed to be

-

V . = { o L = L ‘ .

ror . .

L [uo QL- = § | ‘ (3.3.5)
0 0

r
therwise )

where 8§ is the nearest neighbour distance. Hence the

potential energy operatorifon the 'total system is «

r
The sum in (3.3.6) is over nearest neighbour sites only.

The quantum field theory kinetic energy operator is
1= -(%72) s () vPu(r)dr o (3.3.7)

where mis the molecular mass. For a discrete lattice the
integral is replaced by a sum over sites and the Laplacian
by the finite difference operator and ¥'s by a's. Thus we

get
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T = -(8%/2m)

i
1
—_
>
, ™
o
~
)
3
O
no
S
L)
e}
—
o
= 1

where d is the dimension of the lattice and q the

coordination number.

.
The grand partition function for the éomp1ete

system is then

Z(T,u) = Tr exp B{(u-hzd/méz)N + ﬁzd/QMGz ) ‘(a:ar,+ar di,)
‘ : L,L - - - =
+ ) nn_.-} (3.3.9)
®<rr> LT
where N =1I n.
L_
. =x_.._y' f:‘x y .
~ Now if we put a,. SL 1SL and a,. SL + 1Sr then we can

make the identification between (3.3.9) and (3.1.1) by

putting
z _ 2 \ 2
_Zm“H = u + qu/Z - A°d/mé
m = 0, J; = 'hzd/qmﬁ2
and : M o= ou e | (3.3.10) .

0

The pure XY model theh corresponds to the neglect of the

potential energy between particles on adjaéent sjtes.
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The above derivation is due to Stephenson (1971)
and is outlined in Betts (1974). thistorically Matsubara
and Matsuda (1956) were the first to derivg tﬁe aniéotropicv
Heisenberg Hamiltonian as a model for.the superf]uid~norﬁa1

4 has been

fluid transition in He. The XY model of He
investigated by Ditzian and Betts (1971) and Betts and
Lothian (1973) using high temperature series expansion%.
Their results were in good agreement with the available
experimental data for various critical exponents and
amplitudes. The results for the critical exponents give

Yy = 1.33 + 0.02 and a logrithmic divergence of the specific
heat (i.e., a>~ 0). Dekeyser and"ROgiérs (1976) confirm
this estimate of vy using high temperature series expansions

with one more term than those obtained by Betts and

co-workers.

3.4 Dilute Models

By dilution of spin exchange lattice models such
as the XY model we mean the introduction in thé 1att1¢e of
non-interacting particles. - The‘four common types of
impurity dilution are classified as quenched or annealed
systems by their,therméi distributioj and bond or site
models by the mode of occupancy of tﬁe non-interacting

particles. | ‘ f

i
i
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Bond diltution is when the impurity particles are
placed in the "bond" between two lattice sites. Site
dilution is achieved by replacing the magnetic ion on a
given site by a non-interacting particle. In'quenched
dilution the impurities are "frozen in" the lattice in a
random distribution. On the other hand annealed impurities
are thermally mobile and assume their equilibrium dfstribu-
tion at all temperatures.

For crystalline magnets it seems unlikely that -
annealing of impurities can be achieved since this would
imply that the impurity atoms were able to move thfougn
the lattice. Quenched impurities in magnetic crystals are
physically realisable though.‘ Lpe quenched bond case
could correspond in a super-exchange magnet to the replace-
ment of the interstitial ion by an ion that doés‘not allow
exchange. The quenched site case corresponds to the
replacement of a magnetic ion in a direct exchange magnet
by a non-interacting particle.

Annealing of impurities can of course readily
occur in fluids. Thus it seems reasonable .to use the
annealed site model as a model for a diluted lattice gas.
There seems to be, however, no mechanism of "exchange" in
lattice fluids that cou]d correspond to the super-exchange
mode in magnetic crystals, hence bond dilution seems unlikely

for lattice fluids.
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In the next three subsections the site dilution

problems are considered in detail.

3.4.1 Percolation theory

In the next subsection on quenched site dilution
we make frequent reference to results from percolation
theory. In this subsection we define the percolation
probiem and its re]afion to the prob]em‘at hand.

Consider a lattice with a fraction p of fts sites
occupied by magnet1c jons. The occupied sites fall into a
number of clusters and two such sites belong to the same
cluster if there is a chain of nearest neighbour 'pied
sites connécting them. The mean cluster size . 111
depend on p and one instinctively expects that S(p) will
increase 1ineaf]y with p and be a maximum for p = 1. In
the case of an infinite lattice however, the cluster size
is no longer bouﬁded. Thﬁre ex1sts in fact a critical
percolation goncentrat1on p which is the largest value of.
p for which a given occqpied site certainly belongs to a
cluster of finite size. For p > p: there is a non-zero ~
probability that a given occupied site belongs to an
unbounded cluster. The relation between the percolation
prbb]em and the quénched site diiqte magnetism is cohtgined
in the following statement proved by Rushbrooke and Morgan

*
(1961). The limiting concentration Pe of magnetic elements,
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below which there is no critical temperature is the same
for all such models, whether Heisenberg, XY or Ising and
regardless of the spin value concerned. This critical

concentration is of course the critical percolation

concentration. In fact the propertieg of 'the zero
temperature Ising model led Kasteleyn and Fortuin (]969)
to establish the following analogy between certain percb a-
tion functions and the thermodynamic functions of a
ferromagnet.

| The pair connectedness (which is the probability
that two sites belong to the same cluster) is like a
pair correlation function. The percolation probability
(the fraction of sites contained in infinite clusters)
has propertiés similar to the magretisation. The mean.
c1ustér size S(p) is analogous to the zero field suscep-
tibility. Consequently it is possible to assign critical

exponents to these percolation functions. For example

* *_"Y
s(p) = cl(p-p_)/p 1 P

-~
The percolation problem has been extensive]y

reviewed by Essam (1972). Table 3.1 gives the critical

percolation concentrations for some common lattices.
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3.4.2 Quenched site dilution

For magnetic lattice models quenched site dilution
is the occupatioﬁ of a‘random distribution of Tattice sites
by non-magnetic impurities. Both the quenched site ”
Heisenberg and Ising models have been stud%ed extensively
by many workers.’ |

Exact results known to date are few, and apply
only to the Ising model. The most imﬁdrfaht of these
results is due to Griffiths (1969). His result says that
the'magﬁétjsation fails to be an analytic function of field
H at H=0 for a range . temperatdres_above that at which
spontaneous magnetisation. first appearsf Wortis (1974)
has observed this pccurrence of spurious singularities in
M for the one dimensional random dilute bond and éiié Ising
models. Also Rauh (1975, 1976) has studied a randomly
dilute spherical model and observed Griffiths singularities.
Griffiths and Lebowitz (1968) also have derived some exact,
bu{‘very general results for tﬁe free energy bf the annealed
site Ising ferromagnet. McCoy and Wu (1968) have studied
'the two dimensional Ising model with a particular distribu-
tion of impurities. Behringer (1957) was the first to
investigate the quenched site Heisenberg.(5=%) model and
found roug1y how TC varies with the concentration of magnetic

ions p. This line of critical points was compared with some
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early experimental results o%\Fa]]Ot (1936, 1937)_and
Forestier (1928) on various alloys with one ﬁagnétic'
éomponent. Brouf (1959) also worked dn this éfob]em and
was the first to point out that Heisenberg Tike systems can- -’
be diluted by either annealing or qden;hihg the impufit;e§.
For recent series expansion studies of the'duenched~sité
Ising and Heisenberg models, the interested reader is
referred to recent pépers by Rushbrooke (1511f} Rapaport
(1972a,b),/&ushbrooﬁe et al. (1972), Elliot and Saville
(1974) and references thergin, ‘Be§ausevthe‘Hei§enberg, XY
and Ising models are independent we wi]]:not\describe in
detail results of previopé work on the Ising or Heisenberg
quenched“site models. Instead, wé will quote in 1 & er

chapters only the results needed for comparison with our

own,

-~ 3.4.3 Annealed site dilution

Annealed site fmpurities are.not “ffozen;fn“ as
éfe.quehched site impurities, but are éi]bwéd to assume. their
thermaj équi1i5rium distribuytion. It is u~realistic to
expect this fype of_di]utién to be rea]iséd in crystalline
‘shbstanCes.' Hdwever:annealed impurities in a lattice fluid
could répresent dhe‘compOﬁent of a fluid mixturé.‘

| The impurity particles are classical and serve

only to occupy lattice site which could otherwise be occupied



by an interacting particile. . Since the XY model gives a
good description of the superfluid-normal fluid transition
in Hé4 1t is natural to present the annealed site XY model

4 mixtures. The kinetic mobility and

as a model for He3—He
statistics of the He3 partié]eg are absent, but for
témperatures well above the trjbritical temperature (where
phase separation first occurs) these may pot be important
considerations. Formally the tricritical‘point is where

the phase separation order pafameter, X3, and the superfluid
order parameter ¢, simultaneously become critical.

A To demonstrate that the annealed gite Spin-% XY
model'ﬁas tritriticaT behavior we establish the equiv ience
of this system.with the Takagi model'of‘He3—He4 mixtures,
fbl]owiﬁg Reeve (1976). The argument is similar to that
used bx Wortis "(1974) to iQentify the Blume-Capel mode]

. (Blume (1966), Capél (1966, 1967a,b)) with the spin——;—
Fannealed sjfg/lsing model.

Consider the model with nearest neighbourr

Hamiltonian

. HT = -J = '(aTa.+aia.

<ij> v

(3.4.1)

proposed and solved in the mean field approximation by

Takagi (1972). Total spin, S=1 for this model. The
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operators a; and a, raise and lower, respectively, the
value of the spin projection on the ith site between the
values S% = +1 and S% = 0 only.

Dekeyser and Rogiers (1975) showed that in the

limit as H] - H2 + @ HT is equivalent to the spin—% XY

model given by (1.1), with mH = H] + H2 . However, since

the a. and a, act only in a two dimensional subspace and

i
the S? are diagonal, we can decompose HT into the direct

sum of two operators. One of these operators is the spin—%
XY Hamiltonian H;y given by
: m
Hsy = -J I (a1a.+aiaT) - mH ¢ S?
m <ij> J J i

witﬁ mH = H] + H2 s, Where Nm is the number of particles in
the system. The second operator is the one dimensiona}
quantity Nm(HZ'H1)' Since these opefators act in different
subspaces of the spin-1 system they commute. Hence we may

write the partition function for the Takagi modé] as

&

N .
Z. = . It exp{8N (H,-H,)} Tr exp{-8HXY}  (3.4.2)
T B m* 2 ] N
N =0 : , m
m -
where Nm is the total number of lattice sites. Identifica-

tion of u, the chemical potential pér Site, with H2?H1 Shows
that (3.4.2) is precisely the grand partition function of

for the spin-% annealed site XY problem.
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The Takagi model has been extensively studied,
via high temperature series expansions, by Dekeyser and
Rogiers (1975) and Rogiers, Dekeyser and Quisthoudt (1975).
Their results -=monstrate, as do mean field calculations,
the existence of tricritical behavior qualitatively
characteristic of He3—He4 mixtures.,

Other thermally dilute systems which have been

studied are the Syozi (1965) model (Syozi and Miyazima‘(1966))
and th- sond annealed spin*% Ising model (Rapaport (1972)

and Cox et al. (1976)).

3.5 Dilution and Critical Phenomena

In this section we relate the general theories
given in Chapter [T to the problem of diTute lattice mbde]s.

The effect of impurities imposed in the XY lattice
model will be to lower the -critical temperature rougly
}1neaf1y with increasing impurity concentration. A
qualitative plot of Tc(q) versus q, the impurity concentra-

tion, is given in figure 3.1.

3.5.1 Scaling theory

The scaling theory outlined in Sectior
nredicts that if we approach an arbitrary point P trom the
gh g direction or the high, temperature direction the same

e. .~ ‘~nents should be observed. This is because ordinary
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Figure 3.1

l -

Schematic diagram of temperature T versus
tmpurity concentration g for diluted spin-
exchange models. The arrow A shows the
direction of high temperature approach to the
arbitrary point P and tne arrow B shows the
high q direction.
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scaling theory “an be applied to the line of critical
points, simply by inserting the density (or fugacity)

variable as a non scaling parameter in (2.3.1).

3.5.2 Fisher renormalisation

Fisher renormaiisation of exponents applies to the
annealed site case and will be practically unobservable

since o« > 0

3.5.3 Universality

.According to the universality princip]e all points
along the line-of critical points a}e equivalent. This
means that the critical exponents should not vary with q.
Weak universality on the other hand demands that ratios

like y/v be invarient with réspect to q.
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CHAPTER IV

THE FINITE CLUSTER EXPANSION

4.1 Introduction

Although the first generally applicable expression
of the finite cluster theorem is due to Uomb (1960), the
method of Rushbrooke and Scoins (1955), in turn derived
from an application by Fuchs (1942) of cluster integral
theory to the Ising problem, is substantially similar.

Nevertheless the power of the method was not fully
realised until Domb and Wood (1965) derived the high
temperature series for the Heisenberg ferromaghet using
the finite cluster technique. Previoes to this work though,
Rushbrooke and Horgan (T961) and Morgan and Rushbrooke
(1961, 1963) developed series expansiohs in in?erse
temperature and density for Ising and Heisenberg ferro-
magnetis with quehehed site 1mpuritfes. These were
essentially applications of the finite cluster method, a
point Tater elucidated by Ru;hprooke (1964).

The original derivation of the finite cluster
theorem is reviewed in Domb (1974) and parallels the «
classical cluster inte;ral fheofy‘eeve1oped by Ursell (1927)
and Mayer (1939). This:derivation is useful in that it N
emphasises the equiva]encevof the finite cluster iheorem

G

and the Mayer c]uster expansion. However we choose to

47
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follow a More elegant proof due to M. F. Sykes &nd reported
by Essam (1966). Before we can digest this proof though a

“few graph theoretic definitions are required.

4.2 Definitions of Graph Theory

The definitions presented are outlined in Sykes
et al. (1966).

I1lustrated below is a graph with seven vertices,

three‘edges (bonds) and -four components.

A graph of one component only is called connected, otherwise

it is disconnected.

Two graphs G and G~ are 1somorghic'if there is a
. one-one correspondence between their vertex sets V and V~
such that corresponding vertices are joined by edges in
one of them only if they are joined in the other. |

A graph H is a subgraph of G when the vertex set
V(H) is contained in the vertex set V(G) and all the edges
'of H are édgés of G. \

A section'gragﬁ H of G is a subgrapﬁ of G such

that its edges are all the edgeé of G which connect two

vertices of H.
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/

Any subgraph G~ of G which is isomorphic with a

graph g is said to represent a weak embedding of g in G. If

the graph G s a section graph of G then G represents a

strong embedding of g on G. The number of subgraphs of G

isomorphic with g, denoted by (g;G), is called the weak

lattice constant ¢f g in G. Similarly the number of section

graphs of G isomorphic with g is called the strong lattice
constant of g on G and is symbolised by [g;G]. "

As an example the subgraph

- . | -
|
J &

but / \—_ ' = 4.

,r
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Denoting by, {Ci}’ the complete set of connected

graphs, ordered such that (Ci;cj) = [Ci;cj] = 0 for i > j,
results in a complete set of connected graphs in dictionary

order. The first four elements of such a list must be

RVAYA

followed by either

the choice being inconSequéntial. The final and most

important définitiqn for our purposes is the following.

If ¢(G) is - ‘unction defined for aﬁy graph G,

then ¢(G) is extensive if and only if
®(G U G”7) = &(G) + &(G™) (4.2.1)

where the graph G U G” is the graph formed by regarding

all the components of G and G” as constituting a single

grapn.



In the present context a graph G has a Qertex
set V(G) which represents the sites of a physical lattice
having inferacting particles on them, while the edges are
represéntative of the inferaction between pairs of particles.
The function ¢(G) is any thermodynamic function that can be
defined for the graph. Ffor exaﬁp1e it may be the free
energy, susceptibility, etc.

Armed now with these definitions we can proceed

to demonstrate the finite cluster theorem.

4.3 The Finite Cluster Theorem

4.3.1 The theorem

Let ¢(G) be any function defined for a graph G

which has the extensive property (4.2.1). Then

(G) is either (C,;G) or tCi;G] and f(Cy) r,f’/ﬁﬁ

is a function specified by the Ci only.

where Ci € {Ci}’ Hi

4.3.2 The proof

Since ¢(G) is extensive then from (4.2.1)

Q) (4.3.1)

*
where HJ(G) is the number of components of G isomorphic with
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\

*
Cj and k is any integer such tnat HJ(G) =0 for j » k. Only
connected subgrapns or segtion grapihs need be considered,

allowing us to write

where by is either (C.;C;) or [Ci;cj] depending on the

LI

choice for the lattice constants. Tne dictionary ordering
of {Ci} means that Aij = 0 for 1 > j and Aeg = 1, so that
the determinant of (Ajj) is one and we can write,

* k

N.(G) = § rij H1(G)
i=1
-1 . . * )

where [,s = (a7 )y Substitution of Hj(G) back into

(4.3.1) gives tne desired result, namely

k ,
$(G) = I f(Ci) ni(G) (4.3.2)
i=1
: k
i . . = 5 d . s R I A
with f(C.) 35 (CJ) Fy; (4.3.3) =~ .

This finite cluster theorem holds for both finite
and infinite graphs G. An infinite graph is a physical
lattice in our case. The lattice constants on a physical

lattice are denoted by [Ci;L] and (C.;L), where L could

1 Y
represent the f.c.c., b.c.c. lattice, etc. They are

defined as the number of embeddings of Ci on L per site of
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L. Accordingly in tne thermodynamic limit the finite

cluster expansion 1s

N™To(L) = Limit f(C.).Hi(L) (4.3.4)

Yenable us to take k finite and retain an

e T . . . .
exacts? Rtyon ex§?ns1on for »(L) in certain independent

4.4 Con..ruction of the Expansion

In practice there ure several steps we must follow

‘in oraer to estab]ish‘the finite cluster expansioh for a

specified function ¢(L). These are tabulated as follows:

(i) Establish a dictionary ordered graph list.

(ﬁi) Find the matrix elements Aij which should usually be
the strong embeddingﬁ, since this enables the list
in (i) to be shorter than tnat réquired if the weak
embedding scheme 1is cnosen.

(iii) Obtain the weights f(Ci) in terms of the ¢(Ci)

using (4.3.3).
(iv) Calculate the lattice constants,Hi(L).

(v) Substitute the f(Ci) and Hi(L) into (473.2).
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In order to clarify the discussion of the .
previous section we will derive the expansion up to and
including c]usférs of ﬁhree vertices. The appropriate

graph list is

C] = [

and C4 = ZKES

and for convenience we restrict considerations to the strong

@

scheme. Thus Aij = [Ci;cjj and Hj(L) = [Ci;L]. The matrix

.(A)ij denoted by A(3)~is by inspection
12 33
0123
A(3) =
0010
0001

whicn has the inverse
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1 -2 1 3
o fo 1 -2 -3
r(3) =

0 0 1 0

00 0 1

The equations (4.3.3) then yields

Fle,) = 0(C,) - 20(C)) ' L
f(C3) = fp(c3) - 2;»((:2) +9(Cy)
,4./ W
f(Cq) = 0(C4) = 30(C,) + 30(Cy) o (4.4.1)

It is worth noting that we could have arrived at
(4:4.1) by recursivily solving equation (4.3.2) for

6= C G = CZ’ etc. and in practice tnis method is often

1°
preferred since it is easily programmed for‘a computer and
doesn't require Know]edge.of the Fjj expTicit?y. ~The
equations (4.4.1) demongtrate that the f(Ci) depend only
Oh‘Q(Ck) with k < i and not on ®§Ck) with k > i. This is
the essentia]vproperty which enables perturbation expansions
~to be constructed.

'?%Tﬁ%\shall not detail step (iv), suffice it .to say

the techniques involved in solving the problem are very
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sophjsticated (see for instance Wartin (1374)). Tne results
we neea nere,‘for a lattice of co ord1nat1on number ¢, are:
feyit] = av [6,5L) = /2, [C3at] = ala=n-1)/2 and [Cy3L] -
qm/6. The lattice L is any of the reqular Bravais lattices,
namely the face centfed cubic (f.c.c.)(g=12), body centred
cubic (b.c‘t.j(q=8), simple cubic (s.c.)(q=6), plane
triangular‘(p.t.)(q:6§ and‘the simple quadraﬁic (s.q.)(q=4).
The parameter m is ze;o except fof)thg close packed f.c.c.
(m=4)‘and the p.t. (m;Z) iattices. These data, together

with equation (4.4.]f are substituted into (4.3.2) to give
NTUe(L) = #(Cq) +.(e(C,) - 20(C))a/2

- + 2fC, q(qm1)/2

.
+1(0(C,) - 30(Cy) + 39(Cy))am/6
+ S | | (4.4.2)

-

4.“- Perturbation éxpansidns from the Finite Cluster Tneorem
The deriéation of eipansions in magnetic ion
concehtfation and;invérse tempefature for Heisenberg like
magnetic models ié rez“ily acnieved using the finite .ster
theorem. By wayéof exampTe we will derive series in quenchéd

site density, agﬁealed site fugacity and inverse temperature.
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Case I: The quenched s1te problen
L » . . y
In this proctem applicable to Heisenberg like

ferromaynets, we add to some of the lattice sites non
interacting impurities to prevent the occupation of those
sites by magnetic ions. Tine distribution of these impurity
atoms 1is assumed to be ~t raﬁdom at a11‘temperatures,
physically representing the quencned defects one mignt
conceivably expect in a recal crystalline ferromagnet. If

the probanility of magnetic site occupation is p, then

»

the system is mathiematically represented Dy WL¢gnting the
v _

factors f(Cﬁ) in (4.3.4) b’ p nere v, is the number of

vertices of Ci" This ensu->« all of the vertices of

Ci are occupied for f(Ci) J "0 .ribute in Epe expansion,

which is

2

<
—
—
~—

]

po(Cy) + po(9(Cy) - 20(Cy))a/2

¢+ P L(0(C4) - 20(C,) + 9(Cq))(g-m-1)q/2

+‘(@(c4) - 3¢(Cz) + 3¢(C]))qm/6}

+ . L o " - (4.5.1)

using (4.4.2) directly.
Clearly (4.5.1) is an exact“expfwsion since C,

_contributes only to terms of order v; and higner in p.



Case II: Hiyh temperature expansions

Jderivation of series in inveyrse temperature from

(4.4.2) is just as simple as for the p .., ~us case, but the
exactness of the expansion is not obvi .- For this reason
we snall demonstrate the method for the spécific case of the

spin»; XY mode]?

. One quqntity naving the desired ‘extensive property
is the“dimensionless free energy Persite f(T) = 1nQ/HkBT,
wnere Q= Tf expi{-gH} is the canonical partition function
»fon the system. for the XY model, the method by whjch we
obtain Q for finite c1us£ers is contained in Appendix A.

The results we need hO'e are:

b )

Q(c,) = 2

(CZ) = 2 + 2Cosh K

Q(Cy) = 4+ Acésh V2K

Q(Cy) = 2 +~2_exp(2K) + dexp(-K)

where K = 8J = J/kBT and J is the "exchange integral"

between nearest neighbour pairs of magnetic sites. These

-4

equations give an expansion in K to third order,
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]nQ(C]) = In.

InQ( ) - nz + K9/«

o) L-"l-
= 3Tn2 + K°/2 + P

' TnQ(C,) R
. 3\ | \

\

1nQ(C™~2 31n2 + 3KS/4 + K374 +
(¢

wnich are the functions @(Ci). From these we get via

(4.4.7), F(Cq) = 1n2, flu,) = KE/a, f(Cy) = U and

f(CQ) = K3/4, From equation®(4.3.2) then we get

$

= onTMng = 12 + gk%/8 + qmk3/24 + . .. (4.5.2) ~

1y
Equation (4.5.2) is correct only to second order in K

because f(Ci) produces terms of order K%i or higher,
where o is tne number of bonds in Ci' To obtatv. an
expans.ion exact to third order u%uld requife that a]]
grapns of three bonds or less be present.in.the dictionary
graph list. |

Nomb (1965) has «ritten down formulae giving, for
some different graph'topolﬁgies, the term in K at which C,
first contributes, Kzi is a lower bound for this.

Obviously we could also expand (4.5.1) in K for the

-spin-% XY model and obtain an expansion in K correct to

second order.

fﬁu
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Case III: The annealed site problem

This, tne last case we shall consider, is somewhat
different from the previous casés and is normally applied to
lattice fluid problems ratner than magnetic crystals. For
consjsfencey nowever we retain tihe magnetic system

Fd

terminology.

Just as for the quenched site case we dilute the
lattice with non interacting impurities, but allow them to
assume their equilibrium temperature distribution. We are

thus required to use the grand canonical ensemble, since

unlike the quencned site case the density of magnetic ions

is itself a thermodynamic function

P ='Zm gln i/aZm

where 2 is the grand partition functiongAd the fugacity Zm
of the magnetic ions is given by exp(uma), with Mo the
chemical potential of tne magne.ic ions.

For cbntinuous media the grand partition function

is, for N particles, given by

where Qn is the canonical partition function for n particles.

On a lattice of discrete sifes finite N corresponds to a

. finite cluster and we may w ite ‘ ¢



61

e = vz Lgy3c] atyy) (4.5.3)

Tne sum is over all graphs {connected and disconnected) with
less than or equa1 to Vj vertices. Strong embeddings are
used in (4.5.3) because they do not allow sites which are
connected on Cj ;o be occypied by sites of 9 whfch are not,
a requirement made neceﬁfﬁry“by our interpretations of the
érapns.

The free energy is constructed by forming

"nz=(C,

]) for all the C; as power series in Z.. As for the

quenched site case, if our graph list is complete up to

~and including graphs of M vertices or less, then the series

1 M

for N m

In (L) will be exact up to order Z
“For simplicity let us consider the third order

approximation for wnich the list {gi} is

9, = *
[ ]
9, = .
93 © /
9 ° /N\ |
and S 9s = ZC&

‘.
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Equation (4.5.3) tnen gives

S(cy) 1+ 2q(cy)
Aty -1+ 2za(y) v 23(cy)
2(cy) = 1+ 3200¢y) + 2°(a(cy)? +-2z%(c,) = z7q(cy)
2(Cy) = 1+ 320(Cy) + 37%0(c,) + 270(¢,)
where we have used Q(g,) = Q(C;)Q(Cy).
Proceeding as before and using o(C;) = Inz(Cy)

gives the weights f(Ci) as

£(Cy) = za(cy) - z%(a(cy))%/2 + 23 (ale,)) s
F(C,) = 2%(a(c,) - (aley?)e 232(ate, ) - 2a(c))alc,))
f(c3) = z°((arc;? - 2q(c;)a(c,) + alcy))

F(cy) = 22((alcy))? - 3a(cy)alc,) + alc,))

up to third order. The resulting expansioh is

N Tnz(L) .

2,00¢,) + 221(a(c,)-(acc; )% q/2 - (alc,))2/2)

+

z2ala-m-1)72 ((ac;))® - 200¢,)0(C,) + Qlcy))

+

am/6(2(0(¢;))° - 30(c;)a(c,) + a(c,))



b3

]

e a/z (20 €))% - 20(c)a(c,)) + (Q(¢)))%/3)
L | ‘ (4.5.4)

Although thé exactness of the expansion is again
apparent, it is not a trivial task to verify this generally.
Nevertheless the previous]y‘mentioned analogy of the finite
cluster and tne classical Mayer expansion indicates tnat
a fugacity expansion is not unexpected. -The earlier method-
of Rushbrooke aad Scions (195%) does give a 1it£1e,c1earer
insight into this property which nas also‘been demonstrated
by Essam (1967) forffhe "hard square" lattice fluid model.

Series‘expansions for thermodynamic:expectation
values are extensive and so there is no difficulty in
obtaining expansions for thermodynamic funcfions for the
quenched site and high temperature cases.

“Tentatively let us define

Tr On exp(—BHn)/EN (4.5.5)

N
<0>N = E VA

as the grand canonical expectation value for the operator
0 over. N particles, where 0n is the operator for the n
particles with interaction Hamiltonian Hn. Symbo]%ca]]y we

can express this as

<0>

NS Tr{n,Hn} 0, exp(-B(Hn-un))/Tr{n,Hn}exp(-B(Hn-un))
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which is formally equivalent to

R RN » )
0>y = -p Limit 37»{1n Tr{n,H } exp( B(Hn pn+k0n))}
A+0 n
how if the operator Pn = Hn - un +'A0n in the

exponent is additive in tne sense that

P(S, US

: 2) = P(S]) +P(S

5)
where S] and S2 are two independent systems, then the
quantfty Tn Tr{n,Hn} exp(—BPn) is extensive.since the
commutator [P(S]), P(SZ)] = 0. .The additive property of P
holds for all the quantities.we consider because On can
usually be written in the form L Oij’ with operators not
physically cénnectéd on the ]at%gce not interagting.

Equation (4.5.5) then is a good wnoice of

definition and is the same as

0>, = ¢ "0 /= (4.5.6)

where 5n is the unnormalised canonical expectation value of

0 over n particles. We note here that the usual definition
of thé grand canonical expectation value <O>N as found in
standard texts (for instance Huang (1963))

is not extensive. This is because the normalised canonicaj
expectation value of 0n is usually used in (4.5.6) instea of

the unnormalised quantity ﬁn



Cquation (4.5.5) then is a good cinoice of
definition, but is not the same as 15 usually used. For a

graph G the equivalent definition 1is

vV,
0(u)> = ¢ 1 ‘[gi;G]O(gi)/:(G) (4.5.7)
9 .
The unnormatised canonical expectation values 5(91) e not

extensive and add like
0(G U G7) = (0(6)/Q(G) + 0(67)/Q(G")) Q(&)Q(G")

remembering that Q(G U G7) = Q(G)Q(G").

As an example we get for the graph C3,
310(c,) + 22(20(¢,)0,(C,) + 20(C,) +‘z36(c3)
1+ 20(cy) + 2°((Q(c)))? + alc,)) + z7a(cy)

Expanding <O(C1)> for all the grapns Ci in powers of Z

results in an exact series expansioa for N']<O(L)> as ve had

]

before for N '1nz(L)

4.6 Inversion of the Finite Cluster Theorem

In Section 4 it was ménpioned that the equation
(4.3.3) is commonly solved by recursion of (4.3.2). However
in principle it is possible to invert (4.3.2) analytically to

obtain the theorem as

';L) (4.6.1)
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This result was established by Rushbrooke (1964)
for the quenched site problem, but is true in general. One
other definition is necessary before explaining his result.

The perimeter s of a graph G~ embedded in a graph

G is the number of vertices of G not themselves in G, but

connected to at least one vertex of G°. An example 1is the
graph C3 embedded into .
- — -»‘ ]
| SR
as

which has perimeter s=2 (the sites labelled 1 and 2). The
number of ways a graph Ci can be strongly embedded in a
graph G, with per-imeter s is usua]ly'denoted by [Ci;G]’ S.

Rushb., .xes' result is then

) =1 p Sre.sL
)L) =L p (]'P) [C1:L]$ 3 (4-62)
5 .

The variable p is the quenched site probability and the
series is truncated at s or m, where m is the maximum number
0 ertices considered in the initial graph list. The

result (4.6L2)-is valid when p=1, so the inite cluster



expansion becomes

m-v. -1
NTa(L) =z e (C)(-) ooy JLCstd,s
C. S
1 (4.6.3)
where s must be greater than _r cqual to m - vi ¥ 1 or the

term doesn't contribute.
Counting the perimeter fOﬁ each lattice embedding
is more difficult than the normal lattice constant Prou ., wm.

However we have chosen to use (4.6.3) since it ‘eliminates

the tedious recursion which i be performeé;Ezzy time we
chan&g the téhperature in a density or fugacity expansion.
Tables of strong lattice consténts and perimcter counts for
the f.c.c., b.c.c., s.c., p.t. and s.q. lattices can be

found in Appendix B.

4.7 Advantages of the HMethod

The finite cluster theorem is nqt the only method
enabling density expansions to be generéted, but it is as
yet the most.powerful.

In the terminology of magnetic systems the
following advantages can be listed.

(i) An expansion in density or fugacity ﬁontains complete
’ temperature information, |
(ii) For the quenched sitg case an expansion in inverse

temperature contains complete density information.

'\.
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(iii) When used in conjunction with the XY model all series
contain complete parallel field information.

(iv) Using the expansion in tne strong scheme necessitates a

shorter graph 1ist than most other methods.



CHAPTER V
THE QUENCHED LITE

5.1 Introduction

\h .
In this cnapter we present tne res )4€/;:A;n

~investigation into tne gquenched site spin-% XY model on

tne regular tnree dimensional Bravdis lattices.

The plan of this chépter'is as follows. In

Section 2 we discuss first the generation of series

expansions in p, the concentration, of magnetic atoms,

for the zero field free energy and for the zero field
f]ugtuatioh in the Tong range order. The coefficients are
determined for arbitrary temperature. Next we discuss the
generation of high temperature expansions for the same two
quantities. |

A

The metnods of analysis are outlined in

Section 3.

In Section 4 we investigate the béhavior of
the critical exponents of the order parameter fluctuation.
One issue we cﬁnsider'is whether the exponent, y{(p) for
approach to the second order line at constant  's in fact
a function of p. We also consider whether the exponent y(T)
for approach to the second order.11de at constant T depends

on T.
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Section 5 deals with lattice depend. itical
'properties, particularly the location in the T,p piune of
the second arder line and tne amplitude of the critical

singularity of the order parameter fluctuation.

Section 6 contains summary and discussion.

5.2 Generation of Series

In the present investigation we have generated twc
fypes of series, high temperature series and l¢w concentra-
tion series for each of two quantities, the zero field free
energy and tne zero»fie]d fluctuation in the long range.

order.

The method of obtaining these series is explained

in detail in Chapter IV. The Hamiltonian for the system is

“8H = K I (ala. + a.3 (5.2.1)
3

§1j>
and the method by which we diagondlise tne Hamiltonian for—
finite clusters is given in the éppendiv. In Equatiocn
(5.2.1) K = 3J
The expansion for Y(p,K), tne fluctuation in the
long range order, in terms of p, the concentfation of mag-

netic ions, is of the form
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Tne Ev(K) are not of simple analytic form but can be obtained
numerically to arbitrarily high precision for a given ’
temperature. In Tables 5.1, 5.2.and 5.3 are tabulated for

a selected set of reduced tempekatures, t = KC/K,.E2 through

E7 for the three cubic lattices.
The high temperafure expansions of the free energy
r  for the f.c.c. (F), b.c.c. (B) and s.c. (S) lattices are

respectively

1 2,2 3,3 12 3 3. 1 4,4
y fF(p,K) = 1n2 + 17 poKT + 2pTKT + ('TE pe = 1§ p- o+ 4§ p )K”
3 4 1 5.5 > 11 37
+ (-p7 - 5p7 *+ 105 pT)KT # " 120 P
37 4 .1 5 5 . \,6 .-,17 .3 11 4
- Y - /. ‘ '
; - 8f3p 0 - 619° + 963 plyk” e R a
(5.2.3)
i |
: - 2,2 o1 2 7 3 1 .4,.4
fB(P,K) = In2 + Pf§ t (‘Ez P - yy P ¥ ]f p )K'
1 2 7 3 29 a4 1 5 5 6.0
+ (35gP° * g P - TooP - zpEg Pt Ag P Ikt
. (5.2.4)
2 | 2.2 2 5 3 .3 4,4
Fgp,K) = Tn2 + 7 prkn + (=37 p° - 35 P * gp K
1 2 5 3 1 4 1 5 11 61,6
+ (480 P + 'g'ﬁp + B_Z-p = 'é' P + ]_6"p )K

(5.2.5)
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The nigh temperature expansions of the order

fluctuation on

V! J/p =
&

.~

YB(P;K)/H

(-17p

the same three lattices are

2,2

1+ 6pK + 33p°K~ + (-% p -

2 3

¢ . q06p3 + 918% oHyd

4

S 7897 47663

- 148 0K

” 5 3 43 -4
+ 7L§ peo- ]10256 p

251 4

127 3, 829537 P

17 167 2
( + ]SOWP

"3360 P * %7a0 P

- 739507 -

N |

203

556 126344597 p

7y 7
16 )

332872 pb

k‘%

: ﬁﬁ ) | . L o

3 J 4 : 1 5,,5
o 1163 pt 5614 pY)K

5 .5 - 7
- 4845 pT. + 1875§

213 4
73780 P

- 4213kt 199637 08 + 6287 L 071K

. 1 .3 1
R % 07 - 1047L

+ égT p3 +

(5.2.7)

5

P

)

5284p° + 245893 p°)K

K

6

6 .
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5.3 Methods;"f,éries Analysis

Given the firsé&f’ﬁérms of the power ‘series
represéntatiqn of a fur~tion F(Z) we wish to determine the
radius of convergence Lc of that power series and the

asymptotic form of F(Z) as Z - Zc . The two most common

methods employed in critical phenomena are the ratio method

and the.method of Padé approximants.

5.3.1 The ratio method : 4- '

Suppe,e that the coefficients in the series

s £
L"} N . . f\v\ T v

aré»known to degree n aY< are of the same sign. Assuming

¢

a 2% _{5.3.1)

kS,
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that all the a, o ¢t e same sign, the sequence of ratios
= v .i Al i Z £
ry a“]/aK must opjp vach the radius of convergence c of
F(Z) as 2»~.. 1f we further assume that F(Z) has the
asymptotic -form
CF(Z) ~ A - 272070 (5.3.2)
) 5 ! ‘ " R .r'v s ‘
as Z+ZC then the ratios mutt have the asymptotic form
S, v 220+ (g-1)/R) (5.3.3)

2 c

. a
L Y

The radius o%'Canergenge of (5.3.1) is the first singularity

~from thgrorigin'in tqe'comp1ex Z plane. A plot of r, versus

1/2 wiiify1e1d 77 as the intercept on the 1/& = 0 axis and
c

the slope will give ZE](g-l), provided the form (5.3.2) is

correct. By,equnding'(5.3.2) as ajseries_in Z the asymptotic

form of the a, for large ¢ is d&termined as

a, ~ Ag(gtl) ...’(g+£-])/l!gi~ . (5.3.4)

2

from which the ampljtude A can be dbtaihed using the previous

estimate;afor g and~Zc .

- -
-

' ~
5.3.2 Pad€/approximants - -

4

The rat#o'method is usually used to give preliminary

est1métes for the position of ‘the crﬁtical poiht and tHe

exponent g. A more widely dsed method, especially fok ser1e§

of moderate'fength, is the method of Padé. approximants.

» w



D

A TN/D] Padé approximant is tne ratio of two

polynomials of degree N and U, so0 that

2 n
n_ + n1£«3;n22 + .. nNZ

0
; 2 U
1+ er.+ dZZ oL, dDZ

[ti/0] = (5.3.5)

The N+D+1 unknown coefficients of equation (,.3.5) are

equated to the first W+D+1 coefficients of the series (5.3.T).
I[f the first L+terms of F(Z) are known, then we must have
N+D+1 < L. Since the singularities of the Padé approximant

consists of simple poles ‘h]y we should represent by Padé

. R J, . . . . “
approximants Hanctions whicn have simple poles only.  if
o

oy

- .\

the functidm}v f%“ana]ysed has the simple form (5.3.2) then

the functions [F(2)1/9 and dinF(2)/dZ = [F(2)1 'dF(2)/dz
-have.simple poles. If g is known then poles of Padé
approximants to [F(Z)J]/g give estimates of*Zc and the

/ /g

.  J
~residues of the poles closest to Zc.give estimates of A1 .

If g is not known then the location of poles of Padé
- approximants to dlnF(Z)/di&give estimates of Z_ and the

cor%espondi%g residues give :estimates of g.

'5.4% ¢ritical Exponent Behavior

At the .phase boundary‘the fluctudtion in the long
rangé ef (or equivalently the initiai susceptibility) of
the spin-% XY mode]yis expected to.divérge sfrong]y. " For the
purposes of series énalysis we éésume a singuTarity of “the |

simple form
nele E
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tp.K) = Clp){1 - k/k (p)]7 P (5.4.1)

-

for approach along a path éﬁ'constant p in the K-p planc.
For approach along a line of Constant temperature the
singularity 1s assumed to have the form

V(p.K) @ KD - prpg (k)77 (K] #4l2)

'
Admittedly more complicated behavior cannot be ruled out.
Indeed various more, comp]icafed types of phase transition
behavior have been established (McCo. and Wu (1968),
‘ériffiths (1969)) or made plausible (Suzuki (1974), Harris

(1974)) for other models.

-~

Seed

Most previbus analysis has goncentrated on the high
temperature series, for which the behavior (5.4.1) 1s.a§sumed
(Rusnbwooké'et al. (1972), Rapaport (1972a) and references
therein). Accordingly, we conéider the high temperatﬁre-

~series first. As critical exponents are lat e independent
and as high temperature series generally behav. best on.the
f.c.c. lattice we concentrate on that lattice %n attempting
to-determine y(p) and Y(K). Our results Qn tne b.c.c. and
s.c. lattice are consistent with but less brecise than thosé
or the f.c.c. 1atfice. - S \
| ‘Deta11ed analysis of a 9 term High-tzmperature

series for the fluctuation of ‘the pure XY model on the f.c.c.
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‘dependence of y on p.

g&x‘ 80
lattice yie:'ded (1) = 1.33 + 0.02 and KC(1) = 0.2210 + 0.0010
(Betts et al. (1970), Betts (1974)). iaturally the analysis
of the seven termuhign temperature series for Y(p,K) for the
dilute XY magnet will yield less precise results.

Assuming the validity of (5.4.1) estimates of vy(p)
can be obtained from Padé approximants to tne 1ogarithm$%?
derivative of the high temperature series for Y(p,K). The
results of such analysis for a selection of values of p for
the high degree, central approxijmants are displayed in
Table 5.4. | ‘

Tne mos} not1ceal‘ feature of Tablce 5.4 is the
increasing scatte@#o? the y(ﬁf‘est1mates as p decreases.
This scatter, eveﬁ at p =1, is sufficiently great to
indicate that the hignh temper:'ure series have not yet
settled down to their asymptotic benavior. If, nevertheless,

some "best" estimate of vy(p) be extracted from Table 5.4

~and plotted against p then the .resy'ting curve falls ﬁoughﬁy

halfway between the similar curvés of Rﬁshbrooke,et al. (1972)

*
L}

for the spiﬁ-% Ising and Heisenberg models. Given that y(p)

$ .
vr

increase as p decreases for all these models, then the
behavwor XY model is as expected from simple 1nterpo]at1on

However ue do not be11eve that the Padé approximant ev1dence,

for the XY model, 'is suff1cwent to establish firmly a -~

8 . »



e N
.k

8
Table Estimates of tneg critical exponent, y(p), from
(/] Padé approximénts to series for
d Tog Y(p,K)/dK on the f.c.c. lattice
(N/D] p=1 p=0.¢ p=0.8 p=0Q0.7 p=0.6
[1/5] 1.36 1.44 1.61 2.19 "o
[2/4] 1.36 . 1.43- & 55 1,81 2.89
[373] 1.27 L 1.3 w1538 ® 5o 1.76
V o ’T’:' DL .
5 e oy
[472] 1.52 1.83 3.5¢% -
[1/4] 1.44 - S AT s
. . A.‘ g | ; | m R
[2/3] 1.23 1.25 1.30 1.37. 1.53
‘) .
1.08 1.08 5«;:’] 07 1.06 1.04

[3/2]
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Ratio plots also indicate that tne high;temperature
series for Y(p,K) have not yet reached their asym;totic form.

The low concentration expansions of Y(p,K) tell a .
rather dffferent story. We have been able to analyseAthesv’
series by both ratio and Padé apprbximant methods for a set
of vaiues of t = T/TC(]). For 0.7 < t < 1.0 the ratio plots
are remarkably Tinear. Figuré:S.l illustrates the behévior‘
of the ratios for a typically good series, at t = 0.9
Table:5.5 summarizes the resu]t%SQF the ratto analysis. The
assigned errors are confidence ]imits’obtained by examining
the range 0Ff p]ausib]e sfhaigh§i1ine 1ft9\t0 fhe points on
-Ehe ratie plot. | : | '; l\f  . .

A1ternativefestjmates of ?(f) akej}{faine%‘frfm’the
residues of Padé approximants fo Tow concentration ser1§§'
expansions of Y(p,K)'gh the f.c.c.*ﬂatiice. The‘resultq of

“such analysis for degree 4 and 5'approxihant§‘js disp%ayed '
in Table 5.6.- Confidence 1imfts could be assigned on the
basis of the degfee of consistency amoné differentJPadé"
épproximants to the same series. 'Notg that the central
estimates drPft slowly bpwarqqas t decréases. The estimates
from nigh denominator degreeﬁzﬁpfoximants.drop while those |
.from high numerator degree rise sharp1y'as t decreases. .

The ratio estimates of Y(t) and the estimates from
~centpal Padé approximants agree well with one another. '
‘ . , - . \
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1.20" ‘ l' T' | . T
118 |
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1,16 | . L
. . . e
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Figure 5.1 Ratio Bf'coefficients EE/E%-] in the low p

expansion of the fluctuation Y(p,K) versus
1/n for t = 0.221/K = 0.9 on the f.c.c.
lattice.
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Tablé 5.6 Estimates of the critical exponent, Y(t), from ;

[N/D] Padé approximants to series for
d log Y(p;X)/dp on the f.c.c. lattice

[N/D]  t=1.0  t=0.9  t=0.8  t=0.7  t=0.6  t=0.5
[0.5] 1.22 1.13 1.05 0.97 . 0.89 0.79
(1741  1.23  1.25 1.28 1.32 1.39 1.55
[2/3] 1.23 r2a | 1.27 T.30  1.35 1.41
[3/2] 1.23 1.24 . 1.26 1.300 1.34 1.40
[4/1] 1.24 1.39 1.57 1.85 2.34 3.82
[0/4] 1.23 1.14  1.06 0.99 0.94 0.94
01731 1.23 125 1.28 1.33 5 1.41 1257
[272] 1.22 1,24 1.25 1.28 1.31  1.36

[3/11 1.2 1.33 1.45  1.58 1.62 1.34
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Naively one would conclude that for the undiluted spin-%fXY

model y = 1,23 + 0.01 while as the cr1t1ca1 temperature

drops due to dilution the critica] exponent y(t) increases

to reach a va]ue Y = 1.4 + 0.1 at t =-0.5 (or at p - O;B)l

" XY model y = 1.31

-

| ‘(Griffithsv(1970); Kadanoff (1971), Betts et al. (1971),

Both features are somenhat unsettiiag. For the
pure S = 1/2 XY model y = 1.33 + 0.02 (and for the § - =
+0.02, Ferer and Wortis (1972)).: The
'Y'

equality Qf y and for the undiluted model seems rether

Jirmly excluded. According to prevai]ing‘viens of critical

behavior, near a 1ine'of second order transitions‘(Griffiths
and Wheeler (1970), Griffiths (1973)) one would_expect the
free‘energy and thus Y(p,K) to be a generalized homogeneous .
function of‘an appropriate pair_nf independent variables,
A(p,K) and g(p,K). A special direction in the p,K plane is
defined by the tangent to the second order transition.]ine, -
K = K (p}- 'The A = 0 axis then must\be chosen tangential to ‘ ’
the second order 11ne at the point of 1nterest (here, at n

p=1) and the g = 0 axis is then in any d1rect10n making a-

finite ang]e with the tangent If Y(A g) were a homogeneous .

" fungtion of 1ts arguments then y(]) and Y(1) would have to be

equal, contrary to our findings

Secondly, ideas of universality or smoothness |
' ;

t Ferer and Hortis (1972)) would require y(t) to be independent

.

-~
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!'of.p The-estimates ofm7(t). pdrtiCular1y from the ratio
plots, cannot readi]y be reconciled with a constant Y.
Smobthness wou]d also require y(p) to be independent of p,.
but our high temperature series results are not precise
‘enough to rule out a constant y .

. The above results are all based on the f.c.c.
lattice. However the corresponding results for the b.c.c.
and s.c. lattices, though less precise, are 1n accord with

the f.c.c. results. = , e

5.5 Lattice Dependent Critical Properties . .

From the series we have generated if they be long
enough we can derive A number of critica] properties wh1ch
are lattice dependent ~In principle we can estimate for the
f.c.c., b. .c.c. and s.c. lattices the amp]itudes C(p) and
C(t) as defined py (5 4. 1) and (5 4.2) respect1ve1y,
‘analogous amp]i udes A(p) and K(t) for the spec1f1c heat,
and the locatioh of the second order line, Pe (t) ‘or t (p)

- To locate the second order 11ne, Pe (t), we use
_1the more regular Tow concentration expansions for Y(p K)

Vrather than the high temperature expansions If y(t) were -

o given the most precise series estimates of Pe (t) would be

R

obtajned from Padé approximants to Y”Y Now in Section 4,

we have noted Some apparent t dependence of the ‘estimates of C
[ I

Y . However a 10% error- in y yie]ds only- approximately a 1%'
_ : . . y
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error in p., which allows us. to determfhe pc(t) with

reasonablé prec1sion. We adopt a uniform va]ue of y(t) 4/3

This represents a reasonable mean -value of y extracted

from Tables 5.4 and 5.5, and a]so this 1is very close to .:

the value of v(1) estimated from high temperature ser%es

- ‘Over most of the range 0.3 < t < 1.0 estimates

‘of pc(t).from higher;degfee cehtra1 Padé epprmx1manis to

d Y?la'ere;wejl converged, and we have taken as the best
~estimate of p_ the “average of the [1/533“[2/4].\L3/3];f[4/2]Q
[1/74]), [2/31, [3/2] and [2/2]“apprOXimants."Our\confidenee
limits, given y=4/3, are a fraction of. a percent over the

~above nange The qu%lity of the series deteriorates rapid]y

J

Jor t < 0.3 however.

Our results for p, (t) are d15p1ayed 1n Fﬂgure 5.2

- for a11 three lattices For comparison we heve also plotted

* the mean field result pc t”'the resu]ts for the S=1/2
Ising mode]l on, the f.c.c. Iattice (Rapaport (1972&)) and the
,fN:resuIts for the S=l/2 He1senberg model on the f. c. c. lattice
\'(Rushbrooke et‘el. (1972)).m R@paport wis able.to extend the
.Ising‘mﬁdgy,;urve‘downwtémt-o while kushbrooke et a].'were '
un;ble'io eitend the;Heisenbemg model resulgs be10w_t=0.4a;
’ -For the feg.c,’anqlbkc;c. lattices we have'been*eble/to ‘
;estimate'b; feg;t 3 6{2, am&mas the curves are sQ smobfhvwe

nv'feel cdnfidemt in eXtrapolatjh;~them»to §=0.'"Aiso plotted in
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0,0

0.1 , F

Figura 5. 2 Critical temperature, =T (p)/T (0) versus

p for the mean fteld approximation (M), the
spin- %-Ising nodel .on the f.c.c. lattice (I),

i"ftha spin-z-ﬂtiﬁaﬁbarg model’ on the f.c.c.

lattice (H), end ';gg spin-% XY model on the.

] f.c c. (F). b c c. (8) and s.c, (S) lattices.
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e 5.2 are the critfcal\probabilities for the site

percolation probTem (Essam (1972) and references therein).
: The ; (t)‘ ‘curv'e’ for ﬂ\’ I.s'ing mode"l, as a1ready

noted by Rapaport, appears to intersect the p axis at the

. site percolatfon critical value, ps k\!ith 1nf1n1te slope

In contrast the XY model curves appear to 1ntersect the p
axts with finite slope. of course for any lattice model -
gf d11ute magnet1sm we must have p (0).a Pe because there
are no 1nf1n1te clusters for p < p ~ For the {sing and,

‘the XY models thevinequal1ty seems_to be an equality. .The
xffnfteness»of dt/dp at t=0 for the XY model as opposed to
the infinite s]openfor'the,Ising‘model ref]ects the
diffErence fn character of the'eiementary ercitations It

requires a f1n1te energy to overturn spins and thence reduce

the Ising model magnetisation while the XY model presumably

N

&

has spin wave: Tike excitations of vanishing energy.

-
For the He1senberg model curve to 1ntersect the p
faxis at pc (1f it do so) it must have a range of upward
curvature, as disgussed by Morgan and Rushbrooke (]963)
Ry

In contrast the Ising and XY mode]ls seem to have downward

A,‘curvature only throughout their whole range N _ 'ﬁﬁ

Finally we present in Table 5.7 our best est1mates

of the terminal gradients at both erts of the Pe (t) curves\1

. for the XY models and for comparison the figures for: the S I/Zp

Istng and Heisenberg models (Rushbrooke et al. (1972))

’ f“: .‘:'.‘ "k\'l
o : o S

P
-
.
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‘ Residues of Padé approxiwahts to Y3/4 yield
cr1t1cql;iﬁp11tudes T(K) or f(t)._assuhing the validity of
(3.25'and continuing to adopt the universal value y(t) = 4/3,
The resuTts are of course not so well cohvehged as those for
Pe (t) from the poles of the same Padé approximants Given
the foregoing assumptidﬁs we obtain estimates of the "
amplitudes f*(t) (X = F, B or S) with a typical confidence
. limit of 2 or 3% over the range 0.5 < t % 1.0..
| .Figure 5.3 eghibits C(t) fdr‘the'threevrattices. s
somewhat unusual feature is that all three curves intersect
Yat t = 0.8‘and C=0.95. We do not}howeuer attach any
particular significance to this feature.’ S | 7
.'Attembts to anaijse the_specific'heat<ser1es have

_not been successful. This is not surprising in vieu‘uf the
vsho}tness oflthe series and the well known intractability :
of specific heat serieslin generai. ' | L

5.6 Discussion and Summary .

*

In Seet1oh’ 2 We have discussed the generation of
series expansions for, f, the <zero field free energy and, Y, .
the . zero fie]d fluctuation in. the 1ong range order or
-transverse magnetisation of the sp1n-7 XY model with quenched |
'site di]ution. Low magneticlion concentration series of- !
degree seven 1n concentratioé p, have been generated for both

37f(p K) and Y(p K) for arbitrary K, the inverse temperature
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Figure 5.3 .The amplitude T(t) of the order parameter
S fluctuation versus t = T/Tc(l) for the C
-¢.c. (F), b.c.c. (B) and"s.c. (S) lattices. -
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variable and coefficients for Y for selected values of Kf,

s
-t

are tabulated in Section 2 , Us1ng the l1ow. concenﬁYatfon

been generated for f and Y for arbitraﬁg p Thé?resu
]\"'

‘series are listed in Section 2 alsol; In Seét@pn 4 above
we have reported ‘the results .of ana1ys?s\of the“h?gh .
temperature series for Y(p, K). which-are not conclusive but

| point toward ap dependent Y . The low p ser1e§ for Y(p,K)
are however more regu]ar and yie]d an apparent p- dependence
of ¥ as\TT1'strated in figure 5.2. |

: S Assuming a “best“ value of y = 1 33 we have.
determined the second order phase transition 1ine Pe (t) from
the low p séries for Y(p,K) for all three: lattices The
resu]ts are displayed in figure 5. 3 with for comparison the
\p (t) curves for the Ising and Heisenberg models. One

' 1nteresting feature of ‘the XY mode] curves, in common with

. the Ising mode] curve, 1s the downward curvature everywhere
Another 1nteresting feature is that the XY curves seem to
intersect the P axts at the ap| ropriate percolation proba-
‘bilities ~In contrast with the Ising mode], the XY curves
have- finite s]ope at T =0 It is not possible to say if the
Heisenberg model curve 1ntersects the p axis at the perco]at1on '
:probability, but if it does then it must have a region of

'upward curvature.
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! Théx11neaf bchavtor‘of;TC(p)das a functjon of p
near thcjporco1étion-concenthation p: haS'béen verified by
 Stauffer (1976).‘ He has used the spin-wave argument of
‘Shender and Shklovskit (1975). together with de Gennes' (1976)
sca11ng law for the. conductivity of a random resistor/hetworkf
to arrive at the relation T (p) a (p - p ) as p + p* |

Scaling theory for d11ute magnets 1n the perco1ation
1imit has,recently been- 1nvestigated by, -Essam et al (1976)
'-and Stauffer (1975). In particular the results of Stauffer
obtained using cross over cons1derations similar to. those
| used in Section 2.3, predict the divergence ‘of the amplitudes
f(tL_as't + 0 shown 1h Tigure 5.3. 'Finaily we note that
Cok et"ol (1976) have verified that for the quencﬂhd bond
',Ising model the ratio v/v doesn t depend on p, the concentra-
tion of a]lowed bonds. whereas y does This wou!d‘seem to
'verify.the weak upiversa]itx hypothesis of Suzuki jn this

case. o ,
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6.1 Lntroduction 4.‘ ",rV

.'cuabren VI ;{

THE ANNEkLED SITE PROBLEM

c 2 a

P~ ' - K ‘¢ .

The nearest neighbour Spin~7 XY model in a_ parallel;

magnetic field Hais defined by the interaction Hamiltonian.
)

)

LA - z
H’ =J <fj> (a1 J + a1 J) mH f Si. (6.l.l)

1

-

The system we consider in this chapter is governed by the
Hamiltonian (6 1. l), but the lattice contains impurity
atoms which -are thermally mobile The possible existence
of a tricritical point for this" model is discussed in
Saction 3.3,

The plan of this chapter is as follows In Section

2 - we tabulate some of the series expansions«used in the- ﬂ

analysis ‘Section 3 contains the analysis of the séries-
for the three cubic Bravais lattices when H=0 and for the

f c C, lattice for some non- zero values of H. In Section 4

. we relate the spin 7 annealed site XY model to He3 He4

: mixtures and show how the A .1ines may be obtained in terms

of ekperimental variables., Attempts to  locate the tri- ,2”2

'1 critital point for the f.c.c. lattice when H-O are Outlined in

1";599t1°",5

Section 5 A shortndiscussion and summary are contained

96
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6 2 Genergt?on of Serieg | _
The series-ﬁor the' fluctuetion in order parameter

! P

and for the grand paftitfon function &re geherated by the
- 'method outlined in. Seetion 4.5, Series in magnetic 'sitd
.‘fugacitx 2z m@y be converted to series in magnetic ion,
ftdensitx Ny by using ‘the, forpula - o ‘.g ' | Jj_ ha
’ -:". .. . h‘ '»' : . " . . | -
"a',f - f‘~ ‘N (K.n,z)Vvtzaln g(Kyh,2)/0z. - (6.2.1) .
i e, T LY S .
where K - ﬁJ and b = MHIJ . P : . '
The expansion for Y(K h z). the f%uctuation in’
long range order, 1n pOuers of z when h-o 1s of. the form °
b e Y w2z e £ b (K)z - (s}z:zy
” S ,\ . . r . S

The: coefficients b (K) are not analyt1c. but are obtainable_
to arbitrarily high precision for a given value of K. i
‘i‘wTabulated An Table 6. I\are the coefficients by =2 7 for ]tf“'ﬁ

‘ﬂthe f.c.c. 1att1ce for- selected values of norma1ised

..1Vtemperature t ‘=K, (1)fk |
1 The seriee\(ﬁ 2. 2)—!03 be converted fﬂ a serie'

TR
~t

1n magnetic ion- concentration n as disoussed above.

In

'. . . - . e . e
. [ -

| zem field this may be wr'ltten as "'q;
g -’n + Y (x)n
o z-z.
|.”

IR L C
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The coefficients a, L=2,...7 for the f,c.c: lattice are

tabulated in Table’6.2.fOr-selected values of t.

\j

9%

.

6.3 _Second Order Transition Lines

In order to determine the locus of critical

c

dehsities nm

as a function of temperature we rely solely

diverge. at the second order phase boundary (and then only
weak]ly) 1is the specific heat, for which the series we

obtajined fai]ed to yield. consistent results As 1is usual,
we assume a divergence for Y(K,h,nm) near the cr1t1ca1. |

 density with the form

Y(Kohomy) & TOKGRLT S n/n€(K,n)1-T(KaM) (3.7

where the path of approach in the Kn.m plane 1shalong lines

of constant K and h, with h = mH/d - R .
Both the rat4o method and Padé approx1mant
techniques ‘have been used to 1ocate n; for fixed va]ues of

.t o= K (n = 1)/K. In general the resu]ts of the ana]ys1s
are very s1milartto those presented in I for the quenched _
site case; In particu]ar. ratio analysis and the residues

of Pade approximants to dInY(K h,n )/dn for the f.c.c.

lattice shoy.that the apparent value of y(K,h=0) varies from
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from ¥ £ 1.21 .01 for t = 1.0 toy = 1.5 i,Oﬂ] for t = 0.5.
Values of y from some fourth.and fifth'order'Pade approximants
to dinY(Kth;nﬁ)/dnﬁ are presented in Tahie 6.3. Estimates
oi ?'are scattered for t <'0{§,. |
. | '. The value of‘V(tai) agrees within the error range
with the value i;za'i .01 found for the quenched site case.
On the other hand, high_temperature'series analydis for the
pure case gave y = 1.333 + ,002 (Betts, Eliiott and Lee (1970),
Dekeyser and Rogiers (1975)) ' According to the same arguments
from sca]ing theory presented in Chapter 5, ‘this va]ue of v
K expected to equal Y(t=1) for the annealed site case. If
indeed y(t i) is less ‘than Y. as our estimate: indicates, the
‘reason is not apparent. Fisher -(1968) has a]so argued that
~the observed value of y(t=1) will be greater than vy if a is
non-zero zero, regardiess of the sign of a. Also if the
- specific heat has allogrithmic divergence at the second ordet
phase'boundary‘then the observed.vafue of y(t=1) should

equaiqv;} o “ L | o o A

| The variation of y with t was aiso apparent for the
quenched site problenm. The ramifications of this resylt | ///

/

with regard to universality were discussed in Chapter 6. )

‘For the quenched site case however. the magnetic ion
concentration is not a thermodynamic variabie, so any t
dependence of Y Is not necessarily a violation of universa]ity.

- ]

\

/.
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‘Table 6.3'“E§timates»of thglcritiéil exponent'V(K)\from [N/D]\
Padé approximants’to series for d]nY(K,h;nm)/dnm

on the f.c.c. lattice for h-0.0.-t¥$c(nm=1)/K"

!

[N/D]  t=1.0 =0.9 t=0.8 t=0.7 t=0.6 t=0.5 t=0.4

[174]1  1.2]  1.24 1,27 1.30  1.28  1.71  3.9]
[2/3] 1.21 - 1.24  1.27 1.3z  1.40 1.52° 1.75

[3/21 1.21 ~l.24 1.27  1.32  1.38 1.48  1.63

)

TR | o AV
(173 1.21 1.24 1.28  1.33 - 1.43 . 1.61  2.63
[2/2]. 1.21  1.23  1.26  1.30  1.35 -.1.41  1.49

- e . l . . ‘ L ;\\\ . R
A s
NG . |
c ¥
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" However, for the anneaied site probiem the magnetic ion
'concentration is a thermodynamic variadble and any variation ,;
of Y. with t does imply a violation of universa]ity

For the b.c. c and s.c. lattices in zero field and
for the f c.c. lattice in non-zero field, the estimates of
Y(K;h) .are, as expected, not so consistent as for the f.c.c.
-lattice in zero field. Tab]e 6.4 contains the values of v(h)
- from Padé approximants to d]nY(K h,n )/dn for t.= 0.8 .and
' various vaiues of h for the f. c.c. lattice The varipus
Padé approximants show no apparent variation of Y with h for

h 0 4 S For the largest value of h considered h=1.0,

" the estimates of y are . more scattered but there is stil}

no significant average deviation fi-om the estimates of Y

at h = 0. Constancy of the high temperature exponent Y with'

variation in h for the pure spin ? "XY model was also observed

by Dekeyser and Rogiers (1975) In other words y(K h) "appears

to be universai with respect to H but not with respect to T.
To ‘locate the second order transition surface’

c(t h), we use estimates of n from Pade approximants to
LY(K, h,n )] /7, assuming a constant value: of y = 4/3 (see
;Chapter 5) for the three dimensional ]attices Estimates
- of n from the. fifth and sixth order Padé approximants are
tabulated in Tabie 6.5 for. the f.c.c. lattice with h=0 and -

'various values of t In~general-the estimates of_n; from
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Table 6.4 Estimates 6f{the critica]“efppne t V(h)hfrbm’[N/D]

’ “Pédé“apprOxfmahtS'tOQSerfes for 1nY(K.h.nm)/dnh

on the f.c.c. lattice for K (n =1)/K = 0.8, h=H/J

A
\

y
N 1

[N/D] h=0.0 h=0.2 . h=0.4 h=1.0

1741 1.27 “1.28 1.27 1.25

[2/31 1.27 1.27 1.27 1.24
, | .: | | ' ‘ E |

[3/2] 1.27 R 1.27 - 1.29

[1/3] 1.28 1.28 1.30 1.21

[2/2] 126 1.26 1.27 1.19
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% ~<‘ /

B Tab]e 6.5 Estimates for the crﬁtica] dens1ty n from [N/D]

Padé approximates to series for [Y(K h n )]3/4
on the f. c.C. Iattice for h=0.0 .

[N/DJ'

/51 241 0331 (2] (1 el

- t=1.0
t=0.9 -

t=0.8 .

t=0.7

t=0.6

t=0.5

'i?0.4

t=0.3

1.0074  1.0038 1.0034 1.0045 1.0078 1.0383

‘ #
/

0.9193  0.9164 0.9160 0.9172  0.9194 ° 0.9273

0.8304' 0.8288  0.8286 © 0.8294 - 0.8304 0.8326

0.7405  0.7404  0.7404 0.7404 0.7404  0.7407

T

'0.6495  0.6487  0.6477 - 0.6494  0.6485 0.6486
0.5527  0.5518  0.5484  0.5566  0.5541 05548

0.4457  0.4371  0.4353 - 0.4453 0.4400  0.4417

0.3734  0.3668 - 0.3661 0.3732 " 0.3674  0.3676
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this method are rather insenditive to small variations in’
tae choice of ? . This supports our adoption of a universal
value for Y for the purpose of obtaining a transition surface:
' Zero field second order ‘transition Tines in the tn
pIane for the: three cubic Bravais lattices are exhibited in
,Figure 6.1. A comparison of these lines with the equivalent
set for the quenched site case (Figure 5.2) indicates that
. the 1ine of criticaladensity of magnetic sites is of
opposite curvature to the line for the annealed site
._’problem:oh'the same lattice . The terminal-gradients of
these transition curves at t=l match those for the quenched

site case for each lattice

6.4 He3-He4'Mixtures

Up to now we have interpreted the annealed site
preblem in terms of magnetic variables ' However the problem

is physically better suited to a lattice quantum fluid,

3_,.4

-He™ mixtures in which the He3 particles are -

 for example He

approximated by classical ‘non- 1nteracting particles If we
let. n3 and n4 be the respective densities of He and He4

particles per lattice site andlmake the identifications

3 R ' oA

.

nglem, (e

(6.4.2)
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‘Figure 6.1 Critical r.emp-erature t = K (nmsl) versus n. .
ERE for the f.c.c. (F), b.c.c. (B) and s.c. (S)
- Tattices from poles of. Padé approximants to
. LY(K, h-O.n ;] 34
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we can obtain the density per site n = n3 + n4 and the He3
concentration X3'® n3/n in. terms of our natura] variable nm
The choice of sign in (5. 2) arises from the observation that
<§’ (H)> = - <§, ,(-H)>, while the Hami]tonian (6. 1. 1) remains
invarient under change of sign of magnetic fie]d ,Prov1ded
' that the expansion of <S (K h)> as .a series in L is we]l
converged for each value of K, h and n, on the critical iine
we can find the - lines as contourSQOf constant n in the tx3
_inane. In practice we have been abie to do this on]y for the
f c.c. lattice using data from the Y(K h n. ) series for
_.h <1, 0, enabiing us to find part of the A line for
n = 0.65 + .02 In figure 6.2 the second order transition
lines.. in the tx3 piane for h= 0, +1 0 and -1.0 are displayed
for the f.c.c. lattice, while the dashed curve shows the‘\
A-line for n = 0. 65 - . The lines of constant h in Figure 6. 2
'have confidence limits in the X3 variable of 2-3%, while the
constant n curve has confidence limits of about 6% in each
'ordinate value. ' o

The series we have obtained for Y(K, h n ) in powers
of "m are generally well behaved for 0 4 ‘ t <1, 0 and
In} < 1 0. On the other hand the series for Y(K,h »2) in
»-powers of z can be analysed consistently in the region

0.2 < t < 0 6 Y :
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R Figure 6.{2'
e ";,"xa for the f.c.c. lattice with h=H/J = +1.0,

o

02 04 [, 06 .

Critica! tulperature t = K (x3-0)/K versus

0.0 ‘and -1, 0 frow Padé approximants to

f‘..;mx hyiz}33/%. The dashed curve is the"

A-Hne fur na: o 65 .



A . L o ' il

° ‘ 110

, L
- For the series in fugacity we assume the asymptotic <

form for Y. near zc, given by

Al

:v(x;h,z) c(K h)[l “2/z (x n)] Y(K m (6.4.3)

’and analyse the series using Padé approximants to;dlnY(K h z)/dz i
| and [Y(K h z)]3/4 B The second order transition line in the tz |
.plane for the f. c c. lag%ice in zZero. field is shown in . Figure

} 6 3. " The estimates of y from the analysis’are not consistent
except for near the region of what we belilve to be the tri-
critical point The poles nearest to the origin of Padé |
.‘approximants to dlnY(K h, z)/dz are located at zc and z, - o.l
with 6 > ¢ but small The effect of the pole near -z, was':f-
| successfully eliminated by transforming the expansion variable

\

-z to.Z via the equation

~

L ze 2/(2 - 2/z ) .‘ » (6 4, 4)

The effect of the transformation (6 4 f? is to leave the
point 2, invarient and remove the point -z to -wi. Estimates
of P were obtained from the poles of Padé ap roximants to

2P Ratios of the

f[Y(K.h z] /4 for each temper%ture considered

C. Pt
: coefficients F‘(K h) of the transfbrmed series Y(K h z) are

- vremarkably lineLr when plotted against l/z Estimates of _d’
i y(t) from Padé approximants to dlnY(K h z)/dz are given in

'RVTabie 6. 6 for the f. c.c. lattice in zero fipld for selected o
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Figure 6 3 "Critical temperature t§= K (z-m')“/K versus 2z

for the f.c. c.. lattice with h=0.0 from the
. poles of Padé approximants to

[Y(K h.z)] 34,

LA :
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Table 6.6 Estimates of y(K) from [N/D] Padé approximants

to the transformed series dInY(K,h,z)/dz on the

-

f.c.c. slattice for h=0.0, t=K (Z+=)/K

1.234

[N/D]  t=0.60  £=0.55 t=0.50  t=0.45 £=0.40
[1/47 1.384 1.425 0.765 1193 1.138
[2/3] 1.380 - 1.400 1.412 1.272 1.159
[3/2] 1.377 . 1.401 1.886 1.181 1.135
[1/3]1  1.433 © 1.252 1.244 1.200 1.126
[2/2] 1.371 1.373 1.260 1.125
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values of t < 0.6 . For t > 0.6 the series are not_we]i
beoaved and&jlsuitable transformation could not be found to
smooth the ratio p]ots Herver the estimates of Y(K,h)
from the series in M snould be the same as from the series
in z, since conversion from one series to the other involves
only a transformat1on of var1ab1e. Near the trlcr1tica1
point though, series for Y(K,h,z) are expected to behave
differently than the series for'Y(K h n )

In the next section we use the series Y(K h,z) to

try to locate the tr1cr1t1ca] point in the tz plane.

6.5 The Tricritical Point

A‘tricritical.point, as deﬁinéd'by Gri fFiths (1970),
is characterised by the existence of two competing order
parameters which simultanedus]yﬁbecome critical. |
3 et

The phase diagram for He mixtures in the tz

p]aref wnere z is the fugacity of one of toe species; is a
single contfduousllihe, which_has‘a tpicritica] point |
at Z,é Ztnaﬁd T=T, . ' | For T > T, the transition
" from the superfluid . to the nokma]ff]uid state of He?. When T
is‘1essAth¢n Tt.the tpansitiop~1s first order.and‘the line - '
deffnes,the phase!boundary'of,the He4-riéh and He3-rich
phases. In géneral all criticallexponents.are expected to
have values at the tricritical point d1fferent from their
fvalues at the second order phase boundary Accord1ng to the

“
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tricritieal scaling theory developed by Riedel (1972,,1974) -
: and‘Griffiths (1973) there are two different sets of tricritica]
exponents. Nhichofithese sets is applicable depends on tne
path of approach to the’tricritioal.point.and on what variables
the quantity of interest is expressed in. For our immediate.
purpose it is sufficient to note that for fixed K and\h if we
approacn the tr1cr1t1ca1 point using low fugacity series, the'
exponents are denoted “t’ Yo etc. and have the mean field
~values a, = 1/2 and Yy ® 1. If on the other -hand we use the
Tow density series the exponents are symbol1sed by @y Yy

etc. and have the mean field values a, = -1 and v, = 2.

3_het mixtures by Goe]lner et a] (1973)

Experiments on He"-He
‘-suggest that the tricritical exponents have the c1a551ca1
'values given above v

| The location of the triorftical point using series
expansions has been attempted for many different models.
Systems for which are avai]able expans1ons for the free energy
about. both the completely ordered and dlsordered states are \
relatively eas1]y analysed In such cases, for instance the N
B]ume Cape] model as studied by Saul et al. (1974), the f1rst
order phase boundary\may be 1o%ated by equat1ng the two
branches of the free energy Unfortunate]y, for the sp1n-f
XY model the nature of the ground state is entirely unknown,

S0 that,on]y expansions about,the disordered state may be

>



C oy | o B | 15
| o , ' fh
obtained. As yet no precisevnethuddhas been devised for
findtng a tricritical pqint using series expansions of
function§ derived from onTy one branch of the free energy.
For the spin- F Xy annealed site model we have used
two methods to locate the tricritica] point, botn of which
assume classical tr1cr1t1ca1 exponents The first approach
| we have used is to 1ocate the point in.the tz plane where
Yy = 1. Estimates of y(K), for the f.c.c. lattice for
different values of t, from residues of}Padé approximants to
dinY(K,h=0,z)/dz are displayed 1anab1e 6.7. As can be seen
.‘from Tables 6.4 and 6.5 the'vaiue of vy appears to approach
the mean field value (y'= 1) very slowly as a function of
temperature Between 0. 32 < t < 0. 29 Y varies only s]1ght]y

from the mean field value. If we assume a tr1cr1t1cal

temperature tt = 0.31 + 02 then we find us1ng the trans1tion
line of f19ure 6.3 that zt'= 0.11 + .02_and ‘from Figureg.p
x, = 0. 80 + .02 . - | -

In add1tion to the fluctuation in order parameter

© the quantity

w(K,h,z) = zan_(K,h,2)/02 (6-5.1)

is expected to diverge strong]y at the tr1cr1t1ca1 po1nt

~ The quantity w(K h $2)° cah reasonab]y be expected to behave as

a. concentration suscept1bility because n (K h,z) is a good
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Table 6.7 Estimates of y(K) from [N/D]‘Padé‘apprOximants to

s;ries for dinY(K,h,z)/dz on the f.c.c., lattice for

t % KC(wa)/K near the tricritical boint and h=0;0

2721

-0.976 -

0.963

[N/D] - t=0.320  t=0.310  t=0.305  t=0.300  t=0.290
[1/4] 1.030 1.014 1.004 0.993 0.969.
[2/3] 1.035 1.019 1.009 0.997 0.974

'[3/2]  1.028 1.012 1.002 0:991 0.967 .
[1/3] ° 1.010 0.992 0.981 0.968 0.941
1.007  0.989 0.935
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‘order parameter for the first order transition in the tz
-plane. w(K,h,z) is readily constructed from In = Z(K,h z) as ¥
a ser1es inz using the re1ation (6.2. 1) Ne write then ‘the

‘asymptotic form for w(K h z) as z > zt from below as

-2 o
w(K.h,z),,"A(K,h)[l - z/z,(k,h)] Y (6.5.2)

'where we use ‘the exponent notation deve]oped from tricritlcal
sca]ing theory ,

Residues of Padé approx1mants to d]nw(k h=0,z)/dz
for the f.c.c. lattice at the p01nt tt = 0.31 yield an
estimate of Ay = 0. 32 + .10 . This estimate of A is eome-
what lower than the c]ass1ca1 value At 1/2 but becadse of

the: uncertainty in the estimate of tt and the lim1ted lengtn

R of the series we cannot JUStlflab]y conc]ude that A # 1/2

~Values of the exponent “t for the specific heat could not be
consistently estimated. Us1ng the above’ method Rogiers,
Dekeyser and Quisthoudt (1975) conc]uded that Xy ~ 0.8 and
“that the exponents Yt’ At and “t are apparent]y classical.

.. The second method we have used involves' locat1ng
‘ 171,
'-the transition 11ne from Padé approximants to [w(K,h v2)] 't

o assoming A = 1/2 If the curve -obtained in the tz plane'

from this. method meets the transition Tine obtained from Padé
approximants to [Y(K, h,z)]]/Y with ¥y = 4/3, then we identify
the point of intersection w1th the tricr1tica1 point This

3>
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method ‘was used by Plischke and.Betts'(]975) to locate the
:tricrjtical point of the Cheng-Schjck model (Cheng and
Schich (1973))- We have found'however; that the 11ne of
‘critical points predicted from Padé approximants to

- [w(K,h=0, z)]2 for the f.c.c. 1att1ce for t < differs only
‘amarginally from the second order line predicted from Padé ,
3approx1mants to [Y(K,h=0 z)]3/4 displaying in figure 6.3.
For 0.28 < t € 0.31, the poles of the central Padé approxi-
‘mants.tovwzland Y3/4 are the same to within 0.03%;
“Consequently have been unab]e to make an estimate of tt
using ‘this. method. However, we note that the region of
approximate degenerary of the two critical 11nes

(0.28 §“t < 0.31) is where tne'exponent Ye= 1.

- 6. 6 Summary and Discuss1on

The annea]ed site Sp1n~% XY mode] has been studied

~on three cub}c lattices. Series expansions up to seventh

e order 1n magnet1c site fugacity and magnet1c 1on density have

been derived for the f]uctuation 1n order parameter These
series .have been analysed 1n two types of var1ab]e, one
. applicab]e to magnetic systems and the other suited to

3-He4

He
located in the tz plane. The Avline obta1ned for n=0.65 in
the tx3 plane 11es between the Xx- lines presented by Rog1ers,

' Dekeyser and Quisthoudt (1975) for n= =0.5 and n=0. 8 for the -

mixtures The tr1cr1tica1 paint has been approxihate]y

~
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‘Takagi“modelebiAlso we‘h:;e‘been able to compare directly the
second order transition_curre for the f.c.c. Tattice with H=0
in the tz plane with that'for the Takagi mode obtained by
Rogiers (1974). These tno lines agree within the confidence
MHmits. - .
h | ’The'estimatesrof Y we have obtained in the pure
limit, 'tsl do not agree with estimates of y assessed from
high temperature series for the pure spin-% XY model Our.
estimate of Y(t=1) is apparently the'same as prev1ous]y
'obtained for the XY model with quenched site impurities.

" As Rog1ers, Dekeyser and Quisthoudt (1975) noted
the Takagi mode] (and hence the spin f XY annealed site model)
‘does not predtct-qﬂantative]y the phase diagram of Hed- v4~‘
mixtures in the txy plane The abi]ityhofnthe Cheng-Schick

3, .4

‘model of He -He" mixtures to match the‘experimental phase

.diagram (Goe]lner et al (1973)) was established by P]ischke,

~and Betts (1975) The Cheng-Schick model allows kinet1c

3

| mobtlity of the He particles and contains the correct ferm1

'~statist1cs for these particles. Both of these propertwes are

3

Lilacking 1n the Takag1 model where the He® atoms are approx1mated

: by classical partic]es with 1nfinite mass.



CHAPTER VII
THE TWO DIMENSIONAL MOUELS

7.1 Introduction

Because of the controversy concerning the ex1stence
of phase transit1ons in two dimensiona] Quantum systems

we consider the two dimensional quenched and annea]ed s

i
\

XY models in a separate chapter.
In Section 2 the exact result of Mermin and Wagner
| (1966), concerning the existence of long range order in two
dimensional models is briefly explained. Alsd in Section 2
the possfb]e exvstence of a Stan]ey Kap]an type transition
in such models is examined. - In Section 3 we present the
results of Betts, Elliot and Ditzian (j970) of a high
-temperature series anaiysis for the XY model on the
<;triangu1ar lattice. Our results from low density series
fdr the quenched and'anneaied site XY medeTS on the triangu-
lar lattice are presented in Section 4. A brief discussion

and summary are contained in Sectlon 5.

7.2 JExact Results and Conlectures
o Stanley and Kaplan (1966) anaTysed the high
A.temperature Susceptibility series of Rushbrooke and Wood
(1958) for the spin S=1/2, 3/2 and 5/2 two d1mens1ona1
'isotropic Helsenberg mode]s. They concluded tnat there

120
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was strong evidence to support the existence of a phase
‘transition for;fhe $=3/2 and S$=5/2 models but for.S5=1/2

4

the series wer not we]].enough behaved for reliable
“analysis. |

’ Very short]} afterwards however’Mermin and wagner
(1966) proved rigorously for a variety of models, including
the general spin 1sotropic Heisenberg and XY models, that
there can be no ferromagnetic or antiferromagnetic order for
any non-zero temperature Stanley and Kap]an (1966) then
: made the observation that should the pa1r corre]ation
functions be only gradually attenuated, then the soscepti—
bility may become infinite without the onset of long range
order. Mathematital]y-this means that the susceptibility
constructed from the som (2.2.6) becomes infinite without 0
the correlation length becoming infinite ’ Mubayi and Lange
| (1969) have used Green's . function techniques with a Judicious
choice of decoupling scheme to find results for the S= 1/2
.isotropic Heisenberg model consistent with the Stan]ey-
Kap]an coanjecture. Yamaji and Kondo (1973a) using a '
different decoupling scheme arrive at a totally different
- result and-cone]ude.that there is no StanieysKaplan
transition |

Moore (1969) has derived and ana]ysed series

expansions for the c]assicai XY and Heisenberg mode]s on

two dimen51ona1 lattices and conc]udes that there is. good;
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“evidence for a pnase tr'an,sitiqn.T On the other hand Yamaji
and Kondo (1973b) find, from extended series fdr fhe'spin-% '
1§otrop1c Heisenberg model, that there is no apparent
divergence of the susceptibillty series .
Koster11tz and Thouless (1973) have found a
pbssib]e type of ordered.gtatc~for some of the two
dimensional models 1nc1ud1ng the spin = XY model.
Camp and Van Dy ke (1975) derived, and analysed series
expansions for the spin « XY and He1senberg models. Thein
results seem1n91;‘Support the conJecture of Koster11tz and

Thouless (1973) that the suscept1b111ty behaves as
exp(At V) as t -0 . o ‘ e

7 3 Thé Two Dimensional XY Model |
| In this section we review some numer1ca1 resu]ts‘
for tne two dimensional spin-f XY model obtained by Betts,
E]liot and Ditzian (1970). They derived thershigh temperature
. series expansion for the fluctuation in order parameter,
Y(K).Afor'the triangular and square lattices and ana]yged‘
these series using standard techniques aﬁd the method of
conformal transformations.-e _

For the series on_tne,trianguiarllattice, the
"main poles of‘Padé approximantS to dinY(K)/dK are at -
'approximateiy 0.5 + 0.1 1 and *+ 0.6 i. However after

A

transforming their series via'the_quadratie‘trensformatidn
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, thevpoies-closestfto the'orfgin are located on the rea]'F
}axis. -The effect of the. transformation (7. 3 1) is to move
the points K = + 1/2 unique1y to the po1nts + i respect1ve1y.
The series Y(K) obtained after transformat1on ‘is much betterk
behave¢ than the original series and analysis yields ‘the
estimates K_ = 0. 501 +0.005, with y =.1.50 +0.02. ,The
corresponding va]ue for K for the untransformed ser1es is
,f = 0.67 * 0.02. Hence Betts et al. ‘conclude that the. XY

c
mode] on the tr1angu1ar 1att1ce appears to have a Stan]ey-

-

" Kaplan type of phase trans1t1on.

~

z.4lﬂhh§iysdsidf fhevnénS%ty'séries

_ In this section we present tne results” of the i
ana]ysis of series for: the fluctuat1on 1n order parameter
‘.on the tr1angu]ar 1att1ce in terms of the magnet1c s1te
_densdty for the quenched and annea1ed s1te XY. modeis. §1nce
we are concerned w1th obtaining evidence for or against the~,
existence of a phase trans1t1on we will examine in deta11
one series only. | The series we use 1s tne f]uctuat1on in
order parameter as a series 1n dens1ty p, for the quenched
site case at K = 0 65 K;i;_ A pre11m1nary 1nvest19at1on of

,the quenched s1te series for var1ous va]ues of K. andicated '

by extrapolation that at K = 0 65 Pe would be approx1mate1y }

< N



o 1 0 Sca]inq theory predicts that the critical behavior of

this series should be the same as for the -hjgh temperature

e series for xhe pure XY mode1 The series we study below is

d

Y(p{K€b.65) =7b-%‘1.as41255,..p2.+ 1.9364491...p3

o+ 2.2323519...p% + 2.3617032...p% | -
L +72.5257507...p5 + z;axsi;7s...p7:
(7.4.7)

The high temperature ser1es for the free energy »
‘,f‘and fluctuation in order parameter Y. for the quenched
site XY mode1 on the triangy]ar Iattice are:

363 4 (L o2

f(p_,K‘)-ai In2 '+ % pzl('2 + %-p x5 P - -?—6- pT

R
-39+ b8
v (113 +-§%jP4 _te1 oS - 1360+ 8 o7

124 .
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P 1 Sl 2, 1]
Y(p,K)/p = 1 + 3Pﬁ'+ 7; + (- x p- 25 p° + 175 p )K

+ (-4p.2 - 10; p3 + 38% P4k

4 (z-p p2 - 1453 P ~'3I§ P4 *'85?3 PS)KS
:*;(1%%'p2‘+e7%% b3._ 44z%ﬁ‘p4 - 85%5 p5 + ]86%% pG)KG
: s

" P Tgﬁ P 16086 P T008 6

m%%%% p® - 22033 »° + 405735y P )X

(- 51 109 2 4 143783 3 + 3318351 4

7

+ o (7.4.3)

J‘fr“Thei$9Ties (7;4;2)_and (7.4.3) are of inSufficient 1eng£h

' tb'aﬁalyee W1th?cohf{dehce | fhe seriaes of Betts and
"eeo-W6rkers beferred to 1n the prev1ous section are several

e‘terms longer o | '
‘We present now the results of the analysis for

‘the Iow density order parameter f]uctuat1on series (7.4.1)..
'wEstimates of pc from poles of Padé approximants to
d1nY(p)/dp are given in Table 7. 1. The estimates of Pe

 presented 1n the table are not the po1es closest to the

"""-origin however and consequently do not give cansistent

. estimates of the Tocation of. the Ph¥51ca] 51"9“1ar1ty In-

'“{"each case the po]e closest to the origin is on the negative

,.ﬂgreaI axis at about p o ~O asﬁq‘ In order to move/th1s

zyeﬁsingular1ty outs1de the radius of convergence of tne “series
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Table 7.1 Estimates of Pe and, in parentheses, Y from Padé
approximants to the series for dinY(p)/dp. A
missing entry means that all poles of-that

approkimanf are unphysical

D N=0 N=T - N=2 N=3

2 0.8237 0.9348 1.0153 1.0220
(0.688) (1.076) (1.370) (1.406)

3  0.9945 - 1.0227

| C(1.328) - S (1.811)

4 . 1.1840 1.0579

(4.756) _(1.699)
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we make the transformation

p=p/(2 - p/0.8) . (7.4.4)

The effect of the above transformation is to leave the
point p=0.8 invarient and to remove the point p = -0.8 to
E T o

Table 7.2 shows,: for Padé approximants to
dinY(p)/dp, the closest’poles to tne origin and their
residues The low order Padé approx1mants are included

b

" for completeness on]y, but it is 1nterest1ng to observe the
cons1stency of est1mate; of pc\throughout the table. We |
conclude that p_ = 0.885 + 0.005 (p=0.990 * o;ooss and

Yy = 1.23 + 0.05 by-takihg~an“everege‘from the higher_degree
central Padé apprdximants;"0ur estimate of y differs '
cpnsideribly from the esfiméte of vy found by Betts et al.
(1970). If indeed Y#Y, then a vio]atien of universaf?ty

is implied, just ae for theﬁthrée dihensiona],ease. We can
however analyse series for Y(")]/V;for various choices of
Y. in order to determ1ne an optimum value for Y from’the
cons1stency of the po]es of the Padé approx1mants
“Unfortunately we find that the ana]ySIS of ser]es fer
-.Y(p)”Y are- 1nsensit1ve to the choice of y. In Tab}e 7.3
‘the poles of Padé approx1mants to Y(p)4/5 are displeyed.
vThe"central Padé Epproximants give an average of - \

a
i
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TJable 7.2 Estimates of 5& and, in Parentheses, y ffom [N/D]

Padé approxihants to the transformed series

dinY(p)/dp -

D N=0 N=1 N=2 N=3 N=4
1 0.9503  0.9138 08901 0.8842 0.8845
" (1.48) (1.51) (1.43) (1.40) -~ (1.24)
2 0.9151 0.8583 0.8816 0.8845
(1.27) (1.04) (1.22) (1.26)
3. 0.8935 0.8818 0.8868
(1.15) (1.22) (1.26)
4  0.8861  0.8849
(1.11) (1.24)
5 0.8850
(1.10)

e pp———an
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Table 7.3 Estimates of EE from-poles of [N/D] Padé
approximants to Y(b)‘”5
D N=0 - " - N=1 . N=2 N=3 N=4 N=5

1 ,0,7977 0.8673 0.8832 0.8860 0.8859 0.8857
2 0.8747 0‘.88“81 0.8865 0.8859 0.8860

3. 0.8864  0.8866  0.8851  0.8856

4  0.8866  0.8864  0.8856
5  0.8859  0.8856
6  0.8856
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Ec = 0. 8856‘;_0 0006, which cerresponds to Pe = 0.993 + d 001.

The precision of this estimate for Pe is m1s]ead1ng though

because po]es of Padé approximants to Y(p)2/3 g1ve a]most

the same estimate for P, with only slightly less precision.
The series for the fluctuation in order parameter -

Y(n ) in powers of the. magnet1c site dens1ty nm on the

‘triangular 1att1ce for K = 0.65 is

SR 2 3
Y(n,) = n, + 2.0902426 ... n_ + 2.2863174 ... n_
el 4 S 5 |
+-2.3523268 ... n: + 2.4860704 ... n
o Y o 7
+2.6771002 ... n) + 2.6898570 ... n_
. o (7.4.5)

7 The re;ults-of the ana]ysie of the seriee (?,4;5)
are very similar to that presented above for the”series
(7.4.1) and need not be presented in detaii,"‘ | o
We. were unable to obtatnlmore than a small part =
. of the line of trans1tion p01nts in the temperature dens1ty
plane. - In- the reg1on 0.9 < t < 1.0, where t= K/O 65, for
the quenched site case. the cr1tica1 probabi]1ty pc

approximately given by

pc'# (t +1)/2 - ‘“; ,(7.{.6).
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a similar formula no]ds for the annealed site case. The
mean field result is '
p. =t

o

°

-

so the initial slope for the line of critical point differs
greatly from the ‘mean field result. This contrasts with the
resu1ts found for the three d1mensiona1 models, where the

init1a1 s]opes were very close to the mean f1e1d values.
BN

v_7.5 Summary‘and Discussion

In the preceding section, ev1dence in support of

a Stan]ey Kap]an type pnase transition for the Xy model on

the trlangular lattice has been presented Our resu]ts

corroborate ‘those of Betts, E111ot and D1tzian (1970) i

frespect to the existence of a phase transition and for the

pure XY model 1nd1cate tnat K = 0.67 + 0.04. On the other
hand the estimates of Y we obtained do not agree Wwith the
value y 2 1.50 found by Betts et al.

Recently, application of real space renorma]isat1on,

' group theory to the pure XY model has yie]ded confu51ng

results. These results are reported briefly below. Rog;ers

t‘and Dekeyser (1976) find,.using -a three sp1n cell on the
| trtangu]ar lattice, that there is a trans1tion for the XY

modef at about'K' 0.8 . Betts and P]lschke (1976) find

however, using a f1ve spln cel] on the square latt1ce that
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there is no fixed po1nt (1.e. no phase trans1t1on) for
K<2.0. Also Rogiers and Betts (1976), using a seven spin
vrce]l on tne tr1angu1ar 1att1ce, find K ~ 1.1 . . The results
of both Rogiers and Dekeyser (1976) and Roglers and Betts
(1976) are suspect because negative values are found for the
exponent s, which is thermodynamica]]y impossible.’

In short the evidence for a Stanley -Kaplan

transition for the two d1mensiona] XY model is inconclusive;



CHAPTER VIII
suMnARv OF RESULTS‘AND DISCUSSION

. The quenched and annea]ed site d11uted spin- f XY
models haVe been studied 1n/some two and three dimensional
Bravais 1att1ces. We have used the finite c]uster theorem
(outlined in Chapter IV) to construct expansions about the
vmagnetically disordered state for the free energy and the
f]uctuation in order parameter | |

) For the quenched site model, ‘expansions have beenv
Tconstructed up to degree’ seven in both magnetic site
~concéntration, p (with temperature as a parameter) and
:1n~tnver5e temperature»(with p'as'e:parameter). The naturol
expansion’veriable for the anneoled'site mgge1”is the
magnetic site fugacity Z. Expansions up to degree seven in
z have been der1ved and these series have also been

converted to series in magnetic ion concentrat1on, n ’

m
The results of the ana]ysis of the series expans1ons
for - the quenched site model for the three dimensional
'a:lattices are g1ven in Chapter V. In brief, we have found
for each Iat;ice, the Tine of critical po1nts in the
i‘temperature density p1ane fairly prec1se1y However, the
j‘_apparent behavior of y(t), the suscept1b111ty exponent,

v h(where t = T(l)/T(p)) has some disconcerting properties.

e
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Firstly ?(£=1) = 1.22 + 0.02 does not agree with the
value y(p=1) = 1.333 + 0.002 obtained from the high
temperature series approach. This result contradicts the
scaling hypothesis, which asserts inter alia that
Y(t=1) = y(p=1). Also wevhave found that V(t).apparently
varies with redhce& temperature t. This contradicts the
hniversa]ity principie which requires that y(t) be indepen-
dent of t. Very sihilar resUitS'have been found for the
annealed site case. |

| For the quenched site case it can be argued that
the concentration p is not a thermodynamic variable and
hence the phehomenalog1ca1 theores of scaling and' ‘'universal
need not apply. This argument is weakened by the fact that
the annea]ed site model shows the same behavior for y(t),
since the.- concentrat1on L for the annealed site mode] 1§_a
' thermodynam1c varlable. . |

The phase transition c%rves for the annealed site

model are given in Chapter VI. ;ﬁhe inferpretation of the
annea]ed~site“mode1 as a model of He3-He? mixtures is also
91ven in Chapter Vi a1ong with out attempts to locate the
tricrit1ca] po1nt The model does ‘not appear to glve a good
.quantitatlve description of the phase diagram for He3 He4

mixtures.

PRI
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The two dimensional diluted XY models ate examined
in Chapter VII and our results seem to indicate the presence
of a-Stanley-Kap]an'type phase trensition.

Possibly one of the more'interesting results we
have fqund is that the nature of the phase transitions for
the' three dimensione] lattices is uncomp]itateh by the
iﬁtroduct1on of impurities. However if there were, for
instance, no precise critical dens1ty for a given temperature,
‘but lnstead a small interval of critical densities, then '
ana]ysis of expansions about‘the disordered state only might
be unabie to reveal the distribution of singularities.

The only important issue we have left unresolved is
the discrepancy between our deduced'behavior,of Y and the
predictions of scaling and universality. This difficulty
cannot, in the foreseeable future, be reso]ved u51ng series
.expansions because of the s1ze of the eigenvalue prob]ems
involved in extending our series.. Possibly a more useful
. approach WOuld_be to examine the problem from a general -

- thermodynamic vieWpoiﬁt

The weak un1versa11ty hypothesis could be tested by
constructing series expansions for palejcorrelation funct1ons
The ratio of the_exponents Y/V should be invarient along the

line of critical points.

RN et i

[ty

Tirtire




REFERENCES
Algra, H.A., de Jongh, L.J., Huiskamp, W.J. and Carlin, R.L.,
~1976. To be published. | vlr\‘ -
Baxter, R.J., 1971. Phys, Rev. Lett. 26, 832.
~Baxter, R.J., 1972. Ann. Phys. 70, 193.
Behringer, R.E., 1957. J. Chem. Phys. 26, 1504.
Berlin, T.H. and Kac, M., 1952. Phys. Rev. 86, 821.
Bethe, H.A., 1935. Proc. Roy. Soc. A216, 45,
Betts, D.D., 1974. 1n:'Phase Transitions and Cfitica]

Phenomena, Vol. 3, Domb, C. and Green, M.S.,
eds. (Academic Press, London).

\

Betts, D.D., Elliot, C.J. and Lee, .M.H., 1970. Can. J. Phys.
48, 1566. o :

Betts; D.D., Elliot, C.J. and Ditzian, R.V., 1971. J. cCan.
. Phys. 49, 1327. - |

Betts, D.D., Guttmanh, A.J. and Joyce, G.S., 1971. J. Phys.
C4, 1994.

Betts, D.D. and Lothian, J.R., 1973. Can. J. Phys. 51, 2249,

Betts, D.D. and Ritchie, D.S., 1975. Phys. Rev. Lett. 34;
788, . ' -

Betts, D.D. and Plischke, M., 1976. Can. J. Phys., in press.
Bishop, A.R.. and Domahy, E., 1975, (Private’Communiéatfoh).
Blume, M., 1966. Phys. Rev. 141, 517. |

‘Blume, M., Emery, V.J. and Griffiths, R.B., 1971. Phys .
: .Rev. A4, 1071. ' :

Bragg, W.L. and Williams, E.J., 1934. Proc. Roy. Soc. Al45,
~ 699. ' : ‘ ' ‘ ‘ )

Brout, R., 1959.° Phys. Rev. 115, 824.
Camp, W.J. and Van Dyke, J.P., 1975. J. Phys. 8, 336.

" 136



""q 137

Capel, H.W., 1966. Physica 32, 966.
Capel, H.W., 19672, Physica 33, 295. ' |
Capel, H.W.; 1967b. Phy;ica”gz,'423§ . e
‘Cheng, Y.C. and Schick, M., 1973, Phys. Rev.,A7, 1771.
Cox, M.A.A.; Essam, J.W. and Place, C.M., 1976. To bé
pub11shed o L ~

‘de Jongh, L.J., Betts, D.D. and Austen, 0.J., 1974. Solid
State Comm..15, 1711, . ' L

de Jongh, L.d., 1976 ’(Priﬁate Communicatiqﬁ)’

de Jongh, L.J. and Miedema, A.R., 1974.-. Adv. Phys ggJ 1.
Dekeyser, R. and Rogiers, J., 1975. Ahysica- 81A, 72.
‘Bitzian, R.V. and Betts, D.D.;-1971. Phys. Lett. A32, 152.
Domb, C., 1960. ~Adv. Phys. 9, 145. SR
Domb, C., 1972. a.'éhys £5, 1399,

Domb,. C., 1974. 1in: Phase Trans1tions and Critical Phenomena,'

Vol. 3, Domb, C. and Green, M.S., eds. (Academic
Press, London) . ‘ . '

Domb, C. and Hunter, D.L.. 1965. Proc. Phys. Soc. 86, 1147.

“Domb, C. and'Green, M.S., 1971. - eds. of Phase Trans1t1ons
- and Critical Phenomena, (Academ1c Press, London).

Domb, C.'and Wood, D.W., 1965. Proc. Phys. So c. 86, 1.

Elliot, R.J., Heap, B.R., Morgan, D.J. and Rushbrooke, G.S.,
1960 " Phys. Rev Lett. 5, 366. . :

E]]iot, R.J. and Saville, D., 1974. J. Phys. C7, 4293,
Essam, J-u.,,1967. J. Math. Phys 8, 741, 4
Essam. J.N., 1972. in: Phase Transit1ons and Critiéa]

Phenomena, Vol 2, Domb, C. and Green, M.S.
- eds. cadech Press, London)

o

SR SR P




Essam, J.W. and Garelick, H., 1967.  Proc. Phys. Soc. 92,
. T roc. Phy

- Fallot, M., 1936. Ann. Physik 6, 3p5.

Fallot, M., 1937.  Ann. Physik 7, 420. |
Ferer, M, ;nd Wortis, M., 1978, Phys. Rev. B, 3426.
. Fisker, M.E. , 1957 Rep. Prﬁgr; Phys. 30, 515 o
Fisher, M.E., 1968. Phys. Rev. 176, zsz | o R
" Fisher, M.E‘;‘1974. Rev. Mod: Phys. 46, 597.- '
Foregﬁieﬁ, H., 1928. Ann -Chim. 9, 316! |
Fuchs , KL; 1942. Proc. Rox; Soc. 5112,7340. T= | ," | ‘"‘ e
'éufland,'c.w./and weinef,{B.B:;.'1971 Phys. Rev. B3, -1634.

‘Gongher; G., Berringer, R. and Meyer,‘H., 1973. "J. Low.
' Temp. Phys, 13, 113, o .

61 ffiths, R.B.;_1967a.; Phiys. Rev. Lett. 14, 623.

'Gri_ffiﬁhs‘glR.B. » 1967b.. ~J. Chem. Phys. 43, 1958. . * " -
. . . o . . //\ -
(Griffiths, R.B.; 1969. Phys. Rev. Lett. 23,17. - i

Sriffiths, R.B., 1970. Phys. Rev. Lett. 24, 715.
"Griff%thE,fRzB;, 1973, Phys. Rev. 7, 545.

. Griffiths, R.B. and Wheeler, J.C.. 1970. "Phys. Rev. A2, 1047,
'Hankey,'A;, Stan]eyé7g .E. and Chang, T. S .. 1972, Phys. Rev.

’ Lett. 29
Harris,_A B., 1974, Phys. £7, 1671
Harris, A]B4 and Lubensky, T.; 1974. Phys. Rev. Lett. 33,
: 1540, | ‘ *

Ho, J.T. and’ L1tster. J D., 1969 Phys. Rev. Lett. 22, 603.

”Huang,K. - 1963. Statistical Mechanics (Johh-wiley ‘and
Sons, New York). — ' ‘ S .



139

Kadanoff, L.P., 1966. Physics 2, 263.

/ Kadanoff, L.P., 1971. in: Critical Phenomena, Proceedings of
" the Varenna Summer School, ed. M.5. Green,
(Academic Press, New York). "

Kadanoff, L,P;'and‘Hegner. F.d.a 1971, Phys. Rev. B4, 3989.

Kasteleyn, P.W. and Fortuin, C.M., 1969. J. Phys. Soc. Japan
(supplement) 26, (

Kikuchi, R., 1951. Phys. Rey. 81, 988.
Kosterlitz, J.M. and Thouless, D:J., 1973.  J. Phys. C6, 1181.

Kouve1, 0.5, and Comley, J.B., 1968. Phys. Rev. Lett. 20,
123 - |

. Landau, D.P. and Kegn, B.E., 1972. Phys. BRev, B5, 4472.
Levelt ﬁengers,TJfM.H;, 1974. Physica 73, 73.
Ma, S., 1973. Rev. Hod. Phys. 85, 589.

Matsubara, T. and Matsuda, H.,.1956. Prog. Theor. Phys.
s, 416, ,

Mattis, D.C., 1965. The Theory of Magnetism (Harper and
' Row, New York) g

‘Mayer,‘J.E., 1937, 4. ghgm. Phys. 5, 67.

McCoy, B.M. and Wu, T.T., 1968. Phys. Rev. 176, 631. |

Mermin, N.D;,andﬁwagﬁef..H., 1966. Phys. Rev. Lett. ll,’1]33.

V'\MOQré,‘M.A.,'1969.'.Phy§. Rev. }ett.lgg.'ssl. :

"'Morgdn, D.J. and Rushbrooke, G. S ,.]961. Molgc,"$hys. 4, 291.
Mubayi, V. and Lange, R.V., 1969. Phys. Rev. 178, 882.
‘Niemeyer. Th. “and Van Leeuwen, J. M J., 1974. Physica 71, 17,

0nsager, L., 1944 Phys. Rev. 65, 117.

' Pathria, R.K. 1972. Statistical Mechanics (Pergamon Press,
‘ Toronto) ' s _ . _



140

Plischke, M. and Betts, D.D., 1975. Can. J. Phys. 53, 987.
J.

Rapaport, D.C., 1972a. Phys. C5, 1830.

Rapaport, D.C., 1972b. J. Phys. €5, 2813.

Rauh, A., 1976. Phys. Rev. (in press).

Rauh, A., 1976. To be published.

Reeve, J.S. and Betts, D.D., 1975. J. Phys. C8, 2642.

Réeve, J.S., 1976. J. Phys. C9 (in press).

Riedel, E.K., 1972. Phys. Rev. Lett. 28, 675.

Riedel, E.K., 1974. AIP Conf. Proc. 18, 834.

Riedel, E.K. and Wegner, F.J., 1972. Phys. Rev. Lett. 29, 349.
Riedel, E.K. and Wegner, F.J., 1974. Phys. Rev. B9, 294.

Rogiers, J., 1974. Ph.D. Thesis, Katholieke Universiteit,
Leuven, Belgium (unpublisned). :

Rogiers, J., Dekeyser, R. and Quisthoudt, M., 1975. 81A,
93. ‘

Rogiers, J. and Dekeyser, R., 1976. Phys. Rev. B, June.
Rogiers, J. and Betts, D.D., 1976. (Private Communication).

Rushbrooke,. G.S., 1964. J. Math. Phys. 5, 1106.
Rushbrooke, 6.S., 1965. J. Chem. Phys. 43, 3439.
Rushbrooke, G.S., 1971. in: Critical Phemomena in Alloys,

Magnets and Superconductors, eds., Mills, R.E.,
Ascher, E. and Jafee, R.J. (McGraw-Hill, New York).

Rushbrooke, G.S., Baker, G. and WOod; P.; 1974. din: Critical
Phenomena and Phase Transitions, eds., Domb, C. '
and Green, M,S, (Academic Press, New York). '

Rushbrooke, .S. and Morgan, D.J., 1961. Molec. Phys. 4, 1.

Rushbrooke, G.S., Muse, R.A., Stephenson, R.L. and Pirnie, K.,
1972. J. Phys. C7, 255. /

R 4

P



141

xﬁﬁﬁ&brooke,»e.s. and Scions, , 1955. Proc. Roy. Soc. A230,
o 74. ' | ' —
-

Rushbrooke, G.S. and Wood, P.J., 1958. Molec. Phys. 1, 257,

- Saul, D.M., Wortis, M. and Stauffer, D., 1974. Pphys. Rev.
B9, 4964, |

>chmidt, V.A. and Friedberg, S.A., 1970. Phys. kev. BI, 2250.

Stanley, H.E., 1971. Introduction to Phase Transitions and
' Critical Phenomena (Oxford University Press,
New York]. . ‘

Stanley, H.E., 1974. in: Phase Transitions and Critical
Phenomena, Vol. 3] eds., Domb, C. and Green, M.S.
cademic Press, New York).

Stanley, H.E. and Kaplan, T., 1966. Phys. Rey. Lett. 17, 913.

o

Stauffer, D., 1975.. Physik B22, 161.
- Stauffer, D., 1976. To be published.

Suzuki, M., 1974. Prog. Theor. Phys. 51, 1992.

Suzuki, M., 1974. J. Phys. C7, 255.
Syozi, gI., 1965. Prog. Theor. Phys. 34, 189.

Syozi, I. and Miyazima, S., 1966. Prog. Theor..Phys.‘§§)‘
1083. v

Takagi, S., 1972._'Prog, Theor. Phys. 47, 22.

Tyabtikov, S.V,, 1967. Methods in the Quantum Theory of
Magnetism (Plenum Press, New York). ,

——

Urséll, H.D., 1927. Proc. Camb. Phil. Soc. 2 , 685,

Van der Waals, J.D,, 1873. Ph.D. Thesis, University of
Leiden. : ' : v

. S

Vicen ini-Missoni M., 1972. in: Phése Transitions ‘and
Critical Phenomena, Vol. 2, eds., Domb, C. and
Green, M.3. (Academic Press, New York). '




142

‘Wegner, F.J. and Riede]; E.K., 1973. Phys. Rev. B7, 248.
Weiss, P., 1907. J. Phys. 6, 661.
‘Widom, B., 1965a. J. Chem. Phys. 43, 3892.'

Widom, B., 1965b. J. Chem. Phys. 43, 3898.

Wortis, M., 1974. Phys. Lett. 47A, 445, |

Wilson, K.G. and Kogut, J., 1974. Physics Reports 12¢, 76.
‘Yelon, W.B. and Birgemeau, R.J., 1972. Phys. Rev. B5, 2615.
‘Yamaji,_’K. and Kondo, J, 1973a". Phys. Lett. 45A, 317.
Yamaji, K. and Kondo, J., 1973b. J. Phys. Soc. Japan 35, 25.

Zubarev, D.N., 1960. Sov. Phys.-Usp. 3, 320.



APPENDIX A
EXPECTATION VALUES FOR FINITE CLUSTERS .

In order to ut1]1se the" f1n1te cluster expans1on as
'proposed 1n Sect1on 4. 5 we need the part1t1on function and
expectat1on va]ues for each finite c]uster

If we a]ready have the Ham1]ton1an for a cluster
C, of say v vertices,d1n matrix form, then it is a simple
matter to findvthenpartition function of C. A1l that is
required‘is-toudiagena]ise'the’Hamiltonﬁan'to find the'y

‘energy‘spectrum’{e 2=1,2,...2" } (The‘XY spin—% mode 1

'f{'has 2 states per site and hence for a v vertex cluster

jthererare 2 states in all.) The partition function is

‘then

_Q(Q),= Tr exp(‘-BH)vf= exp(—seg) (A.1)

™ N
M <
p—

‘Qhere Bvenl/kBT . ~The eXpeCtation value Y(C) for the
. v o

6perator‘y = I ’S? S?‘for the cluster C is given by
y.= Tr y exp(-8H)
2"'” . ,
=I y exp(-sez) (A.2)
L=1 22 ‘ '

.where yu is the lth diagona] element of the matrix for y

in the representatlon where the Hamiltonian is d1agona1

3
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The. Hamiltonian

WA Y = Zgy2 ¢ (o?o% + a{o¥) - mH I S%
<ij> .J J i

-(A.3)
then must be constructed for each finite clhster, The most
straight forward approdch is to write out the Hamiltonian

in the direct producf representation, where for a cluster of
v spins o? is given by I 1 ...0%1 ... I. Where the o% is
the a component of the Pauli spin vector and fs in the ith.
position in the sequence of direct'prodUCtﬁ,of the 2x2

identity matrix I.

By constructing the matrix for & Sf in the direct -
) , i _
product representation it can immediately be seen how the

XY

interaction part of H block diagona1ises,1nto matrices

corresponding to the same SZ eigenvalue. This approach is -
best illustrated by example.
a _

" Consider the labelled cluster , ) .

for which we have I S% = diag(4,2,2,0,2,0,0,-2,2,0,0,-2,0, \\
i

-2,-2,-4) in the .direct product représentation, where since

Z

g'Si has nonézero_e1ementsaon,the diagonal only, we write -
i ' ' ' ‘

down qﬁ]y the diagohal elements. - It is obvious then that if

‘we exchange ro7€’andcolumns 4vw1th‘9‘and‘8 with' 13, the
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mat?ix ) Sz w111 be in blocks of equal'eigenvalues - If we
i
also exchhnge tne same Iabels in the matrix representatlon

of HINT . L (oXaX + oy y), the result is the matrix
<i,j> i J . ‘

0117 11000\ 0117
HINT = (o) (1000 60100} €(1000)¢ ()
| 1000 00010 | 1000 |
1000/ 10001 1000
0100 1‘/ -
0011 0/

Thus the prob]em size is reduced from a 16x16 matrix to that
of a 4X4 and a GXG matrix. These matrices are read11y ’
| diagona]ised to g1ve the set of e1genva1ues 0, 0, 0, +v3, i]’
1, 12, 0, 0, +/3, 0 and in zero field the partition function

for this cluster-is
Q = 6 + 4Coshv/3K + 4CoshK + 2Cosh2Kk

-where K .BJ. 4: o _ 7 _

The above examp]e essent1a11y 111ustrates the ?l
computat1onal technlque used to construct the part1t1on X
functlons of each c]uster.4 To convert the y matrix from
A_the\direct product representatIQn to tne energy representa— .

tion requ1res that we form the matr1x

e
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where v is the matrix of eigenvectors obtained by diagona-
lising the Hamiltonian. Standard routines were used to

diagonalise the Hamiltonian and the entire‘process~was

El

computerised.
‘ For symmetric clusters a further b]ock dlagonalisa-

tion can be ach1eved by wr1t1ng the Hamiltonian in a

| symwetrised basis. However, the advantage‘of this refinement

is’ offset by the relatively low symmetry of mbst of the

graphs and the fact that the transformation to the |

symmetric basis is unique for each cluster.

P i e T : T e
i S R s

ci

ORISR Rl i




APPENDIX: B

LATTICE CONSTANTS AND PERIMETER COUNTS

v

The following table contains the strong lattice
constants and perimeter counts for allvfhe connected
e1usters of up to and ineluding six vertices. These data
are complete for the face centred cubic ( FCcC ), the body
centred cubic ( BCC }, the s1mp1e cubic. (SCU ), t
triangular ( TRI ) and.the simple quadratic ( sSQu )
lattices. The graphs are in dictionary order and sub-
headings give the number of vertices‘and number of bonds.
Each graph is represented by an adJacency matrix A such
that the matrix element A 'is one if there is a bond
between the ith and Jth s1tes and zero otherwise. For

examp]e;the graph
‘ 3 4

2 1

(number 7 in the 1i$t) has adjacency matrix

701 1%

| 1010
" B 100
1000

N0 T A e A s Lt KM . 7 . L. b
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Because this matrix is symmetr1c and a]l the diagonal -
e]ements are zero the graph is adequate]y represented by
the above diagonal elements co11ected column by column

to form the vector, A=1111000.

An example of how these data are to be read is
given below.
Cons1der the graph with four vertices and four bonds
for wh1ch the following data are 11sted
2 111100

7
FEC 120; ‘48(273 72(28)
TRI 12; (11 |

v

Th1§ graph is the seventh in the list and has a symmetry
;1group'of ordgr'two~(i.e; symmétry number'of'two). The next
set of numbers is the adjacency matrix_fn the form given.
above (in fact this is the QrgBh used in the above example).
The ;trongl]attice constant for the 'seventh graph is 120 on
the f.c;c. 1attice and is embeddabIe 48 times Qith perimeter
27 and 72 times w1tb perimeter 28. On the triangular lattice
~the graph can be embedded 12 times with a perimeter of 11.
Note that 1f'a graph isvnqt strong]y embeddable in a
pgrtfcu]af lattice, then no data.for that lattice appear.

S

(N



1 VERTICES

J BONDS

1 10
FCC: 1; 1(12)
BCC: 1; 1( 8)
SCo: 1; 1( 6)
TRI:" 1; 1( 6)
SQU: 1; 1( 8)
2 VERTICES 1 BONDS

2 2 1
FCC: 6; 6 (18)
BCC: 4 4(14)
"SCU: 3; 3(10)
TRI: 3; 3( 8)
SQ0: 2; 2( 6)
3 VERTICES 2 BONDS
3 2 110 _
PCC: 42; 12(23)
BCC: 28; 12(17)
SCU: 15; 12(13)
TRI: 9; 9(1M
SQU: 6; 4( 7)
3 VERTICES 3 BONDS

L4 6 111

PCC: 8; B(22)

TRI: 2; 219

4 VERTICES 3 BONDS
5 . 6 110100

FCC: uy; 12(28)
BCC: 563 24 (20)

SCU: 20; 8(15)

TRI:s 2; - 2(12)

SQU: 4; 4 ( 8)

6 2 110010
FCC: 282; 12(28)
BCC: 148; 12 (20)

' 4 (26)
SCU: 63; 36(16)
TRI: - 27; 27(12)
SQU: 1#;{

- 4( 8)

30 (24)
12 (19)
3 (14)

2( 8)

24 (29)
24 (22)
12(16)

129 (29)

48(22) -

24 (17)
" 8( 9)

149

429

8 (390)
8 (23)

150 (30)

24 (23) 36(%“) 'ZQ(ZS)
3(18) | |
2(10)



4 VERTICES

v

4 VERTICES % O

9 ESEERE < JEE R
'PCC: 245 24 (TBYE A
TRI: . 3: EFR ) i Y

4 VERTICFS 5 BONDS =

19 24 111117
FCC: 2; 2(24)

?- .

5 VERTICES 4 BONDS

11 26 11010719¢C9
FCC: a; 3(32) 6(34)

BCC: 79; 6(21)  32(23) “30(2u)

SCU: 15; 12(17) 3(18)

SQU: 1 1( 8) |

12 2 1101007 19¢

FCC: R28;  28(33) 276 (34) 478 (35)

BCC: - 672;  48(23) 192(25) a6 (26)
' 24.(29)

SCU: 204;  4B(18)  120(19)  36(20) -

TRI: 18;  18(14) S ‘

SQUs 20; 8¢ 9) 12(10)

13 2 1162176010 |
PCC:  1922;  3€(33) 336(34) ‘854 (35)
BCC: 823;  12(23)  96(25)  62(26)

| 127(29)  103(23C) 36 (31)
5Ccu: 2673 24(18) 3L (19) 120(23)
TRI: a1; 6(13)  75(14)
SQU: 347 w09 16(10) 12011
5 VERTICES 5 BONDS
14 4 1111001900

4 RCNDS
S 2 11112
" FCC: 12C; 48(27) 72(28)
TRI: 12; 12(11)
8 8 11C911
FCC: .3 3 (26)
BCC: 125 4 6 (22)
SCu: 3; ... i
SQU: 1,

-FCC: 96; - 48(32) as(zsg o

2(26)

120 (36)

168 (27)

726 (36)
192 (27)
4(32)
36 (21)

2(12)

150

144(28)

192(28)
3(22)

-

\



~

15
FCC:
TRI:

16
FCC:
TRI:

17
PCC:
BCC:
SCU:

sQu: .

2

2

2

5 VEPTICES

18
FCC:
TRI:

19
FCC:
TRI:

27
FCC:

)
21 .
"PCC:

22
BCC:

2
2
8

2
12

11110¢5100
576; 72(32) 288(33)
24; 24 (13)
111100 CCH :
792;  48(32) 384 (33)
36; 36'(13) ,
11312391 1¢
48; 20(31) 24 (32)
216; 48(23) 123(25)
ug: 20(18) 24 (19)
8; 8( 9)
6 BCND5
» 11111312939
1€8; |, 127(31) 48 (32)
€3 6(12)
111112¢H 10 :
2405 96(31)  1uu (32)
12; 12(12)
1111201201
T2;  12(30) 2431
35 3(12)
1111CAr 10
20; 2420y
1131579111
12; 12(23)
7 BOwDS

5 VERTICES

6; 

23 6 1111111con
PCC: 24;  2u(30y
24 2 1111161312
FCC 72;  72(30)
TRI: 6; 6 (1)
5 VERTICES 8 BONDS
[ o
25 ¢ 1111111190
FCC: 24; 24 (28)
26 8 111112111
FCC: 6 6(29)“
6 “VERTICES .5 BONDS
27 1200 118193179¢ 130 30
BCC: 567 20(24) 24 (25
SCO: 6(18) . '

151

216 (34)

360 (34)

24(26)  2u(27)

36(32)

8(26)

i
P



- TRI:

6 110162160001¢)0

28
PCC: 204 ; 6C (38) 24 (39)
BCC: '856; 96 (26) 48 (27)

24 (31) 8(32)
scu: 156 ; 72(2¢) 72 (21)
5Q0: 4; 4(12) o
29 - 8 1101C0010001¢05
PcC: S40; 12(38) 1245(39)
. BCC: 564; 48 (26) 168(28)
' : - 36(32) _
SCu: 126; 12(22) w321
TRI: 3; 3(16) )
5QU: 4; 4(10)

3n 2 1131640128%219¢ _
FCC: 5208; 6 (38) 623(39)
BCC: 265u. 24 (26) 132 (28)

. 524(32) 55433
SCUs 696 ; 26 (2C) 12721
TRI: 54; . 6(15) 4R (16)
sQu: - 32; 4 (15) 16 (11)

31 2 1101932310000 051
FCC: 5‘78 122 (38) 11C8(29)
BCC:  3912; 48 (2€) - uc8 (28) |
, . 672(32) S35 (33)
SCU: - R7A: 48 (20) 19z (21)
TRI: C 545 12(15) 42 (16)
SQUs 52; 8(10) 22(11

32 2. 11CC17071203019
FCC:  12654; 294 (38) 984 (39)
BCC: = 4492, 12(26) 144 (28)

. 768(32) 984 (33)
. T 4837y 4 ¢33)
Scu: 1127; 96 (21 - 252(22)
. . 3(26)
TRI: 237;  24(15) 213(16)
Sou: 82; - 4(10) 2011y
6 VERTICES 6 BONDS

33 2 1111091202910 90
FCC: 864; 1uu(3ny 432(38)

34 2 1111C2153¢92301¢2
PCC:.  1152; . 48(37) 624 (38)
.35 6. 1111C21020019¢

- FcC: 883; 16(37) 216 (38)
TRI: . 16; -16{15) -
36 T 111 1Efiegc1;
FCC:  7632; . u48(36) 336(37)

1ua; 12(14) 132(15)

152

120 (49) o
192(28) 368(29) * 123(30)

12 (22)

260 (80)  1us(u1y 24 (42)

48(23) © 144 (30) 12331
66 (22)

1860 (47) 2112(41)  576(42)

144 (29) 4N (37) 576(371)
216 (34) © 24(35)
337(22) 216(23)  36(24)

12(12)

2252 (&2 ) 1896(&1)v 552(u2)
336(29) 792(37)  912(319)
216 (34) 24(35) -
236 (220 2648 (213) 36 (21)

p’/zn'z)

2942 (45) 5216 (41) 3510(u2)

96 (23) 528(3G) 648(31)
612(34) 432(35) 216 (36)

456 (23) 252(24)  ug(25)
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