

Stochastic Modeling in Software Testing

by

Seyedeh Sepideh Emam

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in
Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

© Seyedeh Sepideh Emam, 2017

 ii

Abstract

Using models in order to formalize and abstract the view of a system is a popular approach in

different research areas. Deriving behavioral models from software executions is a common

approach used in supporting a broad range of software development, maintenance, and

verification and validation tasks. Behavioral models are useful tools in understanding how

programs work. Although, several inference approaches have been introduced to generate

Extended Finite State Automatons from software execution traces, they suffer from accuracy,

flexibility and decidability issues.

In this study, we apply a hybrid technique, which uses both Reinforcement Learning and

stochastic modelling to generate an Extended Probabilistic Finite State Automaton (called

ReHMM) from software traces. Our approach is able to address the problems of inflexibility and

un-decidability, reported in other state of the art approaches. Experimental results indicate that

ReHMM outperforms other inference algorithms.

Moreover, dynamic specification mining of web applications is a helpful approach in observing

program execution and generating a model of program behavior. However, it cannot efficiently

support the identification of prevalent navigation patterns from a user’s perspective. Inferring a

user behavioral model from a history of users’ interactions can assist in evaluating the users’

“satisfaction level” with the application. Based upon this evaluation, such a model can provide

insights into possible design and architectural anomalies and lead to the development of software

solutions addressing the users’ needs.

In this thesis, we also propose a hybrid approach to fully automate the behavioral model

generation and a reward calculation process for user-intensive web applications. Our proposed

 iii

solution infers a reward augmented behavioral model by: (1) dynamically generating a set of

probabilistic Markovian models from the interaction history; (2) annotating and analyzing the

models to verify the quantitative properties; and (3) augmenting the model using a reinforcement

learning method to assign reward values to the states of the model.

Additionally, we present a new extended digraph model as the basis of a novel fault-based test

case prioritization technique to promote fault-revealing test cases in model-based testing (MBT)

procedures. We seek to improve the fault detection rate- a measure of how fast a test suite is able

to detect faults during testing – in scenarios such as regression testing. The model is realized

using a Reinforcement Learning (RL) and Hidden Markov Model (HMM) based technique,

which is able to prioritize test cases for regression testing objectives. We present a method to

initialize and train a HMM based upon RL concepts applied to an application’s digraph model.

The model prioritizes test cases based upon forward probabilities. In addition, we also propose

an alternative approach to prioritizing test cases according to the amount of change they cause in

applications. To evaluate the effectiveness of the proposed techniques, we perform experiments

on Graphical User Interface (GUI)-based applications and compare the results with state-of-the-

art test case prioritization approaches. The experimental results show that the proposed technique

is able to detect faults early within test runs.

And finally, since the automated test case generation is one of the main challenges in testing

mobile applications, and this challenge becomes more complicated when the application under

test supports motion-based events, we propose a novel, hidden Markov model (HMM)-based

approach to automatically generate movement-based gestures in mobile applications.

 iv

An HMM classifier is used to generate movements, which mimic a user’s behaviour in

interacting with the application’s User Interface (UI). We evaluate the proposed technique on

three different case studies; the evaluation indicates that the technique not only generates

realistic test cases, but also achieves better code coverage when compared to randomly generated

test cases.

 v

Preface

Chapter 2 of this thesis is submitted as S. Emam; J. Miller, “Inferring Extended Probabilistic

Finite State Automaton Models from Software Executions”. Under the second round of revision

at the ACM Transactions on Software Engineering and Methodology (TOSEM), 2017.

Chapter 3 of this thesis is submitted as S.Emam, S.S. Ghaemmaghami, J. Miller, “Inferring

Reward Augmented Behavior Models from Log Files in Web Applications” Submitted to

ACM Transactions on Internet Technology (TOIT), 2017. I was responsible for developing the

idea, producing the models, analyzing the results, and the manuscript composition. J. Miller was

the supervisory author and was involved with concept formation and manuscript composition.

S.S Ghaemmaghami also contributed in manuscript composition.

Chapter 4 of this thesis has been published as S. Emam; J. Miller, “Test Case Prioritization

Using Extended Digraphs” ACM Transactions on Software Engineering and Methodology

(TOSEM). 25(1): 6:1-6:41, 2015.

Chapter 5 of this thesis is submitted as S. Emam; J. Miller, “Automated Testing of Motion-

based Events in Mobile Application”. Under the second round of revision in the Journal of

Software: Evolution and Process, 2017.

 vi

This thesis is dedicated to my husband, Ali and my parents, Shirin and Mehdi

For their endless love, support and encouragement.

 vii

Acknowledgments

First and foremost I would like to thank my supervisor, professor James Miller for his endless

support, patience and encouragement during the years of my Ph.D. It has been an honor to be his

Ph.D. student.

I would also like to thank my committee members Dr. Scott Dick, Dr. Marek Reformat, Dr.

Eleni Stroulia and Dr. Lin Tan for their thoughtful and constructive comments and feedback.

Finally, I would like to thank my sister Elham and my brother Matin for their love and support.

 viii

Table of Contents

1 Introduction .. 1

1.1 Inferring Behavioral Models ... 1

1.2 Applying Stochastic Models in Test Case Generation and Prioritization 2

1.3 The Focus of This Research ... 3

1.3.1 Chapter 2: Inferring Extended Probabilistic Finite State Automaton Models from

Software .. 3

1.3.2 Chapter 3: Inferring Reward Augmented Behavior Models from Log Files in Web

Applications .. 4

1.3.3 Chapter 4: Test Case Prioritization Using Extended Digraphs 5

1.3.4 Chapter 5: Automated Testing of Motion-based Events in Mobile Application 6

2 Inferring Extended Probabilistic Finite State Automaton Models from Software

Executions .. 7

2.1 Introduction ... 7

2.2 Related Work .. 12

2.2.1 Specification Mining ... 12

2.2.2 Evaluation of Inferred models ... 15

2.2.3 Baseline Inference Approaches ... 15

2.3 Research Motivation ... 21

2.3.1 Missing State-Action Values ... 22

2.3.2 Application of ReHMM in Software Engineering .. 25

2.4 Inputs and Domain ... 28

2.4.1 Motivating Example .. 30

2.5 Technical Background and Definitions .. 31

2.5.1 Prefix Tree Acceptor (PTA) .. 32

2.5.2 Extended Finite State Automaton ... 32

2.5.3 Probabilistic Finite State Automaton (PFSA) ... 33

2.5.4 Reinforcement Learning (RL) ... 34

2.5.5 Hidden Markov Model (HMM) .. 37

 ix

2.6 ReHMM: An RL-based HMM Inference Approach ... 39

2.7 Empirical Evaluation .. 53

2.7.1 Comparison Criteria .. 55

2.8 Experimental Setup .. 57

2.9 Experimental Results .. 64

2.10 Time Complexity Analysis ... 69

2.11 Threats to Validity .. 72

2.12 Conclusion ... 74

3 Inferring Reward Augmented Behavior Models from Log Files in Web Applications . 75

3.1 Introduction ... 75

3.2 Problem Statement and Research Motivation ... 78

3.3 Augmenting Behavioral Models by Reward Values .. 83

3.3.1 User Behavioral Model ... 83

3.3.2 Proposed Model Inference Approach .. 83

3.4 Running Example ... 85

3.5 Inference Details ... 87

3.5.1 Identifying Initial Parameters and Processing Log File .. 87

3.5.2 Generating the Behavioral Model ... 89

3.5.3 Calculating and Assigning Reward Values ... 93

3.5.4 Analyzing the Model ... 102

3.6 Empirical Evaluation .. 105

3.6.1 Industrial Case Study .. 105

3.6.2 Experimental Results ... 105

3.6.3 Correlation coefficients ... 109

3.7 Related Work .. 112

3.8 Conclusion ... 114

4 Test Case Prioritization Using Extended Digraphs ... 117

4.1 Introduction ... 117

4.2 Motivation ... 120

4.2.1 Static or Dynamic Prioritization .. 120

4.2.2 Overview of the utilized testing models and domain of application 121

 x

4.3 Theoretical Background ... 125

4.3.1 Reinforcement Learning .. 127

4.3.2 Hidden Markov Model .. 130

4.4 Test Case Prioritization .. 134

4.4.1 Random, Optimal and Worst Prioritization Techniques ... 135

4.4.2 Additional Statement Coverage Prioritization .. 136

4.5 Test Case Prioritization Using RL-Based HMM ... 137

4.5.1 Step 1: Q-Learning Estimation Method .. 139

4.5.2 Step 2: HMMs’ Parameters Estimation ... 139

4.5.3 Step 3: Computing Forward Probabilities and Considering their Application in Test

Case prioritization ... 141

4.6 Accumulated Test Cases' Q-values in Descending Order ... 143

4.6.1 Motivating Example .. 144

4.7 Empirical Evaluation .. 150

4.7.1 Comparison Criteria .. 151

4.7.2 Statistical Testing .. 151

4.7.3 Experimental Setup ... 155

4.7.4 Experimental Results ... 158

4.8 Discussion .. 177

4.8.1 Run-Time Analysis ... 179

4.9 Related Work .. 180

4.10 Threats to Validity .. 183

4.11 Conclusion ... 185

5 Automated Testing of Motion-based Events in Mobile Application 187

5.1 Introduction ... 187

5.2 Related Work .. 190

5.2.1 Mobile Application Testing .. 190

5.2.2 Testing Motion-based Gestures ... 193

5.3 Gesture Simulation ... 194

5.3.1 Synthesizing Motion Sequences .. 198

5.4 HMM-Based Test Case Generation .. 202

 xi

5.5 Running Example ... 206

5.6 Empirical Evaluation .. 210

5.6.1 Experimental Setup ... 210

5.6.2 Experimental Results ... 216

5.7 Run-Time Analysis ... 224

5.8 Threat to Validity ... 230

5.9 Conclusion ... 231

6 Conclusion and Future Work .. 233

6.1 Conclusion ... 233

6.2 Recommendations for Future Research ... 236

References .. 239

Appendices ... 270

Appendix A - The overview of the EFSA generated by ReHMM 270

Appendix B - The Results of Applying Inference Techniques on 7 Different Case Studies

for k=5 and k=10 .. 271

 xii

List of Tables

Table 1. sk-strings Algorithm ... 20	

Table 2. sk-equivalence using AND heuristic .. 20	

Table 3. ReHMM Inference Algorithm .. 41	

Table 4. Similarity Score Calculator ... 41	

Table 5. The Results of Applying Inference Techniques on Seven Different Case Studies, for

G=0,1 .. 65	

Table 6. The Result of calculating Sensitivity and Specificity Measures Using ReHMM for G=0

... 65	

Table 7. The Result of calculating Sensitivity and Specificity Measures Using ReHMM for G=1

... 66	

Table 8. The Result of Calculating Probability Similarity Measure in ReHMM and sk-strings for

G=0,1 .. 66	

Table 9. Sizes of Inferred Models in Terms of State Numbers for All Case Studies, Applying

ReHMM (G=0,1) .. 69	

Table 10. The Result of Calculating BCR Measure Using ReHMM Implemented by Different

Edit Distance Heuristics .. 69	

Table 11. Time Taken to Infer Models Across All Case Studies Using ReHMM for G=0,1 71	

Table 12. The URLS and Their Corresponding Atomic Propositions in MyUAlberta Application

... 88	

 xiii

Table 13. The URLS and Their Corresponding Atomic Propositions in MyUAlberta Application

... 92	

Table 14. Reward Calculation Algorithm ... 100	

Table 15. Similarity Calculation Algorithm ... 100	

Table 16. Results of Running Reward Calculation Algorithm on MyUAlberta Case Study 107	

Table 17. Number of Page-views for Each Considered Page (URL) on MyUAlberta Case Study

... 108	

Table 18. Customized Q-Learning for GUI-based Applications .. 140	

Table 19. RL-based HMM Test case Prioritization Algorithm .. 143	

Table 20. Accumulated Test Cases' Q-values Ordering ... 144	

Table 21. Investigated applications ... 155	

Table 22. Fault matrix summary ... 158	

Table 23. APFD of the applied prioritization techniques for UPM .. 162	

Table 24. The statistical analysis for RL-based HMM technique vs. other techniques in UPM 162	

Table 25. APFD of the applied prioritization techniques for Buddi ... 165	

Table 26. The statistical analysis for RL-based HMM technique vs. other techniques in Buddi166	

Table 27. APFD of the applied prioritization techniques for PDFSAM 167	

 xiv

Table 28. The statistical analysis for RL-based HMM technique vs. other techniques in

PDFSAM .. 168	

Table 29. APFD of the applied prioritization techniques for TimeSlotTracker 169	

Table 30. The statistical analysis for RL-based HMM technique vs. other techniques in

TimeSlotTracker ... 169	

Table 31. APFD of the applied prioritization techniques for Extended PDFSAM 172	

Table 32. The statistical analysis for RL-based HMM technique vs. other techniques in Extended

PDFSAM .. 173	

Table 33. APFD of the applied prioritization techniques for TerpPaint 175	

Table 34. The statistical analysis for RL-based HMM technique vs. other techniques in TerpPaint

... 175	

Table 35. APFD of the applied prioritization techniques for WordProcessor 176	

Table 36. The statistical analysis for RL-based HMM technique vs. other techniques in

WordProcessor .. 176	

Table 37. APFD of the applied prioritization techniques for Calculator 176	

Table 38. The statistical analysis for RL-based HMM technique vs. other techniques in

Calculator .. 177	

Table 39. Test case generation procedure for cases with acceleration involved 207	

Table 40. Training motions clustered in two distinct clusters .. 208	

Table 41. Simplest Supported Actions and Gestures in Both Types of Application 213	

 xv

Table 42. Random Test case generation procedure for cases with acceleration involved (Physics-

based) .. 218	

Table 43. Results of Calculating Effect Size Measure and the Mean of Code Coverage For Test

Case Generation Methods in All Case Studies ... 221	

Table 44. Results of Providing Same Resources as HMM-based to Random 230	

Table 45. The Results of Applying Inference Techniques on Poolboy, SMTPTransport, Resource

Locker and Frequency Server, for k=5,10 (in terms of BCR) .. 271	

Table 46. The Results of Applying Inference Techniques on Signature, StringTokenizer and

Socket, for k=5,10 (in terms of BCR) ... 272	

 xvi

List of Figures

Figure 1. Inference steps for ReHMM approach. HMM classifier calculates the forward

probabilities and chooses the next method to be executed based on its corresponding likelihood

α. Q-values are also added to the PTA based upon the amount of change the function-execution

triggers (Note: edges are labeled with method calls (class labels)) ... 39	

Figure 2. An overview of a HMM model, which is generated in the classification process. 49	

Figure 3. Excerpt of the model derived by ReHMM from the pump controller example 52	

Figure 4. Excerpt of the simple simulator of the running example- the simulator is used as a basis

for calculating the Probability Similarity of inferred PFSAs .. 56	

Figure 5. The toolset used in the empirical evaluation ... 58	

Figure 6. The Framework of the User Behavioral Model Inference Approach 86	

Figure 7. An excerpt of the model inference procedure for MyUAlberta application 91	

Figure 8. An excerpt of the reward calculation procedure for MyUAlberta application 102	

Figure 9. One-Month User Flow Extracted From Google Analytics .. 109	

 Figure 10. The correlations among pairs of variables in MyUAlberta case study 111	

Figure 11. An overview of the behavioral model as a directed graph .. 123	

Figure 12. An overview of the behavioral model as an Extended directed graph 123	

Figure 13. Expert of a behavioral model as a directed graph-motivating example 145	

 xvii

Figure 14. Expert of a behavioral model as an extended directed graph- motivating example .. 145	

Figure 15. Event flow graph, extracted from GUITAR- Motivating example 148	

Figure 16. Extended directed graph- generated using event flow graph 149	

Figure 17. Experimental Setup; Combination of a test case generator (ABT) and prioritization

techniques ... 157	

Figure 18. (a) Percent of faults detected versus test suite fraction. (b) Box plot of APFD for UPM

... 161	

Figure 19. (a) Percent of faults detected versus test suite fraction. (b) Box plot of APFD for

Buddi ... 165	

Figure 20. (a) Percent of faults detected versus the test suite fraction. (b) Box plot of APFD for

PDFSAM .. 167	

Figure 21. (a) Percent of faults detected versus test suite fraction. (b) Box plot of APFD for

TimeSlotTracker ... 169	

Figure 22. (a) Percent of faults detected versus test suite fraction. (b) Box plot of APFD for

Extended PDFSAM .. 172	

Figure 23. An overview of applying the proposed approach on the application with flying object.

It consists of both training the initial HMM (top) and test generation process using HMM

classifiers (bottom) .. 198	

Figure 24. (a) 3D acceleration axes on smartphones; and (b) an atomic gesture containing a

sequence of motions happening within two intervals: (left) a bouncing object keeps moving in

the screen after hitting the edge in first time-interval 𝜑; (right) the proposed approach calculates

the next movement after the second time-interval 𝜃 happens ... 201	

 xviii

Figure 25. An overview of trained HMM in running example ... 209	

Figure 26. (a) Boxplot summarizing the achieved likelihoods for each approach in the Bouncing

ball application. (b) Boxplot summarizing the achieved likelihoods for each approach in Bubbles

application (c) Boxplot summarizing the achieved likelihoods for each approach in Extended

Bouncing ball application (d) Boxplot summarizing the achieved likelihoods for each considered

approach in Diamond application ... 223	

Figure 27. (a) Boxplot summarizing the results of calculating the code coverage for each

approach in the Bouncing ball application. (b). Boxplot summarizing the achieved results of

calculating the code coverage for each approach in the Bubbles application. (c) Boxplot

summarizing the results of calculating the code coverage for each approach in the Extended

Bouncing ball application (d) Boxplot summarizing the results of calculating the code coverage

for each approach in the Diamond application ... 224	

1

1 Introduction

This thesis is the collection of the research papers, which are produced during this PhD program.

The list of papers is provided in the preface. In this section we focus on introducing the main

goals and approaches, which are defined and developed in this research.

 It is worth noting that in the first two papers (Chapters 2 and 3), we proposed new inference

techniques to generate probabilistic behavioral models from software execution traces and log

files, while in the rest of the thesis (Chapter 4 and 5), we focused on applying the behavioral

models in software testing context.

1.1 Inferring Behavioral Models

The application of behavioral models in software analysis and testing activities includes efforts

to complement available specification information [1], automate the acquisition of user

interaction requirements [2], and the ability to generate test cases to detect program faults [3]–

[6]. The large range of applications for behavioral models in software engineering has led to a

multitude of researchers proposing several inference techniques. Many of these approaches infer

the model in the form of a Finite State Machine (FSA) [7], [8]. While some other approaches

augment the FSAs with transition probabilities or constraints, and produce Probabilistic FSAs

(PFSAs) or Extended FSAs (EFSAs).

Although, augmenting the behavioral models with transition probabilities helps in generating

behavioral models mimicking actual software characteristics, PFSAs are still missing algebraic

or universally quantified guards associated with the transition labels and EFSAs are missing the

transition probabilities.

2

On the other hand, specification mining of web applications is a helpful approach in generating a

model of system behaviour. Unlike inferring EFSAs and PFSAs, which normally use software

execution traces as inputs, behavioral models in web applications can be generated from the

history of users’ interactions.

Inferring user behavioral models in web applications provides information about hidden user

behavioral patterns. Such information helps systems’ experts to understand the clients’ interests

more thoroughly and design the web application in a way that fully addresses users’

requirements. User behavioral models are also used in detecting the design anomalies in web

applications. Finding the pages playing the role of deadlocks in the user interface design is

another main achievement in inferring and analyzing the user-behavioral models [2-7].

1.2 Applying Stochastic Models in Test Case Generation and
Prioritization

The complexity and size of software systems are growing; along with the increasing importance

of testing and verifying these systems. As a result, many test suites produced during development

are reused in a regression-testing mode especially during software maintenance or evolution.

Decreasing regression-testing costs while increasing fault detection power are important goals in

software testing; these challenges can potentially be addressed by Model-based testing (MBT)

techniques [13], [14]. MBT has two phases: (1) the generation of executable test cases; and (2)

the execution and evaluation of test cases [15].

However, stochastic modeling approaches are an efficient way to handle Model-based Testing.

Different stochastic modelling techniques are developed and applied to address both test case

generation and evaluation phases [10], [11], [16]–[18]. Markov chains and Hidden Markov

3

Models can be used to generate FSAs representing all possible execution traces in software or

user-interaction scenarios in the web or mobile applications. Such traces and scenarios can be

used later to generate test cases covering different functionalities in the Graphical User Interface

(GUI) and the source code. Moreover, stochastic models can be used to select and prioritize test

cases, which are more likely to detect faults during regression testing [15], [19], [20].

However, when it comes to testing mobile applications, MBT becomes more challenging due to

the ongoing developments in the mobile industry. For instance, inferring models supporting

motion-based scenarios and automatically generating executable motion-based gestures (test

cases) is a new and challenging area in MBT. Proposing an approach to generate a dynamic

behavioural model of a motion-based application and applying that in automatically generating

test cases can provide a solution to the problem of testing such applications.

1.3 The Focus of This Research

In this thesis we identify and categorize the major issues and vulnerabilities in the existing model

inference approaches. We develop and evaluate a novel hybrid approach using both

Reinforcement Learning (RL) and stochastic modeling, which addresses these vulnerabilities and

outperforms state-of-the-art approaches in terms of the inference accuracy. We also apply the

RL-based modeling approach to generate and prioritize test cases.

1.3.1 Chapter 2: Inferring Extended Probabilistic Finite State Automaton Models
from Software

The focus of the chapter 2 of this thesis is on proposing a new approach to generate the Extended

Probabilistic Finite State Automaton (EPFSA) from software traces. Our new inference approach

(ReHMM) addresses the problems of inflexibility and un-decidability, which had not been

4

addressed by state-of-the-art techniques. It utilizes both Reinforcement Learning (RL) and

stochastic modelling concepts to generate models, which are not only labeled with the method-

calls and guards but also are labeled with the transition probabilities. Applying ReHMM on

several different software systems indicated that it outperforms other inference algorithms in

terms of accuracy.

Chapter 2 of this dissertation is derived from an article submitted for publication:

• S. Emam; J. Miller, "Inferring Extended Probabilistic Finite State Automaton Models

from Software Executions". Under revision at the ACM Transactions on Software

Engineering and Methodology (TOSEM), 2017.

1.3.2 Chapter 3: Inferring Reward Augmented Behavior Models from Log Files in
Web Applications

In chapter 3, we propose a hybrid approach of RL and Markovian process to fully automate the

inferring procedure of reward-augmented behavioral models in web applications. In this

approach, the states of the inferred behavioral model are automatically augmented with the

reward values. Reward values provide information about the behavior of the users in

corresponding states (pages) of the web application. Such models are generated using historical

user-interaction log files. They are able to provide user behavioral information without

instrumenting the source code or manually calculating the reward values. Experimental results

indicate our proposed approach has comparable performance to Google Analytics.

Chapter 3 of this dissertation has been submitted for publication:

5

• S.Emam, S.S. Ghaemmaghami, J. Miller, "Inferring Reward Augmented Behavior

Models from Log Files in Web Applications". ACM Transactions on Internet

Technology (TOIT), 2017.

1.3.3 Chapter 4: Test Case Prioritization Using Extended Digraphs

A new MBT approach is provided to prioritize GUI-based test cases in chapter 4 of this thesis.

This technique uses both RL and HMM concepts to generate an application’s digraph model and

apply the model in order to prioritize test cases based upon the forward probabilities. It utilizes

both forward probabilities and accumulated Q-values to respectively calculate the occurrence

likelihood of the sequence of events and the amount of computations triggered by executing such

sequences in the GUI-based applications.

The proposed approach is used on Graphical User Interface (GUI)-based applications and the

results are compared with state-of-the-art test case prioritization approaches in terms of fault

detection rate. The results indicated that our prioritization approach outperforms other techniques

(including Random, Best, Worst and Additional code coverage) in terms of APFD.

Chapter 4 of this thesis has been published as:

• S. Emam; J. Miller, " Test Case Prioritization Using Extended Digraphs” ACM

Transactions on Software Engineering and Methodology (TOSEM). 25(1): 6:1-6:41,

2015.

6

1.3.4 Chapter 5: Automated Testing of Motion-based Events in Mobile
Application

Finally, in chapter 5, we propose a new MBT approach to generate motion-based test cases in

mobile applications. Again the considered technique uses both RL and HMM concepts and

automatically generate test cases for mobile applications supporting motion-based events. Such

mobile applications generate motion-based events using the data gathered by the accelerometers

or by recording the touched points.

When the device is in the motion or its screen is continuously being touched, the probability of

receiving unintentional inputs by the mobile application increases. Therefore, providing an

approach, which is able to automatically generate test case mimicking actual human user motions

would be helpful in not only testing the functionality of the applications but also in early

detection of faults.

In this study, we evaluate our test generation technique on three different motion-based mobile

applications. The experimental results indicate that the technique is able to generate test cases

mimicking actual users’ behaviors, while it achieves a better coverage compared to the random

test cases.

Chapter 5 of this thesis is submitted for the second round of revision as:

• S. Emam; J. Miller, "Automated Testing of Motion-based Events in Mobile

Application". Journal of Software: Evolution and Process, 2017.

7

2 Inferring Extended Probabilistic Finite State Automaton
Models from Software Executions

2.1 Introduction

Most of behavioural model inference techniques are able to infer a model in the form of a Finite

State Automaton (FSA). FSA is the model most commonly used by dynamic model inference

approaches to demonstrate program behavior and to present information about the execution of

event sequences [7], [8].

FSAs are able to provide information about the behavior of software systems using a set of states

and transitions. However, because a FSA can only provide a partial view of the software, it does

not accurately represent the software’s behavior [21], [22]. To address this issue, many

researchers have proposed a complementary model containing information about state variables.

In the Extended version of a FSA (EFSA), transitions between states are associated with both

labels and guards (constraints). A guard represents the conditions, which must hold with respect

to the system’s data–state variables (for the transition to be available). Transitions of an EFSA

can be labeled with algebraic or universally quantified guards. The algebraic guards associated

with transitions determine the concrete values that can be assigned to variables, while universally

quantified constraints (guards) indicate how data values can reoccur across events.

EFSAs are able to solve many complex learning problems by blending the sequence of events or

method calls with the values of the associated parameters. However, they are still missing a

significant factor: Transition probabilities. Transition probabilities in FSAs indicate the

likelihood of a transition being traversed. Using a model containing the transitions probabilities,

it is possible to generate a collection of actions mimicking certain characteristics of the actual

8

software. For example by utilizing Probabilistic FSAs (PFSAs), it would be possible to calculate

the probability of calling a specific method in different states of the software and subsequently

detect methods which may be called more frequently than others. Accessing such information

helps in solving several software engineering problems:

• Finding hotspots 1 in software executions: virtually many software programs spend the

most majority of their time executing a minority of their code. Therefore, by detecting

the less-frequent methods in the software system, the compiler can focus the attention

of a global native-code optimizer on the hot spots. By avoiding compilation of

infrequently executed code, the Hotspot compiler can devote more attention to the

performance-critical parts of the program, without necessarily increasing the overall

compilation time. However, less frequent methods can be detected by recognizing the

transitions with low likelihood of being traversed in a corresponding PFSA.

• Finding errors and bugs: knowing the probability of a method to be called helps the

software testers to focus the testing efforts on the behaviors that are more likely to

happen in the software system. This helps in reducing the time, needed for regression

testing by eliminating the test cases covering less-frequent functionalities.

In addition, it is proven that the problem of generating a perfect Probabilistic FSA (PFSA) is a

decidable problem, whereas perfect learning of a FSA is not decidable. According to research

conducted by Gold [23], when the learner has no preference in choosing a path, it is possible that

the learner cycles through generating a never ending sequence of examples from the infinite

language making the problem of learning a perfect FSA undecidable. However, Ammons et al.

[24] illustrated that if the learner is provided with extra information (a probability distribution),

1 http://www.oracle.com/technetwork/java/whitepaper-135217.html

9

allowing it to justify choosing a less general automaton over a more general one, the cycling

issue can be avoided. In this study, we refer to the issue of a missing probability distribution as

the missing state-action value issue, since it is solved by estimating the value of executing an

action in the corresponding state.

In this study, we propose a new solution to address the missing state-action values’ issue by

representing a new stochastic inference approach called ReHMM.

ReHMM is a novel Extended Probabilistic FSA inference technique that builds the behavioral

model incrementally, while walking through software traces from the system. ReHMM takes

advantages of both EFSAs and PFSAs by inferring an Extended Probabilistic Finite State

Automaton (EPFSA), where its nodes represent the software state and its edges carry method

calls, data values, and transition probabilities, adding the state-action values to the model.

ReHMM infers an accurate EFSA from software traces while triggering relevant computations to

navigate the model during the inference process. It uses a hybrid technique consisting of

stochastic modelling (Hidden Markov models (HMMs)) and reinforcement learning (RL), in

particular Q-learning, to infer an “improved” model. This improvement in behavioral-modeling

performance is achieved by calculating a new value (called the Q-value) for each transition in the

behavioral model and attaching it to the corresponding edge. In other words, Q-learning actively

explores the execution space (execution traces) and calculates Q-values incrementally to solve

the missing state-action values’ issue.

In practice, HMMs are common types of stochastic FSAs, which are used in many sequential

pattern processing, information extraction and classification problems (such as speech and

handwritten task recognition [25], [26]). In this case, an HMM classification approach is applied,

because the inferred models contain an underlying stochastic behavior among the software-

10

systems’ states that is not observable, but affects the observed sequence of events (the execution

of method calls). Therefore, as part of the inference algorithm a set of classifiers is generated

each of which corresponds to a class label in the trace (e.g. the signature of a method in a trace

from a program). Using such a set of traces, the classifier can predict the next event name in the

trace (i.e. the name of the next method to be called).

On the other hand, the main reasons for choosing Reinforcement Learning are its strong

statistical background, its proven ability in handling a wide range of data, and its ability to re-

estimate a Markov model efficiently. Using RL, we are able to estimate the transition

probabilities as part of the inference procedure [27].

Therefore, by using an HMM classifier and Q-learning as a hybrid approach, the model would be

able to predict the next event name in the trace and subsequently, distinguish between transitions

with the same labels but different corresponding Q-values. This also prevents the inference

procedure from inappropriate merging of states and transitions.

This study contributes to the research in this area by:

• Utilizing Q-Learning as an incremental learning approach to discover functions, which

trigger more computations during software executions, while inferring an EFSA from

software executions and calculating the transitions probabilities in the inferred model;

• The adoption of an HMM classifier as a Markovian solution to the problem of generating

non-deterministic and inaccurate models;

• Demonstrating the accuracy of the inferred model by performing an empirical evaluation

of ReHMM on seven relatively diverse software systems; and

11

• Comparing the results obtained using the proposed method with those obtained by [28]

and [29]. The results show that ReHMM outperforms the current state of the art

technique in terms of model accuracy;

• Considering Q-values as a potential indication of the transitions probabilities in designing

Extended Probabilistic FSAs.

This chapter is organized as follows. Section 2.2 provides related work and the detailed

description of the state of the art approaches, which are used as baselines in this research (MINT

data classifier and sk-strings algorithms). Section 2.3 contains research motivations, problem

description and application of the proposed approach in software engineering. Section 2.4

contains the definitions and details regarding the inputs and domain of this research. This section

also introduces a motivating example, which will be used throughout this chapter (specifically in

Section 2.6) to provide a demonstration of the inference steps on a sample system. In Section 2.5,

we provide background information and definitions relating to EFSAs, PFSAs, PTA, RL,

transition functions and HMMs. Section 2.6 includes the design of the proposed techniques by

describing the estimation procedure of the RL-based Hidden Markov Model (ReHMM) and

inference of Extended PFSA. Section 2.7 describes the evaluation phase, research questions and

comparison criteria. Section 2.8 provides the experimental setup, while Section 2.9 includes a

discussion on the results, and an analysis of the empirical studies. Section 2.10 discusses the

time-complexity analysis of the approach. Section 2.11 looks at the limitations and the threats to

the validity of the study. Finally, in Section 2.12, we present our overall conclusions and some

thoughts on potential future research.

12

2.2 Related Work

The challenge of producing FSAs from traces is not a new topic; several research projects have

been undertaken which have provided a diverse set of inference approaches and algorithms.

Many of these methods are general approaches focusing on the efficient generation of

automatons as abstract machines regardless of their application in software engineering [30]–

[32]. For example, Biermann and Feldman in [7] present a modified method to synthesize

machines from finite subsets of their behavior.

Since, our work builds upon early work in inferring Extended FSAs, in this section, we consider

related studies on specification mining in the software engineering context, their improvements

in generating stochastic models and their evaluation approaches.

2.2.1 Specification Mining

Many studies have been conducted on automaton-based specification mining [33], [34].

Bartussek et al. [35] presented a new approach to use a set of assertions about input traces and

utilize them to generate an abstract specification of different software modules. However, trace-

assertions are used in other studies as well to specify software modules [36]–[38]. Additionally,

Ammons et al. [24] provided a pioneering approach to mining the specification of method calls

extracted from software execution traces. Their proposed method infers a model by observing

program executions and concisely summarizing frequent interaction patterns as state machines.

The generated FSA is able of capturing both the temporal and data dependencies and learn a

probabilistic FSA.

Moreover, Krka et al [39], proposed three novel algorithms CONTRACTOR++, SEKT and

TEMI, which combine execution traces with automatically inferred program-state invariants to

13

mine EFSA-based specifications. It is worth noting that some of execution traces used in this

study are the same as the traces used in [18].

In addition to this, there are other studies, which have provided an approach to infer FSAs using

graph transformation rules [40] or suggested a method to mine traces for a set of pre-defined

micro-patterns and then merge them into a FSA [41]. It is worth noting that that the solutions

introduced in these studies are not able to mine specifications into other formats (such as regular

expression, Communicating FSAs (CFSAs) [34] or EFSAs.) rather than FSAs.

State of the Art EFSA Inference Approaches: GK-tail [3], kLFA [22], ADABU [42] are other

pioneer techniques utilizing data flow information to extract EFSAs. We describe each of these

inference techniques in the following paragraphs:

Dallmeier et al. in [42] suggests a technique to construct a state machine that would summarize

object behavior. They It generates a model by obtaining a detailed record of the data states at

each point of the program execution. It finally builds a model that adds data values to FSA

models but these are not transition guards.

Another state of the art EFSA inference method is GK-tail. GK-tail is an extension of the

traditional kTail algorithm [7] and an automated inference technique used to generate EFSAs

from a set of interaction traces [3]. This technique augments the automata with constraints both

on transitions and event sequences. To process traces and infer a behavioral model, GK-tail

merges similar traces, derives constraints from the values associated with each event, and then

builds an initial EFSA from the set of traces annotated with the constraints. Finally, GK-tail

iteratively merges states with the same future of length k. The future of length (k) of a state is the

set of event sequences with maximum length (k) that can be triggered from the state. It is worth

noting that GK-tail uses Daikon [4] to infer rules for each transition.

14

Unlike GK-tail, which uses the values already assigned to the attributes, kLFA uses a different

approach and focuses on universally quantified constraints representing an occurrence pattern of

values across events. Initially, kLFA analyzes the interaction traces and extracts the universally

quantified constraints, which indicates how data values reoccur across events [22]. It then

rewrites traces by replacing concrete values with symbols representing the discovered patterns.

Finally, kLFA infers an EFSA from the rewritten traces which incorporate data flow information

[43].

Stochastic FSAs: The challenge of improving FSAs using stochastic procedures and

probabilistic values dates back to 1963 when Michael et al. [44] presented the probabilistic FSAs

as an stronger version of deterministic automata. Also in the context of software engineering,

many studies have focused on conventional Probabilistic FSA generation processes [45], [46].

However, using the probabilistic FSA as a learner to mine the specification of method calls from

software executions represents another challenge to this research area, which requires more

attention and development. As mentioned earlier, Ammons et al. [24] pioneered to mine

specifications using a probabilistic FSAs in 2002. Later, Lo et al. [47], represent an API

specification mining architecture called SMArTIC to improve the robustness of the specification

mining process by learning PFSAs instead of traditional FSAs. They also provide an approach to

structure the mining procedure by filtering and clustering dynamic execution traces as an

important piece of their proposed framework. However, the learner block in the SMArTIC

framework plays the role of a placeholder, which means that different PFSA specification miners

can be placed into this block. Authors have implemented the sk-strings learner [48] to learn the

PFSAs in their study.

15

In this study, we also tried to address some of the potential specification mining issues by taking

the advantages of stochastic FSAs.

2.2.2 Evaluation of Inferred models

Another interesting research area in specification mining is the evaluation of miners. Several

approaches are provided to evaluate the quality of mined specification. For instance, Lo et al.

[49] propose a framework called Quark for empirically assessing the automata generated by

different miners. Their method generates traces from a given automaton and then uses these

simulated traces to train the specification miner. The original model and the mined one are then

used to compute precision, recall and probability similarity (for PFSA learners) measures to

evaluate how accurately a miner summarizes the provided traces into a model. The same metrics

are used in this study.

Pradel et al [50] also propose another framework to evaluate the entire mining process. Their

approach accounts for imprecision and incompleteness in the mined specifications, which can

help in detecting the similarities between FSAs. In addition, there are several other approaches

proposing different metrics and measures for comparing and evaluating FSAs [3], [51]–[53].

However, none of them provide a specific and customized measure to evaluate the probability

similarity (PS) between Probabilistic models.

2.2.3 Baseline Inference Approaches

This section presents an overview of other inference techniques, which are used as baselines in

this research.

16

Many FSA and EFSA inference approaches (such as kTail) fit into the family of “state merging”

algorithms. In such algorithms, a PTA (initial FSA) is inferred from a set of traces; then

subsequently in the merging step, two states of the PTA are selected to be merged. Several

diverse algorithms are provided to improve the performance of the model by modifying the

merging step. On the other hand, some new approaches are also developed on top of the

established state-merging algorithms to improve the overall performance of the final inferred

models by generating more specific PTAs. The data classifier inference techniques can be

considered as a class of such approaches, which are able to identify rules and patterns between

variables from a set of traces and map these variables to a class label. This procedure helps in

predicting the next class of unseen variables and generating the most specific PTA representing

the given set of traces. [28], [54] represent a new data classifier inference technique called MINT

to address the non-determinism issue in the previous state of the art EFSA inference techniques,

such as GK-tail. In this study, MINT is used as a baseline to define our proposed approach

(ReHMM). ReHMM also can be considered as a data classifier approach, which is built on top of

MINT. Since, MINT uses the same merging strategy as GK-tail’s in the state-merging step, it

makes more sense to consider and compare ReHMM with MINT instead of GK-tail.

Moreover, MINT provides a proven improvement [29] in inferring rules compared with Daikon

[4] – a data-constraint inference tool used in GK-tail. Also, the idea of inferring a set of global

rules belonging to the full set of traces represented by Krka et al. [39] and Le et al. [55] is very

similar to the method of inferring data models in MINT. Hence, even if the purpose of the

models inferred by [39] and MINT are different, the nature of the models are the same, except

that MINT provides more flexibility by incorporating data classifier inference techniques.

Accordingly, again, we believe that comparing ReHMM with MINT can also demonstrate the

17

position of ReHMM with regard to other state of the art techniques, as these techniques are either

(a) a subset of MINT; and/or (b) have been shown to be outperformed by MINT [29].

MINT Data Classifier Inference Approach: The MINT algorithm consists of the five

following steps:

• Processing traces to create data traces. Given a trace (𝑇𝑟) which consists of a

variable domain 𝑉 along with a set of transition labels 𝐿, a data trace can be defined

as the set 𝑇𝐶 = { 𝑒!, 𝑐! ,… , (𝑒!, 𝑐!)}, where 𝑒 = 𝑙, 𝑣 , 𝑙 ∈ 𝐿 𝑎𝑛𝑑 𝑣 ∈ 𝑉, and each

variable e is associated with its corresponding class label 𝑐! ∈ 𝐶 . In the EFSA

inference procedure, class label 𝐜𝐢 commonly represents a categorical outcome

such as an event name or a method call. It is worth noting that extracting class

labels does not need any specific knowledge about the software system and can be

easily done by parsing the traces and extracting the method, which will be called after

each event.

• Inference of data classifiers. Classifiers are used to predict the next class label in the

trace; a class label is the method call. The classifier uses a set of inputs (training

sets) to simply predicting the next method call. More formally, they use training set to

map the variable to their respective classes. Most standard classifiers in the WEKA

library2 can be used to carry out this step [56]. The classifiers used by [28] are:

NNGE, Bayes (in this study when we refer to the Bayes algorithm we mean Naïve

Bayes) , JRIP, AdaBoost and J48. We applied the same classifiers in this study for the

sake of comparison.

2 http://www.cs.waikato.ac.nz/ml/weka/

18

• Producing the Prefix Tree Acceptor (PTA). In this step, a PTA is built by extracting

all the prefixes from the traces, where traces with the same prefix will share the same

path from the initial state of the FSA until the point where they diverge. A technical

definition of a PTA is provided in Section 2.5.1.

• Merging. Pairs of states are suitable for merging when the number of transitions in

their outgoing path (merging score), their labels and their data values are equal. In

this situation, both the generated PTA and the data classifiers are used to interactively

detect candidates, merge them and then relocate the data values from the source to the

target transitions. In addition, G is an optional parameter to represent the minimum

merging score before a pair of states can be deemed to be equivalent. For instance, if

G=1 there must be at least one suffix that is the same for two states to be merged. The

suffix contains both labels and data values in the outgoing paths of the candidate

states. In this study, we vary G from 0 (which only considers data) to 1 (which not

only relies on data but also needs (at least) one common suffix for two states to be

merged). Similar merging procedures have been used in other state of the art

approaches [3], [22], [42].

• Checking the consistency. This step checks that the data variables attached during the

merging process are consistent with the classifiers. This ensures that the inferred

model is deterministic by comparing both the labels and the attached data of the

outgoing transitions of the given states, and recursively merges the states that can

cause non-determinism. This procedure not only leads to generating a consistent

model but it is also beneficial in terms of the computational cost.

19

In this study, we also infer PFSAs, however we extend the definition of a PFSA beyond its norm

(Definition 4). In this work, our PFSA model adds the probabilities into Extended FSAs, so it has

the features and benefits of both PFSAs and EFSAs (Definition 9 in Section 2.6).

sk-Strings: In order to compare the inferred PFSA generated using ReHMM with a state of the

art probabilistic model in terms of accuracy, we implement the sk-strings PFSA learner

algorithm on the same software systems and traces as another baseline approach. The sk-strings

algorithm is an extension of K-tail approach introduced in 1972 for stochastic automata [24],

[32], [48]. sk-strings creates a PTA from software execution traces (similar to K-tail) and labels

each edge by (1) an event name; and (2) a probability showing how often the edge is traversed.

Initial probabilities are distributed equally to transitions from the same source node. Therefore,

given a PTA, a node q, the alphabet Σ, a set of final states (the leaves of the PTA) 𝐹!, and a

transition function 𝛿, the set of k-strings associated with the node q (𝑘 − 𝑠𝑡𝑟𝑖𝑛𝑔(𝑞)) is defined

to be the set:

𝑑 𝑑 ∈ Σ, 𝑑 = 𝑘, 𝛿(𝑞,𝑑) ⊂ 𝑄 ∨ 𝑑 < 𝛿(𝑞,𝑑) ∩ 𝐹! ≠ ∅ (1)

In the merging step, two merging candidates can be merged if they are indistinguishable with

respect to the top d% of the most probable strings of length k that can be generated from these

states [49]. It is worth noting that, k-strings ends at a finish state if d is shorter than the specified

string size (𝛿(𝑞,𝑑) ∩ 𝐹!). Raman et al. in [48] provide a set of different heuristics with various

degrees of strictness (containing the OR heuristic, the AND heuristic, the LAX heuristic and the

STRICT heuristic). In this study, the AND variant of the algorithm is used as per the advice

from Lo and Khoo [49]. Algorithms 1 and 2 elaborate upon these implemented procedures [48].

Algorithm provided in Table 2, makes decisions about the equivalency of states using the AND

heuristics, then the algorithm provided in Table 1 merges states of the PTA which are equivalent.

20

Table 1. sk-strings Algorithm

Input: PTA

Output: Generalized Automata

1. begin
2. For each state 𝑝 = 𝑠! 𝐓𝐨 𝑠!!! do
3. For state 𝑞 = 𝑝 𝐓𝐨 𝑠!!! do
4. if ∗ 𝑠𝑘 − 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡(𝑝, 𝑞,∗ 𝐺) then
5. merge(p,q)
6. 𝑝 = 𝑠!
7. 𝑞 = 𝑠!!!
8. Repeat Until no new 𝑝, 𝑞 ∈ 𝑆 is found
9. end

* sk-equivalence using AND heuristic

* G is the minimum merging score

Table 2. sk-equivalence using AND heuristic

Input: States p and q

Output: TRUE if p and q are sk-equivalent, FALSE otherwise

1. begin
2. 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0; 𝑖 = 0
3. 𝑆! = (str,prob) pairs output from p
4. 𝑆! = (str,prob) pairs output from q
5. DesendingSort(𝑆!. 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)
6. DesendingSort(𝑆! . 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)
7. for 𝑖 = 1 to num_strings_in(𝑆!) do
8. 𝑐𝑛𝑡 = 𝑐𝑛𝑡 + 𝑆! [𝑖]. 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
9. if not_acceptable(q, 𝑆! [𝑖]. 𝑠𝑡𝑟𝑖𝑛𝑔,G)
10. then return(FALSE)
11. if 𝑐𝑛𝑡 >= ∗ 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡%
12. then cnt = 0
13. for 𝑖 = 1 to num_strings_in(𝑆!) do
14. 𝑐𝑛𝑡 = 𝑐𝑛𝑡 + 𝑆! 𝑖 . 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
15. if notacceptable_at(p, 𝑆! 𝑖 . 𝑠𝑡𝑟𝑖𝑛𝑔,𝐺)
16. then return(FALSE)
17. if 𝑐𝑛𝑡 > 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡%
18. then return(TRUE)
19. return(TRUE)
20. return(FALSE)
21. end

* Agreement% is a global value which equals parameter d to sk-string

21

In order to be able to provide more meaningful results, we also configured the sk-strings

algorithm to consider the minimum merge score G in the merging procedure. This means that the

merging candidates are indistinguishable when they are equal in terms of labels, data values and

the number of transitions in their outgoing path.

2.3 Research Motivation

The area of inferring EFSAs is wide. Several different approaches have been proposed and

implemented to infer Extended FSAs from software executions. However, GK-tail [3] and

ADABU [42] are two notable approaches successfully implemented and evaluated on Java

programs. Although these techniques are successful in addressing certain tasks, they suffer from

two key drawbacks:

1. Lack of flexibility: both of these approaches are tied to a specific form of data-abstraction

in order to map concrete values onto abstract rules (more detailed information about these

two inference approaches is provided in Section 2.2). A data abstraction technique cannot

necessarily be applied on diverse sets of software traces according to the different

characteristics of the system in terms of the trace size, event diversity and variable type.

2. Non-determinism: EFSAs inferred by ADABU [42], GK-tail and kLFA [21], [22], [42]

represent data flow information through algebraic and universally quantified constraints.

However, during the inference procedure, the connection or link between these data

constraints and events are ignored, as there are several possible paths to take for a

specific data-state. This issue causes non-determinism. As a consequence of non-

determinism, the generated model fails to consider the explicit logical relationships

between sequences of events and the data. Subsequently, the model may fail in making

22

similar decisions with regard to accepting or rejecting a single sequence of events on

different occasions. For instance, in a situation, where a non-deterministic model is used

for generating test cases, the number of required test cases to cover a “reasonable

amount” of the code will be significantly increased [57].

Also, in the situation where the detection of the correct behavior of the system is a predefined

goal [29], the model must be deterministic and consistent. However, the time required to convert

a Non-Deterministic FSA (NFSA) to a Deterministic FSA (DFSA), (𝑂(2!), where n is the

number of nodes) grows exponentially. This demonstrates the significance of applying an

inference technique, which is able to detect the non-deterministic transitions and avoid them

during the inference process instead of generating an NFSA and then converting it into a DFSA.

It is worth noting that our proposed approach (see Section 2.10 for details about the time

complexity analysis of ReHMM) automatically avoids non-determinisms within the merging

step, it costs less than implementing other algorithms to detect and fix the non-deterministic

issues.

2.3.1 Missing State-Action Values

Although Walkinshaw et al. [28], [29] addresses non-determinism and inflexibility issues present

in the previous state of the art approaches by providing a new inference technique called MINT,

it still suffers from a significant drawback. MINT is unable to address the issue of missing state-

action values (transition probabilities) in the inferred EFSA.

In order to address this issue, we have used a stochastic-based approach to define an extended

version of the state-action function and subsequently generate an Extended Probabilistic FSA.

Probabilistic FSAs provide more control over the trace generation and verification process using

23

the attached probabilities, so that the collection of generated traces mimics the characteristics of

traces collected from actual software executions [24], [49]. For example, methods, which are

called during a function execution and have not been met before, are more likely to be traversed

in the model immediately after the parent method compared to their siblings. Moreover, the

methods, which appear more frequently in software executions, can be represented in the

generated traces through appropriate probabilities at different transitions. Therefore, assigning

higher probabilities to the children, which are either new or more different (in terms of the

functionality that they are executing) compared with the currently traversed states can lead to the

generation of more accurate models [24]. In addition, generating PFSAs are more expressive

than FSAs, since they provide details on the probabilities of state transitions [47].

On the other hand, it has been proven that perfect learning of a FSA or EFSA from software

traces is not a decidable problem; while, it is possible to learn a perfect PFSA from traces.

Hence, PFSAs have been used as an intermediate step to learn FSAs [24] or as an independent

approach to learn user-behavioral models in several research studies (e.g. [2]).

However, none of these approaches have applied an HMM classifier and Q-learning as a hybrid

approach in calculating the transition probabilities (state-action values) and improving the

performance of EFSAs.

Walkinshaw et al. [58] represents the state transition function for reverse engineering transitions

from the source code in order to identify branches that are responsible for the execution of a

specific transition. The state transition function (S) can simply be defined as: 𝑠!
!(!)

𝑠!, (𝑠!, 𝑠! ∈

𝑆) which maps the transition onto the source code of method f(x), when f(x) is executed in state

𝑠! resulting in a transfer to state 𝑠! [58]. This definition helps us to define a new state-action

function, which can be applied in the procedure of inferring EPFSAs from software traces. The

24

original version of the state transition function suggested by Walkinshaw et al. [58] cannot be

directly applied in this study for the following reasons:

1. Limitation to Specific Programming Languages. In order to use the inferred EPFSA to

address the software engineering problems (e.g. generating test cases using software

model), the inference procedure should not be limited to any programming language.

2. Dependency on the Source Code. The State transition function relies completely on

source code analysis, so cannot be applied in the absence of program source code. While,

in the model inference procedure, the execution traces are the only inputs of the EPFSA

inference algorithm.

3. Independent Analysis. This approach is able to find the actual transition functions that

transform the data-state variables at each transition. This means that the state transition

function, for 𝑠!
!(!)

𝑠! depends only on the execution context represented by state 𝑠!.

Therefore, the previously traversed contexts are not considered, while, the relationship

between the current state and the previous states plays an essential role in generating

accurate EPFSAs from software traces.

Although the state transition function defined in [9] is able to identify path(s) in the source code

which govern a transition, it is not designed to be used in the model inference procedure and

accordingly cannot be helpful in addressing model inference issues such as improving the

accuracy of the model or increasing its capability for software testing purposes (such as inferring

a model which can be used to generate test cases with high code coverage level or fault detection

rate).

25

Therefore, in this study, we suggest a new approach to evaluate transitions in the model and

assign a probabilistic value to each transition based upon the utility of taking a given action in a

specific state. This procedure is used to produce a PFSA with additional information about the

values of associated parameters (transition probabilities) in each transition. So, the proposed

approach is able to address both EFSAs and state-action functions drawbacks.

2.3.2 Application of ReHMM in Software Engineering

ReHMM, as an EPFSA inference approach has the capability of being applied in several

software engineering tasks and activities such as refactoring, requirement engineering and

software testing.

Missing a complete and formal requirement specification document is a common problem faced

by software engineers. Short delivery time and project scope changes easily lead to forgetting

about the specification documents or creating incomplete documents. In order to address this

issue, several researches have been conducted to reverse-engineer or mine the software

specification using dynamic analysis techniques. For example, QUARK is a framework

analysing the quality of generated specifications by producing quality assurance measures on the

specifications generated by the miners. In this study, the specification produced using the miners

are expressed as automata (PFSAs). Since (1) ReHMM has gone through the same quality

assurance procedure (e.g. calculating PS measure- see Section 2.7.1) as QUARK and (2) the

empirical results confirm its capability of being used as a high quality PFSA inference technique,

ReHMM can also be applied as a specification miner tool, when suitable execution traces are

provided as input.

26

Moreover, PFSAs are successfully used in refactoring and customizing software applications by

capturing and analyzing user behaviors. Ghezzi et al. [2] have provided a framework, called

BEAR, to mine behavioral models from user traces generated by interacting with modern web

applications. BEAR infers the model based upon a set of Markov models generated using

historical log files. Applying ReHMM in the same research area can be helpful in maintaining

and adapting existing user-intensive Web applications by inferring the models which are not only

able to capture user behaviors probabilistically, but are also flexible and deterministic.

In addition to this, Fraser et al. [59] have developed a test assessment and generation tool, called

BESTEST, based upon EFSA inference approach proposed by Walkinshaw et al. [29].

BESTEST is designed to determine a finite test set that adequately detects fault prone behavior

of software systems. The empirical results demonstrate that test sets with higher behavioral

coverage outperform other test cases in terms of fault detection. Accordingly, ReHMM also can

be used to infer an accurate EPFSA from test executions to not only identify test sets with high

fault detection rate, but also to provide additional information regarding the probability of

occurring faults in different software behaviors (a new type of operational profile).

FSAs and EFSAs are also successfully used to address regression-testing tasks – another area of

software engineering. Since regression testing happens when a software component is updated or

replaced, missing test cases covering the old software system makes the regression testing

process challenging. Also, missing a document specifying the software behavior, makes it

difficult to identify the newly added behaviors and components of the software which are already

tested. In the absence of regression test cases, the only available data is execution traces or

server-logs of the previous version. Behavioral models are very helpful in generating, selecting

and minimizing regression test sets. Both FSAs and EFSAs [60], [61] are used to demonstrate

27

the behavioral model of the system using traces (or log files). Subsequently, the model can be

used to generate and optimize regression test sets. In this study, we demonstrate that ReHMM

provides a richer model than state of the art EFSA and PFSA inference tools, it is expected that

richer models can produce more rigorous test sets [29]. Since ReHMM, is able to generate

EPFSAs from software execution traces, it also could be applied in addressing regression-testing

problems.

The use of benchmarks also has become very common in empirical software engineering

research. According to Walkinshaw et al. [62]: “a benchmark consists of a collection of subject

data that can be consumed by different techniques, and can be used to draw coherent and valid

conclusions about the respective performance of these techniques”. Therefore, the ReHMM

inference framework also can be considered as a form of benchmark, since it compares the

inferred EPFSA with other models from relevant techniques in terms of well-defined

measurements of performance. All of these models are inferred using execution traces from real

software systems.

In order to apply ReHMM in addressing real world software engineering problems, no specific

experience is required. For example, a software engineer or the system expert needs only to

provide the algorithm with sets of test cases of the software under test in the format that can be

read by the algorithm. Then the engineer traverses the inferred model to generate an adequate set

of test cases.

Now, in order to illustrate the proposed method, we firstly define the inputs and domain of

operation for such a system.

28

2.4 Inputs and Domain

As mentioned earlier, in this study, we propose a new inference approach (ReHMM) to produce

Extended Probabilistic FSAs from software executions (traces). Therefore, a collection of traces

of a software execution is required as an input of the algorithm. Input traces consist of sequence

of events (method calls) and corresponding variable values. It should be noted that in this study

we use “class labels”, “method-calls” and “sequence of events” interchangeably. The traces used

in this study follow the same definition as provided by [35] and should not be confused with the

trace definition used in the theory of concurrent systems [63]. However, the encoding process of

traces is identical to the definitions provided by [24], [62]. We also presume that the interactions

with the system can be illustrated in terms of particular function names and associated parameter

values. The following provides a technical definition of the traces that have been utilized in this

study. It is worth noting that the existed input traces are processed in an incremental way to

generate the model. Moreover, the proposed learning approach can proactively learn from new

traces which, allows progressive and automatic analysis of large and complex models as soon as

a new version of the software become available.

Definition 1. Traces. [29] defines a trace 𝑇𝑟 = 𝑒!,… , 𝑒! as a sequence of n trace elements

(called events). Each element e!, maps to a pair 𝑙, 𝑣 , where l denotes a transition label showing

a function or method name, and v is a collection of parameter values for function l.

For instance, (low_water, (28.898501010661718 584.0357656062484 true)) is an event of a

trace retrieved from the provided running example (Section 2.4.1) [29], which shows the

transition label (𝑙): low-water and parameter values (𝑣): (28.898501010661718

584.0357656062484 true).

29

Following [29], a positive trace represents a feasible set of events in the system, while a negative

trace indicates an impossible behavior of the system.

Therefore, according to the above definition, the input of the inference process has following

characteristics:

1. Language independency: events can be retrieved from interactions with any software

systems written in any programming languages. Therefore, the inference process does not

rely on the source code analysis, and can be applied on entirely different software

systems.

2. No need for additional specifications: the input traces are self-explanatory and sufficient

to infer the model, so there is no need for additional information such as scenario-seeds

(interaction skeleton) [24] and a program specification to extract the scenario from the

traces. This implies that as the traces are naturally occurring and the process requires no

additional artifacts; the process can be implemented at zero cost to a software engineering

organization.

Having the traces, ReHMM is able to generate a probabilistic EFSA, which is not only able to

address the issues raised in the Research Motivation Section (Section 2.3) and Software

Engineering applications (Section 2.3.1), but also outperforms state of the art techniques in terms

of following aspects:

1. Accuracy: Empirical evaluations (see Section 2.7 for more details) show that the inferred

models using ReHMM outperform the EFSAs generated using other state of the art

techniques in terms of accuracy. Here, an accurate model is the one, which is able to

correctly accept the positive traces and reject the negative ones.

30

2. Time complexity of inferring the model using our proposed method is polynomial and

does not exponentially grow by increasing the system size (See 2.10 for more details).

This shows that the significant improvement of the model is done without negatively

affecting the time complexity of the inference algorithm. This ensures that the approach

can be applied to large software systems.

In the next section, in order to motivate this study and also clarify the proposed inference

procedure, we consider a small example of the behavior of a mine pump controller [28], [29].

This example will be used as a running example throughout this chapter.

2.4.1 Motivating Example

A pump controller controls the water and methane levels in the mine. The pump is activated or

deactivated (based upon the level of the water in the mine) or switched off (when the methane

level is too high). The snippet of an initial trace is shown below (each event in the trace is

shown in a separate line).

…

trace

turn_on 73.44274560979447 596.7792240239261 false

low_water 28.898501010661718 584.0357656062484 true

switch_pump_off 28.898501010661718 584.0357656062484 true

turn_off 28.898501010661718 584.0357656062484 true

highwater 31.47476437422098 588.4568312662454 false

switch_pump_on 31.47476437422098 588.4568312662454 false

31

critical 35.04693535326364 603.1076440245823 true

...

The term of “initial trace” is only used to clarify that the trace has not been processed yet and has

the same structure as defined in Definition 1. In Section 2.6, we illustrate how data traces are

generated from these initial traces.

In this study, we are trying to provide an approach to infer an accurate behavioral model of the

system using such traces. In the next section, we provide some technical background and

definitions, before describing our proposed approach in detail.

2.5 Technical Background and Definitions

In order to provide a view of the software behavior, EFSAs, PTAs and PFSAs are defined and

inferred. PTAs are the initial FSAs, which are generated by taking all prefixes of the input traces

as states and generating the smallest FSA, which is a tree. EFSAs demonstrate the behavior of a

software system by depicting the relationship between the method calls and the values of the

associated parameters. While, PFSAs are FSAs augmented by transition probabilities. In this

section, we represent the technical definitions of PTA, EFSA and PFSA.

Additionally, the proposed inference technique in this study is established by combining

Reinforcement Learning (RL) and Hidden Markov Model (HMM) concepts to accurately

generating an Extended PFSA. In order to walk through the inferring process, a brief technical

background about Reinforcement Learning and Hidden Markov Models is also provided. It is

worth noting that, approaches to EFSA and PFSA generation, which fall outside of these

definitions, are considered to be beyond the scope of this study.

32

2.5.1 Prefix Tree Acceptor (PTA)

A PTA is a tree-shape automaton, generated as an initial FSA or a simulator model in several

inference processes [24], [49], [62], [64]. For instance, as mentioned in Section 2.3, PTAs are

generated as an initial form of FSAs in the MINT inference tool [29]. In this research, we also

infer a PTA using the same approach that is used in other studies.

Definition 2. Prefix Tree Acceptor (PTA). Where 𝑇𝑟 is a Trace and TS is a set of Traces, Given

𝑇𝑟 ∈ 𝑇𝑆, if 𝑇𝑟 = 𝑚𝑛 and 𝑚,𝑛 ∈ 𝑇𝑆, then m is called a prefix. A PTA is a tree-like FSA

generated by taking all the possible prefixes in the trace as states and constructing a FSA, which

only accepts the traces it is built from. Let TS be the set of Traces from which we build a PTA.

𝑃𝑇𝐴(𝑇𝑆) is a FSA that contains a path from the initial state to a final state, for each and every

𝑇𝑟 ∈ 𝑇𝑆.

2.5.2 Extended Finite State Automaton

Definition 3. Extended Finite State Automaton (EFSA). Again according to [29] and [65], an

EFSA is a tuple (𝑆, 𝑠!,𝐹, 𝐿,𝑉,∆,𝑋), where S is a set of states and 𝑠! ∈ 𝑆 indicates the initial

state, 𝐹 ⊂ 𝑆 is a set of final states, L is defined as the set of labels (𝑙 ∈ 𝐿) and V represents the

set of parameter values, where 𝑣 ∈ 𝑉 is a concrete value assigned to a variable. V is also known

as the memory of the EFSA. Moreover, ∆, the update function, is the function 𝐿×𝑉 → 𝑉. Finally,

X is the set of transitions taking the form 𝑠!, 𝑙, 𝑣, 𝑠! ,𝑤ℎ𝑒𝑟𝑒 𝑠!, 𝑠! ∈ 𝑆. EFSAs explicitly allow

transitions from state s! to state s!.

33

Therefore, transitions between states are not only associated with a label l ∈ L, but are also

associated with a guard that represents the conditions that must hold with respect to the variables

in the EFSA memory.

2.5.3 Probabilistic Finite State Automaton (PFSA)

There are various definitions regarding PFSA in the literature. In this study, we chose a

definition, which is sufficiently general to cover most PFSA- related situations [45].

Definition 4. Probabilistic Finite State Automaton (PFSA). A PFSA is a tuple

𝐷 = 𝑆,𝛴, 𝛿! , 𝐼! ,𝑄! ,𝐹! , where

• S is a finite set of states;

• Σ is the alphabet;

• δ! ⊆ S×Σ×S is a set of transitions;

• I!: S → ℝ!
. (Initial-state probabilities);

• Q!: δ! → ℝ!
. (q ∈ Q!; Transition probabilities);

• F!: S → ℝ!
. (Final-state probabilities);

• I!, Q! and F! are functions such that:

𝐼!
!∈!

𝑠 = 1 (2)

and

 ∀𝑠 ∈ 𝑆,𝐹! 𝑠 + 𝑄! 𝑠,𝑎, 𝑠! = 1
!∈!,!!∈!

 (3)

34

It is worth noting that probabilities can be null, and hence, functions (I!, Q! and F!) can be

considered as total. Again, we limit the scope of the study to inference techniques, which

produce results, which correspond to the above definitions of EFSA and PFSA.

2.5.4 Reinforcement Learning (RL)

This section provides an overview of RL and its definition. RL is an area of machine learning

which is concerned with the problem of utilizing a software agent3 to perform actions, which

maximize the overall reward [66]. The reward is a number (score), which indicates the

immediate utility of an action [67]. The progress of RL algorithms is typically iterative. The

agent learns during different iterations by observing the current environment, inferring the

environment’s state and executing an action. This guides the agent to the next state. In other

words, the agent receives the system’s state and the reward score associated with the last

transition. Then it evaluates the value of the action according to the reward it has gained, and

subsequently, selects an action and sends it back to the system. In response, the system makes a

transition to a new state; and this cycle is repeated as part of a Markov Decision Process (MDP)

[66], [68]. MDPs can be categorized as stochastic extensions of finite automata or Markovian

processes which are augmented by actions and rewards so that they consist of actions, transitions

and states. In the following paragraphs, some definitions are introduced, which are helpful in

demonstrating our proposed approach in the next section. We start by providing the definition of

a Markovian system and the reward function to indicate the logic behind the decision making

process in our proposed approach.

3 “A software agent is a persistent, goal-oriented computer program that reacts to its environment and runs without

continuous direct supervision to perform some function for an end user or another program” [249]

35

Definition 5. Markovian System. A system can be defined as Markovian if the execution of an

action does not depend on previous actions and visited states (i.e. it depends only on the current

state and status).

In other words, an MDP contains:

• A finite set of states 𝑆 = 𝑠!, 𝑠!,… , 𝑠! , where N is the number of states;

• A finite set of actions 𝐴 = 𝑎!,𝑎!,… ,𝑎! , where k is the size of the action space; and

• The transition function 𝑋: 𝑆×𝐴×𝑆 → 0,1 which computes the probability of reaching

the state 𝑠! by performing action 𝑎 in state 𝑠 and is denoted as 𝑋(𝑠,𝑎, 𝑠!).

Finally, to compare different states and actions during agent and environment interaction, they

should be ordered according to the time at which they occur. So 𝑠! denotes the state at time t

[68]; according to this definition of a Markovian process, we would have:

𝑃 𝑠!!! 𝑠! , 𝑠!!!, 𝑠!!!,… = 𝑃 𝑠!!! 𝑠! = 𝑋 𝑠! ,𝑎! , 𝑠!!! (4)

Definition 6. Reward Function. Function 𝑅: 𝑆×𝐴×𝑆 → ℝ maps each perceived state (or state-

action pair) of the environment to a score (reward), indicating the desirability of that state. A

reinforcement learning agent's goal is to maximize the total reward it receives in the long run.

The reward function computes the immediate utility of an action to define the model of the

MDP. So a MDP can be denoted by the tuple 𝑆,𝐴,𝑋,𝑅 , depicting it as a state transition graph

[68]. Depending on the definition of the problem we are trying to solve, different heuristics could

be suggested to identify the difference between actions and calculate the reward values. In

section 2.6 we discuss the heuristics used in this study to define an accurate and customized

reward function.

36

Now, we use the definition of the state transition function as a basis to define the “state-value

function”. Then, in order to address the missing state-action value issue, the state-value function

is used to provide a method to calculate the value of performing an action and to assign Q-values

to the model’s transitions.

Definition 7. State Transition Function. The new state transition function F, for a state

transition 𝑠!
!
𝑠! (𝑠!, 𝑠! ∈ 𝑆) not only maps the transition to the corresponding method (event)

𝑎 ∈ 𝐴 [58], but also maps it to ℝ; where the value of executing a method call 𝑎, in state 𝑠!, is

computed using the state-value function 𝑄: 𝑆×𝐴 → ℝ.

Accordingly, the state-action value function Q is defined in following paragraph.

Definition 8. State-Value Function. The Value Function V!(s), specifies “how good” it is for

the agent to be in a given state. The “how good” notation here is expressed in terms of the future

rewards that can be expected. We can define the value of a state under a policy π, formally

V! s , as [67]:

𝑉! 𝑠 = 𝐸! 𝑅! 𝑠! = 𝑠 = 𝐸! 𝛾!𝑟!!!!!

!

!!!,!!!!∈!

𝑠! = 𝑠 (5)

Where:

The stochastic policy 𝜋: 𝑆×𝐴 → 0,1 is a mapping from each state s and action a to the

probability 𝜋 𝑠,𝑎 by performing an action a when in state s. 𝐸! is the expected return earned by

following policy π, and the discount factor γ, 0 ≤ 𝛾 < 1, models the fact that future rewards

worth less than an immediate reward. Similarly, the value of performing an action a in state s or

state-action value function: 𝒬: 𝑆×𝐴 → ℝ, can be defined as:

37

𝒬! 𝑠,𝑎 = 𝐸! 𝑅! 𝑠! = 𝑠,𝑎! = 𝑎 = 𝐸! 𝛾!𝑟!!!!!

!

!!!,!!!!∈!

𝑠! = 𝑠,𝑎! = 𝑎 (6)

We call this function, a “Q-value function” in the rest of this study. The calculated value using

this function is also called the state-action value. Almost all RL-based paradigms are based on

providing an innovative approach for appropriately estimating the value functions. This has led

to the exploration and production of several different estimating methods and techniques. One of

the most popular of these is Q-Learning [69], which is used in this study.

Q-Leaning is a method used to estimate Q-value functions in a model-free fashion. In this

situation, because of the lack of known transitions and reward models, there is a need for

sampling and exploration to learn the required model. Therefore, Q-learning estimates the

agent’s Q-value function based on an action’s Q-value estimation. This process is incrementally

evaluated as follows [68]:

𝒬!!! 𝑠! ,𝑎! = 𝒬! 𝑠! ,𝑎! + 𝛼 𝑟! + 𝛾max! 𝒬! 𝑠! ,𝑎 − 𝒬! 𝑠! ,𝑎! (7)

Where, 𝛼 (0 < 𝛼 ≤ 1) is the learning rate which determines the extent to which new

information can override old information [70]. Because of its proven ability in converging to an

optimal policy [71] and estimating the value-functions in free model problems [69], we have

used Q-learning to estimate the Q-values in this study. It is also worth noting that Definitions 7

and 8 are used to infer equation 7, which is used to calculate the transition probabilities.

2.5.5 Hidden Markov Model (HMM)

Another important concept that needs to be defined here is a Hidden Markov Model; this model

is usually characterized by the following elements [72]:

38

• N, the number of hidden states in the model, 𝑆 = {𝑠!, 𝑠!,… , 𝑠!}.

• M, the number of distinct observation symbols per hidden state, 𝑉 = {𝑣!, 𝑣!,… , 𝑣!}.

• The state transition probability distribution 𝑋 !" = {𝑥!"}, where:

𝑥!" = 𝑃 𝑆!!! = 𝑠! 𝑆! = 𝑠! , 1 ≤ i, j ≤ N.

• The observation symbol probability distribution in hidden state j, [𝑌]!" =

{𝑦!(𝑣!)}, where 𝑦!(𝑣!) = 𝑃 𝑂! = 𝑣! 𝑆! = 𝑠! , 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀. And

• The initial state distribution 𝛱 = 𝜋! , where 𝜋! = 𝑃 𝑆! = 𝑠! , 1 ≤ i ≤ N.

Using the values of N, M, X, Y and Π, the HMM can be used as a generator to create an

observation sequence (where T is the number of observations in the sequence):

𝑂 = (𝑂!,𝑂!,𝑂!,… ,𝑂!). We use the notation 𝛬 = (𝑋,𝑌,𝛱) to simply indicate the complete

parameter set of the HMM. The trained HMM is used to answer the following question:

• Given the observation sequence 𝑂 = 𝑂!,𝑂!,𝑂!,… ,𝑂! and an HMM, how to

efficiently compute the probability of the observation sequence?

In this study, we learn HMMs for classification purposes (as it will be elaborated upon in Section

2.6), hence we address this question using the Forward Algorithm [72]. This means that the

forward algorithm computes the forward probability, 𝛼! 𝑡 , as the joint probability of observing

the first t vectors 𝑣!, T = 1,… , 𝑡, while in state k at time t. Another way to state this would be:

 𝛼! 𝑡 = 𝑃 𝑣!, 𝑣!,… , 𝑣! , 𝑠! = 𝑘 Λ (8)

Where 𝛼! 𝑡 is the probability of observing 𝑣!, 𝑣! ,… , 𝑣!, given that the system is in state k at

time t. This step is performed as part of the classification process (Figure 1 top right corner).

This probability can be calculated by the following recursive formula [73].

39

Figure 1. Inference steps for ReHMM approach. HMM classifier calculates the forward probabilities and

chooses the next method to be executed based on its corresponding likelihood 𝛼. Q-values are also added

to the PTA based upon the amount of change the function-execution triggers (Note: edges are labeled

with method calls (class labels))

 𝛼! 1 = 𝜋!𝑏! 𝑣! , 1 ≤ 𝑘 ≤ 𝑁 (9)

𝛼! 𝑡 = 𝜋!𝑏! 𝑣! 𝛼! 𝑡 − 1 𝑎!,! ,
!

!!!

 1 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇

𝛼! 𝑡 = 𝛼! 𝑡 − 1 𝑏! 𝑣! 𝑎!,!
!

!!!

2.6 ReHMM: An RL-based HMM Inference Approach

Now according to the provided definitions and background, we are able to introduce a new

format for FSAs, which incorporates the advantages of both EFSA and PFSA.

Definition 9. Extended Probabilistic Finite State Automaton (EPFSA). A EPFSA “W”, is a

tuple 𝑆, 𝑠!, 𝐿,𝑉,∆, 𝛿! , 𝐼! ,𝑄 , where S is a set of states and 𝑠! ∈ 𝑆 indicates the initial state, L is

0

2

1

3

4

5

6

c1

c2

c3

c2

c3

c3

Data Traces

0

2

1,3

4

5

6

C1,Q1

C2,Q2

C3,Q5
Q5>Q4

C3,Q6

C3,Q4
C2,Q3

Merged
0

2

1,3
4

5

C1,Q1

C2,Q2

C3,Q5

C3,Q6

C2,Q3

Remove	non-determinism

HMM Classifier
n= number of classes

PTA

),,(1111 Π=Λ YX

),,(2222 Π=Λ YX

),,(nnnn YX Π=Λ

),...,,(2212 Λ= tp νννα

),...,,(1211 Λ= tp νννα

),...,,(21 ntn p Λ= νννα

Initial Traces

Choose	class	ci	with	
the	maximum	
corresponding	
likelihood		
α

40

defined as the set of labels, V represents the collection of variables (memory of the EPFSA),

𝛿! ⊆ 𝑆×𝛴×𝑆 is a set of transitions between the states and 𝐼!: 𝑆 → ℝ!
 (Initial-state

probabilities). Moreover, ∆, the update function, is the function 𝐿×𝑉 → 𝑉. Q is the Q-value

function (Definition 8), which calculates the Q-value, 𝑞 ∈ 0,1 , for all model transitions.

It is worth noting that the definition is inspired by the definition of “extended digraphs” from our

recent study [27] on software testing. As mentioned earlier, in order to address the problem of

the missing state-action values (transition probabilities) along with increasing the accuracy of the

inferred model, a new technique is proposed in this study. This approach provides a hybrid

technique by mixing Artificial Intelligence (AI) and stochastic-based approaches. The idea of

combining HMM and RL concepts to re-estimate and improve a model has been considered as a

way to solve several AI problems such as robotic motion prediction [74], speech recognition [75]

and natural language generation [76]. Also, [77] suggests a method of handling RL algorithms in

partially observable MDPs; and [78] provides a comprehensive study on RL and hidden states. In

addition, our recent research [27], confirms the effectiveness of applying this combination in

addressing software-testing issues, specifically for test case prioritization processes. All of these

studies confirm that HMM and RL concepts can be used as a method to empirically improve the

quality of an inferred automaton. According to [29], [49] a high quality model is the one which is

not only able to accept positive traces but also correctly reject negative traces. In addition, the

inferred model should be able to retain the probability distribution of the original specification

(in case of inferring PFSAs). In this study, when we are referring to the accuracy of the model,

we are talking about a measure indicating the quality of the model with respect to both of these

criteria. Furthermore, in this study, ReHMM, takes advantage of combining RL and HMM by:

• Predicting the next event name in the trace to identify non-determinism; and

41

• Adding probabilistic values to the inferred model and incrementally improving the

model to generate an accurate EPFSA.

This section presents a step-by-step explanation of proposed ReHMM inference technique along

with a motivating example providing an illustration of the inference steps on a sample system. It

is also worth noting that, Figure 1 provides an overview of the steps involved in the ReHMM

inference approach, while Table 3 and Table 4 provide pseudo code of the same procedure.

Table 3. ReHMM Inference Algorithm

Input: Traces (Initial Execution Traces)

Output: EPFSA (Inferred Extended Probabilistic FSA)

1. ReHMMinfer (traces) begin
2. DataTraces ⟵ PrepareDataTrace(Traces)
3. (𝐸𝑃𝐹𝑆𝐴,𝑉𝑎𝑟!,𝑄!) ⟵ PTA (Traces)
4. For each pair (𝑠!, 𝑠!) ∈ 𝑆 do
5. (𝛬!) ⟵ TrainHMM (DataTraces)
6. Boolean ⟵ checkConsistency (EPFSA, 𝛬)
7. (𝐸𝑃𝐹𝑆𝐴!,𝑉𝑎𝑟!,𝑄!)⟵Merge(EPFSA, (𝑠!, 𝑠!),Var,Q,G)
8. Repeat choosing (𝑠!, 𝑠!)
9. Until no new (𝑠!, 𝑠!) ∈ 𝑆 is found
10. end
• 𝛬 is a ReHMM classifier
• Var indicates the data variable values
• Q indicates the amount of Q-value for each transitions

Table 4. Similarity Score Calculator

Input: Method calls in String format (𝑐!, 𝑐!)

Output: Similarity Score

1. 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑐!, 𝑐! begin
2. if (𝐿𝑒𝑛𝑔𝑡ℎ. 𝑐! < 𝐿𝑒𝑛𝑔𝑡ℎ. 𝑐!)
3. then 𝑆𝑤𝑎𝑝 (𝑐!, 𝑐!)
4. BigLength ⟵ 𝐿𝑒𝑛𝑔𝑡ℎ. 𝑐!
5. Return bigLength – ComputeEditDistance*(𝑐!, 𝑐!) / bigLength

* We have implemented the ”Levenshtein distance” algorithm to compute the Edit distance in this study

42

The procedures of preparing the data traces and generating the PTA are similar to those used in

the MINT inference algorithm [65] (Section 2.3). Following paragraph provides a detailed

description of the first step of the proposed algorithm: preparing data traces.

Preparing Data Traces: Similar to generating data traces in MINT: Given an initial trace which

consists of a variable domain and a set of transition labels, a data trace

𝑇𝐶 = { 𝑒!, 𝑐! ,… , (𝑒!, 𝑐!)} is generated, where 𝑒 = 𝑙, 𝑣 , 𝑙 ∈ 𝐿 𝑎𝑛𝑑 𝑣 ∈ 𝑉, and each variable e

indicates a class label 𝑐! ∈ 𝐶 .

After producing data traces using the PrepareDataTrace function [28], data traces will be

separated into several groups (training sets) based upon their corresponding class labels. In other

words, each training-set only contains data traces with the same class label. For example, given

an initial trace as below:

Initial trace:

…

trace

highwater 74.2918692932601 570.9631358851515 false

not_critical 48.419183936768924 597.1704678020701 false

switch_pump_on 74.2918692932601 570.9631358851515 false

switch_pump_on 48.419183936768924 597.1704678020701 false

turn_on 74.2918692932601 570.9631358851515 false

critical 46.71352900357 601.7913477049301 true

…

43

The PrepareDataTrace function returns the following data trace:

Data trace (training set):

…

trace

highwater 74.2918692932601 570.9631358851515 false class: not_critical

switch_pump_on 74.2918692932601 570.9631358851515 false class: switch_pump_on

turn_on 74.2918692932601 570.9631358851515 false class: critical

critical 46.71352900357 601.7913477049301 true class: turn_off

switch_pump_off 46.71352900357 601.7913477049301 true class: not_critical

turn_off 46.71352900357 601.7913477049301 true class: not_critical

…

The PrepareDataTrace function turns the traces into the data traces (training sets) using data

values in the events. Then the training sets can now be used to learn a set of HMM classifiers in

order to predict the next event name (method) to be called during the inference procedure.

Generating the PTA: At this point, a Prefix Tree Acceptor (PTA) is generated from the initial

traces using the PTA function. This function implements the same algorithm as the PTA

generation algorithm in [29]. Using the PTA generation algorithm in [29] a tree-shaped state

machine is constructed which exactly accepts traces it has been built from. In the generated PTA,

traces with the same prefix share the same path from the initial state in the PTA up to the point at

which they diverge. However, in our function, transitions of the PTA are not only labeled with

both method calls and data variable values, but are also labeled with additional information (Q-

values). This makes our PTA different from conventional versions [29].

44

Now, in order to add state-action values (transition probabilities) to the edges, we use Q-learning

and estimate the Q-value function. To estimate the Q-value function, we need to define and

compute the reward function representing the value of actions first. In many software

engineering problems, such as software testing and inferring application behavioral models, the

value of actions depends on the computation activated by the action [16]. For example, executing

an event with corresponding parameter values, which is very different from previously executed

events leads to major changes when compared to executing similar events. This can also be

thought of in terms of discovering new behavior (wider exploration) and subsequently new

defects (found in the previous unexplored execution space) in the software system. The reward

function favours actions that activate new behaviors with major computations and penalizes

actions triggering minor changes. In order to identify the difference between actions according to

the amount of change they can trigger, different heuristics have been suggested. For example, the

method suggested by Mariani et al. [16], assigns high reward values to actions that induce many

changes in the abstract GUI state by calculating the difference between corresponding widgets in

different states.

In this study, we suggest using 𝑑𝑖𝑓𝑓! function as a heuristic to calculate reward functions and

then Q-values: Given two class labels (method calls), 𝑐! and 𝑐! ∈ 𝐶, we define the 𝑑𝑖𝑓𝑓!

function that computes the degree of change between method calls. Specifically, 𝑑𝑖𝑓𝑓! can be

defined as: 1− 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑐!, 𝑐! , where, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑐!, 𝑐!) is computed using the algorithm

provided in Table 4.

The problem of computing the similarity between two sequences of characters (Strings) has been

addressed in many software engineering areas using edit distance metrics [79], [80]. Such

measures calculate the similarity between two sequences by computing the minimum cost of a

45

series of symbol insertions, deletions or substitutions to transform one string into another one. In

this study, we apply the Levenshtein [81] metric to calculate the 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑐!, 𝑐!). The

Levenshtein [81] metric was also used to compute the distance between FSAs in several studies

to calculate the similarity between two string inputs [82]. This metric has led to reasonable

results in evaluating a mined FSA as compared to reference models. Additionally, in order to

demonstrate the reason of choosing Levenshtein distance among existed edit distance measures,

we implemented several edit distance metrics as different heuristics in our approach. The results

(Table 6) shows that the models inferred using Levenshtein heuristic is performing better

compared to the models implementing LCS [83], Hamming [84] and Jaro [85] distances, in terms

of the BCR measure (please see section 7.1 for more details on BCR measure).

It is also worth noting that the method names (labels) can only be “captured” as a sequence of

Strings. For instance, the following line of a trace: (low_water, (28.898501010661718

584.0357656062484 true)) is actually captured as: “low_water, 28.898501010661718

584.0357656062484 true” and hence the Levenshtein distance is a suitable option in calculating

the differences between these Strings. While it may be tempting to believe that the white spacing

could be utilized to create four sub-strings etc., it is far from obvious that such additional

information is available in every scenario. Hence, we take the most generic and conservative

approach available and consider the data as a single indivisible string. This also creates a “level

of playing field” with the other algorithms, which also view the data as a single indivisible string.

The heuristic is not perfect, but the results indicate that Q-learning is able to improve the

accuracy of the model by incrementally learning the model.

46

So, given two PTA states 𝑠! and 𝑠! and a new method call (class label) 𝑐∗ ∈ 𝐶, executed from

state 𝑠!, the reward of observing 𝑐∗ is equal to the amount of change in the functions (methods)

from the original state to the target state:

𝑟𝑒𝑤𝑎𝑟𝑑 𝑠!, 𝑐∗ = max(𝑑𝑖𝑓𝑓!(𝑐∗,𝜎!∗(𝑠!, 𝑠!))) (10)

Where, 𝜎!∗ 𝑠!, 𝑠! determines the class labels (method calls), which are met by traversing from

𝑠! to 𝑠!, except for 𝑐∗. For example, if three transitions exist from 𝑠! to 𝑠! which are labeled by

{𝑐∗, 𝑐!, 𝑐"}, then 𝜎!∗ 𝑠!, 𝑠! = {𝑐!, 𝑐"}.

This reward function is able to estimate the utility value of a specific observation but is not able

to estimate the value of a path or a sequence of actions. To identify the paths governing

transitions, we need to identify transitions that can potentially activate functions, which can

subsequently lead to large state changes. Q-learning does this task by estimating Q-values. Q-

values are computed using the reward values and according to the Q-value function, 𝒬!(𝑠, 𝑐∗),

defined in Section 2.5.4:

𝒬! 𝑠, 𝑐∗ = (𝑟𝑒𝑤𝑎𝑟𝑑 𝑠, 𝑐∗ + 𝛾max
!∈!

𝒬(𝜑 𝑠, 𝑐∗ , 𝑐))/(1.9×𝑁) (11)

𝒬! 𝑠, 𝑐∗
!∈!,!∗∈!

= 1

Where N is the out-degree of state 𝑠 or the number of outgoing edges emanating from 𝑠, and

𝜑 𝑠, 𝑐∗ determines the state which is reached from state 𝑠 by executing 𝑐∗.

As mentioned in Section 2.5.4, Definition 8, 𝛾 is a parameter called the discount factor in the

range [0,1]. This parameter is used to balance the trade-off in importance between sooner versus

later rewards. According to our experience with ReHMM along with other studies in RL [16],

47

[86], [87], [48], the best choice for this parameter is 𝛾 = 0.9. In addition, since the immediate

utility value of a method call is calculated by a Q-value function, it is a number in the range

[0,1].

In particular, a Q-value close to 1 represents higher volumes of changes that can be triggered by

executing the corresponding method, and subsequently the higher probability of being executed

compared to a Q-value close to 0. Therefore, we initially mark all transitions with the maximum

Q-value = 1 to treat every undiscovered path as a potential path to be traversed. Hence, initially,

all methods will have the same probability of being executed regardless of the current system

state.

Also, because the probabilities of transitions emitting from a node in a PFSA (Definitions 4 and

9) must sum up to 1.0, a normalizing constant is required to guarantee that this assumption is

being met during the inference process. In this study, the normalizing constant is equal to 1.9

because:

𝐹 𝑠, 𝑐∗ = (𝑟𝑒𝑤𝑎𝑟𝑑 𝑠, 𝑐∗ + 𝛾max
!
𝒬(𝜑 𝑠, 𝑐∗ , 𝑐))/(𝑁)

!∈!,!∗∈!

 (12)

𝑀𝑎𝑥(𝐹 𝑠, 𝑐∗) = 𝑁×(𝑚𝑎𝑥

!∈!,!∗∈!
(𝑟𝑒𝑤𝑎𝑟𝑑 𝑠, 𝑐∗)+ 𝑚𝑎𝑥

!∈!,!∗∈!
(𝛾𝑚𝑎𝑥

!
𝒬(𝜑 𝑠, 𝑐∗ , 𝑐))/𝑁

 = 𝑚𝑎𝑥
!∈!,!∗∈!

(𝑟𝑒𝑤𝑎𝑟𝑑 𝑠, 𝑐∗)+ 𝑚𝑎𝑥
!∈!,!∗∈!

(𝛾𝑚𝑎𝑥! 𝒬 𝜑 𝑠, 𝑐∗ , 𝑐) (13)

Now, since 𝑚𝑎𝑥!∈!,!∗∈! (𝑟𝑒𝑤𝑎𝑟𝑑 𝑠, 𝑐∗) = 1 and 𝑚𝑎𝑥!∈!,!∗∈!(𝛾𝑚𝑎𝑥! 𝒬(𝜑 𝑠, 𝑐∗ , 𝑐)) = 0.9,

then the maximum amount of:

𝑚𝑎𝑥
!∈!,!∗∈!

(𝑟𝑒𝑤𝑎𝑟𝑑 𝑠, 𝑐∗ + 𝑚𝑎𝑥
!∈!,!∗∈!

(𝛾𝑚𝑎𝑥! 𝒬(𝜑 𝑠, 𝑐∗ , 𝑐))) = 1.9 (14)

48

Therefore, in order to assure that the summation of the transition probabilities of the nodes is

equal to 1, 𝒬!(𝑠, 𝑐∗) should be multiplied by the normalizing constant 1 1.9.

Training HMM Classifiers: ReHMM builds upon the data classifier approach [28] , [29]

(Section 2.3), it uses an HMM classifier as a compatible stochastic approach with RL to infer a

probabilistic, trainable model. Therefore, the TrainHMM function in Table 3 starts training an

individual HMM, Λ = X,Y,Π , on the data obtained from each possible class label in the data

trace. Therefore, having 𝑛 class labels, 𝑛 different HMMs will be trained. In each model:

1. The HMM can be used as a generator to create an observation sequence

𝑂 = (𝑂!,𝑂!,𝑂!,… ,𝑂!) (where T is the number of observations in the sequence). The

observation symbols (𝑂! ∈ 𝑂) in this study refer to the events and their corresponding

parameter values (𝑣 ∈ 𝑉) in the data traces.

2. X is the state transition probability distribution 𝑋 !" = {𝑥!"}. Where:

𝑥!" = 𝑃 𝑆!!! = 𝑠! 𝑆! = 𝑠! , 1 ≤ 𝑖, j ≤ N. In this study, such probabilities are HMM

components showing the probability of transiting from one hidden state to another one.

3. Y is the observation symbol (emission) probability distribution in hidden state j,

𝑌 !" = {𝑦! !" }. Where 𝑏! 𝑣! = 𝑃 𝑂! = 𝑣! 𝑆! = 𝑠! , 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀. In

this study, the emission probabilities show the probability of observing a parameter value

in a hidden state.

4. Π is the initial state distribution 𝛱 = 𝜋! , where 𝜋! = 𝑃 𝑆! = 𝑠! , 1 ≤ 𝑖 ≤ 𝑁. Every

hidden state that may be built during the classification process can be considered as an

initial state in a Hidden Markov Model.

49

It is worth noting that the hidden state S is not a FSA state (not to be confused with the S

notation). Also, the word hidden in HMM does not refer to the parameters of the model; even if

these parameters are fully known, the model is still a hidden Markov model. Error! Reference

ource not found. depicts a detailed HMM which is created per class label during the

classification process.

Figure 2. An overview of a HMM model, which is generated in the classification process

Executing TrainHMM function in this step of the inference process on the running example, leads

to generating 8 HMM Classifiers, because 8 class labels can be extracted from the data trace.

Each hidden Markov model depending on the number of its hidden and observable states is

represented by transition, emission and initial distribution matrices. For instance, a model

representing the class label “switch_pump_off” consists of 5 hidden states and 18 parameter

values. Then:

• Transition probability matrix 𝑋 = [𝑋]!×!

• Emission probability matrix 𝑌 = [𝑌]!×!"

• Initial distribution matrix 𝛱 = [0.2,… ,0.2]!×!

After creating a set of models and assigning them to separated class labels (𝑐! ∈ 𝐶), we can

calculate the likelihood that a sequence of observations belongs to a specific class label.

𝑠!

𝑠!

𝑠!

𝑠!!! 𝑠!

𝒗𝟏 𝒗𝟐 𝒗𝑴

…

…

𝑏! (𝑣!)

𝑥!"

50

Computing this likelihood is possible by executing the forward algorithm [73] (as defined in

Section 2.5.5). After training the models, the likelihood of a sequence of observations belonging

to a specific class label can be computed to predict the next method call in the FSA.

Merging Step: In the algorithm, 𝒬, indicates the list of the corresponding Q-values. Then, both

the HMM classifiers and PTA are used to carry out the same state-merging procedure examined

in [28], [88]. The only difference is that in our proposed approach, the Q-values are also used to

evaluate the similarity of the transitions. Thus, two states only share the same prefix if the

inferred classifier predicts the exact same labels for every data point in the prefix of each state

(including the Q-values). Since, Q-values are calculated incrementally, states with the same

prefix but different Q-values reveal different reward values during the inference procedure, and

subsequently different amounts of computations triggered by executing the corresponding

events. Therefore, Q-values, along with the minimum merge score G, are used as extra data

points to avoid merging these states. False merges may lead to missing some states of the model,

representing a new behavior or a fault prone method.

Checking the Consistency: Once states and transitions have been merged, the consistency of the

inferred model should also be checked to: (1) ensure the validity of the attached variables with

the ReHMM classifiers; and, (2) prevent producing a non-deterministic EFSA. In this step, for

each transition of the resulting model, the corresponding data variables are obtained and

provided to the ReHMM classifier to predict the subsequent label (the name of the method to be

executed). In this case, if the target state of the model does not have an outgoing transition with

the predicted label, the CheckConsistency function the current merge is ignored. Otherwise, the

algorithm looks for the next merge and the process continues until no more merges can be

identified.

51

The result of running the ReHMM algorithm on a set of interaction traces show the value of

paths, governing transitions, by assigning the corresponding Q-values to each transition.

Consequently, ReHMM determines valuable (interesting) functions by identifying transitions

that enable actions that trigger large-scale state changes. In this study, Q-values are also used as

transition probabilities to infer an Extended PFSA. Therefore each node in this EPFSA

represents a program state while every transition is attached with a probability. This transition

probability indicate how likely the corresponding method call is to be invoked from the source

code, with respect to the former executed method calls. This probabilistic FSA is able to reduce

the effect of errors in training traces by pruning the transitions, which have a low likelihood of

being traversed.

The PTA generation step, in the running example is implemented as below; the initial set of

traces is used to produce an enhanced Prefix Tree Acceptor (PTA), carrying the data constraints

and Q-values. Figure 3 shows the result of the first round of calculations. According to this

figure, in order to move from state 0 to state 1 in the model, at least four direct paths exist. To

save space, all of the transition labels are shown on one single edge. Otherwise there would be

four edges from state 0 to state 1, labelled by: critical, switch_pump_on, highwater, not_critical

and their corresponding data constraints. It is also worth noting that state 0 is the initial state in

the model, and state 1 is the next state which is met after the execution of the corresponding

transitions (critical, switch_pump_on, highwater and not_critical). The amount of Q-values is

calculated per transition. For example, in order to reach state 1 from state 0 by traversing the

edge, which is labeled as “critical”, first the reward function for this move should be calculated

by considering the amount of changes triggered by this function-execution. Second, the

maximum amount of Q-values of all possible future transitions from state 1 should be computed.

52

𝑟𝑒𝑤𝑎𝑟𝑑 0, 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = max 𝑑𝑖𝑓𝑓! 0,1

𝑚𝑎𝑥 𝑑𝑖𝑓𝑓! 0,1 = 𝑚𝑎𝑥 𝑑𝑖𝑓𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , 𝑠𝑤𝑖𝑡𝑐ℎ_𝑝𝑢𝑚𝑝_𝑜𝑓𝑓 ,
𝑑𝑖𝑓𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, ℎ𝑖𝑔ℎ𝑤𝑎𝑡𝑒𝑟,… = 0.917

𝒬! 0, 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
0.917+ 0.9 1

1,9×4 = 0.504 ≃ 0.5

Similarly, all transitions are incrementally annotated with Q-values as more events are

discovered in the model. After the first iteration of calculating the Q-values, the model is

reconsidered for the state-merging procedure. During the merging process, when transitions are

merged, their corresponding data values are also merged (as mentioned in Section 2.3).

However, at this point, the HMM classifier is used to compare the attached data values

(including Q-values) to the outgoing transitions from the merged state. If the produced results are

similar enough; the Q-values have at least one identical number in their first decimal places

(after being rounded to the nearest tenth); the transitions can be treated as equivalent and can be

merged; otherwise the potential merge is ignored.

Figure 3. Excerpt of the model derived by ReHMM from the pump controller example

53

This procedure [29] also helps in increasing the accuracy of the model by detecting non-

deterministic transitions. In this case, ReHMM infers an EFSA with 11 states while the proposed

approach by [29] contains 16 states (See Appendix A for the EPFSA generated using ReHMM).

Finally according to [29], the GK-tail algorithm inferred a model with 39 states using the same

data traces.

It is also worth noting that similar to MINT framework, our approach is also able to implement

Daikon’s decorator class [4], [29] and use it to infer rules that link the variables together for each

transition. As it is mentioned in sections 2.1 and 2.3 using Daikon to label transitions could be

useful for the purposes of providing transition-specific information about the attached data. Also,

the extracted rules (e.g. pump=false&methane<=602.2162), similar to other transitions’ labels,

are then utilized to calculate Q-values and determine whether or not a pair of states is

compatible.

As it will be discussed in Section 2.9, ReHMM also is able to generate more accurate models

when compared to MINT. The ability to generate small accurate models is a feature of ReHMM,

which can be very helpful in addressing software engineering tasks such as test case generation.

2.7 Empirical Evaluation

To investigate the effectiveness of the proposed technique, we have performed an empirical

evaluation. The evaluation compares the new technique with five data classifier inference

approaches from MINT [28], [29] and one PFSA inference method (sk-Strings) [48]. It is argued

in this chapter that these approaches represent the current state of the art. We have constructed an

experimental framework, which addresses the following research questions:

54

• (RQ1) How does the ReHMM inference technique performs in terms of accuracy [29],

[49] as compared to other state of the art inference approaches, specifically MINT

(EFSA) and sk-strings (PFSA) [28]?

• (RQ2) Does the inferred EPFSA retain the probability distribution of the original

specification [49]?

The first research question (RQ1) is answered using a new evaluation approach, proposed by

Walkinshaw et al. [29]. Their proposed approach uses a well-known technique called k-folds

cross validation to randomly partition a set of examples into k (non-overlapping) sets.

Subsequently, a model is inferred using each set over k iterations and the remaining set is used to

evaluate the model based upon the accuracy measure (defined in the next section). Since in each

iteration a different set is used for the evaluation, the final accuracy score is equal to the mean of

the k accuracy scores. This approach is successfully used to calculate the accuracy score for

both EFSAs and PFSAs [29].

On the other hand, in order to evaluate the probablistic element of the infered Extended PFSAs4

(RQ2), we implement the approach recommended by Lo et al. [16]; they suggest calculating a

new metric called Probability Similarity (PS), measuring the similarity in terms of probabilities

assigned to the common traces generated by both the simulator (Section 2.5.1) and the mined

model. In other words, this metric determines if both the simulator and the mined models

generate the same traces at similar frequencies. The PS metric also will be elaborated upon in the

following section.

4 In cases that the inference procedure leads to generating Extended Probabilistic FSAs, the quality of the produced

EFSAs (without considering the transition values) can still be evaluated by comparing the BCR measure of the
mined models but it is not sufficient in assessing the quality of state-action values (transition probabilities)

55

2.7.1 Comparison Criteria

In order to evaluate RQ1 and to assess the extent of agreement between a set of traces and a

model, we follow the approach utilized by Walkinshaw et al. [29]; they recommend calculating

the BCR (Binary Classification Rate) metric in order to assess the accuracy of inferred EFSAs.

Essentially, each trace is compared to the model in order to consider— if the model correctly

accepts positive traces and rejects negative ones. Therefore, we need a measure that not only

considers the true positives, false positives and false negatives but also takes the true negatives

into the account.

Basically, BCR is the mean of the Sensitivity and Specificity measures, where TP=True Positive,

TN= True Negative, FP= False Positive, FN= False Negative and:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (15)

It is worth noting that Sensitivity is also known as “Recall”, while Specificity is a recommended

alternative for “Precision” in cases where True-Negatives also should be taken into account. In

other words in this study, similar to [29], the ability of the automaton in correctly rejecting

negative traces is as significant as correctly accepting the positive ones.

In addition, for the sake of completeness in analyzing the performance differences between

diverse inference techniques, we also follow advice from [33], and apply the Wilcoxon Signed

Ranks Test and effect size approaches.

Non-parametric Statistical Hypothesis Test: In this case, we established a null hypothesis and

an alternative hypothesis to be evaluated. The null hypothesis (H0) states that the two inference

techniques provide the same accuracy, if the median of the BCR score for both techniques is the

56

same. On the other hand, the alternative hypothesis (H1) states that if the difference between the

medians of the BCR measures, which have been detected by each of the inference techniques, is

not zero then they will be considered as different. Therefore, by considering a significance

level 𝛼 = 0.05, we would be able to reject the null hypothesis if 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05, for each

independent situation.

Effect Size: In order to add a “size of difference” statement to our comparison criteria, we

consider the strength or magnitude of a treatment effect, by calculating Cliff’s Delta measure.

Cliff’s Delta statistic [86] is a nonparametric effect size measure that quantifies the difference

between two groups of observations by testing the equivalence of probabilities of scores in one

group being larger than the scores in the other. In this study, the magnitude of differences

between inference techniques is assessed using the thresholds provided in [89] i.e. |d|<0.147

"negligible", |d|<0.33 "small", |d|<0.474 "medium", otherwise "large".

In order to evaluate RQ2, we estimate the Probability Similarity (PS): PS measures the

similarity in terms of probabilities assigned to common traces, generated by a mined model Z

Figure 4. Excerpt of the simple simulator of the running example- the simulator is used as a

basis for calculating the Probability Similarity of inferred PFSAs

1.

57

and a simulator model 𝑍!. Following the approach provided in [49], the simulator model in this

study is also an initial version of the PTA (Section 2.5.1) generated using the same algorithm as

applied in [29]. The only difference is that the produced PTA is also labeled with the transition

probabilities, which (1) are distributed equally between transitions with the same source node

and (2) are summed up to one. Figure 4 shows an excerpt of a simulator model.

Having both the simulator and the mined model, 𝑍 and 𝑍!, we are able to calculate the PS

measure. First, we need to calculate the probability that a trace 𝑇𝑟 is generated by both 𝑍 and 𝑍!

independently. It is the same procedure as the one which is normally used to measure the

probability similarity between two Hidden Markov Models [76].

𝑃!! 𝑍,𝑍! = (𝑃!(𝑇𝑟)𝑃!!(𝑇𝑟))
!"∈!(!∩!!)

 (16)

Where 𝑃! 𝑇𝑟 and 𝑃!! 𝑇𝑟 represent the probability of producing trace 𝑇𝑟 by 𝑍 and by 𝑍!. We

can determine the probability of a trace by multiplying together the probability of its

constituents. Now the Probability Similarity between 𝑍 and 𝑍! can be calculated as follows:

𝑃𝑆 𝑍,𝑍! =
2×𝑃!" 𝑍,𝑍!

(𝑃!" 𝑍,𝑍 + 𝑃!" 𝑍!,𝑍!)
 (17)

It is worth noting that this technique has also been successfully used in [49] and [3] in order to

assess the quality of an inferred EPFSA.

2.8 Experimental Setup

Several techniques exist to empirically evaluate EFSA inference algorithms, but all of them rely

on a reference model to be used as a basis for computing accuracy. In practice, generated models

should be compared with the reference model for computing the accuracy of the model [14],

58

[36], [37]. Since these models are required to be generated manually for systems with

complicated behavior, this can be considered as a significant limitation.

Figure 5. The toolset used in the empirical evaluation

To empirically evaluate ReHMM in terms of accuracy, seven different systems have been

considered. All of these systems are sequential systems relying on an internal data-state, which

makes them suitable for modeling with either EFSA or EPFSA inference tools. These choices

also have been used in previous research projects [4], [10] and [39].

This selection also guarantees that the experimental objects are independent of the authors and

specific programming languages.

• SMTPTransport Class in OracleJavaMail5: This module implements the Transport

abstract class using SMTP for message submission and transport. The SMTPTransport

5 http://www.oracle.com/technetwork/java/javamail/index.html

Trace
Generator

Mutant
Generator

Software
Systems

NNGE

Bayes

JRIP

AdaBoost

J48

sk-strings
Trace

Generation

Positive
 Trace

Negative Traces

Evaluation
Inferred
Model

59

Junit tests (collected using a tracing-aspect in AspectJ6) along with the Apache Commons

Mail test sets have been considered for the first experiment [28];

§ Number of traces: 80 traces are used in this study;

§ Average trace length: 20 (Input traces have different lengths; this metric

calculates the mean of all traces’ lengths); and

§ Average variables per event: 1.5 (Min=1 and Max=5). This metric calculates the

mean of all variables associated with each trace event.

• Erlang Poolboy: A module in the Basho Riak7 distributed database, which implements a

procedure for pooling connections

§ Number of traces: 80 traces have been generated using Poolboy Eunit tests

(collected with an instrumentation system using the Wrangler refactoring API8)

[28];

§ Average trace length: 30; and

§ Average variables per event: 3 (Min=1 and Max=7).

• Mobile Frequency Server: An Erlang server module, which assigns frequencies to

mobile phones contacting each other.

§ Number of traces: 100 identical traces to [29] have been used in this case;

§ Average trace length: 20; and

§ Average variables per event: 3 (Min=1 and Max=6).

• Resource Locker: A distributed resource-locking algorithm written in Erlang, which is

designed for a specific model of ATM switches.

6 http://eclipse.org/aspectj/
7 http://basho.com/riak/
8 http://www.cs.kent.ac.uk/projects/wrangler/Wrangler/Home.html

60

§ Number of traces: Again, 100 identical traces to [29] have been applied in this

case;

§ Average trace length: 20; and

§ Average variables per event: 1.3 (Min=1 and Max=3).

• Signature: A Java class, which implements a digital signature algorithm.

§ Number of traces: 71 traces, which were collected through the execution of

Columba9 email clients in [29] are also used in this experiment;

§ Average trace length: 14.52; and

§ Average variables per event: 16.7 (Min=1 and Max=24).

• Socket: Another Java SDK class, which implements client sockets. A socket is an

endpoint for the communication between two machines.

§ Number of traces: 100 traces are used as [29];

§ Average trace length: 44.18; and

§ Average variables per event: 13.17 (Min=1 and Max=18).

• StringTokenizer: Traces, which are collected from several execution of JEdit10 in [29] on

a Java utility class for breaking a string into tokens are applied in this case study.

§ Number of traces: 100 traces are used as [29];

§ Average trace length: 33.36; and

§ Average variables per event: 14.5 (Min=1 and Max=17).

Walkinshaw et al. [29] collected initial traces for Erlang modules using a random test generation

framework. In this approach, random functions are invoked through random parameters and this

9 http://sourceforge.net/projects/columba/
10 http://www.jedit.org/

61

procedure is repeated 20 times to generate 100 traces for each system. Additionally, the traces

for Java modules are collected through running real-world, publicly available applications that

use the selected libraries [39].

In order to assure that the collected traces have been sufficient to infer reliable models

mimicking actual systems behavior, we applied the measure provided by [90] and [91]. Using

this measure, which is called the log’s confidence, we consider the confidence of a log (set) of

execution traces in order to estimate the expected faithfulness of the mining results. According

to Cohen et al. [90], a low confidence (e.g. 0.2) indicates that the inference results might not be

compatible with the actual behavior of the system under investigation. However, the high

confidence (e.g. 0.95) hints that the inference results are probably very close to the actual

behavior of the system. Therefore, the probability that a sequence of events 𝑇𝑟 of length n does

not appear in the traces (𝑌![𝑇𝑟] = 0) but is possible to be generated by the inferred model

𝑓 𝑇𝑟 = 1 determines the log confidence of the considered traces, as below:

𝑃 𝑌! = 𝑓 ≥ 1− 1− 𝑝!" !

!" !!"!!

 (18)

Where, 𝑝!" denotes the probability that the 𝑇𝑟 appears somewhere in the trace and k denotes the

length of the log. (The interested reader should consult [90] for a derivation of equation (18))

The results indicate that all of traces used in this study have a confidence of at least 0.92.

In addition, computing the BCR measure and calculating the FNs, TNs, FPs and TPs also needs

the definition of negative traces. As mentioned earlier, negative traces are traces covering the

mutations. Walkinshaw et al. [28], [29] collected positive traces for considered case studies using

a random test generation framework while, they collected the negative traces using both

62

automated and hand-picked mutation approaches. They proposed a customized mutation

technique that can be replaced with random mutations of the program code by automatically

applying the hand-picked changes to the positive traces. This method guarantees that newly

generated traces are “negative”, since, they are generated by adding invalid suffixes to the valid

prefix of positive traces. It is worth mentioning that all of the positive and negative traces used in

this study are kindly provided by Walkinshaw et al. [28], [29].

Although the traces are available, the exact method used to extract them, are not. Even though,

applying handpicked changes can address the problem caused by using quasi-random mutations;

it makes replicating the trace production process very difficult (e.g. the set of rules applied to

characterize impossible-to-happen sequences, are not available). Therefore, the process of

creating further traces and using them to infer models comparable with the current case studies’

is almost impossible.

In order to evaluate our proposed approach in comparison with other techniques, we used

Walkinshaw et al. ([15, 16]) studies as baselines, and updated their toolset as shown in Figure 5

by adding our proposed inference approach in the appropriate location. Their approach is a

modular method, which means, that instead of relying on a single data model inference

technique, it uses a set of arbitrary data classifier inference techniques. The classifiers used by

[28] are: NNGE, Bayes, JRIP, AdaBoost and J48 (implementing the C4.5 algorithm [56]).

In addition, as mentioned earlier, the inferred EPFSAs by ReHMM are compared with a state of

the art PFSA inference tool called sk-strings to investigate the accuracy of the Q-values in

estimating the transition probabilities. In Accordance with several experiments conducted by

Raman et al. [48], d%= 50% k=1 and the “AND variant” [33] are utilized as the default

63

parameters for the sk-strings algorithm. Therefore, as depicted in Figure 5, different models are

inferred from positive software traces using ReHMM, MINT and sk-strings.

Then, in the evaluation phase, the k-folds cross validation technique, k=5, is used to address the

problem of requiring reference models [36] and exercising the full range of behaviors in the

systems under consideration. This approach randomly divides the input traces into 5 non-

overlapping sets and infers a model using a set over 5 iterations. Another set is used to evaluate

the model in terms of the BCR measure. Basically, the set of traces are classified by the model to

find if the model accepts them as positive or rejects them as negative. As a result, positive traces

can be used for k-folds cross validation, whereas the negative traces are added to the evaluation

set in each iteration in order to consider the effect of false positives/negatives on the accuracy of

the experiment (Figure 5). After inferring models based on the classifier algorithms [28], sk-

strings and the proposed ReHMM technique, the BCR is measured to detect the most accurate

approach, while PS is calculated to evaluate the probabilistic element of the inferred model.

This is also worth noting that depending on the software engineering problem we are trying to

solve the impact of such issues may differ. For instance, in the situation that the EPFSA is

inferred to mine software specifications, wrongly recognizing a negative trace as valid software

execution leads to generate software specifications containing behaviors which are not possible

in the software. Similarly, mistakenly detecting a valid trace as a negative one, cause the

specification misses correct software behaviors. Additionally, in the case of applying the inferred

model to generate software test cases, false positives and false negatives lead to subsequently

producing invalid test cases and missing valid ones.

64

2.9 Experimental Results

According to [28] and [29], BCR values above 0.5 show that a model is able to determine correct

traces better than a random model. In order to evaluate the accuracy of our suggested model, we

calculate the BCR measure for all of the generated models using ReHMM and the state of the art

approaches.

Table 5 shows the result of applying all five classifiers, the sk-strings algorithm and the ReHMM

technique. We computed the average BCR measure on different inference iterations (k-fold) for

two different minimum merging (G) scores 0 and 1 (See Section 2.2.3 for a definition of merging

score). The accuracy of the inferred models is evaluated for different merging scores to

investigate the impact of changes to the algorithm configuration, and consequently finding an

ideal choice of G (if it exists).

In addition to this, Table 6 and Table 7 report the results of calculating the sensitivity and

specificity measures for all of the considered case studies applying the inference approaches.

These results indicate that ReHMM outperforms the other approaches in correctly determining

the validity of the traces compared to the results provided in [29]. In addition, the result of the

Wilcoxon signed rank test indicates that, regardless of the perceived closeness of the BCR

scores, the ReHMM inference approach is significantly different from the other techniques

(𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.03125 < 0.05 for G=0, and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.01562 < 0.05 for G=1). The

Cliff’s Delta measure provides more detailed information to this picture by showing that a

“large” effect size exists (in favour of ReHMM) for all of the experiments, when G=0, delta

estimate=0.8688, and when G=1, delta estimate=0.9072, both with a 95% confidence interval.

These results provide an answer to the first research question.

65

Table 5. The Results of Applying Inference Techniques on Seven Different Case Studies, for G=0,1

 Poolboy SMTPTranspor
t

Resource

Locker
Frequency

Server
Signature StringTokenize

r
Socket

G

Inferenc
e

Algorith
m

BC
R

Inferenc
e

Algorith
m

BC
R

Inferenc
e

Algorith
m

BC
R

Inferenc
e

Algorith
m

BC
R

Inferenc
e

Algorith
m

BC
R

Inferenc
e

Algorith
m

BC
R

Inferenc
e

Algorith
m

BCR

0

ReHMM

Sk-
strings

NNGE

Bayes

JRIP

AdaBoos
t

J48

0.70

0.65

0.68

0.66

0.61

0.61

0.59

ReHMM

Sk-
strings

NNGE

Bayes

JRIP

AdaBoos
t

J48

0.91

0.63

0.59

0.71

0.72

0.67

0.67

ReHMM

Sk-
strings

NNGE

Bayes

JRIP

AdaBoos
t

J48

0.75

0.64

NA
*

0.66

0.61

0.63

0.64

ReHMM

Sk-
strings

NNGE

Bayes

JRIP

AdaBoos
t

J48

0.84

0.64

NA

0.75

0.61

0.76

0.67

ReHMM

Sk-
strings

NNGE

Bayes

JRIP

AdaBoos
t

J48

0.75

0.63

NA

0.50

0.50

0.50

0.50

ReHMM

Sk-
strings

NNGE

Bayes

JRIP

AdaBoos
t

J48

0.79

0.45

NA

0.50

0.51

0.50

0.50

ReHMM

Sk-
strings

NNGE

Bayes

JRIP

AdaBoos
t

J48

0.92

0.73

NA

NA*
*

0.75

0.83

0.80

1

ReHMM

Sk-
strings

NNGE

Bayes

JRIP

AdaBoos
t

J48

0.76

0.65

0.70

0.71

0.69

0.67

0.65

ReHMM

Sk-
strings

NNGE

Bayes

JRIP

AdaBoos
t

J48

0.99

0.79

0.98

0.98

0.98

0.96

0.96

ReHMM

Sk-
strings

NNGE

Bayes

JRIP

AdaBoos
t

J48

0.80

0.66

NA

0.71

0.85

0.74

0.74

ReHMM

Sk-
strings

NNGE

Bayes

JRIP

AdaBoos
t

J48

0.85

0.66

NA

0.66

0.61

0.77

0.77

ReHMM

Sk-
strings

NNGE

Bayes

JRIP

AdaBoos
t

J48

0.79

0.67

NA

0.73

0.77

0.67

0.77

ReHMM

Sk-
strings

NNGE

Bayes

JRIP

AdaBoos
t

J48

0.90

0.71

NA

0.82

0.75

0.78

0.80

ReHMM

Sk-
strings

NNGE

Bayes

JRIP

AdaBoos
t

J48

0.90

0.71

NA

NA

0.65

0.72

0.70

* NNGE has not be considered in Walkinshaw’s new study [29] because of its poor performance in systems with big

traces containing spurious events

** All Inference efforts for Naïve Bayes classifier in the Socket case study time out, because the inferred model

using Naïve Bayes takes a significantly longer time to query compared to other cases and classifiers

They show that combining the RL and HMM approaches not only improves the accuracy of the

inferred model but also adds valuable information (data function) to its data flow (all the

transitions are labeled with the name of functions, Q-value and data-state variables), which

provides an accurate EPFSA inference method, outperforming another PFSA inference algorithm

(sk-strings). This result illustrates that the ReHMM algorithm produces more accurate solutions

in all the systems considered compared with sk-strings.

66

The minimum, maximum and median of BCRs are also calculated from applying different

inference approaches on considered case studies are provided in Appendix B (Table 46, Table

47). In this experiment both 5 and 10-folds for the cross validation are considered.

Table 6. The Result of calculating Sensitivity and Specificity Measures Using ReHMM for G=0

 Sensitivity Specificity
Poolboy 0.81 0.89

SMPTransport 0.98 0.93
Resource Locker 0.96 0.54
Frequency Server 1.00 0.68

Signature 1.00 0.50
StringTockenizer 1.00 0.58

Socket 0.86 0.98

Table 7. The Result of calculating Sensitivity and Specificity Measures Using ReHMM for G=1

 Sensitivity Specificity
Poolboy 0.79 0.97

SMPTransport 1.00 0.99
Resource Locker 1.00 0.60
Frequency Server 0.71 0.99

Signature 0.98 0.60
StringTockenizer 0.90 1.00

Socket 0.83 0.97

Table 8. The Result of Calculating Probability Similarity Measure in ReHMM and sk-strings for G=0,1

Sk-strings

(G=0)
ReHMM

(G=0)
Sk-strings

(G=1)
ReHMM

(G=1)
Poolboy 0.69 0.76 0.74 0.87

SMPTransport 0.90 0.88 0.90 0.94
Resource Locker 0.53 0.88 0.62 0.94
Frequency Server 0.33 0.85 0.59 0.81

Signature 0.48 0.67 0.52 0.79
StringTockenizer 0.67 0.79 0.67 0.90

Socket 0.65 0.83 0.68 0.82

67

Additionally, the results of calculating the PS metric (Table 8) indicate that ReHMM improves

upon sk-strings in terms of retaining the original probabilities. This results in generating the

same traces at similar frequencies as the simulator. The result of the Wilcoxon signed rank test

and Cliff’s Delta measure also ”prove” this claim, that the ReHMM inference approach is

significantly different in terms of the accuracy of the generated PFSA with sk-strings: for G=0,1.

Delta estimate=0.8979 for G=0 and delta estimate=0.8367 for G=1, both with a 95% confidence

interval. Both of these estimates can be interpreted as a “large” effect size.

These results provide an answer to the second research question. In addition, this procedure helps

in addressing the missing state-action value (transition probability) by identifying a new state-

action value (Q-value) function, which is able to map a transition to its corresponding Q-value

while the model is generated. Using the new proposed technique (Q-value function), the value of

a transition can be calculated directly from the observations with no need to walk through the

source code. In all of the considered experiments, ReHMM has the BCR value of 0.7 or more,

which demonstrates an acceptable level of accuracy [29], while, there is no single data classifier

algorithm that outperforms the others for all of the systems.

The results also indicate that changing the minimum merging score from 0 to 1 does not make

much difference to the accuracy of some of the considered cases (e.g. Socket). This may have

happened because of their lower level of learnability. This also would be due to the complex

nested lists and tuples in their software-systems’ structures, which makes it difficult to

distinguish a pair of states by their suffixes compared with the other systems [28], [29].

Therefore, it can be concluded that there is no ideal choice of merging score (G), since it depends

on the characteristics of the target system in terms of the design complexity and the manner in

which the system is invoked [29]. However, ReHMM seems to provide improvements over the

68

merging score changes when compared with sk-strings. This strongly suggests an improved

capability of ReHMM in identifying merge-able suffixes. We believe the reason of the

improvement in the accuracy of the inferred model using ReHMM, is the ability of ReHMM to

add transition probabilities to the model and using them as a parameter to be checked in the

merging step. This procedure helps in reducing the number of inappropriate merges and

consequently generating more accurate models.

Based upon this result, it could be concluded that ReHMM has obtained better accuracy in the

systems containing a lower number of variables for each event. The reason lies in the fact that

the inference process for the systems with high number of variables and events lead to generating

very large models. The model becomes even larger when this feature is coupled with a larger

value of G. It is also worth noting that the large-size models are slower to be inferred and

subsequently are the subject of more false merges during the state-merging procedure (Table 9,

illustrates the size of inferred models using ReHMM for all case studies).

It was also observed that the traces containing all systems’ events with a low number of variables

are sufficient to generate an accurate model representing a system behavior. Increasing the

number of execution traces does not necessarily lead to an improvement in the model’s quality

by adding new states and transitions to the PTA. Simply, the newly added traces can only repeat

the patterns of events that are already provided by the old traces.

Moreover, the results of implementing different edit distance measures in ReHMM as alternative

heuristics in calculating the Q-values are provided in Table 10. These results illustrate the reason

behind the decision of choosing Levenshtein distance over other approaches.

69

Table 9. Sizes of Inferred Models in Terms of State Numbers for All Case Studies, Applying ReHMM

(G=0,1)

 Number of States (G=0) Number of States (G=1)
Poolboy 18 50

SMPTransport 7 32
Resource Locker 406 601
Frequency Server 181 776

Signature 3 16
StringTockenizer 36 304

Socket 144 1153

Table 10. The Result of Calculating BCR Measure Using ReHMM Implemented by Different Edit

Distance Heuristics

 Longest Common Subsequence Distance Hamming Distance Jaro Distance

Poolboy 0.68 0.6 0.66

SMPTransport 0.87 0.67 0.73

Resource Locker 0.75 0.63 0.7

Frequency Server 0.84 0.67 0.81

Signature 0.69 0.58 0.69

StringTockenizer 0.7 0.62 0.72

Socket 0.85 0.75 0.8

2.10 Time Complexity Analysis

In order to investigate the time complexity of the proposed method for situations with a long

sequence of observations (i.e. large-scale software systems with a huge number of methods and

parameter values), we have considered the computation order of the inference algorithm.

Based upon the Incremental Baum-Welch algorithms’ time complexity [38], the computation

order of the inference procedure is polynomial: 𝑂 𝑁! 𝑙𝑜𝑔𝑇 , where N represents the number of

hidden states and T indicates the number of observations (parameter values); and hence, it does

not exponentially grow by increasing the system size.

70

The time complexity of the traditional approach (using an offline Baum-Welch algorithm) is

𝑂 𝑁!𝑇 [39], while in the incremental estimation approach which has been used in this study,

this has been reduced to 𝑂 𝑁! 𝑙𝑜𝑔𝑇 . This improvement is possible by modifying the emission

and transition probabilities incrementally using the RL-based forward algorithm and training an

RL-based HMM with a Maximum Likelihood Estimation (MLE) using the Incremental Baum-

Welch algorithm [38].

This procedure also helps in estimating more accurate ReHMM elements than regular non-

incremental HMM estimation. The efficiency of this approach has been confirmed by the

production of EFSAs with a minimum BCR value of 0.7. In addition, according to [94], a Q-

learning algorithm with action-reward representation in a deterministic domain (similar to the

algorithm, used in this study) reaches a goal state and terminates after at most 𝑂(𝑒𝑛) steps;

where 𝑒 ≤ 𝑛! and n represents the number of states of the initial PTA. Therefore, the worst-case

time complexity becomes 𝑂(𝑛!).

We have also investigated the amount of time required to infer the models using the proposed

inference approach by considering the performed experiments in terms of the time taken for each

configuration. All experiments are run on a simple hardware and software platform consisting of

a 2x2.4 GHz Quad-Core CPU, 32 GB RAM on a Mac Pro (manufactured in 2010), Eclipse

Indigo. Clearly, massive performance gains can be made by moving the experiments onto a

modern server; however, in these experiments we are not concerned with absolute performance.

The times are listed in Table 11. The results indicate that in most cases, the inference time is less

than one minute. However, in 3 cases of inference with merging score G=1 and one case study

with merging score G=0, the inference time is more than a minute (between 2 and 9 minutes).

Conducting the same experiment using MINT indicates that MINT’s inference time is within the

71

same range as ReHMM. The time it takes for MINT to infer models in “Frequency server” and

“Signature” are respectively equal to 0.509 and 0.028 minutes for G=1 is slightly lower than

ReHMM. While, in Socket experiment, MINT hits the timeout limit for several classifiers and

merging scores, ReHMM inference time is still less than the timeout limit (9.065 min). It is

worth noting that both MINT and ReHMM are written in Java.

Table 11. Time Taken to Infer Models Across All Case Studies Using ReHMM for G=0,1

 Inference Time (min), G=0 Inference Time (min), G=1

Poolboy 0.014 0.112

SMPTransport 0.012 0.023

Resource Locker 0.928 2.520

Frequency Server 0.683 0.852

Signature 0.051 0.060

StringTockenizer 1.050 3.083

Socket 5.125 9.065

In the study conducted by Walkinshaw et.al [29] using the MINT inference algorithm, it is

indicated that an increase in the value of G, can lead to the increase in the inference time. When

G increases, the inference approach needs more time to evaluate more states and transitions to

find suitable merge candidates. The effect of choosing a large merging score can be even more in

cases with larger models. In the Socket case study, inference time reaches to more than 9 minutes

for G=1. Walkinshaw et.al [29] believe that the traces are used to infer the model for Socket are

“richer” than other examples. They consist of an alphabet of 56 events and an average of 32

variable values per event. These numbers of events and variable values (which are at least twice

as many as other case studies) can easily lead to generating larger models and subsequently

larger inference time.

72

 It can be concluded that even if the time it takes for ReHMM to infer a model from software

executions could be increased for large merging scores or traces including high number of

variable values per event, it is still an accurate solution for addressing several software

engineering related problems. For example, in a case that the inferred model is used to produce

regression tests with high code coverage, the model only needs to be generated after each

regression to cover newly developed portions. In other words, there is no need to re-produce the

model on a regular basis, because the behavior of the model will not change unless a software

component is updated or replaced. Therefore, spending time periodically, ideally offline, to

generate an accurate model of the system, which could be used for software testing purposes or

for detecting a system’s architectural anomalies, is already recommended and applied in several

software engineering studies [2], [95].

2.11 Threats to Validity

Some potential threats to the validity of our research and the method of addressing them are

discussed in this section. In this study, we are principally concerned with three types of threats:

• Threats to the internal validity

• Threats to the external validity

• Threats to the power of the experiment

ReHMM similar to other dynamic inference techniques suffers from some limitations. It takes a

set of software execution traces as input and infers models that generalize upon them. This

procedure can easily lead to generating a partial view of the software behavioral model. The

mentioned drawback has been addressed by combining the FSM with the values of the associated

parameter or data-state variables. But with respect to the internal validity, there are qualitative

73

data constraints (such as class labels) in these models; the impact of these constraints on the

method’s accuracy cannot be directly evaluated. To address this issue, we added an additional

quantitative value to the model, which provides insight into the model’s accuracy by calculating

the amount of forward probabilities and subsequent transition probabilities using Q-values

(where Q-values reflect the degree of change between transition functions). The result proves

that using a Q-value calculation procedure has been a significant aid in inferring an accurate

model, since it increases the probability of discovering more diverse paths in each inference

process. Therefore, generating a model with high accuracy may show the effectiveness of using

Q-values to identify the functions governing transitions and generating the Probabilistic FSA of

software systems. On the other hand, the threats to the external validity for our research are

centered on the limitations of dynamic analysis. In dynamic specification mining, the system and

its complete set of execution traces are not necessarily known. Therefore, the lack of complete

traces describing the software behavior is a major limitation as identified in [10] and [37].

Walkinshaw et al. [28] reduces the risk of using incomplete trace samples by using k-folds cross

validation. This approach is also replicated in this study. We also calculated the log-confidence

measure [90], [91] to evaluate the sufficiency of the applied traces. In addition, choosing seven

different case studies from two diverse programming languages shows this experiment is not

dependant on any specific programming language. Therefore, the selected classes can be

considered as representative of many others, but not all, possible software systems.

The third threat represents the power issue, which can lead to Type II errors in situations where a

sufficient number of samples are not available. In order to address this issue, a k-fold cross

validation approach and different configurations of learners are used, and several models are

generated during every iteration of the inference algorithm (overall 700 models). In addition, in

74

order to assure that the inference approach is capable of handling traces of different lengths,

diverse systems with different average trace lengths (from 14 to 44) are applied in this study.

2.12 Conclusion

Several techniques currently exist which are able to generate behavioral models from software

execution traces. In this study, we introduce a new approach named ReHMM for inferring

Extended PFSAs. This technique combines two different approaches: RL and HMM to generate

an accurate behavioral model of the desired system. ReHMM is a new approach, training an RL-

based HMM on data obtained from each class label of an execution trace.

Applying RL helps in exploring the transitions, which trigger more changes in the model; and

hence, it helps to detect those functions that govern transitions. Then, we explore the ability of

HMMs to estimate a model that maximizes the probabilities of identifying the correct traces.

This study makes a contribution to research in the area by offering a new algorithm to infer an

accurate EPFSA from software execution traces. In addition, it suggests a solution to the problem

of the missing state-action value by using Q-values in designing an Extended Probabilistic FSA.

In order to evaluate the proposed technique, we used traces extracted from seven modules in two

different programming languages. Both systems have been used for inferring EFSAs [28] and

[29]. The reason for choosing the same modules was the existence of a preliminary study, which

we used to evaluate our approach. According to the results, our proposed technique outperforms

other inference algorithms in terms of the BCR measure (used to evaluate the accuracy of the

model). We also compared the generated models using the proposed approach with the models

produced using a state of the art PFSA generation algorithm (sk-strings) in terms of accuracy.

Again, the results confirmed the ReHMM’s ability in generating the more accurate PFSAs too.

75

3 Inferring Reward Augmented Behavior Models from Log
Files in Web Applications

3.1 Introduction

Many users with different needs and interests browse web applications by navigating through

different pages. Navigational anomalies, deadlocks and unexpected inter-connections can easily

lead to user dissatisfaction and, subsequently, lost audiences.

 However, it is almost impossible to accurately predict and address all of the users’ interaction

expectations. Inferring a model by knowing and predicting users’ behavioral patterns is required

in order to understand users’ interests and build applications addressing a wide range of

requirements.

Several studies have been conducted to propose different inference approaches in order to model

user behaviors by monitoring the usage of an application and consequently mining the collected

data to extract user behavioral patterns. Applying data mining techniques on the data collected

from user side or proxy servers in order to extract usage patterns is one of the proposed inference

approaches [96]. The client side data can be collected using JavaScript or by modifying the

source code of an existing browser. Some other existing solutions mine server-side log files as

the historical user-interaction data and extract hidden behavioral patterns. For example, [2-7]

generate probabilistic user behavioral models or user interest models from log files.

However, even if we have an accurate user-behavioral model available addressing many design

questions remain problematic without being able to augment the generated model with

76

appropriate metrics and measures. For example, questions such as (1) Which pages11 of the web

application are poorly performing? (2) What are the landing pages? and (3) What are the

common sessions?

In order to answer such questions, some extended inference techniques are suggested, which not

only infer the user behavioral model but also manually augment models with a metric called

reward values, .e.g [7],[8]. In general, rewards are non-negative values that are estimated and

assigned to a model’s states to provide insights on the benefits or losses associated with each

state of the model. In our study, the benefits or losses are considered as the new and different

content that a web page offers to the users in order to attract them, as compared to other web

pages. Critically our approach is fully automated!

Later we show that the page reward value can be mapped to the popularity or accessibility of

web pages. Therefore, high reward values can demonstrate the successful implementation of

users’ requirements, while low reward values for the less popular pages can indicate possible

anomalies in the application design. Therefore, reward augmented behavioural models can

represent a general abstraction of the model, which can be used to analyze user behaviour

patterns.

Google Analytics12 also provides a solution to answer the above types of questions. It tracks

users' navigation actions by instrumenting web pages and uses a page tagging approach to gather

website traffic data. In this case, a snippet of JavaScript code needs to be manually added to

every page of the website. However, existing solutions including Google Analytics are either

11 A web page in this study refers to the dynamic web page where its construction is either controlled on the server-

side or the client-side
12 https://www.google.ca/analytics/

77

limited to inferring predefined users’ navigational profiles [97], [98] or they lack an automated

inference process to generate reward augmented models.

In this study, we provide a comprehensive automated approach to generate reward augmented

behavioural models from log files. In other words, this study contributes to current research in

user-intensive behavioral models in the following distinct ways:

• This approach provides a new method to infer probabilistic user behavioural models

using Markovian processes, and verifies the quantitative properties of users’ behaviors

using probabilistic model checking.

• This technique facilitates a model generation process by the use of a Reinforcement

Learning (RL) based approach to automatically and incrementally learn the reward values

from data, which represents the users’ interactions with web applications.

• It uses the differences between the contents of different web pages to indicate the

“attractive” pages from a user point of view.

• It is fully automated and requires no manual intervention neither in terms of code

instrumentation nor reward estimation.

• In order to investigate the performance of the proposed approach, we have applied it on

an enterprise scale, web and mobile application called “MyUAlberta”. It is believed that

this is the first time such processes (generating reward-augmented behavioural models

from historical log files) have been applied to a real-world enterprise size application.

Previous research [2], [99]–[102] has only considered small, artificially generated, data

sets.

• In addition, the results of this investigation indicate that the calculated reward values are

compatible with the values extracted from Google Analytics in determining a page’s

78

importance. In other words, pages that are marked as interesting with a high number of

page-views are also highly ranked by reward values.

The remainder of this chapter is organized as follows. Section 3.2 contains research motivations

and the problem description. Section 3.3 overviews the steps of the proposed approach along

with the background information relating to existing user behavioral models. Section 3.4

introduces a running example, used throughout the chapter to explain and evaluate the proposed

approach. Section 3.5 provides a detailed description of the inference approach. Section 3.6

discusses the empirical evaluation of the proposed approach and presents the experimental

results. Section 3.7 reviews related work and state of the work model inference approaches,

while Section 3.8 summarizes the main contributions of the study and provides some thoughts on

the ongoing research work.

3.2 Problem Statement and Research Motivation

User behavior models, which are generated from navigational patterns found in web applications,

provide solutions to several software engineering problems. A navigational pattern is a record of

where a user visits in an application. The pattern is extracted from the whole procedure of

browsing the website, from the start to the end of a user session This information can be obtained

from the server’s log of a web application, which documents the history of user interactions and

behaviors. Several inference studies have been performed to model users’ behavioral flows using

server log files [99], [100]. In this study, we try to provide a new user-behavioral inference

approach, which has the following advantages compared to previous work:

Ideally, a user behavioral inference process should not require to instrument the application’s

web pages in order to generate user behavioral models. To instrument a web page, the source

79

code of the program is modified with additional commands. The purpose of instrumenting the

web applications is data collection. An inference approach, which only uses data from log files,

does not require access to the source code of the applications.

Providing a non-instrumented inference approach is preferably acceptable while achieving

appropriate results. The results of the above mentioned inference approach, which only uses data

from log files must be consistent with the results of an instrumentation-based approach. In this

study, Google Analytics is used as an example of an instrumentation-based approach.

Web application evolution can be done by upgrading an application already in service or by

releasing a new version or derivative. Any model generation approach should support the

evolution of web applications. This can be helpful in sustaining web applications.

When users interact with a web application, the history of their requests and behaviors are stored

in web server logs. In enterprise-scale web applications, log files will have millions of entries per

day. It is essential that any model generation approach support the utilization of such large-scale

server logs.

Behavioral models are normally generated by collecting data either from system instrumentation

or from log files. To instrument a web page, it is necessary to insert additional code fragments

into the source code. However, this can be difficult when the source code is inaccessible or too

complex to instrument. Many software systems still in use were developed using technologies

that are now obsolete. This becomes an issue when the original developers or the source code is

no longer available, or source code only exists with outdated documentation, which is the only

reliable source of information. These situations are frequently encountered, particularly in

software systems that have been developed years ago. For instance, consider a web application,

80

which is developed and maintained over years by a single developer. If the developer leaves the

company the company will encounter a situation called “maintaining the legacy code”. In this

situation different developers need to familiarize themselves with the code they have never

touched before. Another likely scenario is when an application is being licensed to a company

without providing the source code. In such a case instrumenting the source code becomes very

difficult and time consuming. Furthermore, legacy codes can be very difficult to read since they

are written without exploiting object-oriented techniques. This old coding approach leads to

lengthy and complex code that is difficult to understand and instrument. Although accessing

source code of these systems is not always feasible, it is still possible to generate behavioral

models for these systems from their log files.

A model generation approach needs to support the evolution of the web applications. In other

words, a behavioral model should be generated incrementally during the evolution, and should

play a role in the application’s evolution procedure. Consider an application in which, a specific

link needs to be added to the main page. By adding the link, the new behavior model should be

generated incrementally. This approach makes the model generation process quick, flexible and

possible in the early phases of the application life cycle. As an example, consider a car dealership

web application. By analyzing its users’ behavior model, pages with more visitors, will be

determined and related advertisements will be added to the target pages. Then the new model

will be created incrementally.

Analyzing the model also helps to detect design anomalies resulting in dissatisfaction among

users. For instance, there might be some pages, in which users are being prevented from leaving

the page without closing it. Such pages are called deadlocks [103]. Detecting deadlocks can

significantly help in addressing design anomalies and providing solutions to retain users.

81

Therefore, generating behavior models in an incremental and analyzing them regularly play an

essential role in the flawless evolution of the web application.

The model generation approach should also support the large-scale web applications. These

applications have a large number of entries per day. Analyzing the behavior of numerous users in

a large-scale application can provide information that may be helpful in understanding the users’

requirements. From the business point of view, it’s critical to understand how people interact

with the company’s web application, especially in cases where such applications are considered

large or enterprise.

Understanding user behavior helps in improving the user experience; refine features and

contents, and building a user-oriented product. Google, Microsoft and Facebook are examples of

large-scale companies, which are using behavior model generation approaches to understand the

behavior of their users.

Behavior models are also used to identify potential issues with the content or the design of

enterprise applications. In the case of a commercial company’s web application with hundreds of

thousands of visits per day, analyzing the behavioral model can reveal difficulties users are

experiencing while browsing the application or their preferences in the design of the user

interface (UI). For instance, by tracking users’ behavioral fellow, it can easily be detected if

users prefer to see more information about a product on the same page that the product is placed

on instead of clicking on the “more information” link, which shows the information on a separate

page.

Developers can easily address such issues and increase users’ satisfaction level. Satisfied

customers are more likely to stay with the company and contribute to the company’s success.

82

Generating and analyzing user behavioral models make detecting such issues possible in large-

scale applications with huge log files recording user interaction data.

Google Analytics is a state of the art approach to infer user behavioral models. But it should be

noted that generating such models using Google Analytics needs instrumenting the source code.

Google Analytics is a web analytics service offered by Google that tracks and reports website

traffic. Using Google Analytics users can create and review online campaigns by defining

different conversions (goals). Goals are used to measure how well the web application is

targeting the predefined objectives like sales or a specific location loads [104]. Google Analytics

can also be used to identify poorly performing pages preventing the web application from

reaching the defined targets (goals).

The behavioral models generated using non-instrumented inference approaches should be

consistent with the results of Google Analytics or other equivalent systems. Therefore, one of our

objectives in this study is to produce an algorithm, which has comparable performance to Google

Analytics.

 In order to evaluate the correctness of our proposed inference approach, we considered the

compatibility of the approach with the results, which were extracted by Google Analytics from

an instrumented website. Another objective in this study is to produce an automatic algorithm,

which supports enterprise size web applications and its future evolutions. Section 3.6 discusses

the evaluation of the proposed approach on a large-scale case study and presents the

experimental results.

83

3.3 Augmenting Behavioral Models by Reward Values

In this section, we introduce our proposed inference approach with a short introduction about

current user behavioral model generation procedures.

3.3.1 User Behavioral Model

Different users behave differently in their interactions with web applications. They browse web

pages based upon their needs in a specific time frame. Therefore, providing a model representing

possible user behavior and latent patterns with a graphical, and traceable, representation can be

helpful. Several techniques are suggested to track users’ navigation actions and generate models

containing the paths users have taken through a web site. Some of these approaches instrument

the web pages to collect users’ interaction history, while others mine the server-side log files to

extract interaction patterns. Moreover, the inferred models are also represented in various ways

from tree-based data structures [105] to different types of probabilistic models [2], [97], [106].

To allow the universal application of this approach, we only assume the availability of server-

side log files as the system input. This assumption also implies that the system requires no

modification of the existing configuration, which is often a barrier to adoption. In terms of the

output from the system, we are extracting probabilistic (state-oriented) models, analyzing them

and augmenting their states with reward values to accurately represent the user behavioural

patterns.

3.3.2 Proposed Model Inference Approach

Given our objectives, we commenced our research by considering pre-existing systems as partial

solutions to address the raised concerns.

84

Our framework was designed and implemented to incrementally generate user-behavioral models

for user-intensive web applications, and to overcome the limitations of former approaches.

The main steps of the proposed framework are shown in Figure 6 and briefly discussed in the

following paragraphs. It is worth noting that steps 2 and 3 are intertwining and do not occur

sequentially, but for the sake of clarity they are explained separately. Later in the chapter of the

thesis, each step will be elaborated in a separate section.

1. Identifying the initial parameters and processing the log-file: at the first step, a set of

Atomic Propositions (APs) is used to associate semantics to the URLs occurring in the

log file. APs can be defined by the system expert or by automatically considering the

URL of the page as a proposition. Also the system expert can define a set of user-classes

to characterize different groups of users. For example, users’ agents (internet browsers

used to view the web pages) and locations could be considered as two user-classes.

Classes categorize users based upon a set of common features. However in order to

automatically infer a reward - augmented model, which is not limited to a specific scope,

defining user-classes can be ignored. Also in this step, input logs are processed and

classified. Each row of the log file is clustered into groups univocally identified by the

sets of atomic propositions.

2. Generating the behavioral model: the model inference engine analyzes the processed

log file and generates a Discrete Time Markov Chain (DTMC) for each “user-class”,

defined in the previous step.

3. Calculating and assigning reward values: Concurrently with generating each state of

the DTMC, the corresponding reward value is also incrementally calculated and assigned

85

to the state. A Reinforcement Learning (RL) based approach is applied to automatically

estimate the reward values for each state (i.e. web page).

4. Analyzing the model: when the DTMCs are generated and annotated with reward

values, the analysis engine evaluates the properties of the interaction patterns against the

inferred models using probabilistic model checking. The probabilistic model checker not

only evaluates the correctness or incorrectness of a property, but also provides insights on

the users’ behaviors and on the impact of these behaviors on the reward values. Any

probabilistic model checker can be applied; but in this study, we use PRISM [103].

3.4 Running Example

In order to define and demonstrate the proposed approach throughout this chapter, we introduce

a real world, enterprise application called “MyUAlberta”. This application includes several

features for helping students and staff at the University of Alberta, enabling them to gain access

to campus-related information through an easy-to-browse dashboard. The application has been

active since September 2014 and more than 100000 app installs and more than 40000 monthly

page views have been reported since then.

Users can view university news, events, and maps; and search for people who are registered as

students or staff at the university. Students and academic staffs can view course details including

seat availability and check their timetable. These features along with several other features are

represented in the MyUAlberta mobile application and website.

86

Figure 6. The Framework of the User Behavioral Model Inference Approach

This application has 58,498 iOS and 12,097 Android registered users with unique mobile

devices. It is worth noting that these numbers do not include web users who only use the

application through the web portal. In addition, the application contains 18 main modules; each

provides a link to an external resource (e.g. link to the university website) or represents an in-app

feature. As an example of an in-app implemented feature: students can use this application to

login to the University authentication system and see their classes’ schedule, marks, and course

lists (Registrar module). They can also review course content and take quizzes online using the

eClass module. Library, Events, Student Services, Find a Person, ONEcard, News, Athletics,

Social Media, and Photos and Videos are other modules that provide different services to

university students and staffs. Transit and Campus map modules are also two popular features in

this application; they help users find out the departure time for several bus and LRT routes, as

well as the campus-wide geographical map. Users are able to customize modules’ order in the

main menu, receive emergency push notifications, or send feedback about their experiences

browsing the application. Therefore, according to the large scale of the application and its

87

numerous users, analyzing the behavior of the users would provide information that could lead to

the fruitful future of the application in terms of improvements.

We extracted the server log files for the time period of one month composed of more than

120,000 lines. It can be easily anticipated that the generated behavioral model using such log

files would be massive and complex, so manually extracting the behavioral patterns and

assigning the reward values to them is neither possible nor accurate.

3.5 Inference Details

In this section we elaborate on the inference steps briefly discussed in the last section.

3.5.1 Identifying Initial Parameters and Processing Log File

In order to infer a model of users’ behaviors, the inference approach needs a list of the

interactions between the users and the web server of the application in the Common Log Format

(CLF). This file consists of the rows and each row represents a request submitted by a user to the

web server and contains the IP address, timestamp, requested URL and client’s device

information. Our proposed inference approach clusters each row of the log file into the groups

identified by a set of Atomic Propositions (𝐴𝑃𝑠) [2]. It uses several code fragments called filters

to indicate the set of atomic propositions, which can be associated to the relevant requested

URLs in the log files. Filters are parameterized with a regular expression to only identify the

URLs matching the expression. For example, the proposition home is going to be used as a label

for a row in the log file, which contains the requested-URL that will lead the user to the home

page of the application. This procedure helps in: (1) Identifying the requests corresponding to the

same URLs and clustering them into the same group. (2) Detecting and filtering out the rows that

88

belong to CSS, JavaScript or any resources that are irrelevant to the users’ interactions with the

web application. The URLs and their corresponding atomic propositions for the MyUAlberta

application are provided in Table 12.

Table 12. The URLS and Their Corresponding Atomic Propositions in MyUAlberta Application

Atomic Proposition URL

home …/home/

athletics …/athletics/

social …/social/

transit …/trnst/

news …/news/

video …/video/

emergency …/uaemergency/

calendar …/calendar/

people …/people/

login …/login/

eclass …/eclass.srv.ualberta.ca/portal/

map …/campusmap.ualberta.ca/

onecard …/myonecard.ualberta.ca/

caps …/capsconnections.ualberta.ca/

studentservices …/stustrv/

customize …/customize/

feedback …/MyUAlbertaFeedback/

search …/search/

photos …/photos/

fullweb …/ualberta.ca

error …/kurogoerror/

library …/library/

registrar …/registrar/

89

Our inference framework also contains two default classifiers to classify the users based upon (1)

the user-agents (e.g. Mozilla, Firefox) and (2) the users’ location extracted by geolocating the IP

addresses [2]; more classifiers can be easily added. Classifiers help designers to extract domain

specific information about the users by classifying users into several different customizable

classes. For example, using this approach, we would be able to analyze specific users’ behavioral

patterns for clients who logged into the application using Chrome.

3.5.2 Generating the Behavioral Model

In the model inference step, the inference engine incrementally generates a set of Discrete Time

Markov Chains (DTMCs) [2], [107].

DTMCs are probabilistic finite state automata, which follow a Markovian process and represent

the users’ behavioral patterns. Discrete time Markov chains are suitable options for representing

the user behavioral models, because:

• The transition from one state to other states in the model only depends on the current

state. Therefore, in a user behavioral model, the probability distribution of the next page

(the user might visit), only depends on the links and content provided in the page that the

user is currently browsing. This perfectly matches the user behavior pattern definition,

which illustrates the users’ movement flow from one state (page) to another.

• The system evolves through discrete time steps. In user behavioral modeling, we are

interested in analyzing user behaviors at discrete time intervals to predict the next

movement of the user solely based on the current state. Therefore, changes to the system

cannot occur at any time along a continuous interval.

90

In our study, DTMCs are also annotated with a numerical value called a reward. Rewards

indicate the quantitative value (benefit) of visiting a specific page in the web site or being in a

specific state of the model. In the research conducted by Ghezzi et al. [2], rewards are manually

determined and assigned by the system designer to the states of the models. Accordingly, a

DTMC which is augmented with rewards is a tuple (𝑆,𝑃, 𝐿,𝜌) where:

• 𝑆 is a set of states, and 𝑠! ∈ 𝑆 indicates the initial state;

• 𝑃: 𝑆×𝑆 → [0,1] is the probabilistic matrix indicating the probability of the occurrence of

a transition between two connected states.

• 𝐿 is a function which maps a state to a set of atomic propositions.

• 𝜌 is a reward function with associates a non-negative number to each state.

In this study, we also infer a DTMC for each class defined by the classifiers.

In order to start the model inference process, an initial DTMC is generated. The initial DTMC

consists of (1) two initial states: 𝑠! (initial state) and 𝑠! (end state); (2) a zero transition matrix 𝑃

indicating the probability transitions between states; (3) a set of state labels indicating the start

and end labels 𝐿 = {𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑} and (4) a reward function 𝜌 which assigns 0 to both start and

end states as an initial reward value. Assigning 0 as a reward value to the initial states illustrates

that the value of states is not calculated yet. Then, the initial DTMC will be incrementally

developed by processing each row of the log file and adding more states and transitions to the

model. The following paragraphs provide more details about this procedure:

• First, when a raw r is processed, the algorithm assumes that the IP address in the raw

corresponds to a new user unless the IP address has been previously detected within a

predefined time-window. A time window is the minimum time span between timestamps

91

that is defined by the system expert to identify the requests that are issued by two

different users but the same IP addresses. In another words, when the time-window for a

certain IP address expires, the algorithm assumes that the user associated with that IP

address left the system [2]. In this study, we assumed that the time-window is equal to 1

minute, which is equal to the minimum session timeout in Google Analytics. This should

not be confused with the default session duration in Google Analytics, which is equal to

30 minutes. If the previous step considers r as a request issued by a new user, the

algorithm adds a new state to the model, and labels it by the set of propositions associated

with r. At this point, it considers the start state 𝑠! as its parent state. But if the request

belongs to a known user, the algorithm still builds the new state with the same labels, but

considers the latest state associated with the previous request as its parent state [2].

• Then the transition probability 𝑝!" is assigned to the transition between 𝑠! and 𝑠!. 𝑝!" is

equal to the ratio between the number of transitions between 𝑠! and 𝑠! the total number of

transitions with source state 𝑠! [27].

• During the inference procedure, if the times-window expires for a certain IP address, the

algorithm generates a transition from the current state to the end state 𝑠! and updates the

transition probability.

• The previous steps will be repeated until no new request is found in the log file.

Figure 7. An excerpt of the model inference procedure for MyUAlberta application

92

Table 13 shows an excerpt of the MyUAlberta log file containing the user’ IP address, the

requests’ timestamps and the requested URLs. This log file represents the interaction of a user

with the application.

Table 13. The URLS and Their Corresponding Atomic Propositions in MyUAlberta Application

1.1.1.1 - - [24/Jan/2016:06:50:56 +0700] "GET

/home

1.1.1.1 - - [24/Jan/2016:06:51:00 +0700] "GET

/trnst

1.1.1.1 - - [24/Jan/2016:06:51:04 +0700] "GET

/social

Figure 7 depicts implementing the above step on MyUAlberta case study. In this case, as the log

file is processed, the initial DTMC is generated by building start and end states (See Figure 7a).

When the first line of the log file is read, since this is the first time a request to the home page is

getting processed, a new state labeled home is generated. In other words, since the IP address of

this request has not been already encountered, the algorithm connects it to the start state (Figure

7b). At the same time, the inference engine assigns a probability of 1 to this transition. This is

due to the fact that, there is no other state with the source of start state yet. As the algorithm

processes the second row of the log file that contains the same IP address, it adds a new state

labeled transit to the DTMC and considers the home state as the source state for it. The transition

probability of the new connection is also 1 (see Figure 7c).

The third row of the log file again belongs to the same IP address but containing a request to load

the social media page. Therefore, the algorithm adds the new state called social to the model in a

same way as previous states. The only difference is that since this state is not the first state

getting yielded from the home state, the number of the outgoing states from home should be

93

divided by the transition probability and all of the corresponding transitions should get updated.

Thus, the probabilities of transitions derived from home state are equal to 0.5. This means that

the probability of the transition between the home and transit states will be also updated to 0.5

(see Figure 7d).

When the time-window for a specific IP address expires, the algorithm assumes that the user left

the application. Therefore, it generates a new transition that connects the latest discovered state

(which is associated with this user) to the end state. Figure 7d depicts this step.

During the inference process the reward values are also calculated and assigned to the states of

the model, but for the sake of clarity we present the remaining steps in the next section.

3.5.3 Calculating and Assigning Reward Values

As mentioned previously, the necessity for manually producing the reward signal is a major

problem with the previous inference approaches, such as [2].

In order to illustrate the use of rewards in user behavioral models clearly, we first provide an

example related to a sell and buy web site. Assuming that the goal of the web site is to increase

the number of advertisements, the designer can assign reward values to states by considering the

number of advertisements in each page. For example, if there are 10 advertisements in the

homepage, the system expert associates the reward value 10 with the proposition homepage.

Accordingly, other states of the model also get annotated by the number of advertisements their

corresponding proposition contains. Depending on the web site’s goals and missions, designers

only define one technical or non-technical metric of interest and assign rewards based upon this

metric only once during the setup phase of the inference procedure. Therefore, in order to

recalculate reward values based on the new metrics: (1) system experts should recalculate reward

94

values, and (2) models should be regenerated. In such situations, defining an approach, which is

able to represent the rewards values of the states from a general perspective, would be very

helpful. However, automating the calculation process makes the approach more effective

specifically for large-scale software systems.

The following paragraphs outline our proposed technique to solve this issue. We utilize a

reinforcement learning strategy to automate the estimation of the rewards signal. Therefore, we

first provide a quick background about the applied techniques and definitions.

3.5.3.1 Reinforcement Learning

This section provides an overview and definition of Reinforcement Learning.

RL is located between supervised and unsupervised learning to learn what to do to maximize a

numerical reward signal [66]. The learner does not know what actions to take to reach the goal

of maximizing the reward signal and only can pick and try actions to detect those increasing the

accumulative reward [67].

Reinforcement learning algorithms are defined in an iterative way not by characterizing learning

methods, but by characterizing a learning problem. The agent and the environment are

interacting continually: the agent selects actions and the environment responds to the actions,

presents new states to the agent and which give rise to rewards. This cycle is repeated as part of a

Markov Decision Process (MDP) [66], [68]. MDPs are used as stochastic extensions of finite

automata or Markovian process to model the decision making process and solve optimizing

problems. They are augmented by actions and rewards so that they consist of actions,

transitions, labels, and states. In the following paragraphs, some definitions are introduced that

are helpful in demonstrating our proposed approach in the next session.

95

Definition 10. Markov decision process (MDP). MDPs provide a mathematical framework to

model the decision making process in situations where outcomes are partly random and partly

under the control of a decision maker. They are useful in addressing a wide range of optimization

problems solved via dynamic programming and reinforcement learning [66].

More precisely, an MDP is a discrete time stochastic control process. In other words, an MDP

contains:

• A set of possible states S.

• A set of possible actions A.

• (Transition) probability distribution, X: S×A×S → 0,1 giving for each state and action.

It computes the probability of reaching state s! by performing action a in state s and is

denoted as X s, a, s! , s, s! ∈ S , a ∈ A.

• The immediate reward received after transitioning from state s to state s! due to action is

denoted as R(s, a, s!) .

Therefore, an MDP has a set of states. These states will play the role of outcomes in the decision

making approach as well as providing information, which is necessary for choosing actions. For

example, in the case of a robot navigating through a building, the state might be the room it is in,

or the x and y coordinates. For a factory controller, it might be the temperature and pressure in

the boiler.

A MDP also has a set of actions. When the process is in state s, the decision maker may choose

any action a that is available in state s. The process responds at the next time-step by randomly

moving into a new state s!. So, s! ∈ S denotes the state at time t [68]; according to this definition

of a Markovian process, we would have:

96

P s!!! s!, s!!!, s!!!,… = P s!!! s! = X s!, a!, s!!! (19)

This process is called Markovian, because the probability of reaching state s! depends only on

the current state s and the action a. In other words, the next state is independent of all the

previous states and actions and only the current state predicts what the next state will be [72].

Definition 11. Reward Function. R specifies the reward the agent receives by performing an

action. So, R: S×A×S → ℝ presents the reward function that computes the immediate utility of

an action, indicating the intrinsic desirability of that state. So an MDP can be denoted by the

tuple S,A,T,R depicting it as a state transition graph [68].

In this study we are interested in calculating the value of performing an action in a specific state

to compute reward values. In order to achieve this goal a new function called state-action value

function needs to be defined. Since the accurate definition of this function requires a background

on two other definitions: policy function and state-value function, in the following paragraphs we

discuss both concepts respectively.

Definition 12. Policy. The goal in a MDP is to find a function called policy, which determines

which action to take in each state, so as to maximize the reward function. Policy map π gives the

probability of taking action a when in state s:

𝜋: 𝑆×𝐴 → 0,1

 𝜋 𝑠,𝑎 = 𝑃 𝑎! = 𝑎 𝑠! = 𝑠 (20)

Definition 13. State-Value Function. The state-value Function V!(s) specifies the value of a

state is equal to the total amount of reward a learner can accumulate, starting from that state. We

can define the value of a state, under a policy π, formally V! s , as [67]:

97

 𝑉! 𝑠 = 𝐸! 𝑅! 𝑠! = 𝑠 = 𝐸! 𝛾!𝑟!!!!!

!

!!!

𝑠! = 𝑠 (21)

Where:

E! is the expected return earned by following policy π and discount factor γ, 0 ≤ γ < 1. This

models the fact that future rewards are worth less than an immediate reward. Similarly, in order

to calculate the value of performing an action a in state s, a state-action value function:

 𝒬: S×A → [0,1], can be defined as:

𝒬! 𝑠,𝑎 = 𝐸! 𝑅! 𝑠! = 𝑠,𝑎! = 𝑎 = 𝐸! 𝛾!𝑟!!!!!

!

!!!

𝑠! = 𝑠,𝑎! = 𝑎 (22)

All RL-based algorithms are based upon providing an approach for appropriately estimating

state-action value functions. This has led to the exploration and production of several different

estimating methods and techniques. One of the most popular of these is Q-Learning [69], which

is an off-policy Temporal Difference control algorithm. In other words, Q-Learning is able to

estimate Q-value functions (Q-learning based estimations of the state-action value function)

without requiring an initial model of the environment.

Additionally, Q-learning can handle problems with stochastic transitions and rewards without

requiring any adaptations. It has been proven that for any finite MDP, Q-learning eventually

finds an optimal policy. This means that the expected value of the total reward that has been

returned over all successive steps is the maximum achievable.

In this situation, because of the lack of known transition and reward models, the algorithm

handle problems with stochastic transitions and rewards and uses exploration and sampling

approaches to learn the required model. Therefore, Q-learning finds an optimal policy for any

finite MDP and estimates the agent’s Q-value function based on the Q-value estimation of an

98

action. In other words, using the above definitions equation 23 is inferred. This process is

incrementally evaluated as follows [68]:

𝒬!!! 𝑠! ,𝑎! = 𝒬! 𝑠! ,𝑎! + 𝛼 𝑟! + 𝛾max! 𝒬! 𝑠! ,𝑎 − 𝒬! 𝑠! ,𝑎! (23)

Where, 𝛼 (0 < 𝛼 ≤ 1) is the learning rate, which determines the extent to which new

information can override old information and how fast we modify our estimates [70]. In the next

section, we illustrate how we use Q-value functions to incrementally calculate reward values.

3.5.3.2 Automated Reward Calculation Algorithm

 Because of the proven ability of Q-value function to converge to an optimal policy [71] and

estimate the state-action value-function in free model problems [69], we have used Q-learning to

estimate the reward values in this study. In other words, the problem of estimating the reward

values for the user behavioral model needs to be addressed using an approach, which: (1) is able

to incrementally learn the values from the current state of the model; and (2) can easily get

configured to generate meaningful reward values for web applications. Therefore, Q-value

function is an appropriate option to address this issue.

In order to present a Q-value function, which fits the behavioral model generation process, we

have modified the Q-value function (5) as below:

Equation 24 illustrates how the Q-value function has been used in this approach to calculate the

value of state 𝑠!, which is called 𝜌 𝑠! :

𝜌 𝑠! = 1− 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐶𝑟𝑎𝑤𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐴,𝐶𝑟𝑎𝑤𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐵

+ 𝛾max𝜌 𝑠!!! 24

99

Since the reward calculation algorithms has been synchronized with the model-inference engine

in terms of being executed every time a new state is generated, the rewards are also calculated

and updated incrementally during the model generation process. Therefore:

When a pair of states is created, a function (StateMatcher) searches in the regular expression

library to find the request URLs matching these states. For example, if the state label is library,

the method detects the corresponding URL that has been requested by the users; in this case, that

is “www.myualberta.ualberta.ca/library”.

When both URLs are retrieved, another method (Crawl) is called. This function crawls (spiders)

the detected URLs and collects all words and links on the pages and stores them in two Strings

(CrawlResultA, CrawlResultB). Crawlers have been previously used in mining behavioral

models from web applications [108], [109], but to the best of our knowledge, this is the first time

they are used to estimate the reward values of behavioral models. It is worth noting that using

crawlers as the model inference approach limits its application to small-scale software systems

and therefore, it cannot be applied to large scale applications with complicated DOM trees and

huge log files. In such cases, crawling each page browsed by a user and creating its

corresponding DOM tree can easily leads to non-determinism in the model and huge data-space

usage. However, in the reward calculation procedure, the agent only crawls the two states of the

model at the time, which leads to saving time and space in large-scale applications. Additionally,

in this study we used CRAWLJAX [110] as the crawler implemented in the reward calculation

step. It is able to discover various navigational paths and user interface states within AJAX

applications.

100

After storing the crawl results, the difference between the two URLs’ content is calculated using

a similarity method. This function works by calculating the Levenshtein distance between two

states’ content. (See Table 14 andTable 15 for the reward calculation and similarity algorithms).

Table 14. Reward Calculation Algorithm

Input: Model states 𝑠! , 𝑠!!! ∈ 𝐴𝑃; 𝑖 = 0; 𝜌 = 0
Output: Reward value (𝑅𝑒𝑤𝑎𝑟𝑑 ∈ ℝ ≥ 0)
begin
For each state 𝑠! 𝐓𝐨 𝑠!!! do
 urlA⟵StateMatcher(𝑠!)
 urlB⟵StateMatcher(𝑠!!!)
 CrawlResultsA⟵Crawl(urlA)
 CrawlResultsB⟵Crawl(urlB)
 𝜌 𝑠! ← 1 − 𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 𝐶𝑟𝑎𝑤𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐴,𝐶𝑟𝑎𝑤𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐵
 𝑚𝑎𝑥 ← max 𝜌(𝛿(𝑠!!!))
 𝜌 𝑠! ← (𝜌 𝑠! + 0.9 max)/100
 For each (𝑠! , 𝑠!) ; 𝑠! ∈ 𝑆! *
 merge (𝑠! , 𝑠!) if
 (𝑠! = 𝑠!) AND (Reward (𝑠!)=Reward (𝑠!)) AND (Adjacent (𝑠!) = Adjacent (𝑠!)) AND
(Reward(Adjacent (𝑠!))= Reward(Adjacent (𝑠!)))
 Repeat Until no new 𝑠! ∈ 𝑆! is found
 Repeat Until no new 𝑠! ∈ 𝑆 is found
 end
* S! is the set of states which are already labeled with the reward values

Table 15. Similarity Calculation Algorithm

Input: Method calls in String format (𝑐!, 𝑐!)
Output: Similarity Score
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑐!, 𝑐!)begin
if (𝐿𝑒𝑛𝑔𝑡ℎ. 𝑐! < 𝐿𝑒𝑛𝑔𝑡ℎ. 𝑐!)
then 𝑆𝑤𝑎𝑝 𝑐!, 𝑐!
 BigLength ⟵ 𝐿𝑒𝑛𝑔𝑡ℎ. 𝑐!
Return bigLength – ComputeEditDistance*(𝑐!, 𝑐!) / bigLength

* We have implemented the ”Levenshtein distance” algorithm to compute the Edit distance in this
study

The reason for applying the Levenshtein distance is it’s proven capability in measuring the

similarity between two strings. In this study the outputs of Crawl methods are strings too. The

similarity function plays the role of the Q-value function to initiate the Q-value (𝜌(𝑠!)) for state

101

𝑠!, so when the user sends another request URL from the current state (the web page the user is

currently viewing), the algorithm calculates the Q-values of upcoming states (web pages) and

chooses the maximum amount to learn the current states’ reward.

In order to eliminate the redundancy in the model, the merging step of gkTail inference

algorithm is applied to merge the equivalent states [64]. According to this state-merging

procedure, two states are considered equivalent if they have the same future of length k (in our

study k=1). Therefore, here two states can be merged if they share the same label, rewards and

immediate future, which means their adjacent states also have the same labels and reward values.

This procedure prunes the model from redundant states with the same values.

It is also worth noting that we initialize the process to give all states the same reward value (zero)

and the same chance of being observed (requested by users).

Using this procedure, all reward values are calculated incrementally during the model generation

process. Eventually, the inference engine assigns the rewards of states as the sum of the reward

values of the propositions associated with the states. Our proposed reward calculation process

not only automatically computes the reward values in an incremental way, but also uses the

server side logs as the only source of the input. Moreover, the empirical evaluation (provided in

the next section) shows that the reward values calculated by our proposed approach correctly

represent the benefits or losses associated with the states.

Figure 8 shows the initial steps of the reward calculation process for the MyUAlberta

application. As depicted, the model generation process initially goes through the same approach

discussed in Section 3.5; and when a state is generated, the reward value is also calculated in an

incremental manner. Therefore, first the content of the current state are crawled and compared

102

with the new state’s using 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑡𝑎𝑟𝑡, ℎ𝑜𝑚𝑒 . Then, the maximum amount of previously

initialized or calculated values for the next state is considered. Therefore, in this case,

𝛾 max 𝜌 𝛿 𝑠!!! = 0, because there is no already traversed state after the home state. So, for

instance, in a case that the user browses only one page, the model contains at least 3 states: start,

browsed page and end; and the reward value of the considered page would be 1.

Moreover, in the situation that the pages are dynamically created using Ajax requests, it would

be possible that the states of pages do not get registered in the browser's history engine.

Therefore, only navigations between pages can be tracked. This issue is not imposing any

drawbacks in our study, since our proposed approach only cares about the changes between

pages in log files and does not specifically deal with the state changes in Ajax-enabled pages.

However, there is always a way to consider these changes using the workaround, implemented

by Ajax techniques to change the URL fragment identifier when an Ajax-enabled page is loaded.

Also, as it is already mentioned, in this study we used CRAWLJAX to crawl the URLs, discover

various navigational patterns and calculate the reward values within the AJAX applications.

Figure 8. An excerpt of the reward calculation procedure for MyUAlberta application

3.5.4 Analyzing the Model

In order to analyze the behavioral model that has been inferred, it is necessary to identify one or

more properties of the model, which can be evaluated by a probabilistic model checker

(PRISM). In this step, the system expert defines the properties of interest using the reward-

103

augmented Probabilistic Computation Tree Logic (PCTL). This approach helps to identify the set

of DTMCs, which are more relevant to the specified property [2], [111], [112].

In this study, we are more interested in properties that are specifying the reward values of

different states in the final model. Therefore, this approach analyzes properties, which are related

to the expected values of the rewards. This is achieved using the 𝓡 operator, which can be used

either in a Boolean-valued query: 𝓡 𝑏𝑜𝑢𝑛𝑑 [𝑟𝑒𝑤𝑎𝑟𝑑𝑝𝑟𝑜𝑝] or a real-valued query:

𝓡 𝑞𝑢𝑒𝑟𝑦 𝑟𝑒𝑤𝑎𝑟𝑑𝑝𝑟𝑜𝑝 .

Where bound takes the form < 𝑟, <= 𝑟, > 𝑟 or >= 𝑟 for an expression r and query is =

? , 𝑚𝑖𝑛 =? or 𝑚𝑎𝑥 =?.

Additionally, the rewardprop represents the reward property, which can be considered in

following types:

• Reachability reward 𝓕: Reward accumulated along a path until a certain point is reached;

• Cumulative reward 𝑪 <= 𝒌: Expected state reward cumulated after k steps;

• Instantaneous reward 𝑰 = 𝒌: Expected state reward to be gained in the state entered at

step k;

• Steady-state reward 𝑺.

For example, in order to consider the reward value of all the states up to the state labeled as

“news”, following property can be used:

 ℛ =? [ℱ 𝑛𝑒𝑤𝑠]

104

Inside the bracket {}, the system expert can also specify the scope of the property for a defined a

user class (e.g. a user agent) or leave it empty to not be limited to any specific scope.

Given a property and a set of inferred DTMCs, the algorithm identifies DTMCs, which are

relevant to the scope of the property. For instance, if the scope of the property is limited to the

users who browsed the application with Chrome, the inference engine only selects the DTMC,

which are associated to this specific user-class. In case the algorithm selects more than one

DTMC for the specified scope, the extracted DTMCs need to be merged together to build a

single DTMC. Ghezzi et al. [2] suggested following approach to merge DTMCs:

• The set of states in the new DTMC is consisted of the union of the states of the input

DTMCs.

• The transition probabilities in the new DTMC is calculated using the law of total

probability:

𝑃! 𝑠! , 𝑠! = 𝑃! 𝑠! , 𝑠! ×𝑃!(𝑢!)!!!!! (25)

where, 𝑃!(𝑢!): the probability for a user that exited state 𝑠! to belong to the user-class 𝑢!.

• Labels of the states in the new DTMC are the same as labels in their corresponding input

DTMC.

• Reward values of the states in the new DTMC are the same as reward values in their

corresponding input DTMC.

It is worth noting that the similar approach is used in our study to build a single DTMC from

selected DTMCs (if there are multiple DTMCs) in the property analysis step.

As it is previously mentioned, our approach evaluates the specified property for the final DTMC

using PRISM. PRISM is not only able to evaluate the truth or falsity of a property, but also can

105

compute the reward functions using considered reward properties. Therefore, our framework

passes the property and the DTMC to PRISM, and receives the results of the evaluation through

the API. In the following section we empirically evaluate the performance of this approach in a

real-life case study.

3.6 Empirical Evaluation

3.6.1 Industrial Case Study

In order to evaluate the performance of the proposed approach, we applied it on MyUAlberta

application as a large-scale web and mobile application.

3.6.2 Experimental Results

Since our proposed approach labels the most interesting pages (in terms of the amount of

differentiation they provide) with the highest reward values, we are able to compare its

performance with the results of users’ behavioral-flow from the Google Analytics. It is worth

noting that, we only use Google Analytics to show that our approach is assigning meaningful

values to the model. So, neither our method nor Google Analytics can be replaced by one another

due to their different applications in software engineering. But in cases that the Google Analytics

data is not available, reward values may be able to provide meaningful information as well. In

the following paragraphs, we provide the experimental results and corresponding explanations.

Table 16 shows the results of calculating reward values using the automated reward calculation

algorithm for the main states (modules). These results illustrate that some pages (URLs) have

higher reward values compared to others, which, indicates that these pages have provided more

varied and interesting content than the others. For instance, the homepage has a reward value

106

equal to 0.8263, which is the maximum amount among all other pages. The transit module is

ranked second in terms of the reward value, at 0.4989. In order to evaluate the correctness of the

calculated reward values, we considered their compatibility with the results we extracted from

Google Analytics. The MyUAlberta project has been continuously attached to a Google

Analytics’ account from the day the application was launched for the first time in 2014. Thus,

historical data from actual interacting users is stored accurately. This data is helpful in indicating

interesting pages from users’ points of view, along with users’ behavioral flows. Table 17

provides the number of page-views for each considered page (URL). According to this table, the

homepage has had the maximum number of viewers at 35,385 page-views in a month, while the

/trnst/ page has been viewed 10,563 times. These examples along with reward values of other

pages and views indicate that, the pages with higher views also have higher corresponding

reward values.

These results can also indicate that pages with higher reward values are offering more varied

content compared to the previously viewed page. So, the users are more interested and,

consequently, apt to explore the pages containing different links and text. In addition to this,

many users are brought to the homepage directly (without referrals from other pages).

Therefore, in many cases, there is no actual URL exists to be compared to the homepage. As a

result, the homepage receives more accumulated rewards (Equation 24). This can easily explain

the reason for the high reward value for the home state. This shows that our proposed approach

for calculating the reward values not only automates the calculation process, but also produces

the results, which are technically explainable and compatible with the data extracted from

Google Analytics (as the proof of the concept). Moreover, as provided in Table 16 (third

107

column), the time needed for calculating the reward value is variable. Pages with higher reward

values require more time for the calculation process than those with lower rewards.

Table 16. Results of Running Reward Calculation Algorithm on MyUAlberta Case Study

URL Reward
Value

Time for
Reward
Calculation
(seconds)

…/home/ 0.8263 0.043
…/athletics/ 0.0096 0.002
…/social/ 0.0284 0.006
…/trnst/ 0.4989 0.031
…/news/ 0.0024 0.003
…/video/ 0.0048 0.007
…/uaemergency/ 0.0001 0.006
…/calendar/ 0.0048 0.008
…/people/ 0.0024 0.003
…/login/ 0.1721 0.013
…/eclass.srv.ualberta.ca/portal/ 0.4012 0.028
…/campusmap.ualberta.ca/ 0.1274 0.013
…/myonecard.ualberta.ca/ 0.0192 0.003
…/capsconnections.ualberta.ca/ 0.0024 0.002
…/stustrv/ 0.1522 0.016
…/customize/ 0.0024 0.003
…/MyUAlbertaFeedback/ 0 0.001
…/search/ 0.0096 0.002
…/photos/ 0.0024 0.003
…/ualberta.ca 0.0074 0.003
…/kurogoerror/ 0.0072 0.002
…/library/ 0.0216 0.008
…/registrar/ 0.1298 0.015

Obviously, pages containing more links and text need more time for crawling the page and,

subsequently, more time for calculating the reward values. Since the number of strings and links

are finite in a web page, and the designed crawler only discovers the first layer of links, the time

to calculate the reward values never grows exponentially [113].

108

Table 17. Number of Page-views for Each Considered Page (URL) on MyUAlberta Case Study

URL Page-views
…/home/ 35385
…/athletics/ 419
…/social/ 290
…/trnst/ 10563
…/news/ 507
…/video/ 241
…/uaemergency/ 109
…/calendar/ 640
…/people/ 271
…/login/ 4881
…/eclass.srv.ualberta.ca/portal/ 7871
…/campusmap.ualberta.ca/ 2001
…/myonecard.ualberta.ca/ 1356
…/capsconnections.ualberta.ca/ 123
…/stustrv/ 1747
…/customize/ 140
…/MyUAlbertaFeedback/ 15
…/search/ 937
…/photos/ 267
…/ualberta.ca 1159
…/kurogoerror/ 282
…/library/ 1100
…/registrar 4113

Figure 9 shows the users’ behavioral flow extracted from the Google Analytics account,

representing the most engaging content in the web application. The nodes in the behavioural

flow indicate the total number of sessions for different URLs, while the connections between

nodes represent the total number of sessions that passed through that connection. Figure 9 shows

the home page in the MyUAberta application is the point of entry or the starting page, where

users mainly start browsing the application. Then, during the first engagement (interaction),

eclass and transit pages receive the highest portion of the traffic going out from the home page.

Following the connections and nodes through different engagement levels demonstrates the

overall traffic flow in the web application.

109

Figure 9. One-Month User Flow Extracted From Google Analytics

This figure also confirms the compatibility of our results with the information extracted from

Google Analytics, in cases in which the number of sessions (instead of the number of page-

views) is considered. In our proposed approach, we also expect sessions contain more URLs with

high reward values and less URLs with low reward values. Therefore sessions which contains

URLs leading to pages like home, eclass and transit are more likely to be seen on top of each

interaction, indicating higher traffic in such pages in compared to the sessions containing URLs

with the low reward values.

3.6.3 Correlation coefficients

The Pearson correlation coefficient of two random variables is a measure of the linear

dependence or correlation between them. The value of the Pearson correlation coefficient varies

between -1 and 1. When the random variables are directly (positively) correlated to each other,

the value of the measure would be 1. When there is no linear correlation or there is a total

110

negative linear correlation between the variables, the values of the correlation coefficient would

be respectively 0 and -1. In this study in order to indicate the correlations between the reward

values calculated using our approach, and the page view metric, extracted from the Google

analytics account, we also calculate the Pearson correlation between these two variables. The

correlation coefficient matrix of two random variables (A and B) is the matrix of correlation

coefficients for each pairwise variable combination:

𝑅 = 𝜌(𝐴,𝐴) 𝜌(𝐴,𝐵)
𝜌(𝐵,𝐴) 𝜌(𝐵,𝐵) (26)

Where:

𝜌 𝐴,𝐵 = !
!!!

!!!!!
!!

!
!!!

!!!!!
!!

 (27)

if each variable has N scalar observations.

Therefore, in this study the correlation coefficient matrix of reward values and page views is

calculated as below:

 𝑅 = 1 0.9396
0.9396 1

Which indicates the positive correlation between the two variables is statistically significant.

This result again shows the importance of calculating reward values in the user behavioural

models especially in the cases that Google analytics data does not exist or is not available.

 Figure 10 depicts the coefficients of two polynomials that fit into two sets of data (reward values

calculated using our proposed approach, and the page views, extracted from the Google analytics

account). This figure can be used to demonstrate the correlations among pairs of variables. The

111

slopes and peaks in the fitting polynomials can be visually compared. For example, the peak in

both plots belongs to the home page, which has the highest reward value and page views.

It is worth noting that we also calculated the Spearman’s rank correlation coefficients [114] for

the same data as a nonparametric measure of rank correlation. Intuitively, the Spearman

correlation between two variables will be high when observations have a similar rank between

the two variables. In this study, the value of rho (Spearman’s rank correlation) is 0.92202, which

indicates that the association between the considered variables (page views and reward values) is

statistically significant.

According to the experimental results and correlation coefficients analysis, the outcome of our

model generation approach is consistent with Google Analytics, while it is also able to correctly

detect design anomalies and deadlocks. Moreover, our approach: (1) does not need any code

instrumentation; (2) is applicable for large-scale web applications (MyUAlberta is an enterprise

example); (3) supports web evolution processes (as it generates models in an incremental way);

and (4) works (perfectly) for legacy applications (the only input it needs is the server logs).

 Figure 10. The correlations among pairs of variables in MyUAlberta case study

112

3.7 Related Work

User models represent a description of the users’ behavior based upon observations. These

observations arrive in two forms—explicit feedbacks and settings provided directly by the users

themselves, or implicit conclusions about users derived from their actions, traits, or past

behaviors.

Explicit feedback can be used to generate a model based on preferences, expressed interests, or

similar attributes. For example, explicit ratings are used in systems such as Netflix and Amazon

in order to produce future recommendations for a user. To draw implicit conclusions and adapt

models, systems often leverage machine learning and data mining techniques.

Antwarg et al. [115] conducted research on predicting user search intentions using an attribute-

driven hidden Markov model obtained from a web application used at Ben-Gurion University

(BGU). Understanding user behavior and discovering the valuable information within such huge

databases involves several phases that are addressed differently in various research studies: (1)

data cleaning and preprocessing, where, typically, noise is removed, log files are broken into

sessions, and users are identified; (2) data transformation, where useful features are selected to

represent the data, and/or dimension reduction techniques are used to reduce the size of the data;

(3) applying data mining techniques to identify interesting patterns, statistical or predictive

models, or correlations among parts of the data; (4) interpretation of the results, which includes

visualization of the discovered knowledge and transforming it into user-friendly formats.

The process of generating user models using data mining/machine learning techniques can be

seen as a standard process of extracting knowledge from data where a user model is used as a

wrapper for the entire process. Indeed, this is a very popular approach that has been employed in

113

a variety of settings. For instance, Englebrech et al. used hidden Markov models to model users’

behavior based upon satisfaction in spoken dialogue systems [116], [117]. Ruvini [118] studied

user interactions with the Google search engine using a SVM algorithm to infer the user’s goals.

While, Mobasher et al. captured web usage interests by using K-means clustering [119]. In this

study, the input data consisted of user logs from the University of Minnesota Computing Science

department’s server. In addition, Virvou et al. [120] used K-means clustering to model students

in tutoring systems, while Pennacchiotti and Popescu [121] applied machine-learning techniques

to classify Twitter users. Beck et al. [122] performed the construction of a user behavioral model

for an adaptive tutor using J4.8 and Naïve Bayes Classifiers on the input data collected from the

interaction of students with the tutor. As a result, Naïve Bayes Classifier outperforms J4.8 in

terms of accuracy. Therefore, it can be concluded that machine learning techniques in particular

offer the advantage of taking diverse data and developing a classification based on observations.

Another technique involves the use of basic statistical relationships [123].

In addition to this, probabilistic graphical models are used to discover and represent

dependencies among different variables, such as the evaluation of the effect of a shopper’s

gender on their shopping behavior [124]. Dependency [122], [125] and Bayesian networks [126]

are examples of such techniques, while sequential pattern analysis algorithms use time-ordered

sessions or episodes and discover patterns from users’ interactions with the system.

Another successful set of techniques aimed at providing formal guarantees (usually expressed in

some form of temporal logic) for models that can be specified as transition systems in Model

Checking [124], [127] (MC). There has been a lot of interest in the MC community for

extensions of the classical algorithms to probabilistic settings, which are more expressive but

significantly harder to analyze. These extensions study the Probabilistic Model Checking (PMC)

114

problem, where the goal is to find the probability that a property holds in some stochastic model.

There is extensive work on how the PMC problem can be solved through exact techniques [101],

[103], [124], [127], [128], which compute correct probability bounds. In PMC, the models are

augmented with quantitative information regarding the likelihood that transitions occur and the

times at which they do so. In practice, these models are typically Markov chains or Markov

decision processes [124].

Another important and related research area is log analysis. Interaction log analysis has provided

researchers with insight into users’ behavior. These investigations typically involve examining

user behavior through query log analysis [101], [129], [130]. White et al. [101] describe a

systematic, log-based approach for modeling user interests during web interactions. The goal of

their modeling system is predicting future behavior, and evaluating the effectiveness of different

sources of contextual evidence. Using log data, Terai et al. [130], also analyze the influence of

task characteristics on information-seeking behavior in the Web applications.

Examining the applicability of implicit feedback for recommender systems has also been studied

[131], [132]. Applications of implicit feedback to web page recommender systems are also

considered in [133], [134]. These systems typically establish historical click trails of a user or a

community of users, and they assess the accuracy of statistical machine learning models, which

predict future page visits [101].

3.8 Conclusion

In this chapter, we present a novel stochastic approach to (1) generate a user behavioral model

from the log files, (2) automatically calculate the states’ rewards, (3) annotate and analyze the

models to verify the quantitative properties, and (4) address some limitations found in existing

115

approaches. Our proposed approach not only builds a fully automated inference framework, but

also provides the following advantages as compared to other behavioral model generation

methods:

• Our proposed approach is applicable on any web application of any size – new or legacy,

since it is not dependent on the specific data input. In other words, a server log file would

be sufficient to start the modeling procedure.

• This approach provides the capability to evaluate and verify the property of the inferred

models.

• Reward values can easily add semantics to inferred behavioral models. They help in

interpreting model behaviours and detecting anomalies. Calculating reward values and

assigning them to the states of the model during the inference procedure would be a more

accurate and time-saving approach as compared to manually assigning them by systems’

experts. The proposed technique uses Reinforcement Learning to incrementally calculate

the value of the reward measure using the information extracted from browsed web pages

in different states. In other words, the proposed approach adds meaningful reward values

to the model, explaining the real user’s interest or willingness in browsing web pages.

• It is easy to apply this procedure to calculate domain-specific reward values and identify

different measures.

• It makes the deadlock or anomaly detection procedure faster and more meaningful by

limiting the search space to the states with low reward values. In this study, a deadlock

was identified in the registrar page, which might have negative affect on the reward value

in this page.

116

• In addition, the experimental results approved that the proposed inference approach is

applicable on large-scale applications with many web pages and huge log files, and is

able to generate meaningful and compatible reward values in a considered case study.

117

4 Test Case Prioritization Using Extended Digraphs

4.1 Introduction

Stochastic models are used in different software testing tasks. Many Model-based Testing

(MBT) techniques are devolved to either generate new test cases or execute and evaluate the

exiting ones [15].

 The focus of this study is only on the second phase to evaluate the generated test cases and

prioritize them based upon suggested factors. Researchers have proposed various methods to

reduce the second phase costs. These techniques can be divided into three significant categories:

Test Suite Minimization Techniques (which select a minimal subset of test suites with respect to

maintaining the original coverage) [135]–[137], Test Case Selection Techniques (which identify

the test cases that are relevant to the set of recent modifications) [138] and Test Case

Prioritization Techniques (which sort the test cases by determining their execution priority based

upon different criteria) [139]–[141].

Despite the existence of safe test selection and minimization techniques [142], [143], empirical

evidence shows that some of them can severely decrease the fault detection capabilities of test

suites or disturb the conditions under which safety can be achieved [142]. For instance, [144]

evaluated several similarity-based selection techniques (STCS) and then compared the

effectiveness of the best similarity-based selection technique with other common selection

techniques in the literature. The results show that the best STCS is never worse than non-STCS

techniques regardless of the failure rate. On the other hand, Test Case Prioritization Techniques

schedule test cases in order to increase their capabilities to address significant issues [139]

specifically:

118

• Increasing the rate of fault detection.

• Increasing the code coverage.

• Increasing the confidence of the testers in the reliability of the system under test (SUT).

• Increasing the rate of detecting high-risk defects. And,

• Increasing the early detection of faults, which are correlated with specific code changes.

Running all of the test cases and then fixing the faults may lead to the execution of unnecessary

test cases containing redundant functionality and delay in the regression testing process.

Within this domain of application, the following reasons motivate us to propose a novel

prioritization technique:

• Reducing the time required to execute test cases and increasing the likelihood of

spending testing time more beneficially in the case of an unexpected termination of

regression-testing activities.

• During the test case prioritization process, no test case is discarded. Hence, it can be

concluded that the prioritization techniques do not suffer the drawbacks that can occur

when the test case selection and test suite minimization mechanism discards test cases.

• In the situation that decreasing the number of test cases is considered as an objective,

prioritization techniques can be applied in conjunction with minimization and selection

methods. So test case prioritization can be applied as a complementary step in regression

testing.

• It is also worth noting that in regression testing, we may be interested in prioritizing test

cases in a way that can be effective for a particular version. [140] call this approach

119

“version-specific prioritization”. In this study, we also focus on version-specific test case

prioritization.

Therefore, in this chapter, after a comprehensive explanation about the proposed techniques and

their computation and estimation processes, we walk through applying them on a successful

model-based technique in Graphical User Interface (GUI) testing [16], while later we show that

it can be used with any type of MBT technique. In addition, the domain of application is also not

restricted to GUI testing; it is believed that the approach is appropriate to most software testing

scenarios. Finally, we compare the approach with traditional (Random, Additional statement

coverage, Worst and Optimal) prioritization schemes, and a recent contribution in the literature,

to demonstrate its effectiveness.

Specifically, the principle contributions of this study are:

• The introduction of a new behavioral model – the extended (multi-) digraph. This model

provides a richer set of information than traditional behavioral models, such as a regular

digraph. It is argued that this extended model offers superior performance.

• A concrete mechanism to (numerically) populate this extended model. Specifically, it

shows how to use reinforcement learning and Hidden Markov models to realize this

model.

• A demonstration of how this model can be utilized to automatically prioritize test cases

for GUI applications.

• An empirical demonstration that the technique(s) derived from this extended model

outperform other common dynamic test case prioritization techniques.

120

In the next section, we present the motivations behind this research. In Section 4.3, we provide

some required background information about Reinforcement Learning and Hidden Markov

models. Section 4.4 represents several test case prioritization techniques that have been used in

this research. Sections 4.5 and 4.6 include the design of the proposed techniques by describing

the RL-based HMMs’ parameters estimation and prioritization methods and a short motivating

example. Section 4.7 describes the evaluation phase and experimental setup. It also discusses the

results and analysis of our empirical studies. Section 4.8 provides a discussion on the achieved

results. Section 4.9 discusses some related work to the contribution of this research. While,

Section 4.10 considers the threats to internal and external validity of the study; and finally,

Section 4.11 presents overall conclusions and some thoughts on potential future work.

4.2 Motivation

The concept of test case prioritization is a well-established task in software verification and

validation. Several different test case prioritization techniques with various aims have been

considered through multiple research experiences. The most common aim is increasing the fault

detection rate of a test suite; this is also the main motivation of this chapter. The prioritization

technique can be dynamic, building upon dynamic data flow information or static, based upon

static analysis of the System Under Test (SUT). This section presents the motivations behind

proposing a new dynamic prioritization technique.

4.2.1 Static or Dynamic Prioritization

Most prioritization techniques are based upon structural code coverage information gathered

through the dynamic execution of the SUT, while others focus on static analysis of the test cases.

Static prioritization techniques mainly focus on ordering the test cases based on analyzing the

121

source code or test cases’ static call graph. For example, [145] propose a static prioritization

approach to estimate the ability of each test case to achieve code coverage and to use this

information for the re-ordering of the test cases. Prioritizing test cases based on static approaches

suffers from the following drawbacks [146]:

Since this technique walks through the source code, there is a need to have access to the SUT or

the test cases’ source code.

Choosing an appropriate method to statically analyze the source code depends on the

programming language used to write the code. [147] present a static technique ranking test cases

by extracting and analyzing topic models. Their approach is only applicable in Java-based and

medium-sized SUTs, which also indicates that generalizability of this approach is not certain.

Prioritizing test cases using their static call graph also affects both the prioritization precision and

cost. Since, a static call graph intends to represent every possible execution of the program; the

problem of generating an exact static call graph is undecidable. So generating a comprehensive

and correct static call graph causes over-approximations or unrealistic transitions and

relationships.

These reasons, along with the proven capability of dynamic approaches in effectively ranking

test cases, imply that developing new dynamic test case prioritization techniques is a viable

alternative.

4.2.2 Overview of the utilized testing models and domain of application

Our dynamic test case prioritization technique uses an MBT-based approach. It assumes that an

MBT-based “front end” (automatic test case generator) exists and in essence it “extends” this

122

“front end” model and system to complete the testing process. In MBT, the test modeler creates

an abstract model (state machine) of the SUT and then generates a set of test cases by walking

(traversing) through the model [148]. So, MBT is about the Automatic generation of efficient

tests using models of the SUT [20]. This model is a depiction of SUT behavior including input

sequences; actions, conditions, output logic and data flow through modules and routines [15].

The most significant feature of MBT is automating both the test generation and execution

processes along with the capability of generating test cases. For instance, [19] combines MBT

with Evolutionary Functional Testing (EFT) to achieve a fully automatic test case design and

evaluation framework. While, [149] represent a new approach to apply model-based testing in

service-oriented applications’ testing process.

The behavioral model is often instantiated as labeled multi-digraphs where nodes are connected

to each other via multiple directed edges. The model is built and updated according to an agent’s

activities [16]. This approach has been successfully used in generating GUI behavioral models

using many different techniques to automatically generate test suites that simulate user behavior

in interacting with GUIs. In particular, model-based GUI testing techniques generate test cases

based upon a state transition diagram. Several techniques, with diverse modeling methods have

been proposed [150]–[152]. Most of them depict a graph-based model, where nodes represent

events relating to GUI widgets, and edges (or arcs) represent the relationship between events.

Hence, a GUI test case can be generated from such a model by selecting any possible path. In

this study, our proposed technique is able to prioritize generated test cases using any such MBT

approach. Our approach is based upon building an Extended multi-digraph as a SUT behavioral

model. In the following, the definition of both regular and Extended digraphs are considered.

Extended digraphs are the basis for our research contribution.

123

Definition 14. Regular Digraph. We define a regular digraph as 𝐺 = (𝑆,𝐸,𝑉) consisting of a set

of nodes (𝑆) representing GUI states of the SUT, and edges (𝑒! ∈ 𝐸 = (𝑠! , 𝑠!),𝑤ℎ𝑒𝑟𝑒 𝑠! , 𝑠! ∈ 𝑆)

indicating the transition between states. The transitions are labeled with the name of the actions

triggering transitions, and in some cases, an estimated utility value of the action. Figure 11 shows

an overview of a regular digraph. In this figure, 𝑎!" denotes the utility of the executed action

between states 𝑠! and 𝑠!. (Obviously, transitions between 𝑠! and 𝑠!; and 𝑠! and 𝑠!, where

𝑘 ∈ 1,2…𝑁 and 𝑘 ≠ 𝑖 are also feasible.) The method of calculating this value is explained in

Section 4.5.

Figure 11. An overview of the behavioral model as a directed graph

Figure 12. An overview of the behavioral model as an Extended directed graph

Definition 15. Extended Digraph. An Extended digraph 𝐺′ = (𝑆,𝐸,𝑉,𝐴,𝐵) is an extended

version of a regular digraph 𝐺 which contains additional information. In the Extended digraph, 𝑉

indicates a set of actions triggering transitions, where 𝑣! ∈ 𝑉 (𝑘 ∈ 1,2…𝑀 and M is the

number of possible actions); 𝐴 is the probability transition matrix, in which each element 𝑎!" ∈ 𝐴

represents the probability of moving from state 𝑠! to state 𝑠!; and, 𝐵 shows the emission matrix in

which each element 𝑏! 𝑣! ∈ 𝐵 indicates the probability of observing action 𝑣! in state 𝑠!

(Figure 12). The methods of estimating and calculating these elements are also considered in

𝑠! 𝑠! 𝑠! 𝑠!!! 𝑠! …
𝜈!, 𝑎!"

𝑠! 𝑠! 𝑠! 𝑠!!! 𝑠!

𝒗𝟏 𝒗𝟐 𝒗𝑴

…

…
𝑏! (𝑣!)

𝑎!"

124

Section 4.5. The extra information helps in evaluating the effect of executing actions on GUI

states enabling superior prioritization of test cases.

Generating the Extended model only requires simple interfacing glue code to be added to pre-

existing MBT approaches. So the Extended model can be generated using information gathered

during the test case execution procedure, hence, there is no need to re-implement test cases to

generate the model. Once generated, this model can be utilized to prioritize the test cases (to

maximize their (test cases) effectiveness during regression testing and other activities). To

elaborate the motivation behind this approach we consider the following example.

The main reason for proposing a stochastic approach is the proven ability of such techniques in

estimating these probabilistic models, specifically in calculating the forward probability of a

sequence of events; in this study, the sequence of events is interpreted as a test case. It should be

noticed that the proposed techniques in this research are not limited to GUI based applications

and can be applied in a wide range of circumstances. However, to demonstrate the utility of the

approach, a domain of application needs to be selected. We have chosen to evaluate our

techniques by prioritizing test cases of GUI based applications because:

• GUIs are very common, and the need for GUI testing tools becomes ever greater.

• Number of generated test cases in GUI testing is often large. Hence, it is time-consuming

to re-execute them during regression testing [153].

• No GUI test case generation tool prioritizes test cases for regression testing objectives.

• Because event-flow graphs [150], action-based behavioral models [16] or other types of

SUT models contain information about user-observations (based on interacting with the

125

SUT). Hence, it is feasible to determine the observable and latent states required to

estimate the extended behavioral model.

Thus, based upon a well-known GUI testing definition [150], the focus of this research would be

on prioritizing test cases consisting of a sequence of events (an episode), which is performed

during user-GUI interactions. (An episode is a path from the initial to a terminal state, or a

sequence of produced executions by an agent.) In other words, we only cover testing interactions

that are performed between a user and the GUI; other types of test cases are outside our scope.

The definition is further restricted as actual users would introduce variation in experimental

results, hence in our experiments, we utilize an automated test case generation tool which acts as

a proxy for actual users [16]. This allows for the exploration of a fully automated testing process

from user action generation to test case prioritization.

4.3 Theoretical Background

The proposed prioritization technique is established by combining Reinforcement Learning (RL)

and Hidden Markov Model (HMM) concepts to efficiently and rapidly prioritize test cases. The

main reasons for choosing Reinforcement Learning are its strong statistical background, its

proven ability in handling a wide range of data, and its ability to re-estimate the Markov model

efficiently. Using RL, we are able to estimate an appropriate HMM and then use it to compute

each test case’s forward probability- the likelihood of executing a specific test case based upon

the SUT’s inferred HMM.

Briefly, this method proposes a probabilistic-based prioritization technique using the following

steps:

126

• Estimating initial RL-based HMM parameters according to the generated test cases using

MBT techniques.

• Training an RL-based HMM with a maximum likelihood, using the Baum-Welch

algorithm [93].

• Prioritizing test cases based on estimating the forward probability of each test case in the

execution phase by applying a forward algorithm [73].

The RL-based HMM is estimated using the generated model through MBT techniques. This

approach uses a System Under Test (SUT) behavioral model (currently an extended digraph

graph; however, changing the model is straightforward) to generate a Markov chain containing

hidden states and transition probabilities estimated using RL algorithms. Thus, this technique is

able to prioritize test cases based upon the amount of computations (changes), a test case may

cause in GUI states (using Q-learning, a type of RL) and the probability of each action

happening in each specific state (using the HMM).

Moreover, we investigate another prioritization approach (called Accumulated Q-value) by

computing the accumulated amounts of Q-values for each specific test case. This can be

interpreted as a prioritization technique where the technique is derived from only a test case’s

contribution in changing an application’s state. It is worth noting that the Q-values can be

calculated during the generation of the extended behavioral model based on definition 15. The

method of this computation will be considered in Section 4.4. Before investigating the proposed

techniques, some background on RL and HMM is provided.

127

4.3.1 Reinforcement Learning

Reinforcement Learning (RL) contains one of the best known classes of machine learning

algorithms which “teach” an agent how to interact with an environment [68]. It is located

between supervised and unsupervised learning since only a limited feedback, named a reward

signal, is received by an agent about the agent’s predictions [66]. The long-term objective of this

agent is performing an action (i.e. mapping situations to actions), which maximizes the overall

reward signal [67]. RL’s practical applications not only address learning paradigms in operations

research and control engineering [73], [154]–[156], but are also one of the most active research

areas in artificial intelligence [157]. RL algorithms’ progress is typically iterative. They learn

during iterations by observing the current environment, inferring the environment’s state and

executing an action, which guides the agent to the next state. In other words, the agent receives

the system’s state and the reward score associated with the last transition. Then, it evaluates

potential actions according to the expected reward to be realized and selects an action, which is

sent back to the system. In response, the system makes a transition to a new state and this cycle

will be repeated as part of a Markov Decision Process (MDP) [66], [68]. MDPs can be

categorized as stochastic extensions of finite automata or Markovian Processes, which are

augmented, by actions and rewards, so they consist of actions and transitions as well as states.

Definition 16. Markovian System. The system under consideration is called Markovian if

executing an action does not depend on previous actions and visited states (i.e.it only depends on

the current state and status). So, an MDP contains:

• A finite set of environmental states 𝑆 = 𝑠!, 𝑠!,… , 𝑠! where N is the number of states;

• A finite set of actions 𝐴 = 𝑎!,𝑎!,… ,𝑎! , where k is the size of the action space;

128

• The transition function 𝑇: 𝑆×𝐴×𝑆 → 0,1 which computes the probability of reaching

the state 𝑠! by performing action 𝑎 in state 𝑠 and is denoted as (𝑇(𝑠,𝑎, 𝑠!)); and

To compare different states and actions, during agent and environment interaction, they must be

ordered according to their occurrence. So 𝑠! denotes the state at time t [68].

Thus, according to the definition of a Markovian process, we have:

𝑃 𝑠!!! 𝑠! , 𝑠!!!, 𝑠!!!,… = 𝑃 𝑠!!! 𝑠! = 𝑇 𝑠! ,𝑎! , 𝑠!!! (28)

Definition 17. Reward Function. The Reward Function 𝑅 specifies the reward, or penalty, the

agent receives by performing an action. So, 𝑅: 𝑆×𝐴×𝑆 → ℝ presents the reward function that

computes the immediate utility of an action to define the model of the MDP. So an MDP can be

denoted by the tuple 𝑆,𝐴,𝑇,𝑅 depicting it as a state transition graph [68].

Definition 18. Value Function. The Value Function 𝑉!(𝑠), specifies “how good” it is for the

agent to be in a given state. The How good notation here is expressed in terms of future rewards

that can be expected. We can define the value of state s under policy 𝜋, formally 𝑉! 𝑠 , as [67]:

 𝑉! 𝑠 = 𝐸! 𝑅! 𝑠! = 𝑠 = 𝐸! 𝛾!𝑟!!!!!

!

!!!

𝑠! = 𝑠 (29)

Where,

The stochastic policy 𝜋: 𝑆×𝐴 → 0,1 is a mapping from each state s and action 𝑎, to the

probability 𝜋 𝑠,𝑎 by performing an action 𝑎 when in state s.

𝐸! is the expected value earned by following policy 𝜋 and discount factor 𝛾, with 0 ≤ 𝛾 <

1. This models the fact that future rewards are worth less than an immediate reward, i.e. if 𝛾 = 0

129

the agent only would be concerned about the immediate reward while, a value close to 1 gives a

large weighting to future actions.

Definition 19. State-action Value Function. Similarly, the value of performing an action 𝑎 in

state s (the state-action value function or Q-value function 𝒬: 𝑆×𝐴 → ℝ) can be defined as:

𝒬! 𝑠,𝑎 = 𝐸! 𝑅! 𝑠! = 𝑠,𝑎! = 𝑎 = 𝐸! 𝛾!𝑟!!!!!

!

!!!

𝑠! = 𝑠,𝑎! = 𝑎 (30)

Almost all RL based paradigms are based on estimating the value functions appropriately, which

has led to the exploration and production of several different estimating methods and techniques.

One of the most popular, which also is applied in this research, is Q-Learning [69].

Q-Leaning is a method to estimate Q-value functions, when there is no available model of the

MDPs (model-free fashion). In this situation, because of the lack of priori transition and reward

models, there is a need for sampling and exploration to learn the required model or step directly

into estimating values for actions (Q-values). Therefore, Q-learning estimates the agent’s Q-

value function based upon an action’s Q-value estimation; this process is incrementally evaluated

as follows [68]:

𝒬!!! 𝑠! ,𝑎! = 𝒬! 𝑠! ,𝑎! + 𝛼 𝑟! + 𝛾max! 𝒬! 𝑠! ,𝑎 − 𝒬! 𝑠! ,𝑎! (31)

Where, 𝛼 (0 < 𝛼 ≤ 1) is the learning rate, which determines the extent that new information

can override old information [70].

Because of its proof of convergence to an optimal policy [71], and its proven ability in value-

function estimation in free-model problems [69], we apply Q-learning for estimating the Q-

values in this research.

130

4.3.2 Hidden Markov Model

Hidden Markov Models (HMMs) are popular statistical tools for modeling data in various areas

such as bioinformatics, speech recognition, partial discharges and many other temporal pattern

situations [158]–[160]. In the broadest sense of the word, an HMM is a Markovian process that is

split into two components: the observable states and the hidden (latent) states. Compared to a

HMM, regular Markov models only consist of observable states, which are directly visible to the

observer. Therefore, only the state transition probabilities require estimation. However, in a

hidden Markov model, only the outputs (observations), depending on the latent states (GUI

states), are visible. Therefore, as the GUI states are invisible from an observer view and only the

outputs in this model are completely observable, regular Markov models and Partially

Observable Markov Decision Processes (POMDPs) are not applicable in this study [161]. An

HMM is usually characterized by the following elements [72]:

• N, the number of hidden states in the model, 𝑆 = {𝑠!, 𝑠!,… , 𝑠!}.

• M, the number of distinct observation symbols per hidden state, 𝑉 = {𝑣!, 𝑣!,… , 𝑣!}.

• The state transition probability distribution 𝐴 !" = {𝑎!"}, where:

𝑎!" = 𝑃 𝑄!!! = 𝑠! 𝑄! = 𝑠! , 1 ≤ i, j ≤ N.

• The observation symbol probability distribution in hidden state j, [𝐵]!" = {𝑏! (!")}, where

𝑏! 𝑣! = 𝑃 𝑂! = 𝑣! 𝑄! = 𝑠! , 1 ≤ j ≤ N, 1 ≤ k ≤ M. And

• The initial state distribution Π = 𝜋! , where 𝜋! = 𝑃 𝑄! = 𝑠! , 1 ≤ i ≤ N.

Using the values of N, M, A, B and Π, the HMM can be used as a generator to create an

observation sequence (where T is the number of observations in the sequence):

𝑂 = 𝑂!,𝑂!,𝑂!,… ,𝑂! . We use the notation Λ = (A, B, Π) to simply indicate the complete

131

parameter set of the HMM. There are three key issues with HMMs, which are commonly

considered when applying them to a problem domain:

Problem 1:

• Given the observation sequence 𝑂 = {𝑂!,𝑂!,𝑂!,… ,𝑂!} and an HMM, how to efficiently

compute the probability of the observation sequence?

 Problem 2:

• Given the observation sequence 𝑂 = 𝑂!,𝑂!,𝑂!,… ,𝑂! and an HMM, how do we find

the state sequence that best explains the observations?

Problem 3:

• Given the observation sequence𝑂 = {𝑂!,𝑂!,𝑂!,… ,𝑂!}, how to choose the model

parameters in an HMM?

In this research, we present a novel application of HMMs in software testing, i.e. we show how

they can be utilized in test case prioritization processes by addressing the first and third issues.

The third one can be solved in software testing by estimating the SUT’s Hidden Markov Model

(based on the software’s behavioral model) and extracting the known sequence of test cases

(observations). Having the model and observation sequence, we will be able to accurately

compute the forward probability of each test case, using a forward dynamic programming

procedure. This probability is what we need to evaluate and prioritize test cases; this evaluation

also resolves the first issue of applying HMMs to this new problem domain. Addressing the

second problem is beyond the scope of this initial research; however, a suggested approach is

briefly presented in Section 4.11.

132

4.3.2.1 Forward Probability

A forward algorithm computes the probability of encountering a sequence of observations,

supposing that the sequence has been generated by a given HMM. In another words, a forward

algorithm is used to calculate a belief state or the probability of a state at a certain time (forward

probability). A forward probability can be calculated at each time step by considering the most

likely state, given the previous history. Therefore, the forward probability 𝛼! 𝑡 is the sum of the

probabilities of all constrained paths of length i (where i is the length of a sequence of

observations) that end in state k.

Since, test suites are considered as a set of observed sequences, this algorithm estimates the

forward probability of each test case, given an HMM learned from an Extended digraph.

According to the RL approach (Section 4.5) that has been used in this study, the forward

probability of a test case is related to the amount of computation (changes) in GUI states; test

cases with higher amounts of changes are more likely to encounter unexpected behavior than a

test case causing fewer changes. In other words, test cases that activate more actions during their

execution process are more likely to detect faults. Thus, a forward algorithm is an appropriate

choice to compute this likelihood as a set of test cases can be modelled as a sequence of actions.

This procedure has the following steps [73]:

Defining the forward probability,𝛼! 𝑡 , as the joint probability of observing the first t vectors 𝑣!,

T = 1,… , 𝑡 while in state k at time t. Another way to state this would be that 𝛼! 𝑡 is the

probability of observing 𝑣!, 𝑣! ,… , 𝑣!, in addition, at time t the state is k.

 𝛼! 𝑡 = 𝑃 𝑣!, 𝑣!,… , 𝑣! , 𝑠! = 𝑘 Λ (32)

133

This probability can be evaluated by the following recursive formula.

 𝛼! 1 = 𝜋!𝑏! 𝑣! , 1 ≤ 𝑘 ≤ 𝑁 (33)

𝛼!(𝑡) = 𝜋!𝑏! 𝑣! 𝛼! 𝑡 − 1 𝑎!,! ,
!

!!!

 1 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇

 𝛼! 𝑡 = 𝛼! 𝑡 − 1 𝑏! 𝑣! 𝑎!,!
!

!!!

However, when the sequences of observations (the length of the episodes) become larger, the

probabilistic values in the forward algorithm get increasingly small, and after multiple iterations

the values tend to zero. For that reason, 𝛼! 𝑡 are scaled during the iterations of the algorithm to

avoid underflow problems. The scaling coefficients are used to keep the probability values in the

dynamic range of the machine. So, the coefficient 𝑐!is defined as follow [162]:

 𝑐! =
1
𝛼! 𝑡!

!!!
 (34)

Using 𝑐!, the scaled value of 𝛼! 𝑡 would be:

 𝛼!∗ 𝑡 = 𝑐!×𝛼! 𝑡 =
𝛼! 𝑡
𝛼! 𝑡!

!!!
 (35)

To conclude, after estimating an appropriate HMM, we would be able to prioritize test cases by

computing their corresponding forward algorithm.

134

4.4 Test Case Prioritization

The Test Case Prioritization (TCP) approach sorts test cases within a test suite in order to

maximize some pre-defined criteria such as additional code coverage or fault detection rate

[163]. In other words, test cases with the highest score, with respect to the prioritization criteria,

have the highest priority to be executed. [139] provide a formal definition for the test case

prioritization problem.

Definition 20. Given: T (a test suite), PT (a set of permutations of T), and f (a function that maps

PT onto a real number). Problem: Find T! ∈ PT such that:

 ∀𝑇" 𝑇" ∈ 𝑃𝑇 𝑇" ≠ 𝑇! [𝑓(𝑇!) ≥ 𝑓(𝑇"))] (36)

In this definition, PT is the set of all possible orderings of test suite T. In addition, function f

yields an award value for each specific prioritization showing its value (Prioritization with

highest award values are preferable). We customize this definition based upon the research’s

objectives in the following section.

Several deferent test case prioritization techniques have been proposed through multiple research

experiences. [140] considered 18 different approaches and compared them in terms of

effectiveness with respect to cost and performance. Moreover, they classify them into three

separate groups. The first group is named comparator containing: Random and Optimal

ordering. The second one is the statement level group consisting of four fine granularity

techniques and the third group is the function level group, which contains 12 coarse granularity

techniques. In this research, we will consider Random, Optimal and Worst ordering techniques to

define upper and lower boundaries in achieving the test case prioritization goal, here, improving

135

the fault detection rate. In addition, we prioritize test cases based upon the Additional statement

coverage technique from the second category and two novel RL-based prioritization approaches,

which will be illustrated in following sections. Since the number of statements is greater than the

number of functions, and statement level group of techniques is a “superset” of the function-level

techniques, hence, we don’t consider the function-level group and just apply the statement

coverage techniques.

4.4.1 Random, Optimal and Worst Prioritization Techniques

One of three prioritization techniques which, we consider in this research is Random test case

prioritization. In this approach, we randomly pick a test case among the list of test cases and

remove it from the list, then we repeat the picking process until no test case exists [141]. We

consider it as an experimental control to evaluate the effectiveness of other heuristics in

comparison with the Random Ordering. We also select and consider the Optimal and Worst

prioritization approaches. Both of these techniques are not practical, since information about

which test cases reveal faults and which do not expose them is not available [140]. But, in this

research the SUTs’ faults are known and we can determine their corresponding test sets. Thus,

we consider Optimal and Worst prioritization techniques to theoretically obtain the upper and

lower boundaries in the fault detection rate. In the Optimal prioritization, we prioritize test cases

in an order, which maximizes this rate, while in the worst prioritization approach, we are trying

to prioritize test cases that can detect the fewest new faults, thus minimizing the fault detection

rate [164].

136

4.4.2 Additional Statement Coverage Prioritization

Determining which statements in the program were explored (covered) by a specific test case can

be considered through a program instrumentation phase. Then, test cases can be prioritized

according to the total number of statements they cover (total coverage prioritization) [139]. It is

possible to achieve additional coverage in subsequent testing processes by considering

statements that have not been covered in earlier processes. So, here we use Additional statement

coverage prioritization, which is based upon feedback about the coverage gained so far. We

iteratively select a test case that covers the maximum number of statements then, we adjust the

coverage information of the remaining test cases to calculate the coverage of statements that

have not been covered [140]. This process is repeated until all of the statements are covered by at

least one test case. It is worth noting that if the multiple test cases cover the same number of not

previously covered statements, we need to choose one of them in a random way. [165]

demonstrate that the Additional coverage approach as the best coverage-based prioritization

technique in terms of fault detection capability. They evaluated the effectiveness of different

coverage-based prioritization techniques on an industrial case study and concluded that

prioritization methods based on Additional coverage using finer grained coverage criteria

outperformed all other coverage-based techniques.

Cobertura13, an open source Java tool, is able to determine which parts of a Java program are

covered by a test case; Cobertura can be embedded into a test case generator (AutoBlackTest in

this study). AutoBlackTest collects coverage data incrementally during the execution of test

cases on the current version of the application. Gained information is utilized in order to

prioritize test cases in an Additional statement coverage manner.

13 http://cobertura.github.io/cobertura

137

4.5 Test Case Prioritization Using RL-Based HMM

Combining Hidden Markov Model and Reinforcement Learning approaches as a part of a

stochastic estimation process has been considered in several artificial intelligent problems. [74]

suggest using RL to re-estimate the HMM parameters when the recognition model does not work

during motion prediction scenarios. [166] also integrated HMMs and RL to recognize

communication channels and translate human actions into instruction symbols. This process was

done by estimating HMMs and then applying RL to decide the next fixation point. On the

contrary, [167] propose an RL-based approach to train HMMs in order to cope with the local

optima problem that happens when using a local search method.

In this research, we propose a novel approach to prioritize test cases using an RL-based HMM.

In other words, we want to learn a model which is not only able to generate test cases by

traversing model paths but also can easily rank test cases based upon their forward probabilities.

Achieving this goal is possible by integrating the HMM and RL approaches producing a graph-

based model as an MDP based learning technique. The RL-based HMM approach provides a

three-step framework: the first step contains a Reinforcement Learning algorithm, here Q-

learning, to learn to interact with the software under test, to stimulate its functionalities, and to

automatically generate test cases. The second step includes an HMM estimation process to

prioritize generated test cases. The final step computes the test cases’ forward probabilities,

using the Forward Algorithm.

Before going through the prioritization steps, we state two assumptions, which are used to realize

our work in the GUI-testing domain:

138

• In this domain, actions represent GUI actions such as click, select, deselect and etc.

According to the [16] research, Q-values indicate the values of the actions based upon the

computations activated by them. They believe that the reward function should encourage

the system to perform actions triggering “large volumes of computations” (critical events

[164]) rather than those that only activate “small volumes of computations”. For instance,

clicking on a button or typing a word in the text area causes smaller changes to the GUI

state than filing out a form and submitting it into a database. So the actions that

contribute more GUI changes are more likely to gain higher rewards and consequently

higher Q-values than others. Also, based upon this research, a GUI state consists of a set

of widgets 𝑤!, . . ,𝑤! and each widget (𝑤!) can be interpreted as a pair (𝑡𝑦𝑝𝑒! ,𝑃!),

where 𝑡𝑦𝑝𝑒! indicates the type of a widget such as textarea, label … and 𝑃! is a collection

of widget properties and their values. We accept and build upon [16] work in this respect.

They also define a function that generates traits from widgets, where a trait is subset of

the widget properties. So, given 𝑤!,𝑤!; 𝑤! =! 𝑤! iff 𝑡𝑟𝑎𝑖𝑡 (𝑤!) = 𝑡𝑟𝑎𝑖𝑡 𝑤! . For

example, the trait of a button includes its type, position and label shown on it. A similar

approach is also offered by IBM functional Tester14 to compare widgets.

• A GUI visualizes and processes data through menus, buttons, labels etc. Extracting such

information embedded into widgets can be helpful to automatically produce interesting

executions in the application. [168] suggest an algorithm to extract the descriptions of

widgets. [16] use this technique in designing their GUI testing framework. Again, we

accept and build upon this work [16], [168].

14 http://www-03.ibm.com/software/products/us/en/functional

139

4.5.1 Step 1: Q-Learning Estimation Method

As mentioned earlier Q-learning is one of the most popular Q-value function estimation

techniques in the situation where there is no access to a pre-defined MDP model. Table 18 shows

the Q-value estimation process has been customized for GUI testing [16]. It computes the reward

function based upon the proportion of properties that change value; and then the fraction of

widgets that are different when observed in different states. According to the computed reward

function and initial inputs, we are able to estimate the Q-values for each specific episode.

4.5.2 Step 2: HMMs’ Parameters Estimation

As mentioned before, a Hidden Markov Model has five significant elements; each element

requires an initial estimation. For the HMM Λ = (A, B, Π) with a (discrete) observation

distribution, we consider the following parameters:

• N: The number of hidden states, which is equivalent to the total number of states

(possible widgets such as save or open) in the SUT.

• M: The number of distinct observation symbols which is equivalent to the number of

possible events or actions (such as click, double click or type something in a text box).

• The state transition probability (N*N) matrix is the probability of traversing from one

state to an adjacent state. In RL, and in particular Q-learning, we are able to assign an

RL-Score or Q-value to each edge of the generated model. Because this value is assigned

after the execution of the corresponding action to the edge, it represents the likelihood of

the corresponding transition occurring [16]. It can be computed (Table 18) for each s

during action 𝑎′𝑠 execution: 𝑄 𝑠,𝑎 = 𝑟𝑒𝑤𝑎𝑟𝑑 𝑠,𝑎 + 𝛾 𝑚𝑎𝑥!,𝑄 𝛿 𝑠,𝑎 ,𝑎, . If more

than one possible action between two adjacent states exists, the action with the largest Q-

140

value would be selected as the value of the transition probability between the two

connected (hidden) states.

• The observation probability matrix is an N*M matrix (emission matrix) calculated as

below, where 𝑓!" is the frequency of observing a specific action (𝑣!) in a specific state j.

 𝑏! 𝑣! =
𝑓!"
𝑓!"!"#

, 𝑓!" > 0

0 , 𝑓!" = 0
 (37)

• The initial state probability distribution, which describes the starting state of the model.

To generate the model in this study, every state is considered as a potential starting state.

Table 18. Customized Q-Learning for GUI-based Applications

Input n, number of executions that the agent must produce for each episode (length of episode)
Initialize 𝒬 𝑠, 𝑎 ⟵∗ 0,∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐴 [16]
𝛾⟵ 0.9
𝑖⟵ 0

𝜀⟵ 0.8

For each episode do
s is a random state initialized as the starting state

 Repeat
• Choose a possible action a ∈ A (s)
• Perform action a based on ε − greedy∗∗ policy [86]
• i ← i + 1
• Observe the new state s!
• Compute the reward(s, a):
• Compute diff!: the degree of change to a GUI widget while moving from s to s!:

𝐝𝐢𝐟𝐟𝐰 𝐰𝟏,𝐰𝟐 ⟵ 𝐏𝟏\𝐏𝟐 ! 𝐏𝟐\𝐏𝟏
𝐏𝟏 ! 𝐏𝟐

, where w! =! w! , are the same widgets monitored
in s and s!

• Compute 𝐝𝐢𝐟𝐟𝐒 𝐬, 𝐬! ⟵
𝐬\𝐭𝐬! ! 𝐝𝐢𝐟𝐟𝐰(𝐰𝟏,𝐰𝟐)𝐰𝟏∈𝐬,𝐰𝟐∈𝐬!,𝐰𝟏!𝐭𝐰𝟐

𝐬!
,where s denotes the fraction of

widgets in state s.
• reward s, a ⟵ diff!(s, δ(s, a)) , δ denotes the state reached by executing action a.
• Compute 𝓠 𝐬, 𝐚 ⟵ 𝐫𝐞𝐰𝐚𝐫𝐝 𝐬, 𝐚 + 𝛄 𝐦𝐚𝐱𝐚,𝓠 𝛅 𝐬, 𝐚 , 𝐚,
• s ← s!

2. Until n is equal to (i-1).
* ← shows the assignment
** 𝛆 − 𝐠𝐫𝐞𝐞𝐝𝐲 policy selects a random action with probability 𝛆 and the one with highest Q-value with
probability 𝟏 − 𝛆

141

Now, we have an initial estimation for each required element of the HMM with respectively N

and M latent and observable states. This model illustrates two types of relationships:

• An edge label between latent states, i and j, represents the (𝑎!") transition probability

between these two states.

• An edge label between latent state j and visible state k (𝑏! 𝑣!) is calculated using the

above formula.

In the next step, this initial model is used as an input to an Expectation–maximization (EM)

algorithm; specifically we utilize the Baum-Welch algorithm [93]. This algorithm estimates the

best model with the highest likelihood of the estimated parameters solving the first problem (see

Section 4.3.2). If we consider each test case as a sequence of observations, we are able to predict

the forward probability of test cases by utilizing the estimated HMM and implementing the

forward algorithm.

4.5.3 Step 3: Computing Forward Probabilities and Considering their Application
in Test Case prioritization

Before applying the forward probability in prioritizing test cases, the reasons of choosing it as a

prioritization metric should be reviewed and considered. According to the forward probability

calculation procedure (See formulas 32, 33 and 34 in Section 4.3.2.1) both transition and

emission probabilities are essential parameters in computing the forward probability 𝛼! 𝑡 . In

addition, as mentioned earlier (See steps 1, 2 and Table 18) the transition probabilities are

directly calculated using the amount of the Q-values. (Q-values indicate the likelihood of the

corresponding transition occurring by computing the amount of changes, triggered during the

transition.) Therefore, it can be concluded that the RL-based HMM prioritizes test cases based on

142

the amount of changes that can be triggered in the GUI state (Q-values) by executing each

specific sequence of observations (actions). This technique not only considers the state changes,

but also evaluates the effect of a specific action’s performance on each state (HMM emission

matrix). So both the states and the edges of the application’s behavioral model are involved in

the prioritization technique. According to [164], test cases containing more critical events (large

volumes of computations), are more likely to uncover faults during testing. Therefore, test cases

with higher forward probabilities are likely to contain such events more than those with lower

forward probability.

Now, in order to complete the procedure of applying forward probabilities in test case

prioritization, we modify [139] definition to involve the forward algorithm in calculating an

award value (Definition 20). In the new definition, 𝐹! would be a new function, which yields

forward probabilities for each “test case”. It is worthwhile to mention that in the original

definition, we compute the award value for each different ordering, but in the new definition, we

calculate it for every test case in an offline mode with no need to re-execute the test cases.

Therefore, we are able to sort test cases by assigning higher ranks to the test cases with higher

amounts of forward probabilities.

Definition 21. Given: T (a test case), TC (a set of generated test cases), and F!(a function that

maps from TC to a real number). Problem: Find T! ∈ TC such that

 ∀𝑇" 𝑇" ∈ 𝑇𝐶 𝑇" ≠ 𝑇! [𝐹! (𝑇!) ≥ 𝐹! (𝑇"))] (38)

According to the new definition, we prioritize test cases based upon the estimated HMM. The

following algorithm (Table 19) describes the proposed method. It accepts a set of test

cases, 𝑇𝐶 = {𝑇!,𝑇!,… ,𝑇!}, where 𝑇 = {𝑣!, 𝑣!,… , 𝑣!} is a sequence of events or actions. Then, it

143

estimates a corresponding HMM and prioritizes the test cases according to their 𝐹!value. It is

worth noting that if the multiple test cases have the same amount of 𝐹!s (rarely happens), we

need to choose one of them in a random way.

Table 19. RL-based HMM Test case Prioritization Algorithm

Input: 𝑇𝐶 = {𝑇!,𝑇!,… ,𝑇!}; Output: TC’: Prioritized TC
1: While ∃ T! ∈ TC do:

For each T! do
o TC! ⟵ T! and Extract all corresponding hidden states (S!): N⟵ N + 1 (per visit to each

unique state)
o Extract all corresponding actions (v!): M⟵ M + 1 (per visit to each unique event)
o If a!" does not exist then, compute Q-value among S! and S! and assign it as a!" into the

transition matrix [A]!×!
o If b!" does not exist then, compute the corresponding observation symbol probabilities

and assign it as b!" into matrix [B]!×!
3. 2: Train HMM (Λ) by implementing Baum-Welch (A, B, Π)
4. 3: While ∃ T! ∈ TC! do:

§ F!" = forward(Λ, T!) = α! t = P v!, v!,… , v!, s! = k Λ
4. TC! ⟵ DescendSort TC! based upon F!" values

4.6 Accumulated Test Cases' Q-values in Descending Order

In order to investigate the effect of test case dissimilarities in the fault detection rate, we also

decided to prioritize test cases based upon the amount of computations activated by the

corresponding action in each test case. As mentioned earlier, GUI state changes can easily be

calculated using the Q-learning technique. Given each test case’s accumulated Q-value

(summation of each test case’s Q value), we only need to rank every test case in a descending

order, then label the one with the highest Accumulated Q-value (𝑆𝑄) as the test case with the

highest execution priority. Table 20 illustrates the overview of this technique.

144

Table 20. Accumulated Test Cases' Q-values Ordering

Input: 𝑇𝐶 = {𝑇!,𝑇!,… ,𝑇!}
Output: TC’: Prioritized TC

1: While ∃ T! ∈ TC do:
2: For each T! do

TC! ⟵ T!
a. Extract all corresponding Q-values (Qvalue!)
b. SQ! = (Qvalue!)

3: TC! ⟵ DescendSort TC! based upon 𝐒𝐐𝐢values

This technique can be considered as an attempt to optimally use the information in a regular

digraph; whereas the RL-HMM technique explicitly utilizes additional information only

available in the extended diagraph. In the following section, we discuss how these techniques

improve the test case prioritization problem with regard to failure detection objective.

4.6.1 Motivating Example

In this study we cover two well-known, MBT based GUI testing tools: GUITAR15 and

AutoBlackTest16 (ABT). GUITAR uses a test automation framework based on state machines,

named the event flow model [150]; while AutoBlackTest generates a behavioral model based

upon agent activity [151].

To motivate this work, we consider a small example to investigate the difference between state

of the art behavioral models (such as a regular digraph) and the Extended multi-digraph. Figure

13 shows a small excerpt of a behavioral model derived by a GUI-based MBT test case

generation tool (AutoBlackTest) for the UPM application (an application for building a personal

database of accounts and one of the case studies presented in this chapter) [16]. In this figure, the

15 http://sourceforge.net/apps/mediawiki/guitar/index.php?title=GUITARHome_Page
16 http://www.lta.disco.unimib.it/tools/AutoBlackTest

145

nodes of the graph represent the GUI states of the SUT and the edges represent the transition

between the states. They are labeled with the name of the actions triggering the transitions, and

in some cases, the estimated utility value of the action. This is an example of a regular digraph.

Applying our new technique, we would be able to generate an extended form of directed graphs

utilizing stochastic information. The additional information will be used in the test case

prioritization procedure to calculate the forward probability of each test case. Figure 14 depicts

an excerpt of an Extended behavioral model applying our new approach on the UPM application.

Figure 13. Expert of a behavioral model as a directed graph-motivating example

Figure 14. Expert of a behavioral model as an extended directed graph- motivating example

Based on definition 15, this figure is an extended behavioral model consisting of a set of GUI

states (rectangular-shapes), actions (elliptical-shapes) and additional information (labels). In this

model 𝑎!" indicates the transition probability from state i to j and 𝑏! 𝑣! indicates the probability

𝑠! 𝑠! 𝑠!

𝑳𝒊𝒔𝒕𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌() 𝑴𝒆𝒏𝒖𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌() 𝑴𝒆𝒏𝒖𝒆𝑰𝒕𝒆𝒎.𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌()𝒗

𝑏! (𝑳𝒊𝒔𝒕𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌())

𝑎!"

𝑠!"
𝑎!"

𝑏! (𝑴𝒆𝒏𝒖𝒆𝑰𝒕𝒆𝒎.𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌())

𝑎!,!"

…

𝑴𝒆𝒏𝒖𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌()

𝑴𝒆𝒏𝒖𝒆𝑰𝒕𝒆𝒎𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌()

𝑳𝒊𝒔𝒕𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌()
𝑴𝒆𝒏𝒖𝒆𝑰𝒕𝒆𝒎𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌()

02 03
05

20

146

of observing action 𝑣! in state i. This is the only information needed to be stored for test case

prioritization; specifically if it is stored in the form of two probability matrices covering 𝑎!" and

𝑏! 𝑣! for all possible transitions.

Thus, considering following sequences as possible test cases extracted from above directed graph

(Figure 13), we would be able to calculate required data to estimate an RL-based HMM and

prioritize test case based upon the forward probabilities. This obviously shows that the extended

directed graph contains more useful information than the regular one, which helps in estimating

the probabilistic model and calculating the forward probability of a sequence of events (i.e. test

cases). As mentioned earlier, the forward probability of the sequence is used to effectively

prioritize test cases by assigning the higher fault detection probability to test cases which are able

to trigger more actions and computations in each GUI states.

𝑇! = 02 𝐿𝑖𝑠𝑡𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() , 02

𝑇! = 02 (𝑀𝑒𝑛𝑢𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘 ()), 03

𝑇! = 02 𝑀𝑒𝑛𝑢𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() , 03 𝑀𝑒𝑛𝑢𝑒𝐼𝑡𝑒𝑚𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() , 05

𝑇! = 02 𝑀𝑒𝑛𝑢𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() , 03 𝑀𝑒𝑛𝑢𝑒𝐼𝑡𝑒𝑚𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() , 20

For example, for test case 2 (𝑇!), we should calculate the Q-value and the immediate utility value

of an action using the following reward function, based on the differences between widgets in

each state (Table 18). So:

𝑟𝑒𝑤𝑎𝑟𝑑 𝑠,𝑎 = 𝑑𝑖𝑓𝑓! 𝑠, 𝛿 𝑠,𝑎 = 𝑑𝑖𝑓𝑓! 02, 𝛿 02,𝑀𝑒𝑛𝑢𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘()

=
𝑠\!𝑠! + 𝑑𝑖𝑓𝑓!(𝑤!,𝑤!)!!∈!,!!∈!!,!!!!!!

𝑠! = 0.55

147

In addition, because this test case terminates in state 3 and no more actions are executable from

this state, 𝛾 𝑚𝑎𝑥!,𝒬 𝛿 𝑠,𝑎 ,𝑎, = 0 and:

 𝑎!" = 𝒬 𝑠,𝑎 = 𝑟𝑒𝑤𝑎𝑟𝑑 𝑠,𝑎 + 𝛾 𝑚𝑎𝑥!,𝒬 𝛿 𝑠,𝑎 ,𝑎, = 0.55

𝑏! (𝑀𝑒𝑛𝑢𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘 ()) =
𝑓!"
𝑓!"!"#

=
1
2 = 0.5

Calculating the same parameters for all test cases gives us following transition probability and

emission matrices.

𝐴 =

0 0.55 0 0
0 0 0.71 0.7
0 0 0 0
0 0 0 0

 , 𝐵 =

0.5 0.5 0
0 0 1
0 0 0
0 0 0

Having all the required parameters to estimate an accurate HMM prepares the model for RL-

HMM based prioritization.

Estimating the RL-based HMM using the Baum-Welch algorithm, we would be able to compute

the forward probability of each test case using the forward algorithm. Therefore, applying

Formula 33. We would have:

(𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐿 − 𝐻𝑀𝑀,𝑇1) = 0.137

(𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐿 − 𝐻𝑀𝑀,𝑇2) = 0.275

(𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐿 − 𝐻𝑀𝑀,𝑇3) = 0.5

(𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐿 − 𝐻𝑀𝑀,𝑇4) = 0.5

And, we can sort test cases in following order:

148

1:𝑇!,𝑇!,𝑇!,𝑇! OR

2: 𝑇!,𝑇!,𝑇!,𝑇!

As we expected, the test cases with larger quantities of forward probabilities should be

prioritized due to the higher amounts of computations and actions, which have been triggered in

the GUI states during their executions. We expect test cases with such characteristics are able to

reveal more faults in GUI-based applications because of their capabilities in triggering more

actions in GUI states. 𝑇! matches with episode 2 in the complete example (Section 4.7.3.1),

which is able to reveal a fault in the Application Under Test (AUT). So, choosing either the first

or second ordered test suite we would be able to detect a fault by running only one or two test

cases.

Also, we can go further in this example and replace the initial model, which is generated by [16]

technique with the event-flow graph, which is generated using GUITAR [150], another GUI test

case generator tool (Figure 15). This procedure shows that the proposed test case prioritization

technique is applicable to any test cases that have been generated by any GUI-based MBT test

case generation tool.

Figure 15. Event flow graph, extracted from GUITAR- Motivating example

Unlike the graph, which was extracted from AutoBlackTest, GUITAR’s event-flow graph is not

a state-based model and only contains the relations between actions. Based upon the changes

between GUI states during test case generation process [168], we are able to create a GUITAR

𝑴𝒆𝒏𝒖𝑼𝑰	 𝑴𝒆𝒏𝒖𝑰𝒕𝒆𝒎𝑼𝑰	

𝑳𝒊𝒔𝒕𝑼𝑰	

149

based extended digraph (Figure 16). In this situation, we assume that GUI state has been changed

at least one time in each single event execution.

Figure 16. Extended directed graph- generated using event flow graph

Based upon the generated event-flow graph, GUITAR is able to generate following test cases:

𝑇! = 𝐿𝑖𝑠𝑡𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘()

𝑇! = 𝐿𝑖𝑠𝑡𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() , (𝑀𝑒𝑛𝑢𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘 ())

𝑇! = 𝐿𝑖𝑠𝑡𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() , (𝑀𝑒𝑛𝑢𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘 ()) , 𝑀𝑒𝑛𝑢𝑒𝐼𝑡𝑒𝑚𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() ,

Similar to the previous steps, both emission and transition probability matrices should be

calculated before estimating the Hidden Markov Model. Similarly the amount of Q-values and

immediate utility values should be computed based upon the differences between the widgets in

corresponding GUI states. Matrix A indicates the transition probabilities and B shows the

emission probabilities in the initial HMM.

𝐴 =
0 0.55 0
0 0 0.71
0 0 0

 , 𝐵 =
0.5 0.5 0
0 0 1
0 0 0

Calculating the forward probabilities we would have the following results

(𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐿 − 𝐻𝑀𝑀,𝑇1) = 0.25

𝑠! 𝑠!

𝑳𝒊𝒔𝒕𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌() 𝑴𝒆𝒏𝒖𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌() 𝑴𝒆𝒏𝒖𝒆𝑰𝒕𝒆𝒎.𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌()𝒗

𝑏! (𝑳𝒊𝒔𝒕𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌())

𝑎!"

𝑠!
𝑎!"

𝑏! (𝑴𝒆𝒏𝒖𝒆𝑰𝒕𝒆𝒎.𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌())

…

150

(𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐿 − 𝐻𝑀𝑀,𝑇2) = 0.068

(𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐿 − 𝐻𝑀𝑀,𝑇3) = 0.5

And, subsequently we can sort the test cases in following orders: 𝑇!,𝑇!,𝑇!

The test suite, which is generated by GUITAR missed the fault-revealing test case 𝑇! during the

test case generation phase; thus in this case, the final test suite is not able to detect any fault and

prioritization doesn’t affect the speed of defect detection. This demonstrates the higher ability of

AutoBlackTest in generating test cases with better coverage. In addition, it highlights the

capability of our proposed approach in prioritizing test cases that have been generated using

different GUI test case generators. Our approach is clearly independent of their architectures and

strategies.

4.7 Empirical Evaluation

To investigate the effectiveness of the proposed techniques (RL-based HMM and Accumulated

Q-value) relative to existing prioritization techniques, we have constructed an experimental

framework and addressed the following research questions:

• (RQ1): How does the RL-based HMM technique compare in terms of effectiveness

with other prioritization techniques?

• (RQ2): How does the Accumulated Q-value technique compare in terms of

effectiveness with other prioritization techniques?

• (RQ3): Does RL-Based HMM prioritize test cases more effective than the

Accumulated Q-value approach?

151

• (RQ4): Does RL-Based HMM prioritize test cases more effective than the weight-

based methods presented by [164]?

4.7.1 Comparison Criteria

4.7.1.1 Average Percentage Faults Detected (APFD)

Based upon the test case prioritization goal, there are many possible comparison criteria that can

be utilized in order to evaluate the effectiveness of the applied approach [139]. In this research,

we have focused on the goal of increasing the “likelihood of revealing faults earlier in the

execution of the test run”, or in the other words, “the fault detection rate” during regression

testing.

To measure how rapidly a prioritized test suite is able to detect faults, we have used the APDF

measure. APFD is defined as [139]:

 𝐴𝑃𝐹𝐷 𝑇! = 1−
𝑇𝐹! + 𝑇𝐹! +⋯+ 𝑇𝐹!

𝑛𝑚 +
1
2𝑛 (39)

Where 𝑇’ is a prioritized test suite, and 𝑇 is a test suite containing n test cases, and 𝐹 is a set of m

faults revealed by 𝑇. In addition, 𝑇𝐹! is the first test case in the ordering 𝑇’ of 𝑇 that detects fault

𝑖. The range of APFD is between 0 and 1, and a higher APFD means superior fault detection.

4.7.2 Statistical Testing17

[169] provide guidance on the statistical analysis of automated processes in software engineering

contexts. We essentially follow their advice and present effect size estimations [170] as the

principle descriptor of performance differences between algorithms. The estimation of effect size

17 We have implemented the statistical results and plotted the boxplots using OriginLab

152

is commonly preceded by traditional statistical testing, and hence, we provide both for the sake

of completeness.

The central limit theorem states [171] that the distribution of the mean of a sufficiently large

number of independent, identically distributed variables will be approximately normal,

regardless of the underlying distribution. In addition, [172] and many other texts provide a rule

of thumb saying that ~30 data points are sufficient to get reliable results. Hence, a solid

theoretical basis exists for applying a paired t-test on the mean of these types of variables.

Therefore, we “normalized” our statistical analysis by executing the prioritization techniques

1000 times for each of the generated test suites and construct the mean value of the APFD

(robust estimator). Then, for each prioritization approach, we select a prioritized test suite (R)

with the minimal discrepancy to the mean APFD. Thus:

In this study, the random variable is the mean of the percentage of faults detected over all

orderings by a given prioritization technique.

 𝑋! ,𝑌! indicate two paired measurements from the n measured values; the measured values are

the mean of the percentage of detected faults by a given prioritization technique (𝑖) on a test suite

of size (𝑛).

Therefore, after computing this (ordered) element, we would be able to apply statistical testing

by calculating the differences between the mean of the percentages of detected faults in all

braces of paired sets 𝑋! 𝑎𝑛𝑑 𝑌! (paired test). To apply the paired t-test, the t-statistic needs be

calculated as below:

𝑋! = (𝑋! − 𝑋) (40)

153

𝑌! = (𝑌! − 𝑌),

𝑡 = (𝑋 − 𝑌)
𝑛(𝑛 − 1)
(𝑋! − 𝑌!)!!

!!!

This brace-wise approach is standard practice in such situations in many domains [173] when the

variable meets the paired t-test assumptions18.

In this case, we established a null hypothesis and an alternative hypothesis to be evaluated. The

null hypothesis (H0) states the two prioritization techniques provide the same effectiveness of

fault detection, if the mean of the percentage of the detected faults (over all orderings) for both

techniques is the same. On the other hand, alternative hypothesis (H1) states that if the difference

between the mean of the percentages of faults, which have been detected by each of prioritization

technique, is not zero then they will be considered as different. We independently evaluate this

hypothesis for a number of random situations; the randomization is proved by changing the SUT

under consideration without pattern or rationale. Therefore, by considering a significance

level 𝛼 = 0.05, we would be able to reject null hypothesis if 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 for each

independent situation.

4.7.2.1 Effect-Size

In order to add a “size of difference” statement to our comparison criteria and normalized the

statistical evaluation of multiple (with independent subjects (SUT)) tests, we principally consider

the strength or magnitude of a treatment effect, by calculating Cohen’s d measure. Cohen’s d is

18 As a cross-check, the samples for this test were subjected to a Shapiro-Wilk test for normality. In all situations, the

samples passed the test

154

defined as the difference between the means, 𝑀! − 𝑀!, divided by standard deviation (SD),

𝑠!""#$%. So,

 𝑑 =
𝑀! − 𝑀!
𝑠!""#$%

 (41)

where,

𝑠!""#$% =
𝑆𝐷!"#$%!! + 𝑆𝐷!"#$%!!

2

Since, Cohen’s d computes the standardized difference between two groups, or a brace, of

samples; it can help us to interpret the strength of our proposed techniques in comparison with

others. [174] suggests that d=0.2 can be considered as a “small” effect size, while 0.5 can be

interpreted as a “medium” effect size, and 0.8 “large” effect size. In this research, we consider

this measure on the percentage of detected faults, which have been detected by a brace of

prioritization techniques with mean APFD, in order to investigate the magnitude of each

approach’s effect. So, for each brace:

𝑅! ,𝑅! , 𝑖, 𝑗 ∈ 𝐴𝑙𝑙 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 , both 𝑃! and 𝑃! (the average of

percentage of detected faults) should be calculated to compute:

 𝑑 =
𝑃! − 𝑃!
𝑠!""#$%

 , 𝑠!""#$% =
𝑆𝐷!(!)! + 𝑆𝐷!(!)!

2 (42)

155

4.7.3 Experimental Setup

According to a recent empirical comparison, AutoBlackTest outperforms GUITAR in both code-

coverage and the number of detected faults [16]. Therefore, in this study, we principally use

AutoBlackTest to generate the required test cases.

4.7.3.1 AutoBlackTest and Modified Framework

AutoBlackTest is an automatic testing tool that builds a model of a SUT and produces test cases

by walking through the model. The most significant feature of AutoBlackTest is its ability to

interact with an unknown environment. To address this issue, AutoBlackTest uses a Q-learning

approach [16].

Therefore, AutoBlackTest is a combination of a Q-Learning Agent and a Test Case Selector. The

Q-learning agent is responsible for executing a sequence of actions (episodes) extracted from the

model. On the other hand, the test case selector eliminates redundant test cases, which cover the

same statements within the code.

Table 21. Investigated applications

Application Version Statement
Cov.(%) KLOC

UPM19 (a personal password manager) V 1.6 86 2.515
Buddi20 (a finance tool) V 3. 4. 0. 8 64 10.580
PDFSAM21 (a merging and splitting PDF
documents tool)

V 0.7 Stable
release 1 68 3.138

TimeSlotTracker22 (tasks and activities management
tool) V 0.4 59 3.499

19 http://upm.sourceforge.net/
20 http://buddi.digitalcave.ca/
21 http://sourceforge.net/projects/pdfsam/
22 http://sourceforge.net/projects/timeslottracker/

156

The derived model by AutoBlackTest is a regular digraph [16]. Therefore, according to the

Definition 14, AutoBlackTest generates a graph 𝐺 = (𝑆,𝐸,𝑉), where the set of nodes (S)

represent the abstract GUI states and the edges (𝑒! ∈ 𝐸 = (𝑠! , 𝑠!),𝑤ℎ𝑒𝑟𝑒 𝑠! , 𝑠! ∈ 𝑆) indicate the

transition between states. The transitions are labeled with the name of actions and corresponding

Q-values (V).

It is believed that AutoBlackTest is a state of the art mechanism to automatically infer a regular

digraph, an essential building block for the construction of the extended digraph. While

AutoBlackTest is a state of the art technique, it is far from perfect and only constructs a portion

of the total regular digraph for the “average” GUI-based application. Figure 17 depicts the

proposed framework and the procedure to determine the effectiveness of the proposed

approaches both in terms of fault detection, and in comparison with other existing techniques

(Random, Optimal, Worst, Coverage-based and Accumulated Q-value). The experimental

environment consists of two steps:

• Step1: Examine the generated test cases by parsing episodes’ produced by

AutoBlackTest. Each episode, or test case, is a sub-graph of the SUT’s behavioral model,

which is generated as a Dot file23. Then, extract the initial HMM parameters and coverage

information.

• Step2: Train the most appropriate HMM24 with a maximum likelihood estimate of the

parameters. Prioritize test cases based on RL-based HMM and Accumulated Q-value

ordering techniques, as well as ranking them through Random, Optimal, Worst and

23 DOcument Template file format
24 RHMM package [89] of the R programming environment [250] have been used

157

Additional statement coverage approaches. Finally, analyze the effectiveness of the

considered prioritization techniques based upon the APFD measure.

To empirically evaluate AutoBlackTest, widgets from four different-domain applications were

extracted [168] and tested. These applications are listed in Table 21 and are reused in this study,

as it allows us to use [16] as an initial reference point. [16] provide results after their test case

selection algorithm runs, and hence it can be considered as a control case (base value for

improvement).

Figure 17. Experimental Setup; Combination of a test case generator (ABT) and prioritization techniques

In subsequent experiments, we also consider an extended version of PDFSAM with a larger size

test suite and three additional GUI applications from [164].

Step1

Application Under Test

Test Case
Generator

Test
cases

Extended
model

generation

Test case Prioritization by:
Random, Coverage based,

optimal and worst approaches

RL-Based HMM
technique

HMM-Estimator

Accumulated Q-
values ordering

Effectiveness
comparison

(APFD
measure)

Step2

Coverage
information
extraction

158

4.7.3.2 Fault Matrix

In a fault matrix, rows represent the test cases and columns represents the faults in the System

Under Test. If a test case i detects fault j then the entry i,j in the matrix would be equal to 1.

So using a fault matrix, we would be able to indicate the capability of each test case in detecting

faults by counting the number of 1s in the corresponding row [147]. In this research, we have

applied several test case prioritization approaches on 8 different GUI applications. Hence,

providing the details of all fault matrices in this study is not possible, Table 22 summarizes the

various characteristics of each fault matrix.

Table 22. Fault matrix summary

Application #Test cases #Faults Avg. faults per test
% tests detecting X% faults

X=0 X=20 X=50
UPM 15 8 0.5 46.6 0.0 0.0
Buddi 15 2 0.5 86.6 0.0 0.0
PDFSAM 26 3 0.5 88.4 0.0 0.0
TimeSlotTracker 19 1 0.5 94.7 0.0 0.0
Extended PDFSAM 60 6 0.5 90.0 0.0 0.0
WordProcessor 18 12 2.7 72.2 16.6 0
TerpPaint 23 12 3 82.6 8.6 4.3
Calculator 15 12 1.5 40.0 0.0 0.0

4.7.4 Experimental Results

4.7.4.1 Study 1: UPM

In this experiment, we investigate the effectiveness of utilizing the considered prioritization

techniques on the UPM application. To estimate a suitable RL-based HMM for UPM, the

following parameters are needed:

159

• N: The number of hidden states which is equivalent to the total number of states in

the UPM behavioral model, 52 for this package.

• M: The number of observation symbols which is equivalent to the number of distinct

actions in UPM, 36.

• The state transition probability matrix is calculated using the estimate of Q-values

between the distinct states (if there is more than one possible action between states,

the action with highest Q-value would be selected); In this case, we have a 52*52

transition probability matrix.

• Calculating the frequency of observing a specific action in a specific state; this

produces a 52*36 matrix. This matrix is the observation symbol probability matrix.

At the next step, we use the forward algorithm on UPM’s Hidden Markov Model to find the

probability of an observed sequence given an estimated HMM. It exploits recursion in the

calculations to avoid the necessity for exhaustive calculation of all the paths through the

execution process. According to Definition 21, we prioritized test cases based upon their

corresponding 𝐹!.

Therefore, in this case, we calculate 15 𝐹!, for 15 UPM episodes (test cases). Obviously, the

accumulated forward probabilities tend to get small (converge to 0) since they are affected by

previous probabilities in the forward and recursive process (Numerical stability is therefore

guaranteed by the scaling introduced in Section 4.3.2.1).

In addition, it is worthwhile to mention that the summation of the probabilities will not be one

because:

160

The generated graph is not a complete graph as there will be distinct vertices that cannot be

connected by a pair of unique edges. So some paths cannot be considered.

Some paths are impossible to walk through, because of the application design. AutoBlackTest

only explores the paths (episodes), which are reachable and logical. In this case, 15 episodes are

the minimum number of paths that can detect failures.

Therefore, only when we were able to compute the forward probabilities for all possible episodes

(paths) of a graph (preferably a complete graph), can we expect the summation of the forward

probabilities to converge to one. According to the 𝐹! value for each episode, the probabilities can

be sorted in the following descending order (𝑬𝟏𝟎 denotes the Episode (test case) number 10):

{𝑭𝒑 𝑬𝟏𝟎 > 𝑭𝒑 𝑬𝟔 > 𝑭𝒑 𝑬𝟑 > 𝑭𝒑 𝑬𝟏𝟒 > 𝑭𝒑 𝑬𝟏 > 𝑭𝒑 𝑬𝟏𝟑 > 𝑭𝒑 𝑬𝟗 > 𝑭𝒑 𝑬𝟐 > 𝑭𝒑 𝑬𝟒 > 𝑭𝒑 𝑬𝟕 > 𝑭𝒑 𝑬𝟖 >

𝑭𝒑 𝑬𝟏𝟐 > 𝑭𝒑 𝑬𝟎 > 𝑭𝒑 𝑬𝟏𝟏 > 𝑭𝒑(𝑬𝟏𝟓)}

AutoBlackTest reports that episodes 2, 3, 6, 7, 8, 10, 13 and 14 are able to detect faults in UPM

[16].

However, according to its test case selection policy, it only selects episodes 4, 8, 11, and 13 and

eliminates the others. Eliminating episodes, which are able to detect faults, may cause

unexpected costs and problems in regression testing processes.

161

Figure 18. (a) Percent of faults detected versus test suite fraction. (b) Box plot of APFD for UPM

On the other hand, the proposed techniques (RL-base HMM and Accumulated Q-value) are able

to prioritize test cases (episodes) along with increasing the original fault detection rate.

To get more reliable results, we execute each of the techniques 1000 times. Then we calculated

the means and standard deviations of the APFDs to evaluate each prioritization technique with

respect to the prioritization objective (improving fault detection rate). Then we select an ordering

of test cases with the closest APFD to the mean APFD.

As can be seen from Table 23, both proposed techniques have larger mean APFDs (and smaller

standard deviations), implying that their performance is universally “good”. (The reason of

getting zero SD for both the Worst and Best approaches are because there are only one test suite

which satisfies the best and worst prioritizations.)

0.000 0.132 0.264 0.396 0.528 0.660 0.792 0.924
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

Pe
rc

en
t D

et
ec

te
d

Fa
ul

ts

Test Suite Fraction

 RL-HMM

 Coverage

 Q-Value

 Worst

 Best

 Random

RL-HMM Q-Value Coverage Worst Best Random
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Prioritization Techniques

A
PF

D

162

Figure 18(a) shows the percentage of detected faults versus the execution sequence of test cases

for the prioritized test suites, with mean APFD (average performance). This figure depicts that

both the RL-based HMM and Accumulated Q-value techniques are able to detect a considerable

portion of faults by executing a smaller number of test cases. For example, by executing 85% of

test cases both techniques detect 100% of the faults (8 out of 8 faults). This amount is 75% faults

for Additional statement coverage, and 87% for the Random prioritization technique.

In addition, Figure 18(b) shows the distribution of the 1000 APFD values using a boxplot. This

figure indicates that the APFDs’ distribution for the RL-based HMM and Accumulated Q-value

approaches are not variant in comparison with the Random technique.

Table 23. APFD of the applied prioritization techniques for UPM

Prioritization Techniques Means of APFDs Standard Deviation (SD)
RL-based HMM 0.6865 0.00012
Accumulated Q-value 0.6205 0.00472
Additional Statement Coverage 0.6198 0.0046
Random 0.5018 0.5018
Worst 0.2733 0
Optimal (Best) 0.736 0

Table 24. The statistical analysis for RL-based HMM technique vs. other techniques in UPM

RL-based HMM Technique Vs. Others t-statistic DF p-value (one-tail) Cohen’s d
RL-based HMM vs. Accumulated Q-
Value 3.16228 14 0.00644 1.6329

RL-based HMM vs. Statement Coverage 2.23607 14 0.04047 1.1547
RL-based HMM vs. Random 5.36745 14 7.8360E-5 2.7717
RL-based HMM vs. Worst 6.48385 14 1.03159E-5 3.3482
RL-based HMM vs. Optimal (Best) -2.42272 14 0.02853 -1.2511

163

Table 2425 shows the results of applying the statistical tests and the magnitude of Cohen’s d

(effect size), which are used to determine the effectiveness of RL-based HMM in comparison

with the other approaches. In this table, we can see that the RL-based HMM technique is better

than the Additional statement coverage and Random prioritization techniques. In addition, the

RL-based HMM method is prioritizing test cases significantly better than Accumulated Q-value

approach. Large Cohen’s ds also prove that there is a significant difference, on average between

the fault detection capability of the proposed techniques and other prioritization approaches. This

measure is more than 0.8 (large) for all of the considered braces in this case.

We repeat this process for the other three applications to conclude the empirical comparison

about the effectiveness of the proposed approaches in improving the fault detection rate.

4.7.4.2 Study 2: Buddi

To estimate an HMM for the Buddi application, we walk through its behavioral model to

compute and extract the following parameters:

• N: The number of hidden states is 76.

• M: The number of observation symbols is 45.

• A 76*76 transition probability matrix estimated using Q-values. And,

• A 76*45 observation symbol probability matrix.

After achieving the best HMM using the Baum-welch algorithm, the same process as for the

UPM investigation process was followed, we executed the forward algorithm to compute the

25 DF denotes the Degree of Freedom

164

forward probability of episodes. 15 episodes (𝐹!) were produced by AutoBlackTest from the

Buddi application. Again, we can sort the forward probabilities:

{𝑭𝒑 𝑬𝟕 > 𝑭𝒑 𝑬𝟏𝟒 > 𝑭𝒑 𝑬𝟎 > 𝑭𝒑 𝑬𝟑 > 𝑭𝒑 𝑬𝟏 > 𝑭𝒑 𝑬𝟐 > 𝑭𝒑 𝑬𝟔 > 𝑭𝒑 𝑬𝟏𝟎 > 𝑭𝒑 𝑬𝟓 > 𝑭𝒑 𝑬𝟗 > 𝑭𝒑 𝑬𝟖 >

𝑭𝒑 𝑬𝟏𝟏 > 𝑭𝒑 𝑬𝟏𝟐 > 𝑭𝒑 𝑬𝟏𝟑 > 𝑭𝒑(𝑬𝟒)}

According to AutoBlackTest [16] episodes 7 and 14 are considered as fault-prone test cases (test

cases that reveal faults). The RL-based HMM technique correctly prioritizes these two episodes,

in its final test suite. This test suite is able to find 100% of Buddi’s faults in regression testing.

Both proposed techniques are able to detect all the faults by executing only 20% of the test cases,

while only one fault can be revealed by executing more than 50% of the test cases using

Additional statement coverage and Random prioritization approaches. This fact is also visible in

Figure 19(a) showing the percent of detected faults using each technique. Also in Figure 19(b),

boxplots summarize the distribution of the performance of the prioritization techniques. Again,

this distribution shows lower variance for both of the proposed techniques when compared

against Random and Additional statement coverage approaches.

Similarly to UPM, mean and standard deviation of the APFDs for each technique are calculated

(Table 25). According to this table, and formally verified in Table 23, we can conclude that RL-

based HMM is not statistically significantly different to the Optimal approach (upper bound).

Using Table 26, we provide a statistical statement of RL-based HMM performance when

compared with the other techniques. The RL-based HMM technique is significantly different

from Additional statement coverage and Random prioritization as well as Worst prioritization.

165

Figure 19. (a) Percent of faults detected versus test suite fraction. (b) Box plot of APFD for Buddi

The Cohen’s d measure also indicates that the difference between RL-based HMM and other

techniques is large, while it is medium for RL-based HMM vs. Accumulated Q-Value, although

the difference is not considered statistically significant. There is a same story for the

Accumulated Q-value prioritization technique. It prioritizes test cases significantly better than

other techniques, except obviously for RL-based HMM.

Table 25. APFD of the applied prioritization techniques for Buddi

Prioritization Techniques Means of APFDs Standard Deviation
RL-based HMM 0.9339 7.0698E-4
Accumulated Q-value 0.901 0.0089
Additional Statement Coverage 0.769 0.02688
Random 0.491 0.24868
Worst 0.073 0
Optimal (Best) 0.934 0

0.000 0.132 0.264 0.396 0.528 0.660 0.792 0.924
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0.000 0.132 0.264 0.396 0.528 0.660 0.792 0.924

Test Suite Fraction

 RL-HMM

 Coverage

 Q-Value

Pe
rc

en
t D

ete
cte

d
Fa

ul
ts

 Worst

 Best

 Random

RL-HMM Q-Value Coverage Worst Best Random
0.0

0.2

0.4

0.6

0.8

1.0

Prioritization Techniques
A

PF
D

166

Table 26. The statistical analysis for RL-based HMM technique vs. other techniques in Buddi

RL-based HMM Technique Vs. Others t-statistic DF p-value (one-tail) Cohen’ d
RL-based HMM vs. Accumulated Q-
Value 1 14 0.33317 0.5163

RL-based HMM vs. Statement Coverage 2.61116 14 0.01966 1.3483
RL-based HMM vs. Random 4.86926 14 2.04238E-4 2.5144
RL-based HMM vs. Worst 7.45575 14 2.02796E-6 3.8501
RL-based HMM vs. Optimal (Best) -1 14 0.34463 -0.5163

4.7.4.3 Study 3: PDFSAM

PDFSAM is a Java-based tool for merging and splitting PDF files. Again, the package was used

to evaluate the proposed techniques [16].The Initial HMM parameters for PDFAM are:

• N: The number of hidden states is 79.

• M: The number of observation symbols is 49.

• Transition probability matrix has 79 rows and 79 columns.

• The observation symbol probability matrix has 79 rows and 43 columns.

In this case, we considered 26 episodes, which according to AutoBlackTest [16] reports that

episodes 0, 2 and 25 are able to detect faults. Ordering the forward probabilities, demonstrates

that the RL-based HMM prioritization technique prioritizes episodes according to their

contribution in fault detection and no test cases (episodes) are withdrawn.

{𝑭𝒑 𝑬𝟏𝟎 > 𝑭𝒑 𝑬𝟎 > 𝑭𝒑 𝑬𝟐 > 𝑭𝒑 𝑬𝟕 > 𝑭𝒑 𝑬𝟏𝟏 > 𝑭𝒑 𝑬𝟐𝟓 > 𝑭𝒑 𝑬𝟏𝟒 > 𝑭𝒑 𝑬𝟏𝟓 > 𝑭𝒑 𝑬𝟏𝟖 > 𝑭𝒑 𝑬𝟔 >

𝑭𝒑 𝑬𝟑 > 𝑭𝒑 𝑬𝟐𝟒 > 𝑭𝒑 𝑬𝟐𝟎 > 𝑭𝒑 𝑬𝟒 > 𝑭𝒑(𝑬𝟗) > 𝑭𝒑(𝑬𝟏) > 𝑭𝒑(𝑬𝟏𝟗) > 𝑭𝒑(𝑬𝟓) > 𝑭𝒑(𝑬𝟐𝟐) > 𝑭𝒑(𝑬𝟖) >

𝑭𝒑(𝑬𝟏𝟕) > 𝑭𝒑(𝑬𝟏𝟑) > 𝑭𝒑(𝑬𝟐𝟏) > 𝑭𝒑(𝑬𝟏𝟐) > 𝑭𝒑(𝑬𝟏𝟔) > 𝑭𝒑(𝑬𝟐𝟑)}

This prioritization is able to detect 100% of the faults in PDFSAM’s regression testing process

by only executing 23% of test cases. The Accumulated Q-value approach is able to only detect

167

67% of faults by executing 78% of prioritized test cases. Figure 20(a) shows the number of

detected faults versus test case execution. The percent of faults detected by the Additional

statement coverage technique is 33% after executing 42% of the test cases. Also, the APFD

distribution (Figure 20(b)) for both proposed techniques is relatively invariant, when compared

to the Random and Additional statement coverage prioritizations.

Figure 20. (a) Percent of faults detected versus the test suite fraction. (b) Box plot of APFD for PDFSAM

Table 27. APFD of the applied prioritization techniques for PDFSAM

Prioritization Techniques Means of APFDs Standard Deviation
RL-based HMM 0.9164 3.1868E-4
Accumulated Q-value 0.3260 0.00206
Additional Statement Coverage 0.2285 0.0217
Random 0.4985 0.25259
Worst 0.0568 0
Optimal (Best) 0.9422 0

0.000 0.231 0.462 0.693 0.924
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0.000 0.231 0.462 0.693 0.924

Test Suite Fraction

 RL-HMM

 Coverage

 Q-Value

Pe
rc

en
t D

et
ec

te
d

Fa
ul

ts

 Worst

 Best

 Random

RL-HMM Q-Value Coverage Worst Best Random

0.0

0.2

0.4

0.6

0.8

1.0

Prioritization Techniques

A
PF

D

168

Table 28. The statistical analysis for RL-based HMM technique vs. other techniques in PDFSAM

RL-based HMM Technique Vs. Others t-
statistic DF p-value (one-tail) Cohen’ d

RL-based HMM vs. Accumulated Q-Value 8.2955 25 8.9005E-9 3.2537
RL-based HMM vs. Statement Coverage 12.49415 25 1.70486E-12 4.9006
RL-based HMM vs. Random 5.6673 25 5.83228E-6 2.2228
RL-based HMM vs. Worst 13.78585 25 1.82592E-13 5.4072
RL-based HMM vs. Optimal (Best) -1.44222 25 0.16118 -0.5656

Table 27 lists the mean and standard deviations of the APFDs for each test case prioritization

technique. Table 28 shows that the RL-based HMM technique is significantly better than the

other techniques. The Accumulated Q-value technique is significantly better than the Additional

statement coverage technique. Moreover, again, all the differences between the RL-based HMM

and the other techniques are large according to Cohen’s d measure.

4.7.4.4 Study 4: TimeSlotTracker

TimeSlotTracker is the fourth and last application that has been investigated in the evaluation

phase. Similar to previous applications, we need to initialize the HMM and finally estimate it

with the best parameters to meet the maximum likelihood condition.

• N: The number of hidden states is 246.

• M: The number of observation symbols is 46.

• A 246* 246 matrix representing the transition probability matrix

• The observation symbol probability matrix has 246 rows and 46 columns.

In this case, AutoBlackTest generates 19 episodes throughout the testing process and episode 18

is considered as the only fault revealing test case. Estimating an appropriate RL- based HMM,

we compute the forward probabilities as before.

169

Figure 21. (a) Percent of faults detected versus test suite fraction. (b) Box plot of APFD for

TimeSlotTracker

Table 29. APFD of the applied prioritization techniques for TimeSlotTracker

Prioritization Techniques Means of APFDs Standard Deviation (SD)
RL-based HMM 0.9209 7.2276E-4
Accumulated Q-value 0.8675 0.0017
Additional Statement Coverage 0.462 0.04305
Random 0.5028 0.27145
Worst 0.023 0
Optimal (Best) 0.9735 0

Table 30. The statistical analysis for RL-based HMM technique vs. other techniques in TimeSlotTracker

RL-based HMM Technique Vs. Others t-statistic DF p-value (one-tail) Cohen’ d
RL-based HMM vs. Accumulated Q-
Value 1 18 0.32988 0.4588

RL-based HMM vs. Statement Coverage 2.51661 18 0.02099 1.1546
RL-based HMM vs. Random 2.17946 18 0.04209 1.000004
RL-based HMM vs. Worst 10.37642 18 2.89352E-9 4.7610
RL-based HMM vs. Optimal (Best) -1 18 0.32988 -0.4588

0.000 0.265 0.530 0.795
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0.000 0.265 0.530 0.795

Test Suite Fraction

 RL-HMM

 Coverage

 Q-Value

Pe
rc

en
t D

et
ec

te
d

Fa
ul

ts

 Worst

 Best

 Random

RL-HMM Q-Value Coverage Worst Best Random

0.0

0.2

0.4

0.6

0.8

1.0

Prioritization Techniques

AP
FD

170

After sorting the probabilities, the RL-based HMM prioritization technique reports the following

test suite.

{𝑭𝒑 𝑬𝟏𝟖 > 𝑭𝒑 𝑬𝟓 > 𝑭𝒑 𝑬𝟕 > 𝑭𝒑 𝑬𝟎 > 𝑭𝒑 𝑬𝟏𝟐 > 𝑭𝒑 𝑬𝟏 > 𝑭𝒑 𝑬𝟗 > 𝑭𝒑 𝑬𝟔 >

𝑭𝒑 𝑬𝟏𝟏 > 𝑭𝒑 𝑬𝟒 > 𝑭𝒑 𝑬𝟏𝟎 > 𝑭𝒑 𝑬𝟏𝟓 > 𝑭𝒑 𝑬𝟏𝟒 > 𝑭𝒑 𝑬𝟏𝟑 > 𝑭𝒑(𝑬𝟑) > 𝑭𝒑(𝑬𝟖) >

𝑭𝒑(𝑬𝟐) > 𝑭𝒑(𝑬𝟏𝟔)}

It shows that the fault detection rate using prioritized test cases would be 100% for

TimeSlotTracker; it means that by executing only one test case the fault would be detected. On

the other hand, this fault would be found after the execution of 21% and 37% of the test cases,

respectively, using Accumulated Q-value and Additional statement coverage approaches. Figure

21(a) also depicts the percentage of detected faults versus test case executions for each applied

prioritization technique. In addition, Additional statement coverage and Random approaches still

have more variant distributions than the other techniques, while the RL-based HMM distribution

is “close” to the upper bound (Figure 21(b)). The mean and standard deviation APFD of the

prioritization processes are shown in Table 29. Table 30 indicates that RL-based HMM is

significantly better than Random and Additional statement coverage, but it is not significantly

different from the Accumulated Q-value prioritization method. Cohen’s d measure also confirms

this result. The Accumulated Q-value approach again provides better a better performance than

the Additional statement coverage technique.

4.7.4.5 Study 5: Extended PDFSAM

To demonstrate that the proposed techniques are also applicable of prioritizing test cases with

somewhat larger size test suites, we applied the approaches to order 60 test cases.

171

For this study, we run the testing process (AutoBlackTest) of PDFSAM again, but now for two

hours. The default testing time had been set to 1 hour for the other case studies in order to allow

an unbiased comparison across application programs. In the other case studies, except PDFSAM,

the test case generation procedure completed before the testing time finished. In this experiment,

we generated 60 test cases of which test cases numbered 0, 2,25,29,40 and 52 were able to detect

faults. In order to initialize the HMM and finally estimate it with the best parameters to meet the

maximum likelihood condition, we consider the following parameters:

• N: The number of hidden states is 207.

• M: The number of observation symbols would be 79.

• A 207* 207 matrix representing the transition probability matrix

• The observation symbol probability matrix also has 207 rows and 79 columns.

After estimating the model and calculating the accumulated Q-values, we sort the test cases

based upon each considered technique. The results show that the RL-based HMM technique

again outperforms the other techniques when considering improving the fault detection rate. For

instance, a prioritized test suite using RL-based HMM is able to detect all 6 faults by executing

only 16 test cases (only 26% of the test suite) while statement coverage technique needs to run

48 test cases (80% of test suite) to find all of the faults. Figure 22(a) shows the percentage of

detected faults versus the fraction of test suite executed with the mean APFD. Figure 22(b) also

shows that both proposed techniques are relatively invariant in terms of APFD.

In addition, Table 31 illustrates the results of computing the mean and standard deviation of the

APFD measure for 1000 trials per application. Table 32 reports the result of applying a paired t-

test and calculating Cohen’s d measure on the percentage of detected faults by executing a

172

prioritized test suite with mean amount of APFD. According to this investigation, the RL-based

HMM technique prioritizes test cases significantly better than the other techniques except

Optimal. Also, the Accumulated Q-value technique has better APFD measure than coverage-

based prioritization and sorts test cases significantly better than it.

Figure 22. (a) Percent of faults detected versus test suite fraction. (b) Box plot of APFD for Extended

PDFSAM

Table 31. APFD of the applied prioritization techniques for Extended PDFSAM

Prioritization Techniques Means of APFDs Standard Deviation (SD)
RL-based HMM 0.895 0
Accumulated Q-value 0.604 0.005
Additional Statement Coverage 0.494 0.0042
Random 0.469 0.2967
Worst 0.0503 0
Optimal (Best) 0.965 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100
0

25
50
75

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
25
50
75

100

Test Suite Fraction

 RL-HMM

 Coverage

 Q-Value

Pe
rc

en
t D

et
ec

te
d

Fa
ul

ts

 Worst

 Best

 Random

RL-HMM Q-Value Coverage Worst Best Random
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Prioritization Techniques

A
PF

D

173

Table 32. The statistical analysis for RL-based HMM technique vs. other techniques in Extended

PDFSAM

RL-based HMM Technique Vs. Others t-statistic DF p-value (one-tail) Cohen’ d
RL-based HMM vs. Accumulated Q-
Value 6.89838 59 3.72746E-9 1.7961

RL-based HMM vs. Statement Coverage 8.91787 59 1.35721E-12 2.3220
RL-based HMM vs. Random 10.16044 59 1.16392E-14 2.6455
RL-based HMM vs. Worst 19.28205 59 2.13086E-27 5.0206
RL-based HMM vs. Optimal (Best) -3.94484 59 2.1174E-4 -1.0271

4.7.4.6 Study 6: WordProcessor, TerpPaint and Calculator

As our last experiment, we have applied our proposed techniques on three GUI applications:

WordPrcessor, TerpPaint and Calculator26. TerpPaint is a paint program written using Java and

AWT/Swing. It is similar to Microsoft Paint and is developed at the University of Maryland.

WordProcessor is a small application, which was developed by [175] as part of their efforts in a

“fast-paced guide” for teaching Swing. Finally, Calculator is an open-source program, which

implements a four-function calculator; Calculator is developed using Java Swing27.

The purpose of choosing these applications is comparing the results of our test case prioritization

approaches against those presented in [164]. Unfortunately, the framework used in their

experiment is not available. Further, the paper’s explanations are insufficient to re-implement

their experimental environment.

Hence, we can only use the paper’s results and run our methods on identical applications. This

implies that the results are not directly comparable as the test data will be different in the two

papers. Since, AutoBlackTest generates meaningful test cases with optimum lengths, combining

26 http://sourceforge.net/projects/terppaint
27 http://beginner-java-tutorial.com/java-swing-calculator.html

174

test cases to generate different-length test suites can lead to generating false positive fault-

revealing test cases. Therefore, we only consider the prioritization results for L1 test cases from

Huang et al.’s research [164].

In order to increase the similarities between the two experimental frameworks, we also seeded 12

faults from the same types into a random location in each application and ran (100 times) RL-

based HMM, Accumulated Q-value and Coverage techniques on each set of test cases generated

using AutoBlackTest. In addition, the untreated (un-prioritized) and best orderings of test cases

has been considered to estimate the test effectiveness boundaries and hence will be used as the

point of comparison.

It is worth noting that the reason of considering the untreated ordering in this research is that

Huang et al.‘s research only covers two techniques (untreated and coverage) as non-weight based

prioritization methods and applies t-tests and statistical analysis on them. Also, they didn’t

compare weight-based techniques with the Best and Worst orderings. Therefore, unlike the

previous studies, we have compared our proposed technique with untreated method in order to

follow the same approach as theirs.

Because the exact test cases, which have been used in Huang et al.’s research, were not available

for doing an accurate comparison, it cannot be claimed that the test cases have been generated

and used in this research have the exact same coverage or fault detection capability as Huang et

al’s test cases. Therefore we have decided to investigate the effectiveness of each considered

technique by comparing its fault detection capability with untreated, coverage-based and best

orderings. In order to clarify the effectiveness of each test case prioritization technique, we also

compared the mean of APFD of each method with the Best prioritization (the optimal ordering of

175

test cases). As the set of test cases are different in the two papers the best (or optimal) results are

different. The following formula shows the method we have used to calculate the relative ratio of

each method versus their own Best (optimal) approach.

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑖𝑜 𝑅𝑅 = !"#$!"#$!!"#$%&#'%!"#$
!"#$!"#$

 (16)

Obviously, prioritization techniques with a low RR value approach optimality. Table 33-Table

37 show the mean APFDs and Relative Ratios for each applied technique. In addition, the results

of the statistical analysis for each considered application are provided.

Table 33. APFD of the applied prioritization techniques for TerpPaint

Prioritization Techniques Means of APFDs RR
RL-based HMM 0.924 0.0149
Accumulated Q-value 0.891 0.0501
Additional Statement Coverage 0.755 0.1950
Untreated 0.690 0.2643
Best 0.938 0
High-to-low equal weight (L1) 0.934 0.603
High-to-low fault-prone weight (L1) 0.844 0.1590
High-to-low adjusted weight (L1) 0.966 0.0281
Best (L1) 0.994 0

Table 34. The statistical analysis for RL-based HMM technique vs. other techniques in TerpPaint

RL-based HMM Technique Vs. Others t-statistic p-value (one-tail)
RL-based HMM vs. Statement Coverage 3.81329 8.93385E-4
RL-based HMM vs. Untreated 4.12466 4.12614E-4
RL-based HMM vs. Best 1.2916 0.20932
Untreated vs. fault-prone weight (L1) 2.6730 0.0043
Untreated vs. adjusted weight (L1) -3.1059 0.0012
Coverage vs. fault-prone weight (L1) 3.6082 0.0002
Coverage vs. fault-prone weight (L1) -1.9221 0.0286

176

Table 35. APFD of the applied prioritization techniques for WordProcessor

Prioritization Techniques Means of APFDs RR
RL-based HMM 0.899 0.0088
Accumulated Q-value 0.887 0.0220
Additional Statement Coverage 0.716 0.2105
Untreated 0.707 0.2205
Best 0.907 0
High-to-low equal weight (L1) 0.946 0.0463
High-to-low fault-prone weight (L1) 0.969 0.0231
High-to-low adjusted weight (L1) 0.972 0.0201
Best (L1) 0.992 0

Table 36. The statistical analysis for RL-based HMM technique vs. other techniques in WordProcessor

RL-based HMM Technique Vs. Others t-statistic p-value (one-tail)
RL-based HMM vs. Statement Coverage 4.265 4.65314E-4
RL-based HMM vs. Untreated 3.67374 0.00174
RL-based HMM vs. Best -1.0063 0.327
Untreated vs. fault-prone weight (L1) -3.7138 0.0001
Untreated vs. adjusted weight (L1) -3.6246 0.0002
Coverage vs. fault-prone weight (L1) -0.6824 0.2485
Coverage vs. fault-prone weight (L1) -0.7929 0.2151

Table 37. APFD of the applied prioritization techniques for Calculator

Prioritization Techniques Means of APFDs RR
RL-based HMM 0.708 0.0432
Accumulated Q-value 0.622 0.1594
Additional Statement Coverage 0.577 0.2202
Untreated 0.408 0.4480
Best 0.740 0
High-to-low equal weight (L1) 0.838 0.1440
High-to-low fault-prone weight (L1) 0.898 0.0827
High-to-low adjusted weight (L1) 0.931 0.0490
Best (L1) 0.979 0

177

Table 38. The statistical analysis for RL-based HMM technique vs. other techniques in Calculator

RL-based HMM Technique Vs. Others t-statistic p-value (one-tail)
RL-based HMM vs. Statement Coverage 3.81329 8.93385E-4
RL-based HMM vs. Untreated 4.12466 4.12614E-4
RL-based HMM vs. Best -2.99924 0.00899
Untreated vs. fault-prone weight (L1) -3.3235 0.0013
Untreated vs. adjusted weight (L1) -3.8280 0.0003
Coverage vs. fault-prone weight (L1) -2.4221 0.0113
Coverage vs. fault-prone weight (L1) -3.2269 0.0016

Table 38 indicates that the RL-based HMM technique has the closest behavior to the Best

ordering due to the low RR (=0.0149). In addition, according to the Table 34, it also prioritizes

test cases significantly better than untreated and coverage-based prioritizations in TerpPaint.

The same prioritization efficiency can be interpreted based uponTable 35 to Table 38 for both

the WordProcessor and the Calculator application. For example (Table 35), the RL-based HMM

approach prioritizes test cases with the lowest difference compared to the Best technique

(RR=0.0088) while, for the High-to-low adjusted weight (L1), the most accurate proposed

method by [164] the RR value is equal to 0.0201.

4.8 Discussion

We have investigated four different applications by inferring four different RL-based Hidden

Markov Models. The results show that the RL-based HMM prioritization technique is successful

in all four cases, plus a second trial on PDFSAM plus three extra GUI applications proposed by

[164], specifically in prioritizing test cases that contribute to discovering faults.

According to the empirical results represented in Section 4.7, since the RL-based HMM

technique worked significantly better than other applied approaches according to multiple

statistical tests, effect size measures and more informal investigations, the first research question

178

(RQ1) defined in the beginning of this section has been addressed. In addition, according to

Table 22, we can conclude that even though in some cases (like UPM) other approaches (such as

Additional Statement Converge and Random) have an acceptable performance, RL-based HMM

is more successful in detecting difficult-to-find faults. For example in TimeSlotTracker, where

the chance of finding the fault is 0.05, RL-based HMM is able to correctly prioritize the fault-

revealing test case.

 To address the second research question (RQ2), we replicated all the experiments and analysis

for another proposed technique (Accumulated Q-value). This technique achieves results that

demonstrate that this technique has better mean APFD than the other techniques (except RL-

based HMM and Optimal), and is significantly better than Random and Additional coverage

when applied to the PDFSAM and Buddi applications.

The third question (RQ3) investigates the effectiveness of both proposed techniques in

comparison to each other. As mentioned earlier, statistical analysis illustrates that the RL-based

HMM is significantly more effective than the Accumulated Q-value technique in 3 of the 4

applications, and in the 4th (TimeSlotTracker) application they are not significantly different. The

results from the TimeSlotTracker experiment demonstrates a (worst case) situation of when the

effect of executing actions (causing further computations) in a specific (GUI) state is similar to

the effect of triggering different actions in each state. That is, they contribute the “same amount”

of information for making prioritization decisions. The TimeSlotTracker application is a good

example of an application, which only has actions, which trigger small amounts of computations.

Under these circumstances, the performance difference between the RL-based HMM technique

and the Accumulated Q-value approach will be minimalized. However, it is believed that the RL-

based HMM technique will always out-perform the Accumulated Q-value approach.

179

In addition, in order to investigate the effectiveness of the proposed techniques in cases with

larger test suite sizes, we ran AutoBlackTest for an extended period and re-applied all the

techniques on a test suite now with 60 test cases. The results shows that both of our approaches

are still applicable to larger-sized test suites, and that they also prioritize them better than the

other state of the art methods.

To answer the fourth question (RQ4), we also have considered three GUI-based applications

from [164] in order to show the effectiveness of our proposed technique in comparison with

other GUI test case prioritization approaches. The results demonstrate that in all the applications,

that the RL-based HMM technique is significantly better than untreated and coverage-based

prioritizations; while only the fault-prone weight method outperforms coverage based and

untreated orderings in terms of fault detection rate for the TrepPaint application. In addition, the

RL-based HMM is not significantly different to the Best ordering in all considered applications

according to the Relative Ratio measure.

It is believed that these results illustrate that the combination of Reinforcement Learning and

Hidden Markov models can be highly successful in prioritizing test cases, this is because this

enhanced model considers the test cases from two different and novel perspectives: the tendency

of the system to prioritize test cases that, (a) trigger different actions in each state, and (b)

executing actions causing more computations in GUI states.

4.8.1 Run-Time Analysis

To investigate the computational complexity of the RL-based HMM prioritization approach, we

ran a single instance of this technique on a modest hardware and software platform consisting of

a 3.4 GHz CPU, 8 GB RAM on an HP Compaq machine (6200 Pro SFF PC) using the RHMM

180

package which has been developed using the R language (R is a statistical scripting language28)

for estimating HMM parameters.

In order to investigate the systems with the largest number of test cases generated by

AutoBlackTest and GUITAR, we have considered both the Extended PDFSAM and TerpPaint

applications in terms of prioritization run-time. The RL-based HMM technique ran in 12.3

seconds in Extended PDFSAM (8.1s to extract the Q-values and initial values of the HMM

parameters, 3.26 for estimating an HMM using the Baum Welch algorithm and less than a

second to calculate the forward probabilities). Also, based upon Baum Welch and Forward

algorithms’ time complexities, the computation order is polynomial 𝑂 𝑁!𝑇 , where N represents

the number of hidden states and T indicates the number of observations in a sequence; and hence,

will not exponentially grow by increasing the number of test cases. The corresponding time for

the TerpPaint application is 17.1 seconds. It is worth noting that the parameter extraction

techniques used in this study can be optimized in terms of implementation (e.g. anecdotal

comparisons often state that algorithms written in R run 1000 times slower than equivalent

algorithms in C29) to decrease the overall run-time in future studies. However, as the result, it can

be concluded that time is needed to prioritize test cases using our approach is trivial compared to

the improvements it is providing in early detection of faults.

4.9 Related Work

Applying Markov chain models in software testing processes dates back to 1994, when [10]

described a method for statistical software testing. They used Markov chains as a finite state,

discrete parameter, and time homogeneous modeling approach to develop and analyze a model-

28 http://www.r-project.org
29 http://lists.nongnu.org/archive/html/igraph-help/2011-02/msg00045.html

181

based testing technique for automatic test case generation. They concluded that Markov chain

usage models can be utilized in a diverse set of application domains and are useful during a

statistical testing process. Correspondingly, Markov chain usage models have been utilized

several times in software testing and reliability research [176]–[178]. Also Bayesian Network

models have been applied in software failure detection problems to design software reliability

models [179] or in probabilistic test case prioritization to incorporate source code changes and

test coverage data into a unified model [180], [181]. Moreover, web application testing is another

interesting area for applying Markov chain models. [182] considered the effectiveness of Unified

Markov Models (UMM) as a suitable testing mechanism through two empirical studies. They

confirmed that UMMs are appropriate methods to test web applications accurately. [183] present

a controlled Markov chains (CMC) approach to software testing. They considered software

testing as a control problem, where the software under test serves as a controlled object. [18] also

presented an MBT method to generate test cases to perform load testing for any software system

that is “model-able” by a Markov chain. Their algorithm was successful in preserving faults that

would have been likely to be missed in traditional load testing methods. The purpose of the

authors in designing this technique was not “test case prioritization”. However, their thoughts are

statistically close to what is presented in this research.

One of the most critical parameters in using Markov chain models in the MBT area is in

estimating transition probabilities. Many researches provided diverse techniques to estimate

Markov chain parameters, however, [184] proposed a novel technique to target coverage criteria

rather than using a classical uniform probability generation approach. It would be an applicable

technique in creating a Markov chain with appropriate initial parameters leading to a global

optimized model.

182

As mentioned earlier, the application of HMM models to pattern recognition and bioinformatics

problems, has been well-established. On the other hand, limited numbers of papers have been

published on Hidden Markov Models (HMM) applied to software testing; however, it has been

used for modeling computer security problems and intrusion detection in web applications.

HMMpayl is a combination of HMM usage and multiple classifier systems that has been

reported as an effective tool against the most frequent attacks to web applications [185].

In addition, combining HMM and Reinforcement learning concepts to re-estimate and improve

the model has been considered in several artificial intelligent problems such as robots’ motion

prediction [74], speech recognition [75] and natural language generation [76]. Also [77] suggests

a method to handle RL algorithms in partially observable Markov Decision Problems. [78]

provides a comprehensive study on RL with hidden states. He also represents four new RL

algorithms for environments with hidden crucial states.

One of the reasons, which initially motivated the ideas beyond the design of an RL-based HMM

test case prioritization technique, was the existence of prioritization approaches, which are only

applicable for non-GUI testing. [139] describe several techniques for using information gathered

from the test case generation phase to prioritize test cases in regression testing. They measured

the fault detection rate of each method and found their proposed techniques are able to improve

this rate. Furthermore, [186] present a novel test suite prioritization technique, which

concentrates on test cases’ fault detecting ability. They used a fault model, which generates test

cases to guide specification-based testing. Results confirm the effectiveness of this approach in

logical expression testing, but there is no evidence of it being applicable to the testing of state-

based models, which are very applicable in testing interactive applications. In addition, [187]

consider the application of test case prioritization in regression testing procedure from a time-

183

constraint perspective. The authors believe that the time constraints, which can be imposed on

regression testing, can strongly affect the behavior of the prioritization techniques. They also

provide helpful suggestions about determining the appropriate situation for prioritizing test case

based upon the system’s constraints.

Finally, [164] have proposed a method for adding weights to event flow graphs (a very primitive

version of a regular digraph). They use the GUITAR tool to generate test cases and a behavioral

model to which they add weights to the transitions of this graph. This results in a weighted graph

similar to the graph produced by AutoBlackTest. While AutoBlackTest dynamically analyses the

SUT to produce system-specific weights, [164] simply use static weights derived from heuristics,

which have very limited theoretical underpinnings. This implies that the digraph produce by

AutoBlackTest is clearly superior to the digraph produced by [164]. And hence, we use the

output of AutoBlackTest, rather than that of [164] as the baseline for analyzing test case

prioritization techniques in interaction-driven applications.

4.10 Threats to Validity

In this section, some potential threats to validity of our research are discussed. We consider two

types of threats:

• Threats to internal validity, which are cause-effect relationships between independent and

dependent variables.

• Threats to external validity, which are limitations about generalizations from our study,

or the threats to transform the research from the specific case study to general subjects.

184

With respect to internal validity, the most significant threats are (a) the four different models

(one per application) generating diverse levels of forward probabilities; and (b) the size of the

test suites derived by AutoBlackTest from these applications. This first threat can be classified as

an instrumentation effect. This can add bias into the results of the APFD measures. To reduce the

likelihood of this effect, we have normalized the Q-values and APFD measure to be within the

range [0, 1], thus minimizing any impact in the values of the transition matrices and the APFD

measure. The second threat represents the most significant issue. Given the choice of the domain

of application – extending the automatic generation of (black-box) test cases for GUI-based

applications – no obvious approach exists to minimize this threat. AutoBlackTest produces

superior results when compared to other systems (such as GUITAR) in this domain of

application. However, the volume of test cases generated by it can be viewed as “rather small”

leading to prioritization problems of “limited extent”. In fact, AutoBlackTest explicitly discards

tests which it considers to be of no value which compounds this “size of test suite” issue further.

Hence, further research is required in producing more complete regular digraphs and extended

digraphs models to advance the topic further.

On the other hand, the threats to external validity for our research are centered on the selected

applications as representative of any possible application. To address this issue, we evaluate our

method on four different GUI-based applications. As mentioned before, any application with a

weighted or a non-weighted behavioral model can be utilized, but because results show that

AutoBlackTest is a successful model–based GUI testing tool, we have concentrated on working

in this area. Also by evaluating the proposed method on known and pre-evaluated applications,

we can compare our results and illustrate the effectiveness of the RL-based HMM technique.

185

4.11 Conclusion

Many studies have investigated automatic test case generation, test case prioritization and GUI

testing, but few of them specifically focused on the fault based test case prioritization issue in

GUIs.

In this research, we propose a novel fault-based technique, the extended digraph. It is argued that

the extended digraph provides a richer explanation of program behavior than a regular digraph.

This digraph is generated by using an RL-based HMM approach to prioritize test cases. We

present an approach to initialize an appropriate HMM based on a Q-learning algorithm that leads

to a final HMM with the maximum likelihood estimate of parameters after applying an EM

algorithm. Then we use the estimated model to compute the likelihood (forward probability) of

the generated test cases. Finally, we presented a new definition for test case prioritization based

upon these forward probabilities.

In addition, we propose another technique, which uses the summation of each test case’s Q value

in order to sort them in a descending order. Thus, test cases with the higher amount of

accumulated Q-value than others get higher priority in the sorted list.

To evaluate the proposed methods, we designed an experimental setup using AutoBlackTest as a

test case generator tool. Random, Additional statement coverage, Worst and Optimal

prioritization are also included in order to provide a comprehensive comparison. We applied all

of the prioritization techniques on four GUI applications to evaluate the effectiveness of our

proposed approach and address the first three research questions. In addition, as an extra

experiment, we have compared the RL-based HMM technique with the weight-based

prioritization approach presented by [164].

186

According to the APFD measure, Relative Ratio, boxplots, statistical tests and effect size

estimates, RL-based HMM outperforms the other approaches in terms of fault detection

effectiveness. It illustrates that considering GUI states and actions are playing an important role

in improving the fault detection rate. Because the RL-based HMM approach combines RL and

HMM concepts, it is able to sort a test suite by prioritizing test cases with special focus in two

important aspects:

• The amount of computations (changes), a test case may cause in GUI states (using Q-

leaning) and,

• The probability of triggering each action in each specific state, plus the amount of

computations (changes), a test case may cause in GUI states (using HMM).

187

5 Automated Testing of Motion-based Events in Mobile
Application

5.1 Introduction

In recent years, mobile devices have been produced in various types and shapes, offering a wide

range of services and features. It is a very difficult task to develop mobile applications that are

able to work appropriately on different mobile devices and operating systems (OSs) [188], [189].

On the other hand, releasing applications that are not fully functional, usable, and consistent can

risk the developer’s reputation in such a competitive environment. Testing the application’s

functionality and verifying its robustness are key factors in improving the application’s quality.

Embedding new hardware devices, such as movement sensors (accelerometers and gyroscopes),

in smartphones and tablets further complicates the testing procedure. Users are able to interact

with the application by touching, tilting, shaking, and rotating the mobile devices. When a device

is in motion or it’s screen is continuously touched, the probability of unintentional inputs

increases; in such circumstances, automatically generated test suites are needed to produce

accurate test cases and accelerate the mobile application testing procedure.

Some tools and techniques have been developed to test the quality of the source code for mobile

applications30 [190]–[192], but the number of approaches that focus on automated testing is still

very limited. The majority of these automated testing tools offer capture-and-replay functionality

to test the application’s User Interface (UI) [14], [193], [194]. For instance, Choudhary et al.

[192] have conducted a study on existing testing tools for Android applications. Although the

study dealt with techniques for testing the mobile applications, it doesn’t provide any insight or

30 Android: http://developer.android.com/tools/help/lint.html ; iPhone: http://clang-analyzer.llvm.org/

188

mechanism for generating test cases for motion-based mobile applications. In addition to this, the

case studies considered in [192] do not have any motion-based facilities, and hence are not

suitable to be utilized in this study.

Writing and continually improving motion-based test cases is a difficult task when testing mobile

applications that use movement-sensor data. Therefore, considering existing mobile testing tools

and approaches, two problems can be noticed: 1) no automated approach is provided (this

problem is considered as a technical challenge in this study); and 2) generating test cases for

motion-based mobile applications remains unconsidered (this problem is considered as a

scientific challenge in this study). Thus, in this chapter of the thesis, we propose a new approach

to address these limitations. It is argued that mimicking users’ behaviours is one of the key

factors in generating gesture-based test cases. It helps in executing realistic test scenarios and

standard gestures [195], [196].

In order to automatically generate test cases, mimicking human generated gestures in motion-

based mobile applications, we propose a novel approach, which synthesizes the motions, and

subsequently, simulates the test cases based upon the formalized gestures. Motion data is

represented by the data captured, using the movement sensors and the objects’ positions (2D

coordinates) on the screen. An application can then use the sequences of motions to simulate the

gestures and test the UI. To increase the chance of generating realistic movements, a set of

training data is generated by human users and is used to train the hidden Markov model (HMM)

classifiers. The models are iteratively used to generate new motion sequences for the application

testing procedure. Gestures and animations are commonly considered to be the key components

in modern mobile user interface design; hence this work directly targets the heart of the matter in

this new and evolving application domain.

189

Our experiments on sample Android applications that support motion-based gestures reveal the

effectiveness of the proposed approach as an automated testing process. Although, the focus of

the empirical evaluation of the proposed approach is on Android applications, it is worth noting

that the algorithm is also applicable to motion-based iOS applications and applications found on

other mobile platforms.

In summary, the generated motions are used to automatically produce test cases, mimicking

human-generated gestures with the technical goal of increasing code coverage. Therefore, the

process is highly beneficial during regression testing, since the generated test cases can later be

executed on newer versions of the application to uncover issues in the system.

This study contributes to the research in this area by:

1. Proposing a new approach to synthesize motion data, and make it executable as a test

input to the application being tested.

2. Applying a HMM classifier on the training data to create a set of HMMs, and

subsequently using them to generate motion sequences.

3. Evaluating the effectiveness of the proposed approach in terms of, (1) mimicking the

user’s behaviour, and (2) increasing the code coverage of the software under test (SUT).

This chapter is organized as follows. Section 5.2 provides related work and background

information and definitions relating to mobile applications, particularly motion-based gesture

testing. Section 5.3 describes an overview of the proposed approach, the gesture synthesis and

simulation procedures, while Section 5.4 provides the design and implementation details of the

proposed technique. Section 5.5 provides a running example of the proposed test case generation

approach using real data. Section 5.6 discusses the evaluation phase, experimental setup, and

190

results. Section 5.7 explains the experiment’s run-time analysis. Section 5.8 examines the study’s

limitations and the threats to its validity. Finally, Section 5.9 presents the overall conclusions and

some thoughts on potential future research.

5.2 Related Work

5.2.1 Mobile Application Testing

Testing is a crucial activity in a software development procedure. Producing a defect-free

application, addressing all of the requirements of the users, along with providing fully functional,

consistent, and highly usable services are vital in highly competitive environments. Over the past

few years, phenomenal progress in the mobile device market has led to an outstanding growth in

the mobile application development industry. However, the growth in developing mobile testing

procedures and techniques has been insufficient. Although many testing methods and tools exist

for desktop and server/host software, most of them are not applicable for testing “mobile

software” [197]. Moreover, most existing test generation techniques rely on a crawler to explore

the dynamic states of the application under test. Such approaches are automated and systematic

but lack the domain knowledge of system experts. Far et al. [198] propose a new technique to

combine the human knowledge present in the form of input values with the inferred knowledge

of automated crawling. Similar approaches have not been applied in testing mobile applications.

Hence, in this study, we propose an approach, which relies on both human and automated

exploration data. Ermuth et al. [199] also presents a UI-level test case generation technique that

applies human-produced execution traces in order to automatically create complex sequences of

events that are able to cover more pages, scenarios and code lines compared to a purely random

test generator. This approach relies on inferring sequences of low-level UI events (macro events)

191

using data mining techniques and the inference of finite state machines (FSMs). However,

Ermuth’s technique [199] also has never used to test mobile applications.

Although many traditional testing tasks are common between mobile applications and the

desktop/web-based applications, several key factors cause challenges in the mobile testing

procedure. For example, the variety of mobile devices and diversity in OSs cause difficulties in

testing device-specific factors [195]. Mobile devices are different in terms of screen sizes,

platforms, input methods, and the quality of the sensor data. Such differences can easily multiply

testing efforts. For testing an application, it needs to be exposed to a sufficient number of devices

from different models, screen sizes, and OS versions. Covering an adequate number of factors

leads to generating a large number of test cases that are required to be executed in an

environment where short release cycles are common. This can easily affect the quality of the

application, along with the time of the marketplace and the costs of construction. Integrating

automation approaches with test case generation procedures is a key factor in addressing these

issues in the “mobile testing era”, where many test cases need to be executed on a large selection

of mobile devices and configurations to reproduce defects.

In this regard, [200] presents a framework to test the functionality of mobile applications when a

device is moved to a new network. The framework uses an application-level emulator as a

mobile agent to carry the application across networks to ease the testing process under different

network technologies. Additionally, [201] suggests a quality assurance framework to define key

patterns and metrics in mobile application testing. Although these research studies provide

insights into the testing of the mobile applications, they still do not cover the test case generation

phase. Several studies with a special focus on automated testing for mobile applications have

also been conducted; [202]–[206] suggest different, automated, graphical user interface (GUI)

192

testing approaches for Android applications. For example, [202] produces AndroidRipper; this

tool seeks to explore the application’s GUI and evaluate its effectiveness in terms of fault

detection ability when compared to random approaches. Android Monkey31 generates purely

random tests for Android mobile applications using a brute-force mechanism. Android Monkey

usually achieves shallow code coverage compared to other state of the art approaches used for

testing GUI in Android applications [207]–[209]. Mao et al. [210] also proposes another

framework which combines random fuzzing, systematic and search-based exploration, exploiting

seeding and multi-level instrumentation in order to automatically explore and optimise test

sequences in Android applications. Moreover, [211] presents a new approach to automatically

generate test oracles for testing user-interaction features found in mobile applications. Given a

model of the mobile application’s UI, this framework uses a library of oracles and generates a

test suite to test the user-interaction features in the application. There also has been some work

[212] that uses contextual information to randomly generate inputs to test mobile applications

and automatically find crashes. Such approaches are more focused on discovering; reporting and

reproducing crashes are not practically used to generate functional test cases covering the source

code.

Although, some automated test case generation techniques are suggested for testing the UI of

mobile applications, but their functionality and applicability in testing the new features of

today’s mobile phones are far from perfect. To test the UI, the mobile application needs to be

executed with user interaction events. With technological advancement in smartphones and

tablets, natural user interfaces (NUIs), which no longer use keyboards and keypads as human-

machine interfaces, have become popular. Touch-sensitive screens, speech recognizers, and

31 https://developer.android.com/studio/test/index.html

193

gesture detectors are the primary interaction channels in the new generation of mobile

applications. This era of application testing is relatively new, and only a limited number of

studies have been performed to address these testing challenges [195], [196].

5.2.2 Testing Motion-based Gestures

Mobile applications, which allow users to control the applications’ functionality through NUIs,

normally recognize gestures by using the data provided by the embedded sensors in the mobile

device [213]. Several smartphones and tablets contain accelerometers to control motion inputs.

One of the most common applications of accelerometers is presenting the landscape and portrait

views of the screen based on the way the device is being held [214]. The 3-axis model of the

accelerometer is able to measure the magnitude and direction of the acceleration (gravitational

force) as a vector [𝑎𝑥! ,𝑎𝑦! ,𝑎𝑧!] for a motion 𝑘 in a 3D space. Each acceleration parameter

measures changes in velocity over time along a linear path. Combining all three accelerations,

lets the application detect the device’s movement in any direction and obtain the device’s current

orientation. Depending on the graphical capabilities of mobile applications, 2D or 3D versions of

the acceleration vector are considered. Obviously, 2D applications do not use 𝑎𝑧!to indicate a

motion 𝑘. From the tester’s perspective, testing applications that support motion-based events

introduce a new complexity to the testing procedure; motion-based gestures should be accurately

specified and reliably reproduced [195]. The lack of formal motion-gesture specification

prevents testers from developing an automated test generation approach. To simulate the

motions, atomic gestures should be formalized. The next section presents the simulation and

synthesis procedures of motion-based events (gestures).

194

5.3 Gesture Simulation

In the simplest test-case generation process, the test data-points can be provided to the

application by using a random test generation approach, which randomly creates data frames

within a defined range to move the object on the screen. It can be expected that the number of

reasonable gestures, which are created randomly, are very limited. Therefore, even if these test

cases are able to cover an acceptable number of branches in the source code, they may not be

able to reveal faults a human user can discover simply because they cannot replicate standard

gestures [196].

This study considers an automated test case generation procedure for mobile applications

interacting with users using motion-based events. However, it is not limited to the applications

only supporting motion-based events and can be applied on the application covering both types

of inputs (motion-based and non-motion based). In such applications, users normally interact

with these types of applications by performing a sequence of gestures, e.g. by moving a flying or

bouncing object on the screen or drawing geometrical shapes by touching the screen. In other

words, user-generated gestures are transferred to the object or touched location to move the

object toward the desired direction or to draw a geometrical shape (e.g. circle) around the

touched point on the screen. It is noteworthy that motion-based events are not only used to move

an object on the screen; sometimes, shaking a mobile phone in a specific direction or touching

and dragging the screen leads to executing a function or opening another application [215]. This

study focuses on the procedure to automatically generate test motions on both types of

applications (1) applications only supporting the data generated using accelerometer sensors; and

(2) applications supporting both the data generated using the accelerometer sensors and the data

generated using other types of events such as those produced by touching the sensitive screen. In

195

such cases, several parameters can affect a single event (such as the object size, the size of the

screen, an object’s location, etc.).

Since users are free to touch, move and shake their mobile phones in any desirable direction and

speed, a testing approach must be able to generate sets of standard gestures, which are not only

executable on the application but also resemble the human-generated motions. Therefore, to

automatically generate more reasonable gestures – mimicking human users – this research

proposes a novel approach. It is hypothesized that this mimicking may also result in an increased

level of code coverage of the SUT. The correctness of this assumption is examined in the

empirical evaluation section (Section 5.6).

The proposed technique contains several steps and details, which are depicted in the framework

provided in Figure 23. This figure shows the schematic overview of our proposed approach for a

complex application containing acceleration parameters moving an object (bouncing ball) on the

screen in different directions (as an example). This framework can easily be adjusted for any

applications supporting motion-based events. The proposed approach consists of the following

sequential steps:

• Gathering training data: A human user is asked to interact with the application and

generate motions to be used as a training set. (It is worth noting that the person is not

trained or instructed to generate any specific types of motions from the applications and

the generated motions are the result of a volunteer interacting with the application for the

first time. This prevents the data-gathering phase from collecting biased data.)

• Clustering motions: k-means clustering algorithm as a classic clustering technique is used

to identify the relationship between data points (motions) generated by human users, and

196

to determine the cluster of behaviours that they belong to. It is well known that data

clustering is a successful approach in recognizing and categorizing human expressions,

gestures and actions [196], [216], [217]. More specifically, in this study, the motion

parameters are partitioned into k clusters, such that each motion is allocated to the cluster

with the nearest mean. The clustered data later will be used to train an initial model of the

gestures.

• Training Initial HMM: In order to produce the first standard test gesture, an initial HMM

is trained using the human-generated motions and their corresponding clusters. Hidden

Markov models are well known for their application in pattern recognition such as

speech, handwriting and gesture recognition. As we utilize time-varying motion

sequences, HMMs can be used to model and learn human skills such as reasonable

interactions with mobile applications [218], [219]. Basically, the initial HMM trains a

model, where its hidden states indicate motions’ clusters, generated in the first step.

Training the model using the expectation-maximization (EM) algorithm, the probability

of a gesture belonging to a specific cluster (state) is estimated and used to calculate the

first motion acceleration parameters. The first motion’s acceleration is calculated by

computing the mean of the accelerations in each HMM state and by selecting one pair

randomly. Using this approach, we can assure that the whole test generation procedure -

including the initial motion - is produced through the models trained from the user-

generated data, so they potentially mimic human generated gestures.

• Generating the test data using HMM classifiers: In this step, we apply HMM classifiers

on clustered data to generate test motions using the previously produced gestures. HMM

classifiers are successfully used in several studies, considering the prediction of human

197

activities and gestures [220]–[224]. For each cluster, the dynamics of each motion class is

learned with one HMM. Thus, having 𝑚 motion-clusters, 𝑚 HMM classifiers need to be

applied. HMM classifiers classify each motion as a function of a future time frame [225].

Thus, the probability of a test case belonging to each cluster is calculated using the well-

known Forward algorithm [19]. The motion-cluster with highest Forward probability is

selected and the mean of the acceleration of the motions belong to this cluster is

considered as the next motion’s acceleration.

• Adding generated motions to the training set: In order to avoid over-fitting the model, the

generated motions should be added to the training set. This helps the model to learn from

the data rather than memorizing the trend.

• Storing and Executing test cases: Once, for example, the ball hits the vertical wall (or a

terminal condition happens), sets of test motions generated since the last hit are stored as

test cases and will be used to generate real motions in the mobile applications. Terminal

conditions can be defined generally or per application. For example, a general terminal

condition can happen once a specific number of test motions are generated, while a

customized terminal condition happens when a flying object (if applicable) hit the edges.

In this study, we considered the customized option for the stop criteria.

It is worth noting that this framework provides an overview of the proposed approach. The

implementation details of this framework are discussed in Section 5.4.

198

 Figure 23. An overview of applying the proposed approach on the application with flying object. It

consists of both training the initial HMM (top) and test generation process using HMM classifiers

(bottom)

5.3.1 Synthesizing Motion Sequences

This section describes the method of instantiating the motion sequences for complicated motion-

based applications, which transfer the users’ gestures to a bouncing object. However, the

application of this approach is not limited to events using sensor-generated data; it can be easily

used to generate automated test cases for any type of motion-based events. Following the

previous section, two sets of data (motion sequences) are considered in this study:

• The training data, which is captured during a real user’s interaction with the application

and is used to train the initial HMMs.

• The second set is the test data, which is generated by using the test generation algorithm

and is presented to the application being tested to evaluate its functionality. To create

meaningful test data, which is recognizable by the trained HMM and its corresponding

Train	Data

Test	Cases

Gathering training data
from interacting human
user with the application

Clustering the training
data to” m” cluster

Training the initial HMM
Using the clustered data

Training “m” HMM classifiers from
clustered data to generate next test

motions

Generating test motions
using HMM classifiers
and Physics equations

Executing Test Cases

HMM1

HMMk

HMMm

Initial	HMM

Generating the first test
motion using the initial

HMM by randomly
selecting from the
possible suggested

motions from the HMM

Adding generated
motions to train data

199

classifier, we describe a single motion 𝑘 by a 6-tuple (𝑙𝑥! , 𝑙𝑦! , 𝑣𝑥! , 𝑣𝑦! ,𝑎𝑥! ,𝑎𝑦!), where

𝑙𝑥! , 𝑙𝑦! indicates the object’s location, 𝑣𝑥! , 𝑣𝑦! determine the velocity, and 𝑎𝑥! ,𝑎𝑦!

describe the acceleration of the motion in 2D space at a specific time interval. Figure

24(a) shows the 3D acceleration axes on a smartphone, which also contains a z-axis. In

order to simplify the explanation of the algorithm and cover more common applications,

only 2D applications have been considered in this study. However, it is worth noting that

it is possible to apply the same algorithm in 3D versions as well.

An example of a single motion in a bouncing ball application is provided below:

05-07	17:36:15.828:	Vx(32065):	-2.7148619	

05-07	17:36:15.828:	Vy(32065):	-2.7148619	

05-07	17:36:15.828:	lBallX(32065):	549.0	

05-07	17:36:15.828:	lBallY(32065):	20.0	

05-07	17:36:15.828:	Ax(32065):	0.090979666	

05-07	17:36:15.828:	Ay(32065):	-0.12330139	

This can be presented in a 6-tuple format (the data is rounded for the sake of clarity):

(549,20,	-2.714,	-2.714,	0.09,	-0.123).

This study also considers two time intervals during the test generation procedure:

• The first time interval constantly happens every 𝜑 milliseconds [193] to capture the

information regarding the current motion and position of the object on the screen and to

calculate the next motion using the well-known SUVAT equations [215], [226].

200

• The second time interval happens every 𝜃 milliseconds, which is estimated by selecting

the minimum possible time between two gestures, generated by human users. (This time

can vary with the complexity of the gestures in different applications). Hence, the

estimation of θ assists the algorithm to generate more realistic (complex) gestures as it

accounts for the limitations of kinematics.

It is worth noting these time intervals can overlap in the sense that in the time window

between two 𝜃 intervals, 𝜑 interval may happen when 𝜃 > 𝜑.

Figure 24(b) shows an atomic gesture consisting of a sequence of motions happening within

these two intervals. Each sequence of motions is terminated by the occurrence of a specific

condition in the application being tested, depending on the application’s objectives and

functionalities. For example, a simple terminal condition can happen when the flying object hits

another object (such as the edges of the screen or another flying object) on the screen.

Additionally, in the following paragraph, some of the SUVAT equations (equation of motions),

which are useful in calculating the coordinates of the motions are provided:

• 𝑣 = 𝑎𝑡 + 𝑣!

• 𝑙 = 𝑙! + 𝑣!𝑡 +
!
!
𝑎𝑡!

• 𝑙 = 𝑙! +
!
!
(𝑣! + 𝑣)𝑡

• 𝑙 = 𝑙! + 𝑣𝑡 −
!
!
𝑎𝑡!

• 𝑣! = 𝑣!! + 2𝑎(𝑙 − 𝑙!)

where: 𝑙! is the object's initial position

201

𝑙 is the object's final position

𝑣! is the object's initial velocity

𝑣 is the object's final velocity

a is the object's acceleration

t is the time

Definition 22. A test case (𝑇𝐶) consists of a set of motions 𝑀 = 𝑚!,… ,𝑚! ,where 𝑚!!! is a

6-tuple (𝑙𝑥! , 𝑙𝑦! , 𝑣𝑥! , 𝑣𝑦! ,𝑎𝑥! ,𝑎𝑦!). The number of tuples (motions) in each TC depends on the

number of detectable motions before the termination situation happens.

Figure 24. (a) 3D acceleration axes on smartphones; and (b) an atomic gesture containing a sequence of

motions happening within two intervals: (left) a bouncing object keeps moving in the screen after hitting

the edge in first time-interval 𝜑; (right) the proposed approach calculates the next movement after the

second time-interval 𝜃 happens

ϕ θ

-Z

+Z

+Y

-Y

-X +X

202

5.4 HMM-Based Test Case Generation

Human activity recognition and classification has been studied using several different machine

learning approaches such as multi-class support vector machines (SVM) [227], k-Nearest

Neighbor (k-NN) [228], Neural Networks (NN) and HMM-based approaches, but in cases that

the activity sequences are time-varying, HMM based approaches have produced better

performance and results [218], [229], [230]. In addition, the Markovian process had been used in

several motion detection-related studies to create statistical models from clustered data [196].

Following these studies, we also cluster our training data by using the k-means algorithm [231]

to identify the data points (motions) containing related gestures and to assign them to the same

clusters (the number of clusters (k) is selected by using the silhouette score [232]).

In other words, the clustering algorithm is applied to groups of motions with similar behaviour

and allocates them into a single cluster. These clusters will be used as the class labels for the

HMM classifiers. This means that each class indicates a set of similar motions in the

corresponding cluster. Therefore, a motion, which belongs to a class during the classification

process, also shares similar characteristics with the motions in their corresponding cluster. It is

also worth noting that since the motions’ clusters, detected by the clustering algorithm, play the

role of class labels in the proposed HMM classification procedure; we use the term of class label

instead of cluster to avoid unwanted ambiguities.

Consequently, the clustered data will be used to train an initial Hidden Markov Model. Since an

HMM is a Markovian process that contains two sets of states (the observable and the hidden

[latent] states), only the motion sequences, depending on the latent states (motions’ clusters or

classes), are visible in such a model. Therefore, as the classes are invisible from an observer’s

203

view, only the motions in this model are completely observable, an HMM can create a more

powerful model compared to regular Markov models or partially observable Markov decision

processes (POMDP) [26].

The HMM in this study is characterized by the following elements [19]:

• a set of latent states 𝑆 = 𝑠!, 𝑠!,… , 𝑠! , which are hidden from the external observer and

indicates the class of motion sequences;

• a set of observable states 𝑉 = 𝑣!, 𝑣!,… , 𝑣! , where each is mapped to a corresponding

motion sequence 𝑚! ;

• a transition probability 𝐴 !" = {𝑎!"}, 𝑎!" = 𝑃 𝑄!!! = 𝑠! 𝑄! = 𝑠! , 1 ≤ i, j ≤ L, which

determines the transition probability between different classes. For the initial modelling

process, because human users generate the motions, the initial transition probabilities

between different classes of motions can be extracted directly from the training data;

• an emission probability 𝐵 !" = {𝑏! !" }, 𝑏! 𝑣! = 𝑃 𝑀! = 𝑣! 𝑄! = 𝑠! , 1 ≤ j ≤

 L, 1 ≤ k ≤ N, which indicates the probability of a motion sequence belonging to a

specific class (estimated by frequency counting on the clustered training corpus); and

• initial state distribution, Π = 𝜋! , 𝜋! = 𝑃 𝑄! = 𝑠! , 1 ≤ i ≤ L. Each and every state

can be an initial state in this study.

Using the values of A, B, and Π, an HMM can be used as a generator to create an observation

sequence (where 𝑇 is the number of motions in the test case): 𝑀 = 𝑀!,𝑀!,𝑀!,… ,𝑀! . We use

the notation Λ = (A, B, Π) to simply indicate the complete parameter set of the HMM with

respect to the Markovian process, which illustrates that the probability of a motion’s occurrence

only depends on the previous motion:

204

𝑃 𝑠!!! 𝑠! , 𝑠!!!, 𝑠!!!,… = 𝑃 𝑠!!! 𝑠! (43)

 This initial HMM model is used as an input to an expectation-maximization (EM) algorithm;

specifically, we utilize the Baum-Welch algorithm in this study [27]. This algorithm estimates

the optimal model with the highest likelihood of the estimated parameters. In Table 39, this

procedure is done by running the HMM	 function in the second line. Then, the initialAccel	

function initializes, the acceleration parameters of the first test motion by calculating the mean of

the acceleration pairs (i.e. (𝑎𝑥,𝑎𝑦) in 2D space) in each HMM state and by selecting one pair

randomly. Then, in lines three and four of this algorithm, the CreateMotion	 function is

generating a motion sequence using the SUVAT equations and the Update function is storing the

newly created motion sequence as the current motion. After generating the initial motion, the	

CreateMotion	and	Update	 functions are called again but this time within the time interval 𝜑,

until a termination condition happens (line 5-10). This procedure generates a simple gesture

based upon the previous motion, using appropriate physics equations. In order to generate more

realistic and complicated gestures, we propose using the HMM classifier to detect the sequence

class label at each interval 𝜃 [18], [28], [29].

The HMMClassifier function in line 12 of the algorithm classifies the current motion sequence

into an appropriate class of gestures. This function combines a set of sequences of motions and a

list of class labels to train one HMM per class label (where 𝐿 is the number of class labels).

Subsequently, the trained models are used to calculate the forward probability of a motion

sequence 𝑀 per model 𝛬!!! (𝑃 𝑀 Λ!). 𝑃 𝑀 Λ! is calculated using the Forward algorithm,

which is internally called during the execution of the HMMClassifier function. The forward

algorithm computes the forward probability,𝛼! 𝑡 , as the joint probability of observing the first t

205

vectors 𝑚! ,𝑇 = 1,… , 𝑡 while in state k at time t. Another way to state this would be that

𝛼! 𝑡 = 𝑃 𝑚!,𝑚!,… ,𝑚! , 𝑠! = 𝑘 𝛬 which is the probability of observing (𝑚!,𝑚! ,… ,𝑚!),

assuming that the system is in state k at time t. Given a list of forward probabilities for a motion

sequence M, we are able to easily detect a model with the maximum probability and assign its

corresponding class label as the motion’s class label [19]. Determining the class label of a

motion sequence allows us to easily detect the motion sequences belonging to the same class

from the training data set, and estimate the next motions values by calculating the mean of the

accelerations of the motions (the Accel function in line 12). Moreover, the generated motion is

added to the training set to avoid over-fitting. This helps the model to learn from the data rather

than memorizing the trend (lines 10 and 16). It is worth noting that in this study, we also use the

term of “occurrence likelihood” to refer to the forward probability.

Putting it all together, lines five to seventeen of Table 39 create a set of motion sequences within

two different intervals. Simple gestures are generated based on physics equations once the first

time-interval happens. But, the more complicated motions (e.g. gestures with variable

accelerations) that may require a longer time period to be created by a human user are generated

within the second time interval. This process provides sufficient duration to allow the method to

generate more complex gestures. An example of a simple motion is the one calculated by the

SUVAT equations after the bouncing ball hitting the horizontal wall. While the complex one is a

motion calculated by HMM classifiers for a ball slowly bouncing in the middle of the screen. In

reality, when the ball is slowly moving in the screen, the human user can change the direction of

movement by shaking the phone in several different directions. Therefore in an automated test

generation process, a trained model is needed to predict the most probable acceleration of the

206

gesture from the last motion’s parameters. In this study, the motion generation is stopped and a

test case is generated once a terminal condition (e.g. hitting the vertical wall) happens.

When the application under test is motion-based applications with no acceleration parameter

involved, lines 18-30 of this algorithm will be applicable. In such situations, the first motion can

be created by randomly selecting a touched-point in the screen. In a 2D space, the motion

sequence only contains the coordinates of the touched-point(𝑥,𝑦). Similar to the algorithm

provided in Table 39, within different intervals 𝜑 and 𝜃, random touch points are generated, or

the HMMClassifier function predicts the next motion class-label and the Position function

returns the position of a touched point by calculating the mean of the position pairs in the

predicted class. Depending on the application design’s objectives, the position of a touched-point

can be used to draw a shape or render functionality such as vibrating the phone or opening a

dialogue box. In this algorithm, in order to focus more on the second case study, we consider

creating a geometrical shape (e.g. circle) with the touched-point coordinates as its center

(CreateShape function). Additionally, when an application covers non-gyroscopic events such

as clicking a button or choosing an item from the menu, RandomEvent function randomly

generate an event, executable within the current state of the application.

5.5 Running Example

In order to clarify the proposed test case generation procedure, we considered a very small

portion of the training data generated by a human user in the bouncing ball application. An

example of a single motion is provided below:

05-07	17:36:15.828:	Vx(32065):	-2.7148619	

05-07	17:36:15.828:	Vy(32065):	-2.7148619	

207

05-07	17:36:15.828:	lBallX(32065):	549.0	

05-07	17:36:15.828:	lBallY(32065):	20.0	

05-07	17:36:15.828:	Ax(32065):	0.090979666	

05-07	17:36:15.828:	Ay(32065):	-0.12330139

Table 39. Test case generation procedure for cases with acceleration involved

5. Input: Initial position of the bouncing object (x,y), training data set (S), set of class labels (C); i = 2;
6. Output: Test case (TC)

1. 𝒊𝒇 (𝐴𝑐𝑐𝑒𝑙_𝑀𝑜𝑡𝑖𝑜𝑛𝐸𝑣𝑒𝑛𝑡){
2. (ax,ay)⟵ initialAccel(HMM(S,C))
3. 𝑚! ⟵CreateMotion(ax,ay,x,y)
4. Update(ax,ay,x,y)
5. While (!terminalCondition)
6. 𝒊𝒇 (𝑐𝑢𝑟𝑇𝑖𝑚𝑒 – 𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒1) ≥ 𝜑)
7. 𝑖 ← 𝑖 + 1
8. 𝑚! ⟵CreateMotion(ax,ay,x,y)
9. Update(ax,ay,x,y)
10. 𝑆 ← 𝑆 ∪ {𝑚!}
11. 𝒊𝒇 (𝑐𝑢𝑟𝑇𝑖𝑚𝑒 – 𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒2) ≥ 𝜃)
12. (ax,ay)⟵Accel(HMMClassifier(𝑚!,S,C))
13. 𝑖 ← 𝑖 + 1
14. 𝑚! ⟵ CreateMotion(ax,ay,x,y)
15. Update(ax,ay,x,y)
16. 𝑆 ← 𝑆 ∪ {𝑚!}
17. End while
18. 𝒊𝒇 (𝑁𝑜𝑛𝐴𝑐𝑐𝑒𝑙_𝑀𝑜𝑡𝑖𝑜𝑛𝐸𝑣𝑒𝑛𝑡){
19. While (!terminalCondition)
20. 𝑰𝒇 (𝑐𝑢𝑟𝑇𝑖𝑚𝑒 – 𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒1) ≥ 𝜑)
21. 𝑖 ← 𝑖 + 1
22. 𝑚! ⟵RandomPosition (x,y)
23. CreateShape(x,y)
24. 𝑰𝒇 (𝑐𝑢𝑟𝑇𝑖𝑚𝑒 – 𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒2) ≥ 𝜃)
25. 𝑖 ← 𝑖 + 1
26. 𝑚! ⟵Position (HMMClassifier(𝑚!!!,S,C))
27. 𝑆 ← 𝑆 ∪ {𝑚!}
28. CreateShape(x,y)
29. End while
30. }
31. 𝒆𝒍𝒔𝒆{
32. 𝑡! ⟵RandomEvent();
33. 𝑗 ← 𝑗 + 1
34. }
35. Return 𝑇𝐶 ← 𝑚!,… ,𝑚! + 𝑡!,… , 𝑡!

*lastUpdate1 indicates the last update that happened at interval φ while lastUpdate2 indicates the last
update that happened at interval θ

208

Table 40. Training motions clustered in two distinct clusters

Cluster 1 Cluster 2

(211.362, 502, 9.787, 9.787, -0.306, 7.948) (20.0, 344.450, 24.511, 24.511, -4.563, -3.260)

(220.376, 502, 9.259, 9.259, 0.550, 7.753)

(229.642, 502, 8.681, 8.681, -0.550, 7.753)

(245.160, 502, 7.443, 7.443, -0.835, 7.907)

(252.285, 502, 6.566, 6.566, -0.835, 7.907)

(270.067, 502, 2.694, 2.694, -1.039, 7.953)

(272.012, 502, 1.572, 1.572, -1.067, 7.899)

(271.131, 502, -1.667, -1.667, -1.170, 7.818)

…

(20.0, 45.517, 8.898, 8.898, -6.545, 6.408)

(26.236, 20.0, 3.899, 3.899, 11.504, 5.465)

(20.0, 182.771, 23.407, 23.407, 8.195, -7.834)

(20.0, 235.211, 19.966, 19.966, -8.742, 0.182)

(300.0, 118.057, -28.868, -28.868, -8.030, -4.404)

(300.0, 367.611, -36.233, -36.233, 8.330, 1.120)

(20.0, 378.444, 28.222, 28.222, -2.802, -0.751)

…

In this running example, we follow the test generation framework (Figure 23) provided in

Section 5.3 step by step to generate test cases:

• Gathering training data: 30 motions in the format of 6-tuple (𝑙𝑥! , 𝑙𝑦! , 𝑣𝑥! , 𝑣𝑦! ,𝑎𝑥! ,𝑎𝑦!)

are gathered as the result of user interaction with the application.

• Clustering motions: the training data is clustered into 2 distinct clusters (classes) using

the k-means algorithm. Due the space limitations a partial view of the clusters are

provided in Table 40.

• Initial HMM training: the clustered data is then used to train the initial HMM using Baum

Welch algorithm. In this case, the HMM model contains 30 observable states and 2

hidden states (since there are only two clusters). Then, the acceleration parameter of the

first test data motion is generated by calculating the mean of the acceleration pairs of the

motions belonging to each hidden state of the initial HMM and subsequently selecting

209

one pair randomly. After determining the initial acceleration parameter, the first motion is

created using this parameter and the SUVAT equations. In this case, given:

the (1) initial acceleration parameter:

𝑎𝑥,𝑎𝑦 = (0.59855044,−0.91578215)

(2) the initial location of the ball in the screen:

𝑙𝑥!, 𝑙𝑦! = (309,253)

and (3) knowing that the initial velocity is equal to zero (ball is not moving at the

beginning):

(𝑣𝑥!, 𝑣𝑦!) = (0,0)

motion

𝑚!(309.080798,252.876369,0.1755132,−0.2747346,0.059855044,−0.091578215)

is generated using physics equations: 𝑣 = 𝑎𝑡 + 𝑣! and 𝑙 = 𝑙! + 𝑣!𝑡 +
!
!
𝑎𝑡!.

Then within the time interval 𝜑 = 300𝑚𝑠 other motions are also generated through the

same process with the difference that the acceleration of the current motion is used as the

initial acceleration for the next ones. These motions will be added to the training set to

avoid over-fitting. (Figure 25 depicts a schema of the trained initial HMM).

Figure 25. An overview of trained HMM in running example

• Test data generation using HMM classifiers: Now, in order to generate more complex

motions (within time interval 𝜃 = 500 𝑚𝑠), covering unexpected human-generated

gestures, two (number of classes) HMM classifiers are trained and the forward

210

probability of the current motion is calculated to reveal the class of motions it belongs to.

Then, the mean of the accelerations of the motions belonging to this class are calculated;

and again, are used as input of the motion equations to calculate the velocity and location

parameters. For example, if the occurrence likelihood (forward probability) of the current

motion 𝑚!(20, 492.07,2.1625056,2.1625056,−0.00778115, 0.24600422) in class 𝑐!

reaches the maximum amount compared to the other class (𝑐!), the mean of the

acceleration of the motions in class 𝑐! is calculated and will be used as the new current

motion’s acceleration. In this case, the mean of the accelerations in 𝑐! is equal to

(0.3471,1.1162). Therefor, using physics equations, the next motion would be:

𝑚!!!(21.1246403,493.2907778, 2.3360556,2.7206056,0.3471,1.1162),

This motion also will be added to the training set.

Once, the ball hits the vertical wall, the motions generated since the last hit, are saved in the form

of a test case and will be executed to move the ball toward different directions on the screen.

5.6 Empirical Evaluation

5.6.1 Experimental Setup

To study the proposed approach, we performed an experiment on four case studies from three

different mobile applications that could detect and execute motion-based gestures. Unfortunately,

finding case studies in this area is far from straightforward. Firstly, the volume of open-source

games is limited and many of them are ports of existing games from traditional platforms. For

example, Wikipedia32, AOpenSource.com33, F=Droid34, and Prism-break35, provide lists of notable

32 https://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications

211

open-source applications for the Android platform. However, upon review, the reader soon

discovers that nearly all of the applications are ports of desktop or laptop applications. Hence,

none of the applications feature user-interaction via gyroscopic input devices. This obviously

renders these applications useless as case studies.

Additionally, it is worth noting that even though our approach is able to generate test cases for

mobile applications covering both gyroscopic and non-gyroscopic events, the focus of the study

is on providing a practical approach for generating motion-based events. This means that the

portion of our algorithm, which is producing the test cases for non-gyroscopic events, can be

easily replaced with other effective GUI-based test case generation techniques such as [206],

[207].

In addition, even if inputs for these types of inputs could be generated in an unbiased form, it is

far from clear a coverage statement could be realized for solely the gyroscopic portion of the

product. And hence, we have decided, regrettably, to limit this study to applications where the

inputs are of a gyroscopic-nature only. This allows us to comprehensively examine these

applications and produce a set of unbiased results from experimenting with these applications.

In the evaluation section, we attempt to answer the following research questions:

• Can the test-generated motions mimic actual user behaviour?

• Does the proposed method improve the code coverage of the SUT when compared to

existing automated techniques (random testing)?

33 http://www.aopensource.com/

34 https://f-droid.org/

35 https://prism-break.org/en/categories/android/

212

• (a) How does the proposed approach compare with random algorithms in terms of the

computational complexity? (b) Can random algorithms produce better test cases (in terms

of the code coverage) than our proposed approach, if the same volume of computational

resources, as given to the HMM-based approach, is assigned to them? The answers to

these questions are provided in the separate section (Section 5.7: Run-time analysis)

5.6.1.1 Case Study 1: Bouncing ball

The first case study is an Android application, a bouncing ball application, which is designed to

record a data set of coordinates from shake and tilt gestures performed by human users

(LOC=716). This application only contains one flying object (round ball), which bounces on the

screen; the ball moves by processing the information it captures from a phone’s accelerometer.

The dynamics of a bouncing ball follows a set of well-studied physics laws and equations [30],

which are used in this study. Since covering the details of such equations is beyond the scope of

this research, we only discuss some of the case-specific motions and equations:

• When the application starts, the ball position is stable in a corner of the screen, waiting

for a motivation. Depending on the power of the first motion, the ball starts moving

toward the motion’s direction. In this study, the time interval 𝜑 is fixed at 300

milliseconds to capture the information regarding the current motion and position of the

ball on the screen and to calculate its next position. The time interval is set to 300

milliseconds to follow the approaches proposed in [195], [196]. In other words: 300 <

 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢𝑠𝑒𝑟 − 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑚𝑜𝑡𝑖𝑜𝑛𝑠.

213

• The second time interval 𝜃 is equal to 500 milliseconds in this study because the time

windows between gestures created by users vary from 500 milliseconds to one second,

we select the lower bound to create more standard motions.

• While the ball is moving on the screen, the motion data is re-ordered in the 6-tuple

format, used to express test motions (Section 5.3.1). Each sequence is terminated

whenever the ball hits the vertical edges of the screen.

Table 41. Simplest Supported Actions and Gestures in Both Types of Application

Bouncing Ball / Extended
Bouncing Ball

Bubbles Diamond

Action Gesture Action Gesture Action Gesture

Tilt the
device
toward left

The ball
bounces to the
left side of the
screen

Touch/Push
the screen.

The circle is
drawn around
the touched-
point

Tilt the device
toward left

The object
bounces to the left
side of the screen

Tilt the
device
toward right

The ball
bounces to the
right side of the
screen

Tilt the device
toward right

The object
bounces to the
right side of the
screen

Tilt the
device to the
front

The ball
bounces down.

Tilt the device
to the front

The object
bounces down

Tilt the
device to the
back

The ball
bounces up

Touch/Push the
buttons

The action
recorded in the
button will be
triggered

Table 41 (First two columns) indicates the simplest possible actions that can be performed

through this application, along with their corresponding gestures. It is noteworthy that in

designing this table, it is assumed that the ball has enough space to move toward each direction.

Obviously, it cannot for example move to the left when it has already hit the right-side edge. Any

combinations of these actions (e.g. curving), which may be produced by rotating, tilting the

214

device, and so on is also considered in this case study. For example, when the user rotates or tilts

the mobile phone toward the right, the ball can moves in a curve instead of moving in a straight

line to the right.

5.6.1.2 Case Study 2: Bubbles

The second case study is another android application called Bubbles, which is able to draw

circles around the touched points on the screen (LOC=423). In order to generate circles

(bubbles), the user touches or pushes the screen resulting in a circle being gradually grown from

the touched point. The maximum length of the circle’s radius is predefined and fixed, so the

circle keeps growing until it’s radius is equal to the maximum number or the user touches

another point in the screen. Table 41 (Second two columns) shows the action (motion event) and

its corresponding gesture. In this case, the motions containing the coordinates of the touched

points are captured within the same time intervals as the first case study to generate a set of

motions. The sequences of motions are continuously generated until a border is touched. Then,

the generated set is considered as a test case.

5.6.1.3 Case Study 3: Extended Bouncing ball

We also modified the Bouncing ball application by adding one more flying object in the screen.

The second ball behaves the same as the first one (Table 41– First two columns), except for the

difference that its initial location in the screen is in the bottom right-hand corner (the original ball

is located in the left side), thus depending to the amount of acceleration received from the

sensors, they can move in diverse directions. The same test generation algorithm is used to

produce test cases for the extended Bouncing ball application (LOC= 1054) as the simple version

and test motions are stored in two separate sets of test suites for each ball.

215

5.6.1.4 Case Study 3: Diamond

In order to evaluate the performance of our proposed test case generation approach in a more

complex framework we also applied our technique to generate test cases for another real world

mobile game. This game, which is called Diamond (LOC= 4311), is a classic game implemented

in a modern way using accelerometer sensor. In this application, the user controls an object in the

screen and tries to collect as many diamonds as possible by moving the mobile phone toward the

correct direction. The player also has to avoid hitting enemy objects and reach to the end point

safely. The moving object follows the common behaviour of a bouncing object (Table II – third

two columns) and the terminal condition happens when the game is over (the game is over, when

the player hits an enemy object or reaches the end point). Moreover, in order to enter the game,

change the settings or quit the game, the player needs to select items from the menu by pushing

some buttons. Therefore, the application is able to handle more than one input type (both

gyroscopic and non-gyroscopic data).

5.6.1.5 Comparison Criteria

In order to address the first research question and analyze the performance differences between

the proposed approach and other test case generation methods, Non-parametric Statistical

Hypothesis Tests and Effect Size (cliff's delta) Measures are applied:

Non-parametric Statistical Hypothesis Test: In this case, we established a null hypothesis and

an alternative hypothesis to be evaluated. The null hypothesis (H0) states the two test case

generation techniques provide the same performance in covering the source code. On the other

hand, the alternative hypothesis (H1) states that if the difference between the medians of the

coverage percentages, is not zero then they will be considered as different. Therefore, by

216

considering a significance level 𝛼 = 0.05, we would be able to reject null hypothesis if

𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 for each independent situation.

Effect Size: In order to add a “magnitude of a treatment effect” to our comparison criteria,

Cliff’s Delta measure is calculated. Cliff’s Delta statistic [86] is a nonparametric effect size

measure that quantifies the difference between two groups of observations by testing the

equivalence of probabilities of scores. In this study, the magnitude of differences between test

generation techniques is assessed using the following thresholds: |𝑑| < 0.147 "negligible",

|𝑑| < 0.33 "small", |𝑑| < 0.474 "medium", otherwise "large" [236]. In addition, Cliff’s Delta is

a bounded measure [-1, +1] where the limiting values indicate that the two populations have no

overlap.

5.6.2 Experimental Results

To answer the research questions and evaluate the efficiency of the proposed test generation

approach, a volunteer interacted with all the applications and produced motion sequences which

are then used as training sets. For instance, in the Bouncing ball application, a set of training

data was obtained by recording the motion coordinates for three minutes from a total of 317

gestures performed on two different Android devices36. Applying the silhouette score, we

grouped the motions into 95 clusters. For the extended version of this application, 600 motions

and 105 clusters were considered. This data is recorded in 6 minutes. For the Bubble application,

these numbers were 481 and 95 respectively (motions are stored for 2 minutes). Training

motions are also stored in the 6-tuple format used to express test motions (Section 5.3.1). The

amount of time allocated to each training process is estimated based upon the time a new user

36 Samsung Galaxy S5 (Android version 4.4.2), Samsung Galaxy S4 (Android version 4.3)

217

needs to become visually familiar with the application and to generate a set of motions. In this

study, this time is estimated by calculating the mean of the time that new users require to

generate a reasonable set of motions for the considered applications.

To evaluate the quality of the generated test cases in all case studies, 20 sets of 200 motion

sequences were generated using the proposed technique. In addition, for the Bouncing ball

application, the same number of motion sequences (20 sets of 200 motions) was created by two

random test generator procedures:

• Physics-based: takes a human-user motion to initialize the acceleration or position

parameters then creates the next motions based on the current one by randomly selecting

a physics equation (Table 42).

• Simple Random Algorithm: Creates test cases by simply generating random motion

sequences within the data ranges supported by the hardware. The well-known Mersenne

Twister (MT) approach, a pseudo random number generator (PRNG) is used in this

study, which generates random numbers based on Mersenne prime 2!""#$ − 1, using a

32-bit word length [237]. In this study, a human user also generates the initial motion.

Since, the HMM-based technique is using human-data to train the initial model and

generate the first motion, the simple random test case generation process also get

initialized by human-generated data.

• Hybrid approach: In order to conduct a fair comparison between approaches, some

experiments have been designed to execute combinations of human and randomly

generated test cases (e.g. “Human + Simple random” and “Human + Physics-based”).

This means that using human data is not limited to the initialization phase and user-

218

generated data forms half of the test cases. Therefore, a hybrid test case consists of a

combination of human generated motions and random motions.

• Random-Human: we also created another random-based approach by randomly selecting

motion events from the training data. In this approach we generated test cases by picking

random motions from human generated training set.

• Monkey [199]: In order to compare the performance of proposed approach with other

well-known existing tools. We also generated test uses for the considered case studies

using the Monkey tool. This tool is able to send a pseudo-random stream of user events

(such as clicks, touches, or gestures, as well as a number of system-level events) to the

system. Such streams act as a set of test cases for the application under test.

• Sapienz [210]: Another well-known testing approach for Android mobile applications is

called Sapienz. This technique uses multi-objective search-based testing to automatically

generate test cases. In another word, Sapienz combines random fuzzing, systematic and

search-based exploration, exploiting seeding and multi-level instrumentation together to

generate automated tests cases for Android application. In this study we applied the

white-box manner, which uses fine-grained instrumentation at the statement level.

Table 42. Random Test case generation procedure for cases with acceleration involved (Physics-based)

• Input: Initial position of the bouncing object (x,y); i = 2;
• Output: Random Test case (TC)
1. (ax,ay)⟵ getHumanMotion()
2. While (!terminalCondition*)
3. e ⟵Select RandomEquation()
4. m! ⟵CreateMotion(ax,ay,e)
5. i ← i + 1
6. End while
7. Return TC ← {m!,… ,m!}

 *In this case we terminated the process after generating 200 test cases

219

It is worth noting that in cases (e.g. the second case study), where the acceleration parameter is

playing a significant role in defining a motion, the generated accelerations in random test cases

are limited to the acceleration range supported by the hardware. In addition, since the

acceleration parameter and its corresponding physics equations are not considered in the second

case study, only the simple random algorithm is implemented to generate the random touched-

points.

To answer the first research question, we classified two sets of test cases (derived from Bouncing

ball and Bubbles applications) by using the HMM classifier into 95 classes which are defined

based upon the data generated by the human users. The same procedure is applied on the test

data generated for the extended Bouncing ball and Diamond applications and they are classified

into 105 clusters. Then the occurrence likelihood (LC) of each sequence of motions for each

class label are calculated where 𝐿𝐶 = 𝑃 𝑀 Λ! ,𝛬!!!𝑎𝑛𝑑 𝑀 ∈ 𝑇𝐶 , where L is the number of

classes. In this case, when max! 𝑃 𝑀 Λ! is a small quantity, it can be concluded that the test

case TC is not behaving similar to the test cases that were used to create the classes.

Additionally, since these classes are created using human-generated motions, it can be implied

that the probability of the test case TC being generated by a human user is low.

The results show that the motions generated using the HMM-related technique have a higher

forward probability (occurrence likelihood) compared to both Simple Random and Physics-based

approaches. Accordingly, it can be concluded that the test cases generated using the proposed

technique are more likely to be generated by a human user. The reason is that each class label

describes a set of human-generated motions; therefore once a motion has high occurrence

likelihood in one of these classes, it can be concluded that the probability of being generated by a

human user for this motion is high.

220

Figure 26 (a), (b), (c) and (d) depict boxplots showing the distribution of the occurrence

likelihoods of the motions produced by the HMM classifier model and the simple random

approach for all considered applications. According to these figures, it also can be concluded that

the generated random tests in Bubble application are “behaving better” than the random tests in

the rest of applications. The reason is that the gestures in the Diamond and Bouncing ball

applications are more complex than the gestures in the Bubble application in terms of motion

sequences. This makes it more difficult to generate gestures resembling human behaviour using

the random approach in the Bouncing ball and Diamond applications when compared to the

Bubble.

To address the second research question, the JaCoCo37 code coverage library was used. Using

this toolkit, bytecode instrumentation is applied, and the branch coverage value is measured.

Since we generated 20 sets of 200 test cases using each approach, the means of the coverage

percentages on all sets, are calculated to achieve more accurate results (In total, 64000 motion

sequences are generated during the experiments). Table 43 and Table 44 report the means of the

branch-coverage percentages calculated by running each of the test case generation approaches

in all applications.

Figure 27 (a), (b) and (c) also show the distribution of the code coverage using box plots.

According to these results, HMM-based test cases achieve better coverage compared to the

random and human-generated test cases. In addition the results of applying the Wilcoxon signed

rank test indicates the HMM-based approach is significantly different from the other techniques

in terms of code coverage.

37 http://www.eclemma.org

221

Table 43. Results of Calculating Effect Size Measure and the Mean of Code Coverage For Test Case

Generation Methods in Bouncing ball and Extended Bouncing ball Application

 Approach
Mean of
Code
Coverage (%)

Approach Delta
Estimate p-value

B
ou

nc
in

g
ba

ll

HMM-based 79.26 HMM-based Vs. Physics-based -0.965 4E-05

Physics-based 55.95 HMM-based Vs. Simple Random -1 4E-05

Simple Random 33.05 HMM-based Vs. Human +
Physics-based -0.7357 0.00019

Human + Physics-
based 63.63 HMM-based Vs. Human + Simple

Random -0.6761 0.00034

Human + Simple
Random 62.73 HMM-based Vs. Human -0.7225 0.00017

Human 60.2 HMM-based Vs. Random-Human -0.8575 7.6E-06

Random-Human 59.05 HMM-based Vs. Monkey -0.95 1.9E-06

Monkey 37 HMM-based Vs. Sapienz -0.95 1.9E-06

Sapienz 41.15

Ex
te

nd
ed

 B
ou

nc
in

g
ba

ll

HMM-based 81.3 HMM-based Vs. Physics-based -0.95 1.9E-06

Physics-based 52.75 HMM-based Vs. Simple Random -0.95 1.9E-06

Simple Random 31.77 HMM-based Vs. Human +
Physics-based -0.71 3.4E-05

Human + Physics-
based 62.78 HMM-based Vs. Human + Simple

Random -0.575 0.0028

Human + Simple
Random 62.98 HMM-based Vs. Human -0.62 0.0002

Human 62.05 HMM-based Vs. Random-Human -0.87 1.3E-05

Random-Human 58.7 HMM-based Vs. Monkey -0.95 1.9E-06

Monkey 37.75 HMM-based Vs. Sapienz -0.95 1.9E-06

Sapienz 42.3

Table 43 and Table 44 also report the p-values and delta estimates at the 95% confidence

interval. The Cliff’s Delta measure provides more detailed information to this picture by showing

that a “large” effect size exists (in favour of HMM-based approach) for all of the comparisons.

The achieved results confirm that the HMM-based test case generation approach not only

automates the test generation and execution procedure for motion-based events, but also (1)

creates better test cases in terms of mimicking actual user gestures; and (2) improves the

222

(branch) code coverage for the SUT. In the next section, we compare our proposed approach

with random generation in terms of the time complexity.

Table 44. Results of Calculating Effect Size Measure and the Mean of Code Coverage For Test Case

Generation Methods in Bubble and Diamond Applications

 Approach Mean of Code
Coverage (%) Approach Delta

Estimate
p-
value

B
ub

bl
es

HMM-based 92.06 HMM-based Vs. Human +
Simple Random -0.9325 5E-05

Simple Random 74.28 HMM-based Vs. Human -0.9325 4E-05

Human + Simple
Random 79.97 HMM-based Vs. Simple

Random -1 4E-05

Human 78.94 HMM-based Vs. Random-
Human -0.9425 1.9E-

06

Random-Human 76.8 HMM-based Vs. Monkey -0.95 1.9E-
06

Monkey 74.85 HMM-based Vs. Sapienz -0.985 1.9E-
06

Sapienz 75.65

D
ia

m
on

d

Human + Physics-
based 63.02 HMM-based Vs. Human +

Simple Random -0.7025 0.0003

Human + Simple
Random 61.39 HMM-based Vs. Human -0.5525 0.0022

Human 63.85 HMM-based Vs. Random-
Human -0.575 0.0016

Random-Human 62.99 HMM-based Vs. Monkey -0.95 1.9E-
06

Monkey 42.25 HMM-based Vs. Sapienz -0.95 1.9E-
06

Sapienz 50.91

223

	

					 	

Figure 26. (a) Boxplot summarizing the achieved likelihoods for each approach in the Bouncing ball

application. (b) Boxplot summarizing the achieved likelihoods for each approach in Bubbles application

(c) Boxplot summarizing the achieved likelihoods for each approach in Extended Bouncing ball

application (d) Boxplot summarizing the achieved likelihoods for each considered approach in Diamond

application

	

HMM based approach Random approach Physics-based
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

Li
ke

lih
oo

d
 HMM based approach
 Random approach
 Physics-based

HMM based approach Random approach
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)

L
ik

el
ih

oo
d

 HMM based approach
 Random approach

HMM based approach Random approach Physics-based
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c)

Li
ke

lih
oo

d

 HMM based approach
 Random approach
 Physics-based

HMM based approach Random approach
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d)

Li
ke

lih
oo

d

 HMM based approac h
 Random approach

Human Physics-based RandomHuman + Random HMMHuman +Physics -basedRandom-Human Monkey Sapienz
0

20

40

60

80

100 Hum an
 Physics-based
 Random
 Hum an + Random
 HMM
 Hum an +Physics-based
 Random -Hum an
 M onkey
 Sapienz

(a)

C
ov

er
ag

e
(%

)

Human Random HMM Human + RandomRandom-Human Monkey Sapienz
0

20

40

60

80

100

 Human
 Random
 HMM
 Human + Random
 Random-Human
 Monkey
 Sapienz

(b)

C
ov

er
ag

e
(%

)

224

Figure 27. (a) Boxplot summarizing the results of calculating the code coverage for each approach in the

Bouncing ball application. (b). Boxplot summarizing the achieved results of calculating the code coverage

for each approach in the Bubbles application. (c) Boxplot summarizing the results of calculating the code

coverage for each approach in the Extended Bouncing ball application (d) Boxplot summarizing the

results of calculating the code coverage for each approach in the Diamond application

5.7 Run-Time Analysis

In order to answer the part (a) of the third research question, we considered the computational

complexity of the proposed test generation approach by running a single instance of this

technique on a hardware and software platform consisting of a 2x2.4 GHz Quad-Core CPU, 32

GB RAM on a Mac Pro, Eclipse Indigo38 and a Samsung Galaxy S5.

To investigate the time complexity of HMM-based approach, we analyzed the complexity of the

involved algorithms. Based on the Baum-Welch and forward algorithms’ time complexities, the

computation order of our approach is polynomial 𝑂 𝑇!𝑛 , where T represents the number of

hidden states, and n indicates the number of observations. Hence, each algorithm’s time

complexity will not grow exponentially by increasing the number of motions.

38 https://eclipse.org/indigo

Human Physics -based RandomHuman + RandomHMMHuman + Phys ics-basedRandom-HumanMonkey Sapienz
0

20

40

60

80

100

 Hum an
 Physics-based
 Random
 Hum an + Random
 HM M
 Hum an + Physics-based
 Random -Hum an
 M onkey
 Sapienz

(c)

C
ov

er
ag

e
(%

)

Human Random Human + Random HMMHuman + Physics -basedRandom-Human Monkey Sapienz
0

20

40

60

80

100
 Human
 Random
 Human + Random
 HMM
 Human + Physics-based
 Random-Human
 Monkey
 Sapienz

(d)

C
ov

er
ag

e
(%

)

225

Moreover, recent literature has considered the question of should algorithms be compared

against their speed of performance – if an algorithm is twice as slow as the other algorithm

should the quick algorithm get twice as many tries at getting it correct? The answers to these

questions should also address part (b) of the third research question.

To provide an accurate answer to this question it should be noted that, while it is easy to have

sympathy for this viewpoint, it is very difficult to construct an unbiased examination of

algorithms from this perspective. Consider, testing and test case generation, the topic of this

article, the first problem encountered is that test generation is only a sub-process. Following

[238] an automated testing system has three components; test generation, test execution, and

examination of the test results. So, the total time (𝑡!) is combination of all; 𝑡! = 𝑡! + 𝑡! + 𝑡!

where 𝑡!, 𝑡!, and 𝑡!stand for generation time, execution time, and result examination time,

respectively. Test generation and execution can be automated easier than test result examination

– the production of meaningful test oracles is still at a very early stage in research. With respect

to examination of the test results, two options are normally used:

• A test oracle is constructed to automate the test examination. The test oracle usually has a

simplified definition of a defect. Does the system crash or not, is an example of such a

description. Here each crash is considered a "defect".

• The test results are investigated manually by the tester.

When t! is small (very small programs) and the test result examination is fully automated (small

𝑡!), one would be better off running more test cases instead of generating more efficient test

cases [239]. In such a situation, methods that have high runtime compared to random generation

are not cost effective. However, industrial software’s execution runtime is usually large enough

226

to have adequate time for test generation. Yoo et al. [240] have considered using parallelised

search based optimisation algorithms to find optimal sets of test cases or to prioritize test cases

for regression testing, since executing all test cases for large-scale applications is a very time

consuming task. The total test execution time in their study is equal to the times for initializing

test cases, evaluating the fitness values of different generations and the remaining parts of the

execution time.

Further, test result examination is not typically fully automated, unless a simplistic test oracle

(e.g. finding system crashes) is utilized. Hence, test result examination normally requires manual

work by the tester. Hence, generating more effective test cases, which normally have higher

runtime than random test cases is believed to improve failure detection in most cases. Hence, in

many situations running test case generation algorithms for equal amounts of time may actually

be a rather poor objective.

Additionally, fast algorithms producing large numbers of poor test cases have a significantly

detrimental effect on the effectiveness of the entire testing process. Previous research shows that

individual aspects such as testers’ skills have as strong an effect on the results of testing, as do

the test case generation techniques. Other components, including test case execution and

especially manual test oracle processes are far from straightforward. Several empirically-based

findings [241]–[245] have emphasized the role of experience and skills in these software testing

activities. Hence, in general, making the execution and manual test oracles components more

complex by running test case generation algorithms that produce large volumes of poor test cases

is normally a bad idea. Other studies explicitly warn against producing large numbers of

unproductive test cases. For example, in Williams et al. [246] based upon interviews with actual

practitioners at Microsoft, state “Unit testing coverage needs to be measured. The quantity of test

227

cases is a bad measurement. More reliable is some form of code coverage (class, function, block

etc.). Those measurements need to be communicated to the team and be very visible.”

This implies that the practitioners are looking for techniques which assist in producing test sets

which have good characteristics (such as coverage) while avoiding bad characteristics (such as

large volume).

In addition, many new testing initiatives such as continuous integration (CI) become impossible

to implement as the size of the test set increases. CI is highly dependent on cycle time – time to

compile and automatically execute the test set – unless the cycle time remains short, developers

quickly become disenfranchised by the process. This leads to abandon of the execution of the test

set and results in increased defect rates. In conclusion, much research exists which suggests that

automatic test case generation algorithms should be principally concerned with producing high-

quality test cases rather than worrying about execution times except in extreme situations.

Even if we ignore this, comparing execution times are still a highly problematic undertaking.

Often the algorithms will be produced by different authors, be at different stages of development,

and utilize different technologies. For example:

1. The current algorithm is produced by a student programmer, whereas a random library

Mersenne Twister has been actively produced and evolved over a substantive period by a

large pool of professions, who actively ensure that the code is efficiency whereas the

current algorithm is simply a first-cut prototype with no real interest in efficiency.

2. Mersenne Twister has seen decades on development with many proposals on producing

more and more efficient versions whereas the current algorithm has seen none.

228

3. Most random libraries are written in C; whereas the current algorithm is written in R.

Anecdotal comparisons often state that algorithms written in R run 1000 times slower

than equivalent algorithms in C39. Hence, any attempt to compare two such algorithms via

execution time would be highly biased rendering any such results next to useless.

Perhaps, a better viewpoint is to consider the algorithms via their algorithmic complexity

statements. However, even here the volume of work on developing an algorithm creates a

significant bias. [169] noted that adaptive testing algorithms (ART) such as [247] were not

effective because of their 𝑂(𝑛!) time complexity, where n is the number of test cases. However,

the field had previously made no real attempt at producing more efficient algorithms. Recently

Shahbazi et al. [238] has produced a new ART algorithm, which produces more effective test

cases than previous ART algorithms. In addition, the paper also looked at time complexity and

produces test cases with a time complexity of 𝑂(𝑛). Following up from this work, Singh et al.

[248] have recently produced a concurrent version of this algorithm with time complexity of

𝑂(𝑛/𝑝), where p is the number of processors available to the algorithm. Hence, even the

algorithmic complex of an algorithmic tends to reduce over time as more effort is spent upon a

topic. Implying that for any algorithm with a known polynomial-time solution, that even

algorithmic complexity is a non-stable indicator of performance.

Having said all of this, we still provide some guidance on the effectiveness of the algorithms

with regard to computational complexity. Therefore, in this study, which the computational

complexity of the proposed approach is 𝑂 𝑇!𝑛 , assuming that the method generates 200

motions using train data clustered into 13 different classes, the asymptotic complexity of the test

39 http://lists.nongnu.org/archive/html/igraph-help/2011-02/msg00045.html

229

generation process would be 13×13×200 = 33800. Thus, if we allocate the same asymptotic

complexity to random test generation, with computational complexity 𝑂 𝑛 , random test

generation approach will be able to generate 33800 motions in the provided time. Obviously, it

would be more expensive to run 33800 random motions compared to 200 motions generated by

HMM-based approach.

As illustrated in Table 45, it has been noticed that running all of these motions (33800) in the

Bouncing ball application improves the average code coverage up to 42% for the random

approach, which is sill lower than coverage, reached by HMM-based technique (75%), running

200 motions. In addition, Running the 33800 test motions in Bubbles increases the coverage to

78% for random, while the percentage of code coverage is 92% for the HMM-based test case

generation technique using 200 test motions. Therefore, it can be concluded that providing the

same resources as HMM-based approach to random does not necessarily lead to significant

improvement in the code coverage. Additionally, the time it takes to generate 200 motions using

the HMM-based technique (𝒕𝒈) is less than a minute, for the bouncing ball application, while it

takes 3 minutes to execute them; therefore 𝒕𝒈 < 𝒕𝒆. While, the time is required to execute the

33800 test cases generated by random approach is 23 minutes. This result confirms the

statement provided at the beginning of this section, illustrating that generating too many test

cases using random techniques is not always a good option for improving code coverage.

Specifically, high test-execution time in industrial case studies with large test suites provides

sufficient time to generate more efficient test cases, using well-designed test case generation

approaches.

230

Table 45. Results of Providing Same Resources as HMM-based to Random

 Approach Code Coverage
(%)

𝐭𝐠(min) 𝐭𝐞(min)

Bouncing
ball

HMM-based (200
motions)

75% 0.5 3

Random (33800
motions)

42% 0.17 23

Extended
Bouncing
ball

HMM-based (200
motions)

75% 0.5 3.2

Random (33800
motions)

40% 0.17 24

Bubbles HMM-based (200
motions)

92% 0.2 1.2

Random (33800
motions)

78% 0.08 15.6

Diamond HMM-based (200
motions)

71% 0.7 2.8

 Random (33800
motions)

46% 0.25 20

5.8 Threat to Validity

In this section, we consider the potential threats to the validity of our research and discuss the

methods used to address them. In this study, we are principally concerned with three types of

threats: internal validity, external validity, and the power of the experiment

Threats to the internal validity might come from the method of assigning the time intervals in the

empirical study. If the time intervals are estimated to be too short (long), then more (less)

motions will be generated compared to when a human user is interacting with the application. To

address this issue, we estimated the minimum and maximum numbers of generated movements

via several users’ experiences and considered their average as a type-one interval (𝜑).

On the other hand, the threats to the external validity of our research are centred on the

generalization of the results to other SUT motion-based applications. In this study, we consider

231

four applications and two types of motion-based applications (both with and without gyroscopic

inputs). However, we also point out that the proposed technique should be applied to more and

different case studies (e.g. 3D applications) in future work.

The third threat represents the power issue. This can lead to type-two errors in studies with

insufficient numbers of samples. To address this issue, we recorded three sets of 317, 481 and

600 motion sequences to design the training sets. The data was also grouped into 95 and 105

classes, which led to training two sets of 95 HMMs and a set of 105 HMMs.

Finally, at the meta-level an obvious risk exists: Are the three research questions good proxies

for defect finding capabilities? Ideally, any paper would wish to consider this research question

directly. However, given the relative infancy of these types of systems, insufficient data (with

regard to defects) is believed to exist to allow such an experiment to be adequately constructed.

Hence, the adoption of the proxies for the exploration is required.

5.9 Conclusion

Testing mobile applications that use motion-based gestures to interact with users poses a new

challenge. Test inputs should be realistic motion sequences, which are able to simulate the user’s

behaviour in interacting with the application. This helps in revealing defects, which remain

unknown in applications because they do not conform to expected human-generated motions.

Since, Markovian models have been successfully used in software testing studies to generate

models representing common user behaviour in UI testing [10], [27], [196].

In this study, we have proposed a new HMM-based approach, which presents a solution for

automating the testing process for applications supporting motion-based events. Using this

232

method, gestures can be formally specified as sequences of motions, which are easy to re-execute

in the application. Therefore, an HMM classification approach is used to classify the current

movement into a class of motions providing the best description of the gesture’s characteristics.

Then, according to the results provided by the classification approach and using standard

movement equations, a realistic proxy for the likely next movement coordinates can be

estimated.

We evaluated our approach by generating a set of test inputs for four Android applications with a

gaming theme. The empirical results show that the generated test cases using HMM-based

approach not only cover a higher number of branches in the source code compared to randomly

generated test cases, but the occurrence likelihood of the corresponding motion sequences in

model trained by user generated data is also higher in HMM-based approach. This indicates that

the new approach outperformed the random methods (including Monkey, Sapienz and Random-

Human) in generating test cases that mimic human-user behaviour.

233

6 Conclusion and Future Work

6.1 Conclusion

In this thesis, we introduce and develop the new idea of inferring behavioral models from both

software executions and user-interaction log files. In both cases, a hybrid approach is used to

apply RL and HMM concepts to dynamically generate Extended PFSAs and a set of probabilistic

Markovian models.

In chapter 2 of this thesis, ReHMM (our proposed inference approach) is applied on the

execution traces extracted from seven modules in two different programming languages.

According to experimental results, ReHMM outperforms other EFSA inference algorithms in

terms of the BCR (the measure used to evaluate the accuracy of the model). Moreover, ReHMM

is compared with sk-strings algorithm (a well-known PFSA generation algorithm) and

outperformed it in terms of accuracy. Therefore it can be concluded that ReHMM is able to

generate more accurate models than considered EFSA and PFSA inference approaches.

It should be noted that this study makes a contribution to research in the area by proposing a new

EPFSA inference approach from software execution traces. The proposed technique uses RL and

HMM to explore the transitions, which trigger more changes in the model; and is able to detect

functions governing transitions. This procedure also provides a solution to the problem of the

missing state-action value by assigning Q-valued to the transitions.

In chapter 3 of this study, we propose another inference approach to automatically generate a

reward-augmented user behavioral model from the user-interaction log files. This study makes a

contribution to research in the area by (1) automatically calculating and assigning the states’

rewards which add semantics to the models and ease interpreting the models and detecting

234

design anomalies; (2) covering enterprise-size web applications with no need of instrumenting

the source code; and (3) generating comparable results with the data extracted from Google

Analytics. In order to evaluate our technique, we apply it on user-interaction log files extracted

from the enterprise mobile and web application, called MyUAlberta. Then we compared the

generated model with the user-behavioral workflow extracted from the associated Google

Analytic account. The result indicated that the calculated reward values are compatible with the

values extracted from Google Analytics in determining a page’s importance. Since, unlike

Google Analytics, our approach does not need instrumenting the source code and these results

are only achieved by running the inference algorithm on the log files, it could be concluded that

the proposed approach is useful in legacy applications and in those, where the source code or the

system expert is not available.

In chapter 4, we present a new fault-based test case prioritization approach using an extended

digraph. Again, the digraph is generated by using an RL-based HMM approach. We initialize an

appropriate HMM based on a Q-learning algorithm to infer an HMM with the maximum

likelihood estimate of the parameters. Then we use the estimated model to compute the forward

probabilities of the test cases and prioritized them based upon their corresponding forward

probabilities.

In order to evaluate the proposed method, we used AutoBlackTest, a GUI-based test case

generation tool as a baseline to generate and prioritize test cases. We also included Random,

Additional statement coverage, Worst, Optimal and Weight-based [164] prioritizations to

provide a comprehensive comparison. All considered prioritization techniques are applied on

four different GUI applications. According to the results of different considered measures

including the APFD, relative ratio, boxplots, statistical tests and effect size estimates, RL-based

235

HMM outperforms the other approaches in terms of fault detection effectiveness. It indicates that

the amount of change, a test case may cause in GUI states and, the probability of triggering each

action in each specific state play essential roles in determining the capability of a test case in

detecting faults.

Finally in chapter 5, we propose another HMM-based approach to generate test cases for mobile

applications, supporting motion-based events. Our proposed approach applies an HMM

classification technique to determine the class of the current motion and uses it to predict the

next movement coordinates. In addition, an empirical study is performed to compare the

proposed approach too randomly, and human-generated, test cases in terms of (1): the code

coverage, and (2): the capability of generating motions mimicking human-generated test cases. It

is worth noting that in order to cover generating both simple and complex gestures; we consider

producing test cases within two different time intervals. Within the first interval motions are

generated using SUVAT equations, but within the second time interval, more complicated test

cases are generated using the HMM classifiers and the forward probabilities.

In order to evaluate the HMM-based test case generation approach, we apply this technique to

three Android applications supporting motion-based events. The empirical results indicate that

HMM-based technique covers more branches in the code compared to randomly generated test

cases while, the motions generated using this approach has also a higher occurrence likelihood

compared to other considered techniques. This indicates that the new approach outperforms the

random method in (1) generating motions that mimic actual human-user behaviour; and (2)

reaching the high code coverage.

It is worth noting that we also investigated all of our proposed stochastic approaches in terms of

their time complexity. We performed a run-time analysis on all involved algorithms and

236

concluded that the run-time of none of our proposed algorithms grows exponentially when the

system size increases, which means they all can be applied in large-scale software systems.

6.2 Recommendations for Future Research

Although the results of this research demonstrate improvements in the accuracy and

effectiveness of the model-based testing and behavioral model inference procedures, there is still

room for more improvements. This research can be extended for further investigation as follows:

• The ReHMM algorithm generates a more optimized model with higher quality [36] in

comparison with other considered inference techniques, making it possible to avoid many

false merges during the merging procedure. We believe in order to avoid all inappropriate

merges in such algorithm a more accurate merging protocol should be defined and

applied. Further studies to prove this claim should be considered in the future.

• We also believe that our proposed modelling approach in chapter 3 could be extended to

be applicable on any probabilistic timed automata [107] to capture other user behaviors

and their corresponding reward values.

• Additionally, even though the results of this research improve the effectiveness of test

case prioritization, the RL-based HMM approach still has room for improvement. First,

additional studies can be performed on more applications such as web-based applications.

Second, in this study, we only consider GUI applications. This method can be evaluated

further in order to present a generic approach to generate an RL-based weighted model

for every type of application. [147] represented a static approach to prioritizing Junit test

cases by defining the distance between pairs of test cases based upon using topic

modeling. Such techniques can be utilized to compute the reward function and Q-values

237

in non-GUI based applications. Third, detecting the best sequence of GUI states

contributing to the most appropriate prioritized test suite would be helpful in addressing

the second HMM problem (mentioned in section 5.4.3.2) using Viterbi Algorithm and

finding the most suitable ordering which maximizes the HMM’s likelihood of the

estimated parameters.

• With regard to our motion-based test case generation technique, although there are

promising results, we believe that our experiments only cover an initial exploration of

this area, and several issues remain to be addressed in further studies which could be

covered in future studies: (1) Different types of motion-based applications. This study

only considers two types of mobile applications that use motion events to interact with

users. Future studies should be performed on the proposed technique in more complicated

applications with 3D graphical design. (2) Different time intervals. Using further

empirical experience with different time intervals should also be considered in future

work. (3) Influence of training data on efficiency of generated test cases. Our

evidence is based on estimating HMMs on a single set of training data. There is the

potential to use different methods of sampling the training data, and evaluating their

impact on the efficiency of test cases. For example, different time intervals and

terminating conditions can be used during the training data capturing process. (4) Fault

detection capability. The ability of generated test cases to detect faults should also be

investigated. Unfortunately, we are currently unaware of any suitable application with a

published list of motion-based real-life defects.

Moreover, with the recent developments in the Virtual Reality (VR) technologies; testing

motion-based applications in devices running VR programs is a new challenge. Providing

238

a testing approach, which is able to detect the natural human gestures from users

interactions with devices like Oculus Rifts40 or similar touch controllers introduces a new

and interesting area of research which can be considered in futures studies.

40 https://www.oculus.com/rift/

239

References

[1] J. E. Cook and A. L. Wolf, “Discovering Models of Software Processes from Event-Based

Data,” ACM Trans. Softw. Eng. Methodol., vol. 7, no. 3, pp. 215–249, 1996.

[2] C. Ghezzi, P. Milano, G. Tamburrelli, and M. Sama, “Mining Behavior Models from

User-Intensive Web Applications,” Proceeding 36th Int. Conf. Softw. Eng., pp. 227–287,

2014.

[3] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of software behavioral

models,” Proc. 13th Int. Conf. Softw. Eng., 2008.

[4] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically Discovering

Likely Program Invariants to Support Program Evolution,” IEEE Trans. Softw. Eng., vol.

27, no. 2, pp. 99–123, 2001.

[5] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, A. Zeller, G. Fraser, S. Hack, and A. Zeller,

“Generating Test Cases for Specification Mining,” in International Symposium on

Software Testing and Analysis (ACM), 2010, vol. 38, no. Section 4, pp. 85–95.

[6] S. Hangal and M. S. S. Lam, “Tracking down software bugs using automatic anomaly

detection,” in Proceedings of the 24th International Conference on Software Engineering,

2002, pp. 291–301.

[7] A. . Biermann and J. . Feldman, “On the Synthesis of Finnite State Machines from

Samples of Their Behavior,” IEEE Trans. Comput., no. June, pp. 592–597, 1972.

[8] I. Beschastnikh, Y. Brun, J. Abrahamson, M. Ernst, and A. Krishnamurthy, “Using

240

declarative specification to improve the understanding, extensibility, and comparison of

model-inference algorithms,” IEEE Trans. Softw. Eng., vol. 41, no. 4, pp. 408–428, 2015.

[9] E. Manavoglu, D. Pavlov, and C. L. Giles, “Probabilistic User Behavior Models,” in Third

IEEE Conference o Data Mining, 2003, pp. 203–210.

[10] J. A. Whittaker and M. G. Thomason, “A Markov chain model for statistical software

testing,” IEEE Trans. Softw. Eng., vol. 20, no. 10, pp. 812–824, 1994.

[11] K. Dejaeger, T. Verbraken, and B. Baesens, “Prediction Models Using Bayesian Network

Classifiers,” IEEE Trans. Softw. Eng., vol. 39, no. 2, pp. 237–257, 2013.

[12] A. Avritzer, E. de Souza e Silva, R. M. . Lea˜o, and E. J. Weyuker, “Automated

generation of test cases using a performability model,” IET Softw., no. March 2010, pp.

113–119, 2011.

[13] I. K. El-Far and J. A. Whittaker, “Model- based software testing,” Encycl. Softw. Eng., pp.

1–22, 2002.

[14] M. Utting, B. Legeard, and M. Utting, Practical model-based testing: A tools approach.

Morgan- Kaufmann, 2006.

[15] H. Hemmati, “Similarity- based test case selection toward scalable and practical model-

based testing,” University of Oslo, 2011.

[16] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro, “AutoBlackTest : Automatic Black-

Box Testing of interactive applications,” in Proceedings of the IEEE International

Conference on Software Testing, Verification and Validation (ICST), 2012, pp. 81–90.

241

[17] X. Li, M. Rezvanizaniani, Z. Ge, M. Abuali, and J. Lee, “Bayesian optimal design of step

stress accelerated degradation testing,” J. Syst. Eng. Electron., vol. 26, no. 2, pp. 502–513,

2015.

[18] a. Avritzer and E. R. Weyuker, “The automatic generation of load test suites and the

assessment of the resulting software,” IEEE Trans. Softw. Eng. Softw. Eng., vol. 21, no. 9,

pp. 705–716, 1995.

[19] F. Lindlar, A. Windisch, and J. Wegener, “Integrating Model-Based Testing with

Evolutionary Functional Testing,” in Third International Conference on Software Testing,

Verification, and Validation Workshops, 2010, pp. 163–172.

[20] S. Arlt, S. Pahl, C. Berolini, and M. Schaf, “Trends in model-based GUI testing,” Adv.

Comput., vol. 86, pp. 183–222, 2012.

[21] M. Leonardo, F. Pastore, M. Pezzè, and M. Santoro, “Mining Finite State Automata with

Annotations,” in Mining Software Specifications, no. February, C. Liu, Ed. CRC Press,

2011, pp. 29–57.

[22] L. Mariani and F. Pastore, “Automated Identification of Failure Causes in System Logs,”

in 19th International Symposium on Software Reliability Engineering (ISSRE), 2008, pp.

117–126.

[23] E. M. Gold, “Language Identification in the Limit,” Inf. Control, vol. 10, no. 5, pp. 447–

474, 1967.

[24] G. Ammons, R. Bodik, and J. R. Larus, “Mining Specifications,” in 26th Annual ACM

Symposium on Theory of Computing, 2002, pp. 273–282.

242

[25] K. Mukherjee and A. Ray, “State splitting and merging in probabilistic finite state

automata for signal representation and analysis,” Signal Processing, vol. 104, pp. 105–

119, 2014.

[26] D. Freitag, D. Freitag, A. K. McCallum, and a. McCallum, “Information extraction with

HMM structures learned by stochastic optimization,” Proc. Natl. Conf. Artif. Intell., pp.

584–589, 2000.

[27] S. S. Emam and J. Miller, “Test Case Prioritization Using Extended Digraphs,” ACM

Trans. Softw. Eng. Methodol., 2015.

[28] N. Walkinshaw, R. Taylor, and J. Derrick, “Inferring Extended Finite State Machine

models from software executions,” in 20th Working Conference on Reverse Engineering

(WCRE), 2013, pp. 301–310.

[29] N. Walkinshaw, R. Taylor, and J. Derrick, “Inferring extended finite state machine models

from software executions,” Emperical Softw. Eng., 2015.

[30] S. Kanjilal, S. T. Chakradhar, and V. D. Agrawal, “Test function embedding algorithms

with application to interconnected finite state machines,” Comput. Des. Integr. Circuits

Syst. IEEE Trans., vol. 14, no. 9, pp. 1115–1127, 1995.

[31] K. N. Oikonomou, “Abstractions of Finite-State Machines Optimal with Respect to Single

Undetectable Output Faults,” IEEE Trans. Comput., vol. C-36, no. 2, pp. 185–200, 1987.

[32] A. W. Biermann and J. A. Feldman, “On the Synthesis of Finite State Acceptors,”

Stanford Artif. Intell. Proj., 1970.

[33] C. Luo, F. He, and C. Ghezzi, “Inferring Software Behavioral Models with MapReduce,”

2 4 3

D e p e n d a bl e S oft w. E n g. T h e or. T o ols, A p pl. , v ol. 9 4 0 9, p p. 1 3 5 – 1 4 9, 2 0 1 5.

[3 4] I. B es c h ast ni k h, Y. Br u n, M. D. Er nst, a n d A. Kris h n a m urt h y, “I nf erri n g m o d els of

c o n c urr e nt s yst e ms fr o m l o gs of t h eir b e h a vi or wit h C Si g ht, ” Pr o c. 3 6t h I nt. C o nf. S oft w.

E n g. - I C S E 2 0 1 4, n o. S e cti o n 6, p p. 4 6 8– 4 7 9, 2 0 1 4.

[35] W. B art uss e k a n d D. L. P ar n as, “ Usi n g ass erti o ns a b o ut tr a c es t o writ e a bstr a ct

s p e cifi c ati o ns f or s oft w ar e m o d ul es, ” i n I nf or m ati o n S yst e ms M et h o d ol o g y: Pr o c e e di n gs,

2 n d C o nf er e n c e of t h e E ur o p e a n C o o p er ati o n i n I nf or m ati cs, V e ni c e, O ct o b er 1 0 --1 2,

1 9 7 8 , G. Br a c c hi a n d P. C. L o c k e m a n n, E ds. B erli n, H ei d el b er g: S pri n g er B erli n

H ei d el b er g, 1 9 7 8, p p. 2 1 1 – 2 3 6.

[3 6] R. J a ni c ki, “ F o u n d ati o ns of t h e Tr a c e Ass erti o n M et h o d of M o d ul e I nt erf a c e

S p e cifi c ati o n, ” I E E E Tr a ns. S oft w. E n g., v ol. 2 7, n o. 7, p p. 5 7 7– 5 9 8, 2 0 0 1.

[3 7] J. A. Br z o z o ws ki, “ R e pr es e nt ati o n of a cl ass of n o n d et er mi nisti c s e mi a ut o m at a b y

c a n o ni c al w or ds , ” T h e or. C o m p ut. S ci. , v ol. 3 5 6, p p. 4 6– 5 7, 2 0 0 6.

[3 8] J. Br z o z o ws ki a n d J. H el m ut, “ R e pr es e nt ati o n of S e mi a ut o m at a b y C a n o ni c al W or ds a n d

E q ui v a l e n c es, ” I nt. J. F o u n d. C o m p ut. S ci., v ol. 1 6, n o. 8 3 1, 2 0 0 5.

[3 9] I. Kr k a, “ A ut o m ati c Mi ni n g of S p e cifi c ati o ns fr o m I n v o c ati o n Tr a c es a n d M et h o d

I n v ari a nts, ” i n Pr o c e e di n gs of t h e 2 2 n d A C M SI G S O F T I nt er n ati o n al S y m p osi u m o n

F o u n d ati o ns of S oft w ar e E n gi n e eri n g , 2 0 1 4, p p. 1 7 8– 1 8 9.

[4 0] C. G h e z zi, P. Mil a n o, P. L. Vi n ci, A. M o c ci, a n d P. Mil a n o, “ S y nt h esi zi n g I nt e nsi o n al

B e h a vi or M o d els b y Gr a p h Tr a nsf or m ati o n, ” i n I nt er n ati o n al C o nf er e n c e o n S oft w ar e

E n gi n e eri n g , 2 0 0 9, p p. 4 3 0– 4 4 0.

244

[41] M. Gabel, “Javert : Fully Automatic Mining of General Temporal Properties from

Dynamic Traces,” Current, pp. 339–349, 2008.

[42] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller, “Mining Object Behavior with

ADABU,” in Proceedings of the 2006 international workshop on Dynamic systems

analysis, 2006, pp. 17–24.

[43] M. Santoro, “Inference of Behavioral Models that Support Program Analysis,” Università

degli Studi di Milano-Bicocca, 2011.

[44] M. O. Rabin, “Probabilistic automata,” Inf. Control, vol. 6, no. 3, pp. 230–245, 1963.

[45] E. Vidal, I. C. Society, F. Thollard, C. De Higuera, F. Casacuberta, I. C. Society, and R.

C. Carrasco, “Probabilistic Finite-State Machines — Part I,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 27, no. 7, pp. 1013–1025, 2005.

[46] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco, “Probabilistic

Finite-State Machines--Part II,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 7,

pp. 1026–1039, 2005.

[47] D. Lo and S.-C. Khoo, “SMArTIC: Towards Building an Accurate, Robust and Scalable

Specification Miner,” Proc. 14th ACM SIGSOFT Int. Symp. Found. Softw. Eng., pp. 265–

275, 2006.

[48] J. Patrick, “The sk-strings method for inferring PFSA,” 1978.

[49] D. Lo and S. Khoo, “QUARK: Empirical Assessment of Automaton-based Specification

Miners,” in 13th Working Conference on Reverse Engineering, 2006, pp. 51–60.

245

[50] M. Pradel, P. Bichsel, and T. R. Gross, “A framework for the evaluation of specification

miners based on finite state machines,” in IEEE International Conference on Software

Maintenance, 2010, pp. 1–10.

[51] K. Bogdanov and N. Walkinshaw, “Computing the structural difference between state-

based models,” Proc. - Work. Conf. Reverse Eng. WCRE, pp. 177–186, 2009.

[52] S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia, “Static specification mining using

automata-based abstractions,” IEEE Trans. Softw. Eng., vol. 34, pp. 651–666, 2008.

[53] R. B. Lyngsø, C. N. Pedersen, and H. Nielsen, “Metrics and similarity measures for

hidden Markov models.,” Proc. Int. Conf. Intell. Syst. Mol. Biol., pp. 178–86, 1999.

[54] N. Walkinshaw and K. Bogdanov, “Automated Comparison of State-Based Software

Models in Terms of Their Language and Structure,” ACM Trans. Softw. Eng. Methodol.,

vol. 22, no. 2, 2013.

[55] T. B. Le, X. D. Le, D. Lo, and I. Beschastnikh, “Synergizing Specification Miners through

Model Fissions and Fusions,” in 30th IEEE/ACM International Conference on: Automated

Software Engineering (ASE), 2015, pp. 115–125.

[56] M. Hall, H. National, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,

“The WEKA Data Mining Software : An Update,” ACM SIGKDD Explor. Newsl., vol. 11,

no. 1, pp. 10–18, 2009.

[57] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, and J. Dick, “Using

Formal Specifications to Support Testing,” ACM Comput. Surv., vol. 41, no. 2, pp. 1–78,

2009.

246

[58] N. Walkinshaw, K. Bogdanov, S. Ali, and M. Holcombe, “Automated discovery of state

transitions and their functions in source code,” Softw. Test. Verif. Reliab. Wiley Intersci.,

vol. 18, pp. 99–121, 2008.

[59] G. Fraser and N. Walkinshaw, “Assessing and generating test sets in terms of behavioural

adequacy,” Softw. Testing, Verif. Reliab., vol. 25, no. 8, pp. 749–780, 2015.

[60] S. Selvakumar, M. R. C. Dinesh, C. Dhineshkumar, N. Ramaraj, and C. Paper, “Extended

Finite State Machine Model-Based Regression Test Suite Reduction Using Dynamic

Interaction Patterns,” in Information Processing and Management: International

Conference on Recent Trends in Business Administration and Information Processing,

BAIP 2010, Trivandrum, Kerala, India, March 26-27, 2010. Proceedings, no. 2016, V. V

Das, R. Vijayakumar, N. C. Debnath, J. Stephen, N. Meghanathan, S. Sankaranarayanan,

P. M. Thankachan, F. L. Gaol, and N. Thankachan, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2010, pp. 475–481.

[61] R. Taylor, M. Hall, K. Bogdanov, and J. Derrick, “Using Behaviour Inference to Optimise

Regression Test Sets,” Test. Softw. Syst., pp. 184–199, 2012.

[62] N. Walkinshaw, B. Lambeau, C. Damas, K. Bogdanov, and P. Dupont, “STAMINA: a

competition to encourage the development and assessment of software model inference

techniques,” Empir. Softw. Eng., vol. 18, no. 4, pp. 791–824, May 2012.

[63] G. Rozenberg and D. Volker, The Book of Traces. World Scientific, 1995.

[64] D. Lo, L. Mariani, and M. Santoro, “Learning extended FSA from software: An empirical

assessment,” J. Syst. Softw., vol. 85, no. 9, pp. 2063–2076, Sep. 2012.

247

[65] G. Lu and H. Miao, “An Approach to Generating Test Data for EFSM Paths Considering

Condition Coverage,” Electron. Notes Theor. Comput. Sci., vol. 309, no. 61073050, pp.

13–29, Dec. 2014.

[66] C. Szepesvári, Algorithms for Reinforcement Learning, vol. 4, no. 1. Morgan & Claypool

Publishers, 2010.

[67] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, vol. 9, no. 5.

Cambridge, Massachusetts: The MIT Press, 1998.

[68] M. Wiering and M. van Otterlo, Reinforcement Learning (State of the Art). Springer,

2012.

[69] C. J. Watkin, “Learning from Delayed Rewards,” University of Cambridge, 1989.

[70] P. Dayan and C. J. Watkin, “Technical Note Q -Learning,” Kluwer Acad. Publ., vol. 292,

pp. 279–292, 1992.

[71] L. J. Lin, “Self-improving reactive agents based on reinforcement learning, planning and

teaching,” Mach. Learn., vol. 8, no. 3–4, pp. 293–321, May 1992.

[72] W. Ching, Markov chains: model, algorithms and applications. Springer Science, 2006.

[73] L. R. Rabiner and B. H. Juang, “An introduction to hidden Markov models.,” IEEE ASSP

Mag., no. January, pp. 4–15, Jun. 1986.

[74] K. Hamamoto, K. Morooka, and H. Nagahashi, “Motion Recognition By Combining

HMM and Reinforcement Learning,” in IEEE International Conference on Systems, Man

and Cybernetics, 2004, pp. 5259–5264.

248

[75] M. A. Walker, “An Application of Reinforcement Learning to Dialogue Strategy Selection

in a Spoken Dialogue System for Email,” J. Artif. Intell. Res., vol. 12, pp. 387–416, 2000.

[76] H. Cuay and N. Dethlefs, “Hierarchical Reinforcement Learning and Hidden Markov

Models for Task-Oriented Natural Language Generation,” in Proceedings of the 49th

Annual Meeting of the Association for Computational Linguistics:shortpapers, 2011, pp.

654–659.

[77] T. Jaakkola, S. S. P., and M. I. Jordan, “Reinforcement Learning Algorithm for Partially

Observable Markov Decision Problems,” in MIT Press, Cambridge, Massachusetts: MIT

Press, 1995, pp. 345–352.

[78] A. K. McCallum, “Reinforcement Learning with Selective Percemption and Hidden

State,” University of Rochester, 1995.

[79] W. W. Cohen and S. E. Fienberg, “A Comparison of String Metrics for Matching Names

and Records,” in KDD Workshop on Data Cleaning and Object Consolidation, 2003.

[80] W. Heeringa, “Measuring Dialect Pronunciation Differences using Levenshtein Distance,”

University of Groningen, 2004.

[81] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and

reversals,” Soviet Physics Doklady, vol. 10, no. 8. pp. 707–710, 1966.

[82] J. Quante and R. Koschke, “Dynamic protocol recovery,” Proc. - Work. Conf. Reverse

Eng. WCRE, pp. 219–228, 2007.

[83] V. G. Timkovskii, “Complexity of common subsequence and supersequence problems and

related problems,” Cybernetics, vol. 25, no. 5, pp. 565–580, Sep. 1989.

249

[84] R. Hamming, “Error detecting and error correcting codes,” Bell Syst. Tech. J., vol. 2, no.

29, 1950.

[85] M. A. Jaro, “Advances in Record-Linkage Methodology as Applied to Matching the 1985

Census of Tampa, Florida,” J. Am. Stat. Assoc., vol. 84, no. 406, pp. 414–420, 1989.

[86] L. J. Lin, “Reinforcement Learning for Robots Using Neural Networks,” Carnegie Mellon

University, 1993.

[87] O. Abul, F. Polat, and R. Alhajj, “Multiagent Reinforcement Learning Using Function,”

IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev., vol. 30, no. 4, pp. 485–497, 2000.

[88] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results of the Abbadingo One DFA

Learning Competition and a New Evidence-Driven State Merging Algorithm,” in

Proceedings of the 4th International Colloquium on Grammatical Inference, 1998, pp. 1–

12.

[89] O. Tramasco and S. Bauer, “Package ‘RHmm.’” 2013.

[90] H. Cohen and S. Maoz, “Have We Seen Enough Traces ?,” in 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE), 2015, pp. 93–103.

[91] N. Busany and S. Maoz, “Behavioral Log Analysis with Statistical Guarantees,” in

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,

2015, pp. 898–901.

[92] L. Cerulo, M. Ceccarelli, M. Di Penta, and G. Canfora, “A Hidden Markov Model to

Detect Coded Information Islands in Free Text,” in 13th IEEE International Working

Conference on Source Code Analysis and Manipulation, 2013, pp. 157–166.

250

[93] L. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique occuring in the

statistical analysis of probabilistic functions of Markov chains,” Annu. Math. Stat., vol.

41, no. 1, pp. 164–171, 1970.

[94] S. Koenig and R. G. Simmons, “Complexity Analysis of Real-Time Reinforcement

Learning,” Proc. AAAI Conf. Artif. Intell., pp. 99–105, 1993.

[95] P. Zech, M. Felderer, P. Kalb, and R. Breu, “A Generic Platform for Model-Based

Regression Testing,” in Technologies for Mastering Change, 2012, pp. 112–126.

[96] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan, “Web Usage Mining : Discovery

and Applications of Usage Patterns from Web Data,” ACM SIGKDD Explor. Newsl., vol.

1, no. 2, pp. 12–23, 2000.

[97] R. R. Sarukkai, “Link prediction and path analysis using Markov chains,” Comput.

Networks, vol. 33, pp. 377–386, 2000.

[98] Q. Yang and H. H. Zhang, “Web-Log Mining for Predictive Web Caching,” IEEE Trans.

Knowl. Data Eng., vol. 15, no. 4, pp. 1050–1053, 2003.

[99] G. Greco, A. Guzzo, L. Pontieri, and D. Sacca, “by Clustering Log Traces,” IEEE Trans.

Knowl. Data Eng., vol. 18, no. 8, pp. 1010–1027, 2006.

[100] T. Zhu, R. Greiner, and H. Gerald, “Learning a Model of a Web User ’ s Interests,” Int.

Conf. User Model., pp. 65–75, 2003.

[101] R. W. White, P. Bailey, and L. Chen, “Predicting User Interests from Contextual

Information,” in Proceedings of the 32nd international ACM SIGIR conference on

Research and development in information retrieval, 2009, pp. 363–370.

251

[102] F. M. Facca and P. L. Lanzi, “Mining interesting knowledge from weblogs : a survey,”

Data Knowl. Eng., vol. 53, pp. 225–241, 2005.

[103] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM : Probabilistic Model Checking for

Performance and Reliability Analysis,” ACM SIGMETRICS Perform. Eval. Rev., vol. 36,

no. 4, pp. 40–45, 2009.

[104] B. Clifton, Advanced Web Metrics with Google Analytics. Alameda,CA , USA: SYBEX

Inc., 2008.

[105] S. Schechter, K. Murali, and M. D. Smith, “Using path profiles to predict HTTP requests,”

Comput. Networks ISDN Syst., vol. 30, pp. 457–467, 1998.

[106] F. Chierichetti and R. Kumar, “Are Web Users Really Markovian ?,” in Proceedings of

the 21st international conference on World Wide Web, 2012, pp. 609–618.

[107] C. Baier and J. Katoen, Principles of Model Checking. London: The MIT Press, 2008.

[108] M. Schur, A. Roth, and A. Zeller, “Mining Workflow Models from Web Applications,”

IEEE Trans. Softw. Eng., vol. 5589, no. MAY, pp. 1–1, 2015.

[109] V. Dallmeier, N. Knopp, C. Mallon, G. Fraser, S. Hack, and A. Zeller, “Automatically

Generating Test Cases for Specification Mining,” IEEE Trans. Softw. Eng., vol. 38, no. 2,

pp. 243–257, 2012.

[110] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling Ajax-based Web applications

through dynamic analysis of user interface state changes,” ACM Trans. Web, vol. 6, no. 1,

pp. 1–30, 2012.

252

[111] H. Hansson and B. Jonsson, “A logic for reasoning about time and reliability,” Form. Asp.

Comput., vol. 6, no. 5, pp. 512–535, 1994.

[112] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model checking,” Form.

methods Perform. …, pp. 220–270, 2007.

[113] J. Jiang, X. Song, N. Yu, and C. Lin, “FoCUS : Learning to Crawl Web Forums,” IEEE

Trans. Knowl. Data Eng., vol. 25, no. 6, pp. 1293–1306, 2013.

[114] C. Spearman, “The Proof and Measurement of Association between Two Things,” Am. J.

Psychol., vol. 15, no. 1, pp. 72–101, 1904.

[115] L. Antwarg, L. Rokach, and B. Shapira, “Attribute-driven Hidden Markov Model Trees

for Intention Prediction,” IEEE Trans. Syst. Man, Cybern. Part C (Applications Rev., vol.

42, no. 6, pp. 1103–1119, 2012.

[116] K. Engelbrecht, F. Gödde, F. Hartard, H. Ketabdar, K. Engelbrecht, F. Goedde, H.

Ketabdar, and S. M. De, “Modeling User Satisfaction with Hidden Markov Models,” in

Proceedings of the SIGDIAL 2009 Conference: The 10th Annual Meeting of the Special

Interest Group on Discourse and Dialogue, 2009, no. September, pp. 170–177.

[117] L. C. Stuart, “User Modeling via Machine Learning and Rule- Based Reasoning to

Understand and Predict Errors in Survey Systems,” 2013.

[118] J. Ruvini, “Adapting to the User’s Internet Search Strategy on Small Devices,” pp. 284–

286, 2003.

[119] B. Mobasher, R. Cooley, and J. Srivastava, “Automatic Personalization Based on Web

Usage Mining Architecture for Usage-based Web Personalization Mining Usage Data for

253

Web Personalization,” Commun. ACM, vol. 43, no. 8, pp. 142–151, 2000.

[120] M. Virvou, C. Troussas, and E. Alepis, “Machine learning for user modeling in a

multilingual learning system,” in International Conference on Information Society (i-

Society), 2012, pp. 292–297.

[121] M. Pennacchiotti and A. Popescu, “A Machine Learning Approach to Twitter User

Classification,” in Proceedings of the Fifth International AAAI Conference on Weblogs

and Social Media, 2010, pp. 281–288.

[122] J. E. Beck, P. Jia, J. Sison, and J. Mostow, “Predicting Student Help-Request Behavior in

an Intelligent Tutor for Reading,” in User Modeling 2003: 9th International Conference,

UM 2003 Johnstown, PA, USA, June 22--26, 2003 Proceedings, P. Brusilovsky, A.

Corbett, and F. de Rosis, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp.

303–312.

[123] A. Jameson, “Adaptive Interfaces and Agents,” in The human-computer interaction

handbook, 2002, pp. 305–330.

[124] D. Henriques, P. Zuliani, and E. M. Clarke, “Statistical Model Checking for Markov

Decision Processes,” Int. Conf. Quant. Eval. Syst., pp. 17–20, 2012.

[125] P. Shitole and M. A. Potey, “Survey of User Modeling Techniques with Specific

Emphasis on Considering Demographic Attributes,” vol. 3, no. 12. pp. 1366–1370, 2014.

[126] F. Lin and L. Wenyin, “User Modeling for Efficient Use of Multimedia Files.”

[127] C. Baier, E. M. Clarke, V. Hartonas-garmhausen, M. Kwiatkowska, and M. Ryan,

“Symbolic Model Checking for Probabilistic Processes,” in International Colloquium on

254

Automata, Languages, and Programming, 1997, pp. 430–440.

[128] F. Ciesinski and M. Gr, “On Probabilistic Computation Tree Logic,” Valid. Stoch. Syst.,

pp. 147–188, 2004.

[129] R. W. White, S. T. Dumais, and J. Teevan, “Characterizing the Influence of Domain

Expertise on Web Search Behavior,” in Proceedings of the Second ACM International

Conference on Web Search and Data Mining, 2009, pp. 132–141.

[130] H. Terai, “Differences between Informational and Transactional Tasks in Information

Seeking on the Web,” in Proceedings of the second international symposium on

Information interaction in context, 2008, pp. 152–159.

[131] M. Claypool, D. Brown, P. Le, and M. Waseda, “Inferring User Interest,” IEEE Internet

Comput., vol. 5, no. 6, pp. 32–39, 2001.

[132] D. W. Oard and J. Kim, “Implicit Feedback for Recommender Systems,” in Proceeding of

5th DELOS Workshop on Filtering and Collaborative Filtering, 1998, pp. 31–36.

[133] S. Gündüz and M. T. Ozsu, “Recommendation Models for User Accesses to Web Pages (

Invited Paper),” in Artificial Neural Networks and Neural Information Processing, 2003,

pp. 1003–1010.

[134] F. Khalil, J. Li, and H. Wang, “Integrating Recommendation Models for Improved Web

Page Prediction Accuracy,” in Proceedings of the thirty-first Australasian conference on

Computer science, 2008, vol. 74, pp. 91–100.

[135] U. Farooq, “Model based test suite minimization using metaheuristics,” Cowan

University, 2011.

255

[136] S. Parsa and A. Khalilian, “On the optimization approach towards test suite minimization

approach,” Int. J. Softw. Eng. Its Appl., vol. 4, no. 1, pp. 15–28, 2010.

[137] D. Jeffrey and N. Gupta, “Improving fault detection capability by selectively retaining test

cases during test suite reduction,” IEEE Trans. Softw. Eng., vol. 33, no. 2, pp. 108–123,

2007.

[138] P. G. Frankl, G. Rothermel, K. Sayre, and F. I. Vokolos, “An empirical comparison of two

safe regression test selection techniques,” in International Symposium on Empirical

Software Engineering (ISESE), 2003, vol. 195–204, pp. 195–204.

[139] G. Rothermel, R. Untch, and M. J. Harrold, “Prioritizing test cases for regression testing,”

IEEE Trans. Softw. Eng., vol. 27, no. 10, pp. 929–948, 2001.

[140] S. Elbaum, G. Rothermel, A. G. Malishevsky, and S. Member, “Test case prioritization :

A family of empirical studies test case prioritization,” IEEE Trans. Softw. Eng., vol. 27,

no. 10, pp. 929–948, 2002.

[141] Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive Random Test Case Prioritization,” in

Proceedings of the 24th IEEE/ACM International Conference on Automated Software

Engineering, 2009, no. Ase, pp. 1–3.

[142] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An empirical Study of the effects of

minimization on the fault detection capabilities of test suites,” in Proceedings of the

International Conference on Software Maintenance, 1998, pp. 34–43.

[143] G. Rothermel and D. Hall, “A safe , effcient regression test selection technique,” ACM

Trans. Softw. Eng. Methodol., vol. 6, no. 2, pp. 173–210, 1997.

256

[144] H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable model-based testing through

test case diversity,” ACM Trans. Softw. Eng. Methodol., vol. 22, no. 1, pp. 1–42, Feb.

2013.

[145] H. Mei, S. Member, D. Hao, L. Zhang, S. Member, L. Zhang, J. Zhou, G. Rothermel, and

I. C. Society, “A Static Approach to Prioritizing JUnit Test Cases,” IEEE Trans. Softw.

Eng., vol. 38, no. 6, pp. 1258–1275, 2012.

[146] S. Yoo and M. Harman, “Regression Testing Minimisation , Selection and Prioritisation :

A Survey,” Softw. TESTING, Verif. Reliab., vol. 7, pp. 1–60, 2007.

[147] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, Static test case prioritization

using topic models. Springer Science, 2012.

[148] R. Dev, A. Jaaskelainen, and M. Katara, “Model-based GUI testing : Case smartphone

camera and messaging development,” Adv. Comput., vol. 85, pp. 65–122, 2012.

[149] A. T. Endo and A. Simao, “Model-Based Testing of Service-Oriented Applications via

State Models,” in IEEE International Conference on Services Computing, 2011, pp. 432–

439.

[150] A. M. Memon, “An event-flow model of GUI-based applications for testing,” Softw. Test.

Verif. Reliab., vol. 17, no. 3, pp. 137–157, 2007.

[151] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro, “AutoBlackTest : A tool for

automatic black-box testing,” in 33rd International Conference on Software Engineering

(ICSE), 2011, pp. 1013–1015.

[152] H. Reza, S. Endapally, and E. Grant, “A model-based approach for testing GUI using

257

hierarchical predicate transition nets,” in Fourth International Conference on Information

Technology, 2007, pp. 336–370.

[153] A. M. Memon, D. R. Hackner, and G. U. I. T. Field, “Test case generator for GUITAR,”

in International Journal of Software Engineering, 2008.

[154] H. S. Chang, “Reinforcement learning with supervision by combining multiple learnings

and expert advices,” in American Control Conference, 2006, pp. 159–161.

[155] R. Davoodi and B. J. Andrews, “Computer simulation of FES standing up in paraplegia: a

self-adaptive fuzzy controller with reinforcement learning.,” IEEE Trans. Rehabil. Eng.,

vol. 6, no. 2, pp. 151–61, Jun. 1998.

[156] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, “Reinforcement learning-based multi-agent

system for network traffic signal control,” IET Intell. Transp. Syst., vol. 4, no. 2, pp. 128–

135, 2010.

[157] M. McPartland and M. Gallagher, “Reinforcement Learning in First Person Shooter

Games,” IEEE Trans. Comput. Intell. AI Games, vol. 3, no. 1, pp. 43–56, Mar. 2011.

[158] M. M. Yin and J. T. L. Wang, “Effective hidden Markov models for detecting splicing

junction sites in DNA sequences,” Inf. Sci. (Ny)., vol. 139, no. 1–2, pp. 139–163, 2001.

[159] K. Lee, H. Hon, M. Hwang, and X. Huang, “Speech recognition using hidden Markov

model: A CMU prespective,” Speech Comun., vol. 9, no. 5–6, pp. 497–508, 1990.

[160] K. Aas and L. Eikvil, “Text page recognition using Grey-level features and hidden

Markov models,” Pattern Recognit., vol. 29, no. 6, pp. 977–985, Jun. 1996.

258

[161] J. D. Williams and S. Young, “Partially observable Markov decision processes for spoken

dialog systems,” Comput. Speech Lang., vol. 21, no. 2, pp. 393–422, Apr. 2007.

[162] P. Blunsom, “Hidden Markov Models.” pp. 1–7, 2004.

[163] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, “A Study of Effective Regression

Testing in Practice,” in Proceedings of the 8th IEEE In ternational Symposium on

Software Reliability Engineering, 1997, pp. 264–274.

[164] C.-Y. Huang, J.-R. Chang, and Y.-H. Chang, “Design and analysis of GUI test-case

prioritization using weight-based methods,” J. Syst. Softw., vol. 83, no. 4, pp. 646–659,

Apr. 2010.

[165] D. Di Nardo, N. Alshahwan, and L. Briand, “Coverage-Based Test Case Prioritisation :

An Industrial Case Study,” in Proceeding of Sixth International Conference on Software

Testing, Verification and Validation (ICST), 2013, pp. 302–311.

[166] M. a. T. Ho, Y. Yamada, and Y. Umetani, “An HMM-based temporal difference learning

with model-updating capability for visual tracking of human communicational behaviors,”

in Proceedings of Fifth IEEE International Conference on Automatic Face Gesture

Recognition, 2002, pp. 170–175.

[167] J. Kabudian, M. R. Meybodi, and M. M. Homayounpour, “Applying continuous action

reinforcement learning automata(CARLA) to global training of hidden Markov models,”

in International Conference on Information Technology: Coding and Computing., 2004, p.

638–642 Vol.2.

[168] G. Becce, L. Mariani, O. Riganelli, and M. Santoro, “Extracting widget descriptions from

259

GUIs,” in Proceedings of the 15th International Conference on Fundamental Approaches

to Software Engineering (FASE), 2012, pp. 347–361.

[169] A. Arcuri and L. Briand, “A Practical Guide for Using Statistical Tests to Assess

Randomized Algorithms in Software Engineering,” in 33rd International Conference

onSoftware Engineering (ICSE), 2011, pp. 1–10.

[170] P. Ellis, The essential guide to effect sizes: Statistical power, meta-analysis, and the

interpretation of research results. Cambridge: Cambridge University Press, 2010.

[171] F. Galton, Natural Inheritance. Macmillan, 1889.

[172] J. A. Rice, Mathematical Statistics and Data Analysis. Ducbury, 1994.

[173] H. Hsu and P. A. Lachenbruch, “Paired t Test,” Wiley Encycl. Clin. Trials, pp. 1–3, 2008.

[174] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum

Associate Publishers, 1988.

[175] M. Robinson and P. Vorobiev, Swing: A Fast Pased Guide with Production-Quality Code

Examples. Manning Publications, 1999.

[176] G. S. Semmel and D. G. Linton, “Determining optimal testing times for Markov chain

usage models,” in IEEE Proceedings Southeastcon, 1998, pp. 1–4.

[177] A. L. White and Sjorgen, “Markov chains for testing redundant software,” in Proceedings

of Reliability and Maintainability Symposium, 1988, pp. 426–433.

[178] F. Zhen and P. Chenglian, “A system test methodology based on the Markov chain usage

model,” in Proceedings of the 8th International Conference on Computer Supported

260

Cooperative Work in Design, 2004, vol. 96, pp. 160–165.

[179] C. G. Bai, Q. P. Hu, M. Xie, and S. H. Ng, “Software failure prediction based on a

Markov Bayesian network model,” J. Syst. Softw., vol. 74, no. 3, pp. 275–282, Feb. 2005.

[180] S. Mirarab and L. Tahvildari, “A Prioritization Approach for Software,” in Proceedings of

the 10th International Conference on Fundamental Approaches to Software Engineering,

2007, pp. 276–290.

[181] S. Mirarab and L. Tahvildari, “An Empirical Study on Bayesian Network-based Approach

for Test Case Prioritization,” in International Conference on Software Testing,

Verification, and Validation, 2008, pp. 278–287.

[182] J. Hao and E. Mendes, “Usage-based statistical testing of web applications,” in

Proceedings of the 6th international conference on Web engineering - ICWE ’06, 2006,

pp. 17–24.

[183] K.-Y. Cai, Y.-C. Li, and W.-Y. Ning, “Optimal software testing in the setting of

controlled Markov chains,” Eur. J. Oper. Res., vol. 162, no. 2, pp. 552–579, Apr. 2005.

[184] A. Feliachi and H. Le Guen, “Generating transition probabilities for automatic model-

based test generation,” in 3rd International Conference on Software Testing, Verification

and Validation (ICST), 2010, no. X, pp. 99–102.

[185] D. Ariu, R. Tronci, and G. Giacinto, “HMMPayl: An intrusion detection system based on

Hidden Markov Models,” Comput. Secur., vol. 30, no. 4, pp. 221–241, Jun. 2011.

[186] Y. T. Yu and M. F. Lau, “Fault-based test suite prioritization for specification-based

testing,” Inf. Softw. Technol., vol. 54, no. 2, pp. 179–202, Feb. 2012.

261

[187] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The Effects of Time Constraints on

Test Case Prioritization : A Series of Controlled Experiments,” IEEE Trans. Softw. Eng.,

vol. 36, no. 5, pp. 593–617, 2010.

[188] A. Valdi, E. Lever, S. Benefico, D. Quarta, S. Zanero, and F. Maggi, “Scalable Testing of

Mobile Antivirus Applications,” Computer (Long. Beach. Calif)., vol. 48, no. 11, pp. 60–

68, 2015.

[189] J. Gao, X. Bai, W. T. Tsai, and T. Uehara, “Mobile Application Testing: A Tutorial,”

Computer (Long. Beach. Calif)., vol. 47, no. 2, pp. 46–55, 2014.

[190] B. Jiang, X. Long, and X. Gao, “MobileTest: A tool supporting automatic black box test

for software on smart mobile devices,” in 29th International Conference on Software

Engineering, ICSE’07, 2007, pp. 8–14.

[191] A. I. Wasserman, “Software Engineering Issues for Mobile Application Development,”

ACM Trans. Inf. Syst., pp. 1–4, 2010.

[192] S. R. Choudhary, A. Gorla, and A. Orso, “Automated Test Input Generation for Android:

Are We There Yet?,” in Proceedings of the 2015 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE), 2015.

[193] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A GUI crawling-based technique for

android mobile application testing,” in Proceedings - 4th IEEE International Conference

on Software Testing, Verification, and Validation Workshops, ICSTW 2011, 2011, pp.

252–261.

[194] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “RERAN: Timing- and touch-sensitive

262

record and replay for Android,” Proc. - Int. Conf. Softw. Eng., pp. 72–81, 2013.

[195] M. Hesenius, T. Griebe, S. Gries, and V. Gruhn, “Automating UI Tests for Mobile

Applications with Formal Gesture Descriptions,” in Proceedings of MobileHCI’14, 2014,

pp. 213–222.

[196] C. J. Hunt, G. Brown, and G. Fraser, “Automatic testing of natural user interfaces,” IEEE

7th Int. Conf. Softw. Testing, Verif. Valid., pp. 123–132, 2014.

[197] B. Kirubakaran and V. Karthikeyani, “Mobile application testing — Challenges and

solution approach through automation,” in 2013 International Conference on Pattern

Recognition, Informatics and Mobile Engineering, 2013, pp. 79–84.

[198] A. M. Fard, M. Mirzaaghaei, and A. Mesbah, “Leveraging Existing Tests in Automated

Test Generation for Web Applications,” in 29th ACM/IEEE international conference on

Automated software engineering (ASE), 2014.

[199] M. Ermuth and M. Pradel, “Monkey See , Monkey Do : Effective Generation of GUI

Tests with Inferred Macro Events,” in International Symposium on Software Testing and

Analysis (ISSTA), 2016, pp. 82–93.

[200] I. Satoh, “A testing framework for mobile computing software,” IEEE Trans. Softw. Eng.,

vol. 29, no. 12, pp. 1112–1121, 2003.

[201] D. Franke and C. Weise, “Providing a software quality framework for testing of mobile

applications,” in 4th IEEE International Conference on Software Testing, Verification,

and Validation, 2011, pp. 431–434.

[202] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De, U. Federico, and I. I. Napoli,

263

“Using GUI Ripping for Automated Testing of Android Applications,” in Proceedings of

the 27th IEEE international conference on Automated Software Engineering, 2012, pp.

258–261.

[203] C. Hu and I. Neamtiu, “Automating gui testing for android applications,” in Proceeding of

the 6th international workshop on Automation of software test - AST ’11, 2011, no.

Section 4, p. 77.

[204] C. D. Nguyen, A. Marchetto, and P. Tonella, “Combining model-based and combinatorial

testing for effective test case generation,” in Proceedings of the 2012 International

Symposium on Software Testing and Analysis (ISSTA), 2012, p. 100.

[205] C. M. Prathibhan, A. Maliani, N. Venkatesh, and K. Sundarakantham, “An automated

testing framework for testing android mobile applications in the cloud,” in IEEE

International Conference on Advanced Communication Control and Computing

Teclmologies (ICACCCT), 2014, no. 978, pp. 1216–1219.

[206] T. Azim and I. Neamtiu, “Targeted and Depth-first Exploration for Systematic Testing of

Android Apps,” in Proceedings of the 2013 ACM SIGPLAN international conference on

Object oriented programming systems languages & applications, 2013.

[207] S. Malek, “EvoDroid : Segmented Evolutionary Testing of Android Apps,” in

Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of

Software Engineering (FSE), 2014, pp. 599–609.

[208] M. Linares-v, M. White, C. Bernal-c, K. Moran, and D. Poshyvanyk, “Mining Android

App Usages for Generating Actionable GUI-based Execution Scenarios,” in roceedings of

264

the 12th Working Conference on Mining Software Repositories (MSR), 2015.

[209] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, and T. Xie, “Automated

Test Input Generation for Android : Are We Really There Yet in an Industrial Case ?,” in

Proceedings of the 2015 30th IEEE/ACM International Conference on Automated

Software Engineering (ASE), 2015, pp. 3–8.

[210] K. Mao, M. Harman, and Y. Jia, “Sapienz : Multi-objective Automated Testing for

Android Applications,” in Proceedings of the 25th International Symposium on Software

Testing and Analysis (ISSTA), 2016, pp. 94–105.

[211] R. N. Zaeem, M. R. Prasad, and S. Khurshid, “Automated generation of oracles for testing

user-interaction features of mobile apps,” IEEE 7th Int. Conf. Softw. Testing, Verif. Valid.,

pp. 183–192, 2014.

[212] K. Moran, M. Linares-v, C. Bernal-c, C. Vendome, D. Poshyvanyk, and C. William,

“Automatically Discovering , Reporting and Reproducing Android Application Crashes,”

in IEEE International Conference on Software Testing, Verification and Validation

(ICST), 2016.

[213] J. An and K.-S. Hong, “Finger gesture-based mobile user interface using a rear-facing

camera,” in 2011 IEEE International Conference on Consumer Electronics (ICCE), 2011,

pp. 303–304.

[214] E. S. Choi, W. C. Bang, S. J. Cho, J. Yang, D. Y. Kim, and S. R. Kim, “Beatbox music

phone: Gesture-based interactive mobile phone using a tri-axis accelerometer,” in

Proceedings of the IEEE International Conference on Industrial Technology, 2005, vol.

265

2005, pp. 97–102.

[215] C. B. Park and S. W. Lee, “Real-time 3D pointing gesture recognition for mobile robots

with cascade HMM and particle filter,” Image Vis. Comput., vol. 29, no. 1, pp. 51–63,

2011.

[216] S. O. Hara, Y. M. Lui, and B. A. Draper, “Unsupervised Learning of Human Expressions ,

Gestures , and Actions,” in IEEE International Conference on Automatic Face & Gesture

Recognition and Workshops, 2011, pp. 1–8.

[217] S. Gibet, N. Country, and J.-F. Kamp, Lecture Notes in Artificial Intelligence. 2005.

[218] D. Trabelsi, S. Mohammed, F. Chamroukhi, L. Oukhellou, and Y. Amirat, “Supervised

and unsupervised classification approaches for human activity recognition using body-

mounted sensors,” in European Symposium on Artificial Neural Networks, Computational

Intelligence and Machine Learning, 2012, no. April, pp. 25–27.

[219] W. J. Li, “A hybrid HMM / SVM classifier for motion recognition using µ IMU data A

Hybrid HMM / SVM Classifier for Motion Recognition Using ȝIMU Data *,” in IEEE

International Conference on Robotics and Bioimetics, 2008, no. January, pp. 115–120.

[220] D. Trabelsi, S. Mohammed, F. Chamroukhi, L. Oukhellou, and Y. Amirat, “An

Unsupervised Approach for Automatic Activity Recognition based on Hidden Markov

Model Regression,” IEEE Trans. Autom. Sci. Eng., vol. 10, no. 3, pp. 1–7, 2013.

[221] M. S. K. Gaikwad, “HMM Classifier for Human Activity Recognition,” Comput. Sci. Eng.

AN Int. J., vol. 2, no. 4, pp. 27–36, 2012.

[222] A. Mannini and A. M. Sabatini, “Accelerometry-Based Classification of Human Activities

266

Using Markov Modeling,” Comput. Intell. Neurosci., 2011.

[223] T. Yang and Y. Xu, “Hidden Markov Model for Gesture Recognition,” Carnegie Mellon

Universioty, 1994.

[224] R. Cilla, M. A. Patricio, A. Berlanga, and J. M. Molina, “Recognizing Human Activities

from Sensors Using Hidden Markov Models Constructed by Feature Selection

Techniques,” J. Algorithms, vol. 2, pp. 282–300, 2009.

[225] O. Perez, M. Piccardi, G. Jesus, and J. M. Molina, “Comparison of Classifiers for Human

Activity,” in Lecture Notes in Computer Science, 2007, pp. 192–201.

[226] D. Kleppner and R. Kolenjow, An Introduction to Mechanics. Cambridge University

Press, 2013.

[227] C. Nello and Shawe-Taylor John, An Introduction to Support Vector Machines and Other

Kernel-Based Learning Methods, vol. 22, no. 2. 2001.

[228] N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor Nonparametric

Regression,” Am. Stat., vol. 46, no. 3, pp. 175–185, 2007.

[229] C. i. Wang and S. Dubnov, “The Variable Markov Oracle: Algorithms for Human Gesture

Applications,” IEEE Multimed., vol. 22, no. 4, pp. 52–67, 2015.

[230] Z. Moghaddam and M. Piccardi, “Training Initialization of Hidden Markov Models in

Human Action Recognition,” IEEE Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 394–408,

2014.

[231] J. B. MacQueen, “Some Methods for classification and Analysis of Multivariate

267

Observations,” 5th Berkeley Symp. Math. Stat. Probab. 1967, vol. 1, no. 233, pp. 281–

297, 1967.

[232] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of

cluster analysis,” J. Comput. Appl. Math., vol. 20, pp. 53–65, 1987.

[233] T. Tunys, “Gesture detection and NFC for Android OS,” Czech Technical University in

Prague, 2012.

[234] J. Ravikiran, K. Mahesh, S. Mahishi, R. Dheeraj, S. Sudheender, and N. V Pujari, “Finger

detection for sign language recognition,” in International MultiConference of Engineers

and Computer Scientists, 2009, vol. I, pp. 0–4.

[235] R. Cross, “Enhancing the Bounce of a Ball,” Am. Assoc. Phys. Teach., vol. 48, no. 7, p.

450, 2010.

[236] M. Torchiano, “R Package: ‘effsize,’” 2015.

[237] A. Jagannatam, “Mersenne Twister – A Pseudo Random Number Generator and and its

Variants,” 2008.

[238] A. Shahbazi, A. F. Tappenden, and J. Miller, “Centroidal voronoi tessellations-a new

approach to random testing,” IEEE Trans. Softw. Eng., vol. 39, no. 2, pp. 163–183, 2013.

[239] A. Arcuri and L. Briand, “Adaptive Random Testing : An Illusion of Effectiveness ?,” in

Proceedings of the 2011 International Symposium on Software Testing and Analysis,

2011, pp. 265–275.

[240] S. Yoo, M. Harman, and S. Ur, “GPGPU Test Suite Minimisation : Search Based

268

Software Engineering Performance Improvement Using Graphics Cards,” Empir. Softw.

Eng., vol. 18, no. 3, pp. 550–593, 2013.

[241] J. Bach, “Exploratory Testing Explained,” Den Bosch UTN Publ., pp. 253–265, 2003.

[242] M. Dirk, L. Begona, van der P. K. Rob, and W. Alan, Software Quality and Software

Testing in Internet Times (High-tech software quality management). Berlin, Heidelberg:

Springer Berlin Heidelberg, 2002.

[243] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software Testing. New York,

NY, USA: John Wiley & Sons, Inc., 2001.

[244] A. Beer and R. Ramler, “The Role of Experience in Software Testing Practice,” in

Proceedings of Euromicro Conference on Software Engineering and Advanced

Applications, 2008, pp. 258–265.

[245] J. Itkonen, M. V Mäntylä, and C. Lassenius, “Defect Detection Efficiency : Test Case

Based vs . Exploratory Testing,” in Proceedings of International Symposium on Empirical

Software Engineering and Measurement, 2007, pp. 61–70.

[246] L. Williams, G. Kudrjavets, and N. Nagappan, “On the Effectiveness of Unit Test

Automation at Microsoft 1,” in 20th International Symposium on Software Reliability

Engineering, 2009, pp. 81–89.

[247] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive Random Testing,” in Annual Asian

Computing Science Conference, 2004, pp. 320–329.

[248] R. Singh, J. Miller, and M. Smith, “Random Border Centroidal Voronoi Tessellations

(RBCVT) Improved by Parallel Selection using Regular Sampling,” IEEE Trans. Reliab.

269

[249] S. H. Houmb, “Method, device and computer program for monitoring an industrial control

system,” 2014.

[250] R. Ihaka and R. Gentleman, “R: A Language for Data Analysis and Graphics,” J. Comput.

Graph. Stat., vol. 5, no. 3, pp. 299–314, 1996.

270

Appendices

Appendix A - The overview of the EFSA generated by ReHMM

271

Appendix B - The Results of Applying Inference Techniques on 7
Different Case Studies for k=5 and k=10

Table 46. The Results of Applying Inference Techniques on Poolboy, SMTPTransport, Resource Locker

and Frequency Server, for k=5,10 (in terms of BCR)

 G=0 Poolboy SMTPTransport Resource Locker Frequency Server

k
Inference

Algorithm

Min

BCR

Max

BCR

Median

BCR

Min

BCR

Max

BCR

Median

BCR

Min

BCR

Max

BCR

Median

BCR

Min

BCR

Max

BCR

Median

BCR

5

ReHMM

Sk-strings

Bayes

JRIP

AdaBoost

J48

0.66

0.63

0.64

0.5

0.58

0.53

0.72

0.66

0.7

0.7

0.72

0.61

0.705

0.66

0.64

0.6

0.6

0.6

0.89

0.58

0.68

0.68

0.62

0.6

0.92

0.66

0.72

0.8

0.81

0.7

0.91

0.645

0.7

0.71

0.67

0.685

0.71

0.6

0.55

0.55

0.6

0.62

0.83

0.69

0.68

0.73

0.74

0.66

0.76

0.645

0.67

0.62

0.625

0.63

0.73

0.58

0.55

0.55

0.65

0.55

0.9

0.68

0.75

0.65

0.8

0.72

0.835

0.655

0.68

0.615

0.79

0.675

10

ReHMM

Sk-strings

Bayes

JRIP

AdaBoost

J48

0.66

0.65

0.64

0.5

0.59

0.59

0.8

0.69

0.7

0.69

0.75

0.63

0.71

0.66

0.64

0.6

0.62

0.605

0.9

0.55

0.68

0.68

0.7

0.6

0.95

0.66

0.75

0.83

0.81

0.72

0.91

0.645

0.71

0.715

0.72

0.7

0.75

0.65

NA

0.55

0.62

0.61

0.87

0.69

NA

0.8

0.85

0.69

0.77

0.66

NA

0.63

0.64

0.65

0.77

0.58

NA

0.6

0.75

0.6

0.96

0.68

NA

0.65

0.88

0.72

0.845

0.66

NA

0.635

0.79

0.67

272

Table 47. The Results of Applying Inference Techniques on Signature, StringTokenizer and Socket, for

k=5,10 (in terms of BCR)

 G=0 Signature StringTokenizer Socket

k Inference
Algorithm

Min BCR Max BCR Median BCR Min BCR Max BCR Median BCR Min BCR Max BCR Median BCR

5

ReHMM

Sk-strings

Bayes

JRIP

AdaBoost

J48

0.7

0.55

NA

0.44

0.45

0.44

0.95

0.73

NA

0.77

0.86

0.8

0.74

0.635

NA

0.55

0.51

0.49

0.7

0.55

NA

0.44

0.45

0.44

0.95

0.73

NA

0.77

0.86

0.8

0.74

0.635

NA

0.55

0.51

0.49

0.7

0.55

NA

0.44

0.45

0.44

0.95

0.73

NA

0.77

0.86

0.8

0.74

0.635

NA

0.55

0.51

0.49

10

ReHMM

Sk-strings

Bayes

JRIP

AdaBoost

J48

0.73

0.55

NA

0.5

0.6

0.48

0.95

0.73

NA

0.79

0.9

0.8

0.77

0.675

NA

0.545

0.64

0.525

0.73

0.55

NA

0.5

0.6

0.48

0.95

0.73

NA

0.79

0.9

0.8

0.77

0.675

NA

0.545

0.64

0.525

0.73

0.55

NA

0.5

0.6

0.48

0.95

0.73

NA

0.79

0.9

0.8

0.77

0.675

NA

0.545

0.64

0.525

