
 

 

 
 
 

Stochastic Modeling in Software Testing 
 

by 
 

 
Seyedeh Sepideh Emam 

  
  

 
 

  
 

A thesis submitted in partial fulfillment of the requirements for the degree of 
 
 

Doctor of Philosophy  
 

in 
Software Engineering and Intelligent Systems 

 
 
 
 
 
 

Department of Electrical and Computer Engineering 
University of Alberta 

 
 
 
 
 
 
 

  
 
 

© Seyedeh Sepideh Emam, 2017 
 
 
 
 
 



 

 ii 

Abstract 

Using models in order to formalize and abstract the view of a system is a popular approach in 

different research areas. Deriving behavioral models from software executions is a common 

approach used in supporting a broad range of software development, maintenance, and 

verification and validation tasks. Behavioral models are useful tools in understanding how 

programs work. Although, several inference approaches have been introduced to generate 

Extended Finite State Automatons from software execution traces, they suffer from accuracy, 

flexibility and decidability issues. 

In this study, we apply a hybrid technique, which uses both Reinforcement Learning and 

stochastic modelling to generate an Extended Probabilistic Finite State Automaton (called 

ReHMM) from software traces. Our approach is able to address the problems of inflexibility and 

un-decidability, reported in other state of the art approaches. Experimental results indicate that 

ReHMM outperforms other inference algorithms. 

Moreover, dynamic specification mining of web applications is a helpful approach in observing 

program execution and generating a model of program behavior. However, it cannot efficiently 

support the identification of prevalent navigation patterns from a user’s perspective. Inferring a 

user behavioral model from a history of users’ interactions can assist in evaluating the users’ 

“satisfaction level” with the application. Based upon this evaluation, such a model can provide 

insights into possible design and architectural anomalies and lead to the development of software 

solutions addressing the users’ needs.  

In this thesis, we also propose a hybrid approach to fully automate the behavioral model 

generation and a reward calculation process for user-intensive web applications. Our proposed 
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solution infers a reward augmented behavioral model by: (1) dynamically generating a set of 

probabilistic Markovian models from the interaction history; (2) annotating and analyzing the 

models to verify the quantitative properties; and (3) augmenting the model using a reinforcement 

learning method to assign reward values to the states of the model. 

Additionally, we present a new extended digraph model as the basis of a novel fault-based test 

case prioritization technique to promote fault-revealing test cases in model-based testing (MBT) 

procedures. We seek to improve the fault detection rate- a measure of how fast a test suite is able 

to detect faults during testing – in scenarios such as regression testing. The model is realized 

using a Reinforcement Learning (RL) and Hidden Markov Model (HMM) based technique, 

which is able to prioritize test cases for regression testing objectives. We present a method to 

initialize and train a HMM based upon RL concepts applied to an application’s digraph model. 

The model prioritizes test cases based upon forward probabilities. In addition, we also propose 

an alternative approach to prioritizing test cases according to the amount of change they cause in 

applications. To evaluate the effectiveness of the proposed techniques, we perform experiments 

on Graphical User Interface (GUI)-based applications and compare the results with state-of-the-

art test case prioritization approaches. The experimental results show that the proposed technique 

is able to detect faults early within test runs. 

And finally, since the automated test case generation is one of the main challenges in testing 

mobile applications, and this challenge becomes more complicated when the application under 

test supports motion-based events, we propose a novel, hidden Markov model (HMM)-based 

approach to automatically generate movement-based gestures in mobile applications. 
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An HMM classifier is used to generate movements, which mimic a user’s behaviour in 

interacting with the application’s User Interface (UI). We evaluate the proposed technique on 

three different case studies; the evaluation indicates that the technique not only generates 

realistic test cases, but also achieves better code coverage when compared to randomly generated 

test cases. 
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1 Introduction 

This thesis is the collection of the research papers, which are produced during this PhD program. 

The list of papers is provided in the preface. In this section we focus on introducing the main 

goals and approaches, which are defined and developed in this research. 

 It is worth noting that in the first two papers (Chapters 2 and 3), we proposed new inference 

techniques to generate probabilistic behavioral models from software execution traces and log 

files, while in the rest of the thesis (Chapter 4 and 5), we focused on applying the behavioral 

models in software testing context. 

1.1 Inferring Behavioral Models 

The application of behavioral models in software analysis and testing activities includes efforts 

to complement available specification information [1], automate the acquisition of user 

interaction requirements [2], and the ability to generate test cases to detect program faults [3]–

[6]. The large range of applications for behavioral models in software engineering has led to a 

multitude of researchers proposing several inference techniques. Many of these approaches infer 

the model in the form of a Finite State Machine (FSA) [7], [8]. While some other approaches 

augment the FSAs with transition probabilities or constraints, and produce Probabilistic FSAs 

(PFSAs) or Extended FSAs (EFSAs). 

Although, augmenting the behavioral models with transition probabilities helps in generating 

behavioral models mimicking actual software characteristics, PFSAs are still missing algebraic 

or universally quantified guards associated with the transition labels and EFSAs are missing the 

transition probabilities. 
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On the other hand, specification mining of web applications is a helpful approach in generating a 

model of system behaviour. Unlike inferring EFSAs and PFSAs, which normally use software 

execution traces as inputs, behavioral models in web applications can be generated from the 

history of users’ interactions. 

Inferring user behavioral models in web applications provides information about hidden user 

behavioral patterns. Such information helps systems’ experts to understand the clients’ interests 

more thoroughly and design the web application in a way that fully addresses users’ 

requirements. User behavioral models are also used in detecting the design anomalies in web 

applications. Finding the pages playing the role of deadlocks in the user interface design is 

another main achievement in inferring and analyzing the user-behavioral models [2-7]. 

1.2 Applying Stochastic Models in Test Case Generation and 
Prioritization 

The complexity and size of software systems are growing; along with the increasing importance 

of testing and verifying these systems. As a result, many test suites produced during development 

are reused in a regression-testing mode especially during software maintenance or evolution. 

Decreasing regression-testing costs while increasing fault detection power are important goals in 

software testing; these challenges can potentially be addressed by Model-based testing (MBT) 

techniques [13], [14]. MBT has two phases: (1) the generation of executable test cases; and (2) 

the execution and evaluation of test cases [15].  

However, stochastic modeling approaches are an efficient way to handle Model-based Testing. 

Different stochastic modelling techniques are developed and applied to address both test case 

generation and evaluation phases [10], [11], [16]–[18]. Markov chains and Hidden Markov 
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Models can be used to generate FSAs representing all possible execution traces in software or 

user-interaction scenarios in the web or mobile applications. Such traces and scenarios can be 

used later to generate test cases covering different functionalities in the Graphical User Interface 

(GUI) and the source code. Moreover, stochastic models can be used to select and prioritize test 

cases, which are more likely to detect faults during regression testing [15], [19], [20]. 

However, when it comes to testing mobile applications, MBT becomes more challenging due to 

the ongoing developments in the mobile industry. For instance, inferring models supporting 

motion-based scenarios and automatically generating executable motion-based gestures (test 

cases) is a new and challenging area in MBT. Proposing an approach to generate a dynamic 

behavioural model of a motion-based application and applying that in automatically generating 

test cases can provide a solution to the problem of testing such applications.  

1.3 The Focus of This Research 

In this thesis we identify and categorize the major issues and vulnerabilities in the existing model 

inference approaches. We develop and evaluate a novel hybrid approach using both 

Reinforcement Learning (RL) and stochastic modeling, which addresses these vulnerabilities and 

outperforms state-of-the-art approaches in terms of the inference accuracy. We also apply the 

RL-based modeling approach to generate and prioritize test cases.  

1.3.1 Chapter 2: Inferring Extended Probabilistic Finite State Automaton Models 
from Software 

The focus of the chapter 2 of this thesis is on proposing a new approach to generate the Extended 

Probabilistic Finite State Automaton (EPFSA) from software traces. Our new inference approach 

(ReHMM) addresses the problems of inflexibility and un-decidability, which had not been 
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addressed by state-of-the-art techniques. It utilizes both Reinforcement Learning (RL) and 

stochastic modelling concepts to generate models, which are not only labeled with the method-

calls and guards but also are labeled with the transition probabilities. Applying ReHMM on 

several different software systems indicated that it outperforms other inference algorithms in 

terms of accuracy.  

Chapter 2 of this dissertation is derived from an article submitted for publication: 

• S. Emam; J. Miller, "Inferring Extended Probabilistic Finite State Automaton Models 

from Software Executions". Under revision at the ACM Transactions on Software 

Engineering and Methodology (TOSEM), 2017. 

1.3.2 Chapter 3: Inferring Reward Augmented Behavior Models from Log Files in 
Web Applications 

In chapter 3, we propose a hybrid approach of RL and Markovian process to fully automate the 

inferring procedure of reward-augmented behavioral models in web applications. In this 

approach, the states of the inferred behavioral model are automatically augmented with the 

reward values. Reward values provide information about the behavior of the users in 

corresponding states (pages) of the web application. Such models are generated using historical 

user-interaction log files. They are able to provide user behavioral information without 

instrumenting the source code or manually calculating the reward values. Experimental results 

indicate our proposed approach has comparable performance to Google Analytics. 

Chapter 3 of this dissertation has been submitted for publication: 
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• S.Emam, S.S. Ghaemmaghami, J. Miller, "Inferring Reward Augmented Behavior 

Models from Log Files in Web Applications". ACM Transactions on Internet 

Technology (TOIT), 2017. 

1.3.3 Chapter 4: Test Case Prioritization Using Extended Digraphs 

A new MBT approach is provided to prioritize GUI-based test cases in chapter 4 of this thesis. 

This technique uses both RL and HMM concepts to generate an application’s digraph model and 

apply the model in order to prioritize test cases based upon the forward probabilities. It utilizes 

both forward probabilities and accumulated Q-values to respectively calculate the occurrence 

likelihood of the sequence of events and the amount of computations triggered by executing such 

sequences in the GUI-based applications. 

The proposed approach is used on Graphical User Interface (GUI)-based applications and the 

results are compared with state-of-the-art test case prioritization approaches in terms of fault 

detection rate. The results indicated that our prioritization approach outperforms other techniques 

(including Random, Best, Worst and Additional code coverage) in terms of APFD. 

Chapter 4 of this thesis has been published as: 

• S. Emam; J. Miller, " Test Case Prioritization Using Extended Digraphs” ACM 

Transactions on Software Engineering and Methodology (TOSEM). 25(1): 6:1-6:41, 

2015.  
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1.3.4 Chapter 5: Automated Testing of Motion-based Events in Mobile 
Application 

Finally, in chapter 5, we propose a new MBT approach to generate motion-based test cases in 

mobile applications. Again the considered technique uses both RL and HMM concepts and 

automatically generate test cases for mobile applications supporting motion-based events. Such 

mobile applications generate motion-based events using the data gathered by the accelerometers 

or by recording the touched points.   

When the device is in the motion or its screen is continuously being touched, the probability of 

receiving unintentional inputs by the mobile application increases. Therefore, providing an 

approach, which is able to automatically generate test case mimicking actual human user motions 

would be helpful in not only testing the functionality of the applications but also in early 

detection of faults. 

In this study, we evaluate our test generation technique on three different motion-based mobile 

applications. The experimental results indicate that the technique is able to generate test cases 

mimicking actual users’ behaviors, while it achieves a better coverage compared to the random 

test cases. 

Chapter 5 of this thesis is submitted for the second round of revision as: 

• S. Emam; J. Miller, "Automated Testing of Motion-based Events in Mobile 

Application". Journal of Software: Evolution and Process, 2017.  
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2 Inferring Extended Probabilistic Finite State Automaton 
Models from Software Executions 

2.1 Introduction 

Most of behavioural model inference techniques are able to infer a model in the form of a Finite 

State Automaton (FSA). FSA is the model most commonly used by dynamic model inference 

approaches to demonstrate program behavior and to present information about the execution of 

event sequences [7], [8].  

FSAs are able to provide information about the behavior of software systems using a set of states 

and transitions. However, because a FSA can only provide a partial view of the software, it does 

not accurately represent the software’s behavior [21], [22]. To address this issue, many 

researchers have proposed a complementary model containing information about state variables. 

In the Extended version of a FSA (EFSA), transitions between states are associated with both 

labels and guards (constraints). A guard represents the conditions, which must hold with respect 

to the system’s data–state variables (for the transition to be available). Transitions of an EFSA 

can be labeled with algebraic or universally quantified guards. The algebraic guards associated 

with transitions determine the concrete values that can be assigned to variables, while universally 

quantified constraints (guards) indicate how data values can reoccur across events.  

EFSAs are able to solve many complex learning problems by blending the sequence of events or 

method calls with the values of the associated parameters. However, they are still missing a 

significant factor: Transition probabilities. Transition probabilities in FSAs indicate the 

likelihood of a transition being traversed. Using a model containing the transitions probabilities, 

it is possible to generate a collection of actions mimicking certain characteristics of the actual 
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software. For example by utilizing Probabilistic FSAs (PFSAs), it would be possible to calculate 

the probability of calling a specific method in different states of the software and subsequently 

detect methods which may be called more frequently than others. Accessing such information 

helps in solving several software engineering problems: 

• Finding hotspots 1 in software executions: virtually many software programs spend the 

most majority of their time executing a minority of their code. Therefore, by detecting 

the less-frequent methods in the software system, the compiler can focus the attention 

of a global native-code optimizer on the hot spots. By avoiding compilation of 

infrequently executed code, the Hotspot compiler can devote more attention to the 

performance-critical parts of the program, without necessarily increasing the overall 

compilation time. However, less frequent methods can be detected by recognizing the 

transitions with low likelihood of being traversed in a corresponding PFSA. 

• Finding errors and bugs: knowing the probability of a method to be called helps the 

software testers to focus the testing efforts on the behaviors that are more likely to 

happen in the software system. This helps in reducing the time, needed for regression 

testing by eliminating the test cases covering less-frequent functionalities. 

In addition, it is proven that the problem of generating a perfect Probabilistic FSA (PFSA) is a 

decidable problem, whereas perfect learning of a FSA is not decidable.  According to research 

conducted by Gold [23], when the learner has no preference in choosing a path, it is possible that 

the learner cycles through generating a never ending sequence of examples from the infinite 

language making the problem of learning a perfect FSA undecidable. However, Ammons et al. 

[24] illustrated that if the learner is provided with extra information (a probability distribution), 

                                                
1 http://www.oracle.com/technetwork/java/whitepaper-135217.html 
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allowing it to justify choosing a less general automaton over a more general one, the cycling 

issue can be avoided. In this study, we refer to the issue of a missing probability distribution as 

the missing state-action value issue, since it is solved by estimating the value of executing an 

action in the corresponding state. 

In this study, we propose a new solution to address the missing state-action values’ issue by 

representing a new stochastic inference approach called ReHMM. 

ReHMM is a novel Extended Probabilistic FSA inference technique that builds the behavioral 

model incrementally, while walking through software traces from the system. ReHMM takes 

advantages of both EFSAs and PFSAs by inferring an Extended Probabilistic Finite State 

Automaton (EPFSA), where its nodes represent the software state and its edges carry method 

calls, data values, and transition probabilities, adding the state-action values to the model. 

ReHMM infers an accurate EFSA from software traces while triggering relevant computations to 

navigate the model during the inference process. It uses a hybrid technique consisting of 

stochastic modelling (Hidden Markov models (HMMs)) and reinforcement learning (RL), in 

particular Q-learning, to infer an “improved” model. This improvement in behavioral-modeling 

performance is achieved by calculating a new value (called the Q-value) for each transition in the 

behavioral model and attaching it to the corresponding edge. In other words, Q-learning actively 

explores the execution space (execution traces) and calculates Q-values incrementally to solve 

the missing state-action values’ issue. 

In practice, HMMs are common types of stochastic FSAs, which are used in many sequential 

pattern processing, information extraction and classification problems (such as speech and 

handwritten task recognition [25], [26]). In this case, an HMM classification approach is applied, 

because the inferred models contain an underlying stochastic behavior among the software-
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systems’ states that is not observable, but affects the observed sequence of events (the execution 

of method calls). Therefore, as part of the inference algorithm a set of classifiers is generated 

each of which corresponds to a class label in the trace (e.g. the signature of a method in a trace 

from a program). Using such a set of traces, the classifier can predict the next event name in the 

trace (i.e. the name of the next method to be called). 

On the other hand, the main reasons for choosing Reinforcement Learning are its strong 

statistical background, its proven ability in handling a wide range of data, and its ability to re-

estimate a Markov model efficiently. Using RL, we are able to estimate the transition 

probabilities as part of the inference procedure [27]. 

Therefore, by using an HMM classifier and Q-learning as a hybrid approach, the model would be 

able to predict the next event name in the trace and subsequently, distinguish between transitions 

with the same labels but different corresponding Q-values. This also prevents the inference 

procedure from inappropriate merging of states and transitions. 

This study contributes to the research in this area by: 

• Utilizing Q-Learning as an incremental learning approach to discover functions, which 

trigger more computations during software executions, while inferring an EFSA from 

software executions and calculating the transitions probabilities in the inferred model; 

• The adoption of an HMM classifier as a Markovian solution to the problem of generating 

non-deterministic and inaccurate models; 

• Demonstrating the accuracy of the inferred model by performing an empirical evaluation 

of ReHMM on seven relatively diverse software systems; and 
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• Comparing the results obtained using the proposed method with those obtained by [28] 

and [29]. The results show that ReHMM outperforms the current state of the art 

technique in terms of model accuracy; 

• Considering Q-values as a potential indication of the transitions probabilities in designing 

Extended Probabilistic FSAs. 

This chapter is organized as follows. Section 2.2 provides related work and the detailed 

description of the state of the art approaches, which are used as baselines in this research (MINT 

data classifier and sk-strings algorithms). Section 2.3 contains research motivations, problem 

description and application of the proposed approach in software engineering. Section 2.4 

contains the definitions and details regarding the inputs and domain of this research. This section 

also introduces a motivating example, which will be used throughout this chapter (specifically in 

Section 2.6) to provide a demonstration of the inference steps on a sample system. In Section 2.5, 

we provide background information and definitions relating to EFSAs, PFSAs, PTA, RL, 

transition functions and HMMs. Section 2.6 includes the design of the proposed techniques by 

describing the estimation procedure of the RL-based Hidden Markov Model (ReHMM) and 

inference of Extended PFSA. Section 2.7 describes the evaluation phase, research questions and 

comparison criteria. Section 2.8 provides the experimental setup, while Section 2.9 includes a 

discussion on the results, and an analysis of the empirical studies.  Section 2.10 discusses the 

time-complexity analysis of the approach. Section 2.11 looks at the limitations and the threats to 

the validity of the study. Finally, in Section 2.12, we present our overall conclusions and some 

thoughts on potential future research.  
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2.2 Related Work 

The challenge of producing FSAs from traces is not a new topic; several research projects have 

been undertaken which have provided a diverse set of inference approaches and algorithms. 

Many of these methods are general approaches focusing on the efficient generation of 

automatons as abstract machines regardless of their application in software engineering [30]–

[32]. For example, Biermann and Feldman in [7] present a modified method to synthesize 

machines from finite subsets of their behavior.  

Since, our work builds upon early work in inferring Extended FSAs, in this section, we consider 

related studies on specification mining in the software engineering context, their improvements 

in generating stochastic models and their evaluation approaches.  

2.2.1 Specification Mining 

Many studies have been conducted on automaton-based specification mining [33], [34]. 

Bartussek et al. [35] presented a new approach to use a set of assertions about input traces and 

utilize them to generate an abstract specification of different software modules. However, trace-

assertions are used in other studies as well to specify software modules [36]–[38]. Additionally, 

Ammons et al. [24] provided a pioneering approach to mining the specification of method calls 

extracted from software execution traces. Their proposed method infers a model by observing 

program executions and concisely summarizing frequent interaction patterns as state machines. 

The generated FSA is able of capturing both the temporal and data dependencies and learn a 

probabilistic FSA. 

Moreover, Krka et al [39], proposed three novel algorithms CONTRACTOR++, SEKT and 

TEMI, which combine execution traces with automatically inferred program-state invariants to 
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mine EFSA-based specifications. It is worth noting that some of execution traces used in this 

study are the same as the traces used in [18].  

In addition to this, there are other studies, which have provided an approach to infer FSAs using 

graph transformation rules [40] or suggested a method to mine traces for a set of pre-defined 

micro-patterns and then merge them into a FSA [41]. It is worth noting that that the solutions 

introduced in these studies are not able to mine specifications into other formats (such as regular 

expression, Communicating FSAs (CFSAs) [34] or EFSAs.) rather than FSAs. 

State of the Art EFSA Inference Approaches: GK-tail [3], kLFA [22], ADABU [42] are other 

pioneer techniques utilizing data flow information to extract EFSAs. We describe each of these 

inference techniques in the following paragraphs: 

Dallmeier et al. in [42] suggests a technique to construct a state machine that would summarize 

object behavior. They It generates a model by obtaining a detailed record of the data states at 

each point of the program execution. It finally builds a model that adds data values to FSA 

models but these are not transition guards. 

Another state of the art EFSA inference method is GK-tail. GK-tail is an extension of the 

traditional kTail algorithm [7] and an automated inference technique used to generate EFSAs 

from a set of interaction traces [3]. This technique augments the automata with constraints both 

on transitions and event sequences. To process traces and infer a behavioral model, GK-tail 

merges similar traces, derives constraints from the values associated with each event, and then 

builds an initial EFSA from the set of traces annotated with the constraints. Finally, GK-tail 

iteratively merges states with the same future of length k. The future of length (k) of a state is the 

set of event sequences with maximum length (k) that can be triggered from the state. It is worth 

noting that GK-tail uses Daikon [4] to infer rules for each transition. 
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Unlike GK-tail, which uses the values already assigned to the attributes, kLFA uses a different 

approach and focuses on universally quantified constraints representing an occurrence pattern of 

values across events. Initially, kLFA analyzes the interaction traces and extracts the universally 

quantified constraints, which indicates how data values reoccur across events [22]. It then 

rewrites traces by replacing concrete values with symbols representing the discovered patterns. 

Finally, kLFA infers an EFSA from the rewritten traces which incorporate data flow information 

[43].  

Stochastic FSAs: The challenge of improving FSAs using stochastic procedures and 

probabilistic values dates back to 1963 when Michael et al. [44] presented the probabilistic FSAs 

as an stronger version of deterministic automata. Also in the context of software engineering, 

many studies have focused on conventional Probabilistic FSA generation processes [45], [46]. 

However, using the probabilistic FSA as a learner to mine the specification of method calls from 

software executions represents another challenge to this research area, which requires more 

attention and development. As mentioned earlier, Ammons et al. [24] pioneered to mine 

specifications using a probabilistic FSAs in 2002. Later, Lo et al. [47], represent an API 

specification mining architecture called SMArTIC to improve the robustness of the specification 

mining process by learning PFSAs instead of traditional FSAs. They also provide an approach to 

structure the mining procedure by filtering and clustering dynamic execution traces as an 

important piece of their proposed framework. However, the learner block in the SMArTIC 

framework plays the role of a placeholder, which means that different PFSA specification miners 

can be placed into this block. Authors have implemented the sk-strings learner [48] to learn the 

PFSAs in their study.  
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In this study, we also tried to address some of the potential specification mining issues by taking 

the advantages of stochastic FSAs. 

2.2.2 Evaluation of Inferred models 

Another interesting research area in specification mining is the evaluation of miners.  Several 

approaches are provided to evaluate the quality of mined specification. For instance, Lo et al. 

[49] propose a framework called Quark for empirically assessing the automata generated by 

different miners. Their method generates traces from a given automaton and then uses these 

simulated traces to train the specification miner. The original model and the mined one are then 

used to compute precision, recall and probability similarity (for PFSA learners) measures to 

evaluate how accurately a miner summarizes the provided traces into a model. The same metrics 

are used in this study. 

Pradel et al [50] also propose another framework to evaluate the entire mining process. Their 

approach accounts for imprecision and incompleteness in the mined specifications, which can 

help in detecting the similarities between FSAs. In addition, there are several other approaches 

proposing different metrics and measures for comparing and evaluating FSAs [3], [51]–[53]. 

However, none of them provide a specific and customized measure to evaluate the probability 

similarity (PS) between Probabilistic models. 

2.2.3 Baseline Inference Approaches 

This section presents an overview of other inference techniques, which are used as baselines in 

this research.  



 

16 

Many FSA and EFSA inference approaches (such as kTail) fit into the family of “state merging” 

algorithms. In such algorithms, a PTA (initial FSA) is inferred from a set of traces; then 

subsequently in the merging step, two states of the PTA are selected to be merged. Several 

diverse algorithms are provided to improve the performance of the model by modifying the 

merging step. On the other hand, some new approaches are also developed on top of the 

established state-merging algorithms to improve the overall performance of the final inferred 

models by generating more specific PTAs. The data classifier inference techniques can be 

considered as a class of such approaches, which are able to identify rules and patterns between 

variables from a set of traces and map these variables to a class label. This procedure helps in 

predicting the next class of unseen variables and generating the most specific PTA representing 

the given set of traces. [28], [54] represent a new data classifier inference technique called MINT 

to address the non-determinism issue in the previous state of the art EFSA inference techniques, 

such as GK-tail. In this study, MINT is used as a baseline to define our proposed approach 

(ReHMM). ReHMM also can be considered as a data classifier approach, which is built on top of 

MINT. Since, MINT uses the same merging strategy as GK-tail’s in the state-merging step, it 

makes more sense to consider and compare ReHMM with MINT instead of GK-tail. 

Moreover, MINT provides a proven improvement [29] in inferring rules compared with Daikon 

[4] – a data-constraint inference tool used in GK-tail. Also, the idea of inferring a set of global 

rules belonging to the full set of traces represented by Krka et al. [39] and Le et al. [55] is very 

similar to the method of inferring data models in MINT. Hence, even if the purpose of the 

models inferred by [39] and MINT are different, the nature of the models are the same, except 

that MINT provides more flexibility by incorporating data classifier inference techniques. 

Accordingly, again, we believe that comparing ReHMM with MINT can also demonstrate the 
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position of ReHMM with regard to other state of the art techniques, as these techniques are either 

(a) a subset of MINT; and/or (b) have been shown to be outperformed by MINT [29]. 

MINT Data Classifier Inference Approach: The MINT algorithm consists of the five 

following steps: 

• Processing traces to create data traces. Given a trace (𝑇𝑟) which consists of a 

variable domain 𝑉 along with a set of transition labels 𝐿, a data trace can be defined 

as the set 𝑇𝐶 = { 𝑒!, 𝑐! ,… , (𝑒!, 𝑐!)}, where 𝑒 = 𝑙, 𝑣  , 𝑙 ∈ 𝐿 𝑎𝑛𝑑 𝑣 ∈ 𝑉, and each 

variable e is associated with its corresponding class label 𝑐! ∈ 𝐶 . In the EFSA 

inference procedure, class label 𝐜𝐢 commonly represents a categorical outcome 

such as an event name or a method call. It is worth noting that extracting class 

labels does not need any specific knowledge about the software system and can be 

easily done by parsing the traces and extracting the method, which will be called after 

each event.   

• Inference of data classifiers. Classifiers are used to predict the next class label in the 

trace; a class label is the method call. The classifier uses a set of inputs (training 

sets) to simply predicting the next method call. More formally, they use training set to 

map the variable to their respective classes. Most standard classifiers in the WEKA 

library2 can be used to carry out this step [56]. The classifiers used by [28] are: 

NNGE, Bayes (in this study when we refer to the Bayes algorithm we mean Naïve 

Bayes) , JRIP, AdaBoost and J48. We applied the same classifiers in this study for the 

sake of comparison.  

                                                
2 http://www.cs.waikato.ac.nz/ml/weka/ 
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• Producing the Prefix Tree Acceptor (PTA). In this step, a PTA is built by extracting 

all the prefixes from the traces, where traces with the same prefix will share the same 

path from the initial state of the FSA until the point where they diverge. A technical 

definition of a PTA is provided in Section 2.5.1. 

• Merging. Pairs of states are suitable for merging when the number of transitions in 

their outgoing path (merging score), their labels and their data values are equal. In 

this situation, both the generated PTA and the data classifiers are used to interactively 

detect candidates, merge them and then relocate the data values from the source to the 

target transitions. In addition, G is an optional parameter to represent the minimum 

merging score before a pair of states can be deemed to be equivalent. For instance, if 

G=1 there must be at least one suffix that is the same for two states to be merged. The 

suffix contains both labels and data values in the outgoing paths of the candidate 

states. In this study, we vary G from 0 (which only considers data) to 1 (which not 

only relies on data but also needs (at least) one common suffix for two states to be 

merged). Similar merging procedures have been used in other state of the art 

approaches [3], [22], [42]. 

• Checking the consistency. This step checks that the data variables attached during the 

merging process are consistent with the classifiers. This ensures that the inferred 

model is deterministic by comparing both the labels and the attached data of the 

outgoing transitions of the given states, and recursively merges the states that can 

cause non-determinism. This procedure not only leads to generating a consistent 

model but it is also beneficial in terms of the computational cost. 
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In this study, we also infer PFSAs, however we extend the definition of a PFSA beyond its norm 

(Definition 4). In this work, our PFSA model adds the probabilities into Extended FSAs, so it has 

the features and benefits of both PFSAs and EFSAs (Definition 9 in Section 2.6). 

sk-Strings: In order to compare the inferred PFSA generated using ReHMM with a state of the 

art probabilistic model in terms of accuracy, we implement the sk-strings PFSA learner 

algorithm on the same software systems and traces as another baseline approach. The sk-strings 

algorithm is an extension of K-tail approach introduced in 1972 for stochastic automata [24], 

[32], [48]. sk-strings creates a PTA from software execution traces (similar to K-tail) and labels 

each edge by (1) an event name; and (2) a probability showing how often the edge is traversed. 

Initial probabilities are distributed equally to transitions from the same source node. Therefore, 

given a PTA, a node q, the alphabet Σ, a set of final states (the leaves of the PTA) 𝐹!, and a 

transition function 𝛿, the set of k-strings associated with the node q (𝑘 − 𝑠𝑡𝑟𝑖𝑛𝑔(𝑞)) is defined 

to be the set:  

𝑑 𝑑 ∈ Σ, 𝑑 = 𝑘, 𝛿(𝑞,𝑑) ⊂ 𝑄 ∨ 𝑑 < 𝛿(𝑞,𝑑) ∩ 𝐹! ≠ ∅          (1) 

In the merging step, two merging candidates can be merged if they are indistinguishable with 

respect to the top d% of the most probable strings of length k that can be generated from these 

states [49]. It is worth noting that, k-strings ends at a finish state if d is shorter than the specified 

string size (𝛿(𝑞,𝑑) ∩ 𝐹!). Raman et al. in [48] provide a set of different heuristics with various 

degrees of strictness (containing the OR heuristic, the AND heuristic, the LAX heuristic and the 

STRICT heuristic).  In this study, the AND variant of the algorithm is used as per the advice 

from Lo and Khoo [49]. Algorithms 1 and 2 elaborate upon these implemented procedures [48]. 

Algorithm provided in Table 2, makes decisions about the equivalency of states using the AND 

heuristics, then the algorithm provided in Table 1 merges states of the PTA which are equivalent. 
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Table 1. sk-strings Algorithm 

Input: PTA 

Output: Generalized Automata 

1. begin 
2. For each state 𝑝 = 𝑠! 𝐓𝐨 𝑠!!! do 
3.          For state 𝑞 = 𝑝 𝐓𝐨 𝑠!!! do 
4.             if ∗ 𝑠𝑘 − 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡(𝑝, 𝑞,∗ 𝐺) then 
5.                    merge(p,q) 
6.                    𝑝 = 𝑠! 
7.                    𝑞 = 𝑠!!! 
8.    Repeat Until no new 𝑝, 𝑞 ∈ 𝑆 is found 
9.  end 

* sk-equivalence using AND heuristic 

* G is the minimum merging score 

Table 2. sk-equivalence using AND heuristic 

Input: States p and q 

Output: TRUE if p and q are sk-equivalent, FALSE otherwise 

1. begin 
2. 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0;  𝑖 =  0 
3. 𝑆! = (str,prob) pairs output from p 
4. 𝑆! = (str,prob) pairs output from q 
5. DesendingSort(𝑆!. 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠) 
6. DesendingSort(𝑆! . 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠) 
7. for 𝑖 = 1 to num_strings_in(𝑆!) do  
8.         𝑐𝑛𝑡 =  𝑐𝑛𝑡 +  𝑆! [𝑖]. 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
9.         if not_acceptable(q, 𝑆! [𝑖]. 𝑠𝑡𝑟𝑖𝑛𝑔,G) 
10.         then return(FALSE) 
11.         if 𝑐𝑛𝑡 >= ∗ 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡%  
12.         then cnt = 0 
13.                 for 𝑖 =  1 to num_strings_in(𝑆!) do 
14.                           𝑐𝑛𝑡 =  𝑐𝑛𝑡 +  𝑆!  𝑖 . 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
15.                           if notacceptable_at(p, 𝑆!  𝑖 . 𝑠𝑡𝑟𝑖𝑛𝑔,𝐺)  
16.                            then return(FALSE) 
17.                            if 𝑐𝑛𝑡 > 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡%  
18.                            then return(TRUE) 
19.             return(TRUE) 
20.         return(FALSE)  
21. end 

* Agreement% is a global value which equals parameter d to sk-string 
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In order to be able to provide more meaningful results, we also configured the sk-strings 

algorithm to consider the minimum merge score G in the merging procedure. This means that the 

merging candidates are indistinguishable when they are equal in terms of labels, data values and 

the number of transitions in their outgoing path. 

2.3 Research Motivation 

The area of inferring EFSAs is wide. Several different approaches have been proposed and 

implemented to infer Extended FSAs from software executions. However, GK-tail [3] and 

ADABU [42] are two notable approaches successfully implemented and evaluated on Java 

programs. Although these techniques are successful in addressing certain tasks, they suffer from 

two key drawbacks:  

1. Lack of flexibility: both of these approaches are tied to a specific form of data-abstraction 

in order to map concrete values onto abstract rules (more detailed information about these 

two inference approaches is provided in Section 2.2). A data abstraction technique cannot 

necessarily be applied on diverse sets of software traces according to the different 

characteristics of the system in terms of the trace size, event diversity and variable type.  

2. Non-determinism: EFSAs inferred by ADABU [42], GK-tail and kLFA [21], [22], [42] 

represent data flow information through algebraic and universally quantified constraints. 

However, during the inference procedure, the connection or link between these data 

constraints and events are ignored, as there are several possible paths to take for a 

specific data-state. This issue causes non-determinism. As a consequence of non-

determinism, the generated model fails to consider the explicit logical relationships 

between sequences of events and the data. Subsequently, the model may fail in making 
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similar decisions with regard to accepting or rejecting a single sequence of events on 

different occasions. For instance, in a situation, where a non-deterministic model is used 

for generating test cases, the number of required test cases to cover a “reasonable 

amount” of the code will be significantly increased [57]. 

Also, in the situation where the detection of the correct behavior of the system is a predefined 

goal [29], the model must be deterministic and consistent. However, the time required to convert 

a Non-Deterministic FSA (NFSA) to a Deterministic FSA (DFSA), (𝑂(2!), where n is the 

number of nodes) grows exponentially. This demonstrates the significance of applying an 

inference technique, which is able to detect the non-deterministic transitions and avoid them 

during the inference process instead of generating an NFSA and then converting it into a DFSA. 

It is worth noting that our proposed approach (see Section 2.10 for details about the time 

complexity analysis of ReHMM) automatically avoids non-determinisms within the merging 

step, it costs less than implementing other algorithms to detect and fix the non-deterministic 

issues. 

2.3.1 Missing State-Action Values 

Although Walkinshaw et al. [28], [29] addresses non-determinism and inflexibility issues present 

in the previous state of the art approaches by providing a new inference technique called MINT, 

it still suffers from a significant drawback. MINT is unable to address the issue of missing state-

action values (transition probabilities) in the inferred EFSA. 

In order to address this issue, we have used a stochastic-based approach to define an extended 

version of the state-action function and subsequently generate an Extended Probabilistic FSA. 

Probabilistic FSAs provide more control over the trace generation and verification process using 



 

23 

the attached probabilities, so that the collection of generated traces mimics the characteristics of 

traces collected from actual software executions [24], [49]. For example, methods, which are 

called during a function execution and have not been met before, are more likely to be traversed 

in the model immediately after the parent method compared to their siblings. Moreover, the 

methods, which appear more frequently in software executions, can be represented in the 

generated traces through appropriate probabilities at different transitions. Therefore, assigning 

higher probabilities to the children, which are either new or more different (in terms of the 

functionality that they are executing) compared with the currently traversed states can lead to the 

generation of more accurate models [24]. In addition, generating PFSAs are more expressive 

than FSAs, since they provide details on the probabilities of state transitions [47]. 

On the other hand, it has been proven that perfect learning of a FSA or EFSA from software 

traces is not a decidable problem; while, it is possible to learn a perfect PFSA from traces. 

Hence, PFSAs have been used as an intermediate step to learn FSAs [24] or as an independent 

approach to learn user-behavioral models in several research studies (e.g. [2]).   

However, none of these approaches have applied an HMM classifier and Q-learning as a hybrid 

approach in calculating the transition probabilities (state-action values) and improving the 

performance of EFSAs.   

Walkinshaw et al. [58] represents the state transition function for reverse engineering transitions 

from the source code in order to identify branches that are responsible for the execution of a 

specific transition. The state transition function (S) can simply be defined as: 𝑠!
!(!)

𝑠!, (𝑠!, 𝑠! ∈

𝑆)  which maps the transition onto the source code of method f(x), when f(x) is executed in state 

𝑠!  resulting in a transfer to state 𝑠! [58]. This definition helps us to define a new state-action 

function, which can be applied in the procedure of inferring EPFSAs from software traces. The 
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original version of the state transition function suggested by Walkinshaw et al. [58] cannot be 

directly applied in this study for the following reasons: 

1. Limitation to Specific Programming Languages. In order to use the inferred EPFSA to 

address the software engineering problems (e.g. generating test cases using software 

model), the inference procedure should not be limited to any programming language. 

2. Dependency on the Source Code. The State transition function relies completely on 

source code analysis, so cannot be applied in the absence of program source code. While, 

in the model inference procedure, the execution traces are the only inputs of the EPFSA 

inference algorithm.  

3. Independent Analysis. This approach is able to find the actual transition functions that 

transform the data-state variables at each transition. This means that the state transition 

function, for 𝑠!
!(!)

𝑠! depends only on the execution context represented by state 𝑠!. 

Therefore, the previously traversed contexts are not considered, while, the relationship 

between the current state and the previous states plays an essential role in generating 

accurate EPFSAs from software traces. 

Although the state transition function defined in [9] is able to identify path(s) in the source code 

which govern a transition, it is not designed to be used in the model inference procedure and 

accordingly cannot be helpful in addressing model inference issues such as improving the 

accuracy of the model or increasing its capability for software testing purposes (such as inferring 

a model which can be used to generate test cases with high code coverage level or fault detection 

rate).  
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Therefore, in this study, we suggest a new approach to evaluate transitions in the model and 

assign a probabilistic value to each transition based upon the utility of taking a given action in a 

specific state. This procedure is used to produce a PFSA with additional information about the 

values of associated parameters (transition probabilities) in each transition. So, the proposed 

approach is able to address both EFSAs and state-action functions drawbacks. 

2.3.2 Application of ReHMM in Software Engineering 

ReHMM, as an EPFSA inference approach has the capability of being applied in several 

software engineering tasks and activities such as refactoring, requirement engineering and 

software testing. 

Missing a complete and formal requirement specification document is a common problem faced 

by software engineers. Short delivery time and project scope changes easily lead to forgetting 

about the specification documents or creating incomplete documents. In order to address this 

issue, several researches have been conducted to reverse-engineer or mine the software 

specification using dynamic analysis techniques. For example, QUARK is a framework 

analysing the quality of generated specifications by producing quality assurance measures on the 

specifications generated by the miners. In this study, the specification produced using the miners 

are expressed as automata (PFSAs). Since (1) ReHMM has gone through the same quality 

assurance procedure (e.g. calculating PS measure- see Section 2.7.1) as QUARK and (2) the 

empirical results confirm its capability of being used as a high quality PFSA inference technique, 

ReHMM can also be applied as a specification miner tool, when suitable execution traces are 

provided as input. 
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Moreover, PFSAs are successfully used in refactoring and customizing software applications by 

capturing and analyzing user behaviors. Ghezzi et al. [2] have provided a framework, called 

BEAR, to mine behavioral models from user traces  generated by interacting with modern web 

applications. BEAR infers the model based upon a set of Markov models generated using 

historical log files. Applying ReHMM in the same research area can be helpful in maintaining 

and adapting existing user-intensive Web applications by inferring the models which are not only 

able to capture user behaviors probabilistically, but are also flexible and deterministic. 

In addition to this, Fraser et al. [59] have developed a test assessment and generation tool, called 

BESTEST, based upon EFSA inference approach proposed by Walkinshaw et al. [29]. 

BESTEST is designed to determine a finite test set that adequately detects fault prone behavior 

of software systems. The empirical results demonstrate that test sets with higher behavioral 

coverage outperform other test cases in terms of fault detection. Accordingly, ReHMM also can 

be used to infer an accurate EPFSA from test executions to not only identify test sets with high 

fault detection rate, but also to provide additional information regarding the probability of 

occurring faults in different software behaviors (a new type of operational profile).  

FSAs and EFSAs are also successfully used to address regression-testing tasks – another area of 

software engineering. Since regression testing happens when a software component is updated or 

replaced, missing test cases covering the old software system makes the regression testing 

process challenging. Also, missing a document specifying the software behavior, makes it 

difficult to identify the newly added behaviors and components of the software which are already 

tested.  In the absence of regression test cases, the only available data is execution traces or 

server-logs of the previous version. Behavioral models are very helpful in generating, selecting 

and minimizing regression test sets. Both FSAs and EFSAs [60], [61] are used to demonstrate 
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the behavioral model of the system using traces (or log files). Subsequently, the model can be 

used to generate and optimize regression test sets. In this study, we demonstrate that ReHMM 

provides a richer model than state of the art EFSA and PFSA inference tools, it is expected that 

richer models can produce more rigorous test sets [29]. Since ReHMM, is able to generate 

EPFSAs from software execution traces, it also could be applied in addressing regression-testing 

problems. 

The use of benchmarks also has become very common in empirical software engineering 

research. According to Walkinshaw et al. [62]: “a benchmark consists of a collection of subject 

data that can be consumed by different techniques, and can be used to draw coherent and valid 

conclusions about the respective performance of these techniques”. Therefore, the ReHMM 

inference framework also can be considered as a form of benchmark, since it compares the 

inferred EPFSA with other models from relevant techniques in terms of well-defined 

measurements of performance. All of these models are inferred using execution traces from real 

software systems. 

In order to apply ReHMM in addressing real world software engineering problems, no specific 

experience is required. For example, a software engineer or the system expert needs only to 

provide the algorithm with sets of test cases of the software under test in the format that can be 

read by the algorithm. Then the engineer traverses the inferred model to generate an adequate set 

of test cases. 

Now, in order to illustrate the proposed method, we firstly define the inputs and domain of 

operation for such a system. 
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2.4 Inputs and Domain 

As mentioned earlier, in this study, we propose a new inference approach (ReHMM) to produce 

Extended Probabilistic FSAs from software executions (traces). Therefore, a collection of traces 

of a software execution is required as an input of the algorithm. Input traces consist of sequence 

of events (method calls) and corresponding variable values. It should be noted that in this study 

we use “class labels”, “method-calls” and “sequence of events” interchangeably. The traces used 

in this study follow the same definition as provided by [35] and should not be confused with the 

trace definition used in the  theory of concurrent systems [63]. However, the encoding process of 

traces is identical to the definitions provided by [24], [62]. We also presume that the interactions 

with the system can be illustrated in terms of particular function names and associated parameter 

values. The following provides a technical definition of the traces that have been utilized in this 

study. It is worth noting that the existed input traces are processed in an incremental way to 

generate the model. Moreover, the proposed learning approach can proactively learn from new 

traces which, allows progressive and automatic analysis of large and complex models as soon as 

a new version of the software become available. 

Definition 1. Traces. [29] defines a trace 𝑇𝑟 = 𝑒!,… , 𝑒!  as a sequence of n trace elements 

(called events). Each element e!, maps to a pair 𝑙, 𝑣 , where l denotes a transition label showing 

a function or method name, and v is a collection of parameter values for function l.  

For instance, (low_water, (28.898501010661718 584.0357656062484 true)) is an event of a 

trace retrieved from the provided running example (Section 2.4.1) [29], which shows the 

transition label (𝑙): low-water and parameter values (𝑣): (28.898501010661718 

584.0357656062484 true). 
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Following [29], a positive trace represents a feasible set of events in the system, while a negative 

trace indicates an impossible behavior of the system.  

Therefore, according to the above definition, the input of the inference process has following 

characteristics: 

1. Language independency: events can be retrieved from interactions with any software 

systems written in any programming languages. Therefore, the inference process does not 

rely on the source code analysis, and can be applied on entirely different software 

systems.  

2. No need for additional specifications: the input traces are self-explanatory and sufficient 

to infer the model, so there is no need for additional information such as scenario-seeds 

(interaction skeleton) [24] and a program specification to extract the scenario from the 

traces. This implies that as the traces are naturally occurring and the process requires no 

additional artifacts; the process can be implemented at zero cost to a software engineering 

organization. 

Having the traces, ReHMM is able to generate a probabilistic EFSA, which is not only able to 

address the issues raised in the Research Motivation Section (Section 2.3) and Software 

Engineering applications (Section 2.3.1), but also outperforms state of the art techniques in terms 

of following aspects: 

1. Accuracy: Empirical evaluations (see Section 2.7 for more details) show that the inferred 

models using ReHMM outperform the EFSAs generated using other state of the art 

techniques in terms of accuracy. Here, an accurate model is the one, which is able to 

correctly accept the positive traces and reject the negative ones. 
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2. Time complexity of inferring the model using our proposed method is polynomial and 

does not exponentially grow by increasing the system size (See 2.10 for more details). 

This shows that the significant improvement of the model is done without negatively 

affecting the time complexity of the inference algorithm. This ensures that the approach 

can be applied to large software systems. 

In the next section, in order to motivate this study and also clarify the proposed inference 

procedure, we consider a small example of the behavior of a mine pump controller [28], [29]. 

This example will be used as a running example throughout this chapter. 

2.4.1 Motivating Example 

A pump controller controls the water and methane levels in the mine. The pump is activated or 

deactivated (based upon the level of the water in the mine) or switched off (when the methane 

level is too high).  The snippet of an initial trace is shown below (each event in the trace is 

shown in a separate line). 

… 

trace 

turn_on 73.44274560979447 596.7792240239261 false 

low_water 28.898501010661718 584.0357656062484 true 

switch_pump_off 28.898501010661718 584.0357656062484 true 

turn_off 28.898501010661718 584.0357656062484 true 

highwater 31.47476437422098 588.4568312662454 false 

switch_pump_on 31.47476437422098 588.4568312662454 false 
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critical 35.04693535326364 603.1076440245823 true  

...  

The term of “initial trace” is only used to clarify that the trace has not been processed yet and has 

the same structure as defined in Definition 1. In Section 2.6, we illustrate how data traces are 

generated from these initial traces.  

In this study, we are trying to provide an approach to infer an accurate behavioral model of the 

system using such traces. In the next section, we provide some technical background and 

definitions, before describing our proposed approach in detail.  

2.5 Technical Background and Definitions 

In order to provide a view of the software behavior, EFSAs, PTAs and PFSAs are defined and 

inferred. PTAs are the initial FSAs, which are generated by taking all prefixes of the input traces 

as states and generating the smallest FSA, which is a tree. EFSAs demonstrate the behavior of a 

software system by depicting the relationship between the method calls and the values of the 

associated parameters. While, PFSAs are FSAs augmented by transition probabilities. In this 

section, we represent the technical definitions of PTA, EFSA and PFSA.  

Additionally, the proposed inference technique in this study is established by combining 

Reinforcement Learning (RL) and Hidden Markov Model (HMM) concepts to accurately 

generating an Extended PFSA. In order to walk through the inferring process, a brief technical 

background about Reinforcement Learning and Hidden Markov Models is also provided. It is 

worth noting that, approaches to EFSA and PFSA generation, which fall outside of these 

definitions, are considered to be beyond the scope of this study. 
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2.5.1 Prefix Tree Acceptor (PTA) 

A PTA is a tree-shape automaton, generated as an initial FSA or a simulator model in several 

inference processes [24], [49], [62], [64]. For instance, as mentioned in Section 2.3, PTAs are 

generated as an initial form of FSAs in the MINT inference tool [29]. In this research, we also 

infer a PTA using the same approach that is used in other studies. 

Definition 2. Prefix Tree Acceptor (PTA). Where 𝑇𝑟 is a Trace and TS is a set of Traces, Given 

𝑇𝑟 ∈ 𝑇𝑆, if 𝑇𝑟 = 𝑚𝑛 and 𝑚,𝑛 ∈ 𝑇𝑆, then m is called a prefix. A PTA is a tree-like FSA 

generated by taking all the possible prefixes in the trace as states and constructing a FSA, which 

only accepts the traces it is built from. Let TS be the set of Traces from which we build a PTA. 

𝑃𝑇𝐴(𝑇𝑆) is a FSA that contains a path from the initial state to a final state, for each and every 

𝑇𝑟 ∈ 𝑇𝑆. 

2.5.2 Extended Finite State Automaton  

Definition 3. Extended Finite State Automaton (EFSA). Again according to [29] and [65], an 

EFSA is a tuple (𝑆, 𝑠!,𝐹, 𝐿,𝑉,∆,𝑋), where S is a set of states and 𝑠! ∈ 𝑆 indicates the initial 

state, 𝐹 ⊂ 𝑆 is a set of final states, L is defined as the set of labels (𝑙 ∈ 𝐿) and V represents the 

set of parameter values, where 𝑣 ∈ 𝑉 is a concrete value assigned to a variable. V is also known 

as the memory of the EFSA. Moreover, ∆, the update function, is the function 𝐿×𝑉 → 𝑉. Finally, 

X is the set of transitions taking the form 𝑠!, 𝑙, 𝑣, 𝑠! ,𝑤ℎ𝑒𝑟𝑒 𝑠!, 𝑠! ∈ 𝑆. EFSAs explicitly allow 

transitions from state s! to state s!. 



 

33 

Therefore, transitions between states are not only associated with a label l ∈ L, but are also 

associated with a guard that represents the conditions that must hold with respect to the variables 

in the EFSA memory. 

2.5.3 Probabilistic Finite State Automaton (PFSA) 

There are various definitions regarding PFSA in the literature. In this study, we chose a 

definition, which is sufficiently general to cover most PFSA- related situations [45]. 

Definition 4. Probabilistic Finite State Automaton (PFSA). A PFSA is a tuple 

𝐷 = 𝑆,𝛴, 𝛿! , 𝐼! ,𝑄! ,𝐹! , where 

• S is a finite set of states; 

• Σ is the alphabet; 

• δ! ⊆ S×Σ×S is a set of transitions; 

• I!: S → ℝ!
. (Initial-state probabilities); 

• Q!: δ!  → ℝ!
. (q ∈ Q!; Transition probabilities);  

• F!: S → ℝ!
. (Final-state probabilities); 

• I!, Q! and F! are functions such that: 

𝐼!
!∈!

𝑠 = 1                                  (2)      

and 

              ∀𝑠 ∈ 𝑆,𝐹! 𝑠 + 𝑄! 𝑠,𝑎, 𝑠! = 1
!∈!,!!∈!

                 (3) 
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It is worth noting that probabilities can be null, and hence, functions (I!, Q! and F!) can be 

considered as total. Again, we limit the scope of the study to inference techniques, which 

produce results, which correspond to the above definitions of EFSA and PFSA. 

2.5.4 Reinforcement Learning (RL) 

This section provides an overview of RL and its definition. RL is an area of machine learning 

which is concerned with the problem of utilizing a software agent3 to perform actions, which 

maximize the overall reward [66]. The reward is a number (score), which indicates the 

immediate utility of an action [67]. The progress of RL algorithms is typically iterative. The 

agent learns during different iterations by observing the current environment, inferring the 

environment’s state and executing an action. This guides the agent to the next state. In other 

words, the agent receives the system’s state and the reward score associated with the last 

transition. Then it evaluates the value of the action according to the reward it has gained, and 

subsequently, selects an action and sends it back to the system. In response, the system makes a 

transition to a new state; and this cycle is repeated as part of a Markov Decision Process (MDP) 

[66], [68]. MDPs can be categorized as stochastic extensions of finite automata or Markovian 

processes which are augmented by actions and rewards so that they consist of actions, transitions 

and states. In the following paragraphs, some definitions are introduced, which are helpful in 

demonstrating our proposed approach in the next section. We start by providing the definition of 

a Markovian system and the reward function to indicate the logic behind the decision making 

process in our proposed approach. 

                                                
3 “A software agent is a persistent, goal-oriented computer program that reacts to its environment and runs without 

continuous direct supervision to perform some function for an end user or another program” [249] 
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Definition 5. Markovian System. A system can be defined as Markovian if the execution of an 

action does not depend on previous actions and visited states (i.e. it depends only on the current 

state and status). 

In other words, an MDP contains:  

• A finite set of states 𝑆 = 𝑠!, 𝑠!,… , 𝑠! , where N is the number of states;  

• A finite set of actions 𝐴 = 𝑎!,𝑎!,… ,𝑎! , where k is the size of the action space; and 

• The transition function 𝑋: 𝑆×𝐴×𝑆 → 0,1  which computes the probability of reaching 

the state 𝑠! by performing action 𝑎 in state 𝑠 and is denoted as 𝑋(𝑠,𝑎, 𝑠!).  

Finally, to compare different states and actions during agent and environment interaction, they 

should be ordered according to the time at which they occur. So 𝑠! denotes the state at time t 

[68]; according to this definition of a Markovian process, we would have: 

𝑃 𝑠!!! 𝑠! , 𝑠!!!, 𝑠!!!,… = 𝑃 𝑠!!! 𝑠! = 𝑋 𝑠! ,𝑎! , 𝑠!!!        (4)      

Definition 6. Reward Function.  Function 𝑅: 𝑆×𝐴×𝑆 → ℝ   maps each perceived state (or state-

action pair) of the environment to a score (reward), indicating the desirability of that state. A 

reinforcement learning agent's goal is to maximize the total reward it receives in the long run.  

The reward function computes the immediate utility of an action to define the model of the 

MDP. So a MDP can be denoted by the tuple 𝑆,𝐴,𝑋,𝑅 , depicting it as a state transition graph 

[68]. Depending on the definition of the problem we are trying to solve, different heuristics could 

be suggested to identify the difference between actions and calculate the reward values. In 

section 2.6 we discuss the heuristics used in this study to define an accurate and customized 

reward function. 
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Now, we use the definition of the state transition function as a basis to define the “state-value 

function”.  Then, in order to address the missing state-action value issue, the state-value function 

is used to provide a method to calculate the value of performing an action and to assign Q-values 

to the model’s transitions. 

Definition 7. State Transition Function. The new state transition function F, for a state 

transition 𝑠!
!
𝑠! (𝑠!, 𝑠! ∈ 𝑆) not only maps the transition to the corresponding method (event) 

𝑎 ∈ 𝐴 [58], but also maps it to ℝ; where the value of executing a method call 𝑎, in state 𝑠!, is 

computed using the state-value function 𝑄: 𝑆×𝐴 →  ℝ.  

Accordingly, the state-action value function Q is defined in following paragraph. 

Definition 8. State-Value Function. The Value Function V!(s), specifies “how good” it is for 

the agent to be in a given state. The “how good” notation here is expressed in terms of the future 

rewards that can be expected. We can define the value of a state under a policy π, formally 

V! s , as [67]: 

𝑉! 𝑠 = 𝐸! 𝑅! 𝑠! = 𝑠 = 𝐸! 𝛾!𝑟!!!!!

!

!!!,!!!!∈!

𝑠! = 𝑠            (5)  

Where: 

The stochastic policy 𝜋: 𝑆×𝐴 → 0,1  is a mapping from each state s and action a to the 

probability 𝜋 𝑠,𝑎  by performing an action a when in state s. 𝐸! is the expected return earned by 

following policy π, and the discount factor γ, 0 ≤ 𝛾 < 1, models the fact that future rewards 

worth less than an immediate reward. Similarly, the value of performing an action a in state s or 

state-action value function:  𝒬: 𝑆×𝐴 →  ℝ, can be defined as: 
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𝒬! 𝑠,𝑎 = 𝐸! 𝑅! 𝑠! = 𝑠,𝑎! = 𝑎 = 𝐸! 𝛾!𝑟!!!!!

!

!!!,!!!!∈!

𝑠! = 𝑠,𝑎! = 𝑎      (6) 

We call this function, a “Q-value function” in the rest of this study. The calculated value using 

this function is also called the state-action value. Almost all RL-based paradigms are based on 

providing an innovative approach for appropriately estimating the value functions. This has led 

to the exploration and production of several different estimating methods and techniques. One of 

the most popular of these is Q-Learning [69], which is used in this study. 

Q-Leaning is a method used to estimate Q-value functions in a model-free fashion. In this 

situation, because of the lack of known transitions and reward models, there is a need for 

sampling and exploration to learn the required model. Therefore, Q-learning estimates the 

agent’s Q-value function based on an action’s Q-value estimation. This process is incrementally 

evaluated as follows [68]: 

𝒬!!! 𝑠! ,𝑎! = 𝒬! 𝑠! ,𝑎! + 𝛼 𝑟! + 𝛾max! 𝒬! 𝑠! ,𝑎 − 𝒬! 𝑠! ,𝑎!      (7) 

Where, 𝛼 (0 < 𝛼 ≤ 1) is the learning rate which determines the extent to which new 

information can override old information [70]. Because of its proven ability in converging to an 

optimal policy [71] and estimating the value-functions in free model problems [69], we have 

used Q-learning to estimate the Q-values in this study. It is also worth noting that Definitions 7 

and 8 are used to infer equation 7, which is used to calculate the transition probabilities. 

2.5.5 Hidden Markov Model (HMM) 

Another important concept that needs to be defined here is a Hidden Markov Model; this model 

is usually characterized by the following elements [72]:  
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• N, the number of hidden states in the model, 𝑆 = {𝑠!, 𝑠!,… , 𝑠!}.  

• M, the number of distinct observation symbols per hidden state, 𝑉 = {𝑣!, 𝑣!,… , 𝑣!}.  

• The state transition probability distribution 𝑋 !" = {𝑥!"}, where: 

𝑥!" = 𝑃 𝑆!!! = 𝑠! 𝑆! = 𝑠! , 1 ≤  i, j ≤  N.  

• The observation symbol probability distribution in hidden state j, [𝑌]!" =

{𝑦!(𝑣!)}, where 𝑦!(𝑣!) = 𝑃 𝑂! = 𝑣! 𝑆! = 𝑠! , 1 ≤  𝑗 ≤  𝑁, 1 ≤  𝑘 ≤  𝑀. And  

• The initial state distribution 𝛱 = 𝜋! , where 𝜋! = 𝑃 𝑆! = 𝑠! , 1 ≤  i ≤  N. 

Using the values of N, M, X, Y and Π, the HMM can be used as a generator to create an 

observation sequence (where T is the number of observations in the sequence): 

𝑂 = (𝑂!,𝑂!,𝑂!,… ,𝑂!). We use the notation 𝛬 =  (𝑋,𝑌,𝛱) to simply indicate the complete 

parameter set of the HMM. The trained HMM is used to answer the following question: 

• Given the observation sequence 𝑂 = 𝑂!,𝑂!,𝑂!,… ,𝑂!  and an HMM, how to 

efficiently compute the probability of the observation sequence? 

In this study, we learn HMMs for classification purposes (as it will be elaborated upon in Section 

2.6), hence we address this question using the Forward Algorithm [72]. This means that the 

forward algorithm computes the forward probability, 𝛼! 𝑡 , as the joint probability of observing 

the first t vectors 𝑣!, T = 1,… , 𝑡,  while in state k at time t. Another way to state this would be: 

      𝛼! 𝑡 = 𝑃 𝑣!, 𝑣!,… , 𝑣! , 𝑠! = 𝑘 Λ            (8)  

Where 𝛼! 𝑡  is the probability of observing 𝑣!, 𝑣!  ,… , 𝑣!, given that the system is in state k at 

time t. This step is performed as part of the classification process (Figure 1 top right corner). 

This probability can be calculated by the following recursive formula [73].  
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Figure 1. Inference steps for ReHMM approach. HMM classifier calculates the forward probabilities and 

chooses the next method to be executed based on its corresponding likelihood 𝛼. Q-values are also added 

to the PTA based upon the amount of change the function-execution triggers  (Note: edges are labeled 

with method calls (class labels)) 

      𝛼! 1 = 𝜋!𝑏! 𝑣!  ,       1 ≤ 𝑘 ≤ 𝑁          (9)            

𝛼! 𝑡 = 𝜋!𝑏! 𝑣!  𝛼! 𝑡 − 1 𝑎!,!   ,
!

!!!

  

 1 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 

𝛼! 𝑡 = 𝛼! 𝑡 − 1 𝑏! 𝑣! 𝑎!,!  
!

!!!

 

2.6 ReHMM: An RL-based HMM Inference Approach 

Now according to the provided definitions and background, we are able to introduce a new 

format for FSAs, which incorporates the advantages of both EFSA and PFSA.  

Definition 9. Extended Probabilistic Finite State Automaton (EPFSA). A EPFSA “W”, is a 

tuple 𝑆, 𝑠!, 𝐿,𝑉,∆, 𝛿! , 𝐼! ,𝑄 , where S is a set of states and 𝑠! ∈ 𝑆 indicates the initial state, L is 
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defined as the set of labels, V represents the collection of variables (memory of the EPFSA), 

𝛿! ⊆ 𝑆×𝛴×𝑆 is a set of transitions between the states and 𝐼!: 𝑆 → ℝ!
 (Initial-state 

probabilities). Moreover, ∆, the update function, is the function 𝐿×𝑉 → 𝑉. Q is the Q-value 

function (Definition 8), which calculates the Q-value, 𝑞 ∈ 0,1 , for all model transitions.  

It is worth noting that the definition is inspired by the definition of “extended digraphs” from our 

recent study [27] on software testing. As mentioned earlier, in order to address the problem of 

the missing state-action values (transition probabilities) along with increasing the accuracy of the 

inferred model, a new technique is proposed in this study. This approach provides a hybrid 

technique by mixing Artificial Intelligence (AI) and stochastic-based approaches. The idea of 

combining HMM and RL concepts to re-estimate and improve a model has been considered as a 

way to solve several AI problems such as robotic motion prediction [74], speech recognition [75] 

and natural language generation [76]. Also, [77] suggests a method of handling RL algorithms in 

partially observable MDPs; and [78] provides a comprehensive study on RL and hidden states. In 

addition, our recent research [27], confirms the effectiveness of applying this combination in 

addressing software-testing issues, specifically for test case prioritization processes. All of these 

studies confirm that HMM and RL concepts can be used as a method to empirically improve the 

quality of an inferred automaton. According to [29], [49] a high quality model is the one which is 

not only able to accept positive traces but also correctly reject negative traces. In addition, the 

inferred model should be able to retain the probability distribution of the original specification 

(in case of inferring PFSAs). In this study, when we are referring to the accuracy of the model, 

we are talking about a measure indicating the quality of the model with respect to both of these 

criteria. Furthermore, in this study, ReHMM, takes advantage of combining RL and HMM by: 

• Predicting the next event name in the trace to identify non-determinism; and 
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• Adding probabilistic values to the inferred model and incrementally improving the 

model to generate an accurate EPFSA. 

This section presents a step-by-step explanation of proposed ReHMM inference technique along 

with a motivating example providing an illustration of the inference steps on a sample system. It 

is also worth noting that, Figure 1 provides an overview of the steps involved in the ReHMM 

inference approach, while Table 3 and Table 4 provide pseudo code of the same procedure.  

Table 3. ReHMM Inference Algorithm 

Input: Traces (Initial Execution Traces) 

Output: EPFSA (Inferred Extended Probabilistic FSA) 

1. ReHMMinfer (traces) begin 
2.        DataTraces ⟵ PrepareDataTrace(Traces) 
3.       (𝐸𝑃𝐹𝑆𝐴,𝑉𝑎𝑟!,𝑄!)  ⟵ PTA (Traces)  
4.        For each pair (𝑠!, 𝑠!) ∈ 𝑆 do 
5.           (𝛬!)  ⟵ TrainHMM (DataTraces)      
6.            Boolean ⟵ checkConsistency (EPFSA, 𝛬) 
7.            (𝐸𝑃𝐹𝑆𝐴!,𝑉𝑎𝑟!,𝑄!)⟵Merge(EPFSA, (𝑠!, 𝑠!),Var,Q,G)  
8.        Repeat choosing (𝑠!, 𝑠!) 
9.        Until no new (𝑠!, 𝑠!) ∈ 𝑆 is found 
10.  end 
• 𝛬 is a ReHMM classifier  
• Var indicates the data variable values 
• Q indicates the amount of Q-value for each transitions 

Table 4. Similarity Score Calculator 

Input: Method calls in String format (𝑐!, 𝑐!) 

Output: Similarity Score 

1. 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑐!, 𝑐!  begin 
2.       if (𝐿𝑒𝑛𝑔𝑡ℎ. 𝑐! < 𝐿𝑒𝑛𝑔𝑡ℎ. 𝑐!) 
3.       then 𝑆𝑤𝑎𝑝 (𝑐!, 𝑐!)  
4.      BigLength ⟵ 𝐿𝑒𝑛𝑔𝑡ℎ. 𝑐! 
5. Return bigLength – ComputeEditDistance*(𝑐!, 𝑐!) / bigLength 

* We have implemented the ”Levenshtein distance” algorithm to compute the Edit distance in this study  



 

42 

The procedures of preparing the data traces and generating the PTA are similar to those used in 

the MINT inference algorithm [65] (Section 2.3). Following paragraph provides a detailed 

description of the first step of the proposed algorithm: preparing data traces. 

Preparing Data Traces: Similar to generating data traces in MINT: Given an initial trace which 

consists of a variable domain and a set of transition labels, a data trace 

𝑇𝐶 = { 𝑒!, 𝑐! ,… , (𝑒!, 𝑐!)} is generated, where 𝑒 = 𝑙, 𝑣  , 𝑙 ∈ 𝐿 𝑎𝑛𝑑 𝑣 ∈ 𝑉, and each variable e 

indicates a class label 𝑐! ∈ 𝐶 .  

After producing data traces using the PrepareDataTrace function [28], data traces will be 

separated into several groups (training sets) based upon their corresponding class labels. In other 

words, each training-set only contains data traces with the same class label. For example, given 

an initial trace as below:  

Initial trace: 

… 

trace 

highwater 74.2918692932601 570.9631358851515 false  

not_critical 48.419183936768924 597.1704678020701 false 

switch_pump_on 74.2918692932601 570.9631358851515 false 

switch_pump_on 48.419183936768924 597.1704678020701 false 

turn_on 74.2918692932601 570.9631358851515 false  

critical 46.71352900357 601.7913477049301 true  

… 
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The PrepareDataTrace function returns the following data trace: 

Data trace (training set): 

… 

trace 

highwater 74.2918692932601 570.9631358851515 false class: not_critical 

switch_pump_on 74.2918692932601 570.9631358851515 false class: switch_pump_on 

turn_on 74.2918692932601 570.9631358851515 false class: critical 

critical 46.71352900357 601.7913477049301 true  class: turn_off 

switch_pump_off 46.71352900357 601.7913477049301 true class: not_critical 

turn_off 46.71352900357 601.7913477049301 true class: not_critical 

… 

The PrepareDataTrace function turns the traces into the data traces (training sets) using data 

values in the events. Then the training sets can now be used to learn a set of HMM classifiers in 

order to predict the next event name (method) to be called during the inference procedure.  

Generating the PTA: At this point, a Prefix Tree Acceptor (PTA) is generated from the initial 

traces using the PTA function. This function implements the same algorithm as the PTA 

generation algorithm in [29]. Using the PTA generation algorithm in [29] a tree-shaped state 

machine is constructed which exactly accepts traces it has been built from. In the generated PTA, 

traces with the same prefix share the same path from the initial state in the PTA up to the point at 

which they diverge. However, in our function, transitions of the PTA are not only labeled with 

both method calls and data variable values, but are also labeled with additional information (Q-

values). This makes our PTA different from conventional versions [29]. 
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Now, in order to add state-action values (transition probabilities) to the edges, we use Q-learning 

and estimate the Q-value function. To estimate the Q-value function, we need to define and 

compute the reward function representing the value of actions first. In many software 

engineering problems, such as software testing and inferring application behavioral models, the 

value of actions depends on the computation activated by the action [16]. For example, executing 

an event with corresponding parameter values, which is very different from previously executed 

events leads to major changes when compared to executing similar events. This can also be 

thought of in terms of discovering new behavior (wider exploration) and subsequently new 

defects (found in the previous unexplored execution space) in the software system. The reward 

function favours actions that activate new behaviors with major computations and penalizes 

actions triggering minor changes. In order to identify the difference between actions according to 

the amount of change they can trigger, different heuristics have been suggested. For example, the 

method suggested by Mariani et al. [16], assigns high reward values to actions that induce many 

changes in the abstract GUI state by calculating the difference between corresponding widgets in 

different states. 

In this study, we suggest using 𝑑𝑖𝑓𝑓!  function as a heuristic to calculate reward functions and 

then Q-values: Given two class labels (method calls), 𝑐! and 𝑐! ∈ 𝐶, we define the 𝑑𝑖𝑓𝑓!  

function that computes the degree of change between method calls. Specifically, 𝑑𝑖𝑓𝑓! can be 

defined as: 1− 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑐!, 𝑐! , where, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑐!, 𝑐!) is computed using the algorithm 

provided in Table 4.  

The problem of computing the similarity between two sequences of characters (Strings) has been 

addressed in many software engineering areas using edit distance metrics [79], [80]. Such 

measures calculate the similarity between two sequences by computing the minimum cost of a 
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series of symbol insertions, deletions or substitutions to transform one string into another one. In 

this study, we apply the Levenshtein [81] metric to calculate the  𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑐!, 𝑐!).  The 

Levenshtein [81] metric was also used to compute the distance between FSAs in several studies 

to calculate the similarity between two string inputs [82]. This metric has led to reasonable 

results in evaluating a mined FSA as compared to reference models. Additionally, in order to 

demonstrate the reason of choosing Levenshtein distance among existed edit distance measures, 

we implemented several edit distance metrics as different heuristics in our approach. The results 

(Table 6) shows that the models inferred using Levenshtein heuristic is performing better 

compared to the models implementing LCS [83], Hamming [84] and Jaro [85] distances, in terms 

of the BCR measure (please see section 7.1 for more details on BCR measure). 

It is also worth noting that the method names (labels) can only be “captured” as a sequence of 

Strings. For instance, the following line of a trace: (low_water, (28.898501010661718 

584.0357656062484 true)) is actually captured as: “low_water, 28.898501010661718 

584.0357656062484 true” and hence the Levenshtein distance is a suitable option in calculating 

the differences between these Strings. While it may be tempting to believe that the white spacing 

could be utilized to create four sub-strings etc., it is far from obvious that such additional 

information is available in every scenario. Hence, we take the most generic and conservative 

approach available and consider the data as a single indivisible string. This also creates a “level 

of playing field” with the other algorithms, which also view the data as a single indivisible string. 

The heuristic is not perfect, but the results indicate that Q-learning is able to improve the 

accuracy of the model by incrementally learning the model. 
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So, given two PTA states 𝑠! and 𝑠! and a new method call (class label) 𝑐∗ ∈ 𝐶, executed from 

state 𝑠!, the reward of observing 𝑐∗ is equal to the amount of change in the functions (methods) 

from the original state to the target state: 

𝑟𝑒𝑤𝑎𝑟𝑑 𝑠!, 𝑐∗ = max(𝑑𝑖𝑓𝑓!(𝑐∗,𝜎!∗(𝑠!, 𝑠!)))       (10) 

Where, 𝜎!∗ 𝑠!, 𝑠!  determines the class labels (method calls), which are met by traversing from 

𝑠! to 𝑠!, except for 𝑐∗. For example, if three transitions exist from 𝑠! to 𝑠! which are labeled by 

{𝑐∗, 𝑐!, 𝑐"}, then 𝜎!∗ 𝑠!, 𝑠! = {𝑐!, 𝑐"}. 

This reward function is able to estimate the utility value of a specific observation but is not able 

to estimate the value of a path or a sequence of actions. To identify the paths governing 

transitions, we need to identify transitions that can potentially activate functions, which can 

subsequently lead to large state changes. Q-learning does this task by estimating Q-values. Q-

values are computed using the reward values and according to the Q-value function, 𝒬!(𝑠, 𝑐∗), 

defined in Section 2.5.4: 

𝒬! 𝑠, 𝑐∗ = (𝑟𝑒𝑤𝑎𝑟𝑑 𝑠, 𝑐∗ + 𝛾max
!∈!

𝒬(𝜑 𝑠, 𝑐∗ , 𝑐))/(1.9×𝑁)         (11) 

𝒬! 𝑠, 𝑐∗
!∈!,!∗∈!

= 1 

Where N is the out-degree of state 𝑠 or the number of outgoing edges emanating from 𝑠, and 

𝜑 𝑠, 𝑐∗  determines the state which is reached from state 𝑠 by executing 𝑐∗. 

As mentioned in Section 2.5.4, Definition 8, 𝛾 is a parameter called the discount factor in the 

range [0,1]. This parameter is used to balance the trade-off in importance between sooner versus 

later rewards. According to our experience with ReHMM along with other studies in RL [16], 
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[86], [87], [48], the best choice for this parameter is 𝛾 = 0.9. In addition, since the immediate 

utility value of a method call is calculated by a Q-value function, it is a number in the range 

[0,1].  

In particular, a Q-value close to 1 represents higher volumes of changes that can be triggered by 

executing the corresponding method, and subsequently the higher probability of being executed 

compared to a Q-value close to 0. Therefore, we initially mark all transitions with the maximum 

Q-value = 1 to treat every undiscovered path as a potential path to be traversed. Hence, initially, 

all methods will have the same probability of being executed regardless of the current system 

state. 

Also, because the probabilities of transitions emitting from a node in a PFSA (Definitions 4 and 

9) must sum up to 1.0, a normalizing constant is required to guarantee that this assumption is 

being met during the inference process. In this study, the normalizing constant is equal to 1.9 

because: 

𝐹 𝑠, 𝑐∗ = (𝑟𝑒𝑤𝑎𝑟𝑑 𝑠, 𝑐∗ + 𝛾max
!
𝒬(𝜑 𝑠, 𝑐∗ , 𝑐))/(𝑁)

!∈!,!∗∈!

                          (12) 

 
𝑀𝑎𝑥(𝐹 𝑠, 𝑐∗ ) = 𝑁×( 𝑚𝑎𝑥

!∈!,!∗∈! 
( 𝑟𝑒𝑤𝑎𝑟𝑑 𝑠, 𝑐∗ )+ 𝑚𝑎𝑥

!∈!,!∗∈!
( 𝛾𝑚𝑎𝑥

!
𝒬(𝜑 𝑠, 𝑐∗ , 𝑐))/𝑁   

                           = 𝑚𝑎𝑥
!∈!,!∗∈! 

( 𝑟𝑒𝑤𝑎𝑟𝑑 𝑠, 𝑐∗ )+ 𝑚𝑎𝑥
!∈!,!∗∈!

( 𝛾𝑚𝑎𝑥! 𝒬 𝜑 𝑠, 𝑐∗ , 𝑐 )      (13) 
 

Now, since 𝑚𝑎𝑥!∈!,!∗∈! ( 𝑟𝑒𝑤𝑎𝑟𝑑 𝑠, 𝑐∗ ) = 1 and 𝑚𝑎𝑥!∈!,!∗∈!( 𝛾𝑚𝑎𝑥! 𝒬(𝜑 𝑠, 𝑐∗ , 𝑐)) = 0.9, 

then the maximum amount of: 

𝑚𝑎𝑥
!∈!,!∗∈! 

( 𝑟𝑒𝑤𝑎𝑟𝑑 𝑠, 𝑐∗ + 𝑚𝑎𝑥
!∈!,!∗∈!

( 𝛾𝑚𝑎𝑥! 𝒬(𝜑 𝑠, 𝑐∗ , 𝑐))) = 1.9                           (14) 
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Therefore, in order to assure that the summation of the transition probabilities of the nodes is 

equal to 1, 𝒬!(𝑠, 𝑐∗) should be multiplied by the normalizing constant 1 1.9. 

Training HMM Classifiers: ReHMM builds upon the data classifier approach [28] , [29] 

(Section 2.3), it uses an HMM classifier as a compatible stochastic approach with RL to infer a 

probabilistic, trainable model. Therefore, the TrainHMM function in Table 3 starts training an 

individual HMM, Λ =  X,Y,Π , on the data obtained from each possible class label in the data 

trace. Therefore, having 𝑛 class labels, 𝑛 different HMMs will be trained. In each model:  

1. The HMM can be used as a generator to create an observation sequence 

𝑂 = (𝑂!,𝑂!,𝑂!,… ,𝑂!) (where T is the number of observations in the sequence). The 

observation symbols (𝑂! ∈ 𝑂) in this study refer to the events and their corresponding 

parameter values (𝑣 ∈ 𝑉) in the data traces. 

2. X is the state transition probability distribution 𝑋 !" = {𝑥!"}. Where: 

𝑥!" = 𝑃 𝑆!!! = 𝑠! 𝑆! = 𝑠! , 1 ≤  𝑖, j ≤  N. In this study, such probabilities are HMM 

components showing the probability of transiting from one hidden state to another one. 

3. Y is the observation symbol (emission) probability distribution in hidden state j, 

𝑌 !" = {𝑦! !" }.  Where 𝑏! 𝑣! = 𝑃 𝑂! = 𝑣! 𝑆! = 𝑠! , 1 ≤  𝑗 ≤  𝑁, 1 ≤  𝑘 ≤  𝑀. In 

this study, the emission probabilities show the probability of observing a parameter value 

in a hidden state. 

4. Π is the initial state distribution 𝛱 = 𝜋! , where 𝜋! = 𝑃 𝑆! = 𝑠! , 1 ≤  𝑖 ≤  𝑁. Every 

hidden state that may be built during the classification process can be considered as an 

initial state in a Hidden Markov Model.  
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It is worth noting that the hidden state S is not a FSA state (not to be confused with the S 

notation). Also, the word hidden in HMM does not refer to the parameters of the model; even if 

these parameters are fully known, the model is still a hidden Markov model. Error! Reference 

ource not found. depicts a detailed HMM which is created per class label during the 

classification process. 

Figure 2. An overview of a HMM model, which is generated in the classification process 

Executing TrainHMM function in this step of the inference process on the running example, leads 

to generating 8 HMM Classifiers, because 8 class labels can be extracted from the data trace. 

Each hidden Markov model depending on the number of its hidden and observable states is 

represented by transition, emission and initial distribution matrices. For instance, a model 

representing the class label “switch_pump_off” consists of 5 hidden states and 18 parameter 

values. Then: 

• Transition probability matrix 𝑋 =  [𝑋]!×! 

• Emission probability matrix 𝑌 =  [𝑌]!×!" 

• Initial distribution matrix 𝛱 = [0.2,… ,0.2]!×! 

After creating a set of models and assigning them to separated class labels (𝑐! ∈ 𝐶), we can 

calculate the likelihood that a sequence of observations belongs to a specific class label. 

𝑠! 

 

𝑠! 

 

𝑠! 

 

𝑠!!! 𝑠! 

 

𝒗𝟏 𝒗𝟐 𝒗𝑴 

… 

… 

𝑏! (𝑣!) 

𝑥!" 
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Computing this likelihood is possible by executing the forward algorithm [73] (as defined in 

Section 2.5.5). After training the models, the likelihood of a sequence of observations belonging 

to a specific class label can be computed to predict the next method call in the FSA. 

Merging Step: In the algorithm, 𝒬, indicates the list of the corresponding Q-values. Then, both 

the HMM classifiers and PTA are used to carry out the same state-merging procedure examined 

in [28], [88]. The only difference is that in our proposed approach, the Q-values are also used to 

evaluate the similarity of the transitions. Thus, two states only share the same prefix if the 

inferred classifier predicts the exact same labels for every data point in the prefix of each state 

(including the Q-values). Since, Q-values are calculated incrementally, states with the same 

prefix but different Q-values reveal different reward values during the inference procedure, and 

subsequently different amounts of computations triggered by executing the corresponding 

events. Therefore, Q-values, along with the minimum merge score G, are used as extra data 

points to avoid merging these states. False merges may lead to missing some states of the model, 

representing a new behavior or a fault prone method.  

Checking the Consistency: Once states and transitions have been merged, the consistency of the 

inferred model should also be checked to: (1) ensure the validity of the attached variables with 

the ReHMM classifiers; and, (2) prevent producing a non-deterministic EFSA. In this step, for 

each transition of the resulting model, the corresponding data variables are obtained and 

provided to the ReHMM classifier to predict the subsequent label (the name of the method to be 

executed). In this case, if the target state of the model does not have an outgoing transition with 

the predicted label, the CheckConsistency function the current merge is ignored. Otherwise, the 

algorithm looks for the next merge and the process continues until no more merges can be 

identified. 
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The result of running the ReHMM algorithm on a set of interaction traces show the value of 

paths, governing transitions, by assigning the corresponding Q-values to each transition. 

Consequently, ReHMM determines valuable (interesting) functions by identifying transitions 

that enable actions that trigger large-scale state changes. In this study, Q-values are also used as 

transition probabilities to infer an Extended PFSA. Therefore each node in this EPFSA 

represents a program state while every transition is attached with a probability. This transition 

probability indicate how likely the corresponding method call is to be invoked from the source 

code, with respect to the former executed method calls. This probabilistic FSA is able to reduce 

the effect of errors in training traces by pruning the transitions, which have a low likelihood of 

being traversed. 

The PTA generation step, in the running example is implemented as below; the initial set of 

traces is used to produce an enhanced Prefix Tree Acceptor (PTA), carrying the data constraints 

and Q-values. Figure 3 shows the result of the first round of calculations. According to this 

figure, in order to move from state 0 to state 1 in the model, at least four direct paths exist. To 

save space, all of the transition labels are shown on one single edge. Otherwise there would be 

four edges from state 0 to state 1, labelled by: critical, switch_pump_on, highwater, not_critical 

and their corresponding data constraints. It is also worth noting that state 0 is the initial state in 

the model, and state 1 is the next state which is met after the execution of the corresponding 

transitions (critical, switch_pump_on, highwater and not_critical). The amount of Q-values is 

calculated per transition. For example, in order to reach state 1 from state 0 by traversing the 

edge, which is labeled as “critical”, first the reward function for this move should be calculated 

by considering the amount of changes triggered by this function-execution. Second, the 

maximum amount of Q-values of all possible future transitions from state 1 should be computed.  
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𝑟𝑒𝑤𝑎𝑟𝑑 0, 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = max 𝑑𝑖𝑓𝑓! 0,1  

𝑚𝑎𝑥 𝑑𝑖𝑓𝑓! 0,1 = 𝑚𝑎𝑥  𝑑𝑖𝑓𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , 𝑠𝑤𝑖𝑡𝑐ℎ_𝑝𝑢𝑚𝑝_𝑜𝑓𝑓 ,
𝑑𝑖𝑓𝑓 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, ℎ𝑖𝑔ℎ𝑤𝑎𝑡𝑒𝑟,… = 0.917 

𝒬! 0, 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
0.917+ 0.9 1

1,9×4 = 0.504 ≃ 0.5 

Similarly, all transitions are incrementally annotated with Q-values as more events are 

discovered in the model. After the first iteration of calculating the Q-values, the model is 

reconsidered for the state-merging procedure. During the merging process, when transitions are 

merged, their corresponding data values are also merged (as mentioned in Section 2.3).  

However, at this point, the HMM classifier is used to compare the attached data values 

(including Q-values) to the outgoing transitions from the merged state. If the produced results are 

similar enough; the Q-values have at least one identical number in their first decimal places 

(after being rounded to the nearest tenth); the transitions can be treated as equivalent and can be 

merged; otherwise the potential merge is ignored.  

 

Figure 3. Excerpt of the model derived by ReHMM from the pump controller example 
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This procedure [29] also helps in increasing the accuracy of the model by detecting non-

deterministic transitions. In this case, ReHMM infers an EFSA with 11 states while the proposed 

approach by [29] contains 16 states (See Appendix A for the EPFSA generated using ReHMM). 

Finally according to [29], the GK-tail algorithm inferred a model with 39 states using the same 

data traces.  

It is also worth noting that similar to MINT framework, our approach is also able to implement 

Daikon’s decorator class [4], [29] and use it to infer rules that link the variables together for each 

transition. As it is mentioned in sections 2.1 and 2.3 using Daikon to label transitions could be 

useful for the purposes of providing transition-specific information about the attached data. Also, 

the extracted rules (e.g. pump=false&methane<=602.2162), similar to other transitions’ labels, 

are then utilized to calculate Q-values and determine whether or not a pair of states is 

compatible. 

As it will be discussed in Section 2.9, ReHMM also is able to generate more accurate models 

when compared to MINT. The ability to generate small accurate models is a feature of ReHMM, 

which can be very helpful in addressing software engineering tasks such as test case generation.  

2.7 Empirical Evaluation 

To investigate the effectiveness of the proposed technique, we have performed an empirical 

evaluation. The evaluation compares the new technique with five data classifier inference 

approaches from MINT [28], [29] and one PFSA inference method (sk-Strings) [48].  It is argued 

in this chapter that these approaches represent the current state of the art. We have constructed an 

experimental framework, which addresses the following research questions:  
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• (RQ1) How does the ReHMM inference technique performs in terms of accuracy [29], 

[49] as compared to other state of the art inference approaches, specifically MINT 

(EFSA) and sk-strings (PFSA) [28]?  

• (RQ2) Does the inferred EPFSA retain the probability distribution of the original 

specification [49]? 

The first research question (RQ1) is answered using a new evaluation approach, proposed by 

Walkinshaw et al. [29]. Their proposed approach uses a well-known technique called k-folds 

cross validation to randomly partition a set of examples into k (non-overlapping) sets. 

Subsequently, a model is inferred using each set over k iterations and the remaining set is used to 

evaluate the model based upon the accuracy measure (defined in the next section). Since in each 

iteration a different set is used for the evaluation, the final accuracy score is equal to the mean of 

the k  accuracy scores. This approach is successfully used to calculate the accuracy score for 

both EFSAs and PFSAs [29]. 

On the other hand, in order to evaluate the probablistic element of the infered Extended PFSAs4 

(RQ2), we implement the approach recommended by Lo et al. [16]; they suggest calculating a 

new metric called Probability Similarity (PS), measuring the similarity in terms of probabilities 

assigned to the common traces generated by both the simulator (Section 2.5.1) and the mined 

model. In other words, this metric determines if both the simulator and the mined models 

generate the same traces at similar frequencies. The PS metric also will be elaborated upon in the 

following section. 

                                                
4 In cases that the inference procedure leads to generating Extended Probabilistic FSAs, the quality of the produced 

EFSAs (without considering the transition values) can still be evaluated by comparing the BCR measure of the 
mined models but it is not sufficient in assessing the quality of state-action values (transition probabilities) 
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2.7.1 Comparison Criteria 

In order to evaluate RQ1 and to assess the extent of agreement between a set of traces and a 

model, we follow the approach utilized by Walkinshaw et al. [29]; they recommend calculating 

the BCR (Binary Classification Rate) metric in order to assess the accuracy of inferred EFSAs. 

Essentially, each trace is compared to the model in order to consider— if the model correctly 

accepts positive traces and rejects negative ones. Therefore, we need a measure that not only 

considers the true positives, false positives and false negatives but also takes the true negatives 

into the account. 

Basically, BCR is the mean of the Sensitivity and Specificity measures, where TP=True Positive, 

TN= True Negative, FP= False Positive, FN= False Negative and: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 ,   𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃                    (15)  

It is worth noting that Sensitivity is also known as “Recall”, while Specificity is a recommended 

alternative for “Precision” in cases where True-Negatives also should be taken into account. In 

other words in this study, similar to [29], the ability of the automaton in correctly rejecting 

negative traces is as significant as correctly accepting the positive ones.  

In addition, for the sake of completeness in analyzing the performance differences between 

diverse inference techniques, we also follow advice from [33], and apply the Wilcoxon Signed 

Ranks Test and effect size approaches. 

Non-parametric Statistical Hypothesis Test: In this case, we established a null hypothesis and 

an alternative hypothesis to be evaluated. The null hypothesis (H0) states that the two inference 

techniques provide the same accuracy, if the median of the BCR score for both techniques is the 
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same. On the other hand, the alternative hypothesis (H1) states that if the difference between the 

medians of the BCR measures, which have been detected by each of the inference techniques, is 

not zero then they will be considered as different. Therefore, by considering a significance 

level 𝛼 = 0.05, we would be able to reject the null hypothesis if 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05, for each 

independent situation. 

Effect Size: In order to add a “size of difference” statement to our comparison criteria, we 

consider the strength or magnitude of a treatment effect, by calculating Cliff’s Delta measure. 

Cliff’s Delta statistic [86] is a nonparametric effect size measure that quantifies the difference 

between two groups of observations by testing the equivalence of probabilities of scores in one 

group being larger than the scores in the other. In this study, the magnitude of differences 

between inference techniques is assessed using the thresholds provided in [89] i.e. |d|<0.147 

"negligible", |d|<0.33 "small", |d|<0.474 "medium", otherwise "large".  

In order to evaluate RQ2, we estimate the Probability Similarity (PS): PS measures the 

similarity in terms of probabilities assigned to common traces, generated by a mined model Z 

 

Figure 4. Excerpt of the simple simulator of the running example- the simulator is used as a 

basis for calculating the Probability Similarity of inferred PFSAs 

 
1.  
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and a simulator model 𝑍!. Following the approach provided in [49], the simulator model in this 

study is also an initial version of the PTA (Section 2.5.1) generated using the same algorithm as 

applied in [29]. The only difference is that the produced PTA is also labeled with the transition 

probabilities, which (1) are distributed equally between transitions with the same source node 

and (2) are summed up to one. Figure 4 shows an excerpt of a simulator model.  

Having both the simulator and the mined model, 𝑍 and 𝑍!, we are able to calculate the PS 

measure. First, we need to calculate the probability that a trace 𝑇𝑟 is generated by both 𝑍 and 𝑍! 

independently. It is the same procedure as the one which is normally used to measure the 

probability similarity between two Hidden Markov Models [76].  

𝑃!! 𝑍,𝑍! = (𝑃!(𝑇𝑟)𝑃!!(𝑇𝑟))
!"∈!(!∩!!)

             (16) 

Where 𝑃! 𝑇𝑟  and 𝑃!! 𝑇𝑟  represent the probability of producing trace 𝑇𝑟 by 𝑍 and by 𝑍!. We 

can determine the probability of a trace by multiplying together the probability of its 

constituents. Now the Probability Similarity between 𝑍 and 𝑍! can be calculated as follows: 

𝑃𝑆 𝑍,𝑍! =
2×𝑃!" 𝑍,𝑍!

(𝑃!" 𝑍,𝑍 + 𝑃!" 𝑍!,𝑍! )
           (17) 

It is worth noting that this technique has also been successfully used in [49] and [3] in order to 

assess the quality of an inferred EPFSA. 

2.8 Experimental Setup 

Several techniques exist to empirically evaluate EFSA inference algorithms, but all of them rely 

on a reference model to be used as a basis for computing accuracy. In practice, generated models 

should be compared with the reference model for computing the accuracy of the model [14], 
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[36], [37]. Since these models are required to be generated manually for systems with 

complicated behavior, this can be considered as a significant limitation. 

 

Figure 5. The toolset used in the empirical evaluation 

To empirically evaluate ReHMM in terms of accuracy, seven different systems have been 

considered. All of these systems are sequential systems relying on an internal data-state, which 

makes them suitable for modeling with either EFSA or EPFSA inference tools.  These choices 

also have been used in previous research projects [4], [10] and [39]. 

This selection also guarantees that the experimental objects are independent of the authors and 

specific programming languages.  

• SMTPTransport Class in OracleJavaMail5: This module implements the Transport 

abstract class using SMTP for message submission and transport. The SMTPTransport 

                                                
5 http://www.oracle.com/technetwork/java/javamail/index.html 
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Junit tests (collected using a tracing-aspect in AspectJ6) along with the Apache Commons 

Mail test sets have been considered for the first experiment [28]; 

§ Number of traces: 80 traces are used in this study; 

§ Average trace length: 20 (Input traces have different lengths; this metric 

calculates the mean of all traces’ lengths); and 

§ Average variables per event: 1.5 (Min=1 and Max=5). This metric calculates the 

mean of all variables associated with each trace event. 

• Erlang Poolboy: A module in the Basho Riak7 distributed database, which implements a 

procedure for pooling connections 

§ Number of traces: 80 traces have been generated using Poolboy Eunit tests 

(collected with an instrumentation system using the Wrangler refactoring API8) 

[28];  

§ Average trace length: 30; and  

§ Average variables per event: 3 (Min=1 and Max=7). 

• Mobile Frequency Server: An Erlang server module, which assigns frequencies to 

mobile phones contacting each other.  

§ Number of traces: 100 identical traces to [29] have been used in this case;  

§ Average trace length: 20; and  

§ Average variables per event: 3 (Min=1 and Max=6). 

• Resource Locker: A distributed resource-locking algorithm written in Erlang, which is 

designed for a specific model of ATM switches.  

                                                
6 http://eclipse.org/aspectj/ 
7 http://basho.com/riak/ 
8 http://www.cs.kent.ac.uk/projects/wrangler/Wrangler/Home.html 
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§ Number of traces: Again, 100 identical traces to [29] have been applied in this 

case;  

§ Average trace length: 20; and  

§ Average variables per event: 1.3 (Min=1 and Max=3). 

• Signature: A Java class, which implements a digital signature algorithm.  

§ Number of traces: 71 traces, which were collected through the execution of 

Columba9 email clients in [29] are also used in this experiment; 

§ Average trace length: 14.52; and  

§ Average variables per event: 16.7 (Min=1 and Max=24). 

• Socket: Another Java SDK class, which implements client sockets. A socket is an 

endpoint for the communication between two machines.  

§ Number of traces: 100 traces are used as [29]; 

§ Average trace length: 44.18; and  

§ Average variables per event: 13.17 (Min=1 and Max=18). 

• StringTokenizer: Traces, which are collected from several execution of JEdit10 in [29] on 

a Java utility class for breaking a string into tokens are applied in this case study. 

§ Number of traces: 100 traces are used as [29]; 

§ Average trace length: 33.36; and 

§ Average variables per event: 14.5 (Min=1 and Max=17). 

Walkinshaw et al. [29] collected initial traces for Erlang modules using a random test generation 

framework. In this approach, random functions are invoked through random parameters and this 

                                                
9 http://sourceforge.net/projects/columba/ 
10 http://www.jedit.org/ 
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procedure is repeated 20 times to generate 100 traces for each system. Additionally, the traces 

for Java modules are collected through running real-world, publicly available applications that 

use the selected libraries [39].  

In order to assure that the collected traces have been sufficient to infer reliable models 

mimicking actual systems behavior, we applied the measure provided by [90] and [91]. Using 

this measure, which is called the log’s confidence, we consider the confidence of a log (set) of 

execution traces in order to estimate the expected faithfulness of the mining results.  According 

to Cohen et al. [90], a low confidence (e.g. 0.2) indicates that the inference results might not be 

compatible with the actual behavior of the system under investigation. However, the high 

confidence (e.g. 0.95) hints that the inference results are probably very close to the actual 

behavior of the system. Therefore, the probability that a sequence of events 𝑇𝑟 of length n does 

not appear in the traces (𝑌![𝑇𝑟]  =  0) but is possible to be generated by the inferred model 

𝑓 𝑇𝑟 =  1  determines the log confidence of the considered traces, as below: 

𝑃 𝑌! = 𝑓 ≥ 1− 1− 𝑝!" !

!" !!"!!

      (18) 

Where, 𝑝!"  denotes the probability that the 𝑇𝑟 appears somewhere in the trace and k denotes the 

length of the log. (The interested reader should consult [90] for a derivation of equation (18)) 

The results indicate that all of traces used in this study have a confidence of at least 0.92. 

In addition, computing the BCR measure and calculating the FNs, TNs, FPs and TPs also needs 

the definition of negative traces. As mentioned earlier, negative traces are traces covering the 

mutations. Walkinshaw et al. [28], [29] collected positive traces for considered case studies using 

a random test generation framework while, they collected the negative traces using both 
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automated and hand-picked mutation approaches. They proposed a customized mutation 

technique that can be replaced with random mutations of the program code by automatically 

applying the hand-picked changes to the positive traces. This method guarantees that newly 

generated traces are “negative”, since, they are generated by adding invalid suffixes to the valid 

prefix of positive traces. It is worth mentioning that all of the positive and negative traces used in 

this study are kindly provided by Walkinshaw et al. [28], [29].  

Although the traces are available, the exact method used to extract them, are not. Even though, 

applying handpicked changes can address the problem caused by using quasi-random mutations; 

it makes replicating the trace production process very difficult (e.g. the set of rules applied to 

characterize impossible-to-happen sequences, are not available). Therefore, the process of 

creating further traces and using them to infer models comparable with the current case studies’ 

is almost impossible.  

In order to evaluate our proposed approach in comparison with other techniques, we used 

Walkinshaw et al.  ([15, 16]) studies as baselines, and updated their toolset as shown in Figure 5 

by adding our proposed inference approach in the appropriate location. Their approach is a 

modular method, which means, that instead of relying on a single data model inference 

technique, it uses a set of arbitrary data classifier inference techniques. The classifiers used by 

[28] are: NNGE, Bayes, JRIP, AdaBoost and J48 (implementing the C4.5 algorithm [56]).  

In addition, as mentioned earlier, the inferred EPFSAs by ReHMM are compared with a state of 

the art PFSA inference tool called sk-strings to investigate the accuracy of the Q-values in 

estimating the transition probabilities. In Accordance with several experiments conducted by 

Raman et al. [48], d%= 50%  k=1 and the “AND variant”  [33] are utilized as the default 



 

63 

parameters for the sk-strings algorithm.  Therefore, as depicted in Figure 5, different models are 

inferred from positive software traces using ReHMM, MINT and sk-strings. 

Then, in the evaluation phase, the k-folds cross validation technique, k=5, is used to address the 

problem of requiring reference models [36] and exercising the full range of behaviors in the 

systems under consideration. This approach randomly divides the input traces into 5 non-

overlapping sets and infers a model using a set over 5 iterations. Another set is used to evaluate 

the model in terms of the BCR measure. Basically, the set of traces are classified by the model to 

find if the model accepts them as positive or rejects them as negative. As a result, positive traces 

can be used for k-folds cross validation, whereas the negative traces are added to the evaluation 

set in each iteration in order to consider the effect of false positives/negatives on the accuracy of 

the experiment (Figure 5). After inferring models based on the classifier algorithms [28], sk-

strings and the proposed ReHMM technique, the BCR is measured to detect the most accurate 

approach, while PS is calculated to evaluate the probabilistic element of the inferred model. 

This is also worth noting that depending on the software engineering problem we are trying to 

solve the impact of such issues may differ. For instance, in the situation that the EPFSA is 

inferred to mine software specifications, wrongly recognizing a negative trace as valid software 

execution leads to generate software specifications containing behaviors which are not possible 

in the software. Similarly, mistakenly detecting a valid trace as a negative one, cause the 

specification misses correct software behaviors. Additionally, in the case of applying the inferred 

model to generate software test cases, false positives and false negatives lead to subsequently 

producing invalid test cases and missing valid ones. 
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2.9 Experimental Results 

According to [28] and [29], BCR values above 0.5 show that a model is able to determine correct 

traces  better than a random model. In order to evaluate the accuracy of our suggested model, we 

calculate the BCR measure for all of the generated models using ReHMM and the state of the art 

approaches. 

Table 5 shows the result of applying all five classifiers, the sk-strings algorithm and the ReHMM 

technique. We computed the average BCR measure on different inference iterations (k-fold) for 

two different minimum merging (G) scores 0 and 1 (See Section 2.2.3 for a definition of merging 

score). The accuracy of the inferred models is evaluated for different merging scores to 

investigate the impact of changes to the algorithm configuration, and consequently finding an 

ideal choice of G (if it exists). 

In addition to this, Table 6 and Table 7 report the results of calculating the sensitivity and 

specificity measures for all of the considered case studies applying the inference approaches. 

These results indicate that ReHMM outperforms the other approaches in correctly determining 

the validity of the traces compared to the results provided in [29]. In addition, the result of the 

Wilcoxon signed rank test indicates that, regardless of the perceived closeness of the BCR 

scores, the ReHMM inference approach is significantly different from the other techniques 

(𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.03125 < 0.05 for G=0, and 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.01562 < 0.05 for G=1).  The 

Cliff’s Delta measure provides more detailed information to this picture by showing that a 

“large” effect size exists (in favour of ReHMM) for all of the experiments, when G=0, delta 

estimate=0.8688, and when G=1, delta estimate=0.9072, both with a 95% confidence interval. 

These results provide an answer to the first research question.  
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Table 5. The Results of Applying Inference Techniques on Seven Different Case Studies, for G=0,1 

 Poolboy SMTPTranspor
t 

Resource 

Locker 
Frequency 

Server 
Signature StringTokenize

r 
Socket 

G 

Inferenc
e 

Algorith
m 

BC
R 

Inferenc
e 

Algorith
m 

BC
R 

Inferenc
e 

Algorith
m 

BC
R 

Inferenc
e 

Algorith
m 

BC
R 

Inferenc
e 

Algorith
m 

BC
R 

Inferenc
e 

Algorith
m 

BC
R 

Inferenc
e 

Algorith
m 

BCR 

0 

ReHMM 

Sk-
strings 

NNGE 

Bayes 

JRIP 

AdaBoos
t 

J48 

0.70 

0.65 

0.68 

0.66 

0.61 

0.61 

0.59 

ReHMM 

Sk-
strings 

NNGE 

Bayes 

JRIP 

AdaBoos
t 

J48 

0.91 

0.63 

0.59 

0.71 

0.72 

0.67 

0.67 

ReHMM 

Sk-
strings 

NNGE 

Bayes 

JRIP 

AdaBoos
t 

J48 

0.75 

0.64 

NA
* 

0.66 

0.61 

0.63 

0.64 

ReHMM 

Sk-
strings 

NNGE 

Bayes 

JRIP 

AdaBoos
t 

J48 

0.84 

0.64 

NA 

0.75 

0.61 

0.76 

0.67 

ReHMM 

Sk-
strings 

NNGE 

Bayes 

JRIP 

AdaBoos
t 

J48 

0.75 

0.63 

NA 

0.50 

0.50 

0.50 

0.50 

ReHMM 

Sk-
strings 

NNGE 

Bayes 

JRIP 

AdaBoos
t 

J48 

0.79 

0.45 

NA 

0.50 

0.51 

0.50 

0.50 

ReHMM 

Sk-
strings 

NNGE 

Bayes 

JRIP 

AdaBoos
t 

J48 

0.92 

0.73 

NA 

NA*
* 

0.75 

0.83 

0.80 

1 

ReHMM 

Sk-
strings 

NNGE 

Bayes 

JRIP 

AdaBoos
t 

J48 

0.76 

0.65 

0.70 

0.71 

0.69 

0.67 

0.65 

ReHMM 

Sk-
strings 

NNGE 

Bayes 

JRIP 

AdaBoos
t 

J48 

0.99 

0.79 

0.98 

0.98 

0.98 

0.96 

0.96 

ReHMM 

Sk-
strings 

NNGE 

Bayes 

JRIP 

AdaBoos
t 

J48 

0.80 

0.66 

NA 

0.71 

0.85 

0.74 

0.74 

ReHMM 

Sk-
strings 

NNGE 

Bayes 

JRIP 

AdaBoos
t 

J48 

0.85 

0.66 

NA 

0.66 

0.61 

0.77 

0.77 

ReHMM 

Sk-
strings 

NNGE 

Bayes 

JRIP 

AdaBoos
t 

J48 

0.79 

0.67 

NA 

0.73 

0.77 

0.67 

0.77 

ReHMM 

Sk-
strings 

NNGE 

Bayes 

JRIP 

AdaBoos
t 

J48 

0.90 

0.71 

NA 

0.82 

0.75 

0.78 

0.80 

ReHMM 

Sk-
strings 

NNGE 

Bayes 

JRIP 

AdaBoos
t 

J48 

0.90 

0.71 

NA 

NA 

0.65 

0.72 

0.70 

* NNGE has not be considered in Walkinshaw’s new study [29] because of its poor performance in systems with big 

traces containing spurious events 

** All Inference efforts for Naïve Bayes classifier in the Socket case study time out, because the inferred model 

using Naïve Bayes takes a significantly longer time to query compared to other cases and classifiers 

They show that combining the RL and HMM approaches not only improves the accuracy of the 

inferred model but also adds valuable information (data function) to its data flow (all the 

transitions are labeled with the name of functions, Q-value and data-state variables), which 

provides an accurate EPFSA inference method, outperforming another PFSA inference algorithm 

(sk-strings). This result illustrates that the ReHMM algorithm produces more accurate solutions 

in all the systems considered compared with sk-strings.  
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The minimum, maximum and median of BCRs are also calculated from applying different 

inference approaches on considered case studies are provided in Appendix B (Table 46, Table 

47). In this experiment both 5 and 10-folds for the cross validation are considered. 

Table 6. The Result of calculating Sensitivity and Specificity Measures Using ReHMM for G=0 

 Sensitivity Specificity 
Poolboy 0.81 0.89 

SMPTransport 0.98 0.93 
Resource Locker 0.96 0.54 
Frequency Server 1.00 0.68 

Signature 1.00 0.50 
StringTockenizer 1.00 0.58 

Socket 0.86 0.98 

Table 7. The Result of calculating Sensitivity and Specificity Measures Using ReHMM for G=1 

 Sensitivity Specificity 
Poolboy 0.79 0.97 

SMPTransport 1.00 0.99 
Resource Locker 1.00 0.60 
Frequency Server 0.71 0.99 

Signature 0.98 0.60 
StringTockenizer 0.90 1.00 

Socket 0.83 0.97 

Table 8. The Result of Calculating Probability Similarity Measure in ReHMM and sk-strings for G=0,1 

 
Sk-strings 

(G=0) 
ReHMM 

(G=0) 
Sk-strings 

(G=1) 
ReHMM 

(G=1) 
Poolboy 0.69 0.76 0.74 0.87 

SMPTransport 0.90 0.88 0.90 0.94 
Resource Locker 0.53 0.88 0.62 0.94 
Frequency Server 0.33 0.85 0.59 0.81 

Signature 0.48 0.67 0.52 0.79 
StringTockenizer 0.67 0.79 0.67 0.90 

Socket 0.65 0.83 0.68 0.82 
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Additionally, the results of calculating the PS metric (Table 8) indicate that ReHMM improves 

upon sk-strings in terms of retaining the original probabilities. This results in generating the 

same traces at similar frequencies as the simulator. The result of the Wilcoxon signed rank test 

and Cliff’s Delta measure also ”prove” this claim, that the ReHMM inference approach is 

significantly different in terms of the accuracy of the generated PFSA with sk-strings: for G=0,1. 

Delta estimate=0.8979 for G=0 and delta estimate=0.8367 for G=1, both with a 95% confidence 

interval. Both of these estimates can be interpreted as a “large” effect size. 

These results provide an answer to the second research question. In addition, this procedure helps 

in addressing the missing state-action value (transition probability) by identifying a new state-

action value (Q-value) function, which is able to map a transition to its corresponding Q-value 

while the model is generated. Using the new proposed technique (Q-value function), the value of 

a transition can be calculated directly from the observations with no need to walk through the 

source code. In all of the considered experiments, ReHMM has the BCR value of 0.7 or more, 

which demonstrates an acceptable level of accuracy [29], while, there is no single data classifier 

algorithm that outperforms the others for all of the systems.  

The results also indicate that changing the minimum merging score from 0 to 1 does not make 

much difference to the accuracy of some of the considered cases (e.g. Socket). This may have 

happened because of their lower level of learnability. This also would be due to the complex 

nested lists and tuples in their software-systems’ structures, which makes it difficult to 

distinguish a pair of states by their suffixes compared with the other systems [28], [29]. 

Therefore, it can be concluded that there is no ideal choice of merging score (G), since it depends 

on the characteristics of the target system in terms of the design complexity and the manner in 

which the system is invoked [29]. However, ReHMM seems to provide improvements over the 
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merging score changes when compared with sk-strings. This strongly suggests an improved 

capability of ReHMM in identifying merge-able suffixes. We believe the reason of the 

improvement in the accuracy of the inferred model using ReHMM, is the ability of ReHMM to 

add transition probabilities to the model and using them as a parameter to be checked in the 

merging step. This procedure helps in reducing the number of inappropriate merges and 

consequently generating more accurate models. 

Based upon this result, it could be concluded that ReHMM has obtained better accuracy in the 

systems containing a lower number of variables for each event. The reason lies in the fact that 

the inference process for the systems with high number of variables and events lead to generating 

very large models. The model becomes even larger when this feature is coupled with a larger 

value of G. It is also worth noting that the large-size models are slower to be inferred and 

subsequently are the subject of more false merges during the state-merging procedure (Table 9, 

illustrates the size of inferred models using ReHMM for all case studies).  

It was also observed that the traces containing all systems’ events with a low number of variables 

are sufficient to generate an accurate model representing a system behavior. Increasing the 

number of execution traces does not necessarily lead to an improvement in the model’s quality 

by adding new states and transitions to the PTA. Simply, the newly added traces can only repeat 

the patterns of events that are already provided by the old traces.  

Moreover, the results of implementing different edit distance measures in ReHMM as alternative 

heuristics in calculating the Q-values are provided in Table 10. These results illustrate the reason 

behind the decision of choosing Levenshtein distance over other approaches. 
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Table 9. Sizes of Inferred Models in Terms of State Numbers for All Case Studies, Applying ReHMM 

(G=0,1) 

 Number of States (G=0) Number of States (G=1) 
Poolboy 18 50 

SMPTransport 7 32 
Resource Locker 406 601 
Frequency Server 181 776 

Signature 3 16 
StringTockenizer 36 304 

Socket 144 1153 

Table 10. The Result of Calculating BCR Measure Using ReHMM Implemented by Different Edit 

Distance Heuristics 

 Longest Common Subsequence Distance Hamming Distance Jaro Distance 

Poolboy 0.68 0.6 0.66 

SMPTransport 0.87 0.67 0.73 

Resource Locker 0.75 0.63 0.7 

Frequency Server 0.84 0.67 0.81 

Signature 0.69 0.58 0.69 

StringTockenizer 0.7 0.62 0.72 

Socket 0.85 0.75 0.8 

2.10  Time Complexity Analysis 

In order to investigate the time complexity of the proposed method for situations with a long 

sequence of observations (i.e. large-scale software systems with a huge number of methods and 

parameter values), we have considered the computation order of the inference algorithm. 

Based upon the Incremental Baum-Welch algorithms’ time complexity [38], the computation 

order of the inference procedure is polynomial: 𝑂 𝑁! 𝑙𝑜𝑔𝑇 , where N represents the number of 

hidden states and T indicates the number of observations (parameter values); and hence, it does 

not exponentially grow by increasing the system size. 
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The time complexity of the traditional approach (using an offline Baum-Welch algorithm) is 

𝑂 𝑁!𝑇 [39], while in the incremental estimation approach which has been used in this study, 

this has been reduced to 𝑂 𝑁! 𝑙𝑜𝑔𝑇 . This improvement is possible by modifying the emission 

and transition probabilities incrementally using the RL-based forward algorithm and training an 

RL-based HMM with a Maximum Likelihood Estimation (MLE) using the Incremental Baum-

Welch algorithm [38]. 

This procedure also helps in estimating more accurate ReHMM elements than regular non-

incremental HMM estimation. The efficiency of this approach has been confirmed by the 

production of EFSAs with a minimum BCR value of 0.7. In addition, according to [94], a Q-

learning algorithm with action-reward representation in a deterministic domain (similar to the 

algorithm, used in this study) reaches a goal state and terminates after at most 𝑂(𝑒𝑛) steps; 

where 𝑒 ≤ 𝑛! and n represents the number of states of the initial PTA. Therefore, the worst-case 

time complexity becomes 𝑂(𝑛! ). 

We have also investigated the amount of time required to infer the models using the proposed 

inference approach by considering the performed experiments in terms of the time taken for each 

configuration. All experiments are run on a simple hardware and software platform consisting of 

a 2x2.4 GHz Quad-Core CPU, 32 GB RAM on a Mac Pro (manufactured in 2010), Eclipse 

Indigo. Clearly, massive performance gains can be made by moving the experiments onto a 

modern server; however, in these experiments we are not concerned with absolute performance. 

The times are listed in Table 11. The results indicate that in most cases, the inference time is less 

than one minute. However, in 3 cases of inference with merging score G=1 and one case study 

with merging score G=0, the inference time is more than a minute (between 2 and 9 minutes). 

Conducting the same experiment using MINT indicates that MINT’s inference time is within the 
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same range as ReHMM. The time it takes for MINT to infer models in “Frequency server” and 

“Signature” are respectively equal to 0.509 and 0.028 minutes for G=1 is slightly lower than 

ReHMM. While, in Socket experiment, MINT hits the timeout limit for several classifiers and 

merging scores, ReHMM inference time is still less than the timeout limit (9.065 min). It is 

worth noting that both MINT and ReHMM are written in Java. 

Table 11. Time Taken to Infer Models Across All Case Studies Using ReHMM for G=0,1 

 Inference Time (min), G=0 Inference Time (min), G=1 

Poolboy 0.014 0.112 

SMPTransport 0.012 0.023 

Resource Locker 0.928 2.520 

Frequency Server 0.683 0.852 

Signature 0.051 0.060 

StringTockenizer 1.050 3.083 

Socket 5.125 9.065 

In the study conducted by Walkinshaw et.al [29] using the MINT inference algorithm, it is 

indicated that an increase in the value of G, can lead to the increase in the inference time. When 

G increases, the inference approach needs more time to evaluate more states and transitions to 

find suitable merge candidates. The effect of choosing a large merging score can be even more in 

cases with larger models. In the Socket case study, inference time reaches to more than 9 minutes 

for G=1. Walkinshaw et.al [29] believe that the traces are used to infer the model for Socket are 

“richer” than other examples. They consist of an alphabet of 56 events and an average of 32 

variable values per event. These numbers of events and variable values (which are at least twice 

as many as other case studies) can easily lead to generating larger models and subsequently 

larger inference time. 
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 It can be concluded that even if the time it takes for ReHMM to infer a model from software 

executions could be increased for large merging scores or traces including high number of 

variable values per event, it is still an accurate solution for addressing several software 

engineering related problems. For example, in a case that the inferred model is used to produce 

regression tests with high code coverage, the model only needs to be generated after each 

regression to cover newly developed portions. In other words, there is no need to re-produce the 

model on a regular basis, because the behavior of the model will not change unless a software 

component is updated or replaced. Therefore, spending time periodically, ideally offline, to 

generate an accurate model of the system, which could be used for software testing purposes or 

for detecting a system’s architectural anomalies, is already recommended and applied in several 

software engineering studies [2], [95]. 

2.11   Threats to Validity 

Some potential threats to the validity of our research and the method of addressing them are 

discussed in this section. In this study, we are principally concerned with three types of threats: 

• Threats to the internal validity 

• Threats to the external validity 

• Threats to the power of the experiment 

ReHMM similar to other dynamic inference techniques suffers from some limitations. It takes a 

set of software execution traces as input and infers models that generalize upon them. This 

procedure can easily lead to generating a partial view of the software behavioral model. The 

mentioned drawback has been addressed by combining the FSM with the values of the associated 

parameter or data-state variables. But with respect to the internal validity, there are qualitative 
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data constraints (such as class labels) in these models; the impact of these constraints on the 

method’s accuracy cannot be directly evaluated. To address this issue, we added an additional 

quantitative value to the model, which provides insight into the model’s accuracy by calculating 

the amount of forward probabilities and subsequent transition probabilities using Q-values 

(where Q-values reflect the degree of change between transition functions). The result proves 

that using a Q-value calculation procedure has been a significant aid in inferring an accurate 

model, since it increases the probability of discovering more diverse paths in each inference 

process. Therefore, generating a model with high accuracy may show the effectiveness of using 

Q-values to identify the functions governing transitions and generating the Probabilistic FSA of 

software systems. On the other hand, the threats to the external validity for our research are 

centered on the limitations of dynamic analysis. In dynamic specification mining, the system and 

its complete set of execution traces are not necessarily known. Therefore, the lack of complete 

traces describing the software behavior is a major limitation as identified in [10] and [37]. 

Walkinshaw et al. [28] reduces the risk of using incomplete trace samples by using k-folds cross 

validation.  This approach is also replicated in this study. We also calculated the log-confidence 

measure [90], [91] to evaluate the sufficiency of the applied traces. In addition, choosing seven 

different case studies from two diverse programming languages shows this experiment is not 

dependant on any specific programming language. Therefore, the selected classes can be 

considered as representative of many others, but not all, possible software systems.  

The third threat represents the power issue, which can lead to Type II errors in situations where a 

sufficient number of samples are not available. In order to address this issue, a k-fold cross 

validation approach and different configurations of learners are used, and several models are 

generated during every iteration of the inference algorithm (overall 700 models). In addition, in 
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order to assure that the inference approach is capable of handling traces of different lengths, 

diverse systems with different average trace lengths (from 14 to 44) are applied in this study.  

2.12   Conclusion 

Several techniques currently exist which are able to generate behavioral models from software 

execution traces. In this study, we introduce a new approach named ReHMM for inferring 

Extended PFSAs. This technique combines two different approaches:  RL and HMM to generate 

an accurate behavioral model of the desired system. ReHMM is a new approach, training an RL-

based HMM on data obtained from each class label of an execution trace. 

Applying RL helps in exploring the transitions, which trigger more changes in the model; and 

hence, it helps to detect those functions that govern transitions. Then, we explore the ability of 

HMMs to estimate a model that maximizes the probabilities of identifying the correct traces. 

This study makes a contribution to research in the area by offering a new algorithm to infer an 

accurate EPFSA from software execution traces. In addition, it suggests a solution to the problem 

of the missing state-action value by using Q-values in designing an Extended Probabilistic FSA.  

In order to evaluate the proposed technique, we used traces extracted from seven modules in two 

different programming languages. Both systems have been used for inferring EFSAs [28] and 

[29]. The reason for choosing the same modules was the existence of a preliminary study, which 

we used to evaluate our approach. According to the results, our proposed technique outperforms 

other inference algorithms in terms of the BCR measure (used to evaluate the accuracy of the 

model). We also compared the generated models using the proposed approach with the models 

produced using a state of the art PFSA generation algorithm (sk-strings) in terms of accuracy. 

Again, the results confirmed the ReHMM’s ability in generating the more accurate PFSAs too. 
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3 Inferring Reward Augmented Behavior Models from Log 
Files in Web Applications 

3.1 Introduction 

Many users with different needs and interests browse web applications by navigating through 

different pages. Navigational anomalies, deadlocks and unexpected inter-connections can easily 

lead to user dissatisfaction and, subsequently, lost audiences.  

 However, it is almost impossible to accurately predict and address all of the users’ interaction 

expectations. Inferring a model by knowing and predicting users’ behavioral patterns is required 

in order to understand users’ interests and build applications addressing a wide range of 

requirements. 

Several studies have been conducted to propose different inference approaches in order to model 

user behaviors by monitoring the usage of an application and consequently mining the collected 

data to extract user behavioral patterns. Applying data mining techniques on the data collected 

from user side or proxy servers in order to extract usage patterns is one of the proposed inference 

approaches [96]. The client side data can be collected using JavaScript or by modifying the 

source code of an existing browser. Some other existing solutions mine server-side log files as 

the historical user-interaction data and extract hidden behavioral patterns. For example, [2-7] 

generate probabilistic user behavioral models or user interest models from log files. 

However, even if we have an accurate user-behavioral model available addressing many design 

questions remain problematic without being able to augment the generated model with 
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appropriate metrics and measures. For example, questions such as  (1) Which pages11 of the web 

application are poorly performing? (2) What are the landing pages? and (3) What are the 

common sessions?  

In order to answer such questions, some extended inference techniques are suggested, which not 

only infer the user behavioral model but also manually augment models with a metric called 

reward values, .e.g [7],[8]. In general, rewards are non-negative values that are estimated and 

assigned to a model’s states to provide insights on the benefits or losses associated with each 

state of the model. In our study, the benefits or losses are considered as the new and different 

content that a web page offers to the users in order to attract them, as compared to other web 

pages. Critically our approach is fully automated! 

Later we show that the page reward value can be mapped to the popularity or accessibility of 

web pages. Therefore, high reward values can demonstrate the successful implementation of 

users’ requirements, while low reward values for the less popular pages can indicate possible 

anomalies in the application design. Therefore, reward augmented behavioural models can 

represent a general abstraction of the model, which can be used to analyze user behaviour 

patterns. 

Google Analytics12 also provides a solution to answer the above types of questions. It tracks 

users' navigation actions by instrumenting web pages and uses a page tagging approach to gather 

website traffic data. In this case, a snippet of JavaScript code needs to be manually added to 

every page of the website. However, existing solutions including Google Analytics are either 

                                                
11 A web page in this study refers to the dynamic web page where its construction is either controlled on the server-

side or the client-side 
12 https://www.google.ca/analytics/ 
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limited to inferring predefined users’ navigational profiles [97], [98] or they lack an automated 

inference process to generate reward augmented models. 

In this study, we provide a comprehensive automated approach to generate reward augmented 

behavioural models from log files. In other words, this study contributes to current research in 

user-intensive behavioral models in the following distinct ways: 

• This approach provides a new method to infer probabilistic user behavioural models 

using Markovian processes, and verifies the quantitative properties of users’ behaviors 

using probabilistic model checking. 

• This technique facilitates a model generation process by the use of a Reinforcement 

Learning (RL) based approach to automatically and incrementally learn the reward values 

from data, which represents the users’ interactions with web applications. 

• It uses the differences between the contents of different web pages to indicate the 

“attractive” pages from a user point of view. 

• It is fully automated and requires no manual intervention neither in terms of code 

instrumentation nor reward estimation. 

• In order to investigate the performance of the proposed approach, we have applied it on 

an enterprise scale, web and mobile application called “MyUAlberta”. It is believed that 

this is the first time such processes (generating reward-augmented behavioural models 

from historical log files) have been applied to a real-world enterprise size application. 

Previous research [2], [99]–[102] has only considered small, artificially generated, data 

sets.  

• In addition, the results of this investigation indicate that the calculated reward values are 

compatible with the values extracted from Google Analytics in determining a page’s 
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importance. In other words, pages that are marked as interesting with a high number of 

page-views are also highly ranked by reward values.  

The remainder of this chapter is organized as follows. Section 3.2 contains research motivations 

and the problem description. Section 3.3 overviews the steps of the proposed approach along 

with the background information relating to existing user behavioral models. Section 3.4 

introduces a running example, used throughout the chapter to explain and evaluate the proposed 

approach. Section 3.5 provides a detailed description of the inference approach. Section 3.6 

discusses the empirical evaluation of the proposed approach and presents the experimental 

results. Section 3.7 reviews related work and state of the work model inference approaches, 

while Section 3.8 summarizes the main contributions of the study and provides some thoughts on 

the ongoing research work. 

3.2 Problem Statement and Research Motivation 

User behavior models, which are generated from navigational patterns found in web applications, 

provide solutions to several software engineering problems. A navigational pattern is a record of 

where a user visits in an application. The pattern is extracted from the whole procedure of 

browsing the website, from the start to the end of a user session This information can be obtained 

from the server’s log of a web application, which documents the history of user interactions and 

behaviors. Several inference studies have been performed to model users’ behavioral flows using 

server log files [99], [100]. In this study, we try to provide a new user-behavioral inference 

approach, which has the following advantages compared to previous work: 

Ideally, a user behavioral inference process should not require to instrument the application’s 

web pages in order to generate user behavioral models. To instrument a web page, the source 



 

79 

code of the program is modified with additional commands. The purpose of instrumenting the 

web applications is data collection. An inference approach, which only uses data from log files, 

does not require access to the source code of the applications. 

Providing a non-instrumented inference approach is preferably acceptable while achieving 

appropriate results. The results of the above mentioned inference approach, which only uses data 

from log files must be consistent with the results of an instrumentation-based approach. In this 

study, Google Analytics is used as an example of an instrumentation-based approach.  

Web application evolution can be done by upgrading an application already in service or by 

releasing a new version or derivative. Any model generation approach should support the 

evolution of web applications. This can be helpful in sustaining web applications. 

When users interact with a web application, the history of their requests and behaviors are stored 

in web server logs. In enterprise-scale web applications, log files will have millions of entries per 

day. It is essential that any model generation approach support the utilization of such large-scale 

server logs.  

Behavioral models are normally generated by collecting data either from system instrumentation 

or from log files. To instrument a web page, it is necessary to insert additional code fragments 

into the source code. However, this can be difficult when the source code is inaccessible or too 

complex to instrument. Many software systems still in use were developed using technologies 

that are now obsolete. This becomes an issue when the original developers or the source code is 

no longer available, or source code only exists with outdated documentation, which is the only 

reliable source of information. These situations are frequently encountered, particularly in 

software systems that have been developed years ago. For instance, consider a web application, 
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which is developed and maintained over years by a single developer. If the developer leaves the 

company the company will encounter a situation called “maintaining the legacy code”. In this 

situation different developers need to familiarize themselves with the code they have never 

touched before. Another likely scenario is when an application is being licensed to a company 

without providing the source code. In such a case instrumenting the source code becomes very 

difficult and time consuming. Furthermore, legacy codes can be very difficult to read since they 

are written without exploiting object-oriented techniques. This old coding approach leads to 

lengthy and complex code that is difficult to understand and instrument. Although accessing 

source code of these systems is not always feasible, it is still possible to generate behavioral 

models for these systems from their log files. 

A model generation approach needs to support the evolution of the web applications. In other 

words, a behavioral model should be generated incrementally during the evolution, and should 

play a role in the application’s evolution procedure. Consider an application in which, a specific 

link needs to be added to the main page. By adding the link, the new behavior model should be 

generated incrementally. This approach makes the model generation process quick, flexible and 

possible in the early phases of the application life cycle. As an example, consider a car dealership 

web application. By analyzing its users’ behavior model, pages with more visitors, will be 

determined and related advertisements will be added to the target pages. Then the new model 

will be created incrementally.  

Analyzing the model also helps to detect design anomalies resulting in dissatisfaction among 

users. For instance, there might be some pages, in which users are being prevented from leaving 

the page without closing it. Such pages are called deadlocks [103]. Detecting deadlocks can 

significantly help in addressing design anomalies and providing solutions to retain users. 
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Therefore, generating behavior models in an incremental and analyzing them regularly play an 

essential role in the flawless evolution of the web application.  

The model generation approach should also support the large-scale web applications. These 

applications have a large number of entries per day. Analyzing the behavior of numerous users in 

a large-scale application can provide information that may be helpful in understanding the users’ 

requirements. From the business point of view, it’s critical to understand how people interact 

with the company’s web application, especially in cases where such applications are considered 

large or enterprise.  

Understanding user behavior helps in improving the user experience; refine features and 

contents, and building a user-oriented product. Google, Microsoft and Facebook are examples of 

large-scale companies, which are using behavior model generation approaches to understand the 

behavior of their users. 

Behavior models are also used to identify potential issues with the content or the design of 

enterprise applications. In the case of a commercial company’s web application with hundreds of 

thousands of visits per day, analyzing the behavioral model can reveal difficulties users are 

experiencing while browsing the application or their preferences in the design of the user 

interface (UI). For instance, by tracking users’ behavioral fellow, it can easily be detected if 

users prefer to see more information about a product on the same page that the product is placed 

on instead of clicking on the “more information” link, which shows the information on a separate 

page. 

Developers can easily address such issues and increase users’ satisfaction level. Satisfied 

customers are more likely to stay with the company and contribute to the company’s success. 
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Generating and analyzing user behavioral models make detecting such issues possible in large-

scale applications with huge log files recording user interaction data. 

Google Analytics is a state of the art approach to infer user behavioral models. But it should be 

noted that generating such models using Google Analytics needs instrumenting the source code. 

Google Analytics is a web analytics service offered by Google that tracks and reports website 

traffic. Using Google Analytics users can create and review online campaigns by defining 

different conversions (goals). Goals are used to measure how well the web application is 

targeting the predefined objectives like sales or a specific location loads [104]. Google Analytics 

can also be used to identify poorly performing pages preventing the web application from 

reaching the defined targets (goals). 

The behavioral models generated using non-instrumented inference approaches should be 

consistent with the results of Google Analytics or other equivalent systems. Therefore, one of our 

objectives in this study is to produce an algorithm, which has comparable performance to Google 

Analytics. 

 In order to evaluate the correctness of our proposed inference approach, we considered the 

compatibility of the approach with the results, which were extracted by Google Analytics from 

an instrumented website. Another objective in this study is to produce an automatic algorithm, 

which supports enterprise size web applications and its future evolutions. Section 3.6 discusses 

the evaluation of the proposed approach on a large-scale case study and presents the 

experimental results. 
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3.3 Augmenting Behavioral Models by Reward Values 

In this section, we introduce our proposed inference approach with a short introduction about 

current user behavioral model generation procedures. 

3.3.1 User Behavioral Model 

Different users behave differently in their interactions with web applications. They browse web 

pages based upon their needs in a specific time frame. Therefore, providing a model representing 

possible user behavior and latent patterns with a graphical, and traceable, representation can be 

helpful. Several techniques are suggested to track users’ navigation actions and generate models 

containing the paths users have taken through a web site. Some of these approaches instrument 

the web pages to collect users’ interaction history, while others mine the server-side log files to 

extract interaction patterns. Moreover, the inferred models are also represented in various ways 

from tree-based data structures [105] to different types of probabilistic models [2], [97], [106]. 

To allow the universal application of this approach, we only assume the availability of server-

side log files as the system input.  This assumption also implies that the system requires no 

modification of the existing configuration, which is often a barrier to adoption. In terms of the 

output from the system, we are extracting probabilistic (state-oriented) models, analyzing them 

and augmenting their states with reward values to accurately represent the user behavioural 

patterns.  

3.3.2 Proposed Model Inference Approach 

Given our objectives, we commenced our research by considering pre-existing systems as partial 

solutions to address the raised concerns. 
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Our framework was designed and implemented to incrementally generate user-behavioral models 

for user-intensive web applications, and to overcome the limitations of former approaches.  

The main steps of the proposed framework are shown in Figure 6 and briefly discussed in the 

following paragraphs. It is worth noting that steps 2 and 3 are intertwining and do not occur 

sequentially, but for the sake of clarity they are explained separately. Later in the chapter of the 

thesis, each step will be elaborated in a separate section. 

1. Identifying the initial parameters and processing the log-file: at the first step, a set of 

Atomic Propositions (APs) is used to associate semantics to the URLs occurring in the 

log file. APs can be defined by the system expert or by automatically considering the 

URL of the page as a proposition. Also the system expert can define a set of user-classes 

to characterize different groups of users. For example, users’ agents (internet browsers 

used to view the web pages) and locations could be considered as two user-classes. 

Classes categorize users based upon a set of common features. However in order to 

automatically infer a reward - augmented model, which is not limited to a specific scope, 

defining user-classes can be ignored. Also in this step, input logs are processed and 

classified. Each row of the log file is clustered into groups univocally identified by the 

sets of atomic propositions. 

2. Generating the behavioral model: the model inference engine analyzes the processed 

log file and generates a Discrete Time Markov Chain (DTMC) for each “user-class”, 

defined in the previous step.   

3. Calculating and assigning reward values: Concurrently with generating each state of 

the DTMC, the corresponding reward value is also incrementally calculated and assigned 
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to the state. A Reinforcement Learning (RL) based approach is applied to automatically 

estimate the reward values for each state (i.e. web page). 

4. Analyzing the model: when the DTMCs are generated and annotated with reward 

values, the analysis engine evaluates the properties of the interaction patterns against the 

inferred models using probabilistic model checking. The probabilistic model checker not 

only evaluates the correctness or incorrectness of a property, but also provides insights on 

the users’ behaviors and on the impact of these behaviors on the reward values. Any 

probabilistic model checker can be applied; but in this study, we use PRISM [103]. 

3.4 Running Example 

In order to define and demonstrate the proposed approach throughout this chapter, we introduce 

a real world, enterprise application called “MyUAlberta”. This application includes several 

features for helping students and staff at the University of Alberta, enabling them to gain access 

to campus-related information through an easy-to-browse dashboard. The application has been 

active since September 2014 and more than 100000 app installs and more than 40000 monthly 

page views have been reported since then. 

Users can view university news, events, and maps; and search for people who are registered as 

students or staff at the university. Students and academic staffs can view course details including 

seat availability and check their timetable. These features along with several other features are 

represented in the MyUAlberta mobile application and website. 
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Figure 6. The Framework of the User Behavioral Model Inference Approach 

This application has 58,498 iOS and 12,097 Android registered users with unique mobile 

devices. It is worth noting that these numbers do not include web users who only use the 

application through the web portal. In addition, the application contains 18 main modules; each 

provides a link to an external resource (e.g. link to the university website) or represents an in-app 

feature. As an example of an in-app implemented feature: students can use this application to 

login to the University authentication system and see their classes’ schedule, marks, and course 

lists (Registrar module). They can also review course content and take quizzes online using the 

eClass module. Library, Events, Student Services, Find a Person, ONEcard, News, Athletics, 

Social Media, and Photos and Videos are other modules that provide different services to 

university students and staffs. Transit and Campus map modules are also two popular features in 

this application; they help users find out the departure time for several bus and LRT routes, as 

well as the campus-wide geographical map. Users are able to customize modules’ order in the 

main menu, receive emergency push notifications, or send feedback about their experiences 

browsing the application. Therefore, according to the large scale of the application and its 
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numerous users, analyzing the behavior of the users would provide information that could lead to 

the fruitful future of the application in terms of improvements.  

We extracted the server log files for the time period of one month composed of more than 

120,000 lines. It can be easily anticipated that the generated behavioral model using such log 

files would be massive and complex, so manually extracting the behavioral patterns and 

assigning the reward values to them is neither possible nor accurate. 

3.5 Inference Details 

In this section we elaborate on the inference steps briefly discussed in the last section. 

3.5.1 Identifying Initial Parameters and Processing Log File 

In order to infer a model of users’ behaviors, the inference approach needs a list of the 

interactions between the users and the web server of the application in the Common Log Format 

(CLF). This file consists of the rows and each row represents a request submitted by a user to the 

web server and contains the IP address, timestamp, requested URL and client’s device 

information. Our proposed inference approach clusters each row of the log file into the groups 

identified by a set of Atomic Propositions (𝐴𝑃𝑠) [2]. It uses several code fragments called filters 

to indicate the set of atomic propositions, which can be associated to the relevant requested 

URLs in the log files. Filters are parameterized with a regular expression to only identify the 

URLs matching the expression. For example, the proposition home is going to be used as a label 

for a row in the log file, which contains the requested-URL that will lead the user to the home 

page of the application. This procedure helps in: (1) Identifying the requests corresponding to the 

same URLs and clustering them into the same group. (2) Detecting and filtering out the rows that 
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belong to CSS, JavaScript or any resources that are irrelevant to the users’ interactions with the 

web application. The URLs and their corresponding atomic propositions for the MyUAlberta 

application are provided in Table 12. 

Table 12. The URLS and Their Corresponding Atomic Propositions in MyUAlberta Application 

Atomic Proposition URL 

home …/home/ 

athletics …/athletics/ 

social …/social/ 

transit …/trnst/ 

news …/news/ 

video …/video/ 

emergency …/uaemergency/ 

calendar …/calendar/ 

people …/people/ 

login …/login/ 

eclass …/eclass.srv.ualberta.ca/portal/ 

map …/campusmap.ualberta.ca/ 

onecard …/myonecard.ualberta.ca/ 

caps …/capsconnections.ualberta.ca/ 

studentservices …/stustrv/ 

customize …/customize/ 

feedback …/MyUAlbertaFeedback/ 

search …/search/ 

photos …/photos/ 

fullweb …/ualberta.ca 

error …/kurogoerror/ 

library …/library/ 

registrar …/registrar/ 
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Our inference framework also contains two default classifiers to classify the users based upon (1) 

the user-agents (e.g. Mozilla, Firefox) and (2) the users’ location extracted by geolocating the IP 

addresses [2]; more classifiers can be easily added. Classifiers help designers to extract domain 

specific information about the users by classifying users into several different customizable 

classes. For example, using this approach, we would be able to analyze specific users’ behavioral 

patterns for clients who logged into the application using Chrome. 

3.5.2 Generating the Behavioral Model 

In the model inference step, the inference engine incrementally generates a set of Discrete Time 

Markov Chains (DTMCs) [2], [107]. 

DTMCs are probabilistic finite state automata, which follow a Markovian process and represent 

the users’ behavioral patterns. Discrete time Markov chains are suitable options for representing 

the user behavioral models, because: 

• The transition from one state to other states in the model only depends on the current 

state. Therefore, in a user behavioral model, the probability distribution of the next page 

(the user might visit), only depends on the links and content provided in the page that the 

user is currently browsing. This perfectly matches the user behavior pattern definition, 

which illustrates the users’ movement flow from one state (page) to another. 

• The system evolves through discrete time steps. In user behavioral modeling, we are 

interested in analyzing user behaviors at discrete time intervals to predict the next 

movement of the user solely based on the current state. Therefore, changes to the system 

cannot occur at any time along a continuous interval. 
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In our study, DTMCs are also annotated with a numerical value called a reward. Rewards 

indicate the quantitative value (benefit) of visiting a specific page in the web site or being in a 

specific state of the model. In the research conducted by Ghezzi et al. [2], rewards are manually 

determined and assigned by the system designer to the states of the models. Accordingly, a 

DTMC which is augmented with rewards is a tuple (𝑆,𝑃, 𝐿,𝜌) where: 

• 𝑆 is a set of states, and 𝑠! ∈ 𝑆 indicates the initial state; 

• 𝑃: 𝑆×𝑆 → [0,1] is the probabilistic matrix indicating the probability of the occurrence of 

a transition between two connected states. 

• 𝐿 is a function which maps a state to a set of atomic propositions. 

• 𝜌 is a reward function with associates a non-negative number to each state. 

In this study, we also infer a DTMC for each class defined by the classifiers.  

In order to start the model inference process, an initial DTMC is generated. The initial DTMC 

consists of (1) two initial states: 𝑠! (initial state) and 𝑠! (end state); (2) a zero transition matrix 𝑃 

indicating the probability transitions between states; (3) a set of state labels indicating the start 

and end labels 𝐿 = {𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑} and (4) a reward function 𝜌 which assigns 0 to both start and 

end states as an initial reward value. Assigning 0 as a reward value to the initial states illustrates 

that the value of states is not calculated yet. Then, the initial DTMC will be incrementally 

developed by processing each row of the log file and adding more states and transitions to the 

model. The following paragraphs provide more details about this procedure: 

• First, when a raw r is processed, the algorithm assumes that the IP address in the raw 

corresponds to a new user unless the IP address has been previously detected within a 

predefined time-window.  A time window is the minimum time span between timestamps 
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that is defined by the system expert to identify the requests that are issued by two 

different users but the same IP addresses.  In another words, when the time-window for a 

certain IP address expires, the algorithm assumes that the user associated with that IP 

address left the system [2]. In this study, we assumed that the time-window is equal to 1 

minute, which is equal to the minimum session timeout in Google Analytics. This should 

not be confused with the default session duration in Google Analytics, which is equal to 

30 minutes. If the previous step considers r as a request issued by a new user, the 

algorithm adds a new state to the model, and labels it by the set of propositions associated 

with r. At this point, it considers the start state 𝑠! as its parent state. But if the request 

belongs to a known user, the algorithm still builds the new state with the same labels, but 

considers the latest state associated with the previous request as its parent state [2]. 

• Then the transition probability 𝑝!" is assigned to the transition between 𝑠! and 𝑠!. 𝑝!" is 

equal to the ratio between the number of transitions between 𝑠! and 𝑠! the total number of 

transitions with source state 𝑠! [27]. 

• During the inference procedure, if the times-window expires for a certain IP address, the 

algorithm generates a transition from the current state to the end state 𝑠! and updates the 

transition probability. 

• The previous steps will be repeated until no new request is found in the log file. 

 

Figure 7. An excerpt of the model inference procedure for MyUAlberta application 
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Table 13 shows an excerpt of the MyUAlberta log file containing the user’ IP address, the 

requests’ timestamps and the requested URLs. This log file represents the interaction of a user 

with the application. 

Table 13. The URLS and Their Corresponding Atomic Propositions in MyUAlberta Application 

1.1.1.1 - - [24/Jan/2016:06:50:56 +0700] "GET 

/home 

1.1.1.1 - - [24/Jan/2016:06:51:00 +0700] "GET 

/trnst 

1.1.1.1 - - [24/Jan/2016:06:51:04 +0700] "GET 

/social 

Figure 7 depicts implementing the above step on MyUAlberta case study. In this case, as the log 

file is processed, the initial DTMC is generated by building start and end states (See Figure 7a). 

When the first line of the log file is read, since this is the first time a request to the home page is 

getting processed, a new state labeled home is generated. In other words, since the IP address of 

this request has not been already encountered, the algorithm connects it to the start state (Figure 

7b). At the same time, the inference engine assigns a probability of 1 to this transition. This is 

due to the fact that, there is no other state with the source of start state yet. As the algorithm 

processes the second row of the log file that contains the same IP address, it adds a new state 

labeled transit to the DTMC and considers the home state as the source state for it. The transition 

probability of the new connection is also 1 (see Figure 7c).  

The third row of the log file again belongs to the same IP address but containing a request to load 

the social media page. Therefore, the algorithm adds the new state called social to the model in a 

same way as previous states. The only difference is that since this state is not the first state 

getting yielded from the home state, the number of the outgoing states from home should be 
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divided by the transition probability and all of the corresponding transitions should get updated. 

Thus, the probabilities of transitions derived from home state are equal to 0.5. This means that 

the probability of the transition between the home and transit states will be also updated to 0.5 

(see Figure 7d). 

When the time-window for a specific IP address expires, the algorithm assumes that the user left 

the application. Therefore, it generates a new transition that connects the latest discovered state 

(which is associated with this user) to the end state. Figure 7d depicts this step. 

During the inference process the reward values are also calculated and assigned to the states of 

the model, but for the sake of clarity we present the remaining steps in the next section. 

3.5.3 Calculating and Assigning Reward Values 

As mentioned previously, the necessity for manually producing the reward signal is a major 

problem with the previous inference approaches, such as [2].  

In order to illustrate the use of rewards in user behavioral models clearly, we first provide an 

example related to a sell and buy web site. Assuming that the goal of the web site is to increase 

the number of advertisements, the designer can assign reward values to states by considering the 

number of advertisements in each page. For example, if there are 10 advertisements in the 

homepage, the system expert associates the reward value 10 with the proposition homepage. 

Accordingly, other states of the model also get annotated by the number of advertisements their 

corresponding proposition contains. Depending on the web site’s goals and missions, designers 

only define one technical or non-technical metric of interest and assign rewards based upon this 

metric only once during the setup phase of the inference procedure. Therefore, in order to 

recalculate reward values based on the new metrics: (1) system experts should recalculate reward 
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values, and (2) models should be regenerated. In such situations, defining an approach, which is 

able to represent the rewards values of the states from a general perspective, would be very 

helpful. However, automating the calculation process makes the approach more effective 

specifically for large-scale software systems.  

The following paragraphs outline our proposed technique to solve this issue. We utilize a 

reinforcement learning strategy to automate the estimation of the rewards signal. Therefore, we 

first provide a quick background about the applied techniques and definitions. 

3.5.3.1 Reinforcement Learning 

This section provides an overview and definition of Reinforcement Learning. 

RL is located between supervised and unsupervised learning to learn what to do to maximize a 

numerical reward signal [66]. The learner does not know what actions to take to reach the goal 

of maximizing the reward signal and only can pick and try actions to detect those increasing the 

accumulative reward [67].  

Reinforcement learning algorithms are defined in an iterative way not by characterizing learning 

methods, but by characterizing a learning problem. The agent and the environment are 

interacting continually: the agent selects actions and the environment responds to the actions, 

presents new states to the agent and which give rise to rewards. This cycle is repeated as part of a 

Markov Decision Process (MDP) [66], [68]. MDPs are used as stochastic extensions of finite 

automata or Markovian process to model the decision making process and solve optimizing 

problems.  They are augmented by actions and rewards so that they consist of actions, 

transitions, labels, and states. In the following paragraphs, some definitions are introduced that 

are helpful in demonstrating our proposed approach in the next session. 
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Definition 10. Markov decision process (MDP). MDPs provide a mathematical framework to 

model the decision making process in situations where outcomes are partly random and partly 

under the control of a decision maker. They are useful in addressing a wide range of optimization 

problems solved via dynamic programming and reinforcement learning [66].  

More precisely, an MDP is a discrete time stochastic control process. In other words, an MDP 

contains:  

• A set of possible states S. 

• A set of possible actions A. 

• (Transition) probability distribution, X: S×A×S → 0,1  giving for each state and action. 

It computes the probability of reaching state s! by performing action a in state s and is 

denoted as X s, a, s! , s, s! ∈ S , a ∈ A.  

• The immediate reward received after transitioning from state s to state s! due to action is 

denoted as R(s, a, s!) . 

Therefore, an MDP has a set of states. These states will play the role of outcomes in the decision 

making approach as well as providing information, which is necessary for choosing actions. For 

example, in the case of a robot navigating through a building, the state might be the room it is in, 

or the x and y coordinates. For a factory controller, it might be the temperature and pressure in 

the boiler. 

A MDP also has a set of actions. When the process is in state s, the decision maker may choose 

any action a that is available in state s. The process responds at the next time-step by randomly 

moving into a new state s!. So, s! ∈ S denotes the state at time t [68]; according to this definition 

of a Markovian process, we would have: 
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P s!!! s!, s!!!, s!!!,… = P s!!! s! = X s!, a!, s!!!                          (19) 

This process is called Markovian, because the probability of reaching state s! depends only on 

the current state s and the action a. In other words, the next state is independent of all the 

previous states and actions and only the current state predicts what the next state will be [72].   

Definition 11. Reward Function. R specifies the reward the agent receives by performing an 

action. So, R: S×A×S → ℝ  presents the reward function that computes the immediate utility of 

an action, indicating the intrinsic desirability of that state. So an MDP can be denoted by the 

tuple S,A,T,R  depicting it as a state transition graph [68]. 

In this study we are interested in calculating the value of performing an action in a specific state 

to compute reward values. In order to achieve this goal a new function called state-action value 

function needs to be defined. Since the accurate definition of this function requires a background 

on two other definitions: policy function and state-value function, in the following paragraphs we 

discuss both concepts respectively. 

Definition 12. Policy. The goal in a MDP is to find a function called policy, which determines 

which action to take in each state, so as to maximize the reward function. Policy map π gives the 

probability of taking action a when in state s: 

𝜋: 𝑆×𝐴 → 0,1                            

                                                       𝜋 𝑠,𝑎 = 𝑃 𝑎! = 𝑎 𝑠! = 𝑠                                    (20) 

Definition 13. State-Value Function. The state-value Function V!(s) specifies the value of a 

state is equal to the total amount of reward a learner can accumulate, starting from that state. We 

can define the value of a state, under a policy π, formally V! s , as [67]: 
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                            𝑉! 𝑠 = 𝐸! 𝑅! 𝑠! = 𝑠 = 𝐸! 𝛾!𝑟!!!!!

!

!!!

𝑠! = 𝑠                      (21)  

Where: 

E! is the expected return earned by following policy π and discount factor γ, 0 ≤ γ < 1. This 

models the fact that future rewards are worth less than an immediate reward. Similarly, in order 

to calculate the value of performing an action a in state s, a state-action value function: 

 𝒬: S×A →  [0,1], can be defined as: 

𝒬! 𝑠,𝑎 = 𝐸! 𝑅! 𝑠! = 𝑠,𝑎! = 𝑎 = 𝐸! 𝛾!𝑟!!!!!

!

!!!

𝑠! = 𝑠,𝑎! = 𝑎                (22) 

All RL-based algorithms are based upon providing an approach for appropriately estimating 

state-action value functions. This has led to the exploration and production of several different 

estimating methods and techniques. One of the most popular of these is Q-Learning [69], which 

is an off-policy Temporal Difference control algorithm. In other words, Q-Learning is able to 

estimate Q-value functions (Q-learning based estimations of the state-action value function) 

without requiring an initial model of the environment. 

Additionally, Q-learning can handle problems with stochastic transitions and rewards without 

requiring any adaptations. It has been proven that for any finite MDP, Q-learning eventually 

finds an optimal policy. This means that the expected value of the total reward that has been 

returned over all successive steps is the maximum achievable. 

In this situation, because of the lack of known transition and reward models, the algorithm 

handle problems with stochastic transitions and rewards and uses exploration and sampling 

approaches to learn the required model. Therefore, Q-learning finds an optimal policy for any 

finite MDP and estimates the agent’s Q-value function based on the Q-value estimation of an 
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action. In other words, using the above definitions equation 23 is inferred. This process is 

incrementally evaluated as follows [68]: 

𝒬!!! 𝑠! ,𝑎! = 𝒬! 𝑠! ,𝑎! + 𝛼 𝑟! + 𝛾max! 𝒬! 𝑠! ,𝑎 − 𝒬! 𝑠! ,𝑎!                         (23) 

Where, 𝛼 (0 < 𝛼 ≤ 1) is the learning rate, which determines the extent to which new 

information can override old information and how fast we modify our estimates [70]. In the next 

section, we illustrate how we use Q-value functions to incrementally calculate reward values. 

3.5.3.2 Automated Reward Calculation Algorithm 

 Because of the proven ability of Q-value function to converge to an optimal policy [71] and 

estimate the state-action value-function in free model problems [69], we have used Q-learning to 

estimate the reward values in this study. In other words, the problem of estimating the reward 

values for the user behavioral model needs to be addressed using an approach, which: (1) is able 

to incrementally learn the values from the current state of the model; and (2) can easily get 

configured to generate meaningful reward values for web applications. Therefore, Q-value 

function is an appropriate option to address this issue. 

In order to present a Q-value function, which fits the behavioral model generation process, we 

have modified the Q-value function (5) as below: 

Equation 24 illustrates how the Q-value function has been used in this approach to calculate the 

value of state 𝑠!, which is called 𝜌 𝑠! : 

𝜌 𝑠! =  1− 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐶𝑟𝑎𝑤𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐴,𝐶𝑟𝑎𝑤𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐵

+  𝛾max𝜌 𝑠!!!                          24  
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Since the reward calculation algorithms has been synchronized with the model-inference engine 

in terms of being executed every time a new state is generated, the rewards are also calculated 

and updated incrementally during the model generation process. Therefore: 

When a pair of states is created, a function (StateMatcher) searches in the regular expression 

library to find the request URLs matching these states. For example, if the state label is library, 

the method detects the corresponding URL that has been requested by the users; in this case, that 

is “www.myualberta.ualberta.ca/library”. 

When both URLs are retrieved, another method (Crawl) is called. This function crawls (spiders) 

the detected URLs and collects all words and links on the pages and stores them in two Strings 

(CrawlResultA, CrawlResultB). Crawlers have been previously used in mining behavioral 

models from web applications [108], [109], but to the best of our knowledge, this is the first time 

they are used to estimate the reward values of behavioral models. It is worth noting that using 

crawlers as the model inference approach limits its application to small-scale software systems 

and therefore, it cannot be applied to large scale applications with complicated DOM trees and 

huge log files. In such cases, crawling each page browsed by a user and creating its 

corresponding DOM tree can easily leads to non-determinism in the model and huge data-space 

usage. However, in the reward calculation procedure, the agent only crawls the two states of the 

model at the time, which leads to saving time and space in large-scale applications. Additionally, 

in this study we used CRAWLJAX [110] as the crawler implemented in the reward calculation 

step. It is able to discover various navigational paths and user interface states within AJAX 

applications. 
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After storing the crawl results, the difference between the two URLs’ content is calculated using 

a similarity method. This function works by calculating the Levenshtein distance between two 

states’ content. (See Table 14 andTable 15 for the reward calculation and similarity algorithms).  

Table 14. Reward Calculation Algorithm 

Input: Model states 𝑠! , 𝑠!!! ∈ 𝐴𝑃; 𝑖 = 0; 𝜌 = 0 
Output: Reward value (𝑅𝑒𝑤𝑎𝑟𝑑 ∈ ℝ ≥ 0) 
begin 
For each state 𝑠! 𝐓𝐨 𝑠!!! do 
        urlA⟵StateMatcher(𝑠!) 
        urlB⟵StateMatcher(𝑠!!!) 
        CrawlResultsA⟵Crawl(urlA) 
        CrawlResultsB⟵Crawl(urlB) 
         𝜌 𝑠! ← 1 − 𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 𝐶𝑟𝑎𝑤𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐴,𝐶𝑟𝑎𝑤𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐵  
        𝑚𝑎𝑥 ← max 𝜌(𝛿(𝑠!!!)) 
        𝜌 𝑠! ← (𝜌 𝑠! + 0.9 max)/100 
        For each (𝑠! , 𝑠!) ; 𝑠! ∈ 𝑆! * 
               merge (𝑠! , 𝑠!) if 
               (𝑠! = 𝑠!) AND (Reward (𝑠!)=Reward (𝑠!)) AND (Adjacent (𝑠!) = Adjacent (𝑠!)) AND 
(Reward(Adjacent (𝑠!))= Reward(Adjacent (𝑠!))) 
        Repeat Until no new 𝑠! ∈ 𝑆! is found 
  Repeat Until no new 𝑠! ∈ 𝑆 is found 
 end 
* S! is the set of states which are already labeled with the reward values 

Table 15. Similarity Calculation Algorithm 

Input: Method calls in String format (𝑐!, 𝑐!) 
Output: Similarity Score 
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑐!, 𝑐!)begin 
if (𝐿𝑒𝑛𝑔𝑡ℎ. 𝑐! < 𝐿𝑒𝑛𝑔𝑡ℎ. 𝑐!) 
then 𝑆𝑤𝑎𝑝 𝑐!, 𝑐!  
       BigLength ⟵ 𝐿𝑒𝑛𝑔𝑡ℎ. 𝑐! 
Return bigLength – ComputeEditDistance*(𝑐!, 𝑐!) / bigLength 
 

* We have implemented the ”Levenshtein distance” algorithm to compute the Edit distance in this 
study  

     
The reason for applying the Levenshtein distance is it’s proven capability in measuring the 

similarity between two strings. In this study the outputs of Crawl methods are strings too. The 

similarity function plays the role of the Q-value function to initiate the Q-value (𝜌(𝑠!)) for state 
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𝑠!, so when the user sends another request URL from the current state (the web page the user is 

currently viewing), the algorithm calculates the Q-values of upcoming states (web pages) and 

chooses the maximum amount to learn the current states’ reward. 

In order to eliminate the redundancy in the model, the merging step of gkTail inference 

algorithm is applied to merge the equivalent states [64]. According to this state-merging 

procedure, two states are considered equivalent if they have the same future of length k (in our 

study k=1). Therefore, here two states can be merged if they share the same label, rewards and 

immediate future, which means their adjacent states also have the same labels and reward values. 

This procedure prunes the model from redundant states with the same values. 

It is also worth noting that we initialize the process to give all states the same reward value (zero) 

and the same chance of being observed (requested by users).  

Using this procedure, all reward values are calculated incrementally during the model generation 

process. Eventually, the inference engine assigns the rewards of states as the sum of the reward 

values of the propositions associated with the states. Our proposed reward calculation process 

not only automatically computes the reward values in an incremental way, but also uses the 

server side logs as the only source of the input. Moreover, the empirical evaluation (provided in 

the next section) shows that the reward values calculated by our proposed approach correctly 

represent the benefits or losses associated with the states. 

Figure 8 shows the initial steps of the reward calculation process for the MyUAlberta 

application. As depicted, the model generation process initially goes through the same approach 

discussed in Section 3.5; and when a state is generated, the reward value is also calculated in an 

incremental manner. Therefore, first the content of the current state are crawled and compared 
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with the new state’s using 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑡𝑎𝑟𝑡, ℎ𝑜𝑚𝑒 . Then, the maximum amount of previously 

initialized or calculated values for the next state is considered. Therefore, in this case, 

𝛾 max 𝜌 𝛿 𝑠!!! = 0, because there is no already traversed state after the home state. So, for 

instance, in a case that the user browses only one page, the model contains at least 3 states: start, 

browsed page and end; and the reward value of the considered page would be 1. 

Moreover, in the situation that the pages are dynamically created using Ajax requests, it would 

be possible that the states of pages do not get registered in the browser's history engine. 

Therefore, only navigations between pages can be tracked. This issue is not imposing any 

drawbacks in our study, since our proposed approach only cares about the changes between 

pages in log files and does not specifically deal with the state changes in Ajax-enabled pages. 

However, there is always a way to consider these changes using the workaround, implemented 

by Ajax techniques to change the URL fragment identifier when an Ajax-enabled page is loaded. 

Also, as it is already mentioned, in this study we used CRAWLJAX to crawl the URLs, discover 

various navigational patterns and calculate the reward values within the AJAX applications. 

Figure 8. An excerpt of the reward calculation procedure for MyUAlberta application 

3.5.4 Analyzing the Model 

In order to analyze the behavioral model that has been inferred, it is necessary to identify one or 

more properties of the model, which can be evaluated by a probabilistic model checker 

(PRISM). In this step, the system expert defines the properties of interest using the reward-
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augmented Probabilistic Computation Tree Logic (PCTL). This approach helps to identify the set 

of DTMCs, which are more relevant to the specified property [2], [111], [112].   

In this study, we are more interested in properties that are specifying the reward values of 

different states in the final model. Therefore, this approach analyzes properties, which are related 

to the expected values of the rewards. This is achieved using the 𝓡 operator, which can be used 

either in a Boolean-valued query: 𝓡 𝑏𝑜𝑢𝑛𝑑 [𝑟𝑒𝑤𝑎𝑟𝑑𝑝𝑟𝑜𝑝] or a real-valued query: 

𝓡 𝑞𝑢𝑒𝑟𝑦  𝑟𝑒𝑤𝑎𝑟𝑑𝑝𝑟𝑜𝑝 . 

Where bound takes the form < 𝑟,  <= 𝑟,  > 𝑟 or >= 𝑟 for an expression r and query is =

? ,  𝑚𝑖𝑛 =? or 𝑚𝑎𝑥 =?.  

Additionally, the rewardprop represents the reward property, which can be considered in 

following types: 

• Reachability reward 𝓕: Reward accumulated along a path until a certain point is reached; 

• Cumulative reward 𝑪 <= 𝒌: Expected state reward cumulated after k steps; 

• Instantaneous reward 𝑰 = 𝒌: Expected state reward to be gained in the state entered at 

step k; 

• Steady-state reward 𝑺. 

For example, in order to consider the reward value of all the states up to the state labeled as 

“news”, following property can be used: 

  ℛ =? [ℱ 𝑛𝑒𝑤𝑠] 
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Inside the bracket {}, the system expert can also specify the scope of the property for a defined a 

user class (e.g. a user agent) or leave it empty to not be limited to any specific scope.  

Given a property and a set of inferred DTMCs, the algorithm identifies DTMCs, which are 

relevant to the scope of the property. For instance, if the scope of the property is limited to the 

users who browsed the application with Chrome, the inference engine only selects the DTMC, 

which are associated to this specific user-class. In case the algorithm selects more than one 

DTMC for the specified scope, the extracted DTMCs need to be merged together to build a 

single DTMC. Ghezzi et al. [2] suggested following approach to merge DTMCs: 

• The set of states in the new DTMC is consisted of the union of the states of the input 

DTMCs.  

• The transition probabilities in the new DTMC is calculated using the law of total 

probability: 

𝑃! 𝑠! , 𝑠! = 𝑃! 𝑠! , 𝑠! ×𝑃!(𝑢!)!!!!!         (25) 

where, 𝑃!(𝑢!): the probability for a user that exited state 𝑠! to belong to the user-class 𝑢!. 

• Labels of the states in the new DTMC are the same as labels in their corresponding input 

DTMC. 

• Reward values of the states in the new DTMC are the same as reward values in their 

corresponding input DTMC. 

It is worth noting that the similar approach is used in our study to build a single DTMC from 

selected DTMCs (if there are multiple DTMCs) in the property analysis step. 

As it is previously mentioned, our approach evaluates the specified property for the final DTMC 

using PRISM. PRISM is not only able to evaluate the truth or falsity of a property, but also can 
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compute the reward functions using considered reward properties. Therefore, our framework 

passes the property and the DTMC to PRISM, and receives the results of the evaluation through 

the API. In the following section we empirically evaluate the performance of this approach in a 

real-life case study. 

3.6 Empirical Evaluation 

3.6.1 Industrial Case Study  

In order to evaluate the performance of the proposed approach, we applied it on MyUAlberta 

application as a large-scale web and mobile application.  

3.6.2 Experimental Results 

Since our proposed approach labels the most interesting pages (in terms of the amount of 

differentiation they provide) with the highest reward values, we are able to compare its 

performance with the results of users’ behavioral-flow from the Google Analytics. It is worth 

noting that, we only use Google Analytics to show that our approach is assigning meaningful 

values to the model. So, neither our method nor Google Analytics can be replaced by one another 

due to their different applications in software engineering. But in cases that the Google Analytics 

data is not available, reward values may be able to provide meaningful information as well. In 

the following paragraphs, we provide the experimental results and corresponding explanations. 

Table 16 shows the results of calculating reward values using the automated reward calculation 

algorithm for the main states (modules). These results illustrate that some pages (URLs) have 

higher reward values compared to others, which, indicates that these pages have provided more 

varied and interesting content than the others. For instance, the homepage has a reward value 
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equal to 0.8263, which is the maximum amount among all other pages. The transit module is 

ranked second in terms of the reward value, at 0.4989. In order to evaluate the correctness of the 

calculated reward values, we considered their compatibility with the results we extracted from 

Google Analytics. The MyUAlberta project has been continuously attached to a Google 

Analytics’ account from the day the application was launched for the first time in 2014. Thus, 

historical data from actual interacting users is stored accurately. This data is helpful in indicating 

interesting pages from users’ points of view, along with users’ behavioral flows. Table 17 

provides the number of page-views for each considered page (URL). According to this table, the 

homepage has had the maximum number of viewers at 35,385 page-views in a month, while the 

/trnst/ page has been viewed 10,563 times. These examples along with reward values of other 

pages and views indicate that, the pages with higher views also have higher corresponding 

reward values. 

These results can also indicate that pages with higher reward values are offering more varied 

content compared to the previously viewed page. So, the users are more interested and, 

consequently, apt to explore the pages containing different links and text. In addition to this, 

many users are brought to the homepage directly (without referrals from other pages). 

Therefore, in many cases, there is no actual URL exists to be compared to the homepage. As a 

result, the homepage receives more accumulated rewards (Equation 24). This can easily explain 

the reason for the high reward value for the home state. This shows that our proposed approach 

for calculating the reward values not only automates the calculation process, but also produces 

the results, which are technically explainable and compatible with the data extracted from 

Google Analytics (as the proof of the concept). Moreover, as provided in Table 16 (third 
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column), the time needed for calculating the reward value is variable. Pages with higher reward 

values require more time for the calculation process than those with lower rewards. 

Table 16. Results of Running Reward Calculation Algorithm on MyUAlberta Case Study 

URL Reward 
Value 

Time for 
Reward 
Calculation 
(seconds) 

…/home/ 0.8263 0.043 
…/athletics/ 0.0096 0.002 
…/social/ 0.0284 0.006 
…/trnst/ 0.4989 0.031 
…/news/ 0.0024 0.003 
…/video/ 0.0048 0.007 
…/uaemergency/ 0.0001 0.006 
…/calendar/ 0.0048 0.008 
…/people/ 0.0024 0.003 
…/login/ 0.1721 0.013 
…/eclass.srv.ualberta.ca/portal/ 0.4012 0.028 
…/campusmap.ualberta.ca/ 0.1274 0.013 
…/myonecard.ualberta.ca/ 0.0192 0.003 
…/capsconnections.ualberta.ca/ 0.0024 0.002 
…/stustrv/ 0.1522 0.016 
…/customize/ 0.0024 0.003 
…/MyUAlbertaFeedback/ 0 0.001 
…/search/ 0.0096 0.002 
…/photos/ 0.0024 0.003 
…/ualberta.ca 0.0074 0.003 
…/kurogoerror/ 0.0072 0.002 
…/library/ 0.0216 0.008 
…/registrar/ 0.1298 0.015 

Obviously, pages containing more links and text need more time for crawling the page and, 

subsequently, more time for calculating the reward values. Since the number of strings and links 

are finite in a web page, and the designed crawler only discovers the first layer of links, the time 

to calculate the reward values never grows exponentially [113]. 
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Table 17. Number of Page-views for Each Considered Page (URL) on MyUAlberta Case Study 

URL Page-views 
…/home/ 35385 
…/athletics/ 419 
…/social/ 290 
…/trnst/ 10563 
…/news/ 507 
…/video/ 241 
…/uaemergency/ 109 
…/calendar/ 640 
…/people/ 271 
…/login/ 4881 
…/eclass.srv.ualberta.ca/portal/ 7871 
…/campusmap.ualberta.ca/ 2001 
…/myonecard.ualberta.ca/ 1356 
…/capsconnections.ualberta.ca/ 123 
…/stustrv/ 1747 
…/customize/ 140 
…/MyUAlbertaFeedback/ 15 
…/search/ 937 
…/photos/ 267 
…/ualberta.ca 1159 
…/kurogoerror/ 282 
…/library/ 1100 
…/registrar 4113 

Figure 9 shows the users’ behavioral flow extracted from the Google Analytics account, 

representing the most engaging content in the web application. The nodes in the behavioural 

flow indicate the total number of sessions for different URLs, while the connections between 

nodes represent the total number of sessions that passed through that connection. Figure 9 shows 

the home page in the MyUAberta application is the point of entry or the starting page, where 

users mainly start browsing the application. Then, during the first engagement (interaction), 

eclass and transit pages receive the highest portion of the traffic going out from the home page. 

Following the connections and nodes through different engagement levels demonstrates the 

overall traffic flow in the web application. 
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Figure 9. One-Month User Flow Extracted From Google Analytics 

This figure also confirms the compatibility of our results with the information extracted from 

Google Analytics, in cases in which the number of sessions (instead of the number of page-

views) is considered. In our proposed approach, we also expect sessions contain more URLs with 

high reward values and less URLs with low reward values. Therefore sessions which contains 

URLs leading to pages like home, eclass and transit are more likely to be seen on top of each 

interaction, indicating higher traffic in such pages in compared to the sessions containing URLs 

with the low reward values. 

3.6.3 Correlation coefficients 

The Pearson correlation coefficient of two random variables is a measure of the linear 

dependence or correlation between them.  The value of the Pearson correlation coefficient varies 

between -1 and 1. When the random variables are directly  (positively) correlated to each other, 

the value of the measure would be 1. When there is no linear correlation or there is a total 
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negative linear correlation between the variables, the values of the correlation coefficient would 

be respectively 0 and -1. In this study in order to indicate the correlations between the reward 

values calculated using our approach, and the page view metric, extracted from the Google 

analytics account, we also calculate the Pearson correlation between these two variables. The 

correlation coefficient matrix of two random variables (A and B) is the matrix of correlation 

coefficients for each pairwise variable combination: 

𝑅 = 𝜌(𝐴,𝐴) 𝜌(𝐴,𝐵)
𝜌(𝐵,𝐴) 𝜌(𝐵,𝐵)            (26) 

Where: 

𝜌 𝐴,𝐵 = !
!!!

!!!!!
!!

!
!!!

!!!!!
!!

       (27) 

if each variable has N scalar observations. 

Therefore, in this study the correlation coefficient matrix of reward values and page views is 

calculated as below: 

 𝑅 = 1 0.9396
0.9396 1  

Which indicates the positive correlation between the two variables is statistically significant. 

This result again shows the importance of calculating reward values in the user behavioural 

models especially in the cases that Google analytics data does not exist or is not available. 

 Figure 10 depicts the coefficients of two polynomials that fit into two sets of data (reward values 

calculated using our proposed approach, and the page views, extracted from the Google analytics 

account). This figure can be used to demonstrate the correlations among pairs of variables. The 
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slopes and peaks in the fitting polynomials can be visually compared. For example, the peak in 

both plots belongs to the home page, which has the highest reward value and page views. 

It is worth noting that we also calculated the Spearman’s rank correlation coefficients [114] for 

the same data as a nonparametric measure of rank correlation. Intuitively, the Spearman 

correlation between two variables will be high when observations have a similar rank between 

the two variables. In this study, the value of rho (Spearman’s rank correlation) is 0.92202, which 

indicates that the association between the considered variables (page views and reward values) is 

statistically significant. 

According to the experimental results and correlation coefficients analysis, the outcome of our 

model generation approach is consistent with Google Analytics, while it is also able to correctly 

detect design anomalies and deadlocks. Moreover, our approach: (1) does not need any code 

instrumentation; (2) is applicable for large-scale web applications (MyUAlberta is an enterprise 

example); (3) supports web evolution processes (as it generates models in an incremental way); 

and  (4) works (perfectly) for legacy applications (the only input it needs is the server logs). 

 Figure 10. The correlations among pairs of variables in MyUAlberta case study 
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3.7 Related Work 

User models represent a description of the users’ behavior based upon observations. These 

observations arrive in two forms—explicit feedbacks and settings provided directly by the users 

themselves, or implicit conclusions about users derived from their actions, traits, or past 

behaviors.  

Explicit feedback can be used to generate a model based on preferences, expressed interests, or 

similar attributes. For example, explicit ratings are used in systems such as Netflix and Amazon 

in order to produce future recommendations for a user. To draw implicit conclusions and adapt 

models, systems often leverage machine learning and data mining techniques. 

Antwarg et al. [115] conducted research on predicting user search intentions using an attribute-

driven hidden Markov model obtained from a web application used at Ben-Gurion University 

(BGU). Understanding user behavior and discovering the valuable information within such huge 

databases involves several phases that are addressed differently in various research studies: (1) 

data cleaning and preprocessing, where, typically, noise is removed, log files are broken into 

sessions, and users are identified; (2) data transformation, where useful features are selected to 

represent the data, and/or dimension reduction techniques are used to reduce the size of the data; 

(3) applying data mining techniques to identify interesting patterns, statistical or predictive 

models, or correlations among parts of the data; (4) interpretation of the results, which includes 

visualization of the discovered knowledge and transforming it into user-friendly formats. 

The process of generating user models using data mining/machine learning techniques can be 

seen as a standard process of extracting knowledge from data where a user model is used as a 

wrapper for the entire process. Indeed, this is a very popular approach that has been employed in 
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a variety of settings. For instance, Englebrech et al. used hidden Markov models to model users’ 

behavior based upon satisfaction in spoken dialogue systems [116], [117]. Ruvini [118] studied 

user interactions with the Google search engine using a SVM algorithm to infer the user’s goals. 

While, Mobasher et al. captured web usage interests by using K-means clustering [119]. In this 

study, the input data consisted of user logs from the University of Minnesota Computing Science 

department’s server. In addition, Virvou et al. [120] used K-means clustering to model students 

in tutoring systems, while Pennacchiotti and Popescu [121] applied machine-learning techniques 

to classify Twitter users. Beck et al. [122] performed the construction of a user behavioral model 

for an adaptive tutor using J4.8 and Naïve Bayes Classifiers on the input data collected from the 

interaction of students with the tutor. As a result, Naïve Bayes Classifier outperforms J4.8 in 

terms of accuracy. Therefore, it can be concluded that machine learning techniques in particular 

offer the advantage of taking diverse data and developing a classification based on observations. 

Another technique involves the use of basic statistical relationships [123].  

In addition to this, probabilistic graphical models are used to discover and represent 

dependencies among different variables, such as the evaluation of the effect of a shopper’s 

gender on their shopping behavior [124]. Dependency [122], [125] and Bayesian networks [126] 

are examples of such techniques, while sequential pattern analysis algorithms use time-ordered 

sessions or episodes and discover patterns from users’ interactions with the system.  

Another successful set of techniques aimed at providing formal guarantees (usually expressed in 

some form of temporal logic) for models that can be specified as transition systems in Model 

Checking [124], [127] (MC). There has been a lot of interest in the MC community for 

extensions of the classical algorithms to probabilistic settings, which are more expressive but 

significantly harder to analyze. These extensions study the Probabilistic Model Checking (PMC) 
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problem, where the goal is to find the probability that a property holds in some stochastic model. 

There is extensive work on how the PMC problem can be solved through exact techniques [101], 

[103], [124], [127], [128], which compute correct probability bounds. In PMC, the models are 

augmented with quantitative information regarding the likelihood that transitions occur and the 

times at which they do so. In practice, these models are typically Markov chains or Markov 

decision processes [124].  

Another important and related research area is log analysis. Interaction log analysis has provided 

researchers with insight into users’ behavior. These investigations typically involve examining 

user behavior through query log analysis [101], [129], [130]. White et al. [101] describe a 

systematic, log-based approach for modeling user interests during web interactions. The goal of 

their modeling system is predicting future behavior, and evaluating the effectiveness of different 

sources of contextual evidence. Using log data, Terai et al. [130], also analyze the influence of 

task characteristics on information-seeking behavior in the Web applications. 

Examining the applicability of implicit feedback for recommender systems has also been studied 

[131], [132]. Applications of implicit feedback to web page recommender systems are also 

considered in [133], [134]. These systems typically establish historical click trails of a user or a 

community of users, and they assess the accuracy of statistical machine learning models, which 

predict future page visits [101]. 

3.8 Conclusion  

In this chapter, we present a novel stochastic approach to  (1) generate a user behavioral model 

from the log files, (2) automatically calculate the states’ rewards, (3) annotate and analyze the 

models to verify the quantitative properties, and (4) address some limitations found in existing 
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approaches. Our proposed approach not only builds a fully automated inference framework, but 

also provides the following advantages as compared to other behavioral model generation 

methods: 

• Our proposed approach is applicable on any web application of any size – new or legacy, 

since it is not dependent on the specific data input. In other words, a server log file would 

be sufficient to start the modeling procedure. 

• This approach provides the capability to evaluate and verify the property of the inferred 

models. 

• Reward values can easily add semantics to inferred behavioral models. They help in 

interpreting model behaviours and detecting anomalies. Calculating reward values and 

assigning them to the states of the model during the inference procedure would be a more 

accurate and time-saving approach as compared to manually assigning them by systems’ 

experts. The proposed technique uses Reinforcement Learning to incrementally calculate 

the value of the reward measure using the information extracted from browsed web pages 

in different states. In other words, the proposed approach adds meaningful reward values 

to the model, explaining the real user’s interest or willingness in browsing web pages. 

• It is easy to apply this procedure to calculate domain-specific reward values and identify 

different measures. 

• It makes the deadlock or anomaly detection procedure faster and more meaningful by 

limiting the search space to the states with low reward values. In this study, a deadlock 

was identified in the registrar page, which might have negative affect on the reward value 

in this page. 
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• In addition, the experimental results approved that the proposed inference approach is 

applicable on large-scale applications with many web pages and huge log files, and is 

able to generate meaningful and compatible reward values in a considered case study.  
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4 Test Case Prioritization Using Extended Digraphs 

4.1 Introduction 

Stochastic models are used in different software testing tasks. Many Model-based Testing 

(MBT) techniques are devolved to either generate new test cases or execute and evaluate the 

exiting ones [15]. 

 The focus of this study is only on the second phase to evaluate the generated test cases and 

prioritize them based upon suggested factors. Researchers have proposed various methods to 

reduce the second phase costs. These techniques can be divided into three significant categories: 

Test Suite Minimization Techniques (which select a minimal subset of test suites with respect to 

maintaining the original coverage) [135]–[137], Test Case Selection  Techniques (which identify 

the test cases that are relevant to the set of recent modifications) [138] and Test Case 

Prioritization Techniques (which sort the test cases by determining their execution priority based 

upon different criteria) [139]–[141].  

Despite the existence of safe test selection and minimization techniques [142], [143], empirical 

evidence shows that some of them can severely decrease the fault detection capabilities of test 

suites or disturb the conditions under which safety can be achieved [142]. For instance, [144] 

evaluated several similarity-based selection techniques (STCS) and then compared the 

effectiveness of the best similarity-based selection technique with other common selection 

techniques in the literature. The results show that the best STCS is never worse than non-STCS 

techniques regardless of the failure rate. On the other hand, Test Case Prioritization Techniques 

schedule test cases in order to increase their capabilities to address significant issues [139] 

specifically: 
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• Increasing the rate of fault detection. 

• Increasing the code coverage. 

• Increasing the confidence of the testers in the reliability of the system under test (SUT). 

• Increasing the rate of detecting high-risk defects. And, 

• Increasing the early detection of faults, which are correlated with specific code changes. 

Running all of the test cases and then fixing the faults may lead to the execution of unnecessary 

test cases containing redundant functionality and delay in the regression testing process.  

Within this domain of application, the following reasons motivate us to propose a novel 

prioritization technique:  

• Reducing the time required to execute test cases and increasing the likelihood of 

spending testing time more beneficially in the case of an unexpected termination of 

regression-testing activities.  

• During the test case prioritization process, no test case is discarded. Hence, it can be 

concluded that the prioritization techniques do not suffer the drawbacks that can occur 

when the test case selection and test suite minimization mechanism discards test cases.  

• In the situation that decreasing the number of test cases is considered as an objective, 

prioritization techniques can be applied in conjunction with minimization and selection 

methods. So test case prioritization can be applied as a complementary step in regression 

testing. 

• It is also worth noting that in regression testing, we may be interested in prioritizing test 

cases in a way that can be effective for a particular version. [140] call this approach 
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“version-specific prioritization”. In this study, we also focus on version-specific test case 

prioritization. 

Therefore, in this chapter, after a comprehensive explanation about the proposed techniques and 

their computation and estimation processes, we walk through applying them on a successful 

model-based technique in Graphical User Interface (GUI) testing [16], while later we show that 

it can be used with any type of MBT technique. In addition, the domain of application is also not 

restricted to GUI testing; it is believed that the approach is appropriate to most software testing 

scenarios. Finally, we compare the approach with traditional (Random, Additional statement 

coverage, Worst and Optimal) prioritization schemes, and a recent contribution in the literature, 

to demonstrate its effectiveness.  

Specifically, the principle contributions of this study are: 

• The introduction of a new behavioral model – the extended (multi-) digraph. This model 

provides a richer set of information than traditional behavioral models, such as a regular 

digraph. It is argued that this extended model offers superior performance. 

• A concrete mechanism to (numerically) populate this extended model. Specifically, it 

shows how to use reinforcement learning and Hidden Markov models to realize this 

model. 

• A demonstration of how this model can be utilized to automatically prioritize test cases 

for GUI applications. 

• An empirical demonstration that the technique(s) derived from this extended model 

outperform other common dynamic test case prioritization techniques. 
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In the next section, we present the motivations behind this research. In Section 4.3, we provide 

some required background information about Reinforcement Learning and Hidden Markov 

models. Section 4.4 represents several test case prioritization techniques that have been used in 

this research. Sections 4.5 and 4.6 include the design of the proposed techniques by describing 

the RL-based HMMs’ parameters estimation and prioritization methods and a short motivating 

example. Section 4.7 describes the evaluation phase and experimental setup. It also discusses the 

results and analysis of our empirical studies. Section 4.8 provides a discussion on the achieved 

results. Section 4.9 discusses some related work to the contribution of this research. While, 

Section 4.10 considers the threats to internal and external validity of the study; and finally, 

Section 4.11 presents overall conclusions and some thoughts on potential future work. 

4.2 Motivation 

The concept of test case prioritization is a well-established task in software verification and 

validation. Several different test case prioritization techniques with various aims have been 

considered through multiple research experiences. The most common aim is increasing the fault 

detection rate of a test suite; this is also the main motivation of this chapter. The prioritization 

technique can be dynamic, building upon dynamic data flow information or static, based upon 

static analysis of the System Under Test (SUT). This section presents the motivations behind 

proposing a new dynamic prioritization technique. 

4.2.1 Static or Dynamic Prioritization 

Most prioritization techniques are based upon structural code coverage information gathered 

through the dynamic execution of the SUT, while others focus on static analysis of the test cases. 

Static prioritization techniques mainly focus on ordering the test cases based on analyzing the 
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source code or test cases’ static call graph. For example, [145] propose a static prioritization 

approach to estimate the ability of each test case to achieve code coverage and to use this 

information for the re-ordering of the test cases. Prioritizing test cases based on static approaches 

suffers from the following drawbacks [146]: 

Since this technique walks through the source code, there is a need to have access to the SUT or 

the test cases’ source code.  

Choosing an appropriate method to statically analyze the source code depends on the 

programming language used to write the code. [147] present a static technique ranking test cases 

by extracting and analyzing  topic models. Their approach is only applicable in Java-based and 

medium-sized SUTs, which also indicates that generalizability of this approach is not certain. 

Prioritizing test cases using their static call graph also affects both the prioritization precision and 

cost. Since, a static call graph intends to represent every possible execution of the program; the 

problem of generating an exact static call graph is undecidable. So generating a comprehensive 

and correct static call graph causes over-approximations or unrealistic transitions and 

relationships. 

These reasons, along with the proven capability of dynamic approaches in effectively ranking 

test cases, imply that developing new dynamic test case prioritization techniques is a viable 

alternative.   

4.2.2 Overview of the utilized testing models and domain of application 

Our dynamic test case prioritization technique uses an MBT-based approach. It assumes that an 

MBT-based “front end” (automatic test case generator) exists and in essence it “extends” this 
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“front end” model and system to complete the testing process. In MBT, the test modeler creates 

an abstract model (state machine) of the SUT and then generates a set of test cases by walking 

(traversing) through the model [148]. So, MBT is about the Automatic generation of efficient 

tests using models of the SUT [20]. This model is a depiction of SUT behavior including input 

sequences; actions, conditions, output logic and data flow through modules and routines [15].  

The most significant feature of MBT is automating both the test generation and execution 

processes along with the capability of generating test cases. For instance, [19] combines MBT 

with Evolutionary Functional Testing (EFT) to achieve a fully automatic test case design and 

evaluation framework. While, [149] represent a new approach to apply model-based testing in 

service-oriented applications’ testing process.  

The behavioral model is often instantiated as labeled multi-digraphs where nodes are connected 

to each other via multiple directed edges. The model is built and updated according to an agent’s 

activities [16]. This approach has been successfully used in generating GUI behavioral models 

using many different techniques to automatically generate test suites that simulate user behavior 

in interacting with GUIs. In particular, model-based GUI testing techniques generate test cases 

based upon a state transition diagram. Several techniques, with diverse modeling methods have 

been proposed [150]–[152]. Most of them depict a graph-based model, where nodes represent 

events relating to GUI widgets, and edges (or arcs) represent the relationship between events. 

Hence, a GUI test case can be generated from such a model by selecting any possible path.  In 

this study, our proposed technique is able to prioritize generated test cases using any such MBT 

approach. Our approach is based upon building an Extended multi-digraph as a SUT behavioral 

model. In the following, the definition of both regular and Extended digraphs are considered. 

Extended digraphs are the basis for our research contribution. 
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Definition 14. Regular Digraph. We define a regular digraph as 𝐺 = (𝑆,𝐸,𝑉) consisting of a set 

of nodes (𝑆) representing GUI states of the SUT, and edges (𝑒! ∈ 𝐸 = (𝑠! , 𝑠!),𝑤ℎ𝑒𝑟𝑒 𝑠! , 𝑠! ∈ 𝑆) 

indicating the transition between states. The transitions are labeled with the name of the actions 

triggering transitions, and in some cases, an estimated utility value of the action. Figure 11 shows 

an overview of a regular digraph. In this figure, 𝑎!" denotes the utility of the executed action 

between states 𝑠!  and 𝑠!. (Obviously, transitions between 𝑠! and 𝑠!; and 𝑠! and 𝑠!, where 

𝑘 ∈ 1,2…𝑁 and 𝑘 ≠  𝑖 are also feasible.) The method of calculating this value is explained in 

Section 4.5.  

 
Figure 11. An overview of the behavioral model as a directed graph 

Figure 12. An overview of the behavioral model as an Extended directed graph 

 
Definition 15. Extended Digraph. An Extended digraph 𝐺′ = (𝑆,𝐸,𝑉,𝐴,𝐵) is an extended 

version of a regular digraph 𝐺 which contains additional information. In the Extended digraph, 𝑉 

indicates a set of actions triggering transitions, where 𝑣! ∈ 𝑉 (𝑘 ∈ 1,2…𝑀 and M is the 

number of possible actions); 𝐴 is the probability transition matrix, in which each element 𝑎!" ∈ 𝐴 

represents the probability of moving from state 𝑠! to state 𝑠!; and, 𝐵 shows the emission matrix in 

which each element 𝑏! 𝑣! ∈ 𝐵 indicates the probability of observing action 𝑣! in state 𝑠! 

(Figure 12). The methods of estimating and calculating these elements are also considered in 

𝑠! 𝑠! 𝑠! 𝑠!!! 𝑠! … 
𝜈!, 𝑎!" 

𝑠! 𝑠! 𝑠! 𝑠!!! 𝑠! 

𝒗𝟏 𝒗𝟐 𝒗𝑴 

… 

… 
𝑏! (𝑣!) 

𝑎!" 
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Section 4.5. The extra information helps in evaluating the effect of executing actions on GUI 

states enabling superior prioritization of test cases. 

Generating the Extended model only requires simple interfacing glue code to be added to pre-

existing MBT approaches. So the Extended model can be generated using information gathered 

during the test case execution procedure, hence, there is no need to re-implement test cases to 

generate the model. Once generated, this model can be utilized to prioritize the test cases (to 

maximize their (test cases) effectiveness during regression testing and other activities). To 

elaborate the motivation behind this approach we consider the following example. 

The main reason for proposing a stochastic approach is the proven ability of such techniques in 

estimating these probabilistic models, specifically in calculating the forward probability of a 

sequence of events; in this study, the sequence of events is interpreted as a test case. It should be 

noticed that the proposed techniques in this research are not limited to GUI based applications 

and can be applied in a wide range of circumstances. However, to demonstrate the utility of the 

approach, a domain of application needs to be selected.  We have chosen to evaluate our 

techniques by prioritizing test cases of GUI based applications because: 

• GUIs are very common, and the need for GUI testing tools becomes ever greater. 

• Number of generated test cases in GUI testing is often large. Hence, it is time-consuming 

to re-execute them during regression testing [153]. 

• No GUI test case generation tool prioritizes test cases for regression testing objectives. 

• Because event-flow graphs [150], action-based behavioral models [16] or other types of 

SUT models contain information about user-observations (based on interacting with the 
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SUT). Hence, it is feasible to determine the observable and latent states required to 

estimate the extended behavioral model. 

Thus, based upon a well-known GUI testing definition [150], the focus of this research would be 

on prioritizing test cases consisting of a sequence of events (an episode), which is performed 

during user-GUI interactions. (An episode is a path from the initial to a terminal state, or a 

sequence of produced executions by an agent.) In other words, we only cover testing interactions 

that are performed between a user and the GUI; other types of test cases are outside our scope. 

The definition is further restricted as actual users would introduce variation in experimental 

results, hence in our experiments, we utilize an automated test case generation tool which acts as 

a proxy for actual users [16]. This allows for the exploration of a fully automated testing process 

from user action generation to test case prioritization. 

4.3  Theoretical Background 

The proposed prioritization technique is established by combining Reinforcement Learning (RL) 

and Hidden Markov Model (HMM) concepts to efficiently and rapidly prioritize test cases. The 

main reasons for choosing Reinforcement Learning are its strong statistical background, its 

proven ability in handling a wide range of data, and its ability to re-estimate the Markov model 

efficiently. Using RL, we are able to estimate an appropriate HMM and then use it to compute 

each test case’s forward probability- the likelihood of executing a specific test case based upon 

the SUT’s inferred HMM.  

Briefly, this method proposes a probabilistic-based prioritization technique using the following 

steps: 
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• Estimating initial RL-based HMM parameters according to the generated test cases using 

MBT techniques.  

• Training an RL-based HMM with a maximum likelihood, using the Baum-Welch 

algorithm [93]. 

• Prioritizing test cases based on estimating the forward probability of each test case in the 

execution phase by applying a forward algorithm [73]. 

The RL-based HMM is estimated using the generated model through MBT techniques. This 

approach uses a System Under Test (SUT) behavioral model (currently an extended digraph 

graph; however, changing the model is straightforward) to generate a Markov chain containing 

hidden states and transition probabilities estimated using RL algorithms. Thus, this technique is 

able to prioritize test cases based upon the amount of computations (changes), a test case may 

cause in GUI states (using Q-learning, a type of RL) and the probability of each action 

happening in each specific state (using the HMM). 

Moreover, we investigate another prioritization approach (called Accumulated Q-value) by 

computing the accumulated amounts of Q-values for each specific test case. This can be 

interpreted as a prioritization technique where the technique is derived from only a test case’s 

contribution in changing an application’s state. It is worth noting that the Q-values can be 

calculated during the generation of the extended behavioral model based on definition 15. The 

method of this computation will be considered in Section 4.4. Before investigating the proposed 

techniques, some background on RL and HMM is provided. 



 

127 

4.3.1 Reinforcement Learning 

Reinforcement Learning (RL) contains one of the best known classes of machine learning 

algorithms which “teach” an agent how to interact with an environment [68]. It is located 

between supervised and unsupervised learning since only a limited feedback, named a reward 

signal, is received by an agent about the agent’s predictions [66]. The long-term objective of this 

agent is performing an action (i.e. mapping situations to actions), which maximizes the overall 

reward signal [67]. RL’s practical applications not only address learning paradigms in operations 

research and control engineering [73], [154]–[156], but are also one of the most active research 

areas in artificial intelligence [157]. RL algorithms’ progress is typically iterative. They learn 

during iterations by observing the current environment, inferring the environment’s state and 

executing an action, which guides the agent to the next state. In other words, the agent receives 

the system’s state and the reward score associated with the last transition. Then, it evaluates 

potential actions according to the expected reward to be realized and selects an action, which is 

sent back to the system. In response, the system makes a transition to a new state and this cycle 

will be repeated as part of a Markov Decision Process (MDP) [66], [68].  MDPs can be 

categorized as stochastic extensions of finite automata or Markovian Processes, which are 

augmented, by actions and rewards, so they consist of actions and transitions as well as states. 

Definition 16. Markovian System. The system under consideration is called Markovian if 

executing an action does not depend on previous actions and visited states (i.e.it only depends on 

the current state and status). So, an MDP contains:  

• A finite set of environmental states 𝑆 = 𝑠!, 𝑠!,… , 𝑠!  where N is the number of states;  

• A finite set of actions 𝐴 = 𝑎!,𝑎!,… ,𝑎! , where k is the size of the action space; 
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• The transition function 𝑇: 𝑆×𝐴×𝑆 → 0,1  which computes the probability of reaching 

the state 𝑠! by performing action 𝑎 in state 𝑠 and is denoted as (𝑇(𝑠,𝑎, 𝑠!)); and  

To compare different states and actions, during agent and environment interaction, they must be 

ordered according to their occurrence. So 𝑠! denotes the state at time t [68].  

Thus, according to the definition of a Markovian process, we have: 

𝑃 𝑠!!! 𝑠! , 𝑠!!!, 𝑠!!!,… = 𝑃 𝑠!!! 𝑠! = 𝑇 𝑠! ,𝑎! , 𝑠!!!                   (28) 

Definition 17. Reward Function. The Reward Function 𝑅 specifies the reward, or penalty, the 

agent receives by performing an action. So, 𝑅: 𝑆×𝐴×𝑆 → ℝ  presents the reward function that 

computes the immediate utility of an action to define the model of the MDP. So an MDP can be 

denoted by the tuple 𝑆,𝐴,𝑇,𝑅  depicting it as a state transition graph [68].  

Definition 18. Value Function. The Value Function 𝑉!(𝑠), specifies “how good” it is for the 

agent to be in a given state. The How good notation here is expressed in terms of future rewards 

that can be expected. We can define the value of state s under policy 𝜋, formally 𝑉! 𝑠 , as [67]: 

     𝑉! 𝑠 = 𝐸! 𝑅! 𝑠! = 𝑠 = 𝐸! 𝛾!𝑟!!!!!

!

!!!

𝑠! = 𝑠                               (29) 

Where,  

The stochastic policy 𝜋: 𝑆×𝐴 → 0,1  is a mapping from each state s and action 𝑎, to the 

probability 𝜋 𝑠,𝑎  by performing an action 𝑎 when in state s.  

𝐸! is the expected value earned by following policy 𝜋 and discount factor 𝛾, with 0 ≤ 𝛾 <

1. This models the fact that future rewards are worth less than an immediate reward, i.e. if 𝛾 = 0 
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the agent only would be concerned about the immediate reward while, a value close to 1 gives a 

large weighting to future actions. 

Definition 19.  State-action Value Function. Similarly, the value of performing an action 𝑎 in 

state s (the state-action value function or Q-value function 𝒬: 𝑆×𝐴 →  ℝ) can be defined as: 

𝒬! 𝑠,𝑎 = 𝐸! 𝑅! 𝑠! = 𝑠,𝑎! = 𝑎 = 𝐸! 𝛾!𝑟!!!!!

!

!!!

𝑠! = 𝑠,𝑎! = 𝑎       (30) 

Almost all RL based paradigms are based on estimating the value functions appropriately, which 

has led to the exploration and production of several different estimating methods and techniques. 

One of the most popular, which also is applied in this research, is Q-Learning [69].  

Q-Leaning is a method to estimate Q-value functions, when there is no available model of the 

MDPs (model-free fashion). In this situation, because of the lack of priori transition and reward 

models, there is a need for sampling and exploration to learn the required model or step directly 

into estimating values for actions (Q-values). Therefore, Q-learning estimates the agent’s Q-

value function based upon an action’s Q-value estimation; this process is incrementally evaluated 

as follows [68]: 

𝒬!!! 𝑠! ,𝑎! = 𝒬! 𝑠! ,𝑎! + 𝛼 𝑟! + 𝛾max! 𝒬! 𝑠! ,𝑎 − 𝒬! 𝑠! ,𝑎!           (31) 

Where, 𝛼 (0 < 𝛼 ≤ 1) is the learning rate, which determines the extent that new information 

can override old information [70].  

Because of its proof of convergence to an optimal policy [71], and its proven ability in value-

function estimation in free-model problems [69], we apply Q-learning for estimating the  Q-

values in this research. 
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4.3.2 Hidden Markov Model 

Hidden Markov Models (HMMs) are popular statistical tools for modeling data in various areas 

such as bioinformatics, speech recognition, partial discharges and many other temporal pattern 

situations [158]–[160]. In the broadest sense of the word, an HMM is a Markovian process that is 

split into two components: the observable states and the hidden (latent) states. Compared to a 

HMM, regular Markov models only consist of observable states, which are directly visible to the 

observer. Therefore, only the state transition probabilities require estimation. However, in a 

hidden Markov model, only the outputs (observations), depending on the latent states (GUI 

states), are visible. Therefore, as the GUI states are invisible from an observer view and  only the 

outputs in this model are completely observable, regular Markov models and Partially 

Observable Markov Decision Processes (POMDPs) are not applicable in this study [161].  An 

HMM is usually characterized by the following elements [72]:  

• N, the number of hidden states in the model, 𝑆 = {𝑠!, 𝑠!,… , 𝑠!}.  

• M, the number of distinct observation symbols per hidden state, 𝑉 = {𝑣!, 𝑣!,… , 𝑣!}.  

• The state transition probability distribution 𝐴 !" = {𝑎!"}, where: 

𝑎!" = 𝑃 𝑄!!! = 𝑠! 𝑄! = 𝑠! , 1 ≤  i, j ≤  N.  

• The observation symbol probability distribution in hidden state j, [𝐵]!" = {𝑏! (!")}, where 

𝑏! 𝑣! = 𝑃 𝑂! = 𝑣! 𝑄! = 𝑠! , 1 ≤  j ≤  N, 1 ≤  k ≤  M. And  

• The initial state distribution Π = 𝜋! , where 𝜋! = 𝑃 𝑄! = 𝑠! , 1 ≤  i ≤  N. 

Using the values of N, M, A, B and Π, the HMM can be used as a generator to create an 

observation sequence (where T is the number of observations in the sequence): 

𝑂 = 𝑂!,𝑂!,𝑂!,… ,𝑂! . We use the notation Λ = (A, B, Π) to simply indicate the complete 
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parameter set of the HMM. There are three key issues with HMMs, which are commonly 

considered when applying them to a problem domain: 

Problem 1: 

• Given the observation sequence 𝑂 = {𝑂!,𝑂!,𝑂!,… ,𝑂!} and an HMM, how to efficiently 

compute the probability of the observation sequence? 

 Problem 2: 

• Given the observation sequence 𝑂 = 𝑂!,𝑂!,𝑂!,… ,𝑂!  and an HMM, how do we find 

the state sequence that best explains the observations?  

Problem 3: 

• Given the observation sequence𝑂 = {𝑂!,𝑂!,𝑂!,… ,𝑂!}, how to choose the model 

parameters in an HMM? 

In this research, we present a novel application of HMMs in software testing, i.e. we show how 

they can be utilized in test case prioritization processes by addressing the first and third issues. 

The third one can be solved in software testing by estimating the SUT’s Hidden Markov Model 

(based on the software’s behavioral model) and extracting the known sequence of test cases 

(observations). Having the model and observation sequence, we will be able to accurately 

compute the forward probability of each test case, using a forward dynamic programming 

procedure. This probability is what we need to evaluate and prioritize test cases; this evaluation 

also resolves the first issue of applying HMMs to this new problem domain. Addressing the 

second problem is beyond the scope of this initial research; however, a suggested approach is 

briefly presented in Section 4.11.  
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4.3.2.1 Forward Probability  

A forward algorithm computes the probability of encountering a sequence of observations, 

supposing that the sequence has been generated by a given HMM. In another words, a forward 

algorithm is used to calculate a belief state or the probability of a state at a certain time (forward 

probability). A forward probability can be calculated at each time step by considering the most 

likely state, given the previous history. Therefore, the forward probability 𝛼! 𝑡  is the sum of the 

probabilities of all constrained paths of length i (where i is the length of a sequence of 

observations) that end in state k. 

Since, test suites are considered as a set of observed sequences, this algorithm estimates the 

forward probability of each test case, given an HMM learned from an Extended digraph. 

According to the RL approach (Section 4.5) that has been used in this study, the forward 

probability of a test case is related to the amount of computation (changes) in GUI states; test 

cases with higher amounts of changes are more likely to encounter unexpected behavior than a 

test case causing fewer changes. In other words, test cases that activate more actions during their 

execution process are more likely to detect faults. Thus, a forward algorithm is an appropriate 

choice to compute this likelihood as a set of test cases can be modelled as a sequence of actions. 

This procedure has the following steps [73]: 

Defining the forward probability,𝛼! 𝑡 , as the joint probability of observing the first t vectors 𝑣!, 

T = 1,… , 𝑡  while in state k at time t. Another way to state this would be that 𝛼! 𝑡  is the 

probability of observing 𝑣!, 𝑣!  ,… , 𝑣!, in addition, at time t the state is k. 

                                          𝛼! 𝑡 = 𝑃 𝑣!, 𝑣!,… , 𝑣! , 𝑠! = 𝑘 Λ                                   (32)       
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This probability can be evaluated by the following recursive formula.  

                                        𝛼! 1 = 𝜋!𝑏! 𝑣!  ,             1 ≤ 𝑘 ≤ 𝑁                           (33) 

𝛼!(𝑡) = 𝜋!𝑏! 𝑣!  𝛼! 𝑡 − 1 𝑎!,!   ,
!

!!!

   1 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇 

 𝛼! 𝑡 = 𝛼! 𝑡 − 1 𝑏! 𝑣! 𝑎!,!  
!

!!!

 

However, when the sequences of observations (the length of the episodes) become larger, the 

probabilistic values in the forward algorithm get increasingly small, and after multiple iterations 

the values tend to zero. For that reason, 𝛼! 𝑡  are scaled during the iterations of the algorithm to 

avoid underflow problems. The scaling coefficients are used to keep the probability values in the 

dynamic range of the machine. So, the coefficient 𝑐!is defined as follow [162]: 

                                          𝑐! =
1
𝛼! 𝑡!

!!!
                                                  (34) 

Using 𝑐!, the scaled value of 𝛼! 𝑡  would be: 

                                  𝛼!∗ 𝑡 = 𝑐!×𝛼! 𝑡 =
𝛼! 𝑡
𝛼! 𝑡!

!!!
                            (35) 

To conclude, after estimating an appropriate HMM, we would be able to prioritize test cases by 

computing their corresponding forward algorithm. 
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4.4 Test Case Prioritization 

The Test Case Prioritization (TCP) approach sorts test cases within a test suite in order to 

maximize some pre-defined criteria such as additional code coverage or fault detection rate 

[163]. In other words, test cases with the highest score, with respect to the prioritization criteria, 

have the highest priority to be executed. [139] provide a formal definition for the test case 

prioritization problem.  

Definition 20. Given: T (a test suite), PT (a set of permutations of T), and f (a function that maps 

PT onto a real number). Problem: Find T! ∈ PT such that: 

                                         ∀𝑇" 𝑇" ∈ 𝑃𝑇 𝑇" ≠ 𝑇!  [𝑓(𝑇!) ≥ 𝑓(𝑇"))]                    (36) 

In this definition, PT is the set of all possible orderings of test suite T. In addition, function f 

yields an award value for each specific prioritization showing its value (Prioritization with 

highest award values are preferable). We customize this definition based upon the research’s 

objectives in the following section. 

Several deferent test case prioritization techniques have been proposed through multiple research 

experiences. [140] considered 18 different approaches and compared them in terms of 

effectiveness with respect to cost and performance. Moreover, they classify them into three 

separate groups. The first group is named comparator containing: Random and Optimal 

ordering. The second one is the statement level group consisting of four fine granularity 

techniques and the third group is the function level group, which contains 12 coarse granularity 

techniques. In this research, we will consider Random, Optimal and Worst ordering techniques to 

define upper and lower boundaries in achieving the test case prioritization goal, here, improving 
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the fault detection rate. In addition, we prioritize test cases based upon the Additional statement 

coverage technique from the second category and two novel RL-based prioritization approaches, 

which will be illustrated in following sections. Since the number of statements is greater than the 

number of functions, and statement level group of techniques is a “superset” of the function-level 

techniques, hence, we don’t consider the function-level group and just apply the statement 

coverage techniques. 

4.4.1 Random, Optimal and Worst Prioritization Techniques 

One of three prioritization techniques which, we consider in this research is Random test case 

prioritization. In this approach, we randomly pick a test case among the list of test cases and 

remove it from the list, then we repeat the picking process until no test case exists [141]. We 

consider it as an experimental control to evaluate the effectiveness of other heuristics in 

comparison with the Random Ordering. We also select and consider the Optimal and Worst 

prioritization approaches. Both of these techniques are not practical, since information about 

which test cases reveal faults and which do not expose them is not available [140]. But, in this 

research the SUTs’ faults are known and we can determine their corresponding test sets. Thus, 

we consider Optimal and Worst prioritization techniques to theoretically obtain the upper and 

lower boundaries in the fault detection rate. In the Optimal prioritization, we prioritize test cases 

in an order, which maximizes this rate, while in the worst prioritization approach, we are trying 

to prioritize test cases that can detect the fewest new faults, thus minimizing the fault detection 

rate [164]. 
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4.4.2 Additional Statement Coverage Prioritization 

Determining which statements in the program were explored (covered) by a specific test case can 

be considered through a program instrumentation phase. Then, test cases can be prioritized 

according to the total number of statements they cover (total coverage prioritization) [139]. It is 

possible to achieve additional coverage in subsequent testing processes by considering 

statements that have not been covered in earlier processes. So, here we use Additional statement 

coverage prioritization, which is based upon feedback about the coverage gained so far. We 

iteratively select a test case that covers the maximum number of statements then, we adjust the 

coverage information of the remaining test cases to calculate the coverage of statements that 

have not been covered [140]. This process is repeated until all of the statements are covered by at 

least one test case. It is worth noting that if the multiple test cases cover the same number of not 

previously covered statements, we need to choose one of them in a random way. [165] 

demonstrate that the Additional coverage approach as the best coverage-based prioritization 

technique in terms of fault detection capability. They evaluated the effectiveness of different 

coverage-based prioritization techniques on an industrial case study and concluded that 

prioritization methods based on Additional coverage using finer grained coverage criteria 

outperformed all other coverage-based techniques. 

Cobertura13, an open source Java tool, is able to determine which parts of a Java program are 

covered by a test case; Cobertura can be embedded into a test case generator (AutoBlackTest in 

this study). AutoBlackTest collects coverage data incrementally during the execution of test 

cases on the current version of the application. Gained information is utilized in order to 

prioritize test cases in an Additional statement coverage manner.  
                                                
13 http://cobertura.github.io/cobertura 
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4.5 Test Case Prioritization Using RL-Based HMM 

Combining Hidden Markov Model and Reinforcement Learning approaches as a part of a 

stochastic estimation process has been considered in several artificial intelligent problems. [74] 

suggest using RL to re-estimate the HMM parameters when the recognition model does not work 

during motion prediction scenarios. [166] also integrated HMMs and RL to recognize 

communication channels and translate human actions into instruction symbols. This process was 

done by estimating HMMs and then applying RL to decide the next fixation point. On the 

contrary, [167] propose an RL-based approach to train HMMs in order to cope with the local 

optima problem that happens when using a local search method.  

In this research, we propose a novel approach to prioritize test cases using an RL-based HMM. 

In other words, we want to learn a model which is not only able to generate test cases by 

traversing model paths but also can easily rank test cases based upon their forward probabilities. 

Achieving this goal is possible by integrating the HMM and RL approaches producing a graph-

based model as an MDP based learning technique. The RL-based HMM approach provides a 

three-step framework: the first step contains a Reinforcement Learning algorithm, here Q-

learning, to learn to interact with the software under test, to stimulate its functionalities, and to 

automatically generate test cases. The second step includes an HMM estimation process to 

prioritize generated test cases. The final step computes the test cases’ forward probabilities, 

using the Forward Algorithm. 

Before going through the prioritization steps, we state two assumptions, which are used to realize 

our work in the GUI-testing domain: 
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• In this domain, actions represent GUI actions such as click, select, deselect and etc. 

According to the [16] research, Q-values indicate the values of the actions based upon the 

computations activated by them. They believe that the reward function should encourage 

the system to perform actions triggering “large volumes of computations” (critical events 

[164]) rather than those that only activate “small volumes of computations”. For instance, 

clicking on a button or typing a word in the text area causes smaller changes to the GUI 

state than filing out a form and submitting it into a database. So the actions that 

contribute more GUI changes are more likely to gain higher rewards and consequently 

higher Q-values than others. Also, based upon this research, a GUI state consists of a set 

of widgets 𝑤!, . . ,𝑤!  and each widget (𝑤!) can be interpreted as a pair (𝑡𝑦𝑝𝑒! ,𝑃!), 

where 𝑡𝑦𝑝𝑒! indicates the type of a widget such as textarea, label … and 𝑃! is a collection 

of widget properties and their values. We accept and build upon [16] work in this respect. 

They also define a function that generates traits from widgets, where a trait is subset of 

the widget properties. So, given 𝑤!,𝑤!; 𝑤! =! 𝑤! iff 𝑡𝑟𝑎𝑖𝑡 (𝑤!) = 𝑡𝑟𝑎𝑖𝑡 𝑤! . For 

example, the trait of a button includes its type, position and label shown on it.  A similar 

approach is also offered by IBM functional Tester14 to compare widgets. 

• A GUI visualizes and processes data through menus, buttons, labels etc. Extracting such 

information embedded into widgets can be helpful to automatically produce interesting 

executions in the application. [168] suggest an algorithm to extract the descriptions of 

widgets. [16] use this technique in designing their GUI testing framework. Again, we 

accept and build upon this work [16], [168]. 

                                                
14 http://www-03.ibm.com/software/products/us/en/functional 



 

139 

4.5.1 Step 1: Q-Learning Estimation Method 

As mentioned earlier Q-learning is one of the most popular Q-value function estimation 

techniques in the situation where there is no access to a pre-defined MDP model. Table 18 shows 

the Q-value estimation process has been customized for GUI testing [16]. It computes the reward 

function based upon the proportion of properties that change value; and then the fraction of 

widgets that are different when observed in different states. According to the computed reward 

function and initial inputs, we are able to estimate the Q-values for each specific episode. 

4.5.2 Step 2: HMMs’ Parameters Estimation 

As mentioned before, a Hidden Markov Model has five significant elements; each element 

requires an initial estimation. For the HMM Λ = (A, B, Π) with a (discrete) observation 

distribution, we consider the following parameters:  

• N: The number of hidden states, which is equivalent to the total number of states 

(possible widgets such as save or open) in the SUT. 

• M: The number of distinct observation symbols which is equivalent to the number of 

possible events or actions (such as click, double click or type something in a text box). 

• The state transition probability (N*N) matrix is the probability of traversing from one 

state to an adjacent state. In RL, and in particular Q-learning, we are able to assign an 

RL-Score or Q-value to each edge of the generated model. Because this value is assigned 

after the execution of the corresponding action to the edge, it represents the likelihood of 

the corresponding transition occurring [16]. It can be computed (Table 18) for each s 

during action 𝑎′𝑠 execution: 𝑄 𝑠,𝑎 = 𝑟𝑒𝑤𝑎𝑟𝑑 𝑠,𝑎 + 𝛾 𝑚𝑎𝑥!,𝑄 𝛿 𝑠,𝑎 ,𝑎, . If more 

than one possible action between two adjacent states exists, the action with the largest Q-
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value would be selected as the value of the transition probability between the two 

connected (hidden) states.  

• The observation probability matrix is an N*M matrix (emission matrix) calculated as 

below, where 𝑓!" is the frequency of observing a specific action (𝑣!) in a specific state j. 

            𝑏! 𝑣! =
𝑓!"
𝑓!"!"#

, 𝑓!" > 0

0                 , 𝑓!" = 0
                              (37) 

• The initial state probability distribution, which describes the starting state of the model. 

To generate the model in this study, every state is considered as a potential starting state. 

Table 18. Customized Q-Learning for GUI-based Applications 

Input n, number of executions that the agent must produce for each episode (length of episode) 
Initialize 𝒬 𝑠, 𝑎 ⟵∗ 0,∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐴 [16] 
𝛾⟵ 0.9 
𝑖⟵ 0 

𝜀⟵ 0.8 

For each episode do 
s is a random state initialized as the starting state 

     Repeat 
• Choose a possible action a ∈ A (s) 
• Perform action a based on ε − greedy∗∗ policy [86] 
• i ←  i + 1 
• Observe the new state s! 
• Compute the reward(s, a): 
• Compute diff!: the degree of change to a GUI widget while moving from s to s!: 

𝐝𝐢𝐟𝐟𝐰 𝐰𝟏,𝐰𝟐  ⟵ 𝐏𝟏\𝐏𝟐 ! 𝐏𝟐\𝐏𝟏
𝐏𝟏 ! 𝐏𝟐

, where w! =! w! , are the same widgets monitored 
in s and s!  

• Compute 𝐝𝐢𝐟𝐟𝐒 𝐬, 𝐬!  ⟵
𝐬\𝐭𝐬! ! 𝐝𝐢𝐟𝐟𝐰(𝐰𝟏,𝐰𝟐)𝐰𝟏∈𝐬,𝐰𝟐∈𝐬!,𝐰𝟏!𝐭𝐰𝟐

𝐬!
,where s  denotes the fraction of 

widgets in state s. 
•  reward s, a ⟵  diff!(s, δ(s, a)) , δ denotes the state reached by executing action a. 
• Compute 𝓠 𝐬, 𝐚 ⟵ 𝐫𝐞𝐰𝐚𝐫𝐝 𝐬, 𝐚 + 𝛄 𝐦𝐚𝐱𝐚,𝓠 𝛅 𝐬, 𝐚 , 𝐚,        
• s ←  s! 

2.     Until n is equal to (i-1).  
* ← shows the assignment 
** 𝛆 − 𝐠𝐫𝐞𝐞𝐝𝐲 policy selects a random action with probability 𝛆 and the one with highest Q-value with 
probability 𝟏 − 𝛆 
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Now, we have an initial estimation for each required element of the HMM with respectively N 

and M latent and observable states. This model illustrates two types of relationships: 

• An edge label between latent states, i and j, represents the (𝑎!") transition probability 

between these two states. 

• An edge label between latent state j and visible state k (𝑏! 𝑣! ) is calculated using the 

above formula. 

In the next step, this initial model is used as an input to an Expectation–maximization (EM) 

algorithm; specifically we utilize the Baum-Welch algorithm [93]. This algorithm estimates the 

best model with the highest likelihood of the estimated parameters solving the first problem (see 

Section 4.3.2).  If we consider each test case as a sequence of observations, we are able to predict 

the forward probability of test cases by utilizing the estimated HMM and implementing the 

forward algorithm.  

4.5.3 Step 3: Computing Forward Probabilities and Considering their Application 
in Test Case prioritization 

Before applying the forward probability in prioritizing test cases, the reasons of choosing it as a 

prioritization metric should be reviewed and considered. According to the forward probability 

calculation procedure (See formulas 32, 33 and 34 in Section 4.3.2.1) both transition and 

emission probabilities are essential parameters in computing the forward probability 𝛼! 𝑡 . In 

addition, as mentioned earlier (See steps 1, 2 and Table 18) the transition probabilities are 

directly calculated using the amount of the Q-values. (Q-values indicate the likelihood of the 

corresponding transition occurring by computing the amount of changes, triggered during the 

transition.) Therefore, it can be concluded that the RL-based HMM prioritizes test cases based on 
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the amount of changes that can be triggered in the GUI state (Q-values) by executing each 

specific sequence of observations (actions). This technique not only considers the state changes, 

but also evaluates the effect of a specific action’s performance on each state (HMM emission 

matrix). So both the states and the edges of the application’s behavioral model are involved in 

the prioritization technique.  According to [164], test cases containing more critical events (large 

volumes of computations), are more likely to uncover faults during testing. Therefore, test cases 

with higher forward probabilities are likely to contain such events more than those with lower 

forward probability. 

Now, in order to complete the procedure of applying forward probabilities in test case 

prioritization, we modify [139] definition to involve the forward algorithm in calculating an 

award value (Definition 20). In the new definition, 𝐹! would be a new function, which yields 

forward probabilities for each “test case”. It is worthwhile to mention that in the original 

definition, we compute the award value for each different ordering, but in the new definition, we 

calculate it for every test case in an offline mode with no need to re-execute the test cases.  

Therefore, we are able to sort test cases by assigning higher ranks to the test cases with higher 

amounts of forward probabilities.  

Definition 21. Given: T (a test case), TC (a set of generated test cases), and F!(a function that 

maps from TC to a real number). Problem: Find T! ∈ TC such that 

                                             ∀𝑇" 𝑇" ∈ 𝑇𝐶 𝑇" ≠ 𝑇!  [𝐹! (𝑇!) ≥ 𝐹! (𝑇"))]                   (38) 

According to the new definition, we prioritize test cases based upon the estimated HMM. The 

following algorithm (Table 19) describes the proposed method. It accepts a set of test 

cases, 𝑇𝐶 = {𝑇!,𝑇!,… ,𝑇!}, where 𝑇 = {𝑣!, 𝑣!,… , 𝑣!} is a sequence of events or actions. Then, it 
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estimates a corresponding HMM and prioritizes the test cases according to their 𝐹!value. It is 

worth noting that if the multiple test cases have the same amount of 𝐹!s (rarely happens), we 

need to choose one of them in a random way.  

Table 19. RL-based HMM Test case Prioritization Algorithm 

Input: 𝑇𝐶 = {𝑇!,𝑇!,… ,𝑇!}; Output: TC’: Prioritized TC  
1: While ∃ T! ∈ TC do: 

For each T! do 
o TC! ⟵ T! and Extract all corresponding hidden states (S!): N⟵ N + 1 (per visit to each 

unique state) 
o Extract all corresponding actions (v!): M⟵ M + 1 (per visit to each unique event) 
o If a!" does not exist then, compute Q-value among S! and S! and assign it as a!" into the 

transition matrix [A]!×! 
o If b!" does not exist then, compute the corresponding observation symbol probabilities 

and assign it as b!" into matrix [B]!×! 
3. 2: Train HMM (Λ) by implementing Baum-Welch (A, B, Π) 
4. 3: While  ∃ T! ∈ TC! do: 

§ F!" = forward(Λ, T!) = α! t = P v!, v!,… , v!, s! = k Λ  
4. TC! ⟵ DescendSort TC!  based upon F!" values 

 

4.6 Accumulated Test Cases' Q-values in Descending Order 

In order to investigate the effect of test case dissimilarities in the fault detection rate, we also 

decided to prioritize test cases based upon the amount of computations activated by the 

corresponding action in each test case. As mentioned earlier, GUI state changes can easily be 

calculated using the Q-learning technique. Given each test case’s accumulated Q-value 

(summation of each test case’s Q value), we only need to rank every test case in a descending 

order, then label the one with the highest Accumulated Q-value (𝑆𝑄) as the test case with the 

highest execution priority. Table 20 illustrates the overview of this technique. 
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Table 20. Accumulated Test Cases' Q-values Ordering 

Input: 𝑇𝐶 = {𝑇!,𝑇!,… ,𝑇!} 
Output: TC’: Prioritized TC  

1: While ∃ T! ∈ TC do: 
2: For each T! do 

TC! ⟵ T! 
a. Extract all corresponding Q-values (Qvalue!) 
b. SQ! = (Qvalue!) 

3: TC! ⟵ DescendSort TC!  based upon 𝐒𝐐𝐢values  

 
This technique can be considered as an attempt to optimally use the information in a regular 

digraph; whereas the RL-HMM technique explicitly utilizes additional information only 

available in the extended diagraph. In the following section, we discuss how these techniques 

improve the test case prioritization problem with regard to failure detection objective.  

4.6.1 Motivating Example 

In this study we cover two well-known, MBT based GUI testing tools: GUITAR15 and 

AutoBlackTest16 (ABT). GUITAR uses a test automation framework based on state machines, 

named the event flow model [150]; while AutoBlackTest generates a behavioral model based 

upon agent activity [151]. 

To motivate this work, we consider a small example to investigate the difference between state 

of the art behavioral models (such as a regular digraph) and the Extended multi-digraph. Figure 

13 shows a small excerpt of a behavioral model derived by a GUI-based MBT test case 

generation tool (AutoBlackTest) for the UPM application (an application for building a personal 

database of accounts and one of the case studies presented in this chapter) [16]. In this figure, the 

                                                
15  http://sourceforge.net/apps/mediawiki/guitar/index.php?title=GUITARHome_Page 
16  http://www.lta.disco.unimib.it/tools/AutoBlackTest 
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nodes of the graph represent the GUI states of the SUT and the edges represent the transition 

between the states. They are labeled with the name of the actions triggering the transitions, and 

in some cases, the estimated utility value of the action.  This is an example of a regular digraph. 

Applying our new technique, we would be able to generate an extended form of directed graphs 

utilizing stochastic information. The additional information will be used in the test case 

prioritization procedure to calculate the forward probability of each test case. Figure 14 depicts 

an excerpt of an Extended behavioral model applying our new approach on the UPM application. 

Figure 13. Expert of a behavioral model as a directed graph-motivating example 

Figure 14. Expert of a behavioral model as an extended directed graph- motivating example 

 
Based on definition 15, this figure is an extended behavioral model consisting of a set of GUI 

states (rectangular-shapes), actions (elliptical-shapes) and additional information (labels). In this 

model 𝑎!" indicates the transition probability from state i to j and 𝑏! 𝑣!  indicates the probability 

𝑠! 𝑠! 𝑠! 

𝑳𝒊𝒔𝒕𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌() 𝑴𝒆𝒏𝒖𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌() 𝑴𝒆𝒏𝒖𝒆𝑰𝒕𝒆𝒎.𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌()𝒗

𝑏! (𝑳𝒊𝒔𝒕𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌()) 

𝑎!" 

𝑠!" 
𝑎!" 

𝑏! (𝑴𝒆𝒏𝒖𝒆𝑰𝒕𝒆𝒎.𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌()) 

𝑎!,!" 

… 

𝑴𝒆𝒏𝒖𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌() 

𝑴𝒆𝒏𝒖𝒆𝑰𝒕𝒆𝒎𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌() 

𝑳𝒊𝒔𝒕𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌() 
𝑴𝒆𝒏𝒖𝒆𝑰𝒕𝒆𝒎𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌() 

02  03 
05 

20 
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of observing action 𝑣! in state i. This is the only information needed to be stored for test case 

prioritization; specifically if it is stored in the form of two probability matrices covering 𝑎!" and 

𝑏! 𝑣!  for all possible transitions.  

Thus, considering following sequences as possible test cases extracted from above directed graph 

(Figure 13), we would be able to calculate required data to estimate an RL-based HMM and 

prioritize test case based upon the forward probabilities. This obviously shows that the extended 

directed graph contains more useful information than the regular one, which helps in estimating 

the probabilistic model and calculating the forward probability of a sequence of events (i.e. test 

cases). As mentioned earlier, the forward probability of the sequence is used to effectively 

prioritize test cases by assigning the higher fault detection probability to test cases which are able 

to trigger more actions and computations in each GUI states. 

𝑇! = 02 𝐿𝑖𝑠𝑡𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() , 02  

𝑇! = 02 (𝑀𝑒𝑛𝑢𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘 ()), 03  

𝑇! = 02 𝑀𝑒𝑛𝑢𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() , 03 𝑀𝑒𝑛𝑢𝑒𝐼𝑡𝑒𝑚𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() , 05   

𝑇! = 02 𝑀𝑒𝑛𝑢𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() , 03 𝑀𝑒𝑛𝑢𝑒𝐼𝑡𝑒𝑚𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() , 20   

For example, for test case 2 (𝑇!), we should calculate the Q-value and the immediate utility value 

of an action using the following reward function, based on the differences between widgets in 

each state (Table 18). So: 

𝑟𝑒𝑤𝑎𝑟𝑑 𝑠,𝑎 =  𝑑𝑖𝑓𝑓! 𝑠, 𝛿 𝑠,𝑎 =  𝑑𝑖𝑓𝑓! 02, 𝛿 02,𝑀𝑒𝑛𝑢𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘()  

=  
𝑠\!𝑠! + 𝑑𝑖𝑓𝑓!(𝑤!,𝑤!)!!∈!,!!∈!!,!!!!!!

𝑠!  = 0.55 
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In addition, because this test case terminates in state 3 and no more actions are executable from 

this state, 𝛾 𝑚𝑎𝑥!,𝒬 𝛿 𝑠,𝑎 ,𝑎, = 0 and: 

 𝑎!" =  𝒬 𝑠,𝑎 = 𝑟𝑒𝑤𝑎𝑟𝑑 𝑠,𝑎 + 𝛾 𝑚𝑎𝑥!,𝒬 𝛿 𝑠,𝑎 ,𝑎, = 0.55   

𝑏! (𝑀𝑒𝑛𝑢𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘 ()) =
𝑓!"
𝑓!"!"#

=
1
2 = 0.5 

Calculating the same parameters for all test cases gives us following transition probability and 

emission matrices.  

𝐴 =

0 0.55 0 0
0 0 0.71 0.7
0 0 0 0
0 0 0 0

  , 𝐵 =

0.5 0.5 0
0 0 1
0 0 0
0 0 0

 

Having all the required parameters to estimate an accurate HMM prepares the model for RL-

HMM based prioritization. 

Estimating the RL-based HMM using the Baum-Welch algorithm, we would be able to compute 

the forward probability of each test case using the forward algorithm. Therefore, applying 

Formula 33. We would have: 

(𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐿 − 𝐻𝑀𝑀,𝑇1 ) = 0.137 

(𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐿 − 𝐻𝑀𝑀,𝑇2 ) = 0.275   

(𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐿 − 𝐻𝑀𝑀,𝑇3 ) =  0.5 

(𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐿 − 𝐻𝑀𝑀,𝑇4 ) = 0.5 

And, we can sort test cases in following order: 
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1:𝑇!,𝑇!,𝑇!,𝑇! OR  

2: 𝑇!,𝑇!,𝑇!,𝑇! 

As we expected, the test cases with larger quantities of forward probabilities should be 

prioritized due to the higher amounts of computations and actions, which have been triggered in 

the GUI states during their executions. We expect test cases with such characteristics are able to 

reveal more faults in GUI-based applications because of their capabilities in triggering more 

actions in GUI states.  𝑇! matches with episode 2 in the complete example (Section 4.7.3.1), 

which is able to reveal a fault in the Application Under Test (AUT). So, choosing either the first 

or second ordered test suite we would be able to detect a fault by running only one or two test 

cases.  

Also, we can go further in this example and replace the initial model, which is generated by [16] 

technique with the event-flow graph, which is generated using GUITAR [150], another GUI test 

case generator tool (Figure 15). This procedure shows that the proposed test case prioritization 

technique is applicable to any test cases that have been generated by any GUI-based MBT test 

case generation tool.  

Figure 15. Event flow graph, extracted from GUITAR- Motivating example 

Unlike the graph, which was extracted from AutoBlackTest, GUITAR’s event-flow graph is not 

a state-based model and only contains the relations between actions.  Based upon the changes 

between GUI states during test case generation process [168], we are able to create a GUITAR 

𝑴𝒆𝒏𝒖𝑼𝑰	 𝑴𝒆𝒏𝒖𝑰𝒕𝒆𝒎𝑼𝑰	

𝑳𝒊𝒔𝒕𝑼𝑰	
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based extended digraph (Figure 16). In this situation, we assume that GUI state has been changed 

at least one time in each single event execution. 

Figure 16. Extended directed graph- generated using event flow graph  

Based upon the generated event-flow graph, GUITAR is able to generate following test cases: 

𝑇! = 𝐿𝑖𝑠𝑡𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘()  

𝑇! = 𝐿𝑖𝑠𝑡𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() , (𝑀𝑒𝑛𝑢𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘 ())  

𝑇! = 𝐿𝑖𝑠𝑡𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() , (𝑀𝑒𝑛𝑢𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘 ()) , 𝑀𝑒𝑛𝑢𝑒𝐼𝑡𝑒𝑚𝑈𝐼. 𝑐𝑙𝑖𝑐𝑘() ,   

Similar to the previous steps, both emission and transition probability matrices should be 

calculated before estimating the Hidden Markov Model. Similarly the amount of Q-values and 

immediate utility values should be computed based upon the differences between the widgets in 

corresponding GUI states. Matrix A indicates the transition probabilities and B shows the 

emission probabilities in the initial HMM. 

𝐴 =
0 0.55 0
0 0 0.71
0 0 0

  , 𝐵 =
0.5 0.5 0
0 0 1
0 0 0

 

Calculating the forward probabilities we would have the following results 

(𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐿 − 𝐻𝑀𝑀,𝑇1 ) = 0.25 

𝑠! 𝑠! 

𝑳𝒊𝒔𝒕𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌() 𝑴𝒆𝒏𝒖𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌() 𝑴𝒆𝒏𝒖𝒆𝑰𝒕𝒆𝒎.𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌()𝒗

𝑏! (𝑳𝒊𝒔𝒕𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌()) 

𝑎!" 

𝑠! 
𝑎!" 

𝑏! (𝑴𝒆𝒏𝒖𝒆𝑰𝒕𝒆𝒎.𝑼𝑰. 𝒄𝒍𝒊𝒄𝒌()) 

… 
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(𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐿 − 𝐻𝑀𝑀,𝑇2 ) = 0.068  

(𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐿 − 𝐻𝑀𝑀,𝑇3 ) =  0.5 

And, subsequently we can sort the test cases in following orders: 𝑇!,𝑇!,𝑇!  

The test suite, which is generated by GUITAR missed the fault-revealing test case 𝑇! during the 

test case generation phase; thus in this case, the final test suite is not able to detect any fault and 

prioritization doesn’t affect the speed of defect detection. This demonstrates the higher ability of 

AutoBlackTest in generating test cases with better coverage. In addition, it highlights the 

capability of our proposed approach in prioritizing test cases that have been generated using 

different GUI test case generators. Our approach is clearly independent of their architectures and 

strategies.   

4.7 Empirical Evaluation 

To investigate the effectiveness of the proposed techniques (RL-based HMM and Accumulated 

Q-value) relative to existing prioritization techniques, we have constructed an experimental 

framework and addressed the following research questions: 

• (RQ1): How does the RL-based HMM technique compare in terms of effectiveness 

with other prioritization techniques? 

• (RQ2): How does the Accumulated Q-value technique compare in terms of 

effectiveness with other prioritization techniques? 

• (RQ3): Does RL-Based HMM prioritize test cases more effective than the 

Accumulated Q-value approach? 
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• (RQ4): Does RL-Based HMM prioritize test cases more effective than the weight-

based methods presented by [164]? 

4.7.1 Comparison Criteria 

4.7.1.1 Average Percentage Faults Detected (APFD) 

Based upon the test case prioritization goal, there are many possible comparison criteria that can 

be utilized in order to evaluate the effectiveness of the applied approach [139]. In this research, 

we have focused on the goal of increasing the “likelihood of revealing faults earlier in the 

execution of the test run”, or in the other words, “the fault detection rate” during regression 

testing. 

To measure how rapidly a prioritized test suite is able to detect faults, we have used the APDF 

measure. APFD is defined as [139]:  

        𝐴𝑃𝐹𝐷 𝑇! = 1−
𝑇𝐹! + 𝑇𝐹! +⋯+  𝑇𝐹!

𝑛𝑚 +
1
2𝑛                          (39) 

Where 𝑇’ is a prioritized test suite, and 𝑇 is a test suite containing n test cases, and 𝐹 is a set of m 

faults revealed by 𝑇. In addition, 𝑇𝐹! is the first test case in the ordering 𝑇’ of 𝑇 that detects fault 

𝑖. The range of APFD is between 0 and 1, and a higher APFD means superior fault detection.  

4.7.2 Statistical Testing17 

[169] provide guidance on the statistical analysis of automated processes in software engineering 

contexts. We essentially follow their advice and present effect size estimations [170] as the 

principle descriptor of performance differences between algorithms. The estimation of effect size 
                                                
17 We have implemented the statistical results and plotted the boxplots using OriginLab 
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is commonly preceded by traditional statistical testing, and hence, we provide both for the sake 

of completeness.  

The central limit theorem states [171] that the distribution of the mean of a sufficiently large 

number of independent, identically distributed variables will be approximately normal, 

regardless of the underlying distribution. In addition, [172] and many other texts provide a rule 

of thumb saying that  ~30 data points are sufficient to get reliable results. Hence, a solid 

theoretical basis exists for applying a paired t-test on the mean of these types of variables. 

Therefore, we “normalized” our statistical analysis by executing the prioritization techniques 

1000 times for each of the generated test suites and construct the mean value of the APFD 

(robust estimator). Then, for each prioritization approach, we select a prioritized test suite (R) 

with the minimal discrepancy to the mean APFD. Thus: 

In this study, the random variable is the mean of the percentage of faults detected over all 

orderings by a given prioritization technique. 

 𝑋! ,𝑌!    indicate two paired measurements from the n measured values; the measured values are 

the mean of the percentage of detected faults by a given prioritization technique (𝑖) on a test suite 

of size (𝑛). 

Therefore, after computing this (ordered) element, we would be able to apply statistical testing 

by calculating the differences between the mean of the percentages of detected faults in all 

braces of paired sets 𝑋!  𝑎𝑛𝑑 𝑌! (paired test). To apply the paired t-test, the t-statistic needs be 

calculated as below: 

𝑋! = (𝑋! − 𝑋)          (40)  
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𝑌! = (𝑌! − 𝑌),                                  

𝑡 = (𝑋 − 𝑌)
𝑛(𝑛 − 1)
(𝑋! − 𝑌!)!!

!!!
 

This brace-wise approach is standard practice in such situations in many domains [173] when the 

variable meets the paired t-test assumptions18.   

In this case, we established a null hypothesis and an alternative hypothesis to be evaluated. The 

null hypothesis (H0) states the two prioritization techniques provide the same effectiveness of 

fault detection, if the mean of the percentage of the detected faults (over all orderings) for both 

techniques is the same. On the other hand, alternative hypothesis (H1) states that if the difference 

between the mean of the percentages of faults, which have been detected by each of prioritization 

technique, is not zero then they will be considered as different. We independently evaluate this 

hypothesis for a number of random situations; the randomization is proved by changing the SUT 

under consideration without pattern or rationale. Therefore, by considering a significance 

level 𝛼 = 0.05, we would be able to reject null hypothesis if 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 for each 

independent situation. 

4.7.2.1 Effect-Size 

In order to add a “size of difference” statement to our comparison criteria and normalized the 

statistical evaluation of multiple (with independent subjects (SUT)) tests, we principally consider 

the strength or magnitude of a treatment effect, by calculating Cohen’s d measure. Cohen’s d is 

                                                
18 As a cross-check, the samples for this test were subjected to a Shapiro-Wilk test for normality. In all situations, the 

samples passed the test 
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defined as the difference between the means, 𝑀!  −  𝑀!, divided by standard deviation (SD), 

𝑠!""#$%. So, 

                                                             𝑑 =
𝑀!  −  𝑀! 
𝑠!""#$%

                                       (41) 

where, 

𝑠!""#$% =
𝑆𝐷!"#$%!! + 𝑆𝐷!"#$%!!

2 

Since, Cohen’s d computes the standardized difference between two groups, or a brace, of 

samples; it can help us to interpret the strength of our proposed techniques in comparison with 

others. [174] suggests that d=0.2 can be considered as a “small” effect size, while 0.5 can be 

interpreted as a “medium” effect size, and 0.8  “large” effect size. In this research, we consider 

this measure on the percentage of detected faults, which have been detected by a brace of 

prioritization techniques with mean APFD, in order to investigate the magnitude of each 

approach’s effect. So, for each brace: 

𝑅!  ,𝑅!  , 𝑖, 𝑗 ∈ 𝐴𝑙𝑙 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 , both 𝑃! and 𝑃! (the average of 

percentage of detected faults) should be calculated to compute: 

                         𝑑 =
𝑃!  −  𝑃! 
𝑠!""#$%

 , 𝑠!""#$% =
𝑆𝐷!(!)! + 𝑆𝐷!(!)!

2             (42) 
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4.7.3 Experimental Setup 

According to a recent empirical comparison, AutoBlackTest outperforms GUITAR in both code-

coverage and the number of detected faults [16].  Therefore, in this study, we principally use 

AutoBlackTest to generate the required test cases. 

4.7.3.1 AutoBlackTest and Modified Framework 

AutoBlackTest is an automatic testing tool that builds a model of a SUT and produces test cases 

by walking through the model. The most significant feature of AutoBlackTest is its ability to 

interact with an unknown environment. To address this issue, AutoBlackTest uses a Q-learning 

approach [16].  

Therefore, AutoBlackTest is a combination of a Q-Learning Agent and a Test Case Selector. The 

Q-learning agent is responsible for executing a sequence of actions (episodes) extracted from the 

model. On the other hand, the test case selector eliminates redundant test cases, which cover the 

same statements within the code. 

Table 21. Investigated applications 

Application Version Statement 
Cov.(%) KLOC 

UPM19 (a personal password manager) V 1.6 86 2.515 
Buddi20 (a finance tool) V 3. 4. 0. 8 64 10.580 
PDFSAM21 (a merging and splitting PDF 
documents tool) 

V 0.7 Stable 
release 1 68 3.138 

TimeSlotTracker22 (tasks and activities management 
tool) V 0.4 59 3.499 

                                                
19 http://upm.sourceforge.net/ 
20 http://buddi.digitalcave.ca/ 
21 http://sourceforge.net/projects/pdfsam/ 
22 http://sourceforge.net/projects/timeslottracker/ 
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The derived model by AutoBlackTest is a regular digraph [16].  Therefore, according to the 

Definition 14, AutoBlackTest generates a graph 𝐺 = (𝑆,𝐸,𝑉), where the set of nodes (S) 

represent the abstract GUI states and the edges (𝑒! ∈ 𝐸 = (𝑠! , 𝑠!),𝑤ℎ𝑒𝑟𝑒 𝑠! , 𝑠! ∈ 𝑆) indicate the 

transition between states. The transitions are labeled with the name of actions and corresponding 

Q-values (V).  

It is believed that AutoBlackTest is a state of the art mechanism to automatically infer a regular 

digraph, an essential building block for the construction of the extended digraph. While 

AutoBlackTest is a state of the art technique, it is far from perfect and only constructs a portion 

of the total regular digraph for the “average” GUI-based application. Figure 17 depicts the 

proposed framework and the procedure to determine the effectiveness of the proposed 

approaches both in terms of fault detection, and in comparison with other existing techniques 

(Random, Optimal, Worst, Coverage-based and Accumulated Q-value). The experimental 

environment consists of two steps: 

• Step1: Examine the generated test cases by parsing episodes’ produced by 

AutoBlackTest. Each episode, or test case, is a sub-graph of the SUT’s behavioral model, 

which is generated as a Dot file23. Then, extract the initial HMM parameters and coverage 

information.  

• Step2: Train the most appropriate HMM24 with a maximum likelihood estimate of the 

parameters. Prioritize test cases based on RL-based HMM and Accumulated Q-value 

ordering techniques, as well as ranking them through Random, Optimal, Worst and 
                                                
23 DOcument Template file format 
24 RHMM package [89] of the R programming environment [250] have been used 
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Additional statement coverage approaches. Finally, analyze the effectiveness of the 

considered prioritization techniques based upon the APFD measure.  

To empirically evaluate AutoBlackTest, widgets from four different-domain applications were 

extracted [168] and tested. These applications are listed in Table 21 and are reused in this study, 

as it allows us to use [16] as an initial reference point. [16] provide results after their test case 

selection algorithm runs, and hence it can be considered as a control case (base value for 

improvement).  

Figure 17. Experimental Setup; Combination of a test case generator (ABT) and prioritization techniques 

 
In subsequent experiments, we also consider an extended version of PDFSAM with a larger size 

test suite and three additional GUI applications from [164]. 
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4.7.3.2 Fault Matrix 

In a fault matrix, rows represent the test cases and columns represents the faults in the System 

Under Test. If a test case i detects fault j then the entry i,j in the matrix would be equal to 1.  

So using a fault matrix, we would be able to indicate the capability of each test case in detecting 

faults by counting the number of 1s in the corresponding row [147]. In this research, we have 

applied several test case prioritization approaches on 8 different GUI applications. Hence, 

providing the details of all fault matrices in this study is not possible, Table 22 summarizes the 

various characteristics of each fault matrix. 

Table 22. Fault matrix summary 

Application #Test cases #Faults Avg. faults per test 
% tests detecting X% faults 

X=0 X=20 X=50 
UPM 15 8 0.5 46.6 0.0 0.0 
Buddi 15 2 0.5 86.6 0.0 0.0 
PDFSAM 26 3 0.5 88.4 0.0 0.0 
TimeSlotTracker 19 1 0.5 94.7 0.0 0.0 
Extended PDFSAM 60 6 0.5 90.0 0.0 0.0 
WordProcessor 18 12 2.7 72.2 16.6 0 
TerpPaint 23 12 3 82.6 8.6 4.3 
Calculator 15 12 1.5 40.0 0.0 0.0 

   
4.7.4 Experimental Results  

4.7.4.1 Study 1: UPM 

In this experiment, we investigate the effectiveness of utilizing the considered prioritization 

techniques on the UPM application. To estimate a suitable RL-based HMM for UPM, the 

following parameters are needed: 
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• N: The number of hidden states which is equivalent to the total number of states in 

the UPM behavioral model, 52 for this package. 

• M: The number of observation symbols which is equivalent to the number of distinct 

actions in UPM, 36. 

• The state transition probability matrix is calculated using the estimate of Q-values 

between the distinct states (if there is more than one possible action between states, 

the action with highest Q-value would be selected); In this case, we have a 52*52 

transition probability matrix. 

• Calculating the frequency of observing a specific action in a specific state; this 

produces a 52*36 matrix. This matrix is the observation symbol probability matrix. 

At the next step, we use the forward algorithm on UPM’s Hidden Markov Model to find the 

probability of an observed sequence given an estimated HMM. It exploits recursion in the 

calculations to avoid the necessity for exhaustive calculation of all the paths through the 

execution process. According to Definition 21, we prioritized test cases based upon their 

corresponding 𝐹!. 

Therefore, in this case, we calculate 15 𝐹!, for 15 UPM episodes (test cases). Obviously, the 

accumulated forward probabilities tend to get small (converge to 0) since they are affected by 

previous probabilities in the forward and recursive process (Numerical stability is therefore 

guaranteed by the scaling introduced in Section 4.3.2.1).   

In addition, it is worthwhile to mention that the summation of the probabilities will not be one 

because: 
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The generated graph is not a complete graph as there will be distinct vertices that cannot be 

connected by a pair of unique edges. So some paths cannot be considered. 

Some paths are impossible to walk through, because of the application design. AutoBlackTest 

only explores the paths (episodes), which are reachable and logical. In this case, 15 episodes are 

the minimum number of paths that can detect failures. 

Therefore, only when we were able to compute the forward probabilities for all possible episodes 

(paths) of a graph (preferably a complete graph), can we expect the summation of the forward 

probabilities to converge to one. According to the 𝐹! value for each episode, the probabilities can 

be sorted in the following descending order (𝑬𝟏𝟎 denotes the Episode (test case) number 10):  

{𝑭𝒑 𝑬𝟏𝟎 > 𝑭𝒑 𝑬𝟔 > 𝑭𝒑 𝑬𝟑 > 𝑭𝒑 𝑬𝟏𝟒 > 𝑭𝒑 𝑬𝟏 > 𝑭𝒑 𝑬𝟏𝟑 > 𝑭𝒑 𝑬𝟗 > 𝑭𝒑 𝑬𝟐 > 𝑭𝒑 𝑬𝟒 > 𝑭𝒑 𝑬𝟕 > 𝑭𝒑 𝑬𝟖 >

𝑭𝒑 𝑬𝟏𝟐 > 𝑭𝒑 𝑬𝟎 > 𝑭𝒑 𝑬𝟏𝟏 > 𝑭𝒑(𝑬𝟏𝟓)}  

AutoBlackTest reports that episodes 2, 3, 6, 7, 8, 10, 13 and 14 are able to detect faults in UPM 

[16].  

However, according to its test case selection policy, it only selects episodes 4, 8, 11, and 13 and 

eliminates the others. Eliminating episodes, which are able to detect faults, may cause 

unexpected costs and problems in regression testing processes.  
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Figure 18. (a) Percent of faults detected versus test suite fraction. (b) Box plot of APFD for UPM 

On the other hand, the proposed techniques (RL-base HMM and Accumulated Q-value) are able 

to prioritize test cases (episodes) along with increasing the original fault detection rate.  

To get more reliable results, we execute each of the techniques 1000 times. Then we calculated 

the means and standard deviations of the APFDs to evaluate each prioritization technique with 

respect to the prioritization objective (improving fault detection rate). Then we select an ordering 

of test cases with the closest APFD to the mean APFD. 

As can be seen from Table 23, both proposed techniques have larger mean APFDs (and smaller 

standard deviations), implying that their performance is universally “good”. (The reason of 

getting zero SD for both the Worst and Best approaches are because there are only one test suite 

which satisfies the best and worst prioritizations.) 
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Figure 18(a) shows the percentage of detected faults versus the execution sequence of test cases 

for the prioritized test suites, with mean APFD (average performance). This figure depicts that 

both the RL-based HMM and Accumulated Q-value techniques are able to detect a considerable 

portion of faults by executing a smaller number of test cases. For example, by executing 85% of 

test cases both techniques detect 100% of the faults (8 out of 8 faults). This amount is 75% faults 

for Additional statement coverage, and 87% for the Random prioritization technique. 

In addition, Figure 18(b) shows the distribution of the 1000 APFD values using a boxplot. This 

figure indicates that the APFDs’ distribution for the RL-based HMM and Accumulated Q-value 

approaches are not variant in comparison with the Random technique.  

Table 23. APFD of the applied prioritization techniques for UPM 

Prioritization Techniques Means of APFDs Standard Deviation (SD) 
RL-based HMM 0.6865 0.00012 
Accumulated Q-value 0.6205 0.00472 
Additional Statement Coverage 0.6198 0.0046 
Random 0.5018 0.5018 
Worst 0.2733 0 
Optimal (Best) 0.736 0 

 

Table 24. The statistical analysis for RL-based HMM technique vs. other techniques in UPM 

RL-based HMM Technique Vs. Others t-statistic DF p-value (one-tail) Cohen’s d 
RL-based HMM vs. Accumulated Q-
Value 3.16228 14 0.00644 1.6329 

RL-based HMM vs. Statement Coverage 2.23607 14 0.04047 1.1547 
RL-based HMM vs. Random 5.36745 14 7.8360E-5 2.7717 
RL-based HMM vs. Worst 6.48385 14 1.03159E-5 3.3482 
RL-based HMM vs. Optimal (Best) -2.42272 14 0.02853 -1.2511 
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Table 2425 shows the results of applying the statistical tests and the magnitude of Cohen’s d 

(effect size), which are used to determine the effectiveness of RL-based HMM in comparison 

with the other approaches. In this table, we can see that the RL-based HMM technique is better 

than the Additional statement coverage and Random prioritization techniques. In addition, the 

RL-based HMM method is prioritizing test cases significantly better than Accumulated Q-value 

approach. Large Cohen’s ds also prove that there is a significant difference, on average between 

the fault detection capability of the proposed techniques and other prioritization approaches. This 

measure is more than 0.8 (large) for all of the considered braces in this case. 

We repeat this process for the other three applications to conclude the empirical comparison 

about the effectiveness of the proposed approaches in improving the fault detection rate. 

4.7.4.2 Study 2: Buddi 

To estimate an HMM for the Buddi application, we walk through its behavioral model to 

compute and extract the following parameters: 

• N: The number of hidden states is 76. 

• M: The number of observation symbols is 45. 

• A 76*76 transition probability matrix estimated using Q-values. And, 

• A 76*45 observation symbol probability matrix. 

After achieving the best HMM using the Baum-welch algorithm, the same process as for the 

UPM investigation process was followed, we executed the forward algorithm to compute the 

                                                
25 DF denotes the Degree of Freedom 
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forward probability of episodes. 15 episodes (𝐹!) were produced by AutoBlackTest from the 

Buddi application. Again, we can sort the forward probabilities: 

{𝑭𝒑 𝑬𝟕 > 𝑭𝒑 𝑬𝟏𝟒 > 𝑭𝒑 𝑬𝟎 > 𝑭𝒑 𝑬𝟑 > 𝑭𝒑 𝑬𝟏 > 𝑭𝒑 𝑬𝟐 > 𝑭𝒑 𝑬𝟔 > 𝑭𝒑 𝑬𝟏𝟎 > 𝑭𝒑 𝑬𝟓 > 𝑭𝒑 𝑬𝟗 > 𝑭𝒑 𝑬𝟖 >

𝑭𝒑 𝑬𝟏𝟏 > 𝑭𝒑 𝑬𝟏𝟐 > 𝑭𝒑 𝑬𝟏𝟑 > 𝑭𝒑(𝑬𝟒)}  

According to AutoBlackTest [16] episodes 7 and 14 are considered as fault-prone test cases (test 

cases that reveal faults). The RL-based HMM technique correctly prioritizes these two episodes, 

in its final test suite. This test suite is able to find 100% of Buddi’s faults in regression testing. 

Both proposed techniques are able to detect all the faults by executing only 20% of the test cases, 

while only one fault can be revealed by executing more than 50% of the test cases using 

Additional statement coverage and Random prioritization approaches. This fact is also visible in 

Figure 19(a) showing the percent of detected faults using each technique. Also in Figure 19(b), 

boxplots summarize the distribution of the performance of the prioritization techniques. Again, 

this distribution shows lower variance for both of the proposed techniques when compared 

against Random and Additional statement coverage approaches. 

Similarly to UPM, mean and standard deviation of the APFDs for each technique are calculated 

(Table 25). According to this table, and formally verified in Table 23, we can conclude that RL-

based HMM is not statistically significantly different to the Optimal approach (upper bound). 

Using Table 26, we provide a statistical statement of RL-based HMM performance when 

compared with the other techniques. The RL-based HMM technique is significantly different 

from Additional statement coverage and Random prioritization as well as Worst prioritization.  
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Figure 19. (a) Percent of faults detected versus test suite fraction. (b) Box plot of APFD for Buddi 

The Cohen’s d measure also indicates that the difference between RL-based HMM and other 

techniques is large, while it is medium for RL-based HMM vs. Accumulated Q-Value, although 

the difference is not considered statistically significant. There is a same story for the 

Accumulated Q-value prioritization technique. It prioritizes test cases significantly better than 

other techniques, except obviously for RL-based HMM.  

Table 25. APFD of the applied prioritization techniques for Buddi 

Prioritization Techniques Means of APFDs Standard Deviation 
RL-based HMM 0.9339 7.0698E-4 
Accumulated Q-value 0.901 0.0089 
Additional Statement Coverage 0.769 0.02688 
Random 0.491 0.24868 
Worst 0.073 0 
Optimal (Best) 0.934 0 
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Table 26. The statistical analysis for RL-based HMM technique vs. other techniques in Buddi 

RL-based HMM Technique Vs. Others t-statistic DF p-value (one-tail) Cohen’ d 
RL-based HMM vs. Accumulated Q-
Value 1 14 0.33317 0.5163 

RL-based HMM vs. Statement Coverage 2.61116 14 0.01966 1.3483 
RL-based HMM vs. Random 4.86926 14 2.04238E-4 2.5144 
RL-based HMM vs. Worst 7.45575 14 2.02796E-6 3.8501 
RL-based HMM vs. Optimal (Best) -1 14 0.34463 -0.5163 

 

4.7.4.3 Study 3: PDFSAM 

PDFSAM is a Java-based tool for merging and splitting PDF files. Again, the package was used 

to evaluate the proposed techniques [16].The Initial HMM parameters for PDFAM are:  

• N: The number of hidden states is 79. 

• M: The number of observation symbols is 49. 

• Transition probability matrix has 79 rows and 79 columns. 

• The observation symbol probability matrix has 79 rows and 43 columns. 

In this case, we considered 26 episodes, which according to AutoBlackTest [16] reports that 

episodes 0, 2 and 25 are able to detect faults. Ordering the forward probabilities, demonstrates 

that the RL-based HMM prioritization technique prioritizes episodes according to their 

contribution in fault detection and no test cases (episodes) are withdrawn.  

{𝑭𝒑 𝑬𝟏𝟎 > 𝑭𝒑 𝑬𝟎 > 𝑭𝒑 𝑬𝟐 > 𝑭𝒑 𝑬𝟕 > 𝑭𝒑 𝑬𝟏𝟏 > 𝑭𝒑 𝑬𝟐𝟓 > 𝑭𝒑 𝑬𝟏𝟒 > 𝑭𝒑 𝑬𝟏𝟓 > 𝑭𝒑 𝑬𝟏𝟖 > 𝑭𝒑 𝑬𝟔 >

𝑭𝒑 𝑬𝟑 > 𝑭𝒑 𝑬𝟐𝟒 > 𝑭𝒑 𝑬𝟐𝟎 > 𝑭𝒑 𝑬𝟒 > 𝑭𝒑(𝑬𝟗) > 𝑭𝒑(𝑬𝟏) > 𝑭𝒑(𝑬𝟏𝟗) > 𝑭𝒑(𝑬𝟓) > 𝑭𝒑(𝑬𝟐𝟐) > 𝑭𝒑(𝑬𝟖) >

𝑭𝒑(𝑬𝟏𝟕) > 𝑭𝒑(𝑬𝟏𝟑) > 𝑭𝒑(𝑬𝟐𝟏) > 𝑭𝒑(𝑬𝟏𝟐) > 𝑭𝒑(𝑬𝟏𝟔) > 𝑭𝒑(𝑬𝟐𝟑)}  

This prioritization is able to detect 100% of the faults in PDFSAM’s regression testing process 

by only executing 23% of test cases. The Accumulated Q-value approach is able to only detect 
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67% of faults by executing 78% of prioritized test cases. Figure 20(a) shows the number of 

detected faults versus test case execution. The percent of faults detected by the Additional 

statement coverage technique is 33% after executing 42% of the test cases. Also, the APFD 

distribution (Figure 20(b)) for both proposed techniques is relatively invariant, when compared 

to the Random and Additional statement coverage prioritizations.  

 

Figure 20. (a) Percent of faults detected versus the test suite fraction. (b) Box plot of APFD for PDFSAM 

Table 27. APFD of the applied prioritization techniques for PDFSAM 

Prioritization Techniques Means of APFDs Standard Deviation 
RL-based HMM 0.9164 3.1868E-4 
Accumulated Q-value 0.3260 0.00206 
Additional Statement Coverage 0.2285 0.0217 
Random 0.4985 0.25259 
Worst 0.0568 0 
Optimal (Best) 0.9422 0 
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Table 28. The statistical analysis for RL-based HMM technique vs. other techniques in PDFSAM 

RL-based HMM Technique Vs. Others t-
statistic DF p-value (one-tail) Cohen’ d 

RL-based HMM vs. Accumulated Q-Value 8.2955 25 8.9005E-9 3.2537 
RL-based HMM vs. Statement Coverage 12.49415 25 1.70486E-12 4.9006 
RL-based HMM vs. Random 5.6673 25 5.83228E-6 2.2228 
RL-based HMM vs. Worst 13.78585 25 1.82592E-13 5.4072 
RL-based HMM vs. Optimal (Best) -1.44222 25 0.16118 -0.5656 

 

Table 27 lists the mean and standard deviations of the APFDs for each test case prioritization 

technique. Table 28 shows that the RL-based HMM technique is significantly better than the 

other techniques.   The Accumulated Q-value technique is significantly better than the Additional 

statement coverage technique. Moreover, again, all the differences between the RL-based HMM 

and the other techniques are large according to Cohen’s d measure. 

4.7.4.4 Study 4: TimeSlotTracker 

TimeSlotTracker is the fourth and last application that has been investigated in the evaluation 

phase. Similar to previous applications, we need to initialize the HMM and finally estimate it 

with the best parameters to meet the maximum likelihood condition.  

• N: The number of hidden states is 246. 

• M: The number of observation symbols is 46. 

• A 246* 246 matrix representing the transition probability matrix 

• The observation symbol probability matrix has 246 rows and 46 columns. 

In this case, AutoBlackTest generates 19 episodes throughout the testing process and episode 18 

is considered as the only fault revealing test case. Estimating an appropriate RL- based HMM, 

we compute the forward probabilities as before. 



 

169 

 

Figure 21.  (a) Percent of faults detected versus test suite fraction. (b) Box plot of APFD for 

TimeSlotTracker 

Table 29. APFD of the applied prioritization techniques for TimeSlotTracker 

Prioritization Techniques Means of APFDs Standard Deviation (SD) 
RL-based HMM 0.9209 7.2276E-4 
Accumulated Q-value 0.8675 0.0017 
Additional Statement Coverage 0.462 0.04305 
Random 0.5028 0.27145 
Worst 0.023 0 
Optimal (Best) 0.9735 0 

 

Table 30. The statistical analysis for RL-based HMM technique vs. other techniques in TimeSlotTracker 

RL-based HMM Technique Vs. Others t-statistic DF p-value (one-tail) Cohen’ d 
RL-based HMM vs. Accumulated Q-
Value 1 18 0.32988 0.4588 

RL-based HMM vs. Statement Coverage 2.51661 18 0.02099 1.1546 
RL-based HMM vs. Random 2.17946 18 0.04209 1.000004 
RL-based HMM vs. Worst 10.37642 18 2.89352E-9 4.7610 
RL-based HMM vs. Optimal (Best) -1 18 0.32988 -0.4588 
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After sorting the probabilities, the RL-based HMM prioritization technique reports the following 

test suite. 

{𝑭𝒑 𝑬𝟏𝟖 > 𝑭𝒑 𝑬𝟓 > 𝑭𝒑 𝑬𝟕 > 𝑭𝒑 𝑬𝟎 > 𝑭𝒑 𝑬𝟏𝟐 > 𝑭𝒑 𝑬𝟏 > 𝑭𝒑 𝑬𝟗 > 𝑭𝒑 𝑬𝟔 >

𝑭𝒑 𝑬𝟏𝟏 > 𝑭𝒑 𝑬𝟒 > 𝑭𝒑 𝑬𝟏𝟎 > 𝑭𝒑 𝑬𝟏𝟓 > 𝑭𝒑 𝑬𝟏𝟒 > 𝑭𝒑 𝑬𝟏𝟑 > 𝑭𝒑(𝑬𝟑) > 𝑭𝒑(𝑬𝟖) >

𝑭𝒑(𝑬𝟐) > 𝑭𝒑(𝑬𝟏𝟔)}  

It shows that the fault detection rate using prioritized test cases would be 100% for 

TimeSlotTracker; it means that by executing only one test case the fault would be detected. On 

the other hand, this fault would be found after the execution of 21% and 37% of the test cases, 

respectively, using Accumulated Q-value and Additional statement coverage approaches. Figure 

21(a) also depicts the percentage of detected faults versus test case executions for each applied 

prioritization technique. In addition, Additional statement coverage and Random approaches still 

have more variant distributions than the other techniques, while the RL-based HMM distribution 

is “close” to the upper bound (Figure 21(b)).  The mean and standard deviation APFD of the 

prioritization processes are shown in Table 29. Table 30 indicates that RL-based HMM is 

significantly better than Random and Additional statement coverage, but it is not significantly 

different from the Accumulated Q-value prioritization method. Cohen’s d measure also confirms 

this result.  The Accumulated Q-value approach again provides better a better performance than 

the Additional statement coverage technique. 

4.7.4.5  Study 5: Extended PDFSAM 

To demonstrate that the proposed techniques are also applicable of prioritizing test cases with 

somewhat larger size test suites, we applied the approaches to order 60 test cases.  
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For this study, we run the testing process (AutoBlackTest) of PDFSAM again, but now for two 

hours. The default testing time had been set to 1 hour for the other case studies in order to allow 

an unbiased comparison across application programs. In the other case studies, except PDFSAM, 

the test case generation procedure completed before the testing time finished. In this experiment, 

we generated 60 test cases of which test cases numbered 0, 2,25,29,40 and 52 were able to detect 

faults. In order to initialize the HMM and finally estimate it with the best parameters to meet the 

maximum likelihood condition, we consider the following parameters:  

• N: The number of hidden states is 207. 

• M: The number of observation symbols would be 79. 

• A 207* 207 matrix representing the transition probability matrix 

• The observation symbol probability matrix also has 207 rows and 79 columns. 

After estimating the model and calculating the accumulated Q-values, we sort the test cases 

based upon each considered technique.  The results show that the RL-based HMM technique 

again outperforms the other techniques when considering improving the fault detection rate. For 

instance, a prioritized test suite using RL-based HMM is able to detect all 6 faults by executing 

only 16 test cases (only 26% of the test suite) while statement coverage technique needs to run 

48 test cases (80% of test suite) to find all of the faults. Figure 22(a) shows the percentage of 

detected faults versus the fraction of test suite executed with the mean APFD. Figure 22(b) also 

shows that both proposed techniques are relatively invariant in terms of APFD.  

In addition, Table 31 illustrates the results of computing the mean and standard deviation of the 

APFD measure for 1000 trials per application. Table 32 reports the result of applying a paired t-

test and calculating Cohen’s d measure on the percentage of detected faults by executing a 
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prioritized test suite with mean amount of APFD. According to this investigation, the RL-based 

HMM technique prioritizes test cases significantly better than the other techniques except 

Optimal. Also, the Accumulated Q-value technique has better APFD measure than coverage-

based prioritization and sorts test cases significantly better than it. 

 

Figure 22. (a) Percent of faults detected versus test suite fraction. (b) Box plot of APFD for Extended 

PDFSAM 

Table 31. APFD of the applied prioritization techniques for Extended PDFSAM 

Prioritization Techniques Means of APFDs Standard Deviation (SD) 
RL-based HMM 0.895 0 
Accumulated Q-value 0.604 0.005 
Additional Statement Coverage 0.494 0.0042 
Random 0.469 0.2967 
Worst 0.0503 0 
Optimal (Best) 0.965 0 
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Table 32. The statistical analysis for RL-based HMM technique vs. other techniques in Extended 

PDFSAM 

RL-based HMM Technique Vs. Others t-statistic DF p-value (one-tail) Cohen’ d 
RL-based HMM vs. Accumulated Q-
Value 6.89838 59 3.72746E-9 1.7961 

RL-based HMM vs. Statement Coverage 8.91787 59 1.35721E-12 2.3220 
RL-based HMM vs. Random 10.16044 59 1.16392E-14 2.6455 
RL-based HMM vs. Worst 19.28205 59 2.13086E-27 5.0206 
RL-based HMM vs. Optimal (Best) -3.94484 59 2.1174E-4 -1.0271 

 

4.7.4.6 Study 6: WordProcessor, TerpPaint and Calculator 

As our last experiment, we have applied our proposed techniques on three GUI applications: 

WordPrcessor, TerpPaint and Calculator26. TerpPaint is a paint program written using Java and 

AWT/Swing. It is similar to Microsoft Paint and is developed at the University of Maryland. 

WordProcessor is a small application, which was developed by [175] as part of their efforts in a 

“fast-paced guide” for teaching Swing. Finally, Calculator is an open-source program, which 

implements a four-function calculator; Calculator is developed using Java Swing27.  

The purpose of choosing these applications is comparing the results of our test case prioritization 

approaches against those presented in [164]. Unfortunately, the framework used in their 

experiment is not available. Further, the paper’s explanations are insufficient to re-implement 

their experimental environment.  

Hence, we can only use the paper’s results and run our methods on identical applications. This 

implies that the results are not directly comparable as the test data will be different in the two 

papers. Since, AutoBlackTest generates meaningful test cases with optimum lengths, combining 

                                                
26 http://sourceforge.net/projects/terppaint 
27 http://beginner-java-tutorial.com/java-swing-calculator.html 
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test cases to generate different-length test suites can lead to generating false positive fault-

revealing test cases. Therefore, we only consider the prioritization results for L1 test cases from 

Huang et al.’s research [164]. 

In order to increase the similarities between the two experimental frameworks, we also seeded 12 

faults from the same types into a random location in each application and ran (100 times) RL-

based HMM, Accumulated Q-value and Coverage techniques on each set of test cases generated 

using AutoBlackTest. In addition, the untreated (un-prioritized) and best orderings of test cases 

has been considered to estimate the test effectiveness boundaries and hence will be used as the 

point of comparison.  

It is worth noting that the reason of considering the untreated ordering in this research is that 

Huang et al.‘s research only covers two techniques (untreated and coverage) as non-weight based 

prioritization methods and applies t-tests and statistical analysis on them. Also, they didn’t 

compare weight-based techniques with the Best and Worst orderings. Therefore, unlike the 

previous studies, we have compared our proposed technique with untreated method in order to 

follow the same approach as theirs.  

Because the exact test cases, which have been used in Huang et al.’s research, were not available 

for doing an accurate comparison, it cannot be claimed that the test cases have been generated 

and used in this research have the exact same coverage or fault detection capability as Huang et 

al’s test cases. Therefore we have decided to investigate the effectiveness of each considered 

technique by comparing its fault detection capability with untreated, coverage-based and best 

orderings. In order to clarify the effectiveness of each test case prioritization technique, we also 

compared the mean of APFD of each method with the Best prioritization (the optimal ordering of 
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test cases). As the set of test cases are different in the two papers the best (or optimal) results are 

different. The following formula shows the method we have used to calculate the relative ratio of 

each method versus their own Best (optimal) approach. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑖𝑜 𝑅𝑅 =   !"#$!"#$!!"#$%&#'%!"#$
!"#$!"#$

            (16) 

Obviously, prioritization techniques with a low RR value approach optimality. Table 33-Table 

37 show the mean APFDs and Relative Ratios for each applied technique. In addition, the results 

of the statistical analysis for each considered application are provided.  

Table 33. APFD of the applied prioritization techniques for TerpPaint  

Prioritization Techniques Means of APFDs RR 
RL-based HMM 0.924 0.0149 
Accumulated Q-value 0.891 0.0501 
Additional Statement Coverage 0.755 0.1950 
Untreated 0.690 0.2643 
Best 0.938 0 
High-to-low equal weight (L1) 0.934 0.603 
High-to-low fault-prone weight (L1) 0.844 0.1590 
High-to-low adjusted weight (L1) 0.966 0.0281 
Best (L1) 0.994 0 

Table 34. The statistical analysis for RL-based HMM technique vs. other techniques in TerpPaint 

RL-based HMM Technique Vs. Others t-statistic p-value (one-tail) 
RL-based HMM vs. Statement Coverage 3.81329 8.93385E-4 
RL-based HMM vs. Untreated 4.12466 4.12614E-4 
RL-based HMM vs. Best 1.2916 0.20932 
Untreated vs. fault-prone weight (L1) 2.6730 0.0043 
Untreated vs. adjusted weight (L1) -3.1059 0.0012 
Coverage vs. fault-prone weight (L1) 3.6082 0.0002 
Coverage vs. fault-prone weight (L1) -1.9221 0.0286 
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Table 35. APFD of the applied prioritization techniques for WordProcessor 

Prioritization Techniques Means of APFDs RR 
RL-based HMM 0.899 0.0088 
Accumulated Q-value 0.887 0.0220 
Additional Statement Coverage 0.716 0.2105 
Untreated 0.707 0.2205 
Best 0.907 0 
High-to-low equal weight (L1) 0.946 0.0463 
High-to-low fault-prone weight (L1) 0.969 0.0231 
High-to-low adjusted weight (L1) 0.972 0.0201 
Best (L1) 0.992 0 

Table 36. The statistical analysis for RL-based HMM technique vs. other techniques in WordProcessor 

RL-based HMM Technique Vs. Others t-statistic p-value (one-tail) 
RL-based HMM vs. Statement Coverage 4.265 4.65314E-4 
RL-based HMM vs. Untreated 3.67374 0.00174 
RL-based HMM vs. Best -1.0063 0.327 
Untreated vs. fault-prone weight (L1) -3.7138 0.0001 
Untreated vs. adjusted weight (L1) -3.6246 0.0002 
Coverage vs. fault-prone weight (L1) -0.6824 0.2485 
Coverage vs. fault-prone weight (L1) -0.7929 0.2151 

Table 37. APFD of the applied prioritization techniques for Calculator 

Prioritization Techniques Means of APFDs RR 
RL-based HMM 0.708 0.0432 
Accumulated Q-value 0.622 0.1594 
Additional Statement Coverage 0.577 0.2202 
Untreated 0.408 0.4480 
Best 0.740 0 
High-to-low equal weight (L1) 0.838 0.1440 
High-to-low fault-prone weight (L1) 0.898 0.0827 
High-to-low adjusted weight (L1) 0.931 0.0490 
Best (L1) 0.979 0 
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Table 38. The statistical analysis for RL-based HMM technique vs. other techniques in Calculator 

RL-based HMM Technique Vs. Others t-statistic p-value (one-tail) 
RL-based HMM vs. Statement Coverage 3.81329 8.93385E-4 
RL-based HMM vs. Untreated 4.12466 4.12614E-4 
RL-based HMM vs. Best -2.99924 0.00899 
Untreated vs. fault-prone weight (L1) -3.3235 0.0013 
Untreated vs. adjusted weight (L1) -3.8280 0.0003 
Coverage vs. fault-prone weight (L1) -2.4221 0.0113 
Coverage vs. fault-prone weight (L1) -3.2269 0.0016 

Table 38 indicates that the RL-based HMM technique has the closest behavior to the Best 

ordering due to the low RR (=0.0149). In addition, according to the Table 34, it also prioritizes 

test cases significantly better than untreated and coverage-based prioritizations in TerpPaint.  

The same prioritization efficiency can be interpreted based uponTable 35 to Table 38 for both 

the WordProcessor and the Calculator application. For example (Table 35), the RL-based HMM 

approach prioritizes test cases with the lowest difference compared to the Best technique 

(RR=0.0088) while, for the High-to-low adjusted weight (L1), the most accurate proposed 

method by [164] the RR value is equal to 0.0201.   

4.8 Discussion 

We have investigated four different applications by inferring four different RL-based Hidden 

Markov Models. The results show that the RL-based HMM prioritization technique is successful 

in all four cases, plus a second trial on PDFSAM plus three extra GUI applications proposed by 

[164], specifically in prioritizing test cases that contribute to discovering faults. 

According to the empirical results represented in Section 4.7, since the RL-based HMM 

technique worked significantly better than other applied approaches according to multiple 

statistical tests, effect size measures and more informal investigations, the first research question 
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(RQ1) defined in the beginning of this section has been addressed. In addition, according to 

Table 22, we can conclude that even though in some cases (like UPM) other approaches (such as 

Additional Statement Converge and Random) have an acceptable performance, RL-based HMM 

is more successful in detecting difficult-to-find faults. For example in TimeSlotTracker, where 

the chance of finding the fault is 0.05, RL-based HMM is able to correctly prioritize the fault-

revealing test case. 

 To address the second research question (RQ2), we replicated all the experiments and analysis 

for another proposed technique (Accumulated Q-value). This technique achieves results that 

demonstrate that this technique has better mean APFD than the other techniques (except RL-

based HMM and Optimal), and is significantly better than Random and Additional coverage 

when applied to the PDFSAM and Buddi applications. 

The third question (RQ3) investigates the effectiveness of both proposed techniques in 

comparison to each other. As mentioned earlier, statistical analysis illustrates that the RL-based 

HMM is significantly more effective than the Accumulated Q-value technique in 3 of the 4 

applications, and in the 4th (TimeSlotTracker) application they are not significantly different. The 

results from the TimeSlotTracker experiment demonstrates a (worst case) situation of when the 

effect of executing actions (causing further computations) in a specific (GUI) state is similar to 

the effect of triggering different actions in each state. That is, they contribute the “same amount” 

of information for making prioritization decisions. The TimeSlotTracker application is a good 

example of an application, which only has actions, which trigger small amounts of computations. 

Under these circumstances, the performance difference between the RL-based HMM technique 

and the Accumulated Q-value approach will be minimalized. However, it is believed that the RL-

based HMM technique will always out-perform the Accumulated Q-value approach.  
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In addition, in order to investigate the effectiveness of the proposed techniques in cases with 

larger test suite sizes, we ran AutoBlackTest for an extended period and re-applied all the 

techniques on a test suite now with 60 test cases. The results shows that both of our approaches 

are still applicable to larger-sized test suites, and that they also prioritize them better than the 

other state of the art methods. 

To answer the fourth question (RQ4), we also have considered three GUI-based applications 

from [164] in order to show the effectiveness of our proposed technique in comparison with 

other GUI test case prioritization approaches. The results demonstrate that in all the applications, 

that the RL-based HMM technique is significantly better than untreated and coverage-based 

prioritizations; while only the fault-prone weight method outperforms coverage based and 

untreated orderings in terms of fault detection rate for the TrepPaint application. In addition, the 

RL-based HMM is not significantly different to the Best ordering in all considered applications 

according to the Relative Ratio measure.  

It is believed that these results illustrate that the combination of Reinforcement Learning and 

Hidden Markov models can be highly successful in prioritizing test cases, this is because this 

enhanced model considers the test cases from two different and novel perspectives: the tendency 

of the system to prioritize test cases that, (a) trigger different actions in each state, and (b) 

executing actions causing more computations in GUI states. 

4.8.1 Run-Time Analysis 

To investigate the computational complexity of the RL-based HMM prioritization approach, we 

ran a single instance of this technique on a modest hardware and software platform consisting of 

a 3.4 GHz CPU, 8 GB RAM on an HP Compaq machine (6200 Pro SFF PC) using the RHMM 
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package which has been developed using the R language (R is a statistical scripting language28) 

for estimating HMM parameters. 

In order to investigate the systems with the largest number of test cases generated by 

AutoBlackTest and GUITAR, we have considered both the Extended PDFSAM and TerpPaint 

applications in terms of prioritization run-time. The RL-based HMM technique ran in 12.3 

seconds in Extended PDFSAM (8.1s to extract the Q-values and initial values of the HMM 

parameters, 3.26 for estimating an HMM using the Baum Welch algorithm and less than a 

second to calculate the forward probabilities). Also, based upon Baum Welch and Forward 

algorithms’ time complexities, the computation order is polynomial 𝑂 𝑁!𝑇 , where N represents 

the number of hidden states and T indicates the number of observations in a sequence; and hence, 

will not exponentially grow by increasing the number of test cases. The corresponding time for 

the TerpPaint application is 17.1 seconds. It is worth noting that the parameter extraction 

techniques used in this study can be optimized in terms of implementation (e.g. anecdotal 

comparisons often state that algorithms written in R run 1000 times slower than equivalent 

algorithms in C29) to decrease the overall run-time in future studies. However, as the result, it can 

be concluded that time is needed to prioritize test cases using our approach is trivial compared to 

the improvements it is providing in early detection of faults. 

4.9 Related Work 

Applying Markov chain models in software testing processes dates back to 1994, when [10] 

described a method for statistical software testing. They used Markov chains as a finite state, 

discrete parameter, and time homogeneous modeling approach to develop and analyze a model-
                                                
28 http://www.r-project.org 
29  http://lists.nongnu.org/archive/html/igraph-help/2011-02/msg00045.html 
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based testing technique for automatic test case generation. They concluded that Markov chain 

usage models can be utilized in a diverse set of application domains and are useful during a 

statistical testing process. Correspondingly, Markov chain usage models have been utilized 

several times in software testing and reliability research [176]–[178]. Also Bayesian Network 

models have been applied in software failure detection problems to design software reliability 

models [179] or in probabilistic test case prioritization to incorporate source code changes and 

test coverage data into a unified model [180], [181]. Moreover, web application testing is another 

interesting area for applying Markov chain models. [182] considered the effectiveness of Unified 

Markov Models (UMM) as a suitable testing mechanism through two empirical studies. They 

confirmed that UMMs are appropriate methods to test web applications accurately. [183] present 

a controlled Markov chains (CMC) approach to software testing. They considered software 

testing as a control problem, where the software under test serves as a controlled object. [18] also 

presented an MBT method to generate test cases to perform load testing for any software system 

that is “model-able” by a Markov chain. Their algorithm was successful in preserving faults that 

would have been likely to be missed in traditional load testing methods. The purpose of the 

authors in designing this technique was not “test case prioritization”. However, their thoughts are 

statistically close to what is presented in this research. 

One of the most critical parameters in using Markov chain models in the MBT area is in 

estimating transition probabilities. Many researches provided diverse techniques to estimate 

Markov chain parameters, however, [184] proposed a novel technique to target coverage criteria 

rather than using a  classical uniform probability generation approach. It would be an applicable 

technique in creating a Markov chain with appropriate initial parameters leading to a global 

optimized model. 
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As mentioned earlier, the application of HMM models to pattern recognition and bioinformatics 

problems, has been well-established. On the other hand, limited numbers of papers have been 

published on Hidden Markov Models (HMM) applied to software testing; however, it has been 

used for modeling computer security problems and intrusion detection in web applications. 

HMMpayl is a combination of HMM usage and multiple classifier systems that has been 

reported as an effective tool against the most frequent attacks to web applications [185]. 

In addition, combining HMM and Reinforcement learning concepts to re-estimate and improve 

the model has been considered in several artificial intelligent problems such as robots’ motion 

prediction [74], speech recognition [75] and natural language generation [76]. Also [77] suggests 

a method to handle RL algorithms in partially observable Markov Decision Problems. [78] 

provides a comprehensive study on RL with hidden states. He also represents four new RL 

algorithms for environments with hidden crucial states. 

One of the reasons, which initially motivated the ideas beyond the design of an RL-based HMM 

test case prioritization technique, was the existence of prioritization approaches, which are only 

applicable for non-GUI testing. [139] describe several techniques for using information gathered 

from the test case generation phase to prioritize test cases in regression testing. They measured 

the fault detection rate of each method and found their proposed techniques are able to improve 

this rate.  Furthermore, [186] present a novel test suite prioritization technique, which 

concentrates on test cases’ fault detecting ability. They used a fault model, which generates test 

cases to guide specification-based testing. Results confirm the effectiveness of this approach in 

logical expression testing, but there is no evidence of it being applicable to the testing of state-

based models, which are very applicable in testing interactive applications. In addition, [187] 

consider the application of test case prioritization in regression testing procedure from a time-
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constraint perspective.  The authors believe that the time constraints, which can be imposed on 

regression testing, can strongly affect the behavior of the prioritization techniques. They also 

provide helpful suggestions about determining the appropriate situation for prioritizing test case 

based upon the system’s constraints. 

Finally, [164] have proposed a method for adding weights to event flow graphs (a very primitive 

version of a regular digraph). They use the GUITAR tool to generate test cases and a behavioral 

model to which they add weights to the transitions of this graph. This results in a weighted graph 

similar to the graph produced by AutoBlackTest. While AutoBlackTest dynamically analyses the 

SUT to produce system-specific weights, [164] simply use static weights derived from heuristics, 

which have very limited theoretical underpinnings. This implies that the digraph produce by 

AutoBlackTest is clearly superior to the digraph produced by [164]. And hence, we use the 

output of AutoBlackTest, rather than that of [164] as the baseline for analyzing test case 

prioritization techniques in interaction-driven applications. 

4.10   Threats to Validity 

In this section, some potential threats to validity of our research are discussed. We consider two 

types of threats: 

• Threats to internal validity, which are cause-effect relationships between independent and 

dependent variables.  

• Threats to external validity, which are limitations about generalizations from our study, 

or the threats to transform the research from the specific case study to general subjects. 
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With respect to internal validity, the most significant threats are (a) the four different models 

(one per application) generating diverse levels of forward probabilities; and (b) the size of the 

test suites derived by AutoBlackTest from these applications. This first threat can be classified as 

an instrumentation effect. This can add bias into the results of the APFD measures. To reduce the 

likelihood of this effect, we have normalized the Q-values and APFD measure to be within the 

range [0, 1], thus minimizing any impact in the values of the transition matrices and the APFD 

measure. The second threat represents the most significant issue. Given the choice of the domain 

of application – extending the automatic generation of (black-box) test cases for GUI-based 

applications – no obvious approach exists to minimize this threat. AutoBlackTest produces 

superior results when compared to other systems (such as GUITAR) in this domain of 

application. However, the volume of test cases generated by it can be viewed as “rather small” 

leading to prioritization problems of “limited extent”. In fact, AutoBlackTest explicitly discards 

tests which it considers to be of no value which compounds this “size of test suite” issue further. 

Hence, further research is required in producing more complete regular digraphs and extended 

digraphs models to advance the topic further. 

On the other hand, the threats to external validity for our research are centered on the selected 

applications as representative of any possible application. To address this issue, we evaluate our 

method on four different GUI-based applications. As mentioned before, any application with a 

weighted or a non-weighted behavioral model can be utilized, but because results show that 

AutoBlackTest is a successful model–based GUI testing tool, we have concentrated on working 

in this area. Also by evaluating the proposed method on known and pre-evaluated applications, 

we can compare our results and illustrate the effectiveness of the RL-based HMM technique. 
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4.11   Conclusion  

Many studies have investigated automatic test case generation, test case prioritization and GUI 

testing, but few of them specifically focused on the fault based test case prioritization issue in 

GUIs.  

In this research, we propose a novel fault-based technique, the extended digraph. It is argued that 

the extended digraph provides a richer explanation of program behavior than a regular digraph. 

This digraph is generated by using an RL-based HMM approach to prioritize test cases. We 

present an approach to initialize an appropriate HMM based on a Q-learning algorithm that leads 

to a final HMM with the maximum likelihood estimate of parameters after applying an EM 

algorithm. Then we use the estimated model to compute the likelihood (forward probability) of 

the generated test cases. Finally, we presented a new definition for test case prioritization based 

upon these forward probabilities.   

In addition, we propose another technique, which uses the summation of each test case’s Q value 

in order to sort them in a descending order. Thus, test cases with the higher amount of 

accumulated Q-value than others get higher priority in the sorted list. 

To evaluate the proposed methods, we designed an experimental setup using AutoBlackTest as a 

test case generator tool. Random, Additional statement coverage, Worst and Optimal 

prioritization are also included in order to provide a comprehensive comparison. We applied all 

of the prioritization techniques on four GUI applications to evaluate the effectiveness of our 

proposed approach and address the first three research questions. In addition, as an extra 

experiment, we have compared the RL-based HMM technique with the weight-based 

prioritization approach presented by [164].  
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According to the APFD measure, Relative Ratio, boxplots, statistical tests and effect size 

estimates, RL-based HMM outperforms the other approaches in terms of fault detection 

effectiveness. It illustrates that considering GUI states and actions are playing an important role 

in improving the fault detection rate. Because the RL-based HMM approach combines RL and 

HMM concepts, it is able to sort a test suite by prioritizing test cases with special focus in two 

important aspects:   

• The amount of computations (changes), a test case may cause in GUI states (using Q-

leaning) and, 

• The probability of triggering each action in each specific state, plus the amount of 

computations (changes), a test case may cause in GUI states (using HMM). 
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5 Automated Testing of Motion-based Events in Mobile 
Application 

5.1 Introduction 

In recent years, mobile devices have been produced in various types and shapes, offering a wide 

range of services and features. It is a very difficult task to develop mobile applications that are 

able to work appropriately on different mobile devices and operating systems (OSs) [188], [189]. 

On the other hand, releasing applications that are not fully functional, usable, and consistent can 

risk the developer’s reputation in such a competitive environment. Testing the application’s 

functionality and verifying its robustness are key factors in improving the application’s quality. 

Embedding new hardware devices, such as movement sensors (accelerometers and gyroscopes), 

in smartphones and tablets further complicates the testing procedure. Users are able to interact 

with the application by touching, tilting, shaking, and rotating the mobile devices. When a device 

is in motion or it’s screen is continuously touched, the probability of unintentional inputs 

increases; in such circumstances, automatically generated test suites are needed to produce 

accurate test cases and accelerate the mobile application testing procedure. 

Some tools and techniques have been developed to test the quality of the source code for mobile 

applications30 [190]–[192], but the number of approaches that focus on automated testing is still 

very limited. The majority of these automated testing tools offer capture-and-replay functionality 

to test the application’s User Interface (UI) [14], [193], [194]. For instance, Choudhary et al. 

[192] have conducted a study on existing testing tools for Android applications. Although the 

study dealt with techniques for testing the mobile applications, it doesn’t provide any insight or 

                                                
30 Android: http://developer.android.com/tools/help/lint.html ; iPhone: http://clang-analyzer.llvm.org/  
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mechanism for generating test cases for motion-based mobile applications. In addition to this, the 

case studies considered in [192] do not have any motion-based facilities, and hence are not 

suitable to be utilized in this study. 

Writing and continually improving motion-based test cases is a difficult task when testing mobile 

applications that use movement-sensor data. Therefore, considering existing mobile testing tools 

and approaches, two problems can be noticed: 1) no automated approach is provided (this 

problem is considered as a technical challenge in this study); and 2) generating test cases for 

motion-based mobile applications remains unconsidered (this problem is considered as a 

scientific challenge in this study). Thus, in this chapter of the thesis, we propose a new approach 

to address these limitations. It is argued that mimicking users’ behaviours is one of the key 

factors in generating gesture-based test cases. It helps in executing realistic test scenarios and 

standard gestures [195], [196].  

In order to automatically generate test cases, mimicking human generated gestures in motion-

based mobile applications, we propose a novel approach, which synthesizes the motions, and 

subsequently, simulates the test cases based upon the formalized gestures. Motion data is 

represented by the data captured, using the movement sensors and the objects’ positions (2D 

coordinates) on the screen. An application can then use the sequences of motions to simulate the 

gestures and test the UI. To increase the chance of generating realistic movements, a set of 

training data is generated by human users and is used to train the hidden Markov model (HMM) 

classifiers. The models are iteratively used to generate new motion sequences for the application 

testing procedure. Gestures and animations are commonly considered to be the key components 

in modern mobile user interface design; hence this work directly targets the heart of the matter in 

this new and evolving application domain. 
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Our experiments on sample Android applications that support motion-based gestures reveal the 

effectiveness of the proposed approach as an automated testing process. Although, the focus of 

the empirical evaluation of the proposed approach is on Android applications, it is worth noting 

that the algorithm is also applicable to motion-based iOS applications and applications found on 

other mobile platforms. 

In summary, the generated motions are used to automatically produce test cases, mimicking 

human-generated gestures with the technical goal of increasing code coverage. Therefore, the 

process is highly beneficial during regression testing, since the generated test cases can later be 

executed on newer versions of the application to uncover issues in the system.  

This study contributes to the research in this area by: 

1. Proposing a new approach to synthesize motion data, and make it executable as a test 

input to the application being tested. 

2. Applying a HMM classifier on the training data to create a set of HMMs, and 

subsequently using them to generate motion sequences. 

3. Evaluating the effectiveness of the proposed approach in terms of, (1) mimicking the 

user’s behaviour, and (2) increasing the code coverage of the software under test (SUT). 

This chapter is organized as follows. Section 5.2 provides related work and background 

information and definitions relating to mobile applications, particularly motion-based gesture 

testing. Section 5.3 describes an overview of the proposed approach, the gesture synthesis and 

simulation procedures, while Section 5.4 provides the design and implementation details of the 

proposed technique. Section 5.5 provides a running example of the proposed test case generation 

approach using real data. Section 5.6 discusses the evaluation phase, experimental setup, and 
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results. Section 5.7 explains the experiment’s run-time analysis. Section 5.8 examines the study’s 

limitations and the threats to its validity. Finally, Section 5.9 presents the overall conclusions and 

some thoughts on potential future research.  

5.2 Related Work 

5.2.1 Mobile Application Testing 

Testing is a crucial activity in a software development procedure. Producing a defect-free 

application, addressing all of the requirements of the users, along with providing fully functional, 

consistent, and highly usable services are vital in highly competitive environments. Over the past 

few years, phenomenal progress in the mobile device market has led to an outstanding growth in 

the mobile application development industry. However, the growth in developing mobile testing 

procedures and techniques has been insufficient. Although many testing methods and tools exist 

for desktop and server/host software, most of them are not applicable for testing “mobile 

software” [197].  Moreover, most existing test generation techniques rely on a crawler to explore 

the dynamic states of the application under test. Such approaches are automated and systematic 

but lack the domain knowledge of system experts. Far et al. [198] propose a new technique to 

combine the human knowledge present in the form of input values with the inferred knowledge 

of automated crawling. Similar approaches have not been applied in testing mobile applications. 

Hence, in this study, we propose an approach, which relies on both human and automated 

exploration data. Ermuth et al. [199] also presents a UI-level test case generation technique that 

applies human-produced execution traces in order to automatically create complex sequences of 

events that are able to cover more pages, scenarios and code lines compared to a purely random 

test generator. This approach relies on inferring sequences of low-level UI events (macro events) 
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using data mining techniques and the inference of finite state machines (FSMs). However, 

Ermuth’s technique [199] also has never used to test mobile applications. 

Although many traditional testing tasks are common between mobile applications and the 

desktop/web-based applications, several key factors cause challenges in the mobile testing 

procedure. For example, the variety of mobile devices and diversity in OSs cause difficulties in 

testing device-specific factors [195]. Mobile devices are different in terms of screen sizes, 

platforms, input methods, and the quality of the sensor data. Such differences can easily multiply 

testing efforts. For testing an application, it needs to be exposed to a sufficient number of devices 

from different models, screen sizes, and OS versions. Covering an adequate number of factors 

leads to generating a large number of test cases that are required to be executed in an 

environment where short release cycles are common. This can easily affect the quality of the 

application, along with the time of the marketplace and the costs of construction. Integrating 

automation approaches with test case generation procedures is a key factor in addressing these 

issues in the “mobile testing era”, where many test cases need to be executed on a large selection 

of mobile devices and configurations to reproduce defects.  

In this regard, [200] presents a framework to test the functionality of mobile applications when a 

device is moved to a new network. The framework uses an application-level emulator as a 

mobile agent to carry the application across networks to ease the testing process under different 

network technologies. Additionally, [201] suggests a quality assurance framework to define key 

patterns and metrics in mobile application testing. Although these research studies provide 

insights into the testing of the mobile applications, they still do not cover the test case generation 

phase. Several studies with a special focus on automated testing for mobile applications have 

also been conducted; [202]–[206] suggest different, automated, graphical user interface (GUI) 
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testing approaches for Android applications. For example, [202] produces AndroidRipper; this 

tool seeks to explore the application’s GUI and evaluate its effectiveness in terms of fault 

detection ability when compared to random approaches. Android Monkey31 generates purely 

random tests for Android mobile applications using a brute-force mechanism. Android Monkey 

usually achieves shallow code coverage compared to other state of the art approaches used for 

testing GUI in Android applications [207]–[209]. Mao et al. [210] also proposes another 

framework which combines random fuzzing, systematic and search-based exploration, exploiting 

seeding and multi-level instrumentation in order to automatically explore and optimise test 

sequences in Android applications. Moreover, [211] presents a new approach to automatically 

generate test oracles for testing user-interaction features found in mobile applications. Given a 

model of the mobile application’s UI, this framework uses a library of oracles and generates a 

test suite to test the user-interaction features in the application. There also has been some work 

[212] that uses contextual information to randomly generate inputs to test mobile  applications 

and automatically find crashes. Such approaches are more focused on discovering; reporting and 

reproducing crashes are not practically used to generate functional test cases covering the source 

code. 

Although, some automated test case generation techniques are suggested for testing the UI of 

mobile applications, but their functionality and applicability in testing the new features of 

today’s mobile phones are far from perfect. To test the UI, the mobile application needs to be 

executed with user interaction events. With technological advancement in smartphones and 

tablets, natural user interfaces (NUIs), which no longer use keyboards and keypads as human-

machine interfaces, have become popular. Touch-sensitive screens, speech recognizers, and 

                                                
31 https://developer.android.com/studio/test/index.html 
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gesture detectors are the primary interaction channels in the new generation of mobile 

applications. This era of application testing is relatively new, and only a limited number of 

studies have been performed to address these testing challenges [195], [196]. 

5.2.2 Testing Motion-based Gestures  

Mobile applications, which allow users to control the applications’ functionality through NUIs, 

normally recognize gestures by using the data provided by the embedded sensors in the mobile 

device [213]. Several smartphones and tablets contain accelerometers to control motion inputs. 

One of the most common applications of accelerometers is presenting the landscape and portrait 

views of the screen based on the way the device is being held [214]. The 3-axis model of the 

accelerometer is able to measure the magnitude and direction of the acceleration (gravitational 

force) as a vector [𝑎𝑥! ,𝑎𝑦! ,𝑎𝑧!] for a motion 𝑘 in a 3D space. Each acceleration parameter 

measures changes in velocity over time along a linear path. Combining all three accelerations, 

lets the application detect the device’s movement in any direction and obtain the device’s current 

orientation. Depending on the graphical capabilities of mobile applications, 2D or 3D versions of 

the acceleration vector are considered. Obviously, 2D applications do not use 𝑎𝑧!to indicate a 

motion 𝑘. From the tester’s perspective, testing applications that support motion-based events 

introduce a new complexity to the testing procedure; motion-based gestures should be accurately 

specified and reliably reproduced [195]. The lack of formal motion-gesture specification 

prevents testers from developing an automated test generation approach. To simulate the 

motions, atomic gestures should be formalized. The next section presents the simulation and 

synthesis procedures of motion-based events (gestures). 
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5.3 Gesture Simulation 

In the simplest test-case generation process, the test data-points can be provided to the 

application by using a random test generation approach, which randomly creates data frames 

within a defined range to move the object on the screen. It can be expected that the number of 

reasonable gestures, which are created randomly, are very limited. Therefore, even if these test 

cases are able to cover an acceptable number of branches in the source code, they may not be 

able to reveal faults a human user can discover simply because they cannot replicate standard 

gestures [196]. 

This study considers an automated test case generation procedure for mobile applications 

interacting with users using motion-based events. However, it is not limited to the applications 

only supporting motion-based events and can be applied on the application covering both types 

of inputs (motion-based and non-motion based). In such applications, users normally interact 

with these types of applications by performing a sequence of gestures, e.g. by moving a flying or 

bouncing object on the screen or drawing geometrical shapes by touching the screen. In other 

words, user-generated gestures are transferred to the object or touched location to move the 

object toward the desired direction or to draw a geometrical shape (e.g. circle) around the 

touched point on the screen. It is noteworthy that motion-based events are not only used to move 

an object on the screen; sometimes, shaking a mobile phone in a specific direction or touching 

and dragging the screen leads to executing a function or opening another application [215].  This 

study focuses on the procedure to automatically generate test motions on both types of 

applications (1) applications only supporting the data generated using accelerometer sensors; and 

(2) applications supporting both the data generated using the accelerometer sensors and the data 

generated using other types of events such as those produced by touching the sensitive screen. In 
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such cases, several parameters can affect a single event (such as the object size, the size of the 

screen, an object’s location, etc.).  

Since users are free to touch, move and shake their mobile phones in any desirable direction and 

speed, a testing approach must be able to generate sets of standard gestures, which are not only 

executable on the application but also resemble the human-generated motions. Therefore, to 

automatically generate more reasonable gestures – mimicking human users – this research 

proposes a novel approach. It is hypothesized that this mimicking may also result in an increased 

level of code coverage of the SUT. The correctness of this assumption is examined in the 

empirical evaluation section (Section 5.6).  

The proposed technique contains several steps and details, which are depicted in the framework 

provided in Figure 23. This figure shows the schematic overview of our proposed approach for a 

complex application containing acceleration parameters moving an object (bouncing ball) on the 

screen in different directions (as an example). This framework can easily be adjusted for any 

applications supporting motion-based events. The proposed approach consists of the following 

sequential steps: 

• Gathering training data: A human user is asked to interact with the application and 

generate motions to be used as a training set.  (It is worth noting that the person is not 

trained or instructed to generate any specific types of motions from the applications and 

the generated motions are the result of a volunteer interacting with the application for the 

first time. This prevents the data-gathering phase from collecting biased data.) 

• Clustering motions: k-means clustering algorithm as a classic clustering technique is used 

to identify the relationship between data points (motions) generated by human users, and 
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to determine the cluster of behaviours that they belong to. It is well known that data 

clustering is a successful approach in recognizing and categorizing human expressions, 

gestures and actions [196], [216], [217]. More specifically, in this study, the motion 

parameters are partitioned into k clusters, such that each motion is allocated to the cluster 

with the nearest mean. The clustered data later will be used to train an initial model of the 

gestures. 

• Training Initial HMM: In order to produce the first standard test gesture, an initial HMM 

is trained using the human-generated motions and their corresponding clusters. Hidden 

Markov models are well known for their application in pattern recognition such as 

speech, handwriting and gesture recognition. As we utilize time-varying motion 

sequences, HMMs can be used to model and learn human skills such as reasonable 

interactions with mobile applications [218], [219]. Basically, the initial HMM trains a 

model, where its hidden states indicate motions’ clusters, generated in the first step. 

Training the model using the expectation-maximization (EM) algorithm, the probability 

of a gesture belonging to a specific cluster (state) is estimated and used to calculate the 

first motion acceleration parameters. The first motion’s acceleration is calculated by 

computing the mean of the accelerations in each HMM state and by selecting one pair 

randomly.  Using this approach, we can assure that the whole test generation procedure - 

including the initial motion - is produced through the models trained from the user-

generated data, so they potentially mimic human generated gestures.  

• Generating the test data using HMM classifiers: In this step, we apply HMM classifiers 

on clustered data to generate test motions using the previously produced gestures. HMM 

classifiers are successfully used in several studies, considering the prediction of human 
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activities and gestures [220]–[224]. For each cluster, the dynamics of each motion class is 

learned with one HMM. Thus, having 𝑚 motion-clusters, 𝑚 HMM classifiers need to be 

applied. HMM classifiers classify each motion as a function of a future time frame [225]. 

Thus, the probability of a test case belonging to each cluster is calculated using the well-

known Forward algorithm [19]. The motion-cluster with highest Forward probability is 

selected and the mean of the acceleration of the motions belong to this cluster is 

considered as the next motion’s acceleration. 

• Adding generated motions to the training set: In order to avoid over-fitting the model, the 

generated motions should be added to the training set. This helps the model to learn from 

the data rather than memorizing the trend. 

• Storing and Executing test cases: Once, for example, the ball hits the vertical wall (or a 

terminal condition happens), sets of test motions generated since the last hit are stored as 

test cases and will be used to generate real motions in the mobile applications. Terminal 

conditions can be defined generally or per application. For example, a general terminal 

condition can happen once a specific number of test motions are generated, while a 

customized terminal condition happens when a flying object (if applicable) hit the edges. 

In this study, we considered the customized option for the stop criteria. 

It is worth noting that this framework provides an overview of the proposed approach. The 

implementation details of this framework are discussed in Section 5.4. 
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 Figure 23. An overview of applying the proposed approach on the application with flying object. It 

consists of both training the initial HMM (top) and test generation process using HMM classifiers 

(bottom) 

5.3.1 Synthesizing Motion Sequences 

This section describes the method of instantiating the motion sequences for complicated motion-

based applications, which transfer the users’ gestures to a bouncing object. However, the 

application of this approach is not limited to events using sensor-generated data; it can be easily 

used to generate automated test cases for any type of motion-based events. Following the 

previous section, two sets of data (motion sequences) are considered in this study: 

• The training data, which is captured during a real user’s interaction with the application 

and is used to train the initial HMMs.  

• The second set is the test data, which is generated by using the test generation algorithm 

and is presented to the application being tested to evaluate its functionality. To create 

meaningful test data, which is recognizable by the trained HMM and its corresponding 
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classifier, we describe a single motion 𝑘 by a 6-tuple (𝑙𝑥! , 𝑙𝑦! , 𝑣𝑥! , 𝑣𝑦! ,𝑎𝑥! ,𝑎𝑦!), where 

𝑙𝑥! , 𝑙𝑦! indicates the object’s location, 𝑣𝑥! , 𝑣𝑦! determine the velocity, and 𝑎𝑥! ,𝑎𝑦! 

describe the acceleration of the motion in 2D space at a specific time interval. Figure 

24(a) shows the 3D acceleration axes on a smartphone, which also contains a z-axis. In 

order to simplify the explanation of the algorithm and cover more common applications, 

only 2D applications have been considered in this study. However, it is worth noting that 

it is possible to apply the same algorithm in 3D versions as well. 

An example of a single motion in a bouncing ball application is provided below: 

05-07	17:36:15.828:	Vx(32065):	-2.7148619	

05-07	17:36:15.828:	Vy(32065):	-2.7148619	

05-07	17:36:15.828:	lBallX(32065):	549.0	

05-07	17:36:15.828:	lBallY(32065):	20.0	

05-07	17:36:15.828:	Ax(32065):	0.090979666	

05-07	17:36:15.828:	Ay(32065):	-0.12330139	

This can be presented in a 6-tuple format (the data is rounded for the sake of clarity): 

(549,20,	-2.714,	-2.714,	0.09,	-0.123). 

This study also considers two time intervals during the test generation procedure: 

• The first time interval constantly happens every 𝜑 milliseconds [193] to capture the 

information regarding the current motion and position of the object on the screen and to 

calculate the next motion using the well-known SUVAT equations [215], [226]. 
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• The second time interval happens every 𝜃 milliseconds, which is estimated by selecting 

the minimum possible time between two gestures, generated by human users. (This time 

can vary with the complexity of the gestures in different applications). Hence, the 

estimation of θ assists the algorithm to generate more realistic (complex) gestures as it 

accounts for the limitations of kinematics.  

It is worth noting these time intervals can overlap in the sense that in the time window 

between two 𝜃 intervals, 𝜑 interval may happen when 𝜃 > 𝜑. 

Figure 24(b) shows an atomic gesture consisting of a sequence of motions happening within 

these two intervals. Each sequence of motions is terminated by the occurrence of a specific 

condition in the application being tested, depending on the application’s objectives and 

functionalities. For example, a simple terminal condition can happen when the flying object hits 

another object (such as the edges of the screen or another flying object) on the screen. 

Additionally, in the following paragraph, some of the SUVAT equations (equation of motions), 

which are useful in calculating the coordinates of the motions are provided: 

• 𝑣 = 𝑎𝑡 + 𝑣! 

• 𝑙 = 𝑙! + 𝑣!𝑡 +
!
!
𝑎𝑡! 

• 𝑙 = 𝑙! +
!
!
(𝑣! + 𝑣)𝑡 

• 𝑙 = 𝑙! + 𝑣𝑡 −
!
!
𝑎𝑡! 

• 𝑣! = 𝑣!! + 2𝑎(𝑙 − 𝑙!) 

where: 𝑙! is the object's initial position 
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𝑙 is the object's final position 

𝑣! is the object's initial velocity 

𝑣 is the object's final velocity 

a is the object's acceleration 

t is the time  

Definition 22. A test case (𝑇𝐶) consists of a set of motions 𝑀 = 𝑚!,… ,𝑚! ,where 𝑚!!! is a 

6-tuple (𝑙𝑥! , 𝑙𝑦! , 𝑣𝑥! , 𝑣𝑦! ,𝑎𝑥! ,𝑎𝑦!). The number of tuples (motions) in each TC depends on the 

number of detectable motions before the termination situation happens. 

 

Figure 24. (a) 3D acceleration axes on smartphones; and (b) an atomic gesture containing a sequence of 

motions happening within two intervals: (left) a bouncing object keeps moving in the screen after hitting 

the edge in first time-interval 𝜑; (right) the proposed approach calculates the next movement after the 

second time-interval 𝜃 happens 
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5.4  HMM-Based Test Case Generation 

Human activity recognition and classification has been studied using several different machine 

learning approaches such as multi-class support vector machines (SVM) [227], k-Nearest 

Neighbor (k-NN) [228], Neural Networks (NN) and HMM-based approaches, but in cases that 

the activity sequences are time-varying, HMM based approaches have produced better 

performance and results [218], [229], [230]. In addition, the Markovian process had been used in 

several motion detection-related studies to create statistical models from clustered data [196]. 

Following these studies, we also cluster our training data by using the k-means algorithm [231] 

to identify the data points (motions) containing related gestures and to assign them to the same 

clusters (the number of clusters (k) is selected by using the silhouette score [232]). 

In other words, the clustering algorithm is applied to groups of motions with similar behaviour 

and allocates them into a single cluster. These clusters will be used as the class labels for the 

HMM classifiers. This means that each class indicates a set of similar motions in the 

corresponding cluster. Therefore, a motion, which belongs to a class during the classification 

process, also shares similar characteristics with the motions in their corresponding cluster. It is 

also worth noting that since the motions’ clusters, detected by the clustering algorithm, play the 

role of class labels in the proposed HMM classification procedure; we use the term of class label 

instead of cluster to avoid unwanted ambiguities.  

Consequently, the clustered data will be used to train an initial Hidden Markov Model. Since an 

HMM is a Markovian process that contains two sets of states (the observable and the hidden 

[latent] states), only the motion sequences, depending on the latent states (motions’ clusters or 

classes), are visible in such a model. Therefore, as the classes are invisible from an observer’s 
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view, only the motions in this model are completely observable, an HMM can create a more 

powerful model compared to regular Markov models or partially observable Markov decision 

processes (POMDP) [26].  

The HMM in this study is characterized by the following elements [19]:  

• a set of latent states 𝑆 = 𝑠!, 𝑠!,… , 𝑠! ,  which are hidden from the external observer and 

indicates the class of motion sequences; 

• a set of observable states  𝑉 = 𝑣!, 𝑣!,… , 𝑣! , where each is mapped to a corresponding 

motion sequence 𝑚! ; 

• a transition probability 𝐴 !" = {𝑎!"}, 𝑎!" = 𝑃 𝑄!!! = 𝑠! 𝑄! = 𝑠! , 1 ≤  i, j ≤  L, which 

determines the transition probability between different classes. For the initial modelling 

process, because human users generate the motions, the initial transition probabilities 

between different classes of motions can be extracted directly from the training data; 

• an emission probability 𝐵 !" = {𝑏! !" }, 𝑏! 𝑣! = 𝑃 𝑀! = 𝑣! 𝑄! = 𝑠! , 1 ≤  j ≤

 L, 1 ≤  k ≤ N, which indicates the probability of a motion sequence belonging to a 

specific class (estimated by frequency counting on the clustered training corpus); and 

• initial state distribution, Π = 𝜋! , 𝜋! = 𝑃 𝑄! = 𝑠! , 1 ≤  i ≤  L. Each and every state 

can be an initial state in this study. 

Using the values of A, B, and Π, an HMM can be used as a generator to create an observation 

sequence (where 𝑇 is the number of motions in the test case): 𝑀 = 𝑀!,𝑀!,𝑀!,… ,𝑀! . We use 

the notation Λ = (A, B, Π) to simply indicate the complete parameter set of the HMM with 

respect to the Markovian process, which illustrates that the probability of a motion’s occurrence 

only depends on the previous motion: 
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𝑃 𝑠!!! 𝑠! , 𝑠!!!, 𝑠!!!,… = 𝑃 𝑠!!! 𝑠!             (43) 

  This initial HMM model is used as an input to an expectation-maximization (EM) algorithm; 

specifically, we utilize the Baum-Welch algorithm in this study [27]. This algorithm estimates 

the optimal model with the highest likelihood of the estimated parameters. In Table 39, this 

procedure is done by running the HMM	 function in the second line. Then, the initialAccel	

function initializes, the acceleration parameters of the first test motion by calculating the mean of 

the acceleration pairs (i.e. (𝑎𝑥,𝑎𝑦) in 2D space) in each HMM state and by selecting one pair 

randomly. Then, in lines three and four of this algorithm, the CreateMotion	 function is 

generating a motion sequence using the SUVAT equations and the Update function is storing the 

newly created motion sequence as the current motion. After generating the initial motion, the	

CreateMotion	and	Update	 functions are called again but this time within the time interval 𝜑, 

until a termination condition happens (line 5-10). This procedure generates a simple gesture 

based upon the previous motion, using appropriate physics equations. In order to generate more 

realistic and complicated gestures, we propose using the HMM classifier to detect the sequence 

class label at each interval 𝜃 [18], [28], [29].  

The HMMClassifier function in line 12 of the algorithm classifies the current motion sequence 

into an appropriate class of gestures. This function combines a set of sequences of motions and a 

list of class labels to train one HMM per class label (where 𝐿 is the number of class labels). 

Subsequently, the trained models are used to calculate the forward probability of a motion 

sequence 𝑀 per model 𝛬!!! (𝑃 𝑀 Λ!  ). 𝑃 𝑀 Λ!   is calculated using the Forward algorithm, 

which is internally called during the execution of the HMMClassifier function. The forward 

algorithm computes the forward probability,𝛼! 𝑡 , as the joint probability of observing the first t 
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vectors 𝑚! ,𝑇 = 1,… , 𝑡  while in state k at time t. Another way to state this would be that 

𝛼! 𝑡 = 𝑃 𝑚!,𝑚!,… ,𝑚! , 𝑠! = 𝑘 𝛬  which is the probability of observing (𝑚!,𝑚!  ,… ,𝑚!), 

assuming that the system is in state  k  at time t. Given a list of forward probabilities for a motion 

sequence M, we are able to easily detect a model with the maximum probability and assign its 

corresponding class label as the motion’s class label [19]. Determining the class label of a 

motion sequence allows us to easily detect the motion sequences belonging to the same class 

from the training data set, and estimate the next motions values by calculating the mean of the 

accelerations of the motions (the Accel function in line 12). Moreover, the generated motion is 

added to the training set to avoid over-fitting. This helps the model to learn from the data rather 

than memorizing the trend (lines 10 and 16). It is worth noting that in this study, we also use the 

term of “occurrence likelihood” to refer to the forward probability. 

Putting it all together, lines five to seventeen of Table 39 create a set of motion sequences within 

two different intervals. Simple gestures are generated based on physics equations once the first 

time-interval happens. But, the more complicated motions (e.g. gestures with variable 

accelerations) that may require a longer time period to be created by a human user are generated 

within the second time interval. This process provides sufficient duration to allow the method to 

generate more complex gestures. An example of a simple motion is the one calculated by the 

SUVAT equations after the bouncing ball hitting the horizontal wall. While the complex one is a 

motion calculated by HMM classifiers for a ball slowly bouncing in the middle of the screen. In 

reality, when the ball is slowly moving in the screen, the human user can change the direction of 

movement by shaking the phone in several different directions. Therefore in an automated test 

generation process, a trained model is needed to predict the most probable acceleration of the 
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gesture from the last motion’s parameters. In this study, the motion generation is stopped and a 

test case is generated once a terminal condition (e.g. hitting the vertical wall) happens. 

When the application under test is motion-based applications with no acceleration parameter 

involved, lines 18-30 of this algorithm will be applicable.  In such situations, the first motion can 

be created by randomly selecting a touched-point in the screen. In a 2D space, the motion 

sequence only contains the coordinates of the touched-point(𝑥,𝑦). Similar to the algorithm 

provided in Table 39, within different intervals 𝜑 and 𝜃, random touch points are generated, or 

the HMMClassifier function predicts the next motion class-label and the Position function 

returns the position of a touched point by calculating the mean of the position pairs in the 

predicted class. Depending on the application design’s objectives, the position of a touched-point 

can be used to draw a shape or render functionality such as vibrating the phone or opening a 

dialogue box. In this algorithm, in order to focus more on the second case study, we consider 

creating a geometrical shape (e.g. circle) with the touched-point coordinates as its center 

(CreateShape function). Additionally, when an application covers non-gyroscopic events such 

as clicking a button or choosing an item from the menu, RandomEvent function randomly 

generate an event, executable within the current state of the application. 

5.5 Running Example 

In order to clarify the proposed test case generation procedure, we considered a very small 

portion of the training data generated by a human user in the bouncing ball application. An 

example of a single motion is provided below: 

05-07	17:36:15.828:	Vx(32065):	-2.7148619	

05-07	17:36:15.828:	Vy(32065):	-2.7148619	
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05-07	17:36:15.828:	lBallX(32065):	549.0	

05-07	17:36:15.828:	lBallY(32065):	20.0	

05-07	17:36:15.828:	Ax(32065):	0.090979666	

05-07	17:36:15.828:	Ay(32065):	-0.12330139 

Table 39. Test case generation procedure for cases with acceleration involved 

5. Input: Initial position of the bouncing object (x,y), training data set (S), set of class labels (C); i = 2;  
6. Output: Test case (TC) 

1. 𝒊𝒇 (𝐴𝑐𝑐𝑒𝑙_𝑀𝑜𝑡𝑖𝑜𝑛𝐸𝑣𝑒𝑛𝑡){ 
2.        (ax,ay)⟵ initialAccel(HMM(S,C)) 
3.        𝑚! ⟵CreateMotion(ax,ay,x,y) 
4.        Update(ax,ay,x,y) 
5.        While (!terminalCondition) 
6.             𝒊𝒇 (𝑐𝑢𝑟𝑇𝑖𝑚𝑒 –  𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒1)  ≥  𝜑) 
7.                 𝑖 ← 𝑖 + 1 
8.                   𝑚! ⟵CreateMotion(ax,ay,x,y) 
9.                 Update(ax,ay,x,y) 
10.                 𝑆 ← 𝑆 ∪ {𝑚!} 
11.             𝒊𝒇 (𝑐𝑢𝑟𝑇𝑖𝑚𝑒 –  𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒2)  ≥  𝜃) 
12.                 (ax,ay)⟵Accel(HMMClassifier(𝑚!,S,C)) 
13.                  𝑖 ← 𝑖 + 1 
14.                    𝑚! ⟵ CreateMotion(ax,ay,x,y) 
15.                  Update(ax,ay,x,y) 
16.                  𝑆 ← 𝑆 ∪ {𝑚!} 
17.          End while 
18.   𝒊𝒇 (𝑁𝑜𝑛𝐴𝑐𝑐𝑒𝑙_𝑀𝑜𝑡𝑖𝑜𝑛𝐸𝑣𝑒𝑛𝑡){ 
19.         While (!terminalCondition) 
20.            𝑰𝒇 (𝑐𝑢𝑟𝑇𝑖𝑚𝑒 –  𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒1)  ≥  𝜑) 
21.                  𝑖 ← 𝑖 + 1 
22.                  𝑚! ⟵RandomPosition (x,y) 
23.                 CreateShape(x,y) 
24.           𝑰𝒇 (𝑐𝑢𝑟𝑇𝑖𝑚𝑒 –  𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒2)  ≥  𝜃) 
25.                 𝑖 ← 𝑖 + 1 
26.                 𝑚! ⟵Position (HMMClassifier(𝑚!!!,S,C)) 
27.                 𝑆 ← 𝑆 ∪ {𝑚!} 
28.                CreateShape(x,y) 
29.          End while 
30. } 
31. 𝒆𝒍𝒔𝒆{ 
32.          𝑡! ⟵RandomEvent(); 
33.          𝑗 ← 𝑗 + 1 
34. } 
35. Return 𝑇𝐶 ← 𝑚!,… ,𝑚! + 𝑡!,… , 𝑡!    

*lastUpdate1 indicates the last update that happened at interval φ while lastUpdate2 indicates the last 
update that happened at interval θ 
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Table 40. Training motions clustered in two distinct clusters 

Cluster 1 Cluster 2 

(211.362, 502, 9.787, 9.787, -0.306, 7.948) (20.0, 344.450, 24.511, 24.511, -4.563, -3.260) 

(220.376, 502, 9.259, 9.259, 0.550, 7.753) 

(229.642, 502, 8.681, 8.681, -0.550, 7.753) 

(245.160, 502, 7.443, 7.443, -0.835, 7.907) 

(252.285, 502, 6.566, 6.566, -0.835, 7.907) 

(270.067, 502, 2.694, 2.694, -1.039, 7.953) 

(272.012, 502, 1.572, 1.572, -1.067, 7.899) 

(271.131, 502, -1.667, -1.667, -1.170, 7.818) 

… 

(20.0, 45.517, 8.898, 8.898, -6.545, 6.408) 

(26.236, 20.0, 3.899, 3.899, 11.504, 5.465) 

(20.0, 182.771, 23.407, 23.407, 8.195, -7.834) 

(20.0, 235.211, 19.966, 19.966, -8.742, 0.182) 

(300.0, 118.057, -28.868, -28.868, -8.030, -4.404) 

(300.0, 367.611, -36.233, -36.233, 8.330, 1.120) 

(20.0, 378.444, 28.222, 28.222, -2.802, -0.751) 

… 

In this running example, we follow the test generation framework (Figure 23) provided in 

Section 5.3 step by step to generate test cases:  

• Gathering training data: 30 motions in the format of 6-tuple (𝑙𝑥! , 𝑙𝑦! , 𝑣𝑥! , 𝑣𝑦! ,𝑎𝑥! ,𝑎𝑦!) 

are gathered as the result of user interaction with the application. 

• Clustering motions: the training data is clustered into 2 distinct clusters (classes) using 

the k-means algorithm. Due the space limitations a partial view of the clusters are 

provided in Table 40. 

• Initial HMM training: the clustered data is then used to train the initial HMM using Baum 

Welch algorithm. In this case, the HMM model contains 30 observable states and 2 

hidden states (since there are only two clusters). Then, the acceleration parameter of the 

first test data motion is generated by calculating the mean of the acceleration pairs of the 

motions belonging to each hidden state of the initial HMM and subsequently selecting 
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one pair randomly. After determining the initial acceleration parameter, the first motion is 

created using this parameter and the SUVAT equations. In this case, given: 

the (1) initial acceleration parameter: 

𝑎𝑥,𝑎𝑦 = (0.59855044,−0.91578215) 

(2) the initial location of the ball in the screen: 

𝑙𝑥!, 𝑙𝑦! = (309,253) 

and (3) knowing that the initial velocity is equal to zero (ball is not moving at the 

beginning): 

(𝑣𝑥!, 𝑣𝑦!) = (0,0) 

motion 

𝑚!(309.080798,252.876369,0.1755132,−0.2747346,0.059855044,−0.091578215) 

is generated using physics equations: 𝑣 = 𝑎𝑡 + 𝑣! and 𝑙 = 𝑙! + 𝑣!𝑡 +
!
!
𝑎𝑡!.  

Then within the time interval 𝜑 = 300𝑚𝑠 other motions are also generated through the 

same process with the difference that the acceleration of the current motion is used as the 

initial acceleration for the next ones. These motions will be added to the training set to 

avoid over-fitting. (Figure 25 depicts a schema of the trained initial HMM). 

 

Figure 25. An overview of trained HMM in running example 

• Test data generation using HMM classifiers:  Now, in order to generate more complex 

motions (within time interval 𝜃 = 500 𝑚𝑠), covering unexpected human-generated 

gestures, two  (number of classes) HMM classifiers are trained and the forward 
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probability of the current motion is calculated to reveal the class of motions it belongs to. 

Then, the mean of the accelerations of the motions belonging to this class are calculated; 

and again, are used as input of the motion equations to calculate the velocity and location 

parameters. For example, if the occurrence likelihood (forward probability) of the current 

motion 𝑚!(20, 492.07,2.1625056,2.1625056,−0.00778115, 0.24600422) in class 𝑐! 

reaches the maximum amount compared to the other class (𝑐!), the mean of the 

acceleration of the motions in class 𝑐! is calculated and will be used as the new current 

motion’s acceleration. In this case, the mean of the accelerations in 𝑐! is equal to 

(0.3471,1.1162). Therefor, using physics equations, the next motion would be: 

𝑚!!!(21.1246403,493.2907778, 2.3360556,2.7206056,0.3471,1.1162), 

This motion also will be added to the training set.  

Once, the ball hits the vertical wall, the motions generated since the last hit, are saved in the form 

of a test case and will be executed to move the ball toward different directions on the screen. 

5.6 Empirical Evaluation 

5.6.1 Experimental Setup 

To study the proposed approach, we performed an experiment on four case studies from three 

different mobile applications that could detect and execute motion-based gestures. Unfortunately, 

finding case studies in this area is far from straightforward. Firstly, the volume of open-source 

games is limited and many of them are ports of existing games from traditional platforms. For 

example, Wikipedia32, AOpenSource.com33, F=Droid34, and Prism-break35, provide lists of notable 

                                                
32 https://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications 
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open-source applications for the Android platform. However, upon review, the reader soon 

discovers that nearly all of the applications are ports of desktop or laptop applications. Hence, 

none of the applications feature user-interaction via gyroscopic input devices. This obviously 

renders these applications useless as case studies. 

Additionally, it is worth noting that even though our approach is able to generate test cases for 

mobile applications covering both gyroscopic and non-gyroscopic events, the focus of the study 

is on providing a practical approach for generating motion-based events. This means that the 

portion of our algorithm, which is producing the test cases for non-gyroscopic events, can be 

easily replaced with other effective GUI-based test case generation techniques such as [206], 

[207]. 

In addition, even if inputs for these types of inputs could be generated in an unbiased form, it is 

far from clear a coverage statement could be realized for solely the gyroscopic portion of the 

product. And hence, we have decided, regrettably, to limit this study to applications where the 

inputs are of a gyroscopic-nature only. This allows us to comprehensively examine these 

applications and produce a set of unbiased results from experimenting with these applications. 

In the evaluation section, we attempt to answer the following research questions:  

• Can the test-generated motions mimic actual user behaviour?  

• Does the proposed method improve the code coverage of the SUT when compared to 

existing automated techniques (random testing)? 

                                                                                                                                                       
33 http://www.aopensource.com/ 

34 https://f-droid.org/ 

35 https://prism-break.org/en/categories/android/ 
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• (a) How does the proposed approach compare with random algorithms in terms of the 

computational complexity? (b) Can random algorithms produce better test cases (in terms 

of the code coverage) than our proposed approach, if the same volume of computational 

resources, as given to the HMM-based approach, is assigned to them? The answers to 

these questions are provided in the separate section (Section 5.7: Run-time analysis) 

5.6.1.1 Case Study 1: Bouncing ball 

The first case study is an Android application, a bouncing ball application, which is designed to 

record a data set of coordinates from shake and tilt gestures performed by human users 

(LOC=716). This application only contains one flying object (round ball), which bounces on the 

screen; the ball moves by processing the information it captures from a phone’s accelerometer. 

The dynamics of a bouncing ball follows a set of well-studied physics laws and equations [30], 

which are used in this study. Since covering the details of such equations is beyond the scope of 

this research, we only discuss some of the case-specific motions and equations: 

• When the application starts, the ball position is stable in a corner of the screen, waiting 

for a motivation. Depending on the power of the first motion, the ball starts moving 

toward the motion’s direction. In this study, the time interval 𝜑 is fixed at 300 

milliseconds to capture the information regarding the current motion and position of the 

ball on the screen and to calculate its next position. The time interval is set to 300 

milliseconds to follow the approaches proposed in [195], [196]. In other words: 300 <

 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢𝑠𝑒𝑟 − 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑚𝑜𝑡𝑖𝑜𝑛𝑠. 
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• The second time interval 𝜃 is equal to 500 milliseconds in this study because the time 

windows between gestures created by users vary from 500 milliseconds to one second, 

we select the lower bound to create more standard motions. 

• While the ball is moving on the screen, the motion data is re-ordered in the 6-tuple 

format, used to express test motions (Section 5.3.1). Each sequence is terminated 

whenever the ball hits the vertical edges of the screen.  

Table 41. Simplest Supported Actions and Gestures in Both Types of Application 

Bouncing Ball / Extended 
Bouncing Ball 

Bubbles Diamond 

Action Gesture Action Gesture Action Gesture 

Tilt the 
device 
toward left 

The ball 
bounces to the 
left side of the 
screen 

Touch/Push 
the screen. 

The circle is 
drawn around 
the touched-
point 

Tilt the device 
toward left 

The object 
bounces to the left 
side of the screen 

Tilt the 
device 
toward right 

The ball 
bounces to the 
right side of the 
screen 

Tilt the device 
toward right 

The object 
bounces to the 
right side of the 
screen 

Tilt the 
device to the 
front 

The ball 
bounces down. 

Tilt the device 
to the front 

The object 
bounces down 

Tilt the 
device to the 
back 

The ball 
bounces up 

Touch/Push the 
buttons  

The action 
recorded in the 
button will be 
triggered 

Table 41 (First two columns) indicates the simplest possible actions that can be performed 

through this application, along with their corresponding gestures. It is noteworthy that in 

designing this table, it is assumed that the ball has enough space to move toward each direction. 

Obviously, it cannot for example move to the left when it has already hit the right-side edge. Any 

combinations of these actions (e.g. curving), which may be produced by rotating, tilting the 
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device, and so on is also considered in this case study. For example, when the user rotates or tilts 

the mobile phone toward the right, the ball can moves in a curve instead of moving in a straight 

line to the right.  

5.6.1.2 Case Study 2: Bubbles 

The second case study is another android application called Bubbles, which is able to draw 

circles around the touched points on the screen (LOC=423).  In order to generate circles 

(bubbles), the user touches or pushes the screen resulting in a circle being gradually grown from 

the touched point. The maximum length of the circle’s radius is predefined and fixed, so the 

circle keeps growing until it’s radius is equal to the maximum number or the user touches 

another point in the screen. Table 41 (Second two columns) shows the action (motion event) and 

its corresponding gesture. In this case, the motions containing the coordinates of the touched 

points are captured within the same time intervals as the first case study to generate a set of 

motions. The sequences of motions are continuously generated until a border is touched. Then, 

the generated set is considered as a test case. 

5.6.1.3 Case Study 3: Extended Bouncing ball  

We also modified the Bouncing ball application by adding one more flying object in the screen. 

The second ball behaves the same as the first one (Table 41– First two columns), except for the 

difference that its initial location in the screen is in the bottom right-hand corner (the original ball 

is located in the left side), thus depending to the amount of acceleration received from the 

sensors, they can move in diverse directions. The same test generation algorithm is used to 

produce test cases for the extended Bouncing ball application (LOC= 1054) as the simple version 

and test motions are stored in two separate sets of test suites for each ball. 
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5.6.1.4 Case Study 3: Diamond  

In order to evaluate the performance of our proposed test case generation approach in a more 

complex framework we also applied our technique to generate test cases for another real world 

mobile game. This game, which is called Diamond (LOC= 4311), is a classic game implemented 

in a modern way using accelerometer sensor. In this application, the user controls an object in the 

screen and tries to collect as many diamonds as possible by moving the mobile phone toward the 

correct direction. The player also has to avoid hitting enemy objects and reach to the end point 

safely. The moving object follows the common behaviour of a bouncing object (Table II – third 

two columns) and the terminal condition happens when the game is over (the game is over, when 

the player hits an enemy object or reaches the end point). Moreover, in order to enter the game, 

change the settings or quit the game, the player needs to select items from the menu by pushing 

some buttons. Therefore, the application is able to handle more than one input type (both 

gyroscopic and non-gyroscopic data). 

5.6.1.5 Comparison Criteria 

In order to address the first research question and analyze the performance differences between 

the proposed approach and other test case generation methods, Non-parametric Statistical 

Hypothesis Tests and Effect Size (cliff's delta) Measures are applied: 

Non-parametric Statistical Hypothesis Test: In this case, we established a null hypothesis and 

an alternative hypothesis to be evaluated. The null hypothesis (H0) states the two test case 

generation techniques provide the same performance in covering the source code. On the other 

hand, the alternative hypothesis (H1) states that if the difference between the medians of the 

coverage percentages, is not zero then they will be considered as different. Therefore, by 
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considering a significance level 𝛼 = 0.05, we would be able to reject null hypothesis if 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 for each independent situation. 

Effect Size: In order to add a “magnitude of a treatment effect” to our comparison criteria, 

Cliff’s Delta measure is calculated. Cliff’s Delta statistic [86] is a nonparametric effect size 

measure that quantifies the difference between two groups of observations by testing the 

equivalence of probabilities of scores. In this study, the magnitude of differences between test 

generation techniques is assessed using the following thresholds: |𝑑| < 0.147 "negligible", 

|𝑑| < 0.33 "small", |𝑑| < 0.474 "medium", otherwise "large" [236]. In addition, Cliff’s Delta is 

a bounded measure [-1, +1] where the limiting values indicate that the two populations have no 

overlap. 

5.6.2 Experimental Results 

To answer the research questions and evaluate the efficiency of the proposed test generation 

approach, a volunteer interacted with all the applications and produced motion sequences which 

are then used as training sets.  For instance, in the Bouncing ball application, a set of training 

data was obtained by recording the motion coordinates for three minutes from a total of 317 

gestures performed on two different Android devices36. Applying the silhouette score, we 

grouped the motions into 95 clusters. For the extended version of this application, 600 motions 

and 105 clusters were considered. This data is recorded in 6 minutes. For the Bubble application, 

these numbers were 481 and 95 respectively (motions are stored for 2 minutes). Training 

motions are also stored in the 6-tuple format used to express test motions (Section 5.3.1). The 

amount of time allocated to each training process is estimated based upon the time a new user 

                                                
36 Samsung Galaxy S5 (Android version 4.4.2), Samsung Galaxy S4 (Android version 4.3) 
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needs to become visually familiar with the application and to generate a set of motions. In this 

study, this time is estimated by calculating the mean of the time that new users require to 

generate a reasonable set of motions for the considered applications. 

To evaluate the quality of the generated test cases in all case studies, 20 sets of 200 motion 

sequences were generated using the proposed technique. In addition, for the Bouncing ball 

application, the same number of motion sequences (20 sets of 200 motions) was created by two 

random test generator procedures: 

• Physics-based: takes a human-user motion to initialize the acceleration or position 

parameters then creates the next motions based on the current one by randomly selecting 

a physics equation (Table 42).  

• Simple Random Algorithm: Creates test cases by simply generating random motion 

sequences within the data ranges supported by the hardware. The well-known Mersenne 

Twister (MT) approach, a pseudo random number generator (PRNG) is used in this 

study, which generates random numbers based on Mersenne prime 2!""#$ − 1, using a 

32-bit word length [237]. In this study, a human user also generates the initial motion. 

Since, the HMM-based technique is using human-data to train the initial model and 

generate the first motion, the simple random test case generation process also get 

initialized by human-generated data.  

• Hybrid approach: In order to conduct a fair comparison between approaches, some 

experiments have been designed to execute combinations of human and randomly 

generated test cases (e.g. “Human + Simple random” and “Human + Physics-based”). 

This means that using human data is not limited to the initialization phase and user-
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generated data forms half of the test cases. Therefore, a hybrid test case consists of a 

combination of human generated motions and random motions. 

• Random-Human: we also created another random-based approach by randomly selecting 

motion events from the training data. In this approach we generated test cases by picking 

random motions from human generated training set. 

• Monkey [199]: In order to compare the performance of proposed approach with other 

well-known existing tools. We also generated test uses for the considered case studies 

using the Monkey tool. This tool is able to send a pseudo-random stream of user events  

(such as clicks, touches, or gestures, as well as a number of system-level events) to the 

system. Such streams act as a set of test cases for the application under test. 

• Sapienz [210]: Another well-known testing approach for Android mobile applications is 

called Sapienz. This technique uses multi-objective search-based testing to automatically 

generate test cases. In another word, Sapienz combines random fuzzing, systematic and 

search-based exploration, exploiting seeding and multi-level instrumentation together to 

generate automated tests cases for Android application. In this study we applied the 

white-box manner, which uses fine-grained instrumentation at the statement level. 

Table 42. Random Test case generation procedure for cases with acceleration involved (Physics-based) 

• Input: Initial position of the bouncing object (x,y); i = 2; 
• Output: Random Test case (TC) 
1. (ax,ay)⟵ getHumanMotion() 
2. While (!terminalCondition*) 
3.        e ⟵Select RandomEquation() 
4.        m! ⟵CreateMotion(ax,ay,e) 
5.        i ← i + 1 
6. End while 
7. Return TC ← {m!,… ,m!} 

        *In this case we terminated the process after generating 200 test cases 
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It is worth noting that in cases (e.g. the second case study), where the acceleration parameter is 

playing a significant role in defining a motion, the generated accelerations in random test cases 

are limited to the acceleration range supported by the hardware. In addition, since the 

acceleration parameter and its corresponding physics equations are not considered in the second 

case study, only the simple random algorithm is implemented to generate the random touched-

points.  

To answer the first research question, we classified two sets of test cases (derived from Bouncing 

ball and Bubbles applications) by using the HMM classifier into 95 classes which are defined 

based upon the data generated by the human users. The same procedure is applied on the test 

data generated for the extended Bouncing ball and Diamond applications and they are classified 

into 105 clusters. Then the occurrence likelihood (LC) of each sequence of motions for each 

class label are calculated where 𝐿𝐶 = 𝑃 𝑀 Λ! ,𝛬!!!𝑎𝑛𝑑 𝑀 ∈ 𝑇𝐶 , where L is the number of 

classes. In this case, when max! 𝑃 𝑀 Λ!  is a small quantity, it can be concluded that the test 

case TC is not behaving similar to the test cases that were used to create the classes. 

Additionally, since these classes are created using human-generated motions, it can be implied 

that the probability of the test case TC being generated by a human user is low. 

The results show that the motions generated using the HMM-related technique have a higher 

forward probability (occurrence likelihood) compared to both Simple Random and Physics-based 

approaches. Accordingly, it can be concluded that the test cases generated using the proposed 

technique are more likely to be generated by a human user. The reason is that each class label 

describes a set of human-generated motions; therefore once a motion has high occurrence 

likelihood in one of these classes, it can be concluded that the probability of being generated by a 

human user for this motion is high. 
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Figure 26 (a), (b), (c) and (d) depict boxplots showing the distribution of the occurrence 

likelihoods of the motions produced by the HMM classifier model and the simple random 

approach for all considered applications. According to these figures, it also can be concluded that 

the generated random tests in Bubble application are “behaving better” than the random tests in 

the rest of applications. The reason is that the gestures in the Diamond and Bouncing ball 

applications are more complex than the gestures in the Bubble application in terms of motion 

sequences. This makes it more difficult to generate gestures resembling human behaviour using 

the random approach in the Bouncing ball and Diamond applications when compared to the 

Bubble. 

To address the second research question, the JaCoCo37 code coverage library was used. Using 

this toolkit, bytecode instrumentation is applied, and the branch coverage value is measured. 

Since we generated 20 sets of 200 test cases using each approach, the means of the coverage 

percentages on all sets, are calculated to achieve more accurate results (In total, 64000 motion 

sequences are generated during the experiments). Table 43 and Table 44 report the means of the 

branch-coverage percentages calculated by running each of the test case generation approaches 

in all applications.  

Figure 27 (a), (b) and (c) also show the distribution of the code coverage using box plots. 

According to these results, HMM-based test cases achieve better coverage compared to the 

random and human-generated test cases. In addition the results of applying the Wilcoxon signed 

rank test indicates the HMM-based approach is significantly different from the other techniques 

in terms of code coverage. 

                                                
37 http://www.eclemma.org 
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Table 43. Results of Calculating Effect Size Measure and the Mean of Code Coverage For Test Case 

Generation Methods in Bouncing ball and Extended Bouncing ball Application 

 Approach 
Mean of 
Code 
Coverage (%) 

Approach Delta 
Estimate p-value  

B
ou

nc
in

g 
ba

ll 

HMM-based  79.26 HMM-based Vs. Physics-based -0.965 4E-05  

Physics-based 55.95 HMM-based Vs. Simple Random -1 4E-05  

Simple Random 33.05 HMM-based Vs. Human + 
Physics-based -0.7357 0.00019  

Human + Physics-
based 63.63 HMM-based Vs. Human + Simple 

Random -0.6761 0.00034  

Human + Simple 
Random 62.73 HMM-based Vs. Human -0.7225 0.00017  

Human 60.2 HMM-based Vs. Random-Human -0.8575 7.6E-06  

Random-Human 59.05 HMM-based Vs. Monkey -0.95 1.9E-06  

Monkey 37 HMM-based Vs. Sapienz -0.95 1.9E-06  

Sapienz 41.15     

Ex
te

nd
ed

 B
ou

nc
in

g 
ba

ll 

HMM-based  81.3 HMM-based Vs. Physics-based -0.95 1.9E-06  

Physics-based 52.75 HMM-based Vs. Simple Random -0.95 1.9E-06  

Simple Random 31.77 HMM-based Vs. Human + 
Physics-based -0.71 3.4E-05  

Human + Physics-
based 62.78 HMM-based Vs. Human + Simple 

Random -0.575 0.0028  

Human + Simple 
Random 62.98 HMM-based Vs. Human -0.62 0.0002  

Human 62.05 HMM-based Vs. Random-Human -0.87 1.3E-05  

Random-Human 58.7 HMM-based Vs. Monkey -0.95 1.9E-06  

Monkey 37.75 HMM-based Vs. Sapienz -0.95 1.9E-06  

Sapienz 42.3     

Table 43 and Table 44 also report the p-values and delta estimates at the 95% confidence 

interval. The Cliff’s Delta measure provides more detailed information to this picture by showing 

that a “large” effect size exists (in favour of HMM-based approach) for all of the comparisons.  

The achieved results confirm that the HMM-based test case generation approach not only 

automates the test generation and execution procedure for motion-based events, but also (1) 

creates better test cases in terms of mimicking actual user gestures; and (2) improves the 
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(branch) code coverage for the SUT. In the next section, we compare our proposed approach 

with random generation in terms of the time complexity. 

Table 44. Results of Calculating Effect Size Measure and the Mean of Code Coverage For Test Case 

Generation Methods in Bubble and Diamond Applications 

 Approach Mean of Code 
Coverage (%) Approach Delta 

Estimate 
p-
value 

B
ub

bl
es

 
 

HMM-based  92.06 HMM-based Vs. Human + 
Simple Random -0.9325 5E-05 

Simple Random 74.28 HMM-based Vs. Human -0.9325 4E-05 

Human + Simple 
Random 79.97 HMM-based Vs. Simple 

Random -1 4E-05 

Human 78.94 HMM-based Vs. Random-
Human -0.9425 1.9E-

06 

Random-Human 76.8 HMM-based Vs. Monkey -0.95 1.9E-
06 

Monkey 74.85 HMM-based Vs. Sapienz -0.985 1.9E-
06 

Sapienz 75.65 
   

D
ia

m
on

d 
 

Human + Physics-
based 63.02 HMM-based Vs. Human + 

Simple Random -0.7025 0.0003 

Human + Simple 
Random 61.39 HMM-based Vs. Human -0.5525 0.0022 

Human 63.85 HMM-based Vs. Random-
Human -0.575 0.0016 

Random-Human 62.99 HMM-based Vs. Monkey -0.95 1.9E-
06 

Monkey 42.25 HMM-based Vs. Sapienz -0.95 1.9E-
06 

Sapienz 50.91 
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Figure 26. (a) Boxplot summarizing the achieved likelihoods for each approach in the Bouncing ball 

application. (b) Boxplot summarizing the achieved likelihoods for each approach in Bubbles application 

(c) Boxplot summarizing the achieved likelihoods for each approach in Extended Bouncing ball 

application (d) Boxplot summarizing the achieved likelihoods for each considered approach in Diamond 

application 
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Figure 27. (a) Boxplot summarizing the results of calculating the code coverage for each approach in the 

Bouncing ball application. (b). Boxplot summarizing the achieved results of calculating the code coverage 

for each approach in the Bubbles application. (c) Boxplot summarizing the results of calculating the code 

coverage for each approach in the Extended Bouncing ball application (d) Boxplot summarizing the 

results of calculating the code coverage for each approach in the Diamond application 

5.7 Run-Time Analysis 

In order to answer the part (a) of the third research question, we considered the computational 

complexity of the proposed test generation approach by running a single instance of this 

technique on a hardware and software platform consisting of a 2x2.4 GHz Quad-Core CPU, 32 

GB RAM on a Mac Pro, Eclipse Indigo38 and a Samsung Galaxy S5.  

To investigate the time complexity of HMM-based approach, we analyzed the complexity of the 

involved algorithms. Based on the Baum-Welch and forward algorithms’ time complexities, the 

computation order of our approach is polynomial 𝑂 𝑇!𝑛 , where T represents the number of 

hidden states, and n indicates the number of observations. Hence, each algorithm’s time 

complexity will not grow exponentially by increasing the number of motions. 

                                                
38 https://eclipse.org/indigo 
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Moreover, recent literature has considered the question of should algorithms be compared 

against their speed of performance – if an algorithm is twice as slow as the other algorithm 

should the quick algorithm get twice as many tries at getting it correct? The answers to these 

questions should also address part (b) of the third research question. 

To provide an accurate answer to this question it should be noted that, while it is easy to have 

sympathy for this viewpoint, it is very difficult to construct an unbiased examination of 

algorithms from this perspective. Consider, testing and test case generation, the topic of this 

article, the first problem encountered is that test generation is only a sub-process. Following 

[238] an automated testing system has three components; test generation, test execution, and 

examination of the test results. So, the total time (𝑡!) is combination of all; 𝑡! = 𝑡! + 𝑡! + 𝑡! 

where 𝑡!, 𝑡!, and 𝑡!stand for generation time, execution time, and result examination time, 

respectively. Test generation and execution can be automated easier than test result examination 

– the production of meaningful test oracles is still at a very early stage in research. With respect 

to examination of the test results, two options are normally used:  

• A test oracle is constructed to automate the test examination. The test oracle usually has a 

simplified definition of a defect. Does the system crash or not, is an example of such a 

description. Here each crash is considered a "defect".  

• The test results are investigated manually by the tester.  

When t! is small (very small programs) and the test result examination is fully automated (small 

𝑡!), one would be better off running more test cases instead of generating more efficient test 

cases [239]. In such a situation, methods that have high runtime compared to random generation 

are not cost effective. However, industrial software’s execution runtime is usually large enough 
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to have adequate time for test generation. Yoo et al. [240] have considered using parallelised 

search based optimisation algorithms to find optimal sets of test cases or to prioritize test cases 

for regression testing, since executing all test cases for large-scale applications is a very time 

consuming task. The total test execution time in their study is equal to the times for initializing 

test cases, evaluating the fitness values of different generations and the remaining parts of the 

execution time. 

Further, test result examination is not typically fully automated, unless a simplistic test oracle 

(e.g. finding system crashes) is utilized. Hence, test result examination normally requires manual 

work by the tester. Hence, generating more effective test cases, which normally have higher 

runtime than random test cases is believed to improve failure detection in most cases. Hence, in 

many situations running test case generation algorithms for equal amounts of time may actually 

be a rather poor objective.  

Additionally, fast algorithms producing large numbers of poor test cases have a significantly 

detrimental effect on the effectiveness of the entire testing process. Previous research shows that 

individual aspects such as testers’ skills have as strong an effect on the results of testing, as do 

the test case generation techniques. Other components, including test case execution and 

especially manual test oracle processes are far from straightforward. Several empirically-based 

findings [241]–[245] have emphasized the role of experience and skills in these software testing 

activities. Hence, in general, making the execution and manual test oracles components more 

complex by running test case generation algorithms that produce large volumes of poor test cases 

is normally a bad idea. Other studies explicitly warn against producing large numbers of 

unproductive test cases. For example, in Williams et al. [246] based upon interviews with actual 

practitioners at Microsoft, state “Unit testing coverage needs to be measured. The quantity of test 
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cases is a bad measurement. More reliable is some form of code coverage (class, function, block 

etc.). Those measurements need to be communicated to the team and be very visible.” 

This implies that the practitioners are looking for techniques which assist in producing test sets 

which have good characteristics (such as coverage) while avoiding bad characteristics (such as 

large volume). 

In addition, many new testing initiatives such as continuous integration (CI) become impossible 

to implement as the size of the test set increases. CI is highly dependent on cycle time – time to 

compile and automatically execute the test set – unless the cycle time remains short, developers 

quickly become disenfranchised by the process. This leads to abandon of the execution of the test 

set and results in increased defect rates. In conclusion, much research exists which suggests that 

automatic test case generation algorithms should be principally concerned with producing high-

quality test cases rather than worrying about execution times except in extreme situations. 

Even if we ignore this, comparing execution times are still a highly problematic undertaking. 

Often the algorithms will be produced by different authors, be at different stages of development, 

and utilize different technologies. For example: 

1. The current algorithm is produced by a student programmer, whereas a random library 

Mersenne Twister has been actively produced and evolved over a substantive period by a 

large pool of professions, who actively ensure that the code is efficiency whereas the 

current algorithm is simply a first-cut prototype with no real interest in efficiency. 

2. Mersenne Twister has seen decades on development with many proposals on producing 

more and more efficient versions whereas the current algorithm has seen none. 
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3. Most random libraries are written in C; whereas the current algorithm is written in R. 

Anecdotal comparisons often state that algorithms written in R run 1000 times slower 

than equivalent algorithms in C39. Hence, any attempt to compare two such algorithms via 

execution time would be highly biased rendering any such results next to useless.  

Perhaps, a better viewpoint is to consider the algorithms via their algorithmic complexity 

statements. However, even here the volume of work on developing an algorithm creates a 

significant bias. [169] noted that adaptive testing algorithms (ART) such as [247] were not 

effective because of their 𝑂(𝑛!) time complexity, where n is the number of test cases. However, 

the field had previously made no real attempt at producing more efficient algorithms. Recently 

Shahbazi et al. [238] has produced a new ART algorithm, which produces more effective test 

cases than previous ART algorithms. In addition, the paper also looked at time complexity and 

produces test cases with a time complexity of 𝑂(𝑛). Following up from this work, Singh et al. 

[248] have recently produced a concurrent version of this algorithm with time complexity of 

𝑂(𝑛/𝑝), where p is the number of processors available to the algorithm. Hence, even the 

algorithmic complex of an algorithmic tends to reduce over time as more effort is spent upon a 

topic. Implying that for any algorithm with a known polynomial-time solution, that even 

algorithmic complexity is a non-stable indicator of performance. 

Having said all of this, we still provide some guidance on the effectiveness of the algorithms 

with regard to computational complexity. Therefore, in this study, which the computational 

complexity of the proposed approach is 𝑂 𝑇!𝑛 , assuming that the method generates 200 

motions using train data clustered into 13 different classes, the asymptotic complexity of the test 

                                                
39 http://lists.nongnu.org/archive/html/igraph-help/2011-02/msg00045.html 
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generation process would be 13×13×200 = 33800. Thus, if we allocate the same asymptotic 

complexity to random test generation, with computational complexity 𝑂 𝑛 , random test 

generation approach will be able to generate 33800 motions in the provided time. Obviously, it 

would be more expensive to run 33800 random motions compared to 200 motions generated by 

HMM-based approach. 

As illustrated in Table 45, it has been noticed that running all of these motions (33800) in the 

Bouncing ball application improves the average code coverage up to 42% for the random 

approach, which is sill lower than coverage, reached by HMM-based technique (75%), running 

200 motions. In addition, Running the 33800 test motions in Bubbles increases the coverage to 

78% for random, while the percentage of code coverage is 92% for the HMM-based test case 

generation technique using 200 test motions. Therefore, it can be concluded that providing the 

same resources as HMM-based approach to random does not necessarily lead to significant 

improvement in the code coverage.  Additionally, the time it takes to generate 200 motions using 

the HMM-based technique (𝒕𝒈) is less than a minute, for the bouncing ball application, while it 

takes 3 minutes to execute them; therefore 𝒕𝒈 < 𝒕𝒆. While, the time is required to execute the 

33800 test cases generated by random approach is 23 minutes.  This result confirms the 

statement provided at the beginning of this section, illustrating that generating too many test 

cases using random techniques is not always a good option for improving code coverage. 

Specifically, high test-execution time in industrial case studies with large test suites provides 

sufficient time to generate more efficient test cases, using well-designed test case generation 

approaches.  
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Table 45. Results of Providing Same Resources as HMM-based to Random 

 Approach Code Coverage 
(%) 

𝐭𝐠(min) 𝐭𝐞(min) 

Bouncing 
ball 

HMM-based (200 
motions) 

75% 0.5 3 

Random (33800 
motions) 

42% 0.17 23 

Extended 
Bouncing 
ball 

HMM-based (200 
motions) 

75% 0.5 3.2 

Random (33800 
motions) 

40% 0.17 24 

Bubbles HMM-based (200 
motions) 

92% 0.2 1.2 

Random (33800 
motions) 

78% 0.08 15.6 

Diamond HMM-based (200 
motions) 

71% 0.7 2.8 

 Random (33800 
motions) 

46% 0.25 20 

5.8 Threat to Validity 

In this section, we consider the potential threats to the validity of our research and discuss the 

methods used to address them. In this study, we are principally concerned with three types of 

threats: internal validity, external validity, and the power of the experiment 

Threats to the internal validity might come from the method of assigning the time intervals in the 

empirical study. If the time intervals are estimated to be too short (long), then more (less) 

motions will be generated compared to when a human user is interacting with the application. To 

address this issue, we estimated the minimum and maximum numbers of generated movements 

via several users’ experiences and considered their average as a type-one interval (𝜑).  

On the other hand, the threats to the external validity of our research are centred on the 

generalization of the results to other SUT motion-based applications. In this study, we consider 
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four applications and two types of motion-based applications (both with and without gyroscopic 

inputs). However, we also point out that the proposed technique should be applied to more and 

different case studies (e.g. 3D applications) in future work. 

The third threat represents the power issue. This can lead to type-two errors in studies with 

insufficient numbers of samples. To address this issue, we recorded three sets of 317, 481 and 

600 motion sequences to design the training sets. The data was also grouped into 95 and 105 

classes, which led to training two sets of 95 HMMs and a set of 105 HMMs. 

Finally, at the meta-level an obvious risk exists: Are the three research questions good proxies 

for defect finding capabilities? Ideally, any paper would wish to consider this research question 

directly. However, given the relative infancy of these types of systems, insufficient data (with 

regard to defects) is believed to exist to allow such an experiment to be adequately constructed. 

Hence, the adoption of the proxies for the exploration is required. 

5.9 Conclusion  

Testing mobile applications that use motion-based gestures to interact with users poses a new 

challenge. Test inputs should be realistic motion sequences, which are able to simulate the user’s 

behaviour in interacting with the application. This helps in revealing defects, which remain 

unknown in applications because they do not conform to expected human-generated motions.  

Since, Markovian models have been successfully used in software testing studies to generate 

models representing common user behaviour in UI testing [10], [27], [196].  

In this study, we have proposed a new HMM-based approach, which presents a solution for 

automating the testing process for applications supporting motion-based events. Using this 
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method, gestures can be formally specified as sequences of motions, which are easy to re-execute 

in the application. Therefore, an HMM classification approach is used to classify the current 

movement into a class of motions providing the best description of the gesture’s characteristics. 

Then, according to the results provided by the classification approach and using standard 

movement equations, a realistic proxy for the likely next movement coordinates can be 

estimated.  

We evaluated our approach by generating a set of test inputs for four Android applications with a 

gaming theme. The empirical results show that the generated test cases using HMM-based 

approach not only cover a higher number of branches in the source code compared to randomly 

generated test cases, but the occurrence likelihood of the corresponding motion sequences in 

model trained by user generated data is also higher in HMM-based approach. This indicates that 

the new approach outperformed the random methods (including Monkey, Sapienz and Random-

Human) in generating test cases that mimic human-user behaviour.  
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6 Conclusion and Future Work 

6.1 Conclusion 

In this thesis, we introduce and develop the new idea of inferring behavioral models from both 

software executions and user-interaction log files. In both cases, a hybrid approach is used to 

apply RL and HMM concepts to dynamically generate Extended PFSAs and a set of probabilistic 

Markovian models.  

In chapter 2 of this thesis, ReHMM (our proposed inference approach) is applied on the 

execution traces extracted from seven modules in two different programming languages. 

According to experimental results, ReHMM outperforms other EFSA inference algorithms in 

terms of the BCR (the measure used to evaluate the accuracy of the model). Moreover, ReHMM 

is compared with sk-strings algorithm (a well-known PFSA generation algorithm) and 

outperformed it in terms of accuracy. Therefore it can be concluded that ReHMM is able to 

generate more accurate models than considered EFSA and PFSA inference approaches. 

It should be noted that this study makes a contribution to research in the area by proposing a new 

EPFSA inference approach from software execution traces. The proposed technique uses RL and 

HMM to explore the transitions, which trigger more changes in the model; and is able to detect 

functions governing transitions. This procedure also provides a solution to the problem of the 

missing state-action value by assigning Q-valued to the transitions.  

In chapter 3 of this study, we propose another inference approach to automatically generate a 

reward-augmented user behavioral model from the user-interaction log files. This study makes a 

contribution to research in the area by (1) automatically calculating and assigning the states’ 

rewards which add semantics to the models and ease interpreting the models and detecting 
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design anomalies; (2) covering enterprise-size web applications with no need of instrumenting 

the source code; and (3) generating comparable results with the data extracted from Google 

Analytics. In order to evaluate our technique, we apply it on user-interaction log files extracted 

from the enterprise mobile and web application, called MyUAlberta. Then we compared the 

generated model with the user-behavioral workflow extracted from the associated Google 

Analytic account. The result indicated that the calculated reward values are compatible with the 

values extracted from Google Analytics in determining a page’s importance. Since, unlike 

Google Analytics, our approach does not need instrumenting the source code and these results 

are only achieved by running the inference algorithm on the log files, it could be concluded that 

the proposed approach is useful in legacy applications and in those, where the source code or the 

system expert is not available. 

In chapter 4, we present a new fault-based test case prioritization approach using an extended 

digraph. Again, the digraph is generated by using an RL-based HMM approach. We initialize an 

appropriate HMM based on a Q-learning algorithm to infer an HMM with the maximum 

likelihood estimate of the parameters. Then we use the estimated model to compute the forward 

probabilities of the test cases and prioritized them based upon their corresponding forward 

probabilities.   

In order to evaluate the proposed method, we used AutoBlackTest, a GUI-based test case 

generation tool as a baseline to generate and prioritize test cases. We also included Random, 

Additional statement coverage, Worst, Optimal and Weight-based [164] prioritizations  to 

provide a comprehensive comparison. All considered prioritization techniques are applied on 

four different GUI applications. According to the results of different considered measures 

including the APFD, relative ratio, boxplots, statistical tests and effect size estimates, RL-based 
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HMM outperforms the other approaches in terms of fault detection effectiveness. It indicates that 

the amount of change, a test case may cause in GUI states and, the probability of triggering each 

action in each specific state play essential roles in determining the capability of a test case in 

detecting faults. 

Finally in chapter 5, we propose another HMM-based approach to generate test cases for mobile 

applications, supporting motion-based events. Our proposed approach applies an HMM 

classification technique to determine the class of the current motion and uses it to predict the 

next movement coordinates. In addition, an empirical study is performed to compare the 

proposed approach too randomly, and human-generated, test cases in terms of (1): the code 

coverage, and (2): the capability of generating motions mimicking human-generated test cases. It 

is worth noting that in order to cover generating both simple and complex gestures; we consider 

producing test cases within two different time intervals. Within the first interval motions are 

generated using SUVAT equations, but within the second time interval, more complicated test 

cases are generated using the HMM classifiers and the forward probabilities. 

In order to evaluate the HMM-based test case generation approach, we apply this technique to 

three Android applications supporting motion-based events. The empirical results indicate that 

HMM-based technique covers more branches in the code compared to randomly generated test 

cases while, the motions generated using this approach has also a higher occurrence likelihood 

compared to other considered techniques. This indicates that the new approach outperforms the 

random method in (1) generating motions that mimic actual human-user behaviour; and (2) 

reaching the high code coverage. 

It is worth noting that we also investigated all of our proposed stochastic approaches in terms of 

their time complexity. We performed a run-time analysis on all involved algorithms and 
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concluded that the run-time of none of our proposed algorithms grows exponentially when the 

system size increases, which means they all can be applied in large-scale software systems. 

6.2 Recommendations for Future Research 

Although the results of this research demonstrate improvements in the accuracy and 

effectiveness of the model-based testing and behavioral model inference procedures, there is still 

room for more improvements. This research can be extended for further investigation as follows: 

• The ReHMM algorithm generates a more optimized model with higher quality [36] in 

comparison with other considered inference techniques, making it possible to avoid many 

false merges during the merging procedure. We believe in order to avoid all inappropriate 

merges in such algorithm a more accurate merging protocol should be defined and 

applied. Further studies to prove this claim should be considered in the future. 

• We also believe that our proposed modelling approach in chapter 3 could be extended to 

be applicable on any probabilistic timed automata [107] to capture other user behaviors 

and their corresponding reward values. 

• Additionally, even though the results of this research improve the effectiveness of test 

case prioritization, the RL-based HMM approach still has room for improvement. First, 

additional studies can be performed on more applications such as web-based applications. 

Second, in this study, we only consider GUI applications. This method can be evaluated 

further in order to present a generic approach to generate an RL-based weighted model 

for every type of application. [147] represented a static approach to prioritizing Junit test 

cases by defining the distance between pairs of test cases based upon using topic 

modeling. Such techniques can be utilized to compute the reward function and Q-values 
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in non-GUI based applications. Third, detecting the best sequence of GUI states 

contributing to the most appropriate prioritized test suite would be helpful in addressing 

the second HMM problem (mentioned in section 5.4.3.2) using Viterbi Algorithm and 

finding the most suitable ordering which maximizes the HMM’s likelihood of the 

estimated parameters. 

• With regard to our motion-based test case generation technique, although there are 

promising results, we believe that our experiments only cover an initial exploration of 

this area, and several issues remain to be addressed in further studies which could be 

covered in future studies: (1) Different types of motion-based applications. This study 

only considers two types of mobile applications that use motion events to interact with 

users. Future studies should be performed on the proposed technique in more complicated 

applications with 3D graphical design. (2) Different time intervals. Using further 

empirical experience with different time intervals should also be considered in future 

work. (3) Influence of training data on efficiency of generated test cases. Our 

evidence is based on estimating HMMs on a single set of training data. There is the 

potential to use different methods of sampling the training data, and evaluating their 

impact on the efficiency of test cases. For example, different time intervals and 

terminating conditions can be used during the training data capturing process. (4) Fault 

detection capability. The ability of generated test cases to detect faults should also be 

investigated. Unfortunately, we are currently unaware of any suitable application with a 

published list of motion-based real-life defects.  

Moreover, with the recent developments in the Virtual Reality (VR) technologies; testing 

motion-based applications in devices running VR programs is a new challenge. Providing 
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a testing approach, which is able to detect the natural human gestures from users 

interactions with devices like Oculus Rifts40 or similar touch controllers introduces a new 

and interesting area of research which can be considered in futures studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
40 https://www.oculus.com/rift/ 
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Appendices 

Appendix A - The overview of the EFSA generated by ReHMM 
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Appendix B - The Results of Applying Inference Techniques on 7 
Different Case Studies for k=5 and k=10 

 

Table 46. The Results of Applying Inference Techniques on Poolboy, SMTPTransport, Resource Locker 

and Frequency Server, for k=5,10 (in terms of BCR) 

 G=0 Poolboy SMTPTransport Resource Locker Frequency Server 

k 
Inference 

Algorithm 

Min 

BCR 

Max 

BCR 

Median 

BCR 

Min 

BCR 

Max 

BCR 

Median 

BCR 

Min 

BCR 

Max 

BCR 

Median 

BCR 

Min 

BCR 

Max 

BCR 

Median 

BCR 

5 

ReHMM 

Sk-strings 

Bayes 

JRIP 

AdaBoost 

J48 

0.66 

0.63 

0.64 

0.5 

0.58 

0.53 

0.72 

0.66 

0.7 

0.7 

0.72 

0.61 

0.705 

0.66 

0.64 

0.6 

0.6 

0.6 

0.89 

0.58 

0.68 

0.68 

0.62 

0.6 

0.92 

0.66 

0.72 

0.8 

0.81 

0.7 

0.91 

0.645 

0.7 

0.71 

0.67 

0.685 

0.71 

0.6 

0.55 

0.55 

0.6 

0.62 

0.83 

0.69 

0.68 

0.73 

0.74 

0.66 

0.76 

0.645 

0.67 

0.62 

0.625 

0.63 

0.73 

0.58 

0.55 

0.55 

0.65 

0.55 

0.9 

0.68 

0.75 

0.65 

0.8 

0.72 

0.835 

0.655 

0.68 

0.615 

0.79 

0.675 

10 

ReHMM 

Sk-strings 

Bayes 

JRIP 

AdaBoost 

J48 

0.66 

0.65 

0.64 

0.5 

0.59 

0.59 

0.8 

0.69 

0.7 

0.69 

0.75 

0.63 

0.71 

0.66 

0.64 

0.6 

0.62 

0.605 

0.9 

0.55 

0.68 

0.68 

0.7 

0.6 

0.95 

0.66 

0.75 

0.83 

0.81 

0.72 

0.91 

0.645 

0.71 

0.715 

0.72 

0.7 

0.75 

0.65 

NA 

0.55 

0.62 

0.61 

0.87 

0.69 

NA 

0.8 

0.85 

0.69 

0.77 

0.66 

NA 

0.63 

0.64 

0.65 

0.77 

0.58 

NA 

0.6 

0.75 

0.6 

0.96 

0.68 

NA 

0.65 

0.88 

0.72 

0.845 

0.66 

NA 

0.635 

0.79 

0.67 
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Table 47. The Results of Applying Inference Techniques on Signature, StringTokenizer and Socket, for 

k=5,10 (in terms of BCR) 

 G=0 Signature StringTokenizer Socket 

k Inference 
Algorithm 

Min BCR Max BCR Median BCR Min BCR Max BCR Median BCR Min BCR Max BCR Median BCR 

5 

ReHMM 

Sk-strings 

Bayes 

JRIP 

AdaBoost 

J48 

0.7 

0.55 

NA 

0.44 

0.45 

0.44 

0.95 

0.73 

NA 

0.77 

0.86 

0.8 

0.74 

0.635 

NA 

0.55 

0.51 

0.49 

0.7 

0.55 

NA 

0.44 

0.45 

0.44 

0.95 

0.73 

NA 

0.77 

0.86 

0.8 

0.74 

0.635 

NA 

0.55 

0.51 

0.49 

0.7 

0.55 

NA 

0.44 

0.45 

0.44 

0.95 

0.73 

NA 

0.77 

0.86 

0.8 

0.74 

0.635 

NA 

0.55 

0.51 

0.49 

10 

ReHMM 

Sk-strings 

Bayes 

JRIP 

AdaBoost 

J48 

0.73 

0.55 

NA 

0.5 

0.6 

0.48 

0.95 

0.73 

NA 

0.79 

0.9 

0.8 

0.77 

0.675 

NA 

0.545 

0.64 

0.525 

0.73 

0.55 

NA 

0.5 

0.6 

0.48 

0.95 

0.73 

NA 

0.79 

0.9 

0.8 

0.77 

0.675 

NA 

0.545 

0.64 

0.525 

0.73 

0.55 

NA 

0.5 

0.6 

0.48 

0.95 

0.73 

NA 

0.79 

0.9 

0.8 

0.77 

0.675 

NA 

0.545 

0.64 

0.525 

 


