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Abstract

We propose that the credit rating evolution can be described by a Markov
chain but that we do not observe this Markov chain directly. Rather, it is hidden
in “noisy” observations represented by the posted credit ratings. We consider the
discrete time model with a Markov Chain observed in martingale noise (Hidden
Markov Model). By introducing a new probability measure we are able to obtain
unnormalized. recursive estimates for the state of the Markov chain governing the
credit rating evolution. We use the so-called EN (Expectation Maximization) algo-
rithm to estimate the parameters of the model. namely probabilities of migration
between “true” credit quality states and probabilities of observing a particular rat-
ing given the “true” credit worthiness of the issuer. The model is then applied to
a data set of credit ratings obtained from the Standard and Poor’'s COMPUSTAT
database. We also consider a Kalman filtering model for estimating the dynamics
of credit quality aimed to overcome some of the challenges posed by the nature of
available credit rating data.

Finally. we introduce an intensity-based credit migration model of default risk.
We take default to be an unpredictable event governed by a hazard process defined
in terms of intensity. The value of a zero-recovery defaultable zero-coupon bond is

then its value if it were risk-free. adjusted by the probability of no default before
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maturity. This probability is calculated explicitly in terms of intensity and the
issuer’s credit quality. We suppose that the latter is governed by a Markov chain
and distinguish two cases. First we take the issuer’s credit rating to represent the
“true” credit quality and then extend the model to value zero-recovery defaultable
bonds when “true” credit quality is not observed directly but only through noisy
observations given by posted ratings. We also consider valuation of defaultable

bonds when a fraction of face value is paid at the time of defaulit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgement

I would like to thank my supervisors, Robert J. Elliott and Felipe Aguerrevere,
committee members Vikas Mehrotra and Abel Cadenillas, the external examiner
Dilip B. Madan. Paul Malcolm. PhD Office. Department of Finance and Manage-
ment Science. fellow PhD students and my friend Maggie Charlton for all the help

and support along the way.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table of Contents

Introduction ...... ... .. e 1
Chapter 1 - Hidden Markov Model ............. ... .. .. i .. 9
1. Introduction . ... e 9

2. Dynamics of the Markov Chain and Observations ...................... 10

3. Reference Probability ... ... . . . . . 13

4. Recursive Filter ... 14

5. Parameter Estimates ... . e 15

6. Smoothed Estimates ... ... ..o . 21
Appendix I - Proofs of Results in Chapter 1 ...... ... ... .. ... .. ........ 27
Chapter 2 HMNI Implementation Results ... ... ... ... 52
1. Introduction ... e B2

2. The Ratings Data ............ ... ... ... . ... . iiiiii....D3

2.1 Basic Properties ................. ... . . ... i .03

2.2 Treatment of Transitions to “Not Rated™ Status ................... 55

3. Implementation Results ............. ... .............................0h6
Appendix ITA - Standard and Poor’s Historical Transition Matrix ......... .. 62
Appendix IIB - Initial Matrix C' ... ... 63
Appendix 1IC - HMM Implementation Results ............................. 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix IID - HMNM Implementation Results for the Modified Sample .... 80

Chapter 3 - Kalman Filtering Model .............. ... 86
1. Introduction ... 86
2. Gausian Approximation to Credit Rating Dynamics ................... 87
3. Square-Root Kalman Filtering Algorithm ...................... .. ..., 90
4. Parameter EstImation ...........oo oot 9
5. Application ....... .ot .97
Appendix IITA - Lower-Triangular Cholesky Decomposition ................ 99
Appendix IIIB - Proofs of Results in Chapter 3 ........................... 100
Appendix ITIC - Results for Kalman Filtering Example ................... 105
Chapter 4 — Modelling Default Risk .......... ... ... 106
1. Introduction . ... oo 106
2. The Markov Chain Model of Credit Quality Evolution ................ 107
3. The Default Time ...t e e 109
4. Defaultable Clalms ... onitiii i e 112
5. Fractional Recovery ....... . oo 118
6. The Default Time and the Hidden Markov Model .............. ... ..., 121
Appendix IV - Proofs of Results in Chapter 4 ............................. 125
Bibliography ...... ... 131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Introduction

The market for credit derivatives has experienced spectacular growth in recent
years, creating for investors many new opportunities for higher returns and diversi-
fication. Credit derivatives are financial instruments whose payoffs depend on the
credit characteristics of a reference asset’s value. Swaps and options on corporate
debt are but two examples of credit derivatives. Given the sensitivity of credit
derivatives to the credit quality of underlying assets, pricing models must make

good use of credit risk information.

Credit ratings published in a timely manner by rating agencies are an invalu-
able source of credit risk information: investors can use the ratings to assess firms’
abilities to meet their debt obligations and to estimate the payoffs from the corre-
sponding credit derivatives. For many reasons, however, credit ratings change from

time to time and so reflect firms’ unpredictable credit risk.

The question of information value of credit ratings is well represented in the
literature but some of the earlier works reported mixed results. Two recent studies.
Kliger and Sarig [21], and Dichev and Piotroski [8] provide evidence that credit rat-

ing changes have impact on returns. and so they contain information that investors
1
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Introduction 2
cannot obtain from other sources. Kliger and Sarig find that although rating in-
formation does not affect firm value, announcements of rating changes have impact
on debt and equity values. Dichev and Piotroski report evidence that rating down-
grades are followed by negative abnormal returns, which the authors attribute to

underreaction to the announcement of downgrades.

The role of credit rating agencies and the transparency of their rating policies
has recently come under scrutiny, especially after the collapse of Enron Corporation.
The leading credit rating agencies have long been regarded as the most methodi-
cal and independent financial research firms, but their cautious approach to rating
debt obligations, once the agencies’ biggest asset, has been under attack as of late
as their clients voiced concerns over the timeliness of the rating reports. The lead-
ing rating agencies, such as Moody's Investor Service and Standard & Poor’s. have
been accused of reacting too slowly to the disaster at Enron: Moody’s and Standard
& Poor’s both continued to rate Enron’s debt as investment grade until just days
before the company went bankrupt. In response. rating agencies started looking
at ways to react more rapidly to changes in the debt market and possibly to trade
some of the comprehensiveness of their analysis for timeliness. Just after the Enron
collapse. Moody's in particular seems to have shifted to "faster and tougher™ cov-
erage of corporate debt by issuing a number of rating cuts. For example. it swiftly
downgraded Kmart Corporation’s debt to junk status, a call that was vindicated a

month later when the company filed for bankruptcy. However. these rating cuts in
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Introduction 3
turn produced accusations of overreaction to Enron’s collapse and fears of increased
volatility in the bond market. Consequently, the reliability of ratings as indicators
of creditworthiness is of even greater importance today and there is an even greater

need for gaining a better understanding of the credit rating dynamics.

Existing models of default risk fall into two broad categories: the structural
models and the reduced-form models. Structural models are concerned with mod-
elling and pricing default risk specific to a particular corporate borrower. Default is
triggered by movements of the firm’s value relative to some barrier. A major issue
within this framework is the evolution of the firm’s value and of the firm’s capital
structure. In the reduced-form approach, the firm value and its capital structure
are not modelled at all, and default is specified exogeneously. Within the class of
reduced-form models, we find the so-called intensity-based models and credit migra-
tion models. The latter take the evolution of credit rating over time to be governed

by a Markov chain.

The key assumption behind the Markov chain representation of credit rating
evolution is the Markov property. which implies that the rating process should have
no memory of its past behaviour. In other words. predictions of future rating evo-
lution based on the past rating history and a current rating are no better than
predictions based on the current rating only. Markov Chain Models of credit mi-
gration also assume that the dynamics are stationary so that the probability of a

transition from one rating category to the next does not change over time. The pi-
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Introduction 4
oneering work in the direction of using Markov Chain models, not only to describe
the dynamics of a firm’s credit rating but also to value credit derivatives, was done
by Jarrow and Turnbull [18], hereafter JT, and Jarrow, Lando and Turnbull [19],
hereafter JLT. JT proposed a model for pricing and hedging derivative securities
that takes as given a stochastic term structure of default-free interest rates and the
firm’s bankruptcy process. As a result, financial instruments subject to credit risk
can be priced in an arbitrage-free manner using the equivalent martingale measure
technology. The JLT model follows the JT model in spirit and explicitly incorpo-

rates credit rating information into the valuation process.

Two empirical studies, Carty and Fons [5]. and Carty and Lieberman [6] sug-
gest that the credit rating process may have memory. It is reported that prior rating
changes can have predictive power for the direction of future rating changes. These
studies find in particular that a firm upgraded (downgraded) is more likely to be sub-
sequently upgraded (downgraded). More recently, Lando and Skodeberg [24] tested
the data set provided by Standard and Poor’s for the presence of “momentum” or
“rating drift.” Using the theory of Markov chain modeling, they concluded that
there seem to be strong non-Markov effects for downgrades in the entire population

of rated firms.

The credit rating process has been subject to many studies aimed at selecting
an appropriate statistical technique for estimating a function to explain and predict

bond ratings. Although credit rating agencies generally insist that they consider
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Introduction 5
factors that cannot be quantified. studies have shown that approximately two-thirds
of ratings can be predicted on the basis of a fairly small number of financial variables.
One common approach is to perform an ordered probit analysis and the rationale
is as follows (cf. Kaplan and Urwitz [20], Ederington [10]). It is supposed that
the bond rater tries to measure the risk of default of bond issues. Unfortunately,
the rater can only make an ordinal ranking of bond issues, that is say for example
that AAA bonds are less risky than AA, AA bonds are less risky than A bonds
and so on. The default risk. measured on interval scale, is then the dependent
variable of interest which if observed would satisfy a linear model with financial
variables as explanatory variables. Instead. only an ordinal version of the variable
of interest is observed which does not satisfy the linear model. The probit model
then aims to estimate intervals corresponding to each rating category and bond
issues are classified based on estimated probability that an estimate of default risk
as a function of the chosen set of financial variables falls within a particular interval.
This classification technique could be a source of “memory” in the credit rating
process as one can imagine two bond issues with close scores on the explanatory
variables being assigned to two different rating categories by virtue of their scores

straddling an interval end point.

Markov-type models take the probabilities computed from credit rating data as
elements of the correct transition matrix for the credit rating evolution process rep-

resented as a Markov chain. The empirical findings. however. suggest that this may
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Introduction 6
not be the case. In other words. the observed rating process is corrupted by what
we may call "noise.” This is precisely the premise behind Hidden Markov Models
(HMM). In the HMM framework, we assume that the credit rating evolution can
be described by a Markov chain but that we do not observe this Markov chain di-
rectly. Rather, it is hidden in "noisy” observations represented by the posted credit
ratings. The HMM approach allows us to filter out the “noise” from the obser-
vations by purely quantitative means, without investigating the rating assignment
process or explicitly looking for factors that cause the observed rating process to
have memory. It thus provides a framework for quantitatively assessing the cred-
ibility of internal and external rating systems used by financial institutions. The
outcome of the HMM applied to the evolution of credit ratings is a probability
distribution for a rating at some time k given the information (observed ratings)
up to time k. The technique also allows for reestimation of parameters, namely
the elements of the transition matrix and the probabilities of observing a particu-
lar rating given the “true” credit rating. The latter property is especially valuable
since credit transition matrices are at the centre of credit risk management. The
reports on rating migrations published by Moody’s and Standard and Poor’s are
studied by credit risk managers everywhere and several of the most prominent risk
management tools, such as JP Morgan’s CreditMetrics. are built around estimates
of rating migration probabilities. The HMM framework provides a tool for eval-

uating the reliability of these estimates. It can also be incorporated into pricing
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Introduction 7
models for risky debt and credit derivatives to account for “non-Markovian™ effects
in the behaviour of rating over time. In other words, prices of bonds and credit
derivatives would then be derived conditional on the information about the issuer’s

“true” rating implied by the observed rating history.

Hidden Markov models, when Markov chains are observed in Gaussian noise,
have been subject to extensive studies. See for example the book by Elliott, Aggoun
and Moore [14] and references therein. Here we consider the discrete time model
with a Markov chain observed in martingale noise. By introducing a new probability
measure we are able to obtain unnormalized, recursive estimates for the state of the
Markov chain governing the evolution of the credit rating process. We use the so-
called EM (Expectation Maximization) algorithm to estimate the parameters of the
model. The method allows for the parameters to be revised as new information is

obtained. The resulting filters are, therefore, adaptive and “self-tuning.”

The thesis is organized as follows. Chapter 1 describes the dynamics of the
Markov chain and observations. The reference probability and the forward filter for
the "true” credit rating process are also introduced. The chapter concludes with
recursive formulae for updating the parameters of the model for both the filtering
and smoothing case. The filtering results of Chapter 1 are then applied to a data
set of issuer credit ratings obtained from the Standard and Poor's COMPUSTAT
database. The ratings data and simulation results are discussed in Chapter 2. In

Chapter 3 we present a Kalman filtering model for estimating the dynamics of credit
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Introduction 8
quality aimed to overcome some of the challenges posed by the nature of available
credit rating data. Finally, in Chapter 4 we describe a reduced-form model of
default risk that provides formulae for calculating the value of a defaultable bond

conditional on the issuer’s credit quality.
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Chapter 1
Hidden Markov Model

1. INTRODUCTION

Our goal is to estimate, from the published credit ratings. the state of the
Markov chain that represents the evolution of a “true” credit rating process. We
shall use a procedure known as filtering in the stochastic processes literature to
obtain an algorithm to be later used to assess “true” credit quality. In general,
filtering concerns optimal recursive estimation of a noisy signal given a sequence of
observations. We shall suppose that the signal process is a Markov Chain which we
do not observe directly. We also assume that the observation process has zero delay
to the signal process so that the current observation contains information about
the current signal value. In our case, a firm’s “true” credit quality is a signal and
posted credit labels are the noisy observations. Given the zero-delay assumption,
we shall then use the rating history up to and including time k to estimate the state

of the “true” credit rating process at time k. We also derive formulae for smoothed
9
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Chapter 1 - Hidden Markov Model 10
estimates, where we use all available observations to extract information about the
signal at time k. In both cases we use the so-called EM (Expectation Maximization)

algorithm to provide recursive formulae for estimating the parameters of the model.

2. DYNAMICS OF THE MARKOV CHAIN AND OBSERVATIONS

Formally, a discrete-time, finite-state, time homogeneous Markov chain is a

stochastic process {Xy} with the state space S = {1.2,...,N} and a transition

matrix A = (aj)1<ij<n. Without loss of generality, we can assume that the
elements of S are identified with the standard unit vectors {ej,es,....en}, ¢ =
0,...,0,1,0,... .0)T e RN . That is. without loss of generality we can assume that

S = {e1.ea,....en}. At each time k € {0,1.2,...} Xi is then one of the unit
vectors e;, 1< i < N. Write Fr = 0{Xo.X1,.... X} for the o-field containing
all the information about the process X up to and including time k. Then, Fy C
F1 C ... Fk. so that we learn more and more about the process X as time passes.
The family of o-fields {Fi} is a filtration that models all possible histories of X.
Note that the Markov property implies that P(X1 = ¢;|Fi) = P(Xig1 = €5 Xk).
In other words. knowing the current state of the process X is sufficient to make
inferences about its future behaviour.

Now. an (i.j)-th entry of A is defined as a;; := P(Xiy1 = ¢;| Xk = €;). the
probability of the process X moving from state i to state j within one unit of time.

The relationship between the state process at time k and the state of the process

at time k& + 1 is then as follows:
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Chapter 1 - Hidden Markov Model 11
Lemma 1.1. E[Xp41]Xk] = AX.
Proof. See Appendix L.

Define Vi1 = X1 — AXi € RY. Then. the semimartingale representation
of the chain X is

X1 = AXp + Vi, k=0.1,...,

where Vj41 is a martingale increment with E[Vi | Fx] = 0 € RY.

Let px = (p1.-...pn) = E[Xk]. Then, pry1 = Apr = Ak+1p, € RV, We have:
Lemma 1.2. VarVy = E[V,V]] = diag (Apx—1) — Adiag (pr-1)A".
Proof. See Appendix I.

Suppose we do not observe X directly. Rather, we observe a process Y such
that

Yi =c(Xp.wi). k=0,1.....

where ¢ is a function with values in a finite set and {wi} is a sequence of i.i.d.
random variables independent of X. Random variables {wx} represent the noise
present in the system. Suppose the range of ¢ consists of M points which are
identified with unit vectors {f1. fo...., fasr}. f3 =(0.....0.1.0..... 0) € RM.

Recall Fy = o{Xo. X1..... Xy} Write

and G =o{Xp..... XYy ... Y}

These increasing families of o-fields are then filtrations representing possible histo-

ries of the state process X. the observation process Y and both processes (X.Y).
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Chapter 1 - Hidden Markov Model 12
Write ¢;; = P(Yy = f;]Xk =€), 1<i< N, 1< < M, for the probability of
observing a state f; when the signal process is in fact in state e;. Then,
Lemma 1.3. E[Yi|Xk] = CXk. where C = (cji)r<ij<m 5 a matriz with cj; > 0
and Z?; cji = 1.
Proof. In Appendix L.

Define Wy, = Y, —C Xj. Then, the semimartingale representation of the process
Y is

Ve =CXpe + Wi, k=0,1....,

where W is a martingale increment with E[Wg|Gr_; V {Xi}] = 0 € RM. Note
that we are assuming zero delay between X and its observation Y;. We have the

following result:

Lemma 1.4.
V(LTWk = E{WkWé] = E[(Yk - CXk)(Yk- - CXk)/] = dia.g (Cpk) - C’diag (])k) C’/.

Proof. In Appendix 1.

In summary, our model for the Markov Chain X hidden in martingale noise is
as follows:
Hidden Markov Model (HMM)

Under a probability measure P,

Xps1 = AXk + Viepy  (signal equation, “true” credit quality)

Yi = C X + Wy (observation equation. posted rating)
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Chapter 1 - Hidden Markov Model 13
A and C are matrices of transition probabilities whose entries satisfy Z;.V:l aj; = 1.
aj; > 0, Zﬁl cii =1, ¢53 2 0.

Vi and Wy are martingale increments satisfying

EVii1lFi] = 0. VarVy = diag (Apx—1) — Adiag (pr-1)A’,

E[Wk_ngk V {Xk+1}] =0, VarWy =diag (Cpk) — C diag (pk) C'.

3. REFERENCE PROBABILITY

Suppose that under some probability measure P on (2, F), {Yx} is a sequence
of i.i.d. uniform variables, i.e. P(Yiy1 = fj|Gk) = P(Yer1 = fj) = Wli Further,
under P, X is Markov chain independent of Y, with state space S = {ej,....en}
and transition matrix A = (a;;). That is, X4 = AXk +Viy1. where E[Viy1|Gk] =
EVi1|Fe)=0¢ RY. Suppose C = (cji). 1<i<N, 1<j< M. isamatrix
with ¢j; > 0. and Z;\il cji = 1. We have the following result:

Lemma 1.5. Define \y = M Z?;(C'Xl,fj)()ﬁ,fj)l and Ay = HL X\;. Define
a new probability measure P by putting g—gigk = Ar. Then, under P, X remains
a Markov chain with transition matriz A and P(Yy = f;| Xy = e;i) = ¢;i. That is.
under P, Xpi1 = AXk + Vikgr and Yy = C X + Wi

Proof. Appendix I.

Note. P represents the "real world” probability measure. However. measure P

is easier to work with since under P, {Y}} is i.i.d. uniform and independent of X.

!For any vectors a and b, {a.b) = a’b.
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Chapter 1 - Hidden Markov Model 14
Lemma 1.5 provides a useful link between our "real world” probability measure P
and a "reference” probability measure P which preserves all the properties of the

process X.

4. RECURSIVE FILTER

Suppose we observe Y. ..., Y).. and we wish to estimate Xg,..., Xk. The best

(mean-square) estimate of X given Vi = o{Y0,...,Yx} is E[Xk|Vk] € RY. How-

ever, P is a much easier measure under which to work. Using Bayes’ Theorem, we

have

EA Xk Vi
E X V] = ——=———.
X5l E[Ak| V]
Write gy, := E[/_\kX k| Vx| € RY. g is then an unnormalized conditional expectation
of X given the observations Y.

Lemma 1.6. E[A;|Vi] = (gr.1), where 1 = (1,1.....1) € RV,

Proof.  Appendix 1.

It follows that E[Xk|Vk] = 7. Hence, to estimate E[Xy|Vk] we need to
know the dynamics of q. The following theorem shows how the unnormalized filter
is updated with arrival of each new observation.

Theorem 1.1.  Write B(Yxy1) for the diagonal matriz with entries

M
]\J(Z cji(Yir1: f5))-

j=1
Then, qx+1 = B(Yii1)Agk-

Proof.  Appendix 1.
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Chapter 1 - Hidden Markov Model 15
To summarize, given the parameters of the model, namely matrices A and
C. the distribution of X given information in Yy is E[Xk|Vk] = ?ifT)’ where

qr+1 = B(Yit1)Ags.

5. PARAMETER ESTIMATES

To estimate parameters of the model, matrices A and C, we need estimates of
the following processes:
TP = (Xnov.e)(Xn.e5), 1<4,j<N,

n=1
k

Oi:Z<Xn—l>ei>: 1§ZSN

n=1

k
T =3 (Xn.e)(Yn fj), 1Si<N 1<j<M

n=0
The above processes are interpreted as follows:

J,f,j - the number of jumps of X from state e; to state e; up to time k.

O}, - the amount of time the chain has spent in state e; up to time k — 1.

sz ~ the amount of time process X has spent in state e; when process ¥ was
in state f; up to time k.
Remark 1.1. Note that Z;\':l JU = O% and Z;\_]__l T,ij =0},

Consider first the jump process {J}’}. We wish to estimate J;/ given the

observations Yp. .. .. Y).. Using Bayes’ Theorem, the best (mean-square) estimate is

R old)
EAeV]  xe 1)

E[J7 V] =
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Chapter 1 - Hidden Markov Model 16
We wish to know how o (J%)} is updated as time passes and new information arrives.
However, there does not exist a recursion formula for o(J%),. Instead, we consider
a vector process o(JYX )y := E [I_XkJ,ij X«|Vk] for which recursive formulae can be
derived. We then readily obtain the quantity of interest, namely o(J%). since
a(J9) = (0(J¥ X )k, 1). We have the following result:
Theorem 1.2.

M

o(J9X ) ja1 = B(Yis ) Ao (JIX ) + (MY csj(Yer1: £o))(ar: €:)ajie;.
s=1

Proof.  Appendix 1.

Similarly, we consider the best (mean square) estimates of O% and T,ij given

Vi
; _ EAOLIYVE] (O
E[O|Vk] = E[]\klkyk] C (ke 1)
B = PRI o)

EAYe] T (e 1)
Recursive formulae for processes o(O*X )y := E[AxOLX|Vi] and o(TY X ) :=
E[ATY Xi| Vx| are as follows:

Theorem 1.3.

(0" X)pt1 = B(Yei1)Ad(O' X))y + (qi. ) B(Yies1) Aes.

(T X)ky1 = B(Yiy1) Ao (T X )k + Meji(Yey1. f3){Agk. e)e;.

Proof.  Appendix L

Note that o(O%)) = (6(O*X)k.1) and o(T9), = (o(T7 X);. 1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1 - Hidden Markov Model 17

Remark 1.2. Define O1% := Zﬁl Ty = O}, Then,

M
O'(OliX)k+1 = U(OiX)k—H + (szcsi(Yk: fs>)<AQk—1:ei>ei
_ ! M
= B(Yk+1)A0(OlX)k + <A9k:ei>B(Yk+l)Aei + (]\chsi<yk: fs))(Aqk—lfei>ei
s=1

and

M
o(01 )k = 0(0")k + (M) csi(Yira. f5))(Agr. €s).

s=1

Proof.  Appendix I.

Our model is determined by parameters 6 = {a;;, 1 < 4.7 < Ni¢j,1 <0 <
N1<j<Mba; >0 SN a0 =1¢: 20 37 ¢;; = 1}. We want to
determine a new set of parameters 6 = {ji,1 <4, < N;é, 1 <i<N,1<j<
M} given the arrival of new information embedded in the values of the observation
process Y. This requires maximum likelihood estimation. We proceed by using the
so-called EM (Expectation Maximization) algorithm.

The EM algorithm is a broadly applicable method that provides an iterative
procedure for computing Maximum Likelihood Estimators (MLEs) in situations
where maximum likelihood estimation would be straightforward if more data were
available. The algorithm starts with an initial estimate of the unknown parame-
ter € and iteratively replaces this estimate with its conditional expectation given
the data actually observed. The EM algorithm is typically easily implemented as
it required only complete-data computations. It is also numerically stable: each
iteration monotonically increases the log-likelihood and, under fairly general condi-

tions. starting from an arbitrary point 6y in the parameter space. convergence to a
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Chapter 1 - Hidden Markov Model 18
local maximizer is nearly always guaranteed, with the exception of very bad luck in
the choice of 8y or some pathology in the log-likehood function. The method can
also be used in problems that are not of incomplete-data type, but where the EM
algorithm reduces the complexity of the maximum likelihood computation, which
is the case here. The application of the algorithm to estimating parameters of our
Hidden Markov Model is described next.

Suppose {Py. 0 € ©} is a family of probability measures on a measurable space
(2, F). Suppose also that there is another o-field J C F. The likelihood function

for computing an estimate of 6 based on information given in Y is

L(6) = Eollog 32 V)

The maximum likelihood estimate (MLE) of 8 is then

9 € arg maxL(6).
0O

However, MLE is hard to compute. The expectation maximization (EM) algorithm
provides an alternative approximate method:
Step 1: Set p = 0 and choose bo.

Step 2: (E-step) Set * = ép and compute

dP,
dP,-

Q(6.6") = Eyp«[log [V].

Step 3: (M-step) Find

Opt+1 € arg mazQ(6.6).
fce
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Chapter 1 - Hidden Markov Model 19
Step 4: Replace p by p + 1 and repeat from Step 2 until a stopping criterion is
satisfied.

Our model is determined by the parameters
0=1{a;;,1<i,j<N:ic;;,1<i<N,1<j< M}

Suppose our model is given by such a set of parameters and we wish to derive a
new set

0 ={a;;,1<i.j<N;é;,1<i<N,1<j< M}

which maximizes the analogs of the ¢ functions.

Consider first the parameter a;;. Suppose that under measure Fp. X is a
Markov chain with transition matrix A = (a;;). We define a new probability mea-
sure Pj; such that under P, X is a Markov chain with transition matrix A= (Gji).
Le.

pé(Xk—H = EjIXk = ei) = &jiv

aj;; > 0, N & ., = 1. Define
J J=1"7

Ag =1
k N a

Ak = H( Z (asr)<-’¥1-es><X1~l-,er>)
=1 r.s=1 ST

In case a;; = 0 take a;; = 0 and %f = 1. Define F; by setting g’;ﬁfk. = Ayg.
Lemma 1.7. Under P;. X is a Markov chain with transition matrix A= (aji).

Proof.  Appendix 1.
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Lemma 1.8. Given the observations up to time k, {Yy.Y1.....Yy}, and given the

parameter set § = {aj;,1 <14,7 < N;c¢j,1 <i < N,1<j <M}, the EM estimates

aj; are given by

Consider now the parameter c;;. Suppose that under measure Py, Yy, = C Xy +

Wy, where C = (c;;). We define a new probability measure P as follows. Put

Ao =1
k N &

A =[O0 5N X e (Wi ),
I=1 r,s=1 7

In case ¢j; = 0 take ¢;; = 0 and E;L: = 1. Define P; by setting g’;glgk = Ag.
Lemma 1.9. Under Py, Yy = CXp + Wi, ice. Py(Yi = fo| X =€) = ésr.
Proof.  Appendix 1.
Lemma 1.10. Given the observations up to time k, {Yo.Y1.....Yx}, and given
the parameter set 0 = {aj;.1 < i.7 < Ni¢j;,1 < ¢ < N.1 <j < M}, the EM
estimates ¢j; are given by

a(T)i
o (O + (M .1, csi (Vi fo) A1 ex)

Cji =

Proof.  Appendix L
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6. SMOOTHED ESTIMATES

Suppose 0 < k < T and we are given the information Yo = 0{Y¥p.Y1.....Yr}.

We wish to estimate X given )y 7. From Bayes’ Theorem,

_ E[Ro.rXk|Vor]
EXYor) = =R e

where Agp = szo Meo e = M Z?LI(CXk,fj)(Yk,fj) From Lemma 1.6, the
denominator is

E[l—\o_ﬂyo.T] = <QT: 1):

where g7 = E[Agp X7|Yor] and 1 = (1,1,....1) € RY. Now,

ElAorXelYVo.r] = E[Ao xAkt1.7 Xk Vo 7] = E[Aok Xk E[Aks1.71Vo.1 V Fiel | Vo1,

where Agy 1 = H[T:k+1 X\i. Consider E[Ajs1.7|Vor V Fi] = E[Axr1.7|Yor V Xi]
using the Markov property. Write vy = (v}.... ,v,]fv)’, where 1)}'C = E[Ags1.7| Vo1 V

{Xk = e}l

Lemma 1.11. v satisfies the backwards dynamics, dual to q, of the form
vy = A'B(Yi41)Uk+1-

Proof.  Appendix 1.
Lemma 1.12. vy =(1..... 1) € RV.
Proof.  Appendix 1.

Remark 1.3. Since vy = 1. we have vy = A'B(Y341)A'B(Yiy2)--- A'B(Yp)1.
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Theorem 1.4. The unnormalized smoothed estimate is
E[AorXk|Yor] = diag (qk - vy)-

Proof.  Appendix I.

It follows that E[Xk|)or] = fli—%;q!’%"l. Hence, to estimate E[Xg|Yo. 1] we

need only know the dynamics of g and v, which are, respectively:
qx = B(Yr)AB(Yi—1)A--- B(Y0)Aqo.
where qq is the initial distribution for X, and
vp = A'B(Yyy1)A'B(Yyq2)--- A'B(Yr) - 1.

As described in detail in Section 4. the EM algorithm re-estimates the param-

eters of the model as

. o(JY)r
@ji = AN
o(OY)r
o= 2@ o ()
it = i - - J .
o011 o(O)r + (M XM, i (Y. f))(Agr_1. e1)
Given observations Yo r = o{Y,.Yi..... Yr}. we are interested in smoothed esti-

mates of the number of jumps. the occupation time and the time spent. These
processes were described in Section 4.

Consider first the smoothed estimate E [J,ij Xi1Vo.1]. Using Bayes’ theorem,

E[/_\_O.TJ;?XH)/O.T]
Edor|Vor]

E[J} Xi|Yor] =
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The numerator is £ [AO,kJ,ij X k/_\k+1,le0.T]~ Consider the [-th component:

E[Ao kTP XxAky1.7(Xk-e)|Vo.1)

= E[AoxJP Xk EAks1,71Vor V {Xk = e})(Xk. e)|Vo.r]

= E[AoxJy Xivt( Xk, )| Vo.7)]

= E[AoxJy Xi{ Xk, e)|Yo.rvk

Then,

N
Elho 12 Xk Vor] = ZE[AO.kJ;J (Xi.er)er| Yo.rlvs
1=1

I

E[Aox 7 (Xk. &) Vo.r|vke

1
E

i

1

(E[AoxJy Xk|Yo.r). er)vier.

hE

i

1

Recall 0(J9 X))y = E[ApJ}? X 1| V). We then have that

N
ElAorJ Xeldor) =Y (o(JY X ). er)vier
=1
= o(JUX)jvier

Therefore, 1/ diag (o (J9 X)) - o) = (0(JT X ) g vy} = E[AO_TJ,f,jlyo_»p] is the unnor-
malized. smoothed estimate of J,f.j given Yo 7.

Given observations Yo r = o{¥p.Y}..... Yr}. we are interested in o(JV)r.

Theorem 1.5.

M

<(1k~1-€i><vk-€j>(l"[2(fsj<yk- fs))-

k=1 s=1

R

O'(Jij)T = Qji
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Proof.  Appendix I

Corollary 1.1.

T
o(0Y)r = Z<Qk*l:ei><vk—leei>
k=1

Proof. Appendix .

Remark 1.4. Again by Bayes’ Theorem,

E[[\P,ZCT]?XklyOT]
E[Ao.7|Yo.T]

E[TY Xk|Vor) =

As before, 1’ diag (TY X )x - v},) = E[I—XO_TT,?D?O,T] = (o(TY X ). vk)-

Theorem 1.6.

T
o(T9)r =) Mcji(Ye. f5)(Agr-1. i) (k. €.

k=1
Proof.  Appendix 1.
Corollary 1.2.
. T M
o(O1)r =Y (MY csiYe. f5)) {vk- €){Agr—1. €:).-
k=1 k=1

Proof.  Appendix 1.

7. UPDATING SMOOTHED ESTIMATES

Write Viy1.0 = A’B(Yiei1) - A'B(Yr) so that

v = Up.T. Where

Ve = Vipr.r - L.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24



Chapter 1 - Hidden Markov Model 25
The methods to update smoothed estimates from the previous section have

required recalculation of all backward estimates v. Below we note results that

provide for more efficient computations.

Lemma 1.13. vk 7141 = Vir1,7+11, where Vi 741 = Vi1, TA'B(Yr4) O

From Theorem 1.5,

T M
U(Jij)T = aj; Z(Afzcsj<yk7 Fs) k-1, ei){ve. ;)

k=1 s=1
T M

:aszz ]\’{ZCS] Yk, fs>)<qk 1: € >ejvk
k=1 s=1
T M

= a5 Y (MY cos(Ye. fo)) k-1, €)€5A'B(Yiern) - -- A B(Yr)1
k=1 s=1

=171,

where T = aj; Yp (M M i (Vi f)){ak-1. €:)eA'B(Yipr) -+ A'B(Yr).

Lemma 1.14.

M
741 =TpA'B(Yri1) +aj(M Z s (Yri1, fo))ar. ei)e).
s=1
Proof. Appendix 1.
Corollary 1.3.  o(O%)r = K} 1, where
T
Kr = (gk-1,€:)€;A'B(Yy)--- A'B(Yr).
k=1

Then,

Ky, = KrA'B(Yri) + {gr.ei)e;. O
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From Theorem 1.6 we have

T
o(T7)p =Y Mc;ilYe, f;){Aqe—1. €:) (g, €)
k=1

I

Mcji(Ye, fi)(Aqr—1, €:)eivr

]\/chi <Yk, fj)(Aqk_l,ei>e;A'B(Yk+1) s AIB(YT)I

il
£ 1M+ I

i

1,

where Hy. = 57, Mcji(Ye, fi)(Aqr—1,e:)e;A'B(Yiy1) -+ A'B(Yr).

Lemma 1.15.
Hé"+1 = H}A,B(YT_;_])]. + ]\/ICji<YT+1, fj><AQT €i>€;.

Proof. Appendix 1.
Corollary 1.4.  In particular, c(O1%)r = AL1, where
T M
AL = (Age-r.e) (MY coi(Yi. fs))€;A'B(Yirn) -+ A'B(Yr).

k=1 s=1

Then, Alpyy = ApA'B(Yri1) + (Agr.e)(M M (Yr. fo))el. O
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Proofs of Results in Chapter 1

Proof of Lemma 1.1.

N
B(XksrlXe] = D EXeni|Xe = e (X, €0)

il

N
ZE (Xk+1,€5)| Xk = €] Xk, es)e
j:

Il
,MZ

-
i

—
—

N
ZP(XkH = ;| Xk = e;){ Xk, €)e;

l1j=

il
ME

—

ﬁ.

N
Z ]1<Xk7 l)e] _AXk O

I
i Mz

Proof of Lemma 1.2.
VarVi = EViV{] = E[(Xx — AX-1)( Xk — AXg_1)']
= E[Xi X, — AXi_ 1 Xi — Xp Xe 1 A+ AX 1 Xp Al
= E[E[XiX; — AXio1 X — Xe X1 A+ AX 1 Xio | A Fr—]]
= E[E[diag (Xi) — Adiag (Xg_1)A'|Fe 1]
= Eldiag (AXk-1) - Adiég(XbJ)A/]

= diag (Apx—1) — Adiag (pe-1)A". O
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Proof of Lemma 1.3.

M=

E[Yi|Xk] = ) E[Yi|Xk = ei](Xk. €)

1

™.
It

I
.Mz

P(Yy = fi| Xk = e)f;) (X, e:)

i l

Mz

ﬂfj )(Xi,e) = CXy. O

I

) 1

Proof of Lemma 1.4.

VarWy = E[WW;] = E[(Yx — CXi) (Vi ~ CXk)']
= E[Y,Y! - i X|C' — CYp X} + CX X}
— E[E[V4Y] — Vi XLC' — CYi X} + C X XLC'| X))
= E[E[diag (Yx) — C diag (Xx)C'| Xx]]
= E[diag (CX}) — C diag (X1)C']

= diag (Cpx) — Cdiag (px)C’. O

Proof of Lemma 1.5. First we show that E[\;|Gr_; V {Xx}] = 1. We will make
use of this fact in proofs that follow as well.

M
EPulGr1 V{Xi)] = BIM Y (CXi. f;) (Y f)IGr—1 V {Xi)]

j=1

M
= MY E[(Ye. f;)1Gk-1 V{X }(C Xk £5)

j=1
M

=M P(Yi = f;|Gk-1 V{Xi}){CXe. f;)

j=1
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M
Z = fi){CXk. f]>
j=1
M N N M
ZZ cji{ Xk, f3) ZXkafj>ZCji:1-
prargrs P =
Then,

P(Xki1 = €ilGr) = E[(Xk+1,€4i)|Gk]

_ E[Aks1{Xkt1,€:)|Gr]

E[Ag41|Gk]
_ E[/_\k+1 <_Xk+1-,€i>|gk]
E[/\kﬂlgk]
= E[M+1{Xk+1,€;:)|Gx] using the claim proved above
M
= E[(M Z(CXk+l-, Fid (Yir1s £3)) (Xk1, €3) |G
i=1
JN M
= E[UWZ (chi<yk+lr fj>)<Xk+176i))<Xk'+17ei)lgk]
i=1 j=1
M
= E[M () cjiYarr. [1)) (AXk + Viyr, €:)|Gi]
j=1
M
= EIM () ¢jilYis1. £5)) (AXk. €:)|Gk]
j=1

(since Vi1 is a martingale increment independent of Vi)

M

= (AXy, e)M > i E[(Yir1. f3)1Gx]
=1
J]\'] B

= <AXk.€1>A[ZC]'LP(Yk+l = fj‘gk)
j=1

Al

= (AXy.€;) Zcﬁ = (AXg.e;).
Hence, P(Xy1y = €;|Gk) = (AXk, e;) depends only on X}. Therefore,

P(Xi41 = €i|Gr) = P(Xp11 = €| Xi)-
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Suppose now that X = e;. Then, P(Xii1 = €;|Xy) = (Aej.e;) = aj;. It follows

that E[Xk41|Xk] = AXk. Define Viy1 = Xigy1 — AXg. Then,
E[Vi1|Gi] = E[Xks1 — AXi|Gr] = E[Xk41|Xk] — AX =0 € RY.
Now, by the tower property,
E[Vit1|Fx] = E[E[Vi1|Ge)|Fx] =0 € RV,

It follows that, under P. X remains a Markov chain with semimartingale represen-
tation

Xps1 = AXp+ Vir1.  E[Ven|Fe] =0 RY.
Now,

P(Yi = fj|Gk-1 V {Xk}) = E[(Y. f;)|Gk-1 V { Xk}

_ E[/_\li+l<yk,fj>|gk—1 \4 {Xk}]
E[Ak41|Gr—1 V { X1 }]
E[/_\k<yk,fj>|gk—l N {Xk}]

174

= E[(M (CXx. ;)Y fi)) Ve, Fi)lGr1 V {Xi}]

=1

= E[M(CXg. f;)(Ye. f)|Gk—1 V {Xr}]

{

= M{(CXy. fYE[(Yk. f)|Gr-1 V {Xk}]
= M(CXy. f[YP(Yi = f;1G_1 V {Xk})
= (CXk. f5)-

Hence. P(Yy = f;|Gk-1V {Xk}) = (CXk. f;). Since this depends only on X, we
have

P(Yy = f51Gr—1 V {Xk}) = P(Ye = f;|1Xk).
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Suppose that X = e;. Then,

P(Yi = fi1 Xk = e5) = (Cey. f;) = cju-

It follows that E[Yx|Xx] = CXy. Define Wi = Yy — CXg. Then, E[Wi|Gr_1 V
{Xi}] = E[Yx — CXi|Gr 1 V {Xi}] = E[Yi|Gr-1 V {Xi}] - CXi = 0 € RM.

Consequently,

EW|Vk-1] = E[EWk|Gk_1 V {Xk}|Vk—1] =0 € RM.

It follows that Y has the required semimartingale representation under P. [

Proof of Lemma 1.6.

(qr, 1) = (E[Ak Xk Vi), 1) = E[(Ax Xy 1)| V] = E[Ag( Xk, 1)|Vk]

I

N
E[I\k Z(Xk,eiﬂyk] = E[I_\klyk] O

Proof of Theorem 1.1.

Jk+1 — E[[\kﬂXkHlykﬂ]
M
= E[A(M ) (CXpsr- f5) (Yerr [3)) X i1 Vs ]

j=1
M

N
=Y EAM Y cjiYer1. fi))(Xns1-ei)ed Vira]
i=1

j=1
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M
E[Ap(Xkt1. ei)lyk-i—l](j\/fchi<Yk+l~,fj>)ei
1 j=1
M
<E[/_\ka+llyk+l]:ei)(A’IZCji<Yk+]:fj>)ei
=

i
™=

W

~
It
—

Il
.MZ

M
(E[A(AXg + Vie)IVesr]se) (M D cjilYierr, fi))es
i=1

Il
Mz

o~
il
—

Mz

(AE[A Xi| Vi), es) (M Z cjiYirr, fi))ei

~.
il
—

(since Vi, .is a martingale increment independent of Vi)

z

M
<Aqk e MZCJI Yit. f]))

7j=1

W

= B(Yk+l )A(Ik:

where B(Yy,1) is a diagonal matrix with entries (M Z;\i] cjiYey1. f5))- O

Proof of Theorem 1.2.
o(J7 X)kyr = B[Rk T X[ Vies1]

= EAder1 (JP + (X, €3) (Xir1. €5)) Xigr | Vit 1]

= E[Ad i1 P2 X1 [Ver1] + BB+ 1 (Xe. e)(Xip1. €5) Xk1 | V1]

Now.
E[Ad k10 Xpor1 | YVies1] = E[A(M Z(CXH],fs)(YkH-fs>).];?Xk+1|yk+1]
s=1

N M N

= Z E[Ak(]\'[ Z C.sr<Yk+1-, fs))(XlH—l : 6r>J1:»]€r|yk+l]
r=1 s=1
N - M

= E[A{Xpr1- ) I (Vi) (MY cor(Yigr. fs))er
r=1 s=1
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M

N
ZE[Ak<AXk € >]k lyk—i-l ]\Izcsr Yk+1 fs)) €r
r=1 s=1
N - M
Z E[Ak <Vk‘+1: er>J,i]|yk+1](M Z Csr<Yk+1 : fs))er
r=1 s=1

N - M
=Y (EA TP AXe Vi) er) (MY cor(Yirr: fo)er
r=1 s=1
N - M
= Z(AE[AICJI?XICD;IC]: er)(]\’fzcsr<yk+lafs>)er
r=1 s=1
N M
= (Ac(JIX)p.e,)(M Y cor(Yirr, fs))er
r=1 s=1
= B(Yiy41)Ac(JY X ).
Also,
E[A k1 { Xk ) (Xit1.€5) X1 [ Vierr] =
M
= E[A(M D (CXppr. fo) (Yegr fs))(Xns ) (Xipr. €5) Xieyr | Via]
s=1
o M
= E[Ak(AIZC3j<Yk+Js.fs))(stei><Xk+1: ;)€ V1]
s=1
M
= E[A(M D csj(Yirr- o) (Xn- €0) (AX. e5)e5|Vi41]
s=1
M
+ ER(M D e (Yirr fo) )Xk €) (Vi €5)€;1 V]
s=1
M o
= (MY coj(Yerr. f)E[A( X ) (AXk. €5)| Vira]e;
s=1
M N
+ (MZ s (Yis1: fs) ) E[Ap( Xk i) (Viegr-€5) | Vig1le;
s=1
M N
= (MY csj(Yiyr- ) EA(Xy e5)a;| Vera]e;
s=1
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M
= (MY cs;(Yirr. fONER Xk V1], e)ajie;

s=1
M o
= (MY coj(Yirr: fs)(ERR Xkl V). eidajie;
s=1
M
= (A’[chj <Yk+lsfs>)<qk-,ei>aji€j'
s=1
Therefore,
M
o(J9X) g1 = B(Yip1)Ac(JIX ) + (M cgj(Yirn. fo)) gk €3)azie;.
s=1
as required. O

Proof of Theorem 1.3.

0(0O'X)k+1 = E[Aks10h 11 Xig1|Ves1]

E[Ak ki1 (Oi + ( Xk €i)) Xi1| Vi)

fl

= E[A Ak 108 X1 [ Vir1] + E{Ap A1 (X €) Xi 11 Via]-

Now,

M

E[M M1 0L Xn1 Vi) = E[Ap(M Z<CXI¢+1:f]‘><Yk+lefj>)Oi-Xk+1|yk+J]
j=1

~ M A

[Re(M D e (Yiwr- [))(Xnr1- €r)Oper| Vi ler

Jj=1

E
il

.,
n

M
(MZCJNYHI-fj))E[/_\HXk-H-€r>0fclyk+1]er

j=1

I
M-

>

M
(MY cjr(Yigr- [ EAAXK O Viri]. €r)er

j=1

%
il
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N
+ MZ% Y1 [5))(EIAO Visa Vira ] er)er
r=1 j=1
N M o .

=D (M) cje(Yirr FH)AEROL Xk |Vl er)er
r=1 7=1

M

Z ]\/I Z Cjr <Yk+17 fj>)<AU(OzX)k er>er

r=1 j=1
= B(Yii1)Ac(O' X )y

Also,

EA A kt1( Xk €) X1 | Vit
M
= E[Ap(M ) (CXpgr [1) Y1 Fi))( Xk €0) X1 | Vi)
Jj=1
M

N
= Z E[Ax(M Z Cir(Yit1. [i) N Xk+1. er) (X, €i)er| Vit1)
1 j=1

=> MZcﬂ Yipr- i) ERk (Xes1. e0) (X &) Viri]er

1

T

2

M
=Y (MY i (Yir. [ ER(AXk. e0)(Xi. €0) [ Ves]er
7=1

r=1

Mz

]\’[ijr n—l—l f7>) [Ak (Vk+] er><ch €1>|yk+1]

r=1

N A

=Y (MY e;e(Yigr. [i))E[Mkari(Xk. )| Vis1]er
r=1  j=1
N M

= (MY c;r(Yigr- Fi) ElAe{ X €) | Vig1]arier
r=1 i=1
N M

=D (MY cjr(Yerr. 1)) gr-€s)arie,
r=1 7j=1

k. €i) B(Yit1)Ae;.

We follow the same procedure to obtain the recursion for the dynamics of the vector
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process o (T X)y:

O'(Tin)k—}-l = E[j_\k_l_lTZ'ile-q—llyk—i-l]
= EAkn (TP + (Xisr, ) (Vi1 £5)) X1 | Ver1]

= EAx 1T X1 | V1] + B[Akr1 (Xr1. €) Yerr. £5) Xes1 | Vi)
Now,

ER 1 TP Xps1|Ves] = B[R M1 T Xpeya | Vera]

M
= E[Ax(M Z(CXIH-I:fs)(Yk—Htfs))YZ]Xk+l|yk+l]
s=1
N M o y
=D (MY o (Yirr, f) EIMTI (Xisr- )| Viyaler
r=1 s=1

M
(]\I Z Csr<Yk‘+le fs))E[AkT]zJ <AXIs er) lyk—{—l]e'r
s=1
M o B
(A’[ Z Csr <Yk+le f9>)E[AkT/:] <Vk'+l . 6,-) lyk+1]e‘r
s=1
M . B
(MY ey (Visr. fNABRTI Xy Vi) er)er
1 s=1
%4 3
(M Z Csr<Yk+l : fs>)<A0'(7’wX)k- er>er

1 s=1
B(Yi41) A (T X )i

\,
Il
—

M 11

+

1
Il
—

Il
™=

\s
il

I
M) =

ﬁ
Il

[

Also,

E[/_\k+l<Xk+l-,ei><Yk+l-fj)Xk+l‘yk+l] =
M
= E[A(M Z(CXH]- fs) Yiexr, fs)X Xigr-€) Yirr. [3) Xoat] Vi ]

s=1
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M
E[A(M Y (Cei, f)(Yir1: fo))(Xitr: €} (Yir1. fi)eil V]

s=1
M

E[/_\k(MZCsi (Yia1, fo)) (Xkt1s € (Yip1: [3) | Ver1]es

s=1

= Mcji(Yet1, f) B[k (Xkt1, €} Ver1]es

Il

= Mc;i(Yes1, f3) EIA(A Xk, €) | Verrlei + Mcji(Yiq, £3) ElAk Vit 1. €:)|Viet1]es
= Mcji(Yir1, [i) (AE[ A Xg| Va1, €:)es
= Mc;i(Yit1, f3){Aqr. e)e;.

The result follows. [

Proof of Remark 1.2.

(01" X )41 = E[Ap1101} 11 Xky 1| Vi1

i
es]

[‘[_\k‘Fl(O}c—{—l + (Xk+1-, ei))Xk+1lyk:+1]
= E[f_\k+102+1xk+1|yk+l]
+ E[Ak+1{Xks1-€) X1 Vies1]

= 0(O" X)kt1 + E[Ags1{Xrs1-€) Xis1 | Vira]-

Now,

Bk (Xit1- ) Xer11Vkq1] =
M

= E[/_\k(M Z(CXH] : f.s><Yk+1 . fs>)<Xk-+1~ ei>Xk+l D’Hl]

s=1
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M
EARM > (CXig1, fo)(Yirn, f))(Xkr1, €i)eil V]

s=1

M
E[A(M Y (CXpy1, fo) (Yirrs f)) (AXk + Virr. €)eil Vit

s=1
M

E[Ay ]\/IZ<CXk+1:fS><Yk+1= fs{AX, ei)eil Viy1]

s=1
M
+ E[A(M Y (CXpin, £3) Yerr, Fo)) (Vir, €n)ei| Veri]

s=1

M
MY (CXpyr, fo)(Yir, fo)) B[Rk (AXE, e:)ei| Vir1]

s=1
M

M > (CXp1, fa)(Yerr, Fs)(ABAe X |Vera], €:)

s=1

M

= (M (CXiq1, fs)(Yirn, f5)){Agr, e)

a

The result follows
Proof of Lemma 1.7. Using Bayes’ Theorem, we have

Ps(Xpi1 = €j|Fr) = E3[{( X1, €5)|Fk]
_ Eg[Akt1({Xkt1, ) Fk]
Eo[Ak+1|F%]
Eo[Akt1(Xit1.€5) | F]
Ee[)\k+1|fk]
) (Xkr1.€5)( Xk €5)) (Xeg1- €50 F]

. EG[(Z?,] ]( aji
Eg[Y 51 (52 ) Xnp1. €5) (X e0) | Fi]
Now, the denominator is
N n
Eol Y (“E){(Xks1. €5) (Xi. €0)| Fi) =
=, Wi
7,5=1
N N
ZEe[Z p” N Xkv1.€5)| Fr]( X )
j=1
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N
EQ[Z(%)<X]C+],€]'>|X]§ = ¢;}{Xk,e;) (by the Markov property)
1 g=1

I
E
H@

.
It

>

(4)E9[(Xk+1-, ;)| Xk = €i])(Xk, e:)
- i

fl
Djz
M =

i
o
i

>

(#)P9(<Xk+lvej>‘Xk = €;)) (Xk, es)

I
Djz
NE

i=1 j=1 J*
N N .-
= Z (Z(f)%’i)(){ksei)
i=1 j=1 J?
N N N
= Z (Z&ji)<Xk,ei> = Z<Xk’ei> = 1.
i=1 j=1 i=1
The numerator is
N A ..
Eo[( Y <Z—;%><Xk+1,ej><xk,e,->><xk+17e,->ifk1 =
ig=1 I

N .
= EQ[Z<%><Xk+1,ej><ka€i>|fk]

i=1 J?

1l
M=

<Z—ij>Ee[<Xk+l,ej>|m<xk,ei>

1 7

-
il

ai;
('ai__‘)PG(kaLl = €| Fi){( Xk, €:)
i

I
= 1 [M)=

Il

flji<Xk. €i> = <AXk, €j>.

~
It
—

This means that
Ps(Xry1 = €| Fk) = Ps(Xis1 = €| Xy = €;) = .

It follows that under P;. X is a Markov chain with transition matrix A= (Gjs)-

O
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Proof of Lemma 1.8.

dP;
Eﬁf'ﬂ—n Z(ﬁs-’i) X1, es)(Xio1, er)

=1 r,s= 1

SO

1og dP Zlog Z )(Xz,€s>(X1~1,€r>)

73_

kN
:Z Z (X1, e (X1, er)(logas, — logasy)
!

=] r.s=1
N k
= Z(Xl,es W Xi—1. eﬁ)(log&s,« —logag,)

r.s=1 [=1

N
= Z Jrslogas, + R(a),

r.s=1
where R(a) is independent of the as,.

Therefore.

L(§) = Eo[logd 0\ V]

:EQ[Z Ji® log ar + R(a)| Vil

r.s=1

N
= Y Ep[J* logas,[Vi] + Ep[R(a)| V4]

r.s=1

= Z log as, Eg[J}*|Vi] + Eg[R(a)|Vi]

r.s=1

N
Z log ésrJL° + R(a).

r.s=1

I

The optimal estimate of a;; is. therefore. the value which solves the following max-
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imization problem:

N
max Z log dsrJL° + R(a)
a3 r.s=1

subject to
N
D ag =1
s=1

The Lagrangian is

N N
L= Ji*logae + Ra) + A(D_asr — 1).
s=1

r.s=1

Differentiating in d;; and A and equating the derivatives to 0 gives:

|
aji

N
E asr = 1.
s=1

Recall " 4, = 1 and note S0, J7* = O so that .| J;r* = O. We then

_ O G = i e Fid o) 5 _ a(0')s
have A = —Of so that a;; = o7 Now. since J;/ = Tord) and O} = 1) We
have

. J
aj; = u ]
(O )k

Proof of Lemma 1.9.

Using Bayes’ Theorem. we have

Ps(Ye = f5|Gk—1 V{Xr}) = E5l(Ye, fi)lGr—1 V {Xk}]

_ Eo[A{Yk. f1)|Gr—1 V {Xi}]
~ Eo[Ak|Gk-1 V {Xi}]
_ Bo[Me (Y. f)IG—1 V { Xk }]
T Ep[ MGk V{ Xy )]
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Now, the denominator is

N M .

Eal 32 S () X ) (Vi f) G V (X)) =

i=1 j=1 ’

N M

= Z(Z(%Eem Xk = ei]) (Xk. 1)
i= =1 7t
N] JM b

=Y (3 (o) (X ex)
i=1 j=1 7
N 1

= Z (Zéﬁﬂxkveﬁ = Z(Xk e) =1
=1 j=1 i=1

The numerator is
N Mo
Eo[( ()Y £3) (X, €)Y f3)1Gk-1 V {Xk}] =
i=1j=1 7*

N
=Ee[Z( Jz)(Yk FiX( Xk ei)|Gr—1 V { Xk }]

i= Cii

= Z((—]—)Eo[(Yk FillGr-1 vV AXk (X €1)

,-(Xk.ei> = (Oka]>

Il
G)
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This means that

P;(Yy = flGk—1 V{Xi}) = Ps(Ye = fi| Xk =€) = &5. O

Proof of Lemma 1.10.

. N
“EIG = H(Z () (X ) (Y £5))

CST'

S0

log 722 = > log (3 (S5)(Xr e (Y, f))

CST‘

N
3N (X1 e) (Y, fo)(log éer — log cr)

where R(c) is independent of the és,.. Therefore.

. dP,
L() = Egllog —* 4P, AN
N M
- EG[Z Z T7° log ésr + R(¢)|Vk]

r=1s=1

N M

Z Z log ésr Eo|17°|Vi| + Eg|R(c)|Vi]

r=1s=

N
ZlogcsrT,\ + R(c).

r=1s=1

The optimal estimate of ¢j; is. therefore, the value which solves the following max-

imization problem:
N M

maz log &5, 17 + R(c
ngzz,zz 0g s T° + R(c)

r=1s=1
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subject to

M
s==1
The Lagrangian is
N M
L= ZZTgslogcsr +R +)\ chr -
r=1s=1

Differentiating in ¢;; and A and equating the derivatives to 0 gives:

1 ...
Cj’i
M
Zasr =1.
Recall that - &, = 1 and oM = O} 4, so that Z L Irs = O1;. We then
have A = —Olz so that ¢;; = g’i; Now, since T,:J = %, and OAI}’C = a((qokl.;gkv
we have
, o(T" )y
Gij = ———,
J a(01%)
The result follows from Remark 1.2. [
Proof of Lemma 1.11.
Ui- = E[Ax1.71Yor V { Xk = &}]
= E[Aky2.7 411 Yo7 V { Xk = €}]
M
= E[Api2.1(M Z<CXk+l-, FiYYer1. [0 Vor V { Xy = e}
j=1
N M
=Y ERp2r(M Y cii(Vigr: f)){Xerrs ) [Vor V { Xk = )]
=1 j=1

= ElArar(Xepr-e)Vor V {Xx = &} N " c(Yar- £3)
j=1

=1
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=

P
E[(Xii1.e)E[Akr21|Vor V{Xk = e} V{Xk = e}]|Vor V{ Xk = e:}]

M
x (M Z cit(Yesr: f5))
i=1

o~

N M
= E[(Xit1.e)vhp1 Vo V{Xe = e J(M > ciilYerr: f3)
=1 j=1
(by the Markov property and the definition of v)
N M
= E[(Xp1.e)|Vor V {Xi = ei}Jvfa (M > ciYesa, f3)
=1 j=1
N M
= Z E[(AXg + Vigr. e Vo V { Xk = e }vj (M Z it (Yet1: f5))
=1 j=1

M
E[(AXk. e)|Yor V { X = e}Jofn (MY cjt(Yirn. f5)

M=

1=1 j=1
N _ M

+ ) E[(Vigr.e)Yor V {Xi = e vk 1 (MY cji(Yisr. f5))
=1 7=1
N ~ M

= ZP(Xk+1 =e|VorV{Xy = ei})vhl(Mz ci1{Yeqr: f5))
I=1 j=1
N ~ M

+ 3 (EVilVor V {Xe = e:}) vl (M Y cji(Yern. f5))
=1 j=1
N _ M

=" P(Xip1 = e Xk = e)vp (MY ci(Yisr. f5))
=1 i=1

MM
(B[Vira| Xi = e e)visr (MY cYierr. £5))

i
™=

1=1 j=1
N M
= Z (l]ﬂ)i,+l (AIZ Cjl (Yk‘—f-l . fj>)
=1 G=1
N M
+ Y (E[EVin1|Fa]| Xx = el NV (MY cji(Yisr. f3))
=1 j=1

MM

alil'LH(A‘UZ cii{(Ye+1- f5))-

Jj=1

I
NE

T
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It follows that vy = A’B(Yii41)vk41. as required. [

Proof of Lemma 1.12.

ey od -
Consider vy_;:

= E[Ar1|Vo,r V{Xr_1 = e5}]

EDr|Yor VA{Xr_1 = €}]
M
= EM z(CXT, Y, )\ Vor VA{Xr-1 = e;}]
Mlz]
= MZE[(CXT, f)YVor VA{Xr-1 = e;}](Y7. fi)
N
=M> E]D aiXr.e)|Vor V{Xr-1=e;}|(Y7. fi)
i=1 1=1 y
E[(Xr.e)\YVor V{Xr_1 = ej}](MZCli<YT= )
1=

il
Mz

IT

N M
=" E[(Xr.e)|{Xr_1 = e, })(M Y _ aulYr. fi)
i=1 =1

M
P(X7 = ei|Xr_1 = ¢;)(M > _ ci(Yr. fi))

1 =1
M

aq;( ]UZCM (Yr. f1))

'Mz

)

z |

M

=1

It follows that vp_; = A’B(Yr)1. O

Proof of Theorem 1.4.

=

E[AorXi|Vor] = 7{Xk. ) Xi|Vo.r] = Z 7{Xk.e:)|Vo.T]e;.

”MZ
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Consider the i-th component:

E[Ao.r(Xk, e)|Vor) = E[AoxAks1.7{Xk. €)1 Vo]

EAokE[Aks1.71Vo.r V { Xk = e }[{ Xk, e)|Vo 1]
= E[Ao i (X €:)|Vo,1]
— E[Rox (X, e)|Vo.rlvl
= (E[AoxXk|Yo1). €5)vi

_ i
= (Vg

where g := (E[AxXg|Vi]. €5).

Therefore, E[Ao 7 Xk|Yo.r] = SN | givie; = diag (g - vf). O

Proof of Theorem 1.5.

(@(T7 X )kp1:Vk41) =
N M
= (B(Yk+1)Aco(JY X ) + (A'[Z(fsj<yk+1e fsIN gk ei)azies. vitr)
s==1
(by Theorem 2.2)
N M
= <B(Yk+1)AU(JUX)ksUk+1> + <(]\"[ZCsj<Yk+1rfs>)<Qk-ei>a'ji€j-'Uk+l>
s=1
N M
= (B(Yis1)Ao(J7 X )k vks1) + (MY e (Yiwr- fo))ar-€i)azi(vir. ;)
s=1
- A
= <U(‘]1JX).’C',A,B(Yk+l)t’k+l> + (M Z Csj (Yk+1efs>)<Qk-€i><'l'k+1f€j>0fji
s=1
- A
= (o(JIX)k-vi) + (MY o5 (Yirr. f)){ar: ea)(vrer- €5)ayi.
s=1
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That is,
M
(0 (T X ka1, ve11) — (0 (JTX ), vk) = (MY cs (Yierr- f)) (an- i) (Wrra. €5)ai.
s=1

Since Jéj =0and vy =1,

La

-1

(o (T X Vg, Vea1) = (o (TTX ), we)] = (0 (T X)p.vr) = (0(JY X )o, o)

??‘

=0
= (o(J9X)r,vp) = (0(J9 X)), 1) = o(JY)T.

Hence,
) T-1 M
O'(JIJ)T = z aji(]VIZch<Yk+1:fs>)(q1r:e7‘,>(vk+1,€j>
k=0 s=1
T M
:Z ‘A/[ZCSJ Yi. fo)){ar-1- ;) (Vg. €j> [
k=1 s=1

Proof of Corollary 1.1.
Since o(O%)r = Z;V:l o(J¥)r, we have
M

N N T
o(O")r = ZU (J9)r Z%Z Qk—1-€:) (vk- €5) ‘MZC“ (Yi fs)
k=1 s=1

J=1 J=1

N M
Zagz V. ej AIZ(‘ay Yk fs>)
j=1 s=1

A

vl aji ]\IZCS7 Yi. fs))

il i
NERANE
=) )

| |
Mz

=1

e
l
.

T
= {ar-1- ) (A" B(Yiy1)vg. 1)
k=

—

Z<QA1 ey (vp—1.€;). O

o~
Il
—
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Proof of Theorem 1.6.

(0(T7 X ) k41, V41) =

= (B(Yi41)Ac(TY X)) + Mcji(Yiq1. f5)(Aqr. ei)eq vk y1)

(by Theorem 2.3)

= (B(Yi+1) A (T X )i, i) + (Meji(Yey1, f5)(Agr. ei)ei, viyr)
= (B(Yk41)A0 (T X )k, vk1) + Mcji (Y, f5) (A €} (Ve €)
= (o(TY X))k, A B(Yi1 )vikt1) + Mcji (Y, f3) (Agr. €:) (Vk41. €:)

= {o(T7 X))y, vx) + Mcji(Yir1, f3) (Agr, ei) (Vkt1. €).
That is,
(@(T9 X)kp1:0h41) = (0 (T X ). vk) = Meji(Yir1. f5)) (A €3) (Vks1- €5).-
Since Ty = 0 and vr = 1,

Z (T X )gy1: V1) = (F(TT X ). vi)) = (0T X)r. vr) = (0(TY X )g. v0)
k=0

= (o(TYX)r,vr) = (¢(T X)r.1) = 0(T)7.

Hence,
T-1

o(T9)r =Y Mcji(Yipr. f5))(Agr. €i)(vhs1- €:)
k=0

T
=" Mcji(Ye. f;)){Ageor. €} (vp.ei). O
k=1
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Proof of Corollary 1.2.

Since ¢(O1%)r = Z;Lil o(TY)r, we have

M M T
=Y o(T)r =Y Mcji(Ya. f3){Agr-y, ) (k. e:)
j=1 j=1k=1
T M
Z Ukael AQk 1761 Mzcgz Yy, f]>) U
k=1 j=1
Proof of Lemma 1.14.
o(J )
T+1 M
=aji » (M cs;(Ye, fs))gr-1,€i)ejA'B(Yipr) - -- A'B(Yr)A'B(Yr11)1
k=1 s=1
T M
=aj; Z(MZ%j(yksfs)quc—lvei>e;A/B(Yk+1) - A'B(Yr)1
k=1 s=1
M
+a;(M Y ey (Yoo, fo))(gr.ei)ejl
s=1
M
=T A'B(Yry1) + a;a(M Y coj(Yria. fo)){ar, €€
s=1
=T7,,1.

The result follows. U

Proof of Lemma 1.15.

T+1
o(TY)pyq = ZM% Y. fi)(Aqr—1.ei)e,A'B(Yey1) - A B(Yr)A'B(Yr 1)1

T
= Mcji(Ye. f;)(Agr_r. eyl A'B(Yi1) - - A B(Yr)A'B(Yri1)1
k‘:
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+ Mcji(Yria, f5)(Aqr, ei)e;l
= HpA'B(Yr41)1 + Mcji(Yri1. f3){Agqr. e:)e;l

= Hr41.

The result follows. O
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Chapter 2
HMM Implementation Results

1. INTRODUCTION

.A Markov Chain Model is often used to describe the dynamics of a firm’s
credit rating as an indicator of the likelihood of default. The rating labels, from
the highest rating of AAA/Aaa to the lowest rating of C and then the default D,
are taken to be the states of the process. The transition probability matrix gives
probabilities of rating migration from one state to another within a unit of time,
such as a quarter or a year. The dynamics are stationary so that the probability of a
transition from one rating category to the next does not change over time. Taking
powers of the transition probability matrix allows for predicting the probability
of degradation in credit quality or even default within any time frame. The key
assumption behind the Markov chain representation of credit rating evolution is
the Markov property, which implies that the rating process should have no memory

of its past behaviour so that prior rating changes should have no predictive power for
52
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Chapter 2 - HMM Implementation Results 53
the direction of future rating changes. As documented in Carty and Fons [5], Carty
and Lieberman [6], and Lando and Skodeberg [24], the credit rating process seems
to exhibit “momentum” or “rating drift:” a firm recently upgraded (downgraded)
is more likely to be upgraded (downgraded).

We propose that the observed rating process is corrupted by what we may
call “noise.” We assume that the credit rating evolution can be described by a
Markov chain but that we do not observe this Markov chain directly. Rather, it
is hidden in “noisy” observations represented by the posted credit ratings. In this
chapter we implement the Hidden Markov Model (HMM) described in Chapter 1
to a data set of Standard & Poor’s credit ratings. The outcome of the HMM is
a probability distribution for a “true” rating at time k given the observed ratings
up to and including time k, and estimates of the parameters of the model, namely
the elements of the transition matrix and the probabilities of observing a particular

rating given a “true” rating.

2. THE RATINGS DATA

Here we describe some of the aspects of debt ratings obtained from the Standard
& Poor’s COMPUSTAT database, as relevant for our subsequent implementation

of the Hidden Markov Model.
2.1. Basic Properties

Our analysis takes advantage of the Standard & Poor’'s COMPUSTAT data-

base. which contains rating histories for 1,301 obligors over the period 1985-1999.
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The universe of obligors is mainly large U.S. and Canadian corporate institutions.
The obligors include industrials, utilities, insurance companies, banks and other

financial institutions and real estate companies.

To capture credit quality dynamics, the creditworthiness of obligors must be
assessed, as credit events typically concern a firm as a whole. Unfortunately, pub-
lished ratings typically focus on individual bond issues. Therefore, Standard &
Poor’s implement a number of transformations. Prior to September 1, 1998, the
company level rating is taken to be the highest issue level rating that the company
has on its senior secured debt. When a company does not have senior secured
debt issues, the implied senior rating is used.! The last point is worth elaborating.
We interpret credit ratings as indicators of the chance of default and likelihood of
migration to a different (lower or higher) rating class. However there are clearly
differences in rating between senior and subordinated debt in recognition of dif-
ferences in anticipated recovery rate in case of default. It is certainly true that
senior debt obligations may be satisfied in full during bankruptcy procedures while
subordinated debt is paid off only partially. The anticipated recovery rate for sub-
ordinated debt is lower and this type of debt is given a lower rating, which then
reflects recovery rate diﬁeren‘ces in addition to the likelihood of default. Since we
are not interested in recovery rate differences, only the most senior credit rating is

used as a proxy for the company level rating. As of September 1, 1998, all ratings

IStandard & Poor’s assign an implied senior rating when a company applies for a subordi-
nated rating based on the issuance of subordinated debt only.
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in the COMPUSTAT dataset are Standard & Poor’s issuer credit ratings.

The COMPUSTAT database provides annual ratings. Every year each of the
rated obligors is assigned to one of the Standard and Poor’s 8 rating categories,
ranging from AAA (highest rating) to CCC (lowest rating) as well as D (payment
in default) and the NR (not rated) state.

We have a total of 19,515 firm-years in our sample. However, only 34% of
those observations are “non-zero.” i.e. correspond to a firm with one of the 8 rating
labels in a given year. The remaining 66% of observations represent transitions to
the so-called NR (not rated) status. Transitions to NR are discussed in detail in
the next section. Approximately 85% of non-zero ratings are range from B to A.
The median rating is BB. the highest non investment-grade rating. Approximately
1% of the observed “non-zero” ratings are AAA and 2% are defaults. The most
common rating is B, two rating categories above default, which accounts for 25.5%

of the “non-zero” observations.

2.2. Treatment of Transitions to “Not Rated” Status

Not every issuer has been assigned a rating for each of the 15 years between
1985 and 1999. As a result, the COMPUSTAT dataset contains many transitions to
the NR (not rated) status. The majority of rating withdrawals occur when a firm’s
only outstanding issue is paid off or its debt issuance program matures. However,
transitions to NR may be due to other reasons as well, such as failure to pay the

requisite fee to Standard & Poor’s. Unfortunately. the details of individual transi-
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tions to N R are not known. In particular. we do not know whether a deterioration
of credit quality known only to the obligor has led the issuer to decide to bypass an
agency rating. In other words, we do not know whether a given transition to NR
is “benign” or “bad.”

The industry standard calls for removing transitions to NR from the dataset.
The procedure depends on whether transitions to NR are considered “negative in-
formation” or “non-information.” Regardless of how the N R category is interpreted,
probability transitions to VR are distributed among other states.

Our main objective is to utilize as many rating transitions as possible. However,
most firms experience few rating changes. Moreover, when credit ratings do change,
they usually stay within a fairly narrow range, a few consecutive rating categories.
Transitions to N R pose a problem as well since only a small subset of rated obligors
have been assigned a rating for the same number of consecutive years (84 firms rated
over 1988-1998).

Therefore, contrary to the industry standard for the estimation of transition
matrices, we retain the VR category in our dataset. As a result. we have 15 years

of rating history for all 1,301 obligors.

3. IMPLEMENTATION RESULTS

As mentioned before, firms generally experience few rating changes within a
narrow range. Implementation of the HMNM algorithm based on a rating history of

one company is then problematic. To overcome this difficulty. we apply the algo-
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rithm to an aggregate of firms in the dataset rather than an individual company.
This allows for more observed transitions between rating categories which makes
inference possible. Specifically, instead of estimating the distribution and param-
eters for the Markov chain X ,’C for each firm [, we estimate the distribution and
parameters for Zlel X} given the additivity of all stochastic processes discussed in
Chapter 1. This approach is appealing for other reasons as well. By considering
aggregate rating processes for a particular industry, we can estimate parameters of
the model, namely matrices A and C, specific to that industry. These parameter
estimates can then be used to obtain a distribution for the signal process { X} for a
particular firm from the industry via Theorem 1.1. This way we use only the most
relevant information in the estimation. Note that given the estimates of A and C,
Theorem 1.1 can also be used to make predictions with regards to the evolution of

a particular company’s rating.

Each credit rating category, 8 in total, was identified with a unit vector in RS.
The initial values of the model parameters were as follows. Matrix A was taken
to be the July 1998 historical transition matrix based on Standard & Poor’s credit
ratings obtained from J.P. Morgan's CreditMetricsT™ dataset. The matrix is given
in Appendix IIA. Note that this transition matrix does not include transitions to the
N R category. Consequently, the N R category was treated as “negative information”
and combined with the default state D. Natrix C was arbitrarily taken to be the 8 x

8 tri-diagonal matrix. The matrix is given in Appendix [IB. Non-zero entries of this
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matrix are interpreted as follows. The probability of the observed rating agreeing
with the “true” rating is assumed to be 0.5 for all rating categories. The probability
of the observed rating being one notch higher than the “true” rating is 0.3 (0.5 for
default state D), and the probability of the observed rating being one notch lower
than the “true” rating is 0.2 (0.5 for AAA). Note that when C' = I, processes X
(the signal) and Y (the observations) are identical, i.e. there is no “noise” in the
system. Given the relatively short time period, parameter estimates were updated
with the arrival of every new observation for the 1,301 firms in the data set using
the formulae given in Chapter 1. Repetition of the estimation procedures ensures
that the model and estimates improve with each iteration. Simulation results are
presented in Appendix IIC. We report the estimated parameters of the model,
namely matrices A and C, as well as the aggregate variance/covariance matrices for
the two martingale increments. V and W, in the semimartingale representation of

X and Y, respectively.

Consider first the aggregate variance estimates for the semimartingale incre-
ments W in the semimartingale representation Y, = C' Xy + W). The variances are
generally small and decrease significantly with the arrival of each new observation,
which confirms the “self-tuning”™ property of the model. There is an improvement

in the quality of the estimates with each successive pass through the data.

Consider now the estimated transition matrix A. Entries above the diagonal

correspond to rating upgrades and those below the diagonal to rating downgrades.
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We see that non-zero transition probabilities are concentrated and highest on the
diagonal: obligors are most likely to maintain their current rating. The second
largest probability is usually on the off-diagonal. This confirms the observation that
rating agencies usually do not change a company’s rating by more than one category
at a time. Downgrades seem to be more common than upgrades, except for the BBB
category. For firms rated BBB, an upgrade seems more likely than a downgrade.
BBB firms therefore tend to hold on to their investment-grade status. Note that
for Enron, maintaining an investment-grade rating was one of the conditions for the
success of a proposed merger with Dynergy inc., which eventually did not succeed.
Finally, the lower the initial rating, the greater the probability of transition to the
NR + D. Note also that this probability is estimated as zero for the two highest
rating classes, AAA and AA, and virtually zero for A. In other words, once the
highest-rated firms enter the data set, the remain rated until 1999. This probability
is nearly 15% for BBB and increases to 38.5% for CCC. It is then the lower-rated
firms who disappear from the data set. Possible reasons are: bankruptcy. maturing
debt followed by no new issues possibly because of concerns over credit quality, or

opting for no rating in anticipation of unfavourable rating assessment.

Recall that in general matrix C describes the relationship between the signal
process X and the observation process Y. In particular. non-zero entries above the
diagonal indicate that the observed rating may be higher than the “true” credit

rating. In this case. the estimated matrix C is tri-diagonal. with the highest proba-
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bilities generally on the main diagonal. This suggests that if there is “noise” in the
rating system, it is mostly confined to the neighbouring rating categories. Note also
that for A and NR + D, the probability on the diagonal is estimated to be close to
one, which suggests that the observed credi rating may agree with the “true” rating.
For BBB and B, the estimates suggest that the observed rating may be higher than
the “true” rating. For AAA. AA and CCC, the observed rating may be lower than
the “true” rating. Note that for AAA, the probability of observing AA is estimated
as one, which suggests that Standard & Poor’s may be reluctant to upgrade firms
to the highest rating AAA. Overall however, the results are therefore inconclusive
with regards to the overall quality of the Standard & Poor’s rating system. Longer

rating histories may be required to accurately capture the rating dynamics.

Our results seem to suggest that the rating process may be influenced by the
fact that it is often crucial for a borrower to maintain investment-grade rating. We
have therefore reclassified all firms in the sample as investment grade, speculative
grade or default/NR and then applied the HMM algorithm to the new data set. The
results presented in Appendix IID confirm that investment-grade firms do generally
hold on to their status, but there is an estimated 28% probability of downgrade to
speculative-grade status. However. for speculative-grade firms, the probability of
upgrade to investment-grade status is virtually zero. Speculative-grade firms tend
to maintain their status or disappear from the data set because of either default

or withdrawn rating. Estimated matrix C suggests that rating agencies may be
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reluctant to upgrade firms to investment-grade status, which results in estimated
probability of 16% that the observed rating is speculative-grade when the “true”
credit quality is investment-grade. For speculative-grade firms, the estimated matrix
C confirms our earlier observation that these firms tend to disappear from the
data set quickly, perhaps because they choose to have their rating withdrawn in
anticipation of unfavourable news. However, we conclude as before that longer

rating histories and further analysis may be required to verify our results.
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Standard & Poor's Historical Transition
Matrix (July 1998)

AAA AA A BBB BB B CCC D

AAA | 0.908 | 0.006 | 0.001 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000
AA | 0.083 | 0.909 | 0.024 | 0.003 | 0.001 { 0.001 | 0.000 | 0.000
A 0.007 { 0.077 | 0.913 | 0.059 | 0.006 { 0.002 | 0.004 | 0.000
BBB | 0.001 | 0.006 | 0.052 | 0.875 | 0.077 | 0.004 | 0.012 | 0.000
BB 0.001 | 0.001 | 0.007 | 0.050 | 0.812 | 0.069 | 0.027 | 0.000
B 0.000 | 0.001 | 0.002 { 0.011 | 0.084 | 0.835 | 0.117 | 0.000
CCC | 0.000 | 0.000 | 0.000 { 0.001 | 0.010 | 0.039 | 0.645 | 0.000
D 0.000 | 0.000 | 0.001 { 0.002 | 0.010 | 0.049 | 0.193 | 1.000
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Initial Matrix C
AAA AA A BBB BB B CcccC D

AAA { 0.500 } 0300 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
AA 0.500 | 0500 | 0.300 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
A 0.000 | 0.200 ] 0.500 | 0.300 { 0.000 | 0.000 | 0.000 | 0.000
BBB | 0.000 | 0.000 | 0.200 } 0.500 | 0.300 | 0.000 | 0.000 | 0.000
BB 0.000 { 0.000 | 0.000 | 0.200 | 0.500 | 0.300 } 0.000 | 0.000

B 0.000 | 0.000 | 0.000 | G.000 | 0.200 | 0.500 | 0.300 { 0.000
CCC { 0000 ] 00001 0000 { 0.000 | 0.000 | 0.200 | 0.500 | 0.500
D 0.000 | 0.000 | 0.000 } 0.000 | 0.000 | 0.000 | 0.200 | 0.500
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Appendix IIC
HMM Implementation Results

The following pages present the output of a computer program written to
implement the estimation procedures from Chapter 1.

For each of the passes through the data set, we are given the estimates for
matrices A and C, as well as VarVg and VarWg. Recall that a;; = P(Xgqp1 =
e;|Xr = e;) and ¢;; = P(Yy = fj|Xk = e;). For matrix A, probabilities above
the diagonal correspond to rating upgrades, and those below the diagonal to rating
downgrades. For matrix C, entries above the diagonal correspond to the probability
that the observed rating is higher than the “true” rating. A non-zero entry below

the diagonal means that the observed rating is lower than the “true” rating.
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Pass 1

Estimated matrix A

0.855
0.124
0.017
0.001
0.002
0.000
0.000
0.000

0.004
0.870
0.115
0.008
0.001
0.002
0.001
0.000

Estimated matrix C

0.095
0.905
0.000
0.000
0.000
0.000
0.000
0.000

0.036
0.566
0.399
0.000
0.000
0.000
0.000
0.000

0.000
0.016
0.925
0.049
0.006
0.002
0.000
0.002

0.000
0.217
0.638
0.145
0.000
0.000
0.000
0.000

0.000
0.002
0.064
0.869
0.045
0.009
0.003
0.009

0.000
0.000
0.418
0.396
0.187
0.000
0.000
0.000

0.000
0.001
0.007
0.080
0.765
0.071
0.024
0.052

0.000
0.000
0.000
0.260
0.512
0.228
0.000
0.000

Aggregate variance/covariance matrix for V

20.981
-17.845
-2.542
-0.213
-0.323
-0.004
-0.032
-0.022

-17.845
39.177
-19.023
-1.582
-0.281
-0.294
-0.110
-0.041

-2.542
-19.023
42.100
-16.556
-2.267
-0.711
-0.296
-0.705

-0.213
-1.582
-16.556
40.868
-16.356
-2.597
-1.200
-2.364

-0.323
-0.281
-2.267
-16.356
47.816
-14.621
-4.685
-9.283

Aggregate variance/covariance matrix for W

17.613
-15.281
-2.332
0.000
0.000
0.000
0.000
0.000
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-15.281
83.818
-62.738
-5.799
0.000
0.000
0.000
0.000

-2.332
-62.738
122.249
-44.309
-12.869

0.000
0.000
0.000

0.000
-5.799
-44.309
89.996
-31.346
-8.541
0.000
0.000

0.000
0.000
-12.869
-31.346
88.042
-43.225
-0.601
0.000

0.000
0.001
0.002
0.004
0.057
0.618
0.086
0.232

0.000
0.000
0.000
0.000
0.345
0.641
0.015
0.000

-0.004
-0.294
-0.711
-2.597
-14.621
56.525
-12.230
-26.067

0.000
0.000
0.000
-8.541
-43.225
65.591
-1.296
-12.530

0.000
0.000
0.002
0.005
0.009
0.035
0.577
0.372

0.000
0.000
0.000
0.000
0.000
0.130
0.012
0.858

-0.032
-0.110
-0.296
-1.200
-4.685
12.230
56.897
38.345

0.000
0.000
0.000
0.000
-0.601
-1.296
4.624
-2.727
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0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000

0.000
0.000
0.000
0.000
0.000
0.000
0.006
0.994

-0.022
-0.041
-0.705
-2.364
-9.283
-26.067
-38.345
76.826

0.000
0.000
0.000
0.000
0.000
-12.530
-2.727
15.257



Appendix 11C - HMM Implementation Results

Pass 2

Estimated matrix A

0.911
0.080
0.007
0.000
0.001
0.000
0.000
0.000

0.006
0.892
0.097
0.004
0.000
0.001
0.001
0.000

Estimated matrix C

0.018
0.982
0.000
0.000
0.000
0.000
0.000
0.000

0.006
0.652
0.343
0.000
0.000
0.000
0.000
0.000

0.000
0.015
0.941
0.037
0.003
0.001
0.000
0.003

0.000
0.135
0.795
0.070
0.000
0.000
0.000
0.000

0.000
0.002
0.069
0.871
0.036
0.006
0.003
0.013

0.000
0.000
0.477
0.394
0.130
0.000
0.000
0.000

0.000
0.001
0.005
0.061
0.748
0.070
0.032
0.083

0.000
0.000
0.000
0.198
0.607
0.195
0.000
0.000

Aggregate variance/covariance matrix for V

12.370
-28.933
-3.645
-0.285
-0.398
-0.007
-0.049
-0.035

-28.933
29.560
-36.096
-2.606
-0.412
-0.417
-0.197
-0.076

-3.645
-36.096
37.212
-32.923
-3.687
-1.061
-0.458
-1.442

-0.285
-2.606
-32.923
34.396
-28.065
-4.213
-2.078
-5.094

-0.398
-0.412
-3.687
-28.065
38.139
-24.767
-8.816
-19.809

Aggregate variance/covariance matrix for W

3.224
-18.189
-2.648
0.000
0.000
0.000
0.000
0.000
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-18.189
62.608
-120.515
-7.722
0.000
0.000
0.000
0.000

-2.648
-120.515
109.456
-85.767
-22.776
0.000
0.000
0.000

0.000
-7.722
-85.767
70.473
-53.841
-13.138
0.000
0.000

0.000
0.000
-22.776
-53.841
62.092
-72.829
-0.687
0.000

0.000
0.000
0.001
0.002
0.039
0.555
0.098
0.305

0.000
0.000
0.000
0.000
0.269
0.727
0.004
0.000

-0.007
-0.417
-1.061
-4.213
-24.767
41.658
-19.910
-47.807

0.000
0.000
0.000
-13.138
-72.829
37.878
-1.531
-15.971

0.000
0.000
0.001
0.001
0.003
0.014
0.555
0.427

0.000
0.000
0.000
0.000
0.000
0.046
0.001
0.954

-0.049
-0.197
-0.458
-2.078
-8.816
-19.910
43.493
-68.883

0.000
0.000
0.000
0.000
-0.687
-1.531
0.432
-2.838
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0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000

-0.035
-0.076
-1.442
-5.094
-19.809
-47.807
-68.883
66.321

0.000
0.000
0.000
0.000
0.000
-15.971
-2.838
3.552
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Pass 3

Estimated matrix A

0.943
0.054
0.003
0.000
0.000
0.000
0.000
0.000

0.009
0.898
0.089
0.003
0.000
0.000
0.001
0.000

Estimated matrix C

0.000
1.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.759
0.241
0.000
0.000
0.000
0.000
0.000

0.000
0.011
0.960
0.024
0.001
0.000
0.000
0.003

0.000
0.045
0.939
0.015
0.000
0.000
0.000
0.000

0.000
0.002
0.096
0.840
0.027
0.005
0.006
0.024

0.000
0.000
0.585
0.356
0.059
0.000
0.000
0.000

0.000
0.001
0.005
0.040
0.676
0.069
0.056
0.152

0.000
0.000
0.000
0.132
0.716
0.152
0.000
0.000

Aggregate variance/covariance matrix for V

8.493
-36.705
-4.253
-0.339
-0.432
-0.009
-0.060
-0.047

-36.705
23.928
-51.281
-3.290
-0.488
-0.489
-0.302
-0.110

-4.253
-51.281
35.946
-50.518
-4.723
-1.308
-0.662
-2.514

-0.339
-3.290
-50.518
31.398
-34.971
-5.292
-3.175
-9.077

-0.432
-0.488
-4.723
-34.971
32.297
-31.113
-13.612
-32.913

Aggregate variance/covariance matrix for W

0.061
-18.247
-2.651
0.000
0.000
0.000
0.000
0.000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-18.247
38.171
-158.470
-7.879
0.000
0.000
0.000
0.000

-2.651
-158.470
76.374
-119.164
-27.794
0.000
0.000
0.000

0.000
-7.879
-119.164
46.548
-65.096
-14.877
0.000
0.000

0.000
0.000

-27.794 .

-65.096
32.699
-89.238
-0.704
0.000

0.000
0.000
0.001
0.001
0.022
0.443
0.123
0.411

0.000
0.000
0.000
0.000
0.193
0.806
0.002
0.000

-0.009
-0.489
-1.308
-5.292
-31.113
28.702
-24.966
-63.707

0.000
0.000
0.000
-14.877
-89.238
19.707
-1.602
-17.458

0.000
0.000
0.000
0.001
0.001
0.006
0.549
0.443

0.000
0.000
0.000
0.000
0.000
0.025
0.000
0.975

-0.060
-0.302
-0.662
-3.175
-13.612
-24.966
35.588
-93.202

0.000
0.000
0.000
0.000
-0.704
-1.602
0.117
-2.867
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0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000

-0.047
-0.110
-2.514
-9.077
-32.913
-63.707
-93.202
58.422

0.000
0.000
0.000
0.000
0.000
-17.458
-2.867
1.516
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Pass 4

Estimated matrix A

0.955
0.042
0.003
0.000
0.000
0.000
0.000
0.000

0.011
0.880
0.106
0.002
0.000
0.000
0.001
0.000

Estimated matrix C

0.000
1.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.825
0.175
0.000
0.000
0.000
0.000
0.000

0.000
0.006
0.975
0.016
0.000
0.000
0.000
0.003

0.000
0.017
0.980
0.003
0.000
0.000
0.000
0.000

0.000
0.002
0.145
0.779
0.020
0.006
0.010
0.038

0.000
0.000
0.745
0.233
0.023
0.000
0.000
0.000

0.000
0.001
0.006
0.025
0.572
0.068
0.088
0.240

0.000
0.000
0.000
0.083
0.799
0.118
0.000
0.000

Aggregate variance/covariance matrix for V

7.134
-43.191
-4.815
-0.384
-0.453
-0.012
-0.068
-0.057

-43.191
22.949
-67.008
-3.771
-0.529
-0.549
-0.428
-0.137

-4.815
-67.008
39.026
-70.305
-5.558
-1.550
-0.982
-4.066

-0.384
-3.771
-70.305
30.856
-38.526
-6.115
-4.451
-13.965

-0.453
-0.529
-5.558
-38.526
24.854
-34.715
-18.084
-45.240

Aggregate variance/covariance matrix for W

0.009
-18.255
-2.652
0.000
0.000
0.000
0.000
0.000

-18.255
24.850
-183.298
-7.894
0.000
0.000
0.000
0.000

-2.652
-183.298
48.279
-140.625
-29.785
0.000
0.000
0.000

0.000
-7.894
-140.625
26.163
-69.259
-15.401
0.000
0.000

0.000
0.000
-29.785
-69.259
14.567
-97.644
-0.712
0.000

0.000
0.000
0.001
0.001
0.012
0.343
0.147
0.496

0.000
0.000
0.000
0.000
0.183
0.815
0.002
0.000

-0.012
-0.549
-1.550
-6.115
-34.715
16.868
-27.896
-72.916

0.000
0.000
0.000
-15.401
-97.644
10.060
-1.636
-18.554

0.000
0.000
0.000
0.000
0.000
0.004
0.547
0.448

0.000
0.000
0.000
0.000
0.000
0.023
0.000
0.977

-0.068
-0.428
-0.982
-4.451
-18.084
-27.896
29.223
-113.292

0.000
0.000
0.000
0.000
-0.712
-1.636
0.067
-2.892

68

0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.000

-0.057
-0.137
-4.066
-13.965
-45.240
-72.916
-113.292
48.104

0.000
0.000
0.000
0.000
0.000
-18.554
-2.892
1.121
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Pass 5

Estimated matrix A
0.964 0.014 0.000 0.000 0.000 0.000 0.000 0.000
0.034 0.869 0.003 0.002 0.000 0.000 0.000 0.000
0.002 0.114 0.981 0.186 0.007 0.001 0.000 0.000
0.000 0.002 0.012 0.720 0.018 0.000 0.000 0.000
0.000 0.000 0.000 0.018 0.463 0.008 0.000 0.000
0.000 0.001 0.000 0.008 0.079 0.312 0.004 0.000
0.000 0.001 0.000 0.013 0.116 0.155 0.546 0.000
0.000 0.000 0.003 0.054 0.317 0.524 0.449 1.000

Estimated matrix C
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.869 0.011 0.000 0.000 0.000 0.000 0.000
0.000 0.131 0.987 0.873 0.000 0.000 0.000 0.000
0.000 0.000 0.002 0.113 0.077 0.000 0.000 0.000
0.000 0.000 0.000 0.014 0.785 0.201 0.000 0.000
0.000 0.000 0.000 0.000 0.139 0.798 0.024 0.000
0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.976 1.000

Aggregate variance/covariance matrix for V

6.270 -48.851 -5357 -0422 -0.466 -0.014 -0.075 -0.065
-48.851  21.291 -82.050 -4.116  -0.551 -0.611 -0.568  -0.157
-5.357 -82.050 37.896 -89.312  -6.188  -1.828 -1.392  -6.052
-0.422  -4.116 -89.312 28.251 -40.487 -6.855 -5.703 -18.873
-0.466  -0.551 -6.188  -40.487 15.626 -36.738 -21.007 -53.295
-0.014  -0.611  -1.828  -6.855 -36.738 9.957 -29.593 -78.071
-0.075  -0.568  -1.392  -5.703 -21.007 -29.593 22350 -129.214
-0.065  -0.157  -6.052 -18.873 -53.295 -78.071 -129.214  36.055

Aggregate variance/covariance matrix for W
0.009 -18.264  -2.652 0.000 0.000 0.000 0.000 0.000
-18.264  17.939 -201.220 -7.901 0.000 0.000 0.000 0.000
-2.652 -201.220  28.554 -150.184 -30.857 0.000 0.000 0.000
0.000 -7.901 -150.184 11.622 -71.027 -15.689 0.000 0.000
0.000 0.000 -30.857 -71.027 7.787 -102.586  -0.717 0.000
0.000 0.000 0.000 -15.689 -102.586 6.144  -1.656 -19.449
0.000 0.000 0.000 0.000 -0.717  -1.656 0.048  -2915
0.000 0.000 0.000 0.000 0.000 -19.449  -2915 0.918
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Pass 6

Estimated matrix A
0.970 0.017 0.000 0.000 0.000 0.000 0.000 6.0600
0.028 0.871 0.003 0.001 0.000 0.000 0.000 0.000
0.002 0.108 0.982 0.196 0.005 0.001 0.000 0.000
0.000 0.002 0.011 0.680 0.014 0.000 0.000 0.000
0.000 0.000 0.000 0.019 0.390 0.007 0.000 0.000
0.000 0.001 0.000 0.010 0.088 0.306 0.004 0.000
0.000 0.001 0.000 0.018 0.134 0.156 0.545 0.000
0.000 0.000 0.003 0.075 0.369 0.529 0.450 1.000

Estimated matrix C
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.898 0.010 0.000 0.000 0.000 0.000 0.000
0.000 0.102 0.987 0.904 0.000 0.000 0.000 0.000
0.000 0.000 0.003 0.082 0.089 0.000 0.000 0.000
0.000 0.000 0.000 0.014 0.735 0.202 0.000 0.000
0.000 0.000 0.000 0.000 0.177 0.796 0.023 0.000
0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.976 1.000

Aggregate variance/covariance matrix for V

5671 -53970 -5856 -0452 -0474 -0.016 -0.081 -0.071
-53.970  18.558 -94.971 -4.371 -0.566  -0.680  -0.733  -0.172
-5.856 -94.971 32.072 -104.433  -6.670  -2.122  -1.830 -8.370
-0.452  -4371 -104.433 23285 -41.808  -7.523  -6.881 -23.586
-0.474  -0.566  -6.670 -41.808 8.346 -37.712 -22.474 -57.375
-0.016  -0.680  -2.122 -7.523 -37.712 6.062 -30.608 -81.111
-0.081 -0.733  -1.830  -6.881 -22.474 -30.608 16.166 -141.109
-0.071 -0.172  -8.370 -23.586 -57.375 -81.111 -141.109  26.067

Aggregate variance/covariance matrix for W
0.001 -18.265  -2.652 0.000 0.000 0.000 0.000 0.000
-18.265  13.896 -215.106 -7.910 0.000 0.000 0.000 0.000
-2.652 -215.106  20.370 -155.858 -31.667 0.000 0.000 0.000
0.000 -7.910 -155.858 6.766 -71915 -15.884 0.000 0.000
0.000 0.000 -31.667 -71.915 4.519 -105.404  -0.720 0.000
0.000 0.000 0.000 -15.884 -105.404 3.675  -1.668 -20.098
0.000 0.000 0.000 0.000 -0.720  -1.668 0.034  -2.934
0.000 0.000 0.000 0.000 0.000 -20.098 -2.934 0.667
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Pass 7

Estimated matrix A
0.974 0.019 0.000 0.000 0.000 0.000 0.000 0.000
0.025 0.856 0.002 0.001 0.000 0.000 0.000 0.000
0.002 0.120 0.984 0.207 0.005 0.001 0.000 0.000
0.000 0.002 0.010 0.658 0.012 0.000 0.000 0.000
0.000 0.000 0.000 0.020 0.362 0.007 0.000 0.000
0.000 0.001 0.000 0.012 0.093 0.310 0.004 0.000
0.000 0.002 0.000 0.020 0.141 0.156 0.545 0.000
0.000 0.000 0.003 0.082 0.387 0.527 0.451 1.000

Estimated matrix C
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.895 0.009 0.000 0.000 0.000 0.000 0.000
0.000 0.105 0.989 0.907 0.000 0.000 0.000 0.000
0.000 0.000 0.003 0.078 0.096 0.000 0.000 0.000
0.000 0.000 0.000 0.015 0.704 0.202 0.000 0.000
0.000 0.000 0.000 0.000 0.200 0.796 0.024 0.000
0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.976 1.000

Aggregate variance/covariance matrix for V

5263 -58.677 -6374 -0472 -0482 -0.018 -0.087 -0.075
-58.677  17.817 -107.598  -4.579  -0.577 -0.755 -0914  -0.181
-6.374 -107.598  28.221 -116.358  -7.050  -2.389  -2212 -10.493
-0.472  -4.579 -116358 18.052 -42.719 -8.036 -7.772 -27.171
-0482  -0.577  -7.050 -42.719 4327 -38.164 -23.148 -59.263
-0.018  -0.755 -2389  -8.036 -38.164 3.692 -31.209 -82.892
-0.087  -0914 2212  -7.772 -23.148 -31.209 11.098 -149.474
-0.075  -0.181 -10.493 -27.171 -59.263 -82.892 -149.474 17.754

Aggregate variance/covariance matrix for W
0.000 -18.265  -2.652 0.000 0.000 0.000 0.000 0.000
-18.265 12.770 -227.868  -7.918 0.000 0.000 0.000 0.000
-2.652 -227.868 17.540 -160.012 -32.291 0.000 0.000 0.000
0.000 -7.918 -160.012 4736 -72.374 -15.999 0.000 0.000
0.000 0.000 -32.291 -72.374 2.655 -106.973  -0.722 0.000
0.000 0.000 0.000 -15.999 -106.973 2,159  -1.676 -20.565
0.000 0.000 0.000 0.000 -0.722  -1.676 0.026  -2.950
0.000 0.000 0.000 0.000 0.000 -20.565  -2.950 0.483
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Pass 8

Estimated matrix A
0.977 0.022 0.000 0.000 0.000 0.000 0.000 0.000
0.021 0.850 0.002 0.001 0.000 0.000 0.000 0.000
0.002 0.123 0.985 0.213 0.004 0.000 0.000 0.000
0.000 0.002 0.009 0.635 0.011 0.000 0.000 0.000
0.000 0.000 0.000 0.023 0.359 0.007 0.000 0.000
0.000 0.001 0.000 0.014 0.098 0.322 0.004 0.000
0.000 0.002 0.000 0.023 0.141 0.154 0.545 0.000
0.000 0.000 0.003 0.091 0.387 0.517 0.450 1.000

Estimated matrix C
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.898 0.009 0.000 0.000 0.000 0.000 0.000
0.000 0.102 0.989 0.911 0.000 0.000 0.000 0.000
0.000 0.000 0.002 0.072 0.100 0.000 0.000 0.000
0.000 0.000 0.000 0.018 0.688 0.201 0.000 0.000
0.000 0.000 0.000 0.000 0.212 0.797 0.026 0.000
0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.974 1.000

Aggregate variance/covariance matrix for V

4.882 -63.021] -6.878  -0.488  -0.489  -0.020 -0.092 -0.077
-63.021  16.123 -118.939 -4.747 -0.588  -0.832  -1.088  -0.187
-6.878 -118.939  24.024 -125.672  -7.381 -2.641 -2.542  -12.445
-0.488  -4.747 -125.672 13980 -43.410 -8.442  -8.445 -29.882
-0.489  -0.588  -7.381 -43.4]10 2.556  -38.399 -23483 -60.210
-0.020 -0.832  -2.641 -8.442  -38.399 2416 -31.576 -83.969
-0.092  -1.088  -2.542  -8.445 -23.483 -31.576 7.568 -155.157
-0.077  -0.187 -12.445 -29.882 -60.210 -83.969 -155.157 12.378

Aggregate variance/covariance matrix for W
0.000 -18.265  -2.652 0.000 0.000 0.000 0.000 0.000
-18.265 11429 -239.289  -7.926 0.000 0.000 0.000 0.000
-2.652 -239.289 14938 -163.004 -32.815 0.000 0.000 0.000
0.000  -7.926 -163.004 3344 -72.647 -16.070 0.000 0.000
0.000 0.000 -32.815 -72.647 1.760 -107.935  -0.723 0.000
0.000 0.000 0.000 -16.070 -107.935 1.382  -1.681 -20.909
0.000 0.000 0.000 0.000 -0.723  -1.681 0.021 -2.965
0.000 0.000 0.000 0.000 0.000 -20.909  -2.965 0.359
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Pass 9

Estimated matrix A
0.981 0.027 0.000 0.000 0.000 0.000 0.000 0.000
0.018 0.849 0.001 0.001 0.000 0.000 0.000 0.000
0.001 0.120 0.987 0.217 0.004 0.000 0.000 0.000
0.000 0.002 0.008 0.623 0.010 0.000 0.000 0.000
0.000 0.000 0.000 0.025 0.374 0.007 0.000 0.000
0.000 0.001 0.000 0.015 0.104 0.346 0.005 0.000
0.000 0.002 0.000 0.024 0.137 0.149 0.546 0.000
0.000 0.000 0.003 0.094 0.371 0.497 0.449 1.000

Estimated matrix C
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.902 0.007 0.000 0.000 0.000 0.000 0.000
0.000 0.098 0.992 0.909 0.000 0.000 0.000 0.000
0.000 0.000 0.001 0.072 0.107 0.000 0.000 0.000
0.000 0.000 0.000 0.020 0.676 0.197 0.000 0.000
0.000 0.000 0.000 0.000 0.218 0.801 0.030 0.000
0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.970 1.000

Aggregate variance/covariance matrix for V
4.556 -67.068 -7.357 -0.500 -0.495 -0.023 -0.098  -0.079
-67.068  14.142 -128.654 -4882  -0.598  -0.908 -1.243  -0.192
-7.357 -128.654  20.087 -133.092  -7.668  -2.87] -2.810 -14.132
-0.500  -4.882 -133.092 10.834 -43940 -8.758 -8928 -31.819
-0.495  -0.598  -7.668 -43.940 1.737 -38.550 -23.679 -60.766
-0.023  -0908 -2.871  -8.758 -38.550 1.741 -31.826 -84.684
-0.098  -1.243  -2.810 -8.928 -23.679 -31.826 5.185 -158.984
-0.079  -0.192 -14.132 -31.819 -60.766 -84.684 -158.984 8.729

Aggregate variance/covariance matrix for W
0.000 -18.266  -2.652 0.000 0.000 0.000 0.000 0.000
-18.266 9.802 -249.088  -7.929 0.000 0.000 0.000 0.000
-2.652 -249.088  12.099 -164.885 -33.235 0.000 0.000 0.000
0.000  -7.929 -164.885 2.129 -72.841 -16.122 0.000 0.000
0.000 0.000 -33.235 -72.841 1.279 -108.600  -0.724 0.000
0.000 0.000 0.000 -16.122 -108.600 0995 -1.685 -21.183
0.000 0.000 0.000 0.000 -0.724  -1.685 0.021 -2.980
0.000 0.000 0.000 0.000 0.000 -21.183  -2.980 0.290
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Pass 10

Estimated matrix A
0.984 0.031 0.000 0.000 0.000 0.000 0.000 0.000
0.015 0.849 0.001 0.001 0.000 0.000 0.000 0.000
0.001 0.115 0.987 0.215 0.003 0.000 0.000 0.000
0.000 0.001 0.008 0.602 0.009 0.000 0.000 0.000
0.000 0.000 0.000 0.031 0.392 0.008 0.000 0.000
0.000 0.001 0.000 0.019 0.109 0.368 0.006 0.000
0.000 0.002 0.000 0.026 0.132 0.146 0.547 0.000
0.000 0.000 0.003 0.105 0.355 0.478 0.447 1.000

Estimated matrix C
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.908 0.008 0.000 0.000 0.000 0.000 0.000
0.000 0.092 0.991 0.911 0.000 0.000 0.000 0.000
0.000 0.000 0.001 0.064 0.106 0.000 0.000 0.000
0.000 0.000 0.000 0.025 0.676 0.197 0.000 0.000
0.000 0.000 0.000 0.000 0.218 0.801 0.035 0.000
0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.965 1.000

Aggregate variance/covariance matrix for V

4303 -70.892 -7.810 -0.511 -0.502  -0.026 -0.104  -0.080
-70.892  12.362 -136.855 -4.992  -0.608 -0.984 -1.382  -0.195
-7.810 -136.855 17.000 -139.072  -7.946 -3.104 -3.046 -15.753
-0.511 -4.992 -139.072 8.704 -44.388  -9.028  -9.306 -33.327
-0.502  -0.608 -7.946 -44.388 1.393 -38.665 -23.818 -61.163
-0.026 -0.984  -3.104 -9.028 -38.665 1.419 -32.015 -85.218
-0.104  -1.382 -3.046 -9306 -23.818 -32.015 3.708 -161.605
-0.080  -0.195 -15.753 -33.327 -61.163 -85.218 -161.605 6.686

Aggregate variance/covariance matrix for W
0.000 -18.266  -2.652 0.000 0.000 0.000 0.000 0.000
-18.266 8.866 -257.953  -7.930 0.000 0.000 0.000 0.000
-2.652 -257.953  10.468 -166.101 -33.622 0.000 0.000 0.000
0.000  -7.930 -166.101 1.411  -72.994 -16.163 0.000 0.000
0.000 0.000 -33.622 -72.994 1.076 -109.135  -0.725 0.000
0.000 0.000 0.000 -16.163 -109.135 0.799  -1.688 -21.405
0.000 0.000 0.000 0.000 -0.725 -1.688 0.020  -2.997
0.000 0.000 0.000 0.000 0.000 -21.405 -2.997 0.237
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Pass 11

Estimated matrix A
0.984 0.031 0.000 0.000 0.000 0.000 0.000 0.000
0.015 0.828 0.001 0.001 0.000 0.000 0.000 0.000
0.001 0.136 0.988 0.211 0.003 0.000 0.000 0.000
0.000 0.002 0.008 0.596 0.008 0.000 0.000 0.000
0.000 0.000 0.000 0.037 0.422 0.009 0.001 0.000
0.000 0.002 0.000 0.022 0.118 0.406 0.008 0.000
0.000 0.002 0.000 0.027 0.123 0.139 0.549 0.000
0.000 0.000 0.003 0.106 0.326 0.447 0.442 1.000

Estimated matrix C
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.894 0.009 0.000 0.000 0.000 0.000 0.000
0.000 0.106 0.991 0.895 0.000 0.000 0.000 0.000
0.000 0.000 0.001 0.076 0.106 0.000 0.000 0.000
0.000 0.000 0.000 0.030 0.676 0.197 0.000 0.000
0.000 0.000 0.000 0.000 0.218 0.801 0.045 0.000
0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.955 1.000

Aggregate variance/covariance matrix for V

3.980 -74369  -8.285 -0.520 -0.510 -0.029 -0.109  -0.081
-74.369  12.027 -145.066  -5.098  -0.618 -1.070 -1.515  -0.198
-8.285 -145.066 15908 -144.124  -8.216  -3.344  -3.249 -17.209
-0.520  -5.098 -144.124 7.169 -44.772  -9.259  -9.587 -34.433
-0.510  -0.618  -8.216 -44.772 1.211  -38.772 -23.931 -61.481
-0.029  -1.070  -3.344  -9.259 -38.772 1.276  -32.177 -85.665
-0.109  -1.515  -3.249  -9587 -23.931 -32.177 2.736 -163.444
-0.081  -0.198 -17.209 -34.433 -61.481 -85.665 -163.444 5.170

Aggregate variance/covariance matrix for W
0.000 -18.266  -2.652 0.000 0.000 0.000 0.000 0.000
-18.266 9.016 -266.967  -7.932 0.000 0.000 0.000 0.000
-2.652 -266.967 10.500 -167.236 -33.973 0.000 0.000 0.000
0.000 -7.932 -167.236 1.313 -73.134 -16.198 0.000 0.000
0.000 0.000 -33.973 -73.134 0.972 -109.615  -0.725 0.000
0.000 0.000 0.000 -16.198 -109.615 0.723  -1.691 -21.609
0.000 0.000 0.000 0.000 -0.725  -1.691 0.023  -3.016
0.000 0.000 0.000 0.000 0.000 -21.609  -3.016 0.224
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Pass 12

Estimated matrix A
0.985 0.034 0.000 0.000 0.000 0.000 0.000 0.000
0.013 0.810 0.001 0.001 0.000 0.000 0.000 0.000
0.001 0.150 0.988 0.202 0.002 0.000 0.000 0.000
0.000 0.002 0.007 0.592 0.008 0.000 0.000 0.000
0.000 0.000 0.000 0.044 0.459 0.010 0.001 0.000
0.000 0.002 0.000 0.026 0.126 0.454 0.011 0.000
0.000 0.003 0.000 0.028 0.113 0.130 0.554 0.000
0.000 0.000 0.003 0.107 0.292 0.406 0.434 1.000

Estimated matrix C
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.888 0.010 0.000 0.000 0.000 0.000 0.000
0.000 0.112 0.990 0.872 0.000 0.000 0.000 0.000
0.000 0.000 0.001 0.092 0.106 0.000 0.000 0.000
0.000 0.000 0.000 0.036 0.679 0.200 0.000 0.000
0.000 0.000 0.000 0.000 0.215 0.798 0.061 0.000
0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.939 1.000

Aggregate variance/covariance matrix for V

3.669 -77.527 -8.768  -0.528 -0.520 -0.033 -0.114  -0.082
-77.527 11.063 -152.648 -5.194 -0.630 -1.163  -1.635  -0.200
-8.768 -152.648 14.607 -148.579 -8.496  -3.599 -3.430 -18.579
-0.528  -5.194 -148.579 6.200 -45.128 -9.469  -9.808 -35.287
-0.520  -0.630  -8.496 -45.128 1.148 -38.884 -24.031 -61.759
-0.033  -1.163  -3.599 -9.469 -38.884 1.244  -32.333 -86.078
-0.114  -1.635 -3.430 -9.808 -24.031 -32.333 2.113 -164.774
-0.082  -0.200 -18.579 -35.287 -61.759 -86.078 -164.774 4.248

Aggregate variance/covariance matrix for W
0.000 -18.266  -2.652 0.000 0.000 0.000 0.000 0.000
-18.266 8.821 -275.786  -7.935 0.000 0.000 0.000 0.000
-2.652 -275.786  10.294 -168.371 -34.313 0.000 0.000 0.000
0.000 -7.935 -168.371 1.316 -73.278 -16.233 0.000 0.000
0.000 0.000 -34.313 -73.278 0.960 -110.091 -0.726 0.000
0.000 0.000 0.000 -16.233 -110.091 0.720 -1.694 -21.817
0.000 0.000 0.000 0.000 -0.726 -1.694 0.031 -3.043
0.000 0.000 0.000 0.000 0.000 -21.817  -3.043 0.235
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Pass 13

Estimated matrix A
0.987 0.038 0.000 0.000 0.000 0.000 0.000 0.000
0.011 0.792 0.001 0.001 0.000 0.000 0.000 0.000
0.001 0.161 0.988 0.198 0.002 0.000 0.000 0.000
0.000 0.002 0.007 0.591 0.008 0.000 0.000 0.000
0.000 0.000 0.000 0.049 0.478 0.010 0.001 0.000
0.000 0.003 0.001 0.029 0.131 0.481 0.015 0.000
0.000 0.003 0.000 0.028 0.107 0.125 0.559 0.000
0.000 0.000 0.003 0.106 0.274 0.383 0.426 1.000

Estimated matrix C
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.862 0.005 0.000 0.000 0.000 0.000 0.000
0.000 0.138 0.994 0.859 0.000 0.000 0.000 0.000
0.000 0.000 0.001 0.101 0.106 0.000 0.000 0.000
0.000 0.000 0.000 0.040 0.679 0.200 0.000 0.000
0.000 0.000 0.000 0.000 0.215 0.797 0.076 0.000
0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.924 1.000

Aggregate variance/covariance matrix for V

3.322 -80.349 9235 -0537 -0532  -0.039 -0.121 -0.082
-80.349 9.858 -159.330  -5.289 -0.644 -1.276 -1.765  -0.201]
-9.235 -159.330  13.302 -152.690 -8.778  -3.870  -3.601 -19.897
-0.537  -5.289 -152.690 5.593 -45448  -9.658 -9988 -35.978
-0.532 -0.644  -8.778 -45.448 1.102  -39.002 -24.126 -62.020
-0.039  -1.276 -3.870  -9.658 -39.002 1.260 -32.490 -86.485
-0.121 -1.765  -3.601 -9.988 -24.126 -32.490 1.760 -165.794
-0.082  -0.201 -19.897 -35978 -62.020 -86.485 -165.794 3.697

Aggregate variance/covariance matrix for W
0.000 -18.266  -2.652 0.000 0.000 0.000 0.000 0.000
-18.266 6.941 -282.725 -7.936 0.000 0.000 0.000 0.000
-2.652 -282.725 8.373 -169.483 -34.634 0.000 0.000 0.000
0.000  -7.936 -169.483 1.291 -73.422 -16.266 0.000 0.000
0.000 0.000 -34.634 -73.422 0.946 -110.571 -0.727 0.000
0.000 0.000 0.000 -16.266 -110.571 0.723  -1.697 -22.022
0.000 0.000 0.000 0.000 -0.727 -1.697 0.038  -3.077
0.000 0.000 0.000 0.000 0.000 -22.022 -3.077 0.239
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Pass 14

Estimated matrix A
0.988 0.040 0.000 0.000 0.000 0.000 0.000 0.000
0.010 0.767 0.001 0.001 0.000 0.000 0.000 0.000
0.001 0.183 0.989 0.196 0.002 0.000 0.000 0.000
0.000 0.003 0.007 0.591 0.008 0.000 0.000 0.000
0.000 0.000 0.001 0.054 0.503 0.011 0.002 0.000
0.000 0.004 0.001 0.032 0.141 0.524 0.025 0.000
0.000 0.003 0.000 0.027 0.099 0.118 0.573 0.000
0.000 0.000 0.003 0.100 0.247 0.347 0.400 1.000

Estimated matrix C
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.840 0.005 0.000 0.000 0.000 0.000 0.000
0.000 0.160 0.995 0.859 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.097 0.109 0.000 0.000 0.000
0.000 0.000 0.000 0.044 0.673 0.199 0.000 0.000
0.000 0.000 0.000 0.000 0.219 0.799 0.116 0.000
0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.883 1.000

Aggregate variance/covariance matrix for V

2969 -82.814 -9.704 -0.545 -0.547 -0.045 -0.126  -0.083
-82.814 8.838 -165378 -5377 -0.658 -1391  -1.873  -0.202
-9.704 -165.378  12.258 -156.537  -9.064 -4.154  -3.755 -21.067
-0.545  -5.377 -156.537 5.146 -45.753  -9.841 -10.138 -36.541
-0.547  -0.658  -9.064 -45.753 1.084 -39.132 -24218 -62.262
-0.045  -1.391 -4.154 -9.841 -39.132 1.306 -32.664 -86.899
-0.126  -1.873  -3.755 -10.138 -24.218 -32.664 1.488 -166.599
-0.083  -0.202 -21.067 -36.541 -62.262 -86.899 -166.599 3.197

Aggregate variance/covariance matrix for W
0.000 -18.266  -2.652 0.000 0.000 0.000 0.000 0.000
-18.266 6.549 -289.274  -7.937 0.000 0.000 0.000 0.000
-2.652 -289.274 7.726 -170.342 -34.952 0.000 0.000 0.000
0.000  -7.937 -170.342 1.040 -73.566 -16.302 0.000 0.000
0.000 0.000 -34.952 -73.566 0.969 -111.077  -0.727 0.000
0.000 0.000 0.000 -16.302 -111.077 0.799  -1.700 -22.278
0.000 0.000 0.000 0.000 -0.727  -1.700 0.063  -3.137
0.000 0.000 0.000 0.000 0.000 -22.278  -3.137 0.316
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Pass 15

Estimated matrix A
0.989 0.044 0.000 0.000 0.000 0.000 0.000 0.000
0.009 0.749 0.001 0.000 0.000 0.000 0.000 0.000
0.001 0.189 0.984 0.127 0.001 0.000 0.000 0.000
0.000 0.004 0.008 0.550 0.006 0.000 0.000 0.000
0.000 0.001 0.001 0.084 0.514 0.011 0.002 0.000
0.000 0.008 0.001 0.051 0.144 0.538 0.031 0.000
0.000 0.007 0.000 0.040 0.097 0.115 0.582 0.000
0.000 0.000 0.005 0.148 0.239 0.336 0.385 1.000

Estimated matrix C
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 0.845 0.009 0.000 0.000 0.000 0.000 0.000
0.000 0.155 0.991 0.763 0.000 0.000 0.000 0.000
0.000 0.000 0.001 0.162 0.109 0.000 0.000 0.000
0.000 0.000 0.000 0.075 0.673 0.199 0.000 0.000
0.000 0.000 0.000 0.000 0.219 0.799 0.136 0.000
0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.863 1.000

Aggregate variance/covariance matrix for V

2.650 -84963 -10.146 -0.554 -0.575 -0.056 -0.136  -0.083
-84.963 7.561 -170.313  -5471  -0.681 -1.582  -2.040 -0.204
-10.146 -170.313  12.796 -160.398  -9.560  -4.686 -4.008 -23.344
-0.554  -5.471 -160.398 5.501 -46.150 -10.081 -10.327 -37.251
-0.575  -0.681  -9.560 -46.150 1.507 -39.289 -24.326 -62.560
-0.056  -1.582  -4.686 -10.081 -39.289 1.800 -32.860 -87.372
-0.136 -2.040  -4.008 -10.327 -24.326 -32.860 1.639 -167.314
-0.083  -0.204 -23.344 -37.251 -62.560 -87.372 -167.314 4.474

Aggregate variance/covariance matrix for W
0.000 -18.266  -2.652 0.000 0.000 0.000 0.000 0.000
-18.266 6.994 -296.265 -7.940 0.000 0.000 0.000 0.000
-2.652 -296.265 8731 -171.617 -35.416 0.000 0.000 0.000
0.000 -7.940 -171.617 1.565 -73.808 -16.348 0.000 0.000
0.000 0.000 -35416 -73.808 1374 -111.744  -0.728 0.000
0.000 0.000 0.000 -16.348 -111.744 1.015  -1.703 -22.576
0.000 0.000 0.000 0.000 -0.728  -1.703 0.080  -3.213
0.000 0.000 0.000 0.000 0.000 -22.576  -3.213 0.373
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Appendix 1ID

HMM Implementation Results for the
Modified Sample

The following pages present the implementation results for the modified Stan-
dard & Poor’s rating sample, where all firms were reclassified as investment-grade,
speculative grade or default/NR. As in Appendix IIC, for each of the passes through
the data set, we are given the estimates for matrices A and C, as well as VarV

and VarWy.
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Initial matrix A

0.900 0.020 0.000
0.100 0.900 0.000
0.000 0.080 1.000
Pass 1
Estimated matrix A
0.852 0.012 0.000
0.148 0.869 0.000
0.000 0.119 1.000

Aggregate variance/covariance for V

60.050 -59.413  -0.636
-59.413 104.280 -44.866
-0.636 -44.866 45.502
Pass 2
Estimated matrix A
0.887 0.011 0.000
0.113 0.831 0.000
0.000 0.157 1.000

Aggregate variance/covariance for V
42.506 -101.137  -1.419

-101.137 99426 -102.568
-1.419 -102.568  58.485

Pass 3

Estimated matrix A
0.902 0.008 0.000
0.098 0.784 0.000
0.000 0.208 1.000

Aggregate variance/covariance for V
33.080 -133.552  -2.084

-133.552 99.219 -169.373
-2.084 -169.373  67.470

81

Initial matrix C

0.500 0.300 0.000

0.500 0.500 0.500

0.000 0.200 0.500
Estimated matrix C

0.601 0.230 0.000

0.399 0.255 0.165

0.000 0.515 0.835

Aggregate variance/covariance for W
167.976 -115.697 -52.279
-115.697 240.447 -124.751

-52.279 -124.751 177.030
Estimated matrix C
0.654 0.149 0.000
0.346 0.189 0.079
0.000 0.662 0.921

Aggregate variance/covariance for W

128.274 -203.542 -92.707
-203.542 179.297 -216.202
-92.707 -216.202 131.879
Estimated matrix C
0.746 0.073 0.000
0.254 0.124 0.035
0.000 0.803 0.965

Aggregate variance/covariance for W
82.227 -264.964 -113.513

-264.964 118.167 -272.947

-113.513 -272.947  77.551
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Pass 4

Estimated matrix A
0.899 0.005 0.000
0.101 0.756 0.000
0.000 0.239 1.000

Aggregate variance/covariance for V

29.583 -162.752  -2.467
-162.752  93.163 -233.336
-2.467 -233.336 64.347
Pass 5
Estimated matrix A
0.890 0.003 0.000
0.110 0.747 0.000
0.000 0.250 1.000

Aggregate variance/covariance for V

28.135 -190.660 -2.694
-190.660 83.708 -289.135
-2.694 -289.135 56.026
Pass 6
Estimated matrix A
0.884 0.002 0.000
0.116 0.741 0.000
0.000 0.257 1.000

Aggregate variance/covariance for V

25.982 -216.491 -2.845
-216.491  74.134 -337.438
-2.845 -337.438 48.453
Pass 7
Estimated matrix A
0.880 0.002 0.000
0.121 0.736 0.000
0.000 0.262 1.000
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Estimated matrix C

0.867 0.034 0.000
0.133 0.080 0.022
0.000 0.886 0.978

Aggregate variance/covariance for W

41.805 -297.808 -122.474
-297.808  69.485 -309.588
-122.474 -309.588  45.602
Estimated matrix C

0.936 0.025 0.000

0.065 0.067 0.018

0.000 0.908 0.982

Aggregate variance/covariance for W

21.227 -313.212 -128.296
-313.212  44.748 -338.932
-128.296 -338932 35.166
Estimated matrix C

0.953 0.023 0.000

0.048 0.061 0.014

0.000 0916 0.986

Aggregate variance/covariance for W

14.806 -323.478 -132.926
-323.478  34.665 -363.331
-132.926 -363.331  29.029
Estimated matrix C

0.955 0.023 0.000

0.045 0.060 0.013

0.000 0.918 0.988
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Aggregate variance/covariance for V

23.715 -240.099  -2.952
-240.099  65.370 -379.200
-2.952 -379.200 41.870
Pass 8
Estimated matrix A
0.875 0.002 0.000
0.125 0.734 0.000
0.000 0.265 1.000

Aggregate variance/covariance for V

21475 -261.492  -3.034
-261.492  57.494 -415.301
-3.034 -415.301 36.183
Pass 9
Estimated matrix A
0.870 0.002 0.000
0.130 0.734 0.000
0.000 0.264 1.000

Aggregate variance/covariance for V
19.459 -280.885  -3.101
-280.885 50.568 -446.476

-3.101 -446.476 31.242
Pass 10
Estimated matrix A
0.859 0.002 0.000
0.141 0.734 0.000
0.000 0.265 1.000

Aggregate variance/covariance for V

18.118 -298.949  -3.155
-298.949  45.245 -473.657
-3.155 -473.657 27.235
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Aggregate variance/covariance for W

12.479 -332.103 -136.780
-332.103  30.162 -384.868
-136.780 -384.868  25.391
Estimated matrix C

0.953 0.023 0.000

0.047 0.061 0.012

0.000 0.916 0.988

Aggregate variance/covariance for W
11.234 -339.940 -140.177

-339.940  28.051 -405.083
-140.177 -405.083  23.612
Estimated matrix C
0.950 0.026 0.000
0.050 0.067 0.012
0.000 0.907 0.988

Aggregate variance/covariance for W
10.599 -347.213 -143.503
-347.213  28.046 -425.856

-143.503 -425.856  24.098
Estimated matrix C
0.943 0.028 0.000
0.057 0.072 0.013
0.000 0.899 0.987

Aggregate variance/covariance for W
10.231 -354.292 -146.655
-354.292  28.201 -446.978
-146.655 -446.978 24.274
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Pass 11

Estimated matrix A
0.849 0.002 0.000
0.151 0.737 0.000
0.000 0.262 1.000

Aggregate variance/covariance for V
16.550 -315.452  -3.202
-315.452  40.336 -497.490

-3.202 -497.490 23.880
Pass 12
Estimated matrix A
0.827 0.002 0.000
0.173 0.742 0.000
0.000 0.256 1.000

Aggregate variance/covariance for V
15.694 -331.103  -3.244

-331.103  36.640 -518.478
-3.244 -518.478  21.031

Pass 13

Estimated matrix A
0.798 0.002 0.000
0.202 0.745 0.000
0.000 0.253 1.000

Aggregate variance/covariance for V
14.610 -345.676  -3.281

-345.676  33.583 -537.488
-3.281 -537.488 19.047

Pass 14

Estimated matrix A
0.774 0.002 0.000
0.226 0.753 0.000
0.000 0.246 1.000
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Estimated matrix C

0.934 0.033 0.000
0.066 0.083 0.015
0.000 0.884 0.986

Aggregate variance/covariance for W
10.146 -361.257 -149.835

-361.257  30.618 -470.630
-149.835 -470.630 26.833
Estimated matrix C
0.917 0.039 0.000
0.083 0.099 0.018
0.000 0.862 0.982

Aggregate variance/covariance for W
10.609 -368.485 -153.217

-368.485 35916 -499.319
-153.217 -499.319 32.070
Estimated matrix C
0.897 0.043 0.000
0.104 0.109 0.021
0.000 0.848 0.979

Aggregate variance/covariance for W
10.495 -375.585 -156.612
-375.585  38.651 -530.870

-156.612 -530.870 34.945
Estimated matrix C
0.874 0.050 0.000
0.126 0.126 0.028
0.000 0.824 0972
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Aggregate variance/covariance for V
12.719 -358.360  -3.317

-358.360  29.933 -554.738
-3.317 -554.738 17.285

Pass 15

Estimated matrix A
0.718 0.002 0.000
0.282 0.755 0.000
0.000 0.244 1.000

Aggregate variance/covariance for V
11.399 -369.728  -3.348

-369.728  27.278 -570.649
-3.348 -570.649 15.942
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Aggregate variance/covariance for W

10.231 -382.258 -160.169
-382.258  46.890 -571.087
-160.169 -571.087 43.775
Estimated matrix C

0.830 0.052 0.000

0.170 0.132 0.029

0.000 0.816 0.971

Aggregate variance/covariance for W
9.663 -388.470 -163.620

-388.470  48.522 -613.398

-163.620 -613.398  45.761
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Chapter 3
Kalman Filtering Model

1. INTRODUCTION

One of the challenges in implementing the Hidden Markov Model of credit
rating evolution over time is the nature of the rating data. In general, the model re-
quires many observed transitions between rating categories. Since individual firms
experience few rating changes within a narrow range, it is necessary to consider
an aggregate of firms in the data set rather than an individual company. Another
characteristic of the rating data is that the dataset contains many transitions to the
NR (not rated) status. Accounting for the information content of transitions to and
from NR poses a challenge, as the specific reasons behind the “missing” ratings are
not known. A potential solution to this problem comes in the form of a continuous
time approximation to the rating dynamics. By considering a Gaussian approxi-
mation to the evolution of an average company rating over time, we transform the

discrete time model with a Markov Chain observed in martingale noise to a linear
86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 - Kalman Filtering Model 87
Kalman filtering problem. In this context, the “true” average credit rating is a
noisy signal observed through Gaussian noise. There are benefits to this approach.
First, we can draw from a large body of existing research into Kalman filtering and
its applications. Second, we are able to use all available ratings and account for
transitions to and from the NR status implicitly by considering the dynamics of the
average rating. As before, we use the EM algorithm to estimate parameters of the

model.

2. GAUSSIAN APPROXIMATION TO CREDIT RATING DYNAM-

1CS

Recall from Chapter 1 that X a discrete-time, finite-state, time homogeneous
Markov chain with the state space {e.es,...,en}, €& = (0,...,0,1,0,....0)T €

RY. Its semimartingale representation is
Xk+1=AXk:+Vk+lv k=0~1~

where Vi1 is a martingale increment with E[V11]|F%] = 0 € RY. Recall that Fy, =
o{Xo.Xi,..., X} is the o-field containing all the information about the process X
up to and including time k. Let px = (p1....,pn) = E[Xk]. Then, pr1 = Apy =
AFtlps € RN and VarVy = E[Vi V)] = diag (Apr_1) — Adiag (px_1)A4".

We suppose that we do not observe X directly. Rather, we observe a pro-
cess Y with state space {f1.f2.....far}. fi = (0,....0.1,0,...,0) € RM. The

semimartingale representation of Y is

Y. =CX  +W,. k=0,1.....
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where W is a martingale increment with E[Wy|Gr_1 V {Xx}] =0 € RM and

represents possible histories of both processes X and Y. We have
Vaer = E[WkWIIc] = E[(Yk - CXk)(Yk - C'Xk),] = diag (Cpk) - C’diag (pk) C,.

Recall that we take the process X to represent a firm’s “true” credit quality
and Y to be the noisy observations given by the posted credit labels. However,
individual firms generally experience few rating changes and within a narrow range,
and so we consider an aggregate of firms in our data set, described in Chapter
2, rather than an individual company. The number of observed rating changes is
further limited by many transitions to the NR (not rated) status, precise reasons
for which are generally not known. We shall therefore consider an average “true”
rating and an average observed rating label and then apply Kalman filtering to the
Gaussian analogs of these averaged processes. Specifically, suppose that we have
rating data for L firms, and so we consider L independent signal processes X, with

L independent observation processes Y such that for [ =1,2..... L.

Xy = AX{ + Vig

Vi = CXp + Wi

Write

1 & 1 &
szzz:X,’c, Vk:ZZVé
=1 =1
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and

ll
wll

1< 1 &
Yi==> Y, Wi=3> Wi
=1 =1

Then, the dynamics of the averaged X and Y are Xx41 = AXi + Viy1, and Yy =
C Xy + Wy, respectively.

Following Krichagina, Lipster and Rubinovich [22] we note that an optimal
linear filter for a non-Gaussian process is the optimal linear filter for a Gaussian
analog of the original process, i.e. for a Gaussian process with the same mathemat-
ical expectation and correlation. The Gaussian analog of the averaged process X is
then the vector process

Tr+1 = Azp + Vky1,

where v, k = 1,2, ..., is the sequence of independent Gaussian vectors with E[vg] =
0 and covariance matrix Qy = diag (Apg_1) — Adiag (px_1)A’, and z¢ is a Gaussian
vector independent of vy with FE[zg] = po, and covariance Qg such that Qq(i,4) =
pi(1 — p). Qoli,j) = —php) for i # j. Similarly, the Gaussian analog of the
averaged process Y is

yr = Cxp + w,

where wy., k& = 1.2,..., is the sequence of independent Gaussian vectors with
Elwg] = 0 and covariance matrix Ry = diag (Apx—1)— Adiag (px—1)A’. independent

of X. The Kalman filter for this dynamical system is described next.
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3. SQUARE-ROOT KALMAN FILTERING ALGORITHM

Assume that state and observation processes are given by the linear dynamics

N
Thy1 = ATk + vk ERY,

ysz’:ck—l-wkeRM,

where A and C are matrices of appropriate dimensions, vx and wy are normally

distributed with means zero and respective covariance matrices QJx and Ry, assumed

nonsingular.
Write
yk - U{yo»yl: e 7yk:}
and define
Tkk-1 = Elzi|Ve-1] (a priori state estimate)

Yrro1 = El(xk — Zrk—1)(Tk — Trk—1)'|Yk~1] (a priori error covariance)
Tk = Elzk| Vil (a posteriori state estimate)

ik = El(zr — Zp)(@e — Trx) | Vi) (a posteriori error covariance)

The Kalman filter uses a form of feedback control: the filter estimates the
process state at some time and then obtains feedback in the form of noisy mea-
surements. The equations for the Kalman filter therefore fall into two groups: time
update equations and measurement update equations. The time update equations

are responsible for projecting forward in time the current state and error covariance
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estimates to obtain a priori estimates for the next time step. The measurement
update equations are responsible for the feedback, i.e. for incorporating a new mea-
surement into the a priori estimate to obtain an improved a posterior: estimate.
After each time and measurement update pair, the process is repeated with the
previous a posteriori estimates used to predict the new a priori estimates. Kalman
filter is therefore recursive, which is one of its very appealing features.

The time update equations are, k = 1,2,...:

Tpro—1 = ATp_1 k1

Tek—1 = AVg_1p14" + Q.
The measurement update equations are, k = 1,2,...:

Kk =Ypx1C(CZhk1C' + Ry) ™!
Tre = Trk—1 + Ki(ye — CZp—1)

Tk = (I — KxC)Eg k1

Note that the only time-consuming operation in the Kalman filtering process
is the computation of the Kalman gain matriz Kj. In the actual implementation of
the filter. it is important to be able to compute Kj efficiently, preferably without
directly inverting the matrix (C Xy x—1C’+ Ry) at each time step. We therefore turn
to the so called square-root algorithm. which only requires inversion of triangular
matrices and improves the computational accuracy by working with the square root

of possibly very large or very small numbers.
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First we note without proof the following result from linear algebra:
Lemma 3.1. For any positive definite symmetric mariz A, there is a unique lower
trangular matriz AY/? such that A = AY/2(AY?)'. More generally, for any nx (n+p)
matriz A, there is an n X n matrizc A such that AA’ = AA’. O
Al/2 has the property of being a “square root” of A, and since it is lower
triangular, its inverse can be computed more efficiently. The factorization of a
matrix into the product of a lower triangular matrix and its transpose is usually
done by a scheme known as Cholesky decomposition, described in Appendix IIIA.
Define Hy, := (C Tk x—1C' + Ry)V/2. Let Spo = Q(])/2 and Sk x_1 be the square

root of the matrix (ASk_Lk_lQ,lc/_Q])(ASk_ltk_lQllc/fl)’, and
Skk = Skk-1(I = S 1 C'(HL) ™ (Hic + BY*) ™ CSpn)
for £ = 1,2,.... The auxiliary matrices Sk ,_1 and Sk are also square roots,
although they are not necessarily lower trangular nor positive definite:
Theorem 3.1. Sy05;¢ = 0.0, and fork=1,2,...,
Skk-1Sk k-1 = Zhk—1
SkkSkk = Tk

Proof See Appendix I11B.

The square-root Kalman filtering algorithm can then be stated as follows:
(i) Compute Soo = 5/2.

(ii) For k =1.2,..., compute Sk x—_1. a square root of the matrix

(ASk- 1.k—1Q11¢/_21)(A5k~1.k—1Q;1;{.21 ).
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and the matrix

Hi = (C Skk-1Spx_1C" + Re)'/?,

and then compute
Skt = Sks—1(I = St x_1C'(Hy) ™ (Hr + R,lc/z)_ICSk,k_l).

(iii) Compute £ = po, and for k = 1,2,..., using the information from (ii), com-
pute

Ki = Skk—1Sk ,—1C'(Hy) T H .

Then compute

Th k-1 = ATk—1.k—1

and

Tk = Thk—1 + Ki(ye — CTr-1)-

We again remark that we only have to invert triangular matrices, and in ad-
dition, these matrices are square roots of ones that might have very small or
very large entries. The algorithm is illustrated in the following figure:

Figure 3.1.

1 !
Sk—1.k-1 Tp_1.k-1

! |

—  Skk-1 Thk—1

! ! N I

! Hy, — Ky — i

! !

— Sk .k
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In some cases state constraints may have to be incorporated into the structure
of the Kalman filter. When zj is taken tp represent the average rating, its compo-
nents should add up to one. The required state constraint is then 1'zy = 1 and we

have the following:

Proposition 3.1. Given the unconstrained state estimate I, the constrained

state estimate is Tr k= Trp — Tk LU Sk 1) (VErr — 1).

Proof.  See Simon and Chia {30].

4. PARAMETER ESTIMATION

Consider the following time-invariant Gaussian state-space model:

Trg1 = Azp + vipr € RY, v, ~ N(0.Q)

yr = Czy + wy, wy ~ N(0. R),

with initial state mean p and initial state covariance . We are interested in com-
puting the MLE of the parameter 8 = (4. 2. A.C.R.Q:1’"A=1".1C =1.1"p=1)
given the observation sequence y;,....yr. Note that we require matrices A and C

to have columns that add up to one. We use the EM algorithm described in Chapter

1 to compute the MLE.

Step 1 (E-step): The joint log likelihood of the complete data xg.z;.....27. and
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Y1.....yr can be written in the form

1 1 .
log L = — 7 log|%| — (20 — u)'E Hao — 1)

2
iy Ly A Q7! A
-3 0g|Q|~§Z($k— Tp-1)' Q" (Tk — ATk-1)
k=1
T, 1 — Co VR c
— 5 log|R| - 5 > (yk — Czx)' R (yx — Ca)
k=1

so that

Q(0.65) = ~ 5 log |5~ 5 By, [(m0 — pY= (w0 — V]

- T
T 1 _
- 5 log|Ql ~ 5 Ey, ;(wk — Azg_1)' QN ak — Amk—l)D}T}

T 1
— §log|R[ — §Eéj

T
> vk — Cax)' R (s — CIUk)WTJ

Lk=1

+ By [R(6,)r),

where éj denotes the parameter estimate at the j-th iteration and the term R(éj)

does not involve 6. Define:

Tk = By [zk|Vr]

ko = By [(wx — Eer) (k- &e.1) | Vr]

Staor = By (o — &xr)(@k—1 — &k-1.7) | Vr)-

Note that the random vector 2 ; is the usual Kalman filter estimator, whereas &y 1
is the minimum mean square error smoothed estimator of z; based on all of the

observed data.
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Set also

T

F= Z(Zk_l,:r + k17811
k=1
T

G = Z(Z?;k—l + Ty 1 1)
k=1
T
U= Z(Zka + @k.Ti;c,T)‘
k=1

~

Taking the expectations, we can rewrite Q(6, ;) as

- 1 1 _ . .
Q(0,0;) =~ 5 log 1Z] - St [Z7 (S0, + (Zo.r — 1) (Eor — 1)')]
- g log |Q] — %tr [Q7'(U - GA' — AG' + AF A")]
T 1, e ) . ,
-3 log |R| — B tr |R Z((yk — Cirr)yx — Clrr) + C L1 C")
k=1

+ By [R(0;)1Vr].

In order to calculate & 7 and Zx 7. one performs the set of backward recursions

for k=T,T —1.....1 (¢f. Shumway and Stoffer [29]):

~ ~ Iv—1 -~ ~
Eko11 = Tk-1h-1 + Sk k1 A X (@ — AZp_10-1)

Sho1r =Tk 11+ kb1 AT (Cer = Thke 1) (Ckm1 k1 A Sh k)

The covariance ©7 , , can be calculated using the backwards recursions (¢f. Shum-

way and Stoffer [29])

S ke =kt Chm1k—2 AT o) Tk AT

X (ZF st — ATk k1) Sk 2 AT )
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fork=T,T—1,...,2, where
ZTT =T - KrCYAXr_1 71
Step 2 (M-step) To implement the M-step, i.e. to compute
éj+1 = argmaxgco Q(0, éj),

we set the derivatives 8Q/06 = 0.

Proposition 3.2. Define Z = Zr‘,f:lyk:%;ﬁT. The EM parameter estimates are

gwen by
A=GF'+Q1(1Q1) (1’ —-1'GF™) State transition matriz
Q= ? (U—-GA' — AG' + AF A") State noise covariance
C=zU '+ RI(1R1)"'(1' -12ZU7Y) Observation matriz
T
R= T Z vk — CErr)(ye — Cirr) + CLrrC’'] Observation noise covariance
= — 211’1 Y13 — 1) Initial state mean
= Yor — Lf?o_’rifé)j' Initial state covariance.

Proof. In Appendix IIIB.

5. APPLICATION

The Kalman filtering model described above was applied in an example as

follows. We assumed that the state and observation processes are given by linear
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dynamics

Ty = ATk + vks1 € R?,

yr = Cop +wyi € R2,

where A and C are matrices of dimension two, v, and wy are normally distributed
with means zero and covariance matrices () and R, respectively. We generated 100
observations, namely 100 “true” state vectors and 100 observations of the “true”
state. The first 50 observations were used to estimate the parameters of the model:
state matrix A, observation matrix C, state error covariance () and state error
covariance R. Recall that the EM algorithm is self-tuning and guarantees that log-
likelihood increase monotonically with every iteration. In this case, log-likelihood
converged after only seven passes through the data. The true and estimated param-
eters for this HMM are shown in Appendix ITIC. Note that estimated parameters
are very close to true parameters. In order to illustrate the predictive performance
of the algorithm, we used the Kalman filtering model with estimated parameters
to predict the state given the second half of the observations. We then plotted
predicted versus actual state. The plot is given in Appendix IIIC and shows that

predictions are quite accurate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

Appendix IITA

Lower-Triangular Cholesky Decomposi-
tion

Let A = (aij)1<i j<n be a symmetric. positive-definite matrix. A lower-triangular

matrix L = (l;;)1<ij<n such that A = LL' is obtain through the following algo-

rithm:
i. l“ = \/a11-
ii. Fori=2..... n.

L= a1/l

i-1
li; = \} (aii — ZZ?A«):
k=1

i1
aj; — leklik) /11‘1‘.
k=1

lji =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

Appendix IIIB
Proofs of Results in Chapter 3

Proof of Theorem 3.1.

The first statement is trivial since ¥ = Q9. The other relationships can be
proved by induction. Suppose that S, _| ,_;S._) x_ = Zk—1.k-1- Then it follows
immediately that S .S, = k-1 using the relation between ¥; x_; and
Yk_1.k—1 in the Kalman filtering process. We verify that the second relationship
holds for k using the first relationship for the same k. Since C Xy C' = H H} —

Ry so that

(Hp) ™ '(Hi + RY®) U+ [(He + RSP H
— (H{)""(Hy + R 'C s C'[(Hy + RY?) )V H
= (HQ)Y?(Hy + RYY) 7' [Hy(Hi + RY®) + (Hi + Ry Hj
— HiHj, + Rel[(Hi + R H
= (Hp)"'(Hix + R/®) 7 Hy Hy, + He(R?Y

+ RYPHL + Rel((Hy + Ry Y H
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= (H)) " (He + B/Y) 7 (Hy + R (Hie + RV [(He + R H

= (H,) 'H' = (H.H) ™.
it follows from the first relationship that

SkkShx = Skk—1[l = Spp 1 C'(Hy) ™ (Hy + Riz/Q)_lCSk-k—I]
x I = Stx oy C'I(Hy + Ry*)) 7 H ' C Sk ]Sisos
= Sika1ll = Sp 1 C'(HY) ™ (Hi + RY?)7'C Sk
— S o C'[(Hy + RV HZYC Shp s
+ S o C(H) T (Hy + R,l\ﬂ/Q)_lCSk.k—lS;c.chl
x [(He + RY*Y)VH C Spra1]Shors
= Spsmt — Skam i ClHD)  (Hi + RYD) ™ + [(He + RS HY!
— (H) N (Hp + RY?)T'C k1 C'[(Hy + RY*)VHC By
= Yphet = Zpp 1 C'(HyHY) ' C g

=Xk O

Proof of Proposition 3.2. The problem to solve is

1 1
maximize — = log|X| — 5 tr [ Zo.r + (Ror — ) (@01 — 1))}

AC.Q.RuL 2
T 1 —1 ’ ! ’
3 log |Q] — 5 tr [Q7'(U - GA' - AG' + AF A")]
T I T
-5 log|R| = 5tr | R ;_jluyk — Cipr)(ye — Cirr) + CE0C)
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where

(Ch_11 + Tkt Py )

hry
I
e

>~
Il

(Skpor + Eerdh ) 1)

B
R

ol
1l

(Zk.T + .‘i?k-_Tlﬂ?;‘.:_T).

h
]~

k=1
subject to
1'A=1
1'C =1
1p=1.
The Lagrangian is
1 1 —1 A 2 /
L=-— 5 log |2| — 5 tr [ (Zo.r + (For — p)(Zor — 1) ]
A 1
— % log|Q| — 5 tr Q1 (U - GA' — AG' + AFA")
T 1 T
— 5 log|R| - 5tr R™ ;((yk — Cipr)(yk — Cipr) + CZprC)

+ B [R(6))1¥r]

+trA (VA= 1V) + trAS(1'C = 1) + Ag('p - 1).
Differentiating in A and A, and setting the derivatives to zero gives
Q'G-Q TAF +1A, =0 (1)

and

1'A=1" (2)
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From equation (1) we have A = GF~!+ Q1A F~!. Substituting into (2) we obtain

AMF~ ' =(1'Q1) (1" — VGF1). 1t follows that
A=GF ' +Q1(1'Q1) (1’ - 1'GF™).
Differentiating in @@ and setting the derivative to zero gives

gQ—%(U—GA’—AG’nLAFA’):O

and
1
Q= T (U-~-GA - AG' + AF A).
Differentiating in C and Ay and setting the derivatives to zero gives
R 'Z—CR'W+1A,=0 (3)
and
1'C =1". (4)

From equation (3) we have C = (R™'Z + 1A;)U~'R. Substituting into (4) we

obtain Ay = (1’ = 1'R™'ZU"'R)R™'U. 1t follows that

C=R'"ZU'R+1(1' -=YR'ZU'R).
Differentiating in R and setting the derivative to zero gives

T
1 R ’ '
3 Z —Crrr)yr — Cipr) +CEprC'] =

k

'\JI‘NI
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and
1 T
R= T ;[(YA — Cip)yx — Cipr) + CZprC').
Differentiating in p and setting the derivatives to zero gives
E—] (jTO.T — /J) + A31 =0
and

1p=1.

so that = &g — X1(VX1) (Vo r — 1).

Differentiating in X and setting the derivative to zero gives
1

1 PO
5 X - 5 (Xor — Zordp ) =0

so that ¥ = Yo7 — -‘f”oATié).T'
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Appendix IIIC - Results for Kalman Filtering Example

Estimated A
0.6949 0.3073
0.3051 0.6927

Estimated Q
0.0012 0

0 0.00]2

True A
0.7 0.3
0.3 0.7
True Q
0.001 0
0 0.001

Estimated C

0.7452 0.678
0.2548 0.322

Estimated R
0.0116 0
0 0.0081

True C
0.9 0.5
0.1 0.5
True R
0.01 0
0 0.01

Predicted vs. true
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Chapter 4
Modelling Default Risk

1. INTRODUCTION

A variety of approaches to valuation of default risk have been presented in the
literature and implemented by practitioners. In this chapter we follow the so-called
reduced-form approach. where default is an unpredictable event governed by a hazard
process defined in terms of intensity A. If a bondholder receives a payoff only if there
is no default before maturity. the bond is priced as if it were default-free by replacing
the risk-free short rate r with r + A (See for example Duffie and Singleton [9] or
Lando [23]). Following Elliott. Jeanblanc and Yor [16]. and Bielecki, Rutkowski [3].
we make precise the technical conditions under which default acts as a change of
interest rate. First we consider the case of only one source of information. namely
the time when the default appears. and then discuss valuation of defaultable bonds
for investors who also observe the issuer’s credit quality represented by their rating.

We show that if the default time admits an intensity A. the value of a zero-recovery
106
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defaultable bond is its value as if it were risk-free adjusted by the probability of
no default before maturity given in terms of A. This probability is also calculated
explicitly in terms of the issuer’s credit quality when the credit quality is added to
the investor’s information set. We extend our model to allow for a rebate payment
at default conditional on the issuer’s credit quality. Finally, we discuss valuation of
defaultable bonds when “true” credit quality is not observed directly but through

noisy credit ratings.

2. THE MARKOV CHAIN MODEL OF CREDIT QUALITY EVOLU-

TION

Consider a probability space (£2.G.Q) where, for pricing purposes. @ is an
equivalent martingale measure.

Suppose {X;}. t > 0.is a finite-state Markov Chain on (2.G. Q). with state

space S = {s1,82.....8x5}. Without loss of generality. we identify the points in S
with the unit vectors {e;.es.....en}. where e; = (0..... 0.1.0.....0) € Ry.

Denote by Eg the expectation under the measure (. The distribution of X;
is then p; := E[X{] = (pi.p?....pN). where pi = Q(X;, = e;) = E[{X;.€;)]. We

suppose this dis- tribution evolves according to the Kolmogorov equation

dpy
dt

= Apt.

where A is the “@Q-matrix.” such that A = (a;;). 1 <i.j < N.a;; >0 forall i # j.

Z;-N:l a;j; = 0. The default state e is assumed to be absorbing. so the last column of
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A has all zeros. Denote by {F;} the right-continuous, complete filtration generated
by the process X. For s < t, write ®(s.t) = exp(A(t — s)) for the transition matrix

associated with A, so that

dd(s.t)

and

E[X\|F,] = E[X,|X,] = ®(s.t) X,

®(s.t) is then a N x N matrix whose (j.1)-th entry specifies the probability of X
being in state j at time ¢ given that the chain is in state 7 at time s.
Lemma 4.1.

o

I/}::Xt—XU—/ AX, dr
0

is a (vector) Fi-martingale under Q).
Proof.  See Appendix IV.
The semi-martingale representation of the MNarkov Chain X is. therefore.

t
Xt:X0+/ Aerr‘f“/t
0

or. in differential form.

dX, = AX, dt + dV.

As in the previous chapters, we shall suppose that the Markov Chain X de-
scribed above represents the evolution of credit quality over time, so that N states
of X correspond to N credit rating categories. ®(s.t) is then the transition matrix

and A is its generator matrix.
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3. THE DEFAULT TIME

We are interested in modelling how a default time might depend on credit
qura‘lity. Let 7 be an R - valued random variable on (£2.G. Q) representing the
default time, such that @Q(r = 0) = 0 and Q(¢t < ) > 0 for all £ > 0. Denote by
{m:} the increasing default process defined as 1, := 1,<;. Each sample path is then
equal to 0 before random time 7, and it equals 1 for ¢ > 7. Let {H;} denote the
natural filtration of n, with H; := o(n,,uw < t) generated by the sets {t < 7} and
{r < s} for s < t, and set Hoe = o(ny : u € Ry). Note that {H;} is the smallest
filtration such that 7 is an {H;} - stopping time. H; represents information whether
default has occurred at or before time t. In other words. we observe default as it
occurs. We note the following important result:

Proposition 4.1. (Dellacherie) If Y is any integrable, G - measurable random

variable, then

EolY1,.
EQ[Y]Ht] - ]].TStEQ[YIHxJ + ]lt<75—([f<—t—:)—].
In particular,
_ EQ[Y]IIKTJ
EQ[YH <7 = Ny O <7)

and if Y is o(7)-measurable - that is, Y = h(7) - then

EQ[;Z(T)nt<7—] .

EQ[Y‘Ht] = nq—gth(T) + ]]-t<T Q(t < T)
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Let F(t) = Q(r < t) be the right-continuous distribution function of 7. If F'is

differentiable, then 7 admits a density f = F’ and we have the following:

Lemma 4.2. The process 1, — fOTM l—f%(lu—) du=mn; — fot HUST% du is an {H;}-

martingale.

Proof. See Appendix IV.

Let A(s) = l_f_c;f()s). Then, solving the ODE F'(s) = (1 — F'(s))A(s). we obtain

F(s)=Q(r <s)=1—exp (— /0 Aw) du> ‘

An increasing function T' : R, — R, given by the formula 1 — F(t) =
exp(—T(t)) is called a hazard function of 7. In the present setting we have I'(t) =
fot Mu) du and X is called the {H;}-intensity or the hazard rate of 7. In fact. the
intensity of the random time 7 is often defined as an {H;}-adapted, non-negative

TAL

process A for which n; — [; 7 A(s)ds is a {H;}-martingale. In the present setting,

7 admits the deterministic intensity A(t) = —L (&)

Remark Note that if 7 is exponentially distributed with parameter ~. F(s) =
1 — exp(—~t) and the intensity of 7 is constant: A(t) = for all t € R,.
Corollary 4.1. For an agent with information H;. the probability of no default

before time T >t 1is

T
Q(T < 7|H;) = Nyer exp (—/ A(s)ds) i
t
Proof. Appendix IV.
Suppose that there is another source of information represented by a filtration

H.}. Consider the enlarged filtration {&} = {H; V H}}. with £ = o(7) V HL..
t t oc
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As before, 7 is a random default time defined on the filtration (€2, G. Q). For any
t € R,, we now write F(t) = Q(7 < t|/H}). We define the {H}} -hazard process of
7 under @ through the formula 1 — F(t) = exp(-T'(t)).
We have the following generalization of Proposition 4.1:
Proposition 4.2. Let Y be any integrable, Ep-measurable random variable, then

foranyt <T

EQ[]lt<.,—Y|'HH

TY = T
EQ[]]-t< 'gt] ]]-t< Q(t < T‘Hi)

= nt<7‘EQ[ﬂt<TYeXp(F(t))|H”
and if Y is o(1)-measurable - that is, Y = h(r) - then
T
Eq[licrer M) &] = Licr Eq [/ h(u)exp(T(t) — T'(u)) dT'(u)[Hj].
t

Proof. Appendix IV.

Corollary 4.2.
EQ[I]-T<T| gf] = ]]-i<TEQ [(‘Xp(r(f) - F(Iw))IHH

Proof. Appendix IV.

Assume that the {H]}-hazard process I' is absolutely continuous and that
I'(t) = f(; Au) du, for some {H} }-measurable process A. referred to as the stochastic
intensity of the random time 7.

Corollary 4.3. For an agent with information & = H; V 'H}. the probability of no

default before time T" >t is

Q(T < Tigt) — EQ[]IT<T|gt] - ]].t<7-EQ O

T
exp (—/t A(s) ds) |H,
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We also have the following generalization of Lemma 4.2:
Lemma 4.3. The process m, ~f0MT Mu) du = —T(tAT) follows an E-martingale.

Proof.  Appendix 1V.

4. DEFAULTABLE CLAIMS

Suppose that there exists a riskless zero-coupon with a deterministic spot rate
r(s). Assume that this bond pays 31 at its maturity 7. The value of this bond at

time t < T is then given by

-
B(t,T) = exp (—/t r(s) ds) .

and its yield to maturity is

1
y(t.T) = ~ T fln B(t,T).

As in the previous section, let 7 be a default time with intensity A. Suppose that
there also is a defaultable zero-coupon bond whose face value is $1. but that this
amount is received at maturity T only if default has not occurred. Note that we
assume zero recovery of face value in case of default. Hence, for such a defaultable
zero-coupon bond the payoff is 17... We shall show in Section 5 how the model
can be extended to account for a rebate payment at the time of default.

Lemma 4.4. The time-t expected value of a defaultable zero-coupon bond which pays

Ly<, at time T, for an agent who has information H; regarding the occurrence of
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default s

Proof.  Appendix IV.

Note that the above formula indicates that the default acts as a change of
interest rate. We have thus shown that within the present setting a defaultable
zero-coupon bond may be valued as if it were default-free by replacing the risk-free
short rate r with the default-adjusted rate r + X.} Through this adjustment to the
short rate we account for both the probability and timing of default, as well as for
losses on default.

Note that
T
Bd(ttjw) = ]lt<TB(t7 T) exp <—/ /\(8) d5> = B(t T)Q(T < TIHt)t
t

using Corollary 4.1. The time-t value of a defaultable zero-coupon bond is then
equal to the value of a risk-free zero-coupon bond with the same maturity adjusted
by the probability of no default before maturity.

For an arbitrary defaultable claim K with maturity 7. its value is

T
Eg {KIITQ exp (—/t r(s) ds) IHt} )

IThis is not always the case in a more general setting. as shown in Elliott, Jeanblanc and
Yor [16] and Bielecki, Rutkowski [3].
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From Lemma 4.4, if K is independent of the default time 7. the time-t value is

T
Toer exp <— / (r(s) + A(s))ds) EolK] = BY(t,T)EqlK).
t
We can then write the time-t value of a defaultable coupon bond maturing at time
T as the time-t value of a portfolio of defaultable claims K;, i = 1, ..., n, maturing

at timest < Ty} < Ty < --- < T, = T and corresponding to the remaining payments

of expected coupon and maturity value:

BALT) = 3 ol KB T,

1=1

which becomes

BL(t,T)=C Xn: BY(t.T;) + FBI(t.T)

1=1

if bond cash flows, namely coupon payments C and maturity value F, are known
with certainty.

We now assume that the probability of default depends on the issuer’s credit
quality represented by the process {X,}. Hence we consider two sources of infor-
mation, filtration {H;} representing default information, and filtration {F;} repre-
senting “true” credit quality information.

Lemma 4.5. The time-t expected value of a defaultable zero-coupon bond which
pays Ir., at time T, for an agent who has information & = H, Vv F; regarding the

occurrence of default and the issuer’s credit quality is

-
Eo [exp <_/: -r(s)ds) nT<TIg{'

T
=I,<, Eo [exp (*./z (r(s) + )\(s))ds) lXt} ;

i

B4(t,T)
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Proof.  Appendix IV.

Recall that at any time the state X; of the Markov Chain is one of the unit
vectors e;. 1 < 1 < N. Consequently. any function of X;. say h(X}). is given by
a vector (hy.ha..... hy), so that h{(X;) = (h.X;). Let L = (A1, A2.....AN) be a
vector of default intensities, each component for a different credit category. We thus
suppose that default intensity is a function of X, that is A(t) = L(X;) = (L, Xy).

Using Lemma 4.5, the time-t expected value of a zero-coupon defaultable bond is

then

[ T
Bi(t.T) = 1<, Eg | exp (—/t (r(s)+ /\(s))ds) |X,}

T
=1,<; Eg | exp (—/ (r(s) + (L, Xs>)ds> ,Xt}

L
T T
= Nycrexp (—/; r(s) ds) Eg | exp (—[ (L, Xs) ds) |X¢J

T
exp <—/t (L,Xs>ds> |X,,:| .

We are interested in Eg [exp (— ftT(L, X ds) |Xt].

= T, B(t, T) EQ

Define I'; ,, := exp (- ftu (L, X) ds), so that dT'y ., = —(L, X,,)T; o, du. We shall
work with a vector process Z; ,, := X,['y.,. Clearly, I'y., = (Z;,.1). Differentiating

Zi «. we have the following 1t6 representation:

dZy ., = Xoud [exp (— /tT<L.Xs> ds)] + exp (- /tT(L.XS> ds) dX,
+dX.d [exp (- /j(L. X, dsﬂ .
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Now,

d [exp (— /t LX) ds)} = —exp <— | /t.u(L,Xs> ds) (L. X,) du.

and

exp (- / “(L.x.) ds> dX, = exp (- /t (Loxy) ds> (AX,du + dVy,)
t
= AZ; wdu + Ty dVy,.
Therefore, writing ¥ = [A — diag L], we have
dZiy = —Zpu{L. Xy)du + AZy ydu + T 4 dVy

~ [A = (L. X)) Zs wdu + Ty udVs

= [A — diag L| Z; ,du + T, dV,,

= V7 ydu+ Tt dVy,

and in integrated form,

T T
Zt.T = Zt,.t. +/ \I]Ztud'u + / Ft.ud‘/u-
t t

The expected value of this vector process given the state of the “true” credit quality

process X is then

T T
EolZir| X = Eo | Zia+ / U2, udu + / Ty dVi X,
£ 14

T
/ ‘I/qudulXt
t

T
=Zy +/ EQlVZ, | X:] du
t

= Ziy+ Eg

T
= Xt +/ \I’EQ[ZtuIXt] du.
t
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Write Z, ,, for EglZ: 4| X:]. The dynamics of ZAM,, are then Z; r = X, + ¥ [fT ZAL,,_ du.

Solving this equation we obtain
Zy7r = Eq|Z,71X,] = exp(¥(T — t)) X,.
Since I'y.p = (Z; 1, 1), we have that
Eg[Ty.7|X1] = {exp(¥(T — 1)) Xy, 1).

The time-t expected value of a defaultable zero-coupon bond with maturity T' can

then be written as
Be(t.T) = Nyr B(t. T){exp(W(T — t))X;, 1).

From Corollary 4.3 and Markov property, the probability of no default before
maturity given default information up to time ¢ and the issuer’s “true” credit quality

at time £ 1s

QU < tH, v Xi) = Iy« Eq

exp (— /tT)\(s) ds) th}

= ]lt<-rEQ[Ft.T|Xt] = ]1t<T<exp(\I!(T - t))th 1)'

It follows that

BA(t.T) = B(t, T)Q(T < 7|H: V X3).

and so the time-t expected value of a defaultable zero-coupon bond is again equal to

the expected value of a default-free zero-coupon bond adjusted by the probability
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of no default before maturity. The yield to maturity for such a defaultable bond is

1
4. T) = - (A
y(t.T) T—tlnB (t. 1)

1 ,
= — 7 In(B(t.T)(exp(¥(T - t)Xi. 1))

=y, T) - In{exp(¥ (1T —t))X;.1).

T -1

5. FRACTIONAL RECOVERY

Suppose again that there exists a riskless zero-coupon with a deterministic
spot rate 7(s) and a defaultable zero-coupon bond with the same maturity 7. As in
the previous section. let 7 be a default time with intensity A(¢t) = L(X;) = (L. X}).
Suppose also that the defaultable bond pays its face value in full at maturity if there
is no default and a rebate at the default time if default appears before maturity. We
assume that the fraction of face value paid at default also depends on the issuer’s
credit quality represented by the process {X;}, i.e. we have §(t) = D(X;) = (D. Xy).
We are again working under the filtration {&,} = {H; V F;}. In the case when the
default has not appeared at time t. the time-t value of the defaultable zero-coupon

bond is

T
1« Eo [exp <~/ r(s)ds) ]17<T|St}
t

+ 1ier Eo {exp (— /t r(s)ds) <D.XT)IITST§&}

= Bd(fT) + ]lg<TEQ [exp <— /T 7‘(S)d8> (D-/YT>BT§T|£t:| .
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In view of Proposition 4.2 and Markov property,

1<+ Eg [exp (— /tT r(s)ds) (D, Xr)llfgﬂ&] =

= 1<r Eg {/tTexP (_ /t“ ,\(S)ds) exp (_ /t“ r(s) ds) (D, Xu)(L,Xu)dulX,}
/tT exp (— /tu /\(s)ds) exp (_ /t“ r(s) ds) (A, Xy) dulxt] ’

where A = (\dy, ..., ANON)-

3

= < EQ

Define (y. := J exp (= [,*(r(s) + (L. X) ds) X, du. Then,

(Crv-A) = /tv exp (— /tu(r(s) + (L,Xs))ds) (A, X,) du,

and we are interested in

/t~T exp (_ /i“ As) ds) exp (_ /t“ r(s) ds> (A,}(U) dulxt}

= Eq[(Ce.e: A)X1].

Eq

Now.

and writing © = [A — diag L — r(v)I]. we have
dZ, , = —(r(v) + (L, Xy))Z¢ . dv + exp <—~/ (r(s) + (L,Xs))ds) dX,
t

= —(r(v) + {L, X)) Z; » dv + exp (— /tv(r(s) + (L. Xs)) ds) (AX,dv+dV,)

fI

—(r(v)+ (L, X)) 21w dv+ AZ; , dv + exp <— /v(r(s) + (L, Xy)) ds) dV,
A= (L. X = r(0)]] 200 dv + exp (_ /tv(r(s) + (L,XS))ds> dv,
= [A —diag L — r(v)1)Z;, dv + exp (— /v(r(s) + (L, X)) ds) dv,

=0Z;,dv+ exp <~ /v(r(s) + (L,Xs))ds) dVy,
t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 - Modelling Default Time 120

and in integrated form,

T T T
i =X, +/ ©Z, ,dv+ / exp (—/ (r(s) + (L. Xs)) ds) dV,.
t ¢ t

The expected value of this vector process given the state of the credit quality process

X is then

EQ[Zt,TIXt] = Xt + EQ

T T
/ GZL/U d’U]Xt} = Xt +/ @EQ[ZfUIXt] d'l}.
t t

Write Z, . for EglZ;.+|X:]. Then Zir = X; + @ftT Zy o dv. Solving this equation
we obtain

Zyr = EgQlZi7X1] = exp(O(T — 1)) X,.

It follows that

T T
Eg[C.r)Xi] = / Zpodv = /t exp(O(v — t)) X, dv.

t

The time-t expected value of a defaultable zero-coupon bond with maturity 7' can

then be written as

BY(t.T) = BY(t.T) + Licr Eq[{Grer 8)|X]
= BY(t.T) + Near (EQlCee| X4). A)

T
= BULT) + Lur (| exp(O0 - )X do. &),
t

Bg(t.T) is then the time-t value of a zero-recovery defaultable zero-coupon bond

plus the time-t value of a rebate paid in case of default before maturity.
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6. THE DEFAULT TIME AND THE HIDDEN MARKOV MODEL

We have shown that the time-t value of a defaultable zero-coupon bond that

expires at time 7" >t is
B(t,T) = Lyer B(t, T){exp(¥(T — 1)) X;. 1),

where B(t,T) is the time-t value of a default-free zero-coupon bond, ¥ = [4 —
diagL] and L = (M, )2,...,An) is a vector of default intensities. one for each
rating category.

Suppose now that the “true” credit quality {X;} is not observed directly.
Rather, it is hidden in noisy observations {Y,} represented by the posted credit
ratings. The quantity B%(t,T’) can therefore be observed only in an “ideal” world
Where the “true” credit quality of a bond issue is readily available.

We shall suppose that rating observations are equally spaced, say annually or
quarterly, as is the case with ratings posted by Standard & Poors or Moody’s. Recall
from Section 1 the continuous-time semi-martingale representation of the process
X:

t
Xy = X0+/0 AX,dr+ V.
However. in Chapter 1 we have developed a filtering algorithm. where both the
state and observation processes have discrete dynamics. We shall therefore write
® := e”%, where s is the length of time between rating updates, such as a year or a

quarter, and consider a discrete time version of the state process X.

X =0X; 1+ V.
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where V, is an (F;.Q)-martingale increment. We also suppose, as in Chapter 1.

that the observation process {Y;} has dynamics
Y;, - CXt + Wt'

Let B4(t, T) be the time-t value of a defaultable zero-coupon bond for an agent
who has information H; V ), regarding the occurrence of default and the issuer’s
credit rating. As in Chapter 1, we denote by }; the o-algebra generated by all
possible histories of the observation process Y up to and including time t. In other
words, the agent knows whether default has occurred and observes the issuer’s credit
rating history but not the issuer’s “true” credit quality.

Using Corollary 4.3,

Tcr exp (— / " r(s) + A5)) ds> I&]

exp (~ /t T(r(s) + (L. X)) ds> |y,,]

— ey exp (- /t " s) ds) Eo | exp (— /t LX) ds) ;y,]
( [ ds) ,yt} |

We are interested in Eg [exp (— ftT<L, X ds) |yt].

Bi(t,T) = Eg

= I]-t<‘r EQ

- Ilt<7- B(t T) EQ

Recall from Section 4 that Ty, := exp (— ft“(L. Xs) d,s) and the dvnamics of

the process Z; , := X, I'y,, are

T T
Zir =2ty +/ U Z; du+ / [ wdVy.
¢ ¢
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The expected value of this vector process given the possible rating histories }; is

then

T T
EolZurVi = Eo | Zes + / U7, wdu + / Ty udVil Ve
t t

T
/ \PZtudulytjl
t

T
= Zt,t + / EQ [lI/ZtuD/t] d”U,
t

= Zt,t + EQ

T
~ X, + / ©EQ |7, V) du.
t

Write Zt,u for Eg[Z; 4|):]. The dynamics of Zi w are then Zyr = X, + U ftT Zy.u du.

Solving this equation we obtain
Zyx = EQZy.x| Vi) = exp(U(T — t)) Eq[X |-
Since I';. 7 = (Z;.1.1), we have that
Eq[Cer| V] = (exp(¥(T - 1)) EQ[X:|I4]. 1).

The time-t expected value of a defaultable zero-coupon bond with maturity 7" can

then be written as
B(t.T) = Dy B(t. T)(exp(U(T — t))Eo[X:| V). 1).

From Corollary 4.3, the probability of no default before maturity given default

information up to time ¢ and the issuer’s credit rating history ), is

exp <— /LT A(s) d8> lyt:|

= ﬂt(TEQ[Pi.T!yt] = ]1t<r<€XP(\I}(T - t))EQ[Xt‘yt]- 1>-

QT <THyVY) = 1 Eg
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It follows that

BYt.T) = B(t.T)Q(T < 7|H: vV V).

and so the time-t expected value of a defaultable zero-coupon bond is again equal to
the expected value of a default-free zero-coupon bond adjusted by the probability of
no default before maturity. The latter is conditioned on the observed credit rating

history. The yield to maturity for such a defaultable bond is

1

d
T) = -
y(t.T) = —5—

InBe(t,T)

— - 7 (B T)(exp(¥(T ~ O EolXi[¥i]. 1)

1
= uy(t. T) —
y(7) T

in(exp(¥(T — 1)) Eq[X,/¥i]. 1).

We can now use the filtering and parameter estimation algorithms from Chapter
1 to estimate X, := Eg[X,|);] and then calculate the time-t expected value of a

defaultable zero-coupon bond as
Be(t,T) = Ny B(t. T){exp(¥(T — t))X;. 1).

We have thus developed a model for calculating the value of a defaultable
bond based on the best mean-square estimate of “true” credit quality given noisy

observations represented by posted credit ratings.
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Appendix IV

Proofs of Results in Chapter 4

Proof of Lemma 4.1. For s <{,

E[V, — Vi|Fs] = E[X, - X — / AX, dr|X,]
t
t
— B(s, 1) X, — X, —/ Ad(s,7)X, dr

=0

since ®(s,t) = f: Ad(s,r)dr. O

Proof of Lemma 4.2. From Proposition 4.1, for s <t

EQ[Ut - Us]Hs} = EQ[HKTSt]HS]

E ]15 T 1 T
= IITSSEQ“IS<T§t|Hoo] + ns<r Q[Q(: <§tT)s< ]
=1 EQ[]]‘5<T§"]

. FO-F()
- s<T 1_ F(S) -
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If we denote

B TAL f(u) - TAS f(U) . TAL f(’ll,) l
Z_A 1~F(u)d /0 l—F(u)dQ'—/T,\S 1—F(u)dz/

_ [ f(u)
= /s nuﬁrl ~F(a) du,

then clearly Z = 1;.,Z. From Proposition 4.1 and then Fubini’s Theorem we

obtain

EQlZIHs] = Eq[ls<r Z|Ms]

_ EQ[RS<TZ]
= Nser Egllscr Z|Hoo| + ]15<7—m—
_ Eqlz] _ Eql/, ﬂu<71 G du]
s<T Q(S < T) — Rs<L 71 — (8)
_1 )i 1 fi“u()u)E [Mu<r]du L I f(u) du
- s 71 1 ——F( ) — A< T =7 1_ (S)
L, F-F()
s<T 1 _ F(S)

The result follows. O

Proof of Corollary 4.1. From Proposition 4.1,

Eqllr<,) _ 1- F(T)
1-F@t)  1-F@)

Q(T < TIHt) = EQ[T < T|Ht] = ]]-t<7’

Proof of Proposition 4.2. The result follows if we show that
Eqli«;YQ(t < 7/H})| &) = Eq[lecrEq[lic-YIHi]| &].

Now. it is easy to see that for any A C &, 3B € Hj such that AN {t < 7} =
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Bn{t <7} Then,

EQ[nt<‘rYQ(t < TlH;)I Et] = /A nt<TYQ(t < TIHQ) dQ
- / YQt < M) dQ
An{t<T}
- [ vae<rrydq
Bn{t<r}

- /B 1o, YQ(t < 7|HL) dQ

- / Eqllc YIHIQ(t < 7|H)dQ
B

- / Eollli<r Bo[Lc, Y HIIH,) dQ
B

- / 1y<r Eqler Y |H] dQ
B

:/ EQ[]lt<TYlH”dQ
Bn{t<r}

- / Eollli, Y]] dQ
An{t<T}

- / s Bo[lier Y M) dQ
A

= Eq[li< EqQ[Li<- Y |H{]| &
as required. Now,
Follicr<th(7)| &) = Licrexp(D(t)) Eg[Licr<Th(T)|H,).

To prove the last result it is enough to check that

T
Eg[lic,<Th(T)|H] = Eo l:/t h.(u)d.F(u)[Hé]
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for a piecewise constant function h{u) = Z?:o hilly, cu<t,,,. Where to =t < t; <
~or < tyyer =T. We have

n

EQ[nt<TSTh(T)lH£] = Z EQ[EQ[hinti<TSti+l |H£1+1HH£]
1=0

i=0

— B[S / " ) dF(u)lH{}
Li=0 V1
T

— E, / h(u)dF(u)m;}

O

T
/t h(uw)exp(—T'(u)) dl(u)|H;

L
Proof of Corollary 4.2. Since 1, N,
Eg[lre,|&] = Eg[licrlrer| &)
= Li<r EQlli< I <r exp(T'(t))[H}) by Proposition 4.2
= < EQ[Ur<-|H;] exp(L(t))
= i< Eq[Eq[lr <, |H7)|H] exp(T'(t))
= 1 EolQ(T < 7|H,) exp(D(t))[H1)]
= L<r Eglexp(=T(T)) exp(T(£))H}]

— i, Bolexp(T(t) ~ T(T)[H). O

Proof of Lemma 4.3. First we show that 1;.,exp(I'(t)) is an {&; }-martingale, i.e.

that for s < t. Eg[li<,exp(I'())|€s] = Ls<rexp(I(s)).
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Using Proposition 4.2 and noting that N, ;<. = I;<,, we have

Eq[Licrexp(T(t)] €] = Nycr Eq[l<exp(L(t))|Hlexp(T'(s))
= Ty exp(T(s)) Eq[Eq[1i<rexp(T(£))Hy] M)
= Tocrexp(T(s)) Eq[Eo [l |Hilexp(D(t))|#}]
= Ls<rexp(D(s)) Eq[(1 — F(t))exp(T(t))[Hy]
= L,<,exp(T(s)) Eqexp(~T(t))exp(I(¢))|H]

- ]ls<TeXp(F(S)):
as required. With L; = (1 — ;) exp(I'(t)) = Ly rexp(I'(2)).
exp(—I'(u))dL, = (1 — n,)dl(u) — dny.

and jot exp((u)) dL, = fot dny, — fot(l — ) dl(u) = — fot Ty AMu)du = n —

fouw A(u) du, which is an {&; }-martingale. O

Proof of Lemma 4.4. From Proposition 4.1.

Eg | exp (—— /{Tr(s)d:s) IlT<T|'Ht} =
o [ew (S 1) et
t<T Q(t < T)
Eq |exp (— " r(s)ds) Iy ]
=Nier Olt<7)
exp (— [T r(s)ds) Egllirer]
= li<r O <7)
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exp (—ft s)ds ) QT < 7)

= Li<r )
_ IIKTeXP (" ftT (19) exp ( for A(s) d5>
exp ( )\ ds)

= ll;<r €Xp (‘ '/tT( ) g

Proof of Lemma 4.5. Using Corollary 4.3. we have

T T
exp <—/t r(s)ds) IIT<T|£,] = exp (—/t r(s) ds) Egllr<s|&)
T T
= exp (—/t r(s) ds) e Eg [exp (—/t A(s)ds) |ft}
T
exp (—/t (r(s) + A(s))ds) Ift} .

The result follows using Markov property. [l

Eq

= ]1t<‘rEQ
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