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Abstract

Contraction of the heart has been shown to affect the propagation of action potential

(AP). In fact, the electrical waves of the heart propagate through the cardiac tissue

and initiate its contraction via excitation-contraction coupling (ECC) while contrac-

tion of the heart causes deformations in the cardiac tissue that feedback on the process

of wave propagation and affect electrophysiological properties through the mechanism

of the so-called mechano-electrical feedback (MEF). The effects of MEF on cardiac

electrophysiology may have both anti-arrhythmic and arrhythmogenic actions, how-

ever, the underlying mechanisms remain to be completely understood. Moreover,

very little work has been done to study the effects of MEF on cardiac alternans. The

later is a disturbance in heart rhythm, that manifests as a sequence of alternating

long and short AP duration (APD). The APD alternans is linked to the onset of

lethal cardiac arrhythmias.

The focus of this thesis is to conduct a study on the effects of MEF on cardiac wave

dynamics, particularly its effects on the dynamics of alternans, and to develop control

algorithms to suppress alternans via MEF in real size of cardiac tissue. Therefore, in

this thesis, which is based on computational study, electromechanical (EM) models

that couple the cardiac excitation with the mechanical properties of the heart are

used to perform numerical and theoretical investigations. The thesis contributions

can be summarized as follows:

First, we show that the critical basic cycle length (BCL) corresponding to the on-

set of alternans along a one-dimensional (1D) cable of cardiac cells may be decreased

in the presence of MEF. This antiarrhythmic effect of MEF close to the alternans
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bifurcation is due to the stretch-activated current (Isac), which is the main effect of

MEF, that can modulate APDs in response to stretching. When studying the effects

of MEF on the onset of alternans a restriction is put on the strength of Isac, so that

its effects on the velocity of the pulse wave can be neglected, and only a certain range

of BCLs, that are closed to the critical BCL, is chosen.

Second, we show that MEF may play a role in arrhythmogenesis when a 1D cable

is paced at a BCL, that is not very close to the critical BCL. It is illustrated that

Isac can increase the dispersion of repolarization via its influence on the dispersion

of conduction velocity. In particular, it is shown that MEF can convert a spatially

concordant alternans (SCA), where APDs alternate in phase along the tissue, into

a spatially discordant alternans (SDA), which is more arrhythmogenic, where APDs

alternate out of phase in different regions of tissue. In addition, it is shown that for

some values of the Isac model parameters, Isac gives rise to a large spatial dispersion

of repolarization that can result in blocking AP propagation.

Third, a control algorithm that combines the electrical pacing with the mechanical

perturbation methods is developed. In this algorithm, the electrical pacing is realized

by shortening or lengthening the BCL at the pacing site, and the novel mechanical

perturbation strategy is realized by perturbing a small region within the heart tissue.

Finally, a novel theoretical framework of 2D iterative maps, that incorporate the

effects of MEF, and numerical simulations are presented to demonstrate successful

suppression of alternans in cardiac tissue of relevant size using the proposed control

algorithm and employing a simple EM model, namely the Nash-Panfilov model and

two realistic EM models.

In summary, in this thesis, the pro- and anti-arrhythmic effects of MEF during

alternans are described and discussed, and a novel method that can manipulate MEF

in order to suppress alternans is proposed, thus overcoming the limitations of tissue

size that earlier alternans control methods have.
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Chapter 1

Introduction

1.1 Motivation

Irregular electrical waves of excitation in the heart may result in cardiac arrhythmias.

Ventricular fibrillation (VF) [1, 2] is the most dangerous form of arrhythmias and is

recognized as a major cause of sudden cardiac death (SCD) in the industrialized

world. Electrical alternans [3] which is characterized by a periodic alternations in the

action potential duration (APD), is an electrical instability in the heart. The APD

alternans is believed to precede VF. It can be clinically detected as T-wave alternans

(TWA) using an electrocardiogram, and is associated with increased risk of SCD [4].

Mechanical deformation of cardiac tissue induced by the contraction of the heart is

shown to influence electrical activity of the heart. In fact, electrical waves propagate

through cardiac tissue and initiate mechanical contraction via the phenomenon of

excitation-contraction coupling (ECC) [5]. On the other hand, the deformation caused

by contraction affects the electrical waves via the phenomenon of mechano-electrical

feedback (MEF) [6, 7, 8, 9]. It has been shown that MEF can have both anti-

arrhythmic and pro-arrhythmic effects [10, 11], however, the underlying mechanisms

remain to be fully elucidated. In particular, the effects of MEF on the alternans is

little studied in the literature, despite the fact that alternans have been associated

with the onset of VF.

The focus of this thesis is to conduct a full study of the effects of MEF on the

electrical activity of the heart, particularly its effects on cardiac alternans. This will

help to explore the possibility of suppressing alternans via MEF in relevantly sized

cardiac tissues in order to prevent VF and SCD.
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Figure 1.1: Electrical conduction system within the human heart. The el-
ements of the conduction system that conduct the electrical wave, originat-
ing from AV node, and traveling through the tissue to the ventricles (from
www.britannica.com/science/electrocardiography).

1.2 Background

In this chapter, we briefly discuss the anatomy and physiology of the heart, cardiac al-

ternans, and at the end we describe mathematical equations that model the electrical

excitation and mechanical contraction of the heart, used in this thesis.

1.2.1 The heart

The human heart is an organ which pumps blood throughout the body by rhythmic

contractions of the muscles. Every day, the heart pumps approximately 7000 Litres

of blood, and during a lifetime, the heart will contract over one billion times. The

heart (Fig. 1.1) consists of two small, thin-walled upper chambers (left and right

atria) divided by the interatrial septum, and two larger thick-walled lower chambers

(the left and right ventricles) divided by the interventricular septum. The atria act

as receiving chambers for blood entering the heart and contract to eject the blood
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Figure 1.2: Schematic illustrations of action potentials measured at membrane of
human myocytes. The action potentials vary in different regions as they move
from the SA node, atrium, AV node, bundle of His, bundle branches, Purk-
inje fibers, to subendocardial and subepicardial ventricular myocardium (from
http://www.bem.fi/book/index.htm).
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Figure 1.3: Ventricular action potential (top) and and the underlying ion conduc-
tances (bottom) (from www.cvpharmacology.com).

into the ventricles. The ventricles then pump the blood into the lungs or to the rest

of the body.

The heart tissue is composed from excitable cardiac muscle cells which are con-

nected electrically via gap junctions. The cardiomyocytes are excitable that cause the

cells to contract after excitation. Normally, the electrical impulse begins in the sinoa-

trial (SA) node, which consists of a group of cells, located in the right atrium (Fig.

1.1) and is known as the pacemaker of the heart (see [12]). The impulse travels from

the SA node and right atrium to the left atrium through the interatrial septum and

then to the atrioventricular (AV) node in approximately 50 ms. From the AV node,

the impulse propagates via the bundle of His and bundle branches to the Purkinje

fibres. Finally, the electrical impulse spreads throughout ventricular myocardium via

the Purkinje fibres. Propagation speed within the ventricular region is relatively high

compared to velocity through the AV node. This causes the ventricles to contract in

unison and pump the blood to the pulmonary and systemic circulations. The shape

of the action potential (AP) depends on the cell type, and therefore, various APs are

generated regionally (Fig. 1.2). The AP profile is governed by the complex interac-

tion of ion fluxes through ion channels, some of which are voltage-gated. Along with

Ions channels, pumps and exchangers also mediate the movement of ions across the

cell membrane, see [37]. The ions are constantly moving into or out the cell mem-
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brane, thus generating depolarizing and repolarizing currents. When an electrical

stimulus, exceeding a certain threshold (≈ 60 mV), is applied to the myocardium,

a change in the transmembrane potential, which is the electrical potential difference

between the inside and outside of the cell membrane, is observed (depolarized). This

rapid depolarization, referred to as the phase 0 (Fig. 1.3), is caused by a rapid in-

flux of positively charged sodium (Na+) ions that raises the membrane potential to

approximately +30 mV. This is followed by a brief transient increase in potassium

(K+) and a decrease of Na+ ion conductances resulting in early rapid repolarization

(Phase 1). Phase 2 which is the plateau phase of the cardiac AP comes next. In this

phase, the transmembrane potential declines relatively slowly, and is characterized

by a transient increase in inward Ca2+ ion conductance, along with an increase in

outward K+ ion conductance. Phase 2 is followed by the repolarization phase of the

AP (Phase 3), in which the membrane potential drops to resting position (Phase 4),

resulting from an increase in the outward K+ accompanied by a decline in the inward

Ca2+ ion conductances.

Electrical activity induces the mechanical activity through the mechanism of ECC

(Fig. 1.4), and systole cycle occurs as a result. This event starts during depolariza-

tion (Phase 0) when an AP triggers the calcium-induced-calcium-release process that

increases the concentration of Ca2+ ions. The Ca2+ concentration then binds to

troponin C and initiates contraction through the development of tension that is gen-

erated through the action of actin and myosin cross-bridge cycling. Cardiac myocytes

return to the resting membrane potential when the concentration of Ca2+ is back to

its normal level, and diastole occurs [13].

Cardiac contraction which occurs as a response to ECC affects the electrical prop-

erties of the heart via the mechanism of MEF. It can affect the passive electrical

properties of cardiac tissue. However, the main effects of MEF is delivered via the

so-called stretch-activated ion channels and is caused by stretch-activated currents

(Isac). MEF affects the APD in a manner dependent on basic cycle length. Isac is

only activated when a cell is stretched. In response to stretching, different responses

of Isac on the AP are possible, which depend on its timing and magnitude. Isac can

modulate the APD if it is applied during the plateau phase. This means it will change

the repolarization of AP, which leads to either lengthening (shortening) of the AP if
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Figure 1.4: Schematic diagram of the coupling of the electrical and mechanical activ-
ities of the heart. The effects of Mechano-Electrical Feedback (MEF) is delivered via
stretch-activated channels (SAC), and the effects of Excitation-Contraction Coupling
(ECC) is delivered via the calcium ions (Ca2+).

Isac is inward (outward). The magnitude of the change in APD depends on the val-

ues of the Isac models parameters (potential reversal and conductance). In addition,

when Isac is an inward current, it can depolarize the cell, and can even, if its strength

is large, initiates an electrical impulse (called ectopic beat) when it is applied at the

resting potential. MEF is believed to have pro-arrhythmic and anti-arrhythmic effects

on cardiac electrophysiology, however its effects during alternans is very little studied

in literature.

1.2.2 Cardiac alternans

Electrical alternans is a physiological phenomenon manifested as beat-to-beat os-

cillation (electric wave width alternation) of the cardiac Action Potential Duration

(APD)[3]. Alternans has been shown to be a precursor to arrhythmias [1, 2] and

sudden cardiac death (SCD), which is the most common cause of death in the in-

dustrialized world. Experimentally, APD alternans is typically observed during rapid

pacing at a fixed pacing frequency so that beyond a critical pacing frequency the

normally periodic response is replaced by a sequence of long and short APDs as
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presented in Fig. 1.5. In this figure, APD is defined as the period of time during

which the action potential exceeds the given threshold value, while the diastolic time

interval (DI) is defined as the period of time during which the AP is below the thresh-

old value. The basic cycle length (BCL) or simply the pacing period is held constant

so that BCL = APDn + DIn . Clinically, the appearance of alternans is reflected in

a beat-to-beat alternation of T -wave amplitude, known as T -wave alternans (TWA),

on the electrocardiogram (ECG), and that the presence of TWA increases the risks of

VF [4, 14]. At tissue levels, APD alternans can be either spatially concordant (SCA),

where the APDs alternate in phase (whole tissue exhibits the same APD alternation)

or spatially discordant (SDA), where the alternation of APD in different regions are

out of phase. SDA is more arrhythmogenic than SCA since it can increase spatial dis-

persion of refractoriness, which can cause conduction block and can result in reentry

and wavebreak [15].

Many control algorithms have been used in the literature for annihilation of the

alternans. However, the majority of these algorithms [16, 17, 18, 19, 20, 21] that have

been developed to date to suppress alternans in cardiac tissue are feedback controls

that utilize the difference between the measurements of two most recent APDs to

make small adjustments to the timing of the electrical stimuli. These algorithms

are particular implementations of time-delay auto-synchronization [22] and extended

time-delay auto-synchronization [23] feedback control techniques. Hall et al. [16]

used this approach to successfully control cardiac arrhythmia called an alternans

rhythm in vitro rabbit hearts. Similarly, Rappel et al. [17] suppress alternans in two

geometrical models of both 1D and 2D tissues, and concluded that several control

electrodes need to be placed on tissue in order to stabilize the normal heart rhythm.

Control of atrioventricular-nodal conduction alternans has also been demonstrated in

vivo human hearts [18] by stabilizing the underlying unstable steady-state conduction.

The first experimental attempt to implement the electrical pacing interval technique

is due to Hall and Gauthier [20], who succeeded in suppressing alternans in small

pieces (< 1 cm) of bullfrog cardiac muscle. Echebarria and Karma [19] were the

first to investigate theoretically this approach in a model of Purkinje fibers. They

showed, using Noble model, that alternans in fibers no longer than ≈ 1 cm could

be suppressed using a single electrode. Their theoretical results were experimentally
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Figure 1.5: Time evolution of transmembrane potential in the phase one Luo-Rudy
model.

verified by Christini et al. [21]. In addition, Dubljevic et al. [24] proved that, in this

approach, failure to annihilate alternans completely in tissues exceeding 1 cm length

is due to the lack of information of the spatial evolution of alternans away from the

pacing site.

It has been shown theoretically and experimentally that the above mentioned

control technique has a finite degree of controllability, such that alternans stabilization

in cardiac tissues of length greater than 1 cm cannot be achieved [19, 21, 24, 25].

Although such algorithms have proved effectiveness for controlling electrical alternans

in small tissues, several electrodes need to be implanted along the cardiac tissue’s

length (≈ 6.25 cm) so that each pacing electrode can suppress alternans in a finite

part of the tissue (≈ 1 cm). In this thesis, we used computational models of cardiac

electromechanics to study the effects of MEF on the electrical activity of the heart.

1.2.3 Models of cardiac electromechanics

Mathematical modelling is a powerful tool in cardiovascular research, and compu-

tational models of the heart have been used extensively to provide insight into the

mechanisms underlying cardiac arrhythmias which is often difficult to do experimen-

tally. From mathematical point of view, electromechanical (EM) models, that can be

implemented in 1D, 2D, and 3D cardiac tissue, in which the electrical and mechanical

activity of the heart are linked, are more suitable for our study.

In this section, we will introduce some basics about modelling of cardiac tissue,

applied in the following chapters of this thesis. A variety of these models have been

developed to investigate various physical phenomena and they can be mainly classified
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into two categories. The weakly coupled EM models [26, 27, 28, 29] that account for

the effects of electrical activity on the cardiac mechanics only, i.e., one way coupling,

and the strongly coupled EM models [30, 31, 32, 33, 34] that account for the effects of

electrical activity on the cardiac mechanics and the effect of mechanical deformation

on electrical properties. For more details about the EM models, the reader is referred

to [35, 36]. In general, a coupled EM model of cardiac tissue can be decomposed into

four components, which are described below.

Cardiac excitation

The electrical activity of the heart can be described by the monodomain model

[37] that includes only the effects of the intracellular space of the cell. The bidomain

model [37] is an extension of the monodomain model including the effects of both

the intracellular and extracellular space, which are separated by the cell membrane.

The bidomain model, which is computationally very expensive, is the preferred model

for simulating cardiac excitation when the main emphasis is how a voltage develops

across the membrane. Many methods have been developed in the literature to reduce

the computational challenges of these models [38, 39, 40, 41, 42, 43, 44]. A comparison

between mondomain and bidomain models can be also found in [45]. In this thesis,

a monodomain model is used to represent cardiac excitation, and is described by a

parabolic partial differential, coupled with a nonlinear system of ODEs describing the

ionic currents flowing across the cardiac membrane:

Cm
∂V

∂t
=

∂

∂XM

(
DMN

∂V

∂XN

)
− (Iion(u, V ) + Istim),

du

dt
= f(u, V ), (1.1)

where V is the membrane voltage, DMN is the diffusion tensor that accounts for

electrical anisotropy of cardiac tissue, Cm is the membrane capacitance, Istim is the

externally electrical stimulus applied at the pacing site, f a general function repre-

senting the choice of a cell model, u is the vector of dependent states variables, and

Iion is the ionic membrane current describing the excitable behavior of cardiac cells.

The functions Iion and f can be described using either simple or ionic models. The

simple models, such as Aliev-Panfilov model [46], contain less than four ODEs and
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can be used to explain basic properties of cardiac tissue. On the other hand, ionic

models, which contain more ODEs, can accurately reproduce properties of cardiac

cells, such as shape of AP. The voltage-gated ion channels of the ionic currents are

often described using the Hodgkin-Huxley description [47]. A variety of cardiac ionic

models of different complexity have been developed to represent properties of cardiac

cells of different types and species. Over 100 ionic models can be found at CellML

Model Repository (www.cellml.com).

In this thesis, Aliev-Panfilov model and two cardiac ionic models, namely, Fox et

al. model [48] and modified Luo-Rudy 1 (LR1) model [49, 54], were used to represent

electrophysiological properties of the heart. LR1 which is a mammalian ventricular

cell model, consists of six individual currents, and of a system of 8 ODEs. On the

other hand, Fox model was developed to reproduce the electrical behavior of a canine

ventricular myocyte. This model uses 13 currents and consists of a system of 13

ODEs. The modified LR1 and Fox et al. models were chosen for several reasons.

First, the two ionic models describe the electrophysiology of ventricular myocytes are

widely used in the literature. Second, using these models, the APD alternans can be

induced at sufficiently high pacing rates. Third, realistic formulations of most ionic

currents are included in both models.

Cardiac mechanics

Many biological soft tissues, including cardiac tissue, possess anisotropic and in-

homogeneous material properties. The large deformation elasticity theory is used to

describe the mechanical deformation of the heart. The nonlinear elasticity theory [50]

is a subregion of the theory of continuum mechanics that deals with the mechanical

behavior of materials. This theory makes it possible to quantitatively describe large

deformations of cardiac tissues that are under the influence of forces, such as the

tension generated by contractile cells of the heart. In this work, X (material de-

scription) is used to denote the coordinates of a material particle with respect to the

undeformed configuration, while x (spatial description) is used to denote the coordi-

nates with respect to the deformed configuration. A material description refers to the

behavior of a material particle, whereas a spatial description refers to the behavior at

10



a spatial position. In this work, deformation was expressed with respect to the initial

undeformed configuration. Therefore, all equations were expressed in terms of X.

The equations governing the deformations are derived using Newton’s laws of

motion [30, 51] and are expressed as:

∂

∂XM

(SMNFjN) = 0, M,N, j = 1, 2, 3, (1.2)

where FjN = (∂xj/∂XM) is the deformation gradient tensor, XM are the material

(undeformed) coordinates, xi are the spatial (undeformed) coordinates, the uppercase

subscripts (M and N) and lowercase subscripts (i and j) correspond to the original

and current configurations, respectively, and SMN is the second Piola-Kirchhoff stress

tensor.

Two approaches, namely active strain and active stress, have been proposed to

model the active mechanical response of the myocardium. For the active strain model,

a multiplicative decomposition [52] of the deformation gradient tensor into a passive

and an active part is assumed. The second model, which is the most widely used

and it is adopted in this work, is based on the concept of active stress [30]. In this

approach, SMN is split into a passive and an active stress component [30], and is

given by:

SMN =
1

2

(
∂W

∂CMN

+
∂W

∂CNM

)
+ TaC

−1
MN , (1.3)

where CMN = (∂xk/∂XM)(∂xk/∂XN) is the right Cauchy-Green deformation tensor,

Ta is active tension generated by the Cardiac Excitation-Contraction Coupling, and

W (I1, I2) is the strain energy function, from which the stress-strain relationship is

derived, modeling the myocardium.

The transversely isotropic, orthotropic, and isotropic constitutive models have

been used to describe passive mechanical properties of the heart [53]. The isotropic

Mooney-Rivlin constitutive model, which is used to describe passive mechanical prop-

erties of the heart [30, 51, 54], is adopted in the present study, where the strain energy

W is given by:

W (I1, I2) = c1(I1 − 3) + c2(I2 − 3), (1.4)

with I1(C) = tr(C) and I2(C) =
1

2
(tr(C) − tr(C2)) are the first two principal

invariants of C, and tr(C) is the trace of C, and c1 and c2 are material constants.
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Cardiac Excitation-Contraction Coupling

As for models of cardiac cells, One can use simplified or detailed models for the

descriptions of excitation-contraction coupling. Several ECC models have been devel-

oped [30, 51, 55, 56]. In this thesis, a simplified model, namely Nash-Panfilov, and a

detailed model, namely Niederer-Hunter-Smith (NHS), are used for the active tension

generations. The Nash-Panfilov model [30] consists of one ODE and takes voltage as

an input. The Niederer-Hunter-Smith (NHS) model [56], which depends on quantities

derived from both the cardiac mechanics and excitation models, consists of a system

of 5 ODEs and describes the intracellular calcium dynamics and cross-bridge binding,

and can be written in its general form as:

dw

dt
= g(w, [Ca2+]i, λ,

dλ

dt
, Ta),

Ta = h(w), (1.5)

where w is a vector of internal state variables, g and h are prescribed nonlinear

functions, [Ca2+]i is generated by the ionic model, and λ is the stretch (extension

ratio) along the fiber direction, given by:

λ =
√

(nTCn), (1.6)

where n is the unit fiber direction in the undeformed configuration. Contraction of

the heart results from the active tension, generated by electrical stimulation, and the

SMN
a (introduced previously) corresponding to Ta is given by:

SMN
a = TaC

MN , (1.7)

where CMN is the contravariant metric tensor.

Cardiac Mechano-Electrical Feedback

The main effect of mechano-electric feedback is delivered via the so-called stretch-

activated ion channels and is caused by stretch-activated currents Isac [7]. A linear

voltage-current relationship has been found in experimental studies [57, 58, 59] and

linear ionic models have been proposed [57, 60, 61, 62, 63, 64, 65, 66, 67] for Isac. In

this thesis Isac as described in [67] is adopted, and is given as:

Isac = Gs
(λ− 1)

(λmax − 1)
(V − Es), (1.8)
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where λ is the stretch, given in Eq. (1.8), along the fiber direction; and λmax is

the maximal stretch, which we set to λmax=1.1 as in Ref. [67]. Gs and Es are

the conductance and reversal potential parameters, respectively. Following [67], the

parameter Gs can take any value between 0 and 100 µS/µF [7, 68], and Es in most

biophysical models takes the value of −20 mV [7]. As shown in [67], cardiac cells are

assumed to be stretched maximally between 5% and 10% of the resting position. The

Isac is active during stretch, i.e. it is only present when λ > 1, otherwise, Isac = 0.

To take into account the effects of MEF on the electrophysiological properties of

the heart, Eq. (1.1) is modified to obtain:

Cm
∂V

∂t
=

1√
C

∂

∂XM

(√
CDMNC

−1
MN

∂V

∂XN

)
− (Iion(u, V ) + Isac(λ, V ) + Istim),

du

dt
= f(u, V ), (1.9)

where C = det(CMN) (determinant of tensor CMN).

1.3 Thesis Outline

In this thesis, a full study of the effects of mechano-electrical feedback on the electri-

cal activity in the heart, through detailed exploration of complex ionic models, was

conducted with the aim of suppressing the electrical alternans via MEF.

In Chapter 2, an EM model of cardiac tissue is employed to investigate the effects

of MEF on the APD at the cellular and tissue levels close to the onset of alternans.

Phase one of the Luo-Rudy model is used to represent the electrophysiological prop-

erties of the heart. We provide numerical simulations for a certain range of BCLs,

and illustrate the effects of MEF on the APD, showing its anti-arrhythmic effects

close to the alternans bifurcation. In particular, we show that, depending on the

strength of MEF, the critical BCL corresponding to the onset of alternans may be

decreased. The effects of MEF on the alternans are investigated also theoretically

using a theoretical framework of iterative maps. In this study, a restriction is put on

some of the parameter values of the model so that the effects of MEF on the CV can

be neglected.

The effects of MEF on the dynamics of alternans when no restrictions are imposed

13



on the model parameters and for a wide range of BCLs are addressed in Chapter 3.

The same EM model used in the previous chapter, but with the exception that FOX

model is used to represent the excitation properties, is employed in this study. We

show that the Isac which is the main effects of MEF can increase the dispersion of

refractoriness via its effects on the CV. In particular, our numerical results show that

the Isac can induce the transition from spatially concordant alternans to spatially

discordant alternans, and that the dispersion of refractoriness can be increased when

the alternans is discordant. In addition, the role of Isac in shifting the threshold of

CB to a lower pacing rate is described and discussed.

In Chapter 4, a novel mechanical perturbation algorithm for alternans control is

developed. The proposed control algorithm combines the electrical boundary pacing

and a spatially distributed mechanical perturbation that is applied at one place over

a small localized region within the one-dimensional (1D) cable of cardiac cells. The

feasibility of suppressing cardiac alternans is explored using the Nash-Panfilov model.

When activated, the mechanical perturbation control, which is based on perturbing

cardiac tissue mechanics, alters the repolarization of the AP, via MEF, in order to

suppress alternans. Numerical examples are provided to demonstrate successful sup-

pression of alternans in a 6.25 cm cable of cardiac cells of the Nash-Panfilov model

using the proposed algorithm.

This mechanical perturbation method is extended in Chapter 5 to be imple-

mentable in two EM models of cardiac tissue. The phase one Luo-Rudy and Fox

models are used to represent the electrical proprieties. Two different mathematical

implementations are used to implement the mechanical perturbation algorithm. For

the NHS model, the algorithm is implemented in one of the ODEs, namely the ODE

that describes the spatiotemporal dynamics of the Ca2+ binding to TnC. In addition,

a novel mathematical framework of 2D iterative map of the heart beat-to-beat dynam-

ics that couples the membrane voltage and active tension systems at the cellular level

is introduced. Stability analysis of the system of coupled maps is performed in the

presence of a discrete form of the proposed control algorithm. Numerical simulations

are given to demonstrate successful suppression of cardiac alternans.

In chapter 6, we conclude the thesis and present the suggestions for future research

directions.
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Chapter 2

Effects of mechano-electrical
feedback on the onset of alternans:
A computational study

2.1 Introduction

Under normal conditions at normal pacing rates, the electrically induced APs of ex-

citable cardiac cells have similar durations. However, when pacing at a sufficiently

high rate, the APD alternates between long and short values [Fig. 2.1(a)]. In tis-

sue, this alternation can either be in phase (concordant alternans) or have parts that

are out of phase with other parts of the tissue (discordant alternans). The APD

alternans, which is characterized by a period-doubling bifurcation, has been shown to

be a precursor of cardiac arrhythmias, some of which, such as ventricular fibrillation

(VF), can lead to sudden cardiac death (SCD). Clinically, alternans are manifested as

beat-to-beat fluctuations of T-wave amplitude, called T-wave alternans, on the elec-

trocardiogram; this is an indicator of VF [4, 14] and SCD risk. Therefore, prediction

of the onset of period-doubling instability in cardiac tissue is of particular importance

in detecting and preventing VF.

Mathematically, a one-dimensional (1D) iterated map [69, 70] is usually used to

characterize the APD alternans:

APDn+1 = f(DIn) (2.1)

Equation (2.1), known as APD restitution, relates the APD at the n + 1-th beat to

the previous diastolic interval (DI) [Fig. 2.1(a)] (i.e., the time elapsed between the
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end of one AP and the beginning of the following one), where the BCL or simply

the pacing period is held constant so that BCL = APDn + DIn. Nolasco and Dahlen

[69] were the first to show that whenever the slope of the APD restitution curve is

greater than 1 (restitution hypothesis), a transition from normal heartbeat (period-1

rhythm) to alternans (period-2 rhythm) occurs. This was later formalized mathemat-

ically by Guevarra et al. [70] to show that the onset of alternans can be described

as a period-doubling bifurcation, where the slope of the restitution curve corresponds

to a derivative of the map (i.e., df/dDI). Many theoretical and experimental studies

have extended this theory using the iterated map approach and bifurcation theory to

explain more complex phenomena, such as chaos [71], in AP dynamics.

Many alternans studies still use this basic map representation, which assumes that

modifications in DIs produce changes in APDs and that df/dDI determines the extent

to which modifications in DIs produce APD alternans. However, many experimental

studies have shown that the onset of APD alternans cannot always be predicted from

the slope of the APD restitution; for example, in Hall et al. [72], APD alternans was

absent in frog heart muscle even though the restitution slope was significantly greater

than 1. On the other hand, Dilly & Lab [73] observed alternans during ischemia, even

though the slope was significantly less than 1. It can be concluded that the APD does

not depend only on the previous DI, as described in Eq. (2.1), and that other factors

influence the APD alternans. Important factors that have been extensively described

in the literature include calcium cycling dynamics and cardiac memory. In cardiac

myocytes, membrane voltage (V ) and intracellular calcium concentration ([Ca2+]i) are

bi-directionally coupled and, at the cellular level, alternans arises from an interplay

of V and [Ca2+]i-cycling dynamics [74, 75, 76, 77]. Hence, when the APD alternates,

[Ca2+]i alternates secondarily [see Figs. 2.1(a), 2.1(b)] owing to voltage-dependent

ionic currents (referred to as V → Ca2+ coupling). Conversely, an alternation in

[Ca2+]i induces an alternation in the APD through calcium-sensitive ionic currents

(referred to as Ca2+ → V coupling). This latter coupling can be either positive (el-

evation in [Ca2+]i lengthens the APD) or negative (elevation of [Ca2+]i shortens the

APD). Another factor with an important role is the pacing history of the cell; thus,

the APD usually depends on the series of DIs preceding it, and not just the immedi-

ately preceding DI, i.e., APDn+1 = f(DIn,DIn−1,DIn−2...). This phenomenon, known
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as cardiac memory [78, 79, 80, 81, 82], is an intrinsic property of cardiac tissues. Ac-

cording to the theory of dynamical systems, the onset of alternans can be predicted

from the eigenvalues of the map, i.e., bifurcation occurs when a characteristic eigen-

value leaves the unit circle through 1 [16, 75].

In the heart, electrical waves propagate through cardiac tissue and initiate me-

chanical contraction. On the other hand, the deformations caused by contraction

affect the electrical waves via the phenomenon of MEF [6, 7, 8, 9]. It has been shown

clinically that MEF can have both anti-arrhythmic and pro-arrhythmic consequences

[10, 11]. Theoretical and experimental studies [83, 84, 85, 86, 87, 88, 33, 89, 90, 91]

have been performed to uncover the mechanisms of MEF and its effects on cardiac

electrical activity. The results suggest that MEF may play an important part in ar-

rhythmogenesis [92, 93]. For instance, regions of substantial stretching induce large

inward currents through stretch-activated channels (SAC) that can lead to conduc-

tion blocks, causing scroll wave breakup in these regions [91]. Conduction blocks

can result in the initiation of reentry and fibrillation (see Refs. [94, 95]). Recent

studies have shown that MEF may play a part in the restoration of normal cardiac

electrophysiology [96, 97, 51, 54]. In Opthof et al. [96] the effect of the physiological

left ventricular pressure pulse on ventricular repolarization was investigated using a

Langendorff-perfused pig heart. It was demonstrated that with varying of the load

in the left ventricle and the activation site, the normal ventricular pressure pulse

tends to synchronize repolarization and therefore reduces susceptibility to ventricular

arrhythmias. Also, a mechanical perturbation algorithm for controlling alternans via

MEF has been presented [97, 51, 54]. It has been suggested that the amplitude of

stretch-activated currents (Isac) along a cable of 7 cm is modulated and applied dur-

ing the repolarization of APs (between two predefined thresholds), when the control

is activated, in order to suppress alternans.

One of the main effects of MEF results from Isac (defined in Eq. (2.10)), which

when activated can alter the electrical properties of the myocardium via SAC [7].

Studies have investigated the effects of SAC during different phases of the AP, and

the responses vary depending on the timing of the mechanical stretch and the mag-

nitude of Isac [84, 10]. This will result in delays after depolarizations or an AP (when

the magnitude of Isac is above the threshold) [83, 62, 61, 98, 99, 89], if stretching
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is applied during diastole. On the other hand, if stretching is applied during the

plateau phase, it will alter repolarization of the AP [57, 100, 101, 102, 11, 99], leading

to either shortening or lengthening of the AP; this change in the APD depends on

the reversal potential [58] of the SAC, and the degree of shortening or lengthening

of the APD is affected by the maximal conductance [58]. For instance, a mechanical

induction occurring during the rat plateau, where the reversal potential of the SAC

is near 0 mV, resulted in a prolonged APD [57], while in guinea pig cells, with a high

plateau and a lower reversal potential, a shortening of the APD was observed [100].

In addition, the stretch-induced changes in the APD and the degree of modulation

are dependent on cycle length [103, 104]; at long (short) cycle lengths, the APD is

shortened (lengthened) under left ventricular loading by aortic occlusion. However,

the mechanisms underlying the cycle-length-dependent effects of Isac on the APD re-

main to be elucidated.

In this work, we study the effects of MEF on the onset of alternans, illustrating

the cycle length dependency of the stretch response and the effects of MEF on the

APD, using a 1D electromechanical model of the heart. In particular, we show that

MEF, depending on the strength of Isac, may decrease the critical BCL (BCLcrit),

which is the maximum BCL at which alternans occurs for this model when MEF is

not present. Therefore, the influence of Isac on the APD at different BCL values is

analyzed and discussed. To this end, we use a strongly coupled biophysically detailed

electromechanical model of the heart, named the LR1NHS model, that accounts for

the effects of electrical activity on the contraction and the effects of MEF on cardiac

excitation. Phase one of the Luo–Rudy [49] model is used to represent the electro-

physiological properties, while the mechanical properties of the passive myocardium

are described using the Mooney–Rivlin material model [54, 30]. The active tension

(Ta) that couples the electrophysiological model to the cardiac mechanics model is

generated using the Niederer–Hunter–Smith (NHS) [56] model. In addition, a 2D iter-

ative map [54] that couples the AP and Ta at the cellular level is utilized to illustrate

the effects of MEF on the bifurcation point.
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Figure 2.1: Time evolution of voltage (V ) (a), intracellular calcium concentration
([Ca2+]i) (b), and active tension (Ta) (c) of the cell in the middle of a cable of length
L = 7 cm in LR1NHS model, when it is paced at the boundary with basic cycle length
(BCL) = 272 ms and a steady state is reached.
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2.2 Methods

2.2.1 The cardiac electro-mechanical model

A strongly coupled electromechanical model of cardiac tissue can be decomposed into

four components, which are described in the following subsections.

Mechanics model

Finite deformation theory is used to describe the mechanical deformation of cardiac

tissue [50, 30]. If a quasi-static equilibrium is assumed, deformation is described by

the following equation:

∂

∂XM

(SMNFjN) = 0, M,N, j = 1, 2, 3, (2.2)

where FjN = (∂xi/∂XN) is the deformation gradient tensor (F), with lower case and

upper case indices corresponding to spatial (deformed) and material (undeformed)

coordinates, respectively; and SMN is the second Piola–Kirchhoff stress tensor.

Myocardial properties include passive and active components. In this study, the

active stress approach [30] is used to describe the active behavior of the myocardium.

Therefore, SMN is given by:

SMN = SMN
p + SMN

a , (2.3)

where SMN
a is the active stress generated by the electrical stimulations as described

in Eq. (2.9), and SMN
p is the passive stress given by:

SMN
p =

1

2

(
∂W

∂CMN

+
∂W

∂CNM

)
, (2.4)

where CMN = (∂xk/∂XM)(∂xk/∂XN) is the right Cauchy–Green deformation tensor

(C = FT · F). W (I1, I2) is the strain energy function modeling the myocardium as a

Mooney–Rivlin hyperelastic material [54, 30], and is given by:

W (I1, I2) = c1(I1 − 3) + c2(I2 − 3), (2.5)

where I1(C) = tr(C) and I2(C) =
1

2
(tr(C) − tr(C2)) are the first two principal

invariants of C, tr(C) is the trace of C, and c1 and c2 are material constants.
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Electrophysiology model

The electrical activity in cardiac tissue is described by the monodomain model, which

consists of a system of reaction-diffusion equations [37]. A modified version of this

model [54, 67] that takes into account the effects of MEF can be written as:

Cm
∂V

∂t
=

1√
C

∂

∂XM

(√
CDMNC

NL ∂V

∂XL

)
− (Iion(u, V ) + Isac(λ, V ) + Istim),

du

dt
= f(u, V ), (2.6)

where V is the membrane voltage, Cm is the membrane capacitance, C = det(CMN)

(determinant of tensor CMN), t is time, DMN are the components of the diffusion

tensor, CNL are the components of the contravariant metric tensor (in an orthogonal

material system, we have CNL = C−1
NL), Iion represents the ionic membrane currents,

f is a prescribed vector-valued function, u is a vector of dependent states variable

describing membrane gates and ionic concentrations [Ca2+]i is one component of u),

λ is the stretch (given in Eq. (2.8)), and Istim is the external stimulus current.

Active tension model

The active tension, generated by the electrical activity and coupled to nonlinear

elasticity equations describing deformation of the myocardium, is described by the

NHS model [56]. This model, consisting of a nonlinear ordinary differential equation

(ODE) system and describing the intracellular calcium dynamics and cross-bridge

binding, can be written in its general form as:

dw

dt
= g(w, [Ca2+]i, λ,

dλ

dt
, Ta),

Ta = h(w), (2.7)

where w is a vector of internal state variables, g and h are prescribed nonlinear

functions (the precise form of w, g, and h are given in the supplementary material),

[Ca2+]i is generated by the ionic model (given in the next section), and λ is the stretch

(extension ratio) along the fiber direction, given by:

λ =
√

(nTCn), (2.8)
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where n is the unit fiber direction in the undeformed configuration. Contraction of

the heart results from the active tension, generated by electrical stimulation, and the

SMN
a (introduced previously) corresponding to Ta is given by:

SMN
a = TaC

MN , (2.9)

where CMN is the contravariant metric tensor.

Ionic membrane model and stretch-activated currents

The functions Iion(u, V ) and f(u, V ) in the monodomain model (Eq. (2.6)) are given

by the Luo–Rudy I (LR1) membrane model [49]. The LR1 model describes the

electrophysiology of a ventricular cell from guinea pig and consists of six ionic currents

and a system of eight ODEs including [Ca2+]i. The AP properties, including the APD

alternans, of LR1 are mediated exclusively by V , since [Ca2+]i passively follows the

voltage. We modified the maximum conductance of the time-dependent potassium

current to GK = 0.432 mS/cm2, that of the sodium current to GNa = 16.0 mS/cm2,

and that of the slow inward current to Gsi = 0.06 mS/cm2 in order to reduce the

APD [105, 106], which was relatively large with the original parameter values, and to

develop alternans at a shorter BCL.

Experimental studies [57, 58, 59] conducted on SAC have shown that Isac (in the

monodomain model (Eq. (2.6))) is induced when SAC are activated by mechanical

stimulation, and that the current-voltage relationship is almost linear. Therefore,

linear models have been proposed [60, 57, 61, 62, 63, 64, 65, 66] for Isac and have

been used to study the effects of stretching on cardiac dynamics. Following these

studies, Isac is modeled as in Ref. [67] and is given by:

Isac = Gs
(λ− 1)

(λmax − 1)
(V − Es), (2.10)

where λ is the stretch, given in Eq. (2.8), along the fiber direction; and λmax is

the maximal stretch, which we set to λmax=1.1 as in Ref. [67]. Gs is the maximal

conductance and Es is the reversal potential. The value of Gs is within the range

0–100 µS/µF [7, 68]. For Es, a range between -90 and 0 mV has been reported

[7, 107, 91]. Isac is only present during stretching (i.e., when λ > 1), otherwise

Isac = 0.
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Figure 2.2: (Top and Bottom) Spatiotemporal evolution of V and λ in LR1NHS
model during one beat at steady state when a 7 cm cable of cardiac cells is paced at
the boundary (first five cells) with four values of BCL ((a,e) BCL = 276 ms, (b,f)
BCL = 300 ms, (c,g) BCL = 400 ms, and (d,h) BCL = 800 ms), where BCL = 276
ms corresponds to the onset of alternans when MEF is not present.
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Figure 2.3: Time evolution of normalized V and [Ca2+]i from LR1 model, and Ta
from NHS model. The normalized outputs are given for the center cell in a 7 cm
cable paced in the middle at BCL = 800 ms. As can be seen in this figure, there is a
delay between the peak of the Ta and the peak of the V , since [Ca2+]i has to increase
to a certain value before it can trigger the initiation of Ta.
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Figure 2.4: Stretch distribution at three different times for LR1NHS model at steady
state when a 7 cm cable of cardiac cells, with both ends fixed, is paced at the boundary
at BCL = 800 ms (top) and at BCL = 276 ms (bottom). λt1 (blue dashed line), λt2
(green dashed line), and λt3 (red dashed line) are the stretches at times t1 = 110 ms
after the last electrical stimulus, t2 = (t1+100) ms, and t3 = (t1+350) ms respectively
when BCL = 800 ms. λt4 (blue dashed-dot line), λt5 (green dashed-dot line), and λt6
(red dashed-dot line) are the stretches at times t4 = 160 ms, t5 = (t4 + 50) ms, and
t6 = (t4 + 100) ms respectively when BCL = 276 ms.
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Figure 2.5: Variation of stretch at three different cells for LR1NHS model at steady
state when a 7 cm cable of cardiac cells, with both ends fixed, is paced at the boundary
at BCL = 800 ms (top) and at BCL = 276 ms (bottom). cell1, cell2, and cell3 are
cells in the cable located at distance 0.5 cm, 3.5 cm, and 6.5 cm respectively from the
pacing site (PS). Note that the time = 0 ms, which indicates the instant at which
the recording begins in the top plot of this figure, corresponds to 40 ms after the
last electrical stimulus for the three cells (dashed lines) while time = 0 ms in the
bottom plot for the three cells (dashed-dot lines) corresponds to 135 ms after the last
electrical stimulus.
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Table 2.1: Parameter values used for the simulations of the LR1NHS model
Description Parameter Value

Membrane capacitance Cm 1 µF cm−2

Diffusion coefficient D 0.001 cm2 ms−1

Mooney–Rivlin constant c1 0.1 MPa
Mooney–Rivlin constant c2 0.05 MPa
Maximal stretch λmax 1.1

2.2.2 1D mathematical model and numerical experiment setup

In this work, deformation was expressed with respect to the initial undeformed state.

Therefore, all equations were expressed in terms of X (material coordinates). In the

1D setting, F11 (see Ref. [51]) is given by:

F11 = F = ∂x/∂X, (2.11)

where x and X are spatial and material coordinates, respectively. Let x = X+ud(X),

where ud(X) is the displacement of a material point. Then we can write F as:

F = ∂x/∂X = 1 +
∂ud(X)

∂X
. (2.12)

Assuming that the cardiac fibers are parallel to the X-direction of the undeformed

configuration, λ (Eq. (2.8)) can be written as:

λ =
√
C11 = F. (2.13)

In one dimension, the equations that govern both the electrical and mechanical be-

havior of the heart muscle can be written as:

Cm
∂V

∂t
= D

∂2V

∂X2
− (Iion(u, V ) + Isac(λ, V )

+ Istim), (2.14)

du

dt
= f(u, V ), (2.15)

dw

dt
= g(w, [Ca2+]i, λ,

dλ

dt
, Ta), (2.16)

Ta = h(w), (2.17)

∂

∂X

 Ta

1 +
∂ud(X)

∂X

+ 2(c1 + 2c2)
∂ud
∂X

 = 0, (2.18)
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λ = F = 1 +
∂ud(X)

∂X
, (2.19)

Isac = Gs
(λ− 1)

(λmax − 1)
(V − Es). (2.20)

The electrophysiology model is given by Eqs. (2.14) and (2.15), where D = D11 is the

diffusion coefficient, the functions Iion(u, V ) and f(u, V ) are given by the LR1 model

described in the previous section, and Isac is given by Eq. (2.20). The governing

equations for the mechanical component are given by Eq. (2.18) (see Ref. [51] for

derivation details), and those describing the excitation-contraction coupling (ECC)

are given by Eqs. (2.16) and (2.17), where the functions g and h are given by the NHS

model. The electrophysiology equations (Eqs. (2.14) and (2.15)) are supplemented

by no-flux boundary conditions corresponding to the assumption that the heart is

electrically insulated. For the mechanical boundary conditions, we assume that both

ends of the cable are fixed in space, modeling an isometric contraction regime, and

therefore Eq. (2.18) is supplemented with zero displacement boundary conditions.

Note that the dependence of the electrical conductivity (i.e., the diffusion tensor) on

the mechanical deformation was not incorporated into the 1D model (see limitations

section for details).

In all cardiac electromechanical simulations, a cable of length L = 7 cm, fixed at its

end points, is considered. The numerical schemes used to solve Eqs. (2.14)–(2.20) can

be described as follows: (1) The derivatives were approximated with a semi implicit

finite difference method. The temporal derivative was replaced with forward difference

scheme and the first and second spatial derivatives were replaced with the central

difference and standard second-order central difference schemes respectively. (2) The

method of successive substitutions was used to transform the nonlinear boundary

value problem (Eq. (2.18)) into a sequence of linear elliptic PDEs. We imposed

no-flux boundary conditions for Eq. (2.14) (∂V/∂X = 0) and zero displacement

boundary conditions at the fixed end points for Eq. (2.18) (ud(0) = 0 and ud(L) = 0).

An electrical and mechanical step size of ∆x = 0.025 cm and electrical time step of

∆t = 0.01 ms were employed in all simulations. The electrical stimulus was applied

as square wave pulses with a magnitude of 80 µA/µF and a duration of 1 ms. The

parameters of the active tension model (Eqs. (2.16) and (2.17)) are given in Ref.

[56], and those used in Eqs. (2.14), (2.18), and (2.20) are given in Table 2.1. Unless
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otherwise stated, we used values of Gs = 15 µS/µF and Es = -10 mV, and varied

them to investigate the effects of these parameters on the APD and alternans.

The magnitude of the amplitude of the alternans is defined by:

|an(ζ)| = |APDn(ζ)− APDn−1(ζ)|, (2.21)

where n and ζ represent the beat number and space, respectively. The objective of

this paper was to study the influence of MEF on the onset of alternans. Therefore,

the set of Eqs. (2.14)–(2.20) that, together with the boundary conditions, constitute

the LR1NHS model were solved numerically when the cable was paced at one end or

in the middle with different BCLs, and when MEF was applied or not (setting Gs to

zero in Eq. (2.20)). The solution’s behavior and |an(ζ)| are analyzed and discussed.

2.3 Results and Discussion

2.3.1 Stretch distribution and its dependence on BCL

If a cable is paced (the first five cells are electrically stimulated) at one end with

constant BCL, an electrical wave represented by V propagates [Figs. 2.2(a)–2.2(d)]

and generates Ta, which is triggered by an increase in the [Ca2+]i from the electrical

model, see Figs. 2.1 and 2.3. As can be seen in Fig. 2.1, when BCL = 272 ms

was less than BCLcrit = 276 ms (BCLcrit is defined as the maximum BCL at which

alternans occurs in the LR1NHS model when MEF is not present), an alternation

in the APD occurred and induced an alternation in [Ca2+]i through the mechanism

of ECC, which in turn induced an alternation in the active tension peaks (ATPs)

(defined as the highest value of Ta within a beat [Fig. 2.1(c)]); therefore, a long

(short) APD corresponds to a large (small) ATP. As the wave propagated from the

pacing site (PS) to the other end of the cable, the generated Ta caused deformation

of tissue; as a result, a stretch developed in the cable [Figs. 2.2(e)–2.2(h)]. As can be

seen from this figure and Fig. 2.4, if at any given time some cells of the 1D cardiac

cable are stretching (λ > 1), other cells are contracting (λ < 1), since, in an isometric

setting, the cable’s length remains fixed during mechanical contraction, meaning that

the sum of λ for all cells is equal to the length of the cable (
∫ L

0
λ dX = L). Moreover,

the maximal values of stretch developed in the cable at different BCLs are not equal
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Figure 2.6: Magnitude of the amplitude of the alternans (Eq. (2.21) where the APD
was measured at 90% repolarization (APD90)), for LR1NHS model without (a) and
with (b) the presence of MEF, when a 7 cm cable of cardiac cells (the first five cells
close to the PS which corresponds to ζ = 0 cm) is paced at BCL = 400 ms and
decreased gradually to BCLcrit = 276 ms, which corresponds to the onset of alternans
in (a) but not in (b). (c) Similarly to (a), when MEF is turned off, alternans occurs
when the cable is paced at BCLcrit = 276 ms, but when MEF is turned on at time =
145 s, the APD alternans is suppressed and then starts to regrow again when MEF
is turned off at 260 s.
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Figure 2.7: Time evolution of normalized V and 10 (λ − 1) for two cells (cell1 and
cell2) of LR1NHS model at steady state when a 7 cm cable of cardiac cells is paced
at BCL = 800 ms (top) or at BCLcrit = 276 ms (bottom) in the presence of MEF.
cell1 (blue dashed line) and cell2 (red dashed line) are located at 1 cm and 6 cm,
respectively, from the PS.
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and decrease with BCL, see Figs. 2.2(e)-2.2(h) and 2.5. As can be seen in Fig. 2.2,

the maximal value of stretch (λmaxvs) decreases when BCL decreases from BCL =

800 ms to BCL = 276 (that corresponds to the onset of alternans when MEF is not

present); the relation between BCL and λmaxvs is linear between BCL = 276 ms and

BCL = 500 ms (see Fig. S.1 in the supplementary material). This is because when

BCL is decreased, the APD and, consequently, ATP decrease with BCL. Note that

λ depends on the Ta (Eqs. (2.18) and (2.19)); therefore, the magnitude, shape, and

timing of deformation along 1D tissue depend on the magnitude, shape, and time

of activation and relaxation of mechanical contraction activity. In turn, Ta depends

mainly on the shape, activation, and relaxation time of the [Ca2+]i of the ionic model

used to represent the electrical activity of the cardiac cell. As can be seen in Figs.

2.2(e)–2.2(h) and 2.5, the stretch varies over time and its distribution along the cable

is not symmetric if the cable is paced at the boundary (x = 0), see Figs. 2.2(e)

and 2.2(g). In these figures, the cells that are closer to the other ends exhibit higher

levels of stretch induced in the cable as a result of wave propagation, especially when

BCL � BCLcrit, compared with cells that are closer to the PS. One can conclude

that stretching is not uniform along the cable and that it varies with BCL, with its

magnitude decreasing when BCL decreases from 800 ms to BCLcrit = 276 ms.

2.3.2 Effects of MEF on the APD and alternans

Isac, which is a function of λ and V (Eq. (2.20)), is considered to be the main ef-

fect of cardiac deformation on electrical activity. Therefore, the behavior of λ, which

depends heavily on BCL, as discussed in the previous section, has a major role in

determining the effects of Isac on the APD and alternans.

We start by illustrating the effect of MEF on the onset of alternans. To this end,

APD alternans was induced in a 1D cable (the five leftmost cells were paced peri-

odically with period BCLcrit until a steady state was reached) under two conditions:

with and without the presence of MEF. Therefore, two simulations were performed.

In the first, Gs was set to zero in Eq. (2.20), corresponding to one-way coupling

(in which there is no influence of cardiac deformation on electrical activity); in the

second, Gs = 15 µS/µF, corresponding to two-way coupling (in which the influence

of cardiac deformation on electrical activity is taken into account). In both simula-
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Figure 2.8: (Left and right) Time evolution of λ (top), Isac (middle), and V (bottom)
for the cells positioned 1 cm (left) and 6 cm (right) from the PS, of the LR1NHS
model, when a 7 cm cable is paced at the boundary with 400 ms and decreased
gradually to either 276 ms or 270 ms, and then paced periodically with BCLcrit = 276
ms (a,b) or BCL = 270 ms (c,d) until a steady state is reached.
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Figure 2.9: Plot showing the stable and unstable regions of the (Gs, Es) plane. The
green region corresponds to the values of the parameters of Isac that suppress spa-
tiotemporal alternans when a 7 cm cable is paced at the boundary with BCLcrit =
276 ms and a steady state is reached.
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Figure 2.10: Magnitude of the amplitude of alternans for LR1NHS model at steady
states, without MEF (dashed lines) and with MEF (solid lines), for four different
BCLs, when a 7 cm cable is paced at the boundary with 400 ms and decreased
gradually to BCL = 276 ms, 270 ms, or 260 ms, and then paced for 600 beats to its
steady state. APD90 (APD at 90% repolarization) was adopted as a measure of APD.
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Figure 2.11: Magnitude of the amplitude of alternans for LR1NHS model at steady
states for four different values of Gs, when a 7 cm cable is paced at the boundary
with 400 ms and decreased gradually to 270 ms, and then paced periodically with
BCL = 270 ms for 600 beats to its steady state. APD90 (APD at 90% repolarization)
was adopted as a measure of APD.

tions, we set Es = -10 mV. For the first condition (MEF off), the cable was paced

at the leftmost boundary, starting at BCL = 400 ms and gradually decreasing to

BCL = BCLcrit (i.e., for the onset of alternans). As can be seen in Fig. 2.6(a), APD

alternans occurred when pacing with period BCL = 276 ms, which is the maximum

BCL that allows alternans when MEF is off (BCLcrit = BCL = 276 ms). When simi-

lar actions were performed in the presence of MEF (MEF on), no alternans occurred

at BCLcrit [Fig. 2.6(b)], and APD alternans occurred at BCL = 275 ms (simulation

not shown). One can conclude that MEF has the effect of suppressing the APD al-

ternans for a certain range of BCLs close to the BCLcrit. Note that the magnitude of

alternans along the length of the cable was not uniform and it reached its minimum

at the PS. Another numerical simulation that better illustrates the effects of MEF

on the onset of alternans is shown in Fig. 2.6(c). This simulation was performed by

excluding/including the MEF effects at specific times. As can be seen in Fig. 2.6(c),

the alternans grew when MEF was not included and was suppressed by the inclusion

of MEF, after which it regrew following the exclusion of MEF.

Before we could describe the influence of Isac on the APD, it was necessary to

illustrate how λ varies during repolarization when BCL is changed. Therefore, we

plotted λ and V on the same figure for two BCLs (BCL = 800 ms and BCL = 276
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ms). As can be seen in Fig. 2.7, the cells close to PS were mainly contracting during

repolarization and stretching at the resting potential with BCL = 800 ms, while at

BCL = 276 ms, they were stretching during early repolarization and early plateau

phase and contracting afterward, then again stretching at the resting potential. On

the other hand, cells that were close to the other cable end stretched during early

repolarization and part of the plateau phase and contracted during late repolarization

and at the resting potential with BCL = 800 ms, while at BCL = 276 ms they ex-

hibited similar behavior to those with BCL = 800 ms, except that the magnitudes of

the stretch were smaller, as discussed in the previous section. This has an important

implication for the APD, as is discussed next.

We now investigate the effects of Isac on the APD for different BCLs. We start

with the case of BCL = BCLcrit; therefore, λ, Isac, and V for BCL = 276 ms at steady

state were plotted in Figs. 2.8(a) and 2.8(b) for two cells located at different positions.

One cell (cell1; ζ = 1 cm) was located close to the PS and the other (cell2; ζ = 6 cm)

close to the other cable end. Also, we assumed that the APD was measured using a

voltage threshold corresponding to 90 (APD90, i.e., the APD at 90% repolarization).

As shown in Figs. 2.8(a) and 2.8(b), during early repolarization Isac was an outward

current and became an inward current when V was below -10 mV. The Isac remained

inward during the early plateau phase before reaching zero in the remaining part of

the plateau phase and at late repolarization. Therefore, during early repolarization,

Isac produces a hyperpolarizing effect facilitating repolarization (i.e., accelerates the

rate of early repolarization), then it produces a depolarizing effect delaying repolar-

ization (i.e., slows the rate of repolarization); it has the same effect at the beginning

part of the plateau phase, but no effect in the remaining part of the plateau phase

or at late repolarization. This has the net effect of prolonging the short APD, and

shortening the large APD, since the slowing process, which starts before the plateau

phase, has enough time to increase the short but not the large. The reason is that,

the plateau phase of the short APD is lower and shorter when compared with the

large APD. Therefore, the relative time that Isac remains inward during the plateau

phase of the short APD is greater than the one of the large APD. The restoration of

normal APDs was mainly due to the effect of the inward current (the net effect of Isac

on the large APD is small), which increased the short APD and caused, according
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to the restitution relation, a decrease in the large APD. The inward current in the

case of cell2 [Fig. 2.8(b)] was more significant when compared to the one in cell1

[Fig. 2.8(a)]. Therefore, the increase (decrease) in the short (long) APD was larger

in cell2 than in cell1. When Es = -30 mV, Isac was always an outward current during

repolarization and could not suppress alternans with the same value of Gs (Fig. 2.9);

for Es = 0 mV, Isac during repolarization was almost entirely an inward current,

which suppressed alternans for a smaller value of Gs (Fig. 2.9). Note that when

Isac is entirely an outward current during repolarization (the case where Es < −20

mV), the suppression of alternans is feasible if the amplitude of Isac is large enough

to decrease the large APD and then increase (according to the restitution relation)

the short APD. When BCL is greater than BCLcrit, MEF has the effect of slightly

shortening the APDs, and the mechanism of the effect of Isac on the APD is similar

to the case of the large APD described earlier. When BCL is lower than BCLcrit,

resulting in beat-to-beat alternation in the APD, the mechanism of the effects of Isac

on the small and large APDs are similar to those when BCL = BCLcrit, which means

it prolongs (shortens) the small (large) APD, see Figs. 2.8(c) and 2.8(d). As shown

in Fig. 2.8(d) (at BCL = 270 ms and for the cell2), the large APD decreased by

approximately 4.5 ms and the small APD increased by approximately 6 ms. As can

be seen in Fig. 2.8, a large (small) APD corresponds to a large (small) amplitude

of Isac, since an alternation in the APD induces an alternation in the ATP through

the mechanism of ECC; therefore, a large (small) APD corresponds to a large (small)

ATP, which in turn induces an alternation in λ (large-small λ) for the same cell in

the cable. Although alternans could not be suppressed at BCL = 270 ms when MEF

was applied, the magnitude of its amplitude was decreased (see Fig. 2.10). This

was because |an(ζ)| for the region close to PS when BCL = 270 ms was higher than

that when BCLcrit = 276 ms, and the strength of the Isac was not enough to account

for the larger and smaller APDs. Moreover, the degree of alternation in stretching

increased with BCL, and therefore the strength of Isac increased (decreased) with

increasing (decreasing) λ (Fig. 2.8); consequently, the effects of Isac on the small

APD decreased and its effects on the large APD increased slightly. In this way, the

efficiency of Isac decreases with BCL and restoring normal APDs cannot be achieved

unless Isac is modulated (see Ref. [54]). As can be seen in Fig. 2.10, the effect of
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Figure 2.12: Bifurcation diagrams showing APD versus BCL for different values of
Gs of LR1NHS model (left panel), and a zoomed-in version of it (right panel). The
cell in the middle of a 7 cm cable is paced with a periodic current wave form with a
magnitude of 86 µA/µF and a duration of 1 ms for different BCLs, starting at BCL
= 350 ms and decreasing by 1 ms, after a steady state is reached for each BCL, until
BCL is equal to BCL = 260 ms. This procedure was repeated for three values of Gs

and the simulation values of the APD at steady state are plotted versus BCL. APD
at 90% repolarization was adopted as a measure of APD.

MEF on the APD and consequently on |an(ζ)| decreased as the BCL decreased, with

a tendency to become arrhythmic at lower BCLs (see limitations section). Note that

the effects of Isac on APDs were not equal for all cardiac cells along the cable, since

λ was not uniform along the cable length and also varied with BCL.

Two parameters of the Isac that have been shown to have important roles in the

degree of lengthening and shortening of APDs are Gs and Es (maximal conductance

and reversal potential of Isac (Eq. (2.20))). The effects of Es on the onset of al-

ternans (BCL = BCLcrit) are illustrated in Fig. 2.9. As can be seen in this figure,

the efficiency of MEF decreased when |Es| increased (up to 20 mV), since, as stated

before, the Isac changes during repolarization from almost inward at Es = 0 mV to an

outward current at Es = −20 mV. On the other hand, if we change the value Gs, this

will change the magnitude of Isac and its effects on APDs, which means that if Gs

is increased the Isac strength is increased, causing a decrease (increase) in the large

(small) APD and thereby decreasing the |an(ζ)| (Fig. 2.11).
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Figure 2.13: Evaluations of the terms R,A, B, and c at the fixed point of the map (Eq.
(2.23)). To this end, the cell in the middle of a cable of length L = 7 cm is paced at
BCL = 279 ms until steady state is reached (blue line). (a) R = ∂APDn/∂APDn−1 =
−∂APDn/∂DIn−1 (restitution relation) and A = ∂ATPn/∂APDn−1 (V → Ta cou-
pling between the APD at a given beat and the ATP on the next beat) were evaluated
as follows: a slight increase of the APD (red line) at a given beat from its steady state
position (blue line) leads to a decrease in APD (red line), and ATP (red line) at the
next beat (due to a shortening of the DI). R and A were evaluated by dividing the
resulting decreases of APD and ATP respectively by the size of the initial increase of
APD (R ≈ −1 and A ≈ −0.13). (b) B = ∂ATPn/∂ATPn−1 and c = ∂APDn/∂ATPn

(Ta → V coupling between the ATP and the APD at a given beat) were evaluated as
follows: a slight increase of the ATP (red line) at a given beat from its steady state
position (blue line) leads to an increase in ATP (red line) at the next beat, and to a
decrease in APD (red line) at the same beat (the Ta → V coupling is negative in this
model). B was evaluated by dividing the resulting increase in ATP by the size of the
initial increase in ATP (B ≈ 0.02), and c, which depends on the value of Gs chosen,
is plotted versus Gs in Fig. 2.14.
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Figure 2.14: The strength of the MEF coupling effects (c) and eigenvalues (λ1,2) (Eq.
(2.27)) of J (Eq. (2.26)) are plotted versus Gs. λ1,2 are plotted versus Gs since they
are functions of c, which in turn is a function of Gs. Increasing Gs increases the
magnitude of the strength of c, and the largest eigenvalue in absolute value (|λ2|;
blue triangle) decreases from |λ2| = 1 when Gs = 0 µS/µF to |λ2| ≈ 0.9 when
Gs = 100 µS/µF.

2.3.3 Effects of MEF on period doubling bifurcations

This section presents bifurcation diagrams obtained by numerical simulations for a

single cardiac cell of the LR1NHS model that illustrate the effects of MEF on period

doubling bifurcation. A theoretical framework of iterative maps is also presented and

used to analyze the simulation results.

Bifurcation diagrams for varying strengths of MEF

In order to examine the effects of MEF on the period doubling bifurcation, we plotted

APD versus BCL (bifurcation diagram) for a cell-based LR1NHS model and for dif-

ferent strengths of Isac. To this end, the cell in the middle of a 7 cm cable, which was

selected to minimize the electronic and boundary (electrical and mechanical) effects,

was paced at different BCLs, ranging from 350 ms to 260 ms, for three different values

of Gs (to regulate the strength of Isac). Bifurcation diagrams (APD versus BCL) are

given in Fig. 2.12. Note that, if the five cells in the middle of a 7 cm cable are paced

with electrical stimulus of a magnitude of 80 µA/µF, the onset of alternans when

MEF is not present corresponds to BCL = 276 ms (results not shown). The plot on
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the right-hand side of Fig. 2.12 is a zoomed-in version of the bifurcation diagrams

that include the BCLs close to bifurcation points corresponding to the three values

of Gs. As can be seen in this figure, for Gs = 0 µS/µF (no MEF is applied), the

bifurcation point corresponds to BCL = BCLcrit ≈ 279 ms, while for Gs = 15 µS/µF,

and 50 µS/µF, the new bifurcation points correspond to BCL ≈ 278 ms, and BCL ≈

276 ms, respectively. Therefore, with increasing Gs, the bifurcation point moves left,

which means that APD alternans can be induced at higher pacing rates (lower BCLs)

when Gs is larger. Moreover, for all BCLs close to bifurcation points, corresponding

to the three values of Gs, the |an(ζ)| are attenuated, and the attenuations decrease

as BCL decreases. However, when pacing at BCL less than 240 ms, no effect of MEF

on the |an(ζ)| was observed (bifurcation diagrams are shown in Fig. 2.12, for BCLs

greater or equal to 265 ms, and Fig. S.2 in the supplementary material, for BCLs be-

tween 240 ms and 265 ms), and the MEF effect became pro-arrhythmic when pacing

at BCL � BCLcrit.

Linear stability analysis

The effects of the MEF on the onset of instability is examined here using linear

stability analysis. In our previous study [54], we developed a 2D iterated map that

couples the AP and Ta at the cell level to incorporate the effects of MEF on the AP

properties. In the development of this 2D map model, an approximation of λ ([54])

when λ ≤ 1.05 is used, given by:

λ ≈ 1 +
Tb − Ta(X)

c̃− Ta(X)
,

with Tb ≈

∫ L

0

Ta(X)

c̃− Ta(X)
dX∫ L

0

1

c̃− Ta(X)
dX

. (2.22)

Hence, the Isac, which is a function of λ and V , is expressed instead in terms of V

and Ta so that a bidirectional coupling between the V and Ta at the cellular level

exists, and a 2D iterative map can be introduced (see Ref. [54]). A slightly modified

version of the 2D iterative map, which describes the beat-to-beat dynamics between

the peak Ta and the APD at beat n to that at beat n− 1, is given by:

APDn = F1(APDn−1, ATPn),
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ATPn = F2(APDn−1, ATPn−1), (2.23)

where ATPn [Fig. 2.1(c)] is the ATP at beat n, measured from zero to the highest

point in Ta, and APDn [Fig. 2.1(a)] is the width of V at beat n, measured from the

instant when V crosses the threshold value on the wave front until the instant it falls

below this value on the wave back. In Eq. (2.23), the APD at beat n (APDn) depends

on the concurrent ATP (ATPn) to express the effects of Isac on the repolarization of

membrane voltage during a beat. The 2D iterated map will be used to study the

stability of a fixed point X∗ = (APD∗, ATP∗) of the map, close to the alternans

bifurcation at the cellular level for the cell-based model of LR1NHS (LR1NHSC).

Note that, as described previously, λ decreases from around 1 when a 7 cm cable of

cardiac cells is paced at BCL = 800 ms, to less than 0.05 when it is paced with BCL

close to BCLcrit.

The stability of a fixed point X∗ can be obtained from linearization of the nonlinear

map (Eq. (2.23)) in the vicinity of X∗ (see Ref. [54] for a detailed derivation).

δXn ≈ J δXn−1 (2.24)

where δXn−1 = Xn−1−X∗ is a small perturbation from the fixed point, and J = J(X∗)

is the Jacobian matrix evaluated at X∗, given by:

J =

 ∂APDn

∂APDn−1
+ ∂APDn

∂ATPn

∂ATPn

∂APDn−1

∂APDn

∂ATPn

∂ATPn

∂ATPn−1

∂ATPn

∂APDn−1

∂ATPn

∂ATPn−1

 (2.25)

The eigenvalues of J determine the stability of X∗ to small perturbations. If all

the eigenvalues of J have magnitude less than 1, the fixed point X∗ is stable and the

onset of instability corresponds to the largest absolute value of the eigenvalues passing

through the unit circle. This instability gives rise to a period double bifurcation

corresponding to alternans. To calculate the eigenvalues of J , we need first to evaluate

the terms of the Jacobian matrix at the fixed point of the map, which corresponds

to a period-1 rhythm, close to the alternans bifurcation. We start by rewriting the

matrix J as:

J =

 R + c A c B

A B

 , (2.26)
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where R = ∂APDn

∂APDn−1
, A = ∂ATPn

∂APDn−1
, B = ∂ATPn

∂ATPn−1
, and c = ∂APDn

∂ATPn
. The term c, which

measures the dependence of the voltage on the active tension, can also be considered a

measure of the MEF coupling effects, since in the LR1NHSC model, Isac is a function

of V and λ, which in turn is a function of Ta (Eq. (2.22)); therefore, the effects of Isac

on the APD depend explicitly on ATP. In order to evaluate c, Gs was varied between

0 and 100 µS/µF to account for the strength of the Isac. The evaluations of the terms

R,A, B, and c at the fixed point of the map (Eq. (2.23)) are given in Figs. (2.13)–

(2.14). The BCL was chosen so that, when MEF was not applied, the cell, which was

paced at BCL, exhibited period-1 dynamics but very close to the bifurcation point

(R ≈ −1). For the case of Gs = 0, we have c = 0, which corresponds to Isac = 0

(MEF off), and the eigenvalues of the matrix J are B and R, and, since |R| = 1, the

fixed point X∗ undergoes a period doubling bifurcation. For the general case when c

is not zero (MEF on and its strength depends on the value of Gs), the stability of the

system (Eq. (2.23)) is governed by the eigenvalues of the matrix J , which are given

by:

λ1 =
1

2

(
R + c A+B +

√
(R + c A+B)2 − 4 R B

)
,

λ2 =
1

2

(
R + c A+B −

√
(R + c A+B)2 − 4 R B

)
. (2.27)

The values of c when Gs is within the range of 0–100 µS/µF, and the eigenvalues λ1,2

varying with Gs are sketched in Fig. 2.14. As can be seen in the figure, the magnitude

of c (magnitude of the strength of MEF coupling effects) increased when Gs increased.

Figure 2.14 shows that |λ2| (the absolute value of the largest eigenvalue of J) decreased

when Gs increased. Therefore, as Gs increases, the strength of the Isac increases and

the period-doubling bifurcation point moves further right, effectively stabilizing the

branch of unstable fixed points located close to the bifurcation point in the region of

period-2 rhythm.

2.4 Limitations

All numerical simulations were performed under the assumption that the alternans

was voltage driven (caused by voltage instability). Although this has been widely

assumed in the literature, APD alternans can also be induced by calcium-driven
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instability (caused by the instability of intracellular calcium cycling). Complex be-

haviors are possible in the latter case, depending on the strength of the calcium-driven

instability and the nature of Ca2+ → V coupling [74, 75, 76].

In this work, we only considered isometric conditions (where both ends of the ca-

ble are fixed in space). This affects the distribution of stretching along the cable, as if

muscle fibers are stretched in some regions of the cable, the fibers will be compressed

in other regions, so that the length of the cable remains constant. For the isotonic

case (boundary loading conditions), no constraint is imposed on the cable length;

therefore, a change in the stretch distribution may occur. This may change how Isac

affects the APD and, consequently, its effects on the onset of alternans.

Conduction velocity (CV) restitution, which refers to the dependence of the CV of

the AP on the preceding DI, along with the APD restitution curves, has been shown

to have an effect on alternans [15]. Similar to other studies [91, 108], we found that

the influence of MEF on the CV depends on BCL, Gs, and Es, although it can be

neglected for the values used in the LR1NHS model. However, for large values of

Gs (Gs > 50 µS/µF), the myocardial stretch increased the CV, which, along with

APD restitutions and lower BCL (BCL � BCLcrit), has a critical role in discordant

alternans (see Fig. S.3 in the supplementary material). On the other hand, the de-

pendence of conductivity on mechanical stretching was not included in this study. A

change in the conductivity could modify the CV, which plays a part in the develop-

ment of alternans. However, with or without the inclusion of the effects of stretching

on diffusion, the onset of alternans can be shifted to lower BCLs with an appropriate

selection of the parameters of Isac (Gs and Es).

2.5 Conclusions and Future Works

This study investigated numerically and theoretically the effects of MEF on the onset

of alternans. The numerical results were obtained using a 1D biophysically detailed

electromechanical model of cardiac tissue. As demonstrated in this work, the distri-

bution of stretching along the cable is not uniform and the stretch magnitude, which

varies with BCL, is larger at BCL � BCLcrit. Therefore, the stretch behavior along

with the parameters Gs and Es determine the effect of Isac on the APD. In addi-
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tion, a theoretical framework of 2D iterative maps that incorporate the effects of Isac

was used to demonstrate the MEF effects on the period-doubling bifurcation, corre-

sponding to the onset of alternans in a single cardiac cell. In particular, we showed

that BCLcrit can be shifted to lower values, where the degree of this shift depends

on the strength of Isac. The anti-arrhythmic effects of MEF was demonstrated using

the LR1 model representing electrophysiological properties with the NHS model for

active tension generation. Calcium sensitive currents, such as the L-type calcium cur-

rent (ICaL) and sodium-calcium exchange current (INaCa), are not included in LR1

model. However, we believe that if the alternans is voltage-driven, the presence of

these currents will not reverse the effects of Isac, which is also a calcium dependent

current, on the APD. For example, in FOX model [48], these currents are included

in this model, the alternans was suppressed when a modulated Isac was applied [54].

But, if the APD alternans is calcium-driven, the situation is complex since the ICaL

and INaCa, which can prolong or shorten the APD, can have opposite effects and the

net effect depends on the relative contributions of these currents to the APD [74, 75].

We expect the effectiveness and efficiency of MEF on the onset of alternans, that

mainly depend on the AP and [Ca2+]i dynamics, to vary among cell species. For

example, myocytes of larger mammals, including humans, have longer APs than ones

observed in smaller mammals such as rat and mouse. The AP and [Ca2+]i dynamics

affect the profile of Ta and consequently the distribution of mechanical stretch which

plays the main role in APD changes.

The interaction between the mechanical and electrical events in the heart can

be depicted as a simple closed-loop feedback control system, where the mechanical

stretch can stabilize the electrical activity of the heart via MEF and in the vicinity of

the alternans bifurcation. However, a potential role of MEF in arrhythmogenesis can

be shown if a 7 cm cable of cardiac cells of LR1NHS model (but with larger magni-

tude values of Gs and Es) is paced at lower BCLs (BCL� BCLcrit). This is because

the non-uniform distribution of stretching produces, via SAC, a spatial dispersion in

electrophysiological properties by converting an existing state of concordant alternans

to discordant alternans. The latter state is considered to be very arrhythmogenic,

since it increases the dispersion of repolarization and can result in a localized block

[109, 110]. The results are beyond the scope of this paper but will be the subject of
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future work.

SUPPLEMENTARY MATERIAL

See the supplementary material for a summary of the equations of NHS model (the

NHS model is used to generate active tensions) and Figs. S.1-S.3, which show the

variation of the maximal values of stretch versus BCL (Fig. S.1), bifurcation diagrams

showing APD versus BCL for different values of Gs of LR1NHS model when BCL

varies between 240 ms and 265 ms (Fig. S.2), and spatiotemporal evolution of V in

LR1NHS model with Gs = 0 µS/µF (top), and with Gs = 52 µS/µF and Es = -20

mV (bottom), with BCL = 210 ms (Fig. S.3).
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Chapter 3

A simulation study of the role of
mechanical deformation in
arrhythmogenesis during cardiac
alternans

3.1 Introduction

Irregular excitation waves in the heart may result in cardiac arrhythmias. Ventricular

fibrillation (VF) [1, 2], which is the most dangerous form of arrhythmias, causes the

contraction of the ventricles to become rapid and uncoordinated and can lead to sud-

den cardiac death if not treated within minutes. VF is recognized as one of the major

causes of death in the industrialized world. Cardiac alternans which is characterized

by a periodic alternations in the action potential (AP) duration (APD), is believed

to precede VF, and can be clinically detected as T-wave alternans (TWA) using an

electrocardiogram, and is associated with increased risk of cardiac arrhythmogenesis

in many cardiac diseases [111, 112]. In a single cell, the genesis of alternans can be

described based on APD restitution [69, 70]. This relation relates the current excited

APD, and the previous diastolic interval (DI), which is the time between the end of

the previous excitation and the current one. The APD restitution curve can be ex-

perimentally determined using a pacing protocol, such as the standard and dynamic

restitution protocols [113, 114]. The standard restitution protocol [113], known as

S1-S2 restitution protocol, which involves pacing the cell at a fixed cycle length S1

for a set number of beats, and then a premature stimulus at a variable cycle length
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S2 is applied to elicit an extra beat, while the dynamic restitution protocol [114]

involves delivering a number of stimuli at a constant BCL and progressively reducing

the BCL. The transition from normal heartbeat to APD alternans occurs when the

slope of the APD restitution curve is greater than 1 (known as restitution hypothesis).

Although more complex effects, such as calcium handling dynamics, cardiac memory,

and mechano-electric feedback, have been shown to influence the APD and conse-

quently the condition for the appearance of alternans [74, 75, 81, 82, 97, 51, 54, 115],

many studies still use this basic relation when studying cardiac alternans. In cardiac

tissue, APD alternans can be spatially concordant (SCA), where alternation of APD

are in phase (whole tissue exhibits the same APD alternation) or discordant (SDA),

where the alternation of APD in different regions are out of phase. These discor-

dant regions are separated by a nodal line in which no alternans is present. SDA

is considered to be very arrhythmogenic [116, 14], since it increases the dispersion

of repolarization that can result in blocking AP propagation and initiate reentrant

waves. A number of mechanisms have been proposed to explain the production of

SDA. Preexisting spatial heterogeneities has been identified first as being responsible

for the production of SDA [14]. However, afterwards it has been found that SDA

can also be formed in homogenous tissue [15, 117] when pacing at a sufficiently high

rate so that conduction velocity (CV) restitution (dependency of the speed of the

wavefront on the preceding DI) is engaged. Also, a number of dynamic factors, such

as cardiac memory and calcium cycling dynamics, were found to be responsible for

the transition from concordant to discordant alternans, see a brief review given in

[118]. In the human heart, electrical waves propagate through the cardiac tissue and

induce contraction of the heart. On the other hand, cardiac deformation affects the

process of wave propagation via stretch-activated channels (SACs) [6, 7, 8, 9]. This

mechanism which is known as mechano-electrical feedback (MEF) may have both an-

tiarrhythmic and arrhythmogenic effects [10, 11, 119, 64], and has been studied for a

long time [8]. For example, mechanical stretch has been shown to alter the electrical

activity of the heart and play an important role during arrhythmias as in [91, 67],

and on the other hand, it can suppress cardiac alternans as in [96, 115]. The time

of application and strength of mechanical stretch relative to the different phases of

AP can produce different responses. Application of stretch during plateau phase can
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lead either to shortening or prolongation of AP [100, 57, 101, 102, 11, 99] depending

on the reversal potential of the SACs [58]. If stretching is applied during diastole

it can depolarize the resting membrane [84, 108]. Using a 1D biophysically detailed

electromechanical model of cardiac tissue, it has been shown in [115] that the critical

basic cycle length (BCLcrit), that corresponds to the onset of alternans when MEF is

not present, can be shifted to lower values, where the degree of this shift depends on

the strength of the stretch-activated current (Isac) which is the direct physiological

influence of MEF. However, in that work, only a certain range of BCLs, that are

closed to the BCLcrit, were considered, and a restriction was put on the value of the

Isac conductance parameter so that the effects of MEF on the conduction velocity

(CV) restitution can be neglected. In this work, we study the effects of MEF on the

dynamics of alternans when no restrictions is imposed on the model parameter con-

ductance value and the whole range of pacing periods that correspond to alternans

is considered. In particular, we illustrate the role of Isac in the transition from SCA

to SDA, and in the increase of the dispersion of repolarizations when the alternans is

discordant. In addition, we show that for some values of Isac model parameters, the

onset of conduction block can be shifted to a lower pacing rate. Therefore, the effects

of Isac on APD and CV restitution properties will also be studied and elucidated. To

this end, a one dimensional (1D) biophysically detailed electromechanical of cardiac

tissue is employed. Fox et al. model [48] which is an ionic cell model of the canine

ventricular myocyte is used to represent the excitation properties. The active tension

(Ta) model that couples the excitation model to the cardiac mechanics model is gen-

erated using the Niederer-Hunter-Smith (NHS) model [56]. The myocardium passive

behavior is described using the Mooney-Rivlin (MR) material model [30, 54, 54]. In

the following sections we denote this detailed electromechanical model by FOXNHS.

3.2 Methods

3.2.1 Electromechanical model of cardiac tissue

The effects of MEF on the dynamics of alternans were studied using a computational

model of cardiac electromechanics. Mathematically, cardiac excitation and mechan-

ics are described by coupled reaction-diffusion-mechanics equations, see [115] for a
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detailed description. Fox model is used to represent electrical activity in heart tissue,

while the passive mechanical behavior of the myocardium is described by the MR

material response. Active tension which couples detailed biophysical model for car-

diac excitation to cardiac mechanics model is generated using the NHS model. In one

dimension, the whole set of equations that govern both the electrical and mechanical

behavior of the heart muscle can be written as

Cm
∂V

∂t
=
D

F

∂

∂X

(
1

F

∂V

∂X

)
− (Iion(u, V ) + Isac(λ, V )

+ Istim), (3.1)

du

dt
= f(u, V ), (3.2)

dw

dt
= g(w, [Ca2+]i, λ,

dλ

dt
, Ta), (3.3)

Ta = h(w), (3.4)

∂

∂X

 Ta

1 +
∂ud(X)

∂X

+ 2(c1 + 2c2)
∂ud
∂X

 = 0, (3.5)

λ = F = 1 +
∂ud(X)

∂X
, (3.6)

Isac = Gs
(λ− 1)

(λmax − 1)
(V − Es). (3.7)

Where D = D11 is the diffusion coefficient, Iion(u, V ) and f(u, V ) are given by the

Fox model, Isac is given by Eq. (3.7), and Istim is the electrical stimulus. Eqs. (3.1)

and (3.2) describe the electrophysiology model, while the governing equations for the

cardiac mechanics are given by Eq. (3.5). The excitation-contraction coupling are

described by Eqs. (3.3) and (3.4), where the functions g and h are given by the NHS

model. Eqs. (3.1) and (3.2) are supplemented by no-flux boundary conditions, and

Eq. (3.5) is supplemented with zero displacement boundary conditions modeling an

isometric contraction regime. The parameters used in Eqs. (3.1), (3.5), and (3.7) are

given in Table 3.1.

The objective of the paper is to study the influence of MEF on the dynamics

of alternans in FOXNHS model. Therefore, the set of Eqs. (3.1)-(3.7) are solved

numerically when the cable is paced at one end or in the middle with different BCL,

and when MEF is applied or not (set λ = 1 in Eqs. (3.1), (3.3), and (3.7)) and

the solution’s behavior will be analyzed and discussed. In all simulations, a 7 cm
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cable of cardiac cells, with both ends fixed, of the FOXNHS model is considered.

Numerical schemes used for solving electromechanical equations in [54] are also used

in this work to solve Eqs. (3.1)-(3.7). The no-flux boundary conditions and zero

displacement boundary conditions are imposed for Eqs. (3.1) and (3.5) respectively.

The step size ∆x = 0.02 cm and step time ∆t = 1 ms were used in all simulations.

Istim is applied as square wave pulses with a magnitude of 80 µA/µF and a duration

of 1 ms. Unless otherwise stated, we use values of Gs = 30 µS/µF and Es = -10 mV,

and vary these parameters to investigate their effects on the alternans. In this work,

the amplitude of the alternans is also plotted and is given by:

an(ζ) = [APDn(ζ)− APDn−1(ζ)](−1)n, (3.8)

where n and ζ represent the beat number and space, respectively.

Table 3.1: Parameter values used for the simulations of the FOXNHS model
Description Parameter Value

Membrane capacitance Cm 1 µF cm−2

Diffusion D 0.001 cm2 ms−1

Mooney-Rivlin constant c1 0.05 MPa
Mooney-Rivlin constant c2 0.025 MPa
Maximal stretch λmax 1.1

3.3 Results and Discussion

The effects of MEF on the APD and CV restitution properties, and its roles on transi-

tion from concordant to discordant alternans, discordant alternans, and on conduction

block are described in the sections III A–III D.

3.3.1 Effects of MEF on the APD and CV restitution properties

We applied our FOXNHS model to study the effects of MEF on APD and CV resti-

tution curves. APD restitution is determined using a dynamic pacing protocol, which

increases the pacing rate by progressively reducing the BCL. Therefore, the cable was

paced in the middle for 400 beats until a steady state is reached, starting at BCL =

600 ms and gradually decreasing to BCL = 190 ms. Figure 3.1 shows the APD dy-

namic restitution curve for FOXNHS model for different values of Gs. The APD was
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Figure 3.1: Dynamic restitution curves plotting APD90 against the preceding DI for
the middle cell in FOXNHS model for different values of Gs. The 7 cm cable was
paced at the middle at an initial BCL of 600 ms for a period of 300 beats. BCL was
then reduced by 100 ms and cable was paced for a further 300 beats. This process
was repeated but each time BCL is reduced by 100 ms if it is greater than 300 ms,
by 10 ms if it is greater than 250 ms, and by 1 ms if it is greater than 210 ms.
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Figure 3.2: The CV restitution curves of the FOXNHS model for different values of
Gs using a dynamic pacing protocol. CV was measured from the difference in front
arrival times between two nodes, one is located at 0.5 cm from the PS, and the other
at 1 cm further in propagation direction of a cable of length L = 7 cm.
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Figure 3.3: CV vs X (distance) along a 7 cm cable of the FOXNHS model, calculated
for a BCL of 300 ms under four situations of MEF (left) and for different values of
Gs (right).
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Figure 3.4: Time evolution of V (top), Isac (middle), and λ (bottom) for the cells
positioned 1 cm (left) and 6 cm (right) from the PS, of the FOXNHS model when
MEF is off (black solid lines) and when MEF is on, and F = 1 in the stretch-dependent
conduction in Eq. (3.1) (red dashed-dotted lines), and for Gs = 50 µS/µF, when a 7
cm cable is paced at the boundary with BCL = 400 ms and decreased gradually to
BCL = 300 ms, and then paced periodically with BCL = 300 ms until a steady state
is reached.
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Figure 3.5: Time evolution of V (top), Dm (middle), and λ (bottom) for the cells
positioned 1 cm (left) and 6 cm (right) from the PS, of the FOXNHS model when
MEF is off (black solid lines) and when MEF is on, and λ = 1 in Isac (Eq. (3.7))
(red dashed-dotted lines) when a 7 cm cable is paced at the boundary with BCL =
400 ms and decreased gradually to BCL = 300 ms, and then paced periodically with
BCL = 300 ms until a steady state is reached.
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Figure 3.6: Spatiotemporal evolution of V when MEF is off (a), and on (set Gs =
50 µS/µF) (b), Isac (c), and λ(d) in the FOXNHS model for several beats at steady
state when a 7 cm cable of cardiac cells is paced at the boundary with BCL = 190
ms (starting at BCL = 400 ms, and decreased gradually to BCL = 190 ms).
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Figure 3.7: Time evolution of V (bottom), Isac (middle), and λ (top) for the cells
positioned 2 cm (left) and 6 cm (right) from the PS, of the FOXNHS model for
Gs = 0 µS/µF (MEF is off; black solid line) and for Gs = 50 µS/µF (MEF is on; red
dashed-dotted line), when a 7 cm cable is paced at the boundary with BCL = 400 ms
and decreased gradually to BCL = 190 ms, and then paced periodically with BCL =
190 ms until a steady state is reached.

56



0 1 2 3 4 5 6 7

X (cm)

60

80

100

120

140

160

180

A
P

D
 (

m
s
)

BCL = 190 ms

MEF off

MEF on

0 1 2 3 4 5 6 7

X (cm)

42

44

46

48

C
V

 (
c
m

/s
)

MEF off

MEF on

Figure 3.8: APDs (top) and CVs (bottom) vs X (distance) along a 7 cm cable of
the FOXNHS model, for the same two consecutive beats at steady state, calculated
for a BCL of 190 ms and when MEF is off (black solid lines) and MEF is on (red
dashed-dotted lines).

0 1 2 3 4 5 6 7

(cm)

0

20

40

60

80

100
BCL = 190 ms

Figure 3.9: Magnitude of the amplitude of alternans for the FOXNHS model for
different values of Gs, when a 7 cm cable is paced at the boundary with BCL = 400
ms and decreased gradually to BCL = 190 ms, and then paced periodically with BCL
= 190 ms until a steady state is reached. APD90 (APD at 90 % repolarization) was
adopted as a measure of APD.
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Figure 3.10: Plot showing the different patterns of alternans that are formed due to
the Isac in the plane of Gs and BCL, when a 7 cm cable is paced at the boundary with
BCL = 400 ms and decreased gradually to a BCL in the range of 187-206 ms (which
correspond to concordant alternans when no MEF is present) until a steady state is
reached. As shown, the formed patterns are no alternans (black circles), concordant
alternans (blue squares), and discordant alternans (red triangles).

measured at 90 % repolarization (APD90) and the APD restitution curve was obtained

by plotting the values of APD90 against the variant values of DI at steady states for

the cell in the middle of the cable. As can be seen in this figure, MEF changes the

APD restitution curve when BCL is greater than 210 ms, which corresponds to DI

close to 60 ms. APD is increasing continuously for longer BCL, however, after BCL

= 210 ms the increase is higher for larger value of Gs. On the other hand, and for

the same values of BCL and Gs, APD decreases when |Es| is increased, and no effect

of MEF on the APD restitution (results not shown) is observed for |Es| >= 20 mV.

Note that the effect of MEF on the APD restitution depends on the cell’s position

within the 1D tissue, since the stretching is not uniform along the cable (see [115])

and therefore, the effects of MEF on the onset of alternans in the 1D tissue may also

depend on the location of the pacing domain (which means it depends on whether

the cable is paced in the middle or at the boundary). For the FOXNHS model the

onset of alternans occurs when the 1D cable is paced, at the leftmost boundary, at

BCL = BCLcrit = 206 ms (BCLcrit is the maximum BCL at which alternans occurs

when MEF is not present) if the cable is paced at the boundary and when MEF is not

present. However, in the presence of MEF, and for a certain range of Gs, the BCL

that corresponds to the onset of alternans can be decreased, as described in Sec. III
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B.

To study the influence of MEF on the CV restitution, we determine the CV for

various values of Gs using a similar dynamic pacing protocol. To this end, the cable

was paced at its boundary for 400 beats until its steady state is reached. The CV

was measured at steady state for each BCL as the distance between two points, posi-

tioned at 0.5 cm and 1 cm from the pacing site to avoid boundary effects [120, 121],

divided by the front arrival times between these points. The effect of MEF on the CV

restitution for different values of Gs is given in Fig. 3.2. We see from this figure, that

CV is monotonically increasing with DI for Gs less than 20 µS/µF, but it exhibits a

biphasic shape when Gs is greater than 20 µS/µF, increasing with BCL till BCL =

300 ms, which corresponds to DI close to 80 ms, then decreasing afterwards. However,

since the stretch distribution is not uniform along the cable and that it varies with

BCL [115], therefore, the effects of MEF on CV restitution depends on the position

of the two points in the 1D cable where CV is measured, and thus we calculated

the CV along the cable for the FOXNHS model, without and with the presence of

MEF, for BCL = 300 ms. Thus, four different situations of MEF were considered:

(1) stretch-dependent conduction is only present (i.e. set λ = 1 in Isac (Eq. (3.7))),

(2) stretch-activated current is only present (i.e. set F = 1 in the stretch-dependent

conduction in Eq. (3.1)), (3) in the presence of both stretch-activated current and

stretch-dependent conduction, and (4) in the absence of both stretch-activated current

and stretch-dependent conduction (i.e. set F = 1 in the stretch-dependent conduction

in Eq. (3.1) and set λ = 1 in Isac (Eq. (3.7))). To this end, we divided the cable,

between the positions X = 0.25 cm and X = 6.75 cm, into 13 segments of equal sizes,

then we computed CV between the endpoints of each segment, and the measured CV

is plotted versus the midpoint of each segment (left of Fig. 3.3). As one can see,

the change on diffusivity (due to stretch; situation (1)), when comparing with the

situation (4) (i.e. when MEF is off), is decreasing the velocity of propagation of the

wave along the cable. However, in situation (2) (only Isac is present), the velocity

of propagation of the wave is increased along the cable, although the increase is not

monotonic: there is a minimum around X = 1.5 cm. In the presence of both Isac

and stretch-dependent conduction, the velocity along the cable is increasing, since

the increase on CV, due to Isac, is greater than the decrease on CV, due to stretch-
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dependent conduction. To measure the effect of the strength of the Isac on CV, we

repeated the situation (3) for different values of the conductance parameter Gs (right

of Fig. 3.3). As can be seen in this figure, CV is decreased, when comparing with

situation (4), when Gs < 20 µS/µF and increased when Gs >= 20 µS/µF since, as

described earlier, the effect of Isac on CV becomes more dominant than the effect of

stretch-dependent conduction on CV.

In the following, we describe the effects of the stretch-dependent conduction on

CV that corresponds to situation (1) and the effects of the Isac on CV that corre-

sponds to situation (2). For simplicity, we approximate the diffusion rates of the

V (Eq. (3.1)) by moving the term 1/F outside the derivative operator so that the

effects of deformation on the conductivity and the corresponding diffusion coefficient

D can be expressed by Dm(λ) = D/F 2 = D/λ2. This means that a change of the

conductivity, due to λ, is assumed to be caused by a dependence of the new diffusion

variable Dm on the stretch (Dm(λ)). To describe the effects of Isac and Dm on CV,

(λ, Isac, V ) and (λ,Dm, V ) were plotted simultaneously at steady state for BCL = 300

ms in Figs. 3.4 and 3.5 for two cells located at different positions, one located at 1

cm from the PS (left of Figs. 3.4 and 3.5) and the other one located at 6 cm from

the PS (right of Figs. 3.4 and 3.5). We first investigate the effects of Isac on CV.

As shown in Fig. 3.4(left), the Isac increases the CV, since at resting potential and

just before the depolarization, the Isac, which is an inward current, increases slightly

the resting potential and this causes a stronger depolarization effect. At late repolar-

ization, the Isac, which is also here an inward current, produces a depolarizing effect

delaying slightly the repolarization process. The strength of Isac for the cell2 (right

of Fig. 3.4), is larger than the one of the cell1 (left of Fig. 3.4), and therefore the

depolarizing effect of the Isac on the AP of the cell2 is stronger than the depolarizing

effect of the Isac on the AP of the cell1. At late repolarization for the case of cell2, Isac

is null since λ is contracting (λ < 1), and therefore, the Isac has no effect on the AP.

Note that, the increase in CV as shown in Fig. 3.4(right) is not only due to Isac of

the cell2, but we need also to account for the increase of the CV that occurred when

the wave propagates a 6 cm along the cable, from the PS to cell2. We now investigate

the effects of Dm(λ) on CV. It is known that a change of the Diffusivity, modifies

the CV of propagation of the wave. As shown in left and right of Fig. 3.5, and at

60



depolarization phase of the AP, λ is stretching (λ > 1), which gives us Dm(λ) < D,

this causes a decrease in the velocity of the wave. On the other hand, the stretching

of cell2 at the depolarization phase of the AP is higher than the stretching of cell1,

therefore the decrease in the velocity of the wave at cell2 (right of Fig. 3.5) is higher

than the decrease in the velocity of the wave at cell1 (left of Fig. 3.5). Also here,

we need to take into account the decrease of the CV that occurred when the wave

propagated from the PS to cell2.

3.3.2 Role of MEF on the transition from concordant to discordant
alternans

For the FOXNHS model, the APD alternans can be induced in the 1D cable, when

it is paced at the boundary with BCL <= BCLcrit = 206 ms. Moreover, when MEF

is not present, the SCA occurs in the FOXNHS model, when it is paced at any BCL

between 187 ms and 206 ms, and the SDA occurs when BCL is less than 187 ms.

To illustrate the effect of MEF on the SCA, two conditions were considered: without

and with the presence of MEF. For the first condition, a 7 cm cable of cardiac cells

of the FOXNHS model was paced at the leftmost boundary, starting at BCL = 400

ms and gradually decreasing to BCL = 190 ms until a steady state is reached. The

excited APs travel along the 1D cable in the space-time domain (Fig. 3.6(a); space

goes from the bottom to the top and in time from the right to the left). As shown in

this figure, a large AP is being followed by a small one showing SCA. However, in the

presence of MEF (Gs is set to 50 µS/µF) and when similar actions were performed,

the SDA arises (Fig. 3.6(b)), where tissue region close to the PS, up to approximately

2.6 cm, showing a pattern of large-short for APDs while the other parts (after 2.6 cm)

showing a pattern of short-large. Figs. 3.6(c) and 3.6(d) shows the spatio-temporal of

Isac and λ respectively, under the second condition (i.e. when MEF is present). One

can conclude that MEF has a role in converting the SCA into SDA. To investigate

the role of Isac in this conversion, λ, Isac, and V were plotted simultaneously in Fig.

3.7, for two cells, namely cell1 and cell2, in the cable (cell1 is located at 2 cm from the

PS, and cell2 is located at 6 cm from the PS). As shown in Fig. 3.7, an alternation

in the APD induces an alternation in λ (large-small) and consequently an alternation

in Isac for the same cell in the cable. Therefore, the depolarizing effect of the Isac on
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the AP is stronger when λ is large, and for the case of cell1 (left of Fig. 3.7), the

increase in the CV for the long APD is greater than for the short APD, however,

for the case of cell2 (right of Fig. 3.7), the increase in the CV for the short APD

is greater than for the long APD. Note that although Isac has a slight depolarizing

effect on the late repolarization for the long APDs of both cells, the dominant factor

is its depolarizing effect at the depolarization phase, and that an increase in the short

APD causes, according to the restitution relation, a decrease in the long APD and

vice versa. Since the distribution of λ is not uniform along the cable length (Fig.

3.6(d)), the effects of Isac (Fig. 3.6(c)), which depends on λ and V , on CVs were

not equal for all cardiac cells along the cable. To illustrate the variation of CV in

the cable and its influence on APD, the CVs and APDs for two consecutive beats at

steady state were plotted simultaneously in Fig. 3.8. When MEF is not present, a

SCA is formed, which corresponds to an oscillation of large and short APDs that are

correlated respectively with greater and smaller CVs. However, when MEF is present,

a transition from SCA to SDA is induced, which is mainly due to the effect of Isac via

its influence on the CV. As shown in Fig. 3.8(top), when the two dot-dashed lines

intersect at a point (called nodal point and is located at approximately 2.6 cm from

the PS), the long and short APDs become equal, and this marks the division of two

out-of-phase regions. The position of the nodal point depends on the strength of Isac,

which can be regulated by the value of Gs, and its effects on CVs. Fig. 3.9 illustrates

the effects of the strength of Isac on the position of the nodal point, which moves

towards the PS when Gs is increased. Depending on the BCL applied, the strength of

Isac that is required to cause a transition from SCA to SDA varies, see Fig. 3.10. As

shown in this figure, Gs is decreased when BCL is decreased for the transition from

SCA to SDA to occur.

3.3.3 Role of MEF on discordant alternans

The effect of MEF on SCA is illustrated here with the same conditions considered

in the previous section. We start by inducing discordant alternans in the FOXNHS

model when MEF is not present, therefore, a 7 cm cable of cardiac cells was paced at

the leftmost boundary, starting at BCL = 400 ms and gradually decreasing to BCL

= 180 ms until a steady state is reached. When MEF is not present, the SDA can be
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Figure 3.11: Spatiotemporal evolution of V when MEF is off (a), and on (b), Isac (c),
and λ (d) in the FOXNHS model for Gs = 50 µS/µF and for several beats at steady
state when a 7 cm cable of cardiac cells is paced at the boundary with BCL = 180
ms (starting at BCL = 400 ms, and decreased gradually to BCL = 180 ms).
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Figure 3.12: APDs (top) and CVs (bottom) vs X (distance) along a 7 cm cable of
the FOXNHS model, for the same two consecutive beats at steady state, calculated
for a BCL of 180 ms and when MEF is off (black solid lines) and MEF is on (red
dashed-dotted lines)
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Figure 3.13: Magnitude of the amplitude of alternans for the FOXNHS model for
different values of Gs, when a 7 cm cable is paced at the boundary with BCL = 400
ms and decreased gradually to BCL = 180 ms, and then paced periodically with BCL
= 180 ms until a steady state is reached. APD90 (APD at 90 % repolarization) was
adopted as a measure of APD.
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Figure 3.14: Spatiotemporal evolution of V when MEF is off (a), and on (b), Isac (c),
λ in the FOXNHS model for Es = 0 ms and Gs = 80 µS/µF and for several beats at
steady state when a 7 cm cable of cardiac cells is paced at the boundary with BCL
= 180 ms (starting at BCL = 400 ms, and decreased gradually to BCL = 180 ms).
Plots were generated at time t1 = 19060 ms, which corresponds to beat number 62
(A), and at steady state (B).
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Figure 3.15: Time evolution of V (bottom), Isac (middle), and λ (top) for the cell
positioned 2 cm from the PS, of the FOXNHS model for Gs = 80 µS/µF and Es = 0
mV (left) and Es = -10 mV (right), when a 7 cm cable is paced at the boundary with
BCL = 400 ms and decreased gradually to BCL = 180 ms. Only, the corresponding
V , Isac, and λ for the beats 60-61 are illustrated.
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induced in the FOXNHS model when pacing at any BCL between 186 ms and 178

ms. The FOXNHS model was paced again using the same pacing protocol but this

time in the presence of MEF (Gs is set to 50 µS/µF). The V , λ, and Isac at steady

state and under the two conditions (without and with the presence of MEF) were

plotted simultaneously in Fig. 3.11. As shown in Fig. 3.11(b), the spatial dispersion

of repolarization was increased in the presence of MEF when compared to alternans

repolarization without the presence of MEF (Fig. 3.11(a)). As shown in this figure,

the SDA has a nodal point formed at approximately 2 cm from the PS, where the

alternation of APDs in the region of the cable from the PS to this nodal point is

manifested as long-short, while the alternation of the APDs in the region after this

point is manifested as short-long pattern. One can also see that in the presence of

MEF, the number of nodal points (two nodes were formed) was increased where the

second node was formed at approximately 5.8 cm from the PS. In Fig. 3.11(b), the

APDs alternate as a pattern of short-long in the region between the two nodes and as a

pattern of long-short in other regions (one from the PS up to approximately 2 cm and

the other from approximately 5.8 cm to the end of the cable). Figure 3.12 illustrates

the variation of the CV and its influence on APD along the cable, with and without

the presence of MEF, for two consecutive beats at steady state. As shown in this

figure, the CV was increased globally, when compared with the one without MEF, for

both short and long APDs along the cable up to approximately 5.4 cm from the PS.

Due to Isac, the CV of large (small) APD is decreasing (increasing) in the cable from

the PS up to the first node located at approximately 2 cm from the PS. This node

almost coincide with the one that is formed when MEF is not present. The previously

long (short) APD becomes short (long) APD in the cable between the first and the

second node located at approximately 5.8 cm from the PS. Between these nodes, the

CV of long (short) is increasing (decreasing) till approximately the middle of the

cable, then decreasing (increasing) till the second node. The CV of the small APD

starts to increase significantly after the AP travels 5 cm from the PS. Consequently,

the small APD starts to increase significantly and causes the long APD to decrease

according to the restitution relation until the second node is formed at approximately

5.8 cm from the PS. Varying the Gs, which regulates the strength of Isac, affects the

formation of the nodes and their positions (Fig. 3.13). As shown in this figure, for
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Gs = 30 µS/µF, no additional nodes are formed to the already existing node when

MEF is not present. However for the values of Gs equal to 50 µS/µF or 70 µS/µF a

second node is formed closer to the other end of the cable, and moves more towards

the pacing site when Gs is greater. Although the degree of APD oscillation is greater

when MEF is applied, the magnitude of the amplitude of alternans is decreased. Note

that, it is shown in Fig. 3.13 that the additional node is formed at approximately 5.8

cm from the PS, however in Fig. 3.12, it is shown that is formed at approximately 5.6

cm. This difference is due to the accumulation of errors accrued along all segments

in which the CVs were computed, because, the distance between the two points of a

segment in which the CV was computed is not small enough so that the local error

remains small.

3.3.4 Role of MEF on conduction block

To investigate the role of MEF on the threshold of conduction block (CB), we per-

formed the following steps. First, we determined the CB threshold without the pres-

ence of MEF. Therefore, a 7 cm cable of cardiac cells of the FOXNHS model, when

MEF is off, was paced at the leftmost boundary, starting at BCL = 400 ms and

gradually decreasing to BCL = 200 ms until a steady state is reached. If CB did not

occur, the same operation was repeated but every time BCL was decreased 1 ms until

CB occurred. The CB was observed when BCL = BCLthresMEFoff = 177 ms, where

BCLthresMEFoff is the smallest BCL under which CB occurred for this model when MEF

was not present. In the presence of MEF, the same steps were repeated for three dif-

ferent setting of Es (namely Es = 0 mV, -10 mV, and -20 mV) of the Isac model. For

every setting of Es, different values of Gs between 0 and 100 µS/µF were also consid-

ered. We observed that only when Es = 0 mV and for Gs >= 80 µS/µF, the threshold

of CB was shifted 3 ms to higher BCLs, this means that BCL = BCLthresMEFon = 180

ms, where BCLthresMEFon is the smallest BCL under which CB occurred for this model

when MEF was present. As shown in Fig. 3.14(A), CB occurred when beat number

= 62 and kept occurring till a steady state was reached at beat number = 400 (Fig.

3.14(B)). In one direction, changing Es can modify the magnitude and sign (inward

or outward) of Isac, which can have an effect on the APDs. In the other direction,

variations in the APDs can change the mechanical stretch, and this in turn can mod-
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ify the magnitude of the Isac. For example for the node located at 2 cm from the PS,

the variations of mechanical stretch are not identical for the two values of Es (Fig.

3.15). In addition, the magnitude and sign of Isac are also not the same. For the case

of Es = 0 mV (left of Fig. 3.15) and at the beat number 60, the magnitude of the

Isac, which is an inward current before the depolarization phase, is larger than the

one shown in Fig. 3.15(right) (the case of Es = -10 mV), and at early repolarization,

Isac was an outward current and became an inward for the case of Es = 0 mV, while

for the case of Es = -10 mV, it became zero. We previously showed that the Isac

magnitude, sign, and timing play a significant role in the dispersion of repolarization

via its influence on the CV dispersion. Figure 3.16 illustrates the effects of Es on the

dispersion of CV. As seen in this figure, for Es = 0 mV the CV along the cable was

changed, when compared with Es = 0 mV, for beats 5, 40, and 52 which correspond

to BCL = 390 ms (no alternans), BCL = 197 ms (concordant alternans) and BCL =

185 ms (discordant alternans). At beats 60 and 61 which correspond to BCL = 180

ms, Es = 0 mV the dispersion of CV was increased significantly and resulted in CB

at beat 62.

3.4 Conclusions

In this work, we studied the effects of MEF on the dynamics of alternans using

a 1D biophysically detailed electromechanical model of cardiac tissue. Numerical

simulations were performed for a range of BCLs and for different values of the Isac

model parameters, namely Gs and Es, where Isac is the main effects of MEF on

excitation. We found that MEF may play a role in arrhythmogenesis. We showed that

MEF, depending on the strength of Isac, can increase the dispersion of repolarization

via its influence on the dispersion of CV. In particular, it was illustrated that Isac

can induce the transition from spatially concordant alternans to spatially discordant

alternans when the strength of Isac is sufficiently large, and that the dispersion of

refractoriness is increased, if the existing state of alternans is discordant, when Gs

is increased. This is mainly due to the effects of Isac on CV of the electrical wave,

where the spatial variations in CV is increased with the increase of Gs. We also

found that the onset of CB can be shifted to a lower pacing rate for some setting
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Figure 3.16: CV vs X along a 7 cm cable of the FOXNHS model when MEF is off
and MEF is on (with Gs = 80 µS/µF, and for three different values of Es, which are
0, -10, and -20 mV), calculated at beats 5 (top left), 40 (top right), 52 (bottom left),
and 60-61 (bottom right).
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of the parameters of the Isac model. This is the case when Es = 0 mV and for

Gs ≥ 80 µS/µF, the threshold of CB can be shifted up to 3 ms. This is because, for

these given values, the contribution of Isac in the dispersion of CV is significant that

can result in localized block.
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Chapter 4

Control of cardiac alternans in an
electromechanical model of cardiac
tissue

4.1 Introduction

Electrical alternans is a physiological phenomenon manifested as beat-to-beat oscilla-

tion (electric wave width alternation) of the cardiac Action Potential Duration (APD)

[3]. Alternans has been shown to be a precursor to arrhythmias [2, 122] and sudden

cardiac death (SCD), which is the most common cause of death in the industrialized

world. Experimentally, APD alternans is observed during pacing at high rates so that

beyond a critical pacing value a sequence of long and short APDs emerges [123] as

presented in Fig. 4.1. In this figure, APD is defined as the period of time during

which the action potential exceeds the given threshold value, while a diastolic time

interval (DI) is defined as the period of time during which the action potential is

below the threshold value.

The majority of feedback control algorithms [16, 17, 18, 19, 20, 21] that have

been developed until now to suppress alternans in cardiac tissue utilize the difference

between the measurements of the two most recent APDs to make small adjustments

to the timing of electrical stimuli. These algorithms are specific implementations of

time-delay auto-synchronization [22] and extended time-delay auto-synchronization

[23] feedback control techniques. Hall et al. [16] used this approach to successfully

control cardiac arrhythmia called an alternans rhythm in an in vitro rabbit heart.

Similarly, Rappel et al. [17] suppressed alternans in two geometrical models of both

72



1D and 2D tissues, to conclude that several control electrodes need to be placed on

the tissue in order to stabilize normal heart rhythm. Control of atrioventricular-

nodal conduction alternans has also been demonstrated in vivo human hearts [18]

by stabilizing the underlying unstable steady-state conduction. The first experimen-

tal attempt to implement the electrical pacing interval technique is due to Hall and

Gauthier [20], who succeeded in suppressing alternans in small pieces (< 1 cm) of a

bullfrog cardiac muscle. Echebarria and Karma [19] were the first to investigate this

approach theoretically in a model of Purkinje fibers. They showed, by using Noble

model, that alternans in fibers no longer than ≈ 1 cm could be suppressed using

single electrode. Their theoretical results were experimentally verified by Christini et

al. [21]. In addition, Dubljevic et al. [24] proved regarding the stated approach, that

the failure to suppress alternans completely in tissues exceeding 1 cm in length is due

to the lack of information of the spatial evolution of alternans away from the pacing

site, and due to finite controllability of actuation at the pacing site.
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Figure 4.1: Time evolution of transmembrane potential in the Noble cardiac cell
model.

It has been shown theoretically and experimentally that the above mentioned con-

trol technique has a finite degree of controllability, such that alternans stabilization

in cardiac tissues of the length above 1 cm cannot be achieved [19, 21, 24, 25]. Al-

though such algorithms have proved effectiveness of controlling electrical alternans

in small tissues, several electrodes need to be implanted along the length of cardiac
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tissue (≈ 6.25 cm), so that each pacing electrode can suppress alternans in a fi-

nite part of the tissue (≈ 1 cm). In addition, to the authors’ best knowledge, all the

electric-based realization algorithms have not take into account mechanical properties

of cardiac tissue, despite the fact that mechanical deformation is shown to influence

electrical activity of the heart tissue, and consequently the cardiac alternans. In fact,

cardiac electrical waves propagate through cardiac tissue and initiate its contraction

via excitation-contraction coupling (ECC), while contraction of the heart causes car-

diac tissue deformation which in turn feeds back on the wave propagation and affects

electrophysiological properties via mechanoelectrical feedback (MEF) [124, 6, 7, 125].

Many studies have shown the importance of the MEF and, for instance, that

Table 4.1: Parameter values for the electromechanical model employed for small
deformation

k = 8 a = 0.05 ε = 0.1 µ1 = 0.12
µ2 = 0.3 kTa = 0.01kPa c̃ = 16kPa Gs = 1.6

mechanical impact on the chest, in the area directly over the heart, can either cause

Commotio Cordis, when the chest receives a blow [126, 127], or terminate cardiac
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arrhythmia by striking a blow of the fist to the chest in a precordial thump [128, 129].

Therefore, in this paper, we explore the feasibility of controlling electrical alternans

by manipulating mechanical properties of the cardiac tissue. From mathematical

point of view, electromechanical models where the coupling between electrical and

mechanical activity of the heart are more suitable for our study. A variety of these

models has been developed to investigate various physical phenomena and they can

be mainly classified into two categories. The weakly coupled electromechanical mod-

els [26, 27, 28, 29] that account only for the effects of electrical activity on the cardiac

mechanics, i.e., one way coupling, and the strongly coupled electromechanical models

[30, 31, 32, 33, 34] that account for the effects of electrical activity on the cardiac

mechanics and the effect of mechanical deformation on electrical properties. For more

details about the electromechanical models, the reader is referred to [35, 36]. In this

work, we will use Nash-Panfilov (NP) model [30, 31], which is a strongly coupled

electromechanical model. This model includes an additional variable to link the elec-

trophysiological properties of the heart tissue which is modelled with the well-known

Aliev-Panfilov (AP) model [46], with cardiac tissue’s mechanical properties. It has

been shown in [123] that APD alternans occurs when the slope of the dynamic APD

restitution curve is greater than one. Therefore, for the NP model, APD alternans

can be induced by pacing cardiac tissue at a rapid rate as the slope of the dynamic

restitution curve (Fig. 4.2) at high frequencies is greater than one. The dynamic

restitution curve, which describes the relationship between action potential duration

(APD) and preceding diastolic interval (DI), was constructed using a dynamic pacing

protocol [123] and determined by plotting each action potential duration at 90% re-

polarization against the preceding diastolic interval at incremental pacing rates. The

dynamic restitution curve of the NP model is the dynamic restitution curve of the

AP when coupled with cardiac contraction. As the NP model is dimensionless, units

are not used, refer to section 4 for details, and the models’ parameters used are given

in Table 4.1.

The main goal of this paper is to show that the control of cardiac alternans along

a 7 cm cable of cardiac cells can be achieved by control algorithms that use the me-

chanical perturbation approach. In particular, we consider several electrical pacing

and mechanical perturbation strategies with two relevant mechanical deformations
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being considered. The first one is in small deformation, and therefore the model is

governed by the equations of the linear elasticity theory [50, 130]. Since the cardiac

cells change length by up to 20%, which occurs as a result of cardiac contraction

during a normal heart beat [27, 30, 131, 132], the second strategy is therefore when

the deformation is large. The model in this case is however governed by nonlinear

equations of the finite deformation elasticity theory [50, 130, 133].

It will be demonstrated that in small deformation, one can suppress alternans

along the whole cable of cardiac cells by using mechanical perturbation strategy. The

control algorithm proposed for the large deformation, which is an extension of the one

used for small deformation, combines electrical boundary pacing and mechanical per-

turbation strategy. In all proposed algorithms, the electrical pacing is applied at the

tissue boundary while the mechanical perturbation control is applied at one place over

a small localized region within the cable length of 7 cm. Recently, mechanics-based

devices have been developed that can be attached to the membrane of the heart to

treat cardiac diseases [134]. The proposed control algorithm is a promising approach

that can be possibly incorporated into mechanical-based devices that can be equipped

with mechanical patch to apply mechanical perturbation over a small localized region

of the heart tissue in order to suppress alternans. Applying this control strategy to

control cardiac alternans can potentially improve therapy since it requires that one

mechanical patch, in a one-dimensional model, to be placed over a small region (≤ 1

cm), to suppress alternans, while the existing electrical pacing control requires several

electrodes to be implanted in the ventricles, which is very difficult to be realized, so

that each pacing electrode should be able to suppress alternans over a finite area of

cardiac tissue.

To the authors’ best knowledge, these methods of control of alternans have not

been explored in previous studies. Only Yapari et al. [97] used mechanical perturba-

tion approach in their control algorithm to suppress electrical alternans under con-

dition of small deformation, where the deformation gradient is simply approximated,

and their proposed algorithm cannot be extended to higher spatial dimensions. To

show the performance and efficiency of our methodology in suppressing alternans in

the whole cable of cardiac cells for small and large deformations, numerical simula-

tions will be presented.
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4.2 Mathematical Model

Due to the fact that cardiac cells change length by up to 20% during a normal heart

beat, the mechanical analysis in the NP model is based on the finite deformation

elasticity theory for large deformation. However, for small deformation, the math-

ematical model of deformation can be reduced to a simplified one governed by the

equations of the linear elasticity theory. The reader can refer to [50, 130, 133] for

more details on linear and nonlinear elasticity theories.

4.2.1 NP Model

Nash-Panfilov model that couples cardiac excitation using a two variable Reaction-

diffusion model with the equations that model the deformation of cardiac tissue is

given by:

∂V

∂t
= D̄

∂

∂XM

(√
CC−1

MN

∂V

∂XN

)
+ f(V, r) (4.1)

∂r

∂t
=

(
ε+

µ1r

µ2 + V

)
(−r −KV (V − b− 1)) (4.2)

∂Ta
∂t

= ε(V )(kTaV − Ta) (4.3)

∂

∂XM

(SMNFjN) = 0 (4.4)

Where f(V, r) = KV (V −a)(1−V )−rV −Ig. All parameters and variables are dimen-

sionless. V is the membrane potential, r is the recovery variable, and a is the threshold

parameter. D̄ = 1 is the diffusion constant, XM are the reference (undeformed) coor-

dinates, xi are the material (deformed) coordinates, FjN = (∂xj/∂XM) is the deforma-

tion gradient tensor, CMN = (∂xk/∂XM)(∂xk/∂XN) is the right Cauchy-Green defor-

mation tensor, SMN is the second Piola-Kirchhoff stress tensor, and C = det(CMN).

The active tension Ta, increases with V , with a delay fixed by ε(V ), given by 0.1

for V > a and 1.0 for V < a, kTa is a parameter that controls the amplitude of Ta,

the parameters ε, k, µ1 and µ2 have no clear physiological meaning, but are fitted to

reproduce the key characteristics of cardiac tissue [30]. The mechanoelectric feedback

is provided by stretch-activated currents (SACs),

Ig = Gs(V − 1)(
√
C − 1), (4.5)
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where Gs is the maximal conductance. The current, as defined in (4.5), is only present

during stretch (i.e. when
√
C > 1).

Due to active tension, described by Ta, cardiac tissue will deform until a new

equilibrium state is reached. The equilibrium equations (4.4), derived using New-

ton’s laws of motion, and boundary constraints are imposed on the model and solved

numerically to determine the mechanical deformation.

Cardiac tissues are anisotropic, inhomogeneous, and exhibit nonlinear stress-strain

relation called constitutive law [27]. A hyperelastic material model is a type of consti-

tutive model to describe material, mainly elastic material, for which the stress-strain

relationship derives from a strain energy density function. The hyperelastic Mooney-

Rivlin material model has been used to model the nonlinear mechanical behavior of

the myocardium [30, 31, 132, 135], as this model provides a close fit to the stress-

strain curve of cardiac tissue. In this work, this model is chosen to describe the passive

mechanical properties of cardiac tissue. An isotropic model, which exhibits identical

mechanical properties in all directions, such as Mooney-Rivlin model, is a simplified

description of the passive mechanical properties. But, since we restrict ourselves to

study a one-dimensional model, this simplification is justified. Mechanical stresses

in tissue are modeled as the summation of a passive and an active stress component

[30].

SMN =
1

2

(
∂W

∂CMN

+
∂W

∂CNM

)
+ TaC

−1
MN , (4.6)

where W (I1, I2) is the strain energy function for the Mooney-Rivlin model [130]. It

is given by:

W (I1, I2) = c1(I1 − 3) + c2(I2 − 3), (4.7)

with I1(C) = tr(C) and I2(C) =
1

2
(tr(C) − tr(C2)) are the first two principal

invariants of C, and tr(C) is the trace of C, and c1 and c2 are material constants.

4.2.2 Reduction of NP in 1D

In 1D, the deformation gradient tensor F , the right Cauchy-Green tensor C, and the

diffusion tensor D =
√
CC−1 can be written as:
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F =

F (X) 0 0
0 1 0
0 0 1

 , C =

F 2(X) 0 0
0 1 0
0 0 1

 (4.8)

D =


1

F (X)
0 0

0 F (X) 0
0 0 F (X)

 (4.9)

Let x = X + u, where x, and X are the material and reference coordinates

respectively, and u is the displacement variable, we can write F (X) as:

F (X) =
∂x

∂X
= 1 +

∂u(X)

∂X
(4.10)

The second Piola-Kirchhoff stress tensor, given in (4.6), is the sum of the passive

stress tensor (Spass) and the active stress tensor, and is expressed as:

S = Spass + TaC
−1 (4.11)

The second Piola-Kirchhoff passive stress tensor (Spass) for the Mooney-Rivlin ma-

terial is calculated, see [133] for more details, as:

Spass = 2 (c1 + c2tr(C)) I − 2c2C, (4.12)

The stress tensor S becomes:

S = 2 (c1 + c2tr(C)) I − 2c2C + TaC
−1 (4.13)

In 1D the second Piola-Kirchhoff stress S11 is expressed as:

S11 = c̃+
Ta

F 2(X)
, (4.14)

with c̃ = 2 (c1 + c2(D − 1)), and D is the dimension of F (D = 3). The Cauchy stress

tensor σ is given by:

σ =
1

J
F · S · F T, (4.15)

where J = det(F ), where det(F ) is the determinant of F . In 1D the Cauchy stress

σ11 can be calculated using (4.15) as:

σ11 = σ11
pass +

Ta
F (X)

, (4.16)
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where σ11
pass = c̃F (X). In the absence of deformation, σ11

pass must be zero. Therefore,

we need to apply an internal constant pressure p into σ11
pass that is given as:

σ11
pass = c̃F (X) + p (4.17)

The pressure p can be determined by requiring σ11
pass = 0 when F (X) = 1. This leads

to p = −c̃, and σ11 becomes:

σ11 = c̃F (X)− c̃+
Ta

F (X)
(4.18)

S11 can now be written, using S = JF−1σF−T, as:

S11 = c̃− c̃

F (X)
+

Ta
F 2(X)

, (4.19)

and the elastic equation (4.4) in 1D is given as:

∂

∂X

(
c̃F (X)− c̃+

Ta
F (X)

)
= 0 (4.20)

Replacing (4.10) by its value in (4.20), the following is obtained:

c̃
∂2u

∂X2
+

∂

∂X

 Ta

1 +
∂u(X)

∂X

 = 0 (4.21)

4.2.3 Reduction of NP in 1D in the limit of small deforma-
tions

In the limit of small deformations,
∂uk
∂XM

� 1, and the deformation gradient F (X),

given in (4.10), is approximated as:

F (X) = 1 + u(X) (4.22)

Assuming Ta � c̃, the elastic equation (4.4) in 1D is reduced into:

c̃
∂2u

∂X2
+
∂Ta
∂X

= 0, (4.23)

where c̃ = 2 (c1 + c2(D − 1)).

Linearized elastic model may be used for strains less than 5% [50, 130, 136].
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Figure 4.3: Time evolution of transmembrane potential, shown in a), depicting func-
tioning of an error signal when control is on, while b) depicts transmembrane potential
reference taken before alternation.

4.3 Control Algorithms

In this section, we describe the control algorithms developed to suppress alternans

for the NP model in 1D. Two control algorithms are presented. The first one is pro-

vided under small deformation condition and uses spatially distributed mechanical

perturbation control, which perturbs the tissue by exerting a force that causes nodal

displacement in cardiac tissue. This is reflected in a reaction-diffusion model via the

diffusion tensor and MEF, and consequently affects the electrical APD in order to

suppress alternans. The second control algorithm provided under large deformation

condition is an extension of the one developed for the small deformation condition. It

combines spatially distributed mechanical perturbation control with electrical bound-

ary pacing that can be realized by shortening or lengthening the period interval, which

has the effect of suppressing cardiac alternans up to 1 cm from the pacing site.

First, we induce alternans by reducing pacing cycle length for the onset of al-

ternans. The tissue is paced at the boundary at a basic pacing cycle length (PCL),

named τ ∗, such that the APD alternates. Under constant PCL, the amplitude of al-

ternans grows. The APD is measured from the instant when V crosses the threshold

value during the depolarization phase, until the instant it falls below this value during

the repolarization phase. The threshold value is chosen to be 0.4 (in dimensionless

units).
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Under small deformation condition, alternans suppression can be achieved by ap-

plying spatially distributed mechanical perturbation control which is implemented as

follows:

∂Ta
∂t

= ε(V )(kTaV − Ta) + βen(ζ) (4.24)

en(ζ) =


APDref(ζ = 0, τ ∗)− APDn−1(ζ), if ρ > 0

0 otherwise,

(4.25)

where β is the controller gain, and ρ = APDref(ζ = 0, τ ∗) − APDn−1(ζ). The er-

ror en(ζ) (defined in (4.25)) is generated from the difference between APD reference

(APDref(ζ = 0, τ ∗)) at the pacing site, recorded at the time we reach τ ∗, and the

APDs at the n-th stimulus (APDn), over the length of the area under spatially dis-

tributed control (1-1.5 cm region).

This basic state feedback algorithm takes en(ζ) and provides a control signal which

is applied over the region of 1-1.5 cm. The control signal is not null (active) only when

en(ζ) > 0, meaning that the controller only acts on the short-APD. It is added as a

positive quantity to (4.25), when the transmembrane potential crosses the threshold

value during the repolarization phase at the n-th stimulus (APDn), but it is set to

zero during the resting time (V < 0.01) until the transmembrane potential crosses the

threshold value during the repolarization phase at the n + 1-th stimulus (APDn+1)

(see Fig. 4.3).

As seen previously, the governing equations of the electromechanical NP model

are composed of three components: equations (4.1) and (4.2) that model the cardiac

electrophysiology, equation (4.4) that models cardiac tissue mechanics, and equation

(4.3) that models active tension. A simple schematic diagram of the mechanical per-

turbations control system, as shown in Fig. 4.4, consists of the three above mentioned

components, the controller, as defined in equations (4.24) and (4.25), and the sensor.

The controller acts on the difference between the desired APDref and the APDs mea-

sured by the sensor. When the difference is not null, it sends a control signal to the

active tension model to perturb the active tension variable, which in turn perturbs

mechanical properties of the cardiac mechanical model. The perturbation of mechan-

ical properties alters the electrical APD of the cardiac electrophysiological model, via
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Figure 4.4: A schematic diagram of the mechanical perturbations control system.
The difference between the APD reference, and the measured APDs is amplified
(gain based controller) and a control action is applied on the active tension model
to perturb the active tension variable, which in turn perturbs the mechanical dis-
placement variable of the cardiac mechanical model. This perturbation affects the
transmembrane potential, through the diffusion tensor and MEF.

the diffusion tensor and MEF, in order to suppress alternans.

Based on our numerical experiments, using this control strategy for the large de-

formation case, does not suppress alternans, therefore, we combined it with electrical

boundary pacing algorithm.

Boundary pacing control is realized by adjusting the stimulation pacing interval

subjected by the cardiac system, and is determined by the dynamic control scheme

[19]:

T n = τ ∗ + γ(APDn(ζ = 0)− APDn−1(ζ = 0)) (4.26)

T n represents the amount of time between the n-th and (n+1)-th stimuli. Here γ is

a tunable constant which defines feedback gain of the APD alternation of the basic

pacing cycle. For positive γ the second term on the right-hand side of (4.26) has the

effect of lengthening T n if the difference of two consecutive APDs is positive. As a

result, the following DI, and hence the next APD at the (n+1)th beat, is larger by

using this control scheme.

It has been demonstrated in [19, 21, 24] that this pacing control can suppress

alternans for the region from the pacing site up to a finite distance (≤ 1 cm). Beyond

that region the instabilities grow along the tissue, and discordant alternans has been
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observed. To overcome this limitation in controllability, we added an error based

feedback control algorithm that perturbs the tissue cardiac mechanics in a localized

region. The spatially distributed mechanical perturbation control, implemented as

defined in (4.24) and (4.25), provides a control signal which is applied over the re-

gion of 1-2 cm. The controller acts after the electrical boundary feedback controller

stabilizes a finite part of the tissue’s length (≈ 1 cm). The mathematical model used

for the case of small deformation is a simplification (elastic equation is linear) of the

one used for the case of large deformation (elastic equation is nonlinear). Therefore,

to illustrate the physiological differences in the models’ responses to the mechanical

perturbation algorithms, a mathematical analysis study, which goes far beyond the

scope of the present paper which focuses on numerical exploration, is required.

4.4 Numerical Results and Discussion

In all our simulations, a one dimensional cardiac cable of the length L = 7 cm, fixed

at the end points (isometric contraction regime) is considered. The excitation char-

acteristics of the medium was solved by a semi-implicit time integration scheme with

∆t = 0.02 (dimensionless) and ∆X = 0.1 (dimensionless), and we determined the

deformation mechanics of the tissue using the second order finite difference scheme.

As outlined in [30], to determine the scaling factor for the dimensionless time unit,

the dimensionless APD obtained from the model must be compared to experimen-

tal measurements. Scaling factors ranging from 5 ms to 14 ms have been reported

[46, 137, 138]. For the dimensionless space variable, 1 dimensionless unit corresponds

to 1 mm [137, 138].

For the given parameters of the cardiac model, APD alternans is induced by pac-

ing the tissue at the boundary at a constant period, starting with a large one, of 81

time unit, until a steady-state APD is reached. This is repeated, but each time the

period is reduced by one time unit, until an alternation in the APDs is observed, and

the resulting period, named tau∗, is the basic pacing cycle length (PCL).

In order to induce alternans, no initiation of a new action potential, due to ef-

fects of SACs [126, 31], should be allowed. Therefore, for a defined maximal local

deformation, Gs can be given any value that is less than a certain threshold, which
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is determined by numerical experiments, above which a new action potential is initi-

ated.

4.4.1 Control of cardiac alternans using spatially distributed
mechanical perturbation

Under condition of small deformation, (4.1) - (4.3), and (4.23) of the NP model are

solved. The constant materials c1 and c2, together with the parameter kTa determine

local deformations during contraction, so they are chosen to give rise to maximal local

deformations < 5% following excitation. All model parameters used in the simulation

are given in Table 4.1. For the given parameters, τ ∗ is found to be 60 time units. The

controller gain β is chosen to be −0.0006 in the simulation.

The amplitude of alternans, an(ζ), is defined as the difference between two con-

secutive APDs at a given point in space ζ:

an(ζ) = (APDn(ζ)− APDn−1(ζ))(−1)n (4.27)

As shown in Fig. 4.5(b), the control action, applied at t = 6000, successfully

suppress alternans. This control action alters the tissue’s transmembrane potential

through the diffusion transport tensor and MEF, in which changes in Ta affect the

mechanical displacement variable u in the elastic equation (4.4), which then affects

the transmembrane potential (4.1), through the tensor D and Ig. As shown in Fig.

4.6, the APD width alternates when the control is not applied, Fig. 4.6(a), and is

suppressed, Fig. 4.6(b), after the control is applied.

The presence of electrical alternans induces, through the mechanism of ECC, an

alternation in the heart muscle contractile activity, see Fig. 4.7. As can be seen, the

displacement variable u for a single cell alternates when APD alternates (Fig. 4.7(b)).

As shown in Fig. 4.8, the displacement variable alternates when the control is not

applied, Fig. 4.8(b), and is suppressed (Fig. 4.8(c)) after the mechanical perturbation

control is applied. It has to be noted that the largest displacements after applying

control (Fig. 4.8(c)), with respect to the displacements before applying control (Fig.

4.8 (a) and (b)), occur in the localized region (1-1.5 cm), where the control signal is

applied. As shown in Fig. 4.9, the largest changes in Ig after applying control (Fig.
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Figure 4.5: Amplitude of alternans of the NP model. The amplitude of alternans
grows, shown in (a), when no control is applied, while (b) illustrates the alternans
suppression by the mechanical perturbation algorithm when the control action is
applied at t = 6000.
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Figure 4.6: Time evolution of transmembrane potential variable before (a), and after
(b) the control is applied.
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Figure 4.7: Time evolution of transmembrane potential and displacement variables
for the center of the medium, shown in (a), when no alternans is present, while (b)
illustrates time evolution in the presence of alternans.

4.9(c)), with respect to Ig before applying control (Fig. 4.9(a) and (b)), occur in the

localized region (1-1.5 cm) where the control signal is applied.

Although spatially distributed control is only applied over a localized region of

the tissue (0.5 cm), it successfully suppress alternans along the tissue. Thus, using a

model based on the mechanical properties of cardiac tissue, it is clearly shown that

spatially distributed mechanical perturbation control can be used to manipulate the

electrical APD in order to suppress alternans.

Moreover, although mechanical perturbation control is applied locally, it perturbs

the mechanical displacement u globally in the elastic equation (4.4), since the per-

turbation occurs along the entire points of the cable but the end points which are

fixed, and the largest displacements after applying control, with respect to the dis-

placements before applying control, occur in the localized region (1-1.5 cm) where

the control signal is applied. This perturbation affects the transmembrane potential

globally in equation (4.1), through the diffusion tensor (D) and MEF (Ig), since it is

applied along the entire cable length of cardiac cells.

4.4.2 Control of cardiac alternans using electrical boundary
pacing and spatially distributed mechanical perturba-
tion

Under condition of large deformations, (4.1) - (4.3), and (4.21) of the NP model are

solved. The constant materials c1 and c2, together with the parameter kTa determine
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Figure 4.8: Time evolution of displacement variable, shown in (a), when no alternans
is present, while (b) illustrates time evolution in the presence of alternans, while (c)
illustrates time evolution when the control signal is applied.
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Figure 4.9: Time evolution of the stretch-activated currents Ig(ζ, t), shown in (a),
when no alternans is present, while (b) illustrates time evolution in the presence
of alternans, while (c) illustrates time evolution when the control signal is applied.
Note that Ig(ζ, t) is multiplied by -1 for clarity. The largest changes in Ig after
applying control (c), with respect to Ig before applying control (a) and (b), occur in
the localized region (1-1.5 cm) where the control signal is applied.
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local deformations during contraction, so they are chosen to give rise to maximal local

deformations between 5% and 20% following the excitation. All model parameters

used in the simulation are given in Table 4.2. For the given parameters, τ ∗ is found

to be 53 time units. In the simulation, γ = −0.275 and β = 0.005.

It has been demonstrated in [24] that in order to suppress alternans in the cables

of the length > 1 cm, a model-based control algorithm, that is realized with a num-

ber of measurements used in the feedback realization at least equal to the number of

unstable modes, must be used. The electrical pacing algorithm defined in (4.26) uses

boundary point measurement of the amplitude of alternans, and therefore it can just

stabilize a single mode. This is due to the fact that the tissue characteristic length of

≈ 1 cm has one unstable mode. This algorithm cannot achieve stability for the cables

exceeding 1 cm in length due to the presence of unstable modes that start to appear

when the length of the tissue size is considerably increased. Inability of electrical

pacing algorithms to control alternans in longer cables (> 1 cm) is due to the lack of

knowledge of the spatial evolution of alternans.

On the other hand, it is not feasible to have a spatially distributed electrical

Table 4.2: Parameter values for the electromechanical model employed for large de-
formation

k = 8 a = 0.05 ε = 0.1 µ1 = 0.12
µ2 = 0.3 kTa = 1kPa c̃ = 1.78kPa Gs = 0.05

perturbation for alternans control, since the existence of several pacing centers would

change the location of the onset of the propagating excitation wave, which in general

cannot take place away from the apex of the heart. Also, simultaneous pacing at

two sites cannot be used, since the induced beats, coming from both sides of the

cable, collide and annihilate when the two wavefronts meet. In addition, implement-

ing spatially distributed electrical perturbations, by using many electrodes, placed

one after another, in a small localized region will not suppress alternans either, be-

cause the perturbation input to voltage of a nonlinear cardiac excitable cell model

cannot be realized due to strong coupling of ionic currents models. Therefore, using

solely perturbation of the pacing control would not work due to the intrinsic nonlin-

ear dynamics of the propagating excitation wave, and its manifestation of alternans
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Figure 4.10: Amplitude of alternans of NP model. The amplitude of alternans grows,
shown in (a), when no control is applied, while (b) illustrates the alternans suppres-
sion by electrical boundary pacing applied when τ ∗ is reached, while (c) illustrates
the alternans suppression by electrical boundary pacing and spatially distributed me-
chanical perturbation when the control action is applied at t = 14000.
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Figure 4.11: Time evolution of transmembrane potential variable before (a), and after
(b) the control is applied.
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instabilities, which is associated with unidirectional propagation of the electric wave

from the pacing center to the external tissue. Hence, an independent type of inter-

action through the inclusion of mechanical perturbation is added, since this method

of interaction is independent of the pacing protocol, and a model-based control al-

gorithm that combines the pacing interval with the spatially distributed mechanical

perturbation is used. This model-based control has a full knowledge of the entire

state of alternans, since it is realized with sufficient measurements in the feedback.

As shown in Fig. 4.10, the amplitude of alternans grows (Fig. 4.10(a)) when no

control is applied, and when the control action is applied at t = 14000, it successfully

suppress alternans (Fig. 4.10(c)). This control action alters the tissue’s transmem-

brane potential when mechanical perturbation is applied, in which changes in Ta affect

the mechanical displacement variable u in the elastic equation (4.4), which then af-

fects the transmembrane potential (4.1), through the tensor D and Ig. Perturbing

the diffusion tensor and MEF alter the tissue’s electric wave profile, and consequently

the APD. As shown in Fig. 4.11, the APD width alternates when the control is not

applied, Fig. 4.11(a), and is suppressed, Fig. 4.11(b), after the control is applied.

Although the spatially distributed control is only applied over a localized region

of the tissue (1 cm), it successfully suppresses alternans along the tissue. Thus, the

control of alternans in large and relevantly sized cardiac tissues can be achieved by

the manipulation of the electrical APD using a model based on the mechanical and

electrophysiological properties of cardiac tissue.

4.5 Conclusion

Most studies attempted to suppress alternans in cardiac tissue by adjusting the

boundary pacing interval by using models that account only for electrophysiologi-

cal properties of cardiac tissue. This feedback control strategy has failed to suppress

alternans completely in tissues exceeding 1 cm [19, 21, 24, 25]. In this study, we utilize

an electromechanical model (NP model) for cardiac tissue which couples cardiac ex-

citation and contraction. We consider two aspects of elasticity, linear and nonlinear,

for cardiac mechanics depending on the maximal local deformations that can occur

in cardiac tissue. Our control algorithms consider electrical pacing and error based
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feedback control that is implemented using mechanical perturbation control strategy

and employ direct mechanical perturbation in a localized region on the tissue in or-

der to suppress alternans. Perturbing cardiac tissue mechanics in a localized region

of the tissue alters the tissue’s electric wave profile, and consequently the electrical

APD, in order to suppress alternans. We have demonstrated that by the inclusion

of spatially distributed mechanical perturbation control, we have overcome the lim-

itation in controllability of the electrical pacing control, and achieved the alternans

suppression in relevantly sized cardiac tissues. Numerical simulations were presented

demonstrating that a model based on the mechanical and electrophysiological prop-

erties of cardiac tissue can be used to successfully suppress alternans, under small

and large deformation conditions, along the whole cable of the cardiac tissue cells.
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Chapter 5

Mechanical perturbation control of
cardiac alternans

5.1 Introduction

Electrical alternans is a beat-to-beat long-short alternation in the cardiac action po-

tential duration (APD) (Fig. 5.1 (a)) [3], and is believed to be linked to the onset

of lethal heart rhythm disorders such as ventricular fibrillation (VF) [1, 2]. The di-

astolic interval (DI) (Fig. 5.1) is the time lapse between the end of the previous

action potential and the next one (Fig. 5.1). It has been shown both clinically and

experimentally that alternans degenerates quickly into ventricular tachycardia or fib-

rillation. Clinical manifestations of alternans is reflected in a beat to beat alternation

of T-wave amplitude, known as T-wave alternans (TWA), on the electrocardiogram

(ECG). The TWA is a marker of vulnerability to VF, and of sudden cardiac death

(SCD) [4]. Experimentally, it has been observed that alternans can lead to complex

spatiotemporal patterns along the epicardium and endocardium [139], and often pre-

cedes the development of more dangerous arrhythmias. Therefore, the suppression of

cardiac alternans is potentially an effective strategy in preventing VF and SCD.

In the literature, electrical perturbation control has been the most studied ap-

proach to terminate alternans, see [51] for details. With this approach, the pacing

cycle length (PCL) is perturbed by an amount proportional to the difference between

the last two APDs. This control algorithm has been proven to be effective in con-

trolling alternans in small tissues of up to 1 cm. A one-dimensional (1D) map that

relates the DI at one beat to the APD of the subsequent beat via the restitution curve
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Figure 5.1: Schematic representation of voltage and calcium alternans.

(see Section 4), is used to describe the alternans [69, 70]. Another important factor

influencing alternans is the bidirectional coupling between the membrane voltage (V )

and intracellular calcium (Ca2+) dynamics, where the APD alternans induces alter-

nation in the amplitude of calcium transients through the V → Ca2+ coupling (Ca2+

alternans) (Fig. 5.1). Iterative maps [16, 140, 141, 75, 77] have been used to perform

stability analysis of alternans. In [16], a two-dimensional (2D) discrete map at the

single cell level is presented. At the tissue level, the amplitude of equations derived

from the maps by taking into account the effect of electrotonic coupling, is used to

analyze the stability of the system of coupled maps [140]. Moreover, a theoretical

framework of iterative maps describing the coupled dynamics of V and Ca2+ has

been previously used at the subcellular and cellular levels [141, 75, 77, 76].

Nearly, all the work that has been done on the stability and control of alternans

is electric-based. However, recently a novel mechanical perturbation algorithm to

suppress alternans was presented in [97, 51]. This perturbation is reflected in cardiac

excitation through the mechanisms of mechano-electric feedback (MEF). The main

advantage of this approach is that the alternans is suppressed in cardiac tissues of

relevant size. In [51], we used a simple phenomenological model of cardiac excitation,

while active tension was generated with an oversimplified isotropic active tension
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transient.

In this work, we analyze the effects of mechanical perturbation on the dynamics

of the map-based model. This model is based on coupling between the membrane

voltage and active tension systems at the cellular level, and uses a theoretical frame-

work of 2D iterative maps of the heart beat-to-beat dynamics. To make this possible,

a simplified description of MEF is provided, and a coupled map model describing

the bidirectional coupling between the membrane voltage and active tension at the

cellular level is presented. Also, a discrete form of the proposed control algorithm

that can be used in the coupled map model is derived. The stability of the model

can be analyzed from the eigenvalues of a Jacobian matrix of the system of coupled

maps.

In a second goal of this study, a biophysically detailed model of cardiac electrome-

chanics is employed to investigate the control of alternans. We explore the feasibil-

ity of suppressing cardiac alternans in a realistic electromechanical model using the

mechanical perturbation strategy. Luo-Rudy [49] and Fox [48] models are used to

represent electrical activity in heart tissue, while mechanical properties are described

by the Mooney-Rivlin material response [51, 30]. Active tension that couples the elec-

trophysiological model and the cardiac mechanics model is generated using a smooth

variant of the Nash-Panfilov [55] model and the Niederer-Hunter-Smith [56] model.

Numerical simulations are presented to demonstrate successful suppression of alter-

nans in two realistic electromechanical models of cardiac tissue using the proposed

control algorithm.

The paper is organized as follows. In Section II, we describe the cardiac electrome-

chanical model used in this work. The mechanical perturbation control algorithm is

presented in Section III. Section IV is devoted to theoretical analysis, and a stabil-

ity analysis of the derived system of coupled maps at the cellular level is provided.

Section V presents numerical simulations demonstrating successful suppression of al-

ternans by the proposed control algorithm, followed by a discussion. The findings are

summarized in Section VI and future prospects are proposed.
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5.2 Cardiac electromechanical model

In this section, we describe mathematical equations that model the electrical excita-

tion and mechanical contraction.

5.2.1 Cardiac Mechanics

Mechanical analysis is based on the finite deformation elasticity theory, therefore a

mathematical model of cardiac deformation is governed by equations of nonlinear

elasticity. These equations are derived using Newton’s laws of motion [51, 30] and

are expressed as:
∂

∂XM

(SMNFjN) = 0, (5.1)

where FjN = (∂xj/∂XM) is the deformation gradient tensor, XM are the reference

(undeformed) coordinates, xi are the material (deformed) coordinates, the uppercase

subscripts (M and N) and lowercase subscripts (i and j) correspond to the reference

and current configurations, respectively, and SMN is the second Piola-Kirchhoff stress

tensor.

Two approaches, namely active strain and active stress, have been proposed to

model the active mechanical response of the myocardium. For the active strain model,

a multiplicative decomposition [52] of the deformation gradient tensor into a passive

and an active part is assumed. The second model, which is the most widely used

and it is adopted in this work, is based on the concept of active stress [30]. In this

approach, SMN is split into a passive and an active stress component [30], and is

given by:

SMN =
1

2

(
∂W

∂CMN

+
∂W

∂CNM

)
+ TaC

−1
MN , (5.2)

where W (I1, I2) is the strain energy function, CMN = (∂xk/∂XM)(∂xk/∂XN) is the

right Cauchy-Green deformation tensor, and Ta is active tension generated by the

electrical model. The isotropic Mooney-Rivlin constitutive model, which is used to

describe passive mechanical properties of the cardiac tissue [51, 30], is adopted in the

present study, where the strain energy W is given by:

W (I1, I2) = c1(I1 − 3) + c2(I2 − 3), (5.3)
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with I1(C) = tr(C) and I2(C) =
1

2
(tr(C) − tr(C2)) are the first two principal

invariants of C, and tr(C) is the trace of C, and c1 and c2 are material constants.

The elastic equation (5.1) in one dimension can be written (see [51]) as:

c̃
∂2u

∂X2
+

∂

∂X

 Ta

1 +
∂u(X)

∂X

 = 0, (5.4)

where u = x − X is the displacement variable, x and X are material and reference

coordinates respectively, and c̃ = 2(c1 + 2c2) is the material stiffness.

It has been shown in [7] that direct physiological influence of contraction on exci-

tation of cardiac muscle cells, which is termed as mechanoelectric feedback, is given

by depolarizing stretch-activated current (ISAC) through stretch-activated channels.

ISAC can change the shape of the action potential in response to stretch. A linear

voltage-current relationship has been found in experimental studies and linear ionic

models have been proposed [60] for ISAC . In this work ISAC as described in [67] is

adopted, and is given as:

ISAC = Gs
(λ− 1)

(λmax − 1)
(V − Es), (5.5)

where Gs and Es are maximal conductance and reversal potential, respectively, and

λ is the extension ratio along the fiber direction, which is normalized by maximal

stretch (λmax). Following [67], the parameter Gs can take any value between 0 and

100 µS/µF, and Es in most biophysical models takes the value of −20 mV . As shown

in [67], cardiac cells are assumed to be stretched maximally between 5-10% of the

resting position. The ISAC (Eq. (5.5)) is active during stretch, i.e. it is only present

when λ > 1, otherwise, ISAC = 0, and is added to total ionic membrane current

generated by the ionic model discussed under the cardiac excitation. In a 1D cable

of heart tissue, we assume that cardiac fibers are parallel to the X-direction of the

undeformed body.

5.2.2 Cardiac excitation

A monodomain model is used to represent cardiac excitation, described by the fol-

lowing parabolic partial differential equation [37]:

Cm
∂V

∂t
=

∂

∂XM

(
DMN

∂V

∂XN

)
− (Iion(u, V ) + Istim),

100



du

dt
= f(u, V ), (5.6)

where V is the membrane voltage, DMN is the diffusion tensor that accounts for

electrical anisotropy of cardiac tissue, Cm is the membrane capacitance, Iion is the

ionic membrane current describing the excitable behavior of cardiac cells, f a general

function representing the choice of a cell model, u is the vector of dependent states

variables containing ionic concentrations and membrane gating variables, and Istim is

the externally electrical stimulus applied at the pacing site. Two cardiac ionic models,

namely, Fox model given in [48] and Luo-Rudy-1 (LR1) model [49], are employed in

the present study to represent electrophysiological properties of the heart. LR1 is

a mammalian ventricular cell based model which incorporates interaction between

depolarization and repolarization and accounts for the calcium dynamics in cardiac

myocyte. In total, the Luo-Rudy model consists of six individual currents, and of a

system of 8 ODEs including the intracellular calcium ion concentration. In 2002, Fox

et al. [48] presented the canine ventricular myocyte, and it was the first model to

ensure occurrence of alternans at fast pacing rates. This model uses 13 currents and

consists of a system of 13 ODEs. Moreover, compared to LR1 model, the Fox model

incorporates a simplified description of intracellular calcium, therefore, it explicitly

accounts for bidirectional coupling between the transmembrane potential and the

intracellular Ca2+ concentration, while the LR1 model does not.

To take into account mechanical deformation of the tissue, neglected in this model,

we modify Eq. (5.6) as described in [30, 67] to obtain:

Cm
∂V

∂t
=

1√
C

∂

∂XM

(√
CDMNC

−1
MN

∂V

∂XN

)
− (Iion(u, V ) + ISAC(λ, V ) + Istim),

du

dt
= f(u, V ), (5.7)

where C = det(CMN). A novel approach based on the concept of stress-assisted

diffusion [142] to describe diffusion processes in a deforming excitable medium, such

as cardiac tissue, is proposed. The diffusion tensors employed in [142] are directly

influenced by the mechanical stress. Important effects of stress-assisted diffusion in

the drifting and conduction velocity of excitation waves are revealed in their study.
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5.2.3 Generation of active tension

In this study, two models of active tension generated in response to electrical activa-

tion and coupled to nonlinear stress equilibrium equations, are considered.

The first model for the active tension generation is a smooth variant of the Nash-

Panfilov (SVNP) model [30, 55, 143] which consists of one ODE and takes voltage as

an input, and is given as follows:

∂Ta
∂t

= ε(V )(kTa(V − Vr)− Ta),

ε(V ) = ε0 + (ε∞ − ε0)exp[−exp(−ξ(V − Vs))], (5.8)

where the parameter kTa controls the maximum value of Ta for a given potential V

and a given resting potential Vr. ε(V ) is the smoothly varying form for the switch

function proposed in [30], given in terms of the parameters ε0 and ε∞ that represent

the two limiting values of the function for V < Vs and V > Vs about the phase shift

Vs, respectively, and the parameter ξ that determines the transition rate of ε from ε0

to ε∞ about Vs.

The second one is the Niederer-Hunter-Smith (NHS) model [56], which is an ad-

vanced model that depends on quantities derived from both the cardiac mechanics

and excitation models. The NHS model consists of a system of 5 ODEs and the

general form of the system can be written as:

dw

dt
= g(w, λ,

dλ

dt
, [Ca2+]i, Ta),

Ta = h(w), (5.9)

where w = [w1, w2, w3, w4, w5] is the vector of internal state variables for the contrac-

tion model, g = [g1, g2, g3, g4, g5] and h are prescribed nonlinear functions. [Ca2+]i is

the intracellular concentration of Ca2+ ions generated by the ionic model, and λ is

the extension ratio calculated from the mechanics model. The detailed form of equa-

tions for this model is given in [56]. In this model, cardiac contraction results from

active tension generated by the myofilaments dynamics initiated by an increase in

intracellular calcium concentration [Ca2+]i, where the concentration of calcium binds

to troponin C (TnC), and follows tropomyosin kinetics with actin sites for myosin

crossbridges. In this model, the Ca2+ binding to TnC is defined by:

d[Ca2+]Trpn

dt
= kon[Ca2+]i([Ca2+]TrpnMax − [Ca2+]Trpn)
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− krefoff(1− Ta
Γ Tref

)[Ca2+]Trpn, (5.10)

where kon and krefoff are the binding and unbinding rates of Ca2+ binding to TnC,

[Ca2+]Trpn is the concentration of Ca2+ bound to TnC, [Ca2+]i is the cytosolic Ca2+

concentration, [Ca2+]TrpnMax is the maximal concentration of Ca2+ that can bind to

site (II), Ta is active tension generated by the cell and Tref is maximal isometric

tension under zero strain whilst Γ is tension dependent buffering parameter. The

values of these parameters are given in [56]. The equation (5.10) can be written as:

dw1

dt
= g1(w1, λ,

dλ

dt
, [Ca2+]i, Ta), (5.11)

where w1 = [Ca2+]Trpn, and g1(w1, λ,
dλ

dt
, [Ca2+]i, Ta) is equal the right-hand side of

Eq. (5.10).

5.3 Control algorithm

Our control strategy is based on combining spatially distributed mechanical perturba-

tion algorithm [51] with electrical boundary pacing algorithm [140] in order to control

alternans. First, the tissue is paced at the boundary at PCL, named τ ∗, such that

the APD alternates. Under constant PCL, the amplitude of alternans (Eq. (5.26))

grows.

Boundary pacing control is realized by modulating the pacing interval based on

the consecutive APDs at the pacing site, and is determined by the dynamic control

scheme [140]:

T n = τ ∗ + γ (APDn(ζ = 0)− APDn−1(ζ = 0)) (5.12)

T n represents the amount of time between the (n − 1)-th and n-th stimuli, and

ζ represents space. Here γ is the feedback gain. As described in [51], this feedback

control has the effect of lengthening or shortening T n at the n-th stimulus based on the

difference of two consecutive APDs. This approach is capable of suppressing cardiac

alternans at the pacing site and up to a finite distance (≤1 cm) [140, 21, 24]. Beyond

that region, the instabilities grow along the tissue. To overcome this limitation in

controllability, we combined it with a spatially distributed mechanical perturbation

algorithm [51].
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Depending on the active tension mathematical model employed, two different

mathematical implementations are used to implement the mechanical perturbation

control strategy.

For the SVNP model, the spatially distributed mechanical perturbation control

algorithm is implemented as follows:

∂Ta
∂t

= ε(V )(kTa(V − Vr)− Ta) + βen(ζ),

en(ζ) =


APDref(τ

∗)− APDn−1(ζ), if ρ > 0

0, if ρ ≤ 0

(5.13)

where β is the controller gain, and ρ = APDref(τ
∗) − APDn−1(ζ). The error en(ζ)

is generated from the difference between APDs references (APDref(τ
∗)) recorded be-

tween the time we reach τ ∗ and the following beat, over local area under control, and

the APDs at the (n − 1)-th stimulus (APDn−1), over the same area length. This

means that the mechanical properties of cardiac tissue are perturbed as a result of

Ta perturbation (an additional term given by βen(ξ) is added into Ta) when en(ξ) is

not null. The reader can refer to [51] for more details.

This basic feedback algorithm takes en(ζ) and provides a control signal which

is applied over the region under control. The control signal is not null only when

en(ζ) > 0, meaning that the controller only acts on the short-APD. It is added as a

positive quantity to Eq. (5.13), when the transmembrane potential crosses the thresh-

old value, named Vth, during the repolarization phase at the n-th stimulus until the

resting potential Vr. In the control algorithm, Vth is set to Es, the reversal potential

defined in Eq. (5.5). Therefore we can assume that ISAC has the same sign (inward

current) when control is activated. The controller acts after the electrical boundary

feedback controller stabilizes a finite part of the tissue length (≈ 1 cm).

For the NHS model, the spatially distributed mechanical perturbation control

algorithm is implemented as follows:

dw1

dt
= g1(w1, λ,

dλ

dt
, [Ca2+]i, Ta) + β1e1n(ζ),
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e1n(ζ) =


APDref(τ

∗)− APDn−1(ζ), if ρ > 0

0, if ρ ≤ 0

(5.14)

where β1 is the controller gain, and ρ = APDref(τ
∗)−APDn−1(ζ). The functionality

of e1n(ζ) is the same as en(ζ). Also, in this model the controller acts after the electrical

boundary feedback controller stabilizes approximately 1 cm of the tissue length.

5.4 Theoretical analysis

In this section, we analyze the effects of the mechanical perturbation algorithm on the

dynamics of the map model that couples the membrane voltage and active tension

systems at the cell level. Therefore, we introduce a 2D iterative maps of the beat-

to-beat dynamics, and a discrete form of the proposed control algorithm that can

be incorporated in the coupled map model is derived. Then, we perform stability

analysis of the system of the coupled maps. This analysis is performed using the

SVNP model, which describes qualitatively consistent timing and amplitude of cardiac

tissue contraction [144]. While the active cell tension is better represented using

the NHS model that accurately describes the relationship between the intracellular

calcium transient and tension, the selection of the SVNP model is made due to the

simplicity of the governing equations of this model, where a discrete form of the control

algorithm can be derived. In addition, in this study, we are investigating the effects of

mechanical perturbation (stretch-based control algorithm) on alternans to gain insight

into the effectiveness of the control algorithm, that have been confirmed by numerical

experiments, using both SVNP and NHS models of active tension. While these two

models do not generate the same quantitative results (shape and magnitude) of ISAC ,

which causes either the lengthening or shortening of the action potential as discussed

in the next section, qualitatively similar results of ISAC (approximately proportional

increases or decreases of ISAC from beat to beat) are obtained for both models.
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5.4.1 Map model development

The electrophysiology of a cell experiences feedback from tissue deformation, which

activates stretch sensitive ion channels, is described in Section 2. Therefore, ISAC

(Eq. (5.5)), which is a function of two variables λ (Eq. (5.5)) and V (Eq. (5.7)),

should be expressed only in terms of V and Ta (Eq. (5.8)), to have direct coupling

between voltage and active tension. To this end, an approximation of λ in terms of

Ta is given in Appendix A. Thus, λ as given in Eq. (13.S) is a function of Ta only,

and the simplified description of ISAC , after replacing the approximate value of λ in

Eq. (5.5), becomes a function of V and Ta. Therefore, the simplified fully coupled

electromechanical cell (CEC) model is constituted by Eqs. (5.7), (5.8), (5.5), and

(13.S).

In the following, we check the effectiveness of mechanical and electrical pertur-

bation controls in suppressing the alternans using the simplified CEC model. For

numerical demonstration, a 1D cardiac cable of length L = 1 cm, and fixed at end

points is considered. The step sizes and parameters of this model are given in Section

5 and in Tables 5.1 and 5.2. The APD alternans is induced by pacing the cable in

the middle with PCL = 200 ms until steady state is reached. Electrical perturbation

control is given in Eq. (5.12) with γ = 0.15, and mechanical perturbation control is

given in Eq. (5.13), and en(ζ) takes the form given by Eq. (65) in [97], and therefore

we obtain:

∂Ta
∂t

= ε(V )(kTa(V − Vr)− Ta) + βen(ζ),

en(ζ) =


APDn(ζ)− APDn−1(ζ), if ρ < 0

0, if ρ ≤ 0

(5.15)

where ε(V ) is defined in Eq. (5.8). The values of original parameters of ε(V ), given

in [55], are modified (see Table 5.1), in order to take into account time delay as illus-

trated in Fig. 2(a) in [30]. The controller gain β is chosen to be -0.002. Therefore,

in both control algorithms (electrical and mechanical), we have the same error signal

which is generated by the difference between two consecutive APDs. In the case of

electrical control, the pacing interval is being perturbed, while in the case of mechan-
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ical control, we are perturbing Ta. As shown in Fig. 5.2, the alternans is suppressed
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Figure 5.2: Evolution of the APD versus the beat number (n) of a single cardiac
cell in the middle of the cable of length L = 1 cm, when it is paced at the center
with PCL = 200 ms until steady state is reached (black line), using the CEC model
(Eqs. (5.7), (5.8), (5.5), and (13.S)) where FOX model is used to represent electrical
activity, with parameters given in Section 5 and in Tables 5.1 and 5.2. Evolution of
APD versus n, when mechanical perturbation control (red dashed line), or electrical
perturbation control (blue dash-dot line), applied at beat 100, are obtained using the
CEC model except that Eq. (5.15) (with β = −0.002) is used instead of Eq. (5.8) for
the case of mechanical control, and Eq. (5.12) (with γ = 0.15) is added to the CEC
model for the case of electrical control.

(no alternation in the APD at steady state), when control (electrical or mechanical)

is activated. While both control algorithms have successfully suppressed alternans at

a single cardiac cell, their effectiveness at the tissue level is not equal, since, among

other things, a spatially extended electrical perturbation algorithm for controlling

alternans is not feasible, see [51] for details.

The second step in this development is to introduce a 2D discrete map describing

the coupled dynamics of the membrane voltage and the active tension. The APD

alternans can be mathematically described using the following discrete map:

APDn = F (DIn−1) (5.16)

The relation in Eq. (5.16), known as APD restitution, relates APD at beat n (APDn)

with DI at beat n−1 (DIn−1). It dictates that a shortened (prolonged) DI at a given

beat will be followed by a shortened (prolonged) APD at the next beat. The interval
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T n (Eq. (5.12)) can be written as T n = APDn + DIn. At a constant PCL, where

T n = τ for all n, prolonging a given APD will shorten the following DI, and therefore

the next APD is shortened. APD restitution is usually measured using an S1S2

pacing protocol. In the S1S2 protocol, the cell is paced at a fixed cycle length S1

until steady-state is reached, and then a premature S2 stimulus is applied to elicit an

extra beat. This S1S2 stimulus train is repeated and the S2 intervals are shortened

each time until conduction block occurs. Theoretical studies have indicated that the

periodic fixed point of Eq. (5.16) corresponding to the stable 1:1 rhythm undergoes a

period-doubling bifurcation (2:2 rhythm), leading to the APD alternation, when the

slope of the APD restitution curve is greater than one. It has to be noted that in large

tissues, while most of the tissue may follow a 2:2 response, some regions can develop

into higher-order rhythms such as 4:4 and 8:8 during fast pacing. However, several

experimental results have shown that this hypothesis (slope > 1) fails to predict the

onset of alternans when other factors, such as calcium cycling, have a strong influence

on action potential. Therefore, in [75, 77], a 2D iterative maps are used to explore

the effects of coupling between voltage and intracellular calcium transients, and is

given by:

APDn = Fc1(APDn−1,Can),

Can = Fc2(APDn−1,Can−1), (5.17)

which relates the APDn at a given beat to the APDn−1 at previous beat, due to

the APD restitution (Eq. (5.16)), and the peak Can (Fig. 5.1) of the same beat,

due to the effects of calcium-sensitive membrane currents, and relates the Can at a

given beat to the APDn−1 and the peak Can−1 at previous one. The Ca2+ modulates

membrane currents through the Ca2+ → V coupling, affecting the APD, and as

dictated in Eq. (5.17), the coupling from Ca2+ to V occurs during the concurrent

beat. The situation where APD and Ca2+ alternans are in phase, the case where

long and short APD correspond to large and small Ca2+ respectively, is referred to

as electromechanically concordant (EMC) alternans [75] (Fig. 5.1(a)). The opposite

situation is known as electromechanically discordant (EMD) alternans (Fig. 5.1(b)).

To take into account the effects of MEF, and based on numerical experiments of

the CEC model (Eqs. (5.7), (5.8), (5.5), and (13.S)) where FOX model is used to
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represent electrical activity, with parameters given in Section 5 and in Tables 5.1 and

5.2, we use a semi implicit formulation of 2D maps that relates the APD and the

active tension duration (ATD) (Fig. 5.3), and is given by:

APDn = F1(APDn−1, ATDn),

ATDn = F2(APDn−1, ATDn−1), (5.18)

where ATDn (lower part of Fig. 5.3) is the Ta width at beat n, measured from the

V

T
a

APD
n-1

DI
n-1
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X X X X
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Figure 5.3: Schematic representation of membrane voltage and active tension, illus-
trating the APD and the ADT, using the CEC model where FOX model is used to
represent the electrical activity, in the presence of alternans.

instant when Ta crosses the threshold value on the wave front, until the instant it falls

below the threshold value on the wave back, and APDn (upper part of Fig. 5.3) is the

V width at beat n, measured from the instant when V crosses the threshold value on

the wave front, until the instant it falls below the threshold value on the wave back.

Similarly to the APD in Eq. (5.17), the APD of the current beat (APDn) (Eq. (5.18))

is a function of both the previous APD (APDn−1) and the concurrent ATD (ATDn),

due to the effects of ISAC that changes the repolarization of membrane voltage. Also

in this model, the coupling from active tension to voltage (Ta → V coupling) occurs

during the concurrent beat. Note that the 2D maps (Eq. (5.18)) is also valid when

NHS model is used, but the width of Ta (ATDn) at beat n needs to be replaced by

the Ta transient peak (ATPn).
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5.4.2 Discrete form of the control algorithm

A discrete form of mechanical perturbation control algorithm that can be incorporated

in the 2D maps (Eq. (5.18)) is derived in the following manner.

To compute the current value of Ta at a single point in space, we discretize Eq. (5.8)

in time k using an explicit forward Euler scheme. The closed-form expression for Ta

reads:

T k
a = T k−1

a + ∆t ε(V k−1) (kTa(V k−1 − Vr)− T k−1
a ),

ε(V k−1) = ε0 + (ε∞ − ε0) exp[−exp(−ξ(V k−1 − Vs))] (5.19)

When control is activated, the current value of active tension, named T pert
a , is per-

turbed, by adding the term ∆t β en (en = APDref(τ
∗)−APDn−1 (Eq. (5.13))), into

the right-hand side of Eq. (5.19), and therefore, at beat n, we can equivalently write:

ATDpert
n = ATDn + α (APDref(τ

∗)− APDn−1), (5.20)

where ATDpert
n is the width of T pert

a at beat n, and α is a parameter that depends on

β. Note that the discrete form of Ta (Eq. (5.20)), expressed in its ATD form, states

that the control signal is delivered in a given beat when control is activated. On the

other hand, continuous-time control law is implemented (Eq. (5.13)), which means it

is defined over a continuous time interval in a given beat.

5.4.3 Stability analysis

In this section, we present linear stability analysis of the 2D iterative maps describ-

ing the coupled dynamics of voltage and active tension and incorporating mechani-

cal perturbation control derived in its discrete form. The system’s behavior of the

open-loop or controlled coupled maps, close to the alternans bifurcation, can be ac-

cessed from the eigenvalues of the Jacobian matrix of the system. First, we linearize

the system (Eq. (5.18)) around the period-1 fixed point (APD∗, ATD∗) by letting

APDn−1 = APD∗ + δAPDn−1 and ATDn−1 = ATD∗ + δATDn−1, see Appendix B,

and we obtain:

δXn ≈ J δXn−1, (5.21)
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Figure 5.4: (a) Illustration of APD restitution relation and graded release coupling in
CEC model. An increase in the APD (red line) at a given beat leads to a decrease in
the APD (red line) and ATD (red line) at the next beat (due to a shortening of the
DI), and vice versa. (b) Illustration of Ta → V coupling in CEC model. An increase
in the ATD (red line) at a given beat tends to prolong the APD (red line) of that beat
(due to the effects of ISAC). FOX model is used to represent the electrical activity in
CEC model.

where δXn = [δAPDn, δATDn]T , and J is the Jacobian of the two-variable map

evaluated at the fixed point (APD∗, ATD∗), and is given by:

J =

 ∂APDn

∂APDn−1
+ ∂APDn

∂ATDn

∂ATDn

∂APDn−1

∂APDn

∂ATDn

∂ATDn

∂ATDn−1

∂ATDn

∂APDn−1

∂ATDn

∂ATDn−1

 (5.22)

which describes the system’s behavior around its fixed point (APD∗, ATD∗). The

signs of the elements of J play an important role in the stability of J , hence, de-

scriptions of all the terms of the Jacobian matrix for the case of CEC model, are

given below. In all numerical experiments, we assume voltage-driven alternans in

which APD alternans is caused by instabilities originating from voltage, and that

the width variations of V and Ta occur when V crosses Es, since control is acti-

vated only when V crosses Es. If only voltage is coupled to tension (one way cou-

pling), it is the case of a cardiac electromechanical model when MEF is neglected

(ISAC = 0), −J11 simply measures the slope of the APD restitution relation (Eq.

(5.16)), since when ISAC = 0, we have ∂APDn/∂ATDn = 0, and consequently

J11 = ∂APDn/∂APDn−1 = −∂APDn/∂DIn−1. When the slope is larger than unity,

which corresponds here to the condition J11 < −1, APD alternans occurs and induces

111



ATD alternans, see also discussion in Section 5. In turn, J22 measures degree of insta-

bility of the tension system in CEC model, and is negative but greater than -1, since in

our case ATD-alternans is secondary to APD-alternans. The term ∂APDn/∂ATDn

measures dependence of the voltage on the tension, and is positive in CEC model (Fig.

5.4(b)). This is equivalent to the so called positive (Ta → V coupling), which states

that a prolongation (shortening) in ATD will prolong (shorten) concurrent APD, and

means that an increase (decrease) in ATD has a net depolarizing (hyperpolarizing)

effect on voltage. Since ∂ATDn/∂ATDn−1 = J22 is negative and ∂APDn/∂ATDn is

positive, one can conclude that J12 = (∂APDn/∂ATDn)(∂ATDn/∂ATDn−1) is neg-

ative. The term ∂ATDn/∂APDn−1 = J21 measures the dependence of each beat’s

ATD on the preceding APD (V → Ta coupling), called graded release, and is nega-

tive in CEC model (Fig. 5.4(a)). It states that a prolongation of the preceding APD

(APDn−1) will cause a shortening in the subsequent ATD (ATDn), and vice versa.

The stability of the system of coupled maps (Eq. (5.18)) is governed by the

eigenvalues of the Jacobian matrix. The eigenvalues of the matrix J are given by:

λ1 =
1

2
(J11 + J22 +

√
(J11 − J22)2 + 4J12J21),

λ2 =
1

2
(J11 + J22 −

√
(J11 − J22)2 + 4J12J21). (5.23)

The period-1 fixed point is stable provided that the absolute value of the largest

eigenvalue of J , which is λ2, is smaller than one. If λ2 < −1, the fixed point goes

unstable and a period-doubling bifurcation occurs, corresponding to the onset of

alternans.

To analyze the effect of the mechanical perturbation control on the system of

coupled maps, we model the effects of mechanical control on the elements of J (Eq.

5.22), by incorporating its discrete form (Eq. (5.20)) in J . The new Jacobian matrix

called J c is given as:

J c =

 J11 − α ∂APDn

∂ATDn
J12

J21 − α J22

 (5.24)

where α is not null when control is activated, otherwise it is set to zero. Mechanical

perturbation control will thus affect two elements in J c (J c
11 = J11−α (∂APDn/∂ATDn)

and J c
21 = J21 − α). Therefore, we analyze the effect of these two elements on the
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stability of the system. Let us assume that at the beat n the control is activated,

the APD dynamics manifested by ∂APDn/∂APDn−1 can be stabilized with nega-

tive α, since ∂APDn/∂ATDn is positive (discussed above). Likewise, the V → Ta

coupling manifested by ∂ATDn/∂APDn−1 will become weaker with negative α and

∂ATDn/∂APDn−1 − α remains negative. We can illustrate this by calculating the

eigenvalues of J c, which are given by:

λc1 =
1

2
(J c

11 + J22 +
√

(J c
11 − J22)2 + 4J12J c

21),

λc2 =
1

2
(J c

11 + J22 −
√

(J c
11 − J22)2 + 4J12J c

21), (5.25)

where (J12,J22) are elements of J , (they are used in Eq. (5.25), since they do not
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Figure 5.5: Diagram of the two eigenvalues (the imaginary and real parts of λc1,2) of the
Jacobian matrix J c for various values of α. λc1,2 are calculated using the model (Eqs.
(5.7), (5.8), (5.5), and (13.S)) where FOX model is used to represent the electrical
activity, with parameters given in Section 5 and in Tables 5.1 and 5.2. The 1D tissue
is paced at the center with PCL = 207 ms, and the terms that constitute the elements
of J are evaluated at the period-1 fixed point. For α = 0 (no control is applied), the
absolute value of the largest eigenvalue of J c (|λc2|), which is a measure of the stability
of the fixed point, is greater than 1. When α < 0, the absolute value of λc2 is decreased
and λc1 is increased. For α <= −36, λc1 , which becomes the largest eigenvalue of J c

when α < −25, is greater than one. Both eigenvalues become complex when α < −11
and α > −25.
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depend on α). For certain values of α, as shown in Fig. (5.5), the absolute value of

the largest eigenvalue is smaller than one. The properties of the 2D discrete maps de-

termine the range of α, and consequently the controller gain β (defined in Eq. (5.13)),

which provides effective control. As demonstrated above, the mechanical perturbation

control is effective in controlling alternans at the cellular level. In the next section,

the suppression of alternans at the tissue level will be numerically demonstrated.

Table 5.1: Parameter values used in SVNP model
Active tension kTa = 0.34× 10−3 MPa mV−1

Switch function ε0 = 1 ms−1, ε∞ = 0.1 ms−1,
ξ = 0.3 mV−1, Vs = −70 mV

5.5 Numerical Results and Discussion

We have simulated the control algorithms and successfully suppressed alternans using

either SVNP or NHS models for the active tension generation with either Fox or LR1

models for the cardiac excitation described in Section 2. Therefore, for brevity, only

numerical simulations obtained with NHS model and with either Fox or LR1 models,

are presented and discussed in this section. The NHS model is chosen since the

relationship between Ca2+ and Ta is more accurately described in this model. Thus,

Eqs. (5.4),(5.5),(5.7), and (5.9) are used to constitute the two electromechanical

models in this section. In all our simulations, a 1D cardiac cable of length L = 6.25

cm, fixed at end points is considered, which is consistent with an isometric contraction

regime. In one dimension, the upper case indices (M,N) presented in Eq. (5.7) are set

to one, and D11 = D̄ = 0.001 cm2/ms is the diffusion constant, and Cm = 1 µF/cm2

is the membrane capacitance. The electrical stimulus is applied as square wave pulses

with a magnitude of 80 µA/µF and a duration of 1 ms. The same numerical schemes

were applied in all simulations, where Eq. (5.7) was solved by a semi-implicit time

integration scheme, and the Hodgkin-Huxley type equations for the gating variables

in the ionic models (LR1, Fox) were integrated using the Rush and Larsen integration

scheme [145]. The active tension generation (Eq. (5.9)) was solved using standard

Euler scheme, and we determined the tissue deformation mechanics (Eq. (5.4)) using

finite difference scheme. The step time ∆t = 0.005 ms and step size ∆X = 0.0125
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cm are used in all simulations, and no-flux boundary conditions were imposed for

Eq. (5.7). The parameters for all models, including cardiac mechanics, used in the

simulation are given in Table 5.2.

Table 5.2: Values of the material parameters used for the models

Stretched-activated current Gs = 10 µS µF−1, Es = −20 mV,
λmax = 1.1

Mooney-Rivlin c̃ = 0.4 MPa.

Model 1: Using LR1 and NHS models

In the first electromechanical model, LR1 and NHS models are used to represent

electrophysiological properties and active tension generation respectively. The LR1

[49] model, where the resting potential is about Vr = −83.4 mV, is used with mod-

ifications of the maximum conductances of the sodium current (GNa = 16.0 instead

of 23.0), of the slow inward current (Gsi = 0.06 instead of 0.09), and of the time-

dependent potassium current (GK = 0.432 instead of 0.282), so that the model is

capable of showing alternans at a shorter cycle length. In this model, the gains

γ = 0.23, β1 = −4.2× 10−4 are chosen.

The amplitude of alternans, an(ζ), is defined as the difference between two con-

secutive APDs at a given point in space ζ:

an(ζ) = (APDn(ζ)− APDn−1(ζ))(−1)n (5.26)

To induce alternans, we pace the first 10 cells of the cable, located at one end

from the pacing site (P ), at τ = 300 ms, until a steady-state APD is reached, and

gradually decreased τ from 300 to τ ∗ = 255 ms. The pacing period was shortened

in steps of 5 ms for τ > 260 ms and in steps of 1 ms for τ < 260 ms. When pacing

with period τ ∗ = 255 ms, the alternans (Fig. 5.6(a)) grows, and when the control

action is applied at t = 33000 ms, over localized region under control (3.25 - 5 cm), it

successfully suppresses alternans (Fig. 5.6(c)). The controller acts after the electrical

boundary feedback controller stabilizes the area up to 1 cm from P (Fig. 5.6(b)).

As seen in this figure, the electrical pacing control cannot achieve stability for the

cables exceeding 1 cm, and hence the need for a model-based control algorithm that
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combines the boundary pacing with the spatially distributed mechanical perturbation.

As shown in Fig. 5.7, APDs alternate in a repeating long-short pattern when control

is not applied (Fig. 5.7(a)) and are restored (normal APDs), in the area up to 1

cm from P (Fig. 5.7(b)), after the electrical control is applied at P , and along the

cable when both the electrical and mechanical perturbation controls are applied (Fig.

5.7(c)).

After applying the spatially-distributed mechanical perturbation control at t =

33000 ms, the largest changes in ISAC (Fig. 5.8(b)) with respect to ISAC , when only

the electrical boundary pacing control is applied (Fig. 5.8(a)), occur in the localized

region (3.25 - 5 cm) where the control signal is applied. The mechanical perturbation

control perturbs the tissue by exerting a force that causes deformation in the region

under control, and as a result, the stretch distribution along the tissue changes, it

increases in the region under control and decreases in other regions. This is because,

since the sum of the length of all the line segments, when stretched (increased) or

contracted (decreased), of the 1D cable, remains constant when both ends of the cable

are fixed, see Appendix A, some segments are stretched, while others are contracted.

Consequently, the magnitude of ISAC , which is a function of stretch and voltage (Eq.

(5.5)), when mechanical perturbation control is applied, increases in the localized

region under control (3.25 to 5 cm from P ), and decreases elsewhere. As it can be

seen in Fig. 5.8(d), the short APDs during one beat (the odd beats in Fig. 5.8(d)),

in the area under control, are prolonged due to the ISAC , which causes, according to

the restitution relation (Eq. (5.16)), the shortening of APDs on the following beat

(the even beats in Fig. 5.8(d)). It has to be noted that when control signal is applied,

ISAC is defined as an inward current, as discussed in Section 3.

The presence of electrical alternans induces, through the mechanism of the so-

called excitation-contraction coupling, an alternation in the heart muscle contractile

activity, see Fig. 5.9. The amplitude of tension alternates (Fig. 5.9(b)) when the

APD alternates (Fig. 5.9(a)).

As shown in Fig. 5.10, the error signal decreases from around 20 ms when control

is turned on to less than 3 ms at steady state, and the percentage variation in the

magnitude of Ta perturbation, where Ta perturbation occurs as a result of [Ca2+]Trpn

perturbation, varies from around 10% when control is turned on, to less than 2%
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at steady state (see Fig. 5.11). Note that, in real time experiment, perturbing

[Ca2+]Trpn by an amount equal to β1e1n(ξ), as described in Eq. (5.14), can be difficult

to realize, since measurements of the [Ca2+]Trpnconcentration may not be readily

available, and therefore other means such as magnitude of applied force can be used

to reconstruct amount of concentration of [Ca2+]Trpn that needs to be applied. For

example, massaging cardiac tissue can perturb [Ca2+]Trpn (change its magnitude)

since mechanical perturbation modifies [Ca2+]i [146], which in its turn modifies the

[Ca2+]Trpn (Eq. (11)).

In summary, the control signal alters the tissue’s transmembrane potential when

mechanical perturbation is applied, in which changes in Ta affect the mechanical

deformation term (displacement variable u in the elastic equation (5.4)), which then

affects the transmembrane potential (Eq. (5.7)), through the conductivity tensor and

stretch-activated current (Eq. (5.5)). Perturbing MEF alter the tissue’s electric wave

profile, and consequently the APD. Thus, the control of alternans in cardiac tissues

of relevant size can be achieved by the manipulation of the electrical APD using a

model based on the mechanical and electrophysiological properties of cardiac tissue.

Model 2: Using FOX and NHS models

FOX and NHS models are used in the second electromechanical model to represent

electrophysiological properties and active tension generation respectively. The resting

potential for FOX [48] model is about Vr = −94.7 mV, and the gains γ = 0.19,

β1 = −7.4× 10−4 are chosen in Model 2.

The alternans is induced by pacing the first 10 cells from P of the cable, at τ = 300

ms, until a steady-state APD is reached, and gradually decreased τ from 300 to τ ∗ =

192 ms. The pacing period was shortened in steps of 5 ms for τ > 200 ms and in steps

of 1 ms for τ < 200 ms. As shown in Fig. 5.12, the amplitude of alternans grows

(Fig. 5.12(a)) when no control is applied, and when the control action is applied

at t = 25000 ms, over localized region under control (3.25 - 5 cm), it successfully

suppress alternans (Fig. 5.12(c)). The controller acts after the electrical boundary

feedback controller stabilizes a small area (around 1 cm) from P (Fig. 5.12(b)). As

can be seen in (Fig. 5.12(b)), |an(ζ, t)| exhibits ripples at the pacing boundary before
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Figure 5.6: Magnitude of the amplitude of alternans for Model 1 when a 6.25 cm cable of cardiac
cells, the first 10 cells to pacing site P (which corresponds to ζ = 0), is paced at 255 ms, starting
with period = 300 ms, and decreased gradually to period = 255 ms. The amplitude of alternans
grows, shown in (a), when no control is applied, while (b) illustrates the alternans suppression by
electrical pacing control applied at P when τ∗ = 255 ms is reached, while (c) illustrates the alternans
suppression by electrical pacing control and spatially distributed mechanical perturbation control
when the control action is applied at t = 33000 ms over localized region under control (3.25 to 5 cm
from P ).
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Figure 5.7: Time evolution of transmembrane potential for Model 1 before control is applied (a),
APDs alternate in a repeating long-short (L-S) pattern, and after (b) electrical pacing control is
applied at pacing site (P ), normal (N) APDs that are closed to P are restored, while (c) illustrates
the restoration of normal APDs along the cable when electrical and mechanical perturbation controls
are applied respectively at P and over localized region under control (3.25 to 5 cm from P ).
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Figure 5.8: (a) and (c) are the time evolution of stretch-activated current (ISAC)
and membrane potential for Model 1, respectively, when only the electrical control
is applied, and after (b,d) the mechanical perturbation control is also applied, at
t = 33000 ms, over localized region under control (3.25 to 5 cm from P ). As seen
in this figure, the largest changes in ISAC (b) with respect to ISAC (a), occur in
the region (the region between the two dash-dot lines) where mechanical control is
applied.
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Figure 5.9: Time evolution of transmembrane potential variable (a), and active ten-
sion variable (b) for Model 1 in the presence of alternans. As seen above, the alter-
nation in the APDs induces an alternation in the amplitude of tension through the
mechanism of the so-called excitation-contraction coupling.

Figure 5.10: Time evolution of error signal (e1n), defined in Eq. (14), for Model 1,
when a spatially distributed mechanical control is applied over localized region under
control (3.25 - 5 cm).
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Figure 5.11: Time evolution of active tension variable (Ta) (Eq. (9)) in localized
region under control (3.25 - 5 cm) for Model 1 when no control is applied (a), while
(b) illustrates Ta evolution when only electrical pacing control is applied at pacing site
when τ ∗ = 255 ms is reached, while (c) illustrates the Ta evolution when electrical
pacing control and spatially distributed mechanical perturbation control after the
control is turned on at t = 33000 ms over localized region under control.
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a steady state is reached, which is then transmitted along the cable. This is due to the

pacing period of the dynamic feedback control (Eq. (5.12)) which varies over many

different values depending upon the difference between the last two APDs recorded.

The range of variation can be large, especially at the early stages after the control is

applied, but when γ (the feedback gain in Eq. (5.12)) is better tuned, while satisfying

the stability requirement [140], the oscillations decay faster. Also, in this model, it is

demonstrated the need to combine the boundary pacing with the spatially distributed

mechanical perturbation to successfully suppress alternans.

Similar results to Model 1 regarding the changes in stretch-activated current. As

shown in Fig. 5.13, the largest changes in ISAC , after the mechanical control is applied

(Fig. 5.13(b)), with respect to ISAC , when only the electrical control is applied (Fig.

5.13(a)), occur in the region under control. As can be seen in this figure, when

mechanical control is turned on at t = 25000 ms, the magnitude of ISAC , increases

in the region under control for the odd and even beats, which differs from the ISAC

given in Model 1, where the magnitude of ISAC (Fig. 5.8) increases only for the odd

beats. This is because, although the APDs of the even beats remain longer than

APDs of the odd beats in the region under control in Model 2, they are shorter than

APDref(τ
∗).

5.6 Summary and future works

The development of methods to suppress cardiac alternans has important clinical im-

plications, due to the finding that TWA often precedes lethal arrhythmias, and is risk

factor for SCD. We introduce a theoretical framework of 2D iterative maps that de-

scribe the cardiac excitation-contraction coupling. To this end, the stretch-activated

current through the stretch-activated ion channels that mediate MEF is approximated

in terms of the membrane voltage and the active tension. This allows us to study

the effects of mechanical perturbation algorithm on the dynamics of a developed map

model that couples the membrane voltage and active tension at the cellular level.

A stability analysis of the system of coupled maps is performed by incorporating a

discrete form of the control algorithm. We show that when the mechanical control is

turned on, both the stability of APD dynamics and V → Ta coupling are affected.
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Figure 5.12: Magnitude of the amplitude of alternans for Model 2 when a 6.25 cm cable of cardiac
cells, the first 10 cells to P ,is paced at 192 ms, starting with period = 300 ms, and decreased
gradually to period = 192 ms. The amplitude of alternans grows, shown in (a), when no control
is applied, while (b) illustrates the alternans suppression by electrical pacing control applied at P
when τ∗ = 192 ms is reached, while (c) illustrates the alternans suppression by electrical pacing
control and spatially distributed mechanical perturbation control when the control action is applied
at t = 25000 ms over localized region under control (3.25 to 5 cm from P ).
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Figure 5.13: (a) and (c) are the time evolution of stretch-activated current (ISAC)
and membrane potential for Model 2, respectively, when only the electrical control
is applied, and after (b,d) the mechanical perturbation control is also applied, at
t = 25000 ms, over localized region under control (3.25 to 5 cm from P ). As seen
in this figure, the largest changes in ISAC (b) with respect to ISAC (a), occur in
the region (the region between the two dash-dot lines) where mechanical control is
applied.
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That is, the mechanical controller gain affects the eigenvalues of the Jacobian matrix

of the system, and thus its stability. Therefore, with an appropriate choice of the

gain, the system can be stabilized, and the alternans is suppressed.

The effectiveness of the mechanical perturbation algorithm is verified by employ-

ing a model of cardiac electromechanics. Two detailed ionic models of cardiac cell

electrophysiology, namely Luo-Rudy 1 and Fox models, are used, and passive me-

chanical properties of cardiac muscle are described using the Mooney-Rivlin passive

elasticity model. Active tension that couples the cardiac mechanics with excitation

is generated using a smooth variant of the Nash-Panfilov model and the Niederer-

Hunter-Smith model. The control algorithm is demonstrated to successfully suppress

aternans in a 1D cable of cardiac cells using numerical simulations. If the mechanical

perturbation algorithm is incorporated into a mechanical-based device that can be

equipped with mechanical patch, such as [134], alternans rhythms can be suppressed

before they become fatal rhythm disorders.

When ISAC is applied over a localized region of tissue (chosen by trial and error

in our experiments), the spatially distributed mechanical perturbation algorithm suc-

cessfully suppresses alternans along the tissue. The remaining questions are: what

is the minimum mechanical patch size necessary and where should the patch be po-

sitioned to control alternans? These questions will be addressed in future studies.

In addition, tissue anisotropy and fiber orientation will be taken into account when

higher-dimensional computational heart models are considered. These factors will af-

fect the distribution of fiber stretch along the tissue, and consequently the magnitude

of ISAC , which depends on the amount of stretch generated. We expect the size and

position of the adhesive patch will influence the magnitude of the mechanical pertur-

bation applied. The majority of studies have neglected the time-dependent inertial

term in the equations governing cardiac mechanics (see [147] for a demonstration),

therefore, in this work, the inertia term was neglected. But recently [148], it has

been shown that the deformations due to inertia may alter the dynamics of excitation

waves via the MEF, therefore, this term may be incorporated in future studies.
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Chapter 6

Conclusions and Future Directions

In the thesis, we studied the effects of mechano-electrical feedback on the dynamics of

alternans using electromechanical models of cardiac tissue, and we developed a model-

based control algorithm combining an electrical boundary pacing and a spatially

distributed mechanical perturbation.

6.1 Conclusions

The effects of mechano-electrical feedback (MEF) on the onset of alternans, also

known as period-doubling bifurcation, in a 7 cm cable were studied in Chapter 2.

A 1D biophysically detailed electromechanical model of cardiac tissue was employed

where the phase one of the Luo-Rudy model was used to represent the electrophys-

iological properties, while the mechanical properties of passive myocardium are de-

scribed using the Mooney-Rivlin material model. The active tension that couples

the electrophysiological model to the cardiac mechanics model is generated using the

Niederer-Hunter-Smith model. We showed that the distribution of stretching along

the cable is not uniform and that the stretch behavior, which varies with pacing

period, along with the stretch-activated current (Isac) model parameters, determine

the effect of Isac on the APD. In addition, a theoretical framework of 2D iterative

maps that incorporate the effects of Isac was used to demonstrate the MEF effects on

the period-doubling bifurcation, corresponding to the onset of alternans in a single

cardiac cell. In particular, we showed that critical pacing period, that corresponds to

the onset of alternans when MEF is not present, can be shifted to lower values, where

the degree of this shift depends on the strength of Isac. In this work, only a certain
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range of pacing periods, that are closed to the critical pacing period, were considered,

and a restriction was put on the value of the Isac conductance parameter so that the

effects of MEF on the conduction velocity (CV) restitution can be neglected.

In Chapter 3, we studied the effects of MEF on the dynamics of alternans when no

restrictions were imposed on the model conductance value. The whole range of pacing

periods that correspond to alternans was considered. The same electromechanical

model used in Chapter 2, was employed in this work, with the exception that the

electrophysiological properties in the heart were represented by FOX model. We

presented the effect of MEF on the APD and CV restitution curves, and showed

that while its effect on the APD restitution is insignificant, it can modify the slope

of CV restitution curve when large values of Isac conductance parameters are used.

The changes in CV along the cable, due to Isac, has a role in converting spatially

concordant alternans into discordant alternans. We also showed that, when alternans

is discordant, the spatial dispersion of refractoriness is increased in the presence of

MEF, by forming a second nodal point in the cable of cardiac cells. We also have found

that MEF may lead to a conduction block for some values of Isac model parameters.

In Chapter 4, we presented a model-based algorithm for alternans control using the

Nash-Panfilov electromechanical model. Our control strategy is based on combining

the electrical boundary pacing with the spatially distributed mechanical perturbation

algorithms. A novel mechanical perturbation algorithm to control alternans was

presented in this study. The mechanical perturbation algorithm manipulates the

cardiac tissue mechanics in order to suppress alternans. The proposed algorithm

suppresses alternans in relevantly sized cardiac tissues. Numerical simulations were

presented to demonstrate successful suppression of alternans in a cable of length equal

to 6.25 cm using the proposed control algorithm.

The control algorithm proposed in Chapter 4, was implemented and tested us-

ing two realistic electromechanical models of cardiac tissue in Chapter 5. The APD

was altered by perturbing cardiac tissue mechanics. Perturbing cardiac tissue me-

chanics in a small region of the tissue alters the tissue’s electric wave profile, and

consequently the APD, via MEF in order to suppress alternans. The inclusion of

spatially distributed mechanical perturbation control, have overcome the limitation

in controllability of the electrical pacing control to suppress alternans in relevantly
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sized cardiac tissues. In addition, we analyzed the effects of mechanical perturbation

algorithm on the dynamics of the map model that couples the membrane voltage and

active tension systems at the cell level using a 2D iterative map of the beat-to-beat

dynamics, and a discrete form of the proposed control algorithm. It was demon-

strated to successfully suppress alternans in a one-dimensional cable of cardiac cells

using numerical simulations.

6.2 Future Directions

A natural extension of the work presented in this thesis is to apply the control al-

gorithms to two- or three-dimensional cardiac tissue. The location(s) and size of

patch(s) that can be placed in 2D or 3D tissue, so that mechanical perturbation algo-

rithm can be applied, need to be investigated by means of numerical simulations. The

proposed control algorithm is a promising approach that can be possibly incorporated

into mechanical-based devices to suppress alternans.

In this work, we showed that MEF can convert concordant alternans into discor-

dant in one-dimensional tissue, however, in higher dimensions, the discordant alter-

nans has been shown to induce the formation of reentrant spiral waves, which cannot

be formed in one dimension, and this may break down further leading to multiple

wavelets, corresponding to the onset of lethal arrhythmias such as VF. Therefore,

studying the mechanisms underlying the transition from discordant alternans at the

2D or 3D tissue, due to MEF, into a reentry wave, and how this further evolves into

lethal cardiac arrhythmias is of great interest in research fields dealing with cardiac

mechano-electric feedback and arrhythmias.

The formation and destabilization of spiral waves initiate VF. Therefore, termi-

nating reentrant spiral waves is of great interest to cardiac disease researchers. We

studied the effects of MEF on spiral wave dynamics using mechanical perturbation ap-

proach. We showed that MEF leads to spiral wave drift when the tip of the spiral wave

hits any of the boundaries of the perturbed region where the mechanical perturbation

is applied. Therefore, MEF, in the localized region under mechanical perturbation,

can induce drift of spiral tip which is responsible for certain lethal cardiac arrhyth-

mias. This was shown in our preliminary results presented in Biomedical Engineering
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Society annual meeting (Effects of Mechanical Perturbations Approach on the Spiral

Wave Dynamics, BMES 2015 Annual Meeting). The results were generated using

the Nash-Panfilov electromechanical model and therefore need to be confirmed in a

realistic electromechanical model of cardiac tissue. Furthermore, developing methods

for terminating spiral waves, by combining mechanical perturbation approach with

other algorithms for detection and termination of spiral-waves, can be pursued in

future studies. For instance, it has been shown that hypothermia affect the cardiac

arrhythmias [149, 150]. Therefore, coupling heat with MEF to terminate spiral-waves

can be the subject of a future work.”

Treatment of cardiac fibrillation via MEF using the mechanical perturbation strat-

egy can also be pursued. Using this strategy, we developed an algorithm for the termi-

nation of VF via MEF in a realistic electromechanical model of cardiac tissue, where

the phase one Luo-Rudy model was used to represent the electrophysiological proper-

ties. The turbulence was suppressed by applying mechanical perturbation sequentially

in subregions of tissue. Perturbing the mechanical properties in the localized region

under control increases the magnitude of the depolarizing Isac that excites all cells in

the region under control and has the effect of stopping any propagation of the impulse

and suppressing turbulence in this region. We presented our preliminary results in

American Institute of Chemical Engineers annual meeting (Mechanical Perturbation

Approach for Treating Cardiac Arrhythmias, AICHE 2018 Annual Meeting). On the

other hand, electrical defibrillation, by means of providing strong electrical shocks

to the heart to reset the heartbeat back to its normal beat, have remained the most

reliable approach to terminate VF. However, the electrical treatment may cause dam-

age to the heart due to delivery of high electrical current. Although the Isac, which

depends on stretch and voltage, delivered using the mechanical perturbation strat-

egy is not high enough to cause any damage. However, this method needs further

improvements so as to make it applicable in the treatment of VF.
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Supplementary Materials

Effects of mechano-electrical feedback on the onset of alter-
nans: a computational study

NHS model

The ordinary differential equations (ODEs), vector of state variables (w), and pre-

scribed functions (g and h) of the NHS model described by Niederer et al. (2006) are

given in (a), (b), and (c), respectively.

–ODEs:

d[Ca2+]Trpn

dt
= kon[Ca2+]i([Ca2+]TrpnMax − [Ca2+]Trpn)− krefoff

(
1− Ta

γ Tref

)
[Ca2+]Trpn,

(1.S)

dz

dt
= α0

(
[Ca2+]Trpn

[Ca2+]Trpn50

)n

(1− z)− αr1z − αr2

znr

znr +Knr
z

, (2.S)

dQ1

dt
= A1

dλ

dt
− α1 Q1, (3.S)

dQ2

dt
= A2

dλ

dt
− α2 Q2, (4.S)

dQ3

dt
= A3

dλ

dt
− α3 Q3, (5.S)

Ta =


T0

1 + (2 + a) Q

1 +Q
Q > 0,

T0
1 + a Q

1−Q
Q ≤ 0,

(6.S)

[Ca2+]Trpn50 =
[Ca2+]TrpnMax[Ca2+]50ref(1 + β1(λ− 1))

[Ca2+]50ref1 + β1(λ− 1)) +
krefoff

kon

(
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,
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Figure S.1: Plot showing the variation of the maximal values of stretch developed
in the cable versus the corresponding values of BCL (red plus sign). A 7 cm cable
of cardiac cells is paced at the boundary with BCL = 276 ms until a steady state is
reached. This procedure was repeated for different BCLs starting at BCL = 300 ms
and increasing each time by 100 ms till BCL = 800 ms.

Q = Q1 +Q2 +Q3,

The reader is referred to Niederer et al. (2006) for the parameters values and the

initial conditions of the system (1.S-5.S).

–w = ([Ca2+]Trpn, z, Q1, Q2, Q3), where [Ca2+]Trpn, z, Q1, Q2, and Q3 are the state

variables of the system (1.S-5.S).

–g = (g1, g2, g3, g4, g5), where g1, g2, g3, g4, and g5 are the right-hand sides of Eqs.

(1.S) through (5.S), and h is the right-hand side of Eq. (6.S)

144



240 245 250 255 260 265

BCL (ms)

80

100

120

140

160

180

200

A
P

D
 (

m
s
)

Gs = 0 S/ F

Gs = 15 S/ F

Gs = 50 S/ F

Figure S.2: Bifurcation diagrams showing APD versus BCL for different values of Gs

of LR1NHS model (left panel), and a zoomed-in version of it (right panel). The cell
in the middle of a 7 cm cable is paced for different BCLs, starting at BCL = 350 ms
and decreasing by 1 ms, after a steady state is reached for each BCL, until BCL is
equal to BCL = 240 ms. This procedure was repeated for three values of Gs and the
simulation values of the APD at steady state are plotted versus BCL when it varies
between 240 ms and 265 ms. APD at 90% repolarization was adopted as a measure
of APD.

Figure S.3: Spatiotemporal evolution of V in LR1NHS model with Gs = 0 µS/µF
(top), and with Gs = 51 µS/µF and Es = -20 mV (bottom), when a 7 cm cable of
cardiac cells is paced at the boundary (he first five cells, that are close to P , were
paced) at BCL = 210 ms, and a steady state is reached.
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Appendix A

Approximation of the extension ratio

In one dimension, the extension ratio in the direction of the fiber is calculated from

the soft tissue mechanics model, and is given by [51, 67]

λ =
√
C11 = F (X) = 1 +

∂u(X)

∂X
(7.S)

If we assume that the maximal stretch of cells, from the resting position, is 5%, we

may approximate the inverse of F (X) as

F (X)−1 =

(
1 +

∂u(X)

∂X

)−1

≈ 1− ∂u(X)

∂X
(8.S)

The elastic equation (5.4) can be rewritten as

c̃

∂

(
1 +

∂u(X)

∂X

)
∂X

+
∂

∂X

 Ta(X)

1 +
∂u(X)

∂X

 = 0 (9.S)

By integrating Eq. (9.S), we obtain

c̃

(
1 +

∂u(X)

∂X

)
+

Ta(X)

1 +
∂u(X)

∂X

= C (10.S)

The integration constant C is determined by applying boundary conditions. Since a

1D cable fixed at both ends is considered, and thus ∂u(X)/∂X = 0 (F (X) = 1) at

the boundaries, we have C = Tb + c̃, where Tb is the active tension at the boundary,

which satisfies the following condition.∫ L

0

F (X)dX = L (11.S)

Replacing C and the approximation of F (X)−1 (Eq. (8.S)) by their values in Eq.

(10.S) and solving for ∂u(X)/∂X , we obtain

∂u(X)

∂X
≈ Tb − Ta(X)

c̃− Ta(X)
(12.S)

Replacing ∂u(X)/∂X by its value in Eq. (7.S), we obtain

F (X) ≈ 1 +
Tb − Ta(X)

c̃− Ta(X)
,
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with Tb ≈

∫ L

0

Ta(X)

c̃− Ta(X)
dX∫ L

0

1

c̃− Ta(X)
dX

, (13.S)

where Tb is determined by replacing F (X) (Eq. (13.S)) by its value in Eq. (11.S).

Therefore, when 1 < λ <= 1.05, an approximation of λ, given in Eqs. (7.S) and

(13.S), is directly related to Ta, and thus ISAC , which is not zero only when the cell

is stretched (i.e., when λ > 1), becomes a function of V and Ta. If we assume that

the maximal stretch is 10% (i.e., λ <= 1.1), the same approximation of λ (Eqs. (7.S)

and (13.S)) can be used to calculate ISAC , since the maximum error calculated in

the case of Model 2, between the exact instantaneous stretch, found by solving the

elastic equation (5.4), and the approximate stretch obtained from Eq. (13.S), during

one cycle, is less than 1%. This work is not concerned with the complex dynamics of

either V or Ta at the cellular level, which would require a more rigorous computation

of Isac.

Jacobian of the 2D map

The heart beat-to-beat dynamics using a 2D discrete map between the APD and the

ATD is given as

APDn = F1(APDn−1, ATDn), (14.S)

ATDn = F2(APDn−1, ATDn−1)

Let F = [F1, F2]T , and Xn = [xn, yn]T = [APDn, ATDn]T , then the map (Eq. (14.S))

can be written in the matrix form as

Xn = F (Xn−1) (15.S)

At the period-1 fixed point X∗ = [APD∗, ATD∗]
T , we have Xn = F (Xn−1) = Xn−1 =

X∗ = F (X∗). Let δXn = [δAPDn−1, δATDn−1]T be a small displacement from the

point X∗, we can then write

X∗ + δXn = F (X∗ + δXn−1) (16.S)

147



Using the Taylor expansion, we can linearize the system of coupled maps around the

point X∗ as follows

F (X∗ + δXn−1) ≈ F (X∗) + J δXn−1, (17.S)

where

J =


∂F1

∂xn−1

∂F1

∂yn−1

∂F2

∂xn−1

∂F2

∂yn−1

 , (18.S)

where J11 =
∂F1

∂APDn−1

, J12 =
∂F1

∂ATDn−1

, J21 =
∂F2

∂APDn−1

, and J22 =
∂F2

∂ATDn−1

are the elements of the Jacobian J evaluated at the fixed point (APD∗, ATD∗) of the

map. From Eqs. (16.S) and (17.S) we can write

δXn ≈ J δXn−1. (19.S)
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