
Aura 3D Textures

Xuejie Qin and Yee-Hong Yang
Computer Graphics Lab

Department of Computing Science
University of Alberta
Edmonton, Canada

{xuq, yang}@cs.ualberta.ca

Abstract
This paper presents a new technique, called aura 3D
textures, for generating solid textures based on input
examples. Our method is fully automatic and requires no
user interactions in the process. Given an input texture
sample, our method first creates its aura matrix
representations and then generates a solid texture by
sampling the aura matrices of the input sample
constrained in multiple view directions. Once the solid
texture is generated, any given object can be textured by
the solid texture. We evaluate the results of our method
based on extensive user studies. Based on the evaluation
results using human subjects, we conclude that our
algorithm can generate faithful results of both stochastic
and structural textures with an average successful rate of
76.4%. Our experimental results also show that the new
method outperforms Wei & Levoy’s method and is
comparable to that proposed by Jagnow, Dorsey, and
Rushmeier.

Keywords: Texture synthesis, Solid textures, Aura
matrices, BGLAMs (Basic Gray Level Aura Matrices).

1 Introduction
In computer graphics and computer games, texture
synthesis has been widely recognized as an important
tool in generating realistic textures for rendering
complex graphic scenes. Recent advances in 2D texture
synthesis [1, 11, 12, 18, 22, 25, 41] have ignited the
development of many successful techniques for
generating surface textures from input samples [3, 9, 26,
38, 42, 46]. Although a wide range of textures can be
synthesized in 2D, there is still a lack of techniques in
generating 3D textures. When 2D textures are used in
texturing 3D objects, the following disadvantages are
found: (1) the distortion problem on large-curvature

surfaces, and (2) non-reusable – textures generated for
one surface cannot be used for other surfaces. The
second limitation makes 2D surface textures difficult, if
not impossible, to be used in procedural shaders [10].

To overcome the above problems, solid textures [29,
30] can be used. A solid texture is considered as a block
of colored points in 3D space to represent a real-world
material, for example, a wood trunk. Once the solid
texture is available, any given 3D object can be textured
by carving the object out of the volumetric data. Since
solid textures define colors for each point in 3D space,
they avoid the problems of distortion and discontinuity.
However, solid textures are far more difficult to obtain
than 2D textures; there is no easy way to obtain solid
textures from real-world materials. Over the last two
decades, procedural techniques and image-based
techniques have been developed to generate solid
textures. In procedural approaches [10], procedures are
designed and called to generate solid textures with the
surface appearance of realistic objects, such as wood,
stone, smoke, fire, fluid, cloud, etc. However, these
techniques can model only a limited range of textures. In
addition, the procedures are difficult to understand and
control because there are many parameters in the
procedures and these parameters are not intuitive for a
user to determine their appropriate values. To address
these problems, a number of researchers have developed
image-based techniques [7, 8, 18, 20, 24, 40] for
synthesizing solid textures from input samples, and
appealing results have been obtained. Unfortunately,
some of these techniques are not fully automatic and
involve nontrivial user interactions [7, 20]; while others
may apply to only limited types of textures [8, 18, 20 ,
24, 40].

In this paper, we present a new method, called aura
3D textures, for generating solid textures from input
samples automatically without user interactions. In
theory, our method can take any number of input
samples. As shown in Figure 1, given one or more input
textures, our method first characterizes each input
sample as a set of aura matrices [34]. Once the aura
matrices are calculated, the input will not be needed. A
solid texture is generated by sampling the aura matrices

1

of the inputs. The details of the aura 3D sampling are
described in Section 4.2. After the solid texture is
obtained, any given object can be textured by the solid
texture using a shader.

2

Figure 1: An overview of aura 3D textures.

We have compared our algorithm with two recently
proposed algorithms: Wei & Levoy’s [40]; and Jagnow,
Dorsey, and Rushmeier’s [20]. The experimental results
show that our method outperforms Wei & Levoy’s and is
comparable to that of Jagnow et al.’s. However, the latter
method involves extensive user interactions in designing
appropriate 3D shapes as well as in estimating the
correct cross sectional profile; while our method is fully
automatic with no user interactions in generating solid
textures. In addition, their method can take a single input
only; while ours can generate solid textures from
multiple inputs.

To test the accuracy of our aura 3D texture approach,
we present an evaluation method based on extensive user
studies in Section 7. To avoid manual paper work, we
have designed a GUI-based system to collect data and to
perform the evaluation efficiently. The evaluation results
show that our algorithm can generate appealing results
for a wide range of textures, including both stochastic
and structural textures, with an average successful rate of

76.4%.

2 Related Works
In 3D texturing, there are four ways to generate synthetic
textures onto 3D surfaces: texture mapping, procedural
texturing, image-based surface texturing, and image-
based solid texturing. Texture mapping [17] is the
earliest approach to generating synthetic textures on
surfaces of computer-generated objects. Since Blinn’s
work [2], various techniques [19, 21, 35, 39, 45, 47]
have been developed to synthesize high quality textures
efficiently on 3D surfaces. In general, texture mapping
suffers the well-known problems of distortion,
discontinuity, and unwanted seams.

Aura

Matrices
of I

Aura 3D
Sampling

Synthesized

Solid Texture

Input Sample I

Texturing and Rendering

The second approach is called procedural texturing
[10]. Since the seminal works of Cook [4], Peachey [29],
and Perlin [30], procedural techniques have been widely
accepted in the computer graphics community. In most
existing techniques, storage-efficient procedures using
basis functions [5, 23, 30, 43] can create high quality 3D
textures with no distortion and no discontinuity. Some
techniques use the reaction-diffusion processes [14, 37]
to generate biological patterns, e.g. zebra stripes and
cellular patterns, that are found on animal skins. The
disadvantages of procedural texturing include: (1) only
limited types of textures can be modeled, (2) the design
of procedures is based on the experience of the designer
and is largely a manual process, and (3) the parameters
of a texturing procedure are difficult to tune.

The third approach is the image-based surface
texturing developed by a number of researchers recently.
Wei & Levoy [42], Ying et al. [44], and Turk [38] have
concurrently extended Wei & Levoy’s 2D texture-
synthesis algorithm [41] to synthesize textures onto
arbitrary mesh surfaces. Using feature-based warping
and texton masks, Zhang et al. [46] have successfully
synthesized progressively-variant textures onto 3D
surfaces from multiple input samples. In Chen’s work
[3], shell texture functions are used to synthesize
realistic textures with translucency variations on surfaces
from either 2D or 3D samples, e.g. a block of CT scan.
Recent research works [26, 36] have also been done in
generating bidirectional texture functions (BTF) onto 3D
mesh surfaces. Compared with procedural texturing,
image-based surface texturing can synthesize a wide
range of textures. However, the approach may still suffer
the distortion problem on surfaces where the curvature is
large. Another problem of the approach is that textures
generated for one surface cannot be used for other
surfaces. This limitation makes the techniques difficult
to be used in procedural shaders [10].

To combine the advantages of the procedural
texturing and the image-based 2D texture analysis and
synthesis, several researchers have developed techniques
for generating solid textures from input samples, which

we call image-based solid texturing. Different from
image-based surface texturing, these techniques
synthesize a volumetric texture data from input samples.
Once the volumetric data is generated, it can be used to
texture different objects. In Heeger and Bergen’s work
[18], homogeneous and stochastic 3D textures are
successfully generated by matching the histogram of a
volumetric data with that of the input sample from
coarse to fine resolutions. However, their approach fails
for structural textures. To address this problem, Dischler
et al. [8] propose a method based on spectral and
histogram analysis to synthesize a wider range of solid
textures from input samples. Although only a limited
range of textures can be modeled, Dischler et al.’s
method [8] is the first approach capable of generating
structural solid textures such as wood and marble. By
analyzing and extracting parameters from input images,
Lefebvre and Poulin’s algorithm [24] is also able to
synthesize some structural textures such as wood and
regular tiles. Wei [40] and Paget [27] have extended their
respective 2D texture synthesis algorithms [28, 41] to
generate structural solid textures as well as stochastic
textures. However, both approaches work for only a
limited range of textures. More recently, in Jagnow,
Dorsey and Rushmeier’s work [20], a stereology-based
approach is presented to generate a limited range of solid
textures, in particular, marble-like textures. In their
approach, in order to generate the correct results,
extensive user interactions are required in creating 3D
particles of the desired shapes and of the required
distributions. Dischler and Ghazafarpour [7] have also
developed an interactive image-based framework for
synthesizing structural solid textures of certain types.

Our work belongs to the category of image-based
solid texturing. In particular, we present a BGLAM-
based framework for synthesizing solid textures from 2D
input samples. Additionally, we describe how to evaluate
the results of our method using extensive user studies
based on a carefully designed GUI-based system. The
new approach is motivated by our recent work on 2D
texture analysis and synthesis [34]. It is most related to
Heeger and Bergen’s [18] and Dischler et al.’s methods
[8]. However, the texture analysis process of our method
is done using BGLAMs rather than using gray level
histograms [18] or spectrum in the frequency domain [8]
(Note: Dischler et al.’s method also uses histogram-
analysis to characterize textures). In the synthesis
process, our method generates solid textures by sampling
only the BGLAMs of the inputs. On the other hand,
Heeger and Bergen’s method needs filters to build
pyramids for the input and output, and the synthesis
results of their method heavily depend on the selection
of filters. While there is no need for filters in Dischler et
al.’s approach, it cannot synthesize textures with edges
[8]. Both Heeger and Bergen’s and Dischler et al.’s
methods fail for large structural textures such as bricks;

while our method can generate appealing results for such
structural textures as shown in the paper.

3 BGLAM Concepts and Theory
Our work is based on our recently proposed BGLAM
(Basic Gray Level Aura Matrices) mathematical
framework [34], which is developed based on the aura
concepts (i.e. aura sets, aura measures, and aura matrices)
originally proposed by Elfadel and Picard [13]. Under
the BGLAM framework, an image X is modeled as a
finite rectangular lattice S of grids with a
neighborhood system , where is the
neighborhood at site

nm×
},{ SsΝ s ∈=Ν sN

s . The neighborhood at site s
can be viewed as a translation of a basic neighborhood
[13], denoted E, which is called the structuring element
for the neighborhood system N. A single site
neighborhood system is a system with a structuring
element that contains a single neighboring site.

sN

 Aura Set: [13] Given two subsets the
aura set of A with respect to B for neighborhood system

SBA ⊆, ,

N, denoted),(NABϑ (or)(ABϑ when N is understood),
is given by:

)(),()(BNAA sAsBB ∩∪==
∈

Nϑϑ . (1)

 Aura Measure: [13] With the same notations as in
Eq. 1, the aura measure of A with respect to B, denoted

, is given by:),(BAm
∑
∈

∩==
As

s BNBAmBAm ||),,(),(N , (2)

where for a given subset , is the total
number of elements in .

SA⊆ || A
A

 GLAM (Gray Level Aura Matrix): [13] Let N be
the neighborhood system over S, and }10,{ −≤≤ GiSi
be the gray level sets of an image over S, then the
GLAM of the image over N, denoted A, is given by:

)],([][)(jiij SSma === NAA , (3)
where G is the total number of gray levels in the image,

}|{ ixSsS si =∈= is the gray level set corresponding
to the level, and is the aura measure
between and given by Eq. 2, and

thi),(ji SSm

iS jS
1,0 −≤≤ Gji .

 BGLAM (Basic GLAM) [34]: A BGLAM is a
GLAM computed from a single site neighborhood
system.
 The aura of A with respect to B characterizes how
the subset B is present in the neighborhood of A. An
example of an aura on a binary lattice with the four-
nearest-neighbor neighborhood system is shown in
Figure 2. The aura measure measures the
amount of B’s sites presented in the neighborhood of A.
Note that does not measure the number of
elements in the aura of A w.r.t B, i.e. in general,

),(BAm

),(BAm

3

|)(|),(ABAm Bϑ≠ . In the example shown in Figure 2,
we have |)(|1012),(ABAm Bϑ=≠= . The GLAM of an
image measures the amount of each gray level in the
neighborhood of each other gray level. The GLAM for
the binary image shown in Figure 2 (a) is

⎥
⎦

⎤
⎢
⎣

⎡
=

812
1248

A ,

which is calculated using the structuring element of the
four-nearest-neighbor neighborhood system as shown in
Figure 2 (b).

4

Figure 2: An example of an aura on a binary lattice with
the four-nearest neighbors. (a) A sample binary lattice S,
where the subset A is the set of all 1’s and B the set of all
0’s. (b) The structuring element of the neighborhood
system. (c) The set of shaded sites is the aura set of A
w.r.t to B.

The main theory on BGLAMs is presented in the
following theorem. For the proof, the interested reader is
referred to Qin and Yang’s paper [34].

Theorem Two images are identical if and only if
their corresponding BGLAMs are the same.

The above theorem implies that an image can be
uniquely represented by its BGLAMs. It is noteworthy
that, in the theorem, Qin and Yang [34] prove that an
image can be reconstructed by its BGLAMs, but not by
symmetric GLAMs [13, 31, 32], nor by GLCMs (Gray
Level Cooccurrence Matrices) [6, 16, 48].

Intuitively, the BGLAMs of an image characterize
the cooccurrence probability distributions of gray levels
at all possible displacement configurations and thus
estimate the underlying stochastic process that is used to
generate a given texture sample. However, BGLAMs
should not be confused with GLCMs. In fact, for 2D
texture synthesis, it is shown that the method based on
BGLAMs significantly outperforms the one based on
GLCMs [34].

4 Aura 3D Textures
An overview of our approach is given in Figure 1. Our
approach can take a single input sample or multiple
input samples. Given an input texture sample, as shown
in Figure 1, our method first characterize the input so
that the given sample texture can be well represented.
Since a texture image can be accurately represented by
and faithfully reconstructed from its basic gray level

aura matrices (BGLAMs) [34], we use BGLAMs to
characterize and parameterize a texture sample. In aura
3D sampling, a solid texture is generated by matching
the BGLAMs of volumetric data’s slices with the
BGLAMs of the input in multiple view directions, e.g.
the positive directions of the x, y, and z-axes of the 3D
coordinate system. Once the solid texture is generated, a
shader can be used to texture different objects. The
details of our approach are described as follows.

4.1 Calculating the Aura Matrices
In this paper, a compact set of BGLAMs defined over a
neighborhood system (e.g. a 9x9 square window) is used
to characterize input samples parametrically. Once the
BGLAMs of an input sample are calculated, the input is
no longer needed and only the BGLAMs are used in
subsequent aura 3D sampling to generate the solid
texture.

1 1 1
10

0 1
0
0
0

0
0
0
0
0

0
0
0
0
0

0 0

0 0 0
1 1 1

10
0 1

0
0
0

0
0
0
0
0

0
0
0
0
0

0 0

0 0 0

(a) (b) (c)

1 1 1
10

0 1
0
0
0

0
0
0
0
0

0
0
0
0
0

0 0

0 0 0
1 1 1

10
0 1

0
0
0

0
0
0
0
0

0
0
0
0
0

0 0

0 0 0
1 1 1

10
0 1

0
0
0

0
0
0
0
0

0
0
0
0
0

0 0

0 0 0
1 1 1

10
0 1

0
0
0

0
0
0
0
0

0
0
0
0
0

0 0

0 0 0
1 1 1

10
0 1

0
0
0

0
0
0
0
0

0
0
0
0
0

0 0

0 0 0
1 1 1

10
0 1

0
0
0

0
0
0
0
0

0
0
0
0
0

0 0

0 0 0

(a) (b) (c) For an nn× neighborhood system, the total number
of BGLAMs is because there are
neighboring pixels around the central target pixel, and
each neighboring pixel accounts for a BGLAM. An
example of a

12 −n 12 −n

55× binary image and its BGLAMs
calculated over a 33× square window are shown in
Figure 3.

0 0 1

1 1

0 1

0

0

0

1

0

1

1

1

1

0

0

0

0

0 0

1 1 1

(a) (d

⎥
⎦

⎤
⎢
⎣

⎡
43
36

⎥
⎦

⎤
⎢
⎣

⎡
44
66

⎥
⎦

⎤
⎢
⎣

⎡
23
83

⎥
⎦

⎤
⎢
⎣

⎡
56
36

)

⎥
⎦

⎤
⎢
⎣

⎡
53
66

⎥
⎦

⎤
⎢
⎣

⎡
28
33

⎥
⎦

⎤
⎢
⎣

⎡
46
46

⎥
⎦

⎤
⎢
⎣

⎡
43
36

(b) (c)

s r

Figure 3: The BGLAMs of a binary image. (a) The
binary image, (b) the neighborhood system, (c)
the displacement configuration of neighboring pixel r,
and (d) the corresponding BGLAMs of eight
displacement configurations. For ease of reference, the
BGLAMs in (d) are placed according to their
displacement configurations in (b). For example, the
BGLAM shaded in purple in (d) is for the displacement
configuration of the purple pixel in (b).

55×
33×

To calculate the BGLAM of a specific displacement
configuration, e.g. the one shown Figure 3 (c), each
entry of the BGLAM is initialized to zero, i.e.][ija=A

0=ija for 1,0 −≤≤ mji , where m is the total number
of gray levels in the image. For each site s in the image,
let g be its gray level, and g’ the gray level of its
neighboring site r in the displacement configuration.
Then, the value of is incremented by 1. After all
the sites in the image have been processed, the
calculation of the BGLAM is finished. When handling a

'gga

target site on the image boundaries, we consider only its
neighboring sites inside the image and discard those
outside of the image.

4.2 Aura 3D Sampling
For illustration purposes, we describe the aura 3D
sampling in the case of three input samples. The
situation for fewer or more input samples can be handled
similarly. The general flow of the aura 3D sampling is
given in Figure 4.

5

Figure 4: The general flow of aura 3D sampling.

In the beginning, the aura matrices of input samples
are calculated using the algorithm described in Section
4.1 and a volume of white noise is initialized. The aura
matrices of each input is used to define constraints in a
specific view direction during sampling such that the
final synthesized volume will have similar texture to the
corresponding input sample when a cross section
perpendicular to that view direction is cut from the
volume. In Figure 4, for example, the aura matrices of
input are used to constrain the sampling in the x
direction to make sure the slices of the output volume in
that direction look similar to . For the case of single
input sample, the aura matrices constrained in a view
direction is calculated either from the input or from the
rotated version of the input. The view directions for
adding constraints can be arbitrary in our algorithm. For
example, to generate a solid texture of a regular
octahedron (a polyhedron with eight equilateral triangles
as faces), eight input samples can be placed along the
norm directions of the octahedron’s eight faces. For the
purpose of illustration, the view directions in

xI

xI

Figure 4
are demonstrated as in the positive directions of the xyz-
axes.

After initialization, the algorithm iteratively modifies
the noise such that the aura-matrix distance defined in
Eq.4 in Section 4.3 between the xyz-slices of the volume
and the input samples is decreased as much as possible.
The intuition behind this is as follows: two textures are
guaranteed to look similar if their corresponding

BGLAMs are close enough [34]. We use the weighted-
sum distance (see Eq. 4) because we want to make sure
that the points in the volume closer to a view direction
are more likely synthesized by the input sample
constrained in that direction and that there is a smooth
transition between textures of different views. The
calculation of weights, which is discussed later, depends
only on the points in the volume and the view directions
and thus is automatically done by the algorithm.

P(x,y,z)

The view slices at point P

y slice Sy

z slice Sz

x slice Sx
Z

X

Y

Point P’s direction angles

O

P(x,y,z)

α
β

γ

)(cos)(2 α=Pwx
)(cos)(2 β=Pwy
)(cos)(2 γ=Pwx

centersvolume'the:O
Pof anglesdirectionthe:,, γβα

 Output Solid Texture

No

Random
Sampling

Is aura-matrix
distance

decreased?

Input Iy

White noise

Input Ix

 Y

 X

Z Aura matrices of Iy

Figure 5: The view slices and the direction angles of
point P in volume V.

During sampling, each point of the volume is visited
randomly once, and its color is modified so that the
distance defined in Eq.4 between the BGLAMs of the
view slices (see the left in Figure 5) of the volume and
the BGLAMs of the input samples is decreased. More
precisely, when visiting a point, the algorithm first finds
the candidate set of all colors different from the current
color that decrease or at least do not increase the aura-
matrix distance. Then, it randomly chooses a color from
the candidate set as the color of the point. Note that even
when the color does not change the distance, i.e. at the
same distance as the current color, the algorithm still
includes it into the candidate set in order to increase the
randomness in the output. It is possible that the
candidate set is empty at the end of search, which
implies that any color different from the current color
will increase the distance. In such a case, the point
retains its current color and the algorithm goes to
process the next point in the volume. When the distance
is below a predefined threshold or when there is no
change in colors at any point of the volume, the
algorithm returns the volume as the final solid texture.

4.3 Weighted Aura-Matrix Distance
The aura-matrix distance used in the aura 3D sampling is
defined by

)],(*)(),(*)(

),(*)([
||

1),,,(

zzzyyy

xxx
VP

zyx

ISdPwISdPw

ISdPwIIIdd

++

== ∑
∈V

V
, (4)

where is the total number of points in volume V;

,) , and are the weights calculated
||V

)(Pwx (Pwy)(Pwz

Input Iz

Aura matrices of Iz

Aura matrices of Ix
Yes

from the cosines of the direction angles α , β , and
γ of point P in V as shown in the right in Figure 5; and

 is the distance between the BGLAMs of view
slice and the BGLAMs of input sample . Given
two images X and Y, let and

 be their corresponding normalized
BGLAMs, then the BGLAM distance is given
by:

),(xx ISd

xS xI

10}{)(−≤≤= niiX AA

10}{)(−≤≤= niiY BA
),(YXd

∑
−

=
−==

1

0
||||1))(),((),(

n

i
iin

YXdYXd BAAA , (5)

where for a given aura matrix , its norm

 is given by , and an aura matrix

 is normalized if . Since two images

X and Y may have different sizes, the aura matrices must
be normalized to make sure that there is no bias between
the values of , , and
when the distance defined by Eq. 4 is calculated.

1,0][−≤≤= mjiijaA

|||| A ∑
−

=
=

1

0,
||||||

m

ji
ijaA

][ija=A ∑ =
ij

ija 1

),(xx ISd),(yy ISd),(zz ISd

6

As shown in the right of Figure 5, when a point in the
volume is closer to a view direction, e.g. the x-axis, there
is more chance during sampling for the point to be
colored by the input sample constrained in that direction.
Since)cos(α ,)cos(β , and)cos(γ are continuous
functions, there is a smooth transition in the synthesized
textures from one view direction, e.g. the x-axis, to the
other, e.g. the y-axis. For a given point in the
volume V, let be the center of V, then the
weights can be calculated by:

),,(zyxP
),,(000 zyxO

2
0

2
0

2
0

2
02

)()()(
)(

)(cos)(
zzyyxx

xx
Pw

def

x
−+−+−

−
== α

.
)()()(

)(
)(cos)(2

0
2

0
2

0

2
02

zzyyxx
yy

Pw
def

y
−+−+−

−
== β

2
0

2
0

2
0

2
02

)()()(
)(

)(cos)(
zzyyxx

zz
Pw

def

z −+−+−

−
== γ

One can verify that . If P
coincides with O, we let

1)()()(=++ PwPwPw zyx

31)()()(=== PwPwPw zyx .

4.4 Algorithm
The pseudo code of the algorithm for aura 3D textures is
given in Figure 6. The definition of distance d in step 2
of the main algorithm is given in Eq. 4. In step b.2.1 of
aura3DSampling, the view slices of V at point P are
defined as shown in Figure 5.
 The major computation cost of the aura 3D texture
synthesis algorithm is in the two while loops in step 2
(see Figure 6). In an iteration of step 2 (i.e. step 2.1,
which is one pass of visiting all points in V), a brute

force method, which would perform fresh recalculations
each time when the aura-matrix distance is computed,
has a cost of at least , where G
is number of gray levels in the input image, m the total
number of BGLAMs used in the sampling, np the
number of points in the volume, and S the size of the
view slices of volume V. A more efficient way is to
perform an incremental update based on updated
information, which can be done with a cost of

 because when a pixel changes its
gray level value, only its neighboring pixels are affected.

)](***[22 GSGnpmO +

)***(GSnpmO

Aura 3D Texture Synthesis

Input:
 Ix, Iy, Iz ← sample texture images.
 ε ← a given small positive number in (0,1)
Output:
 V ← the synthesized solid texture.

Begin
1 Initialize V as a volume of random noise.
2 While d=d(V, Ix, Iy, Iz) ≥ ε do
 2.1 While there are unvisited points in V, randomly choose an

unvisited point P do
 grayLevel(p) ← aura3DSampling(P, d, Ix, Iy, Iz,V).
 End of while
 End of while
End of begin

aura3DSampling (P, d, Ix, Iy, Iz,V)
 b.1 C=empty (the candidate set of gray levels for point P).
 b.2 For each gray level j = 0 to G -1, and j≠P’s current gray

level, do
 b.2.1 Sx(j), Sy(j), Sz(j) ← the view slices of V at point P

when P has gray level j.
 b.2.2 dj ← d(V, Sx(j), Sy(j), Sz(j)).
 b.2.3 if dj ≤ d, then C = C υ {j}.
 b.3 If C is empty, then g ← the current gray level value of P,
 Else g ← a randomly chosen gray level from C.

Figure 6: The pseudo code of aura 3D texture synthesis
algorithm.

[Proof of the fast-version time complexity] Let
, and are the time complexity for the step

2.1 and the procedure aura3DSampling, respectively,
then the time for one pass of step 2, is given by:

)1.2(T)(bT

)(*)1.2(bTnpT = . (6)
In the algorithm shown in Figure 6, the time for both

step b.1 and step b.4 is a constant, and the time for step
b.3 is at most . By using an incremental update
scheme as described in Qin and Yang’s paper [34], the
distance in step b.2.2 of the algorithm can be
efficiently updated from distance d (i.e. the input
distance parameter of the procedure aura3DSampling)
with a computation cost of . The time for step
b.2.1 and step b.2.3 is and , respectively.
Thus, we have the following:

)(GO

jd

)*(SmO
)(SO)1(O

)**(
)*(*

)}1(]*[)({*
)()]3.2.()2.2.()1.2.([*

)4.()3.()2.()1.()(

GSmO
SmOG

OSmOSOG
GObTbTbTG

bTbTbTbTbT

=
=

++=
+++≤

+++=

. (7)

By Eq. 6 and 7, we have: .▄)***()1.2(GSnpmOT ≤

7

Figure 7: The algorithm of RGB-color transformation
using SVD.

4.5 Color Input Textures
For color input textures, one cannot simply apply the
basic algorithm as shown in Figure 6 to each of the RGB
channels separately since the RGB components of a
color image are dependent on one another. Hence, before
applying the basic aura 3D texture synthesis algorithm, a
color-space transformation T based on the singular value
decomposition technique [33] is used to transform the R,
G, and B components of an color image into three
independent components 'R , , and 'G 'B . After this
decorrelation step, the basic synthesis algorithm is
applied to each of the independent color components 'R ,

, and 'G 'B to generate three gray-scale solid textures in
the transformed color space, which are then transformed
back (using the inverse transformation of T) into the
RGB color space to produce the final synthesized color

solid texture. The pseudo code of the RGB color-space
transformation algorithm based on SVD is given in
Figure 7.

5 Acceleration
For acceleration, we extend our algorithm so that it can
run texture synthesis in multiresolutions, similar to the
pyramid method used in Heeger and Bergen’s work [18].
However, from our experience, we find that the filtering
process only complicates our algorithm. Thus we have
adopted a simpler non-filter-based method, called local
decimation [28], to build the multiresolution
representations of the input and output. For an input
color texture sample of size with 80 BGLAMs
and an output volume of size

6464 ×
128128128 ×× , the

average running time in a single resolution is about 10
hours on a 1.4GHz Penntium 4 PC running Windows XP
Professional. With a multiresolution scheme of 4 levels
and 24 BGLAMs used for each level, the running time is
reduced to about 3 hours. For color images, our
algorithm is further extended to synthesize the three
independent color channels in parallel after the step of
color-space transformation as described in Section 4.5,
in which case, the running time can be further reduced to
about 1 hour. Once the solid texture is generated, a given
object can be textured within seconds. An average
runtime of 6 seconds is recorded in our experiments.

SVD RGB Color Transform

Input:
 X ← the RGB color image.
Output:
 Y ← the color image with independent color channels.
 T ← the RBG color transformation.
 T -1 ← the inverse transformation of T.

Begin
 1 Subtract the mean color from each RGB color channel.
 1.1 R, G, B ← the red, green, and blue channel of X,

respectively.
 1.2 r, g, b ← the mean color of R, G, and B, respectively.
 1.3 R' ← R-r (subtract the mean of the red values from the

red value at each pixel of R).
 1.4 G' ← G-g.
 1.5 B' ← B-b.
 1.6 X' ← the color image of R', G', B' channels.
 2 Calculate the 3x3 covariance matrix C of X'.
 2.1 n ← the number of pixels in X'.
 2.2 D ← the 3xn matrix whose columns are color values of

each pixel in X'.
 2.3 C ← DD t, where D t is the transpose of matrix D.
 3 Perform SVD on C by decomposing C into the product of

three of matrices: C = US 2U t, where U is orthonormal
and S is diagonal.

 4 Calculate the transformation T and the inverse of T.
 T ← S -1U, where S -1 is the inverse matrix of S.
 T -1 ←US.
 5 Y ← TD, Y is a 3xn matrix with each row representing a color

channel.
 6 Return Y, T and T -1.
End

6 Results
The window size used to calculate BGLAMs in our
algorithm is an important parameter that affects the
synthesis results. In general, an input texture containing
large structures or favorable orientations requires a
relatively large neighborhood size. For a given input
texture, different synthesis results can be generated with
different window sizes. Figure 8 gives an example
texture and its solid textures generated by using
windows of different sizes.

Input 3x3 5x5 7x7 9x9

Figure 8: An example of aura 3D textures using different
window sizes given under each output.

 Figure 9 gives some comparison results of aura 3D
textures with two existing approaches. Images in the first
column are input samples of size 6464 × , images in
column 2 are results of our algorithm, and images in the
last column are generated by Wei & Levoy’s algorithm
[40] (the first three rows), and Jagnow et al.’s algorithm
[20] (the last three rows), respectively. For each input
texture, a solid texture of size 128128128 ×× is

generated using the three algorithms. In our algorithm,
we use 80 BGLAMs, which are calculated over a 99×
window, to characterize all input textures and to generate
results shown in Figure 9 and in the rest of this section.
As shown in Figure 9, the results of our method are
better than those of Wei & Levoy’s algorithm. Compared
to Jagnow et al.’s algorithm, although the result of our
algorithm is not as good as theirs for the input shown in
the last row, our algorithm generates better results for the
inputs in row 4 and 5.

Figure 9: Comparison results of our method with Wei &
Levoy’s and Jagnow et al.’s. The inputs (size 6464 ×)
are shown in the first column, and the synthesis results
are displayed in the same row as the inputs. Images in
column 2 are the results of our algorithm, and images in
column 3 are the results of Wei & Levoy’s (the first three
rows) and Jagnow et al.’s (the last three rows).

Figure 10: More results of aura 3D textures. Small
patches are input samples and results of solid textures
are displayed beside the corresponding inputs. In the last
row, three input samples are used to generate the solid
texture.

 It is noteworthy that Jagnow and Dorsey’s method
requires a user to manually design and to edit 3D
particles to match the texture profiles of a given sample.

8

While it may provide flexibility to the user, it is
nontrivial to design a complex texture. If the shapes of
predesigned 3D particles do not match the profiles of
input textures, the algorithm will generate incorrect
results as the one shown in the fifth row in Figure 9.
More results of our method can be found in Figure 10
and in the supplemental materials that accompany the
paper.

7 Evaluation
We present a method based on user studies for
evaluating our aura 3D textures results. We only describe
the algorithm for the case of single input textures. It is
straightforward to extend the algorithm to multiple input
textures. To test the accuracy of our aura 3D textures, it
is reasonable to have the following two evaluation goals:
(1) we test whether or not the slices of the solid texture
in each constrained direction, i.e. the direction in which
the BGLAMs of the input are used to constrain the aura
3D sampling, look similar to the corresponding input;
and (2) we determine whether or not textures change
smoothly between consecutive slices in any view
direction, including view directions that are not used to
constrain the aura 3D sampling.

Suppose a solid texture V of size nnn ×× is
synthesized from an input texture. To test the first goal,
for each direction in which the BGLAMs of the input are
used to constrain the sampling, we obtain all n slices of
V and randomly select of them. We mix the
selected m slices with other texture images that are
randomly drawn from a database of texture images (a
database of over 2000 images is used in our
experiments), and display them in random order on the
screen. Each display is evaluated by 18 people. Among
them, 6 are researchers in the same research lab as the
authors and have the knowledge in texture analysis and
synthesis; the other 6 are graduate students in the same
department and have some general knowledge in
computer vision and image processing, and the
remaining 6 are from outside of the department but in
the same university and are in completely unrelated
disciplines.

)(nm <

Each subject is asked to select all texture images that
look similar to a specified input image. If all m slices in
each of the constrained directions are selected, we
consider the solid texture as a SUCCESS in terms of
subject’s evaluation. If more than 50% of the subjects
give an evaluation of SUCCESS on a solid texture, the
solid texture is considered as a success for the first goal.
Otherwise, it is a failure.

For the second goal, we randomly select v view
directions (6 are used in our experiments). For each view
direction, we generate an animation of all cross sections
of the solid texture that are cut in order along that
direction. A subject is asked to watch the animation to

determine if the texture is changing smoothly from
frame to frame. This test is repeated for each of 18
people. If no sudden change has been identified in all the
animations of the selected views, we consider the
synthesized solid texture as a SUCCESS by the subject.
If more than 50% of the subjects assign a SUCCESS to a
solid texture, the solid texture is considered as a success
for the second goal. Otherwise, it is a failure. Figure 11
shows example sequences of animation frames of two
solid textures that are generated by our method, one for a
cloud-like solid texture and another for a green-marble-
like solid texture. More animations can be found in the
supplemental materials that accompany the paper.

Figure 11: Animation sequences of cross sections of two
solid textures that are generated by our algorithm. The
texture in the first row is a cloud-like solid texture, and
the one in the second row is a green-marble-like solid
texture.

To avoid the manual data collection process and to
make our evaluation efficient, we have designed a GUI-
based evaluation system. Figure 12 gives a screen shot
of the system when it is used for evaluating the first goal.
The input is displayed as a smaller image in the top-left
corner of the window. The m slices together with other
texture images randomly selected by the system from
two texture databases (one for selecting the m slices and
one for selecting the other textures) are displayed on the
screen in random order as larger images below the input.
Texture images similar to the input are selected by just
clicking the button labeled “Similar” under them. When
a user finishes the test, the system will calculate and
store the evaluation result. The user does not know the
score until after the experiment is complete.

It is noteworthy that the user does not have any
information on the value of m because otherwise he/she
will use the information to guide his/her selection, which
will cause a biased evaluation. In fact, in our
implementation, the value of m is assigned randomly
each time by the system to make sure that the user will
not guess it. Furthermore, we found that the color of a
texture provides an important cue in user’s selection that
causes bias. For example, if color images were displayed
in Figure 12, the user could easily make selections by
following the color instead of the textures of the input.
To avoid this bias, we converted all color images into
gray scale images when testing the first goal. For testing

9

the second goal, we use color images because there is no
such color-bias problem.

10

Figure 12: The GUI-based user evaluation system of
aura 3D textures.

Figure 13: An example of failure from our algorithm that
is identified during the evaluation. The input is shown in
(a), the solid texture and its two cross sections are shown
in (b), (c) and (d), respectively. A textured sphere by the
solid texture is shown in (e). The failure of the solid
texture in (b) is identified by viewing its cross sections
as shown in (c) and (d).

For the evaluation of both goals, we have used 126
input textures, which include stochastic and structural
textures. The experimental results show that the average
percentage of success (for the experiments of both goals)
for our aura 3D textures is 76.4%. The results of the
three different groups of subjects are, respectively,
76.8%, 77.2%, and 75.1%. Thus, there is no significant
difference between the results of the different groups.

Figure 13 gives an example of failure of our
algorithm that is identified during evaluation. This
example also demonstrates the importance of the
evaluation process as discussed below. In the figure, the
input and the generated solid texture of the input are
shown in (a) and (b), respectively. The two cross
sections of the solid texture are shown in (c) and (d). A
textured sphere by the solid texture is shown in (e). By
just looking at the solid texture and the textured sphere,
the results look reasonably good. However, by
evaluation, we have actually identified the problems of
the solid texture as shown in (c) and (d), which do not
appear in the textured sphere.

8 Limitations and Future Work
One limitation of the current implementation of the aura
3D texture is the color update scheme during sampling
as described in Section 4.2. It is quite possible that after
a few iterations, the number of candidates of possible
colors for a target point is less than 3, which may
sometimes cause the color values for points in the output
volume to quickly converge to local minima and thus
generate visible seams in the output textures as shown in
Figure 13.
 Future research should be carried out to address this
problem. One possible solution is to extend the current
single-point search scheme to a multiple-point search
scheme during sampling so that the convergence to the
local minima can be avoided as much as possible. Since
genetic algorithms [15] are well suited for searching in
multiple directions, we are currently considering them to
address this local minima problem in our algorithm.

Input Synthesized solid texture

Inconsistency
problem

(b) (a) (d) (e) (c)

Figure 14: An example of inconsistency problems in
oriented structural solid textures.

 The second limitation is that although our method can
generate faithful results for oriented structural textures,
such as the ones shown in the second last row in Figure
10. However, we find one problem related to the issues
of constraints, which we still have not found a
satisfactory solution. It is relatively easy to see that the
orientations of three adjacent structural textures at a
junction may create an inconsistency problem. An
example of such problems is shown in Figure 14, where
the input sample is shown in the left and the
corresponding synthesized solid texture generated by our
method is shown in the right. Although the orientation of
the brick at the solid’s corner highlighted by the dashed
line is consistent with the orientation of the bricks on
both sides of the solid, it is inconsistency with that of the
bricks at the top.
 The solution to the above inconsistency problems in
oriented structural textures, if it exists, depends on the
interpretation of the given surface textures, which is a
very interesting inverse problem for future research. For

11

example, can we detect inconsistencies? If the textures
are consistent, is the solution unique?

The third limitation is related to the current
implementation of the aura 3D sampling. Although our
method is general enough to handle the situation in
which input samples can be placed along non-orthogonal
view directions to constrain the aura 3D sampling, our
current implementation only handles orthogonal view
directions in 3D space. We are currently considering a
new implementation of our algorithm for handling non-
orthogonal-view constraints.

Other future research may include: the extension of
our approach for GPU-based texture synthesis and the
evaluation of solid textures generated by other
approaches, e.g. Jagnow et al.’s algorithm [20].

9 Conclusions
In this paper, a new method for generating solid textures
from input samples is presented. Given one or more
input textures, the BGLAMs of input samples are
calculated first; a solid texture is then generated by
sampling the BGLAMs of input samples. We evaluate
the results of our method based on extensive user studies.
The evaluation results show that our algorithm can
generate faithful results over a wide range of textures
with an average successful rate of 76.4%. The
synthesized results show that our algorithm outperforms
Wei & Levoy’s and are comparable to Jagnow et al.’s.
However, the latter method involves extensive user
interactions in designing correct 3D shapes while our
method is fully automatic with no user interactions in
generating solid textures.

Acknowledgments
The authors would like to thank financial supports
provided by NSERC, the University of Alberta, and the
Karl A Clark Memorial Scholarship from the Alberta
Research Council.

References
1. Ashikhmin, M., Synthesizing Natural Textures. The

ACM Symposium on Interactive 3D Graphics, 2001:
p. 217-226.

2. Blinn, J.F. and M.E. Newell, Texture and Reflection in
Computer Generated Images. Commun. of the ACM,
1976. 19(10): p. 542-547.

3. Chen, Y., et al., Shell Texture Functions. Siggraph,
2004: p. 343-353.

4. Cook, R.L., Shade Trees. Siggraph, 1984. 18: p. 223-
231.

5. Cook, R.L. and T. DeRose, Wavelet Noise. Siggraph,
2005: p. 803-811.

6. Davis, L.S., S.A. Johns, and J.K. Aggarwal, Texture

Analysis Using Generalized Cooccurrence Matrices.
IEEE PAMI, 1979. 1(3): p. 251-259.

7. Dischler, J.-M. and D. Ghazafarpour, Interactive
Image Based Modeling of Macrostructured Textures.
IEEE Computer Graphics and Application, 1999.
19(1): p. 66-74.

8. Dischler, J.-M., D. Ghazanfarpour, and R. Freydier,
Anisotropic Solid Texture Synthesis Using Orthogonal
2D Views. Special issue of Proceedings of
Eurographics, 1998. 17(3): p. 87-96.

9. Dischler, J.-M., et al., Texture Particles. Special Issue
of Proceedings of Eurographics, 2002.

10. Ebert, D.S., et al., Texturing & Modeling: A
Procedural Approach (3rd Edition). 2002, Academic
Press.

11. Efros, A. and T. Leung, Texture Synthesis by Non-
Parametric Sampling. IEEE ICCV, 1999: p. 1033-
1038.

12. Efros, A.A. and W.T. Freeman, Image Quilting for
Texture Synthesis and Transfer. Siggraph, 2001: p.
341-346.

13. Elfadel, I.M. and R.W. Picard, Gibbs Random
Fields, Cooccurrences, and Texture Modeling. PAMI,
1994: p. 24-37.

14. Fleischer, K.W., et al., Cellular Texture Generation.
Siggraph, 1995: p. 239-248.

15. Goldberg, D.E., Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley Publishing Company, 1989.

16. Haralick, R.M., Statistical and Structural
Approaches to Texture. In Proc. 4th Int. Joint Conf.
Pattern Recognition, 1978: p. 45-69.

17. Heckbert, P.S., Fundamentals of Texture Mapping
and Image Warping. Master's Thesis, in Dept. of Elec.
Eng. and Compt. Sci. 1989, Univ. of California:
Berkeley.

18. Heeger, D.J. and J.R. Bergen, Pyramid-Based
Texture Analysis Synthesis. Siggraph, 1995: p. 229-
238.

19. Jagnow, R. and J. Dorsey, Virtual Sculpting with
Haptic Displacement Maps. Proceedings of Graphics
Interface, 2002: p. 125-132.

20. Jagnow, R., J. Dorsey, and H. Rushmeier,
Stereological Techniques for Solid Textures. Siggraph,
2004. 23(3): p. 329-335.

21. Kraevoy, V., A. Sheffer, and C. Gotsman,
Matchmaker: Constructing Constrained Texture
Maps. Siggraph, 2003. 22(3): p. 326-333.

22. Kwatra, V., et al., Graphcut Textures: Image and
Video Synthesis using Graph Cuts. Siggraph, 2003.
22(3): p. 227-286.

23. Lagae, A. and P. Dutré, A Procedural Object
Distribution Function. ACM TOG, 2005. 24(4): p.
1442-1461.

24. Lefebvre, L. and P. Poulin, Analysis and Synthesis
of Structural Textures. Graphics Interface, 2000: p.

12

77-86.
25. Liang, L., et al., Real-Time Texture Synthesis by

Patch-Based Sampling. ACM TOG, 2001: p. 127-150.
26. Liu, X., et al., Synthesis and Rendering of

Bidirectional Texture Functions on Arbitrary Surfaces.
IEEE TVCG, 2004. 10(3): p. 278-289.

27. Paget, R., An automatic 3D texturing framework.
Proceedings of the Intl. Workshop on Texture
Analysis and Synthesis, 2005: p. 1-6.

28. Paget, R. and I.D. Longstaff, Texture Synthesis via a
Noncausal Nonparametric Multiscale Markov
Random Field. IEEE TIP, 1998. 7(6): p. 925-931.

29. Peachey, D.R., Solid Texturing of Complex Surfaces.
Siggraph, 1985. 19(3): p. 279-286.

30. Perlin, K., An Image Synthesizer. Siggraph, 1985.
19(3): p. 287-296.

31. Picard, R.W. and I.M. Elfadel, Structure of Aura
and Co-occurrence Matrices for the Gibbs Texture
Model. J. of Math. Imaging & Vision, 1992: p. 5-25.

32. Picard, R.W., I.M. Elfadel, and A.P. Pentland,
Markov/Gibbs Texture Modeling: Aura Matrices and
Temperature Effects. IEEE CVPR, 1991: p. 371-377.

33. Press, W.H., et al., Numerical Recipes in C++: The
Art of Scientific Computing (2nd ed). Cambridge
University Press, 2002.

34. Qin, X. and Y.H. Yang, Basic Gray Level Aura
Matrices: Theory and its Application to Texture
Synthesis. IEEE ICCV, 2005: p. 128-135.

35. Soler, C., M. Cani, and A. Angelidis, Hierarchical
Pattern Mapping. Siggraph, 2002. 21(3): p. 673-680.

36. Tong, X., et al., Synthesis of Bidirectional Texture
Functions on Arbitrary Surfaces. Siggraph, 2002.
21(3): p. 665-672.

37. Turk, G., Generating Textures for Arbitrary Surfaces
Using Reaction-Diffusion. Siggraph, 1991. 25(3): p.
289-298.

38. Turk, G., Texture Synthesis on Surfaces. Siggraph,
2001: p. 347-354.

39. Wang, L., et al., View-Dependent Displacement
Mapping. Siggraph, 2003. 22(3): p. 334-339.

40. Wei, L., Texture Synthesis from Multiple Sources.
Siggraph Sketches and Applications, 2003.

41. Wei, L. and M. Levoy, Fast Texture Synthesis Using
Tree-Structured Vector Quantization. Siggraph, 2000:
p. 479-488.

42. Wei, L.Y. and M. Levoy, Texture Synthesis over
Arbitrary Manifold Surfaces. Siggraph, 2001: p. 355-
360.

43. Worley, S., Cellular Texture Basis Function.
Siggraph, 1996: p. 291-294.

44. Ying, L., et al., Texture and Shape Synthesis on
Surfaces. Eurographics Workshop on Rendering,
2001: p. 301-312.

45. Zelinka, S. and M. Garland, Interactive Texture
Synthesis on Surfaces Using Jump Maps.
Eurographics Symp. on Rendering, 2003: p. 90-96.

46. Zhang, J., et al., Synthesis of Progressively-Variant
Textures on Arbitrary Surfaces. Siggraph, 2003. 22(3):
p. 295-302.

47. Zhou, K., et al., TextureMontage: Seamless
Texturing of Arbitrary Surfaces From Multiple
Images. Siggraph, 2005: p. 1148-1155.

48. Zucker, S.W., Finding Structure in Co-occurrence
Matrices for Texture Analysis. CVGIP, 1980. 12: p.
286-308.

