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Abstract 
This paper presents a new technique, called aura 3D 
textures, for generating solid textures based on input 
examples. Our method is fully automatic and requires no 
user interactions in the process. Given an input texture 
sample, our method first creates its aura matrix 
representations and then generates a solid texture by 
sampling the aura matrices of the input sample 
constrained in multiple view directions. Once the solid 
texture is generated, any given object can be textured by 
the solid texture. We evaluate the results of our method 
based on extensive user studies. Based on the evaluation 
results using human subjects, we conclude that our 
algorithm can generate faithful results of both stochastic 
and structural textures with an average successful rate of 
76.4%. Our experimental results also show that the new 
method outperforms Wei & Levoy’s method and is 
comparable to that proposed by Jagnow, Dorsey, and 
Rushmeier. 
 
Keywords:  Texture synthesis, Solid textures, Aura 
matrices, BGLAMs (Basic Gray Level Aura Matrices). 
 
 
1 Introduction 
In computer graphics and computer games, texture 
synthesis has been widely recognized as an important 
tool in generating realistic textures for rendering 
complex graphic scenes. Recent advances in 2D texture 
synthesis [1, 11, 12, 18, 22, 25, 41] have ignited the 
development of many successful techniques for 
generating surface textures from input samples [3, 9, 26, 
38, 42, 46]. Although a wide range of textures can be 
synthesized in 2D, there is still a lack of techniques in 
generating 3D textures. When 2D textures are used in 
texturing 3D objects, the following disadvantages are 
found: (1) the distortion problem on large-curvature 

surfaces, and (2) non-reusable – textures generated for 
one surface cannot be used for other surfaces. The 
second limitation makes 2D surface textures difficult, if 
not impossible, to be used in procedural shaders [10]. 

To overcome the above problems, solid textures [29, 
30] can be used. A solid texture is considered as a block 
of colored points in 3D space to represent a real-world 
material, for example, a wood trunk. Once the solid 
texture is available, any given 3D object can be textured 
by carving the object out of the volumetric data. Since 
solid textures define colors for each point in 3D space, 
they avoid the problems of distortion and discontinuity. 
However, solid textures are far more difficult to obtain 
than 2D textures; there is no easy way to obtain solid 
textures from real-world materials. Over the last two 
decades, procedural techniques and image-based 
techniques have been developed to generate solid 
textures. In procedural approaches [10], procedures are 
designed and called to generate solid textures with the 
surface appearance of realistic objects, such as wood, 
stone, smoke, fire, fluid, cloud, etc. However, these 
techniques can model only a limited range of textures. In 
addition, the procedures are difficult to understand and 
control because there are many parameters in the 
procedures and these parameters are not intuitive for a 
user to determine their appropriate values. To address 
these problems, a number of researchers have developed 
image-based techniques [7, 8, 18, 20, 24, 40] for 
synthesizing solid textures from input samples, and 
appealing results have been obtained. Unfortunately, 
some of these techniques are not fully automatic and 
involve nontrivial user interactions [7, 20]; while others 
may apply to only limited types of textures [8, 18, 20 , 
24, 40]. 

In this paper, we present a new method, called aura 
3D textures, for generating solid textures from input 
samples automatically without user interactions. In 
theory, our method can take any number of input 
samples. As shown in Figure 1, given one or more input 
textures, our method first characterizes each input 
sample as a set of aura matrices [34]. Once the aura 
matrices are calculated, the input will not be needed. A 
solid texture is generated by sampling the aura matrices 
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of the inputs. The details of the aura 3D sampling are 
described in Section 4.2. After the solid texture is 
obtained, any given object can be textured by the solid 
texture using a shader. 
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Figure 1: An overview of aura 3D textures. 

We have compared our algorithm with two recently 
proposed algorithms: Wei & Levoy’s [40]; and Jagnow, 
Dorsey, and Rushmeier’s [20]. The experimental results 
show that our method outperforms Wei & Levoy’s and is 
comparable to that of Jagnow et al.’s. However, the latter 
method involves extensive user interactions in designing 
appropriate 3D shapes as well as in estimating the 
correct cross sectional profile; while our method is fully 
automatic with no user interactions in generating solid 
textures. In addition, their method can take a single input 
only; while ours can generate solid textures from 
multiple inputs. 

To test the accuracy of our aura 3D texture approach, 
we present an evaluation method based on extensive user 
studies in Section 7. To avoid manual paper work, we 
have designed a GUI-based system to collect data and to 
perform the evaluation efficiently. The evaluation results 
show that our algorithm can generate appealing results 
for a wide range of textures, including both stochastic 
and structural textures, with an average successful rate of 

76.4%. 
 
2 Related Works 
In 3D texturing, there are four ways to generate synthetic 
textures onto 3D surfaces: texture mapping, procedural 
texturing, image-based surface texturing, and image-
based solid texturing. Texture mapping [17] is the 
earliest approach to generating synthetic textures on 
surfaces of computer-generated objects. Since Blinn’s 
work [2], various techniques [19, 21, 35, 39, 45, 47] 
have been developed to synthesize high quality textures 
efficiently on 3D surfaces. In general, texture mapping 
suffers the well-known problems of distortion, 
discontinuity, and unwanted seams.  
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The second approach is called procedural texturing 
[10]. Since the seminal works of Cook [4], Peachey [29], 
and Perlin [30], procedural techniques have been widely 
accepted in the computer graphics community. In most 
existing techniques, storage-efficient procedures using 
basis functions [5, 23, 30, 43] can create high quality 3D 
textures with no distortion and no discontinuity. Some 
techniques use the reaction-diffusion processes [14, 37] 
to generate biological patterns, e.g. zebra stripes and 
cellular patterns, that are found on animal skins. The 
disadvantages of procedural texturing include: (1) only 
limited types of textures can be modeled, (2) the design 
of procedures is based on the experience of the designer 
and is largely a manual process, and (3) the parameters 
of a texturing procedure are difficult to tune.  

The third approach is the image-based surface 
texturing developed by a number of researchers recently. 
Wei & Levoy [42], Ying et al. [44], and Turk [38] have 
concurrently extended Wei & Levoy’s 2D texture-
synthesis algorithm [41] to synthesize textures onto 
arbitrary mesh surfaces. Using feature-based warping 
and texton masks, Zhang et al. [46] have successfully 
synthesized progressively-variant textures onto 3D 
surfaces from multiple input samples. In Chen’s work 
[3], shell texture functions are used to synthesize 
realistic textures with translucency variations on surfaces 
from either 2D or 3D samples, e.g. a block of CT scan. 
Recent research works [26, 36] have also been done in 
generating bidirectional texture functions (BTF) onto 3D 
mesh surfaces. Compared with procedural texturing, 
image-based surface texturing can synthesize a wide 
range of textures. However, the approach may still suffer 
the distortion problem on surfaces where the curvature is 
large. Another problem of the approach is that textures 
generated for one surface cannot be used for other 
surfaces. This limitation makes the techniques difficult 
to be used in procedural shaders [10]. 

To combine the advantages of the procedural 
texturing and the image-based 2D texture analysis and 
synthesis, several researchers have developed techniques 
for generating solid textures from input samples, which 



we call image-based solid texturing. Different from 
image-based surface texturing, these techniques 
synthesize a volumetric texture data from input samples. 
Once the volumetric data is generated, it can be used to 
texture different objects. In Heeger and Bergen’s work 
[18], homogeneous and stochastic 3D textures are 
successfully generated by matching the histogram of a 
volumetric data with that of the input sample from 
coarse to fine resolutions. However, their approach fails 
for structural textures. To address this problem, Dischler 
et al. [8] propose a method based on spectral and 
histogram analysis to synthesize a wider range of solid 
textures from input samples. Although only a limited 
range of textures can be modeled, Dischler et al.’s 
method [8] is the first approach capable of generating 
structural solid textures such as wood and marble. By 
analyzing and extracting parameters from input images, 
Lefebvre and Poulin’s algorithm [24] is also able to 
synthesize some structural textures such as wood and 
regular tiles. Wei [40] and Paget [27] have extended their 
respective 2D texture synthesis algorithms [28, 41] to 
generate structural solid textures as well as stochastic 
textures. However, both approaches work for only a 
limited range of textures. More recently, in Jagnow, 
Dorsey and Rushmeier’s work [20], a stereology-based 
approach is presented to generate a limited range of solid 
textures, in particular, marble-like textures. In their 
approach, in order to generate the correct results, 
extensive user interactions are required in creating 3D 
particles of the desired shapes and of the required 
distributions. Dischler and Ghazafarpour [7] have also 
developed an interactive image-based framework for 
synthesizing structural solid textures of certain types. 

Our work belongs to the category of image-based 
solid texturing. In particular, we present a BGLAM-
based framework for synthesizing solid textures from 2D 
input samples. Additionally, we describe how to evaluate 
the results of our method using extensive user studies 
based on a carefully designed GUI-based system. The 
new approach is motivated by our recent work on 2D 
texture analysis and synthesis [34]. It is most related to 
Heeger and Bergen’s [18] and Dischler et al.’s methods 
[8]. However, the texture analysis process of our method 
is done using BGLAMs rather than using gray level 
histograms [18] or spectrum in the frequency domain [8] 
(Note: Dischler et al.’s method also uses histogram-
analysis to characterize textures). In the synthesis 
process, our method generates solid textures by sampling 
only the BGLAMs of the inputs. On the other hand, 
Heeger and Bergen’s method needs filters to build 
pyramids for the input and output, and the synthesis 
results of their method heavily depend on the selection 
of filters. While there is no need for filters in Dischler et 
al.’s approach, it cannot synthesize textures with edges 
[8]. Both Heeger and Bergen’s and Dischler et al.’s 
methods fail for large structural textures such as bricks; 

while our method can generate appealing results for such 
structural textures as shown in the paper. 
 
3 BGLAM Concepts and Theory 
Our work is based on our recently proposed BGLAM 
(Basic Gray Level Aura Matrices) mathematical 
framework [34], which is developed based on the aura 
concepts (i.e. aura sets, aura measures, and aura matrices) 
originally proposed by Elfadel and Picard [13]. Under 
the BGLAM framework, an image X is modeled as a 
finite rectangular lattice S of  grids with a 
neighborhood system , where  is the 
neighborhood at site 

nm×
},{ SsΝ s ∈=Ν sN

s . The neighborhood  at site s 
can be viewed as a translation of a basic neighborhood 
[13], denoted E, which is called the structuring element 
for the neighborhood system N. A single site 
neighborhood system is a system with a structuring 
element that contains a single neighboring site. 

sN

 Aura Set: [13] Given two subsets  the 
aura set of A with respect to B for neighborhood system

SBA ⊆, ,
 

N, denoted ),( NABϑ (or )(ABϑ  when N is understood), 
is given by: 

)(),()( BNAA sAsBB ∩∪==
∈

Nϑϑ .         (1) 

 Aura Measure: [13] With the same notations as in 
Eq. 1, the aura measure of A with respect to B, denoted 

, is given by: ),( BAm
∑
∈

∩==
As

s BNBAmBAm ||),,(),( N ,     (2) 

where for a given subset ,  is the total 
number of elements in . 

SA⊆ || A
A

 GLAM (Gray Level Aura Matrix): [13] Let N be 
the neighborhood system over S, and }10,{ −≤≤ GiSi  
be the gray level sets of an image over S, then the 
GLAM of the image over N, denoted  A, is given by: 

)],([][)( jiij SSma === NAA ,    (3) 
where G is the total number of gray levels in the image, 

}|{ ixSsS si =∈=  is the gray level set corresponding 
to the  level, and is the aura measure 
between  and  given by Eq. 2, and 

thi ),( ji SSm

iS jS
1,0 −≤≤ Gji . 

 BGLAM (Basic GLAM) [34]: A BGLAM is a 
GLAM computed from a single site neighborhood 
system. 
 The aura of A with respect to B characterizes how 
the subset B is present in the neighborhood of A. An 
example of an aura on a binary lattice with the four-
nearest-neighbor neighborhood system is shown in 
Figure 2. The aura measure  measures the 
amount of B’s sites presented in the neighborhood of A. 
Note that  does not measure the number of 
elements in the aura of A w.r.t B, i.e. in general, 

),( BAm
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|)(|),( ABAm Bϑ≠ . In the example shown in Figure 2, 
we have |)(|1012),( ABAm Bϑ=≠= . The GLAM of an 
image measures the amount of each gray level in the 
neighborhood of each other gray level. The GLAM for 
the binary image shown in Figure 2 (a) is  

⎥
⎦

⎤
⎢
⎣

⎡
=

812
1248

A , 

which is calculated using the structuring element of the 
four-nearest-neighbor neighborhood system as shown in 
Figure 2 (b). 
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Figure 2: An example of an aura on a binary lattice with 
the four-nearest neighbors. (a) A sample binary lattice S, 
where the subset A is the set of all 1’s and B the set of all 
0’s. (b) The structuring element of the neighborhood 
system. (c) The set of shaded sites is the aura set of A 
w.r.t to B.  

The main theory on BGLAMs is presented in the 
following theorem. For the proof, the interested reader is 
referred to Qin and Yang’s paper [34].  

Theorem Two images are identical if and only if 
their corresponding BGLAMs are the same. 

The above theorem implies that an image can be 
uniquely represented by its BGLAMs. It is noteworthy 
that, in the theorem, Qin and Yang [34] prove that an 
image can be reconstructed by its BGLAMs, but not by 
symmetric GLAMs [13, 31, 32], nor by GLCMs (Gray 
Level Cooccurrence Matrices) [6, 16, 48]. 

Intuitively, the BGLAMs of an image characterize 
the cooccurrence probability distributions of gray levels 
at all possible displacement configurations and thus 
estimate the underlying stochastic process that is used to 
generate a given texture sample. However, BGLAMs 
should not be confused with GLCMs. In fact, for 2D 
texture synthesis, it is shown that the method based on 
BGLAMs significantly outperforms the one based on 
GLCMs [34]. 
 
4 Aura 3D Textures 
An overview of our approach is given in Figure 1. Our 
approach can take a single input sample or multiple 
input samples. Given an input texture sample, as shown 
in Figure 1, our method first characterize the input so 
that the given sample texture can be well represented. 
Since a texture image can be accurately represented by 
and faithfully reconstructed from its basic gray level 

aura matrices (BGLAMs) [34], we use BGLAMs to 
characterize and parameterize a texture sample. In aura 
3D sampling, a solid texture is generated by matching 
the BGLAMs of volumetric data’s slices with the 
BGLAMs of the input in multiple view directions, e.g. 
the positive directions of the x, y, and z-axes of the 3D 
coordinate system. Once the solid texture is generated, a 
shader can be used to texture different objects. The 
details of our approach are described as follows. 
 
4.1 Calculating the Aura Matrices 
In this paper, a compact set of BGLAMs defined over a 
neighborhood system (e.g. a 9x9 square window) is used 
to characterize input samples parametrically. Once the 
BGLAMs of an input sample are calculated, the input is 
no longer needed and only the BGLAMs are used in 
subsequent aura 3D sampling to generate the solid 
texture. 
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(a) (b) (c)    For an nn×  neighborhood system, the total number 
of BGLAMs is  because there are  
neighboring pixels around the central target pixel, and 
each neighboring pixel accounts for a BGLAM. An 
example of a 

12 −n 12 −n

55×  binary image and its BGLAMs 
calculated over a 33×  square window are shown in 
Figure 3.  
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Figure 3: The BGLAMs of a binary image. (a) The 
binary image, (b) the  neighborhood system, (c) 
the displacement configuration of neighboring pixel r, 
and (d) the corresponding BGLAMs of eight 
displacement configurations. For ease of reference, the 
BGLAMs in (d) are placed according to their 
displacement configurations in (b). For example, the 
BGLAM shaded in purple in (d) is for the displacement 
configuration of the purple pixel in (b). 

55×
33×

To calculate the BGLAM of a specific displacement 
configuration, e.g. the one shown Figure 3 (c), each 
entry of the BGLAM  is initialized to zero, i.e. ][ ija=A

0=ija  for 1,0 −≤≤ mji , where m is the total number 
of gray levels in the image. For each site s in the image, 
let g be its gray level, and g’ the gray level of its 
neighboring site r in the displacement configuration. 
Then, the value of  is incremented by 1. After all 
the sites in the image have been processed, the 
calculation of the BGLAM is finished. When handling a 

'gga



target site on the image boundaries, we consider only its 
neighboring sites inside the image and discard those 
outside of the image. 
 
4.2 Aura 3D Sampling 
For illustration purposes, we describe the aura 3D 
sampling in the case of three input samples. The 
situation for fewer or more input samples can be handled 
similarly. The general flow of the aura 3D sampling is 
given in Figure 4. 
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Figure 4: The general flow of aura 3D sampling. 

In the beginning, the aura matrices of input samples 
are calculated using the algorithm described in Section 
4.1 and a volume of white noise is initialized. The aura 
matrices of each input is used to define constraints in a 
specific view direction during sampling such that the 
final synthesized volume will have similar texture to the 
corresponding input sample when a cross section 
perpendicular to that view direction is cut from the 
volume. In Figure 4, for example, the aura matrices of 
input  are used to constrain the sampling in the x 
direction to make sure the slices of the output volume in 
that direction look similar to . For the case of single 
input sample, the aura matrices constrained in a view 
direction is calculated either from the input or from the 
rotated version of the input. The view directions for 
adding constraints can be arbitrary in our algorithm. For 
example, to generate a solid texture of a regular 
octahedron (a polyhedron with eight equilateral triangles 
as faces), eight input samples can be placed along the 
norm directions of the octahedron’s eight faces. For the 
purpose of illustration, the view directions in 

xI

xI

Figure 4 
are demonstrated as in the positive directions of the xyz-
axes. 

After initialization, the algorithm iteratively modifies 
the noise such that the aura-matrix distance defined in 
Eq.4 in Section 4.3 between the xyz-slices of the volume 
and the input samples is decreased as much as possible. 
The intuition behind this is as follows: two textures are 
guaranteed to look similar if their corresponding 

BGLAMs are close enough [34]. We use the weighted-
sum distance (see Eq. 4) because we want to make sure 
that the points in the volume closer to a view direction 
are more likely synthesized by the input sample 
constrained in that direction and that there is a smooth 
transition between textures of different views. The 
calculation of weights, which is discussed later, depends 
only on the points in the volume and the view directions 
and thus is automatically done by the algorithm. 
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Figure 5: The view slices and the direction angles of 
point P in volume V. 

During sampling, each point of the volume is visited 
randomly once, and its color is modified so that the 
distance defined in Eq.4 between the BGLAMs of the 
view slices (see the left in Figure 5) of the volume and 
the BGLAMs of the input samples is decreased. More 
precisely, when visiting a point, the algorithm first finds 
the candidate set of all colors different from the current 
color that decrease or at least do not increase the aura-
matrix distance. Then, it randomly chooses a color from 
the candidate set as the color of the point. Note that even 
when the color does not change the distance, i.e. at the 
same distance as the current color, the algorithm still 
includes it into the candidate set in order to increase the 
randomness in the output. It is possible that the 
candidate set is empty at the end of search, which 
implies that any color different from the current color 
will increase the distance. In such a case, the point 
retains its current color and the algorithm goes to 
process the next point in the volume. When the distance 
is below a predefined threshold or when there is no 
change in colors at any point of the volume, the 
algorithm returns the volume as the final solid texture. 
 
4.3 Weighted Aura-Matrix Distance 
The aura-matrix distance used in the aura 3D sampling is 
defined by 
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where  is the total number of points in volume V; 

, ) , and  are the weights calculated 
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from the cosines of the direction angles α , β , and 
γ of point P in V as shown in the right in Figure 5; and 

 is the distance between the BGLAMs of view 
slice  and the BGLAMs of input sample . Given 
two images X and Y, let  and 

 be their corresponding normalized 
BGLAMs, then the BGLAM distance  is given 
by: 

),( xx ISd

xS xI

10}{)( −≤≤= niiX AA

10}{)( −≤≤= niiY BA
),( YXd

∑
−

=
−==

1

0
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n

i
iin

YXdYXd BAAA , (5) 

where for a given aura matrix , its norm 

 is given by , and an aura matrix 

 is normalized if . Since two images 

X and Y may have different sizes, the aura matrices must 
be normalized to make sure that there is no bias between 
the values of , , and  
when the distance defined by Eq. 4 is calculated. 
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As shown in the right of Figure 5, when a point in the 
volume is closer to a view direction, e.g. the x-axis, there 
is more chance during sampling for the point to be 
colored by the input sample constrained in that direction. 
Since )cos(α , )cos(β , and )cos(γ  are continuous 
functions, there is a smooth transition in the synthesized 
textures from one view direction, e.g. the x-axis, to the 
other, e.g. the y-axis. For a given point  in the 
volume V, let  be the center of V, then the 
weights can be calculated by: 
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One can verify that . If P 
coincides with O, we let 

1)()()( =++ PwPwPw zyx

31)()()( === PwPwPw zyx . 
 
4.4 Algorithm 
The pseudo code of the algorithm for aura 3D textures is 
given in Figure 6. The definition of distance d in step 2 
of the main algorithm is given in Eq. 4. In step b.2.1 of 
aura3DSampling, the view slices of V at point P are 
defined as shown in Figure 5. 
 The major computation cost of the aura 3D texture 
synthesis algorithm is in the two while loops in step 2 
(see Figure 6). In an iteration of step 2 (i.e. step 2.1, 
which is one pass of visiting all points in V), a brute 

force method, which would perform fresh recalculations 
each time when the aura-matrix distance is computed, 
has a cost of at least , where G 
is number of gray levels in the input image, m the total 
number of BGLAMs used in the sampling, np the 
number of points in the volume, and S the size of the 
view slices of volume V. A more efficient way is to 
perform an incremental update based on updated 
information, which can be done with a cost of 

 because when a pixel changes its 
gray level value, only its neighboring pixels are affected. 
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Aura 3D Texture Synthesis 
 

Input: 
  Ix, Iy, Iz ← sample texture images. 
  ε ← a given small positive number in (0,1) 
Output: 
  V ← the synthesized solid texture. 
 

Begin 
1 Initialize V as a volume of random noise. 
2 While d=d(V, Ix, Iy, Iz) ≥ ε do 
   2.1 While there are unvisited points in V, randomly choose an 

unvisited point P do 
    grayLevel(p) ← aura3DSampling(P, d, Ix, Iy, Iz,V). 
        End of while 
    End of while 
End of begin 
 

aura3DSampling (P, d, Ix, Iy, Iz,V) 
  b.1 C=empty (the candidate set of gray levels for point P). 
  b.2 For each gray level j = 0 to G -1, and j≠P’s current gray 

level,  do 
       b.2.1 Sx(j), Sy(j), Sz(j) ← the view slices of V at point P 

when P has gray level j. 
 b.2.2 dj ← d(V, Sx(j), Sy(j), Sz(j)). 
 b.2.3 if dj ≤ d, then C = C υ {j}. 
  b.3 If C is empty, then g ← the current gray level value of P, 
      Else g ← a randomly chosen gray level from C. 

Figure 6: The pseudo code of aura 3D texture synthesis 
algorithm. 

[Proof of the fast-version time complexity] Let 
, and  are the time complexity for the step 

2.1 and the procedure aura3DSampling, respectively, 
then the time for one pass of step 2, is given by: 

)1.2(T )(bT

)(*)1.2( bTnpT = .       (6) 
In the algorithm shown in Figure 6, the time for both 

step b.1 and step b.4 is a constant, and the time for step 
b.3 is at most . By using an incremental update 
scheme as described in Qin and Yang’s paper [34], the 
distance  in step b.2.2 of the algorithm can be 
efficiently updated from distance d (i.e. the input 
distance parameter of the procedure aura3DSampling) 
with a computation cost of . The time for step 
b.2.1 and step b.2.3 is  and , respectively. 
Thus, we have the following: 
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By Eq. 6 and 7, we have: .▄ )***()1.2( GSnpmOT ≤
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Figure 7: The algorithm of RGB-color transformation 
using SVD. 

 
4.5 Color Input Textures 
For color input textures, one cannot simply apply the 
basic algorithm as shown in Figure 6 to each of the RGB 
channels separately since the RGB components of a 
color image are dependent on one another. Hence, before 
applying the basic aura 3D texture synthesis algorithm, a 
color-space transformation T based on the singular value 
decomposition technique [33] is used to transform the R, 
G, and B components of an color image into three 
independent components 'R , , and 'G 'B . After this 
decorrelation step, the basic synthesis algorithm is 
applied to each of the independent color components 'R , 

, and 'G 'B  to generate three gray-scale solid textures in 
the transformed color space, which are then transformed 
back (using the inverse transformation of T) into the 
RGB color space to produce the final synthesized color 

solid texture. The pseudo code of the RGB color-space 
transformation algorithm based on SVD is given in 
Figure 7. 
 
5 Acceleration 
For acceleration, we extend our algorithm so that it can 
run texture synthesis in multiresolutions, similar to the 
pyramid method used in Heeger and Bergen’s work [18]. 
However, from our experience, we find that the filtering 
process only complicates our algorithm. Thus we have 
adopted a simpler non-filter-based method, called local 
decimation [28], to build the multiresolution 
representations of the input and output. For an input 
color texture sample of size  with 80 BGLAMs 
and an output volume of size 

6464 ×
128128128 ×× , the 

average running time in a single resolution is about 10 
hours on a 1.4GHz Penntium 4 PC running Windows XP 
Professional. With a multiresolution scheme of 4 levels 
and 24 BGLAMs used for each level, the running time is 
reduced to about 3 hours. For color images, our 
algorithm is further extended to synthesize the three 
independent color channels in parallel after the step of 
color-space transformation as described in Section 4.5, 
in which case, the running time can be further reduced to 
about 1 hour. Once the solid texture is generated, a given 
object can be textured within seconds. An average 
runtime of 6 seconds is recorded in our experiments. 

SVD RGB Color Transform 
 

Input: 
 X ←  the RGB color image. 
Output: 
 Y ← the color image with independent color channels. 
 T ← the RBG color transformation. 
 T -1 ← the inverse transformation of T. 
 

Begin 
 1 Subtract the mean color from each RGB color channel. 
    1.1 R, G, B ←  the red, green, and blue channel of X, 

respectively. 
    1.2 r, g, b ← the mean color of R, G, and B, respectively. 
    1.3 R' ← R-r (subtract the mean of the red values from the 

red value at each pixel of R). 
    1.4 G' ← G-g. 
    1.5 B' ← B-b. 
    1.6 X' ← the color image of R', G', B' channels.  
 2 Calculate the 3x3 covariance matrix C of X'. 
    2.1 n ← the number of pixels in X'.  
    2.2 D ← the 3xn matrix whose columns are color values of 

each pixel in X'. 
    2.3 C ← DD t, where D t is the transpose of matrix D. 
 3 Perform SVD on C by decomposing C into the product of 

three of matrices: C = US 2U t, where U is orthonormal 
and S is diagonal. 

 4 Calculate the transformation T and the inverse of T. 
    T ← S -1U, where S -1 is the inverse matrix of S. 
    T -1 ←US. 
 5 Y ← TD, Y is a 3xn matrix with each row representing a color 

channel. 
 6 Return Y, T and T -1. 
End 

 
6 Results 
The window size used to calculate BGLAMs in our 
algorithm is an important parameter that affects the 
synthesis results. In general, an input texture containing 
large structures or favorable orientations requires a 
relatively large neighborhood size. For a given input 
texture, different synthesis results can be generated with 
different window sizes. Figure 8 gives an example 
texture and its solid textures generated by using 
windows of different sizes. 
 

Input 3x3 5x5 7x7 9x9 

 
 
 

 

Figure 8: An example of aura 3D textures using different 
window sizes given under each output. 

    Figure 9 gives some comparison results of aura 3D 
textures with two existing approaches. Images in the first 
column are input samples of size 6464 × , images in 
column 2 are results of our algorithm, and images in the 
last column are generated by Wei & Levoy’s algorithm 
[40] (the first three rows), and Jagnow et al.’s algorithm 
[20] (the last three rows), respectively. For each input 
texture, a solid texture of size 128128128 ××  is 



generated using the three algorithms. In our algorithm, 
we use 80 BGLAMs, which are calculated over a 99×  
window, to characterize all input textures and to generate 
results shown in Figure 9 and in the rest of this section. 
As shown in Figure 9, the results of our method are 
better than those of Wei & Levoy’s algorithm. Compared 
to Jagnow et al.’s algorithm, although the result of our 
algorithm is not as good as theirs for the input shown in 
the last row, our algorithm generates better results for the 
inputs in row 4 and 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Comparison results of our method with Wei & 
Levoy’s and Jagnow et al.’s. The inputs (size 6464 × ) 
are shown in the first column, and the synthesis results 
are displayed in the same row as the inputs. Images in 
column 2 are the results of our algorithm, and images in 
column 3 are the results of Wei & Levoy’s (the first three 
rows) and Jagnow et al.’s (the last three rows). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: More results of aura 3D textures. Small 
patches are input samples and results of solid textures 
are displayed beside the corresponding inputs. In the last 
row, three input samples are used to generate the solid 
texture. 

 It is noteworthy that Jagnow and Dorsey’s method 
requires a user to manually design and to edit 3D 
particles to match the texture profiles of a given sample.  
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While it may provide flexibility to the user, it is 
nontrivial to design a complex texture. If the shapes of 
predesigned 3D particles do not match the profiles of 
input textures, the algorithm will generate incorrect 
results as the one shown in the fifth row in Figure 9. 
More results of our method can be found in Figure 10 
and in the supplemental materials that accompany the 
paper. 
 
7 Evaluation 
We present a method based on user studies for 
evaluating our aura 3D textures results. We only describe 
the algorithm for the case of single input textures. It is 
straightforward to extend the algorithm to multiple input 
textures. To test the accuracy of our aura 3D textures, it 
is reasonable to have the following two evaluation goals: 
(1) we test whether or not the slices of the solid texture 
in each constrained direction, i.e. the direction in which 
the BGLAMs of the input are used to constrain the aura 
3D sampling, look similar to the corresponding input; 
and (2) we determine whether or not textures change 
smoothly between consecutive slices in any view 
direction, including view directions that are not used to 
constrain the aura 3D sampling. 

Suppose a solid texture V of size nnn ××  is 
synthesized from an input texture. To test the first goal, 
for each direction in which the BGLAMs of the input are 
used to constrain the sampling, we obtain all n slices of 
V and randomly select  of them. We mix the 
selected m slices with other texture images that are 
randomly drawn from a database of texture images (a 
database of over 2000 images is used in our 
experiments), and display them in random order on the 
screen. Each display is evaluated by 18 people. Among 
them, 6 are researchers in the same research lab as the 
authors and have the knowledge in texture analysis and 
synthesis; the other 6 are graduate students in the same 
department and have some general knowledge in 
computer vision and image processing, and the 
remaining 6 are from outside of the department but in 
the same university and are in completely unrelated 
disciplines. 

)( nm <

Each subject is asked to select all texture images that 
look similar to a specified input image. If all m slices in 
each of the constrained directions are selected, we 
consider the solid texture as a SUCCESS in terms of 
subject’s evaluation. If more than 50% of the subjects 
give an evaluation of SUCCESS on a solid texture, the 
solid texture is considered as a success for the first goal. 
Otherwise, it is a failure. 

For the second goal, we randomly select v view 
directions (6 are used in our experiments). For each view 
direction, we generate an animation of all cross sections 
of the solid texture that are cut in order along that 
direction. A subject is asked to watch the animation to 

determine if the texture is changing smoothly from 
frame to frame. This test is repeated for each of 18 
people. If no sudden change has been identified in all the 
animations of the selected views, we consider the 
synthesized solid texture as a SUCCESS by the subject. 
If more than 50% of the subjects assign a SUCCESS to a 
solid texture, the solid texture is considered as a success 
for the second goal. Otherwise, it is a failure. Figure 11 
shows example sequences of animation frames of two 
solid textures that are generated by our method, one for a 
cloud-like solid texture and another for a green-marble-
like solid texture. More animations can be found in the 
supplemental materials that accompany the paper. 
 
 
 
 
 
 
 
 
 

Figure 11: Animation sequences of cross sections of two 
solid textures that are generated by our algorithm. The 
texture in the first row is a cloud-like solid texture, and 
the one in the second row is a green-marble-like solid 
texture. 

To avoid the manual data collection process and to 
make our evaluation efficient, we have designed a GUI-
based evaluation system. Figure 12 gives a screen shot 
of the system when it is used for evaluating the first goal. 
The input is displayed as a smaller image in the top-left 
corner of the window. The m slices together with other 
texture images randomly selected by the system from 
two texture databases (one for selecting the m slices and 
one for selecting the other textures) are displayed on the 
screen in random order as larger images below the input. 
Texture images similar to the input are selected by just 
clicking the button labeled “Similar” under them. When 
a user finishes the test, the system will calculate and 
store the evaluation result. The user does not know the 
score until after the experiment is complete. 

It is noteworthy that the user does not have any 
information on the value of m because otherwise he/she 
will use the information to guide his/her selection, which 
will cause a biased evaluation. In fact, in our 
implementation, the value of m is assigned randomly 
each time by the system to make sure that the user will 
not guess it. Furthermore, we found that the color of a 
texture provides an important cue in user’s selection that 
causes bias. For example, if color images were displayed 
in Figure 12, the user could easily make selections by 
following the color instead of the textures of the input. 
To avoid this bias, we converted all color images into 
gray scale images when testing the first goal. For testing 
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the second goal, we use color images because there is no 
such color-bias problem. 
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Figure 12: The GUI-based user evaluation system of 
aura 3D textures. 

 
 
 
 
 
 

Figure 13: An example of failure from our algorithm that 
is identified during the evaluation. The input is shown in 
(a), the solid texture and its two cross sections are shown 
in (b), (c) and (d), respectively. A textured sphere by the 
solid texture is shown in (e). The failure of the solid 
texture in (b) is identified by viewing its cross sections 
as shown in (c) and (d). 

For the evaluation of both goals, we have used 126 
input textures, which include stochastic and structural 
textures. The experimental results show that the average 
percentage of success (for the experiments of both goals) 
for our aura 3D textures is 76.4%. The results of the 
three different groups of subjects are, respectively, 
76.8%, 77.2%, and 75.1%. Thus, there is no significant 
difference between the results of the different groups. 

Figure 13 gives an example of failure of our 
algorithm that is identified during evaluation. This 
example also demonstrates the importance of the 
evaluation process as discussed below. In the figure, the 
input and the generated solid texture of the input are 
shown in (a) and (b), respectively. The two cross 
sections of the solid texture are shown in (c) and (d). A 
textured sphere by the solid texture is shown in (e). By 
just looking at the solid texture and the textured sphere, 
the results look reasonably good. However, by 
evaluation, we have actually identified the problems of 
the solid texture as shown in (c) and (d), which do not 
appear in the textured sphere. 

 
8 Limitations and Future Work  
One limitation of the current implementation of the aura 
3D texture is the color update scheme during sampling 
as described in Section 4.2. It is quite possible that after 
a few iterations, the number of candidates of possible 
colors for a target point is less than 3, which may 
sometimes cause the color values for points in the output 
volume to quickly converge to local minima and thus 
generate visible seams in the output textures as shown in 
Figure 13. 
 Future research should be carried out to address this 
problem. One possible solution is to extend the current 
single-point search scheme to a multiple-point search 
scheme during sampling so that the convergence to the 
local minima can be avoided as much as possible. Since 
genetic algorithms [15] are well suited for searching in 
multiple directions, we are currently considering them to 
address this local minima problem in our algorithm. 
 

Input Synthesized solid texture 

Inconsistency 
problem  

 
 

(b) (a) (d) (e) (c) 

 
 
 
 
 
 
 
 
 
 

Figure 14: An example of inconsistency problems in 
oriented structural solid textures. 

   The second limitation is that although our method can 
generate faithful results for oriented structural textures, 
such as the ones shown in the second last row in Figure 
10. However, we find one problem related to the issues 
of constraints, which we still have not found a 
satisfactory solution. It is relatively easy to see that the 
orientations of three adjacent structural textures at a 
junction may create an inconsistency problem. An 
example of such problems is shown in Figure 14, where 
the input sample is shown in the left and the 
corresponding synthesized solid texture generated by our 
method is shown in the right. Although the orientation of 
the brick at the solid’s corner highlighted by the dashed 
line is consistent with the orientation of the bricks on 
both sides of the solid, it is inconsistency with that of the 
bricks at the top. 
 The solution to the above inconsistency problems in 
oriented structural textures, if it exists, depends on the 
interpretation of the given surface textures, which is a 
very interesting inverse problem for future research. For 
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example, can we detect inconsistencies? If the textures 
are consistent, is the solution unique? 

The third limitation is related to the current 
implementation of the aura 3D sampling. Although our 
method is general enough to handle the situation in 
which input samples can be placed along non-orthogonal 
view directions to constrain the aura 3D sampling, our 
current implementation only handles orthogonal view 
directions in 3D space. We are currently considering a 
new implementation of our algorithm for handling non-
orthogonal-view constraints. 

Other future research may include: the extension of 
our approach for GPU-based texture synthesis and the 
evaluation of solid textures generated by other 
approaches, e.g. Jagnow et al.’s algorithm [20]. 
 
9 Conclusions 
In this paper, a new method for generating solid textures 
from input samples is presented. Given one or more 
input textures, the BGLAMs of input samples are 
calculated first; a solid texture is then generated by 
sampling the BGLAMs of input samples. We evaluate 
the results of our method based on extensive user studies. 
The evaluation results show that our algorithm can 
generate faithful results over a wide range of textures 
with an average successful rate of 76.4%. The 
synthesized results show that our algorithm outperforms 
Wei & Levoy’s and are comparable to Jagnow et al.’s. 
However, the latter method involves extensive user 
interactions in designing correct 3D shapes while our 
method is fully automatic with no user interactions in 
generating solid textures. 
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