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Abstract

Wavelength transduction of light, specifically between the microwave and telecom

regimes, has received a great deal of attention from the cavity optomechanics

community as a landmark application for optomechanical systems. Mechanical

systems are uniquely suited to wavelength transduction, as photon-phonon

momentum transfer allows mechanical motion to couple to light throughout the

electromagnetic spectrum. The use of cavities to contain both electromagnetic and

mechanical energy in resonators allows for enhanced interaction between light and

matter, creating a viable path to high efficiency energy conversion.

For a device to act as an ideal transducer, it must satisfy three key parameters:

low-noise, high-efficiency, and coherence. In this work we explore gallium arsenide

optomechanical crystals as a candidate for microwave-to-telecom wavelength

transduction, tackling the basic characteristics of the devices as optomechanical

resonators and profiling their noise and efficiency characteristics.

To demonstrate transduction efficiency and coherence, we combine the

optomechanical crystals with a 3D microwave cavity, and use the piezoelectric

properties of gallium arsenide to couple the microwave mode to the gallium arsenide

mechanical mode [1]. By injecting a signal into the microwave cavity and measuring

it using the gallium arsenide telecom mode, we demonstrate microwave-to-telecom

transduction and measure both the efficiency and the coherence of the transducer.

To demonstrate the low-noise capabilities, we use a dilution refrigerator to cool

the optomechanical crystal to a temperature on the order of 10 mK, where we show

that the mechanical mode is in the ground state with an average thermal phonon
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population below one [2]. For the transduction protocol described in this thesis, a

ground state mechanical resonator is critical to low-noise transduction, as thermal

phonons are transduced in the same way as signal phonons and become added

signal at the output of the transducer. We use these low-temperature measurements

to estimate the number of added noise photons in a transduced signal.

These experiments are the foundation upon which future microwave-to-telecom

transduction experiments in the Davis lab will be predicated. The methods described

in this thesis, particularly the gigahertz optomechanics measurement techniques

and apparatus, will act as a guide to future students who pursue the ultimate goal

of transduction: the entanglement of superconducting qubits through a telecom

link.
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Yet even though light is so weightless

we have given its name to that condition,

it presses against what it falls on,

just as wind, which we cannot see,

pushes the arms of a mill.

Gene Wolfe, Book of the New Sun (1980-1983)
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Chapter 1

Introduction

1.1 A Motivation for Wavelength Transduction

Wavelength transduction is motivated primarily by the field of quantum

computing. Qubits, which are quantum bits, store quantum information in a

system where there are two possible configurations. A typical example is a two-level

system with a ground and excited state where the superposition of the energy levels

allows linear combination states to exist. This broad description of a qubit has

allowed quantum computing technologies to evolve in a plethora of physical systems.

Individual atoms emerged as an initial candidate for qubits, as their their electronic

configuration can be manipulated into two level systems with energy separations in

the visible to telecom bands. Atomic qubits benefit from indistinguishability—a

quantum computer made from a single isotope of atom will have a set of identical

qubits that all behave and interact in the same way. However, atomic quantum

computers face a scalability challenge due to the delicate control required to trap

many atoms in an optical lattice to form a large-scale quantum computer.

More recently, fabricated superconducting circuits have made an impact on

the quantum computing field as “designer” qubits, which have characteristics

that can be controlled through architecture and fabrication processes. Moreover,

superconducting qubits are designed on-chip with operation frequencies in the

GHz regime to allow for qubits to be interfaced with existing microwave-frequency

electronics equipment. The result is a state-of-the-art quantum processor capable

of entangling 53 individual qubits together to perform quantum algorithms faster

than a classical computer [3].
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The transmon qubit, which is a variation on a charge qubit, has become

increasingly prevalent in the quantum computing industry as a basis for gate-model

quantum computing, wherein quantum states are manipulated using quantum logic

gates. In this architecture, each qubit is controlled by its own RF transmission

line, which becomes prohibitive when scaling the quantum computer to many-qubit

systems. Scalability issues arise in part due to sheer size of the transmission lines, but

also because each line carries a heat load from room temperature to the millikelvin

temperatures within the dilution refrigerator [4], which are required to operate the

superconducting qubits in the thermal ground state. A potential way to circumvent

size requirements is to build multiple quantum computers housed in separate

dilution refrigerators, then network them using entanglement protocols. This draws

direct comparison to classical grid computing, in which multiple computers are

networked together to create a much more powerful supercomputer. On the largest

of scales, this heralds the creation of a quantum internet.

Thermal noise is the primary obstacle that makes the realization of a

quantum internet difficult. For communication to occur, the qubits are linked

via superconducting circuitry, which allows them to exchange states via microwave

photons that have energy equal to the transition energy between the qubit ground

and excited states. These microwave transmission lines can also act as hosts to

thermal noise; their average thermal photon population for a resonant mode at the

transition energy is given by Bose-Einstein statistics to be

n̄th =
1

e
~ω
kBT − 1

, (1.1)

where n̄th is the average thermal population, ~ω is the photon energy, which is

given by Plank’s constant multiplied by the photon frequency, and kBT is the

thermal energy, which is given by Boltzmann’s constant kB, multiplied by the

bath temperature T . At the millikelvin temperatures of dilution refrigerators, the

thermal population at the microwave photon and qubit transition frequency is far

below one, implying the microwave superconducting circuitry is in the thermal

ground state. However, when temperature increases, as it would if the microwave

circuitry were extended outside of the dilution refrigerator, the transmission lines

become increasingly populated with thermal photons. Thus, connecting two qubits
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in separate dilution refrigerators via a room temperature microwave link results in

the microwave photon carrying the quantum state being washed out by thousands

of room temperature thermal photons.

The thermal photon population problem can only be solved in two ways: either

create a millikelvin superconducting network [5], which would be impossibly costly

over any significant distance, or increase the frequency of the messenger photon

carrying the quantum state to an energy high enough that room temperature has a

ground state thermal photon population. At room temperature, the telecom

frequency ω/2π = 194.3 THz is deep in the ground state, with an average

thermal photon population n̄th = 2 × 10−14. As a result, transducing quantum

information from a microwave photon to a telecom photon would allow for quantum

communication channels between superconducting qubits in separated dilution

refrigerators, allowing for entanglement of separated quantum processors, and

ultimately the creation of a quantum internet.

Beyond the creation of the quantum internet, microwave to telecom transduction

offers many other promising applications. Integrating microwave quantum

technology with existing optical quantum technologies such as quantum memories [6],

high-precision atomic clocks [7], and high-efficiency single photon detectors [8] would

allow for the emergence of new hybrid quantum technology including microwave

quantum radar [9] and microwave quantum repeaters [10]. As such, the creation

of a microwave-to-telecom transducer is of paramount importance to quantum

technology research and application.

1.2 Roads to Wavelength Transduction

Microwave-to-telecom wavelength transduction has now been established as a

crucial part of the developing quantum toolbox, which will allow for the development

of new technologies within the broad quantum community. As such, the task of

transduction has been approached using a wide array of physical systems and

techniques [11, 12]. In this thesis we choose to approach the problem using a piezo-

optomechanical system, in which microwaves are transduced into telecom photons

via a mechanical intermediary. This draws upon the optomechanics expertise that
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has been established in the Davis lab, and links it to the 3D-microwave cavity

platform that was developed concurrently by other students in the Davis lab. The

rest of this thesis will develop the ideas of piezo-optomechanics in detail. Here

we will take a brief moment to survey other approaches to microwave-to-telecom

transduction to serve as context.

Our survey begins with an industry standard for microwave-to-telecom

transduction, where non-linear electro-optic materials such as lithium niobate

are used in electro-optic phase modulators to convert microwave tones into optical

sidebands. We will later make extensive use of electro-optic modulators for

calibration purposes, but recognise that commercially available modulators have

transduction efficiencies (η ≈ 10−7 [12]) too low for quantum state transduction [13].

State-of-the-art research into cavity enhanced electro-optic modulators have

demonstrated significant improvements in this respect reaching efficiencies of

η = 0.02 [14–16]. Other options include using Rydberg transitions in cold atoms [17–

19], or using magnons [20], which are collective spin excitations in a magnetic

material, as an intermediary between microwave and telecom light. The majority

of transduction experiments, however, use a mechanical intermediary, which opens

a wide array of approaches to microwave-to-telecom transduction due to the many

ways of coupling electromagnetic energy (light) to mechanical energy (motion). In

the next chapter we will begin our introduction to light-matter interaction, which is

described by the field of optomechanics. In doing so, we will continue our survey of

wavelength transduction in the context of mechanical mediators between microwave

and telecom light.

In the chapters that follow, we will use the theoretical understanding of

optomechanics developed in Chapter 2 to characterize the devices at room

temperature in Chapter 3, where we will further describe the setup created for

measuring the high-frequency mechanical modes of our optomechanical devices.

Chapter 4 then introduces the piezo-optomechanical theory that will be used for

the realization of microwave-to-telecom transduction [1] in Chapter 5. In Chapter 6,

the tansduction device used in this thesis is cooled to millikelvin temperatures

in a dilution refrigerator in order to explore the low-temperature optomechanical

characteristics [2].
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Chapter 2

Optomechanics

2.1 Introduction to Optomechanics

The term optomechanics is often used as a broad description of the interactions

between two harmonic oscillators: one mechanical, which stores energy in the form

of vibrational motion (phonons), and one electromagnetic, which stores energy in

the form of light (photons). In this thesis we separate the unified optomechanics

into three major subfields:

1. Optomechanics (infrared and visible optomechanics)

2. Electromechanics (microwave optomechanics)

3. Piezomechanics (microwave optomechanics using piezoelectric interaction)

The first subfield of unified optomechanics describes the quadratic interaction of

mechanical resonators and optical cavities populated with light from lasers with

wavelengths between ∼ 780 nm and ∼ 1630 nm. As the origin of the broad field of

optomechanics, this subfield is simply referred to eponymously, both in literature

and in this thesis. For mechanically-mediated microwave-to-telecom transduction,

the quadratic interaction described by optomechanics is always used to convert

energy between mechanical motion and telecom light. In contrast, the interactions

used to convert energy between microwave light and mechanical motion are more

diverse.

Electromechanics takes advantage of the same quadratic interaction as

optomechanics, but makes use of an LC-microwave resonator instead of an optical
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cavity to store microwave electromagnetic energy. These LC resonators often take

the form of on-chip circuitry, where a vibrating membrane forms one plate of the LC

resonator capacitor [21]. These membranes typically have low-frequency mechanical

modes, which cause them to have a significant thermal phonon population even

at dilution refrigerator temperatures [22]. Electro-optomechanics, which uses a

mechanical resonator quadratically coupled to both microwave and telecom light

has been used as a vehicle to achieve high-efficiency wavelength transduction [23–25].

The thermal population of the mechanical resonator, however, resulted in thermal

noise entering the transduced signal.

Piezomechanical theory is similar to electromechanics, in that it describes the

coupling between microwaves (both directly and through microwave resonators) and

mechanical resonators. The piezomechanical interaction however is linear in nature,

and must be treated differently as a result. We will explore the piezomechanical

interaction in Chapter 4, and a complete piezo-(telecom)-optomechanical picture in

Chapter 5. Here we note that piezo-optomechanics is by far the most thoroughly

investigated method of transducing microwave light to the telecom domain. The

most common example of piezo-optomechanics uses the piezoelectric effect to

generate surface acoustic waves that interact with the mechanical mode of an

optomechanical device [26–31]. In this thesis, however, we forgo the use of surface

acoustic waves and choose to directly drive the mechanical mode with an electric

field generated by a 3D microwave cavity [1]. In both cases, the piezomechanical

interaction allows for more straightforward integration of high-frequency mechanical

resonators, which implies reduced thermal phonon populations and therefore reduced

thermal noise in the transduced signal. We will fully explore piezomechanical

coupling using 3D microwave cavities in Chapter 5, where we use it to realize

microwave-to-telecom transduction.

In this Chapter, we will introduce the theory of quadratically coupled

harmonic oscillators, which mathematically describes both optomechanics and

electromechanics. The example used to illustrate the interactions, however, will

be specific to an optomechanical device that is illuminated using a coherent,

monochromatic source—an infrared laser. We begin with an independent treatment

of both the mechanical and optical resonators prior to developing the theory of the
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optomechanical interaction. Finally, we will describe the optomechanical crystal; a

device created to harness the optomechanical interaction.

2.2 Mechanical Resonators

In this section we consider a simple harmonic oscillator in the form of a mass-

spring system. Although motion in optomechanics can take many physical forms,

it can generally be treated as a point-like effective mass meff which obeys Hooke’s

law:

F = −kx, (2.1)

where F is the force exerted on the mass by a spring with spring constant k when

the mass is displaced a distance x from its equilibrium position. The resonance

frequency of the mechanical motion is determined by solving the second order

differential equation attained using Newton’s second law F = mẍ,

d2

dt2
x = − k

meff

x, (2.2)

which has a solution x = x0 cos(ωmt) with a resonant frequency ωm =
√
k/meff .

The classical mechanics approach further allows for the calculation of the kinetic

energy

T =
p2

2meff

, (2.3)

and the potential energy

U =
1

2
meffω

2
mx

2. (2.4)

The Hamiltonian represents the total energy in the system, and hence we combine

the kinetic and potential energy to write the classical mechanical Hamiltonian

Hmech = T + U =
p2

2meff

+
meffω

2
mx

2

2
. (2.5)

We now move to a quantum mechanical description, where position and

momentum are treated as operators x̂(t) and p̂(t). Second quantization allows

for the motion to be characterized in terms of boson creation and annihilation
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operators

b̂†(t) =
1

2xzpf

(
x̂(t) +

i

ωmmeff

p̂(t)

)
(2.6)

b̂(t) =
1

2xzpf

(
x̂(t)− i

ωmmeff

p̂(t)

)
, (2.7)

where xzpf =
√

~/(2meffωm) is the mechanical zero-point fluctuation amplitude.

The operators b̂(t) and b̂†(t) are used to rewrite the Hamiltonian, at which point

we arrive at the Hamiltonian for the quantum harmonic oscillator,

Hmech = ~ωm

(
b̂†b̂+

1

2

)
, (2.8)

where the time dependence of the phonon operators necessarily cancels out such

that the Hamiltonian is time independent. We can recover information about the

time dependence of the phonon operators using Heisenberg’s equation,

˙̂
O =

i

~

[
H, Ô

]
, (2.9)

to develop an equation of motion for the quantum harmonic oscillator. The time

evolution of the phonon annihilation operator is

˙̂
b(t) =

i

~

[
Hmech, b̂(t)

]
(2.10)

= −iωmb̂(t). (2.11)

The solution to this differential equation is the exponential function, where

b̂(t) = b̂e−iωmt.

The Hamiltonian describes the resonator as a completely closed system.

Damping and noise terms can be attained by considering the mechanical mode as

being coupled to an infinite bath of harmonic oscillators [32]. A more complete

equation of motion for the mechanical mode is

˙̂
b(t) = −iωmb̂(t)−

Γm

2
b̂(t) +

√
Γmb̂in(t), (2.12)

which describes the time-domain dynamics of phonons in a mechanical mode coupled

to an external environment. The mechanical damping rate Γm describes the rate

at which phonons are exchanged with the environment, whether it be the loss

of phonons from the resonator to the environment (Γm/2)b̂(t), or the mechanical

8



mode being driven by thermal forces
√

Γmb̂in(t), where the rate at which thermal

phonons are incident on the mechanical mode is 〈b̂†in(t′)b̂in(t)〉 = n̄thδ(t
′ − t). The

coefficients in these terms represent our convention of describing the damping rate

in terms of its full-width half-max linewidth in frequency space, hence Γm represents

a phonon loss rate and Γm/2 describes an amplitude damping rate [33]. Lastly,

the mechanical damping rate and frequency can be combined into a mechanical

quality factor Qm = ωm/Γm, which further describes the ratio of energy stored

in the mechanical mode to energy lost to the environment. In this thesis, and in

general for optomechanical devices, the mechanical modes exist in the “high-Q”

regime with Qm � 1.

The mechanical Hamiltonian Eqn. (2.8) and equation of motion Eqn. (2.12)

provide a basis for describing mechanical motion, which will later be expanded

for a more complete description of optomechanics. Here we note again that the

frequency ωm determines the number of thermal phonons for a given temperature

as determined by Bose-Einstein statistics,

n̄th =
1

e
~ωm
kBT − 1

, (2.13)

which means that for any particular temperature, a high-frequency mechanical

resonator has less thermal noise. This plays an important role for mechanically

mediated wavelength transducers, as limiting thermal motion in the device directly

limits the amount of noise added to the signal by the transducer.

2.3 Optical Resonators

The prototypical optical resonator is the Fabry Pérot cavity, which consists of

two facing mirrors set some distance L apart. Light within the cavity is trapped

between the mirrors to create a standing wave with the resonance condition [33]

ωk = k
πc

nL
, (2.14)

where k is the mode order, ωk is the mode frequency, n is the material index of

refraction, and c =
√

1/µ0ε0 is the speed of light in vacuum, which is defined

by the vacuum permitivity ε0 and permeability µ0. If the optical cavity is filled

9



Figure 2.1: Buckled-dome Fabry Pérot cavity schematic including the simulated
electric field. In this structure, the mirrors are distributed Bragg reflectors, which
are composed of multiple layers of material with periodically varying index of
refraction n1 and n2. At each material interface (black lines), the index difference
results in an impedance mismatch which causes reflection. By tailoring the thickness
of the material layers, the reflections can be tuned to constructively interfere, which
results in high reflectivity mirrors. Between the mirrors, three red ovals represent
high-intensity anti-nodes of the optical mode.

with material instead of air or vacuum, then n is the index of refraction of that

material, and c/n is the speed of light in the cavity medium. Figure 2.1 depicts a

buckled-dome Fabry Pérot cavity [34–36] as an example, where the L ≈ 2.5 µm tall

cavity hosts a k = 3 order optical mode for photons near λ3 = 2πc/ω3 = 1550 nm.

The optical field inside the cavity can be understood from the starting point of

the quantization of the electric and magnetic fields in terms of the creation and

annihilation operators â†(t) = â†eiωt, â(t) = âe−iωt. The electric field confined in

the cavity takes the form of a plane wave1 [32]

E(r, t) = i
∑
k

âke
−iωktEk(r)− â†ke

iωktE∗k (r), (2.15)

where the electric field amplitude Ek(r) =
√

~ωk
2ε0

uk(r) is defined using a set of

orthonormal vectors uk(r) ∝ eik·r with wavevector k that satisfy the boundary

conditions of the cavity. The magnetic field modes can be written in terms of the

electric field modes,

Bk(r, t) =
1

ωk
k× Ek(r, t), (2.16)

1The dome-shape of the top mirror causes the optical modes of the cavity to be described by
Hermite-Gaussian modes. By considering the solutions of a plane wave we neglect the spacial
dimensions in the plane of the mirrors.
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such that

B(r, t) = i
∑
k

âke
−iωktBk(r)− â†ke

iωktB∗k(r), (2.17)

where the magnetic field amplitude is Bk(r) =
√

~
2ωkε0

(k× u(r)). With both the

electric and magnetic field written in quantized forms, the next step is to write the

total electromagnetic field energy [32]

U =

∫
V

(
ε0E

2

2
+

B2

2µ0

)
dr3. (2.18)

Using the orthogonality of the position vectors
∫
V

u∗k(r)uk′(r)dr3 = δk,k′ to carry

out the volume integration, the Hamiltonian can be written as that of a quantum

harmonic oscillator,

Hopt =
∑
k

~ωk
(
â†kâk +

1

2

)
. (2.19)

From the Hamiltonian, we use Heisenberg’s equation of motion, Eqn. (2.9), to

reveal the dynamics of a chosen optical mode at frequency ωc:

˙̂a(t) =
i

~
[Hopt, â(t)] (2.20)

= −iωcâ(t). (2.21)

Similar to the case of the mechanical equation of motion, the optical equation

of motion now describes a closed system, with no coupling to the outside world.

To include coupling to the external environment, which allows for photon loss, and

to add an external driving laser, we turn to input-output theory [32, 33], which

again provides a more complete equation of motion:

˙̂a(t) = −iωcâ(t)− κ

2
â(t)−

√
κeâin(t). (2.22)

The optical equation of motion bears close similarity to the mechanical equation

of motion Eqn. (2.12), which is to be expected as we describe both systems as

quantum harmonic oscillators. The exception to the similarities is that the total

optical cavity decay rate κ = κ0 + κe has been partitioned into an external decay

rate κe, which represents losses to an input/output channel such as an optical

fiber, and an internal decay rate κ0, which represents other sources of loss to the
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environment, such as photon absorption in the mirrors or scattering due to mirror

surface roughness. The need to distinguish between external and internal decay

rates is a result of âin(t) being used as a non-thermal driving term which populates

the optical cavity with photons from a laser. This causes κe to act as a coupling

term to the measurement system, and κ0 to act as a true loss rate for the optical

cavity. The distinction between channel and environmental losses will be further

elucidated experimentally in Chapter 3.

The input field âin(t) has a frequency ω` set by the external laser. The resulting

field inside the optical cavity must also be at the same frequency, with a possible

phase offset. This can be made explicit by separating the laser time dependence

by setting â(t) → â(t)e−iω`t, âin(t) → âine
−iω`t. Applying the chain rule and

rearranging, the equation of motion can be written in a frame of reference that

rotates with the laser frequency,

˙̂a(t) = −i∆â(t)− κ

2
â(t)−

√
κeâin, (2.23)

where ∆ = ωc−ω` is the laser detuning, and âin is stationary for a continuous laser

input. It is important to emphasize that the cavity photon operator â(t) is still

time-dependent, unless the optical mode is in equilibrium—by transitioning to the

rotating frame, we have simply removed the laser time dependence. To completely

remove time dependence we set ˙̂a(t) = 0, which allows us to determine the cavity

optical field in the stationary state,

â = −
√
κeâin

i∆ + κ/2
. (2.24)

The expectation value of the intensity allows for the calculation of the average

number of photons in the cavity

n̄cav = 〈â†â〉 =
κe|âin|2

∆2 + κ2/4
, (2.25)

where |âin|2 = P`
~ω`

is the photon flux of a laser with power power P`.

2.4 Optomechanical Interaction

Coupling between the optical and mechanical modes is achieved dispersively,

where the mechanical motion shifts the optical resonance frequency [37]. Returning
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to the optical resonance condition Eqn. 2.14, there are two ways the resonance

frequency can change: the length of the cavity can change, which is known as

moving boundary coupling [38]; or the optical cavity index of refraction n can

change, which typically occurs due to motion-induced strain within a material that

exhibits the photoelastic effect [39, 40].

Let us first use Fig. 2.1 to examine the consequences of a moving mirror. In

this case, the cavity length is a function of the top mirror position x, such that the

resonance condition Eqn. (2.14) becomes

ω(x) =
πc

nL(x)
, (2.26)

where we have chosen to focus on a single optical mode, which now has frequency

dependence on the mirror position through L(x). Then, taking the Taylor expansion

near the equilibrium position L(0), the cavity frequency is shifted from the

equilibrium resonance frequency ωc to,

ωc(x) ≈ ωc +
dωc

dx
x. (2.27)

Where the Taylor expansion has been truncated to first order such that the resonance

frequency is linearly displaced by the mirror position x. Here we take the opportunity

to normalize the mirror position by the zero-point fluctuations, and subsequently

normalize the frequency-shift-per-displacement scaling factor, such that

ωc(x) ≈ ωc + g0
x

xzpf

, (2.28)

where g0 = xzpf
dωc

dx
is the single-photon single-phonon optomechanical coupling,

which represents the rate at which energy is exchanged between photons in the

optical mode and phonons in the mechanical mode.

We have developed the optomechanical coupling from the idea of a moving

mirror changing the length of the cavity, but changing the index of refraction of

the cavity medium produces the same effect, which occurs most commonly due to

material photoelasticity. It is sometimes useful to distinguish between the moving

boundary coupling gmb and the photoelastic coupling gpe. These effects add in

series such that g0 = gmb + gpe. Depending on the material and geometry of the

cavity, the couplings can either compete or cooperate [40].
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Transitioning to the Hamiltonian picture, the combined optical and mechanical

systems can be written as the sum of each component,

H = Hopt +Hmech (2.29)

= ~ωc(x)â†â+ ~ωmb̂
†b̂, (2.30)

where the zero-point contributions of 1
2

have been dropped for simplicity. By

expanding the cavity frequency using Eqn. (2.28), and using Eqns. (2.6, 2.7) to

recognise x̂ = xzpf(b̂
† + b̂), the optomechanical Hamiltonian is

H = ~ωcâ
†â+ ~g0â

†â(b̂† + b̂) + ~ωmb̂
†b̂. (2.31)

The interaction component of the Hamiltonian represents a quadratic interaction

between the optical and mechanical modes where the intensity of the light stored

in the optical mode interacts with the position of the mirror.

The equations of motion can now be derived for both the optical and mechanical

modes. As we have previously shown in Eqns. (2.12, 2.23), the equations of motion

are presented in a frame where the optics rotate with the laser and with added terms

representing bath coupling. We now further include an optomechanical coupling

term:

˙̂a(t) = −i∆â(t)− ig0â(t)
(
b̂†(t) + b̂(t)

)
− κ

2
â(t)−

√
κeâin, (2.32)

˙̂
b(t) = −iωmb̂(t)− ig0â

†(t)â(t)− Γm

2
b̂(t)−

√
Γmb̂in(t). (2.33)

The equations of motion can be made more tractable by linearizing the optical field

as an average amplitude ᾱ with fluctuations δâ(t), which is in general is a good

approximation for optical cavities driven using a laser. This separation allows for

Eqn. (2.32) to be represented as a steady state portion that can be used to recover

Eqn. (2.24) as well as an equation of motion for fluctuations in the optical field.

The linearized optical equation of motion is then

δ ˙̂a(t) = −i∆δâ(t)− ig0ᾱ
(
b̂†(t) + b̂(t)

)
− κ

2
δâ(t)−

√
κeδâin, (2.34)

where we have neglected the second-order fluctuation term −g0δâ(t)
(
b̂†(t) + b̂(t)

)
.

Notably, the interaction term in Eqn. (2.34) presents evidence that the optomechan-

ical interaction is linearly enhanced by the steady-state optical field amplitude ᾱ
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due to the quadratic nature of the interaction. As a result, we consider the number

of cavity photons to be the steady state populations n̄cav = |ᾱ|2, which makes it

clear that the exchange of energy between the optical and mechanical modes is

proportional to
√
n̄cav. One way of characterizing this coupling is by defining a

dimensionless parameter known as the optomechanical cooperativity

C =
4g2

0n̄cav

κΓm

, (2.35)

which compares the cavity enhanced rate of energy exchange g0

√
n̄cav to the rate of

energy loss in the optical (κ) and mechanical (Γm) modes. That is, a cooperativity

greater than one implies energy will be preferentially exchanged between modes

instead of lost to the respective mode baths. Obtaining C > 1 is important for

wavelength transduction applications, as it implies that information, in the form of

photons and phonons, is preferentially moved between the mechanical and optical

modes instead of being lost to the environment. From this a straightforward

prediction is that high-efficiency transduction requires high cooperativity.

The equations of motion for the optical fluctuations and the mechanical

vibrations are most easily solved using their frequency-space representations found

using the Fourier transform,

δâ(ω) = −
ig0ᾱ

(
b̂†(ω) + b̂(ω)

)
+
√
κeδâin(ω)

χ91
a (ω)

, (2.36)

b̂(ω) = −
ig0ᾱ

(
δâ†(ω) + δâ(ω)

)
+
√

Γmb̂in(ω)

χ91
b (ω)

, (2.37)

where the optical and mechanical susceptibilities are respectively

χa(ω) =
1

i(∆− ω) + κ
2

, (2.38)

χb(ω) =
1

i(ωm − ω) + Γm

2

. (2.39)

Together, these coupled equations are used to describe many optomechanical

interactions, including, as we will see later, wavelength transduction. For now, we

investigate how the population of photons in the optical mode affects the mechanical

mode.
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2.4.1 Dynamical Backaction

In the opening pages of this thesis we quote Gene Wolfe’s remark on how light

carries momentum, which causes it to exert force when it collides with matter. This

is especially true in optomechanics, where the accumulation of optical fields results

in dynamical backaction, which affects the motion of the mechanics. To describe

this optomechanical effect we turn to solving Eqns. (2.36, 2.37) for b̂†(ω) + b̂(ω),

which results in

b̂†(ω) + b̂(ω) = −
ig0ᾱ
√
κe

(
χ†a(−ω)δâ†in − χa(ω)δâin

)
+
√

Γm
χ†b(−ω)†b̂†in−χb(ω)b̂in

χ†b(−ω)+χb(ω)(
χ†b(−ω) + χb(ω)

)−1

+ Σ(ω)
.

(2.40)

Here we have defined the self energy, which arises from backaction, as

Σ(ω) = −ig2
0|ᾱ|2

(
χ†a(−ω)− χa(ω)

)
, (2.41)

and further note that the denominator of Eqn. (2.40) represents an effective

mechanical susceptibility. By inspection of Eqn. (2.39), we can identify that

Im{Σ(ωm)} shifts the mechanical damping rate [33],

ΓOM = −g
2
0|ᾱ|2κ

2

(
1

(∆ + ωm)2 + κ2/4
− 1

(∆− ωm)2 + κ2/4

)
, (2.42)

whereas Re{Σ(ωm)} shifts the mechanical frequency

δωm = −g2
0|ᾱ|2

(
∆ + ωm

(∆ + ωm)2 + κ2/4
+

∆− ωm

(∆− ωm)2 + κ2/4

)
. (2.43)

These shifts are recognised as the detuning-dependent optomechanical damping

ΓOM and optomechanical spring δωm effects.

For microwave to telecom transduction, the optomechanical damping effect is

of interest as it implies the existence of laser-induced damping. In the resolved

sideband regime, where ωm � κ, the total mechanical damping Γ = Γm + ΓOM

increases to a maximum when the laser is red-detuned by the mechanical frequency

∆ = ωm. At this point, an anti-Stokes scattering process is enhanced, where the

phonon energy is absorbed by a laser drive photon to promote it into the optical

resonance. This is effectively a cooling operation [41], which enhances the removal
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of phonons from the mechanical resonator. In the case of transduction, it can be

used to either pre-cool the mechanical mode, or to directly remove signal phonons

as part of the transduction process [23–31].

Although the derivations of this chapter have thus far been made with a movable-

mirror Fabry Pérot cavity in mind, the equations hold for a variety of optomechanical

devices, including drum and trampoline resonators in optical cavities [23–

25, 42, 43], optical microdisks of various designs [44–48], electromechanical

LC resonators with mechanically dependent capacitance [21, 22, 49, 50], and

optomechanical crystals [26–31, 40, 51–53], which are devices tailored to facilitating

the optomechanical interaction and the device used for the experiments in this

thesis. In the following section, we will develop the concept of the optomechanical

crystal.

2.5 Optomechanical Crystals

Optomechanical crystals are complex devices built upon the principles of both

photonic crystals [54] and phononic crystals [55]. Originally designed in the

Painter lab [56], they rely on periodic (crystalline) structure to control optical and

mechanical dispersion within the material. As a result, optomechanical crystals are

well described by Bloch’s theorem [57], which describes a plane wave such as the

electric field described in Eqn. (2.15), modulated by a periodic potential ψ(r).

In this section we will construct the theory of an optomechanical crystal from

the starting point of a 1D waveguide, with the understanding that the principles can

be naturally extended to a 2D slab [58]. Conceptually, a 3D bulk optomechanical

crystal can also be envisioned since 3D structures are capable of acting both as

photonic [59] and phononic [60] crystals, but fabrication limitations makes achieving

both properties simultaneously difficult.

2.5.1 Waveguide confinement

Consider Fig. 2.2(a), in which a rectangular beam of material with index n1

is suspended in air or vacuum with index n2. At the interface between material

and vacuum, both energy and transverse momentum must be conserved, such that
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Figure 2.2: Illustration of optomechanical crystal design, beginning with (a) an
optical waveguide. (b) Added photonic (and phononic) mirrors in a waveguide. (c)
A mirror with a defect in the center. (d) Unit cell of the mirror, parametrized by
the width of the nanobeam w, the unit cell length Λ, and the hole radii hx and hy
indicated with purple and green arrows respectively. (e) The optical band diagram
of the unit cell. Modes that exist in the blue-shaded region are above the lightline
(purple) are are unguided. The bandgap, highlighted in red, is bounded from below
by the inset mode simulation of the electric field x component. (f) Mechanical
band diagram, with black lines highlighting in-plane modes capable of coupling
to the mechanical breathing mode. A partial bandgap created between in-plane
modes is highlighted in red, and bounded from below by the inset mode simulation
of the mechanical mode displacement.
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equalities between the frequencies ω1 = ω2 and parallel wave vectors k1, = k2,

must hold. Since the parallel component of the wave vector is k = k sin(θ) and

the wave vector itself is related to the frequency by ω = v|k| for v = c/n the speed

of light in the material, these equalities manifest as Snell’s Law

n1 sin(θ1) = n2 sin(θ2). (2.44)

Below some critical angle θc = arcsin(n2/n1), total internal reflection will confine

the electric field within the beam, allowing it to propagate only along the length of

the beam and effectively creating an optical waveguide. Total internal reflection

can be better understood by considering the perpendicular component of the wave

vector outside the beam [61],

k2
2,⊥ = |k2|2 − k2

1, , (2.45)

where we have used the conservation of parallel momentum. In the context of a

plane wave eik·r = eik2,⊥r⊥+ik2, r , if Eqn. (2.45) is less than zero this implies the

exponential decay of the plane wave perpendicular to the waveguide—an evanescent

field. Conversely, if Eqn. (2.45) is greater than zero then the perpendicular

component is oscillatory and propagation outside the waveguide is permitted.

This leads to a continuum of unguided modes. The boundary between guided and

unguided modes,

k2
1, = |k2|2 (2.46)

=
ω2n2

2

c2
, (2.47)

is known as the light line in the band diagram [62].

2.5.2 Photonic Crystal

Creating an optical cavity from a waveguide requires light to be confined along

the axis of the beam. Figure 2.2(b) introduces the photonic crystal, a 1D equivalent

of a Bragg mirror where a set of holes in the material creates a periodic modulation

in the index of refraction. Although the mirrors are finite in nature, they can

be treated using periodic boundary conditions to understand their optical (and
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mechanical) properties. To this degree we consider the unit cell shown in Fig. 2.2(d)

and a Bloch wave (such as an electric field) propagating along the beam axis

Ψ(rx) = eikxrxψ(rx), (2.48)

where eikxrx describes translation between unit cells and ψ(rx) describes a local

potential within the unit cell. Each unit cell has a length Λ, and we consider a

crystal of length NΛ, where N is the number of unit cells. To satisfy periodicity,

Bloch’s theorem states that [57]

Ψ(rx +NΛ) = Ψ(rx), (2.49)

which allows us to identify the translating wave vector kx = 2πs/NΛ with integer

s ∈ [0, N − 1]. Equivalently, we consider the parameter kxΛ/2π ∈ [0, 1], and further

reduce the space to [0, 0.5] by exploiting phase symmetry about π. Scaling the wave

vector adjusts the length of periodicity of the Bloch wave in the crystal structure.

For example, the Bloch wave in each unit cell is identical for kxΛ/2π = 0, whereas

every other cell is identical when kxΛ/2π = 0.5.

Photonic mirrors are effective reflectors for frequencies within a band gap, which

is a region devoid of modes that support a Bloch wave. Hence, to understand where

the the photonic mirror reflects, we must first investigate the allowed modes for

all possible wave vectors kx. This information is presented in the photonic band

diagram Fig. 2.2(e), where each data point represents a simulated optical mode

that the photonic crystal mirror supports. Above the light line, calculated using

Eqn. (2.47) and shown in purple, there exists a continuum of unguided modes in

the blue-shaded region, where k2,⊥ is real-valued. These modes are not contained

within the waveguide, and couple easily into free space. Below the light line, only

three optical modes, which are modes guided by the material, exist in the photonic

crystal for frequencies below 250 THz, two of which form the bounds of a band gap

illustrated by the red shaded region.

By choosing a cavity length between the photonic mirrors that satisfies

Eqn. (2.14) such that ωc is within the band gap, Figure 2.2(b) represents the

prototypical optical cavity manifested in a waveguide— essentially a 1D equivalent

of the Fabry Pérot cavity from Fig. 2.1. However, the technique of modifying
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the index of refraction by creating holes in the waveguide presents a more elegant

solution to containing an optical mode: Fig. 2.2(c) illustrates a single mirror which

gradually transitions to have holes of a different size and periodicity in the center,

in effect creating a defect in the middle of the mirror. The gradual transition of the

photonic mirror to a defect causes the lower-bounding optical band to be bent to a

desired optical frequency in the mirror band gap. The inset in the band diagram

shows simulations of the same electric field mode in the photonic crystal mirror

cell at 150 THz and the optical defect at 190 THz. In this case, the defect caused

the band to bend at the kxΛ
2π

= 0.5 point.

2.5.3 Phononic Crystal

In addition to hosting an optical mode, the photonic mirror simultaneously acts

as a phononic mirror by preventing the propagation of acoustic phonons. It does

this due to the unit cells acting as a mass-spring system, which has a specific set

of resonance frequencies. In Fig. 2.2(f), the acoustic band diagram is presented

for the mirror unit cell, with inset simulations of the 3 GHz acoustic mode in the

mirror at the kxΛ
2π

= 0 point. As a result of the changing hole size and shape, the

mechanical mode transitions to a frequency of 2.5 GHz in the acoustic defect. The

band gap region for the acoustic defect is bound by two modes that restrict motion

to the x − y plane. Unlike the photonic crystal, the phononic crystal does not

exhibit a complete bandgap. Instead, several modes are observed crossing through

the region which is supposed to reflect acoustic phonons. These modes however

involve motion in the z direction, and as a result they do not couple well to the

in-plane defect mode. For this reason the mechanical mode is considered to be in a

quasi -bandgap, which only weakly couples to other modes that exist in the region.

The combination of both photonic and phononic crystals in the same periodic

structure is the essence of an optomechanical crystal, the device used for experiments

in this thesis.

2.5.4 Mode Simulations

With unit cells, optomechanical crystal mirrors, and the optomechanical crystal

defect now understood, the full optical and mechanical modes within the mirror
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defect can be simulated. In Fig. 2.3(a), the x component of the electric field is

shown to demonstrate the electric field alternation between unit cells, which occurs

as a result of the mode being excited at the kxΛ/2π = 0.5 point. In Fig. 2.3(b)

we plot the optical mode again, this time presenting the normalized electric field

intensity. From Eqn. (2.34) we know that the optomechanical coupling depends on

the optical intensity rather than the electric field itself, and hence this gives better

perspective of the optical and mechanical mode overlap.

Figure 2.3(c) demonstrates the mechanical mode. Unlike the electric field profile,

each unit cell of the mechanical mode presents the same motion profile, which is a

result of the mode being tailored from the kxΛ/2π = 0 point in the band diagram.

The mechanical motion is confined to the x− y plane, and is often described as a

‘breathing mode’.

(a)

(b)

(c)

Figure 2.3: Simulations of an optomechanical crystal showing (a) the Ex electric
field component, (b) the normalized electric field, and (c) the mechanical breathing
mode.

These simulations can be used to estimate a number of important optomechanical

parameters. The effective mass of the mechanical mode is generalized from

the point mass considered in Section 2.2 to an effective motional mass which

depends on the mechanical deformation of the resonator. The motional effective

mass can be obtained by performing a volume integral over the density ρ(r)

and displacement d(r) of the optomechanical crystal, normalized by the point of

maximum displacement [63]:

meff =

∫
ρ(r)d(r)dV

max [d(r)]
. (2.50)
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Similarly, an optical mode volume can be calculated from the electric field

simulation,

Vopt =

∫
ε(r)|E(r)|2dV

max [ε(r)|E(r)|2]
, (2.51)

where ε(r) is the dielectric constant of the material at position r.

The optomechanical coupling can now be estimated using an integral that

calculates the overlap of the mechanical displacement that is perpendicular to the

surface d(r) · n(r) and the electic field. In this case, the coupling calculated would

be the moving boundary optomechanical coupling

gmb =
ωcxzpf

2Vopt

∫
u(r) · n(r)

[
(ε2 − ε1)|E (r)|2 − ε2(r)E⊥(r)|2

ε2 − ε1

]
dA, (2.52)

which becomes large when the overlap integral is large, the optical mode volume

is small, and the zero-point fluctuations are large (requiring small effective mass).

Similar methods exist for calculating the photoelastic optomechanical coupling [39,

40], which will be used for the design of future optomechanical devices.

2.5.5 Material Choice

Optomechanical crystals have been fabricated from a wide variety of materials

including, but not limited to, silicon [56], silicon nitride [64], diamond [65, 66],

aluminum nitride [26, 28, 67], gallium phosphide [68, 69], lithium niobate [30, 31],

and gallium arsenide [29, 40].

Material choice is predicated on the balance of a number of factors, and depends

on the intended application. For piezomechanical based microwave-to-telecom

transduction, piezoelectricity is the crucial aspect, which ostensibly rules out non-

piezoelectric materials such as silicon and diamond with the caveat of hybrid material

devices [70]. Optomechanical coupling is also critical in achieving high efficiency

transduction, which makes materials exhibiting strong photoelasticity excellent

candidates. High optical indexes and electronic bandgaps are also important for

confining the optical field within the material to minimize Vopt and reducing optical

absorption effects that result in optical heating.

In Table 2.5.5 we present a brief overview of important material properties

of piezoelectric materials for comparison, with the caveat that many of these
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properties are incommensurable as they depend on the exact orientation of the

optomechanical crystal within the material. For example, AlN is an ideal candidate

for maximizing optomechanial coupling due the high photoelastic coefficient, but

reported measurements of optomechanical coupling reveal values [28] an order of

magnitude smaller than those of GaAs [40]. As a result, a proper comparison of

materials for piezoelectric optomechanical crystals requires significant simulation

and optimization, and may strongly depend on the precise optomechanical crystal

geometry. There is no clear ‘winner’ among materials for optomechanical crystals.

Material AlN GaP LN GaAs

Optical index [71] 2.03 3.05 2.21 3.37
Electronic bandgap (eV) 4.1 [72] 2.3 [69] 3.0 [72] 1.4[73]
Photoelastic coeff. (max) 0.23 [74] .11 [69] 0.3[30] 0.16[39]
Piezoelectric coeff. (pC/N) 4.0 [74] -2.4 [72] 21 [72, 75] 2.6 [72]

Table 2.1: Properties of common piezoelectric optomechanical crystal materials

The choice of material for optomechanical crystals used in this thesis was

dictated by availability. To date, the Davis lab has no experience with fabricating

piezoelectric materials, and only recently have we begun the design and fabrication

process for optomechanical crystals. To minimize the learning curve required to

enter the field of microwave to telecom transduction using piezo-optomechanical

crystals, we opted to collaborate with the Kartik Srinivasan’s group at the National

Institute of Standards and Technology in Gaithersburg, Maryland. Krishna Balram,

a post-doc in the Srinivasan group, sent us ready-to-measure gallium arsenide

optomechanical crystals, which allowed us to quickly begin conducting state-of-the-

art experiments on transduction ready devices.

2.6 Device

The optomechanical crystal used throughout this thesis is a 13 µm long, 600 nm

wide optomechanical crystal fabricated from 220 nm thick gallium arsenide. The

optomechanical crystal design, shown in Fig. 2.4(a), is surrounded by a phononic

shield meant to reduce the mechanical damping. The optomechanical crystal is

one of 25 devices, which are laid out in a 5x5 grid, Fig. 2.4(b). Each row of the
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grid represents a set of identical (up to fabrication imperfections) optomechanical

crystals, where each column represents an increasing beam width between 580 nm

and 620 nm in steps of 10 nm. A scanning electron microscope image, Fig. 2.4(c),

shows the fabrication details of a gallium arsenide optomechanical crystal.

(a) (b)

(c)

13 μm

Figure 2.4: (a) Design of the optomechanical crystal. (b) Complete chip layout.
(c) Scanning electron microscope image of a 600 nm wide optomechanical crystal.

In the following Chapter, the optical and mechanical modes of the device shown

in Fig. 2.4(a,c) will be thoroughly calibrated. In addition to the data presented

in this thesis, it is worth mentioning that several other devices were calibrated to

varying degrees. In doing so, we found that the optical and mechanical properties

changed slightly with beam width. Despite this, no direct comparisons are made

between beams of varying width due to the variations in optical coupling causing

similar shifts in the optomechanical crystal properties.
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Chapter 3

Calibration &
Experimental Design

The experimental apparatuses used to measure optomechanical crystals are an

extension of the framework that had been built by previous graduate students in

the Davis Lab. The concepts and infrastructure created by Doolin, Hauer, Kim,

and MacDonald [45, 76, 77] for measuring the optical modes of microdisk resonators

remains largely unchanged. Sections 3.1 and 3.2 briefly describe the apparatus used

to make optical measurements and detail the characterization of the optical mode

of the optomechanical crystal.

In contrast to the optical mode, measurements of the gigahertz mechanical

breathing modes of optomechanical crystals require a significantly different approach

than the megahertz modes of the cantilevers that are typically coupled to the optical

microdisks. This paradigm change occurs primarily due to the limited speed of

analog-to-digital converters, which are limited to collecting time-domain data for

signals below 1 GHz. To capture the signal of high-frequency mechanical modes on

an analog-to-digital converter, the signal must first be downmixed to a measurable

frequency. There are several ways to approach this problem, which are detailed in

this chapter and used for experiments throughout this thesis.

In addition to the intrinsic challenge of capturing high-frequency mechanical

signals, there is a second, more insidious challenge—noise. During the course of

the experiments that will follow, a common refrain was “At gigahertz frequencies

everything is an antenna!” A quick calculation shows why this is true: for our

mechanical mode, which we will measure to be near 2.4 GHz, the equation for the
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length of a quarter wavelength antenna is

λ 1
4

=
2πc

4ω
= 3.12 cm,

which means that the majority of the electronics used in measuring the

optomechanical crystals can easily pick up stray electromagnetic radiation noise

if not properly shielded. The noise then appears in the measurements and can

obfuscate the mechanical mode. This becomes a particular issue just above 2.4 GHz,

which is a common wi-fi broadcasting band.

3.1 Dimple Tapered Fiber Coupling

In the previous chapter, we showed that the optical mode of an optomechanical

crystal exists within a bandgap below the light line. Above the light line, however,

a plethora of unguided modes exist which can in theory couple to the optical mode.

Despite this, mode-matching restrictions make it difficult to directly couple between

unguided and guided modes (which is to the benefit of the optical decay rate κ).

Instead, to optically couple to the optomechanical crystal we use a dimpled tapered

fiber, presented in a microscope image in Fig. 3.1(a). To create the dimpled tapered

fiber, we follow the process detailed in Ref. [45], which begins with a single-mode

optical fiber that has been stripped of its cladding layer to expose the bare silica

core. A small length of the core is then exposed to an open flame, and tension

is applied across the length of the fiber such that the heated section of the core

stretches out. As the core stretches, the core diameter subsequently shrinks to

create a tapered region. The tapered region is then fitted around the core of

another optical fiber and moulded to create the characteristic dimple shape shown

in Fig. 3.2(a). The apex of the dimple has a radius of 25 ∼ 50 µm. Despite the

tight radius of the fiber dimple, the fiber efficiency remains as high as 98% of the

initial optical transmission.

When using the dimpled tapered fiber to couple to a device, the fiber is positioned

such that the evanescent field at the dimple overlaps the evanescent field of the

optomechanical crystal. The narrow radius of the dimple allows the contact point

between the optomechanical crystal and the fiber to be selected with ∼ 5 nm
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(b)

10 µm

(a)

100 µm

Figure 3.1: (a) Microscope image of the dimpled tapered fiber from the side and
(b) coupling to an optomechanical crystal.

accuracy along the fiber axis. In the next section, we will show that this accuracy

is crucial to controlling optical coupling between the dimpled tapered fiber and the

optomechanical crystal. Figure 3.1(b) presents a microscope image of the dimpled

tapered fiber coupling to an optomechanical crystal. In this picture, the fiber and

the optomechanical crystal are purposely aligned off-axis to allow for increased

precision when coupling.

3.2 Optical Properties

In Fig. 3.2, a simple schematic of the setup used to measure the optical

transmission profile of an optomechanical crystal is shown. The transmission profile

is measured using a tunable laser1, which sweeps the laser frequency (equivalently,

wavelength) across the optical resonance. The optical field emitted from the laser

âin, with intensity

|âin|2 =
P`
~ω`

(3.1)

set by the laser power P`, is carried through the dimpled tapered fiber to the

optomechanical crystal defect, where it couples into the optical mode at a rate κe.

1Santec TSL-510
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Due to the fact that the optical mode reacts quickly to a changing input, for the

purposes of measuring the transition profile, we consider the optical mode to have a

steady-state optical field â. From the optical mode, light is lost to the environment

at a rate κ0, and couples back into the fiber at a rate κe for a total optical decay

rate κ = κe + κ0. The optical field that re-enters the fiber is split into two equal

parts, a reflected field which is typically discarded, and a transmitted field âout,

which is detected at a photodiode. The emitted optical field, in the absence of

mechanics, is [78]

âout = âin +

√
κe

2
â, (3.2)

where we recall the steady state optical cavity field â from Chapter 2,

â = −
√
κeâin

i∆ + κ/2
. (3.3)

Using this, we find the detected intensity on the photodiode,

|âout|2 = |âin|2 −
κ0 + κe/2

2
|â|2. (3.4)

By dividing both sides of Eqn. (3.4) by |âin|2, we obtain an equation for the

normalized transmission through the optical cavity for any given detuning. This

can ostensibly be used to fit optical resonances, such as those presented in Fig. 3.3(a),

though often an additional term is included in the fit to account for thermorefractive

non-linearities resulting from a high cavity photon occupancy [79]. The resonances

presented in this thesis are deemed ‘near-linear’, with small thermorefractive

contributions. As such, we will consider Eqn. (3.4) to be the default equation

used to fit optical resonances with the understanding that there may be small

non-linearities in play.

The optical intensity measured on the photodiode2 is converted into a voltage

signal, which is then measured on a data acquisition card3 as a DC signal.

Figure 3.3(a) presents two optical transmission profiles of an optomechanical

crystal to illustrate the effect of the fiber on the optical mode. The top profile

2Typically a 1 GHz Newport 1611 photo receiver. Despite the 3 dB rolloff at 1 GHz, it is
capable of detecting 2.4 GHz signals. If high frequency measurement is not required then a
40 MHz Resolved Instruments DPD80 may be used.

3National Instruments USB-6259 multifunction IO, set to sample at 50 kHz
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Figure 3.2: Diagram of dimpled tapered fiber coupling to the optical mode of
the optomechanical crystal. The dimple is shown with its own evanescent field
overlapping the optical mode. The transmitted optical intensity is measured on a
photodiode (PD).

shows a mostly undisturbed transmission profile, whereas in the bottom profile the

optical fiber is in direct contact with the optomechanical crystal defect, such that

the index of the dimpled tapered fiber causes the optical mode to be distorted. The

effect of the fiber is assessed by taking repeated transmission profiles while moving

the fiber closer4 to the optomechanical crystal defect and recording the internal κ0

and external κe decay rates, Fig. 3.3(b), and the change in resonance wavelength,

Fig. 3.3(c). At a certain point, where the total decay rate is near κ/2π ≈ 6 GHz,

the internal decay rate begins to increase which indicates that the proximity of

the optical fiber causes photons to scatter from the optical mode. To limit this

scattering effect, the fiber is first deliberately misaligned from the long axis of

the optomechanical crystal to limit the overlap of the fiber with the optical mode.

Then the fiber is typically positioned such that the total decay rate is between

5 ∼ 7 GHz, which balances the distortion of the optical mode with the need for

enough optical coupling to measure a mechanical signal.

In addition to the scattering caused by the dimpled tapered fiber, the optical

cavity has a baseline internal decay rate κ0 ≈ 4 GHz, which is caused by a mixture

of optical absorption and scattering. It is hypothesized that a large source of the

scattering is from the underside surface of the optomechanical crystal, which is

4This experiment is made possible using Attocube 3-axis piezo-stages with the ANC-300
controller, which allows for small, equal amplitude steps to be made with minimal vibrations. The
fiber and device must moreover be vibration damped by air. Other stages used for manoeuvring
the fiber and/or devices such as the Agilus piezo-stages or Newport micrometer stages can cause
vibrations which cause the fiber to latch onto the device unexpectedly. Accurate coupling with
these stages is still possible, but coupling distance sweeps are not.
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Figure 3.3: (a) Transmission profile (blue) with fits (Eqn. (3.4), black) of the
optical resonance when the fiber is (top) far away from the optomechanical crystal
defect and (bottom) in contact with the crystal defect. The transmission profiles
have been normalized by dividing by the laser input power. (b) Internal (dark
green) and external (light orange) optical decay rates, and (c) change in wavelength
as a function of distance from fiber to optomechanical crystal defect.

rough due to fabrication imperfections [40]. This surface rougness plays a limiting

role in reducing the total cavity decay rate, and therefore sets the maximum optical

cavity quality factor to Q ≈ 50, 000.

3.3 Mechanical Measurement Techniques

In Eqn. (2.28), we determined that mechanical motion causes shifts in the

optical resonance frequency, scaled by the optomechanical coupling. This implies

that the mechanical motion can be measured by monitoring the optical resonance

transmission (direct detection) or phase (homodyne or heterodyne detection). In

both cases, the mechanical signal is imparted onto the measured optical intensity

as a modulation. A photodetector5 is then used to convert the optical intensity

into a AC voltage signal, which can in turn be digitized for analysis using a high

speed (1 GHz) analog-to-digital converter6 or a real-time spectrum analyser.7

During the course of the experiments in this thesis, the methods used to measure

5Direct detection: Newport 1611 photoreciever, homodyne: 800 MHz Newport 1811 balanced
photoreciever, heterodyne: 40 MHz Resolved Instruments DPD80 Balanced

6Ultraview AD12-2000
7Tektronix RSA 306b
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mechanical signal were constantly developed and adapted as experiments progressed.

Initial experiments used direct detection, which is the most common method for

detecting low-frequency mechanical motion in the Davis Lab, coupled with a real-

time spectrum analyser to allow for the measurement of high frequency signals.

Although this spectrum analyser is useful for finding mechanics, the software

that accompanied the instrument made it of limited use for integration in the

data collection and analysis process flow. As such, our discussion on measuring

mechanical motion will include only a brief description of direct detection, which will

then be followed by an in-depth description of the phase measurement techniques

that were used to collect the majority of the experimental data.

3.3.1 Mechanical Modulation of the Optical Mode

Instead of sweeping the laser frequency, as we previously did to measure the

optical mode in Fig. 3.3, we consider a measuring laser set to a constant frequency

to measure mechanical motion. As before, the optical field inside the cavity is

populated by the laser to create the static optical cavity field Eqn. (3.3), but we

now further consider the dynamic response imposed by the mechanical motion. A

complete derivation of the dynamic response due to mechanical motion can be found

in Appendix A, where it is shown that for a mechanical signal x(t) = x0 cos(ωmt),

the optical cavity field is phase modulated sinusoidally by the mechanics and can

be approximated as the static optical cavity field with two sidebands,

â(t) = âe−iβm sin(ωmt), (3.5)

≈ â

[
1− βm

2

(
eiωmt − e−iωmt

)]
, (3.6)

where the mechanical modulation sidebands are detuned from the carrier frequency

by ±ωm and have amplitude determined by the mechanical modulation index

βm =
g0x0

ωmxzpf

. (3.7)

The complete equation for the optical field after the cavity can then be found by

replacing the static response â in Eqn. (3.4) with the dynamic response â(t) from

Eqn. (3.6),

âout(t) = âin +

√
κe

2
â

[
1− βm

2

(
eiωmt − e−iωmt

)]
. (3.8)
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3.3.2 Direct Detection

Direct detection involves setting the laser to the maximum slope of the optical

resonance (direct detection is also known as “tuned-to-slope” detection), found by

maximizing the derivative of Eqn. (3.4) with respect to detuning such that

d|âout(t)|2

d∆2
= 0. (3.9)

At this detuning, shifts in the optical frequency result in maximal changes in

transmission. By considering the optical field intensity incident on the photodetector

at this detuning, |âout(t)|2, we can predict the AC voltage signal response produced

by the photodetector [80],

Vdir(t) = ηd(ω)|âin|2βmκeKdir(∆, ωm) sin(ωmt), (3.10)

where the detector efficiency ηd(ω) contains both the photodetector gain and

responsivity,8 which is frequency dependent. The function Kdir(∆, ωm) is a detuning

and frequency dependent measurement function, which is zero at ∆ = 0 and

maximized near the maximum slope (see Fig. 3.4) of the static optical resonance at

∆ = ±
√

(2ωm)2 + κ2

2
√

3
. (3.11)

The exact forms of the direct detection measurement function used in Eqn. (3.10)

and a similar phase detection measurement function are explored thoroughly in

Refs. [77, 80, 81]. For the experiments in this thesis they are treated as blackbox

gain factors that arise from the optical resonance.

3.3.3 Phase Detection

In addition to the intensity response used for direct detection, the optical cavity

also exhibits a phase response, pictured in Fig. 3.4, that can be used to detect

mechanical motion. The static phase response of the optical mode is derived from

the optical susceptibility by taking the argument of Eqn. (3.3) to find

φcav = arctan

(
−∆

κ

)
, (3.12)

8For the high-frequency mechanical breathing modes measured in this thesis, the detectors
mechanical frequency was beyond the specifications provided by the manufacturer. As a result,
the detector frequency response is unknown.
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Figure 3.4: Schematic of optical cavity transmission amplitude (orange) and phase
(blue) responses. Laser tunings for both direct (blue detuned ∆ < 0) and phase
detection are labelled, showing that for both detection schemes the laser is tuned
to the maximum transmission or phase slope respectively.

which is approximately linear in the region ∆ ≈ 0. The phase of the cavity shifts

with mechanical motion as the resonance frequency changes, which implies that by

setting a measuring laser to the optical resonance frequency ω` = ωc, the mechanical

motion can be measured using an optical phase detection scheme.

The phase of an optical cavity cannot be directly detected, as photodetectors

measure optical intensities, which carry no phase information, instead of optical

fields. Phase measurements must instead be performed using interferometry, where

the laser light emitted from the optical cavity is mixed with a reference laser

to create a phase-dependent interference pattern. Phase detection provides two

significant advantages: first, the local oscillator adds optical gain to the system,

allowing for very small optical fields in the signal arm to be measured; second,

because measurements occur at zero detuning, there is no optical backaction on

mechanical measurements. In the next sections, we will explore the methods we

use to make phase measurements.
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3.3.4 Optical Homodyne Detection

Homodyne detection is the basis upon which we build our phase measurement

systems, and is a common method of measuring the mechanical motion of

optomechanical devices [80, 82, 83]. Figure 3.5(a) shows a prototypical model

of an optical homodyne system, in which a laser is split along two paths by a

beamsplitter,9 the signal arm and the local oscillator arm. The signal arm interacts

with the optomechanical crystal which causes the transmitted optical field to pick

up phase modulations imparted by the mechanics, while the local oscillator acts as

the phase reference. The resulting spectra of the mechanically modulated light and

the local oscillator are shown pictorially in Fig. 3.5(b).

Laser
LO

Sig

Phase
Ctrl.

A

BOMC

FS(a)

Signal arm Local Oscillator
ωl

ωmωm ωm

(b)

ωl

Figure 3.5: (a) Homodyne detection system for performing phase measurements
on an optomechanical crystal (OMC). The laser path is split at a beamsplitter
into a signal and local oscillator arm, which recombine at a second beamsplitter
to be detected on a balanced photodetector. To ensure phase matching of the
measurement arms, a fiber stretcher (FS) is used to balance path lengths. (b)
Cartoon spectrum of the signal arm and local oscillator, showing the sidebands
generated by mechanical motion.

The signal and local oscillator arms recombine at a 50:50 beamsplitter10 to create

two signals A and B, which are subsequently detected on a balanced photodetector.11

9Evanescent Optics Inc. variable coupler
10Thorlabs 2x2 50:50 wideband coupler
11Newfocus 1811 balanced photoreciever
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The difference between the detected signal intensities is

|A|2 − |B|2 = 2i(âLO(t)â†out(t)− â
†
LO(t)âout(t)) (3.13)

= 2|âLO|(|âin|+ |â|) sin(φLO) + |âLO||â|
√
κeβm cos(φLO) sin(ωmt),

(3.14)

where âLO(t) = âLO[e−iω`t−iφLO ] is the optical field of the local oscillator arm, which

has a phase offset φLO. The phase offset between the measurement arms can be

set using a fiber stretcher.12 Notice, importantly, that the AC and DC components

of the homodyne signal are quadrature separated by the local oscillator phase.

By setting the path length such that the local oscillator phase offset is an integer

multiple of 2π (ideally zero), the DC component can be eliminated (sin(φLO) = 0)

and the AC signal can be maximized (cos(φLO) = 1). The homodyne output voltage

then oscillates at the mechanical frequency,

Vhom(t) = η(ω)|âLO||âin|κeβmKhom(∆, ωm) sin(ωmt), (3.15)

where Khom(∆, ωm) is our black-box detuning dependent measurement function for

homodyne measurement [80], which is maximized for zero detuning.

In this scenario, the voltage output by the photodetector depends on the optical

field amplitude of both the signal arm and the local oscillator. This allows for very

small signal-arm optical fields to be measured using a strong local oscillator that

acts as an amplifier, which permits low-power optical measurements of mechanical

motion.

3.3.5 Balancing Homodyne Paths

The homodyne detection scheme poses significant advantages over direct

detection, but also requires a more complicated experimental setup. The primary

challenge of implementing an optical homodyne detection scheme arises from the

short wavelength of telecom light. To set the local oscillator phase offset to an

integer multiple m of 2π, the path length difference ∆L between the signal and

12Optiphase PZ1 high-speed fiber stretcher
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local oscillator arms must be similarly constrained,

φLO =
2π∆L

(λ`/n)
= 2πm (3.16)

⇒ ∆L = m
λ`
n
, (3.17)

where λ` is the vacuum wavelength of light and n ≈ 1.47 is the fiber index of

refraction. If m is large, then small fluctuations in the laser wavelength will result

in large phase fluctuations between the measurement arms. Thus, to minimize

noise it becomes critical to match the homodyne arm lengths as closely as possible.

Prior to beginning the balancing process, we must determine which arm of the

homodyne system is initially longer. If the signal arm is longer, then extra fiber

must be added to the local oscillator arm, if the local oscillator is longer, then the

opposite is true. For room temperature experiments the local oscillator arm will

sometimes be longer due to the 12.5 m of fiber contained within the fiber stretcher.

For low temperature experiments, the amount of fiber contained within the dilution

refrigerator means that the signal arm is typically longer. Determining which arm

is longer is most easily done by adding known lengths of fiber to either arm, and

proceeding with the first stage of balancing.

Matching homodyne arm length is achieved in two stages. In the first stage, a

short duration optical pulse is injected into the homodyne system using an acousto-

optic modulator13 as a fast on-off switch. The beamsplitter splits the pulse into two

separate pulses which travel through the system and arrive at the photodetector

different times. The output of the AC output of the photodetector is then viewed

on an oscilloscope14, which is used to calculate the time difference between pulses.

The path length difference can then be calculated as

∆L =
c

n
∆t, (3.18)

such that c/n is the speed of light in the fiber, and ∆t is the pulse arrival time

difference. By adding various lengths of fiber to one of the arms, the relative arrival

time of the pulses will change, which allows us to determine which arm is initially

longer. A long spool of fiber is then added to shorter arm. By cutting down the

13Gooch & Housego 200 MHz
14LaCroy dda-125
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Figure 3.6: Stage two of balancing a homodyne detection system: a wavelength
sweep demonstrating signal and local oscillator arms with mismatched path lengths.
A 1 nm laser scan in blue shows phase oscillations from a 46 mm path length
difference, which requires further balancing. In contrast, the 5 nm laser scan in
orange shows phase oscillations from a ≈ 1 mm path length difference, indicating
that the arms are adequately balanced.

length of the fiber spool, the path lengths of the arms can be equalized. Using

the optical pulse technique, the length of the fiber spool is reduced until the path

length difference is approximately one meter, at which the ≈ 5 ns time difference

becomes difficult to measure on the oscilloscope.

To further reduce the path length difference below one meter, the homodyne

system is measured while the laser wavelength is swept over a narrow region. Since

the DC output of the homodyne detector depends on the homodyne phase difference

and the phase difference in turn is wavelength dependent, the DC optical intensity

oscillates sinusoidally as a function of laser wavelength, as shown in Fig. 3.6. By

counting the number of periods over a wavelength range, the path length difference

can be calculated as

∆L =
2πc∆m

n∆λ−1
`

, (3.19)

which is derived using Eqn. (3.17) at two wavelengths. ∆m is the number of periods

over the wavelength range, and represents the change in the integer multiple relating

path length and laser wavelength.
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Using the wavelength sweep method in tandem with a fiber cleaver15 to remove

2 cm lengths from the fiber spool, path length differences on the order of 1 mm can

be routinely achieved. Once the path lengths are equalized, a fusion splicer16 is

used to permanently connect the fiber spool to the system. Figure 3.6 demonstrates

a path length difference of ≈ 1 mm, which results in approximately one phase

oscillation per nanometer wavelength. Using Eqn. (3.17), this corresponds to the

homodyne arms having lengths that differ by m ≈ 1000 wavelengths. While this

may seem like a large imbalance in the homodyne system, it results in experimentally

acceptable sensitivity to laser wavelength changes. Using Eqn. (3.19), a shift of

5 pm in laser wavelength (which is the laser specification for accuracy) results in a

shift of ∆m = 0.003 periods (∆φLO = 0.018 rad).

For this discussion we have assumed that the primary complication in homodyne

detection is changes in laser wavelength, simply because changing the wavelength is

the primary manner in which we characterize the path length difference. However,

the truth is that homodyne balancing complications stem from time-varying path

length differences in the arms, which are hypothesized to arise from stress and

temperature dependence of the fiber index of refraction. Because of the equivalence

between wavelength and path length difference stated in Eqn. (3.17), the discussion

of laser noise applies directly to path-length-induced noise. As such, we can write

an equation for the change in phase due to a change in the effective path length

difference ∆(n∆L),

∆φLO =
2π∆(n∆L)

λ`
. (3.20)

The path length changes induced by stress and temperature effects tend to be

slow in nature, and as a result can be automatically corrected for using a control

loop that tunes the local oscillator arm length using the fiber stretcher. In Fig. 3.5,

the input to the control loop is one of the three power monitors on the balanced

photodetector,17 which have a phase-difference dependent DC signal that is sent

15Ericsson EFC11 fiber cleaver
16Ericsson FSU 995 FA
17The Newfocus 1811 balanced photoreciever has voltage pick-offs from either photoreceiver on

the homodyne detector and the DC homodyne difference signal.
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to a feedback controller,18 amplified,19 and used to drive the fiber stretcher. The

fiber stretcher has a 12.5 m spool of fiber wound around a piezoelectric core, which

expands proportionally to the applied voltage causing the fiber spool to stretch.

This increase to the path length of the local oscillator results in a compensating

phase shift. By choosing a voltage setpoint that sets φLO = 0 (and therefore

maximizes the AC signal), the homodyne system can be continuously tuned such

that detection of the mechanical signal is always maximized.

3.3.6 Optical Heterodyne Downmixing

Both direct and homodyne detection produce voltage signals that oscillate at

the mechanical frequency, which, as previously noted, is too fast to be detected

using analog-to-digital converters.20 Optical heterodyne detection provides a phase-

measurement based solution to this problem by optically downmixing the mechanical

signal before it is detected on the photodetectors. Though optical heterodyne has

been used in optomechanical measurement systems previously [84], the application

of optically downmixing high-frequency mechanical signals for detection on low-

frequency is new.

In homodyne detection, the phase is measured by comparing the optical

sidebands produced by mechanical motion to the local oscillator at the laser

frequency. The detector then measures the beat-note present in the intensity.

Heterodyne takes advantage of the same principle, except that the local oscillator

frequency is now detuned by an amount near, but not equal to, the mechanical

frequency. This causes the resulting beat note to appear at the difference between

the frequency shift and the mechanical frequency, effectively downmixing the

mechanical signal.

One method of achieving a shifted local oscillator would be to use a separate laser.

However, small fluctuations in the laser wavelength due to thermal or electronic

noise could cause large changes in the frequency offset, which would be disastrous

for mechanical measurements—a 5 pm wavelength fluctuation corresponds to a

18Newport LB1005 Servo Controller
19RHK Technology HVA 900 high voltage amplifier
20The 1 GHz Ultraview analog-to-digital converters used here are among the fastest cards that

can be purchased.
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600 MHz frequency shift at 1550 nm. Instead, we choose to split the laser frequency

into two arms as we did for homodyne detection, but now shift the laser frequency

using an optical modulator. Ideally, an acousto-optic modulator (AOM) would be

used to produce a single tone at a shifted frequency, however AOMs are typically

limited to ∼ 400 MHz, which, without linking several AOMs in series, is insufficient

for our purposes.

Laser FS

OMC

EOM
LO

Sig

A

B

Signal arm Local Oscillator

Phase
Ctrl.

ωl

ωmωm ωm

(a)

(b)

ωl

ωEOM ωEOM

Figure 3.7: (a) Heterodyne detection system for performing optically downmixed
measurements of the device mechanics. The setup is identical to homodyne, with
the exception of an included electro-optic phase modulator (EOM). (b) Cartoon
spectrum of the signal arm and the local oscillator, showing optical sidebands
generated by both the mechanical motion and the EOM.

In Fig. 3.7(a), we illustrate a heterodyne detection system which uses an electro-

optic phase modulator21 (EOM). The principle of operation behind the EOM is

identical to the mechanics in that it produces two optical sidebands created by phase

modulation φ(t) = sin(ωEOMt) in addition to passing through some of principle

laser tone (for details, see Appendix A). Thus, the light in the local oscillator can

be described in the rotating frame of the laser as

âLO(t) = âLOe
−iβEOMφ(t) (3.21)

= âLO

[
1− βEOM

2
(eiωEOMt − e−iωEOMt)

]
, (3.22)

where ωEOM is a gigahertz input tone produced by an external signal generator,

which modulates the local oscillator field with strength determined by the

21EOSpace LiNbO3 10 GHz phase modulator
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modulation index βEOM = πVEOM/Vπ, where VEOM is the voltage amplitude of

the signal applied to the EOM, and Vπ is the half-wave voltage that would result in

a π phase shift.22 Figure 3.7(b) depicts the spectral components of the heterodyne

signal after the local oscillator and signal arms are mixed at the beam splitter.

Due to the number of laser tones, the intensity detected has a number of spectral

components: ±ωm, ±ωEOM, and (±ωEOM ± ωm). By choosing to drive the EOM at

a frequency ωEOM ≈ ωm ± 10 MHz, the photodetector will measure the downmixed

signal at ±|ωEOM−ωm|, while the high frequency combinations can be electronically

filtered, or simply time-averaged by the analog-to-digital converter.

The complexity of the optical signal after being mixed at the beamsplitter makes

it clear why an AOM was earlier suggested as the ideal optical mixer for optical

heterodyne downmixing. Using a single tone in the local oscillator considerably

reduces the complexity of the downmixed signal, reducing the number of tones

from eight to just three. This scenario can be replicated by inserting a filter in the

local oscillator arm to pick off a single EOM sideband. In this case, the produced

tones are ωEOM, ωEOM − ωm, and ωEOM + ωm. In practice, however, filtering the

local oscillator becomes difficult as the frequency difference between the laser tone

and EOM sideband places a stringent requirement on optical filter bandwidth, and

drifts in the filter can cause the local oscillator intensity to fluctuate. In our system,

we chose to avoid the complications associated with filtering the signal, but the

next generation of optical heterodyne detection systems may choose to implement

an optical filter to improve signal clarity.

3.3.7 Electrical Homodyne Downmixing

A second method of measuring high-frequency signals is by electronically

downmixing the voltage signal produced by the photodiode to a frequency that can

be measured on the analog to digital converter and then digitally upconverted to the

true frequency [84]. This method is advantageous in that it can be applied to both

direct and phase detection measurements. There are several ways of electrically

downmixing the mechanical signal, including the straightforward approach of using

22The EOspace EOM used for heterodyne has Vπ = 4.5 V, calculated using the procedure in
Appendix A
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a frequency mixer to produce an intermediate frequency. Here we approximate

the output of the photodetector as a sinusoidal signal with specific amplitude

A, frequency ωsig, and phase φ: A cos(ωsigt + φsig), and use an electronic local

oscillator (ELO) tone cos(ωELOt). We note now that while mechanical motion is

incoherent in nature and thus does not have a singular phase to be measured, the

microwave-to-telecom transduced tones we will later investigate do carry a specific

phase based on the phase of the microwave input. Thus for the purpose of being

general, we consider a generic input signal with a well-defined phase. With this

understanding, the output of the mixer is

A cos(ωsigt+ φsig) cos(ωELOt) =
A

2

[
cos((ωsig + ωELO)t+ φsig)

+ cos((ωsig − ωELO)t+ φsig)
]
. (3.23)

Thus by choosing an intermittent frequency ωIF = ωs − ωELO in the megahertz

regime, the lower sideband generated by the mixer can be measured on the analog-to-

digital converter and subsequently digitally mixed back to ωsig for further analysis,

while the higher frequency signal is again filtered out or simply time-averaged.

R S 1

2

R

R

L

L

90°

0°

L
I

I

Q

Q

Figure 3.8: Block diagram of an IQ mixer illustrating a microwave signal R
divided into two parts by a splitter and the local oscillator L divided into two 90◦

phase separated parts by a quadrature hybrid. The portions of the signal and
local oscillator are then mixed together to produce in-phase I and quadrature Q
components of the mixed signal. The dashed lines indicate the common symbol for
an IQ mixer: ⊗, where the ports, listed clockwise, are RILQ.
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Another approach is to perform electronic downmixing using an IQ-mixer,23

which is shown in the block diagram Fig. 3.8. IQ mixers internally shift the phase

of part of the local oscillator signal, such that when it is mixed with the input

microwave signal the product is in-phase and quadrature signals,

I =
A

2
[cos((ωsig + ωELO)t+ φ) + cos((ωsig − ωELO)t+ φsig)] , (3.24)

Q =
A

2
[sin((ωsig + ωELO)t+ φ)− sin((ωsig − ωELO)t+ φsig)] . (3.25)

Both quadratures of the signal can be low-pass filtered for the difference frequency

and detected individually on an analog-to-digital converter. The signals can then

be individually processed, or added in-quadrature and processed as a whole, to

digitally mix the signal back up to the original frequency and extract information

about the signal.

3.3.8 Low-IF Receiver

IQ mixing provides a secondary advantage over both regular electronic

downmixing and optical heterodyne downmixing: comparing the quadrature

signals provides phase information about coherent modulation signals (e.g.,

φ(t) = β sin(ωsig + φsig)). In particular, if a coherent signal is mixed to DC,

then the signal phase is measured by comparing quadrature amplitudes,

φsig = − arctan

(
Q

I

)
. (3.26)

Mixing to DC can be achieved directly by setting ωELO = ωsig, however this

introduces significant 1/f noise to the detection system [85]. Instead, it is preferable

to develop a measurement system known as a low-IF receiver [86], which first mixes

the signal to an intermittent frequency (IF) that is subsequently converted into

the digital domain, and then digitally mixed to DC to circumvent low frequency

noise. To correctly measure the signal phase during this process, the entire system,

including the computer used to digitally downmix, must be phase locked. To

achieve this, all instruments that produce or measure a frequency are phase locked

to a rubidium clock.24

23Marki Microwave IQ1545LMP
24Stanford Research Systems FS725 Rubidium Frequency Standard
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The low-IF receiver architecture, however, does introduce a new set of

complications [87], neither the splitter nor the quadrature hybrid in the IQ mixer

are perfect and thus the electronic downmixing process introduces both phase

and amplitude imbalances to the in-phase and quadrature signals. To correct

these imbalances, we implemented a digital I/Q imbalance procedure [88], which is

detailed in Appendix B.

3.3.9 Experimental Implementation

Optical homodyne with downmixing, optical heterodyne, and direct detection

all play crucial roles in detecting mechanical motion. Choosing which system to use

is largely circumstantial, and therefore in order to remain flexible during the course

of an experiment, the optomechanical experimental apparatus is designed for ease

of switching between detection methods. The general implementation is shown

in Fig. 3.9. Typically, initial measurements are made using direct detection with

the real-time spectrum analyzer to avoid the additional complications of matching

the local oscillator phase. When the mechanical resonance is identified in direct

detection, phase measurements are used for better signal-to-noise and reduced

optical heating.

For experiments in this thesis, the choice between optical homodyne with

downmixing and optical heterodyne was largely inconsequential—both types of

phase measurement are adequate for measuring the mechanical mode. Optical

heterodyne does, however, provide two tangible advantages. First, the balanced

photodetector25 has a 3 dB roll off at 800 MHz, which implies that detection is

more efficient at the optically-downmixed megahertz signal frequencies. Second,

the largest sources of electronic noise occur in the electronics after detection, which

are susceptible to acting as antennas for gigahertz signals. By optically downmixing

prior to detection, the gigahertz frequency range is entirely avoided by electronics.

Despite the benefits of optical downmixing, there are also perceived advantages

provided by optical homodyne with downmixing, which make the trade-offs of lower

efficiency, and higher noise, worth making. First, the control loop for keeping the

local oscillator and signal arms phase locked tends to be more stable in homodyne

25Newfocus 1811 balanced photoreciever
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Figure 3.9: Experimental apparatus for optical and mechanical measurements
of an optomechanical crystal (OMC). An optical switch (OS) allows the system
to transition between direct detection to phase detection. The presence of a
drive tone ωEOM on the electro-optic modulator (EOM) in the local oscillator arm
determines if the phase measurement is homodyne (absent) or heterodyne (present).
An additional beamspliter directly before the OMC allows for power control by
feeding back to a variable optical attenuator (VOA). All signal generators and
data collection devices, including the digital signal processing (DSP) computer, are
clocked using a rubidium clock.

detection, which allows for longer-term measurements. Second, the measurement

detection efficiency of heterodyne occasionally appears to fluctuate—possibly due

to the extra tones created by the unfiltered local oscillator. This was a common

problem during room temperature experiments, but not during low temperature

measurements. As such the optical downmixing of heterodyne was taken advantage

of at low temperatures, and the stability of homodyne was used for room temperature

experiments. The low-IF receiver was implemented with homodyne downmixing

for the purpose of detecting the coherent phase of a transduced microwave tone,

which will be further detailed in Chapter 5.

It is also possible to compensate for high-frequency electronics noise through

the judicious use of electronic filtering. After the homodyne photodetector, an

electrical bandpass filter26 is used to remove signals outside of the 2250− 2470 MHz

frequency region and the remaining signal is amplified.27 After mixing with the

local oscillator in the IQ-mixer, the IQ signals are low pass filtered28 to remove

26Mini-Circuits VBF2360+ bandpass filter
27Two Pasternack PE15A3258 low-noise, broadband 33 dB amplifiers
28Mini-Circuits SLP-200+
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noise above 190 MHz. Immediately prior to being measured on the analog-to-digital

converter, DC-blocks29 are used to remove signals below 100 kHz. The DC-blocks

are also used in heterodyne detection to remove any DC offset that comes from

imbalances in the homodyne arms, which could overload the analog-to-digital

converter.

3.3.10 Mechanics Signal Processing

The outcome of heterodyne, and homodyne or direct detection with downmixing,

is a voltage signal that carries DC information about the optical resonance and

megahertz AC information about the mechanical motion. The AC component is

converted into a digital time domain signal using an analog-to-digital converter.

The autocorrelation of the AC signal is then Fourier transformed to obtain the

power spectral density [89],

SVV(ω) =
1

2π

∫
〈V (t)(V (t+ τ)〉 e−iωτdτ (3.27)

which describes how the power of a signal is distributed over frequency. For

mechanical motion, the measured power spectral density is of the form [63]

SV V (ω) = SwV V + αx2
zpfSb̂†b̂(ω), (3.28)

where SwV V describes a white-noise background generated by the measurement

apparatus, and x2
zpfSb̂†b̂(ω) is the noise imparted by mechanical motion, which

is scaled by a detection factor α. In the case of thermally driven motion, the

mechanical power spectral density can be derived using the mechanical equation of

motion, Eqn. (2.37), in the absence of optical backaction on the mechanical mode.

The thermal power spectral density is given by [1]

Sth
b̂†b̂

(ω) =
1

2π

∫
〈b̂†(ω)b̂(ω′)〉 dω′ (3.29)

=
Γmn̄th(ωm)

(ωm + ω)2 + Γ2
m/4

, (3.30)

where the thermal input autocorrelation is [33]

〈b̂†in(ω)b̂in(ω′)〉 = 2πn̄th(ωm)δ(ω + ω′), (3.31)

29Mini-Circuits BLK-18-S+
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and we recall the number of thermal phonons is n̄th(ωm) =
[
e~ωm/kBT − 1

]−1
for a

mechanical mode at temperature T .

The detection factor, which has units V2/m2, represents how well the mechanical

motion is converted into a voltage signal and combines factors of both the

optomechanical coupling and system detection efficiency. The total amplitude

of the measured mechanical peak is therefore

αn̄thx
2
zpf = |âin|4β2

mη
2(ω)K2(∆, ωm)κ2

e. (3.32)

3.3.11 Mechanical Properties

Figure 3.10: Homodyne measurement of the mechanical mode at room temperature
and atmospheric pressure, with fit in dashed white using Eqn. (3.28).

In Fig. 3.10, we provide a typical measurement of the mechanical mode measured

using homodyne detection with downmixing, in ambient conditions at room

temperature and atmospheric pressure for initial calibrations. Using Eqn. (3.28),

the resonance is fit to extract the frequency ωm/2π ≈ 2.388 GHz and damping

rate Γm/2π ≈ 2.9 MHz. The devices were also explored at low-temperature, which

will be discussed in Chapter 6, and in vacuum at a pressure near 10−7 Torr. The

damping rate was found to be identical in air and vacuum, which implies that the

mechanical breathing mode is not limited by viscous air damping. This is atypical

of mechanical resonators measured in the Davis lab, and is thought to be a result
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of the mechanical motion being faster than the response time of the surrounding

air, and the relatively small amplitude of the breathing mode motion.

An ideal measurement of the mechanical mode is made using a fiber that is

hovering above the optomechanical crystal, such that it does not provide a path for

phonons to escape the mechanical mode. Unfortunately, hover-coupling is difficult

to routinely achieve, and often only lasts for a short period before vibrations cause

the fiber to latch onto the optomechanical crystal. Once the fiber latches on to

the optomechanical crystal, it acts as a source of damping and can also cause

slight shifts in the mechanical mode frequency. These effects were noted during

experiment, but no systematic study was undertaken to determine ideal coupling

conditions for measuring low mechanical damping. Instead, as previously mentioned,

fiber position is wholly dictated by the optical coupling, which dictates whether

or not enough light from the optical mode couples back into the optical fiber to

render the mechanical mode visible.

3.4 Optomechanical Coupling

Several options exist for measuring the optomechanical coupling rate. His-

torically, the Davis lab has implemented the thermomechanical calibration tech-

nique [63], which combines a fit of the mechanical resonance lineshape to calculate
√
α = dV

dx
, a simulation of the mechanical mode to calculate the effective mass,

and the optical resonance to determine the conversion between wavelength and

voltage dω
dV

. Using the chain rule, the thermomechanically calibrated optomechanical

coupling is

g0 =
dω

dx
=

dω

dVDC

· dVAC

dx
xzpf . (3.33)

The thermomechanical calibration technique requires precise knowledge of how

the AC and DC signals are manipulated between the photodetector and data

processing. Any relative gains, through signal amplification, or losses, through

frequency-dependent detection efficiency or attenuation, will result in a scaling

factor that must be accounted for in the calculation of the optomechanical coupling.

This can often be easily accounted for in the tens-of-megahertz frequency regime,
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where electronic gain and attenuation profiles are typically spectrally flat. In the

gigahertz frequency regime of optomechanical breathing modes, however, the gain

spectra of the detection instruments (in particular, the photodiodes) are less clear,

and thermomechanical calibration is therefore less reliable.

Instead, the optomechanical crystal mode coupling is measured via phase

calibration, wherein the mechanical modulation of the measurement laser is

compared to a known phase modulation source, in this case a second electro-

optic phase modulator in the signal arm30 (see Fig. 3.9), which is driven by a

signal generator with known voltage VCAL and frequency ωCAL. As a result, we

now describe the optical cavity input field with phase modulation, as we did for

the local oscillator in Eqn. (3.21),

âin(t) = âin

[
1− βCAL

2

(
e−iωCALt − eiωCALt

)]
. (3.34)

The phase modulated optical input causes the cavity field, and therefore the cavity

transmission, to fluctuate at both the calibration tone frequency and the mechanical

frequency (see Appendix A). The EOM calibration frequency is set to be near

the mechanical resonance to ensure that the fluctuations imparted on the optical

signal are measured with the same system detection efficiency as the mechanical

fluctuations. For a direct detection measurement, the corresponding voltage output

by the photodetector is

VAC(t) = η(ω)
|âin|2κe

2
Kdir(∆)

(
βm

x(t)

x0

− βCALφ(t)

)
, (3.35)

where we have applied a bandpass filter around the mechanical resonance x(t)
x0

=

cos(ωmt) and calibration tone φ(t) = sin(ωCALt). We note that the mechanical

resonance has been normalized, as the amplitude due to thermal motion has been

included in the modulation index.

We now further restrict the calibration frequency to be near, but not equal

to the mechanical frequency so that there is little overlap between the two. This

allows us to separate the calculated power spectral density into two parts,

SV V (ω)− SwV V = αx2
zpfS

th
b̂†b̂

(ω) + αCALδ(ω − ωCAL), (3.36)

30Thorlabs LN65S 10 GHz phase modulator, Vπ = 4.1 V
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where the power spectral density of the phase calibration tone is represented by a

delta function, with amplitude αCAL = |âin|4β2
CALη

2(ω)K2(∆)κ2
e.
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Figure 3.11: Direct detection measurement of a 620 nm optomechanical crystal.
DC transmission (white) of the optical resonance (fit in black) and measured AC
frequency spectrum at each 1 pm laser wavelength step (plot background with
colour-scale spectrum amplitude). The mechanical mode appears near 2347 MHz,
and an electro-optic phase modulator calibration tone is visible at 2340 MHz.

In Fig. 3.11, a direct detection measurement of a optomechanical crystal with

beam width of 620 nm is made simultaneously by stepping the laser frequency across

the optical resonance and measuring DC optical transmission and AC sideband

modulation at each wavelength increment. The mechanics and the electro-optic

phase modulator appear at 2347 MHz and 2340 MHz respectively, in two lobes

which correspond to the regions of high slope of the optical resonance. The electro-

optic phase modulator, calibrated in Appendix A, shifts the phase of the laser by π

when the half-wave voltage Vπ = 4.1 V is applied to the RF input. For the purpose

of phase calibration, we apply a much weaker modulation signal VCAL = 10 mV at

ωCAL/2π = 2340 MHz to induce a maximum phase shift βCAL = πVCAL

Vπ
≈ 0.01 rad.

The mechanical modulation index, Eqn. (3.7) can be made an experimentally

51



tractable using equipartition theorem, which relates the average potential energy

〈U〉 and the thermal energy of the mechanical mode [40, 63]

〈U〉 =
1

2
meffω

2
mx

2
0 =

1

2
kBT. (3.37)

By rearranging Eqn. (3.7) in terms of x0, substituting the result into Eqn. (3.37),

and solving for βm, the mechanical modulation index is

βm =

√
2kBT

~ω3
m

g0. (3.38)

Hence, the mechanical modulation strength is linearly related to optomechanical

coupling as well as the square root of temperature. By comparing the known

modulation strength of the EOM to the modulation strength of the mechanics

in an environment with known temperature, the optomechanical coupling can be

calculated.

The frequency separation allows us to consider the mechanical and modulation

peak areas individually. The mechanical peak can either be directly integrated or

the area can be extracted from the fit,

P(ωm) =

∫
ωm

(SV V (ω)− SwV V ) dω =
SV V (ωm)Γm

2
= αβ2

m. (3.39)

The modulation peak in contrast typically has linewidth less than the frequency

resolution of the power spectral density, the power in the modulation peak can

therefore be calculated as

P(ωCAL) =

∫
ωcal

(SV V (ω)− SwV V ) dω =
S(ωCAL) · ENBW

2
= αβ2

CAL, (3.40)

where ENBW is the effective-noise-bandwidth of the Fourier transform, which is

set by the frequency spacing of points,

ENBW =
RATE

NFT
. (3.41)

Where RATE is the rate at which voltage data is collected, and NFT is the

number of points included in the Fourier transform. Comparing the integrated

power spectral densities, and substituting Eqn. (3.38) for βm, we arrive at an
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experimentally measurable equation for the optomechanical coupling,

g0 =

√
~ω3

m

2kBT
β2

CAL

P(ωm)

P(ωCAL)
(3.42)

=

√
~ω3

m

2kBT

(
πVCAL

Vπ

)2
SV V (ωm)Γm

SV V (ωCAL) · ENBW
. (3.43)

In contrast to thermomechanical calibration, the optomechanical coupling calculated

using Eqn. (3.42) is independent of the optical resonance and only depends on

frequency in the narrow region between the calibration frequency and the mechanical

frequency. As a result, phase calibration is robust against frequency dependent

gains and provides an accurate measure of the optomechanical coupling for high

frequency mechanical modes.
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Figure 3.12: Calculation of the optomechanical coupling using phase calibration
(orange stars) and thermomechanical calibration (green circles), with the optical
resonance (blue) as reference for the detuning at which each calculation is made. The
red dashed line depicts the mean phase calibrated g0 measurement surrounded by a
1σ standard deviation. Measurements were made on a 620 nm wide optomechanical
crystal.

In Fig. 3.12, the power spectral density measurement from Fig. 3.11 is condensed

into a phase calibration calculation of g0 using Eqn. (3.42), and a thermomechanical

calibration calculation using Eqn. (3.33), at every wavelength step. Near the slope

maxima of the optical resonance, where the signal strength of direct detection is

53



maximized, the phase-calibrated optomechanical coupling is consistently measured

to be g0/2π = (0.90 ± 0.05) MHz. The calculated values for thermomechanical

calibration and phase calibration on the blue detuned (ω` < ωc) side of the optical

resonance are similar, which suggests that the AC and DC signal gains have been

scaled appropriately. The red detuned calculations, particularly at 1572.59 nm,

differ greatly. The optomechanical coupling is independent of detuning, so we may

assume that the thermomechanical calibration value is incorrect, and speculate

that the non-linearity of the optical resonance caused by the thermorefractive effect

invalidates the straightforward application of the chain rule in Eqn. (3.33).

In this Section, we have phase calibrated a 620 nm wide optomechanical crystal

at room temperature, whereas the rest of the experiments in this thesis make use of

a 600 nm wide optomechanical crystal. The difference in nanobeam width causes

the experiments in this section to have slightly shifted wavelength and mechanical

resonance frequencies. Using the same phase calibration procedure illustrated here,

in Chapter 6 we measure the optomechanical coupling of the 600 nm optomechanical

crystal to be g0/2π = (1.3± 0.3) MHz at low temperature.

3.4.1 Dynamical Backaction

In addition to calculating the optomechanical coupling, the detuning measure-

ments presented in Fig. 3.11 can be used to investigate the dynamical backaction

effects in the 620 nm wide optomechanical crystal. In Fig. 3.13, the parameters

found by fitting the optical and mechanical modes for a range of detunings, are

used to calculate the optomechanical spring and damping effects. The directly

measured mechanical mode frequency shift is demonstrated to roughly agree with

the calculated optomechanical spring effect, but the change in measured optome-

chanical damping shows no similarity to the optomechanical damping effect. Since

the damping effect is predicted to be on the order of 100 kHz, we conclude that

extraneous effects, such as the unaccounted for nonlinearity in the optical resonance,

wash out our ability to detect optomechanical damping.
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Figure 3.13: (Top, orange dots) Change in measured mechanical frequency
and (bottom, orange dots) mechanical damping as a function of detuning. The
blue lines represent the expected (top) optomechanical spring effect and (bottom)
optomechanical damping calculated using Eqns. (2.42, 2.43), using parameters
extracted from fits of the measured mechanical resonances.

3.5 Methods Summary

In this Chapter, we have highlighted the three primary methods of optomechan-

ical measurement used in this thesis:

1. direct detection for DC measurement of the optical resonance, and AC

measurement of the mechanical resonance when combined with a real-time

spectrum analyzer or downmixing;

2. homodyne detection with downmixing for high-sensitivity, low-power mea-

surements of the mechanical mode, which can be combined with a low-IF

receiver for phase measurements of the modulation signal;

3. heterodyne detection for optical downmixing of the mechanical mode

frequency, which similarly allows for high-sensitivity, low-power measurements
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and further circumvents high-frequency noise picked up by measurement

electronics.

Using these methods, we present typical measurements of the optical mode,

the mechanical mode, and the optomechanical interaction in Table 3.1 for room

temperature operation of the standard 600 nm optomechanical crystal. These

measurements are in-line with measurements from other groups of similar gallium

arsenide optomechanical crystals [27, 29, 40].

Optical Mode Mechanical Mode

Wavelength λc ≈ 1550 nm —
Frequency ωc/2π ≈ 194 THz ωm/2π ≈ 2.38 GHz

Total decay rate κ/2π ≈ 6 GHz Γm/2π ≈ 2.9 MHz
External decay rate κe/2π ≈ 2 GHz —

Optomechanical coupling g0/2π = (1.3± 0.3) MHz
Cooperativity C = n̄cav × 10−4

Table 3.1: Summary of room temperature optomechanical properties of the gallium
arsenide optomechanical crystal.

Ideally, the optical and mechanical decay rates, and the optomechanical coupling

can be combined into the cooperativity,

C =
4g2

0n̄cav

κΓm

≈ n̄cav × 10−4, (3.44)

which scales with the number of cavity photons n̄cav = 〈â†â〉 due to the parametric

nature of the optomechanical interaction. Here we have used typical values

discussed throughout this chapter for the optical and mechanical decay rates.

The cooperativity represents the ratio of energy transferred between the optical

and mechanical mode to the rate of energy loss in each mode. By increasing the

number of cavity photons to n̄cav ≈ 10000 such that C > 1, energy transduction

between the modes will occur preferentially to energy loss, which is a requirement

for high-efficiency microwave-to-telecom transduction. However, high cavity photon

occupancy will cause large amounts of optical heating at low temperatures, which

will result in additional thermal noise in a transduced signal. We will explore this

further during our low-temperature calibration of the optomechanical crystal in

Chapter 6.
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Chapter 4

Piezomechanics

In Chapter 1, several possible methods of wavelength transduction were

introduced. Of those using mechanical modes, there are two approaches to coupling

microwave photons to mechanical phonons. The first is through electromechanical

coupling, where one terminal of a capacitor in a LC circuit acts as a mechanical

element. As the mechanical element moves the capacitance changes, which in turn

changes the resonance frequency of the LC circuit. This architecture is most easily

implemented for membranes which vibrate at frequencies below 10 MHz, and as

such wavelength transducers that use the electromechanical interactions are thus

far limited by thermal noise [23–25]. The second mechanism is piezomechanical

coupling, where piezoelectric materials are used to couple mechanical motion

to microwave fields through electric dipoles in the material itself. As a result,

piezomechanical coupling is a more flexible method of creating interaction between

microwaves and mechanics, and allows microwaves to be coupled to optomechanical

crystal breathing modes [26–31].

4.1 Piezoelectricity

Taking advantage of piezoelectric coupling requires that the device used is

made from a material exhibiting the piezoelectric effect. In general, piezoelectric

materials are crystalline structures which become electrically polarized as they are

mechanically strained, in turn creating an electric displacement [90]. The opposite

is also true: as a piezoelectric material is polarized by an electric field, it will induce

strain in the material lattice which causes deformation—the converse piezoelectric

57



effect.

The piezoelectric effect is derived using the electrical displacement D of a

material due to an electric field E,

D = εE (4.1)

and Hooke’s law relating strain S to stress T,

S = sT, (4.2)

where ε is the material permittivity, and s is the material compliance. These

equations are then coupled together using a coupling matrix d, which is transposed

for the converse piezoelectric effect [91, 92]

Sij = sijklTkl + (dijk)
TEk (4.3)

Di = dijkTjk + εijEj. (4.4)

Here we have used subscript indices to denote dimensionality of each component of

the piezoelectric equations. However the equations are commonly represented using

Voigt notation [91], which exploits symmetry to reduce the rank of the matrices by

1. For the piezoelectric matrix in particular, d = dijk, the indices j, k ∈ {1, 2, 3}

are subject to the transformation j, k → j′: 1, 1→ 1; 2, 2→ 2; 3, 3→ 3; 2, 3→

4; 1, 3 → 5; 1, 2 → 6. The result of the Voigt notation is that j′ ∈ {1, 2, 3}

represent extensional couplings, whereas j′ ∈ {4, 5, 6} represent shear rotations

around the 1, 2, and 3 axes respectively. This is most easily visualized in Fig. 4.1,

where the 1, 2, and 3 axes are identified as the x, y, and z directions.

Applying Voigt notation to the converse piezoelectric effect, Eqn. 4.3, and

neglecting the stress-strain relationship for the moment, the relationship between

strain caused by the application of an electric field is explicitly written in strain-

charge form as: 
S1

S2

S3

S4

S5

S6

 =

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

T E1

E2

E3

 . (4.5)
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Figure 4.1: The transformations represented by Voigt notation. The indices 1, 2,
and 3 are linear transforms along x, y, and z respectively, and the indices 4, 5, and
6 are similarly shear rotation transforms.

Hence, Voigt notation allows us to write Sj′ = [dij′ ]
TEi, such that the element

dij′ in piezoelectric matrix represents the strain caused in the j′ direction by an

electric field applied in the i direction. In Fig. 4.2, this is demonstrated for a cube

of piezoelectric material that has only one non-zero piezoelectric coupling element

per simulation. In this simulation, we fix the electric field to be oriented along the

z-axis, with the understanding that aligning the field to x and y yield identical

results.

In a physical material system, the piezoelectric coupling matrix is determined

by crystal structure. Gallium arsenide, the material used for the experiments

in this thesis, has a cubic crystal structure and is part of the 4̄3m point group,

which defines the crystal symmetry and results in the structure of the piezoelectric

coupling matrix [93],

d =

0 0 0 d14 0 0
0 0 0 0 d25 0
0 0 0 0 0 d36

 , (4.6)

where d14 = d25 = d36 = 2.6 × 10−12 C/N [94]. The units of the coupling matrix

are typically written in terms of C/N, which is exactly the inverse of the electric

field units, V/m. The strain that results is unitless as it describes a deformation,

which is the change in length per total length.
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Figure 4.2: The effect of the piezoelectric coupling matrix is demonstrated using
six boxes of “single element” piezoelectric material in a z-oriented (i = 3) electric
field. Each box shows the displacement induced by the indicated piezoelectric
coupling matrix element, while all other elements are set to zero. Simulations for x-
and y-oriented (i = 1, 2) electric fields will yield identical results. The simulation
software has handled the additional step of converting the stress into a static
displacement.

4.2 Simulation of piezoelectricity in gallium ar-

senide optomechanical crystals

The next step is to use Eqn. 4.3 to simulate the effect of an electric field on a

gallium arsenide optomechanical crystal. To do this accurately, careful consideration

of reference frames must be taken into account. Demonstrated in Fig. 4.3, the

material axes x, y, and z lie along the gallium arsenide crystal axes. A second set

of coordinate axes, the device frame, is shown to be rotated around the z axis such

that the device axes u and v are offset by an angle Φ from the material frame. The

optomechanical crystal is oriented such that the long axis lies in the u direction.

In Ref. [40], it was demonstrated that optomechanical coupling was maximized

at the device angle Φ = 45◦. As a result, the devices used for the experiments in this

thesis are fixed to this angle such that the long axis of the optomechanical crystal
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Figure 4.3: Device orientation u relative to the material orientation x, y, z.

is aligned to the crystallographic [110] axis. With the crystal orientation of the

optomechanical crystals fixed, the remaining tunable parameter for piezomechanical

coupling is the electric field orientation. The static response of the optomechanical

crystal in various DC electric fields, shown in Fig. 4.4, allows us to perform

initial qualitative assessments of the displacement caused by electric fields, whereas

simulation of a resonant AC electric field is required to fully assess the effect of the

electric field on the breathing mode.

Figure 4.4: The GaAs optomechanical crystal, clamped at either end of the
long axis and statically displaced by DC electric fields (black arrows with labelled
directions) aligned to the material frame (top row) and the device frame (bottom
row).

In Fig. 4.4, the static piezoelectric response of the gallium arsenide optomechan-

ical crystals is simulated for five directions of DC electric field. The x, y, u, v
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directions cause out-of-plane displacement, but close inspection of these simula-

tions reveals that the piezoelectric coupling matrix does not have the anticipated

effect—for example, the u-oriented electric field causes displacement that suggests

a non-zero d1,5 element, while the v-oriented electric field suggests a non-zero d2,4

element. This is the result of a 45◦ rotation transformation on the piezoelectric

coupling matrix, which is the result of the [110] alignment of the optomechanical

crystal. In a scenario where the device is not rotated, the coupling between the

electric field and the displacement appears as expected. In contrast, the z-oriented

DC electric field generates the expected in-plane static displacement, which is likely

to couple to the mechanical breathing mode of the optomechanical crystal.

Figure 4.5: Top: Dynamic GaAs nanobeam response to a z-oriented AC electric
field, which oscillates at mechanical resonance frequency. Bottom: The mechanical
breathing mode for comparison.

To further demonstrate the qualitative overlap between the piezoelectrically-

induced motion and the mechanical breathing mode, in Fig. 4.5 the optomechanical

crystal is then simulated in a z-oriented AC electric field which oscillates at the

breathing mode resonance frequency. The similarity between the modes qualitatively

suggests that a microwave cavity with a z-oriented field should drive the mechanical

breathing mode.

4.3 Piezomechanical formalization

The piezomechanical coupling between microwave and mechanical modes, with

resonance frequencies ωµ and ωm respectively, can be quantified by developing the

Hamiltonian for the piezomechanical system. To begin, the total energy of the
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piezomechanical system is [74, 91, 92]

Upm =
1

2

∫
V

T · S + E ·D dV (4.7)

(4.8)

which, using Eqns. (4.1, 4.2) to make subsitutions for strain S and electrical

displacement D, can be separated into three parts according to where the energy is

stored. The elastic and electrical energy are respectively

Ue =
1

2

∫
V

T · s ·T dV, (4.9)

Ud =
1

2

∫
V

E · ε · E dV, (4.10)

and the mutual energy representing the interaction is

Um =
1

4

∫
V

T · dT · E + E · d ·T dV. (4.11)

Thus the total energy of the system is

Upm = Ue + 2Um + Ud. (4.12)

The mechanical stress and the electric field displacement can then be quantized

as harmonic oscillators with normalized amplitudes [74]:

T =
∑

m

Tm

(
b̂m + b̂†m

)
, (4.13)

E =
∑
µ

Eµ

(
ĉµ + ĉ†µ

)
. (4.14)

To consider a single mechanical and microwave mode, we now drop the subscripts

for b̂†, b̂ and ĉ†, ĉ, which are the creation and annihilation operators for phonons

and microwave photons respectively. For the microwave and mechanical mode of

choice, the corresponding piezomechanical Hamiltonian is [95]

Hpm = ~ωmb̂
†b̂+ ~ωµĉ

†ĉ+ ~gµ(b̂† + b̂)(ĉ† + ĉ), (4.15)

where ωm and ωµ are the mechanical and microwave frequencies, and

gµ =
1

2

∫
V

Tm · dT · Eµ + Eµ · d ·Tm dV (4.16)
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is the piezomechanical coupling strength. The piezomechanical Hamiltonian differs

from the optomechanical Hamiltonian, Eqn. (2.31), in that the interaction term

between the microwave and mechanical modes is immediately linear in nature,

without the need for any linearization process where the field would be normalized

about an average amplitude. As a consequence, the piezomechanical coupling

differs from the optomechanical coupling in that it cannot be cavity enhanced by a

microwave pump. Instead, the piezomechanical coupling relies solely on the overlap

of the mechanical stress and electric field, as demonstrated by Eqn. (4.16).

Using the piezomechanical Hamiltonian, the coupled mechanical and microwave

equations of motion are derived using Heisenberg’s equation, Eqn. (2.9). In frequency

space the equations of motion are

iωb̂(ω) = iωmb̂(ω) + igµ
(
ĉ†(ω) + ĉ(ω)

)
+ i

Γm

2
b̂(ω) +

√
Γmb̂in(ω), (4.17)

iωĉ(ω) = iωµĉ(ω) + igµ

(
b̂†(ω) + b̂(ω)

)
+ i

κµ
2
ĉ(ω) +

√
κµ,eĉin(ω). (4.18)

In addition to the resonance frequency and coupling terms that arise from the closed-

system Hamiltonian, the mechanical mode is further characterized by coupling to

the external environment through the damping rate Γm and to the thermal bath

input b̂in. The microwave mode is similarly coupled to the external environment

through a total decay rate κµ, as well as the external decay rate κµ,e, which couples

to an input port ĉin that can be used to drive the microwave cavity.

The piezomechanical equations of motion can now be used to describe the

number of microwave-actuated phonons, which are the phonons in the mechanical

mode that arise from a drive tone in the microwave mode. In Appendix C, we

provide a detailed derivation of the following equations where assumptions are

limited, so that they can be more generally applied to piezo-optomechanical systems.

Here, we make the simplifying assumptions that the counter-rotating terms are

small and can be omitted, and assume that the microwave cavity is being driven by

a powerful input signal that dominates thermal noise in the cavity, as well as any

signal that is transduced in reverse (from the mechanics to the microwave cavity).
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Hence, the equations of motion are solved for their respective operators,

b̂(ω) = − igµĉ(ω) +
√

Γmb̂in(ω)

i (ωm − ω) + Γm/2
(4.19)

ĉ(ω) = −
√
κµ,eĉin(ω)

i (ωµ − ω) + κµ/2
. (4.20)

Substituting Eqn. (4.20) into Eqn. (4.19) and separating the result into two parts,

the mechanical mode is shown to have distinct thermal and microwave driven

components,

b̂(ω) =
igµ
√
κµ,eĉin(ω)

[i (ωm − ω) + Γm/2] [i (ωµ − ω) + κµ/2]
+

√
Γmb̂in(ω)

i (ωm − ω) + Γm/2
. (4.21)

We now consider a situation in which the microwave mode has been populated with

a signal tone of microwave photons at frequency ωs. Through the piezomechanical

coupling between the modes, the mechanical mode becomes populated with

phonons at the same frequency. The number of microwave-actuated phonons

in the mechanical mode can be found integrating the power spectral density of the

first term in Eqn. (4.21) such that,

n̄s(ωs) =
1

2π

∫
Ss
b̂†b̂

(ω)dω (4.22)

=
1

(2π)2

∫ ∫
〈b̂†(ω)b̂(ω′)〉 dω′dω (4.23)

=
Ps

~ωs

g2
µκµ,e[

(ωm − ωs)
2 + Γ2

m/4
] [

(ωµ − ωs)
2 + κ2

µ/4
] . (4.24)

The frequency space distribution of the microwave-actuated phonons depends on

the spectral linewidth of the microwave source. In this case, the microwave signal

generator is modelled to be nearly a delta function, with linewidth less than the

resolution of the detection setup. If the mechanical and microwave resonance

frequencies are identical and the signal frequency is also set to be on-resonance,

then the number of microwave-actuated phonons in the mechanical mode simplifies

to

n̄s =

(
16g2

µκµ,e

Γ2
mκ

2
µ~ωs

)
Ps, (4.25)

which is a linear equation relating the power of the microwave input directly to the

number of phonons. Since κµ,e,Γm, and κµ are all independently measurable, this

allows for the experimental calculation of the piezomechanical coupling if n̄s can be

measured.
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4.4 Future Outlook of Piezomechanics

In this Chapter, we have developed the Hamiltonian Eqn. (4.15) and equations

of motion Eqns. (4.19, 4.20) from the first principles of piezoelectricity, Hooke’s

Law and the definition of electrical displacement. Using these equations of motion,

we derived equations to characterize the piezomechanical interaction, which in the

next chapter will allow us to calculate the bandwidth of transduction and calibrate

piezomechanical coupling.

Beyond that, there are a number of interesting, as-of-yet unexplored facets of

piezoemechanics that are left to future projects. Most importantly, the form of

the piezomechanical coupling given in Eqn. (4.16) can be used to simulate the

piezomechanical coupling [74] for an arbitrary device, similar to the use of Eqn. (2.52)

to simulate the moving boundary optomechanical coupling [96]. Simulation of

piezomechanics provides a route towards optimization, which creates a path for

continuous improvement of piezomechanical devices. Other groups further suggest

that there may be photoelastic coupling between microwaves and mechanics [95],

which could allow for interesting interplay between linear and non-linear coupling

in piezomechanical systems. Our approach to piezomechanical interactions has

been surgical rather than exploratory in nature, and it is likely that exploratory

research into piezomechanical coupling through theory, simulation, and experiment

produces new physics that can be harnessed for transduction and other quantum

technologies.
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Chapter 5

Microwave to Telecom
Wavelength Transduction

This chapter, following a preface describing transduction theory, is based on

the experiment presented in the publication [1] “Wavelength transduction from a

3D microwave cavity to telecom using piezoelectric optomechanical crystals,” Appl.

Phys. Lett. 116, 174005 (2020).

5.1 Piezo-optomechanical Theory

In the previous Chapter, we developed the equations of motion for piezome-

chanics, which allows an electric field to be coupled to a mechanical resonator

by the piezoelectric effect. In Chapter 2, we similarly derived the equations for

optomechanical coupling. Here, we combine these formalisms into a complete

piezo-optomechanical theory. To begin, the piezo-optomechanical Hamiltonian is

H
~

= ωcâ
†â+ ωmb̂

†b̂+ ωµĉ
†ĉ+ g0â

†â(b̂† + b̂) + gµ(ĉ† + ĉ)(b̂† + b̂), (5.1)

which is the summation of the optomechanical Hamiltonian Eqn. (2.31) and the

piezomechanical Hamiltonian Eqn. (4.15), where we do not double-count the

mechanical mode term. From the Hamiltonian we derive the respective frequency-

space equations of motion for the (linearized) optical, mechanical, and microwave
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modes:

δâ(ω) = −
ig0ᾱ(b̂†(ω) + b̂(ω)) +

√
κeδâin(ω)

χ91
a (ω)

, (5.2)

b̂(ω) = − ig0ᾱ(δâ†(ω) + δâ(ω)) + igµ(ĉ†(ω) + c(ω)) +
√

Γmb̂in(ω)

χ91
b (ω)

, (5.3)

ĉ(ω) = −
igµ(b̂†(ω) + b̂(ω)) +

√
κµ,eĉin(ω)

χ91
c (ω)

, (5.4)

where we recall the respective inverse susceptibilities:

χ91
a (ω) = i(∆− ω) +

κ

2
, (5.5)

χ91
b (ω) = i(ωm − ω) +

Γm

2
, (5.6)

χ91
c (ω) = i(ωµ − ω) +

κµ
2
. (5.7)

These equations can be condensed into a matrix form that improves approachability

when solving the equations of motion1 [30],δâb̂
ĉ

 =
1

1 +
g20 |ᾱ|2
χ91
a χ

91
b

+
g2µ

χ91
b χ

91
c


1 +

g2µ
χ91
b χ

91
c

−ig0ᾱ
χ91
a

−g0ᾱgµ
χ91
a χ

91
b

−ig0ᾱ
χ91
b

1 −igµ
χ91
b

−g0ᾱgµ
χ91
a χ

91
b

−igµ
χ91
c

1 +
g20 |ᾱ|2
χ91
a χ

91
b


√κeχaâin√

Γmχbb̂in√
κµ,eχcĉin

 . (5.8)

The equation of motion matrix, where we have neglected counter rotating terms,

forms the basis of the experiment that will be carried out in this Chapter. Most

importantly, we use the matrix to calculate the transduction efficiency for a signal

at frequency ωs from microwave to telecom, which is the ratio of transduced light

output to light input [30]

η(ωs) = κe
|δâ(ωs)|2

|ĉin(ωs)|2
(5.9)

= κeκµ,e

∣∣∣∣ |ᾱ|g0gµ
χ91

a (ωs)χ91
b (ωs)χ91

c (ωs) + g2
0|ᾱ|2χ91

c (ωs) + g2
µχ

91
a (ωs)

∣∣∣∣2 . (5.10)

In the wavelength transduction literature, this equation is frequently simplified

significantly by choosing ωs = ωm = ωµ = ∆ and rewriting in terms of

cooperativities [23, 30, 97]

η(ωs)∆=ωm =
κeκµ,e
κκµ

4CCµ

(1 + C + Cµ)2
. (5.11)

1We have dropped the explicit frequency dependence for this equation due to space constraints.
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By making this simplification the transduction efficiency is maximized, as the

complex term in each of the inverse susceptibilities Eqns. (5.5-5.7) is set to zero.

However, in Eqn. (5.11), the choice of telecom laser detuning ∆ = ωm is at odds with

the homodyne measurement technique described in Chapter 3, where the detuning

is set to ∆ = 0 for maximum detection efficiency. Instead, ∆ = ωm optimizes

the rate at which phonons are removed from the mechanical mode by means of

optomechanical damping, which we recall from our discussion on optomechanics

theory Eqn. (2.42), and from our attempt to measure the effect in Fig. 3.13.

For future transduction experiments at low temperature, investigating detuning

(including blue detuning for amplification [31]) will be of critical importance. For

the purposes of the room-temperature proof-of-principle experiment, however, we

perform transduction experiments at zero detuning. The transduction efficiency in

this case is

η(ωs)∆=0 =
κeκµ,e
κκµ

4CµC

(1 + Cµ + C)2 + (2(1 + Cµ)ωm/κ)2
. (5.12)

The extra term present in the denominator is a direct result of the non-zero imaginary

component in the optical susceptibility Eqn. (5.5). The term is non-negative, and

therefore must result in a reduced efficiency in comparison to Eqn. (5.11). It is

important to note differences between the signal frequency ωs and the mechanical

mode ωm or microwave ωµ frequencies result in similar terms that reduce the

transduction efficiency. Thus for piezo-optomechanical transduction it is important

to have ωs ≈ ωm ≈ ωµ. For situations where ωs 6= ωm, in Section 5.10 we discuss

how a tunable microwave cavity could be used to optimize transduction efficiency.

5.2 Comparison to Electro-optomechanics

The efficiency of microwave-to-telecom transduction, regardless of the optome-

chanical mode detuning, is primarily predicated on the cooperativities between the

mechanical mode and the electromagnetic modes. In our discussion of piezomechan-

ical theory, we noted that as a result of the linear nature of the piezoemchanical

interaction, the piezomechanical cooperativity could not be cavity enhanced. In

contrast, the quadratic interaction of optomechanics provides cavity enhancement,
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which allows for many optomechanical devices to reach the high cooperativity

regime C > 1 by driving the interaction with pump photons. Our linearized

treatment of the optical mode reveals that the only consequences of the quadratic

nature of the optomechanical interaction are cavity enhancement and the presence

of a detuning term in the susceptibility. The equations of motion for the telecom

Eqn. (5.2), and microwave Eqn. (5.4) modes are otherwise treated identically.

The immediate conclusion that can be drawn from this discussion is that

electromechanical coupling (which we recall from Chapter 2 to be the quadratic

coupling between microwave and mechanical modes) similarly benefits from

microwave-photon-number enhanced coupling, and should therefore allow for

easier access to high-cooperativity regimes. Moreover, by replacing the microwave

frequency ωµ with a microwave detuning term ∆µ in Eqn. (5.7), the restriction

ωm ≈ ωµ required to maximize transduction efficiency would become ωm ≈ ∆µ,

which is an easier requirement to meet, since it requires changing a microwave drive

tone rather than physically shifting a resonance frequency.

The ability to achieve high-efficiency transduction using electromechanical

coupling was demonstrated in Ref. [23], where an efficiency η ≈ 10% was

reported using a Fabry-Perot type optomechanical cavity with an aluminum-coated

membrane, which acts simultaneously as a moving mirror and capacitor (the

prototypical example of both optomechanical and electromechanical systems). The

electromechanical coupling rate in this case was bolstered by a microwave photon

population of 107 ∼ 109. Despite the success of high-efficiency microwave-to-

telecom transduction, the device was hampered by high phonon populations in the

mechanical mode, which added noise to the transduced signal.

Despite the advantages posed by using electromechanical coupling instead

of piezomechanical coupling, the majority of microwave-to-telecom transduction

experiments forgo the benefits of microwave cavity enhancement and detuning-based

microwave coupling. This is because a low thermal phonon population is difficult

to achieve without high-frequency mechanical modes, and the same high-frequency

modes are difficult to electromechanically couple to using microwave cavities. In

part, this coupling difficulty is caused by the high spring constant k = ω2
mmeff that

directly results from the high frequency, which makes it difficult for the relatively
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weak radiation pressure forces to drive mechanical motion [98]. This difficulty

could be overcome with a strong enough microwave pump, but the development

of superconducting circuits capable of coupling to the mechanical mode while

also handling the required microwave power would likely be a feat of engineering.

To couple to, for example, the optomechanical crystal breathing mode, metallic

capacitors would likely need to be attached directly to the optomechanical crystal

near the crystal defect. The proximity of a metal layer to the optical mode would

result in increased optical and microwave mode damping from optical absorption

in the metal.

The ability to control coupling strength through the number of microwave

pump photons makes the development of an electromechanically coupled device an

interesting avenue of future exploration. In particular, it may be worth considering

both the linear piezomechanical and the quadratic electromechanical interactions

through a microwave photoelastic effect simultaneously [95]. This may not result

in greatly improved transduction efficiencies, but the interaction between various

modes of coupling could result in greater tunability and other interesting quantum

effects.

We now return to piezo-optomechanical systems, which despite lacking cavity

enhancement, have become very robust in their own right. Numerous systems

have used the piezoelectric effect in optomechanical systems to demonstrate

microwave-to-telecom transduction, where the microwave to mechanical interaction

is mediated through surface acoustic waves [27–31], which are used to directly

drive the mechanical mode. In the remainder of this Chapter, we describe the

experiment performed in Ref. [1], where we coupled the mechanical breathing mode

of our gallium arsenide optomechanical crystal directly to the electric field of a

microwave mode within a 3D microwave cavity to demonstrate microwave-to-telecom

transduction.

5.3 Telecom Optics, Mechanics, and Microwaves

The optomechanical crystal, characterized in Chapter 3, supports a telecom

optical mode at 1543 nm (ωc/2π ≈ 194.3 THz), with a total decay rate
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Figure 5.1: (a) Transmission of the telecom resonance (blue), centered at 1543 nm,
with fit in black using Eqn. (3.4). (b) Purple trace (left axis): power spectral
density (PSD) of the thermomechanical motion, measured by homodyne detection
of the telecom mode and fit in dashed white using Eqn. (3.28). Light blue trace
(right axis): microwave reflection measurement of the 3D cavity. (c) Measurement
setup: the microwave system in blue shows port 1 of a vector network analyser
(VNA) driving the microwave cavity using a loop coupler [99], which couples to
the magnetic field that circulates the microwave cavity pedestal. The VNA signal
phase is controlled externally using a phase modulator (φ). The balanced laser
homodyne system in red follows two paths: the measurement arm, with telecom
optical power set by a variable optical attenuator (VOA) before coupling to the
optomechanical crystal (green) in the microwave cavity, and the local oscillator,
with a fiber stretcher (FS) for path-length matching and optical phase control. The
paths recombine at a beam splitter and are then detected on a balanced photodiode.
The photodiode output can either be measured on VNA port 2 or downmixed into
low frequency in-phase and quadrature components measured on a separate data
acquisition (DAQ) system.

κ/2π ≈ 6.6 GHz and external decay rate κe/2π ≈ 2.3 GHz, which are extracted

from the fit of the laser sweep depicted in Fig. 5.1(a). The telecom mode

spatially overlaps the high-frequency mechanical breathing mode, which has a

frequency ωm/2π ≈ 2387.5 MHz and damping rate Γm/2π ≈ 2.90 MHz, Fig. 5.1(b).

Figure 5.1(c) shows a simplified diagram of the homodyne setup used to measure

the system, which now includes a vector network analyser2 VNA used to probe the

microwave cavity.

2Keysight E5063A ENA series network analyser
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Figure 5.2: (a) Photograph of a split-lid re-entrant 3D microwave cavity, with
the gallium arsenide optomechanical crystals placed on the re-entrant pedestal.
The dimpled-tapered fiber has been lowered into the microwave cavity to optically
couple to an optomechanical crystal. (b) Simulation of the electric field in the 3D
microwave cavity mode with arrows showing electric field directivity and relative
amplitude.

As shown in Chapter 4, coupling between the mechanical breathing mode

and an electric field is best achieved using a primarily z-oriented electric field.

This is challenging to achieve for devices using a dimpled-tapered fiber coupling

mechanism, which requires z-axis line-of-sight to couple the fiber to the device,

thereby preventing the placement of a capacitor directly above the device. To

circumvent this issue, we developed an aluminum split-lid re-entrant 3D microwave

cavity, pictured in Fig. 5.2(a), which has an inner diameter of 41 mm and an interior

height of 35 mm. The re-entrant pedestal measures 2.8 mm in diameter and stands

25 mm tall, which leaves a 10 mm gap between the cavity lid and the top of the

re-entrant pedestal where the optomechanical crystal is placed. The cavity lid is

split a by 5 mm gap which allows a dimpled tapered fiber [45] to access the gallium

arsenide chip for optical coupling. This process takes place in two stages due to

limited stage range; first, the optical fiber is lowered using a micrometer stage3 until

it is within ≈ 1 cm of the device chip, then the entire microwave cavity is raised

3Newport 9063-XYZ 25.4 mm travel gothic arch linear stage
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using a second stage4 to meet the optical fiber. This greatly increases coupling

accuracy, as moving the fiber stage causes vibrations in the fiber.5

The microwave mode electric field, shown using arrow vectors in the electric

field simulation Fig. 5.2(b), is predominantly directed along the cylinder axis, which

corresponds to the [001] crystal axis of the gallium arsenide chip. This design results

in a microwave resonant frequency near the mechanical mode frequency. A low-loss

Teflon cylinder [95] surrounding the re-entrant pedestal allows for control over the

microwave cavity decay rates by shaping the magnetic field, and further allows us

to change the microwave mode frequency by approximately 10 MHz. Rotating the

loop coupler allows further control over the external decay rate by changing the

magnetic flux that passes through the loop. If the area of the loop is perpendicular

to the cavity radius, coupling is maximized. Conversely, if the loop is parallel to

the radius, the coupling demonstrably goes to zero. Using this control over the

microwave resonance, we are able to coarsely tune the microwave mode close to our

desired frequency ωµ = ωm, such that ωµ/2π ≈ 2386.5 MHz. Similarly, we tune the

microwave decay rates such that the total cavity decay rate κµ/2π ≈ 4.07 MHz is

almost exactly double the external decay rate κµ,e/2π ≈ 2.05 MHz. This condition,

known as critical coupling, ensures that on-resonance there is near-zero (−45 dB)

reflection of microwave power from the cavity [33].

5.3.1 Piezomechanical coupling

As discussed in Chapter 4, coupling between the microwave electric field and the

mechanical motion of the optomechanical crystal is mediated by the d36 coefficient of

the piezoelectric tensor, which converts a transverse electric field oriented along the

[100] crystal axis into shear motion in the plane of the optomechanical crystal [100].

In Fig. 4.5, the displacement of the optomechanical crystal due to a resonant

transverse electric field was simulated to demonstrate the similarity between the

mechanical breathing mode and microwave driven motion. The spatial overlap

4Thorlabs NanoMax302 3-axis stage with open-loop piezos
5Application note: The thorlabs stage piezo motors drift over time unless they are locked using

the Thorlabs BPC303 piezo controller. Leaving the stage circuits open will cause drift. 50-Ohm
terminating the stage circuits will cause drift. Connecting the stage circuits to the controller but
not actively feeding back will cause drift.
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between the mechanical mode and driven motion indicates that the piezoelectric

interaction between the microwave transverse electric field and the mechanical

breathing mode should result in well-coupled modes. Although the microwave cavity

electric field is predominantly transverse, small in-plane electric field components

caused by imperfect electric field directivity are capable of driving high-order

flexural and torsional modes in the optomechanical crystal, however these modes

have poor overlap with the optical mode and are therefore not measured.

Despite our best efforts to tune the microwave cavity frequency using the teflon

core, we find that the microwave mode is slightly detuned from the mechanical

resonance such that (ωµ − ωm)/2π ≈ 1 MHz. Despite this small offset, Fig. 5.1(b)

shows that the microwave mode frequency lies within the linewidth of the mechanical

mode and vice versa, implying that a signal can be resonantly coupled to both the

microwave and mechanical modes.

5.4 Transduced Signal

In Fig. 5.3(a), the mechanical motion of the optomechanical crystal is measured

while the microwave cavity is driven by a −20 dBm electrical signal at frequency ωs,

which is set to the microwave resonance frequency. The electrical signal populates

the microwave mode with photons, which are converted into actuated phonons

in the mechanical mode through the piezoelectric effect. The telecom laser, at

frequency ω`, causes the actuated phonons to be up-converted into telecom photons

at frequency ω`+ωs. The up-converted photons beat together with a local oscillator

to produce a sharp peak in the homodyne measurement—the transduced microwave

tone.

5.5 Phase Coherence

Coherent transduction is then demonstrated by using an external phase

modulator6 to sweep the phase of the injected microwave signal, plotted in

Fig. 5.3(b), from 0◦ to 144◦. The output of the balanced photodiode is returned to

the second port of the VNA for an S21 measurement, where the returned signal

6Pasternack PE8255 adjustable phase shifter
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Figure 5.3: (a) Microwave-to-telecom transduction. A 10 µW electrical signal at
the microwave resonance frequency creates a sharp peak in the optical PSD. (b)
Phase coherence measurements of the transduced signal. The input signal phase
(dotted lines) is swept in 24◦ steps using the external phase modulator, for three
sets of microwave input power: 200 µW (red), 20 µW (green), and 2 µW (blue).
Slight systematic offset at high phase angles may be due to miscalibration of the
microwave phase shifter.

mixes with the VNA output signal to determine relative phase. By manipulating

both the phase and amplitude, we show that we have complete coherent control of

the transduced signal [27]. Classically, coherent control implies that the system can

be used for information transduction techniques such as phase shift keying [48].

Although the data shown in Fig. 5.3(b) was taken with the VNA, the original

intent was to use the low-IF receiver detailed in Chapter 3 to measure the signal

phase. This allow for the signal phase to be both set and detected in a fully
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automated measurement system, capable of encoding detailed information in the

microwave signal and upconverting it into an optical signal. At the time of the

experiment, the low-IF receiver was limited by the clock rate, which created

significant (≈ 5◦) phase errors at the step where the measured signal was digitally

downmixed. The lab now has a 4-channel high-speed DAQ card7 which will allow

the clock to be captured at the same rate as the signal. This should eliminate

phase errors and allow for extremely high-precision automatic phase and amplitude

measurements.

5.6 Piezomechanical Coupling Calibration

The number of actuated phonons n̄s in the mechanical breathing mode can be

calculated using thermomechanical noise as a calibration metric [27]. The ratio

of the powers in the transduced peak P(ωs) and the thermal noise P(ωm), where

power is the integrated spectral density, is scaled by the number of thermal phonons

such that

n̄s =
~ωm

kBT

P(ωs)

P(ωm)
, (5.13)

where T = 295 K is room temperature. To ensure the device is properly thermalized

and optical heating is appropriately limited, the thermal noise is in turn calibrated

to a temperature-independent electro-optic modulator tone in the signal arm [79].

This calibration process is exactly the phase calibration used to calculate the

optomechanical coupling in Chapter 3, but instead the ratios are used to calculate

the temperature T . In Fig. 5.4, the number of actuated phonons are calculated for

a range of microwave powers. At low powers, the transduced signal sinks below the

thermal noise floor at an average population of (9.0± 0.4)× 10−2 actuated phonons.

Sufficiently far from this thermal limit, the number of actuated phonons increases

linearly with microwave input power. This slope is fit to Eqn. (4.25) to calculate

the single-photon piezomechanical coupling rate gµ/2π = (4.3± 0.8) Hz. Using the

piezomechanical coupling rate we can additionally calculate the piezomechanical

7Ultraview AD16-250X4 high-speed analog-to-digital converter
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Figure 5.4: The integrated area of the transduced peak, scaled using Eqn. (5.13) to
measure the actuated phonon number, measured as microwave power is stepped.
The resulting trace is fit in two segments: input power above 10−5 W is fit to a
line (orange) to determine the piezomechanical coupling, and input power below
10−8 W is fit to a constant to determine the measurement noise floor, below which
the transduced signal becomes unmeasurable due to thermal noise. The sum of
these fits is presented as the black dashed curve. Error in the actuated phonon
number is smaller than the marker size. The uncertainties of derived quantities are
calculated from 1σ fit error.

cooperativity,

Cµ =
4g2

µ

κµΓm

(5.14)

= (6.2± 0.2)× 10−12. (5.15)

5.7 Transduction Efficiency

We have now fully characterized the fundamental parameters of the piezo-

optomechanical system, which are summarized in Table 5.1.

Using the calculated optomechanical and piezomechanical cooperativities, we

first consider the single-photon efficiency, in which the optomechanical interaction

is not parametrically enhanced by a steady-state photon population. In this
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Optics (GHz) Mechanics (MHz) Microwaves (MHz)

Wavelength λc ≈ 1543 nm — —
Frequency ωc/2π ≈ 194300 ωm/2π ≈ 2387.5 ωµ/2π ≈ 2386.5

Tot. decay rate κ/2π ≈ 6.6 Γm/2π ≈ 2.9 κµ/2π ≈ 4.07
Ext. decay rate κe/2π ≈ 2.3 — κµ,e/2π ≈ 2.05

Mode coupling g0/2π = (1.3± 0.3) MHz gµ/2π = (4.3± 0.8) Hz
Cooperativity C = n̄cav(3.5± 0.1)× 10−4 Cµ = (6.2± 0.2)× 10−12

Table 5.1: Summary of room temperature piezo-optomechanical properties of the
gallium arsenide optomechanical crystal used for microwave to telecom transduction.

case, with n̄cav = 1, the efficiency is calculated using Eqn. (5.12) to find

η∆=0 = n̄cav(1.0± 0.1)× 10−15.

For high-efficiency transduction, the condition C ≈ Cµ � 1 must be achieved. In

the present experiment, the telecom photon population of the optomechanical crystal

was limited to n̄c ≈ 400 to circumvent optical heating, leading to a cooperativity

C = 0.14. The cavity-enhanced transduction efficiency can be recalculated to find

η∆=0 = (3.4± 0.2)× 10−13. The transduction efficiency recorded in this experiment

is far from being efficient, but does provide a starting point for future systems to

improve on.

5.8 Future Transduction Prospects

Even with the enhancements to optomechanical cooperativity, the efficiency

of our system is primarily limited by piezomechanical cooperativity, which is

in turn limited by the piezomechanical coupling rate. Our ability to transduce

microwave tones to optical frequencies is fuelled by high populations of photons

in the microwave cavity, which allows us to overcome the poor coupling and

efficiency. As a result, without improvements to the piezomechanical coupling

rate the experiment will be unable to progress to the next set of microwave-to-

telecom transduction milestones, which include bidirectional transduction and the

transduction of quantum signals.

As a part of our experiment, we attempted to reverse the microwave-to-telecom

transduction process and measure a telecom signal using the microwave mode.
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This was approached in two ways, first, we considered an optical pump-probe

scenario, where the optical cavity is driven strongly on the red sideband and a

small transduction signal is injected at the optical resonance frequency. In a

classical sense this can be understood as creating an optical field in the cavity

that beats at the mechanical frequency and therefore drives the mechanical

mode through radiation pressure forces. We further attempted to drive the

mechanical mode using the blue-detuned sideband, where stokes scattering causes

the laser photons to be preferentially converted into a photon-phonon pair that

is resonant with the optical and mechanical modes respectively. In both cases,

poor piezomechanical coupling prevented the detection of telecom-to-microwave

transduction. In future experiments where coupling is improved, these trials should

be repeated to demonstrate bidirectional conversion.

Fortunately, the path to increased piezomechanical coupling, and moreover

increased piezomechanical cooperativity, is relatively straightforward because the

piezomechanical coupling is predicated on the overlap of the optomechanical crystal

and the microwave electric field [74]. In our system, this overlap is small due

to the large spatial requirement of the dimpled tapered fiber optical coupling

mechanism. Future iterations with permanent fiber coupling [101] will allow

the gap between the cavity pedestal and lid to be dramatically decreased, thus

increasing field overlap and allowing piezomechanical coupling to reach rates on

the order of 1 kHz. Additionally, the piezomechanical cooperativity can be further

increased by reducing the microwave cavity decay rate and mechanical damping

rate. Specifically, 3D superconducting microwave cavities are capable of decay rates

below κµ/2π = 100 Hz [102], and low temperature measurements in Chapter 6

will demonstrate an improved mechanical damping rate of Γm/2π = 83 kHz. With

these improvements taken into account the piezomechanical cooperativity could

reach values exceeding 1, which would lead to nearly lossless microwave-to-telecom

transduction, bidirectional transduction of signals, and quantum state transduction.
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Figure 5.5: Optical measurements of the transduced 3.2 µW electrical signal as it
is swept between 2380 MHz to 2395 MHz in 0.25 MHz steps. The dashed curve
represents a calculation of the number of actuated phonons for the whole frequency
range, using Eqn. (4.24) with experimentally measured parameters.

5.9 Frequency Dependence

Another important metric for microwave-to-telecom transduction is the

bandwidth over which efficient transduction can be achieved. A large bandwidth

increases the utility of the transducer by allowing it to convert a range of microwave

frequencies to telecom wavelengths and permits faster transduction operations [11].

To measure the bandwidth of transduction, the electrical signal frequency is stepped

across the the mechanical and microwave resonances and the mechanical spectrum is

measured by optical homodyne at each step. In Fig. 5.5 the mechanical spectrum is

scaled using Eqn. (5.13), such that the amplitude of each transduced peak represents

the number of actuated phonons in the mechanical mode. This demonstrates that

the maximum number of actuated phonons is achieved for a frequency between the

microwave and mechanical peaks at ωmax/2π = 2387.25 MHz.

To confirm the accuracy of the measured spectrum, Eqn. (4.24) is used to

calculate the number of microwave actuated phonons for an arbitrary microwave

signal of frequency ωs and power Ps. In Fig. 5.5, the number of actuated phonons

n̄s(ωs) is plotted across the same region over which the electrical signal is measured

to demonstrate the agreement between experiment and theory. From Eqn. (4.24),
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a microwave-to-mechanics transduction bandwidth of 2π × 2.16 MHz is calculated,

which exceeds the predicted bandwidth of similar piezoelectric microwave cavity

to telecom transducers [103]. The large bandwidth is in part due to an efficiency-

bandwidth trade-off for transduction: the high decay rate of the microwave

cavity and damping rate of the mechanics increases bandwidth, but in turn limits

the number of actuated phonons and therefore the efficiency of the transducer.

During low-temperature experiments both the damping and decay rates will be

reduced, which limit the bandwidth of future experiments, but increase transduction

efficiency.

5.10 Tunable Microwave Cavities

In Fig. 5.6, the transduction efficiency is plotted as a function of signal frequency

for our experiment where ωm−ωµ ≈ 1 MHz and for the ideal transduction scenario

ωm = ωµ. Encompassing both the experimental and ideal transduction scenarios is

a calculation of efficiency which assumes a tunable 3D microwave cavity [104] with

a resonance frequency set such that the input electrical signal is transduced with

maximum efficiency at each considered frequency. In ideal circumstances, where

the electrical signal frequency matches the mechanical resonance frequency, the

efficiency of transduction is unchanged. For unmatched resonances however, the

microwave cavity can be tuned to increase the transduction efficiency.

The extended range afforded by a tunable cavity has a full-width half-max of

2.91 MHz, such that the transduction efficiency of off-resonant signals improves

by up to an order of magnitude. Though this is not a true increase in bandwidth,

which refers to the maximum frequency spread that can be simultaneously passed

by the cavity, it does increase the frequency range over which the transducer can

function. For the microwave cavity under consideration in this experiment, the

increased transduction range associated with a tunable microwave cavity is modest,

but becomes more pronounced when the reduced decay rates of superconducting

cavities are taken into account [102].
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Figure 5.6: Calculations of the conversion efficiency for the transduction of
electrical input signals at various frequencies ωs using the experimental parameters
outlined for this experiment (grey solid), the ideal scenario where the detuning
between microwave and mechanical resonances is zero (green dotted), and the
maximum transduction efficiency attained by using a tunable microwave cavity to
select the microwave resonance frequency for maximum transduction efficiency at
each input signal frequency (purple dashed).

5.11 Noise in Transduction Experiments

The use of homodyne or direct detection measurements requires a careful

approach to noise. Since there is no optical downmixing involved, the photodetector

measures a signal frequency at ωs, which implies that the photodetector itself, any

SMA cables, filters, and amplifiers prior to electronic downmixing are susceptible

to noise at the signal frequency. In Fig. 5.7, we demonstrate a bandwidth sweep

that was taken prior to protecting the system from noise. The transduced peaks

in this case appear to be suppressed in the region of the microwave resonance. In

contrast, the mechanical resonance and calibration tone appear properly in the

measured power spectral density, which suggests that the optical measurement was

performed correctly.

The noise peaks evident in Fig. 5.7 were confirmed to be noise by subsequently

turning off the laser and repeating the measurement. In this case, the thermal noise

and calibration tone were not measured, but the microwave peaks were still visible.

Additionally, the noise peaks were responsive to changing the microwave input power,
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Figure 5.7: Transduction measurement demonstrating system noise. Each colour
is represents a measurement of the optical power spectral density, between which
the microwave input frequency was stepped by 0.25 MHz. Thermal noise and a
calibration tone (ωCAL/2π = 2384 MHz) appear as expected in every trace. The
transduction peaks however appear to be suppressed instead of amplified by the
microwave resonance (grey), which is slightly more offset from the mechanical mode.
Past 2400 MHz, there is additional noise that appears in every trace. This noise is
thought to originate from Wi-Fi broadcasts.

with the same scaling as shown in Fig. 5.4. This implied that somewhere between

the VNA and the microwave cavity the microwave tone was being broadcast, and

somewhere between the photodetector and the electronic downmixer the microwave

tone was being picked up, thereby completely skipping the microwave to telecom

conversion process while mimicking the transduced signal.

Isolating the microwave cavity using a Faraday cage was considered as a

possibility for eliminating the noise, but the complexity of building a radiation-

tight enclosure around the experiment, and the possibility of isolating the system

from Wi-Fi noise, made isolating the detection equipment using grounded metal

enclosures a more appealing path to noise isolation. The grounded metal enclosures

were successful in reducing both Wi-Fi and microwave broadcast noise, but failed to

completely eliminate it. To ensure the noise was completely eliminated, the power

sweep measurements in Fig. 5.4 and frequency sweep measurements in Fig. 5.5

were taken with the detection apparatus in a separate room from the microwave
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cavity, connected using only a fiber-optic link that is immune to the radio frequency

broadcast noise.

5.12 Experiment Summary

In conclusion, we have demonstrated gallium arsenide optomechanical crystals in

a 3D microwave cavity as a promising platform for quantum state transduction. The

optomechanical crystal is sensitive enough to detect an average occupancy of just

(9.0± 0.4)× 10−2 actuated phonons, and is capable of achieving high cooperativity.

The piezoelectric coupling gµ/2π = (4.3 ± 0.8) Hz between the microwave and

mechanical modes limits the transduction efficiency to η0 = (1.0± 0.1)× 10−15, but

could be improved by reducing the microwave electric field mode volume. Finally,

the 2.16 MHz transduction bandwidth of this system allows for a broad range

of electrical signals to be transduced. Although this bandwidth will be reduced

when the transduction experiment is performed at low temperatures, where the

microwave cavity will be superconducting, we have proposed a framework using a

tunable microwave cavity to allow for microwave-to-telecom transduction that is

efficient, low-loss, broadband, and coherent.
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Chapter 6

Ground State Mechanics

This chapter expands on the publication [2] “Elimination of thermomechanical

noise in piezoelectric optomechanical crystals,” Phys. Rev. Lett. 123, 093603

(2018). The low-temperature experiments described here took place prior to the

transduction experiment, which limited our ability to predict the operation of a

complete transducer at low temperatures. Here, we update these results based

on the results of the room-temperature transduction experiment, and predict the

results of a final low-temperature microwave to telecom transduction experiment.

6.1 Thermal noise

In the previous chapter, we transduced a microwave signal into a telecom signal

and calibrated the transduction efficiency by comparing the number of actuated

microwave phonons to the room temperature population of thermal phonons in

the device. This procedure highlighted thermal noise as a resource that could be

used to calibrate the transduced signal, but it was clear that below a certain signal

strength the thermal noise completely washed out the transduced signal. When

further considering the application goal of transducing quantum states, the thermal

noise presents even larger problems, as thermal phonons at the signal frequency

will be indistinguishable from the desired quantum state once they are transduced

to optical photons. For this reason, the thermal noise in the mechanical mode must

be reduced such that the average phonon population is less than one. This limits

both the chance of transducing thermal phonons, and also the decoherence rate

Γmn̄th of quantum states stored in the mechanical mode.
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In this chapter, we eliminate thermomechanical noise in the gigahertz-frequency

mechanical breathing mode of a piezoelectric optomechanical crystal using cryogenic

cooling in a dilution refrigerator. We measure an average thermal occupancy of the

mechanical mode of only 0.7 ± 0.4 phonons, providing a path towards low-noise

microwave-to-optical conversion in the quantum regime. These measurements

are bolstered by our measurement of the cooperativity, which we calculate to be

C = 3.7 using a combination of continuous and pulsed measurements. We begin

with a description of the low temperature apparatus and initial low temperature

measurements.

6.2 Low Temperature Apparatus

Low-temperature experiments on the gallium arsenide optomechanical crystals

are performed on the baseplate of an Oxford dilution refrigerator, photographed in

Fig. 6.1(a), which is capable of reaching temperatures below 15 mK. The baseplate

is configured to allow for flexible optical coupling while simultaneously maximizing

the thermal connection between the dilution refrigerator and the device. It achieves

this using braided copper cable to connect a set of positioning stages,1 which allow

the devices to be positioned in a three-dimensional space, to the mixing chamber

which provides cooling power. Optical coupling to the devices is achieved using a

fourth positioning stage, which allows the fiber to be moved from side to side such

that the fiber dimple is in view of the endoscope optical imaging system [77]. The

endoscope allows for optical access within the fridge for the purposes of positioning

the device, without creating a significant source of room temperature radiation

heat. An image Fig. 6.1(b) taken using the endoscope shows an optomechanical

crystal coupled to the dimpled tapered fiber.

A closeup of the chip holder, Fig. 6.1(c), shows the gallium arsenide chip

mounted at a 22.5◦ angle to allow for off-axis coupling between the fiber and the

device. The gallium arsenide chip is mounted alongside a diamond chip that hosts

optomechanical microdisks, which were investigated as part of a side-project. The

chip holder itself is made from copper which has been annealed and gold plated to

1Attocube low temperature linear nanopositioners, models LT-UHV ANPx101, ANPz101.
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Figure 6.1: (a) Base plate of the dilution refrigerator. Devices are mounted in a
chip holder, placed on a stack of piezoelectric positioning stages. Copper braids
provide thermal anchoring between the chip holder and the mixing chamber. A
high-efficiency dimpled tapered fiber is mounted on a fiber holder next to the
positioning stack. The endoscope optical imaging system above the chip holder
allows for real-time optical access to the device to facilitate coupling. A ruthenium
oxide (RuOx) thermometer measures the temperature of the mixing chamber. (b)
Endoscope image of optomechanical crystals while coupled to a dimpled tapered
fiber. (c) Close up of holder with GaAs chip (black).
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provide a malleable surface. The chip is screwed in tightly enough to deform the

surface of the chip holder, which creates a high surface area mechanical connection

for thermal conduction at millikelvin temperatures. This mechanical connection is

advantageous over other methods of securing the chip, such as silvered epoxy or

varnish, both of which are capable of conducting heat at 4 K but become insulators

at millikelvin temperatures.

Thermometry is achieved using a ruthenium oxide (RuOx) thermometer which

is attached to the base plate of the dilution refrigerator. The RuOx thermometer

accurately measures the temperature of the mixing chamber above TMC = 20 mK,

and is sensitive to temperature changes, but is not necessarily accurate, for colder

temperatures.

6.3 Continuous Measurement

Initial low-temperature experiments were carried out with the intention of

replicating the room temperature characterization results. The optical resonance

of the optomechanical crystals had no significant changes, with the mode frequency

and damping rate remaining near the values measured in Chapter 3. The mechanical

resonance, however, changed significantly. Both the mechanical resonance frequency

and mechanical damping rate are temperature dependent through the Young’s

modulus (and thus the elasticity coefficients) of gallium arsenide [105]. As

temperature decreases and the gallium arsenide stiffens, resonance frequency

increases and the mechanical damping rate decreases.

In Fig. 6.2(a), the mechanical resonance is measured at a series of three

different optical powers. At the highest measurement power, the mechanical

resonance exhibits a frequency shift to ωm/2π ≈ 2397.5 MHz, with a damping rate

Γm/2π ≈ 0.5 MHz extracted from a fit to Eqn. (3.28). In Chapter 3, the power

in the mechanical peak was shown to be proportional to both the measurement

strength α and the number of thermal phonons through βm, such that

P(ωm) =

∫
ωm

(SV V (ω)− SwVV) dω (6.1)

=
2αg2

0

ω2
m

n̄th. (6.2)
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Figure 6.2: (a) Mechanical breathing mode resonance at Tmc ≈ 20 mK, fit and
measured with high optical power (orange, 6.43 µW → 938 photons), moderate
optical power (blue, 2.25 µW → 336 photons), and low optical power (green,
0.43 µW → 66 photons). (b) Mechanical damping (blue) and frequency shift
(orange) as a function of measurement power.

90



Reducing the cavity photon population results in reduced measurement strength α,

which manifests as the smaller mechanical resonances in Fig. 6.2(a). However, the

reduced measurement strength does not explain the frequency shift between the

three measured peaks. Fitting the peaks, we further observe that the mechanical

damping rate changes as a function of optical power. In Fig 6.2(b), we expand on

these measurements and plot the mechanical damping rate and shift in mechanical

frequency as a function of cavity photon occupancy. Clear trends emerge in both

cases, demonstrating that the mechanical mode depends on the population of

photons in the cavity. We suspect that this is the result of the absorption of photon

in the optical mode causing device heating.

To provide a better understanding of the mechanical damping of the optome-

chanical crystals at low temperature, the measured damping is heuristically fit to

an exponential function

Γm(n̄cav) = Γm(0)ea
√
n̄cav , (6.3)

from which we extract a zero-photon mechanical damping Γm(0)/2π = 79.9 kHz

(often simply written Γm), and a scaling factor a = 5.3× 10−2.

Repeating the experiment at a range of temperatures from 20 mK to 6 K

and using the heuristic fit to find the zero-photon mechanical damping rate at

each temperature produces Fig. 6.3. The zero-photon damping rates are also

fit heuristically to be linearly dependent on the fridge temperature, allowing us

to calculate an intrinsic zero-temperature, zero-photon damping rate Γm/2π =

78.8 kHz, which increases at a rate 2.5 kHz/K. The scaling factor a was consistent

throughout the dataset, however when the experiment was later repeated with

slightly different measurement conditions, we found that the scaling factor a had

changed. This suggests that the scaling factor is at least partially dependent

on measurement conditions and makes it difficult to use it to extract physical

parameters.

Further evidence that the mechanical mode is heated by the presence of

photons in the optical cavity is attained from a low-temperature phase calibration

measurement, Fig. 6.4, wherein the mechanical resonance demonstrably shifts to

lower frequencies near the center-frequency of the optical resonance. This can
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Figure 6.3: Mechanical damping at zero-photon occupancy for a range of Fridge
temperatures. A linear fit is used to extract an intrinsic mechanical damping rate
Γm/2π = 78.8 kHz.

be explained using Eqn. (2.25), where the number of steady state photons n̄cav

is a function of optical resonance detuning, which is maximized on resonance.

Repeating the room-temperature phase calibration calculations using the data

presented in Fig. 6.4, we calculated the optomechanical coupling using Eqn. (3.42)

to be g0/2π = (1.3 ± 0.3) MHz, where the larger error reflects the effect of the

optical heating.

Despite the presence of optical heating acting as a source of error for our

measurement of the optomechanical coupling, we use this result to calculate

theoretical values for optomechanical effects throughout this thesis. The true

value of the optomechanical coupling is likely on the lower end of the error, near

g0/2π = 1.1 MHz, which is what it is calculated to be near the edge of the optical

resonance (see Fig. 6.5). Attempts to repeat this measurement using less optical

power were met with poor results as the reduced signal-to-noise ratio resulted in

high measurement variance, similar to the outlier points shown at the edges of

Fig. 6.5. In future experiments, it may be pragmatic to use homodyne measurements

to calculate the optomechanical coupling. The low-power nature of homodyne
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Figure 6.4: Optomechanical coupling measurement at 4 K. DC transmission (white)
of the optical resonance (fit in black) and measured AC frequency spectrum at each
1 pm laser wavelength step (plot background with colour-scale spectrum amplitude).
The mechanical mode appears at ωm/2π ≈ 2397 MHz, and an electro-optic phase
modulator calibration tone is visible at ωEOM/2π = 2395 MHz.

would permit measurements with less optical heating, and the measurement would

additionally be performed with the laser tuned to the optical resonance frequency,

which would eliminate any potential error from optical back-action effects.

The goal of this experiment is to demonstrate that the cooling power of our

dilution refrigerator is enough to cool the optomechanical crystal into the thermal

ground state, where the phonon occupation of the mechanical breathing mode is less

than one n̄th < 1, which would allow the mechanics to be used as a low-noise bridge

for transducing microwave photons to telecom frequencies. A secondary goal is to

determine the optomechanical cooperativity, to determine if the device is capable

of reaching C > 1 at low temperature for high-efficiency transduction. Optical

heating of the mechanical mode makes both of these goals challenging to realize,

since heating increases both the thermal phonon occupation of the mechanical

mode and the mechanical damping rate, which we recall to be a component of the
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Figure 6.5: Calculation of the optomechanical coupling using phase calibration
(green dots), with the optical resonance (blue) as reference for the detuning at which
each calculation is made. The trend towards higher g0 at the center of the optical
resonance reflects the temperature dependent nature of Eqn. (3.42) in the presence
of optical photon absorption. The outlier points below 1547.36 nm and above
1547.43 nm are shown to demonstrate the variance of low-signal measurements, but
are not used in the calculation of g0.

cooperativity. This problem of optical heating is not unique to our experiment,

and was first characterized for silicon optomechanical crystals [106, 107], where

the rate and magnitude of heating was measured using optical pulses and single

photon counters. The optical pulsing techniques were then adapted to measure

heating in optical microdisks with megahertz-frequency mechanical cantilevers using

conventional photodetectors [108]. Here, we adapt the optical pulsing technique to

measure our gigahertz mechanical mode using optical heterodyne detection.

6.4 Pulsed Measurement

Optical pulses are created using a high-speed acousto-optic modulator2 (AOM),

which is shown in a simplified schematic of the optical measurement system

Fig. 6.6(a). The AOM is switched to an ‘on’ state when a 2 W, 200 MHz sinusoidal

signal is applied to the RF input port. Otherwise it blocks light from being

2Gooch & Housego 200 MHz Longitudinal acousto-optic modulator
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transmitted. The pulses are created prior to the phase detection beamsplitter

(here labelled as a variable coupler to reflect the ability to tune the amount of

light in each arm). Another option is to insert the AOM into the signal arm, so

that the local oscillator is on continuously. The primary advantage of placing the

AOM outside of the phase detection system is that the photodetector receives no

light between pulses, which makes it easy to distinguish when an optical pulse is

measuring the optomechanical crystal.

The RF signal used to drive the AOM is generated by a linear chain of electronics

that begins with a computer-controlled data acquisition card3 which outputs a

trigger to a pulse generator.4 The pulse generator in turn is used to gate a signal

generator5 which outputs a 200 MHz sinusoidal signal during the pulse. The

sinusoid is then amplified using a high-speed amplifier6 to a 2 W output to provide

sufficient power to drive the AOM, which converts the electrical pulse into the

optical pulse used to measure the optomechanical crystal. In addition to this linear

pulse generation chain, the data acquisition card is used to simultaneously send a

trigger signal to the high-speed analog-to-digital converter, which allows data to be

taken for only a brief period of time around each measured pulse. This is crucial to

limit the size of data files taken and allows for faster analysis of the data captured

in the pulsed experiments.

The pulsed data presented in the following sections represents averages over

many repetitions, which is necessary to accommodate phase drift between the

signal and local oscillator arms. In continuous measurements, we were able to lock

the phase of the arms together using the DC difference signal from the balanced

photodetector. Because of the discrete nature of pulses, however, the arms cannot

be locked during pulsed measurement. Instead, up to 20, 000 repetitions are used

to ensure the data is taken over an average of all possible phase shifts between the

signal and local oscillator arms.

The use of the high-speed analog-to-digital converter instead of the real-

time spectrum analyser, which was used for the majority of the continuous

3National Instruments USB-6259 multifunction IO
4Hewlett Packard 8131A 500 MHz pulse generator
5Stanford Research Systems SG382 2 GHz RF signal generator
6ENI 403L 37dB 250 MHz RF amplifier
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Figure 6.6: (a) Simplified schematic of optical heterodyne detection. AOM:
acousto-optic modulator, VC: variable coupler, EOM: electro-optic modulator,
BS: beamsplitter, BPD: balanced photodiode, ADC: analog-digital converter. (b)
Cartoon of frequency-domain mechanical signal at three different times during a
pulse. The mechanical signal is convolved with the green filter H(ω) to obtain (c)
the time-dependent mechanical area.

measurement experiments in this chapter, reflects the need for high-speed time-

domain measurements to capture the dynamics of mechanical heating. The spectrum

analyser excels at frequency-domain measurements due to the presence of an internal

mixer that downmixes the signal of interest to within the 40 MHz sample rate

of the spectrum analyser. However, this sample rate is slower than the AOM

switching time and could result in the pulse-edge being smoothed over several data

points. Additionally, software limitations of the real-time spectrum analyser made

it difficult to measure and process time-domain data.

In Fig. 6.6(a), a simplified picture of the heterodyne detection scheme used for

pulsed measurement is demonstrated. The mechanical signal is optically downmixed

by the electro-optic modulator tone to approximately 30 MHz. To analyse the time

domain behaviour of the mechanical motion, a voltage signal V (t), which carries

mechanical information at the heterodyne downmixed frequency ωm − ωEOM, is

digitally downmixed (demodulated) such that the center frequency of mechanical

mode is set to zero: ωm−ωEOM−ωdemod = 0. We expect, due to optical absorption
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heating, the mechanical power spectral density peak to grow in area over the

duration of the optical pulse. To measure the peak area as a function of time, we

digitally filter the downmixed signal using a 6.25 MHz filter window7 H(ω) that

is centered around zero frequency. In Fig. 6.6(b), a cartoon of the mechanical

resonance at three points in time is shown to demonstrate the growth in peak area.

The peak is wholly encapsulated by the filter function, here shown as a rectangular

window. The convolution8 of the window function with the demodulated pulse

signal V (t)e−iωdemodt, produces the area overlap of the mechanical resonance and

the window, which is the time-dependent power spectral density area:

P(ωm, t) =
[
V (t)e−iωdemodt

]
∗H(t) (6.4)

The convolution effectively slides the filter window across the measured pulse,

providing a time-domain record of the mechanical peak area over the duration of

the optical pulse.9 A cartoon example of this measurement is shown in Fig. 6.6(c),

which shows the power spectral density growing from some initial area at t0 to

progressively larger values.

6.4.1 Two Bath System

To describe the transition that occurs over the duration of an optical pulse,

we consider a two-bath system. The first bath is that of the dilution refrigerator,

which is dominant prior to the onset of the pulse at t = t0. The dilution refrigerator

bath is coupled to the mechanical mode at the zero-phonon damping rate Γm and

populates the mechanical mode with some number of thermal phonons n̄th. By

turning on the laser and populating the optical mode with photons, we induce a

second bath, which was introduced in Ref. [107] as the laser-induced hot-phonon

bath. The hot-phonon bath consists of np phonons which couple to the mechanical

mode at a rate Γp. The simplest model to which one could fit the transition from

7The filter function used for the data analysed in Ref. [2] was a Blackman window. Other
options, such as a Hamming or Han window can also be used. Further research is required to
determine what the ideal filtering window, but one interesting option for future exploration is to
use the (normalized) mechanical lineshape from continuous measurements as a filtering function.

8Using the fftconvolve function in SciPy library [109].
9The demodulation and convolution procedure was developed by Doolin and is detailed in his

thesis [78]
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the dilution refrigerator bath to a combined bath is an instantaneous onset of the

hot-phonon bath at the beginning of the optical pulse (at time t0). The mechanical

mode phonon occupancy n(t) then increases from its initial occupancy n(t0) to the

thermal equilibrium neq = (Γmnth + Γpnp)/Γ at a rate Γ = Γm + Γp according to

n(t) = n(t0)e−Γ(t−t0) + neq

(
1− e−Γ(t−t0)

)
. (6.5)

We note that this equation does not assume that the bath necessarily start

thermalized to the dilution refrigerator bath—if this is the case, then n(t0) = n̄th.

At this juncture we recall Eqn. (6.2), which implies that the phonon occupancy

of the mechanical mode is proportional to the power spectral density area. Thus,

the equation governing phonons in the mechanical mode also governs the time-

dependent power spectral density areas P(ωm, t) cartooned in Fig. 6.6(c). In

the following sections we will use the two-bath model describing the mechanical

dynamics created using optical pulses first to corroborate the zero-photon damping

rate measured from the heuristic fit in Fig. 6.2(b), and second to create a calibration

metric that can be used to calculate the number of phonons in our device.

6.4.2 Measurement in the Dark

In prior measurements, the mechanical damping rate was calculated by fitting

the mechanical resonance and extracting the linewidth. This is based on our

model of the mechanical motion as a harmonic oscillator and is a result of the

assumptions made from input-output theory in deriving the mechanical equation

of motion Eqn. (2.12). Although this theory is generally a robust description of

our mechanical motion, it is limited in its ability to distinguish between different

modes of dissipation, and thus cannot separate dissipation that arises from optical

absorption and other, non-measurement-induced sources.

A more physical approach to determining the mechanical damping rate is to

directly observe the length of time required for mechanical energy to dissipate.

This is an impossible experiment in a continuous measurement scheme where the

mechanics is in equilibrium, but by using one optical pulse to excite the mechanical

motion and then capturing the mechanical motion as it rings down using a second

measurement a variable amount time later, the rate at which the mechanics dissipate
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Figure 6.7: Measurement in the dark, or a double-pulse measurement. The power
spectral density area is normalized to the equilibrium amplitude of the first pulse,
and time shifted such that the falling edge of the first pulse is aligned to t = 0.
The second pulse occurs some delay time t0 later, and is fit (black dotted lines)
using Eqn. (6.5), which is normalized by dividing by n̄eq. The initial occupancy of
each secondary pulse n(t0) is plotted as a star for example traces, and as an orange
dot for traces not shown (one pulse is shown without a fit to elucidate the pulse
itself). These initial occupancies are then fit (black dashed line) to Eqn. (6.6) to
extract Γm/2π = 83 KHz.

the energy of the first pulse can be traced out. In the time between the pulses,

no photons exist within the optical cavity and as a result the mechanics are not

affected by optical-absorption-induced damping. For this reason this experiment is

referred to as a measurement in the dark.

In Fig. 6.7 we perform the measurement in dark, wherein two pulses are separated

by a delay time that is varied from 1 µs to 9 µs. The first pulse heats the mechanics

to an equilibrium state, which decays when the pulse ends. The second pulse,

which begins after some delay time, captures the mechanics partway through the

decay process and causes them to return to the excited state. The power spectral

density area, calculated as a function of time using Eqn. (6.4), is fit to Eqn. (6.5) to

describe the return to the equilibrium state. In the time between the optical pulses,

the hot-phonon bath vanishes nearly instantaneously (the optical time constant

is 1/κ ≈ 32 ps) and the mechanical mode decays back to the dilution refrigerator

bath at the mechanical damping rate Γm. By increasing the delay time between

the optical pulses and recording the initial phonon number n(t0), the mechanical
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mode decay from the two-bath equilibrium to the dilution refrigerator bath can be

captured using a series of trials. The decay from the two-bath equilibrium state

to the dilution refrigerator thermal state can be described using Eqn. (6.5) with

Γp = 0. For clarity, the equation is re-written as

n(t) = n̄eqe
−Γmt + n̄th

(
1− e−Γmt

)
. (6.6)

Fitting the set of initial phonon occupancies to Eqn. (6.6) allows us to calculate

the mechanical damping rate Γm in the absence of the hot-phonon bath. The

outcome of the measurement in the dark experiment is a mechanical damping

rate Γm/2π = 83 KHz which agrees well with the heuristically fit zero-photon

mechanical damping rate Γm(0)/2π = 79.9 KHz.

6.4.3 Phonon Calibration

The next experimental step is to use optical pulses to determine the

proportionality between the power spectral density area and the number of phonons

in the mechanical mode. For simplicity, we absorb all proportionality constants

in Eqn. (6.2) into one variable, such that 2αg2
0/ω

2
m → α. We also separate noise

into three distinct sources: measurement imprecision P imp, which arises from

sources such as electronic noise in the photodetector and accounts for off-resonance

background noise; ground state noise Pgs which arises from the groundstate motion

of the mechanical mode; and backaction noise Pba, which represents the transfer of

photon momentum into the mechanical mode. The total measured power spectral

density area is then

Pmeas(ωm) = αn̄th +
[
P imp + Pba + Pgs

]
. (6.7)

This expansion makes it clear that only the power in the mechanical peak

P(ωm) = αn̄th is proportional to the number of phonons. For our calibration,

we must determine both the proportionality constant α and the total noise

power, which is the bracketed quantity in Eqn. (6.7). To begin, we consider

the measurement imprecision, which is mostly independent of frequency. In Fig. 6.8,

an example of the the mechanical peak area and measurement imprecision noise

floor is shown. The noise floor power is calculated by demodulating the measured
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Figure 6.8: Continuous measurement of the mechanical mode with vertical dashed
lines showing the demodulation frequency for calculating the mode area, and the two
offset frequencies for calculating the noise floor area. Overlaid on the plot are three
windows representing the filter bandwidth around the noise floor demodulations
(blue) and the mechanical mode demodulation (green).

voltage signal by a frequency offset from the mechanical mode by some amount ωnf ,

which is set such that the filter window surrounding the noise floor demodulation

frequency does not include the mechanical mode, and moreover, does not include

any peaks from other noise sources. By calculating noise floors on either side of

the mechanical resonance we can account for slight tilts in the imprecision noise

floor by averaging the measured powers. From the measurement shown in Fig. 6.8

we find P imp = 0.726 mV2.

After subtracting off the imprecision noise floor, the calibration of the remaining

mechanical peak area proceeds by taking single-pulse measurements at a variety

of dilution refrigerator temperatures. As previously noted, at high temperatures

TMC > 1.5 K, we assume that the thermal coupling between the mixing chamber

thermometer and the optomechanical crystal is sufficient for the device to be

thermalized. We can therefore use pulsed measurements above this temperature to

provide our calibration.

The phonon calibration measurement data is presented in Fig. 6.9, where we use

Eqn. (6.5) to fit the mechanical area growth over the duration of a pulse for a broad

range of temperatures between TMC = 20 mK ∼ 6.5 K. For this experiment, a
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Figure 6.9: (a) Heterodyne pulsed measurements showing the thermomechanical
noise of the mechanical mode as a function of time. Measurements are truncated
to begin at 0.25 µs after the optical pulse (grey) due to the 6.25 MHz bandwidth
of the filter function. Fits to Eqn. (6.5) (dashed lines) are used to extrapolate the
pulses back to t = 0. Left axis presents the data in terms of power spectral density
peak area. Right axis shows recalibrated data in terms of phonon number. (b)
The peak areas at the onset of the optical pulse, color-coded to match the fridge
temperature scale, with stars to denote the example traces from (a). Peak areas
from high temperature data T ≥ 1.5 K are used to calibrate the initial peak area
to phonon number. The complete data set is fit to the Bose-Einstein distribution
with an offset (black dashed) to determine the average number of phonons in the
mechanical mode at 20 mK.
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1.5 µW laser pulse (set by the minimum power needed for adequate signal-to-noise)

is turned on at t = 0 and populates the optical mode with n̄cav ≈ 230 photons

on a timescale of 1/κ = 32 ps. Absorption of photons in the optical mode causes

the device to consistently heat to a temperature above 6.5 K regardless of the

initial starting temperature. Each trace of the peak area is fit to Eqn. (6.5) to

extract the initial and final mechanical peak areas. In addition, a total damping

rate Γ/2π = 1.05 MHz is calculated for the combined two-bath system.10

At high temperatures, we assume that the device is thermalized to the dilution

refrigerator when the measurement begins, which is supported by the linear

relationship in Fig. 6.9(b). However, we do not assume that the device is thermalized

at millikelvin temperatures, where the GaAs thermal conductivity drops significantly

due to T 3 scaling [73]. For this reason only temperatures T ≥ 1.5 K are used in the

phonon number calibration. We fit the initial peak areas of the high temperature

data using Eqn. (6.7) to determine the conversion factor α as well as the total noise

P imp + Pba + Pgs = 1.18 mV2. Using the prior imprecision measurement, we find

P imp/(Pba + Pgs) = 1.6, which suggests these measurements are performed near

the standard quantum limit measurement power where Pba = P imp [33].

In Fig. 6.9(b), the initial peak areas are plotted with noise terms subtracted (left

axis) and recalibrated to initial phonon number (right axis) using the conversion

factor α. The initial phonon numbers are then fit using the Bose-Einstein

distribution to find the thermal offset between the device and the fridge at

base temperature. At a fridge temperature of 20 mK we find that the mean

phonon occupancy is initially n(t0) = 0.7 ± 0.4, with 95% confidence from the

fit. This implies that the mechanical mode thermalizes to 0.13± 0.05 K when the

fridge thermometry reads 0.02 K. Applying the calibration to the time-resolved

measurements in Fig. 6.9(a) shows that the mechanical mode saturates to a thermal

occupancy of 95 phonons in 3 µs.

10This differs from the value that can be read off of Fig. 6.2(b), possibly due to a change in the
fiber coupling. Further investigation is required to understand this discrepancy.
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6.5 Low Temperature Cooperativity

In calculating the optomechanical cooperativity at low temperatures we must

take care to discern between the intrinsic cooperativity that is set entirely by device

properties and an effective cooperativity [107], which includes measurement-induced

heating—the hot-phonon bath. The effective cooperativity supersedes the intrinsic

optomechanical cooperativity as the relevant figure for quantum-state transduction

experiments, as it exchanges the damping rate Γm, which describes the loss of

phonons to the environment, for Γn̄eq, which describes at which the mechanical

mode decoheres due to thermal noise. Decoherence was not a relevant factor for our

room-temperature demonstration of classical signal transduction in Chapter 5, but

it will become crucial in the eventual application of quantum state transduction.

We begin by considering the intrinsic cooperativity [33],

C =
4g2

0n̄cav

κΓm

= 3.7, (6.8)

which is sufficient to achieve high-efficiency, classical-signal, microwave-to-telecom

transduction, as it implies that in the absence of the hot-phonon bath phonons are

probabilistically converted into optical photons rather than lost to the environment

through mechanical damping.

In contrast, we now consider the hot-phonon bath created by the laser pulse,

which consists of n̄eq = 95 phonons which couple to the mechanical mode at a

rate Γ/2π = 1.05 MHz to decohere the mechanical state. The resulting effective

cooperativity is [23, 97, 107]

Ceff =
4g2

0n̄cav

κΓn̄eq

= 3× 10−3. (6.9)

Hence we see that the effective optomechanical cooperativity is severely limited

by the presence of the hot-phonon bath and that reducing the amount of heating

is crucial to future quantum applications. Our hypothesis is that reducing the

optical absorption will result in a corresponding reduction in the magnitude of the

hot-phonon bath, which is evidenced by Fig. 6.2(b) where the measured damping

rate changes with number of photons in the cavity. There are two potential

approaches to mitigating optical absorption: passivating the GaAs surface to
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reduce roughness [40] and the influence of mid-gap surface states [110] may result

in reduced optical absorption at the surfaces of the optomechanical crystal [111],

or simply migrating to a material with a larger bandgap to increase the required

energy of absorption [112].

Another point of focus is the intrinsic damping rate of the mechanics, which was

expected to be lower than the measured zero-photon damping rate Γm/2π = 83 kHz.

The high damping rate will limit both the optomechanical and piezomechanical

cooperativity unless it is significantly improved in future experiments. Discovering

the limiting factor of the damping rate is tricky, as it could arise from a number

of sources; once again surface roughness is a culprit [40], but other possibilities

include two-level systems [113], clamping losses [114], and the need for improved

phononic shielding [115].

6.6 Future Low Temperature

Piezo-optomechanical Systems

At this juncture, we can compile our results in Table 6.1, which contains

measured low temperature characteristics and predicted piezomechanical coupling

characteristics for a future scenario where we have a piezo-optomechanical system

built around the architecture of gallium arsenide optomechanical crystals in a

3D microwave cavity at low temperatures. Here we consider the immediate next

step of classical signal conversion at low temperatures, for which we consider the

optomechanical cooperativity instead of the effective cooperativity.

Considering a scenario where the optomechanical cooperativity is enhanced using

a red-detuned pump, the efficiency of transduction, calculated using Eqn. (5.11),

would be η ≈ 10−9, improving by four orders of magnitude from a similar room

temperature experiment. Although this improvement is a step towards efficient

transduction, it is clear that low temperatures alone are not sufficient.

Instead, the assertion from Chapter 4 that permanent fiber coupling is required

to allow for better mode overlap between the microwave electric field and mechanical

mode must be reiterated. By increasing the mode overlap, the piezomechanical

coupling can be increased and the piezoemechanical cooperativity can then begin

105



Optics (GHz) Mechanics (MHz) Microwaves (MHz)

Wavelength λc ≈ 1543 nm — —
Frequency ωc/2π ≈ 194300 ωm/2π ≈ 2387.5 ωµ/2π ≈ 2386.5

Tot. decay rate κ/2π ≈ 6.6 Γm/2π ≈ 0.083 [κµ/2π ≈ 0.1]
Ext. decay rate κe/2π ≈ 2.3 — [κµ,e/2π ≈ 0.05]

Mode coupling g0/2π = (1.3± 0.3) MHz gµ/2π = (4.3± 0.8) Hz
Cooperativity C = 3.7 [Cµ ≈ 10−8]

Table 6.1: Summary of low temperature piezo-optomechanical properties of the
gallium arsenide optomechanical crystal used for classical microwave to telecom
transduction, with predicted values [102, 104] encapsulated in square brackets. This
table assumes there is no hot-phonon bath from optical absorption.

to approach a value exceeding one. Permanent fiber coupling also solves a spatial

problem that becomes evident when comparing the size of the microwave cavity in

photographed in Fig. 5.2(a) to the photograph of the dilution refrigerator baseplate

shown in Fig. 6.1(a): the microwave cavity and the stages required for positioning

the chip relative to a dimpled tapered fiber will not all fit on the baseplate!

Hence, permanent fiber coupling is a requirement for this type of low-temperature

transduction experiment in our dilution refrigerator.

6.7 Transduction Noise

Reaching the thermal groundstate in the mechanical breathing mode is an

important benchmark when considering thermal decoherence rates for quantum

state transduction. Considering that microwave-actuated phonons and thermal

phonons are transduced into telecom photons identically further provides an intuitive

description of how thermal noise becomes noise added to the transduced signal.

To quantify this description we return to the piezo-optomechanical equations of

motion, Eqn. (5.8). To find the transduction noise from the thermal population of

the mechanical mode, we calculate the amount of light emmited from the telecom

mode when the system is driven solely by thermomechanical motion. The number
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of noise-addded photons in the telecom signal is

nadd = κe|δâ(ωs)|2 (6.10)

= κeΓm

∣∣∣∣∣ |ᾱ|g0b̂in

χ91
a (ωs)χ91

b (ωs)χ91
c (ωs) + g2

0|ᾱ|2χ91
c (ωs) + g2

µχ
91
a (ωs)

∣∣∣∣∣
2

. (6.11)

Like the equation for transduction efficiency, we simplify the general expression

for added thermal noise for our specific scenario where the transduction frequency

approximately matches the microwave and mechanical mode frequencies, ωs ≈

ωm ≈ ωµ and the laser is set to be on the optical resonance, ∆ = 0. The number of

added thermal noise photons then becomes11

nadd =
κe

κ

4Cn(t0)

(1 + C + Cµ)2 + 4ωm

κ2
(1 + Cµ)2

. (6.12)

For this simplification we have assumed no hot-phonon bath, but that can be

straightforwardly calculated by exchanging the number of phonons and damping

rate n(t0) from the dilution refrigerator for the continuous-limit equilibrium bath

n̄eq, and the cooperativities for effective cooperativities. Using the values from

Table 6.1, we find that the dilution refrigerator adds just nadd = 0.2 quanta, where

a quanta is one added telecom photon in the transduced signal per second in a 1

Hz bandwidth [23].

The number of added photons intertwines two concepts: first, how many thermal

phonons are in the mechanical mode, and second, how well they are transduced

into the optical mode and then out to the coupling fiber. The fact that the number

of added photons increases both when the phonon population increases (which

is bad) and when cooperativity increases (which is good) makes the number of

added photons a poor metric for how low-noise the transduced signal is, despite

the fact that it literally describes how much noise is in the signal. To provide a

better metric for defining “low-noise” transduction, we consider the signal-to-noise

ratio [23, 97],

SNR =
κµ,e
κµ

Cµ|ĉin|2

n(t0)
, (6.13)

11This equation differs from the calculation made in Ref. [2], where no assumption of a microwave
cavity was made.
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which was derived solving Eqn. (5.8) for â when ĉin is the sole input and dividing

the result by the solution to â when b̂in is the sole input. In future transduction

experiments at low temperature, this signal-to-noise ratio should be calculated to

determine degree to which thermal noise of the mechanical resonator pollutes a

signal as it is transduced from the microwave domain to the optical domain. For the

present experiment, there was no signal transduced and therefore the signal-to-noise

ratio remains undefined.

6.8 Experiment Summary

The low-temperature experiments described in this chapter were successful

in showing that the millikelvin dilution refrigerator environment is sufficient to

cool the gallium arsenide piezo-optomechanical crystals into the thermal ground-

state at 0.7 ± 0.4 phonons. The success however came with the caveat that the

measurement itself induced a hot-phonon bath, which in Fig. 6.7(b) heats the

mechanical mode to phonon occupations well outside the thermal groundstate at

n̄eq ≈ 95 phonons. The hot-phonon bath is similarly responsible for damping the

mechanical mode at a rate which, judging from Fig. 6.2(b), appears to depend on

the number of photons in the optical cavity. Unfortunately the phonon calibration

measurement was only done for a single optical power, which prevents us from

using the calibrated measurements to confirm the relation between optical photons

and the hot-phonon bath. This could provide the basis for a future investigation,

although the experiment would be technically challenging due to the sheer volume

of data required for a measurement that varies both fridge temperature and optical

power. It was not a feasible experiment for dimple-tapered fiber coupled devices due

to the limited amount of time the fiber would remain coupled to the device—often

the fiber would slowly shift relative to the device over a period of a few days,

changing the measurement characteristics. Future experiments with permanent

fiber coupling may not have this difficulty.

We have further calculated both the classical cooperativity, C = 3.7, and the

effective cooperativity, Ceff = 3× 10−3, which must be improved for the application

of quantum state transduction. We have also used piezo-optomechanical theory
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to separate the absolute noise in the signal from the signal-to-noise ratio of the

transduced signal, which will provide a metric to help guide future low-noise

microwave to telecom transduction experiments.
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Chapter 7

Conclusions &
Future Directions

The research presented in this thesis is a small slice of the larger project that

is the creation of a quantum-enabled microwave-to-telecom transducer. We have

developed a unique platform—the piezoelectric optomechanical crystal in a 3D

microwave cavity, and demonstrated the ability to transduce classical signals while

preserving phase and amplitude information. Moreover, we performed pulsed

optomechanics experiments at millikelvin temperatures to demonstrate that the

mechanical mode of our transducer could be cooled to the thermal groundstate

with 0.7± 0.4 phonons using dilution refrigeration. These results are encouraging

for our prototype system, but leave a great deal of room for improvement. The

measured transduction efficiency, η = 10−15, must be improved to tens-of-percent

to be competitive with low-frequency classical microwave-to-telecom converters [25].

Mechanical mode heating from optical absorption must also be eliminated or

circumvented to reduce noise in the transduced signal.

Frequently mentioned throughout the thesis is the use of permanent fiber

coupling in future iterations of piezo-optomechanical transduction devices, which

will allow for increased overlap between microwave electric fields and mechanical

motion and will in turn lead to increased mode coupling, cooperativity, and finally

efficiency. At the same time, the redesign to allow for permanent fiber coupling

provides an opportunity to examine causes of optical absorption and investigate

potential solutions. Different piezoelectric materials are worthwhile investigations,

especially with the recent successes of lithium niobate devices [30, 31]; if gallium
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arsenide remains the material of choice, then surface passivation techniques [110]

may also help incrementally.

Though the necessary addition of permanent fiber coupling and the possibility

of changing materials are major optimization steps, they will not advance the

precedent of microwave-to-telecom transduction experiments. For the period of

time that my thesis work took place, the precedent was classical signal transduction,

which provoked a competitive research field where many laboratories sought to

demonstrate the best-in-class classical signal transduction system. Many of these

experiments began to push the boundaries of quantum measurement by using

single-photon counting techniques to characterize their transducers [29, 107], but

was only during the writing of this thesis that the first actual microwave-to-telecom

quantum state transduction took place in the Painter lab [70] where Rabi oscillations

between the ground and excited states of a transmon qubit were detected using

telecom single photon detectors. The quantum technologies (single photon detectors

and transmon qubits) used in this demonstration are also available for use in the

Davis lab, where they are being tested for future integration in optomechanics

experiments.

This thesis provides a starting point for the development of future quantum-

enabled microwave-to-telecom transducers. The measurements of phonon occupa-

tion and cooperativity in Chapter 6, and efficiency in Chapter 5, are interesting

as proof-of-principle demonstrations. The true value of this work, however, comes

from the measurement systems outlined in Chapter 3, which are designed for use

with gigahertz-frequency mechanical modes. In particular, the heterodyne and

homodyne downmixing schemes will remain crucial for the characterization of future

devices, and the digital processing techniques used for the low-IF receiver will likely

be a cornerstone of future quantum measurements [84, 116]. In addition, the piezo-

optomechanical theory outlined in Chapter 5, and the piezomechanical background

developed in Chapter 4 should serve as a starting point for the development of new

and improved microwave-to-telecom transduction devices.
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conversion using a mechanical oscillator in its quantum ground state,” Nat.
Phys. 16, 69–74 (2020).

[30] W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola,
C. J. Sarabalis, J. D. Witmer, R. V. Laer, and A. H. Safavi-Naeini, “Lithium
niobate piezo-optomechanical crystals,” Optica 6, 845 (2019).

[31] W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P.
McKenna, R. V. Laer, and A. H. Safavi-Naeini, “Efficient bidirectional piezo-
optomechanical transduction between microwave and optical frequency,”
Nature Communications 11, 1166 (2020).

[32] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and
Non-Markovian Quantum Stochastic Methods with Applications to Quantum
Optics, 3rd edition, Springer Series in Synergetics (Springer, Berlin, 2004).

[33] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechan-
ics,” Rev. Mod. Phys. 86, 1391–1452 (2014).

[34] M. H. Bitarafan, H. Ramp, T. W. Allen, C. Potts, X. Rojas, A. J. R. MacDon-
ald, J. P. Davis, and R. G. DeCorby, “Thermomechanical characterization
of on-chip buckled dome Fabry–Perot microcavities,” Journal of the Optical
Society of America B 32, 1214 (2015).

114

https://doi.org/10.1038/nphys2911
https://doi.org/10.1038/nature13029
https://doi.org/10.1038/nature13029
https://doi.org/10.1038/s41567-018-0210-0
https://doi.org/10.1038/nphys2748
https://doi.org/10.1038/nphys2748
https://doi.org/10.1038/nphoton.2016.46
https://doi.org/10.1063/1.4955408
https://doi.org/10.1063/1.4955408
https://doi.org/10.1038/s41567-019-0673-7
https://doi.org/10.1038/s41567-019-0673-7
https://doi.org/10.1364/optica.6.000845
https://doi.org/10.1038/s41467-020-14863-3
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1364/josab.32.001214
https://doi.org/10.1364/josab.32.001214


[35] M. H. Bitarafan, H. Ramp, C. Potts, T. W. Allen, J. P. Davis, and R. G.
DeCorby, “Bistability in buckled dome microcavities,” Optics Letters 40,
5375 (2015).

[36] C. A. Potts, A. Melnyk, H. Ramp, M. H. Bitarafan, D. Vick, L. J. LeBlanc,
J. P. Davis, and R. G. DeCorby, “Tunable open-access microcavities for
on-chip cavity quantum electrodynamics,” Applied Physics Letters 108,
041103 (2016).

[37] M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman,
J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in
a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).

[38] S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D.
Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations
with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).

[39] C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and
I. Favero, “Photoelastic coupling in gallium arsenide optomechanical disk
resonators,” Opt. Express 22, 14072–14086 (2014).

[40] K. C. Balram, M. Davanco, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving
boundary and photoelastic coupling in GaAs optomechanical resonators,”
Optica 1, 414 (2014).
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Appendix A

Phase Modulation of an Optical
Field

The purpose of this Appendix is two-fold; first, we derive the equations that

dictate how mechanical modulation affects the optical field inside of a cavity to

demonstrate that optomechanical devices act as phase modulators. Second, we use

the equation describing phase modulated light to describe and calibrate electro-optic

phase modulators.

A.1 Mechanical Modulation of an Optical Cavity

The complete dynamic phase response due to mechanical motion can be found

by solving the optical equation of motion Eqn. (2.32),

˙̂a(t) = −i∆â(t)− ig0
x̂

xzpf

â(t)− κ

2
â(t)−

√
κeâin (A.1)

in the nonlinear regime, which rotates with the input laser frequency such that

âin(t) = âin is the constant laser input. Here we follow the work of Refs. [80]

and [81].

The homogenous solution to the Eqn. (A.1) is found by considering the response

when âin = 0, such that

˙̂ah(t) = −
(
i∆ +

κ

2
+ ig0

x(t)

xzpf

)
âh(t) (A.2)

⇒ âh(t) = â0e
−(i∆+κ

2
)t−i g0

xzpf

∫
x(t)dt

. (A.3)
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The complete response can be found by assuming a form

â(t) = âh(t)(1 + f(t)), (A.4)

⇒ ˙̂a(t) = ˙̂ah(t)(1 + f(t)) + âhḟ(t), (A.5)

where âh(t)f(t) is the particular response. By comparing Eqn. (A.5) to Eqn. (A.1),

we identify

âh(t)ḟ(t) =
√
κeâin, (A.6)

⇒ ḟ(t) =

√
κeâin

a0

e
(i∆+κ

2
)t+i

g0
xzpf

∫
x(t)dt

. (A.7)

For our discussion we will restrict ourselves to a derivation where we consider

simplified mechanics x(t) = x0 cos(ωmt), such that

ḟ(t) =

√
κeâin

a0

e
(i∆+κ

2
)t+i

g0x0
xzpfωm

sin(ωmt)
. (A.8)

Here we can identify exp(iβm sin(ωmt)) as a modulation of the optical phase, which

has a mechanical modulation index

βm =
g0x0

xzpfωm

(A.9)

that describes the strength of the phase modulations. The next consideration is

that for the specific case of mechanical motion the modulation index is typically

small, which allows us to Taylor expand the exponential and integrate

ḟ(t) =

√
κeâin

a0

e(i∆+κ
2

)t

[
1 +

βm

2
(eiωmt − e−iωmt)

]
, (A.10)

⇒ f(t) =

√
κeâin

a0

e(i∆+κ
2

)t

[
1

i∆ + κ
2

+
βm

2

(
eiωmt

i(∆ + ωm) + κ
2

− e−iωmt

i(∆− ωm) + κ
2

)
.

]
(A.11)

The particular response can now be found by making the same approximations

for âh(t), to find

âh(t)f(t) =
√
κeâin

[
1− βm

2

(
eiωmt − e−iωmt

)]
[

1

i∆ + κ
2

+
βm

2

(
eiωmt

i(∆ + ωm) + κ
2

− e−iωmt

i(∆− ωm) + κ
2

)]
. (A.12)
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By assumning β2
m is small enough to be neglected and that f(t) � 1, the cavity

field is

â(t) =

√
κeâin

i∆ + κ
2

[
1 +

βm

2

(
−iωme

iωmt

i(∆ + ωm) + κ
2

− iωme
−iωmt

i(∆− ωm) + κ
2

)]
. (A.13)

When the laser is tuned to cavity frequency such that ∆ = 0, and if the

optomechanical crystal is close to the sideband resolved regime where ωm & κ/2,

the cavity field can be simplified to

â(t) = â

[
1− βm

2
(eiωmt − e−iωmt)

]
, (A.14)

which includes the previously derived steady-state response at the laser frequency

and two mechanical sidebands spaced by ±ωm. Note that we have returned to the

form that we obtained using the Taylor expansion, which suggests that a more

complete description of the mechanically phase modulated optical field in the cavity

is

â(t) = âe−iβm sin(ωmt). (A.15)

A.2 Electro-optic Phase Modulators

Phase modulating the laser source to create sidebands is useful for both

heterodyne detection of mechanical modes and for phase calibration of the

optomechanical coupling. For laser input âin in the rotating frame, an electro-

optic phase modulator (EOM) contributes time dependent phase modulation

φ(t) = βEOM sin(ωEOMt) such that,

âin(t) = âine
−iβEOM sin(ωEOMt), (A.16)

which represents an EOM driven at frequency ωEOM. The electro-optic modulation

index βEOM = πVEOM

Vπ
represents the strength of modulation, which is determined

by the ratio of the voltage applied to the EOM VEOM to the half-wave voltage Vπ,

which is the voltage necessary to phase shift the light by π.

The Taylor expansion applied in Eqn. (A.10) requires that the modulation index

is small, which is generally true for mechanical modulation, but not necessarily
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the case for EOMs, which can be driven with strong microwave sources. For large

βEOM we consider the Jacobi-Anger expansion in terms of Bessel functions [117]

e−iβEOM sin(ωEOMt) = −
∞∑

n=−∞

Jn(βEOM)einωEOMt. (A.17)

Expanding the sums for n = 0,±1, the modulated laser field to first order is

âEOM(t) ≈ âin

(
J0(βEOM)− (J1(βEOM)eiωEOMt + J−1(βEOM)e−iωEOMt)

)
, (A.18)

where J0(βEOM) is the amplitude of the carrier and J1(βEOM) = −J−1(βEOM) are

the amplitudes of the first sidebands generated by the EOM.

VEOM

 R
el

at
iv

e 
In

te
ns

ity

0

0

0.21
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0.3Vπ

Figure A.1: Calibration of an electro-optic phase modulator. The amplitudes
of the carrier (purple markers) and first sideband (orange markers) are measured
relative to the carrier amplitude in absence of modulation (VEOM = 0) for voltage
inputs in the range VEOM = (0, 1.1) V. The data is fit to the relative intensity of
the carrier (purple) and first sideband (orange). The calculated relative intensity
of the second order sideband is also plotted (blue). The inset shows a close-up
for small applied voltages, where the relative amplitude of the first sideband is
compared to the small-voltage approximation |βEOM/2|2 (black dashed).

Measuring Vπ of an EOM can be achieved using a tunable Fabry Pérot cavity1

with narrow linewidth (≈ 5 MHz). The power transmitted through the cavity is

monitored as the cavity resonance frequency is swept across the laser frequency.

1Micron Optics FFP-SI scanning interferometer

124



The maximum transmission measured for VEOM < 0.4Vπ represents the amplitude

of the carrier, while the next largest peaks on either side of the carrier represent

the amplitudes of the first order modulation sidebands. Using the unmodulated

signal amplitude as a reference, the relative intensities of the spectral components

can be measured as βEOM is varied by changing the voltage applied to the EOM.

In Fig. A.1, the carrier and sideband amplitudes relative to the unmodulated

signal amplitude are measured for applied voltages between 0 V and 1.1 V at

ωEOM = 2.35 GHz. The relative intensities of the carrier and first sideband are fit

to ∣∣∣∣J0(βEOM)

J0(0)

∣∣∣∣2 , (A.19)∣∣∣∣J1(βEOM)

J0(0)

∣∣∣∣2 , (A.20)

respectively to extract Vπ. The voltages are then scaled to units of Vπ and the

calculated relative intensities of the carrier and first two sidebands are plotted

for applied voltages up to Vπ. The inset comparison between Eqn. (A.19) and

|βEOM/2|2 suggests that the Taylor expansion approximation is good for voltages up

to 0.1Vπ. From the fits, we find Vπ = 4.1 V for the EOM used for phase calibration

in our experiments.

A.3 Phase Modulation & Mechanics

We now consider the case of a phase-modulated signal being used to measure

the mechanical motion, which is the case during phase calibration experiments.

Because the voltage used for phase calibration is small VCAL � Vπ, we use the

Taylor expansion of Eqn. (A.16) to describe the optical input field in the equation

of motion, Eqn. (A.5). In this scenario, the solution to the homogeneous equation

remains the same, but the remainder of the equation becomes more complicated,

âh(t)ḟ(t) =
√
κeâin

[
1− βEOM

2

(
eiωEOMt − e−iωEOMt

)]
, (A.21)

such that

ḟ(t) =

√
κeâin

a0

e(i∆+κ
2

)t

[
1− βEOM

2

(
eiωEOMt − e−iωEOMt

)] [
1 +

βm

2

(
eiωmt − e−iωmt

)]
.

(A.22)
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The particular response can then be found by integrating Eqn. (A.22) and calculating

âhf(t) ≈
√
κeâin

[
1

i∆ + κ
2

− βEOM

2

(
eiωEOMt

i(∆ + ωEOM) + κ
2

− e−iωEOMt

i(∆− ωEOM) + κ
2

)
+
βm

2

(
eiωmt

i(∆ + ωm) + κ
2

− e−iωmt

i(∆− ωm) + κ
2

)
− βm

2

(
eiωmt

i∆ + κ
2

− e−iωmt

i∆ + κ
2

)]
, (A.23)

where we have ignored terms of size less than β2. This equation, which we recognise

as the cavity optical field with phase and mechanical modulation, can then be

further simplified

â(t) =
√
κeâin

[
1

i∆ + κ
2

− βEOM

2

(
eiωEOMt

i(∆ + ωEOM) + κ
2

− e−iωEOMt

i(∆− ωEOM) + κ
2

)
− iωmβm

2(i∆ + κ
2
)

(
eiωmt

i(∆ + ωm) + κ
2

+
e−iωmt

i(∆− ωm) + κ
2

)]
.

(A.24)

We now recall that optical field after the cavity is described by

âout(t) = âin(t) +

√
κe

2
â(t), (A.25)

which becomes

âout(t) =âin

(
1 +

βEOM

2
(eiωEOMt − e−iωEOMt)

)
+
κe

2
âin

[
1

i∆ + κ
2

− βEOM

2

(
eiωEOMt

i(∆ + ωEOM) + κ
2

− e−iωEOMt

i(∆− ωEOM) + κ
2

)
− iωmβm

2(i∆ + κ
2
)

(
eiωmt

i(∆ + ωm) + κ
2

+
e−iωmt

i(∆− ωm) + κ
2

)]
. (A.26)

We now consider direct detection, where the high-frequency component of the

optical intensity measured on the photodetector is

|âout(t)|2AC =
|âin|2κe

2

(
βmK(∆, ωm)

x(t)

x0

− βEOMK(∆, ωEOM)φ(t)

)
, (A.27)

where K(∆, ω) describes the detuning and frequency dependence of the transmitted

field. If ωEOM ≈ ωm, then at any particular detuning the ratio of the signal

intensities should depend on the ratio of modulation indices.
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Appendix B

Low-IF Receiver

This Appendix details the implementation of a low-IF receiver which digitally

compensates for imbalances in the analog IQ mixer. The methodology described

here closely follows the work of Ref. [88], and was implemented as a python script

for the purposes of measuring the phase of the microwave-to-telecom transduced

signal. Using this implementation, we were able to demonstrate phase coherence,

but the accuracy of the phase measurement was limited by phase digitization errors

that came from a low-frequency clock input. Using this implementation of a low-IF

receiver with an analog-to-digital converter which has an extra high-speed channel

that can be used as a clock will allow for the rapid acquisition of high-quality phase

data for future experiments.

ωDLO

ωDLO

II II+QQ

II−QQ

IQ+QI

IQ−QI

QI
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Figure B.1: Low-IF receiver with compensation for phase and amplitude
imbalances.

The implementation of a low-IF receiver with digital compensation is illustrated

in Fig. B.1. Imbalances in the IQ mixer can be modelled by introducing phase and
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amplitude offsets ∆ and θ respectively to the electronic local oscillator,

ELOI = (1 + ∆) cos(ωELOt+ θ), (B.1)

ELOQ = (1−∆) sin(ωELOt− θ). (B.2)

These offsets are compensated for digitally by assuming the I quadrature has the

correct amplitude and phase. The Q quadrature is then corrected using amplitude

compensation α and phase compensation β. Determining these compensation

factors requires a pilot tone which is used to measure the imbalances. We will

consider the pilot tone A cos(ωst + φ), which is mixed with the local oscillator

and subsequently low-pass filtered. The pilot I and Q signals measured on the

analog-to-digital converter are

I = +
A(1 + ∆)

2
cos((ωs − ωELO)t+ φ− θ), (B.3)

Q = −A(1−∆)

2
sin((ωs − ωELO)t+ φ+ θ). (B.4)

The signal is now at the intermittent frequency ωIF = ωs − ωELO. To digitally

mix it down to DC, a digital local oscillator at frequency ωDLO = ωIF is created

and mixed with both of the measured signals to produce a set of four signals:

II = +
A(1 + ∆)

4
[cos(φ− θ) + cos(2ωIFt+ φ− θ], (B.5)

IQ = −A(1 + ∆)

4
[sin(φ− θ)− sin(2ωIFt+ φ− θ], (B.6)

QI = −A(1−∆)

4
[sin(φ+ θ) + sin(2ωIFt+ φ+ θ], (B.7)

QQ = −A(1−∆)

4
[cos(φ+ θ) + cos(2ωIFt+ φ+ θ]. (B.8)

Using these, we calculate the DC signal in-phase and quadrature components as

well as their images,

I2 = II−QQ =
A

2
[cos(θ) cos(φ) + ∆ sin(θ) sin(φ)], (B.9)

Q2 = IQ + QI =
A

2
[∆ sin(θ) cos(φ)− cos(θ) sin(φ)], (B.10)

I2i = II + QQ =
A

2
[∆ cos(θ) cos(φ) + sin(θ) sin(φ)], (B.11)

Q2i = IQ−QI =
A

2
[sin(θ) cos(φ)−∆ cos(θ) sin(φ)], (B.12)
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which in turn can be used to find the amplitude and phase offsets,

∆ =
I2I2i + Q2Q2i

I2
2 + Q2

2

, (B.13)

θ =
I2Q2i + I2iQ2

I2
2 + Q2

2

. (B.14)

We now use our knowledge of the IQ mixer imbalances to determine correction

factors for amplitude and phase,

α =
1

(1−∆) cos(θ)
, (B.15)

β = − tan(θ). (B.16)

If we consider an experimental signal which we wish to be accurately measured, we

can, without loss of generality, shift the IQ imbalance errors into the quadrature

signal, such that the signal measured on the analog-to-digital converter is

I =
A

2
cos(ωIFt+ φ), (B.17)

Q =
A(1− 2∆

2
sin(ωIFt+ φ+ 2θ). (B.18)

We can apply our calibration by transforming the signals such that

I→ I = +
A

2
cos((ωs − ωELO)t+ φ), (B.19)

Q→ βI + αQ = −A
2

sin((ωs − ωELO)t+ φ), (B.20)

which is the output of an ideal IQ mixer. Thus, using this algorithm, we can

digitally compensate for amplitude and phase imbalances in the analog IQ mixer.

The balanced quadratures can then be digitally downmixed to DC, with quadratures

derived from Eqns. (B.9-B.10) where ∆ = θ = 0, such that

I2 = + cos(φ), (B.21)

Q2 = − sin(φ). (B.22)

Rewriting the equation to solve for the signal phase, we recover Eqn. (3.26):

φ = − arctan

(
Q2

I2

)
(B.23)
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Appendix C

Microwave to Mechanical
Transduction

The Appendix contains a detailed derivation of Eqn. 4.24, the relation between

microwave input power and the number of microwave-actuated phonons in the

mechanical mode.

To begin the derivation, recall the piezomechanical Hamiltonian derived in

Section 4.3, Eqn. 4.15, where the operators are implicitly time dependent:

Hpm = ~ωmb̂
†b̂+ ~ωµĉ

†ĉ+ ~gµ(ĉ† + ĉ)(b̂† + b̂), (C.1)

which represents harmonic oscillators coupled by the piezomechanical interaction gµ.

The equations of motions are derived from the Hamiltonian using the Heisenberg

equation [32]

˙̂
O =

i

~

[
H, Ô

]
. (C.2)

For the mechanical mode, the explicit derivation makes use of the identity[
b̂†, b̂

]
= −1, such that

˙̂
b =

i

~

[
H, b̂

]
(C.3)

˙̂
b = iωm

[
b̂†, b̂

]
b̂+ igµ

(
ĉ† + ĉ

) [
b̂†, b̂

]
(C.4)

˙̂
b = −iωmb̂− igµ

(
ĉ† + ĉ

)
. (C.5)

To add coupling to the external environment, terms from input-output theory [33,

89] are added to account for mechanical damping and thermal noise input,

˙̂
b = iωmb̂+ igµ

(
ĉ† + ĉ

)
+ i

Γm

2
b̂+

√
Γmb̂in. (C.6)
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Similarly, the equation of motion for the microwave mode is:

˙̂c = iωµĉ+ igµ

(
b̂† + b̂

)
+ i

κµ
2
ĉ+
√
κµ,eĉin, (C.7)

where ĉin is the microwave input, and κµ and κµ,e are the total and external

microwave cavity damping rates respectively. The equations of motion are

transformed into the frequency domain using the Fourier transform Ô(ω) =∫∞
−∞ e

−iωtÔ(t)dt,

iωb̂(ω) = (iωm +
Γm

2
)b̂(ω) + igµ(ĉ†(ω) + ĉ(ω)) +

√
Γmb̂in(ω) (C.8)

iωĉ(ω) = (iωµ +
κµ
2

)ĉ(ω) + gµ(b̂†(ω) + b̂(ω)) +
√
κµ,eĉin(ω). (C.9)

Next, we make the simplifying assumption of unidirectional microwave to mechanical

transduction, which implies the microwave cavity is predominantly populated with

photons from a strong microwave input signal ĉin and that the piezomechanical

coupling term can therefore be eliminated:

iωĉ(ω) = (iωµ +
κµ
2

)ĉ(ω) +
√
κµ,eĉin(ω). (C.10)

From here, the equations of motion are solved for their respective boson operators

b̂(ω) = −
igµ
(
ĉ†(ω) + ĉ(ω)

)
+
√

Γmb̂in(ω)

χ91
b (ω)

(C.11)

ĉ(ω) = −
√
κµ,eĉin(ω)

χ91
c (ω)

, (C.12)

where the inverse susceptibilities are defined as

χ91
b (ω) = i (ωm − ω) + Γm/2, (C.13)

χ91
c (ω) = i (ωµ − ω) + κµ/2. (C.14)

Similarly the conjugate operators are found using the relation (Ô†)(ω) =
[
Ô(−ω)

]†
:

b̂†(ω) = −
−igµ

(
ĉ(ω) + ĉ†(ω)

)
+
√

Γmb̂
†
in(ω)

[χ91
b (−ω)]

∗ (C.15)

ĉ†(ω) = −
√
κµ,eĉ

†
in(ω)

[χ91
c (−ω)]∗

, (C.16)
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Replacing ĉ†(ω), ĉ(ω) in Eqns. (C.11,C.15) with Eqns. (C.12,C.16), the mechanical

mode is described in terms of microwave-actuated phonons from the microwave

drive ĉin(ω) and thermal phonons b̂in(ω),

b̂(ω) =
−igµ
χ91

b (ω)

[
−√κµ,eĉ†in(ω)

[χ91
c (−ω)]∗

+
−√κµ,eĉin(ω)

χ91
c (ω)

]
−
√

Γmb̂in(ω)

χ91
b (ω)

(C.17)

b̂†(ω) =
igµ

[χ91
b (−ω)]

∗

[
−√κµ,eĉ†in(ω)

[χ91
c (−ω)]∗

+
−√κµ,eĉin(ω)

χ91
c (ω)

]
−
√

Γmb̂
†
in(ω)

[χ91
b (−ω)]

∗ . (C.18)

The power spectral density function associated with the negative-frequency sideband

of the microwave-driven mechanical mode is given by [89]

Sb̂†b̂(ω) =
1

2π

∫
〈b̂†(ω)b̂(ω′)〉 dω′. (C.19)

The spectral density can be split into two components: microwave driven and

thermal. The thermal power spectral density is well known, and can be obtained

using the correlator [33, 89]

〈b̂†in(ω)b̂in(ω′)〉 = 2πn̄b(ωm)δ(ω + ω′), (C.20)

where δ(ω + ω′) is the Dirac delta function. The thermal power spectral density is

then

Sth
b†b(ω) =

Γmnb(ωm)

(ωm + ω)2 + Γ2
m/4

. (C.21)

To determine the power spectral density of the microwave-actuated phonons,

we must first develop similar correlators for ĉin(ω). To do this, we begin by defining

the input signal itself,

ĉin(t) = c̄ine
iωst.

By Fourier transforming the input signal, we find the the frequency-space

annihilation and creation operators for the microwave input to be

ĉin(ω) = 2πc̄inδ(ω − ωs), (C.22)

ĉ†in(ω) = 2πc̄∗inδ(ω + ωs). (C.23)
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Hence, we can write a complete set of noise correlators for the microwave input:

〈ĉ†in(ω)ĉin(ω′)〉 = (2π)2 |c̄in|2 δ(ω + ωs)δ(ω
′ − ωs) (C.24)

〈ĉin(ω)ĉ†in(ω′)〉 = (2π)2 |c̄in|2 δ(ω − ωs)δ(ω
′ + ωs) (C.25)

〈ĉin(ω)ĉin(ω′)〉 = (2π)2 (c̄in)2 δ(ω − ωs)δ(ω
′ − ωs) (C.26)

〈ĉ†in(ω)ĉ†in(ω′)〉 = (2π)2 (c̄∗in)2 δ(ω + ωs)δ(ω
′ + ωs). (C.27)

Note that there is no correlation between the microwave input signal and mechanical

thermal noise, and thus the correlator of cross terms is zero. This allows us to

write the spectral density function of the microwave-actuated component of the

mechanical mode,

Ss
b̂†b̂

(ω) =
g2
µκµ,e

2π

∫
dω′
[

〈ĉ†in(ω)ĉin(ω′)〉
[χ91

c (−ω)]∗[χ91
b (−ω)]∗χ91

c (ω′)χ91
b (ω′)

+
〈ĉin(ω)ĉ†in(ω′)〉

χ91
c (ω)[χ91

b (−ω)]∗[χ91
c (−ω′)]∗χ91

b (ω′)

+
〈ĉin(ω)ĉin(ω′)〉

χ91
c (ω)[χ91

b (−ω)]∗χ91
c (ω′)χ91

b (ω′)

+
〈ĉ†in(ω)ĉ†in(ω′)〉

[χ91
c (−ω)]∗[χ91

b (−ω)]∗[χ91
c (−ω′)]∗χ91

b (ω′)

]
. (C.28)

Then, replacing the correlators,

Ss
b̂†b̂

(ω) = 2πg2
µκµ,e

∫
dω′
[

(2π)2 |c̄in|2 δ(ω + ωs)δ(ω
′ − ωs)

[χ91
c (−ω)]∗[χ91

b (−ω)]∗χ91
c (ω′)χ91

b (ω′)

+
(2π)2 |c̄in|2 δ(ω − ωs)δ(ω

′ + ωs)

χ91
c (ω)[χ91

b (−ω)]∗[χ91
c (−ω′)]∗χ91

b (ω′)

+
(2π)2 (c̄in)2 δ(ω − ωs)δ(ω

′ − ωs)

χ91
c (ω)[χ91

b (−ω)]∗χ91
c (ω′)χ91

b (ω′)

+
(2π)2 (c̄∗in)2 δ(ω + ωs)δ(ω

′ + ωs)

[χ91
c (−ω)]∗[χ91

b (−ω)]∗[χ91
c (−ω′)]∗χ91

b (ω′)

]
.

(C.29)

The integral over the delta function has the affect of setting ω′ → ±ωs, the resulting
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function is the power spectral density of the microwave-actuated phonons:

Ss
b̂†b̂

(ω) = g2
µκµ,e

[
(2π) |c̄in|2 δ(ω + ωs)

[χ91
c (−ω)]∗[χ91

b (−ω)]∗χ91
c (ωs)χ91

b (ωs)

+
(2π) |c̄in|2 δ(ω − ωs)

χ91
c (ω)[χ91

b (−ω)]∗[χ91
c (ωs)]∗χ91

b (−ωs)

+
(2π) (c̄in)2 δ(ω − ωs)

χ91
c (ω)[χ91

b (−ω)]∗χ91
c (ωs)χ91

b (ωs)

+
(2π) (c̄∗in)2 δ(ω + ωs)

[χ91
c (−ω)]∗[χ91

b (−ω)]∗[χ91
c (ωs)]∗χ91

b (−ωs)

]
. (C.30)

Taking the next step of calculating the number of microwave actuated phonons

in the mechanical mode helps simplify this equation significantly. The number of

phonons in the mechanical mode is calculated as

n̄s(ωs) =
1

2π

∫
Ss
b̂†b̂

(ω)dω, (C.31)

such that

n̄s(ωs) = g2
µκµ,e

[
|c̄in|2

[χ91
c (ωs)]∗[χ91

b (ωs)]∗χ91
c (ωs)χ91

b (ωs)

+
|c̄in|2

χ91
c (ωs)[χ91

b (−ωs)]∗[χ91
c (ωs)]∗χ91

b (−ωs)

+
(c̄in)2

χ91
c (ωs)[χ91

b (−ωs)]∗χ91
c (ωs)χ91

b (ωs)

+
(c̄∗in)2

[χ91
c (ωs)]∗[χ91

b (ωs)]∗[χ91
c (ωs)]∗χ91

b (−ωs)

]
. (C.32)

Which, using the identity a
z∗

+ a∗

z
= 2Re{az}

|z|2 , further simplifies to

n̄s(ωs) =g2
µκµ,e

[
|c̄in|2

|χ91
c (ωs)|2|χ91

b (ωs)|2)
+

|c̄in|2

|χ91
c (ωs)|2|χ91

b (−ωs)|2

+
2Re{(c̄∗in)2χ91

c (ωs)[χ
91
b (−ωs)]

∗χ91
c (ωs)χ

91
b (ωs)}

|χ91
c (ωs)|4|χ91

b (−ωs)|2|χ91
b (ωs)|2

]
. (C.33)

The terms containing susceptibilities with negative frequency arguments are termed

counter-rotating, and cause the second and third terms in Eqn. C.33 to contribute

negligibly to the final phonon number for signal near resonance frequency ωs.

The inverse susceptibilities of the first term, in contrast, become small when

ωs ≈ ωm ≈ ωµ, resulting in a non-negligible number of microwave-actuated phonons:

n̄s (ωs) =
Ps

~ωs

g2
µκµ,e[

(ωm − ωs)
2 + Γ2

m/4
] [

(ωµ − ωs)
2 + κ2

µ/4
] . (C.34)

where |c̄in|2 = Ps/~ωs is the input microwave photon flux.
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