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ABSTRACT 

 

Transverse maxillary deficiency is a condition characterized by a reduced transverse 

dimension of the upper jaw, commonly associated with posterior cross-bite, dental 

crowding, pharyngeal airway narrowing, and mouth breathing. Accurate staging of the 

mid-palatal suture (MPS) fusion is crucial for determining the appropriate treatment 

approach, whether surgical or non-surgical maxillary expansion. Traditionally, MPS 

staging is performed using cone beam computed tomography (CBCT), a technique that 

heavily relies on the practitioner's experience and is inherently subjective, leading to 

potential variability in assessment and treatment decisions. 

 

This study addresses these challenges by automating the classification and staging of MPS 

fusion through advanced deep learning (DL) techniques. We developed and trained both 

2D and 3D convolutional neural network (CNN) models to enhance the accuracy, 

efficiency, and consistency of MPS evaluation. The 2D CNN model demonstrated 

remarkable performance with a high-test accuracy of 96.49% and excellent precision, 

recall, and F1-score values across all classification stages (AB, C, DE). This model highlights 

the effectiveness of traditional 2D approaches in handling MPS classification tasks. 

 

In contrast, the 3D CNN model, designed to capture the volumetric information of the MPS, 

achieved a test accuracy of 78.26%. Although this accuracy is lower compared to the 2D 
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model, the 3D approach offers a more comprehensive evaluation by considering the full 

spatial context of the MPS, which could lead to more accurate staging in complex cases. 

The performance metrics for precision, recall, and F1-score in the 3D model were found 

to be acceptable, underscoring its potential for future refinement and optimization. 

 

The findings from this study underscore the potential of DL methods to revolutionize MPS 

fusion assessment by providing a more reliable, objective, and repeatable classification 

system. Such advancements could significantly enhance orthodontic treatment planning 

by offering clinicians a powerful diagnostic tool, improving patient outcomes, and 

reducing variability in treatment approaches. Furthermore, the techniques developed in 

this research have broader implications for medical image classification tasks beyond 

orthodontics, paving the way for the integration of AI-driven solutions in various medical 

imaging applications. 
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CHAPTER 1- INTRODUCTION AND BACKGROUND 

1.1 introduction 

Craniofacial growth and development are complex processes influenced by genetic, 

environmental, and biomechanical factors. (Roosenboom, Hens et al. 2016) Cranial 

sutures are fibrous joints connecting the bones of the skull and they are among the critical 

structures involved in the craniofacial growth and development. These sutures play a vital 

role in the growth and expansion of the craniofacial complex, allowing for the necessary 

flexibility and movement during early development and enabling the skull to 

accommodate the growing brain. (Moazen, Peskett et al. 2015) One of these cranial 

sutures is the midpalatal suture (MPS) which is crucial for maxillary growth, influencing 

the overall symmetry and function of the craniofacial skeleton. (Manjusha, 

Jyothindrakumar et al. 2017) 

 

The midpalatal suture, located in the center of the palate, is a key site for orthodontic 

intervention of maxillary expansion. During adolescence, the midpalatal suture remains 

patent, meaning it has not yet fused, allowing for the possibility of non-surgical expansion 

through orthodontic appliances such as rapid palatal expanders.(Haghanifar, Mahmoudi 

et al. 2017) This approach is essential for correcting transverse maxillary deficiencies, 

which, if left untreated, can lead to various malocclusions, dental crowding, and even 

functional issues like obstructive sleep apnea.(Jimenez-Valdivia, Malpartida-Carrillo et al. 

2019, Akbulut, Bayrak et al. 2020). Understanding the maturation stage of the midpalatal 
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suture is, therefore, crucial for determining the appropriate timing and method of 

intervention, as the suture’s fusion marks the transition from a malleable to a more rigid 

state, limiting the effectiveness of non-surgical treatments. (Sayar and Kılınç 2019)  

 

Accurately assessing the maturation stage of the midpalatal suture is paramount for 

optimizing orthodontic outcomes in expansion treatments. (Silva-Montero, Faus-Matoses 

et al. 2022, Erten, O., & Yılmaz, B. 2018) The ability to predict the suture’s stage of fusion 

more accurately could lead to more targeted and effective interventions, reducing the 

risk of relapse and improving long-term stability of the treatment outcomes. As 

orthodontics continues to move toward personalized care, there is a growing need for 

aiding tools and techniques that can enhance the precision of diagnostic and treatment 

planning processes. 

 

Deep Learning (DL) has emerged as a powerful tool in medical diagnostics, offering the 

potential to revolutionize the way clinicians assess and predict clinical outcomes.(Glanz, 

Dudenkov et al. 2022, Mishra, Tiwari et al. 2023, Abou Ghayda, Cannarella et al. 2024) In 

orthodontics, DL can be employed to analyze complex imaging data, such as Cone Beam 

Computed Tomography (CBCT) scans, to identify patterns and features indicative of 

midpalatal suture maturation. (Zhu, Yang et al. 2024) By training algorithms on CBCT 

images, DL models can learn to recognize subtle differences in suture morphology that 

may not be apparent to the human eye (Ashkani-Esfahani, S., Mojahed-Yazdi, R., et al. 

2022), thus providing a more accurate and reliable assessment. This advancement could 
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significantly improve decision-making in orthodontics, leading to better patient outcomes 

and more efficient use of resources. 

 

The aim of this thesis is to enhance orthodontic diagnosis through the integration of DL 

techniques. Specifically, it seeks to develop a classification tool that accurately 

determines the maturation stage of the MPS using CBCT images. By employing DL to 

analyze these images, the tool will assist orthodontists in providing individualized 

diagnoses and tailored treatment plans based on each patient’s unique needs. This is 

done by: 

Introducing a convolutional neural network (CNN) architecture for classifying two-

dimensional MPS images. 

Introducing a convolutional neural network (CNN) architecture for classifying three-

dimensional MPS images. 

To achieve these objectives, the following automated methods were developed and 

implemented: 

1. Employing a CNN model to detect CBCT slices containing the MPS for subsequent 

classification. 

2. Designing a 2D CNN model for individual MPS image classification. 

3. Creating three-dimensional (3D) arrays of CBCT images to encompass the entire 

suture. 

4. Designing a 3D CNN model for MPS classification. 
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1.2 Background 

1.2.1 Malocclusion  

1.2.1.1 Definition 

 

Malocclusion, defined as any systematic abnormal relationship of upper and lower dental 

arches, has been extensively studied in orthodontics. Historically, malocclusion has been 

classified primarily by dental features. Angle’s classification, which is the most widely 

used system, focuses on anterior-posterior discrepancy, categorizing occlusions into Class 

I, Class II, and Class III (Mageet 2016). This system is primarily dental in nature, 

concentrating on the alignment and relationship of the dental arches. In contrast, skeletal 

classifications, which consider a broader range of parameters, have been introduced to 

provide a more comprehensive understanding of malocclusions. For example, Ackerman 

and Proffit (1969) introduced a very comprehensive system of classification. This 

classification considered five characteristics and their inter-relationships: alignment, 

profile, transverse, class, and overbite. By incorporating multiple dimensions, including 

the previously overlooked transverse discrepancy of the jaws, this system provided a 

more holistic approach to understanding malocclusions (Ackerman and Proffit 1969) 

(Koo, Choi et al. 2017). 

 

 

1.2.1.2 Maxillary Transverse Discrepancy 
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Regardless of the classification system used, transverse discrepancies between the upper and 

lower jaw constitute approximately 30% of all orthodontic cases (Sawchuk, Currie et al. 

2016) (Ackerman and Proffit 1969) Maxillary transverse deficiency (MTD), characterized 

by a reduced width of the upper jaw, is a significant concern (McNamaraa 2000, Calvo-

Henriquez, Megias-Barrera et al. 2021)  

The normal transverse relationship between the maxilla and mandible involves a harmonious 

alignment where the maxillary arch width is proportionate to the mandibular arch, 

ensuring proper occlusion and esthetics. Ideal ratios for esthetic transverse relationships 

include an intercanine width/oral fissure breadth ratio of 0.638 and an oral fissure 

breadth/interparopia width ratio of 0.617. Reduced maxillary width is considered one of 

the primary causes of upper dental crowding and tooth protrusion, which are common 

complaints among patients seeking orthodontic treatment. (McNamaraa 2000) (Howes 

1957, Nimkarn, Miles et al. 1995) 

 

1.2.1.3 Prevalence of adversities associated with MTD  

 

Posterior crossbite is defined as the irregular bucco-lingual or buccal-palatal relationship of 

one or more posterior teeth with opposing teeth in centric occlusion. It affects a 

significant portion of orthodontic patients and the general population (Iodice, Danzi et al. 

2016). Its prevalence, particularly in primary and early mixed dentition, is reported to be 

between 8% to 22% among orthodontic patients and 5% to 15% in the general population 

The most frequent cause of posterior crossbite is the reduced width of the maxillary 
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arch.(Iodice, Danzi et al. 2016)  Furthermore, MTD can be associated with other orofacial 

adversities such as alterations in tongue posture, mouth breathing with a prevalence of 

11 to 56%, and pharyngeal airway narrowing, which can contribute to conditions like 

sleep apnea(Akbulut, Bayrak et al. 2020) (Jimenez-Valdivia, Malpartida-Carrillo et al. 

2019). These associations have a negative impact on oral health-related quality of life 

(OHRQL) and are significant reasons why patients seek orthodontic treatments (Kiyak 

2008). 

 

1.2.1.4 Etiology of Maxillary Transverse Deficiency 

 

The etiology of MTD involves both environmental factors and genetic predispositions. 

Environmental influences such as thumb sucking, pacifier use, mouth breathing, and 

abnormal tongue functions can impact maxillary development, contributing to the 

narrowing of the upper jaw characteristic of MTD. (Darawsheh, Kolarovszki et al. 2023) 

Additionally, genetic predispositions are significant contributors to MTD, often appearing 

within broader craniofacial syndromes or conditions such as cleft lip and palate. These 

genetic factors further exacerbate the structural abnormalities associated with MTD, 

highlighting the multifactorial nature of its etiology. (Nervina, Kapila et al. 2014, Duque-

Urióstegui, Reyes et al. 2023) 

 

1.2.1.5 Diagnosis of MTD 
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Diagnosis of MTD is achieved through a series of clinical, model and radiographic evaluations. 

One of the examples of clinical evaluations is how maxillary arch form and symmetry are 

examined by clinicians to identify any deviations or irregularities. A well-developed arch 

with appropriate symmetry suggests normal transverse dimensions, whereas asymmetry 

or constricted arch form may indicate MTD. (Dakhil and Salamah 2021)  

Assessment of the palatal vault shape provides valuable insights into transverse discrepancies 

and is another example of clinical evaluations for diagnosis of MTD. A narrow or V-shaped 

vault is indicative of transverse deficiency, whereas a broader U-shaped vault is 

associated with normal transverse dimensions. (Dakhil and Salamah 2021)  

The occlusal relationship between the upper and lower arch is also evaluated to detect any 

signs of crossbite, unilateral or bilateral posterior crossbite being a common 

manifestation of MTD (Duque-Urióstegui, Reyes et al. 2023). Additionally, signs of dental 

compensations, such as buccal or lingual displacement of teeth, which may indicate 

underlying transverse deficiency is also helpful in diagnosing MTD. (Kim, Park et al. 2021, 

Duque-Urióstegui, Reyes et al. 2023)  

Predominant breathing mode, whether oral or nasal, is also assessed, as mouth breathing is 

often associated with MTD. Mouth breathing can contribute to maxillary constriction and 

exacerbate transverse deficiencies. (Darawsheh, Kolarovszki et al. 2023) Other steps and 

evaluations used in diagnosing MTD is as follows: 

Anteroposterior Cephalograms: These radiographs provide valuable information regarding 

skeletal relationships and transverse dimensions. Measurements such as the 
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maxillomandibular width differential and maxillomandibular transverse differential index 

help quantify transverse deficiencies and guide treatment planning. 

Occlusal Radiographs: These radiographs were previously used to visualize the MPS 

(Wehrbein and Yildizhan 2001) but lacked clarity and accuracy as they provided a 2D view 

of a potentially thin structure embedded deep in palatal bone. (Forst, Nijjar et al. 2014) 

Cone-Beam Computed Tomography (CBCT) Scans: CBCT scans were eventually introduced 

into dentistry and offer detailed 3D imaging of the craniofacial region, allowing for precise 

assessment of skeletal structures and transverse dimensions and becoming crucial for 

diagnosis and treatment planning. (13) Cross-sectional evaluation of CBCT images 

facilitates the identification of asymmetries and the localization of discrepancies as well 

as providing a clearer visualization of the MPS. (Zahra and Samih 2017) (Mahdian, 

Shaykhian et al. 2019) (Katti, Shahbaz et al. 2020)  

Model Analysis: Study models allow for direct measurement of dental arch dimensions and 

evaluation of tooth inclinations. They are however not effective and limited in diagnosing 

the skeletal component of the MTD (Sawchuk, Currie et al. 2016)    

Understanding the implications of MTD and its associated conditions is crucial for effective 

orthodontic management and improving patient outcomes (Nowak and Zawiślak 2016).  

1.2.1.6 Treatments of MTD 

 

Treatments of MTD include surgical and non-surgical approaches that are implemented by 

orthodontists based on several clinical indications, including the degree of correction 

needed, whether skeletal or dentoalveolar correction is necessary, and the perceived 
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effectiveness of expansion based on the maturation phase (closure) of the 

MPS(Hernández-Alfaro and Valls-Ontañón 2021) (Hernandez-Alfaro, Bueno et al. 2010) 

(Franchi, Baccetti et al. 2010) Failure to accurately stage the MPS maturation can lead to 

patients’ with fully mature MPS receiving non-surgical palatal expansion treatments. 

These treatments are incapable of treating MTD while causing pain, mucosal ulceration 

or necrosis, accentuated buccal tipping and gingival recession of posterior teeth.  

Likewise, wrongfully prescribing surgical treatment to patients who are still in non-

surgical MPS stages can lead to expensive and lengthy treatments. (Suri and Taneja 2008, 

Agarwal and Mathur 2010) Thus, the first critical step in treatment planning for MTD is 

correctly classifying the maturation stage of the MPS. (Isfeld, Flores-Mir et al. 2019) 

(Isfeld, Lagravere et al. 2017) 

1.2.1.6.1 Non-surgical Treatments 

Non-surgical treatments for maxillary transverse deficiency aim to address the reduced 

transverse dimension of the upper jaw without the need for invasive procedures. Among 

the most effective methods are Rapid Maxillary Expansion (RME), Slow Maxillary 

Expansion (SME), and Mini-Implant Assisted Rapid Palatal Expansion (MARPE). 

 

1.2.1.6.1.1 Rapid Maxillary Expansion (RME) 

One of the non-surgical treatments for maxillary transverse deficiency, primarily RME, relies 

on understanding the maturation stages of the MPS. (Haghanifar, Mahmoudi et al. 2017) 

RME corrects transverse discrepancies by applying force to stimulate the separation of 
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the MPS, promoting collagenous fiber stretching and new bone formation, ultimately 

increasing the transverse width of the maxilla. Its effectiveness is influenced by the 

maturation stage of the MPS. RME is particularly effective in patients where the MPS has 

begun to ossify but is not yet fully fused. (Haghanifar, Mahmoudi et al. 2017, Shayani, 

Merino-Gerlach et al. 2023)  

Moreover, the therapeutic effects of RME extend beyond dental alignment, potentially 

improving nasal breathing and facial aesthetics. (Kwak, Kim et al. 2016) Thus, a 

comprehensive understanding of MPS maturation stages and treatment considerations is 

essential in managing maxillary transverse deficiency with non-surgical approaches. 

1.2.1.6.1.2 Slow Maxillary Expansion (SME) 

 SME is a non-surgical method used to correct transverse maxillary deficiencies by gradually 

widening the maxilla. Unlike RME, which can cause significant dental tipping and other 

side effects, SME aims to achieve more controlled and stable skeletal changes. SME is 

generally recommended for patients with a less mature MPS, where the suture is still 

relatively open and requires less force for separation. (Zong, Tang et al. 2019) 

SME involves the use of a maxillary expansion appliance that applies gentle, continuous 

pressure to the maxillary sutures, promoting gradual bone remodeling. The expansion 

rate is typically slower, with follow-up intervals shortened to one week to monitor 

progress and manage any adverse events.  

As with RME, in SME a comprehensive understanding of MPS maturation stages and 

treatment considerations is essential in managing MTD with this approach.  
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1.2.1.6.1.3 Micro-implant assisted Rapid Palatal Expansion (MARPE) 

MARPE is a contemporary orthodontic treatment that addresses MTD, particularly in 

skeletally mature patients. Central to its efficacy is the understanding of the maturation 

stage of the MPS, which significantly influences both its approach and effectiveness. As 

the MPS matures, its degree of ossification and fusion increase, necessitating greater 

force for successful expansion. (Brunetto, Sant’Anna et al. 2017, Nguyen 2017) 

 

The success of MARPE in patients with more mature MPS, may require adjustments in 

protocol and appliance design. The increased resistance posed by advanced suture 

maturation necessitates careful planning and customization to ensure optimal outcomes. 

(de Melo Quintela, Rossi et al. 2021) (Brunetto, Sant’Anna et al. 2017) 

 

Clinical studies have reported a high rate of suture separation and stable long-term results 

with MARPE, indicating its efficacy in achieving skeletal expansion.(Jia, Zhuang et al. 2021, 

Chun, de Castro et al. 2022) (Zong, Tang et al. 2019) (Brunetto, Sant’Anna et al. 2017) 

 

It has been suggested that future research endeavours should focus on optimizing MARPE 

protocols and appliance designs to enhance outcomes in patients with advanced suture 

maturation by determining the accurate suture maturation stage. By refining techniques 

and developing tailored approaches, orthodontic practitioners can continue to improve 

the effectiveness and applicability of MARPE in treating MTD in skeletally mature 
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patients. (Brunetto, Sant’Anna et al. 2017, Zong, Tang et al. 2019, de Melo Quintela, Rossi 

et al. 2021)  

 

1.2.1.6.2 Surgical  

MTD poses a significant challenge in orthodontic treatment in skeletally mature patients 

where nonsurgical methods may prove insufficient. (Rachmiel, Turgeman et al. 2020, 

Shih, Ho et al. 2022) Surgical approaches, including Surgically Assisted Rapid Palatal 

Expansion (SARPE), segmental LeFort I osteotomy, and mandibular midline osteotomy 

with constriction, offer effective solutions tailored to the severity of the deficiency and 

the patient's skeletal maturity. 

(Bloomquist and Joondeph 2019)  

 

SARPE serves as a primary option for skeletally mature patients with substantial transverse 

deficiencies. This technique involves osteotomies to reduce resistance at the MPS, 

facilitating bone-borne expansion. Typically, SARPE is followed by orthodontic treatment 

to stabilize occlusion. While SARPE is reliable in expanding the maxillary arch in adults, it 

may present complications such as hemorrhage, pain, and relapse, and it may also involve 

higher costs due to the complexity of the procedure. (Brunetto, Sant’Anna et al. 2017, 

Rachmiel, Turgeman et al. 2020) 
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Segmental LeFort I osteotomy in another surgical option that addresses patients requiring 

less extensive transverse corrections while allowing for additional adjustments in the 

vertical or sagittal dimensions. This surgical approach enables simultaneous alterations in 

transverse, vertical, and sagittal dimensions, making it suitable for complex cases. 

(Nowak, Strzałkowska et al. 2015, Dakhil and Salamah 2021)   

 

The choice between SARPE and LeFort I osteotomy is influenced by a combination of factors, 

including the severity of the deficiency, the maturity of the MPS, patient-specific 

anatomical considerations, and the risks and costs associated with each procedure. These 

considerations are critical in determining the most appropriate surgical intervention for 

managing maxillary transverse deficiency in skeletally mature patients. (Nowak, 

Strzałkowska et al. 2015, Dakhil and Salamah 2021) 

 

1.2.1.7 The Consequences of Untreated MTD 

 

Untreated MTD can have significant consequences, particularly concerning the pharyngeal 

airway and its relation to sleep apnea. Pharyngeal airway narrowing, which can be 

associated with MTD, along with altered tongue posture and mouth breathing, are factors 

that can contribute to the development of sleep apnea. (Jimenez-Valdivia, Malpartida-

Carrillo et al. 2019) Sleep apnea not only impacts overall health but also has a notable 

effect on oral health-related quality of life (OHRQL). This condition often serves as a 
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motivator for patients to seek orthodontic treatment, as it is closely linked to various oral 

health issues. (Kiyak 2008) 

Additionally, untreated MTD can lead to orofacial and functional impairments. One of the 

common consequences of untreated posterior crossbite, which can result in significant 

discrepancies in the transverse dental arch relationship. This type of malocclusion 

negatively affects occlusion and dental alignment, leading to functional problems such as 

improper chewing and aesthetic concerns due to misaligned teeth. (Akbulut, Bayrak et al. 

2020) 

Furthermore, the long-term stability of the dental arch and occlusion may be compromised 

if MTD is left untreated. This increases the risk of relapse and may necessitate more 

complex orthodontic or surgical interventions later in life (Akbulut, Bayrak et al. 2020). 

These insights emphasize the critical importance of early diagnosis and treatment of MTD 

to prevent long-term adverse effects on dental health and overall well-being. 

 

1.2.2 Midpalatal Suture 

The MPS is a crucial suture in the roof of the mouth, connecting the palatine and maxillary 

bones. (Angelieri, Franchi et al. 2016, Shayani, Merino-Gerlach et al. 2023)Its visibility and 

morphology vary depending on its maturation or interdigitation stage, which can be 

assessed using Cone Beam Computed Tomography (CBCT). The maturation stages range 

from Stage A to Stage E, each characterized by distinct features.(Angelieri, Franchi et al. 

2016) (Kwak, Kim et al. 2016) 
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miniscrew-assisted rapid palatal expansion (MARPE) may be necessary to achieve the 

desired expansion in these advanced stages. (Loddi, Pereira et al. 2008, Schwarz and 

Watzke 2009). These methods which are based on current clinical practices and 

understanding, are designed to overcome the increased resistance of the ossified suture, 

ensuring effective outcomes while minimizing complications. However, it is important to 

note that the treatment options used today are based on current clinical findings and may 

be subject to change in the future as new research and advancements in the field emerge. 

 

Assessing MPS maturation aids in determining the appropriate timing and method for 

maxillary expansion treatments. CBCT is used for this assessment due to its detailed 

imaging capabilities without superimposition of surrounding structures. (Silva-Montero, 

Faus-Matoses et al. 2022) Additionally, the purpose of the maturation stages of the MPS 

can influence the choice between conventional RME and surgically assisted RME 

(SARME), potentially preventing unnecessary surgical interventions and 

complications.(Sayar and Kılınç 2019) 

While chronological age and gender are not reliable indicators of MPS fusion status, CBCT-

based assessments offer a more accurate evaluation. (Shayani, Merino-Gerlach et al. 

2023) The morphology observed on CBCT images correlates well with other findings such 

as hand-wrist radiographs, providing a reliable method for assessing suture maturation. 

(Sayar and Kılınç 2019) Furthermore, orthopedic widening of the maxilla without surgical 

intervention may still be possible in advanced maturation stages, although the window 
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for effective treatment may be limited as sutural fusion progresses. (Shayani, Merino-

Gerlach et al. 2023)  

 

1.2.3 Deep Learning 

 

Artificial intelligence (AI) is a rapidly emerging field within computer science, involving the 

development of machines capable of performing tasks that traditionally require human 

intelligence. (Chiu, Chang et al. 2023) Within AI, deep learning (DL) is a powerful subset 

of machine learning (ML) that utilizes artificial neural network architectures to analyze 

complex data. DL is characterized by its multiple hidden layers, often referred to as deep 

neural networks (DNN), which excel in representing intricate data structures, such as 

images, by extracting and modeling complex features like edges, corners, and shapes 

(Schwendicke, Cejudo Grano de Oro et al. 2022) (Mehta and Patnaik 2021, Mehta, Shah 

et al. 2022)). 

One of the key strengths of DL, particularly in the context of DNNs, is its ability to automate 

the feature extraction process. Feature extraction involves identifying and isolating the 

most important pieces of information from raw data. Traditionally, this process required 

significant manual effort, but DL models can automatically extract these features, 

reducing the need for human intervention (Monsarrat, Bernard et al. 2022). This 

capability allows DL to effectively model non-linear relationships among hidden variables 

in various data formats, including images. (Chollet 2019) 
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Among the various types of DL algorithms, convolutional neural networks (CNNs) are 

particularly well-suited for tasks involving image analysis, such as inference, recognition, 

segmentation, and classification of medical images. (Ker, Wang et al. 2017) (Singha, 

Thakur et al. 2021) CNNs are composed of artificial neurons arranged in layers through 

mathematical functions, forming the foundation of modern AI architectures. 

(Schwendicke, Cejudo Grano de Oro et al. 2022) (Wan, Shen et al. 2018) 

In DL, data flows through the network in a feed-forward manner, where each layer’s output 

serves as the input for the next layer until the final layer is reached. This iterative process 

allows for the transformation of data across layers, fine-tuning the model through various 

training approaches, including supervised, unsupervised, or semi-supervised methods 

(Schmidhuber 2015, Janiesch, Zschech et al. 2021) (Alloghani, Al-Jumeily et al. 2020)). In 

supervised learning, which relies on labeled datasets, the model learns to predict 

outcomes by minimizing the error between its predictions and the actual labels, making 

it particularly effective for tasks such as classification and regression.(Ayodele 2010)  

Supervised learning relies on labeled datasets, where each input is paired with a 

corresponding output label. This method is particularly effective for tasks such as 

classification and regression, as the model learns to predict outcomes by minimizing the 

error between its predictions and the actual labels. (Ayodele 2010) (Goodfellow 2016) 

 

Unsupervised learning, by contrast, involves training models on unlabeled data, focusing on 

identifying patterns or structures within the data. This approach is often employed for 

tasks such as clustering, dimensionality reduction, and anomaly detection. Semi-
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supervised learning combines elements of both supervised and unsupervised learning, 

utilizing a small amount of labeled data alongside a larger pool of unlabeled data. This 

method is especially advantageous when obtaining labeled data is costly or time-

consuming, as it allows the model to leverage the unlabeled data to enhance its 

performance. Each of these learning paradigms offers unique benefits and is chosen 

based on the specific requirements and constraints of the task at hand. (Ayodele 2010, 

Goodfellow 2016) 

1.2.4 Computer Vision 

 

Computer vision is a field of study that uses computers to interpret and comprehend visual 

information from the world, akin to human visual perception. By employing deep learning 

techniques, computer vision systems can perform a variety of tasks such as object 

classification, detection, and scene understanding. (Esteva, Chou et al. 2021) 

Advancements in deep learning have significantly advanced the field of computer vision. 

(Rebecq, Ranftl et al. 2019, Szeliski 2022)  One significant milestone in this progression 

was the ImageNet challenge, which pushed the boundaries of object classification 

accuracy to achieve human-level performance.(Esteva, Chou et al. 2021, Guo, Xu et al. 

2022)  (Rebecq, Ranftl et al. 2019)Key tasks in computer vision encompass object 

classification, localization, and detection, which involve identifying object types, their 

locations, and attributes simultaneously within images. (Li, Huang et al. 2021) These tasks 

are facilitated by deep learning models, particularly Convolutional Neural Networks 

(CNNs). (Voulodimos, Doulamis et al. 2018, O’Mahony, Campbell et al. 2020) 
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1.2.4.1 Image Classification 

 

Image classification is a task in computer vision that involves the process of categorizing and 

labelling groups of pixels or vectors within an image based on specific rules. The primary 

goal is to identify and categorize all objects in an image according to their characteristics 

and assign them to specific labels.(O’Mahony, Campbell et al. 2020, Li, Huang et al. 2021)  

Features such as edges, corners, and textures are extracted from images to help 

distinguish between different object classes (O’Mahony, Campbell et al. 2020) During 

classification, these features are compared against new images to identify specific 

objects. Supervised learning models rely on accurate labelling, often based on human 

observation or specific labelling tools designed for computer vision tasks (42) which learn 

to recognize patterns and features from the training data. The quality and quantity of 

labelled data affect the model's performance. (Budach, Feuerpfeil et al. 2022) 

 

 Deep learning techniques, specifically CNNs, have significantly enhanced image classification 

performance, often achieving accuracy levels that surpass human capability across 

various domains, including remote sensing and medical imaging, due to their ability to 

handle large-scale datasets and complex image features.  (O’Mahony, Campbell et al. 

2020) 
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Image classification finds applications in various fields such as medical imaging, autonomous 

driving, and surveillance, enabling efficient and accurate image analysis. (Jaswal, 

Vishvanathan et al. 2014, Hadi, Ajel et al. 2021) Deep learning models are robust, which 

enables them to excel despite challenges like handling variability in object appearance 

due to changes in size, rotation, and lighting conditions. (O’Mahony, Campbell et al. 2020)  

 

The application of machine learning in image classification not only automates the process 

but also enhances the ability to handle vast amounts of image data with varying features, 

which would be impractical and inefficient with manual techniques. (Afzaal, Bhattarai et 

al. 2021, Al-Badri, Ismail et al. 2022) 

 

1.2.4.2 Object Detection  

 

Object detection in computer vision is the task of identifying and localizing objects within an 

image or a video frame. (Cazzato, Cimarelli et al. 2020, Li, Huang et al. 2021) Unlike image 

classification, which assigns a single label to an entire image, object detection goes further 

by not only recognizing what objects are present but also precisely locating them by 

drawing bounding boxes around them. (Feng, Zhong et al. 2021)  

The primary goal of object detection is to determine the presence of multiple objects of 

interest within an image or a video and accurately delineate their positions. This enables 

machines to understand and interact with visual data in a manner similar to humans. 

(Cazzato, Cimarelli et al. 2020) 
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Object detection typically involves two main components: 

 

1. Localization: This involves identifying the spatial location of objects within an image by 

drawing bounding boxes around them. These bounding boxes specify the coordinates of 

the object's position, usually defined by a combination of a top-left corner point, width, 

and height.(Gidaris and Komodakis 2016, Jiang, Luo et al. 2018) 

 

2. Classification: After localizing objects, the next step is to classify each detected object into 

predefined categories or classes. This classification process assigns a label to each object, 

indicating what type of object it is (e.g., car, person, dog). (Jiang, Luo et al. 2018, Cazzato, 

Cimarelli et al. 2020) 

 

Object detection is a fundamental task in computer vision with a wide range of applications, 

(Tasnim and Qi 2023) including Autonomous vehicles, Surveillance systems, Robotics, and 

medical imaging. (Namdev, Agrawal et al. 2022, Tasnim and Qi 2023, Talwandi, Thakur et 

al. 2024) 

1.2.4.3 Image Segmentation 

 

Image segmentation in computer vision is the process of partitioning an image into multiple 

segments or regions to simplify its representation and facilitate further analysis. (Ghosh, 

Das et al. 2019) The goal is to divide the image into meaningful parts based on certain 
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characteristics, such as color, texture, or intensity, in order to extract valuable 

information or identify objects within the image. (Minaee, Boykov et al. 2021) 

This technique is fundamental in various computer vision tasks, including object recognition, 

image understanding, and scene analysis. (Isensee, Jäger et al. 2019) By segmenting an 

image into distinct regions, it becomes easier to identify and analyze specific objects or 

features within the image. (Ghosh, Das et al. 2019)This technique is crucial for a wide 

range of applications, including medical image analysis, where it helps identify and 

segment anatomical structures; autonomous driving, where it assists in detecting and 

understanding the surrounding environment; and content-based image retrieval, where 

it aids in searching for images based on their visual content.(Ghosh, Das et al. 2019, 

Isensee, Jäger et al. 2019, Minaee, Boykov et al. 2021) 

 

Image segmentation algorithms typically assign labels or identifiers to pixels or groups of 

pixels that share similar attributes, effectively delineating boundaries between different 

regions or objects. (Kim, Kanezaki et al. 2020) Various methods can be used for image 

segmentation, including: 

 

1. Thresholding: Dividing the image into regions based on pixel intensity values above or 

below a certain threshold.(Minaee, Boykov et al. 2021) 

 

2. Clustering: Grouping pixels with similar attributes into clusters using techniques such as k-

means clustering or mean-shift clustering.(Kim, Kanezaki et al. 2020) 
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3. Edge detection: Identifying boundaries between different regions based on changes in pixel 

intensity or gradients.(Minaee, Boykov et al. 2021) 

 

4. Region growing: Starting with seed points and iteratively growing regions based on 

similarity criteria until boundaries are reached. (Minaee, Boykov et al. 2021) 

 

5. Watershed segmentation: Treating the image as a topographic surface and flooding it from 

certain seed points to delineate regions. (Ghosh, Das et al. 2019) 

1.2.4.4 Region of Interest 

 

In deep learning and computer vision tasks, the concept of a Region of Interest (ROI) plays a 

pivotal role, especially when working with complex images that require precise analysis. 

As computer vision tasks, like image classification, object detection, and image 

segmentation, focus on understanding the entire image or locating specific objects within 

it, the ROI narrows down this focus to specific areas within an image that are deemed 

most significant for the task at hand. Identifying an ROI helps models improve accuracy, 

reduce computational load, and enhance interpretability by concentrating on the most 

relevant parts of the image (Vijay, Saini et al. 2021, Alqazzaz, Sun et al. 2022, 

Venkatachalam and Chandrabose 2023) ROI detection methods consist of Manual 

annotation and segmentation networks such as U-Net, R-CNN, and SegNet. (Vijay, Saini 

et al. 2021, Alqazzaz, Sun et al. 2022, Li, Liu et al. 2022) 
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Manual annotation involves human experts marking the areas of interest in images. This 

method is highly accurate and is considered the gold standard but labour-intensive and 

time-consuming. It is particularly used in medical imaging, where specialists such as 

radiologists annotate regions like tumors or other abnormalities on medical scans. 

(Baughan, Li et al. 2023, Li, Chou et al. 2023) 

1.2.5 Convolutional Neural Network (CNN) 

 

CNNs represent a specialized form of deep learning architecture, particularly effective in 

image processing tasks. (Figure 2) (Knaak, von Eßen et al. 2021) CNNs leverage 

convolution operations to recognize patterns within images or frames, employing 

learnable filters to extract essential features from input data(Naranjo-Torres, Mora et al. 

2020) (Roy, Song et al. 2018, Knaak, von Eßen et al. 2021). Characterized by multi-layered 

structures comprising convolutional, pooling, activation, and fully connected layers, CNNs 

demonstrate versatility in handling diverse tasks, with more complex architectures 

enhancing performance on challenging objectives. (Naranjo-Torres, Mora et al. 2020, 

Aljuaid and Anwar 2022) 
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Figure 2 Convolutional Neural Network breakdown 

 

Convolutional layers, fundamental components of CNNs, perform convolution operations on 

input data using learnable filters to generate feature maps capturing significant patterns 

of the input image (Knaak, von Eßen et al. 2021, Aljuaid and Anwar 2022). These layers 

exhibit properties like parameter sharing, sparse interactions, and translation invariance, 

which contribute to their effectiveness in image tasks (Wang and Shen 2017, Aljuaid and 

Anwar 2022) . Pooling layers, often integrated after convolutional layers, down-sample 

input data to reduce spatial dimensions while preserving essential features through 

operations like max pooling and average pooling (Naranjo-Torres, Mora et al. 2020, 

Aljuaid and Anwar 2022). Activation layers apply non-linear functions to layer outputs, 

facilitating the learning of complex relationships between input and output data. (Cha, 

Choi et al. 2017) Common activation functions include Rectified Linear Unit (ReLU) and 

sigmoid, with the softmax function favoured for multiclass classification tasks(Cha, Choi 

et al. 2017, Naranjo-Torres, Mora et al. 2020, El-Ghany, Azad et al. 2023). Fully connected 
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layers establish connections between neurons across layers, facilitating classification or 

regression tasks. (Cha, Choi et al. 2017) 

 

ResNet, or Residual Network, is a type of CNN deep learning model designed to tackle the 

challenges of training very deep neural networks, especially for image classification tasks.  

One major challenge in deep networks is the vanishing gradient problem, where the 

gradients used to update the network’s weights become too small as they move through 

the layers, slowing down learning. ResNet addresses this by using residual learning, where 

the model learns the difference (or residual) between the input and the desired output, 

rather than trying to learn the output directly. This makes it easier to train deep networks. 

(He, Zhang et al. 2016, Gao, Chen et al. 2022) 

 

Another highly used CNN architecture for imaging tasks is VGG, or Visual Geometry Group 

network. This model was developed to enhance the performance of image classification 

tasks by increasing the depth of the network. VGG networks are known for their simplicity 

in design, using small 3x3 convolutional filters consistently throughout the network, 

which allows them to capture intricate patterns in the data as the network deepens. 

(Simonyan 2014) A key characteristic of VGG models is the use of deep architectures with 

a large number of layers, which helps improve the accuracy of image classification. 

However, this comes with the trade-off of increased computational cost and memory 

usage. (Simonyan 2014, Luo, Wu et al. 2017) 
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1.2.6 Small Vs. Large CNN Models 

The evolving landscape of neural network architectures, particularly Convolutional Neural 

Networks (CNNs), reflects a critical shift towards optimizing model efficiency amidst 

escalating computational demands. Researchers have increasingly focused on developing 

lightweight and efficient CNN models tailored for edge computing and low-power devices. 

Insights from recent studies underscore the practical implications of adopting simpler 

CNN architectures, emphasizing their effectiveness in resource-constrained 

environments. 

 

1.2.6.1 Advantages of Small CNNs 

 

Small or lightweight CNNs, characterized by fewer layers and parameters, are designed to be 

less computationally intensive compared to their larger counterparts. They offer several 

advantages: 

 

Computational Efficiency: Small CNNs require less computational power and memory, making 

them suitable for deployment on devices with limited resources. This is particularly 

advantageous in edge computing scenarios, where processing power and energy 

consumption are critical factors (Howard, Zhu et al. 2017, Sandler, Howard et al. 2018). 

 

Speed: Due to their reduced complexity, small CNNs can process data faster, enabling real-

time applications. This is crucial in fields like autonomous driving and medical diagnostics, 

where timely decision-making is essential (Zhang, Zhou et al. 2018). 
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Generalization: Smaller models are less prone to overfitting, especially when trained on 

limited datasets. They can achieve competitive performance while maintaining a balance 

between bias and variance (Iandola, Han et al. 2016). 

 

Deployment Flexibility: The lightweight nature of small CNNs allows them to be deployed on 

a variety of devices, including mobile phones, embedded systems, and other low-power 

devices (Howard, Zhu et al. 2017). 

 

In one comparative study, researchers investigated various lightweight neural network 

architectures, including Long Short-Term Memory (LSTM), SimpleRNN, and multiple 

iterations of 1D CNNs, alongside more complex models like 1D ResNet and DenseNet. 

Their findings highlight that simpler CNN models not only offer computational savings but 

also maintain competitive performance across diverse problem domains. This research 

underscores the feasibility of deploying lightweight CNNs in scenarios where 

computational efficiency is paramount, such as edge computing applications. (Rong 2023)   

However, the effectiveness of lightweight CNNs can vary depending on the specific task 

and context. For instance, computational complexity and efficiency considerations may 

differ between image classification and object detection tasks, as well as between 

different deployment environments (e.g., edge vs. cloud computing) (Cheng, Wang et al. 

2017, Yoo, Kim et al. 2019) 
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Moreover, the customization of CNN architectures based on specific environmental 

conditions further optimizes performance in specialized domains. For instance, in 

autonomous vehicle navigation (Cheng, Wang et al. 2017), researchers propose adaptive 

CNN models tailored to different terrains. They advocate for lighter CNN architectures for 

navigating simpler road conditions, optimizing computational resources without 

compromising driving efficacy. In contrast, more intricate terrain necessitates deeper 

CNNs capable of extracting nuanced features essential for safe and efficient navigation. 

(Pal and Khaiyum 2019) 

 

This approach challenges the traditional one-size-fits-all paradigm by advocating for 

adaptable CNN architectures that dynamically adjust their complexity and computational 

footprint based on environmental demands. By aligning model complexity with task 

requirements, these studies advocate for a more efficient utilization of neural networks 

in real-world applications, balancing performance with resource constraints 

effectively.(Howard, Zhu et al. 2017, Elsken, Metzen et al. 2019) 

 

In the field of medical diagnostics, small CNNs have been successfully used for tasks such as 

detecting diabetic retinopathy and classifying skin lesions, where quick and accurate 

analysis is critical.(Esteva, Kuprel et al. 2017) Similarly, in autonomous driving, lightweight 

models like SqueezeNet have been used for real-time object detection, demonstrating 

that small CNNs can achieve high performance without the computational burden of 

larger models.(Iandola, Han et al. 2016) 
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In summary, the pursuit of lightweight or small and adaptive CNN models not only addresses 

the escalating computational demands but also expands the applicability of neural 

networks in diverse settings. These advancements pave the way for broader integration 

of AI technologies in edge computing, autonomous systems, and other resource-

constrained environments, fostering innovation and efficiency across various 

domains(Cheng, Wang et al. 2017, Yoo, Kim et al. 2019). 

 

 

1.2.7 Examples of applications of image classification with CNN in Medicine and Dentistry 

 

Image classification tasks with Deep learning, particularly convolutional neural networks 

(CNNs), is making significant strides in the realms of medicine and dentistry, 

revolutionizing diagnostic processes and patient care. These advancements are reflected 

in various applications, from image analysis to predictive modelling, demonstrating the 

transformative potential of deep learning across these fields.(Salunke, Joshi et al. 2022, 

Al-Khuzaie and Al-Jawher 2023) 

In medicine, CNNs have shown remarkable efficacy in the classification and diagnosis of 

complex diseases. For instance, in diagnosing Interstitial Lung Disease (ILD) from high-

resolution computed tomography (HRCT) images, CNNs have been adapted to handle the 

texture-like qualities of ILD patterns. By simplifying the architecture to a single 

convolutional layer and incorporating optimizations like random neural node dropout, 



 

32 

CNNs have effectively managed the classification of ILD lung image patches(Huang, Lee 

et al. 2020). Additionally, the classification of pneumonia from chest X-rays using CNN-

based algorithms highlights the efficiency of transfer learning and data augmentation. 

Techniques such as transfer learning with pre-trained models (e.g., VGG16) and training 

from scratch with capsule networks have shown that proper feature retraining and 

network complexity matching are crucial for optimal outcomes.(Yadav and Jadhav 2019) 

 

Similarly In dentistry, CNNs are revolutionizing diagnostic and treatment approaches by 

enabling precise, personalized, predictive, and preventive care. One example is the 

classification of midpalatal suture maturation stages using cone-beam computed 

tomography (CBCT). Various CNN models, including ResNet18, ResNet50 and ResNet101, 

were trained to perform multi-class classification of suture maturation stages and 

detecting the CBCT plane containing the suture. Among these, ResNet50 has 

demonstrated superior performance, achieving an accuracy of 99.74% in identifying the 

targeted CBCT plane.(Zhu, Yang et al. 2024) For the five maturation stages (A/B/C/D/E) of 

the midpalatal suture, the models showed varying levels of accuracy. ResNet18 achieved 

an accuracy of 73.13%, while ResNet50 had a slightly higher accuracy at 73.51%. 

ResNet101, on the other hand, demonstrated an accuracy of 66.79%. Inception-v3 

exhibited a lower accuracy of 54.85%.  

For the simplified task of classifying three maturation stages (AB/C/DE), the CNN models 

demonstrated varying levels of accuracy. ResNet18 (42.73 MB and 11.69 million 

parameters) achieved an accuracy of 79.10%, while ResNet50 (90.04 MB and 25.56 million 
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parameters) showed a higher accuracy at 82.84%. ResNet101 (162.82 MB and 44.55 

million parameters) closely followed with an accuracy of 80.60%. Furthermore, the 

assessment of maxillary transverse development, which relies heavily on the maturation 

and ossification status of the midpalatal suture, has been enhanced through other deep 

learning techniques. Using CBCT image fusion and texture feature analysis algorithms, 

CNNs have provided comprehensive insights into suture maturation during rapid growth 

and development, particularly excelling in classifying age ranges of 4-10 and 17-23 years. 

(Gao, Chen et al. 2022) 

In a similar vein, CNNs have been successfully applied to the classification of dental diseases 

using Radiovisiography images (Bitewing, periapical radiographs and OPG) . A study 

explored the use of ResNet, to classify three common dental conditions: dental caries, 

periapical infection, and periodontitis. By employing transfer learning, the VGG16 

network significantly outperformed the custom CNN, achieving a classification accuracy 

of 97.43% compared to 92.15% for the custom model. The study’s results not only 

improved diagnostic precision but also underscored the adaptability of CNNs in various 

dental imaging tasks, reinforcing their role in advancing modern dental care. (Prajapati, 

Nagaraj et al. 2017) 

 

Another example is the use of VGG based models in dental imaging tasks. They have been 

applied to teeth detection and numbering on panoramic radiographs, achieving 

performance levels close to those of experts. This approach, which does not rely on hand-

crafted features, is suitable for integration into clinical practice. (Tuzoff, Tuzova et al. 
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2019) Additionally, a modified VGG16 model, known as TVGG16, has been used to identify 

dental implant manufacturers from X-ray images. (Guo, Tsai et al. 2022) VGG16 has also 

been evaluated for classifying dental restorations using panoramic radiographs. Although 

it did not achieve the highest accuracy compared to models like ResNet, it still performed 

significantly well. (Top, Özdoğan et al. 2023) 

 

In forensic odontology, VGG16 has been utilized for age estimation and individual 

identification tasks, demonstrating its versatility across different dental imaging 

applications. Furthermore, VGG-based models have potential applications in detecting 

various dental pathologies, such as caries, periodontitis, and dental cysts, although larger 

datasets are required to achieve expert-level accuracy. (Mohammad, Ahmad et al. 2022) 

 

Beyond imaging, AI integration in dentistry encompasses a wide range of applications. AI 

techniques are improving patient management, diagnosis, prediction, and decision-

making, enhancing the efficiency and efficacy of dental care delivery. This integration 

facilitates data-enriched clinical care, leading to comprehensive real-time assessments 

and precise interventions(Schwendicke, Cejudo Grano de Oro et al. 2022, Alzaid, Ghulam 

et al. 2023)For example, AI models exhibit proficiency in predicting orthodontic 

extractions, determining the necessity for orthodontic treatments, conducting 

cephalometric analysis, and discerning age and gender, showcasing AI's broad 

applicability in dental diagnostics and treatment planning.(Khanagar, Al-Ehaideb et al. 

2021)  



 

35 

Overall, the integration of deep learning, particularly CNNs, in medical and dental imaging is 

poised to drive significant improvements in diagnostic precision, efficiency, and predictive 

capabilities. As research and technology continue to advance, these methodologies are 

expected to become integral to clinical practice, transforming patient care and outcomes 

across both fields. (Top, Özdoğan et al. 2023) 

 

In this thesis, we explore the application of deep learning techniques, specifically CNNs, in 

the classification of MPS maturation stages. By harnessing the robust capabilities of AI, 

particularly in image analysis, we aim to enhance medical diagnostic processes, 

illustrating the potential of deep learning in advancing healthcare technologies. 

 

1.3 Research hypothesis and objectives 

 

1.3.1 Objectives  

 

1. To develop and evaluate small CNN models for classifying midpalatal suture 

maturation stages on CBCT images. 

2. To develop a method for determining the Region of Interest of MPS from CBCT slices 

of the palate based on the opinion of orthodontists.  

3. To develop a method for determining the most appropriate slices of the palate for 

classification based on the opinion of orthodontists. 

4. To develop a method for classifying the MPS as a 3D structure from CBCTs. 
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5. To validate the models and classify the MPS into specific stages according to the level 

of suture fusion. 

 

1.3.2.1 Hypothesis 1 

 

The utilization of a small 2D CNN model with the least number of layers will accurately classify 

the maturation stage of the MPS on slices of CBCT images. 

 

1.3.2.2 Rationale for Hypothesis 1 

 

The manual evaluation of MPS fusion using CBCT images is subjective and heavily reliant on 

practitioners' experience. To address this challenge, we propose the application of deep 

learning techniques, specifically a small CNN model to establish an objective and 

standardized approach for classifying the fusion stage of the mid-palatal suture. This 

automated classification process aims to reduce variability in diagnosis and enhance 

consistency across evaluations. 

  Accurate staging of mid-palatal suture fusion is imperative for selecting appropriate 

treatment strategies for transverse maxillary constriction. Leveraging a small CNN model 

enables efficient and precise classification of 2D slices of the mid-palatal suture on CBCT 

images. By automating this process, clinicians can streamline treatment planning, saving 

time while ensuring patients receive interventions tailored to their suture maturation 

stage. 
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Small CNN models are recognized for their efficiency, requiring fewer computational 

resources compared to larger models. Employing a small CNN model allows for the 

development of a classification system that runs efficiently on standard hardware without 

compromising accuracy. This approach maximizes computational efficiency while 

maintaining high levels of diagnostic precision. 

 

1.3.2.3 Hypothesis 2 

 

The implementation of a 3D CNN model with the least number of layers will effectively classify 

3D arrays of the MPS, providing comprehensive classification of the entire suture volume 

without the need to exclude curved palates from the data set. 

1.3.2.4 Rationale for Hypothesis 2 

 

Effective treatment of transverse maxillary constriction relies on precise staging of mid-

palatal suture fusion, necessitating a comprehensive assessment of the entire suture 

volume. Our proposed solution involves deploying a 3D CNN model, allowing for a holistic 

evaluation of the MPS by analyzing volumetric data. This model captures spatial 

relationships and contextual information across multiple slices, ensuring a thorough 

classification that covers the entire suture volume. This approach is particularly 

advantageous for curved palates where the suture may not be visible in a single slice 

alone. 
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By analyzing 3D arrays of the MPS, the CNN model can identify subtle patterns and features 

that may be missed in individual 2D slices. This heightened diagnostic precision enables 

more accurate classification of the suture's fusion stage, facilitating treatment decisions. 

The use of a CNN model streamlines the classification process for MPS fusion, promoting 

standardization and objectivity across practitioners. This consistency enhances the 

reliability of treatment planning and outcomes by reducing variability in diagnosis. 

Despite handling volumetric data, the 3D CNN model maintains computational efficiency, 

enabling timely processing of 3D arrays of CBCT images. This efficiency minimizes 

computational burden while maximizing diagnostic capabilities, making it a practical 

solution for clinical implementation. 

 

1.4 Scope of the thesis 

The two hypotheses and objectives are tested in this study as outlined in two chapters 

(chapters 2-3), with one additional chapter for the introduction and literature review 

(chapter 1) and a final chapter (chapter 4) for general discussion and conclusion. 

Chapter 2 tested the first hypothesis and focused on the application of a small CNN model to 

classify the maturation stage of the MPS from 2D slices of CBCT images.  

Chapter 3 tested the second hypothesis and focused on the application of a 3D CNN model 

for analyzing and classifying the MPS from 3D arrays of the palate containing the MPS. 

Lastly, Chapter 4 discusses the outcome of these studies, their interrelationship, and their 

significance in the dental setting. Study limitations and future directions are highlighted 

as well.  
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CHAPTER 2- 2D CNN APPROACH FOR CLASSIFYING MPS MATURATION FROM CBCTS 

2.1 Introduction and Background 

2.1.1 Introduction: 

Maxillary transverse deficiency (MTD) is a condition involving a narrowed upper jaw relative 

to the mandible, often leading to issues such as posterior crossbite and dental crowding, 

and it can contribute to sleep apnea due to associated airway narrowing and altered 

tongue posture (Calvo-Henriquez et al., 2021; Akbulut et al., 2020). Treating MTD requires 

accurate evaluation of the mid-palatal suture (MPS) maturation, as it guides the decision 

between surgical and non-surgical expansion methods (Franchi et al., 2010; Hernandez-

Alfaro et al., 2010). Misclassification of MPS maturation can result in suboptimal 

treatment outcomes (Suri & Taneja, 2008). 

 

The five-stage classification of MPS maturation, proposed by Angelieri et al. using CBCT, offers 

a framework for this assessment, though variability in orthodontists’ evaluations remains 

a challenge (Barbosa et al., 2019). Accurate classification is critical, as non-surgical 

methods are appropriate in earlier stages (A and B), while surgical interventions are 

necessary for later stages (D and E) (de Miranda Ladewig et al., 2018; Gao et al., 2022). 

 

Artificial Intelligence (AI), particularly deep learning (DL) algorithms, offers promising avenues 

for automating data extraction and analyzing complex datasets. (Monsarrat, Bernard et 

al. 2022) Deep learning models like Convolutional Neural Networks (CNNs) excel in image 
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recognition, segmentation, and classification tasks, making them potentially valuable 

tools for MPS maturation assessment. In 2024, Zhu et al. published a study titled 

“Convolutional neural network-assisted diagnosis of MPS maturation stage in cone-beam 

computed tomography” in this study ResNet18 was one of the models evaluated. 

ResNet18, along with other CNN models like ResNet50 and ResNet101, was trained to 

classify MPS staged into three groups (AB/C/DE) based on image features.  

 

The key findings from the study indicate that ResNet18 with 11.69 parameters and size of 

42.73 MB, while being the smallest model and a part of the evaluation, had the lowest 

accuracy among the ResNet models used. Specifically, ResNet18's performance in the 

three-stage evaluation of midpalatal suture maturation stages showed an accuracy rate 

of 79.10%, which was lower compared to ResNet101 (162.82 MB and 44.55 million 

parameters), which achieved the highest accuracy of 80.60%. This suggests that while 

ResNet18 was effective in classifying the stages, it was outperformed by more complex 

models in the same family, such as ResNet101. (Zhu, Yang et al. 2024) 

 

The growing computational demands of traditional Convolutional Neural Networks (CNNs) 

and Recurrent Neural Networks (RNNs) highlight the need for lightweight, efficient 

models, especially for edge computing and low-power devices. (Rong 2023) explored the 

performance and computational costs of various lightweight neural network 

architectures, including LSTM, SimpleRNN, 1D CNNs, 1D ResNet, and DenseNet. Their 
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study found that simpler CNN models can be effective and computationally economical, 

which is beneficial for resource-constrained environments. 

 

Khayuim et al. proposed customizing CNN architectures based on data conditions to balance 

computational efficiency. Simpler CNN models are sufficient for easy terrains, while 

complex terrains require more elaborate networks. This tailored approach reduces 

network size, trainable parameters, memory footprint, and refresh rate, aiming to 

improve efficiency by adapting CNN models to specific conditions rather than using a one-

size-fits-all model. (Pal and Khaiyum 2019) 

 

Building on these insights, our study introduces a deep learning method utilizing a lightweight 

CNN architecture to classify the maturation stages of the MPS. By employing supervised 

learning with a dataset annotated by expert orthodontists, we aim to achieve high 

accuracy in identifying MPS maturation stages from CBCT images while minimizing 

computational costs. This approach is particularly relevant for practical applications in 

clinical settings where computational resources may be limited. 

 

Each of the CBCTs from patients normally consist of 450 to 500 axial slices, however only a 

few slices contain the maxilla and even fewer slices from the palatal region contain the 

MPS. In order to cultivate a dataset for classifying the maturation stage of MPS which 

consists exclusively of optimal slices that contain the MPS, our study introduces a small 
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CNN model for classifying axial slices containing the Region of Interest. The objective is to 

discern preferred slices exhibiting clear visibility of the MPS from non-preferred slices. 

 

2.1.2 Objectives: 

 

1. To develop and evaluate a 2D CNN model for classifying midpalatal suture maturation 

stages on CBCT images. 

2. To develop a method for determining the Region of Interest (MPS) from CBCT slices 

of the palate based on the opinion of orthodontists. 

3. To develop a method for determining the most appropriate slices of the palate for 

classification based on the opinion of orthodontists. 

 

2.2 Methodology 

This research was approved by the Health Research Ethics Board (HREB) of the University of 

Alberta (Approval number: Pro00125920) CBCT from 155 patients between the age of 7-

21 who underwent CBCT (120 kVp, 5 mA and 4 sec, 0.3 voxel) for orthodontic treatments 

at the university clinic were initially collected for this study. 

Exclusion criteria were as follows:  

1. Prior orthodontic treatment 

2. Impacted upper teeth in the mid-palatal region  

3. Congenital malformations of the maxilla (i.e. cleft palate) 
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4. Palates where the curvature prevents the suture from being viewed in a single slice, 

requiring multiple consecutive slices to visualize the entire suture. 

5. Blurry or low-quality CBCTs due to scatter 

 

Out of the 155 patients, CBCTs from 111 patients did not have the exclusion criteria and were 

thus included in the study. The CBCT images were in DICOM format and anonymized prior 

to collection for this study, thus, they were first converted from DICOM format to PNG 

image format with the ITK-SNAP software (726 * 644 pixels). The axial view of the patient 

images’ which consisted of an average number of 450 slices were classified into 5 groups 

of MPS maturation stage as first stated by Angeliere et al. by two orthodontists, achieving 

an inter-rater reliability of 68%, comparably higher than similar a study at 43%.(Barbosa, 

Castro et al. 2019)  In the case of any conflicts, a third orthodontist evaluated the images 

to determine the class of MPS.  Once the patients were classified based on the Angeliere 

method, the slices belonging to patients’ palates were selected and saved in a separate 

folder.  

The palate slices were then categorized into three groups AB (maturation stages A and B) C 

and DE (maturation stages D and E). This was done as a way to reduce the amount of 

variability for the DL model as the aim of this study was to help in reaching a diagnosis for 

an optimal treatment plan as: the treatments for stages A and B are clinically the same, 

but can differ from stage C, and stages A B and C have different treatments compared to 

stages D and E.(de Miranda Ladewig, Capelozza-Filho et al. 2018) 
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2.2.1 Data preprocessing: 

In the data preprocessing phase, the images underwent several transformations to enhance 

the CNN model's ability to focus on the actual suture rather than surrounding structures. 

The initial step involved cropping the images so that the maxilla is the only structure in 

the image. This is done on the following coordinates which ensures the entirety of the 

maxilla is in the Region of Interest (ROI) [(300,100),(520, 100), (520, 290), (300,290)], 

resulting in a cropped area with a height of 190 and a width of 220. Subsequently to 

reduce the noise of the images and help determine the image contour a Gaussian blur 

was applied using the Cv2 and NumPy libraries. (Bradski and Kaehler 2000, Harris, Millman 

et al. 2020) Gaussian blur is a noise reduction technique commonly used in image 

preprocessing.  

 

To correct for angular differences, the angle of the image was corrected using rotation. The 

contour with the maximum width, representing the transverse dimension of the maxilla, 

was first identified. A rectangle was then drawn around this contour, and the rotation 

angle of the rectangle was calculated for each image. The images were rotated to align 

with the horizontal line. Following rotation, Cv2 and NumPy were employed again to 

identify the Region of Interest (ROI) for the MPS. This was achieved by drawing a rectangle 

around the entire image and calculating the distance between the rectangle's edge and 

the image center. Subsequently, coordinates were coded to crop an area 47 pixels around 

the midline on the X-axis and 140 pixels around the midline on the Y-axis, which is the 

smallest area that effectively encompasses the entire suture length in all the CBCT images, 





 

46 

2.2.2 Determining the ideal CBCT slice containing the MPS (ROI classifier):  

 

To create a ROI classifier to identify the ideal axial slices of CBCT which contain the MPS, the 

following steps are required. 

 

2.2.2.1 ROI Classifier: Data Collection and Preprocessing 

 

For the development of the ROI (Region of Interest) classifier, a specialized dataset using CBCT 

scans from 111 patients was constructed. This dataset consists of two types of slices: 

1. Preferred Slices: A total of 575 slices were selected, each containing a clearly visible 

mid-palatal suture (MPS). These slices were carefully chosen by orthodontists from 

the CBCT scans of the 111 patients. 

2. Non-Preferred Slices: To complement the preferred slices, 421 random slices were 

also included from the same set of patients. These slices were selected from the axial 

view of the skull but did not exhibit the clear visibility of the MPS. 

This ROI dataset serves as the foundation for building the classifier that will be used to create 

the primary dataset for the MPS classification model. 

 

2.2.2.2 ROI Classifier: Data Splitting 

 

The dataset for ROI classifier which consisted of 996 images was split into training, validation, 

and testing sets using a stratified approach to maintain representative class distributions. 

Specifically, 70% of the data was allocated for training, 20% for validation, and 10% for 

testing. This split percentage is one of the most simple and widely used splits in deep 



 

47 

learning algorithms which ensures a balanced training.(Brea, De Jesus et al. 2020, Al-

Sarem, Al-Asali et al. 2022)This resulted in 402 preferred images and 294 non-preferred 

images for training, 115 preferred images and 84 non-preferred images for validation, and 

57 preferred images and 42 non-preferred images for testing. 

 

2.2.2.3 ROI Classifier: Model Architecture 

 

A Convolutional Neural Network (CNN) architecture was employed for binary classification of 

preferred and non-preferred slices. The CNN consisted of two convolutional layers 

followed by max-pooling layers for feature extraction. The first convolutional layer had 

32 filters with a kernel size of (3, 3), followed by a max-pooling layer with a pool size of 

(2, 2). The second convolutional layer comprised 64 filters with the same kernel size, 

followed by another max-pooling layer. Subsequently, the feature maps were flattened 

and passed through two dense layers with ReLU activation functions. The final layer of 

the CNN used a softmax activation function, producing a probability distribution over the 

Figure 4 ROI Classifier CNN model architecture overview 
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2.2.4 Deep Learning Frameworks 

This study utilized TensorFlow and Keras for developing and training the convolutional neural 

network (CNN) models. TensorFlow is an open-source deep learning framework 

developed by Google Brain and released in November 2015. It facilitates the creation, 

training, and deployment of machine learning models across a range of hardware 

configurations, including CPUs and GPUs. (Hoeser and Kuenzer 2020) 

 

Keras, introduced in May 2015, serves as a high-level API integrated into TensorFlow, 

providing an accessible and user-friendly interface for building deep learning models. 

Originally designed to work with frameworks like Theano and TensorFlow, Keras’s 

modular and extensible design makes it particularly effective for complex tasks such as 

semantic segmentation. Following the end of Theano’s official support in 2017, Keras has 

become one of the most popular frameworks for deep learning, particularly in fields such 

as computer vision, autonomous driving, and medical imaging. (Hoeser and Kuenzer 2020, 

Gupta 2023) 

2.2.5 CNN architecture: 

The convolutional neural network (CNN) architecture utilized in this study is a custom 9-layer 

CNN, implemented using TensorFlow and Keras. (Keras 2015, Abadi, Agarwal et al. 2016) 

(Figure 5 and 6) This model is designed with simplicity and computational efficiency in 

mind, incorporating key elements such as dropout and batch normalization to enhance 

performance. 
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The architecture consists of nine convolutional layers, each followed by Batch Normalization 

(BN) and rectified linear unit (ReLU) activation functions to introduce non-linearity. ReLU 

is a widely used activation function in CNNs. It outputs the input directly if it is positive; 

otherwise, it outputs zero, mathematically expressed as f(x) = \max(0, x) . ReLU helps 

prevent the vanishing gradient problem by providing a gradient of either 0 or 1, which 

facilitates efficient training of deep networks and induces sparsity in the activations, 

leading to more efficient computations. BN is a technique used in deep learning to 

enhance the training of neural networks by normalizing the inputs to each layer within a 

mini batch. This process involves standardizing the activations by adjusting their mean to 

zero and variance to one.  

A Max-pooling layer is strategically placed in this CNN model to perform spatial down 

sampling, which aids in both computational efficiency and feature extraction. To reduce 

overfitting and improve generalization, dropout layers with a dropout rate of 0.5 are 

added after each block of layers. 

In the initial convolutional layer, input tensors of shape (140, 47, 1) undergo convolution with 

64 filters of size 7x7, followed by batch normalization and ReLU activation. A max-pooling 

operation with a pool size of 3x3 and a stride of 2x2 is then applied to reduce the spatial 

dimensions. The subsequent convolutional layers continue this pattern, progressively 

extracting features from the input data. 

After the convolutional layers, global average pooling is applied to aggregate spatial 

information across feature maps, reducing the dimensionality of the data. Finally, a dense 

layer with softmax activation is employed to produce class probabilities. Softmax is an 
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activation function used in the output layer for classification tasks. It converts raw output 

scores (logits) into probabilities by exponentiating each score and normalizing by the sum 

of all exponentiated scores. This results in a probability distribution over the classes, 

which is useful for multi-class classification problems. 

This custom CNN architecture is specifically designed to meet the needs of the study, 

balancing complexity and computational efficiency. The model comprises a total of 

4,733,187 parameters, of which 4,729,219 are trainable, and 3,968 are non-trainable 

parameters. 

 

 

 

Figure 6  2D CNN architecture overview for MPS maturation stage classifier 
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Figure 7 2D CNN architecture breakdown for 

classifying MPS maturation stage 
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2.2.6 Evaluation Metrics 

To evaluate the performance of the model, precision, recall, and F1-score metrics will be used 

alongside accuracy and loss. These metrics are calculated for each class (AB, C, DE) to provide 

a comprehensive assessment of the model’s classification abilities. 

 Precision is the percentage of correct positive predictions out of all the positive 

predictions the model makes. High precision indicates that the model has a low false 

positive rate. 

 Recall (also known as sensitivity) is the percentage of actual positive cases that the 

model correctly identifies. High recall indicates that the model has a low false negative 

rate. 

 F1-Score is the combined measure of precision and recall. It gives a single score that 

reflects both how many mistakes the model avoids and how many positive cases it 

correctly finds. 

2.3 Results 

2.3.1 ROI classifier Model Evaluation 

The ROI classifier was evaluated on the test set comprising 57 preferred images and 42 non-

preferred images. The evaluation results demonstrated exceptional performance, with a 

test accuracy of 99%. Additionally, the model's accuracy and loss were monitored during 

training and validation, with both training and validation accuracies reaching 100% and 

negligible losses. 

Once the ROI classifier was trained and validated, all the axial CBCT slices from the 111 

patients were deployed through the classifier. This resulted in a dataset which consisted 
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of 580 images. These images were compared to the images identified as ideal axial slices 

containing the MPS by orthodontists, which showed that the model was 99% accurate.  

This dataset was then split patient-wise 70% (training) 20% (validation) and 10% (testing) to 

be used for the 2D CNN classification of MPS model. The training data was a total of 406 

arrays (AB: 128 C: 158 DE: 120)  

 

2.3.1 Training of Convolutional Neural Network (CNN) 

The CNN model was trained for the classification of midpalatal maturation stages on CBCT 

images. The input shape of the images was set to 140x47x1, with a total of 405 training 

data samples distributed among three groups: AB (127 samples), C (158 samples), and DE 

(120 samples).  

 

The training process utilized early stopping with a patience of 15 epochs and model 

checkpointing to save the best weights and model. The model was set for 100 epochs with 

a batch size of 16 but training stopped at 90 epochs where the validation loss failed to 

improve from epoch 75 onwards. Thus, the model was saved on epoch 75 which lasted 5 

seconds with 218ms/step with a training accuracy of 97.81 %, validation loss of 0.0626 

and validation accuracy of 98.08%. (Figure 7 and 8) 
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Figure 8 Training and Validation Loss 2D CNN model 

 

Figure 9 Training and Validation Accuracy 2D CNN model 
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2.3.2 Testing Results 

The trained model was evaluated on a separate test dataset consisting of 57 images, 

distributed among the three groups: AB (18 samples), C (19 samples), and DE (20 

samples).  

 

The testing results indicated a test loss of 0.2286 and a test accuracy of 96.49%. Furthermore, 

the classification performance of the model was assessed using precision, recall, and F1-

score metrics for each class (AB, C, DE). The results demonstrated high precision, recall, 

and F1-score values for all classes, indicating the effectiveness of the model in accurately 

classifying midpalatal maturation stages. 

 

The detailed classification metrics for each class are as follows: 

 

Table 1 Evaluation Metrics for testing 2D CNN model 

Class Precision Recall F1-Score 

AB (18) 0.90 1.00 0.95 

C (19) 1.00 1.00 1.00 

DE (20) 1.00 0.90 0.95 

Overall (57) 0.97 0.97 0.96 
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The overall accuracy and classification metrics demonstrate the efficacy of the proposed CNN 

model in accurately classifying midpalatal maturation stages on CBCT images. 

 

 

Figure 10 Confusion Matrix for 2D CNN model testing results 

 

 

2.4 Discussion 

Our study demonstrated the efficacy of this developed CNN architecture with 9 convolutional 

layers and 4.7 million parameters in classifying the midpalatal suture into three classes 
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(AB, C, DE) with a validation accuracy of 98.08%. Subsequent testing on a separate dataset 

consisting of 57 images yielded a testing accuracy of 96.49%. 

 

The robust performance of our developed CNN model in accurately classifying midpalatal 

maturation stages on CBCT images underscores the potential of AI-based approaches, 

particularly deep learning algorithms like CNNs, in automating the assessment of MPS 

maturation. With a high training accuracy of 97.81% and validation accuracy of 98.08%, 

our model showcases its ability to distinguish between different stages of MPS 

maturation, thereby facilitating more precise treatment planning in orthodontics.  

 

Comparing our results with those of Zhu et al., who also employed a lightweight CNN model 

(ResNet18) for midpalatal suture maturation stage classification from CBCT images, 

highlights the robustness of our model. Despite having fewer parameters (4,733,187 

parameters vs. 11.69 million parameters), our model achieved a relatively higher training 

accuracy (97.81% vs. 79.10%). It is worth noting that our dataset consisted of 111 CBCTs, 

considerably smaller than the 785 CBCTs used in Zhu et al.'s study. 

 

Moreover, our findings align with previous research demonstrating the effectiveness of deep 

learning techniques, particularly CNNs, in medical image analysis. The utilization of CNNs 

has revolutionized the interpretation of complex biomedical images, as evidenced by 

studies such as Mishra et al., and Schwendicke et al., which have shown CNNs' superior 

performance in tasks ranging from interstitial lung disease pattern classification to dental 
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diagnosis and treatment planning. (Schwendicke, Cejudo Grano de Oro et al. 2022, 

Mishra, Tiwari et al. 2023) 

 

Furthermore, the scalability and efficiency of our model offer practical advantages, especially 

in resource-constrained environments. The lightweight nature of our CNN architecture, 

coupled with its high accuracy, makes it well-suited for deployment on edge devices or 

low power computing platforms, expanding its potential applications in clinical settings 

where computational resources may be limited. 

 

In conclusion, our study demonstrates the potential of deep learning, specifically CNNs, in 

automating the assessment of midpalatal suture maturation on CBCT images. By 

achieving high accuracy with a relatively lightweight model, we provide a valuable tool 

for orthodontic practitioners to enhance treatment planning accuracy and efficiency. 

Future research could focus on further refining the model and validating its performance 

across larger and more diverse datasets, ultimately advancing the integration of AI in 

orthodontic practice and improving patient outcomes. 

 

However, it is important to acknowledge the limitations of our study. Firstly, the relatively 

small sample size of CBCT images may limit the generalizability of our findings to broader 

populations, which is a common issue in medical research. This underscores the need for 

future studies with larger datasets to validate the robustness of our CNN model. Notably, 

during testing, two samples determined to be stage AB were misclassified by the model 



 

60 

as stage DE, indicating a type 2 error that may be attributed to the smaller sample size in 

the DE group. 

Additionally, our proposed method solely focuses on analyzing individual slices of the 

midpalatal suture. While this approach is effective when the palate is not curved and the 

suture can be seen as a whole entity in a single slice, it may result in outliers if the palate 

curvature obstructs a comprehensive view of the suture in one slice. This limitation 

underscores the importance of considering alternative approaches, such as a three-

dimensional (3D) analysis of the midpalatal suture, which may provide more 

comprehensive insights into its maturation stages. 

 

2.5 Conclusion  

Our  study demonstrates the effectiveness of a 2 layer CNN model for binary classification of 

preferred CBCT slices with a training and testing accuracy of 100%. Also our study 

demonstrated the effectiveness of the lightweight CNN architecture in accurately 

classifying midpalatal suture maturation stages on CBCT images. With high training and 

validation accuracies of 97.81% and 98.08%, respectively, our CNN model showcases 

robust performance in distinguishing between different stages of midpalatal suture 

maturation, offering valuable insights for orthodontic treatment planning. 

 

However, it is crucial to acknowledge that our study’s findings are heavily dependent on 

Anglieri’s staging for midpalatal suture maturation. This reliance presents a potential 

limitation, as the validity of our results could be compromised if future research were to 
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challenge or disprove the accuracy of Anglieri’s classification. This underscores the 

importance of continuous validation and the exploration of alternative classification 

systems to ensure the long-term relevance of AI-driven models in orthodontic diagnosis. 

 

Addressing the limitations discussed in 2.4 Discussion, the next chapter will explore a 3D 

approach to midpalatal suture analysis, complementing the 2D approach presented in 

this study. By incorporating advanced imaging techniques and innovative methodologies, 

we aim to further enhance the accuracy and applicability of AI-driven solutions in 

orthodontic diagnosis and treatment planning. 
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CHAPTER 3- 3D CNN APPROACH TO CLASSIFICATION OF MPS ON CBCTS 

3.1 Introduction and Background 

In the previous chapters, the clinical importance of correct classification of MPS was 

discussed. The study that was conducted in chapter 2 and similar studies in the literature 

such as Zhu et. Al looked at the suture in a two-dimensional (2D) view, whereas the suture 

is a three-dimensional (3D) structure with depth, which is evident in the response of the 

suture to expansion forces. (Bocklet, Ahmadi et al. 2024) Using a two-dimensional 

approach to a three-dimensional structure has the inevitable risk of loss of information. 

Finite element analysis (FEA) and other 3D modeling techniques used in studies show that 

2D imaging cannot provide the detailed data required for accurate analysis of craniofacial 

structures. (Khanehmasjedi, Bagheri et al. 2020, Kaya, Seker et al. 2023) 

 

Patients who have curved palates in which there is the inability to observe both the anterior 

and posterior segments of the midpalatal suture within a singular axial slice, mandating 

the utilization of two slices for sutural staging classification (Angelieri, Franchi et al. 2016), 

were excluded in studies that utilized 2D CNN approaches (Zhu, Yang et al. 2024). 

 

In this study, I propose a 3D deep learning architecture and approach to the classification of 

midpalatal sutures to include curved palates. No similar study to classify MPS from 3D 

images has been done yet to the best of my knowledge. 
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3.2 Objectives 

1. To develop and evaluate a 3D CNN model for classifying midpalatal suture maturation 

stages on 3D arrays from CBCT images. 

2. To create 3D arrays from 2D axial slices of CBCT images 

 

3.3 Methodology  

This research was approved by the Health Research Ethics Board (HREB) of the University of 

Alberta (Approval number: Pro00125920). CBCT from 155 patients between the age of 7-

21 who underwent CBCT (120 kVp, 5 mA and 4 sec, 0.3 voxel) for orthodontic treatments 

at the university clinic were initially collected for this study. 

The exclusion criteria were as follows:  

1. Prior orthodontic treatment 

2. Impacted upper teeth in the mid palatal region  

3. Congenital malformations of the maxilla (i.e cleft palate) 

4. Blurry or low quality CBCTs due to scatter 

 

Out of the 155 patients, 145 did not have the exclusion criteria and were thus included in the 

study. The CBCT images were in DICOM format and anonymized prior to collection for this 

study, thus, they were first converted from DICOM format to PNG image format with the 

ITK-SNAP software (726 * 644 pixels). The axial view of the patient images’ which 

consisted of the average number of 450 slices was classified into 5 groups of MPS 

maturation stage as first stated by Angeliere et al. by two orthodontists. In the case of 
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any conflicts, a third orthodontist evaluated the images for determining the class of MPS. 

Once the patients were classified based on the Angeliere method, the slices belonging to 

patients’ palates were selected and saved in a separate folder.  

The palate slices were then classified into three groups AB (maturation stages A and B) C and 

DE (maturation stages D and E), the same as chapter 2. This was done as a way to reduce 

the amount of variability for the DL model as the aim of this study was to help in reaching 

a diagnosis for an optimal treatment plan and the treatments for stages A and B are 

clinically the same, but can differ from stage C, and stages A B and C have different 

treatments compared to stages D and E. (Ladewig, M. et al., 2018) 

3.3.1 Data preprocessing: 

To prepare the CBCT axial slices containing the MPS to be stacked together into 3D arrays for 

this study, I first determined the ROI in the slices, as detailed in Chapter 2, Section 2.2.1. 

After identifying the ROI, I needed to classify and select the ideal slice containing the MPS 

from all the CBCT axial slices. This selection was done using the ROI classifier described in 

Chapter 2, Section 2.2.2. 

3.3.2 Three dimensional arrays and Training, Validation and Testing 

The original dataset consisted of 145 CBCT images. To create 3D arrays from the axial slices 

with the ROI cropped, the slices containing the midpalatal suture were stacked using the 

Numpy library. Since CNN models require uniform input shapes, all 3D arrays were 

reshaped to (12, 140, 47, 3), matching the size of the largest array, where 12 represents 

the depth of the arrays. (Figure 10) 
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145 CBCT images were used for training, validation, and testing. These were split into 50% for 

training, 20% for validation, and 30% for testing. To address the limited number of CBCTs 

that met the inclusion criteria, horizontal flip augmentation was applied to the training 

data alone, resulting in a total of 150 arrays (AB: 46, C: 62, DE: 42). 

 

Figure 11 Creating 3D arrays from 2D axial slices of CBCT 

 

3.3.3 CNN Architecture  

The CNN architecture utilized in this study is designed to classify 3D data into one of three 

classes (AB, C, DE). This model consists of four convolutional blocks, each followed by 

batch normalization to stabilize training, rectified linear unit (ReLU) activation to 

introduce non-linearity, and max-pooling layers for spatial downsampling.(Figures 11 and 

12) 

In the first convolutional block, input tensors undergo convolution with 64 filters of size 

3x3x3, followed by batch normalization, ReLU activation, and max-pooling with a stride 

of 2x2x2. Subsequently, in the following three convolutional blocks, the number of filters 
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is increased progressively to 128, 256, and another 256 respectively, while the kernel size 

and pooling operations remain consistent. 

After the convolutional layers, the tensor is flattened to be processed by fully connected 

layers. The flattened tensor is passed through two dense layers with 256 and 128 neurons 

respectively, both employing ReLU activation functions. Finally, the output layer utilizes 

softmax activation to produce class probabilities. 

The model is compiled using the Adam optimizer with a categorical cross-entropy loss 

function, and accuracy is monitored during training.  

Additionally, to facilitate model training, we implemented two callback mechanisms. The first 

is ModelCheckpoint, which periodically saves the model's weights during training. These 

checkpoints are stored in the directory, with the best performing model being saved 

based on validation accuracy. The second callback, EarlyStopping, terminates training if 

the monitored metric in our case validation accuracy and validation loss does not improve 

for a specified number of epochs (patience), thus preventing overfitting. Both callbacks 

contribute to efficient model training and ensure the preservation of the best performing 

model. 
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Figure 12 3D CNN architecture overview for classifying MPS maturation stage 

 

Figure 13 3D CNN architecture breakdown for classifying MPS maturation stage 
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3.4 Results 

3.4.1 Training of Convolutional Neural Network (CNN) 

 

Cone Beam Computed Tomography (CBCT) images from a cohort of 145 patients were 

analyzed, with each patient contributing between 3 to 12 slices on average. This is 

because each patient has a different thickness of palate, which means a patient might 

have a palate which shows the MPS in numerous slices while another patient with a thin 

palate only has the MPS visible in a few slices. Two orthodontists independently 

categorized these images into five maturation stages, achieving an inter-rater reliability 

of 68%. In instances of disagreement, a third orthodontist intervened to provide a final 

categorization. The images were then classified into three groups of AB, C and DE due to 

the clinical approach for the treatment of these stages. For the trained convolutional 

neural network (CNN) model, we observed a training accuracy of 64% and a validation 

accuracy of 71.43%. (Figure 13) 
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Figure 14 Training and Validation Accuracy and Loss for 3D CNN model 

3.4.2 Testing Results 

The trained model was evaluated on a test dataset. The set consists of 46 arrays, distributed 

among the three groups: AB (14 samples), C (23 samples), and DE (9 samples).  

 

The testing results from the first test set indicated a test loss of 0.9 and a test accuracy of 

78.26%. Furthermore, the classification performance of the model was assessed using 
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precision, recall, and F1-score metrics for each class (AB, C, DE). The results demonstrated 

acceptable precision, recall, and F1-score values for all classes, indicating the 

effectiveness of the model in accurately classifying midpalatal maturation stages. 

 

 

 

Figure 15 Confusion Matrix for testing 3D CNN model on test set 
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Table 2 Evaluation Metrics for testing 3D CNN model 

Class Precision Recall F1-score Support 

AB 0.77 0.71 0.74 14 

C 0.74 0.87 0.80 23 

DE 1.00 0.67 0.80 9 

Overall 0.84 0.75 0.78 46 

 

 

3.5 Discussion 

Our proposed 3D CNN model, with a testing accuracy of 78.26%, shows promise in classifying 

midpalatal suture (MPS) maturation stages on CBCT images. While these results are 

promising, further analysis and comparison with existing methods are necessary to fully 

understand the model's performance and its implications in clinical settings. 

 

One significant advancement of our approach is the transition from a 2D to a 3D analysis of 

the MPS. The 2D CNN model demonstrated high training and validation accuracies of 

97.81% and 98.08%, respectively, with a test accuracy of 96.49%. However, the 2D 

approach inherently simplifies the complex anatomy of the MPS by analyzing only 

individual slices, which may overlook crucial spatial information that is only captured in 
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3D. This limitation is particularly relevant in cases where the palate is curved, or the suture 

does not present as a single entity in any given slice. 

The 3D volumetric architecture, on the other hand, offers a more comprehensive evaluation 

by considering the entire volumetric structure of the MPS. This allows for a more accurate 

assessment of suture maturation stages, potentially leading to different staging results 

compared to 2D analysis. The 3D approach can capture subtle variations in the suture that 

may be missed in 2D slices, providing a more holistic view of the maturation process. 

 

Despite these advantages, our 3D model's performance indicates the need for further 

refinement. The relatively lower testing accuracy compared to the 2D model suggests that 

the 3D CNN requires optimization and validation with larger datasets. Nonetheless, the 

shift towards 3D analysis is a crucial step forward, as it aligns more closely with the 

anatomical reality of the MPS, potentially improving the accuracy and reliability of 

orthodontic treatment planning. 

 

In conclusion, while our study demonstrates the feasibility and potential of a 3D CNN 

approach for MPS classification, it also highlights the importance of continued research 

to optimize and validate these models. The comparison between 2D and 3D methods 

underscores the necessity of a volumetric approach in capturing the full complexity of 

craniofacial structures, paving the way for more accurate and effective AI-driven tools in 

orthodontics. 

 



 

73 

 

3.6 Conclusion  

 

Our study underscores the potential of employing a 3D CNN model for the classification of 

3D arrays from MPS maturation stages on CBCT images. With a testing accuracy of 

78.57%, our proposed model demonstrates promising performance in this critical area of 

orthodontic diagnosis. 
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CHAPTER 4- DISCUSSION 

This thesis aimed to improve orthodontic diagnosis by integrating machine learning 

techniques to tailor treatment plans to each patient's unique needs. Specifically, it 

focused on the application of deep learning models to classify MPS maturation stages 

using CBCT images. Two main approaches were introduced: a 2D CNN model and a 3D 

CNN model. The 2D CNN model demonstrated significant potential in classifying MPS 

maturation stages from individual CBCT slices, achieving a validation accuracy of 98.08% 

and a test accuracy of 96.49%. The 3D CNN model, developed to address the limitations 

of the 2D approach for curved palates, showed promise with a testing accuracy of 78.26% 

on a separate test set. 

 

4.1 Detailed Discussion of Results 

4.1.1 2D CNN Model 

The 2D CNN model's high validation and test accuracies underscore its effectiveness in 

classifying MPS maturation stages. This model used a 9-layer CNN architecture which, 

despite being lightweight, yielded high accuracy. The use of a 2D approach was 

particularly effective for non-curved palates where the suture can be visualized as a whole 

in a single slice. This model's simplicity and computational efficiency make it suitable for 

deployment in resource-constrained environments, such as dental clinics with limited 

access to high-end computing resources. 
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This model included dropout layers and batch normalization. This simplification, combined 

with effective preprocessing steps such as data augmentation and ROI classification, 

allowed the model to focus on the suture rather than surrounding structures. The 

resulting model demonstrated a robust ability to distinguish between different MPS 

maturation stages, which is crucial for accurate treatment planning. 

 

Comparing our 2D model’s performance with existing studies, particularly Zhu et al.’s work, 

highlights its competitive edge. Zhu et al. employed a ResNet-18 model for MPS 

classification and achieved an accuracy of 79.10%. Despite having fewer parameters (4.73 

million vs. 11.69 million), our model achieved higher accuracy. Zhu et al.’s study involved 

a larger dataset of 785 CBCTs, yet our model, with a smaller dataset of 111 CBCTs, 

demonstrated superior performance. This comparison underscores the effectiveness of 

optimized lightweight models for specific medical imaging tasks. 

Additionally, Zhu et al. explored the use of deeper models like ResNet-50 and ResNet-101, 

which achieved higher accuracies but at the cost of significantly increased computational 

complexity. Our study, by contrast, demonstrates that with proper optimization, a smaller 

model can achieve comparable or even superior performance, thus highlighting the 

practicality of using small CNNs in resource-constrained clinical settings. 
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4.1.2 3D CNN Model 

The 3D CNN model was developed to address the inherent limitations of the 2D approach, 

particularly for curved palates where the suture is not visible in a single slice. The 3D 

model aimed to capture the three-dimensional nature of the MPS, providing a more 

comprehensive analysis. This model used a volumetric approach, stacking CBCT slices to 

create 3D arrays which were then processed using a CNN architecture. 

 

The 3D CNN model achieved testing accuracy of 78.26% on a separate test set. While lower 

than the 2D model, this result is promising given the complexity of the 3D structure. The 

model's architecture included four convolutional blocks with progressively increasing 

filters, followed by fully connected layers. This design allowed the model to capture 

spatial relationships and contextual information across multiple slices, providing a holistic 

evaluation of the MPS. 

 

4.2 Clinical Implications 

Accurately assessing suture maturation stages is crucial for orthodontic and orthognathic 

surgery planning, enabling tailored interventions based on individual patient 

characteristics. By offering automated, objective classification, our models could improve 

diagnostic accuracy and streamline clinical workflows. Reducing the reliance on subjective 

manual classification can help standardize diagnosis and treatment planning across 

practitioners, leading to more consistent treatment outcomes. 
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Importantly, our model holds potential for guiding clinicians in selecting the most appropriate 

treatment options for both non-surgical and surgical cases. For non-surgical cases, the 

model can assist in determining the maturation stage of the midpalatal suture (MPS), 

enabling clinicians to choose interventions tailored to the specific stage of development. 

Similarly, for surgical cases, the model can aid in classifying the suture’s maturation, 

ensuring that clinicians can make informed decisions about the necessity and type of 

surgical intervention. This automated approach may significantly improve treatment 

accuracy and outcomes in both contexts. 

 

4.2.1 Scenarios with Small CNNs 

 

Using small CNN models offers several key advantages: 

1. Efficiency and Speed: Small CNNs are computationally efficient, which is crucial for 

applications in clinical settings where real-time processing may be required. This 

efficiency can lead to quicker diagnosis and treatment planning. 

2. Resource Constraints: Smaller models require less computational power and memory, 

making them suitable for deployment on devices with limited resources, such as portable 

medical devices or older computers often found in clinical environments. 

3. Generalization: Small CNNs, with fewer parameters, are less likely to overfit, especially on 

smaller datasets. This can be particularly beneficial in medical imaging where collecting 

large datasets can be challenging. 
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4. Interpretability and Maintenance: Smaller models are easier to interpret, debug, and 

maintain. This is an important factor in medical applications where understanding model 

decisions can be critical for gaining trust from medical professionals and ensuring patient 

safety. 

 

4.2.2 Specific Use Cases: Real-World Applications 

In real-world applications, small CNNs are particularly advantageous for initial screenings or 

routine check-ups where a quick assessment is needed. For example, in a busy 

orthodontic clinic, a small CNN can provide reliable results swiftly, enabling efficient 

patient management. Additionally, in rural or under-resourced medical facilities, 

deploying small CNNs on existing hardware can still provide accurate diagnostic 

capabilities without the need for expensive upgrades. These models can be used in 

portable medical devices for fieldwork, ensuring accessibility to advanced diagnostic tools 

even in remote locations. 

4.3 Limitations and Future Directions 

While our study demonstrates the potential of deep learning models in classifying MPS 

maturation stages, several limitations must be acknowledged. The relatively small sample 

size may limit the generalizability of our findings. Future studies should include larger and 

more diverse datasets to validate the robustness of our models. Additionally, the 3D CNN 

model's accuracy, while promising, indicates room for improvement. 
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4.4 Conclusion 

This thesis highlights the potential of deep learning, particularly convolutional neural 

networks (CNNs), in automating the classification of midpalatal suture maturation stages 

on CBCT images. The developed 2D and 3D models offer promising tools that could assist 

orthodontic practitioners by improving diagnostic accuracy and efficiency. The 2D CNN 

model shows strengths in computational efficiency and accuracy, while the 3D CNN model 

provides a more comprehensive analysis, which may be useful in more complex cases 

where a 2D approach could be limited. 

 

However, despite these encouraging results, further validation and refinement are necessary. 

Expanding the sample size, applying more advanced data augmentation techniques, and 

incorporating additional imaging modalities could improve model performance. 

Additionally, the practical integration of these models into clinical settings has yet to be 

evaluated, which is crucial to understanding their real-world impact on patient outcomes. 

 

It is also important to note that this study relies heavily on Anglieri’s staging system for 

midpalatal suture maturation. This presents a significant limitation, as the validity of our 

findings may be affected if future research calls into question the accuracy or relevance 

of Anglieri’s classification. Acknowledging this, ongoing validation and the exploration of 

alternative classification systems will be critical to ensure the continued relevance and 

accuracy of AI-driven models in orthodontic diagnosis. 
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In conclusion, while this study lays a foundation for using advanced computational tools in 

craniofacial imaging analysis, much work remains. By harnessing the strengths of both 2D 

and 3D CNN models, we can continue to improve diagnostic tools, ultimately aiming to 

enhance patient care and treatment outcomes in orthodontics. 
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