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Abstract

I use Keck I spectroscopic observations of 701 Ha sources in the nearby spiral galaxy M33
to determine oxygen, nitrogen, sulfur, and neon abundances in H II regions across the face
of the galactic disk. Abundance measurements are obtained with two separate methods
(PyNeb and NEAT) through the use of the only known direct metallicity determination
method, which relies on detections of weak, temperature-sensitive auroral lines. This data
set is approximately double the size of any previous H 1I region metallicity study in M33.
Reliable oxygen abundances are determined for 88 H 11 regions with PyNeb, and 108 H 11

regions with NEAT (with significant overlap between the two samples).

I investigate the temperature and density distributions, as well as the relation between
strong-line metallicity indicators and the metallicity derived from weak auroral lines. I plot
radial abundance gradients for [O/H], [N/H], [N 11/0 11}, [S/H], [S/O], [Ne/H], and [Ne/O].
The [O/H] gradient has more scatter than the [N/H] gradient, although both show clear
signs of decreasing abundances with increasing galactic radius. The [N 11/0 11] gradient
supports previous evidence that the nitrogen abundance falls off more rapidly than oxygen
at larger radii. Conversely, the [Ne/O] gradient indicates that neon falls off more slowly

than oxygen at larger radii. The sulfur radial gradient is consistent with a flat slope.

I present 2D metallicity maps for [O/H], [N/H], and [N 11/0 11]. The [O/H] map indicates
significant azimuthal fluctuations across the disk of M33, although it is uncertain whether
the dominant factor is true azimuthal structure or the relatively large uncertainties on the
oxygen abundance measurements. The [N/H] and [N 11/O 11] abundance maps are much

smoother than the [O/H] map.
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CHAPTER 1

Introduction

The aim of my thesis is to calculate the oxygen abundance in numerous H II regions across
the face of the spiral galaxy M33 as part of an ongoing work called the M33 Metallicity
Project. In §1.1, T give an overview of the source of various elements in the Universe,
including oxygen, and a discussion of how the abundances of these elements evolves over
cosmic time. I describe the importance of my observations in a larger context in §1.2,
while an explanation of how my observations yield oxygen abundance measurements in H 11
regions is given in §§1.3—1.5. Lastly, I provide a complete description of the M33 Metallicity
Project in §1.6.

1.1 Cosmic chemical abundances

Hydrogen and helium compose roughly 98% of the visible baryonic matter in the Universe.
All the hydrogen and nearly all of the helium in the Universe today was created within
the first ~ 3 min after the Big Bang, in a process known as Big Bang Nucleosynthesis
(BBNS). At a much later time, the vast majority of all metals’ and a small percentage of
helium were produced through stellar nucleosynthesis and supernovae. Thus, the chemical
abundances in stars and the interstellar medium (ISM) of hydrogen, helium, and metals
have a profound effect on our understanding of the standard cosmological model, stellar

processes, and galactic chemical evolution.

n astronomy, all elements other than hydrogen or helium are referred to as “metals”, and the “metal-
licity” is the abundance of these heavy elements. That said, throughout this work, “metallicity” will usually
refer to, specifically, the oxygen abundance, since oxygen is the third most abundant element after hydrogen
and helium, making it the most readily observed metal.
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1.1.1 Big Bang nucleosynthesis

Big Bang nucleosynthesis refers to the creation of light elements—mnamely hydrogen, helium,
and lithium—during the Big Bang. The major reactions that created these elements are as

follows

p+n—=D+xy
D+n—3H+y
D+p—3He+y
SH4+p — *He + v
3He +n — *He + v
D+D—=3H+p
D+D —3He+n
SHe+D — *He+p
SH+D — "He+n
SH+ *He — "Li+ .

According to BBNS, the primordial abundances of the light elements D, *He, *He, and
"Li relative to hydrogen are functions of the baryon to photon ratio. This is because it is
the average photon energy that determines what nuclear reactions will occur at any given
Universal epoch. Accurately determining the primordial helium abundance?, Y, is therefore

critical to testing the consistency of the BBNS theory.

One method of establishing Y, that has seen some success is to plot the helium abundance,
Y, of hot H 11 regions with low metallicities and weak underlying stellar continua, against
the metallicities, Z, of the H 11 regions. By assuming Z, = 0 during the epoch of BBNS, it
is clear that the intercept of this plot will correspond to the primordial helium abundance:
Y =Y,+Z(dY/dZ). Using this technique Pagel et al. (1992) determined Y, = 0.228+£0.005.

1.1.2 Stellar fusion nucleosynthesis

Stellar nucleosynthesis and supernovae must have produced all the metals present in the
Universe today, since the processes required for their formation did not exist in the era of
BBNS. Although metals only compose ~2% of the Universe by mass, planets such as the

2 According to convention, X refers to the mass fraction of hydrogen, Y to the mass fraction of helium,
and Z to the current metallicity or mass fraction of metals. The addition of the subscript , denotes
primordial abundances.
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Earth and all of its countless life forms could not exist without them, and the presence
of metals significantly alters the heating and cooling rates of the ISM. Stars derive energy
from nucleosynthesis by fusing protons and neutrons into more stable nuclei, which releases
energy. Some of the key processes by which they do this are called the p-p chain, the CNO

cycle, the s-process, and the r-process. Each of these will be briefly explained.

The p-p chain and CNO cycle are both processes that convert hydrogen to helium. The p-p

chain begins by converting two protons to a 3He nucleus:

p+p—?H+e +v
H+p — 3He + 7.

The *He may then collide with another 3He to form “He and two protons, or it may interact

with an already formed *He and proceed to make two *He nuclei,

3He + *He — "Be + v
"Be+e” — Li4+v
Li+p— 2 *He.

Alternatively, hydrogen may fuse to form helium through the CNO cycle. This cycle uses
carbon, nitrogen, and oxygen as catalysts, and has multiple branches due to its inherent

complexity compared to the p-p chain. The most important branch is:

1204 p— BN 44

BN 5 BC+et +v
BCtp—-UN+4q
N 4 p— 150 4

50 5 BNt et 4+ v
N + p — 2C + “He.

At low temperatures (i.e., in low mass stars) the p-p chain is the dominant helium formation
reaction because it takes less energy to fuse two protons than to fuse a proton and a carbon
nuclide. The CNO cycle takes over at high temperatures (i.e., in high mass stars) because
it is faster than the p-p chain process (Hansen et al., 2004). The transition between which
process dominates occurs at stellar masses of M ~ 1.3 M, (Salaris and Cassisi, 2005), where

M is the initial mass of the star and M is the mass of the Sun.

All stars with initial masses M 2 0.8 Mg evolve along the Red Giant Branch (RGB) once

the hydrogen fuel in their cores is depleted and therefore nuclear fusion reactions must come
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to a halt. While on the RGB, hydrogen fusion occurs in a shell surrounding an inert helium
core and the core contracts due to the absence of any exothermic nuclear reactions occurring
in the core. Regardless of the star’s initial mass, hydrogen shell burning always proceeds
via the CNO cycle (Hansen et al., 2004), which is the dominant source of nitrogen in the
Universe (discussed further in §1.1.4).

As the star contracts, the core temperature rises until the helium in the core is hot enough
to begin fusing. Whether or not this helium ignition is a peaceful process depends on the
initial mass. Stars of M 2 1.5 M, ignite helium peacefully because the core temperature
attains sufficiently high temperatures when the core is still at low enough densities that it
is not degenerate (i.e., the core density is less than 106 g/cm?®). Meanwhile, stars with M
between 0.8-1.5 M, ignite helium in a short-lived “flash” because the high temperatures
required for this are not attained until the core is partially degenerate (i.e., the core density
is approximately 10° g/cm?). Regardless of how helium burning begins, stars that have
reached the red giant phase burn helium via the triple-a-process in their cores for about

10% as long as the main-sequence hydrogen core burning phase lasted (Hansen et al., 2004).

The triple-a-process converts three “He nuclei into one 2C nuclide:

‘He + *He — ®Be + v
8Be + 1He — 12C* 4+ 4
1207 5 120 4,

If a fourth « particle is available, helium burning will also produce oxygen
120 4+ 4He — 00 +~.

Further o particles can be used to form 2°Ne and ?*Mg, however carbon and oxygen are
the dominant products of helium burning due to the low reaction rates of the neon and
magnesium reactions (Meyer et al., 2006; LeBlanc, 2010). It should also be noted that lower
mass stars produce more carbon than oxygen from helium burning, whereas higher mass

stars favour oxygen (Hansen et al., 2004).

At the end of the red giant phase, helium core burning ceases because the fuel has once again
been exhausted, leaving behind a C-O core. As before, the star contracts, and eventually
a shell of helium surrounding the core is hot enough to ignite. A second shell of hydrogen
CNO burning continues to survive, and the star now evolves along the Asymptotic Giant
Branch (AGB). Stars along the AGB have very strong winds that result in the loss of up
to 50% of the initial mass through the removal of envelope material (Hansen et al., 2004).
At the end of the AGB phase, lower mass stars (M ~ 0.8-8 M) end their lives by ejecting

their remaining outer layers in what is known as a planetary nebula, leaving behind the
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core of the original star in the form of a C-O white dwarf. Higher mass stars (M 2 8 Mg)
continue the cycle of fuel exhaustion, followed by core contraction, which heats the core and

ignites the next stage of nuclear burning for heavier and heavier elements.

Table 1.1 outlines the order in which the major nuclear burning phases occur for a 25 M,
star. As each new phase commences, a shell of the previous phase surrounds the core,
followed by the shells of all other previous phases (as shown in Figure 1.1). Table 1.1 also
shows that the duration of each phase decreases as the star evolves because the prevailing
reactions produce less energy per nuclear reaction yet the luminosity increases with each
phase due to an increase in the reaction rate as the core temperature increases. Stellar fusion
nucleosynthesis ceases when the nuclei in the core are at their most stable and therefore
unable to produce energy through fusion. These “most stable” nuclei are **Fe and all of
its atomic neighbours (Sc, Ti, V, Cr, Mn, Co, Ni, and Cu), called the iron-peak nuclides
(Binney and Merrifield, 1998).

Thus, at the end of a M 2 8 Mg star’s lifetime, the core is iron rich. At this stage, the
weight of the outer layers is supported by electron degeneracy pressure rather than thermal
pressure. In other words, the core resembles a white dwarf star. Chandrasekhar (1931)
derived the maximum mass of an ideal white dwarf star based on how much weight the
degeneracy pressure could support. Analogously, when the degenerate iron-rich core attains
its Chandrasekhar mass, the degeneracy pressure is no longer able to support the weight of

the outer layers of the star so the core collapses (Baron and Cooperstein, 1990).

During core collapse, temperatures in the core are so high that the iron nuclei are photo-

disintegrated, such as by the reaction
Fe + v — 13 “He + 4 n.

This reaction removes ~-rays from the radiation field, which decreases the core pressure
further, thereby speeding up the contraction. Eventually even helium is destroyed through
photodisintegration, leaving a core composed mainly of protons and electrons. These in
turn fuse to form a core of neutrons (p + e~ — n + v,). The removal of electrons reduces
the degeneracy pressure, which once again feeds the core contraction, forming a neutron
star (or black hole in stars more massive than ~ 25 Mg, Hansen et al. 2004). During this
process, the outer layers detach from the rapidly collapsing core and later get expelled as a

supernova (Types Ib, Ic, and II).

In addition to the aforementioned nuclear burning phases, stars can also go through “dredge-
up” phases where elements created in the core by nuclear fusion are brought to the surface
of the star through convective mixing. Specifically, during the transition from hydrogen

burning to helium burning in the core and helium burning to heavier element burning (i.e.,
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H rich envelope

H burning

He burning

\¥4

Figure 1.1 Schematic of the onion-like shell structure of a massive star after silicon burning
has commenced (not to scale).

Table 1.1. Phases of nuclear burning in a 25 Mg star

Burning phase Primary products Core temperature  Core density Timescale
K g cm™3

H He 6.0 x 107 5 6 x 107 years
He C,0 2.0 x 108 700 5 x 10° years
C 0O,Ne,Mg 9.0 x 108 2 x 10° 600 years
Ne 0O,Mg,Si 1.7 x 107 4 x 108 6 months
0 Si,S 2.3 x 109 107 6 days
Si Fe, Fe-peak nuclides 4.0 x 10 3 x 107 1 day

Note. — Adapted from Arnould and Samyn (2000) Figure 20.
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RGB and AGB stars), the convective zone at the surface of the star deepens to include
radii closer to the centre of star that have been enriched through hydrogen burning. These
enriched products travel through the convective zone to the surface of the star in the first
dredge-up phase. A second dredge-up phase occurs when the convective zone deepens again
during the transition from helium to carbon burning. These dredge-up phases are more
important in higher mass stars (M 2 2.5M)) since in lower mass stars the convective zones
do not grow as deep, and the shell burning between dredge-up phases can act to erase the
effects of the dredge-up (Boothroyd and Sackmann, 1999).

That said, low-mass stars can be dramatically affected by “cool bottom processing” (CBP),
an alternative mixing mechanism to dredge-up. Below the convective envelope in lower
mass stars, there lies a radiative energy transport zone. In CBP, material is slowly brought
from the convective zone at the surface, through the radiative zone to the hydrogen burning
shell, then returned to the surface. As this material encounters the hydrogen burning shell,
it is enriched through the permissible nuclear processes. Importantly, CBP has been shown
to correctly predict the i—g ratio observed at the surfaces of low-mass red giants (e.g.,
Wasserburg et al., 1995; Boothroyd and Sackmann, 1999).

1.1.3 Heavy element nucleosynthesis

BBNS and stellar nucleosynthesis cannot fully explain the abundances of all the elements
observed in the Universe today. Two important paths by which nuclei heavier than %6Fe
are formed are known as the s- and r-processes, where “s” and “r” refer to the slow and
rapid speeds at which they proceed. Some heavy elements are formed when there is a weak
neutron flux, through the s-process. Others require a strong neutron flux and form through
the r-process. The strength of the neutron flux varies with the age of the star, so it is

possible for both types of heavy elements to be produced in the same star.

A weak neutron flux is generated from previous reactions which took place in the star, such

as during carbon and oxygen burning (LeBlanc, 2010)

1ZC_|_12C —>23Mg+n
0 +1%0 =S +n.

In the s-process, an already present iron-peak nuclide or stable heavy element from a previous
stellar generation captures a free neutron to form an unstable isotope. The unstable isotope
B~ -decays (n — p—+e~ + ) before capturing another free neutron. This process of neutron
capture followed by S~ -decay repeats until the reactions producing free neutrons cease or

a stable isotope is formed. An example of how the s-process can transform a *Cd nuclide
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into 116Sn is

MCd+n —MCd + 4
50d - WIn e + 1,
H5In 4+ n — 10In 4 4
HOry — H68n 4 e + 7,

6Ty 4+ — 1168 + 5.

In the above reactions, '*Cd has a half-life of 54 hours and 1%In has a half-life of 14 seconds.

All other isotopes are stable.

Alternatively, a strong neutron flux can be created either when the core temperature reaches
values higher than approximately 10°K (such that high energy photons can eject a neutron
from nuclei), or during the late evolutionary stage of high mass stars when protons and
electrons in the core fuse to form neutrons (p + e~ — n + v,) (LeBlanc, 2010). When this
occurs, the r-process works to form heavy elements. In the r-process, an initial neutron
capture results in the production of an unstable isotope, however there is not enough time
for the unstable isotope to S~ -decay before a second neutron capture occurs. Free neutrons
continue to be captured until the nucleus is so unstable that the time for 5~ -decay becomes
comparable to the time between successive neutron captures. At this point, the nucleus will
[~ -decay until it reaches a stable state. An example of this process is in the production of

1228 from 1%In

U5 4+ n — 10In 4 4
U6y +n — 170 + 0%
Un 4 n — 18I 4+ 4
U8 +n — In 4 4
W 4 n — 12n 44
2 40— 1%2In 4+ 4

1221 3 12260 4 6™ + 7.

1.1.4 Primary and secondary enrichment elements

Primary enrichment elements can be made in a star that was purely hydrogen at birth,
and therefore the yield of primary enrichment elements from a star is independent of the
star’s initial metallicity. Conversely, secondary enrichment elements require the presence of

a primary enrichment element from a previous stellar generation, and therefore the yield is
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dependent on the star’s initial metallicity.

For example, oxygen is a primary element because it is produced during helium burning
(Meyer et al., 2006), so the final abundance has no dependence on the initial metallicity of
the star. Meanwhile, nitrogen can behave as either a primary or secondary element. This is
because the synthesis of nitrogen mainly happens through the CNO cycle, and the reaction
UN + p — 150 + ~ is the bottleneck of the entire cycle. Therefore, the cycle achieves
equilibrium only when high levels of N accumulate (Henry et al., 2000; Hansen et al.,
2004). In other words, after CNO-burning is complete, *He and *N are enriched, while 12C
and 00 are depleted (Meyer et al., 2006). For metal-poor stars, the carbon and oxygen
that form nitrogen are they themselves primarily created within the star, making the yield
of nitrogen independent of the initial metallicity (like a primary element). For metal-rich
stars, the yield of nitrogen primarily depends on the initial amounts of carbon and oxygen

and therefore behaves as a secondary element (Esteban et al., 2001).

Thus, the abundance ratio [N/O], or its frequently used proxy [N 11/0 11] (Peimbert, 1967),
traces primary versus secondary enrichment products. Due to the the dual nature of nitro-
gen, at low metallicity, [N 11/O 11] is constant as a function of oxygen abundance (under-
abundant), but at high metallicity [N 11/O 11] increases as a function of oxygen abundance
(overabundant) (e.g., Peimbert, 1975; Andrews and Martini, 2013). The transition between
the two regimes marks the transition between primary and secondary nitrogen. Mapping the
[N 11/0 11] ratio in various stellar environments (e.g., different types of galaxies, or at differ-
ent radii within a single galaxy) is important for constructing accurate enrichment models,
and it can also aid in deriving the primordial helium abundance (Pagel and Kazlauskas,
1992).

1.1.5 Injection of metals into the ISM

The initial mass of a star affects everything from the duration of the star’s lifetime to the
type of stellar remnant that will eventually form. Of particular importance to the current
work is how the initial mass affects the star’s ability to enrich the ISM, as well as through

what mechanisms this enrichment takes place.

Low mass stars (M < 0.8 M) have lifetimes longer than the age of the Universe (1011-10'2
years for a 0.1 Mg star, Hansen et al. 2004). This is partly due to their low luminosity
and accordingly low rate of fuel consumption, and partly due to the abundance of fuel
available to the hydrogen burning in the core thanks to the fact that these low mass stars
are expected to be completely convective (meaning the expended hydrogen in the core is
continually replenished by unprocessed hydrogen from the outer layers). Additionally, there

is not enough gravitational energy to ever achieve helium burning (Hansen et al., 2004).
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Table 1.2. Stellar origins of ISM metals

Initial Stellar Mass  Relevant Burning Phases End State ISM Metal Contribution
Mg

<0.8 H (p-p chain) — —
Planetary nebula,

0.8-1.5 H (p-p chain), He White dwarf, (thermal 3He, 14N, (heavy elements)
instability supernova)
Planetary nebula,

1.5-8.0 H (CNO cycle), He White dwarf, (thermal 14N\

instability supernova)

H (CNO cycle), He, C, Core-collapse  super- N, O, Fe, Fe-peak nu-

8-25 . .
Ne, O, Si nova, neutron star clides, heavy elements

H (CNO cycle), He, C, Core-collapse  super- N, O, Fe, Fe-peak nu-
Ne, O, Si nova, black hole clides, heavy elements

Consequently, the material that composes these stars is not metal rich, and is locked in the
star for very long time scales. Therefore, these stars do not contribute to the enrichment of
the ISM (LeBlanc, 2010), and will not be considered further here.

As already discussed in §1.1.2, and reiterated in Table 1.2, stars of intermediate initial
masses (M ~ 0.8-8.0 Mg) become planetary nebulae and white dwarfs, while high mass
stars (M 2 8 Mg) end up as neutron stars and black holes after a core-collapse supernova.
I will now look at which metals are injected into the ISM by these two mass categories in
more detail. First, a closer look at the intermediate mass stars. From the description given
in §1.1.2, it is clear that material is injected into the ISM primarily through the AGB winds
and the ensuing planetary nebula ejection. Both of these events expel envelope material,
whereas the core material remains locked in the white dwarf. The envelope material contains
significant amounts of N from CNO shell burning, as well as some 3C, 170, and ?*Na
(Arnett, 1996). Iben and Truran (1978) note that intermediate mass stars are the main
contributors of 3He in the ISM.

Another important mechanism by which intermediate mass stars inject enriched material
into the ISM is through a specific class of supernova called Type Ia. In the simplest scenario,
these supernovae occur when a white dwarf accretes mass from a binary companion star. At
some point, enough matter will have accreted onto the white dwarf such that it is no longer
able to support its own weight through degeneracy pressure, so it collapses. This collapse
and resultant high temperatures lead to runaway thermonuclear reactions that produce so
much energy the star explodes as a supernova. At higher densities—close to the centre of
the white dwarf—isotopes such as the radioactive *°Ni are produced (°°*Ni then decays to

%6Co and °°Fe). At lower densities—in the outer layers of the white dwarf—intermediate
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mass elements are observed, most notably silicon (Mazzali et al., 2007). After a Type Ia
supernova, the white dwarf is completely destroyed (no central remnant remains) and the

heavy elements produced during the supernova event are injected into the ISM.

For high mass stars, material is injected into the ISM primarily through core-collapse su-
pernovae. During a core-collapse supernova, several solar masses worth of envelope material
is expelled (Detre, 2013). Although the iron in the photodisintegration region is destroyed
when the core collapses, iron and other heavy elements that rose to the surface through
the dredge-up processes survive and are injected into the ISM during the supernova event.
The material ejected by the different types of supernovae do not have identical enrichment
signatures. Matteucci and Greggio (1986) argue Type Ia supernovae contribute ~70% of
the observed iron in the ISM, while core collapse supernovae contribute the remaining iron
and all, or nearly all, of the observed oxygen. Overall, even though high mass stars compose
a tiny fraction of the total number of stars, they are by far the greatest contributors to the
metal enrichment of the ISM.

1.2 Galactic metallicity gradients and enrichment mod-

els

Traditionally, the metallicity gradient in disk galaxies has been considered the key quan-
tity that simplifies the study of very complex processes of metal enrichment and chemical
evolution in a galaxy. Metal enrichment occurs in localized regions—notably due to star
formation and supernovae explosions, but many other factors play a role (see §1.1)—and
the metallicity gradient is affected by these enrichment processes. The metallicity gradient
is therefore a vital constraint in models of star formation histories, stellar populations, the
interstellar medium (ISM), and galaxy chemical evolution (e.g., Kudritzki et al., 2015; Werk
et al., 2011).

Aller (1942) studied the spectra of “emission nebulosities” (what we now call H 1I regions)
in M33 and remarked “the O 11I lines seem frequently prominent in those objects which are
farther from the nucleus than 20’, while in those nebulosities nearer than 20’ these lines are
often weak or missing.” Although not fully understood by Aller at the time, this was in fact
one of the first observations of a metallicity gradient in another spiral galaxy. Quantifying
such gradients improved with the advent of enrichment models, which aided in the difficult
task of converting emission line fluxes to metallicity values. For example, Searle (1971)
made use of simple models in his study of several nearby galaxies to deduce the presence of
three abundance gradients: O/H, N/H, and N/O. Searle observed a moderate rise in O/H

towards the centres of galaxies was accompanied by a much larger increase in N/H.
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The physical origin of these negative radial metallicity gradients in spiral galaxies remains
unclear. Vila-Costas and Edmunds (1992) used data for some 30 spiral galaxies that was
available in the literature and found evidence that the effective yield (or amount of newly
created metals returned to the ISM compared to the amount of gas locked up in stars)
“decreases with radius and/or increases with abundance”. One plausible explanation of this
relation is that galactic disks promote the inward drift of enriched gas, and gas at large
galactic radii is replenished by the accretion of metal-poor intergalactic gas (Binney and
Merrifield, 1998).

Other factors that must be taken into account are the effects of stellar “feedback”. Stellar
feedback acts on both small and large scales, and can act to either enhance or suppress
star formation (Draine, 2011). At small scales, individual supernovae, radiation pressure,
stellar winds and jets, outflows, and turbulence dominate the stellar feedback cycle (e.g.,
Franco and Cox, 1983; McKee, 1989). The cumulative effect of supernovae, spiral arms, the
presence or absence of a central bar, and the inward drift of gas play a role at large scales
(e.g., Firmani and Tutukov, 1994; Dobbs et al., 2011). Unfortunately, accounting for all
these complex phenomena is difficult, so we must attempt to relate more straightforward
proxies, such as metallicity gradients, to simplified enrichment models, such as the closed-

box and leaky-box models.

The closed-box enrichment model, considers a galactocentric annulus, and assumes there is
a constant total mass M made up of stars (M,) and gas (M) contained within a volume
that is not necessarily constant (R. J. Talbot and Arnett, 1971). It is assumed that the
metallicity Z is zero at time zero, Z(t = 0) = 0, and a new generation of massive stars’
heavy elements are instantaneously injected into the gas. The yield p of the remaining
less-massive stars is the percentage of the stars’ mass that is converted into heavy elements.
Equating the change in gas mass to the mass of the newborn stars shows that the metallicity
as a function of time is given by (R. J. Talbot and Arnett, 1971; Binney and Merrifield,
1998)

(1.1)

Z(t) = —pn [Mg(t)] .

My(0)

A variation on the closed-box model is the leaky-box model, where gas is driven from the
galactocentric annulus by stellar winds and supernovae at a rate that is proportional to star
formation (by a factor ¢). Then the yield is reduced by a factor 1/(1 + ¢), as compared
to the closed-box model. Hartwick (1976) modified the closed-box model in this way so as
to explain the observed [Fe/H] distribution in the Milky Way halo. However, neither the
closed-box nor leaky-box models accurately predicts the under-abundance of low metallicity
stars in the solar neighbourhood (the “G dwarf problem”), so there is certainly still room

for improvement.
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Advancements in enrichment models have allowed parameters such as radiative heating and
cooling, radiation pressure, the growth and evaporation of cold clouds, galactic and stellar
winds, and the supernova rate to be taken into account (e.g., Springel and Hernquist, 2003;
Scannapieco et al., 2006; Hopkins et al., 2012). Constraints used in these simulations include
the stellar mass to gas-phase metallicity relation, galaxy stellar mass function, and chemical

enrichment of the ISM and intergalactic medium.

1.3 Metallicity determination methods:

H 11 region observations

The type of object that is observed spectroscopically can have a significant effect on the
measured metallicity value and uncertainties. Three options are usually considered: i)

supergiant stars, ii) planetary nebulae, and iii) H 11 regions.

Compared to stellar populations as a whole, supergiants are a good target because they are
relatively short-lived. This is important because metallicity changes as a function of both
time and galactic position. A short-lived target cannot have wandered far from its birth
site, so the resulting measurement will be well-constrained in both time and space, as is
required to construct an accurate enrichment history. That said, using the spectra from
supergiants is generally ill-advised because to translate the observed spectral line fluxes to
metallicity values, a firm understanding of supergiant atmospheres is required. The current
state of supergiant atmospheric models shows there is still much work required to match
the observed properties to observations (e.g., Martins et al., 2005; Ekstrom et al., 2012) and
so this introduces myriad uncertainties and assumptions into any metallicity measurement,

thereby making the result less reliable than desired.

For the second target option, recall that the spectral fluxes measured in planetary nebulae
include a bias in helium, nitrogen, and carbon because these elements are produced by the
star during its lifetime. The metallicity at formation must therefore be reverse-engineered,
which is unfortunately a rather difficult task, especially in metal-rich ISM conditions (Binney
and Merrifield, 1998). Additionally, planetary nebulae are older than supergiant stars or
H 11 regions, so it is possible their galacto-centric orbits have changed non-negligibly since
birth. This leaves H 11 regions as the best choice to observe spectra that will be used to

determine the current metallicity in the ISM at that location.

The term H 11 region refers to the sphere of photoionized gas surrounding a hot star. In such
a region, photons emitted by the central star have energies above the ionization threshold of
the gas, which is predominantly hydrogen. The ejected electrons have nonzero kinetic energy,

thereby contributing to the heating of the gas. Meanwhile, cooling takes place primarily
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Table 1.3. Principal collisionally excited cooling lines in optical spectra of H 11 regions

Ton Lines hv (eV)

N 6549 A, 6583 A 14.53
On 3727 A, 3729 A 13.62
Om 4959 A, 5007 A 35.12
Su 6716 A, 6730 A 10.36
Sm 9069 A, 9531 A 23.33

Note. — Adapted from Draine
(2011) Tables 15.2 and 27.2.

through radiative recombination—which removes electrons from the plasma, along with their
kinetic energy—and collisional excitation of metals, followed by radiative de-excitation—
which transforms the kinetic energy of the exciting electron to a photon that escapes the
gas and is observed as a Collisionally Excited cooling Line (CEL). The temperature of the
gas (~6000K-15000K) and the geometrical extent of the H 11 region (~few pc) are governed
by the balance between these heating and cooling processes (Binney and Merrifield, 1998;
Draine, 2011).

Given that H 11 regions are composed largely of hydrogen and the most effective cooling
process is the emission of CELSs, the optical spectrum of an H 11 region is dominated by
hydrogen Balmer lines and emission from CELs. Table 1.3 provides a brief overview of the
principal CELs in H 11 regions. The ionizing radiation is strongest closest to the central star,
so this is where the CELs associated with more highly ionized ions originate. Thus, the H 11
region can be considered to be composed of several spherical zones, according to what ions
are present. For instance, the first ionization energy of oxygen (13.62 eV) is remarkably
close to that of hydrogen (13.60 eV), so O 11 will be found wherever H 11 is present. The first
ionization energy of helium however is much larger (24.59 eV), so the He 11 zone extends
to a smaller radius than the H 11 zone. For the ions listed in Table 1.3, O 111 and S 111 are
the only two that can only be found in the He 11 zone, while all the others can be found

(roughly) anywhere H 11 is present.
1.4 Metallicity determination methods:

Theory

H 11 regions are commonly assumed to be in thermal equilibrium, meaning that the heat-

ing and cooling rates balance one another. The dominant heating mechanism in an H 11
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region is photoionization, while the dominant cooling mechanism is through CEL radiation
(Osterbrock, 1989), both of which are dependent on the local temperature and density.
Understanding the heating and cooling mechanisms at work is essential to deriving the pop-
ulations of excited atoms and ions in the medium. Therefore, to convert spectral data into
information on ionic abundances, the temperature and density of the emitting medium must

be known.

It is well-established that the main emission processes at work in low-density H 11 regions
are two-body collisions. Specifically, collisional excitation followed by emission of a line
photon, or photoionization followed by recombination with a free electron and radiative
decay to lower levels. Osterbrock (1988) states that the emission coefficient must therefore
be proportional to: (1) the density of the ion responsible for the emission line, (2) the free
electron density, and (3) the rate of the process, which is itself a function of the temperature
and the probability of the emission of a photon. The intensity of a line is an integral of the
emission coefficient over the observed path through the H 11 region. However, if the ratio of
two intensities is instead measured, then the free electron density and any spatial effects will
cancel, assuming the two ions in question have the same distribution over the observed path
length. Therefore, to calculate the abundance, n, of O 111 from the intensity, I, of [O 111
5007 A relative to Hj, the following equation can be used (Draine, 2011).
n(O 111) I([O 1] A5007 A) 037 T

— e Ta |

n(HT) I(HB) 4

where C' is a known constant, T is the temperature in units of 10* K, and n(H™) is the
approximate local density in the H 11 region. Ionic abundances are then converted to element
abundances by summing over all the ions present in the medium. For oxygen in H 1I regions,
O 11 and O 111 are the only ions that can exist since O II has a nearly identical ionization
energy to H 11, and O 1v has a greater ionization energy than all but the very hottest O
stars can produce (and even then it will only be in very small quantities). Thus, the total

oxygen abundance is simply

n(0) = n(0 1) + n(O 111). (1.2)

But all of this is useless if we cannot determine the local temperature and density. In
the most straightforward method, the ratios of two pairs of emission lines are all that is
required to calculate the temperature and density. One pair of emission lines is widely
spaced in energy but is approximately density independent, so it reveals the temperature of
the ionizing medium. The second pair of lines is closely spaced in excitation energy—and
therefore independent of temperature—but each line has a different collisional de-excitation

rate, so it reveals the density of the ionizing medium (Osterbrock, 1989). This is also the
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only known direct method to determine temperature and density and therefore metallicity.

The choice of which pairs of emission lines to use depends on the wavelength regime avail-
able from observations. For this study, optical spectra are observed, so the temperature
is determined from the ratio [O 111] A4363 A/[O 111] A)4959,5007 A and the density from
the ratio [S 11] A6716 A/[S 11] A\6730 A. Figure 1.2 shows the energy levels from which these
optical transitions in O 111 and S 11 originate. It should be noted that [O 111] \4363 A is an
auroral line that is very difficult to observe due to how weak it is, so this method is called

the weak-line or auroral-line method for metallically determination.

Figure 1.3 shows the behaviour of the O 111 temperature diagnostic ratio and S 11 density
diagnostic ratio. In Figure 1.3a it is clear that for densities between 102-10* cm ™3, the ratio
[O 111] M4363 A/[O 111] AN4959,5007 A is completely density independent, while at slightly
larger densities (~ 10° cm™3) there begins to be a slight density dependence. Regardless,
the O III ratio increases monotonically over the entire temperature range plotted (4000
18000 K). In Figure 1.3b, the S I ratio decreases dramatically from density ~ 10 cm~3
to ~ 10* cm™3, but is nearly unchanging at densities lower and higher than these. How-
ever, typical H 11 regions have temperatures and densities around 10* K and 10°-10* cm—3

(Draine, 2011), so both ratios are well within their “useful regimes”.

Unfortunately, as the metallicity increases, so does the cooling via metal lines. The electron
temperature therefore decreases, meaning all the emission lines get fainter. The critical
auroral line [O 111] \4363 A, which even at high electron temperature is a weak emission
line, becomes too faint to observe at low electron temperatures, so an alternative abundance
indicator must be constructed. These alternative abundance indicators are called “empiri-
cal” because they are calibrated by plotting the new indicator against metallicities derived
from auroral line measurements using the direct method. Empirical methods are employed
whenever the auroral lines become too weak to observe, and so it comes as no surprise that

each empirical indicator is based on strong-lines, as §1.5 explains.

1.5 Metallicity determination methods:

Practical approach

The most widely used empirical strong-line method that is based on optical emission lines
was first suggested by Pagel et al. (1979) and later revised by Pilyugin (2000). Pagel et al.
(1979) argued the sum of O 11 and O 111 relative to Hj should be used as the primary oxygen
abundance diagnostic (in cases where the weak-line method could not be employed) because
it “varies smoothly as a function of stellar effective temperature and oxygen abundance”,

but is nearly invariant with respect to other unknown parameters. By plotting this oxygen
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[S1] A6716 A and [S 1] A6730 A originate from the splitting of the 2D energy level. They require
nearly the same energy to be excited, but the probability of exciting each level (given by the Einstein
B coefficients) is dependent on the medium’s density and is not the same for the two levels (Weedman,

1968).

Figure 1.2 Grotrian plots for the ions O 111 and S 11. Produced using the PyNeb package.
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AN4959,5007 A and [S 11) A6716 A /[S 11] A6730 A.
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abundance diagnostic, called Ras, as a function of 12 + log(O/H) and electron temperature
from a handful of models and weak-line derived values, it was possible to derive a primitive

calibration.

Pilyugin (2000) improved on this calibration thanks to advances in observational data quality
and quantity. The 12+log(O/H) values used for the improved calibration came from a much
larger data set of weak-line determined oxygen abundances than was available a couple

decades earlier. Pilyugin (2000) defined the Rg3 diagnostic as

[O 11] AA3726,3729 A + [O 111] AN4959,5007 A
HpB

R23 = log (13)

and calibrated to produce the metallicity as

12 +1og(O/H) = 6.53 + 1.40 Ro3 for oxygen-poor H II regions,
12 +1log(O/H) = 9.50 — 1.40 Ro3  for oxygen-rich H 1T regions.

Rog is a robust metallicity indicator because all the quantities included in the fraction are
proportional to electron density and most O atoms are either singly- or doubly-ionized in

the H 11 region, so Rag scales with oxygen abundance.

A few other strong-line abundance indicators are also worth mentioning. The definition of

these indicators, as well as how each of them relates to the metallicity are as follows,

[N 11] A6583 A
Ha
[O 1] A5007 A/HB

[N 11 A6583 A /Ha
[Ar 1] A7135 A
[O 1m1] A5007 A
[S 111] A9069 A
[O 1m1] A5007 A

Ny =log 12 + log(O/H) = 8.90 + 0.57 N,

O3N; =log 12 + log(O/H) = 8.73 — 0.32 O3Ny

Ar303 = log 12 + log(O/H) = 8.91 + 0.34 Ar3O03 + 0.27 (Ar303)% 4 0.20(Ar303)?

S303 =log 12 4 log(O/H) = 8.70 + 0.28 S303 + 0.03 (S303)% 4 0.1 (S303)?
The metallicity relations for the first two indicators, Ny and O3Ny, were fit by Pettini and
Pagel (2004), while the relations for the last two, Ar3Os and S303, are from the work of
Stasiniska (2006). Each of these indicators has its own advantages and shortcomings. For
example, Pettini and Pagel (2004) argue Ny and O3Ns are better choices than Rag for high-
redshift galaxies, where new difficulties arise due to both the faintness of the lines and the
shift of optical lines to the near-infrared regime that is plagued by sky background signal and
atmospheric absorption. In particular, O3Ny is an improvement over No at solar and super-
solar metallicities because N 11 saturates but the intensity of O III continues to decrease as

metallicity increases.
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On the other hand, Stasiriska (2006) warns N2 and O3Ny must be used with caution when
the astrophysical nature (e.g., hardness of the ionizing radiation) of the objects being studied
differs from that of the objects used to calibrate the relations. Furthermore, both indica-
tors rely on the low-excitation line [N 11] A6583 A, which may originate from the diffuse
ionized medium as well as the H 1I region in question. To circumvent these issues, Stasinska
recommends the indicators ArgOs and S30j3, especially for integrating galaxy spectra in
the low metallicity regime. The caveat at higher metallicities is that the calibration for
Ar3O3 and S30s3 relied on 12+ log(O/H) estimates from Rog measurements due to a lack of
[O 111 M\4363 A observations. Stasifiska also notes that, unlike for Ny, a reliable reddening

correction is needed for Arz3Os and S30s3.

As already mentioned, the present work aims to measure weak-line metallicities for all
observed H 11 regions, however strong-line metallicity measurements will also be available.
This means another extremely important outcome of this study will be a further improved
strong-line method calibration, thanks to the extraordinary number of data points that will

be available with an oxygen abundance derived from both strong- and weak-line methods.

1.6 The M33 Metallicity Project

The M33 Metallicity Project aims to create the first high-resolution metallicity map of a
spiral galaxy. M33, also referred to as the Triangulum Galaxy or NGC 598, is the optimal
choice for such a study because it is the nearest relatively face-on spiral galaxy to the Milky
Way (see Table 1.4). Its proximity means individual H II regions can be resolved even in
the crowded central region—which therefore produces a higher resolution metallicity map
than a more distant galaxy—and being face-on is crucial for avoiding projection effects when
plotting the 2D metallicity map. Although the Andromeda spiral galaxy, M31, is closer to
the Milky Way than M33, the plane of the Andromeda galaxy is at a more inclined angle.
Additionally, M33 is smaller than M31 and this, combined with its sub-solar metallicity,
means that the enrichment effects of one stellar generation are less likely to be washed away

from the formation site in M33 compared to M31.

A number of key physical properties of M33 can be found in Table 1.4. It should also be
noted that M33 is well-studied at many wavelengths, which means it will be possible to
compare the completed 2D metallicity map produced here to previous studies’ observations

to look for any trends or anomalies.

As mentioned in §1.2, previous metallicity studies have only focused on measuring the
radial gradient in a galaxy. Unfortunately, this approach may not reveal the whole story.

For M33 in particular, many studies that have derived a metallicity gradient of the entire
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Table 1.4. Physical properties of M33

21

Property Unit Value Reference
Right Ascension (J2000) h:m:s 01 33 50.9 Jarrett et al. (2003)
Declination (J2000) °/: 430 39 35.8  Jarrett et al. (2003)
Hubble Type SA(s)cd Jarrett et al. (2003)
Heliocentric Radial Velocity — km/s —-179 de Vaucouleurs et al. (1991)
Distance kpc 840 Freedman et al. (2001)
Inclination °© 53 Magrini et al. (2009)
Major Axis kpc 9.14 Jarrett et al. (2003)
Minor Axis kpc 7.32 Jarrett et al. (2003)
Total Stellar Mass Mg 3-6 x10° Corbelli (2003)

Table 1.5. Previously derived oxygen gradients of M33

Gradient Type of Number of ~ Number of Galactic Reference
12 4+ log(O/H)  observations observations good data  radial range

dex kpc~1 points kpc
—0.012 +0.011 Hu 13 62 1-7 Crockett et al. (2006)
—0.027 £ 0.012 Hix 61 61 0-7 Rosolowsky and Simon (2008)
—0.031 £0.013 PNe 102 93 0-8 Magrini et al. (2009)

—0.07+0.01  Supergiants 22 22 0-7 U et al. (2009)

—0.042 £ 0.010 Hit 25 8b 0-8 Bresolin (2011)

2Combined with 5 data points from the literature for a total of 11.

PCombined with 42 data points from the literature for a total of 50.

galaxy are not consistent with one another, as seen in Table 1.5. Compared to the present

work, each of the studies in Table 1.5 either only used a limited number of data points,

or used observations of a type of object that is known to introduce further uncertainties

(see §1.3). Using a limited number of data points is ill-advised since it is possible that

a large scatter in the metallicity at any given radius could significantly affect the results

and therefore contribute to the discrepancies seen between the studies outlined here. Note

that Rosolowsky and Simon (2008) presented the preliminary results of this work, the M33

Metallicity Project.

Another interesting study (Beasley et al., 2015) observed stellar clusters in M33 and found

evidence that the disc’s radial metallicity gradient is getting less negative with time (d[M/H]dt/

dR = 0.03 dex/kpc/Gyr). This is an important finding since the temporal evolution of the

disk’s metallicity gradient is directly related to disk formation and growth. Other outcomes

from the work on M33 of Beasley et al. that are pertinent to the present work are: i) young

clusters are more metal-rich than older clusters (age-metallicity relation), ii) clusters have
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Figure 1.4 This histogram shows the distance to the nearest neighbouring H 11 region for
each H 11 region that was observed. The peak near zero is an effect of the bin choice (10 pc)
and the clustering of values at distances less than 5 pc (since this is the nearest neighbour).
The shortest distance between two H 11 regions is 0.047 pc.

formed in the disk throughout the disk lifetime (no radial age gradient), and iii) the globular
clusters of M33 are significantly more metal-rich than the globular clusters of the Milky Way
halo, and may therefore be better associated with M33’s disk rather than its halo.

For the M33 Metallicity Project, deep spectroscopy of 701 H 11 regions has been obtained
from the Keck I 10-m telescope. These data cover the entire disk of M33 out to ~7 kpc,
with a mean sampling rate of 2 2 measurements per square kpc, and sampling down to
separations of < 50 pc in some regions. Figure 1.4 shows a histogram of the distance to each
observed H 1I region’s nearest neighbour, and it can be seen that most nearest neighbours

are closer than 200 pc.

By mapping the metallicity of the entire galactic disk in detail, we will not only acquire
a less biased value of the gradient, but we will also be able to quantify the scatter at any
given radius. Additionally, a whole new realm of possible studies will be opened up. For the
first time, it will be possible to calculate a correlation function, and to relate the metallicity
to a number of other quantities for which we already have 2D maps such as molecular gas,
temperature, star formation rate, or star formation efficiency. We may also be able to place
new constraints on the chemical evolution and mixing of metals produced in supernovae and

AGB stars through the interstellar medium, and the role of turbulence.

The observations and data reduction process are described in §2. In §3 I explain how
metallicity measurements were derived from the observations. Major astrophysical results

are discussed in §4, followed by a summary of the entire work in §5.
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Observational Methods and Reduction

2.1 Instrument description

We obtained spectroscopic observations using the Keck I 10-m telescope on Mauna Kea. The
Low-Resolution Imaging Spectrometer (LRIS) for the Cassegrain focus of this telescope has
both imaging and spectroscopic capabilities. This instrument was used with custom-made
slit masks for the M33 Metallicity Project. The field-of-view of LRIS is 6x7.8 arcmin.
LRIS divides the incoming light into red and blue components using a dichroic mirror. The
dichroic mirror reflects light < A5500 A (blue component) and transmits light > \5500 A
(red component). The blue component proceeds to a grism (combined diffraction grating
and prism), while the red component proceeds to a diffraction grating. Each component
is then imaged separately by two different CCD detectors, as depicted in Figure 2.1. The
blue detector is composed of two Marconi CCD’s, each of which has 2048x4096 back-side
illuminated 15 pm pixels (Keck Observatory, 2015). The red detector is a cooled back-
illuminated Tektronics Inc. 2048 %2048 CCD which gives a sampling rate of 4.685 pixels per
arcsec (Oke et al., 1995).

2.2 Observation details

Over the course of two nights in 2004, three nights in 2007, and three night in 2008, we
observed 35 slit masks with one to four 15 minute exposures per slit mask (see Table 2.1 for
details). The slit masks were placed across the face of M33’s spiral disk, at galactic radii

ranging from 0 to 7 kpc, as depicted in Figure 2.2. The 35 masks had an average of ~ 19

23



CHAPTER 2. OBSERVATIONS 24

Atmospheric Dispersion
Corrector
Slitmask |  Field lens

Collimator

Figure 2.1 Schematic of LRIS’s optical layout. Adapted from Figure 1 in Oke et al. (1995).

slits per mask, and each slit was 1” wide and at least 10” long. This produced spectra for
701 Ha sources in M33.

For each Ha source observed, I combine three separate spectra to produce the full spec-
tral coverage required for the metallicity analysis: i) the Blue 600/4000 grism covers the
wavelength range from [O 11] AA3726,3729 A to [O 111] AN4959,5007 A ii) the Red 900/5500
grating provides spectra from the D560 dichroic cutoff to well past the [S 11] AX6716,6730 A
lines, iii) the Red 400/8500 grating produces spectra with lower resolution but a larger
wavelength range (including the near-IR [S 111] AX9069,9531 A lines) compared to the Red
900/5500 spectra. Exact wavelength coverage depends on the slit’s physical position relative

to the CCD, so the ranges given here are approximate.

2.3 Spectrum extraction

I reduced the spectroscopic data using XIDL', an IDL code that is capable of reducing
longslit and multislit data from a number of telescopes, including Keck/LRIS observations.
This code was initially intended for use with faint point sources (quasars), not extended
sources such as H 1I regions, which do not always lie at the centre of the slit with sky at the
edges of the slit. To account for the differences between reducing faint point sources and

extended H 11 regions, we had to extensively edit the sky subtraction and object identification

Ihttp://www.ucolick.org/~xavier/IDL/
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Figure 2.2 The relative positions of all observed slits across the galactic plane are shown as
blue dots. These are superimposed on a continuum-subtracted Ha image of M33 produced
from the survey data of Massey et al. (2006) displayed with a red colour scale.
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Table 2.1. Observation details and number of exposures in each grating/grism

Number of Exposures
Date Mask Designation  Blue 600/4000 Red 900/5500 Red 400/8500  Comments

2004 September 22  M33-1c
2004 September 22  M33-2¢
2004 September 22  M33-3c
2004 October 22 M33oct-2d
2004 October 22 M33oct-3d
2004 October 22 M33oct-4d

~
,J;

some clouds
some clouds

2004 October 22 M33oct-5d cloudy
2007 November 08 M33r3-3c

2007 November 08 M33r3-6B

2007 November 08 M33r3-10

2007 November 09 M33r3-1c

2007 November 09 M33r3-2c

2007 November 09 M33r3-4c

2007 November 09 M33r3-9c

2007 November 09 M33r3-18c

2007 November 09 M33r3-26¢

2007 November 10 M33r3-5¢

2007 November 10 M33r3-8

2007 November 10 M33r3-11

2007 November 10 M33r3-12b

2007 November 10  M33r3-17

2008 November 04 M33r3-15 cloudy
2008 November 04  M33r3-16 cloudy
2008 November 04  M33r3-22 cloudy
2008 November 04  M33r3-28 cloudy

2008 November 04 M33r3-30
2008 November 05 M33r3-20
2008 November 05 M33r3-27
2008 November 05 M33r4-1
2008 November 06 M33r3-7
2008 November 06 M33r3-13
2008 November 06 M33r3-14
2008 November 06 M33r3-21
2008 November 06 M33r4-2
2008 November 06 M33r4-3

very cloudy

some clouds

some clouds

HFRHERRERAEFRFRPRHERRERRERRRRPOREFDNFRFOOOORR R R HEEFEREFRFRFFRPORERFRFORROR

PN N NSO SO e S SO R SO N R S ORI SO NJC I S I N NSO R N C S S
ORI SO I RO RGN U U I U RN U I CRIOUIE RN OU SIS O S S U ST JORU IT SONOU I SO C BSOS JC B SR Rt
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Figure 2.3 Example of how the slits were placed within the slit mask in order to observe as
many H 11 regions as possible. The background grayscale image is an Ha map of the galaxy,
the slit and alignment box positions are marked by open red rectangles and squares, the ID
names are written in blue, and the mask dimensions are given by the large red rectangle
that encompasses all the others. Notice that because the wavelength coverage shifts as the
physical position of the slit shifts from side to side within the mask dimensions, all slits are
as close to the centre of the mask as possible.
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Figure 2.4 Example figures of target H 11 regions in He, highlighting the two main morpho-
logical types. H274 is a low surface brightness, extended H 11 region. H280 is a high surface
brightness, compact H 11 region. In general, highly extended H 11 regions such as H274 do
not yield reliable metallicity measurements.

routines, as described later in this section.

All spectroscopic science observations (see Figure 2.5) must be accompanied by four types

of calibration observations:

e Bias—A zero second exposure that characterize the variations in pixel-to-pixel offset
levels across the CCD. Multiple bias frames are averaged to create a “superbias”, the

superbias is then subtracted from all other observations.

e Flat Field—An exposure of a uniformly illuminated surface or part of the sky that is
2-120 seconds long. Flat fields are taken through the same slit mask as the scientific
observations. Multiple flat fields are averaged to create a “superflat” that is then
used to correct for variations in pixel-to-pixel sensitivity by dividing the science and
calibration frames (except bias frames) by the superflat. See Figure 2.6 for an example

of a flat field observation.

e Arc—A spectroscopic observation through the same slit mask as the scientific obser-
vations of a spectrum with well-known emission line wavelengths, such as of a neon
lamp. The observed emission lines only lie at the known wavelengths of neon transi-
tions. It is therefore possible to associate a wavelength value with each pixel in the
science image. Lamps with emission lines from several chemicals allow for a better

wavelength solution. See Figure 2.7 for an example of an arc observation.

e Standard—A spectroscopic observations of one or more “standard” stars. These are

stars whose absolute fluxes are well-known across a wide range of wavelengths, and
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that usually have very few spectral features. White dwarfs are a common choice

because they satisfy these requirements.

XIDL begins the reduction process by making a superbias, then uses the flat fields and arc
observations to generate a slitmask file. The slitmask is an integer-valued 2D array that
is used to mask pixels that do not correspond to a slit. The two dimensions of this file
correspond to the spatial position on the physical slit mask (z-coordinate in Figures 2.5-
2.7) and the wavelength of the dispersed light (y-coordinate). XIDL determines which pixels
to mask and which to keep by analyzing the rows of a flat field image and noting where
the observed flux sharply drops then increases again. These areas of decreased flux are
marked as Os on the slitmask because they correspond to the regions between slits. XIDL
also takes into account that “good” slits will have a known minimum width. Any areas
initially marked as a part of a slit that is sandwiched by two non-slit areas closer to each
other than this minimum value will also become 0s. For the slit masks used in the M33
Metallicity project, I set the minimum slit length to 5.4” because the alignment box slits

are 4.0” and all science slits are at least 10" long.

The slitmask file is used in conjunction with all the observed flat fields to create a superflat,
as previously mentioned. The slitmask file is also used to help create a full wavelength
solution from the arc observations. To calculate a wavelength solution, XIDL searches for
emission lines (i.e., peaks) in the arc spectra, then fits a polynomial to the positions of
these peaks and their known wavelengths. An example of the output from this peak-finding
algorithm is shown in Figure 2.8. Parameters used by the wavelength solution algorithm
therefore fall into two categories: peak finding and polynomial fitting parameters. The
default wavelength solutions calculated by XIDL were not as accurate as would be expected
for the quality of the data, so I adjusted the following parameters until more reasonable

results were acquired.

I changed the peak finding parameters so that thinner peaks were deemed acceptable, but
these were limited to peaks with higher significance than XIDL initially required (50 instead
of 40 for Blue 600/4000 and 100 instead of 40 for Red 400/8500; Red 900/5500 significance
parameter was not changed from its default value of 4¢). The overall effect of these changes
improved the quality and quantity of peaks that were used to find the polynomial fit. The
major changes I made to the polynomial fitting parameters were to shorten the list of known

peak wavelengths to not include emission lines that were extremely faint or part of a doublet.

Additionally, T changed the training set of spectra and known wavelengths to be a set of
spectra with good wavelength solutions from the M33 Metallicity Project data set, rather
than the set included in XIDL. This allowed for a more robust wavelength identification since
XIDL was comparing spectra to a set of archived spectra of a similar quality and wavelength

range. Then I increased the number of iterations in the XIDL peak-finding function from
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Figure 2.5 Example of a reduced science observation. FEach slit’s spectrum is shown in
a vertical strip. That is, the z-coordinate shows different slits, and the y-coordinate is
actually wavelength. For example, in the slit spanning z-coordinate pixels ~3100-3300, it
is easy to pick out the emission lines (from top to bottom): [O 1] AA3726,3729 A, Hy, HB,
[O 111] A5007 A. The short slits that do not show emission lines and are instead completely
saturated (thick vertical black lines) correspond to alignment boxes. The fainter, and much
thinner vertical black lines that often appear in the middle of slits that do show emission
lines are the result of the stellar continuum surrounding the H 11 region being studied in the
slit.
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Figure 2.6 Example of a raw flat field observation. This flat field corresponds to the same
mask as was used to take the science observation shown in Figure 2.5. The slit positions
and wavelength direction are also the same as Figure 2.5.
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Figure 2.7 Example of a raw arc spectroscopic observation. This arc corresponds to the same
mask as was used to take the science observation shown in Figure 2.5. The slit positions
and wavelength direction are also the same as Figure 2.5.
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Figure 2.8 Example of the output from XIDL’s peak-finding algorithm. The top panel
show the input arc spectrum and the wavelengths of peaks that were identified by XIDL.
Wavelengths written in red are peaks that were later rejected. The bottom panel shows the

polynomial wavelength solution to the identified peaks.
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five to six. The first iteration uses the training set of spectra previously mentioned as an
initial guess, and each subsequent iteration uses the previous iteration’s fit as its initial

guess.

Now that a superbias, superflat, and wavelength solution have been calculated, the sci-
ence observations can be reduced. To begin with, cosmic rays are removed using IDL’s
qzap procedure, with a few input parameters modified after inspecting several images
(skyfiltsize = 40, nsigma = 11, fluxratio = 0.15). Next, sky subtraction takes place—
the first routine with major deviations from the original XIDL code. The sky subtraction
problem is significantly more difficult than the case for a single compact source. Since neb-
ular emission extends across the slit with an arbitrary emission profile, the reduction code
must identify those regions in the slit that can be regarded as background. The sky includes
both atmospheric emission/absorption features as well as features in the stellar continuum
of M33 that span the slit. This stellar background is the light from the old stellar disk
and is found across the entire slit. To identify these sky regions, the algorithm creates an
emission profile by identifying all pixels that have an associated wavelength within a window
w =3.5 A of any of the nebular lines identified (i.e., the hydrogen emission lines, as well as
lines from oxygen, nitrogen, argon, sulphur and chlorine). Using only these pixels, I use the
XIDL utilities to extract a spatial profile of the emission across the slit. This generates a
(flux-weighted) function of emission vs. spatial offset in the slit, which contains light from
both the nebular emission and the underlying stellar continuum. I also generate a second
emission profile using all pixels between w and 2w of a nebular emission line that are not
included in the emission line profile. This profile is then a prediction for the continuum lev-
els in the first emission profile. I then generate a spatial profile of only the nebular emission
by subtracting the continuum vector from the first vector leaving only an estimate of the

nebular emission.

Next, I identify regions to use as sky background using a model that the sky data should
be normally distributed around a mean value p with a dispersion o. The spatial profile
also contains nebular emission in discrete spatial sections, which leads to an asymmetric
distribution for data in the profile. The sky emission is identified as regions with values < pu
but the mean cannot be directly estimated from the data since nebular emission occupies
a large fraction of the slit. Instead p is estimated from the smallest values in the emission
profile. By considering the profile data at the 2.28th (p2) and 15.8th (p;) percentiles, I
estimate the —2¢0 and —1o quantiles of the normal distribution while avoiding data at
higher percentiles which are likely to contain nebular emission. The quantity 2p; — p2 then
provides an estimate of y. Regions of the nebular emission that are larger than 2 pixels
and have values below p are flagged as sky regions. These sky regions are further trimmed
to ignore bright, compact continuum emission features where the continuum level is larger

than 25% above a smoothed continuum profile with smoothing width of 7 pixels.
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Given these spatial regions of the slit that are likely to be sky, I then use XIDL routines
to estimate a smooth functional representation of the sky as a function of wavelength.
The XIDL approach uses fourth-order b-splines to create this smooth estimate, iteratively
estimating the function by fitting a spline to the flat-fielded data, using only those points
identified as sky in the previous step. The spline breakpoints are set every n pixels, where n
is the number of pixels in the spatial direction for a given slit. The spline fitting iteratively
rejects data larger than 30, where this o corresponds to an estimate of the standard deviation
for the data contributing to the fit. This minimizes the impact of remaining nebular emission
and isolates bad data. Finally, I create a model for the sky by evaluating the b-spline for

the fit at every wavelength value in the original image.

Once sky subtraction is complete, the code continues on to object identification—the second
routine that differs significantly from the original XIDL code. Object identification refers
to the location where the H 11 region intersects a given slit, since this does not necessarily
coincide with the centre of that slit. It is even possible that more than one H II region
intersects a single slit. Thus, it is necessary to determine the location of the H II region(s)
along the slit length, defined as xcen, as well as the spatial extent of the H 11 region(s) to

either side of this central location, defined as xyoy.

To calculate xcen, and Tpex, I first needed to define the spatial profile. This was achieved by
extracting the spatial profile of brightness across the slit in one exposure from each grism
and grating. In some cases, the first or last slit may be missing in one or both of the red
grating observations, meaning the spatial profile for a given slit may be defined in one,
two, or three exposures. When only one spatial profile is defined, it is simply smoothed
with a 2.0” boxcar kernel then renormalized. When two or three profiles are defined, the
geometric mean is calculated before smoothing and normalization take place. For example,
if the profiles from each grism or grating are given by P;, P, and Ps, then the geometric

mean will be

Prcan = VPP if two profiles are defined,
Prican = v/ P x Py x Py if three profiles are defined.

A set of three profiles for a single slit and their resultant smoothed and normalized profile
are shown in Figures 2.9a and 2.9b. In some cases, the three profiles from the blue grism and
red gratings are not very well correlated. In particular, the Red 400/8500 grating’s profile
is often poorly known because sky subtraction for that grating is extremely challenging.
To circumvent this issue, when all three profiles are defined, I included a correlation factor
for each pair of profiles (i.e., three correlation factors for three defined profiles). n, defined

below, is close to zero if profile P is significantly different from profile P», and close to one
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if the two profiles are in good agreement.

M=

(Pr,; x Pa;)
i—1

']7 =
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By repeating this calculation for each pair of profiles, it is straightforward to determine
which profile, if any, differs significantly from the others and should therefore be excluded
from the subsequent geometric mean calculation. Figure 2.10a shows an example of a slit
for which the Red 400/8500 profile differs significantly from the Blue 600/4000 and Red
900/5500 profiles. The use of 7 ensures the final combined profile is determined from only

considering the two profiles that are in good agreement, as shown in Figure 2.10b.

Next, I normalized the area under the spatial profile and analyzed the profile for peaks with
a maximum height greater than a minimum criterion of 0.01. I chose the value 0.01 after
examining several normalized profiles and I adjusted it up or down by up to 0.004 in cases
where a choice of 0.01 resulted in discontinuities because a local extremum coincided very

closely with this value.

I label the part of the profile that is greater than the minimum criterion as the peak region,
then set T¢en equal to the median position of the peak region and oy is half the total length
of the peak region (see Figure 2.11). Fluxes are extracted from the sky subtracted science
image from within 1.5 X Zpeyx to either side of Zee, (shaded blue region in Figure 2.11), with
the statistical weights given by the normalized profile height. The flux extraction is done by
an XIDL routine that I did not need to adjust in any way to use with our data. This routine
masks any bad pixels, applies the appropriate weights, then sums all the fluxes within the

given region.

The last two steps in the reduction process are to calibrate the fluxes to absolute units using
the standard star observations, then co-add the exposures whenever multiple exposures of
the same slit mask and same grating were taken. Both of these are handled in XIDL and I
only had to make minimal modifications for the current data set. That said, some care was

needed when choosing which standard star observations to use for the flux calibration.

As previously mentioned, flux calibration is done by comparing the observed spectrum of
a standard star to its known absolute flux. The relation between these two quantities is
known as the sensitivity function, and an example of how this function behaves is shown in
Figure 2.13. The shape of the sensitivity function is affected by the response of the CCD
and telescope optics, and the amplitude is affected mainly by the amount of cloud cover.

Clouds are assumed to only affect the amplitude and not the shape of the sensitivity function
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(b) Smoothed and normalized profile derived from the geometric mean of
the three profiles shown in Figure 2.9a.

Figure 2.9 Panel (a) shows an example of a slit where the individual profiles from Blue
600/4000, Red 900/5500, and Red 400/8500 show good agreement. Panel (b) shows the
smoothed and normalized profile created by taking the geometric mean of the three profiles
in panel (a).
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(b) Smoothed and normalized profile derived from the geometric mean of the
Blue 600/4000 and Red 900/5500 profiles shown in Figure 2.10a. The Red
400/8500 grating’s profile is excluded because it differs significantly from
the other two, which indicates there were likely difficulties encountered in
the sky subtraction routine.

Figure 2.10 Panel (a) shows an example of a slit where the individual profiles from Blue
600,/4000, Red 900/5500, and Red 400/8500 do not show good agreement. Panel (b) shows
the smoothed and normalized profile created by taking the geometric mean of only the Blue
600/4000 (blue line) and Red 900/5500 (red line) profiles in panel (a).
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Figure 2.11 Normalized, smoothed profile of a single slit across the spatial direction. Zcen
and Ty, as described in the text, are marked. The shaded blue region shows the extent to

which this H 11 region is considered to be located.
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because they are “gray absorbers” 2.

Multiple standard star observations were taken during each observing night, and the sensi-
tivity is not expected to change from night to night (although it may drift over longer periods
of time), so I set out to find the best “set” of standard stars from each observing run. One
“set” of standard stars includes a Blue 600/4000 and Red 900/5500 observation taken si-
multaneously, and a Blue 600/4000 and Red 400/8500 observation taken simultaneously.
To avoid any systematic offset between Red 900/5500 and Red 400/8500 flux calibrations, I
choose the best set of observations to be that for which the two Blue 600/4000 observations
have the same overall flux. An example of the best set of standard star observations before

and after flux calibration is shown in Figure 2.12.

As a finished product, XIDL produces a reduced science image along with numerous calibra-
tion files, but the outputs that are of utmost importance to this work are the multi-extension
FITS files for each H 11 region that contain arrays of wavelength [A], flux [Fy], and 1-o error
in flux [Fy], where the units of Fy are 107! erg s~ em~2 A~!. Together, these data are
the spectra from which I determine the total flux in each spectral line, and eventually the
metallicity of each H 11 region. Figure 2.14 shows an example of one of these spectra by

plotting the flux as a function of the wavelength.

2.4 Spectral line total flux

With spectra in hand, I wrote a Python script to calculate the total flux within each emis-
sion line. In this script, first the brightest emission lines in each spectra are fit with a
multi-Gaussian component model to determine the Doppler shift that will recover the rest
wavelengths. This fit is performed in wavelength chunks of ~500 A, unless the scarcity of
bright lines forced me to use a larger chunk, such as between ~5900-6500 A and ~7400-
9000 A. By doing the multi-Gaussian model fit in chunks, a more accurate rest wavelength
solution for each individual line is obtained, which helps correct for any lingering incon-
sistencies from the linear wavelength solution performed in XIDL. Once the spectra have
been returned to their rest wavelengths, the exact location of every emission line is known,
even if a given line is not observed in this particular spectrum. This is especially useful for

determining upper limits on faint lines such as [O 111] A\4363 A.

Now that the central (rest) wavelengths of each line are known, the next step is to decide
how many data points to either side of the central wavelength should be used in the sum to
calculate the total line flux. I plotted the cumulative sums of the HS line from several H 11

regions’ spectra as a function of wavelength, and all showed the full line width to be close to

2A gray absorber is an object whose absorption properties are independent of wavelength.
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Figure 2.12 The best set of standard star spectra from the 2004 run. Spectra are from the
Blue 600/4000 grism (blue dotted line and blue solid line), and Red 900/5500 (cyan dotted
line) and Red 400/8500 (cyan solid line) gratings. The dotted Blue 600/4000 spectrum was
observed concurrently with the dotted Red 900/5500 spectrum, and similarly for the solid
Blue 600/4000 and solid Red 400/8500 spectra. I chose these four spectra to be the “best
set” because the two Blue 600/4000 spectra have very little offset in the uncalibrated flux.
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Figure 2.13 Sensitivity functions from the standard stars observed on 2004 October 22.
Each plot shows the ratio of the uncalibrated to calibrated flux of the standard star as a
function of wavelength. In regions where the unfluxed spectrum is small compared to the
fluxed spectrum, the CCD sensitivity is lower. Line colours and styles are the same as in

Figure 2.12.
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Figure 2.15 Cumulative sum of the Hf line flux in the spectrum of H140. There is very
little change in the sum as the x-position nears the limits of +2.5 x HWHM.

5.0 x the half width at half maximum (HWHM). Figure 2.15 shows one of these plots. The
full line width does not noticeably change between different spectra or even between different
spectral lines because our instrumental resolution is approximately 1 A, which is much larger
than any of the expected effects from the various broadening mechanisms that would change
the full line widths of different lines—such as natural broadening at ~ 104 A (LeBlanc,
2010), Doppler broadening at ~ 10~ A (Cayless et al., 2015), and pressure broadening at
~ 1072 A (NIST, 2007). It should also be noted that although some spectral lines showed
a slightly different profile (especially in the Blue 600/4000 spectrum), the factor of 5.0 x
HWHM still correctly identified all the data points that should or should not be included

in the sum of the total flux calculation.

Thus, all flux measurements within 2.5 x HWHM of either side of the rest wavelength were
considered to be part of the given emission line. The only exception to this was the [O 11]
AX3726,3729 A doublet, which required a factor of 4.0 x HWHM because the doublet lines
were partially blended and therefore had a larger HWHM than a single line. The adjusted
factor of 4.0 was found by plotting the cumulative flux in the wavelength range close to
3727 A.

To accurately calculate the total flux within a given emission line, it was first necessary to

calculate the continuum level across that emission line. All flux measurements not within 2.5
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x HWHM of any emission line are considered continuum flux measurements (in Figure 2.16
continuum flux measurements are marked with a blue cross). It is fairly straightforward
to fit a polynomial to the continuum flux measurements to either side of an emission line
then interpolate to determine the continuum flux within an emission line. I investigated the
optimal polynomial order to use by calculating the flux of [O 111] A\4363 A in three different
slits, with a range of possible polynomial orders: 1, 3, 5, 7, 9. The results of this test are
plotted in Figure 2.17. Based mainly on the behaviour of the weakest [O 111] \4363 A, the
optimal polynomial was chosen to be of order seven. The order of the polynomial did not

have a noticeable effect on any bright lines.

I denote true flux measurements with an [ subscript and flux measurements from the poly-
nomial of order seven fit that form the continuum with the subscript ¢, and let a ’ symbol
differentiate values outside of the 5.0 x HWHM region of any spectral line from those within
it. The interpolated continuum values (F; ) at wavelengths within the 2.5 x HWHM bound-
aries were subtracted from their respective emission line flux measurements (F;;). Next,
the continuum-subtracted flux measurements were multiplied by the wavelength difference
between adjacent data points (6\). Lastly, these were summed together to obtain the total
line flux (Fiot),

n

Fiot =Y (Fiy— Fi.c) X

i=1
Figure 2.16 shows the continuum flux measurements, continuum polynomial fit, and emission

line flux measurements for a single emission line in a spectrum.

To determine the error on the total line flux (§Fiot), I accounted for the errors from the
emission line flux measurements as output by XIDL (JF;;), as well as the error from the
polynomial fit to the continuum (6F; ). The error in the polynomial fit was calculated as

follows

n/
(fir = firr)?
e =\ =
i=1
where n’ is the number of data points used to fit the polynomial continuum flux (f; /) to the
observed flux (f; ;7). The error in the continuum was constant for all points, so 6F; . = 6 F,

for all . The errors were then summed in quadrature and multiplied by dA to obtain § Fiot,

§Fiot = (| Y _(6F2 + 6F2) o).

i=1

With the total flux of each emission calculated as outlined above, only two corrections
remain before these total fluxes can be used to derive the metallicity: (1) Balmer absorption

correction, and (2) Interstellar reddening correction. The Balmer absorption correction
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Figure 2.16 Close up of [O 111] A4363 A in a single slit’s spectrum, showing the continuum fit
(solid green line), the flux measurements used to calculate the continuum fit (blue crosses),
the flux measurements within 2.5 x HWHM of the rest wavelength that were used to
calculate the total flux (red diamonds), and the data point closest to the rest wavelength
that was also used in the total flux calculation (black circle).
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Figure 2.17 This figure shows how the total flux calculated in [O 111] \4363 A varies as a the
order of the polynomial fit to the continuum flux is changed. The fluxes from a few slits are
plotted, but we see the greatest effect when the flux of [O 111] M\4363 A is the weakest (i.e.,
in H194).
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corrects the observed fluxes of the Balmer series spectral lines for the absorption that takes
place in the photospheres of the stars that are emitting the observed light. The interstellar
reddening correction adds light to the blue side of the observed spectrum to correct for the
preferential scattering and absorption of blue light by dust in the ISM. Both corrections

must be solved for simultaneously to accurately infer the individual strength of each.

2.5 Balmer absorption correction

To produce Balmer absorption lines, there must be hydrogen atoms present and they must
be in the n = 2 excited state. For cooler stars, the hydrogen atoms are in the ground state
and so cannot produce Balmer absorption lines, while in warmer stars, the hydrogen atoms
may be completely ionized and therefore unable to produce any absorption lines. Thus, it is
in the goldilocks zone of ~ 10000 K surface temperatures where stellar atmospheres produce
the strongest Balmer absorption lines, and this happens to coincide with spectral type A
stars (LeBlanc, 2010).

The total line fluxes of Balmer emission lines are corrected for underlying stellar absorption
effects according to the prescription derived by Olive and Skillman (2001), and illustrated
in Figure 2.18. This approach relies on the well-known, intrinsic ratio of Balmer lines, and
considers the correction required to get the observed Balmer ratios equal to their theoretical
values. For example, the intrinsic ratio of g—g is 2.86, assuming Case-B recombination and

a temperature of 10000 K and an electron density of 100 cm™3 (Osterbrock, 1989).

In the simplest case, when only the Hy and H/ lines are used to calculate the correction,
the function
(Xg — 0.468)?
X ’

where Xp is given below and ox, is its uncertainty, is minimized with respect to two
variables: (1) Equivalent width, EW, and (2) Extinction constant at 4861 A, ¢(Hp3). Recall
the equivalent width is the width of the rectangle with area equal to the total spectral
line flux and height equal to the continuum level, and the extinction constant at HS is the
logarithmic extinction caused by interstellar reddening, discussed further in §2.6. The value
0.468 appears in the function to be minimized because this is the intrinsic line ratio of H~y

to Hf for an assumed temperature of 10000 K, as calculated by Hummer and Storey (1987)

Xp = H’Yﬂux 1+ EW(H’Ycontinuum/H’YHUX) % 100.13C(H5)
Hﬂﬂux 1+ EW(Hﬁcontinuum/HBﬂux)

It has been known for some time that the stellar Balmer absorption lines have approximately

constant equivalent width within a given spectrum (Gonzalez Delgado et al., 1999), and it
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Figure 2.18 An example of hydrogen emission lines suffering from underlying stellar Balmer
absorption in the H 11 region H101. The noticeable “dips” in flux to either side of the
emission lines is the signature of an absorption line superimposed on an emission line.
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is therefore quite straightforward to apply the Balmer absorption correction to all Balmer

lines in the spectrum once EW has been calculated from the above minimization.

Corrected flux = Observed flux + EW x Continuum level

2.6 Interstellar reddening correction

After the Balmer absorption correction has been applied, the fluxes of all lines are corrected
for interstellar reddening, or extinction. Galactic reddening is a well-known absorption effect
caused by interstellar dust grains. Dust grains preferentially absorb and scatter blue light,
thereby making the spectrum we observe to be redder (or technically, less blue) than what
was originally emitted at the photon production site. This effect is wavelength dependent
and was quantified by Cardelli et al. (1989) as follows.

Let A(A) be the absolute extinction at any wavelength, and A(\.f) be the absolute extinc-
tion at a reference wavelength. For historical reasons, A(A,.f) = A(V), the extinction in the
V-band. Cardelli et al. (1989) then define the term “extinction law” to refer to A(X)/A(V).

The extinction law of Cardelli et al. (1989) depends only on Ry = A(V)/E(B — V), where
E(B-YV) is the relative extinction between the B and V bands (= A(B)—A(V)). A(\)/A(V)
is plotted as a function of R‘_/1 for a sample of stars observed over a wide range of wave-

lengths. From this plot, an extinction law of the form
(AN)/A(V)) = a(x) + b(z)/Rv (2.1)

can be derived through least-squares fitting, where 2 = 10000 A/\. Note the addition of ()
to denote that it is the mean extinction law that is being fit. This is because extinction is

also dependent on the line-of-sight, but this dependence is not considered in this case.

In the wavelength regimes pertinent to the current work’s data set, the final derived extinc-
tion law derived by Cardelli et al. (1989) is given by:

(i) Infrared (A > 9000 A):

a(x) = 0.574z"6*
b(z) = —0.527x01
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(ii) Optical/Near-Infrared (9000 A > X > 3000 A):

y=z— 182
a(x) =1+ 0.17699y — 0.50447y% — 0.02427y> + 0.72085y* 4 0.01979y° — 0.77530y° + 0.32999y"
b(x) = 1.41338y + 2.28305y> + 1.07233y> — 5.38434y" — 0.62251y° + 5.30260y° — 2.09002y"

To then apply this extinction law to the total flux values previously derived, I multiply each

flux by a correction factor that depends on a(x) + b(x)/Ry. In detail,

Ry =3.1
A(V) = Ry x ¢(HB) [0.61 + 0.024¢(Hp)]
Corrected flux = Reddened flux x 102440
= Reddened flux x 10044V (a(@)+b(z)/Fv)]

Although the value of Ry can range from 2.2 to 5.8, the mean value of 3.1 is well-constrained
and used ubiquitously in the literature, so that is the value used here (Schultz and Wiemer,
1975; Cardelli et al., 1989; Fitzpatrick, 1999). Other choices for Ry are possible however,
and the effect of these should be examined in future work with this data set. For example,
M33 has many similarities with the Large Magellanic Cloud (LMC), which has Ry 1mc = 3.4
(Gordon et al., 2003).The expression for A(V) given above in terms of ¢(HS) was derived
by Kaler and Lutz (1985) and is used here because ¢(Hf) has already been determined by
the method used for the Balmer absorption correction. Then to get the corrected flux, I use

a rearranged version of the well-known magnitude-flux relation.

To ensure there are no lingering inconsistencies between the three reddening-corrected spec-
tra of each object due to unforeseen calibration effects such as uneven cloud cover during
observations, the fluxes of emission lines observed from the 900/5500 and 400,/8500 gratings
undergo a simple correction such that the ratio of Ha to Hf is equal to the intrinsic value
of 2.86. To apply the correction, I multiply all the fluxes measured in each grating by the
same factor. This factor is equal to f = 2:86/Ha where Ha is the flux measured at 6563 A
in each red grating and Hf is the flux measured at 4861 A from the Blue 600/4000 grism.
Typically, this factor does not introduce a large correction, as is expected since the spectra
are all already dereddened—a histogram of the required f values for each red grating are
presented in Figure 2.20. For those spectra that do require a large correction, or for which
f is negative, rejection criteria applied later in the analysis will eliminate these from the
final results (see §3.3).

As a final check of the quality of the spectra, I plot the observed Balmer ratios and compare

these to the theoretical values (Figure 2.21).
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Figure 2.20 Histograms of the factors f required to adjust the spectra observed in each red

grating such that II_{I—%‘ of each H 11 region is equal to its theoretical value of 2.86. Assuming

the lingering inconsistencies for which this factor corrects are not significant, all values of f
should be close to unity.

2.7 Signal to noise of auroral lines

I present histograms of the signal to noise ratios (SNRs) for the weak auroral lines [O 111
363 A, [N 1] A5755 A, and [S 1] \6312 A(Figure 2.22), since it is these auroral lines
that will be instrumental in calculating the temperature and density of each H 11 region.
Recall, it is difficulty in observing these weak lines that forces most other studies to derive
metallicities from the strong-line calibrations discussed in §1.5. The relatively large number
of strong detections (SNR 2 6.0) in this work allows us to derive metallicities based on the

more accurate weak-line method.
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Figure 2.21 Typical observed Balmer ratios after all corrections have been made are shown
as red x symbols. The theoretical (intrinsic) Balmer ratio values follow the solid black line.
BalmerLineNumber = 3 refers to the Hy/Hf ratio, 4 refers to He/Hf3, etc. There is good
agreement for all ratios, with the exception of the fainter Balmer lines (higher line number),
which sometimes suffer from upper limits.
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Figure 2.22 Detection rate of [O 111] A4363 A, [N 11] A5755 A, and [S 111] A6312 A in this data
set.
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Metallicity Determination Methods

3.1 Modelling of an H 11 region

The simplest model of an H 11 region that is still used today was first introduced by
Stromgren (1939). Hydrogen being the most abundant element, Stromgren considered the
extent of a fully ionized sphere of hydrogen surrounding a hot central star or cluster of stars,
and embedded in a neutral hydrogen interstellar medium. He showed that the extent of the
sphere of ionized hydrogen is a function of the ionizing star’s temperature and absolute
magnitude, and the density of the interstellar hydrogen. The equation for the radius of a

so-called Strémgren Sphere is then,

Rs = < 3 )1/3 , (3.1)

4rn%a

where Qg is the rate of emission of hydrogen-ionizing photons, ng is the density of interstellar

hydrogen, and « is the radiative recombination coefficient of hydrogen.

Nowadays, although the extent of an H 11 region remains the same as defined in Stromgren
(1939) and given by Equation 3.1, it is useful to model the interior of the H 11 region as
a three zone system. These three zones are called the high-, medium- and low-ionization
zones, and their names refer to the ionizing strength of the photon field in each. Thus, the
high-ionization zone is infused with much more energetic photons than the low-ionization
zone. Furthermore, the high-ionization zone spatially refers to the area closest to the hottest
stars in the H 11 region, while the low-ionization zone resides at the edge of the H 11 region.

A diagram of this three zoned system is presented in Figure 3.1.

Spatial temperature fluctuations likely arise within an individual H 11 region due to wide

54
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Figure 3.1 Schematic of the three ionization zones in a model of an H 11 region. The white star
at the centre represents all the bright, hot stars that reside at the centre of the H 11 region,
which produce the ionizing photons. The dashed and dotted lines show the transitions
from high- to medium-, and medium- to low-ionization zones, respectively. The solid line
represents the boundary of the H 11 region, marked by a relatively sharp transition from
ionized hydrogen (in the low-ionization zone) to neutral hydrogen (in the surrounding ISM).

range of degrees of ionization and electron densities that are present across the different
zones. The effect of these fluctuations on the temperature measured by the auroral method
(described in §1.4) was investigated by Peimbert (1967). By assuming that the fluctua-
tions are small, Peimbert expressed the measured temperature as a Taylor series about the
mean (true) temperature. This revealed that when the ratio of [O 111] A4363 A to [O 111]
5007 A is used to measure the H 11 region’s temperature, high-temperature regions get em-
phasized, leading to a temperature measurement that is biased towards values higher than
the true temperature. In a model H 1I region, Peimbert found this effect led to a measured
temperature 1350 K higher than the true value of 5500 K.

3.2 Metallicity calculation

To calculate metallicities from the observed emission line spectra, I employ two independent
methods then compare the results. The first of these, PyNeb, is a Python package created
for the analysis of emission lines in ionized nebulae (Luridiana et al., 2015). The second
method is a Fortran package called the Nebular Empirical Analysis Tool (NEAT, Wesson
et al. 2012). Both packages require the rest wavelength, total line flux, and total line flux
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uncertainty of each observed emission line as input parameters. Both packages also utilize
the three zone model discussed in §3.1. However, no high-ionization zone temperature or
density diagnostic emission lines were observed in any of my spectra, so only the medium-

and low-ionization zones will be discussed henceforth.

In general, PyNeb requires a lot of direction from the user, while NEAT operates more like a
“black box”. That said, NEAT uses a sophisticated Monte Carlo approach to model various
SNR scenarios, which is believed to be quite effective when dealing with weak emission lines
(low SNR), so I emulate this approach in PyNeb. Both PyNeb and NEAT use a list of input
line fluxes to then determine the abundances of various ions. In the Monte Carlo approach
developed by the writers of NEAT and emulated by me in PyNeb, the line fluxes are drawn
from a given distribution and abundances are determined for n iterations. The results from
these n iterations are then binned and the means and standard deviations are taken to be
the abundances and their corresponding uncertainties. n is equal to 100 in both PyNeb and

NEAT, unless otherwise specified.

The distribution from which the Monte Carlo line fluxes are drawn is chosen according to

each line’s SNR. Three distributions are available:

e SNR > 6.0 If the given line flux is F' and the given uncertainty 6 F', then the flux in
the i-th MC iteration is given by F; = F + (R x §F), where R is a random number
drawn from a standard Gaussian distribution N(0,1). In other words, F; is drawn
from a Gaussian distribution with a mean equal to the given flux and a standard

deviation equal to the given uncertainty.

e 1.0 < SNR < 6.0 Rola and Pelat (1994) found that measurements of weak lines are
strongly biased towards overestimations, and that F; for these lines should be drawn
from a log-normal distribution: F; = F e~ (FX7+#) where the parameters p and o are
functions of the SNR. The appropriate values of p and o for the log-normal distribution
corresponding to a particular SNR were calculated in Rola and Pelat (1994), and the
full equations for the values used by NEAT (and my implementation of PyNeb) are
given in Wesson et al. (2012).

e SNR < 1.0 When the given uncertainty is greater than the corresponding flux, it is
reasonable to assume the given flux is an upper limit, so F; is drawn from a folded
Gaussian distribution such that F; = abs(R) x 0.2F.

Of particular interest to this work, the above scheme makes NEAT superior to analytical
techniques when calculating heavy element abundances and uncertainties from auroral line

observations (Wesson et al., 2012).
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3.2.1 PyNeb

First, I use the getCrossTemDen method within PyNeb’s Diagnostics class to simulta-
neously determine the electron temperature and density by fitting two line ratios (one
temperature-dependent and density-independent ratio, and one density-dependent and temperature-
independent ratio). This method makes an initial guess of the temperature, which I always

set to 10000 K, to iteratively compute the density and temperature until a solution is found.

The temperature and density line ratios available in PyNeb and present in my spectra are
presented in Table 3.1. When more than one temperature diagnostic is available for a single

ion in a given ionization zone, then the average temperature is taken, e.g.,

A6548 A6548

T [/\5755] +T [)\5755]
B) .

T[N =

Similarly, the average is also taken when more than one temperature is available for a single

ionization zone, e.g.,

TOu+7T[Nu+T[S1]
3 .

If only one or two of the available low-ionization zone temperature diagnostics produce

ﬂow =

acceptable temperature values, then the above equation for Tiy is modified to only include
those ions’ temperatures. In this treatment of the temperatures, I assume “acceptable”
temperatures lie between 5000 K and 15000 K—these are lenient bounds to place on H 11

regions.

If an acceptable temperature could only be found in one of the low- and medium-ionization
zones, | determine a temperature in the other zone using the following relation, given by
Campbell et al. (1986),

Tiow = 0.7 Tineq + 3000 K .

In this way, I obtain reasonable abundances in as many H 11 regions as possible.

I took a similar approach with the densities, however these were much simpler than the
temperatures because there is only one density diagnostic and it is the same for both the
low- and medium-ionization zones. Thus, whenever the density is only found in one of the

ionization zones, the missing density is set equal to the known density.

After the temperature and density have been computed, the ionic abundances of O 11, O 111,
N1, S11, S 11, and Ne 111 relative to hydrogen are calculated using the getIonAbundance
method within PyNeb’s Atom class along with the appropriate ionization zone’s electron
temperature and density. As already mentioned, the calls to both getCrossTemDen and
getIonAbundance are repeated for each of the n Monte Carlo iterations. The average

values from these n iterations are then used as the final Tiow, Timed, Mows Mmed, and ionic
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Table 3.1. PyNeb temperature and density diagnostics

Ionization Zone Diagnostic Spectral Lines

A5755 5755
65487 \6584

N 1I temperature

Low O 11 temperature %
S 11 temperature %
S 11 density ig;i’%
Medium O 11 temperature 32363 %
S 11 density ig;i’%

abundance values.

Lastly, to calculate the total abundances of oxygen, nitrogen, sulfur, and neon, it is necessary
to sum the abundances from each ion that is present in the H 11 region. For oxygen, this
means summing the ionic abundances of O 11 and O 111, as given in Equation 1.2. However,
for nitrogen, sulfur, and neon, not all ions that are present in the H 11 region are observed
in the spectral data at hand. The observed ionic abundances must be multiplied by their
respective ionization correction factors (ICFs) to calculate total abundances. From Izotov
et al. (2006),

ICF(N 1) = —1.476v + 1.752 4 0.688/v ,
ICF(S 11 + S 111) = 0.178v + 0.610 + 0.153/v
ICF(Ne 111) = —0.591w + 0.927 + 0.546 /w ,

where v =011/(O 11 + O 111) and w = O 111/(O 11 + O 11).

All of the above steps are repeated within a Monte Carlo loop over 100 iterations. The
mean and standard deviations of the Monte Carlo results are then taken to be the value

and error of each quantity. Results from this approach are presented in §4.1.

3.2.2 NEAT

To compute metallicity from the input values rest wavelength, total line flux, total line flux

uncertainty, NEAT follows the same rough outline as most other metallicity calculators:

1. Calculate ¢(HpB) and apply the interstellar reddening correction.

2. Determine the temperature and density of the emitting medium.
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Table 3.2. NEAT temperature and density diagnostics

Ionization Zone Diagnostic Spectral Lines
N 11 temperature %
Low O 11 temperature %
S IT temperature %
S 11 density 26TLT
Medium O 111 temperature W

3. Calculate the ionic abundance of each ion in the input list of rest wavelengths and

total fluxes.

4. Estimate the total element abundances based on the observed ionic abundances.

As outlined in §2, T correct the total line fluxes for intrinsic Balmer absorption (§2.5) and
interstellar reddening (§2.6) before using them as input for NEAT. NEAT already assumes
there is no intrinsic Balmer absorption, so there is no issue there, however there is no need
to perform the interstellar reddening correction in the first step of the above outline. NEAT

allows the user to specify a value for ¢(Hp), so a value of 0.0 is chosen for all spectra.

Next, the temperature and density are determined. NEAT considers three zones of low,
medium, and high ionization, and iteratively calculates the temperature and density in
each zone (in the order listed) from traditional line diagnostics. The diagnostics commonly
available from this work’s line lists are given in Table 3.2, however the interested reader
is referred to Wesson et al. (2012) for a full list of line diagnostics used by NEAT, along
with their relative weights. If a temperature and/or density diagnostic is not available in
a particular zone, the temperature and/or density is set equal to the value derived in the

previous zone.

Tonic abundances are then determined from CELs, as explained in § 1.3, using the tempera-
ture and density determined for the zone appropriate to that ion’s ionization potential. For
example, O 111 would correspond to a medium ionization zone, while O 1I would reside in

the low ionization zone.

Lastly, total element abundances are estimated by summing the abundances of all ions of
the given element that were observed, then corrected according to the correction factors
developed in Kingsburgh and Barlow (1994). Correction factors such as these take into
account the fact that not all ions of a particular element may be observed, whether due to

limitations in wavelength coverage or sensitivity.
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3.3 Metallicity results

A number of key emission line fluxes along with the correction factors for Balmer absorption
(EW), interstellar reddening (¢(Hf)), and the f factors described at the end of §2.6 are
presented in Table A.1. The final metallicities calculated by PyNeb and NEAT are in
Table A.2.

To eliminate any anomalous metallicity values, I applied several relatively lenient rejection

criteria based on well-established criteria for H 11 regions. These are as follows:

e SNR > 3 for [O 11] A3727 A, and [O 111] A\4959,5007 A

e SNR > 0 for [O 111] M363 A, and [S 1] A\6716,6730 A

0.2 < Rosz < 1.2

EW <10

PyNeb: 8000 K < Tiow, Tmed < 13000 K,

NEAT: 6000 K < Tiow, Tmea < 15000 K,

12 + log(O/H) < 9.5



CHAPTER 4

Results

Tuse both PyNeb and NEAT to independently determine densities, temperatures, and metal-
licities for each H 11 region. Thus, the results from each of these methods are presented in
each section in this chapter. The two methods and their corresponding results are compared
in §4.5.

4.1 PyNeb Monte Carlo parameter determination

Since I have much more control over the input and output of PyNeb, I was able to make
histograms of the values obtained for several key parameters in each Monte Carlo iteration.
Histograms of the low- and medium-ionization zone temperatures and densities, and the
oxygen abundance from 1000 Monte Carlo iterations are presented in Figures 4.1-4.2 for
the low- and medium-ionization zone temperatures and densities, and the oxygen abundance.
All lines of importance in H190 have SNR > 6.0. It is evident from these figures that all
the posterior parameters exhibit a symmetric Gaussian behaviour. Thus, I work under the
simplifying assumption that asymmetric errors need not be calculated. The full set of results

for all 701 observed Ha sources only uses 100 Monte Carlo iterations per object.
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4.2 Density and temperature distributions

The density and temperature of an H 11 region must be calculated before the metallicity can
be derived. The unprecedented number of H 11 regions we have observed in the plane of M33
provides us the unique opportunity to quantify the density and temperature distributions
within this spiral galaxy. I present the temperature results from both the low- and medium-

ionization zones, then conduct a comparison between the two zones.

Multiple low temperature diagnostics are available to both PyNeb and NEAT from this data
set. In particular, the ions O 11, N 11, and S 1I are used, as shown in Tables 3.1 and 3.2. 1
compare the temperatures derived from each of these indicators in Figures 4.3 and 4.4 for
PyNeb and NEAT. In the PyNeb case, the N 1I diagnostic tends to provide a lower tempera-
ture estimate than either the O 11 or S 11 diagnostic. The O 1I and S II temperatures are both
clustered between ~ 10000 — 15000 K, and there is relatively good agreement between them.
For the NEAT results, I will first note that there are asymmetric error bars, and the lower
valued error bars often go to 0 K. For all three diagnostic comparisons, there is a clustering
of values along the 1:1 line, however in the bottom panel of Figure 4.4, there is evidence
that the N 11 diagnostic provides a lower temperature estimate than the S 11 temperature, as
was the case for the PyNeb results. Unlike in PyNeb however, there is no clear evidence for
the N 1I temperatures to be significantly lower than the O 11 temperatures. However, it is
difficult to argue whether one temperature diagnostic consistently outperforms the others,
so I do not change my earlier decision to take the average of all acceptable temperatures
to calculate the overall low-ionization temperature. NEAT also takes an average of ac-
ceptable temperatures to obtain the low-ionization temperature, although not all diagnostic

temperatures are weighted equally (Wesson et al., 2012).

I plot my derived values of Tieq against T,y to see the agreement with the relation of
Campbell et al. (1986) in Figures 4.5 and 4.6 for the PyNeb and NEAT results, respectively.
Both sets of results show significant scatter about this relation. There are several points
in Figure 4.5 that lie directly on the Campbell et al. (1986) relation line; these are the
H 11 regions for which one of the low- and medium-ionization zone temperatures was not
available from the spectral observations, so I used the Campbell et al. (1986) relation to
derive the temperature in the missing zone. Although it is difficult to discern any significant
agreement with the Campbell et al. (1986) relation from these data, it does appear that the
low-ionization temperatures are usually lower than the medium-ionization temperatures.
Recall that I accept the PyNeb temperatures only if they lie in the range 8000-13000 K,
while the NEAT temperatures can range from 6000-15000 K.

As a further comparison, the aforementioned plots of PyNeb-derived temperatures are also
presented for the subset of data points whose observed SNR in [O 111] \4363 A is greater
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than 6 (Figures 4.7 and 4.8). In general, all temperatures for this subset of the data set have
more reasonable values (most data points with exceptionally large error bars or values near
the edge of the accepted range are removed). In particular, for the Tyeq against Toyw plot
(Figure 4.8), there is also much better agreement with the Campbell et al. (1986) relation.
Also noticeable for this subset of the data is that the N 11 diagnostic continues to provide a
lower temperature estimate than either the O 11 or S 11 diagnostic. Thus, although applying
a SNR([O 111] M363 A) > 6 rejection criterion produces overall “better behaved” data, my
goal to calculate as many abundances as possible in M33 means I will work primarily with
the much larger data set given by SNR([O 111 A4363 A) > 0, but I will periodically return
to the SNR([O 111] M4363 A) > 6 subset for comparison on notable results.

Histograms and radial gradients of the PyNeb and NEAT derived temperatures are shown
in Figures 4.9-4.12. For both PyNeb and NEAT, the temperature histograms indicate
that the low-ionization temperatures generally lie at slightly lower values than the medium-
ionization temperatures, in agreement with the trend observed in the plots of Ti,eq versus
Tiow (Figures 4.5 and 4.6). With regard to the radial gradients, both PyNeb and NEAT
results show the medium-ionization zone gradient has a steeper positive slope than the low-
ionization slope, although in all cases the scatter is extremely large. Both low- and medium-
ionization zone temperatures from PyNeb are consistent with a flat slope. Also, these results
show that the central low-ionization zone temperature is larger than the medium-ionization
zone temperature, although the difference between the two central values is less than the
uncertainty on the central medium-ionization zone temperature, which is relatively very

large.

Histograms and radial gradients of the PyNeb and NEAT derived densities are shown in
Figures 4.13 and 4.14, respectively. For both PyNeb and NEAT, densities in the low- and
medium-ionization zones are approximately equal to one another, which is consistent with
a single density H II region, as was originally modelled by Stromgren (1939). Nearly all of
the derived densities are generally at typical H 11 region values of < 500cm~3. The radial
gradient slopes in both ionization zones are negative from the PyNeb results and positive
from the NEAT results, however all four slopes are consistent with a flat gradient, so this
is the most sensible interpretation of the results. All four gradient intercepts lie between

10%-21-10232 cm—3, with their average value being ~180 cm 3.
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Figure 4.3 A comparison of PyNeb temperatures derived in the low-ionization
zone from the three temperature diagnostics available in this data set: [O 11
AA3727,3729 A/ANT319,7330 A, [N 11] A5755 A/\6548 A and [N 11] A5755 A/\6584 A, and
[S 11] AX4068,4076 A/AN6716,6731 A. The 1:1 line is shown in green.
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zone from the three temperature diagnostics available in this data set:

[O 1]
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line is shown in green.
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SNR > 6 for [O 111] \4363 A.
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Figure 4.9 Histograms of the temperature and density results from PyNeb. The values in
both the low- and medium-ionization zones are shown in each panel.
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Figure 4.10 Histograms of the temperature and density results from NEAT. The values in
both the low- and medium-ionization zones are shown in each panel. The density values are
identical in both the ionization zones because of the way NEAT works.
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Figure 4.11 The low- and medium-ionization zone temperature radial gradients from PyNeb.
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Figure 4.12 The low- and medium-ionization zone temperature radial gradients from NEAT.
The low-ionization zone gradient has slope 244+141 K kpc~! and intercept 8190+368 K. The
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CHAPTER 4. RESULTS 74

3.5 :
g -0.4
2 3.0
2 } -0.6
[} ' =
g 2.5 % 3 -0.8
e -
S ] & } } t } -1.0%
c 2.0 X
2 } l H I } -1.285
S t )
€ 1.5 } f } J + -l47=
Q 5
2 -1.6~
S1.0
S -1.8
g
23— 1 2 35 4 5 6 7 —2.0
Galactic Radius [kpc]
£3.5
3
2> -0.4
@ 3.0
§ { —-0.6
=
225 ¢ t -0.8%
S f <
c } # * i E —-1.0%
2 2.0 g
S § w } -128
c t ! =
°15 { -1.43
£ g
> -1.6
T 1.0
= -1.8
u—d 5 L L L L L L L —_
<0375 1 2 3 4 5 6 71 8 2.0

Galactic Radius [kpc]

Figure 4.13 The low- and medium-ionization zone density radial gradients from PyNeb. The
low-ionization zone gradient has slope —0.047 & 0.070 dex kpc~! and intercept 2.22 #+ 0.29.
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2.32 £0.27.
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Figure 4.14 The low- and medium-ionization zone density radial gradients from NEAT. The
low-ionization zone gradient has slope 0.01640.025 dex kpc ™! and intercept 2.2540.12. The
medium-ionization zone gradient has slope 0.01640.025 dex kpc~! and intercept 2.25+0.12.
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4.3 Metallicity comparison to strong-line indicators

As noted in §1.5, an important result of this work is the ability to improve upon the cur-
rent strong-line calibrations. This is done by comparing the observed strong-line indicators
(Ra3,N3,03N5,Ar303,5303) to metallicities derived from the weak-line direct method (dis-
cussed in §1.4).

I present the PyNeb and NEAT oxygen abundances as a function of Rgg in Figures 4.15 and
4.16. Both plots also show the current strong-line calibration curve (Eq. 1.3). Similarly, the
oxygen abundances plotted against the other four strong-line indicators discussed in §1.5,
along with their respective calibration curves, are shown in Figures 4.17 and 4.18. In the Rog
plots for both PyNeb and NEAT, the data agrees with the calibration curve for oxygen-rich
H 11 regions. For all strong-line indicators, with the exception of O3Ns, the data lie solidly
on the calibration curves. For O3Ns, there is a systematic offset, likely indicating that the
objects being studied here differ from those used to perform the calibration. In all strong-
line metallicity plots there is significant scatter, making it difficult to identify any further
trends within either the PyNeb or NEAT data set. Improvements to the strong-line indicator
calibrations must wait until further refinement of the metallicity data is accomplished in

future work.
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Figure 4.15 The comparison between the PyNeb metallicities derived from the weak-line
method to the Ra3 strong-line metallicity diagnostic. The solid and dotted lines show the
current calibration for oxygen-poor and -rich H 11 regions, respectively, according to Pilyugin
(2000).
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Figure 4.16 The comparison between the NEAT metallicities derived from the weak-line
method to the Ra3 strong-line metallicity diagnostic. The solid and dotted lines show the
current calibration for oxygen-poor and -rich H 11 regions, respectively, according to Pilyugin
(2000).
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Figure 4.17 A comparison of the PyNeb metallicities derived from the weak-line method to
various strong-line metallicity diagnostics. The solid lines in (a) and (b) show the current
calibrations according to Pettini and Pagel (2004). The solid lines in (c) and (d) show the
current calibrations according to Stasiriska (2006).
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Figure 4.18 A comparison of the NEAT metallicities derived from the weak-line method to
various strong-line metallicity diagnostics. The solid lines in (a) and (b) show the current
calibrations according to Pettini and Pagel (2004). The solid lines in (c) and (d) show the
current calibrations according to Stasiriska (2006).
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4.4 Metallicity gradients

The PyNeb and NEAT metallicity gradients are plotted for O/H (Figures 4.19-4.22), N/H
(Figures 4.23, 4.24), N11/O 1 (Figures 4.25, 4.26), S/H (Figures 4.27, 4.28), S/O (Fig-
ures 4.29, 4.30), Ne/H (Figures 4.31, 4.32), and Ne/O (Figures 4.33, 4.34). Each figure shows
the line of best fit in green, which I calculated by bootstrapping an inverse-uncertainty-
weighted polynomial fit. Data points with exceptionally low (< 0.05) or high (> 0.4) uncer-
tainties are excluded from the fit since I believe these values are either mis-representative
of the true error, or they indicate a measurement error has likely occurred. Either way,
including these data points leads to a much poorer fit. The slopes and intercepts for each
line of best fit are presented in Table 4.1. Recall Table 1.5 provides information on the
oxygen radial gradients derived in a number of previous M33 studies. For reference, the
solar oxygen abundance is 12 4 log(O/H) = 8.70 (Grevesse, 2009).

The O/H radial gradients from PyNeb and NEAT are each plotted for the full data set given
by SNR([O 111] A4363 A) > 0, as well as the subset for which SNR([O 111] \4363 A) > 6. T will
first discuss the results given in Figures 4.19 and fineatgradOH for the full data set. Both
PyNeb and NEAT results indicate the central metallicity is around 8.47, with a negative
slope that is in the same range as most previous studies have found, however the precise
values of the gradients from PyNeb and NEAT are not consistent with one another. The
PyNeb gradient is extremely shallow (—0.010 £0.019 dex kpc—!), while the NEAT gradient
is much steeper (—0.049 + 0.013 dex kpc™!). In looking at the plots more closely, both
sets of results exhibit a large amount of scatter. For the PyNeb results, the mean residual
of all data points with respect to the line of best fit is 0.21, while the average metallicity
uncertainty is 0.18. For NEAT, the mean residual is 0.33 and the average uncertainty is

0.16. The implications of these values will be discussed in more detail in §4.7.

The O/H radial gradients for the SNR([O 111] A4363 A) > 6 subset are presented in Fig-
ures 4.21 and 4.22. The PyNeb slope is a bit steeper than for the full set, while the NEAT
data set slope is a bit shallower. This, combined with the larger uncertainties, means the
two slopes are now consistent with one another, although there is still quite a large differ-
ence between them. The central abundances have not changed significantly from what was
calculated for the full data set (12 4 log(O/H) ~ 8.47).

The nitrogen radial gradients show much less scatter than the O/H gradients in both PyNeb
and NEAT. The PyNeb relations are particularly strong, with the exception of two outlier
data points. Since both the N/H and N 11/0 11 gradients are negative, this indicates that
nitrogen and oxygen both become less abundant in the outskirts of the galaxy compared
to the central regions, however the nitrogen drop-off occurs much faster, in agreement with

the early findings of Searle (1971). Further, the N/H relations are nearly identical between
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Table 4.1. M33 metallicity gradients from this work

Element PyNeb Gradient PyNeb Intercept NEAT Gradient NEAT Intercept
dex kpc~! dex kpc~!

O/H —0.010+0.019 8.48 £0.07 —0.049 +0.013 8.46 £ 0.05
O/H (SNR > 6) —0.016 £ 0.030 8.52+0.13 —0.041 + 0.029 8.41+0.12
N/H —0.092 + 0.020 7.38 £0.07 —0.093 +0.013 7.44 +0.05
N11/0 11 —0.070 £ 0.019 —1.18 £ 0.08 —0.126 + 0.036 —0.85+0.15
S/H 0.029 £+ 0.029 6.43 £0.13 —0.033+0.078 7.53+0.34
S/0 0.037 £ 0.029 —1.93+0.12 —0.045+0.118 —0.59 £ 0.51
Ne/H —0.023 + 0.030 7.63+0.12 —0.039 +0.024 7.69 £ 0.09
Ne/O —0.002 + 0.024 —0.88+0.11 0.036 £ 0.027 —0.83+0.07

PyNeb and NEAT, and suggest the gradient is around —0.093 dex kpc™! and the central
N/H metallicity is approximately 7.41. The N 11/0 11 relations are not consistent between
PyNeb and NEAT, although this is expected given the differences in O/H.

There is more ambiguity in the sulfur gradients than any of the other metal gradients I
examine. The PyNeb results indicate a positive gradient for both S/H and S/O, while
NEAT favours a negative gradient for both. Still, the PyNeb and NEAT gradients are
consistent with one another for each relation, only their intercepts differ significantly. It

seems likely that the sulfur gradient is (nearly) flat.

The Ne/H and Ne/O gradients are consistent between PyNeb and NEAT, although this is
due at least in part to the relatively large uncertainties on both slopes and intercepts. The
PyNeb gradients for both Ne/H and Ne/O are consistent with a slope of zero, but this is not
the case for the NEAT results. However, PyNeb and NEAT seem to agree that the central
Ne/H abundance is roughly 7.66 and that the Ne/O slope is shallower than the Ne/H slope,

thus indicating that oxygen falls off more rapidly than neon as galactic radius increases.

Lastly, I plotted Ro3 as a function of radius to derive the Ro3 radial gradient. I found the
line of best fit had a positive slope of 0.041 £0.018 dex kpc~! and intercept 0.5940.08. This
is consistent with there being a negative radial gradient for 12 + log(O/H), since these two
quantities have an inverse relation in the oxygen-rich regime, as seen in Figures 4.15 and
4.16. Using the oxygen-rich relation between Rg3 and oxygen metallicity, I calculate that
the oxygen gradient corresponding to this Res gradient has a slope of —0.057 + 0.016 and
intercept 12 4 log(O/H) = 8.67 £ 1.23. This gradient is consistent with the NEAT-derived
oxygen metallicity gradient, but not the PyNeb gradient. The intercept is consistent with
both PyNeb and NEAT’s 12 + log(O/H) intercept, although the Rag-derived value has a

large uncertainty.
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Figure 4.19 The PyNeb oxygen abundances are plotted according to their galactocentric
radii to show the overall radial gradient. The slope and intercept of the line of best fit
(shown in green) are —0.010 + 0.019 dex kpc~! and 8.48 & 0.07, respectively.
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Figure 4.20 The NEAT oxygen abundances are plotted according to their galactocentric
radii to show the overall radial gradient. The slope and intercept of the line of best fit
(shown in green) are —0.049 £ 0.013 dex kpc~! and 8.46 + 0.05, respectively.
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Figure 4.21 The same as Figure 4.19, but only including data points that have an observed
SNR > 6 for [O 111] A4363 A. The slope and intercept of the line of best fit (shown in green)
are —0.016 & 0.030 dex kpc~! and 8.52 £ 0.13, respectively.
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Figure 4.22 The same as Figure 4.20, but only including data points that have an observed

SNR. > 6 for [O 111] M4363 A. The slope and intercept of the line of best fit (shown in green)
are —0.041 £ 0.029 dex kpc~! and 8.41 £ 0.12, respectively.
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Figure 4.23 The PyNeb nitrogen abundances are plotted according to their galactocentric
radii to show the overall radial gradient. The slope and intercept of the line of best fit
(shown in green) are —0.092 + 0.020 dex kpc~! and 7.38 & 0.07, respectively.
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Figure 4.24 The NEAT nitrogen abundances are plotted according to their galactocentric
radii to show the overall radial gradient. The slope and intercept of the line of best fit
(shown in green) are —0.093 + 0.013 dex kpc~! and 7.44 & 0.05, respectively.
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Figure 4.25 The PyNeb nitrogen to oxygen abundance ratios are plotted according to their

galactocentric radii to show the overall radial gradient. The slope and intercept of the line
of best fit (shown in green) are —0.070 & 0.019 dex kpc~! and —1.18 4 0.08, respectively.
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Figure 4.26 The NEAT nitrogen to oxygen abundance ratios are plotted according to their

galactocentric radii to show the overall radial gradient. The slope and intercept of the line
of best fit (shown in green) are —0.126 & 0.036 dex kpc—! and —0.85 + 0.15, respectively.
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Figure 4.27 The PyNeb sulfur abundances are plotted according to their galactocentric radii

to show the overall radial gradient. The slope and intercept of the line of best fit (shown in
green) are 0.029 + 0.029 dex kpc—! and 6.43 4 0.13, respectively.
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Figure 4.28 The NEAT sulfur abundances are plotted according to their galactocentric radii

to show the overall radial gradient. The slope and intercept of the line of best fit (shown in
green) are —0.033 & 0.078 dex kpc~! and 7.53 + 0.34, respectively.
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Figure 4.29 The PyNeb sulfur to oxygen abundance ratios are plotted according to their

galactocentric radii to show the overall radial gradient. The slope and intercept of the line
of best fit (shown in green) are 0.037 £ 0.029 dex kpc—! and —1.93 £ 0.12, respectively.
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Figure 4.30 The NEAT sulfur to oxygen abundance ratios are plotted according to their

galactocentric radii to show the overall radial gradient. The slope and intercept of the line
of best fit (shown in green) are —0.045 4= 0.118 dex kpc~—! and —0.59 4 0.51, respectively.
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Figure 4.31 The PyNeb neon abundances are plotted according to their galactocentric radii
to show the overall radial gradient. The slope and intercept of the line of best fit (shown in
green) are —0.023 £ 0.030 dex kpc~! and 7.63 + 0.12, respectively.
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Figure 4.32 The NEAT neon abundances are plotted according to their galactocentric radii
to show the overall radial gradient. The slope and intercept of the line of best fit (shown in
green) are —0.039 & 0.024 dex kpc~! and 7.69 + 0.09, respectively.
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Figure 4.33 The PyNeb neon to oxygen abundance ratios are plotted according to their
galactocentric radii to show the overall radial gradient. The slope and intercept of the line
of best fit (shown in green) are —0.002 & 0.024 dex kpc~! and —0.88 + 0.11, respectively.
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Figure 4.34 The NEAT neon to oxygen abundance ratios are plotted according to their
galactocentric radii to show the overall radial gradient. The slope and intercept of the line
of best fit (shown in green) are 0.036 + 0.027 dex kpc~! and —0.83 4 0.07, respectively.
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Figure 4.35 The strong-line indicator Res as a function of galactic radius. The linear fit
shown in green has a slope of 0.041 £ 0.018 dex kpc~! and intercept 0.59 + 0.08.
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4.5 PyNeb and NEAT metallicity comparison

NEAT-derived metallicities are plotted as a function of PyNeb-derived metallicities in Fig-
ure 4.36. This plot indicates there is a fair bit of scatter about the 1:1 line, and that the
NEAT-derived metallicities tend to lie at lower values than the PyNeb-derived metallicities.
The correlation between PyNeb and NEAT metallicities improves when only those data
points with [O 111] \4363 A SNR greater that 6 are plotted (see Figure 4.37), although the
tendency for NEAT-derived metallicities to lie at lower values than PyNeb-derived metal-

licities is still present.

Since PyNeb involves much more input from the user, I understand the results much better
than the metallicities given by NEAT. Additionally, NEAT was developed using H 1I regions
in the Milky Way, and may therefore not be optimized to deal with the low-sensitivity, low-
resolution data I have for the much more distant H 11 regions in M33. Further investigations
into the capabilities of NEAT will be required in future work. Thus, I consider the PyNeb-

derived metallicities to be more robust values, and I use these in the subsequent sections.
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Figure 4.36 Metallicities derived from the two methods, PyNeb and NEAT, are plotted on
each axis. The 1:1 line is shown in blue for comparison.
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Figure 4.37 The same as Figure 4.36, but only including data points that have an observed
SNR > 6 for [O 1m1] A4363 A.
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4.6 High-resolution 2D metallicity map

With the PyNeb metallicities calculated in §3 and their (RA,Dec) positions within the
galaxy in hand, it is a straightforward matter to create a 2D metallicity map of M33. The
metallicity maps of the O/H, N/H, and N 11/0 11 data are shown in Figures 4.38-4.40. Each
map was created by plotting the best fit gradient (as given in Table 4.1) with the smoothed
residuals of each H 1I region’s metallicity as compared to the value of the best fit gradient

at the corresponding galactic radius.

By comparing the O/H 2D metallicity map (Figure 4.38) to the gradient plotted in Fig-
ure 4.19, it appears that although the overall gradient is negative, there is a distinct lack of
high metallicity data points near the galactic centre, which causes the colours in the map
to give the impression that the centre of the galaxy has a lower oxygen abundance than the
outskirts. This is likely an effect of the observational censoring that naturally occurs at high
metallicities. That is to say, I am likely not observing the most oxygen abundant H 11 regions
in the centre of the galaxy because these H 11 regions will have the weakest spectral lines
and therefore be most difficult to detect. There is good evidence for azimuthal structure
in the metallicity in addition to the radial gradient, although how much of this structure
is simply due to the relatively large uncertainties associated with the oxygen abundances
is unclear at this time. Future work to reduce these uncertainties should reveal the true

azimuthal structure.

A similar censoring effect may be occurring in the N/H 2D abundance map (Figure 4.39),
which would help explain why the peak in nitrogen abundance does not coincide with the
galactic centre. Overall, the N/H map is much smoother than the O/H map, which agrees
with the relative amounts of scatter seen in each gradient in Figures 4.19 and 4.23. The
N 11/0 11 abundance map (Figure 4.40) mirrors the asymmetric behaviour of the N/H map,

with further azimuthal structure contributed by the O/H component.
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Figure 4.38 Oxygen abundances derived with PyNeb are given by both the colour scale
and solid contours. These are superimposed on a continuum-subtracted Ha image of M33
produced from the survey data of Massey et al. (2006). Locations of the H 11 regions are
marked by solid white circles. The centre of the galaxy is marked by an x. Dotted contours
show ellipses of constant galacto-centric radius with a spacing of 1 kpc.
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Figure 4.39 Same as Figure 4.38, except it is the PyNeb-derived nitrogen abundances that
are given by both the colour scale and solid contours.



CHAPTER 4. RESULTS 96

550"

500"

450"

§ [2000]
o
o
S

34™30° 0° 33™30° 0
o [2000]

01"35™0®

Figure 4.40 Same as Figure 4.38, except it is the PyNeb-derived N 11/0O 11 abundances that
are given by both the colour scale and solid contours.
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4.7 Metallicity mixing scale

Now that I have acquired the high-resolution 2D maps of metallicities across the face of M33,
I can investigate characteristics of the galaxy that were simply not possible with only a radial
gradient. For instance, the scale at which metallicities are or are not correlated with one
another may be directly linked to how metals are mixed within a spiral galaxy. Figure 4.41
compares the difference in PyNeb O/H abundances between each pair of H II regions to
their physical separation. Figure 4.42 shows the same thing for PyNeb N/H abundances.
Also shown in each plot is the binned median metallicity difference, weighted inversely with
the error on the metallicity difference (summed in quadrature). Both these plots suggest
that except at the most extreme separations, the metallicity difference remains constant

(~0.20-0.25) regardless of the separation between the two H II regions under consideration.

Additionally, in Figure 4.43 I present the same figure as Figure 4.41 for the subset of data
points whose [O 111] \4363 A observed SNR. is greater than 6. There is more scatter in the
binned median values compared to Figure 4.41, likely due to there being fewer data points
being binned, but the overall value seems to be about the same as when the entire data
set was considered (O/H difference ~0.20-0.25). Thus, it seems that there is no observable

trend between spatial separation and metallicity difference in the current data set.

As given in §4.4, the line of best fit residuals for the O/H radial gradient were larger
than the average uncertainty on the metallicity measurements. This indicates that the
scatter in data points cannot be accounted for solely by the measurement uncertainties, and
the lack of a trend toward similar metallicities at small separations could be the result of
many fluctuations at separations smaller than our resolution, or an indication of systematic
problems. Berg et al. (2015) examine the [O 111] A\4363 A temperatures of 18 H 11 regions in
NGC 628 and find large discrepancies in their measurements of T[O 11] and T'[O 111] versus
T[N 11]. Berg et al. suggest that these temperature discrepancies may account for the large
dispersions seen in their [O/H] gradient, as compared to their [N/H] gradient. I also observe

a larger dispersion in the [O/H] gradient than in the [N/H] gradient in this data set.
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Figure 4.41 The difference in PyNeb-derived O/H abundances of any two H II regions is
plotted against those two H 11 regions’ separation within the galactic plane of M33.

w
o

* o raw data
=== weighted binned median

N
n

N
S
[ ]

2 .o - .= . .
': o ..‘o.o e ®
1.5¢ « L ] 0.: . o.

=

12 +1og(N/H) Metallicity Difference

12 14

Separation [kpc]

Figure 4.42 The difference in PyNeb-derived N/H abundances of any two H II regions is
plotted against those two H 1I regions’ separation within the galactic plane of M33.
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Figure 4.43 The same as Figure 4.41, but only including data points that have an observed
SNR > 6 for [O 111] A4363 A.
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Summary and Conclusions

The M33 Metallicity Project has successfully used the Keck I 10-m telescope to obtain
spectroscopic observations of 701 Ha sources in the nearby face-on spiral galaxy M33. These
Ha sources range in galactic radius from 0 to 7 kpc, and have a mean sampling rate of 2> 2
measurements per square kpc. From these spectra, I have extracted oxygen metallicities
using the PyNeb python package for 8 H 11 regions, and using NEAT for 108 H 11 regions.
Both PyNeb and NEAT employ the direct method to calculate metallicity, which relies on
the presence of the hard-to-detect auroral line [O 1m1] A\4363 A. This data set is far more
extensive than any other data set in the literature (see Table 1.5), and as I demonstrated
in §§ 1.3-1.5, the choice to use H 1I regions and the direct method greatly enhances the

robustness of the results.

In Figure 4.19 I presented the radial oxygen abundance gradient from PyNeb, for which
the line of best fit has a slope of —0.010 = 0.019 dex kpc~!. This contrasts with the radial
gradient from the NEAT results which is —0.049 £ 0.013 dex kpc~!. However, both sets of
results agree the central oxygen abundance is ~8.47. Compared to the metallicity gradients
derived in previous studies (Table 1.5), the PyNeb radial gradient is consistent with the
works of Crockett et al. (2006); Rosolowsky and Simon (2008); Magrini et al. (2009), and
when only data points with SNR([O 111] A4363 A) > 6 are taken into account, the resultant
gradient is also consistent with Bresolin (2011). The NEAT gradient is consistent with
Rosolowsky and Simon (2008); Magrini et al. (2009); U et al. (2009); Bresolin (2011).

The N/H gradient has a steeper slope (—0.093 dex kpc™!) and lower central metallicity
(12 + log(N/H) ~ 7.41) than the O/H gradient. This, combined with the negative slope
of the N 11/O 11 gradient plot, agrees with earlier results that show nitrogen abundances
decrease more rapidly than oxygen abundances at higher galactic radii. The opposite is

true for neon, for which both PyNeb and NEAT results suggest oxygen abundances decrease
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more rapidly than neon abundances at higher galactic radii. The Ne/H gradients presented
here (—0.023 + 0.030 dex kpc™! and —0.039 £ 0.024 dex kpc~!) are both consistent with
the neon gradient of —0.016 £ 0.017 dex kpc~! found by Crockett et al. (2006). The central
neon abundance (12 4 log(Ne/H) =~ 7.66) is slightly higher than that of nitrogen. There is
little evidence for a significant sulfur radial gradient, or if one does exist, then it is not very

well constrained by the current data set.

The 2D high-resolution metallicity maps for [O/H], [N/H], and [N 11/0 11] are shown in
Figures 4.38-4.40. This is the first time this type of metallicity map has ever been pre-
sented. The [O/H] map shows clear signs that there is significant azimuthal structure in
the metallicities across the face of the disk, however it is currently unclear how much of
this structure can be attributed to the relatively large oxygen abundance uncertainties, as
opposed to true azimuthal chemical fluctuations in M33. The large uncertainties may be
a result of the difficulties associated with a reliable T'[O 111] temperature, also experienced
by Berg et al. (2015). Regardless of whether the fluctuations are real or an observational
discrepancy, the large scatter in my data set of ~100 H 11 regions helps explain why previous
studies of the metallicity gradient (with less than ~ 50 H 11 regions) have failed to yield a

consistent, well-constrained value for the slope and intercept.

The [N/H] and [N 11/0 11] abundance maps suggest a much smoother radial gradient with
fewer azimuthal variations, although the peak in nitrogen abundance does not coincide with
the centre of the galaxy. It is possible this is an observational censoring effect that prevents

the robust identification of high-metallicity H 11 regions.

Future work with this data set will focus on further refining the XIDL spectral extraction
and total flux calculation codes (especially the sky subtraction routine, Balmer absorption
correction, and interstellar extinction correction), with the aim of obtaining even more
useable data points. Although I have already far surpassed the number of data points used
in any previous H 11 region metallicity study of M33, I believe the full data set should be able
to yield closer to 200 metallicity measurements. Also, I expect improvements in the spectral
extraction will yield oxygen metallicities with lower uncertainties, thereby allowing a better
analysis of the strong-line indicator calibration curves and the metallicity map azimuthal
structure. Once these have been obtained, it will be possible to compare the high-resolution
metallicity map to other maps that can be found in the literature, such as the molecular

gas and 21 cm maps.
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