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Abstract

Slant stack (7-p) mappings of expanding spread seismic profiles have long been
used in the recovery of subsurface velocities and layer thicknesses under the assumption
that the earth is a stack of isotropic layers. Because the ray parameter p 1s directly a
function of the angle of incidence 8 , variations of velocity with 8 within an anisotropic
medium should be naturally identified in the 7-p domain. Existing 7-p formulations are
readily modified to a geometry consisting of surface sources and wellbore receivers in a
stack of anisotropic layers. A layer stripping operation in the T-p mapping tor an offset
vertical seismic profile (VSP) is conducted for small p (near offset) and large p (far offsct)
ranges. In models consisting of anisotropic layers, the velocities recovered in this research
using this strategy differ from those input by less than 1 percent. The method was applied
to data acquired in a shallow borehole, which revealed a velocity difference between the
near-vertical and oblique directions of 15 percent in lithology of alternating thin (~ 1. m)
sands and shales. A further modification of this technique is developed in this thesis to
determine the slowness surfaces from 7-p curves. The method directly provides phase
velocities as a function of phase angle. In all the investigated models, the discrepancies
between the observed and modeled slowness curves are relatively small with a mean error
being less than 0.5 percent in each case. This method was also applied to a set of data
acquired in a shallow borehole in Northern Alberta. The layered sand-shale sequence
studied exhibits a phase velocity that increases by 12.5 percent from vertical to about 50°.
The method was also applied to determine ultrasonic velocities for both isotropic
(plexiglass) and anisotropic (phenolic) samples. The recovered velocity from the 7-p
curves for the isotropic sample differs from the directly measured velocity by less than 1
percent. The results show that the phenolic sample exhibits anisotropies that varies from 4

percent on the x-y plane to 22 percent for the y-z plane.
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Chapter 1

1. Introduction

1.1 Background

For the sake of computational convenience, the earth or its ¢+ .aponents are usually
assumed to be isotropic in s=ismic analysis. However, seismic anisotropy exists more
generally in the real earth. Earth materials are intrinsically anisotropic as a result of
preferred grain orientations and cracks. Geologic effects, such as thin layering, also
produce variations of velocity with angle of propagation. Ignoring this anisotropy can
result in erroneous geologic interpretations. Quantitative measurement of this anisotropy
can yield important information about in-situ geologic conditions and structures. A beuer
understanding of the earth and its internal processes requires a better understanding of its
seismic anisotropy; and methods of extracting this information are required.

Velocity anisotropy is observed in the earth's mantle and crust. The discrepancy
between Rayleigh and Love waves (both surface waves) observed by Anderson (1961,
1967), and Harkrider and Anderson (1962) is clear evidence that the upper mantle of the
earth is seismically anisotropic and is explained by P-wave and S-wave velocity
anisotropies of 7 and 8 percent, respectively. The anisotropy of the mantle is mainly
intrinsic; it contains information about alignment of minerals with respect to the direction of
convective flow. For example, a relatively large azimuthal P-wave anisotropy of 5 percent
is observed in the oceanic upper mantle; this result indicates that the crystallographic axis of
olivine with the maximum velocity is preferentially aligned in the direction of convective
flow from a spreading oceanic ridge (Peselnick, 1974; Christensen and Salisbury, 1979).

Three-component microearthquake data recorded globally (e. g., Crampin, 1987),
surface reflection seismology (e. g., Alford, 1986), and three-component borehole seismic

experiments (e. g., Johnston, 1986) also reveal that the earth’s crystalline and sedimentary
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basins are also seismically anisotropic.

Veiocity anisotropy in sedimentary basins has been extensively studied as
improvements in the interpretation of reflection seismics have substantial economic
benefits. During the last few decades, a large number of surface and borehole seismic
experiments have been conducted. Larner et al. (1993), computed the migration errors
involved in assuming anisotropic media to be isotropic, and showed that the quality of the
migrated seismic sections is greatly dependent upon the velocity anisotropy. Daley and
Hron (1977) showed that variation of the reflection coefficient at an interface between two
anisotropic media is substantially affected by the velocity anisotropy. Further, laboratory
measurements carried out on various types of samples (e. g., Vernik and Nur, 1992) show
that many sedimentary rocks are anisotropic.

Seismic velocity anisotropy is an important but poorly understood characteristic of the
earth. It is important that further methods be developed to exiract this anisotropy in seismic
data sets. In this thesis, I propose a new method for velocity anisotropy determination in
the 7-p domain from ray multioffset and multidepth VSP data sets. First, I describe a layer
stripping technique in the 7-p domain and then test it on both synthetic and real data, the
latter being acquired in a shallow borehole in Northern Alberta. I further developed the
method to recover the slowness curves for both gP-waves and qSV-waves for a simulated
VSP for a transversely isotropic (TI) medium, and later applied to a field data set for which
the P-wave velocity function from normal incidence to an incidence angle of 55° is
determined. 1 finally adapted the 7-p method to laboratory measurements, where qP-wave
phase velocity was measured as a function of incidence angle determined for four different

planes within a material of orthorhombic symmetry.

1.2 Causes of Anisotropy

The elastic behavior of an isotropic material is specified by 2 elastic constants. In

2



contrast, the elastic behavior of a material which completely lacks symmetry is
characterized by 21 independent elastic constants. Any symmetry within the structure of a
material reduces the number of independent elastic constants required to describe it. Asa
result, both compressional and shear velocities depend on the orientation in a three-
dimensional system of coordinates. Some examples of velocities for a few minerals are
shown in table 1.1.

The mineral anisotropies will influence rock anisotropy if, on average. the grains
within a given rock have a preferred crystallographic, or lattice-preferred, orientation. The
aggregates of crystals that form rocks are also anisotropic On this basis, Nicholas and
Christensen (1987) describe the main source of the high anisotropy observed in the mantle
of the earth. They showed that static deformation resulting from simple shear on minerals
with a dominant slip system will preferably align the crystals; therefore, mantle flow
indirectly produces seismic anisotropy. The acoustic-wave anisotropy observed
(Christensen et al.. 1982) on peridotite from the upper mantle is consistent with the
anisotropy of their dominant minerals (olivines and orthopyroxene) and their orientation.
In crustal metamorphic rocks, anisotropy is caused similarly by preferred orientation of the
constituent crystals. Preferred orientations can be produced by crystal rotation during
straining, recrystallization in a nonhydrostatic stress field, or by preferential crystal settling
in magma chambers.

Deviatoric stress fields are also known to influence the elastic properties of rocks.
This fact is important to both in-situ stress measurements and to the interpretation of crustal
seismic data because stress will influence seismic velocity. For example, Tocher (1957)
and Matsushima (1960) showed that uniaxial stresses applied to rocks with microcracks
produce changes in their elastic properties. The anisotropy is produced by oriented
microcracks within the rock mass. To help understand the effects of microcracks on wave
velocities Walsh, (1965) modeled the microcracks producing a certain porosity. A

nonhydrostatic stress applied to a cracked specimen will close cracks in some directions
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and leave cracks in other directions open. Cracked rocks that are intrinsically isotropic and
subject to nonhydrostatic stresses exhibit an anisotropy that depends on the elastic
properties of the matrix, the porosity, the aspect ratios of the cracks, and the bulk modulus
of the pore fluid (Nur, 1971; Anderson et al., 1974).

Oriented cracks are also important in crustal seismic studies, and it has been
suggested these are an indicator of the prevailing stress orientations. The least compressive
principal stress is generally horizontal in normal strike-slip faulting environments (Jamison
and Cook, 1980; Hickman et al., 1988; Evans et al., 1989); consequently those cracks
most open are aligned in a vertical plane striking parallel to the maximum horizontal stress
orientation (Crampin, 1978). Crampin (1978) showed that if the seismic wavelength is
large relative to the typical crack spacing, the cracked medium is transversely isotropic with
a horizontal axis of symmetry perpendicular to the plane of the cracks. As a result, it has
been suggested that variability of the stress field near active faults can be monitored by
changes in anisotropy. For example, a gradual increase in the delays between the fast shear
waves (polarized along the frictures) and slow shear waves (polarized perpendicular to the
fractures) over a period of 3 years at a station of the Anza seismic network monitoring the
Anza seismic gap on the San Jacinto fault in southern California was observed by Peacock
et al. (1988). This anisotropy was reported to end near the time of the North Palm Springs
earthquake only 33 km north of the station; this interpretation remains controversial. The
polarization of shear waves along and perpendicular to the fractures, and their decoupling
as they travel with different speeds is referred to in the literature as "shear wave splitting”
or "birefringence".

Aligned cracks are not the only source of crustal anisotropy. The layering of the
sediments over geologic time scales can also be a sour<:: of seismic velocity anisotropy. In
fact, if the typical layer thickness is small compared to the seismic wavelength, the layered
medium is equivalent to a homogeneous transversely isotropic medium witl a vertical axis

of symmetry (e.g. Postma, 1955; Backus, 1962). There is a direct relatienship between
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anisotropy and heterogeneity. Such a transversely isotropic medium is characterized by 5
independent elastic constants. The seismic velocities in a transversely isotropic medium
(whose axis of symmetry is vertical) are azimuthally independent and vary only with the
angle of incidence (Backus, 1962). Unlike crystals exhibiting hexagonal symmetry. the 5
independent elastic constants of an equivalent transversely isotropic medium cannot take
arbitrary values as will be seen later. The inequalities given by Postma (1955). Backus
(1962), and Berryman (1979) show that for most cases of physical interest the velocity of a
wave propagating along the layers will be larger than that propagating in a direction
perpendicular to the layers.

Sedimeritary basins can combine both transverse isotropy due to thin horizontal
layering and anisotropy due to vertically aligned cracks. This type of medium has an
orthorhombic symmetry described by an elastic tensor with 9 independent elastic constints
(Bush and Crampin 1987). In addition to these geometric effects of thin layering and
aligned cracks in the earth’s crust, most of the rocks are intrinsically anisotropic (Freund,
1992). The matrix minerals may themselves be anisotropic, and create preferential
orientations for wave propagation (Gieske and Allred, 1974, Brocher and Thristensen.,

1990, Rokhlin and Wang, 1992, Johnston and Christensen, 1995).

1.3 Theoretical Overview

A brief summary of the mathematical background of elastic wave anisotropy is
necessary to set the stage for the work in this thesis. The reader is directed to texts such as
Fedorov {1968) and Musgrave (1970) for more complete descriptions of the fundamental
relationships between elasticity and anisotropy, and Aki and Richards (1980) for
introductory explanations of the implications to seismology. Most recently, Miller and
Chapman (1991), and Chapman and Pratt (1992) showed that the inclusion of seismic

anisotropy yields a better resolution in tomographic imaging. Larner and Cohen (1993)
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showed that some migration errors are a result of the fact that velocity anisotropy was not
introduced into the processing of reflection data. Because shales are very abundant and
important hydrocarbon sources, a large number of studies have been undertaken dealing
with their seismic properties. Most of the studies have revealed that the shales in various
parts of the world exhibit a strong velocity anisotropy ( Banik et al., 1984, Vernik and
Nur, 1992, Sayers, 1994). Further, crosswell tomographic imaging has been widely used
during the last decade to recover the velocity structure between wellbores. However, the
resolution of the images is closely tied to the inclusion of anisotropy of the layers traversed
by the rays (Saito, 1991; Chapman and Pratt, 1992).

For an anisotropic medium, the stress-train relationship is given by the generalized

Hooke's law

Ojj = Cijri€ki (1.1

where C;jx/ is a component of the fourth-order stiffness tensor, C. and oj; and g;;are the
components of the stress and strain tensors, respectively. The symmetries of the stress
and strain tensors reduce the number of independent elastic constants of the C tensor to 36.
The number can be reduced even further to 21 without losing generality by using the fact
that straining a medium must produce a positive change in its internal energy (Musgrave,
1970).

The equations of motion in terms of the components of displacement d; using

Einstein's indexing notation may be written as:

Cijxidrgj - pdi=0 (1.2)

where p is the density, d;is the ith component of the displacement, and ".." denotes the

second time derivative.



To determine the phase velocities for a generally anisotropic medium with 21
independent elastic constants, consider a plane-wave propagating through the medium.
One component of the displacement vector d that satisfies the equations of motion [equation

(1.2)] would have a solution of the form (Musgrave, 1970):

di = Aexexp i u,x, - 1) = Aegexp i(k.x, - OFf) (1.3)

where: A is a scalar amplitude, ek a unit displacement vector, ® the angular frequency of
the wave, and x, _u,, and k, are the components of the space vector, slowness vector, and
the wave number, respectively. Note that a summation is performed over the repeated
dummy index r.

Note that the displacement vector in equation (1.1.3) is complex. However, physical

displacements are obtained from the average of the complex displacement di and its

complex conjugate d;

Dy = (dy + di)/2. (1.4)

Alternatively, the physical displacement is simply the real part of di.

The wave number &k, may be written as:

k, =2f-(n,+ iny) (1.5)

where n, and n, are the real and imaginary parts of the complex wave front normal (i. e. the
normal to the wavefront), and A is the wavelength. By substituting &, by its expression in

equation (1.5), equation (1.3) becomes

d; = Aeygexp [121”1—"’-} exp i—zﬂ'—[n,'x, - v(n,)t] (1.6)
Alny) Alny)
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where v is the phase velocity of an elastic wave propagating in the direction of the real »,.

Substituting equation (1.6) into the equations of motion [equation (1.2)], one obtains

(Cijunjng - pv2&i)er =0 (1.7

which may be solved for the real displacements ek and real phase velocities v. The phase

velocities can be obtained by solving the characteristic aquation of equation (1.7) which is

det IC,'_,'k/njn[ - pv25,-kl =0 (1.8)

and which is commonly given in the form

det Iy - pv?-é,-kl =0 (1.9)

as Christoffel's characteristic equation. The I'j; are also known as Kelvin-Christoffel
stiffnesses.

The elastic tensors for media of hexagonal symmetry have S nonzero independent
elastic constants. If the axis of symmetry is parallel to the vertical (x3) axis the elastic
tensor C,,,, where both m and n run from 1 to 6, and such that

ij.kl = 11, 22, 33, 23o0r32, 3lorl3, 12or2l

m,n= 1 2 3 4 5 6

then C takes the form



Cu Cip Ciaz

Ci2 Cii Cia 0
Ciz Ciza Caz
C = (1.1,
Cyu
0 Cay

Coo

where C12 = Cy; - 2Cg6, and the Kelvin-Christoffel stiffnesses are given by:

I"“ = II%C“ + II%C(,(, + I1§C44

1"22 = Il‘l‘zC(,(, -+ n%C“ + 11§C44

r33=nj?C44+nz?'C44+n§C33 (1.1D
I3 = nan3(Cr3 + Cayg)

I'i3 = nn3(Ci3 + Cag)

I'2 = nna(Cra + Cep) .

Note that in a transversely isotropic medium, energy considerations require that the elastic

constants meet certain conditions:

Ci1 2Ce620, (3320, Cus9=20, C%3SC33(C|| - Ces) (1.12)

(Postma, 1955; Backus, 1962). When the transversely isotropic medium is constructed of
thin isotropic layers, Backus (1962) showed that the following additional constraints must

be imposed:

4 >
C11 > Ci3, C33>3C44’ Co6 2 Caa (1.13)

The constraints (1.12) and (1.13) on the elastic constants give z iransversely isotropic

medium a particular case of hexagonal symmetry for which the horizontal velocity is larger
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than the vertical velocity for most of materials of this type.
Media of orthorhombic symmetry are described by 9 independent elastic constants

that can be grouped in a 6x6 matrix as

Cii Ci2 Ci3
Ci2 Caa (23 0
Ci3 Caz (33
C = . (1.14)
Cas
0 Css

1.4 Observations of Anisotropy in Geophysics

In the upper-mantle olivine is the most abundant mineral and has a preferred
orientation more pronounced than the other minerals. The olivine mineral that has an
orthorhombic symmeury is easily oriented by the ambient stress or flow field. The direction
of maximum P-wave velocity in olivine (9.89 km/s) coincides with that of the flow in the
horizontal plane and the minimum velocity (7.72 km/s) points generally vertical,
perpendicular to the horizontal flow plane. The velocity along the third axis orthogonal to
the first two, away from the ridge has a magnitude of 8.43 km/s. However, the olivine and
orthopyroxene-rich aggregates exhibit an azimuthal P-wave anisotropy of 4 to 6 percent,
which is less than that exhibited by the pure olivine, due partly to the misalignment of the
crystals. This olivine and orthopyroxene-rich aggregates exhibit an S-wave azimuthal
anisotropy of only 1 to 2 percent that is small compared to the transverse anisotropy.

Shear waves propagating through an anisotropic medium produce shear-wave
polarization anomalies that can be used to estimate the anisotropy of materials (Crampin,
1981). Unfortunately, the shear waves are usually contaminated by the preceding P-wave

and by the S to P conversions. The P-wave polarization vector may deviate significantly
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from the wave front normal (phase-velocity direction) and car. be as large as 307 in strongly
anisotropic materials like the x-cut alpha-quartz (trigonal synmunmetry) described by Crampin
and McGonigle (1981). For P-wave propagation in the symmetry planes of cubic.
hexagonal. tetragonal. and orthorhombic systems, the deviation of the polarizations may
deviate significantly from the wave front normal. However, the apparent deviation of the
polarization from the ray path is small (Crampin, 1981).

Ando et al. (1983) studied the shear-waves splitting at near-vertical incidence angles
from earthquakes of intermediate to deep focus. They observed, over a region of 100 km,
a time delay as large as 1 s between the fast and slow shear-waves, possibly due to oriented
cracks produced by the earthquakes, which corresponds to a velocity difference of 4
percent.

For rigid, fractured bodies, stress is a direct cause of anisotropy. Nur and Simmons
(1969) measured velocities of a granite sample subjected to various uniaxial pressures. He
showed that at a 300-bar pressure the sample exhibits a P-wave velocity in the stress
direction increased by about 20 percent, while the increase in the direction perpendicular to
the stress was about 5 percent only.

An experiment conducted in the fractured Austin chalk (O'Connell and Budiansky,
1974) showed a velocity for shear-waves polarized along the orientation of the fractures of
2.44 km/s versus 1.83 km/s for shear-waves polarized perpendicular to the fractures,
leading to a shear-wave anisotropy of about 30 percent. Most of the observed leading
shear waves are consistent with the orientation of the cracks. For instance, for 60
microseismic events with magnitude between 1.8 and 3.0, observed and monitored by
Peacock et al. (1988) in the Anza stretch of the San Jacinto fault in southern California, the
time lags between the fast and slow shear waves had an average value of 55 ms, with a
standard deviation of 25 ms. Velocity measurements performed by Rabbel (1994) on rock
samples taken from the KTB (Continental Deep Drilling Site) in Germany showed that the

rocks traversed by the 3500-m deep borehole are anisotropic and that the metamorphic
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rocks exhibit an anisotropy larger than 10 percent.

Miller et al. (1994) carried out an experiment on a shale sequence in the southern part
of China and showed a gP-wave anisotropy of 12 percent. White ¢t al. (1983) used three-
component receivers and two sufficiently closely spaced boreholes to calculate the
horizontal and vertical phase slowness components dt/dx and dt/9z, respectively; from
which the qP. qSV. and gSH phase velocities for various incidence angles have been
calculated. The results of White et al. (1983) show that the horizontal gP-wave velocities

were 10 to 20 percent larger than the vertical velocities.

1.5 The 7-p transformation

The modification of the 7-p transformation to the determination of velocity anisotropy
in the geometry of a VSP experiment is one of the most important contributions in this
thesis. An overview of the 7-p transformation and a brief review of some of its many
applications in geophysics is necessary. Further, the rationale for employing the z-p
method over more conventional analyses is described.

A seismogir.: is a plot of the particle motions, or more usually, the particle's velocity
or acceleration versus time in response to the passing of a seismic wave. A single
seismogram, obtained at a given fixed position at the surface or within the earth yields a
very limited amount of information. As a result, a seismogram record consists of
numerous seismograms from a series of spatial positions x versus a common time base t.
The changes in the times of arrival across the array of observation points yields information
about the earth structure in terms of its material velocities. Consequently, both surface and
borehole seismic data are generally analyzed in what is referred to as the offset-time (x-£)
domain. Often. however, in this domain it is difficult, if not impossible, to segregate
different seismic arrivals such as reflections and critical refractions from geologic interfaces

in surface seismics, and downgoing and upcoming waves in a borehole evperiment. In the
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intercept time-ray parameter domain (7-p) these seismic events are mapped to different
positions within the 7-p space where they are more easily separated and distinguishable.

The mathematical developments related to the 7-p mapping were introduced by Radon
(1917); and the 7-p is a type of Radon transformation. The application of the 7-p to a series
of seismic traces was introduced by Rieber (1936) who developed the concept of delay-
and-add of seismic (analog) recordings. He used 10 equally spaced ground locations.
Another term synonymous with 7-p, especially in the seismic exploration community, is the
slant stack introduced by Claerbout (1975). The slant stack refers to the method used to
compute the 7-p data. and consists of summing the amplitudes in the offset-time domain
(Figure 1.1) along a straight line of slope p and intercept time T. However, more than one
method can be used to compute the 7-p map of a set of wave-forms, and I will outline three
of them briefly) the x-r method that is used here, 2) the (v, f) method, and 3) the (X, f)
method.

In the x-r slant stack method, £ach amplitude in the 7-p map is obtained by summing
the amplizades of the wave-forms in x-f space along a straight line of intercept tiine © and
slope p. The 7-p amplitudes are computed for all the ray parameters present in the acquired
data. Details of this method will appear in later chapters.

The (x-f) method is based on the Fourier transforms of the wave-forms. The wave-
forms are transformed to the Fourier domain and the coefficienis for each frequency are
grouped into a row vector. The summation over x in the x-r method becomes a
multiplication of the coefficient row vector by a rectangular matrix that has a number of
rows and columns equal to the number of wave-forms and number of p's, respectively.
For each frequency a matrix multiplication is performed and the 7-p mapping is obtained by
performing an inverse Fourier transform on the computed data.

The (f, k) method uses the projection-slice theorem (Wade and Gardner, 1988) which
states that the amplitudes relative to each p in the 7-p domain are identical to those picked
along a radial line of slope p in the 2-D Fourier transform of the x-7 data. -
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The method used here, is the (x-7) slant-stack, which is the simplest, takes the fewest
steps, and is the most commonly used method. Iimplemented the ratio filter (Moon et al.,
1986) in the 7-p mapping to assure that the lines of slope p are tangent to the time curves,
and the hyperbolic filter (Tatham, 1984) to attenuate the edge effects resulting from the
band-limited data. The programs 10 carry out these calculations are included in the
appendices.

The p-axis in the 7-p domain represents the ray parameter (horizontal component of
the z:lowness) of a plane-wave passing through a medium, while the t-axis represents the
intercept time defined as the vertical-slowness-thickness aggregate of the layers through
which the ray is traveling (Diebold and Stoffa, 1981). For a given ray path taken by a
seismic wave through the earth (Figure 1.2), for each phase angie € corresponding to a ray
angle ¢. and a phase velocity v corresponding to a ray velocity V, p remains constant and

satisfies Sneli's law;

y = Siﬂ@l _ Sinez -
, Y 1 ‘v2 b v‘ b ‘vn

As a result, the 7-p mapping of seismic data has the great advantage that a given
seismic event is plotted according to its apparent horizontal slowness, p, and not according
to its traveltime. This makes the 7-p domain useful for velocity determination.

Consider the traveltime curve for a ~ave generated by a source placed at the surface,
propagated through an isotropic medium, reflected from a horizontal interface separating
two media of different acoustic impedance, and finally recorded by a receiver placed at the
surface. This traveltime curve is a hyperbola crossing the time axis at the two-way vertical
traveltime (Figure 1.3b). This hyperbola maps in 7-p space to an ellipse that crosses the p-
axis at 1/v, where v is the velocity of the medium, and the t-axis at the two-way vertical
traveltime. Additionally a line in offset-time space (Figure 1.3a) that could represent a head
wave in this experiment maps to a point in the T-p space.
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Although the 7-p ransform had been used to filter wellbore seismic arrivals (Moon et
al., 1986). 1o our knowledge the work in this thesis is the first use of the transform for
velocity determination in a VSP experiment. The combination of the 7-p analysis with the
known depths of the detectors in the wellbore allows for a particularly simple, and
powerful, analysis.

In the case of an offset VSP experiment where a receiver is placed ir a borehole at a
known depth and sources are placed on the surface along a line radiating from the wellbore,
the common-receiver ray geometry is similar to that of a hypothetical reflector at the depth
of the receiver. The only difference, however, is that for the VSP experiment the traveltime
is half of what would be observed for a reflection (Figure 1.3). A downgoing-transmitted-
wave traveltime curve for an offset VSP experiment for receivers placed within an isotropic
medium is a hyperbola (Figure 1.3¢). As explained in Chapter 2 this hyperbolic curve will
map to an ellipse that crosses the p-axis at the reciprocal of the velocity of the medium
(1/v), and the T-axis at the one-way vertical traveltime.

Analysis of 7-p data is more complicated when the geology consists of a stack of
layers with different velocities. The problem is that the reflection time curves are no longer
hyperbolic. Conventionally, the interval velocities are inverted from the root-mean-square
velocities using Dix's (1955) equation restricted to flat layers and small source-offset
reflector-depth ratios. This method is extremely error-prone. As an alternative, Schultz
(1982) suggested a layer-stripping technique in the 7-p domain to determine the interval
velocities from a long-offset surface-to-surface seismic experiment. Schuitz’s method does
not employ Dix's equation, and hence entails no restriction on the source-offset/reflector-
depth ratio.

The 7-p method has been used beyond the velocity determination described here, for
example, to migrate reflection seismic data (Shuliz and Claerbout, 1978), and to attenuate
multiple reflections (Hampson, 1986). In fact, the diffracted waves generated at a

diffracting point in the subsurface propagate up to the receivers placed on the surface at
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various angles. If a medium is anisotropic the diffraction curve is not hyperbolic and an
offset-dependent velocity function is required for proper migration of seismic events.
especially those with large offsets.

With the development of three-component seismic data processing. shear waves are
increasingly being used in reservoir characterization and lithology discrimination. Tatham
and Stoffa (1982) and Robertson and Pritchett (1985) showed, using surface seismic data,
that the ratio of the P-wave velocity to the S-wave velocity (VP/VS) is more sensitive to
reservoir gas saturation than to the P-wave velocity. Unfortunately the segregation of the
S-waves from the rest of the waves is a seismic seismogram in not trivial in the x-7 domain.
However. the shear waves which are characterized by relatively low velocities, map in the
7-p domain at large ray parameters, while the P-waves map in the low p-range. By
selecting each of these 2 wave types in 7-p space and mapping them back to the offset-time
domain, the S-waves and P-waves can be separated. Tatham (1984) suggested a
hyperbolic filter that can be used in the forward 7-p mapping to transform only those
seismic events that have velocities within a prescribed velocity range. Tatham applied his
technique to separate the P-waves from the converted S-waves for a point-source
experiment.

The 7-p mapping. often called plane-wave decomposition (Stoffa et al., 1981; Treitel
et al., 1982) decomposes a non-plane-wave surface (Musgrave, 1970; Fedorov, 1968) into
its component plane, or elementary, waves. Conversely, the wavefront is obtained by
drawing the tangent curve 1o all the component plane-waves. Each ray parameter p =
sin@/v corresponds to a plane-wave propagating at a phase angle 8 with phase velocity v
and passing through the source point at its activation time r = 0.

All of the above 7-p analyses assume that the earth is composed of thick isotropic
layers. However. if the medium is elastically anisotropic the x-r curves of seismic events
are more complicated, as are their counterparts in 7-p space. In particular, the elliptical

curves priviaced for an isotropic earth will no longer be perfect ellipses if anisotropy is
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present.

Although developed independently. the present work was not the first to suggest that
anisotropy could be measured in the 7-p domain. Hake (1986) made an attempt to model
the slowness curves of an anisotropic layered medium from the z-p curves of synthetic
surface seismic data. Unfortunately, he was unable to solve for the vertical component of
the slowness that requires knowledge of the layer thicknesses, which are not generally
known a priori.

White et al. (1983), Gaiser (1990), Miller et al. (1994), and others also compute the
vertical and horizontal slownesses (Jr/9dx, and dr/d=) by measuring the ratios Ar/Av and
At/Az.

Here, 1 propose a technique of slowness curve determination from the 7-p curves of
downgoing transmitted waves in a multioffset. multidepth VSP experiment. In this case
the depths, which are those of the detectors, are known very well and this knowledge
greatly constrains the velocities determined.

As will be shown later, a final advantage of this method is that the phase, or plane-
wave, velocities are directly determined. This differs from x-¢ analyses where the ray
velocity is found. The phase velocities are useful in recovering the elastic constants of the
stiffness matrix and may be converted to ray velocities without too much difficulty in the
present method. These ray velocities are indicative of the actual energy flow or path taken

by the seismic arrivals and are hence of more utility in 10..10graphic analyses.

1.6 Outline of Thesis

This paper-format thesis consists of four papers produced directly by this research.
These papers are chronologically ordered; the reader may note the progression of the

analysis and evolution of our understanding of the problem with time. A brief overview of

the contents of the thesis is given here.
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Chapter 2, published in the Canadian Journal of Exploration Geophysicists (Schmitt
and Kebaili, 1993), is the first description of the advantages of the 7-p method in
delineating the velocity anisotropy from borehole vertical seismic profile experiments. The
text of this chapter has been slightly modified from that published in order to reflect a better
understanding of the method. The commrion receiver ray geometry in a surface-to-borehole
seismic experiment is similar to that for reflected waves in a surface-to-surface experiment.
Consequently, 7-p techniques used for reflection seismology, such as the 7-p layer-
stripping technique suggested by Schultz (1982) to determine the interval velocities, are
readily modified to borehole data sets. Shultz's equations are further modified to include
anisotropy under the assumption that the velocity is nearly constant over relatively small
ranges of incidence angles. The method successfully recovered velocities from calculated
seismograms from an elliptically anisotropic half-space. Further, the modified layer
stripping technique was able to determine the correct velocities in a more complex geology
consisting of an isotropic layer overlaying an anisotropic half-space.

Chapter 3, published in Geophysicist (Kebaili and Schmitt, 1996), describes a case
study of an application of the method described in chapter 2 to vertical seismic profile data
acquired in a shallow borehole at the AOSTRA Underground Test Facility near Fort
McMurray, Alberta. The geology at this site consists of horizontal layers of sands, shales,
bituminous sands, and limestones and was an ideal location to test the method. The data
acquisition and three-component processing strategies are described. In particular, the
particle motions are used to enhance the downgoing directly transmitted arrivals necessary
to the anisotropy analysis. Velocities are determined by two different, but complementary,
measures of coherency in order to reduce uncertainty. Because certain intervals of the
geology consist of rapidly alternating sand and shale layers of dimensions much less than
the seismic wavelengths used, it was expected that velocity anisotropy would exceed that
expected theoretically. These observations suggest that the layers themselves must be

intrinsically anisotropic.
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In chapters 2 and 3 the 7-p curves are locally fit by ellipses to determine the near-
vertical and oblique velocities, and only a near-vertical and an oblique velocity are
determined. Chapter 4, accepted for publication in Geophysics (Kebaili et al.. 1996).
describes a more mature method of slowness-curve determination from the 7-p curves.
Specifically. it is shown that the velocity of a given interval, at any angle of incidence, may
be found from simple subtraction of the 7-p curves obtained at the top and bottom of this
layer. The theoretical aspects of the 7-p analysis are more fully developed. An important
result is that the velocities determined by the method are phase, or plane-wave, velocities
and not ray velocities. The relationship between the phase and ray velocities for a
transversely isotropic medium is given. The method is tested on three synthetic examples a
multilayered isotropic medium, an elliptically anisotropic half-space. for which both phase
and ray velocity curves are recovered, and finally a transversely isotropic medium for
which the qSV-wave and qP-wave phase slowness curves are determined. The improved
method is applied to the same data set used in chapter 3 with the new result that the velocity
variations with angle of incidence is determined over a more continucus range. This
continuity of the phase velocities allows for an accurate calculation of the ray velocities.

Chapter 5, submitted 1o the Journal of the Acoustical Society of America (Kebaili and
Schmitt, 1996), describes the application of the 7-p method to delineate ultrasonic velocities
as a function of incidence angles for anisotropic specimens. Small damped transducers
(0.2 x 0.2 cm) were used to generate and receive wave-forms. The transmitter-receiver
geometry mimics a reverse vertical seismic profile. The method was tested on an isotropic
sample (plexiglass), for which the slowness curve in the plane that contains sources and
receivers was determined from the 7-p curves of common-transmitter wave-forms. The
method was then applied to an orthorhombic specimen (phenolic). Three planes of
symmetry and a diagonal plane of the phenolic sample were investigated. The phase-
velocity functions for all four planes were computed, and the ray-velocity functions for the
three planes of symmetry were derived from the phase velocities.
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Table 1.1

Mineral Symmetry [(Vmax - Vmin)/Vmeanlx100%
P S
Olivine Orthorhombic 25 22
Garnet Cubic 0.6 1.0
Orthopyroxene Orthorhombic 16 16
Clinopyroxene Monoclinic 21 20
Muscovite Monoclinic 58 85
Orthoclase Monoclinic 46 63
Anorthite Triclinic 36 52
Rutite Tetragonal 28 68
Nepheline Hexagonal 24 32
Spinel Cubic 12 68
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Figure 1.1. Slant stack procedure. The amplitudes in offset-time space on
a line of slope p and y-intercept 7 are stacked to give the amplitude in 7-p
space of x and y coordinates p and 7, respectively.
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Figure 1.2. Ray tracing through a layered medium. Snell's law states

that sin61/v1 = sin02/v2 = sinB63/v3 = sinB4/v4 = constant = p, where
p is the horizontal component of the phase slowness, v is the phase

velocity that correspends to the ray velocity V, and 0 is the phase
angle that corresponds to the ray angle ¢.
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Figure 1.3. Forward and inverse 7-p transforms of hypothetical seismic events. (a) A line
in the X-T space maps to a point in the 7-p space, and vice versa. Note that a point in the

X-T space maps to a line in the 7-p space. (b) a reflection hyperbola maps to an ellipse
(after Thatham, 1984). (c) A walk-away VSP transmitted ray hyperbola in X-T space

maps to an ellipse. Note that the 7-p ellipses in (b) and (c) have the same horizontal semi-
axes (1/v), but different vertical semi-axes (two-way, and one-way vertical traveltime,
respectively).
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Chapter 2
2. Velocity Anisotropy Estimation From

Slant Stacks of Wellbore Seismics

2.1 Introduction

In seismic analyses, the subsurface is often assumed to consist of a series of distinct and
elastically isotropic layers. Within such layers the magnitudes of the velocities of elastic
waves are independent of the direction of propagation. This assnmption has served well in
mappings of the gross structure of the earth and in reflection profiling of the crust.
However, it has long been recognized that elastic anisotropy is intrinsic to the structure of
most rock and, further, seismic theory indicates that a series of thin layers are effectively
anisotropic to seismic energy with a large wavelength relative to thicknesses of the layers.
In these latter cases, the magnitude of the velocity varies with the direction of propagation.
Ignoring these anisotropic effects can adversely influence those analyses that rely on the
spatial tracking of the ray paths.

In particular, much of the current interest in seismic anisotropy is motivated by the
requirements of various seismic imaging techniques. For example, since the elastic
anisotropy of rock controls the ray paths of seismic waves through the earth anisotropy
directly affects the accuracy in tomographic imaging (Chapman and Pratt, 1992; Saito,
1991). Additionally, much work has focused on using the variations in wavelet amplitudes
with angles of reflection from an interface as a material property diagnostic; these analyses
are usually based on the isotropic formulations (e.g. Young and Braile, 1976) but if elastic
anisotropy is included, the effects are substantially changed (e.g., Daley and Hron, 1977,
Pellisier et al., 1991; Samec and Blangy, 1992). Perhaps of the most practical importance,
however, is the realization that erroneous reflector depths will be calculated if anisotropy is

not accounted for when determining normal moveout velocities (Banik, 1984, Winterstein,
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1986).

Much recent field work has focused on shear waves and their birefringence as
observed from recordings in wellbores (e.g., Galperina and Galperin, 1987; Winterstein
and Meadows, 1991a, 1991b) but our present study will examine only the first arrivals
associated with directly transmitted quasi-compressional waves (qP). The layer stripping
techniques described do not preclude analysis of the quasi-shear wave arrivals. Indeed, the
direction-dependent slownesses of these modes are substantially more complex and provide
useful diagnostic information on the in-situ material properties. However, the
unambiguous determination of these arrivals is often difficult as they are often obscured by
the coda of the preceding qP arrival.

A number of field measurements of the subsurface seismic anisotropy have been
reported in the last four decades. Jolly (1956) measured the traveltimes from surface
sources offset as much as 180 m from a wellbore with geophones at depths to 113 m. He
suggested on the basis of his traveltime observations that the vertical and horizontal
velocities differed by as much as 12%. Levin (1979) used Backus's (1962) formulations
and a layered geology of interleaving gypsum and weathered material to simulate Jolly's
tests. Levin indicated that a much higher anisotropy would not be untenable or in
disagreement with the observations.

Vander Stoep (1966) derived anisotropy factors, A, equal to the ratio of the horizontal
to vertical velocities, for QP waves by comparing sonic well-log velocities to those obtained
from oblique seismic waves propagating down to borehole receivers. In New Mexico, he
found A- = 1.077 and 1.00 in a shale and a salt, respectively. Note that this analysis does
not take into account the frequency dispersion. In Texas, Vander Stoep found a small A=
1.03 on average which he considered to have negligible effect on the analysis of near-offset
reflection seismics. The author also demonstrated, however, that this simple anisotropy
factor analysis, that assumed that the incidence-angle-velocity relation was elliptical, was

not sufficiently complex to describe the traveltime behavior at far offsets, where the proper
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theory for a transversely isotropic medium should be used.

White et al. (1983) derive the elastic coefficients for a transversely isotropic medium
by finding phase velocities from time differences observed for qP. qSV, and qSH phases
from three-component recordings in a pair of closely spaced boreholes. They found in a
shale that P velocities of vertically propagating waves were in general 10% to 20% less
than the horizontal velocities. White et al. (1983) also determined the particle motions from
the polarizations of the vertical and in-line receiver components of the first arrivals. The
phase velocity directions were found from the horizontal and vertical traveltimes between
adjacent receivers in the two wells. Because their technique measured the phase velocities,
comparison of the observed polarizations with the wave propagation direction is
meaningful in theory (Crampin, 1981). In practice, the large relative experimental
uncertainties in the polarizations did not allow further delineation of the anisotropy. De
Parscau (1991) indicates use of this knowledge may be necessary to accurately define
anisotropy parameters.

Gaiser (1990) developed a technique to extract transversely isotropic phase velocities
from a vertical seismic profile consisting of six in-line offsets and over 50 receiver depths.
His method is, to a degree, similar to that of White et al. (1983) in that vertical and
horizontal slownesses are found and used to calculate phase-velocity magnitudes and
directions. Since horizontal slowness, p, in particular, will be influenced by variations in
the surface properties between adjacent surface source points, the method must assume that
the medium is laterally homogeneous. Gaiser observed strong variations in the TI
velocities, which apparently correlated with lithology: specifically P velocity anisotropiss
increased from 6% to 20% with increased concentration of calcareous and clay materials.

Winterstein and Paulsson (1990) conducted VSP and cross-well experiments in an
unconsolidated shale. They calculated the five elastic coefficients required for a
transversely isotropic medium from arrival times for all three modes in their crosswell data

set. Perhaps somewhat unexpectedly, these coefficients suggested that the shale could be
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considered isotropic and that the crosswell traveltimes were explained well by a linear
increase of velocity with depth.

The above methods were capable of demonstrating that the subsurface was
anisotropic. However, the method of Vander Stoep (1966) has the disadvantage that it
relies on sonic log velocities which, because of frequency dispersion effects, typically
differ from seismic velocities by approximately 5%. This error could adversely affect the
determination of the true anisotropy which in many cases is of the same scale. Other
methods such as those of White et al. (1983) and Gaiser (1990) determine phase velocities
under the assumption that planar wavefronts pass the receivers. The technique of White et
al. (1983) is also limited by the fact that two closely spaced boreholes are required for the
experiment.

In the present chapter, a method is developed that provides the ray velocity dependence
on propagation angle within a given layer between two receiver depths in a single vertical
borehole. The advantage of such a technique is that the results could be incorporated into
far-offset reflection profiling or traveltime tomography. The analysis exploits the 7-p
domain representation of traces collected at a common depth to determine the variations of
the velocity over a given depth range. The technique requires no major a priori
assumptions about the anisotropy. In the following development, a well known layer-
stripping technique (Schultz, 1982) is first adapted to the geometry of a vertical seismic
profile. These resultant formulas for the 7-p locus of a given set of arrivals at a common
depth are modified to include anisotropy. Finally the layer stripping strategy is tested on
two seismic traveltime models consisting of anisotropic layered structures. The present
results will be useful for the analysis of large data sets consisting of multiple depths and
offsets from a borehole. These types of observations are becoming more practical given the
recent developments in downhole source technologies applied to a reverse vertical seismic

profile geometry.
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2.2 Velocity Recovery in The 7-p Domain

The 7-p representation of seismic data has long been employed to determine the radial
structure of the earth by approaches based on the Wiechert-Herglotz method (Bullen,
1963; Gerver and Markushevich, 1966). As regards a surface reflection profile, Diebold
and Stoffa (1981) derived the following formula for the traveltimes, t, of reflected or
refracted rays produced and observed at the surface and propagating through a laterally

homogeneous and flat-lying layered structure of elastically isotropic materials:

n
t=px+ ) g Q2.n
j=1

where z; is the layer thickness and x is the surface offset between the source and receiver.

The horizontal and vertical slownesses for a given ray are

_ sini,

Vi

COSlji

D and g;= v
J

(2.2)

respectively, where V), is the velocity of the topmost layer, i, is the take-off angle with
respect to vertical of the particular ray leaving the source, i; is the subsequent angle of the
ray transmitted into layer j, and V; is the isotropic velocity of layer j. By a corollary of
Snell's law, the horizontal slowness, or ray parameter, p remains constant over the entire
length of the ray path. As noted by Diebold and Stoffa (1981), equation (2.1) describes a

line of slope p with intercept
”n
T=2 Z q;z; (2.3)
j=1

dependent only on the changing vertical slownesses and layer thicknesses. Equation (2.3)
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allows the contribution of a single layer to be written as
AT = 2q;z; = 22,-(14]3 - 1)3)”2 2.4)

where ui2= p2+q;2 defines the magnitude of the slowness within layer j. The locus of
equation (2.4) is an ellipse in the 7-p domain with semi-axes of lengths 2zju;,
corresponding to the two-way vertical traveltime in the layer, and u; corresponding to the
horizontal slowness of the layer for i/;=90°.

For a series of flat-lying and elastically isotropic layers, the traveltimes of the
precritical and postcritical reflections, and the critical refractior. from the bottom of each
layer all fall on the ellipse in the 7-p domain defined by equation (2.4). Note, however,
that rays turned by deeper layers map as ellipses distorted by the 7(p) contributions of
shallower layers. A characteristic of this mapping is that the endpoint of the 7-p distorted
ellipse for a next lower layer intersect that of the previous layer at the p corresponding to a
critically reflected ray in the former layer. Further, critically reflected rays map into a point
on the ellipse because their traveltimes have a linear moveout in the x-r domain. The next
lower distorted ellipse intersects at this point due to the asymptotic convergence of the
traveltimes of the far offset reflections from the next lower interface to those of the critical
reflection.

Numerous techniques exist to derive velocity structure from the 7-p domain
representation of seismic data sets (see papers in Gardner and Lu, 1991). Schultz (1982),
among others, exploits the assumed isotropy and consequent ellipticity of equation (2.8) to
derive both isotropic velocities and layer thicknesses from common midpoint reflection
data. His interactive method essentially consists of first finding the uppermost 7-p ellipse
representing arrivals from the surface layer. An appropriate ellipse is fit, usually by some
measure of coherency, to the 7-p curve to provide both the velocity and thickness of this

top layer via equation (2.4). With this knowledge, the 7 contribution of the surface layer
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may then be accounted by increasing all 7 values at a given p by Aty(p). This flattens the
first ellipse and corrects the next lower distorted 7-p locus to an elliptical shape. This
procedure is interactively repeated to provide the velocity and thickness of the subsequent
layers. Because the 7 contributions, and hence the effects of each layer, are successively

removed, the technique is referred to as layer stripping: it will be adapted to the case of

anisotropy below.
2.3 The 7-p Mapping For Directly Transmitted Arrivals in a Borehole

Moon et al (1986) have discussed separation of upgoing and downgoing waveficelds
in a vertical seismic profile using the 7-p domain. In the present study. the geometry
consists of a series of sources on the surface that radiate outwards along a line from the
axis of the vertical borehole with receivers spaced at known depths (Figure 2.1a).
Otherwise, the medium remains the same stack of isotropic layers. In this geometry the
traveltime T for a wave propagating from a source that is offset a distance X from the

borehole to a receiver at a given depth is

n
T=pX+ Z 4qjzj (2.5)
=1 |

where it is understood that zj, is the depth difference between the last receiver and the
immediately shallower interface. Equation (2.5) scales to equation (2.1) by a factor of (.5
since this geometry is only half that required when both the source and receiver are on the
surface. However, the observations under equation (2.1) are constrained to only those
rays returning from the interfaces between the layers, whereas equati«.a (2.5) applies to any
arbitrary depth within the borehole. In a manner similar to Diebold and Stoffa's (1981)

common midpoint analysis we can write
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n
T= Y g7 (2.6)
j=1

whereupon the layer contribution becomes

172
a7 = g5z =z} - pY Q.7
which is rewritten as
A 2 2
T; 2
{EN A (2.8)
7 9 9
urzr us

) J

As equation (2.4), equation (2.8) describes an ellipse in the 7-p domain but with a semi-

major axis equal to the one-way vertical traveltime through the layer. Otherwise, the other

semi-major axis remains equal to the layer slowness (Figure 2.1a).

2.4 Phase And Ray Velocities in Anisotropic Media

Before generalizing the above to consider anisotropic layers, it is first important to
carefully define what would be measured in a borehole experiment; a brief review of the
propagation of elastic waves in anisotropic layers is necessary.

In the bulk of the literature, velocities in anisotropic media are first introduced from
the perspective that the material's complete set of elastic coefficients is known. With this
knowledge, one may calculate the phase velocity or, alternatively, the phase slowness
vector s of a plan( -wave propagating through the medium in a specified direction with
respect to the elastic coefficient tensor. Calculation of the magnitudes of s and the
corresponding particle imotions for the three different propagation modes possible need not
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be presented here but is found in many texts (e.g. Musgrave, 1970: Fedorov, 1968:
Beltzer, 1988) and rcviews (e.g. Crampin, 1981). These calculated slownesses may be
mapped with respect to the direction of propagation within the material to provide the phase
velocity slowness surface, S. which is also called the refraction surface by Fedorov
(1968). The distance from the origin in slowness space to any point on S is equal to the
magnitude of s in that direction in the material. In an isotropic medium, three concentric
and spherical slowness surfaces exist and correspond to one compressional and two shear
modes that are possible; because the velocities of both shear waves are the same for this
case, two of the spheres coincide (Aki and Richards, 1980). In a pertectly elastic isotropic
medium the phase velocity and the ray velocity, defining the speed of energy propagation
within the medium, have the same direction and magnitude.

In an anisotropic medium, however, the three phase-slowness surfaces are
nonspherical and generally not coincident. Figure 2.2a shows the two-dimensional trace
of an imaginary slowness surface within a quadrant of a slowness plane for an anisotropic
material. In this projection s = s(0) where 6 is the angle that s makes with the vertical; a
plane-wave propagating through the medium in the direction specified by 6 has a speed
1/isl.

Alternatively, this variation of velocities with incidence angle is described by the
shape of the wavefront at any given instant, and Fedorov (1968) refers to the wavefront
positions at unit time as the wave surface W. The wave surface is more physically
meaningful in that it is a scaled version of instantaneous positions of arrival of the actual
disturbance, that is the set of points in space which begin to oscillate at the same time. Itis
the arrival of this energy of oscillation which is detected in a seismic experiment.

Fedorov (1968) describes how W may be constructed if S is known and vice versa.
Figure 2.2b shows the wavefront produced by a point source in the anisotropic medium of
Figure 2.2a. Construction of the wavefront requires that the normal n(0) to S at the

endpoint of s(0) is in the same direction ¢ as x (Aki and Richards, 1980) the endpoint of
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which must fall on the plane-wavefront B-B’ that has propagated distance X at unit time T.
W may m-st <asily be determined graphically. provided the derivative of the slowness
surface S is easily determinable (Crampin, 1981); this is not necessarily the case for certain
quasi-shear mode slownesses that can contain sharp cusps. Direct analytic relations
between W and the elastic coefficients exist but are difficult to solve (Fedorov, 1968).

The direction of the phase velocity v = X(8)/T will lie parallel to the normal to the
wavefront. As a consequence, point A’ in X-Z space corresponds to point A in slowness
space. This is an important point because @and ¢ can differ by 20° or more (e.g. Crampin,
1981). The wavefront defines the arrival of energy from a point source. Consequently, in
a homogeneous anisotropic medium, the ray velocity will be given by u(¢) = x(¢)/T and is
a function of the ray direction within the medium (Robertson and Corrigan, 1983; Hake.
1986). An observer within an anisotropic half-space must see an arrival from a point on
the surface as traveling along the line from the source to the observer in accordance with
Fermat's principle of minimum traveltime. Hence this observer, knowing both his position
relative to the seismic source and the traveltime would necessarily determine the magnitude
and direction of the ray velocity u, not that of the phase velocity. It is this ray velocity,
dependent on the actual path taken by the energy flow through the medium. which is crucial
to many imaging procedures. However, the present analysis determines the phase velocity.

The present analysis consequently differs from those of White et al. (1983) and
Gaiser (1990) who found phase velocities by determining slownesses on the basis of
traveltime differences between adjacent detectors. Implicit to their analysis is the
assumption that the adjacent receivers are closely enough spaced such that there is
negligible curvature of the wavefront between the receivers; that is, from the receiver
positions the wavefront appears plariar. At point A’ in figure 2.2. (b), the equivalent plane-
wave is tangent to W and, as noted above, the phase slowness direction s is nornal to this
plane. The advantage of these methods is that one presumably measures directly the phase

velocities which in turn may be used to constrain the subsurface elastic coefficients. Such
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information can be an important diagnostic of the material properties useful for interpretive
purposes. Otherwise, in the present study s(6) must be determined indirectly from u(¢).

One caveat on the above discussion is that it is assumed that the vertical source-
receiver plane also contains the slowness vectors. However, in a layered anisotropic
structure this restriction is not niecessary; that is. the planes containing the slowness vectors
and the source-receiver pair need not coincide. This is not important for the simple case of
an anisotropic half-space where the rays travel along straight lines and the shortest directly
transmitted traveltime must follow the direct line between the source and the receiver (e.g..
Robertson and Corrigan, 1983). For observations below the first layer in a stack of
anisotropic layers. however, the first arriving ray does not necessarily remain within the
source receiver plane. In this case, the ray velocities found will only be apparent ray
velocities under the assumption that they are contained within the sagittal plane.

In the present study, which relies on the analysis of the direct arrivals from the
surface source to the borehole receiver, the 7-p analysis assumes that all the rays are
contained within the vertical source-receiver plane. The above discussion demonstrates that
this may not, in general, be the true case as often the ray paths taken by the energy flow are
allowed to leave this plane and hence the velocities determined would necessarily be
apparent velocities. Such effects could become problematic in tomographic imaging. If,
however, the source-receiver plane coincides with a plane of symmetry of the material then
the rays remain within the plane and the analysis is valid. At present, we do not know the
magnitude of the errors that would be introduced by the out-of-plane ray paths in the more

general case but assume, for the present, that these effects will be small for a weakly

anisotropic medium.
2.5 Anisotropy in The Borehole Case

In the case of anisotropic layers and assuming that the vertical source-receiver and the
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sagittal planes are the same, then the A7 contribution of each layer becomes, in analogy to

equation (2.7),

AT = gi(p)zj = zWFP) - py'”? (2.9

or
-

4y _p?

/ — =1 (2.109)
up)iz} u(p);

after Hake (1986). The only difference between equations (2.7) and (2.9) is that u;

becomes essentially a function of the angle 6 through the medium. Note that Snell's law

sin@; _ _sinO;; =p .11
vi{( 6;) vis1(Bis1)

remains valid for this case of anisotropy. Equivalently, the ray parameter p remains
constant for anisotropic layers over the length of the ray path taken. Because #;(0) will not
necessarily take on a simple form, the locus of equation (2.10) in the 7-p domain will not
be an ellipse but some other more complex curve, which may be difficult to describe
analytically.

The loss of the elliptical 7-p locus for the anisotropic case in equation (2.9), however,
eliminates a crucial constraint for recovery of these parameters, and as noted by Hake
(1986) they cannot be determined for layers of arbitrary anisotropy unless the depths to the
reflectors or the layer thicknesses are known a priori. This problem can be overcome in the
analysis of common-midpoint reflection profiles if one assumes a simple form for u(9)
such as elliptical (e.g. Levin, 1978). Hlowever, great care must be exercised in using this
assumption, as slowness surfaces have elliptical forms only for a few specialized cases not
normally found in nature (e.g. Krey and Helbig, 1956; Helbig, 1983).

If the depths are krown, however, then equation (2.9) suggests that g;(8) may be
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directly calculated from the observed A7(p): this fact is a great advantage for traveltime
observations in a borehole where the receiver depths are unambiguous.

In theory. one could derive u(8) by simple application of equation (2.9) through a
layer stripping approach. One problem with this method, however, is that calculation from
the observed 7-p curves on a point-by-point basis could be subject to random fluctuations
resulting from noise within the original data, and the advantages of averaging over a T-p
arrival locus are lost. In order to maintain this benefit, the assumption is made that u(6)
changes little over sufficiently small ranges of 6. Under these circumstances. the 7-p locus
over limited ranges of p will be nearly elliptical allowing use of a coherency measure,
piecewise in p and subject to the constraint that the depth is known, to determine a(p) by

layer stripping in an approach similar to that of Schultz (1982). This approach is tested on

two calculated models below.

2.6 Test of The Method on Calculated Seismic Models

The above technique is illustrated by the analysis of two seismic forward models both

incorporating anisotropic layers.

2.6.1 Model 1: Anisotropic half-space

The first model consists of an anisotropic half-space [Figure 2.3. (a)] with a borek::ic
receiver at an arbitrary depth z and characterized by a hypothetical elliptical P-wave veloc::;
function which increases from a horizontal value of 2000 m/s to 2500 m/s in the vertical
direction, as shown in Figure 2.3b. This corresponds to a difference of 25% which is
typical of the compressional-wave anisotropy seen in many shales in both the laboratory
(Vernik and Nur, 1992) and the field (White et al., 1983). As noted above, compressional-

wave slownesses will only rarely have the elliptical form of Figure 2.3b but the velocity
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function used is only for purposes of illustration, as equation (2.9) will apply to any
arbitrary velocity relation. The purpose of this simple model is first to determine whether
the piecewise p analysis is sensitive to the directional variations of the velocity.

Figure 2.4a is a set of seismic traces observed at a depth of 50 m in this half-space in
Figure 2.3. These traces are the convolution of a Ricker wavelet with the traveltimes from
surface sources, at offsets up to 300 m to the receiver at depth. This model does not
consider loss of amplitude via geometrical spreading of the wavefront as could be
determined from the formulations of Cerveny” (1972).

These seismic traces, displayed in a common-depth gather, are transformed to the 7-p
domain shown in Figure 2.4b by summation along lines of constant moveout in the X-T
domain (e.g.. Chapman, 1978; Clayton and McMechan, 980). Note that amplitudes (7-p)
within this slant stack have been equalized with respect to p in order to enhance the direct
arvival curve. Otherwise the energy in the raw 7-p curve is shifted to higher p values as a
wuiisequence of the constant source interval used which has the consequence that the ray
path density per unit ray parameter is higher for far offsets; it is this enhanced 7-p relation
that was actually used in the velocity analysis.

Two complementary coherency measures are applied to extract the p-dependent
velocity from the 7-p curve of Figure 2.4b by piecewise fitting of ellipses described above.

The first measure is a windowed semblance M (Taner an< i .sehler (1969))

Z ( 2 ay. 1(k))~

M., =}-’ T k=1 (2.12)

n

2 2 a%.f(k)

T k=1

where & is the index representing the n discrete values of p; used in the piecewise analysis.
7(k) represents the point in 7-p space at pj along a trial ellipse calculated with velocity u

and intercept 7 from equation (2.8). The summation further proceeds over a specified 7
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window that follows the locus of the trial ellipse. The values of u and 7 that best describe
the data are found where M has maximum magnitude. An advantage of the semblance is
that its magnitude is independent of the arrival amplitudes (Stoffa et al., 1981) but has the

disadvantage that low-noise. narrow time windows are often required for good resolution.

To alleviate this problem, the energy E given by:

n
E(u.t = ,ITZ z “%.r(k) (2.13)
T k=1

is used to complement the analysis. because E more easily separates those events also of
high coherency but low energy. such as secondary lobes. from those of both high energy
and high coherency which contain the necessary information. The values of u and 7 which
best describe the data are found where S(u.t) and E(u,T) have maximum magnitude.

Since I have assumed that the material is approximately isotropic over small ranges
of p, then the 7that is determined must be the product of u and of the layer thickness which
is known in the borehole experiment via equation (2.7) . This added ¢onstraint is useful as
a check on the determined values and also aids in the refinement of the p and 7 windows
used to find S and E.

Figure 2.5 compares the p-dependent velocities recovered with the original input
velocities of the model versus p, or equivalently 6. The T window used in equations (2.11)
and (2.12) is 20 ms (or 21 samples) and the p window varies from 0.25 ms/m for small ray
parameters to 0.07 ms/m for large ray parameters. In general, the velocity recovery for this

simple half-space modei is quite good as the recovered differ from the input velocities by

less than 1%.
2.6.2 Model 2: Isotropic layer over anisotropic half-space

Figure 2.6a shows the second simple model consisting of an isotropic layer of 50 m
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thickness underlain by an anisotropic half-space characterized by the velocity relation of
Figure 2.6b. Receivers are placed at the bottom of the layer and within the half-space ata
depth of 100 ms. This geometry was selected to determine whether the technique could
successfully retrieve the velocity in the half-space after the effects of an upper layer were
removed by layer stripping.

The X-T common depth gather for the receiver in the half-space is not shown;
however these traces again were determined by convolving a spike at the ray traveltime,
calculated using Snell's law, with a 50-Hz Ricker wavelet. Again, no corrections were
made for geometrical spreading or reflection-transmission coefficients (Daley and Hron,
1977). The corresponding slant stack is shown in Figure 2.7. Note that this 7-p curve is
distorted by the 7 contribution of the top layer (shown only as a dark line for clarity) which
must be first removed.

The velocities recovered in the half-space are shown in Figure 2.8. and again, except
for the highest p data point, agree with those input to the model to an accuracy better than
1% . This may be related to the fact that the ray density increases with p. Otherwise, the
relatively good agreement at lower ray parameters suggests that the analy<is. which is
piecewise in p, shows potential for extracting the variations in velocities with incidence

angle within the subsurface layers.

2.7 Conclusion

Analysis of borehole seismic arrivals in the 7-p domain can provide a measure of the

degree of seismic velocity anisotropy within a vertical plane containing multiple borehole
receivers and multiple-offset surface sources. The technique developed exploits the known

depth of the receivers to provide an importart constraint on the vertical traveltime, 7o,
which must be satisfied by the incidence-angle-dependent velocities determined. Another

advantage of the technique is that no assumptions as to the shape of the entire ray
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slowness-curve within the plane need be made. That is. the technique is able to
discriminate velocity variations as a function of incidence angle. or equivalently ray
parameter p, within the layer alone. When applied to simple seismic forward models which
incorporate velocity anisotropy, recovered velocities differ by those input to the model by
less than 1%.

The models used above are, admittedly, deficient in a number of areas. Most crucial,
perhaps is that they have not taken into account the amplitude decay resulting from
geometrical spreading and energy partitioning at interfaces. Further, the calculated seismic
traces were free of random and coherent noise which could have a deleterious effect on the
analysis especially for low signal-to-noise ratios.

Other issues relate to the geometry of the structures which are being studied. The
present analysis assumes flat layers but dipping beds are more general and even slight dips
have been shown to substantially affect traveltimes and subsequent 7-p representations
(Hake, 1986; Diebold and Stoffa, 1981). Since the present method relies on the accurate
measurement of traveltimes, the influence of surface st::ic corrections is also important
since the ray parameter of a given ray is defined by the take-off angle of that ray within the
topmost layer (Gaiser, 1990). Recent findings which s sgest that the weathered layer is
also highly anisotropic constitute an added complication. Finally, as with all analysis that
purports to measure the anisotropy of the subsurface, determining whether the observed
perturbations from isotropy to the 7-p curves is due to anisotropy or to lateral heterogeneity
remains problematic.

A few technical concerns also arise when the measurements are made in a borehole.
For example, the present analysis assumes that the arrival directly transmitted from the
source to the receiver is easily found. In practice, however, critically reflected rays are
often the first arrival, making discrimination of the direct wave within the coda of this first
arrival difficult or impossible, especially for source-receiver pairs with large p values.

Another unrssolved issue is created by the fact that the depth of the receivers within the
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borehole may not necessarily line up with the changes in the lithology, with the
consequence that, if a receiver interval includes one or more geologic boundaries, the
effects of the differing velocities of the different beds could appear as an apparent
anisotropy of the interval. Another problem arising from the assumption that the receiver
intervals are homogeneous is the general increase in velocities within a formation due to
compaction which results in refraction of a ray independent of any anisotropic effects
(Robertson and Corrigan, 1983). Finally, for a better construction of the 7-p curves, the
experiment proposed consists of many depths and surface source offsets, and is in practice
difficult and expensive to perform. However, many groups are presently pursuing various
forms of borehole sources in reverse vertical seismic profile experiments which have the
potential make the proposed measurements practical.

The method proposed above should, in theory, be applicable to estimation of
anisotropy from long-offset reflection seismic profiles provided the depths of the various
reflectors are well known from well-log or core information. I have recently performed the
required multidepth, multioffset seismic experiment using three-component recording in a
borehole drilled into a layered sequence of shales, sands, and limestones: the results of the

application of the above analysis to this data set will be forthcoming in a later contribution.
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(a) Geometry of surface-to-borehole seismic experiment in isotropic layers
showing ray paths from surface sources S1, S3 and S7 to receivers G1 through G4 at 50 m
intervals from 50 m depth. (b) Traveltimes of rays to receivers G1 through G4 versus the
distance of the source offsct from the vertical borehole.
transformed into the 7-p domain. 7-p curves for G1 and G2 are perfect ellipses. Those for
G3 and G4 arc distorted by t(p) contribution of layer 1.
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Figure 2.2. (a) Hypothetical phase slowness surface S in one plane of an
anisotropic material with respect to the vertical and horizontal. The length
of s is inversely proportional to the velocity of a plane wave propagating

through the material in the direction defined by 6. n is a unit vector normal

to S at the endpoint of s, ¢ defines both the direction of n and of the energy
flow through the medium. (b) Hypothetical wave surface, W, in x-z space is
directly related to phase slowness surface S; A’ at the endpoint of spatial

vector x at angle ¢ corresponds 10 A in (a).
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(b) Ray velocity model of half-space.
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Figure 2.7. Nonequalized 7-p amplitude representation of
traveltimes observed at a 100-m depth receiver within
anisotropic half-space of Figure 2.6. Continuous line
represents T-p traces derived from a receiver at the bottom
of the isotropic layer, the contribution of which must first
be removed.
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Chapter 3
3. Velocity Anisotropy Observed in Wellbore Seismic Arrivals:

Combined Effects of Intrinsic Properties And Layering

3.1 Introduction

The earth's crust is seismically anisotropic, but only recently have the implications of
this anisotropy in seismic imaging been recognized. For example, inclusion of velocity
anisotropy has been shown to produce better resolution in crosswell tomographic imaging
(Miller et al., 1991; Chapman and Pratt, 1992; Pratt and Chapman, 1992). Velocity
anisotropy also directly impacts migration of seismic reflection profiles (Larner, 1993;
Larner and Cohen, 1993). Knowledge of the velocity anisotropy can improve the accuracy
of estimates of depths to seismic reflectors (Banik, 1984). Finally, velocity anisotropy of
a given layer can in itself be an important lithologic diagnostic in reservoir descriptions
(Jones and Wang, 1981; Byun et al., 1989; Vernik and Nur, 1992). Accurately
determining or even estimating this anisotropy so that it might be considered in
sophisticated analyses is problematic, and, partly for this reason, was ignored in seismic
exploration. In production geophysics, however, features within or near a reservoir must
be located more precisely and this elevated level of resolution requires a more complete
understanding of the seismic character of the subsurface. As a result, methods for
extracting this anisotropy are needed.

Anisotropy, and in particular the variation of velocity with angle of incidence within the
vertical plane, has previously been estimated using various methods from seismic data
collected in one or more wellbores (e.g., Jolly, 1956; White et al., 1983; Gaiser, 1990;
Winterstein and Paulsson, 1990). These studies have been reviewed by Schmitt and
Kebaili (1993) who also proposed that this variation of velocity might be extracted from
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the 7-p mapping of the direct arrivals recorded on a detector at a known depth in a
wellbore.

In the present study. this 7-p analysis is applied to a muliiofiset, multidepth wellbore
seismic data set. Both near-vertical and oblique velocities are derived under the
simplifying assumption that the velocity within a given range of incidence angles is nearly
constant. This chapter includes a brief description of the basis of the method but focuses

more on its implementation and the results of a field experiment.

3.2 Theoretical Background

The slant stack or 7-p mapping has been widely used during the last decade for velocity
inversion and wave separation in surface reflection and refraction profiles (Stoffa et al.,
1981: Schultz, 1982). Here, p is called the ray parameter, which is the same as the
horizontal component of the phase slowness, and Tis the delay intercept time equivalent to
the zero-offset arrival time. Under the assumption that the crust consists of stratified
isotropic layers, Schultz (1982) derived a layer stripping technique in 7-p space to estimate
the interval velocities from expanding-spread surface profiles. In this method, the interval
velocities between successive strong reflecting and critically refracting geologic interfaces
were obtained independent of Dix's (1955) estimates and without any restrictive
assumptions regarding depths to the different layers. The Schultz analysis was modified
by Hake (1986) to include velocity anisotropy and applied to a theoretical data set.
Unfortunately, without the additional knowledge of the depth to a given lithologic
interface, Hake's (1986) analysis is unable to determine the slowness curves from surface
seismic data without the ac'ditional knowledge of the layer thicknesses.

However, if the receivers are instead placed at known depths in a wellbore and are
activated by energy arriving from a series of source points placed on the surface, the ray

geometry for each receiver is equivalent to that of the downgoing ray in a common depth
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point reflection profile. This similarity in ray geometry is readily exploited by modifying
Schultz's (1982) technique to determine interval velocities for the case of isotropic layers
and the equations may be further adapted to include vertical-to-horizontal velocity
anisotropy (Schmitt and Kebaili, 1993).

To see this, consider a vertical borehole drilled into a vertically inhomogeneous (i.e.
laye ) and anisotropic medium in which a series of receivers R; are located at increasing
depths z; (Figure 3.1). Also, consider a seismic ray generated at the surface, at an offset
distance X from the borehole, propagating through this medium down to receiver R,.
Since the medium is inhomogeneous and anisotropic, the ray velocity V at any point
depends on both the ray parameter p and the depth z. The ray traveltime from the source
S to receiver R, at depth z, in the borehole (Hake, 1986) can be generalized to an

anisotropic and inhomogeneous medium as
ty = pPX+ 1, 3.1

where 7, is the intercept time or zero-offset time to receiver n (Schultz and Claerbout,

1978) given by:

n
=, Azgi , (3.2)
i=1

where the layer thickness Az; = zjy) - ).
The parameters p and g are the horizontal and vertical phase slownesses, respectively, and

are given by:

p= .(_ld% = ——Siee = usin@ q= -(1—{' = O‘L‘Se = ucos@ (3.3)
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where 0 is the angle of incidence. v is the magnitude of the phase velocity. and u is the

magnitude of the phase slowness. Hereafter I refer to p as the ray parameter. p. and q are

related by

pi+qgi=u3. 3.9

Using these relations, equation (3.2) may be written in terms of the ray parameter, p and

the magnitude of the slowness in layer i, u;;

n
TP =, Aziu} -pi, (3.5)

i=1

and for a particular ray parameter p, the contribution from layer i to the total intercept time

T, 1S:
ATi(p) = Az;(u}? -pz)l/z , (3.6)
which can be written in the form (Schultz, 1982):

20 2
AZ‘ ®) + l: =1. 3.7)
Az,'"u,z(p) ug(p)

If all the layers are isotropic (i.e., u; is independent of @ i.e independent of p), then
equation (3.7) defines an ellipse. Equation (3.7) does nct define an ellipse in the 47-p
system of coordinates when the slowness u; is a function of the ray parameter p (Helbig,

1984), and in this case determining the velocity as a function of the incidence angle is
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problematic. However, if I assume that over a given limited range of ray parameters
denoted p, the material is nearly isotropic such that the velocity does not change

considerably and may be taken as a constant (;), then an ellipse of the form

L:Ti-(p) + p2 ~ = 1 (3.8)
Az_’,‘-(ll,'(po))2 Uipo)y

will describe the loci of the direct arrivals in the 7-p domain over that limited range of p.
Consequently, the local shape of the 7-p curve provides information on the incidence-
angle-dependent velocity which may be extracted using the layer-stripping technique
(Schultz, 1982) for anisotropic layered earth. Modified to include anisotropy (Schmitt and
Kebaili, 1993), the slownesses of the layers can be recursively determined. Note that the
two recoverable quantities (#,(p,)} and Az {ui(p.)} are not independent; and the knowledge
of the receiver spacings in the wellbore can be used as an important constraint in the
slowness determination.

In this chapter I investigate the near-vertical and oblique velocities for each layer
bounded by two successive receivers. Each 7-p curve is divided into two portions: one
representing the near-vertical rays with angles of incidence 0<6 <30°, and the other one
for oblique rays (@ >30°). The delimiting ray parameter, p = sin(30°)/v, is obtained
using Snell's law, where the velocity v is calculated from the traveltimes observed at a
source offset of 5 m (i.e essentially zero offset). This angle of 30° was arbitrarily selected
but represents the approximate median ray angle for most of the common wellbore depth
gathers.

The observed 7-p curves were separated into near-vertical (i.e., small p) and oblique
(i.e. large p) segments on this basis. Each segment was examined independently to
provide the two measures of velocity for a given depth interval. The near-vertical interval

velocity of the first layer was obtained by fitting this first portion of the corresponding 7-p
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curve with ellipses. assuming that the material to be nearly isotropic, according to equation
(3.8). Once this velocity is known, the contribution of the first depth interval to the

second 7-p curve can be eliminated by calculating the layer stripping correction

51(p) = 11(0) - 1(P) = 11 (0) - ALl WL)P - p21'7 . (3.9

and shifting the portion of the second 7-p curve downward by the amount calculated using
equation (3.9). This correction eliminates the contribution of the first layer and is
equivalent to changing the datum plane from depth zero to dept’i =y, allowing us to
determine the velocity of the second layer for the first p-range. I carried out this procedure
all the way down to the deepest detector in a manner similar to that described by Schultz
(1982) in order to obtain the set of near vertical velocities. The procedure was then

repeated on the larger p portions of the 7-p curves to provide the oblique velocities.

3.3 Application

3.3.1 Geologic setting

I conducted a field experiment in a 230-m deep, steel-cased wellbore drilled through an
oil sand formation near Fort McMurray, Alberta. The geology in this region essentially
consists of a 150-m thick, flat-lying Cretaceous sequence of marine sands and shales,
which unconformably overlie dense Devonian limestones. At the surface, a 10-m thick
overburden consists of Quaternary glacial and postglacial sands and silt. Mossop et al.
(1979) delineate a number of zones within the Cretaceous (Figure 3.2). The uppermost
section is a 16-m thick layer of dark grey marine shales of the Grand Rapids Formation.

These overlie the Clearwater Formation, which is approximately 96 m thick from depths
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of 26 m to 122 m and is composed of grey marine shales separated by thin beds of water-
saturated sands. These sand beds are characterized by velocities and resistivities that are
large relative to the surrounding shales; these units are distinctive in both the sonic and
focused electric logs (Figure 3.2). The sonic velocity generally increases with depth
throughout this zone and this may be a consequence of the corresponding increase in sand
content with depth. The sonic log indicates a jump in the shale velocities at a depth near
70 m but there are no obvious lithologic changes at this depth. The Clearwater terminates
at a 2.5-m thick gas sand. The lowermost Cretaceous section is called the McMurray
Formation and is approximately 37 m thick. The uppermost 17 m of this zone consists of
a mixture of shales with thin beds of oil-saturated sand, while the lowest 20 m is a thick
oil sand with shale layers sufficiently thin and resolvable by their low resistivity in the
electric log. The transition from the oil sands to the underlying Devonian limestones is

sharp with a transitional zone of no more than 1 m thickness in the core.

3.3.2 Field acquisition

I acquired a multioffset VSP data set at 13 depth levels from 25 m to 225 m in the
wellbore. The three-component data was recorded at a 0.1-ms sampling rate on three
channels of a Bison series 5000 data acquisition unit. The energy was generated on the
surface by the "Betsy gun" model 979 and detected by an SIE T42 type detector in three
orthogonal directions: one vertical component, V, and two horizontal components, H1 and
H2. The geophone tool was clamped to the borehole casing. Each geophone was
calibrated on a shake table over the frequency range 5 to 500 Hz. Over the range of
frequencies from O to 150 Hz, typical of the field experiments, the amplitudes of these
three geophones differed at most by 7%. The seismic source provided energy by firing
into water-filled holes at increasing offsets from 5 to 300 m from the wellbore. An
antialiasing band-pass filter of 20 — 2000 Hz was used in the field. This primarily
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attenuated problems associated with low-frequency vibration of the wireline cable. For
each source-receiver pair. enaugh shots were taken to provide an acceptable signal-to-
noise ratio determined from real-time monitoring of the accumulating stack. This process
is, admittedly, somewhat subjective but the number of stacked shots for a given pair
generally increased from three for near-offset shallow receivers to seven for fur-offset
deep records.

An uneven source-offset spacing was adopied to produce better spatial resolution of the
T-p curves, especially at shallow receiver depths. The source spacing was dense near the
wellbore where p changes rapidly with offset. This pattern of increasing source spacing

with radial distance from the wellbore produces a relatively uniform ray density.

3.3.3 Three-component data processing

The onsets of the times of the directly transmitted compressional arrivals were found
using hodograms. As an example, Figure 3.3 shows the vertical and two horizontal
components recorded by the downhole geophones at 25-m depth for a source fired at a 30-
m offset from the wellbore. These traces were digitally filtered with a 50 — 150 Hz band-
pass and individually normalized for display purposes only. The peak energy reaches the
three orthogonal geophones in the time interval of 30-60 ms. The maximum amplitude on
the H2 component is nearly 1.5 times that of the vertical, as would be expected for this
source-receiver geometry. The amplitude responses for the two horizontal components in
the time window of 0-70 ms are plotted as an hodogram in Figure 3.3b; the difference
between the polarization of the hodogram trace ancd the H2 direction is +18°. Under the
assumption that the plane containing the arriving rays also contains the polarization vector
(Ahmed et al., 1986), the two horizontal components were rotated through the appropriate
angle to yield components that are transverse (Ht) and radial (Hr) to the projection of the
incoming ray on the horizontal plane (Figure 3.4a). Again, under the assumption that the
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direct compressional wave stays in the plane of incidence, a second hodogram was plotted
using the observed vertical (V) and the calculated radial components (Hr), which for the
example shown has a polarization that suggests an angle of incidence of 56° (Figure
3.4b). Finally, the vertical and radial components were rotated to this angle to produce a
trace whose components are parallel to the direction of the first arrival. Note that this
rotated P arrival in the 30-60 ms interval (Figure 3.4a) has a maximum amplitude which
is 76 percent g:zater than the vertical component alone.

The above analysis was performed for each source-receiver pair. The maximally
rotated direct P-wave seismograms for the 2- m depth receiver are displayed as a common
receiver gather in Figure 3.5a. In some cases, these particle motions were used to
discriminate the directly transmitted downgoing P-arrival from earlier arriving refractions.
The primary difficulty encountered in processing these data was the estimation of the
amplitude and time of the compressional transmitted wave using the three-component data.
For some receiver-shot point pairs, the first-break wavelet is not the downgoiag P-wave
but, rather, the upcoming head wave. This is most apparent for thc shallow receiver
depths at large offset, where a refraction is observed from the base of the weathered layer
at 20 m depth. The search for the downgoi::g direct arrival must be conducted carefully
by examining particle motion hodograms in the vertical plane and over a variety of time

windows.
3.3.4 7-p mapping and velocity determination

These final. maximally rotated traces were mapped into the 7-p domain using the slant-

stack procedure of Diebold and Sioffa (1981) using Chapman's (1978) discrete equation

N
F(ti. p) = 3, fi=7; + piXi. X0, (3.10)
k=1
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where F(7;, p;) is the data sample in the 7-p domain for trace p; at intercept time 7;, and
f(t, X;) is the data sample in the x- domain at time 7 for trace offset X ;.

The spatial sampling of the data introduces an aliasing if the sampling interval Av does
not satisfy the condition Ax < Viin/fimax. leading to a Nyquist ray parameter equal to
PN = l/AX fmax . In the present study with a V;,. minimum horizontal velocity of 1340
m/s and an f;,ax. maximum frequency of ~200 Hz, this limit indicates a maximum source
spacing of 6.5 m. To attenuate the spatial aliasing, a ratio filter (Moon et al., 1986) was
incorporated in the forward 7-p transformation. This selective filter allows into the
summation of equation (3.10) only those F(r. x;) whose ratio to neighboring sample
values lies within the range 0.7 to 1/0.7. This procedure assures that the line of slope p
over which the summation is performed in the x-f domain is tangent to the offset-time
curve of the dowagoing rays.

The maximum ray parameter allowed for a given common-receiver gather varies with
the receiver depth due to the geometrical constraints. For example, for the 25 m depth
gather Figure 3.5b, the maximum ray parameter is 700 ms/m; this is equivalent to a
horizontal velocity of about 1430 m/s. The direct arrivals which appear near 40 ms for
normal incidence at p=0 are organized along a hyperbola-like curve in offset-travellime
space, and Figure 3.5b map into an ellipse-like curve in the 7-p domain as seen for
30<1t0<50 ms in Figure 3.5b. In this range of intercept times. more than one ellipse-like
curve is seen and these are an artifact of the successive lobes of the wavelet in thie offset-
time domain. Only one of these is used in the velocity determinations. These T-p arrivals
were further enhanced for cosmetic purpsses by multiplication with a symmetric Gaussian
window. In this process, a time window containing the maximum energy lobes on an
cllipse-like curve is selected; the maximum amplitudes within this time window are then
automatically determined, and the data at constant p are multiplied by Gaussian curves

centered at these maxima. As a result of this operation, the data points on both sides of
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the ellipse-like curve are multiplied by a coefficient less than unity whose magnitude
decreases from the center of the window. Note that any of the ellipse-like curves for
30<15<50 ms could be used to determine the velocity. However, the windowed ellipse-
like curve must be tied to the one-way vertical traveltime, because the intercept time % for
p=0 should be equal to the one-way vertical traveltime to the geophone at the depth
considered. ! corrected the 7-p data by a simple 7 shift to agree with this value. This time
was determined from the shortest offset x-f seismogram.

The data processing steps given above were performed on the common geophone traces
at 9 depths, and a composite of the resulting common geophone 7-p curves for six of these
is displayed in Figure 3.6. This figure is similar to that which would be observed for an
hypothetical seven layer model with reflecting lithologic interfaces at the receiver depths in
a reflection profile.

The vertical lines dividing each 7-p curve into two segments mark the 30° angle of
incidence for cach geophonc depth. The near .ertiral velocity was derived from the small
p segment of each curve to the left of the 30° incidenice angle mark. Similarly, the oblique
velocities were determined from the large p segments to the right of this mark.

Velocities are determined using combined semblance and maximal-energy coherency
measures. The semblance (Taner and Koehler, 1969) for a given point in the slowness-Tp

space is defined as:

nt

_2 (Z Aj.i)-
SQu.toy = LEL =1 (3.11)

n m

2 QA

j=1 i=1

where # is the number of traces in the 7-p domain, m is the number of data samples in the
semblance calculation window, and A;; is the ith data sample in the semblance calculation

window of trace j. Equation (3.11) measures the degree of coherency between the actual
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7-p curves and an ellipse of horizontal and vertical semi-axes 1 and 7p. respectively. For

each trial of the pair u-7p. a correction 87 (p) is calculated according to
Stp) =) - =1 TO) L 1-Q1 -p22)ty, (3.12)

after which the p-traces are shifted downward by the amount 87(p). A semblance value is
then calculated using equation (3.11). When the trial #-7p coincides with that of the
analyzed 7-p curve, the 8T(p) correction flattens the actual curve. and the semblance
reaches its maximum.

The power of the semblance function resides in the fact that it is normalized. and hence
independent of the energy of the seismic events. However, this turns out to be a
disadvantage in the case of narrow calculation windows. The semblance becomes
sensitive 1o the side lobes of the wavelets, which leads to more than one maximum in the
semblance map for the same depth. To discriminate the main lobe from the side ones, the

energy E(u.7) is also calculated for each trial ellipse #-7p using

ni n

Eut)=1% 3 A7, (3.13)
i=1 j=1

An example of semblance mapping for the oblique rays at 25-m depth is shown in
Figure 3.7a; this mapping was calculated using a 5-ms t-window with ().6-ms increments.
The mapping displays a maximum at 28.4 ms with two local maxima at 23.6 ms and 33.8
ms. The projection of the absolute maximum to the horizontal axis yields the oblique
velocity which is 1340 m/s. The corresponding energy mapping is shown in Figure 3.7b;
and the peak of the energy appears at 29.0 ms and 1330 m/s in good agreement with the
semblance. The relatively high coherencies in the semblance mapping at 23.6 ms and
33.8 ms do not appear in the energy mapping, indicating that these are side lobes of lower
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energy which may be ignored.

The semblance and energy mappings for the near-vertical section of the 25-m depth =p
curve are constructed in a similar manner. The semblance mapping showed a maximum
peak at 27.8 ms with a velocity of 1210 mys. This velocity is lower than the value of 1340
m/s observed for the oblique rays. The energy mapping presented only one maximum at
28.4 ms and 1200 m/s which nearly coincides with the maximum of the semblance
mapping and further suggests that the near-vertical velocity is less than the oblique
velocity. To check the stability of the technique and the reliability of the recovered
velocities. the semblance and energy mappings were calculated with a variation of window
widths (3 ms to 9 ms) and velocity increments (5 m/s to 20 m/s). The results show that
the recovered velocities are in error by little more than 2 percent.

These determined characteristics for the near-vertical and oblique portions of the 25-m
depth 7-p curve are used in the layer-stripping procedure to correct the next receiver depth
at 50 m from which, again. the two different ray parameter ranges are analyzed to
produce near-vertical and oblique velocity estimates for the interval lying between 25m
and 50 m depth.

This procedure was carried out for ail the receiver depths with both near-vertical and
oblique rays. Velocities found from the two complementary coherency measures are
summarized in Figure 3.8 which suggests that the oblique velocity is larger than the near-
vertical velocity for all the layers. Within a given interval between receivers, these
velocities can vary from each other by 2 percent to 15 percent (Figure 3.8). This
difference is possibly attributed to velocity anisotropy. Other workers, too, have
observed that horizontal velocities are generally higher than vertical velocities, although

this in no way validates the present observations.



3.4 Discussion

The anisotropy observed may be a manifestation of the fine layering of the formation
(Backus, 1962; Berryman, 1979; Levin, 1979), or may be due to an intrinsic anisotropy
of the rock (Winterstein et al., 1990). To test the first possibility, I calculated the degree
of anisotropy. The elastic constants A and C for a transversely isotropic medium that is

equivalent to a stack of thin isotropic layers, in the notation of White (1965) are given by:

A =(app1{p%a)) + (1{28%2) {pa?)")
(3.14)
c={p87)") .

where «a and f3 are the P-wave and S-wave velocities in the isotropic medium,
respectively, and p is the density. The brackets in equation (3.14) denote averages. The
horizontal v, and verucal v, velocities for the equivalent transverse isotropic medium

(Backus, 1962) are then given by:
vi=YA/p and v.=VClp. (3.15)

and the anisotropv may be defined as the ratio (v, - v,)/v,. Calculations were carried out
over the intervals between receiver depihs of 74 #a to 100 m and 100 m & 120} m, both
characterized by thin alternating sand-shale layers, which were divided into thin layers of
0.5 to 3 m thicknesses on the basis of the sonic and focused electric logs (Figure 3.9).
These two intervals differ in shale content, the first interval from 74 p~ t¢- 100 m having
less sand. The densities for the shale and sand constituents are taken as 2.38 g/cm? and

2.3 g/cm?, respectively, as determined from bulk measurements on core. The P-wave
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velocities are obtained from the sonic logs, and the S-wave velocities are assumed to be
B = a/1.82 for both rock types for a characteristic Poisson’s ratio, o, of 0.28. This
procedure predicts degrees of anisotropy of 14.2 percent and 6.0 percent for the intervals
from 74 m to 100 m and 100 m to 120 m, respectively.

In contrast, the observed anisotropies for these two intervals were 15 percent and 7
percent, respectively (Figure 3.8.). It must be kept in mind that these observed
anisotropies compare the vertical velocity to that observed at an angle of incidence of about
45°. 1In a transversely isotropic medium which may be representative of the site of the
present investigation, the P-wave velocity is known to vary monotonically as a function of
incidence angle between two given axes of symmetry, which for a horizontally stratified
medium are parallel to the vertical and any horizontai direction. The increase of observed
velocity with angle of incidence suggests that the in-situ horizontal velocity and the true
anisotropies will be larger thar those observed.

The magnitudes of tiz> observea »cqical-to-oblique and the caiculated verticui-to-
horizental anisotropies asx «:unparakii , consequently, the true anisotropy will exceed that
calculated under the assun:t':%: (hat the layers are isotropic. Intrinsic anisotropy of the
sok msierial itself, which is not considered in the theoretical predictions, possibly
wxp¥eins this discrepancy. This is not necessarily that surprising as a large portion of the
lishelugy in the two intervals consist of shales, which for a wide variety of differing types
have display anisotropies to ultrasonic compressional waves ranging from 5 percent to
nearly 30 percent (Podio et al., 1968; Schock et al., 1974; Jones and Wang, 1981;
Tossaya, 1982; W'*ite et al., 1983: Thomsen, 1986; Vernik and Nur, 1992). As a result,
the observed anisotropies, which are high relative to those calculated, may result from the

combination of fine layering and intrinsic anisotropy within the lithology.
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3.5 Conclusion

Multi-offset ¥ §P data contains information about variations of the seismic velocity with
angle of incidence. I have recovered such variations using a layer-stripping technique in
the 7-p domain. The structure of the 7-p mapping. in particular the fact that the ray
parameter so naturally relates to the angle of incidence at a given point of the ray path, aids
the extraction of incidence-angle variations in velocity. The incidence-angle-dependent
interval velocities are directly recovered without recourse to Dix's (1955) equation and
without restrictive assumptions regarding the offset-depth ratio, although this ratio must
be large to recover velocities at large angles of incidence in the x-f domain.

The near-vertical and oblique velocities that I determined from the borchole experiment
are not exact. The main source of error in the present implementation lies in the fact that a
number of rays must be used to determine the velocity assigﬁed to the midpoint of the p
range over which the velocity analysis is conducted. This results in an averaging of any
variations in velocitv over the range such that the full range of the anisotropy is
underestimated. Furtkzr, if receivers have not been placed at lithologic boundaries, the
recovered velocities will be an average for the given interval. Finally, the near-vertical to
near-horizontal velncity differences could be caused by the combination of both anisotropy
and lateral inhomogeneity, factors that = »-ot easy to dissociate.

In practical terms, the experiment requires that records be obtained at numerous offsets
and depths. This ¢an be problematic if surface source positions are used. However, the
present method is equally valid if, instead, the sources are within the wellbore and the
detectors on the surface. This reverse verticai seismic profile geometry has the wivar.:: ze
that raore source positions can easily be added at the surface, but implementation awaits
the development of suitable wellbore seismic sources.

Despite the limitations, reasonable results were obtained in a multidepth multioffset
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VSP data set acquired in a nearly flat-lying sedimentary formation. In all cases, the
oblique velocity is greater than the near-vertical velocity. The maximum vertical-to-
oblique velocity variation (15 percent) was observed over the interval bounded by
receivers at 75 m and 100 m depth through the section of the wellbore distinguished by
alternating sand and shale beds. The difference between the vertical and horizontal
velocities in this interval will probably be larger than the observed 15 percent. Simple
estimates of the anisotropy calculated under the assumption that the formation consists of
isotropic layers as delineated from the sonic logs were of the same magnitude of the
observed vertical to oblique anisotropies and hence are less than might be expected for the
true vertical to horizontal anisotropy. This discrepancy may be due to the fact that the
layers are intrinsically anisotropic. This hypothesis can only be tested from laboratory

nreasurements on core or from cross-well seismics.
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Figure 3.3. (a) The three downhole components H1, H2 and V recerded at 25 m depth for a
surface vource offset of 30 m, and individually normalized. The peak amplitude between 0
and 0.1 s for H1, H2, and V are 3.5, 11.0, and 8.0, respectively. (b) Hodogram of the
horizontal particle motions between 0 and 70 ms. The arrows show the direction of time.
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Figure 3.4. (a) Normalized components V, Hr, and P (see text for details). The peak
amplitude between 0 and 0.1 s for V. Hr, and P are 8.0, 12.5, and 14.0, respectively. (b)
Vertical-radial hodogram used to find polarization direction for calculation of P trace.
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Figure 3.5. (a) P-traces for the 25-m depth receiver.
(b) T-p mapping of the seismogram in (a).
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and right, respectively.

85



\/
i _,

” @_ Wm/o% —— |

m wo..f Q .o.s - .Q ﬁwo
e ——— - [ow |
SRIES

4 “}I’ﬂ//)-

1100 1200 1300 1400 1500 1100 1200 1300 1400 1500
Velocity (m/s) Velocity (m/s)

Figure 3.7. (a) Semblance map for the oblique portion of the 25-m dept curve. (b) Corresponding energy map,



depth (m)

—— Sonic log velocity
—-e-~= Oblique velccity
- =0 =~ Near-vertical velocity

3 | o
200-0 llrllirllm—

1.0 2.0 3.0 4.0 5.0 6.0
Velocity (km/s)

Figure 3.8. Recovered near-vertical and oblique
velocities compared to sonic log velocities

87



depth (m)

— ~nN w D L (o))
o o o o S o
70.0
80.0 - "
| —— |
90.0 - & C
100.0- .
) o~ f
110.04 s [
i = [
: — [
120.0 4 "
130.0- - o
140.0:W‘il T T Ty ;

1.0 2.0 3.0 4.0 5.0 6.
Velocity (km/s)

o

Figure 3.9 Layer between 74 m and 120 m divided
into thin layers according to sonic-log velocities.



Chapter 4

4. Stowness Surface Determination From Slant Stack Curves

4.1 Introduction

Both geologic structure and rock material properties conspire to make the
subsurface anisotropic to seismic wave energy. Unfortunately, this anisotropy has, until
recently, been ignored because of the additional complexity it introduces in the analysis of
seismic data. However. studies on seismic anisotropy carried out during the last decade
show that tremendous improvements can be made when the velocity anisotropy is
considered as part of a seismic analysis algorithm. Larner and Cohen (1993) showed that
including the anisotropy of the subsurface layers greatly improves the quality of the final
reflection seismic section. The resolution of crosswell tomographic imaging is positively
affected by the inclusion of the velocity anisotropy of the subsurface (e.g. Chapman and
Pratt, 1992). Further, the anisotropy of the subsurface can in itself be a good indicator of
lithology, and has been successfully used as an aid in reservoir engineering (e.g. Byun et
al., 1989; Vernik and Nur, 1992).

There is a long, but discontinuous, history of attempts to measure in situ
anisotropy. These techniques have usually involved wellbore seismic measurements (Jolly,
1956; White et al., 1983). More recently, a three-component VSP experirment carried out
by Winterstein and Paulsson (1990) on a near-surface shale formation in a shallow
borehole showed that a clear shear-wave birefringence can be seen when the medium is
anisotropic. Gaiser (1990) showed that both components of the slowness vector can be
recovered from the spatial and depth traveltime derivatives of a ray multioffset and
multidepth VSP experimen’. for which the sources are placed nn the surface and the
receivers in the wellbore that traverses a transversely isotropic medium. Miller and Spencer

(1994), rearranged the dispersion equation in a linear fashion that permits a direct
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measurement of the elastic constants for a transversely isotropic medium with vertical axis
of symmetry from the components of the slowness. In another paper (in press), Miller et
al. (1994) showed that a shale sequence in the South China Sea exhibits a qP-wave vertical-
to-horizontal anisotropy of 12%. Most of the above studies have exploited the wellbore
geometry to extract incidence angle-dependent velocities from observed arrival times.

Schmitt and Kebaili (1993) described an approximate method of near-vertical to
oblique velocity anisotropy determination in the 7-p domain using ray multioffset and
multidepth VSP data. The 7-p domain has been widely used in the velocity analysis of
surface seismics because of the advantages it presents over the conventional offset-time (v-
) domain. Schultz (1982). who employed a correction method called layer stripping.
showed that the interval velocities for a layered isotropic medium can be directly determined
from the 7p transformation of the surface seismic data with no restriction on the source-
offset reflector-depth 1#xa. 4 r§artunately, the layer-stripping technique used to determine
the interval velocity for & partigular layer of a sedimenicry seguence requires the knowledge
of the velocities and one-way vertical traveltirne of &l thie overlaying layers, and this can
lead to a large uncertainty in the interval velocities of the deeper layers. Another useful
applicatior of the 7-p mapping in seismology is plane-wave decomposition (Stoffa et al.,
1981), for which the reflection and refraction events are automatically determined. The
wave surface (Musgrave, 1970, 77) which is defined as the locus of the wavefront at unit
time, is decomposed by the 7-p transformation procedure into plane-waves passing through
the source point at time zero and propagating at phase velocities through the medium by a
simple mapping of the seismic data into the 7-p domain.

The 7-p domain is a natural domain for slowness surface determination since one of
its axes p; the horizontal component of the slowness, implicitly contains the angle of
incidence. Further, as will be shown the 7 axis can be easily converted to the vertical
component of the slowness by a simple division of it by the receiver spacing of two

geophones placed in the wellbore. Hake (1986) showed that the T-p curves for a surface
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seismic data experiment carried out for a layered anisotropic mediu.n have shapes that are
similar iv the slowness surfaces for each layer interval. However, Hake could not soive for
the vertical component of the slowness from the intercept time 7 because the depth of the
reflectors are themselves unknown. Schmitt and Kebaili (1993) showed that layer stripping
can be used to approximately determine the vertical to oblique anisotropy from the 7-p
curves of a multioffset VSP data set, where the receiver depths are well known, and
measured variations in anisotropy at different depth intervals along a wellbore (Kebaili and
Schmitt, 1996). The technique of slowness surface determination presented here
overcomes both tF ~ uncertainty of Hake's method and the cumulative layer stripping errors
of Schmitt and Kebaili (1993). Here, this method is applied to determine the interval
velocity in hypothetical geologies consisting of a half-space overlain by a stack of isotropic
layers, of an elliptically anisotropic medium, and of a transversely isotropic medium. The
theoretical basis of the 7-p method is more fully investigated and it is demonstrated that the
technique extracts the plane-wave, or phase, velocities (Musgrave, 1970) of the anisotropic
medium. Finally an example of an application of the modified 7-p anealysis to a VSP data

set acquired in a shallow borehole in northern Alberta is given.

4.2 Theoretical Background
4.2.1 Phase slowness determination

Consider a vertically inhomogeneous and anisotropic medium through which is
drilled a vertical borehole. To determine the in situ anisotropy of the interval bounded by
depths z; and z», let us place two receivers Ry and R» at depths z; and z2, respectively
(Figure 4.1.).
Two seismic rays of identical ray parameter p are generated at the surface at offsets X ; and
X >, and propagate downwards to receivers Ry and Rj, respectively. The traveltime for
each ray (Hake 1986) through this inhomogeneous and anisotropic medium from the
surface to each receiver is given by:
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Where i={1,2}. The parameters p and g are the horizontal and vertical components of the

slowness u, respectively, thai is

p= sin @ ’v =u sin 6 q= LQ‘S’-B =u cos 6,
v

where @ is the phase velocity angle. and v the magnitude of the phase velocity (Figure

4.2). p and ¢ are related to the slowness i by the relation:

prl+gl=ul. (4.2)

.

Since for a laterally homogeneous medium, the ray parameter, p, remains constant along

the ray (Kennett, 1981), equation (4.1) may be written as

i
ti = pX; + q(z)yd:- . 4.3)
0

On the other hand, the traveltime, ¢; , to receiver i can be expressed in terms of the intercept

time 7; (Schultz and Claerbout, 1978),

ti=pXi+ T, (4.4)

By comparing equations (4.3) and (4.4), we get an expression for the intercept time 17,
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T, = j q(z) dz . 4.5)

Suppose now that the layer interval between the receivers R; and R» is homogeneous but
anisotropic. The rays could then propagate through this interval along straight lines, and
the integral in equation (4.3) for receiver Ra could be cast inte the sum of an integral from
the surface (z=0) to depth z; and the term ¢(z5 - z}); that is, the product of the layer interval

between the two receivers (known) and the vertical component of the slowness (unknown):

7l
Ta =f qz) dz + g(z2 - zy). 4.6)
0

Combining equations (4.6) and (4.5) for the case i=1, the intercept-time difference

| Ta(p) - T1(p)] is then equal to:
@) - ) = g(z2- z1). 4.7)

Equation (4.7) shows that the intercept-time difference for the two receivers divided by the
receiver spacing (=2 - 1) yields the vertical component of the slowress as a function of the
ray parameter p:

W) - @
_o®-ue) @8

2 Z2-1I)
The phase velocity function v(p) can be obtained by replacing g(p) with this expression in
equation (4.2), thus:
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Since the intercept time 7)(p) represents the contribution in the 7-p domain of all the layers
from the surface down to receiver Ry, and 1) from the surface to receiver R, the
intercept time difference [ T2(p) - T1(2)] is equivalent to a stripping ot the contributions
above receiver R in a single operation. This is equivalent to a change of datum from the
sarface to a horizontal plane which includes receiver Rj. This change of datum plane does
not require knowledge of the velocities and thicknesses of the layers above receiver Ry,
which makes equations (4.8) and (4.9) valid even it this medium is vertically
inhomogeneous (e.g. layered) and anisotropic. This is advantageous over the layer-
stripping method applied by Kebaili and Schmitt (1996) in that errors do not increase as i

result of the successive corrections used.

4.2.2 Phase and ray velocities

The analysis of elastic-wave propagation in anisotropic media is complicated. In the
case of anisotropic media, the ray velocity, V(¢), which is the velocity of propagation of
energy along a path, differs from the phase velocity, v(8), which is the velocity measured
for a plane-wave propagating through the medium (Musgrave, 1970, 92-93). € and ¢ arc
the angles of incidence of the phase and ray velocities, respectively (Figure 4.2a). Equation
(4.9) allows us to determine the phase velocity of a plane-wave propagating in an
anisotropic medium along the direction specified by the unit vector n(r), that is nermal to
the wavefront (Figure 4.2b) at any time 1. When plane-waves cover the whole space, the
unit vector n(r) takes all the possible directions, and hence the wavefront can be constructed
by drawing the envelope of the plane-waves passing through the source at time 1 =0

(Musgrave, 1970, 76). This envelope at unit time, ¢t = 1, describes the wave surface. In
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the case of a transversely isotropic medium, the unit vector n(r) can be specified by the
angle 6 along which the plane-wave propagates, the velocity being constant for a fixed
angle 6. Using Snell’s law, each plane-wave can be characterized by its ray parameter
p=sin@/v. As a consequence, the mapping of the seismogram into the 7-p domain is
identical to a plane-wave decomposition (Stoffa et al., 1981), and the velocity v(p) in
equation (4.9) is indeed the phase velocity, not the ray velocity. How comparable the ray
and phase velocities are depends on how anisotropic the medium is. Berryman (1979)

demonstrated that the magnitude of the ray V(¢) and phase v(6) velccities are related by:

VD) = vX(O) + (5—;}2. (4.10)

As aresult, if 4¥ is small, the ray velocity V(¢) can be expanded using a truncated Taylor
de

series approximation to:

V(®) = v(O)[1+ —— @Y)). (4.11)
2vi(@) dé

Note that the above relations between ray and phase velocities deal with magnitudes only

and not to the propagation directions <orresponding to ray and phase angles ¢ and ()

[Figure 4.2. (a)]. these are related via the expression (Thomsen 1986):

tan(dx6)) = (tan 8+ L dV)/(1 - 1anG 4V (4.12)
Vde vV de

The technique of determining phase velocity versus phase angle from the 7-p curves of
common-receiver VSP traces described here is valid even for large anisotropy, since no
restrictions on the 7-p mapping of the x-t seismograms, nor on the shape of the
[Ta(») - T1(Y)] curve used in equation (4.9) to calculate the phase velocity, were made. The
recovered phase velocities can then be converted to ray velocities versus ray angles using
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equations (4.10) and (4.12) if necessary. Below this technique is tested on a number of

different hypothetical geologic models.

4.3 Tests on Synthetic Data

4.3.1 Multilayered isotropic medium

Consider a model consisting of three layers overlaying a half-space as described in
Figure 4.3. This model is intended to represent a simple sedimentary sequence that might
be encountered in practice. To determine the velocity of the half-space two receivers R
and R are placed in the borehole at depths 300 m and 700 m, respectively (Figure 4.3.).
The source was allowed to move radially along the surface from 10 m to 1500 m offset in
increments of 10 m. The seismogram for this model (Figure 4.4a) is obtained by a simple
convolution of the time series calculated for receivers R; and R> with an 80 Hz Ricker
wavelet.

The seismogram in Figure 4.4a is then mapped to the 7-p domain using the slant-
stack technique described by Stoffa et al. (1981) with the ratio filter of Moon et al. (1986)
applied as described by Kebaili and Schmitt (1994). In the present study all data samples
whose amplitude ratio with respect to the neighboring samples is within the range 0.7 to
1/0.7 are allowed into the slant-stack summation.

Due to the contrasting velocities and resuitant bending of the rays downgoing to the
receivers, the offset-time curves shown in Figure 4.4a are nearly hyperbolic, and the
velocity of the half-space cannot be exactly inverted from those traveltimes. However, by
combining equations (4.2) and (4.7), the ratio AT(p)/Az as a function of p [equation (4.9)]

represents a circle whose radius is the slowness  of the half-space; that is
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which allows the computation of the interval velocity v(p) for each ray parameter p. Note
that for the isotropic case the phase and ray velocities are equal [equation (4.10) with
dv/d@ = 0]. The seismogram in Figure 4.4a is mapped to the 7-p domain using the
technique described above, and displayed in Figure 4.4b. Given that the offset-time curves
for both receivers R, and R» are nearly hyperbolic, their 7-p mappings are nearly elliptical
as each is corrupted by the contributions of the layers above the receivers. The intercept
time difference | 72(p) - T;(p)] is computed for each ray parameter p. Then the slowness u
is calculated using equation (4.9) and displayed in Figure 4.5a. The + symbols in Figure
4.5. (a) are the recovered slownesses and the solid line is the actual slowness curve which
is a circle with a radius of the reciprocal of the velocity (1/3000 mvs).

To quantify the uncertainty of the recovered velocity, a g2-versus-p2 curve, which
is a straight line of slope -1 and y-intercept the slowness u is plottzd in Figure 4.5b. The
solid line in Figure 4.5b represents the least-square fit line. The recovereu velocity is 2984
m/s which differs from ihe actual velocity of 3000 m/s by 16 m/s leading to an uncertainty
of 0.5%. Note that this interval-velocity determination technique is valid even if the layers
overlaying the half-space are anisotropic, since no assumptions on the vertical component

of the slowness [g(z)] in the integral term of equation (4.6) are made.

4.3.2 Elliptically Anisotropic Medium

"The second synthetic example I are considering consists of an elliptically anisotropic
half-space (Figure 4.6), whose vertical and horizontal ray velocities are 2000 m/s and 2500
m/s, respectively. Eventhough most sedimentary rocks will realistically have an anelliptical

gP-wave anisotropy [as Thomsen's parameters are usually such that € # 0, (see table 1 of
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Thomsen (1986)]. this simple case of anisotropy is a good example for a test of the
method. Further, the horizontal shear-wave component displays elliptical anisotropy in
nature (Daley and Hron. 1979) and. although such waves remain to be studied fully. the
present method will be applicable to this case. In the model. a receiver is placed at depth
200 m in a borehole, and sources are activated at increasing offsets radially from the
borehole from 10 m to 1500 m in increments of 10 m. Since the medium is homogeneous,
the traveltimes are simply the quotient of the straight-line distance between the source and
the receiver and the ray velocity at the corresponding ray angle (Figure 4.2a).

A seismogram that would be recorded by the receiver is formed by convolving the
time series with an 80 Hz Ricker wavelet and displayed in Figure 4.7a. Due to the variation
of velocity with angle of incidence, the offset-time curve in Figure 4.7a is nearly hyperbolic
and again maps into a near-ellipse in the 7-p domain (Figure 4.7b). In the case of a half-
space. no second receiver is required, and no layer-stripping is needed to recover the phase
velocities. For each ray parameter p of the curve in Figure 4.7. (b) the intercept time 7(p)
is picked automatically and divided by the receiver depth (200 m) to yield the vertical
component of the slowness. The magnitude of the phase velocity is computed using
equation (4.9). This operation is carried out for all the values of p present in Figure 4.7b.

Since our velocity model is defined in terms of ray velocity versus ray angle, the ray
parameters p and the recovered phase velocities v are converted back to the ray angles and
ray velocities, respectively, via Snell's Jaw and equations (4.10) and (4.12). The results
are displaved in Figure 4.8, which shows that for all angles the recovered phase velocities
are smaller than the actual ray velocities (solid line) as expected from examination of Figure
4.2a except at near-normal and near-horizontal incidences where the phase and ray
velocities converge as they become parallel to the axes of symmetry of the medium.

The uncertainty of the fit of the Jbserved velocities to the modeled velocities

calculated via
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- v(6;)

E@, v;) = 100X (4.14)
v(6))

where ¥; is the velocity of the ith measured phase velocity and v(6;) is the model velocity
for the angle 6;, has a mean of 0.2% and a standard deviation of 0.1% indicating that the

velocity reconstruction method operates well.
4.3.3 Transversely Isotropic Medium

Sedimentary formations are usually composed of flat-lying horizontal layers of
differing lithology and physical properties. Such geologic structures are rotationally
symmetric about the vertical axis and are quite often considered as transversely isotropic
(Helbig et al., 1987; Gaiser, 1990; Miller et al., 1994; among others). Since most
sedimentary formations are expected to be transversely isotropic, it is important to apply the
7-p method to retrieve the slowness curves. I consider a transversely isotropic medium
formed as the long-wavelength equivalent to a composite solid composed of 25% limestone
and 75% sandstone (table 1) similar to that modeled by Carcione (1992). The elastic
moduli in GPa (=10°N/m?2) for the equivalent homogeneous transversely isotropic solid

with a density p = 2400 Kg/m?3 are:

33.50 12.10 9.70
3350 9.70
24.50
7.41
7.41
10.70

following the Voight notation (Thomsen, 1986). Synthetic vertical seismic profile
seismograms are calculated for the equivalent homogeneous transversely isotropic whole
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space. The computation method used is the frequency-wavenumber integral method (see
for example Takeuchi and Saito. 1972) combined with the complex frequency technique of
Mallick and Frazer (1987). The geometry of the experiment consists of a receiver with
sources deployed at a level of 500 m above the receiver. The depth axis containing the
receiver simulates the borehole and the horizontal axis containing the sources simulates the
earth surface. 150 synthetic traces with 10 m spacing are calculated with the closest offset
trace being 10 m away from the borehole.

The calculated vertical and horizontal displacement components are shown in Figure
4.9. Both components are sensitive to qP and gSV-wave motions. This procedure predicts
horizontal and vertical qP-wave ray velocities in the structure of 3736 m/s and 3195 n/s.
respectively, and a qSV-wave axial velocity of 1757 m/s with a maximum value of 1978
m/s at 42°. For a transversely isotropic medium the radial component allows us to recover
the encrgy that propagates in the horizontal plane, and allows separation of the gP and 4qSv
waves on the basis of their particle motions. These vertical and radial component data are
then rotated into the direction of propagation of the incoming rays (Figure 4.10). Figure
4.10 shows that the amplitudes of both P and qSV-waves are enharced by this change of
coordinate frame especially those at far source offsets. After rotation, the gSV-wave
component of the estimated qP-wave seismogram was greatly attenuated, and similarly for
the gP-wave on the qSV-wave seismogram. This residual on both rotated seismograms is
due to the fact that the polarization angle differs from the ray propagation angle in
anisotropic media (Crampin, 1981).

These P and qSV-wave seismograms are then mapped into the 7-p domain and
plotted in Figure 4.11. Each ray parameter p on the ellipse-like curves in Figure 4.11
corresponds an intercept time 7(p) which is then divided by the receiver depth (500 m) to
yield the vertical component of the slowness ¢(p) by equation (4.8). The slowness curves
q(p) (Figure 4.12) are obtained by carrying out this intercept-time pick and simple

computation for all ray parameters p used in the 7-p mappings which produced Figure 4.11.
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Figure 4.12 shows the recovered (+) and actual (solid line) gP and qSV-wave phase
slowness curves. The gP-wave phase slowness curve (Figure 4.12) has been successfully
recovered for phase velocity angles between zero and 55°. The mean error [equation
(4.14)] between the reconstructed and the input gP-wave velocities calculated using
equation (4.14) is 0.4% with a standard deviation of 0.2%. Note that the maximum
observed phase angle of 55° is less than the maximum ray angle (~63°) calculated for the
largest source offset of 1500 m, which is in agreement with the expected phase-ray angle
relationship [Figure 4.2a and equation (4.12)].

Figure 4.12 also shows that the reconstructed qSV-wave slowness curve is
comparable to the modeled curve. The mean error between the reconstructed and input
slownesses for phase incidence angles from 17° and 74° was 0.2% with a standard
deviation of 0.2%. Note that as predicted by equation (4.12) the maximum phase angle

(74°) is larger than the maximum ray angle possible (63°).

4.4 Application tuo Real Data

The method described above was applied to real data acquired in a shallow borehole
near Fort McMurray in northern Alberta. The target layer consists of flat-lying marine
shales interbedded with thin layers of high-velociiy sand between depths of 75 m and 120
m (Figure 4.13). The purpose of this test is to determine if the sand-shale layer is
apparently anisotropic. The layering of this interval as indicated in Figure 4.13 suggests
that it will appear anisotropic to long-wavelength seismic energy according to the theoretical
predictions of Backus (1962). Berryman (1979), and others.

Details of much of the experimen:al data acquisition have been described
previously, and only a brief discussion is given here. An SIE T42 type three-companent
receiver was lowered in the borehole within the depth limits of the tayer between depths of

75 m and 120 m, and a "Betsy gun" model 979 type was activated on the surface at
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increasing offsets radially from the borehole from 10 m to 160 m. A relatively uniform ray
density was achieved by an uneven source offset increment, where the offset increased by
10 m for the first 80 m and by 20 m for the rest of the source locations. The seismic traces
were acquired at a sampling rate of 0.1 ms on a 12 channel BISON series 5000. A
piezoelectric trigger attached to the Betsy gun provided the zero time break fiducial.

The data was common depth sorted, and band pass filtered (50 - 120 Hz). The
three-components were rotated to the incoming ray via hodogram analysis to estimate the
downgoing transmitted qP-waves used in the analysis. The rotated qP-wave traces were
normalized and static corrections applied. The final offset-time qP-wave seismogram for a
depth of 75 m is displayed in Figure 4.14. (a) and shows the qP-wavelets lying along an
hyperbola-like curve.

The data in Figure 4.14a are then mapped into the 7-p domain using the slant-stack
technique, and implementing both the ratio and hyperbolic filters described earlier. The
amplitude ratio for this fiiter was chosen to be equal to 0.7 and the minimum and maximum
velocities for the hyperbolic filter were 1200 m/s and 3000 m/s. The 7-p mapping of these
seismograms in Figure 4.14a is displayed in Figure 4.14b; the mos: energetic downgoing
transmitted qP-wave (Figure 4.14a) has the largest amplitude in Figure 4.14b displaying
three main lobes on ellipse-like curves. The intercept times for each lobe (1, 2, and 3) for
various ray parameters are picked and compared with their counterpart in the /20 m depth
7-p image to determine the phase velocities using equation (4.9). Note that only one -p
curve for each depth is required for the velocity determination. More than one 7-p curve is
used for each 7-p image in order to attenuate the effects of incoherent noise that occurred
during the 7-p transformation and a short discussion on how these velocities are calculated
is in order. For example the circles in Figure 4.15a correspond to the velocities determined
at a given ray parameter by picking the intercept times 71(p) from the maximum magnitude
for lobe (1) and 7»(p) for lobe 1 from the 7-p mapping for the receiver at depth 720 m (not

shown). The phase velocity v(p} is then computed using equation (4.9) and the two

102



intercept times 7;(p) and 72(p). This procedure is carried for each lobe leading to three
velocity curves shown in Figure 4.15. (a) where the mean phase velocity (solid line) is
also displayed. Figure 4.15. (a) shows that the phase velocity increases in a nonlinear
fashion from 1990 m/s at normal incidence to 2235 m/s for a phase velocity angles of about
50°. The normal incidence velocity is calculated from the 10 m source offset traveltimes.
The mean phase velocity curve (solid) in Figure 4.15a is the fourth order best fit
polynomial to the observed phase velocities. This polynomial fit does not have any
physical significance but was chosen only to allow a convenient determination of the
derivative dv/d8 as required in the calculation of the ray velocity via equation (4.10). The
ray velocities versus ray angle are displayed in Figure 4.15. (b). Figure 4.15. (b) shows
that for impinging rays at incidence angles ranging from 0° up to about 52° the ray velocity
increases in the same fashion as the velocity from 1990 m/s to 2245 m/s, which

corresponds to a ray velocity variation of 12.8%.

4.5 Conclusion

The 7-p domain, for which one of the axes (p) represents the horizontal component
of the slowness, is a natura! domain for determination of the variations in phase velocity
with incidence angle. Fora ray multioffset and multidepth VSP experiment for which the
receiver spacing is known, the intercept time 7 can be converted to the vertical component
of the slowness for each ray parameter p leading to the slowness curve. After the
determination of both components of the slowness vector from vertical incidence to as near-
horizontal as possible given the experimental geometry, the magnitude of the velocity for
various angles of incidence can be computed. The method for slowness surface
determination proposed was applied to both various synthetic models and VSP data
acquired in a shallow borehole. These showed that the technique is useful even for the case

of isotropic layered medium where the interval velocity was directly recovered from the 7-p
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curves with no restriction on the depth of the layer interval. The observed interval velocity
for the theoretical rmodels tested differs from the actual by only 0.5%. The second example
consisted of an elliptically anisotropic half-space and demonstrates that phase velocities are
measured and that these may successfully be converted to ray velocities with a small error.
A transversely isotropic medium is a good approximation to the elastic response of a
sedimentary sequence when the typical layer thickness is small relative to the seismic
wavelength. Both the qP-wave and qSV-wave slowness surfaces were recovered from a
multioffset multi-component VSP experiment carried out in this medium. The match of
these curves with their corresponding actual curves is quite good to a discrepancy of less
than 0.4%. In application to real data, the recovered velocities for the layer interval
between two receivers placed at 75 m and 120 m show that the ray velocity increases from
1990 m/s at normal incidence to 2245 m/s for a ray angle of incidence of about 52° giving

rise to an anisotropy of at least 12.8% over this range of incidence angles.
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Figure 4.1. Seismic rays of identical ray parameter p downgoing
to receivers R1 and R2 placed in a borehole. Case shown is for
isotropic media; in anisotropic media rays and corresponding
plane wave normals are not generally coincident.
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Figure 4.2. (a) Ray angle, ¢, and phase angle, 0, in the case of an
anisotropic medium. The ray and phase velocities, V, and v, do
not point in the same direction. (b) Plane waves of different
orientations enveloping a segment of wave surface (after
Musgrave, 1970).
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Figure 4.4. (a) Seismogram obtained for the receivers Ri1 and R2 in Figure 4.3. by simple
convolution of the time series with an 80 Hz Ricker wavelet. (b) Slant stack of the

seismogram in Figure 4.3a for the layered medium case.
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Figure 4.7. (a) Offset-time seismogram that would be recorded by the receiver at 200 m in
Figure 4.6. The seismogram is obtained by a simple convolution of the time series with an

80-Hz Ricker wavelet. (b) 7-p mapping of the seismogram in (a).
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Figure 4.9. Calculated (a) vertical and (b) horizontal component spismograms f.or
a receiver placed at 500 m in a wellbore traversing a transversely isotropic medium.

115



Source offset (m)

0.00 10 1000
(a)
w
~ by b1 L
[0b) FFe H‘n“hL
g sﬁﬁsﬁﬁﬁ%L‘sLLk‘x 131§
© 11 r
> 14
o 114
|._
0.65
Source offset (m)
0.00 10 1000
(b)
z
@
£
= (¢3)
S
s il
= Tl
‘7‘:‘ | ‘
1“‘4‘
0.€5

Figure 4.10. Estimated (a) P-wave and (b) SV-wave seismograms after rotation of
seismograms in Figure 4.9.

116



Ray parameter (ms/m)
0.0 0.25

o

e

o Intercept time (s) o

w

Ray parameter (ms/m)
0.0 0.6

o
o

(b)

Intercept time (s)

o
w

Figure 4.11. 7-p mapping of (a) rotated P-wave and SV-wave seismograms in Figure 4.10.
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Chapter §
5. Ultrasonic Phase Velocities Determined

Using a Radon Transformation

5.1 Introduction

Knowledge of a material's elastic properties provides important clues as to the quality
of both manmade and natural materials. In principle. up to 21 independent elastic constants
may be required to completely characterize a material. These could be obtained by 21
independent observations of longitudinal and shear-wave phase velocities measured in
appropriate directions. In practice. however, many more observations are required for
inversion of velocities to elastic constants and inversion methods usually lose generality by
assuming that the measurements are made with respect to known symmetries within the
material. Actual experiments are further complicated by difficult sumple machining, by the
question of whether phase or ray velocities are observed, and by traveltime picking errors.
Resolving these experimental problems will improve our ability to determine a material’s
elastic properties.

Two types of velocity are defined for an anisotropic material: the ray velocity which is
the velocity of energy transport along the ray path, and the phase velocity defined as the
velocity of a plane-wave through the medium (Musgrave, 1970). The ray velocity is
determined from the traveltime between a point source and a point receiver at a known
separation. This velocity is important in applications such as acoustic tomography where
the ray paths through the object must be known to invert traveltimes for structure. In
contrast, the elastic constants of a material are directly related to the phase velocity via
Christoffel's equation (Musgrave, 1970). Any attempt to determine the elastic tenser

requires a knowledge of the phase velocities; but which velocity is determined in a given
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experimental configuration may not always be clear (Vestrum, 1994).

A number of ray-velocity measurement methods have been proposed. Markham,
(1970) describes a point-source, point-receiver technique exploiting Snell's law for velocity
measurements of an anisotropic material immersed in a fluid (water). Using similar
methods, Smith (1972) determined the five elastic constants of carbon fiber composites and
Gieske and Alired (1974) found the 9 elastic constants of B-Al composites.

More recently Castagnede et al. (1991) suggested a laser-generated ulrasonic point-
source point-receiver technique of elastic constants determination by measuring transmitter-
receiver transit times.

In the above, ray velocities are determined. However, phase velocities are required in
Christoffel's characteristic equation for the determination of the elastic constants. Direct
phase-velocity measurement requires that a plane-wave be propagated through the medium
(e.g. Vestrum, 1994). In practice, this means that transducers must be large relative to the
sample. This limits the number of measurements that may be obtained as the sample must
be specially cut to allow placement of the areally large transducers and thus permits
measurements along different directions. There have been a number of attempts to measure
phase velocity. Rokhlin and Wang (1989), and Mignogna (1990) showed that the phase
velocities may be determined from Markham's (1970) transducer arrangement. The method
relies on placing the detecting transducer at the position for which the energy of the arriving
pulse is maximum. In practice. the receiving transducer must scan two orthogonal axes to
find this position, and positioning must be repeated for each incidence angle. Rokhlin and
Wang (1992) eliminated this restriction in a double-through-transmission technique where a
large reflector returns the beam through the same path to the transmitter which is used also
as the receiver. However, a small nonparallelism in the sample can slightly change the
refraction angle resulting in deviation of the acoustic path (Rokhlin and Wang, 1992).
Further, in highly attenuative samples the wave-form shape differs from that of the

reference making traveltime determination inaccurate and introducing error in the phase
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velocity.

Here, a Radon transformation of ultrasonic wave-forms recorded over an array of
point-receivers placed on one surface of a sample is used to directly determine the phase
velocity as a function of the phase angle of incidence. In the present method the
experimental geometry is greatly simplified in that the sample need only be machined as a
rectangular prism. A differential analysis procedure is employed which further minimizes
traveltime picking errors. The laboratory method described here is a modification of a
technique developed to extract phase-velocity anisotropy over depth intervals in the earth
from wellbore seismic measurements (Schmitt and Kebaili, 1993, and Kehaili and Schmitt,

1996). The method is described and tested on both an isotropic plastic and an orthorhombic

phenolic composite.

5.2 Theory

The Radon transform is a mapping of two dimensional function f(x, 1) offset-time

defined in the (x, 1) coordinate system into a second (7, p) system where 7 and p are the T-

intercept and slope, respectively, of a line in the x-7 plane. As defined by Robinson (1982)

the Radon wransform is equivalent to

F(z, p) =J flx, T+ px) dx (5.1)

-

which integrates the amplitudes f(x,r) which lie along a line y = 7 + px; this integration
maps to the point (7, p) in the 7-p domain (Figure 5.1). In the discrete Radon transform

(Chapman, 1981), the integral in equation (5.1)is replaced by a summation

n

F(t, pj) = 2 X, Ti + pXi)-
k=1
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(5.2

In the geophysical literature, this discrete transformation is often referred to as the slant
stack, in recognition of the summation of amplitudes along lines of constant slope.

Consider a prismatic sample as shown in cross-section in Figure 5.2a. Disturbances
generated by a point source on one surface of the specimen will reach in-line receivers
placed on another surface along rays with sngles of incidence which increase with offset. If
the specimen is anisotropic, each disturbance travels at a velocity dependent on the
incidence angle. If the block is made of a typical plastic, the arrival times for a transmitter
at a distance 2 ¢cm from the top surface to the receiving transducers along the top surface are
described by the thick black hyperbolic line in Figure 5.2b. The slant stack essentially
decomposes the locus of the directly arriving wave-forms into the equivalent set of plane-
waves according to their direction of propagation. This direction of propagation is
representsd by the horizontal slowness (ra; ;:arameter) p = sin€/v where 6 is the angle of
propagation. Alternatively, the ray parameter p is the instantaneous slope of the traveltime
curve and as such the 7-p mapping is a plane-wave decomposition (Stoffa et al.. 1981).
Such a sorting of the received wave-forms is particularly advantageous in anisotropy
analysis as the velocity varies with 8@ which is implicit within p.

Equation (5.2) is employed to map ultrasonic wave-forms observed by a series of in-
line receiving transducers placed on the top of the surface sample and at various distances
from a transmitting transducer on the side (Figure 5.3). The coordinates x and ¢ correspond
to the distance x. the receiving transducers are offset from the sample edge and the time ¢
after the transmitting transducer has been activated, respectively. The two-dimensional
function f{x,t) is the amplitude of a wave-form acquired by a receiving transducer at offset
positions v and time 7. The coordinates 7 and p in equation (5.2) correspond to the intercept
time and slope of a slant line in the x-r domain, respectively. The two-dimensional function

F(1, p) is the mapped amplitude of the transformed wave-form to the 7-p domain at
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intercept time 7 and horizontal slowness p.

It is important to illustrate why the wave-forms mapped to 7-p space can be used to
determine phase velocity for various incidence angles. The phase velocity. v, lies aiong the
wave normal, n (Figure 5.4) at an angle 8 (phase angle) to the z-axis. This differs from the
ray velocity, V, along a direction from the origin of the coordinate system to the wave
surface (Schmitt and Kebaili, 1993) and makes an angle ¢ (ray angle) with the z-axis.
Consider now a ray propagating through an anisotropic medium. The traveltime ¢ of energy
transport from a transmitter placed at the origin of a coordinate system to a receiver defined

by a vector x of coordinates (x, ¥, =) can be written in terms of the phase slowness, s.

(Figure 5.4b) as:

t=X .S (5.3)

where s is the phase slowness vector. or explicitly

r=-\'ﬂ+y2[—+:2t— (5.4)

ax ay oz

Considering only the x-z plane, equation (5.4) reduces to
t=xp+:zq (5.5)

where p = Jt/dx and g = Ji/J= are the horizontal and vertical components of the phase
slowness vecior s, respectively. Note that the traveltime in equation (5.3) has been
expressed in terms of the phase siownesses in equation (5.5). Note that in an anisotropic
medium, however, the vertical slowness g will be dependent on the angle at which the

wave propagates through the material and consequently may also be considered a function
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of p.
With this in mind, the traveltime ¢ for a given ray path may also be written (Figure

5.2) as

t=T+xp (5.6)

By comparing equations (5.5) and (5.6) the intercept time, 7, for each ray parameter p is

equal to:

T(p)=q(p): 5.7

The vertical component of the phase slowness g in equation (5.5) may then be obtained by
dividing equation (5.7) by the vertical distance between the transmitter and the top surface,
at the level of the receiver line.

The magnitude of the phase velocity, v, is the reciprocal of the slowness and is

computed from the horizontal and vertical components of the slowness, p and g,

respectively:
21-1/2
v=1/lsl=[p2+ g2 = [pZ + (@) ] (5.8)
Equation (5.8) -~ Jlves known quantities that allow the computation of the phase
slowness.

As with picking of the first arriving energy in ultrasonic wave-forms, the intercept
time, 7, is not always evident to pick on a 7-p mapping. To minimize this problem, the
difference between the 7-p curves for two transmitting transducers placed at different
known distances from the receiving line on the top surface (Figure 5.3) is used. If z; is the
vertical distance from the top surface of the specimen for transmitter /, the intercept time 7;
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for that transmitter is from equation (5.7).

T:{(P) = qizi (GRY)

For two transmitters at distances z; and => with 2z} < =3, then, for each ray parameter p, the
intercept time 7; for the transmitter at distance z; can be subtracted from that of the
transmitter at distance = to yield an expression for the vertical slowness component ¢ as a

function of the transmitter spacing

() - () .

qW) = == T (5-10)
Equation (5.8) may then be adapted simply as
. 2]-1/2
v(p) = [1)3 + ‘——-———--13(1:’3 - :f’l(p ) ] (5.11)

The advantage equation (5.11) presents over equation (5.8) is that a corresponding phase
of the wave-form (e.g. peak or trough) is selected for both 7-p mappings and the difference
7(p) - T1(p) is then used in equation (5.11) to compute the phase velocities. Use of
equation (5.11) assumes that the wave-forms are not substantially changed by attenuative
processes.

It is worthwhile to note that equation (5.11) provides a continuous measure of the
velocity versus the horizontal slowness p. This continuity of measurement allows ready
conversion between phase and ray velocities which requires knowledge of the derivative of
phase velocity with angle of incidence.

In planes of material symmetry only the ray angle, ¢, and ray velocity, V, are related

to the phase angle, 6, and phase velocity, v (Thomsen, 1986) by:
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V¢ = vi(O) + («d—‘if (5.12)
do

#(6) = 6+ tan’! %Z—;) (5.13)

Note that this technique can be used to determine the phase velocities in any plane
containing the transmitters and receivers. The ray velocities in directions not coincident
with a plane of symmetry may be separately obtained using conventional transmission

methods.
5.3 Experimental Configuration

The analysis described above is tested on two materials. The first is an isotropic
acrylic annealed after machining to relax residual stresses. Velocities were also measured
by the pulse transmission method on the acrylic sample using 2.54-cm diameter, 0.7-MHz
piezoelectric ceramic transducers along the three orthogonal directions (x, y, and z). The
observed velocities of 2826 m/s, 2780 m/s, and 2795 m/s, respectively, confirm that the
sample is isotropic to within experimental errors adding up to about 1.5 percent. The
second is an orthotropic phenolic with three planes of symmetry (Brown et al., 1991;
Cheadle et al., 1991; Nayfeh et al., 1995). This industrial laminate is composed of canvas
fibers arranged in two orthogonal orientations and bonded by a phenolic resin. The fibers
are straight in one direction (the wrap) and woven in the direction perpendicular to it (the
weave or woof). The system of coordinates adopted for this experiment is such that the x-
axis coincides with the weave, the y-axis with the warp, and the z-axis with the planes
perpendicular to the fibers. Both samples were machined into right rectangular prisms. The
plexiglass and phenolic samples have dimensions 9.7 x 4.7 x 13.6 cm measured to an
accuracy of 0.05 cm. The phenolic specimen is cut along the three planes of symmetry.

Ultrasonic transducers were cut to dimensions of approximately 2 mm x 2 mm from

129



PZTS piezoelectric ceramic (American Piezoceramic). The transducers were coupled to the
samples with a silver paint and damped by backing with a tungsten-epoxy matrix. The
same sensor configuration was used for both the isotropic and anisotropic samples. A line
of equally spaced receiving transducers on one surface of the specimen and transmitters on
another surface perpendicular to the first, and such that the transmitters and receivers are
within the plane of interest (Figure 5.3).

For the isotropic acrylic sample, only one plane was investigated with 20 receivers
aligned on the top surface with 0.5 cm spacing, and 3 transmitters placed on a side surface
in the same plane as the receivers at distances 1 cm, 2 cm, and 3 cm from the receiving line
(Figure 5.3).

In ine ort* ~rhombic sample. transducer arrays were placed along the three planes of
symmetry (x-z, v-z, and x-¥) and one diagonal plane containing the 2 axis and at 43° from
the y-z surface. Four transmitters at depths of 1 cm, 2 cm. 3 ¢m, and 4 cm below the
surface containing a receiving line of transducers were used in each of the arrays.

The transmitters were activated by a 300-V spike provided by a high-voltage pulse
generator/receiver (JSR SYNERGETIC, model PR 35). The response of the receiving
transducer was preamplified and band-pass filtered with a 0.3-to-10 MHz pass-band prior
to digitization at an 8-ns sampling rate on a Tektronix TDS 520 digital oscilloscope. A final
acquired wave-form represents an average from at least 100 individual pulses. The final
digitized wave-forms were transferred to a Quadra 650 computer over the GPIB bus and to

a Sun SPARC 5 workstation for analysis.

5.4 Resuilts And Discussion-
5.4.1 Acrylic sample

A series of the recorded wave-forms which share the same transmitting transducer are
digitally band-pass filtered (300 — 850 KHz) and plotted. An example of such an x-7 plot

obtained on the plexiglass sample is shown in Figure 5.5a. The first arriving pulses follow
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the expected locus of a hyperbola in Figure 5.5. These are the longitudinal waves
transmitted directly through the sample. Other later arrivals include surface waves and the
longitudinal waves reflected from the bottom surface. Using equation (5.2) the wave-
forms in Figure 5.5a are mapped into the 7-p domain and plotted as shown in Figure 5.5b.
Each data point in the 7-p domain is obtained by summing data samples in Figure 5.5a
along a straight line (slant-stack) that is tangent to the curve of slope p and y-intercept 7. A
tangency condition is satisfied by implementing in the mapping code the ratio filter
suggested by Moon et al. (1986). This selective filter checks each sample on the line of
summation against its left and right neighboring points. The data sample is accepied into
the summation only if the ratio of its amplitude to that of each neighboring sample is larger
than a predetermined value. In our case this ratio is fixed at 0.5 for all 7-p mappings.
Additionally, a velocity-sensitive hyperbolic filter (Tatham, 1984) is introduced in the 7-p
mapping to attenuate the edge effects due to band-limited data, and to map only those
acoustic wave-forms falling within a predetermined velocity range of Vipin = 2200 m/s to
Vmax = 3500 m/s. Since ray parameter p and velocity V are related to each other by Snell’s
law, this restriction in velocity will allow each sample f(x,t} in equation (5.2) to contribute
to a certain number of slopes or p-values in the range pmin—Pmax (Tatham, 1984). The
results in the 7-p domain were finally band-pass filtered with the same filter applied to the
recorded wave-forms (300-850 KHz).

To determine the slowness curve of the specimen in the plane containing the
transmitters and receivers, a coherent trace-to-trace feature (a trough or a peak) of the wave-
forms in the 7-p domain (Figure 5.5 b) is selected, and the intercept times 7;(p) of this
feature at each p is determined. The intercept times ‘t}(p) for the same feature on a
corresponding 7-p mapping for a different transmitter are also found. The difference for
each ray parameter p, [ T2(p) - T;{p)] is then calculated and divided by the spacing (z - z;)
of the two transmitters to yield the vertical component g of the phase slowness [equation

(5.10)].
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In practice, the 7 times are chosen for a number of different troughs and peaks in the
7-p wave-forms in order to reduce random error. The resulting slowness curves can then be
used to compute an average curve such as the one displayed in Figure 5.6a. The symbols
along the p and g axes of Figure 5.6a show the directly measured slownesses for vertical
and horizontal incidence angles. For this particular case where the sample is isotropic the
data in Figure 5.6a fall closely as expected along a circle of radius | s I; the solid-line arc of
a circle in Figure 5.6a represents the slowness curve calculated using this velocity. Further,

equation (5.8) may be written as

g2 = (1/Is)? - p2. (5.19

The graph g2 versus p?2 is linear for the isotropic acrylic and has a y-intercept equal to the
reciprocal of the velocity of the specimen as shown in Figure 5.6 (b). Linear regression of
the data in Figure 5.6b yields a velocity of 2776 £ 20 m/s, which compares favourably
with 2830 + 23 m/s measured independently by pulse transmission along the axes; this
discrepancy is less than 1%.

The velocities computed using equation (5.11) are sensitive to the receiver spacing
and the errors on the int:rcept-time picks. The errors in recovered velocities are
proportional to the reciprocal of the squre of the receiver spacing, and to the relative error
on the intercept-time difference as well. The larger the receiver spacing is, the more
accurate the recovered velocities are. However, as the receiver spacing increases, the
maximum available angle of incidenice decreases. One needs to find a balance between the

range over which velocities may be determined and the accuracy of their determination.

5.4.2 Phenolic sample

The phenolic specimen is anisotropic with three planes of symmetry as described in
Cheadle et al. (1991) and more recently by Vestrum (1994), who used the pulse-
132



transmission method to measure the traveltimes that were then inverted to obtain slowness
surfaces. He first measured longitudinal and transverse phase velocities using large
aperture transducers in 9 directions on an 18-face specimen. Ray velocities were recovered
from a 23-cm diameter sphere of the same phenolic with the pulse-transmission method
using small aperture transducers.

Here, the anisotropy of the sample is investigated in each of the three planes of
symmetry and in one nearly diagonal plane aligned perpendicular 7o the x-y plane (plane of
fibers) and at an angle of 43° with respect to the y-z plane (Figure 5.7). The data were
analysed using the same sequence as described above for the isotropic acrylic sample. Asa
reminder. the velocities are recovered from intercept time differences, A7. which makes the
method less sensitive to systematic traveltime pick errors. The methodology is outlined
only for the (v-z) plane, which contains the straight fibering, but the final results for all
planes will be presented. Two series of wave-forms and their 7-p mappings corresponding
to transmitters at 2 ¢cm and 4 cm are shown in Figures 5.8 and 5.9, respectively. The null
traces at small ray parameters, p, result from the hyperbolic filter. The intercept times, 7,
for three different coherent features of these 7-p wave-forms are selected and labeled (1, 2,
and 3) for both depths, and the intercept times. 7. for each of them are determined for both
transmitters. Equation (5.11) is finally used to compute the phase velocity for each ray
parameter present in the data.

Figure 5.10 summarizes the variations of phase velocity versus p for the y-z plane
obtained for the plots in Figures 5.8b and 5.9b. The average phase velocity in the y-z plane
increases with ray parameter from 2826 m/s along the z-axis (perpendicular to the fibers) to
3300 m/s for the maximum ray parameter corresponding to a phase incidence angle, 6, of
80°: a velocity anisotropy of 17% over this range of incidence angles. An uncertainty of 20
m/s is estimated from the variation in the velocities determined by picking of the different
wave-form features. Having a near-continuous measure of the phase velocity with ray

parameter. as in Figure 5.10, is a considerable advantage in that the corresponding ray
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velocities may be determined using equations (5.12) and (5.13). The ray parameters are
easily converted to phase angles. 6, allowing dv/d@ in equations (5.12) and (5.14) to be
determined. The recovered phase velocity as a function of the phase angle 8 was fit with a
fourth-order polynomial that has no physical significance and was chosen for convenience

only. Figure 5.11a shows that, for all ray angles between 15° and 80°, the ray velocity is

larger than the phase velocity as it must be.

The phase velocities recovered using the 7-p method are in good agreement with those
directly measured by Vestrum (1994) with an average discrepancy of 1%. However.
Figure 5.11a shows that between incidence angles of 30° and 80°, Vestrum's ray velocities
are systematically larger than those calculated here. This discrepancy may result from errors
in distances and traveltimes and are consistent with Vestrum's estimated relative velocity
error of 2%. The 7-p method used here to compute the velocities does not use the traveltime
through the sample but intercept time difference, At, which eliminates any systematic
traveltime error.

I measured the velocities along the axes using the transit-time method between a
transmitter/receiver pair of transducers glued on opposite faces of the specimen. 1-MHz
transducers, 2.54 cm in diameter, were placed opposite to each other to measure the phase
velocities. Small 1 x 1 mm, 1 MHz ceramics previded the measured ray velocities
(Vestrum, 1994). The phase and ray velocities along the axes have been measured and
summarized in Table 1.

Along the axes of symmetry the phase and ray velocities should be identical, which is
not the case here, especially for the y-axis where the phase and ray velocities differ by as
much as 3.5%. This discrepancy may result from traveltime measurement errors and the
numerical errors involved in the 7-p method.

Similar curves are obtained for the (x-z) and (x-y) planes of symmetry. The phase
and ray velocities for these two planes are shown in Figures 5.11b and c, respectively.

Figure 5.11b is very similar to that for the y-z plane and revea!s a velocity anisotropy of
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22%. The computed ray velocities are comparable to those measured by Vestrum (1994).
However, Vestrum's phase velocity at 45° is 3% larger than our recovered phase velocity
for the same angle using the 7-p method. Figure 5.11 (c) shows that the phase velocity in
the x-y plane decreases from 3320 m/s at 15° from the y-axis to 3220 m/s for an incidence
angle of 68°. A phase velocity decrease of only 3%. In this plane the computed ray and
phase velocities differ little because of the weak anisotropy. The discrepancy of about 1.5%
observed along the axes could again be due to the traveltime determination errors. The
slight increase in velocity from 70° to 90° was also observed by Vestrum (1994). Unlike the
other three planes, the diagonal plane is not a plane of symmetry. The phase velocities
recovered from the 7-p curves relative to this plane show that the phase velocity increase
from 2826 m/s in a direction perpendicular to the plane of the fibers to 3160 m/s for an
incidence angle of 66° (Figure 5.12). The ray velocities have not been computed because

equations (5.13) and (5.14) are valid for planes of symmetry only.
5.5 Conclusion

I applied the Radon transform to ultrasonic wave-forms plotted in the x-7 space to the
intercept time-horizontal slowness 7-p domain. Since the horizontal slowness implicitly
contains the angle of incidence, the 7-p domain is a natural space for velocity anisotropy
determination. The intercept time T is converted to the vertical slowness component when
the transmitter spacing in known. The experimental transmitter-receiver configuration is
particularly simple and easily implemented in a laboratory setting. Small transducers were
coupled to the sample and backed with a tungsten-epoxy mixture, which highly attenuates
the ringing of the observed wave-forms. Unlike the classical methods of acoustic phase
velocity determination, which employ large transducers and are sometimes semi-destructive

as the sample must be cut in many different orientations, the 7-p method is nondestuctive

and provides a nearly continuous measure of the phase velocity with incidence angle.
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On an isotropic plexiglass sample the 7-p method gave a velocity of 2776 nVs which
differs from the transmission measurement of 2800 m/s by less than 1%. This technique
was then applied to a phenolic sample of orthorhombic symmetry. The phase velocities
have been determined for four planes containing transmitters and receivers by exploring the
7-p curves relative to each common-transmitter wave-form. The recovered phase velocities
differ from those measured by Vestrum and Brown (1994) on a sample of the same
material for 0 and 45° of incidence angles by less than 2%. Even the weak anisotropy of
3% as for the plane of the fibers of the phenolic sample was detected. Since the velocity

curves are nearly continuous, the ray velocities in the planes of symmetry are easily

computed.

Table 5.1

Phase and ray velocities directly measured along the phenolic axes of

symmetry.
X-axis y-axis Z-axis
Phase velocity (m/s) 3440 3310 2826
Ray velocity (m/s) 3490 3439 2846
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Figure 5.1. Slant-stack procedure. The amplitudes in the offset-time
domain on a line of slope p and y-intercept 7 are stacked to give the
amplitude in the 7-p space of x and y coordinates p and 7, respectively.
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Figure 5.2. (a) Ray path. (b) Transmission traveltime versus

transmitter-receiver offset for receivers aligned on the top surface and

a transmitter on a side surface of an anisotropic specimen.
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Figure 5.5. (a) Wave-form amplitudes with time observed for a transmitter on the side of
the plexiglass specimen at 3 cm from the top surface where 20 receivers are placed along a

line in the plane containing the transmitter. (b) 7-p mapping of the wave-forms in (a).
Positive values are shaded black to enhance viewing of coherent features.
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Figure 5.8. (a) Wave-forms observed for a transmitter on the side of the phenolic specimen
at 2 cm from the top surface where 21 receivers are placed along a line in the y-z plane that
contains the transmitter. (b) 7-p mapping of the wave-forms in (a). Each of the lobes
labeled (1, 2, and 3) were used with their counterparts in Figure 5.9 to compute the phase-
velocity function.
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Figure 5.9. (a) Wave-forms observed for a transmitter on the side of the phenolic specimen
at 4 cin from the top surface where 21 receivers are placed along a line in the y-z plane that
contains the transmitter. (b) 7-p mapping of the wave-forms in (a). Each of the lobes
labeled (1. 2, and 3) were used with their counterparts in Figure 5.8. to compute the phase-
velocity function.
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Chapter 6

6. Conclusions

6.1 Near-Vertical to Obligue Anisotropy Delineation From Offset VSP data

The dependence of seismic velocities on the angle of incidence is more naturally

determined in the 7-p domain. In this domain, 7 represents the intercept ume and p the ray
parameter which readily allows the determination of the phase velocity v and phase angle 8
via the i« p=sin@/v. The technique is based on the analysis of the 7-p curves of
commoii copth receiver gather for a walkaway vertical seismic profile experiment where the
receivers are placed in the borehole and the sources radiate from it at increasing offsets. In
this kind of experiment the depth of the receivers is known, this knowledge can be used as
a constraint to enhance the accuracy of the recovered velocities from the 7-p curves of
successive receivers. The technique is able to determine the velocity changes as a function
of the ray parameter without any restriction on the shape of the 7-p curves. In Chapters 2
and 3 the 7-p curves are subdivided into small p ranges within which the velocity is
assumed to be constant. To check the accuracy of the recovered velocities for various p-
ranges, the method was first applied to two synthetic offset vertical seismic profile
experiments. The first example consists of an elliptically anisotropic half-space, for which
the recovered velocities differ from the modeled velocities by less than 1 percent. The
second example consists of an isotropic layer overlaying an elliptically anisotropic half-
space. Xx-f seismograms were formed for two receivers where the first was placed at the
interface separating the two media, and the second receiver within the anisotropic half-
space at a known depth. The x-f seismograms were then mapped to the 7-p domain. A
layer stripping technique similar to that described by Schultz (1982) was used to subtract
the contribution of the isotropic layer to the total intercept time computed for the receiver

placed within the anisotropic layer. Again the computed velocities for various p-ranges
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attribu<cd to the mid-point of the ranges differ from the input modeled velocities by less
than { <rcent.

The p-range velocity determination from 7-p curves of common-receiver seismograms
was then applied to a walkaway vertical seismic profile data set acquired in a shallow
borehole (225 m) at the Underground Test Facilities (UTF) near Fort McMurray. Albeita.
The three-component receiver was lowered down into the borehole at 13 kndwn depths.
Hodogram analyses of the three-component seismic data were used to segregate the
downgoing transmitted waves. and enhance their amplitude by the rotations through the
appropriate angles. The layer stripping technique was used to calculate the near vertical and
oblique velocities for each of the layers bounded by the receivers. The largest difference
between oblique and near-vertical velocities (15 percent) was observed for a shale/sand
sequence bounded by receivers ar 75 m and 100 m. This latter is subdivided into thin shale
and sand layers as delineated from sonic and focused electric logs recorded in the same
wellbore. Assuming isotropic constituents the horizontal and vertical velocities of the long-
wave transversely isotropic medium equivalent to the 75-100 m layer are computed using
Backus's (1962) equations. The computed vertical to horizontal anisotropy ~f the
equivalent medium was 14.2 percent which is less than the observed 15 percent near-
vertical to oblique velocity anisotropy. This simply suggests that the 75-100 m thin layer

components are intrinsically anisotropic.

6.2 Slowness Surface Determination From VSP Experiments

The 7-p method for velocity determination was further developed to recover an almost
continuoz« phase velocity function for the whole range of incidence angles present in the

offset vertical seismic profile data set. After mapping the offset-time common receiver data

to the 7-p domain, and using the known receiver spacing, the vertical component ¢ of the

slowness is computed for each ray parameter (horizontal slowness component) p. The
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magnitude of the slowness vector can then be computed from its ¢t ' ~porents p and g. The
velocity for each ray parameter is then calculated by taking the reciprocal of the already
determined slowness (v=1/u). The method was applied to various synthetic dat: sets. then
1o a real data set acquired in a shallow borehole. The first test to the method consisted of
the determination of the slowness surface of an isotropic half-space overlain by a stack of
three isotropic layers. Two receivers were placed in a borehole at known depths, and a
series of sources are activated on the surface at increasing offsets from the wellbore.
Seismograms for the two receivers were formed, than mapped to the 7-p domain. The
intercept time differences (7> - 77) for various ray parameters were divided by the well
known receiver spacing to yield the vertical component of the slowness
lg = (12 - T1)/(z2 - =1)]. The slowness curve was circular, which means that the medium in
which the receivers are placed is indeed isotropic. Finally the velocity of the medium was
graphically determined from the g2-versus-p2 plot, where g and p are the vertical and
horizontal components of the slowness, respectively. The recovered velocity differs from
the input modeled velocity of the half-space by 0.5 percent. This example showed that the
7-p method described in this thesis can be useful even in the case of isotropic media.

The second synthetic example consisted of an elliptically anisotropic half-space of
vertical and horizontal velocities of 2000 m/s and 250G m/s, respectively. Again a
seismogram was formed for a receiver placed at 200 m depth, then mapped to the 7-p
domain. The phase velocities from normal incidence to a near-horizontal angle fixed by the
ray geometry are determined from the 7-p curve. The recovered phase velocities and the
derivative of their best polynomial fit were used to compute the ray velocities using the
phase-ray velocity relationship in a plane of symmetry. The observed phase velocities were
smaller than the input ray velocities for all incidence angles except for normal and
horizontal incidences where the velocities are equal as predicted by the theory. The
recovered ray velocities deviate from the input modeled ray velocities by 0.2 percent only.

The third example which is probably the most interesting of all consisted of a
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hypothetical transversely isotropic medium. Radial and vertical component seismograms
were calculated for a receiver placed at 500 m depth in a borehole, and sources were
activated on the surface at increasing offset from the wellbore (10 - 1000 m). The
seismograms were rotated to the incoming rays. and the qP-wave and qSV-wave
seismograms were calculated and mapped to the 7-p domain. The qP-wave and qSV-wave
slowness curves are in good agreement with the modeled slownesses for the range of
incidence angles fixed by the ray geometry.

The method was then applied to a set of data acquired in a shallow borehole. Two
receivers were placed within a shale formation with thin beds of sand. The data acquired
using a three-component receiver was rotated to the incoming rays via hodogram analysis
to obtain the downgoing transmitted gP-wave seismograms. These offset-time
seismograms were then mapped into the 7-p domain. Three lobes of the wavelets in the 7-p
domain were used to compute three velocities for each ray parameter p, and an averaged
velocity is calculated. The observed phase velocities increase with incidence phase angle
from 1990 m/s at normal incidence to 2235 m/s for a phase angle of about 50°, which
corresponds to an increase in velocity of about 12 percent. The ray velocities are then
computed from the phase velocities assuming the plane that contains the source and
receivers is a plane of symmetry. The ray velocities show an increase from 1990 my/s at

normal incidence to 2245 m/s for a ray angle of about 52°.

6.3 Ultrasonic Velocity Anisotropy Determination

The 7-p method described above was finally used to determine ultrasonic velocitics
for an isotropic sample of plexiglass and an anisotropic sample (phenolic) that has an
orthorhombic symmetry. The transmitter and receivers were arranged in a way similar to
that of a reverse vertical seismic profile in seismology. The receivers were aligned on the

top surface of the sample and the transmitters were glued on a side surface. The observed
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wave-forms were filtered than mapped to the 7-p domain. The velocity of the specimen
was also directly measured using 1-inch (1 MHZ) transducers glued on opposite faces of
the sample. The recovered velocity from the 7-p curves was 2776 m/s which differs from
the directly measured (2800 m/s) by less than 1 percent.

The method, being successfully tested on an isotropic sample, was applied to an
anisotropic orthorhombic sample (phenolic) along its three planes of symmetry and one
diagonal plane. The phase velocities recovered from the 7-p curves show that, as expected,
the specimen is anisotropic. The increase in phase velocity from about 15° to about 80°
incidence angles for the x-z plane, y-z plane, x-y plane, and the diagenal plane were 17
percent, 22 percent, 4 percent and 12 percent, respectively. The phiise vezlocities for the
three planes of symmetry were then converted to ray velocities, and the phase angles to ray
angles. The computed ray velocities for the x-z and y-z planes were lasger than their phase
counterparts for all incidence angles from 15° to about 80° as expected since the phase
velocity functions increased monotonically with incidence angle. However, for the x-y
plane where the anisotropy was as small as 4 percent, the phase and ray velocities almost

coincide, and the discrepancy between them is negligible.

6.4 Future directions
6.4.1 Application in reflection seismology

If the depth of the top and bottom of a layer are approximately known from sonic log
information, then the reflection data can be used to determine the change of velocity with
incidence angle by substituting the quantity (=2 - z) in equation 4.9 by 2(z2-z;). In
Alberta where a large number of oil and gas pools are either regional sands trapped by
shaly sand channels, or clean sands cutting through silty regional sands, the method
described here can be a useful tool for shale sand lithology discrimination. In fact, in most
cases the clean and shaly sands cannot be differentiated in sonic logs as their velocities are
almost identical. However, since the P-wave and S-wave velocities through the shales are
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highly anisotropic, the spatial variations of anisotropy within a homogeneous, horizontally

layered lithology could indicate changes of shale content within the layer.

6.4.2 Application to shear waves

During the recent years, shear waves have received a great deal of attention in
industrial geophysics. The 7-p method can also be used to determine shear wave velocity
anisotropy by the same technique as applied for P-waves in the earlier chapters. Shear
wave anisotropy combined with the P-wave anisotropy would provide useful

complementary information.
6.4.3 Application to development geophysics

The focus of petroleum geophysics has shifted from exploration to development and
production. In the latter application, structural traps were looked for, and the accuracy in
positioning of an exploratory well, while important, was often less crutial than that in
production of an existing field. In field development, well spacings might differ only by a
few meters and in such cases anisotropy must be considered in order to improve imaging of
the subsurface by tomography or migration. For example, locally an active area of research
‘focuses on the temporal monitoring of reservoirs subject to steam assisted enhanced oil
recovery processes (e.g. Kalantzis, 1994), Dilay and Eastwood (1995), Schmitt et al.
(1995)). In these studies, a variety of seismic traveltime and frequency attributes are
employed to map changes in the temperature and fluid content of various sections of the
geology. The areal positioning of anomalies is critical in such application; and a small error
can mean that substantial reserves may not be recovered. As such increasing importance

will be placed on anisotropy determination and the incorporation of this knowledge in data

analysis.
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Rocks are often intrinsically anisotropic, and fractures and thin layering introduce
additional velocity anisotropy. Consequently, rocksmasses cannot be described by only 2
independant elastic parameters, and the isotropy assumption is far from being realistic.
Real rockmasses more probably require either five elastic constants if transversely isotropic
or nine elastic constants for orthorhombic symmetry. Anisotropy cannot be ignored, and
developments of techniques for velocity anisotropy delineation are necessary. The
inclusion of anisotropy in seismic data processing schemes improves the quality of the
final seismic sections in reflection seismic profiling. Anisotropy may also be used for
lithology discrimination. The method proposed in this thesis is only one of the many
methods used for velocity anisotropy determination. However, it presents an advantage in
that it derives the anisotropy in the 7-p domain which more naturally contains information

on the angle of incidence dependent velocities.
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Appendix A

Appendix A have plots of the offset-time data acquired in the laboratory and their 7-p

mappings for both the plexiglass and phenolic samples.
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Figure Al. (a) Wave-form amplitudes with time observed for a transmitter on the side of
the plexiglass specimen at 1 cm from the top surface where 20 receivers are placed along a

line in the plane containing the transmitter. (b) 7-p mapping of the wave-forms in (a).
Positive values are shaded black to enhance viewing of coherent features
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Figure A2. (a) Wave-form amplitudes with time observed for a transmitter on the side of
the plexiglass specimen at 2 cm from the top surface where 20 receivers are placed along a

line in the plane containing the transmitter. (b) 7-p mapping of the wave-forms in (a).
Positive values are shaded black to enhance viewing of coherent features
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Figure A3. (a) Wave-forms observed for a transmitter on the side of the phenolic specimen
at 2 cm from the top surface where 21 receivers are placed along a line in the x-z plane that

contains the transmitter. (b) 7-p mapping of the wave-forms in (a).
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Figure A4. (a) Wave-forms observed for a transmitter on the side of the phenolic specimen
at 3 cm from the top surface where 21 receivers are placed along a line in the x-z plane that

contains the transmitter. (b) 7-p mapping of the wave-forms in (a).
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Figure AS5. (a) Wave-forms observed for a transmitter on the side of the phenolic specimen
at 4 cm from the top surface where 21 receivers are placed along a line in the x-z plane that

contains the transmitter. (b) 7-p mapping of the wave-forms in (a).
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Figure A6. (a) Wave-forms observed for a transmitter on the side of the phenolic specimen
at 3 crn from the top surface where 21 receivers are placed along a line in the'y-z plane that

contains the transmitter. (b) T-p mapping of the wave-forms in (a).
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Figure A7. (a) Wave-forms observed for a transmitter on the side of the phenolic specimen
at 2 cm from the top surface where 21 receivers are placed along a line in the x-y plane that

contains the transmitter. (b) 7-p mapping of the wave-forms in (a).
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Figure A8. (a) Wave-forms observed for a transmitter on the side of the phenolic specimen
at 3 cm from th= top surface where 21 receivers are placed along a line in the x-y plane that

contains the transmitter. (b) 7-p mapping of the wave-forms in (a).
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Figure A9. (a) Wave-forms observed for a transmitter on the side of the phenolic specimien
at 4 cm from the top surface where 21 receivers are placed along a line in the x-y plane that

contains the transmitter. (b) 7-p mapping of the wave-forms in (a).
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Figure A1C. (a) Wave-forms observe:! for a transmitter on thr side of the phenolic
specimen at 2 ¢m from the top surface where 28 receivers are placed along a diagonal line
in the vertical plane that contains the transmitter. (b) T-p mapping of the wave-forms in (a).
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Figure Al1. (a) Wave-forms observed for a transmitter on the side of the phenolic
specimen at 3 cm from the top surface where 28 receivers are placed along a diagonal line

in the vertical plane that contains the transmitter. (b) 7-p mapping of the wave-forms in (a).
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Figure A12. (a) Wave-forms observed for a transmitter on the side of tiixc phenoiic
specimen at 4 cm from the top surface where 28 receivers are placed along a diagonal line

in the vertical plane that contains the transmitter. (b) 7-p mapping of the wave-forms in (a).
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Appendix B

The following pages have some of the programs I wrote to process the VSP data.
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C
C

This program SYNT_VSP.F generates VSP synthetic data by simple convolution
of the time r=ries with a Richer wavelet

**********************************************************************

nlm = number of layers of the model
v = velocities

thic = thicknesses -

npts = number of samples per trace

*********************************************************************

dimension 1(48) , x(48) ., tr(1000,48),ns(48),tsq(48).x5(48)

dimension wave(100),z(10) , v(10) , ang(10).xx(48),xc(48)

dimension slp(48),vel(48),thic(10).rdp(20)

dimension p(48),tao(48),nsp(48),p(48)

character AA*6 . BB*6, CC*6, DD*6 , EE*10 ,FF*24, GG*12 , HH*12
character PP*6 , QQ*8 ,RR*6

data nlm.v/4,2000.,2300.,2500.,2800.,6%0.0/
data thic/200..300.,200.,200.,6%0.0/

data nt,pmin/48,0.0/

data tau,npts,nbp/2.0,500.48/

write(6,%) 'enter xmin , xmax'

read(5,*) xmin.xmax

write(6,¥) 'enter number of Geopl uie positions '
read(5,*) ng

write(6.*%) 'enter Geophone positions in depth (m)’
read(5,*) (rdp(i),i=1,ng)

write(6,*) 'enter fregency of ricker wavelet’
read(5.*) freq

if (nt.GT.1) then
xinc=(xmax-xmin)/float(nt-1)

else

xinc=0.0

endif

do 30 i=1lnt
x(i)=xmin+(xinc*float(i-1))
continue

do 20 ig = 1,ng
write(6,%) 'Geophone position # ', ig

***********************************************************************#

C
C

Determination of the Geologic model above the Geophone position

************************************************************************

C

ss = 0.0
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ia=1

1000 prss = ss
ss = §s + thic(ia)
IF(ss.LT.rdp(ig)) then

ia=ia+1
goto 1000
ELSE
nl = ia
z(nl) = rdpfig) - prss
ENDIF
do 1001 i =1,nl-1
1001 z(i) = thic(i)

C
************************************************************************

*
¢ computation of the incident angles and the offset of each emerging ray
¢ The offset is computed with an accuracy of 1/100.

C
************************************************************************

*
<

C
do 40 i=1,nt
angmin = ata(x(i)/rdp(ig))
deltax = (1./100.)*x(i)
angin = 0.0001
c
100 ang(ni) = angmin
c
call cmpanx(v,z,ang,nl,xcomp)
c
if(xcomp.LT.x(i)) then
c
angmin = angmin + angin
goto 100
else
c
400 if(abs(xcomp-x(i)).GT.deltax) then
c
angin=angin/2.0
if((xcomp-x(i)).GT.deltax) then
angmin=angmin-angin
else
angmin=angmin+angin
endif
c
call cmpanx(v,z,ang,nl,xcomp)
c
goto 400
else
c
time = 0.0

do 70 m=1,nl
time = time+(z(m)/v(m))*sqrt((tan(ang(m)))**2+1.)
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70 continuc
t(i) = time
p(i)=sin(ang(1))/v(1)
tao(i)=t(i)-p(i)*x(i)
tsq(i) = t(i)**2
endif
endif
xc(i)=xcomp
xx(1)=xc(i)/1000.
xsq(i) = xx(i)**2
40 continue

c

C
************************************************************************
c creation of an output file : result.dat

c

************************************************************************
C

AA = "trace#'
BB = 'time’
CC = 'x{(km)'
DD = "tsq’
EE = 'xsqr'

FF = 'number of of layers ='
GG = 'velocities'

HH = 'thicknesses'

PP = 'slope’

QQ = "velocity'

RR = 'Reflector depth ="'

c
open(unit=11.file="result.dat’)
write(11,%) 'number of reflectors = ',nl
write(11,108)

108 format(/)

C
write(11,%) 'reflector depth = ',rdp(ig) ,’ m'
write(11,10¢ "

c

write(11,fn . . .y GGHH
C

103 format(10x,A10,10x,A12/)
do 333 i=1,nl
write(11,fmt=104) v(i),z(i)
333 continue
104 format(10x,F10.5,10x,F9.5)

write(11,106)
106 format(//)
write(11,fmt=101) AA,BB,CC,DD,EE,PP,QQ
101 format(3X,A6,4X,A6,6X,A6,8X,A6,7X,A4,8x,A6,7x,A6/)
slp(nt)=(tsq(nt)-tsq(1))/(xsq{nt)-xcg(1))
vel(nt)=sqrt(1./slp(nt))
do 444 i=2.nt
slp(i-1) = (1sq(i)-tsq(1))/(xsq(i)-xsq(1))
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vel(1-1) = sqri(l /sipti-Ty
444 continue

do 222 i=1,nt
write(11,fmt=102) i,t(i),xx(i),tsq(i),xsq(i),slp(i),vel(i)
102 format(3X.I3.5X,F8.6,5X,F8.6, 3, F8.6,5X,F8.6,5x,F8.6,5x,F8.6)
222 continue

write(11,109)
109  format(/////])
C
do 11 i=],nt

ns(i)=nint((1000.*1(i)/tau))
11 nsp(i)=nint(1000.*TAO(i)/tau)
close(2)

DT = tau/1000.0
call RICKMOD(DT .freq,LS.t000.wave)

open(unit=9,file='Ricker.dat')
read(9.fmi=*),(wave(k),k=1,LS)
close(9)

call conv(nt,npts,LS,ns,tr,wave)

20 continue
close(l1)

opcn(unit=8,file='data.dat',form='unformatted',a-:cess='direct'.
& recl=npts*4)
do 45 i=1.nt
write(8,rec=i) (tr(j,i).,j=1.npts)
45 continue
close(8)

stop
end

**************************k****************i***************************

c
c
*
c
c subroutine ciipar « comrutes the angles of incidence and
¢ the correspesding vitset of the emerging ray

c

c

*

******************************************$*$******$*$*****************

subroutine cmpanx(v,z,ang.nl,xcomp)
dimenstion v(10) , z(10) . ang(10)
do 50 j=1,nl

ang(}) = asin((v(j)/v(nD))*sin(ang(nl)))
50 continue

xcomp = 0.0
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do 60 k=1.n!
xcomp = xcomp +z(K)™tan(ang(k))

60 continue
return
end

c

¢

************************************************************************
c
subroutine wavelet generates a dumped cosine wavelet
# of samples = np , datafile = cos_dump.dat
alfa = dumping coeff

... choose ... alfa=0.8 . w=0.: , np=51 : np is odd integer

***************************%**********&\.**************#***************

0O *xO00O000

subroutine wavelet(A,B.alfa.w.np)
dimension A(50),B(100)

do 10 i=1,(np-1)/2
beta=-alfa*(i-1)
A(D)=0.5*(cos(w*(i-1)))*exp(beta)
10 continue

open(unit=8,file='cos_dump.dat’)

do 20 i=1,(np-1)/2

20 B@{)=A((np-1)/2+1-(i-1))
do 30 i=1,(np-1)/2+1

30 B((np-1)/2+1)=A()
write(8,fmt=*) (B(i),i=1.np)
close(unit=8)
return
end

subroutine conv(nt,npts,L.S,ns,tr,wave)
dimension tr(1000,48),ns(48),wave(100)
do 22 i=1,nt
if(ns(i).GE.npts) then
goto 22
endif
j1=ns(i)-(LS-1)/2
J2=ns(i)+(LS-1)/2
if(j2.GT.npts) then
Jj2 = npts
endif
do 33 j=j1.j2
IF((j-j1).LE.1) then
goto 33
endif
tr(j,i)= u(j.i)+wave(j-j1+1)
33 continue
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continue
remurn
end

subroutine rickmod(dt.f1,1s.10.f)

computes modified ricker wavelet
second derivative of ( gaussian * polynomial window)

input:
dt = time sample interval (in seconds)
f1 = frequency of max amplitude of pulse spectrum

output:
Is = number of points in filter
t0 = time delav to center point of filter
f = array of filter points

dimension f(500)
data pi/3.1415927/

write(6,*) ‘enter sampling rate ., frequency’
read(5,*) di.fl

f0=.87*f1
t0=1./10
1s=.001+(10/d?)
t0=Is*dt
Is=2%*Is+1

define wavelet

fmax=0.
alpha=(pi*f0)**2
do1001=1,1s
t=dt* (i-1)
tau=t/t0

polynomial window and its drivatives

g=(1.0-(tau-1)**2)**3
gp=-6.0%(tau-1)*(1.0-(tau-1)**2)**2/10)
gpp=6.0%(1.0-(tau-1)**2)*(5.0%(tau-1)**2-1.0)/(10*10)

gaussian and its derivatives
sign of h changed on purpose

h=-exp(-alpha*(t-t0)**2)

hp=-2.*alpha*(t-t0)*h
hpp=-2.*alpha*(1.-2.*alpha*(t-10)**2)*h

179



f(i) = gpp*h + 2.0*gp*hp + g*hpp
if (abs(f(i)).gt.fmax) fmax=abs(f(i))
100 continue

fmax=1.0e+06/fmax
do200i=1,1s
f(i) = f(i)*fmax
200 continue
return
end
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This program STATIC.F caiculates and applies static corrections
writen by /4. KEBAILI on December 1991

o000 0n

..... change nt in parameter and input and output files and compile ..

parameter(nt=18,npts=2501,.au=0.2,vw=1300)
dimension h(nt).idt(30),tr(2600.48).ctr(2600.48)

data h/1.33,1.37,1.45,1.46,1.46,1.52.1.63,1.71,1.72,1.93,1.95,
& 1.88,1.38,1.96,2.09,2.20,2.25,2.53/

do 22 i=1,nt
do 11 j=1,npts
ctr(3,i)=0.0

11 continue

22  continue

open(unit=1.file="north.files/n.200/XV_n200',
& form="unformatted’.access="direct’.recl=npts*4)

open(unit=2 file="north.files/n.200/c XV _n200",
& form="unformatted’.access="direct’.recl=npts*4)

do 100 i=1.nt
100 read(1,rec=i) (tr(j.1),}=1.npts)

...........................................................................................

............................................................................................

write(6,*) ' enter number of traces for extra static correction’
read(5,*) is
do 222 k=1.is
write(6,%) ‘enter order of trace 'k, to be corrected and correction time (mMms) '
read(5,¥) nbt, tm
km=nint(ABS (tm)/tau)

Cevrrerennrennenens negative correction (backwards)

iftm.LT.0) then
do 333 j=1,npts
if((j+km).GT.npts) then
ctr(j,nbt)=0.0
else
ctr(j,nbt)=tr(j+km,nbt)
endif
333 continue

Coarenrrerenvnneneancns positive correction (forward) ...

else
do 444 j=1,npts
if(j.LE.km) then
ctr(j,nbt)=0.0
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else
ctr(j.nbt)=tr(j-km,nbt)

endif

444 continue

endif
c
G ettt eier e eeeaataaeaaan save the corrected traces ....cooceeceececeninns
C

do 1010 j=1.npts
1010 tr(j.nbt)=ctr(j,nbt)
c
222 continue
c
Coaereeteneneinaenaeaneans end of extra StatiC COITECUON .ieiviniiiicenecceciiasecnas
c
C ..... start elevation static correction ........ Note that if {h(i) -h(1)} >0 the stat >0......
C

do 1011 i=1,nt

do 1011 j=1,npts
1011 ctr(j.i) = 0.0
c

do 10 i=1,nt
tdel = (h(1)-h(i))*1000/(tau*vw)
write(6,%) ‘time delay for trace’, i ) is ‘.tdel
if(tdel.GE.0.0) then
idt(i)=nint(1del)
jmax=npts-idt(i)
do 20 j=1,jmax
ctr(j.i)=tr(+idt(i).i)
20 continue
write(2,rec=i) (ctr(j,1),)=1.npts)

c
else
idi(i)=nint(ABS(tdel))
jmax=npts-idt(i)
do 30 j=1,jmax
ctr(j+ide(i).i)=tr(j.1)
30 continue
write(2.rec=1) (ctr(j.i).j=1.npts)
endif
10 continue
close(1)
close(2)
end
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c This program EQUAL.F equalizes and normalizes the traces.
c written by A.KEBAILI on September 1991.
c
parameter(nt=28.npts=15000,xmin=5.xmax=140.0.tau=0 $08)
dimension tr(npts.nt).x(nt).Amean(100),vmax(100)
c
O
c CHANGE : nt, xmin , input file . output file .x(i)???
C ettt aaaaeann
c
write(6,*) ‘enter alpha. beta’
read(S,*) alpha,beta
c
c xinc = (xmax-xmin)/(nt-1)
xinc = 10.0
do 10 i=1,nt

x()=xmin+xinc*(i-1)
10 continue

open(1.file="local1/Phenol/x-z.43/depth3/mPh.d3.XZ43 x-t',
& form='unformatted’,access='direct’.recl=npts*4)
do 20 i=1,nt
read(1,rec=i) (tr(j.i),j=1.npts)
20 continue

c
open{unit=2.file='locall/Phenol/x-z.43/depth3/eqmPh.d3.XZ43 x-1',
& form='unformatted',access='direct’,recl=npts*4)
do 30 i=1,nt
do 40 j=1,npts
time = j*tau/1000.0
tr(j.i) = tr(j,i)*exp(alpha*x(i)+beta*time)

40 continue

30 continue

c

c

......................................................................................

......................................................................................

do 60 i=1,nt
sum=0.0
do 70 j=1,npts
if(vmax(i).LT.ABS(tr(j.1))) then
vmax(iy = ABS(tr(j,i))
endif
sum=sum+ABS(tr(j,1))
70 continue
Amean(I)=sum/npts
60 continue

.....................................................................................

P R R R N R R R R N R EE R R R S I e



Amax = 0.0
valmax = 0.0
do 80 i=1,mt
if(Amax.LT.Amean(i)) then
Amax = Amean(i)
endif
if(valmax.LT.vmax(i)) then
valmax = vimax(i)
endif
80 continug

.....................................................................

.....................................................................

do 90 i=1.nt
if(Amean(i).GT.0.0) then
do 100 j=1,npts
tr(j,.) = (tr(j.i)/vmax(i)y*valmax
twr(j.i) = (tr(.1)/vmax(i))
109 continue
endif
90 continue

...........................................................................

...........................................................................

do 50 i=1.nt
write(2,rec=i) (tr(j,i),j=1,npts)
50 continue

close(1)

close(12)
end

184



this programm "TPMAP.F" performs slant_stack mapping

of seismic or borehole data.

a ratio filter can be used ... "ratio" between 0.0 and 1.0

to avoid using the ratio filter give to the parameter "ratio” a very low vaine .

Change the following parameters: nt, nbp, npts(for x_t). npts1(for t_p), xinc, xmin
pmin, pmax. input and output file ...l
npts = nb samples / x_t traces,  nptsl = nb of samples / t_p trace

On0N000600

parameter(nt=18,npts=2501,npts 1=751,nbp=60)
parameter(tau=0.2.xmax=100.0)

dimension tr(npts,nt),tp(npts.nbp).x(nt),p(nbp).jdat(nt)
data pmin,pmax/0.0000.0.0007/

open(unit=8,file="north.files/n.200/eqc XV _n200',
& form='unformatted'.access='direct’,recl=npts*4)

operi(unit=12 file="/Cougar/users/ahmed/tp70_n200’,
& form="unformatted'.access='direct’.recl=npts1*4)

............................................................................................

............................................................................................

...................................................................................

cOOoO0O060O0

..................................................................................

do 14 i=1.nt
x(i) =0.0

=
H

ntl=nt
c nt2=2
c nt3=3

xmin = 20.0
xinc = 10.0
do 10 i=1,ntl
10  x(@i)=xmin+xinc*(i-1)

c xmin = 100

c xinc=20

c do 12 i1=1, nt2

c12 x(i+ntl)=xmin+xinc*(i-1)

c xmin = 150

C xinc=30

cc dol3i=1,n3

c13 x(@i+ntl+nt2)=xmin+xinc*(i-1)

write(6,%) (x(i),i=1,nt)

c read x-t data from data file
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do 20 i=l,nt ‘
read(8,rec=i) (1r(j.1),j=1,npts)
20 continuc

close(8)
P PR N R R
C trace 1nversion
P RIS U R

¢ do 111 i=1,7
c do 111 j=l.npts

clll tr(j.=t(j.1)*(-1)
c
Corerernreenneniennas trace editing  coeiiiirii e

c do 121 i=1,7
c do 121 j=1.npts

cl2] r(§.13)=0.0
T R PR
c define the traces not to be includeed in the tau-p calculation
P R R P PR
c

c do 124 i=1,10
c do 124 j=1.,npts
cl24 tr(j.i1)=0.0

pinc = (pmax-pmin)/(nbp-1)
write(6,*) 'pinc = 'pinc
write(6,*) 'enter ratio '’
read(5,¥) ratio

do 30 j=1l.npts
do 40 i=1,nbp
p(i) = pmin+pinc*(i-1)

do50k =1,m
jdat(k) = j + nint(p(i)*x(k)*1000.0/tau)
50 continue
do 60 k =2,nt
if(jdat(k).GE.npts) then
goto 40
endif
datrat = tr(jdat(k).k)/tr(jdat(k-1).k-1)
if(datrat. GE.ratio. AND.datrat.LE.(1./ratio)) then
tp(.i) = tp(,i) + tr(jdat(k-1),k-1)
goto 60
else
goto 60
endif
60 continue
40 continue
30 continue
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............................................................................................

do 70 i=1.nbp
write(12,rec=i) (tp(j.i),j=1.npts1)
70 continue
close(11)
close(12)
stop
end
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c This program WINDOW.F uses a Gaussean function to window the datap

parameter(nt=60,npts=751.tau=0.2)

dimension tr(npts,nt),itr(10),t1(10),12(10)
dimension ntmax(100),vmax(100),t(100),ctr(npts,nt)
character*20 input

character*20 output

write(6,*) ‘enter input filename '

read(5,*) input

write(6,*) ‘enter output filename '
read(5,%) output

open(unit=1 file=input,form='un{ormatted’,
& access='direct’,recl=npts*4)

open(unit=9 file=output,form="unformatted’,
& access='direct',recl=npts*4)

write(6,*) 'enter number of windows including those of first and last traces’
read(5,*%) nw

c write(6,*) ‘enter trace number,beginning time(ms),ending time(ms) of each window
do 10 i=1,nw
write(6,%) 'window ',i,’ : enter trace #, initial time(ms) , final time(ms)’
read(5.*) itr(i),t1().12(i)

10  continue

open(unit=1 file='wftp70_n210.norm'.form="unformatted’,

& access='direct'.recl=npts*4)
open(unit=9 file="wftp70_n210.nrm',form="unformatted’,
& access='direct’,recl=npts*4)

do 20 i=1.nt
read(1,rec=i) (tr(j,i),j=1.npts)
20 continue
close(1)
write(6,*) 'data read and data_file closed’

inw =nw - 1
do 30 i=1,inw
deltl = t1G+1) - t1()
delt2 = 2(+1) - 2(i)
deltr = itr(i+1) - itr(i)
slopl = deltl/deltr
slop2 = delt2/deltr
il =itr(d)
i2 =itr(i+1)

do 40 j=il.i2
ttl = t1(i) + slopl*float(j-i1)
tt2 = t2(i) + slop2*float(j-il)
k1 = nint(ttl/tau)
k2 = nint(tt2/tau)
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wmax = 0.0

do 50 ii =k1,k2
IF(wmax.LE.tr(ii,j)) THEN
wmax = (ii,j)
iwmax = ii
ENDIF
50 continue
vmax(j) = wmax
ntmax(j) = iwmax
t()) = (ntmax(j)*tau/1000.)

40 continue

30 continue

c100 format(10x,14.10x.f10.7,10x.f10.7,10x.f14.5/)
ntt=nt-2

c

et ettt et e et e e e e et

c windowing of the data

o

c

write(6,%) 'enter alpha for exp(-(t/alpha)**2)’
read(5,*) alpha
do 601 =1,nt
do 70 j=1.npts
time = (j-ntmax(i))¥*tau
tr(j,i) = tr(j.i)*exp(-(time/alpha)**2)
70 continue
60 continue

c
C**************************************************#********
c up time shift of the windowed data

c***************************#*******************************
c
write(6,%) 'enter time shift in msec’
read(5,*) dt
it = nint(dt/tau)
do110i=1,m
do 120 j=1,npts
ji=j+it
if(jj.LE.npts) then
ctr(j,i) = u(jj.i)
else
ctr(§,i) = 0.0
endif
120 continue
110 continue
Coatrenrnrreeeearenseneenenanes save windowed data ...l
do 80 i=1,nt
write(9,rec=i) (ctr(j,i),j=1.npts)
80 continue
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close(9)
end
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this programm "LSTRIP.F" performs the layer stripping
of the data in the tau_p domain
written by Ahmed Kebaili on March 1991

change pmin and pmax to the actual values . change input and output dasafiles

leNeNeNe e e

parameter(nbp=60,npts=751,tau=0.2)
dimension tps(npts,nbp).tp(npts.nbp) . p(nbp)
dimension t0(10) , vi(10)

data pmin,pmax/0.000.0.0005/

write(6,%) 'enter vl , depth of first geophone position’
read(5.%*) vinit,z1

write(6,*) 'enter depth '
read(5,*) npts,tau,nbp
pmin=sin(atan(xmin/z1))/vmax
pmax=sin(atan(xmax/z1))/vinit
pinc = (pmax-pmin)/(nbp-1)

write(6,%) 'enter number of layers to sirip '

read(5,*) Is

open(unit=12.file='eqwtoP_n50" form="unformatted’,access="direct’,
& recl=npts*4)

do 100 i=1,nbp
read(12,rec=1) (tp(j.i),j=1.npts)

100 continue

close(12)

write(6,%) 'enter time (in ms) to which samples are put o zero'

read(5,*) temps

jzero = nint(temps/tau)

do 130 i=1,nbp

do 140 j=1,jzero

tp(j.i)=0.0
140 continue
130 continue

endif
c
do 30 i=1,Is
write(6,*) 'enter vertical time(ms) and velocity(m/s) of layer ',i. 1o be stripped’
read(5,*) t0(i),vI(i)
30 continue
c

do 50 i={,nbp
do 60 j=1,npts
tps(j,i)=0.0
60 continue
50 continue

do 10i = 1,nbp
p(i)=pmin+pinc*@i-1)
deltau = 0.0
do 40 k=1.Is
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20

noa6 x 6

a *

80

91
90

95

value = 1-p(iy**2*vi(k)**2
if(value.LT.0.0) then
goto 10
else
deltau = dehau + t0(k)*(1.0 - sqrt(value))
endif
continue
ncor = nint(deltau/tau)
do 20 j=1,npts
ij = j-ncor
if(§).LT.1) then
tps(j.1)=0.0
else
tps(j.i) = tp(jj.i)
endif
continue
continue

........................

write(6,%) 'pmax = ',pmax
write(6,*) 'pinc = ',pinc
write(6.*) ‘enter tmax (in sec)of first P and ppmax (to find slop of muting line)’
read(5,*) ttmax,ppmax
ipmax = nint(ppmax/pinc)
if(ipmax.LT.nbp) then
do 70 i=1,ipmax
it = nint(1000.0%((-ttmax*p(i)**2/ppmax**2)+ttmax)/tau)
do 80 j = it,npts
tpsQ.i) = 0.0
continue
continue
imax = ipmax-+1
do 90 i=imax,nbp
do 91 j=1.npts
tps(j.i) = 0.0
continue
continue
else
do 95 i=1.nbp
it = nint(1000.0*((-ttmax*p(i)**2/ppmax**2)+ttmax)/tau)
do 96 j = it,npts
tps(j.i) = 0.0
continue
continue
endif
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open(unit=13.file="seqwtoP_n50".form="unformatted’.access="direct’.
& recl=npts*4)

do 110 i=1,nbp
write(13,rec=i) (tps(j.i).}j=1.npts)
110 continue
close(13)
c
stop
end
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¢ This program TPICK.F picks automatically the intercept times used to computes
c the velocities.

c
dimension tr(2600,90),itr(3),11(3),12(3),deltat(100).deltax(100)
dimension ntmax(100),vmax(100),A(2600),t(100),h(100),v(100),hmid1(100)
dimension v2(100),v4(100)

c

parameter(npts=2501,tau=0.2)

data h(1),h(2).h(3)/10,15,25/

data hmid1(1),hmid1(2),hmid1(3)/17.5,21.5,27.5/

data nt,nw,itr,t1,12/83,3,1,61,82,25,100,110,42,120,130/

do 80 i=4.83

h(i)=h(3)+2.5*float(i-3)

hmid1(i)=hmid1(3)+2.5*float(i-3)
80 continue

.......................................................................................................

........................................................................................................

do 90 1=1,83

h(i) = (h(i)/1.009) + 1.5

hmid1(i) = (hmid1(i)/1.009) + 1.5
90 continue

write(6,*) ‘enter total number of traces (must be an odd integer)’
read(5.%) nt
write(6,*) ‘enter number of windows including those of first and last traces’
read(5,*) nw
write(6,%) 'enter trace number,beginning time(ms).ending time(ms) 3¢ each window'
do 10 i=1.nw
write(6,%) 'window ',i,' : enter trace # , initial time(ms) , final time(ms)’
read(5.%) itr(i),t1(i),12(1)
10 continue

open(unit=1,file='eqVtube' form="unformatted',access="direct’,
& recl=npts*4)

read(1,rec=1) (A(j).j=1.npts)
do 20 i=1.nt
read(l.rec=i+1) (tr(j.1),j=1,npts)
20 continue
close(1)
write(6.*) 'data read and data_file closed’

open(unit=11 file="tube.time")
inw=nw -1
do 30 i=l,inw
del:1 = t1(i+1) - t1()
delt2 = R2(i+1) - 123)
deltr = itr(i+1) - ir(d)
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slopl =deltl/delr
slop2 = delt2/deltr
il =im(@)
12 =1tr(i+1)

do40j=il.12
]l = t1(d) + slopl*float(j-11)
2 = 12(i) + slop2*float(j-il)
k1 = nint(tt1/tau)
k2 = nint(tt2/tau)
wmax = 0.0

do 50ii=kl1.k2

IF(wmax.LE.tr(ii,j)) THEN
wmax = tr{il,j)
iwmax =1ii

ENDIF

50 continue
vmax(j) = wmax
ntmax(j) = iwmax

...........................................................................................

t(§) = (ntmax(j)*tau/1000.)*cos(atan(12./h(j)))
40 continue

30 continue

100
format(8x,14,4x,f8.3,4x,f8.5,4x,f8.5,4x,f8.3,4x,f10.3,2x,f10.3,2x,£10.3,2x,f10.3
,2x.£10.3/)

ntt=nt-2
write(6,%) ' trace # depth time deltat midpt_depth Inst.vel Aver.vel
Aver.vel’

write(11,*)’ trace # depth time deltat midpt_depth Inst.vel Aver.vel
Aver.vel'

write(6,200)
write(11,200)
200 format(/)

nttd4=(ntt-1)/4
do 33 i=1,ntt4
14=4%i
v4(i4+1)=(h(i4+1)-h(i4-3))/(t(i4+ 1 )-t(i4-3))
v4(id)=v4(i4+1)
v4(i4-1)=v4(i4)
v4(i4-2)=v4(i4)
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33 continue
v4(1)=v4(2)

ntt2=(ntt-1)/2
do 22 i=1,ntt2
i2=2%i
v2(i2+1)=(h(i2+1)-h(i2-1))/(1(i2+1)-1(i2-1))
v2(i2)=v2(i2+1)
22 continue
v2(1)=v2(2)

do 70 j=1,ntt
deltat(j)=t(j+2)-t()
deltax(j)=h(j+2)-h(j)
v(j)=deltax(j)/abs(deltat(j))
write(6,100) j.h(j).t(j).deltat(j).hmid1(j).v().v2(j),v4()
write(11,100) j.h(j).t(j).deltat(j),hmid1(j).v(§).v2().v4()
70  continue

close(l1)

end
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this programm "VELAN.F" yields the vertical time and velocity
of a chosen layer or a genphone position (tau_p data).
it uses the layer stripped data.

noOoon0n

parameter(nbp=60.npts=2501,tau=0.2)
dimension tps(npts,nbp).tpc(npts.nbp),sembl(100,100),10(100)
dimension v(100).p(nbp).Ampl(100,100),Ener(100.100).smbmax(100).velo(100)

dimension Energ(100),VCTY(100)

Aedkesfesfedeafe kel change pmin pmax and input and output data files X¥¥¥¥kdokokk

N oo

data pmin,pmax/0.000,0.0007/

data ngeo.its.alpha/1.1.7/

character A1¥6 , A2*6 ,A3%6 , A4*6

write(6,*) 'enter v1 , depth of first geophone , vimax'

read(5,*) vl.zl,vmax

write(6,%) ‘enter : start time (ms) , window_length (odd # of samples) . # of
windows'

read(5,¥%) startt,lwind,nw

write(6,*) 'enter :initial velocity (m/s) , velocity increment (m/s) . # of velocities'

read(5,*) vO,vinc,nvel

write(6.%) 'enter :# of first (t_p) trace , # of last (t_p) trace to be taken into account’

read(5,*) ipi.ipf

c
write(6,¥) ‘enter window jump (in # of samples) , power of semblance "alpha” *
read(5,*) its,alpha
pmax=sin(atan(xmax/z1))/v1
pmin=sin(atan(xmin/z1))/vmax
pinc = (pmax - pmin)/(nbp-1)
c

write(6,*) ‘enier order of geophone position '
read(5,*) ngeo

IF(ngeo.EQ.1) THEN
open(unit=12 file="eqwioplot_n25.new' form="unformatted’,access="direct’,
& recl=npts*4)

do 110 i=1,nbp
read(12,rec=i) (tps(j.i),j=1,npts)
110 continue
close(12)
ELSE

open(unit=13.file="svsp2.top',form="unformatted’,access='direct’,
& recl=npts*4)
do 300 i=1,nbp
read(13,rec=i) (tps(j.i),j=1,npts)
300 continue

close(13)
nlay = ngeo-1
write(6,*) 'enter vertical time (ms) to geophone position ',nlay
read(5,¥) t00

ENDIF
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g***********************************************************
C
do 10 i=l.nw
smbma=0.0
Energy=0.0
t0(i) = startt+its*tau*(i-1)
do 20 j = 1,nvel
v(j)=vO+vinc*(j-1)
do 100 ii=1,nbp
do 200 jj=1,npts

tpc(jj.n) = 0.0
200 continue
100 continue

do 30 k = ipi,ipf
p(k)=pmin+pinc*(k-1)
sqval=1-p(k)**2¥v(j)**2
if(sqval.LT.0.0) goto 30
deltau=0(i)-t00)*(1.0 - sqrt(sqval))
ncor = nint(deltau/tau)
do 40 I=1,npts
Il = l-ncor
if(11.LT.1) then
tpc(1,k)=0.0

else
tpc(l.k) = tps(1Lk)
endif
40 continue
30 continue
2
c semblance numerator computation
Gttt eee e et et e ee e e e te e ean i aaa e aea s e ate st e et riaa s
am=0.0
sumsq = 0.0

is = nint(t0()/tau}-(lwind-1)/2
ie=1is +lwind - 1
do 60 n=is,ie
sum = 0.0
do 50 m = 1,nbp
sum=sum-+tpc(n,m)
50 continue
am= am+sum
sumsg=sumsqg+sum**2
60 continue
Ampl(j.i)=am

...............................................................................

sd =0.0
do70il1 = L.nbp
do 80 jl=is.ie
sd = sd+tpc(j1,i1)**2
80 continue
70 continue
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Ener(j.i) = sd

denom = (ipf-ipi+1)*sd

IF(denom.LT.1.) THEN
sembl(j,1)=0.
ELSE
smblce=sumsg/denom
sembl(j.i) =smblce**alpha
ENDIF

IF(smblce.GT.smbma) THEN
smbma=smblce
actvel = v(j)

ENDIF

IF(sd.GT.Energy) THEN
Energy = sd

velct = v(j)

ENDIF

20 continue
smbmax(i)=smbma
velo(i)=actvel
Energ(i) = Energy
VCTY()=velct
write(6,*) 'window ',i,) done’
10 continue

enern=0.0

do 123 i=l,nw
IF(Energ(i).GT.enern) THEN
enern=Energ(i)

123 continue
do 124 i=1,nw
Energ(i)=Energ(i)/enern
124 continue

sembl(j,i) = sumsq

write(20,fmt=104) t0(i),v(j),sembl(j.i),Ampl(j,i)
104 format(4X,F8.3,6X ,F8.3,6X,F8.6,6X,F16.2,

close(20)

open(unit=16,file='sembP_n25.S.data’,form="unformatted’,access="direct’,
& recl=nvel*4)

open(unit=17,file="EnerP_n25.S.data’,form="unformatted’,access="direct’,
& recl=nvel*4)
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do 120 i=1,nw
write(16,rec=i) (sembl(j.i),j=1,nvel)
write(17,rec=i) (Ener(j.i),j=1.nvel)
120 continue
close(16)
close(17)

open(unit=18,fi le="topc.data’.,form="unformatted’,access='direct’,
& recl=npts*4)
do 130 i=1,nbp
write(18,rec=i) (tpc(j,i).j=1,npts)
130 continue
close(18)

do 90 i=1,nw

write(6,*) (sembl(j,i) , j=1,nvel)
write(6,*) 'Ampl = ', (Ampl(j,i).j=1,nvel)
write(6,*) 'Energy = ',(Ener(j,i),j=1,nvel)

write(6,1001)
1001 format(/)
90 continue
c
open(unit=11,file='smbl.n25.data’)
write(6,*) ' file n25 '
write(11,%)’ file n25
c write(6,102)
write(11,102)
write(6,%) ' trace # time velocity max.sembl velocity Energy’
write(11,%)" trace # time velocity max.sembl velocity Energy'
write{6,102)
write(11,102)
do 90 i=1l.nw
write(6,fimt=104) 1,10(i),velo(i),smbmax(i),VCTY({).Energ(i)
c
write(11,fmt=104) i,t0@),velo(i),smbmax(1),VCTY (i),Energ(i)
c

90 continue
104 format(4X,13,4X,F8.3,6X,F8.3,6X,F8.6,6X,F8.3,6X,F8.5)
102 format(/)

close(11)

stop
end
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20

This program VELCAL.F picks automatically the intercept times of events on ellipses
and calculatesthe velocity corresponding to each ray parameter p

dimension tr(2600,100).itr(3).t1(3).t2(3)
dimension ntmax(100),vmax(100),t(100),v(100)
dimension p(100),ang(100)

................... tau (ms), p (s/m), z (m) = geophone depth difference ............

parameter(npts=751,tau=0.2)
data nt,pmin,pmax/60,0.000,0.0007/

open(unit=1,file="/Cougar/users/ahmed/east.files/e.25/ftp_e25',
form="unformatted'.access='direct’,recl=npts*4)

open(unit=11.file=/Cougar/users/ahmed/east.files/e.25/vel.data2’)
write(11.%) 'velocity data for -1 : e_25"
write(6,*) 'veiocity data for -1 : e_25"

write(6,%)'enter nb of windows of actual geoph. including the first and last ones’
read(5.¥%) nw

write(6,*) 'enter order of traces at windows'
read(5,*) (Gtr(i).i=1,nw)

write(6,*) ‘enter the ‘,nw,’ initial times (ms) of the windows'
read(5,*) (t1(i),i=1,nw)

write(6,*) 'enter the ',nw," final times (ms) of the windows'
read(5,*) (12(1),i=1,nw)

write(6,%) ' enter depths of previous and actual geophones’
read(5.*) depthl, depth2

wrige(6,*) ' enter vertical traveltimes to previous and actual geophones’
read(5,*) t01,t02

depthl = depth1/1.009

depth2 = depth2/1.009 + 1.5
write(6,*) 'depthl = 'depthl
write(€,*) 'depth2 = 'depth2

write(6,*) '’
read(5,*¥) xminl, ttl
write(6,*) ' enter mini.offset & its traveltime for the actual geophone in ms'
read(5,*) xmin2, tt2
t01= tt1*cos(atan(xminl/depthl))
t02= tt2*cos(atan(xmin2/depth2))

pinc = (pmax - pmin)/(nt-1)
do 20 i=1,nt
read(1,rec=i) (tr(j,i),j=1,npts)
p(i) = pmin + pinc*(i-1)
continue
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close(1)
write(6,*) 'data read and data_file closed’

inw=nw-1
do 30 i=l,inw
deltl =t1(i+1) - t1@)
delt2 = 12(i+1) - t2(i)
deltr = itr(i+1) - itr(i)
slopl = deltl/deltr
slop2 = delt2/deltr
il =itr(i)
i2 =itr(i+1)

do 40 j=1il,i2
ttl = t1(i) + slopl*float(j-il1)
tt2 = t2(i) + slop2*float(j-il)
k1 = nint(ttl/tau)
k2 = nint(tt2/tau)
wmax = 0.0

do 50 ii = k1,k2
IF(wmax.LE.AEBS(tr(ii,j))) THEN
wmax = ABS(#r{ii,)))
iwmax =11
ENDIF
continue
vmax{j) = wmax
ntmax(j) = iwmax

t(j) = ntmax(j)*tau/1000
continue

continue

tdelay = (ntmax(1)*tau -t02 ) + t01
write(6.%) 'int. time at p=0 is ‘,ntmax(1)

write(6,*%) 'time delay (ms) = ‘tdelay
do88j=1,nt

t(j) = t(j)-tdelay/1000.
continue
write(6,*%) ' trace nb  int. time inc. angle ray para.p
write(11,*) ' trace nb  int. time inc. angle ray para.p
do 19 j=1.nt

v(j) = 1.0/SQRT(p(j)**2+(t()**2/(depth2-depth1)**2))
202
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100

ang(j)=(180/3.14)*asin(p()*v{j))

write(6,100) j.t(§).ang().pG).v()

write(11,100) j.t(§).ang().p()-v(j)
continue

format(5x,15,5x.f10.6,5x.f10.6,5x,f10.8,5x,f10.2)
close(11)

end
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