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Abstract

Computer vision tasks have seen breakthroughs in recent years thanks to the emer-

gence of deep learning (DL). However, there exists different types of domain-shift

problems that may impact the performance of DL-based methods. In low-level vision

tasks, e.g., image restoration, the degradation of the training data can be different

from that of the testing data. In high-level vision tasks such as image segmenta-

tion, models trained on the common object datasets cannot be applied to some spe-

cific objects. In this dissertation, I present novel learning strategies to alleviate the

domain-shift problems of both low-level and high-level vision tasks.

I start with low-level vision tasks, specifically, dynamic scene deblurring/decon-

volution (2D spatial degradation). The degradation matrices of the training data are

rarely seen during testing. Thus, I propose two approaches to solve this problem

from different angles. In the first approach, the model trained on paired datasets can

adaptively adjust to different magnitudes and directions of the motion blur, which

is capable of solving unseen degradations. Although the generalization of the model

is improved, it still depends on synthetic data for training because the number of

real-world paired images available for training are limited. Hence, the performance is

lowered on real blurred data. In the second approach, I adopt the deep image prior

(DIP) to bypass supervised training and utilize only a single degraded image to up-

date the neural network parameters, which is more flexible to variant blurs without

the impact of the training data.

In 3D, the degradation is related to spatial resolution degradation in the context

of novel view synthesis. Along this direction, I propose a novel view synthesis task,
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which can reconstruct novel views of 3D objects. In this dissertation, I simplify

the problem into texture generation for untextured 3D meshes. Novel views are

synthesized using a depth conditioned image generation model with the source view

used as the guidance, and the depth rendered from a given mesh. Similar to the

2D spatial degradation problem, most of the texture generation models are trained

on synthetic data due to the limitation of real training data, and cannot generate

photo-realistic textures. Recently, Stable Diffusion (SD) trained on large real-world

image datasets for image generation has been applied to many down-stream tasks,

e.g., geometry generation, novel-view synthesis. I adopt the pretrained SD without

fine-tuning to generate photo-realistic textures for 3D objects conditioned on an extra

textual prompt.

Going from the spatial to the spectral domain, I address the problem of spectral

degradation with the objective of recovering the spectral reflectance from a single

RGB image. Due to the difficulty of obtaining paired training data, most of the

methods are trained and tested on synthetic data. Similar to other degradation

problems, the synthetic data are not the same as the real data so the trained models

using these datasets fail when they are applied to real data. To address this issue, I

propose to adopt meta-auxiliary learning to solve this problem by training the model

on synthetic data but adapting it to the real data at test time with only several steps

of gradient updates.

For high-level vision tasks, e.g., semantic segmentation, I solve the glass surface

segmentation problem where the semantic segmentation methods trained on common

objects fail to detect transparent glass surfaces. Considering the different transmission

of the glass with regard to the visible light and infrared (thermal) light, an extra

thermal camera is exploited for better detection. In particular, I collected an extensive

paired RGB-thermal image dataset with manually labeled masks for model training,

and aggregated the trained model with existing semantic segmentation methods to

generalize semantic segmentation to glass scenes.
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Chapter 1

Introduction

1.1 Motivation

Ever since the emergence of deep learning (DL), computer vision has seen many

breakthroughs in many tasks, e.g., image classification [1–3], object detection/seg-

mentation [4–8], image restoration [9–12], image generation [13–15], etc. However,

when the distribution of data with which the model is trained is different from that

for testing, the performance of the model drops significantly. Such an issue is com-

monly known as the domain-shift problem.

Many techniques have been proposed to alleviate the domain-shift problem. The

most straightforward solution is to train the model on a large dataset (e.g., Ima-

geNet [16], LAION-5B [17]) that is able to cover the testing data distribution as

much as possible. However, a large dataset is difficult to obtain due to the expensive

manual collection and labeling process. Thus, models trained on large datasets are

usually exploited as the pretrained backbones for downstream tasks [7, 18, 19].

Let us first consider examples of low-level vision tasks, in particular, the problem

of dynamic scene deblurring/deconvolution (2D spatial degradation). Since the mo-

tion is arbitrary, the degradation matrices of the testing data might be dissimilar to

those of the training data. Thus, adopting the same pretrained model on all test-

ing images is sub-optimal [10, 20–22]. Besides, capturing real-world blurred images

with the corresponding ground-truth sharp images requires complicated devices [23],
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(a) 2D Spatial degradation (c) Spectral degradation(a) 3D Spatial degradation

Figure 1.1: (a) An example of 2D spatial degradation. In particular, the motion blur.
(b) An example of 3D spatial degradation, where only a single view of the object has
been recorded. (c) An example of spectral degradation that integrate hyperspectral
spectrum into three RGB channels.

which is hard to obtain. Hence, training datasets are often generated synthetically

by averaging several consecutive frames of a high FPS (frames per second) video to

create blurred video frames [24, 25]. Although the dataset is easy to obtain, the

performance of models trained using this method is reduced on real data. The limita-

tion of available data for training in 3D spatial degradation is even worse. Typically,

models trained on synthetic data are unable to correctly synthesize novel views of

real objects [26, 27]. Similar problems also occur in spectral reconstruction which

reconstructs the spectral reflectance from RGB images [28–30].

In addition to low-level vision tasks, high-level vision tasks also suffer from a similar

domain-shift problem. In this dissertation, I focus on the problem of glass surface seg-

mentation. Most of the datasets for training semantic/instance segmentation models

contain only common opaque objects [31, 32] and hence, the trained models fail to

detect transparent glass surfaces and mis-segment out reflections or objects behind

glass surface.
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1.2 Background and Contributions

1.2.1 Inverse Problems

Images/videos captured in different environments by different devices may suffer from

2D spatial degradations such as spatial downsampling [33] and blurring [34], which

significantly impact the performance of subsequent high-level computer vision tasks,

e.g., semantic segmentation [35], object tracking [36]. Besides, the captured RGB

image represents the projection of a 3D scene onto the 2D screen, which suffers the

issue of 3D spatial degradation where the spatial information of the 3D scene from

other viewpoints is lost. The projection matrix can be regarded as a special case of

the degradation matrix. In addition to spectral degradation, RGB cameras also suffer

from spectral degradation compared with multispectral/hypersepctral cameras that

produce images with more than three channels, making them difficult to distinguish

metameric colors. Some examples are shown in Fig. 1.1. All of the above mentioned

problems can be formulated as

Y = X ⊛D +N, (1.1)

whereX is the original high-quality RGB image or the 3D scene, Y is the degraded im-

age, D is the degradation matrix, ⊛ represents matrix multiplication, and N denotes

an additive noise. The problems that satisfy Eqn. 1.1 are called inverse problems.

An inverse problem is ill-posed when D and N are unknown or the spatial/spectral

dimension of X is larger than that of Y .

In the past few decades, many conventional optimization-based methods have been

proposed to solve the above inverse problems, e.g., super resolution [37, 38], deblur-

ring [39, 40], novel view synthesis [41, 42] and hypersepctral reconstruction [43, 44],

but the results are sub-optimal due to the inflexibility of hand-crafted priors or regu-

larizers. Recently, deep-learning (DL) methods improve the performance of restora-

tion by a large margin [11, 28, 29, 45–47]. Indeed we no longer need to consider

the convexity of the optimization target or the selection of appropriate hand-crafted
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Figure 1.2: Example of spatially variant blur. The blue block denotes the region with
large blur, and the yellow block denote the region with tiny blur.

priors, and the whole process is done end-to-end with gradient descent with the image

priors implicitly learned within the network.

Most of the DL-based methods for inverse problems are built upon several well-

known backbones, e.g., UNet, ResNet, Inception-ResNet, and apply the same con-

volutional kernels (including shapes, receptive fields, and values) on different image

regions, resulting in the needs for more parameters to achieve better generalization.

An example is shown in Fig. 1.2, regions with different types of blur should be treated

separately. Moreover, they are trained on large datasets which are impractical to ob-

tain, in particular, in areas such as medical imaging and 3D reconstruction. Even

if the amount of data is sufficient for training, directly adopting the same trained

model for all unseen testing images is sub-optimal [48, 49]. The trained model does

not generalize well when the testing images contain unique features and different

degradations, especially when the model is trained on synthesized images and tested

on real images (as shown in Fig. 1.3). One solution is to train image-specific models

using deep image prior (DIP) [50, 51], which regards the architecture of a neural
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(a) Synthesized image (b) Real image

Figure 1.3: (a) An image synthesized by averaging several consecutive frames of a
video, which shows discontinuous artifacts along the direction of the motion, whereas
a real motion blurred image (b) is continuous and smooth.

network as a hand-crafted prior and optimizes the parameters with only the input

degraded image. However, it is hard to find a proper network architecture because the

relationship between images and their corresponding network architectures is unclear,

and the inference time using the DIP is long (usually in hours) because the network

is trained on each testing image separately. The method that I propose to address

the above mentioned limitations are described in Chapter 3 to 6 of this thesis.

In Chapter 3, I propose a novel non-uniform motion deblurring method with Atrous

Spatial Pyramid Deformable Convolution (ASPDC) modules, with different sizes of

receptive fields that realize region-specific convolution, where the ASDPC module

with different dilation rates extract information of different magnitudes of motion and

separates the image into regions with the help of attention maps, which reduce the

workload of each branch by focusing on regions with specific magnitudes of motion,

instead of always considering the entire image.

In Chapter 4, I propose a novel variational deep image prior (VDIP) based method

for single image blind deconvolution by integrating the deep image prior (DIP) and

variational Bayes. A complete derivation of the final loss function and a mathematical

analysis are provided to demonstrate that the proposed method can constrain the
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optimization better than that of the DIP.

In Chapter 5, I propose a novel architecture motivated by a new mathematical

derivation that integrates physical properties of the spectral reflectance into the net-

work with an unknown camera spectral sensitivity (CSS). I also propose a unified

framework for recovering spectral reflectance from RGB images captured under more

than one illumination. In order to reduce the domain gap between the training data

and the testing data, I present the first work that successfully adopt meta-auxilary

learning (MAXL) to spectral reflectance recovery (SRR). To the best of my knowl-

edge, it is the first attempt to explore the potential of MAXL in this task.

In Chapter 6, I present a method to solve the novel view synthesis task. To simplify

the problem, I focus on the texture generation task for a given geometry where the

front view is synthesized using a given mesh. In order to avoid the limitation of small

dataset training, I leverage a 2D image generation model [52] which is pre-trained on

a large image dataset and can generate high quality images. A novel texture sampling

scheme is proposed to lift the generated 2D image to 3D. It is noteworthy that the

proposed framework can naturally support text-driven texture editing as well.

1.2.2 Glass Segmentation

Human-made environments are full of architectural elements constructed from glass

materials such as glass windows, glass doors, glass panels on railings, and glass walls.

Accurately identifying and distinguishing these objects has numerous applications in

robotics [53], manufacturing [54] and assistive care [55]. Compared to opaque ma-

terials, transparent glasses do not have their own colors and their appearances are

acquired from the background, posing inconsistent visual features if the background

or viewpoint is changed. Therefore, glass objects with background-dependent appear-

ances often pose challenges for visual recognition methods that are tailored to opaque

objects.

With the emergence of deep neural networks, recent data-driven methods are capa-
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ble of segmenting glass regions from a single RGB image and have utilized contextual

information [56], reflection detection [57] and boundary supervision [58]. While neu-

ral networks are powerful, they are based on unreliable RGB colors or directly adopt

the learning frameworks for opaque materials, resulting in limited accuracy. Sev-

eral methods seek to leverage alternative cues such as depth [59], light-field [60] or

polarized light [61]. However, these methods are not robust enough for clear glass

recognition, and produce noisy segmentation masks (holes, rough boundaries).

I take a step towards fusing RGB and thermal images (RGB-T) for glass segmenta-

tion, which is the core contribution. Compared to visible light, which has nearly 100%

transmission, thermal radiation with wavelength in the range from 8 to 12µm cannot

pass through a typical glass, i.e., 0% transmission. Such a unique physical difference

between visible light and thermal energy makes glass easy to be detected if an RGB

image and a thermal image are jointly processed instead of using the RGB image

only. As expected, our experimental results validate our intuition that the proposed

RGB-T fusion method outperforms the RGB-only solution by a large margin.

In Chapter 7, I propose a neural network architecture that takes as input a pair

of RGB and thermal images (in short RGB-T) and predicts a binary segmentation

mask for the glass regions. Following the encoder-decoder framework, our architec-

ture employs (1) two ResNet encoders for feature extraction of the two images, (2)

a novel transformer-based fusion module that uses self-attention for correlating the

two images at the feature level, and (3) a decoder that uses convolution-based spatial

attention for adaptively selecting features for the final mask generation. I also col-

lected a new dataset consisting of 5551 aligned RGB-T image pairs captured by an

off-the-shelf RGB-T camera, where the ground-truth (GT) segmentation masks are

created manually.
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1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 reviews previous

works on image deblurring, 3D content generation, spectral reconstruction from RGB

images, and transparent object/glass recognition. The four methods proposed for

solving different inverse problems discussed in Section 1.2.1 are introduced in Chap-

ter 3, 4, 5, 6, respectively. The RGB-T glass segmentation mentioned in Section 1.2.2

is introduced in Chapter 7. For each problem, I first present the proposed approach,

followed by the experimental results. Chapter 8 concludes the thesis and discusses

future directions. Appendix A to E consist of detailed derivation, algorithms, hyper-

parameters and more experimental results of corresponding chapters.
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Chapter 2

Related Work

2.1 Blind Image Deconvolution/Deblurring

Some conventional single image blind deconvolution/deblurring methods focus on the

distribution of image gradient for sparse high-frequency information. Fergus et al. [62]

propose a heavy-tailed natural image prior, which is approximated by a mixture-of-

Gaussian model. Shan et al. [63] demonstrate that the ringing effect on the deblurred

image results from the estimation error of the blur kernel and noise. Cho and Lee [64]

utilize the bilateral filter and the shock filter to remove noise and to enhance edges.

Xu and Jia [65] find that edges smaller than the kernel size are harmful to kernel

estimation and propose an r-map to measure the usefulness of edges. Krishnan et

al. [66] adopt the ratio of the L1 norm and the L2 norm to avoid the scale variant

prior, which is much closer to the L0 norm. Levin et al. [67] prove that the MAP

with the sparse image prior favors a blurred solution so that they approximate the

marginalization of the blur kernel, which has a closed-form solution when using the

Gaussian image prior. Babacan et al. [68] exploit the concave conjugate of the super-

Gaussian prior and directly estimate the posterior distribution using VB to avoid the

issues of the sparse MAP. Dong et al. [69] adopt a piecewise function to mimic the L0

norm around zero and to smooth out significant outliers, which is similar to the work

of Xu et al. [70]. Chen et al. [71] who enhance the sparse prior by combining the L0

and L1 norm. Yang et al. [72] introduce a restarting technique to further improve the
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performance of VB-based methods.

Some other conventional methods utilize properties of images to form priors. Michaeli

and Irani [73] find that blur significantly decreases between cross-scale patches. Thus,

they constrain the output by minimizing the dissimilarity between nearest-neighbor

patches cross scales, which does not perform well when the image contains repetitive

patterns. Lai et al. [74] observe that each local patch should contain two primary

colors, and the distance between them should be maximized by deconvolution. Pan et

al. [39] apply the dark channel prior to handle blind deconvolution and achieve good

results. Yan et al. [40] combine the bright and the dark channel priors to overcome

the limitation on bright dominant images. Ren et al. [75] derive an enhanced low-

rank prior to reduce the number of non-zero singular values of the image. Pan et

al. [76] exploit the phase-only image of a blurred image to estimate the start and end

points of the blur kernel, which is efficient for linear motion. Bai et al. [77] utilize

the downsampled blurred image as the prior and recover the latent sharp image from

coarse to fine. Chen et al. [78] calculate the bright channel of the gradient maps for

deblurring images without enough number of dark and bright pixels.

Deep-learning-based methods are also applied to the deblurring problem. Chakrabarti [79]

trains a network to estimate the Fourier coefficients of blur kernels. Liu et al. [80]

and Zhang et al. [81] exploit recursive filters to take advantage of context informa-

tion. Generative adversarial networks (GANs) are also exploited to provide faster

convergence and better visual quality of results [10, 20, 82]. Gong et al. [83] adopt a

network to learn the motion flow. Xu et al. [84] develop a network to generate sharp

gradient maps for kernel estimation. To enhance the network output, some utilize

multi-stage strategies, e.g., multi-scale [21, 24, 85], multi-patch [11, 22, 45] and multi-

temporal [86]. Asim et al. [87] adopt a well-trained sharp image generator to generate

a sharp image closest to the blurred one. Tran et al. [88] develop a sharp image auto-

encoder and a blur representation learning network, then two well-trained networks

are fixed as a deep generative prior [87]. Li et al. [89] adopt a well-trained classifier,
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which can distinguish between blurred and sharp images, as an extra constraint of the

MAP framework, and optimize the model with the half-quadratic splitting method

similar to that used in conventional methods.

Different from previous works [87–91] in which the priors need to be trained on

external datasets, my proposed method is optimized with only one single blurred

input image and the whole framework is optimized by gradient descent instead of

conventional optimization-based methods [89]. Although Asim et al. [87] also provide

a method optimized with a single image, the method degenerates to the DIP [51] with

a sparse image prior and learnable inputs, which cannot avoid the problems of the

sparse MAP. As well, none of the mentioned deep-learning-based methods consider

the standard deviation of the image.

2.2 Deep Image Prior

Ulyanov et al. [50] introduce the concept of the deep image prior (DIP) that the

structure of a randomly-initialized network can be used as an image prior for image

restoration tasks. Ren et al. [51] adopt the DIP to implicitly learn the image prior and

the kernel prior for blind image deconvolution. Early stopping with carefully chosen

time, added random noise to the input and to the gradient with fixed noise level

are applied to avoid the suboptimal solution of DIP [92]. Neural architecture search

(NAS) can help to search for these hyper-parameters heuristically [93], but with the

substantial increase in computational cost. Double-DIP [94] can handle the image

separation problems, e.g., image segmentation, image dehazing, and transparency

separation, but does not perform well for blind image deconvolution [51]. Some

methods stabilize the optimization by adding extra priors to the loss function [95,

96]. However, this technique only works when the degradation kernel is known.
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2.3 Variational Auto-encoder

Kingma et al. [97] introduce the concept of variational auto-encoder (VAE) for image

generation. The goal is to learn a model that generates an image x given a sampled

latent variable z, which can be formulated as P (x|z) = P (x)P (z|x)/P (z), where P (x)

is constant. Since obtaining the true distribution of P (z|x) is nontrivial, they utilize

a Gaussian distribution Q(z) to approximate P (z|x) with a network to learn the

expectation and the standard deviation. Thus, the target of VAE can be converted

to minimizing the KL divergence between Q(z) and P (z|x). Vahdat et al. [98] further

stabilize the training of VAE by partitioning the latent variables into groups. Similar

to image generation, the target of image deconvolution is to learn a model to generate

a blurred image Ib given a sampled latent sharp image Is and a blur kernel k, and the

distributions of P (Is|Ib) and P (k|Ib) are learned by the network. Using predefined

hand-crafted P (Is) and P (k) can help to constrain the optimization.

2.4 Diffusion Models in 3D Domain

Inspired by the success of 2D image generation with diffusion models, researchers

have attempted to utilize diffusion models to generate 3D objects in the form of

various representations, such as point clouds [99–102], and neural fields [103, 104].

For example, Point·E [102] trains a diffusion model using a large synthetic 3D dataset

to produce a 3D RGB point cloud conditioned on a synthesized single view from a

text prompt. However, these works mainly focus on geometry generation and do not

specifically tackle 3D texture synthesis. Yu et al. [105] train a diffusion model for mesh

texture generation of specific object categories. Although Shap·E [106] is proposed

to directly generate the parameters of implicit functions that can be rendered as

both textured meshes and neural radiance fields, it cannot generalize to incorporate

arbitrary text prompts. Moreover, the generated textures tend to be over smoothed

and low quality when compared with that from the text to image model [15].
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2.5 Lifting pre-trained 2D generative models to

3D

Initially, the process of distilling 3D objects from pre-trained 2D models has been

enhanced by the development of joint text-image embedding, such as Contrastive

Language-Image Pre-training (CLIP) [107]. For example, CLIP-Mesh [108] learns to

generate a mesh with the guidance of CLIP text embedding and the corresponding

image embedding of the diffusion model. However, since the CLIP guidance is rather

sparse, the generated 3D models for CLIP-based approaches [109–111] are rather

coarse.

Recently, researchers have leveraged large-scale 2D T2I diffusion models to distil

individual 3D objects in the form of neural radiance fields. Among various distilling

approaches, a dominant one is Score Distillation Sampling (SDS) [112]. SDS pioneered

the approach with many follow-up [113–119]. For example, Magic3D [113] proposes a

coarse-to-fine strategy to improve the quality of generated objects. Latent-NeRF [114]

performs distillation in the latent space of latent diffusion model (LDM) [15]. A crucial

drawback of this line of work is that SDS typically requires strong guidance, resulting

in low diversity and over-saturation of the generated textures. ProlificDreamer [116]

addresses this issue with a Variational Score Distillation (VSD) algorithm that adopts

a particle-based variational inference to estimate the distribution of 3D scenes instead

of a single point as in SDS. Yet, it still suffers from issues like blurry edges and color

artefacts.

Texture Synthesis with Multiview Denoising. Instead of relying on the lengthy

optimization of score distillation pipelines, an alternative research direction is directly

leveraging the sampling process in diffusion models to synthesize UV textures. TEX-

Ture [120] and Text2tex [121] adopt a depth-aware diffusion model [15] to progres-

sively paint the mesh surface from different views and aggregate the images generated

from the T2I model of sampled views into the texture map. While rich textures and
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details can be faithfully synthesized, there are obvious seams on the aggregated tex-

ture map due to error accumulation in the process of the autoregressive view update.

To further reduce view inconsistencies, TexFusion [122] interleaves texture aggrega-

tion with denoising steps in different camera views and maintains a latent texture map

at each sampling step. To convert latent features to RGB textures, an intermediate

neural color field is optimized on the decoding of 2D rendering of the latent texture

which blurs the rich details [123]. In this thesis, the proposed approach distinguishes

itself from previous methods with its ability to generate 3D-consistent textures while

preserving rich details.

2.6 Spectral Reconstruction from RGB

Conventional methods: The spectral reflectance of a scene can be represented by a

linear combination of several base spectra [124]. Conventional methods mainly focus

on learning the base spectra and the corresponding representation coefficients [43, 44,

125–127]. For example, Arad and Ben-Shahar [43] create an over complete hyperspec-

tral dictionary using K-SVD and learn the representation coefficients from the RGB

counterpart. Fu et al. [44] first cluster the hyperspectral data and create a dictionary

for each cluster, and the spectral reflectance of each pixel is learned from its nearest

cluster. Jia et al. [126] utilize a low-dimensional manifold to represent the high-

dimensional spectral data, which is able to learn a well-conditioned three-to-three

mapping between a RGB vector and a 3D point in the embedded natural spectra.

Akhtar and Mian [125] also cluster the spectral data but replace the dictionary with

Gaussian processes.

DNN-based methods: Recently, DNN-based methods have dominated this area

owing to the encouraging results of external learning [28–30, 128–135]. Shi et al. [128]

stack multiple residual blocks or dense blocks for end-to-end spectral reconstruction.

Lin et al. [28] separate the spectra into the sub-space and the null-space of the CSS

for plausible reconstruction, where the sub-space component signifies the projection
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of the spectra onto the CSS matrix, while the null-space component represents the

remaining portion. Our approach builds upon this concept by extending it to the

recovery of spectral reflectance in cases where the CSS is unknown. Zhang et al. [130]

generate basis functions from different receptive fields and fuse them with learned

pixel-wise weights. Sun et al. [29] estimate the spectral reflectance and the illu-

mination spectrum simultaneously with a learnable IR-cut filter. Hang et al. [136]

decompose the spectral bands into groups based on the correlation coefficients and

estimate each group separately using a neural network. A self-supervised loss further

constrains the reconstruction. Li et al. [30] exploit channel-wise attention to refine

the degraded RGB images. Cai et al. [129] exploit the spectral-wise self-attention to

capture inter-spectra correlations. Li et al. [137] learn a quantized diffractive optical

element (DOE) to improve the hyperspectral imaging of RGB cameras. Zhang et

al. [138] exploit the implicit neural representation that maps a spatial coordinate to

the corresponding continuous spectrum using a multi-layer perceptron (MLP) whose

parameters are generated from a convolution network. Some methods guide the re-

construction with a low-resolution hyperspectral image [139–141], which are different

from the scope of this paper. All of the above mentioned methods do not considered

the internal information from testing cases.

2.7 Meta-auxiliary Learning

In contrast to the term “meta-auxiliary learning (MAXL)” in image classification [142],

which is designed to improve the generalization of classification models by using

meta-learning [143] to discover optimal labels for auxiliary tasks without the need of

manually-labelled auxiliary data [144], Chi et al. [49] redefine MAXL as a combina-

tion of model-agnostic meta-learning (MAML) [145] and auxiliary-learning (AL) [146]

for test-time fast adaptation. In this thesis, the definition of the latter is used.

Model-agnostic meta-learning (MAML): The aim of MAML is to train models

capable of fast adaptation to a new task with only a few steps of gradient descent,
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which can be applied to few-shot learning [147]. Park et al. [148] and Soh et al. [149]

adopt the MAML for super-resolution. They first initialize the model by training on

external datasets like other DNN-based super resolution methods [150], then conduct

MAML to further optimize the model for unseen kernels. During testing, a low

resolution input and its down-scaled version are represented as a new training pair to

fine-tune the model. Although the targets are similar (spatial/spectral upsampling),

directly applying the MAML to SRR is infeasible because the three RGB channels of

an image cannot be further downsampled.

Auxiliary-learning (AL): AL is to assist the optimization of primary tasks with at

least one auxiliary task for better generalization and performance. Guo et al. [151]

reconstruct low resolution images for real-world super resolution. Valada et al. [152]

learn to estimate visual odometry and global pose simultaneously for higher effi-

ciency. Lu et al. [153] solve the depth completion problem with image reconstruction

to extract more semantic cues. AL can also stabilize the training of GAN for image

synthesis [154]. Sun et al. [146] choose the rotation prediction as the auxiliary task to

update pre-trained parameters for test-time adaptation. Nevertheless, simply updat-

ing the pre-trained parameters with only auxiliary tasks may result in catastrophic

forgetting [49], where the model exhibits overfitting in the auxiliary tasks, leading to

a loss of previously acquired knowledge from the primary task during the training

process.

To leverage both the MAML and AL, we follow the strategy of Chi et al. [49]

using self-supervised RGB reconstruction as the auxiliary task and MAML to avoid

catastrophic forgetting. The auxiliary task also avoids downsampling RGB images to

generate training pairs for fine-tuning.

2.8 Transparent Object/Glass Recognition

Methods using RGB only: Traditional algorithms detect glass by analyzing local

edge/region characteristics, which exhibit issues in the wild [155–158]. Since the

16



recent progress of deep learning in computer vision, researchers start to collect large-

scale transparent object datasets [56, 57, 159, 160] and train their proposed neural

networks for glass-like object detection and segmentation from a single RGB image,

where contextual feature [56, 161] and boundary supervision [58, 159, 162] are both

popular ways for boosting accuracy. Multi-task learning also has been adopted for

transparent object detection and segmentation, where object segmentation is jointly

tackled with other related problems such as refractive flow estimation [163], reflection

detection [57] and scene understanding [55].

Methods using modalities beyond RGB: The seemingly simple visual appear-

ance of the glass is deceptive because its appearance interacts with the environment,

which motivates the use of more reliable sensors other than RGB cameras. Existing

methods have utilized refractive distortions captured by a light-field camera [60] and

the high contrast of edges in a polarization image [61] for transparent object segmen-

tation. RGB-Depth (RGB-D) fusion has been used in both traditional optimization

methods [59] and recent learning-based methods [53, 164]. However, depth cameras

suffer from severe sensor failures for transparent surfaces due to light refraction. A

backlight with AprilTag is employed to enhance RGB-D 3D scanning [165]. In this

thesis, a low-cost but robust solution by integrating RGB and thermal images is

adopted.

2.9 Salient Object Detection

Salient object detection (SOD) aims to segment the most prominent object in a given

scene. Early methods [166–168] heavily rely on hand-crafted features from a single

RGB image. Recent data-driven methods [18, 169–172] have dominated this field. In-

tegrating RGB and depth images has significantly improved the performance of SOD

methods. Among them, direct concatenation [173–176], addition [177], spatial/chan-

nel attention [178–182], prediction guidance [183], affine transformation [184, 185],

message passing [186], mutual information minimization [187], and self/cross atten-
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tion [188–190] have been utilized for feature fusion.

In addition to depth images, thermal images are also exploited to compensate

RGB images for SOD. Tu et al. [191] regard deep features of superpixels as graph

nodes to cluster the foreground and background with collaborative graph learning.

Zhang et al. [192] learn to generate spatial attention mask for modality fusion of

multi-scale features. Zhou et al. [193] utilize different dilation rates to extract features

from two modalities and combine spatial and channel attention for modality fusion.

Zhou et al. [194] adopt a three-branch architecture to generate salient masks from

RGB, thermal and fusion features separately and use the weighted summation of

three masks as the final results. Sun et al. [195] utilize sine-cosine functions to extract

features from two modalities. This paper focuses on extracting binary masks for glass

to tackle the same task of binary segmentation as in SOD. Wu et al. [196] exploit

channel attention weights learned from one modality to enhance the other which can

better complement features from two modalities. Tu et al. [197] propose a modality

alignment module for weakly alignment-free RGB-T image pairs.

2.10 RGB-T Fusion Applications

RGB-T image pairs are widely used in many vision tasks to compensate the low-

quality of RGB images under poor illumination or occlusion, such as object track-

ing [198–204], moving object detection [205–208], face recognition [209], semantic seg-

mentation [210–216], scene understanding [217–221], crowd counting [222–225] and

salient object detection [226–233]. To the best of my knowledge, the proposed method

is the first RGB-T method for glass segmentation. As well, I also collected the first

dataset for such an application.
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Chapter 3

Blind Non-Uniform Motion
Deblurring

When we are taking photos using a camera, especially the one on a mobile device,

non-uniform motion blur is one of the most common types of undesirable artifacts

caused by object motion and camera shake [83]. Removing such blur to recover

the original sharp image plays a critical role in many high-level vision tasks, e.g.

computational photography [234], image classification [235], object detection [236],

and face recognition [237], because motion blur severely degrades the image quality.

In this chapter, I propose a new Atrous Spatial Pyramid Deformable Convolution

(ASPDC) module for region-specific convolution and for integrating features from

different sizes of receptive fields, which is more suitable for non-uniform deblurring.

I also propose a new reblurring network to reblur the output, which is helpful in

constraining the solution space [151] of deblurring with a new deblurring-reblurring

consistency loss. Note that the reblurring network is used during training only, which

needs both of the blurred image and the corresponding sharp (deblurred) image.

Extensive experimental results demonstrate the effectiveness of the proposed method

compared to that of other SOTA methods on the benchmark datasets.
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Figure 3.1: Overview of the deblurring network architecture.

3.1 Proposed Method

3.1.1 Overview

An overviews of the proposed deblurring and reblurring network architectures are

illustrated in Figure 3.1 and Figure 3.2, respectively. To make training more stable,

the two networks are trained separately. The deblurring network attempts to recover

the sharp image Is from the blurred input Ib, then the deblurred output Id is reblurred

by the reblurring network. The reblurring network takes both Is and Ib as input and

outputs the reblurred image Ir. When the training of the two networks converges,

I replace the input Is of the reblurring network with the deblurred output Id, and

fine-tune the Id with the deblurring-reblurring consistency loss. I do not use any kind

of normalization (e.g. batch normalization [238] or instance normalization [239]).

Our deblurring-reblurring consistency is inspired by Guo et al. [151]. Deblurring

and reblurring can be regarded as a pair of dual tasks. The former is the primary

task and the latter the corresponding dual task, which corresponds to upsampling and

downsampling in super-resolution [33]. Guo et al. [151] prove that the generalization

bound of the dual regression (in our case, consistency) is lower than that of the

primary regression (only deblurring). Therefore, it leads to more accurate deblurring

results. However, simply mapping the deblurred output to the original blurred input

is highly ill-posed. Lu et al. [240] show that the sharp image only contains the sharp

content without any blur information, so it needs the blur information from the

corresponding blurred image as the extra input for reblurring. Thus, we also utilize
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Figure 3.2: Overview of the reblurring network architecture.

blur information.

3.1.2 Deblurring Network

We use two residual blocks (ResBlocks) [2] and strided convolution layers to extract

high dimensional features at the beginning, and two deconvolution layers to recover

the spatial dimension in the end. The last convolution layer reduces the channel size

of the feature map to 3 (RGB). We find that learning the residual correction instead of

directly learning the latent sharp image can make the training more stable and faster.

To explain our intuition, note that the blurred image contains all of the signals from

the sensor during the exposure time. One of the sharp images IS(t), say at time t∗, is

the corresponding target while many features extracted from Ib could be from times

other than t∗, which can be formulated as:

Ib = g

(︃
1

T

∫︂ T

t=0

IS(t)dt

)︃
, (3.1)

in which Ib is the blurred image of the dynamic scene, T is the period of the expo-

sure time, IS(t) is the sharp snapshot at timestamp t and g() represents the Camera
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Figure 3.3: Schematic of the ASPDC module.

Response Function (CRF). Hence, learning features of the other times will be easier

than directly learning a specific one.

In the middle of the deblurring network, we stack six ASPDC modules (as shown

in Figure 3.3) in which we extend the work of the deformable convolution network v2

(DCNv2) [241]. The original DCNv2 applies different convolution kernels to different

regions by learning an offset map ∆p and a modulation ∆m. But a fixed size is

used for the receptive field of each region used to generate ∆p and ∆m. Since ∆p

represents the shift of each pixel, it can be regarded as the local optical flow [242]

corresponding to the motion of the object and the camera. For a non-uniform blurred

image, some of the regions might have only small variations while other regions might

have large movements and overlaps. In this case, the original DCNv2 uses a single

convolution layer to generate ∆p and ∆m and treats these regions similarly, which is

not an optimal choice for this problem.

To make deformable convolution more flexible, in our ASPDC module, we build

four branches with different dilation rates [243] to generate four offset maps ∆p and

modulations ∆m with different receptive fields, and four deformable convolution out-

puts. As shown in Figure 3.3, the dilation rates of dilated convolution layers in
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deformable modules 2∼4 are 1, 2, and 4, respectively. Deformable module 1 also uses

the dilation rate 1 but it ignores the offsets (by setting ∆p as zero). Such a special

module is used to recover static regions.

The outputs of four branches in an ASPDC module are fused by an attention

feature integration module (AFIM) [244]. We can write it as:

fo =
4∑︂

i=1

ai ∗ fi, (3.2)

4∑︂
i=1

aij = 1, 1 ≤ j ≤ h× w, (3.3)

in which fi is the output of the ith branch, ai is a single-channel attention map

generated from the AFIM, j is the index of the pixel, h and w are, respectively, the

height and width of the attention map, ∗ represents the element-wise multiplication

and fo is the output of the ASPDC module. To make sure that the channel-wise

sum of attention maps is 1, we utilize the softmax activation function. In this case,

each region that integrates information from different receptive fields significantly

boosts the performance. The output feature maps of six ASPDC modules are further

concatenated to stabilize training.

We use the Mean Squared Error (MSE) loss as our final deblurring loss:

Ldeblurring = ||Is − Id||2F , (3.4)

where Is and Id are the sharp target and the deblurred output, respectively.

3.1.3 Reblurring Network

In order to narrow down the solution space of deblurring and to refine the deblurred

output Id, we build an end-to-end reblurring network to reblur the deblurred output

and calculate the deblurring-reblurring consistency loss. Simply mapping the sharp

image back to the blurred image is not impossible but difficult, because the non-

uniform blurred image domain is much larger than the sharp image domain. Hence,
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we need the blur information from the blurred image to assist the mapping. However,

directly inputting sharp and blurred images together and outputting the reblurred

image is difficult to train the model, since the training procedure is unstable and easy

to collapse to an identity mapping. The network may choose to output the blurred

input directly and ignore the sharp input, which is definitely undesirable.

To handle the above problem, we utilize an architecture which is able to take full

use of the blur information and avoid training collapse. As shown in Figure 3.2a, the

network contains two encoder-decoder branches, and the weights of the two branches

are shared for reducing the number of parameters. The architecture of the encoder-

decoder is simple, which consists of multiple conv/deconv-resblock pairs (convolution

layers for the encoder and deconvolution layers for the decoder) as shown in Fig-

ure 3.2b. The concatenation of blurred and sharp image is used as the input of the

upper branch, and two duplicate sharp images are input into the lower branch for

matching the channel dimension.

The upper branch learns to compare the blurred and the sharp image and passes

feature maps with blur information to the lower branch after each conv/deconv-

resblock pair. In the lower branch, a convolution layer reduces the channels of feature

maps from the upper branch to generate a K ×K dynamic local filter [245] for each

pixel. For reducing the computational cost of dynamic filtering, we set K as 3 and

apply the same filter to all the channels of feature maps from the lower branch. The

dynamic local filters are regarded as the spatial-variant blur kernels which gradually

reblur the feature maps of the lower branch from beginning to end. The detailed

architecture of the reblurring network is shown in Appendix A.

Similar to the deblurring network, we use the Mean Squared Error (MSE) loss

here:

Lreblurring = ||Ir − Ib||2F . (3.5)
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3.1.4 Fine-tuning

After the training of the deblurring and reblurring networks converges, we replace Is

in the reblurring network with the deblurred output Id to refine Id by the deblurring-

reblurring consistency loss. The loss function is defined as:

Lconsistency = Ldeblurring + λLreblurring, (3.6)

where λ is the weight of the reblurring loss, and we empirically set λ = 0.1.

3.2 Experiments

3.2.1 Datasets

We follow the literature [10, 20, 22, 24, 45] to train our model on 2103 training images

from the GoPro dataset [24]. We then use 1111 testing images from the GoPro dataset

and 2025 testing images from the HIDE dataset [246] as our testing set. We also do

qualitative comparison on the Real World Blurred Image (RWBI) dataset [247].

3.2.2 Implementation Details

The method is implemented in PyTorch [248] and evaluated on a single NVIDIA RTX

2080 Ti GPU with 11 GB of memory. During training, we use Adam optimizer [249]

with β1 = 0.9, β2 = 0.999 and ϵ = 10−18. All parameters are initialized using Xavier

normalization [250]. We randomly crop the training images into 256×256 patch pairs

and set the batch size as 6. The learning rate is initialized as 10−4 and halved every

1000 epochs. The training procedure is terminated when the learning rate reaches

10−6. During fine-tuning, we set the learning rate as 10−5 and it is halved every 200

epochs. We stop the fine-tuning when the learning rate reaches 10−6. The size of all

convolution filters is 3×3. We set the initial number of channels for all convolution

layers and residual blocks to 32 in the deblurring network and 16 in the reblurring

network, and we double (halve) them every time we downscale (upscale) the spatial

dimension.
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Method Xu [70] Sun [251] Nah [24] Kupyn [10] Tao [21] Zhang [81] Kupyn [20] Aljadaan [252]

PSNR 20.30 25.31 28.49 28.70 30.26 29.19 29.55 30.35

SSIM 0.741 0.851 0.917 0.927 0.934 0.931 0.934 0.961

Method Zhang [22] Suin [45] Park [253] Yuan [242] Purohit [254] Zhang [247] Ours Ours+

PSNR 31.20 32.02 31.15 29.81 31.76 31.10 31.97 32.09

SSIM 0.945 0.953 0.945 0.937 0.953 0.942 0.957 0.959

Table 3.1: Quantitative comparison on the GoPro dataset [24]. Ours/Ours+ rep-
resents our deblurring network without/with fine-tuning on the reblurring network.
The best results are in red and the second best in blue.

Method Kupyn [10] Tao [21] Zhang [22] Park [253] Suin [45] Shen [246] Kupyn [20] Ours Ours+

PSNR 24.51 28.36 29.09 29.16 29.98 28.89 26.61 29.98 30.04

SSIM 0.871 0.915 0.924 0.933 0.930 0.930 0.875 0.944 0.945

Table 3.2: Quantitative comparison on the HIDE dataset [246]. Ours/Ours+ rep-
resents our deblurring network without/with fine-tuning on the reblurring network.
The best results are in red and the second best in blue.

3.2.3 Quantitative Comparison

We first compare our method (“ours+”) with others on the 1111 testing images from

the GoPro dataset, including a conventional method (Xu et al. [70]), and several deep

learning based methods (Sun et al. [251], Nah et al. [24], Kupyn et al. [10], Tao et

al. [21], Zhang et al. [81], Kupyn et al. [20], Aljadaany et al. [252], Zhang et al. [22],

Suin et al. [45], Park et al. [253], Yuan et al. [242], Purohit et al. [254] and Zhang

et al. [247]). We also evaluate our deblurring network without fine-tuning on the re-

blurring network (”ours”). We use PSNR [255] and SSIM [256] as evaluation metrics.

All the methods are trained on the GoPro dataset following the same strategy.

The results are shown in Table 3.1. Our method outperforms most of the existing

SOTA methods even without fine-tuning, and fine-tuning on the reblurring network

can further improve the performance. In terms of PSNR, Ours+ is ranked first and

is 0.07db better than the second [45]. Although our SSIM is slightly lower than the

first [252], our PSNR far surpasses it which demonstrates that our method is good

at both evaluation metrics. Note that we use the mean squared error loss without a

sophisticated GAN [257] and still achieve good performance.

We further compare with some of the methods on the HIDE dataset in Table 3.2.
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λ 0.01 0.1 1

PSNR 32.17 32.22 32.15

SSIM 0.960 0.960 0.959

Table 3.3: Performance of fine-tuning with different λ.

Method Kupyn [20] Zhang [22] Nah [24]

Time (sec) 1.68 0.40 0.93

GPU (GB) 2.41 2.10 9.70

Method Tao [21] Park [253] Ours

Time (sec) 0.78 0.05 0.28

GPU (GB) 6.09 8.49 2.25

Table 3.4: Average testing time and GPU usage of images of size 1280×720 on a
single NVIDIA RTX 2080 Ti GPU.

Ours+ remains the top and Ours is ranked second. Note that unlike all other methods

that follow the same strategy of training on the GoPro dataset but tested on the HIDE

dataset, the method of Shen et al. [246] is trained on the HIDE dataset directly but

it cannot perform better than our proposed method.

The average testing time and GPU memory usage on the GoPro dataset is reported

in Table 3.4. Although the testing time of Park et al. [253] is the lowest, its GPU

memory usage is almost four times of ours, and its performance (Table 3.1) is lower

than ours. Our method is 30% faster than Zhang et al. [22] while only increasing

the GPU memory usage by 7%. Since the architecture of Kupyn et al. [20] is much

deeper and wider than that of other listed methods, its testing time is the highest

even if it uses only a single stage. Our proposed method is a good trade-off between

performance and efficiency in both memory and computation.
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(a) Blurred input

(b) Blurred (c) Park[253] (d) Zhang[22] (e) Prohit[254] (f) Ours+ (g) Sharp GT

Figure 3.4: Qualitative comparison on the GoPro dataset: a) Blurred input image. b-
g) Magnified crops of the blurred input and deblurred outputs of compared methods,
and the sharp ground truth.

(a) Blurred input (b) Park [253] (c) Zhang [22] (d) Ours+ (e) Sharp GT

Figure 3.5: Qualitative comparison on the HIDE dataset: a) Blurred input image.
b-g) Magnified crops of the blurred input, deblurred outputs of compared methods,
and the sharp ground truth.

3.2.4 Qualitative Comparison

Following a similar strategy as in the quantitative comparison, we first compare our

method against others on the testing images of the GoPro dataset [24]. We compare

with the two best performing and most recent methods [22, 253] with published well-

trained models, along with the published results of Purohit et al. [254] on the same

dataset. As apparent in Figure 3.4, the output of our method is most similar to the

ground truth sharp image, comparing to others. The alphabets written on the banner

of the first row are almost clearly visible for ours, while others fail to deblur them

correctly. Similarly, the sign over the shop is best deblurred by ours, while the result

of Purohit et al. [254] is also reasonably good. On the third row, our method restores

the skin and bright colors better. We also use the well-trained models on the GoPro

dataset to test on the HIDE dataset [246]. As shown in Figure 3.5, our method does
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(a) Blurred input

(b) Blurred (c) Park[253] (d) Zhang[22] (e) Ours+

Figure 3.6: Qualitative comparison on the RWBI dataset: a) The blurred input image.
b-e) Magnified crops of the blurred input and the deblurred outputs of compared
methods. Note that no ground truth is available for RWBI.

(a) Sharp (b) Reblurred (c) Blurred

(d) Diff-S (e) Diff-R

Figure 3.7: Comparison of a reblurred output with its corresponding blurred and
sharp images. Diff-S (Diff-R) represents the difference map between the sharp image
(reblurred output) and the blurred ground truth.

a good job deblurring the bicycles in the image. We further test the same models on

the RWBI dataset [247]. As seen in Figure 3.6, our method generally outperforms the

compared methods in terms of deblurring quality. For a more complete qualitative

study, please refer to Appendix A.

PSNR SSIM Mean variance

55.71 0.9997 0.18 0.22

Table 3.5: Performance evaluation of reblurring network on the GoPro dataset.
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(a) Blurred (b) a1 (c) a2 (d) a3 (e) a4 (f) Deblurred (g) Sharp

Figure 3.8: Attention maps of the last ASPDC module. Values are within [0, 1] and
the brighter the higher.

Version (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Module 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Module 2 ✓ ✓ ✓ ×3 ✓ ✓

Module 3 ✓ ✓ ✓ ×3 ✓ ✓

Module 4 ✓ ✓ ✓ ×3 ✓ ✓

AFIM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PSNR 30.24 30.65 30.94 30.85 31.82 31.73 31.53 31.83 31.93 31.72 31.16 32.12

SSIM 0.942 0.944 0.948 0.947 0.957 0.956 0.954 0.957 0.958 0.955 0.950 0.959

Table 3.6: Performance of different versions of the ASPDC module.

3.2.5 Reblurring Evaluation

In addition to evaluating the deblurring network, we evaluate the performance of the

reblurring network, which is critical for fine-tuning. As shown in Table 3.5, PSNR and

SSIM of reblurred images are quite high, and the mean and variance of the difference

map |Ir − Ib| are almost 0. The experimental results illustrate that reblurred images

are quite close to the original blurred images.

One of the reblurred outputs is shown in Figure 3.7 with the original sharp and

blurred images. As we can see, the difference between the reblurred and blurred

images is small enough and negligible.

3.2.6 Ablation Studies

To evaluate the effectiveness of each component in the ASPDC module, we compare

multiple versions of it. We randomly select 200 testing images from the GoPro dataset

for validation. All versions are trained with the mean squared error loss only without

fine-tuning. With regard to the performance and efficiency trade-off, we find having
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four ASPDC modules is optimal.

The experimental results are shown in Table 3.6. Version 1 has a deformable

module 1 without the offset ∆p, which is used as our baseline. The ×3 in Version

8∼10 represents three duplicated modules (the same dilation rate but no parameter-

sharing). As we can see, the deformable module 2∼4 is critical for improving per-

formance, especially module 3. Simply duplicating modules cannot get results as

good as combining different modules. It demonstrates that fusing information from

different sizes of receptive fields is meaningful and justified. Version 11 demonstrates

that features from different receptive fields should be fused properly. We visualize

the attention maps of the last (sixth) ASPDC module in Figure 3.8. It shows that

the attention maps of small receptive fields (a1 and a2) focus more on static objects

or objects with small movements, while the attention maps of large receptive fields

(especially a4) pay more attention to objects with large movements.

For the choice of the hyperparameter λ in Eqn 3.6, we evaluate values in the range

of 0.01 to 1 in Table 3.3. As we can see, the deblurring term is overwhelmed by the

reblurring term when the value of λ is too large. Inversely, a small value of λ, such

as 0.01, limits the effect of the reblurring term on the improvement of performance.

To fully utilize the reblurring term, we set λ = 0.1 in all our experiments.

3.3 Summary

In this chapter, I propose to reduce the domain gap between the training and testing

datasets by adopting adaptive convolutions. However, the model still needs training

on paired synthetic data. In the next chapter, I solve this problem using deep image

prior (DIP) which needs a single degraded image only for the optimization of the

network parameters. By utilizing the DIP, I avoid the domain gap between the

training and testing datasets especially when the testing data is quite different from

the synthetic training data.
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Chapter 4

Blind Image Deconvolution Using
Variational Deep Image Prior

Blind image deconvolution is aimed at recovering the latent sharp image based on

a single blurred image without knowing the blur kernel. When the blur kernel is

spatially invariant, it can be modeled as

Ib = k ⊗ Is + n, (4.1)

where Ib denotes the blurred image, k the blur kernel, ⊗ the convolution operator, Is

the latent sharp image and n the additive noise. Most conventional methods utilize

maximum a posteriori (MAP) to alternatively solve for k and Is, which is formulated

as

arg max
Is,k

P (Is, k|Ib) = arg max
Is,k

P (Ib|Is, k)P (Is)P (k) (4.2)

where P (Ib|Is, k) is the likelihood term, P (Is) and P (k) are the prior distributions

of the latent sharp image and the blur kernel, respectively. However, MAP suffers

from the problem of trivial solutions. In this chapter, I adopt variational Bayes-based

(VB) methods to the deep image prior (DIP), so that not only the optimization is

constrained but also the problems of the MAP can be avoided. Conventional VB-

based methods [62, 68, 72] utilize a trivial (e.g., Gaussian) distribution to directly

approximate the posterior distribution (the left term of Eqn. 4.2) by minimizing the

Kullback–Leibler (KL) divergence [258] instead of using MAP. Although the accurate
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posterior distribution is hard to obtain, the approximated one is good enough and

much more robust than the result of MAP. In order to combine the DIP with VB,

I propose a new variational deep image prior (VDIP) to learn the distributions of

all latent variables (sharp images and blur kernels) which is motivated by the idea of

variational auto-encoder [97]. The experimental results show that the proposed VDIP

can significantly improve over the DIP in both quantitative results on benchmark

datasets and the quality of the generated sharp images.

4.1 Proposed Method

In this section, we provide the mathematical analysis of the feasibility of our proposed

methods. More derivation details are given in Appendix B.

4.1.1 Super-Gaussian Distribution

Conventional image priors can be formulated as a super-Gaussian distribution:

P (Is) = W exp

(︃
−ρ(Fx(Is)) + ρ(Fy(Is))

2

)︃
, (4.3)

where W is the normalization coefficient, and ρ() is the penalty function to constrain

the sparsity of Fx(Is) and Fy(Is). For sparse image priors, Fx() and Fy() are gradient

kernels [−1, 1]T and [−1, 1]. When ρ() is quadratic, P (Is) degenerates to a Gaussian

distribution. Since ρ(
√
x) has to be increasing and concave for x ∈ (0,∞) when x

follows the super-Gaussian distribution [259], we can decouple ρ() and Is using the

concave conjugate of ρ(
√︁

Fx(Is)) and ρ(
√︁

Fy(Is)) following the strategy of Babacan et

al. [68], and the upper bound of ρ(Fx(Is)) and of ρ(Fy(Is)) are represented as

ρ(Fx(Is)) ≤
1

2
ξx(Fx(Is))

2 − ρ∗
(︃
1

2
ξx

)︃
,

ρ(Fy(Is)) ≤
1

2
ξy(Fy(Is))

2 − ρ∗
(︃
1

2
ξy

)︃
,

(4.4)

where ρ∗(1
2
ξx) and ρ∗(1

2
ξy) denote the concave conjugates of ρ(

√︁
Fx(Is)) and ρ(

√︁
Fy(Is)),

respectively, and ξx and ξy are the variational parameters. We replace ρ(Fx(Is)) and
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ρ(Fy(Is)) in Eqn. 4.3 with their upper bounds in P (Is)

P (Is) ≥W exp

(︃
−ξx(Fx(Is))

2 + ξy(Fy(Is))
2

4

)︃
· exp

(︃
ρ∗(1

2
ξx) + ρ∗(1

2
ξy)

2

)︃
.

(4.5)

Since the right-hand side of each inequality in Eqn. 4.4 is a convex quadratic function

with a single global minimum, by calculating the derivative with respect to Fx(Is)

and to Fy(Is), respectively, in Eqn. 4.4, equality is attained when

ξx =
ρ′(Fx(Is))

|Fx(Is)|
, ξy =

ρ′(Fy(Is))

|Fy(Is)|
, (4.6)

where ρ′() is the derivative of ρ(). As shown in Eqn. 4.5, irrespective of the form of ρ(),

P (Is|ξx, ξy) becomes a trivial Gaussian distribution when equality is attained, which

simplifies the derivation and the implementation because other penalty functions are

discontinuous and the integral is too complicated to obtain (e.g., |x|, ln |x|). Besides,

a Gaussian distribution is usually utilized to approximate the real distribution in VB-

based methods, and the multiplication of two Gaussian distributions is much easier

to calculate.

4.1.2 Variational Inference

Due to the extra variational parameters ξx and ξy, the problem can be reformulated

as

arg max
Is,k,ξx,ξy

P (Is, k, ξx, ξy|Ib) = arg max
Is,k,ξx,ξy

P (Ib|Is, k)P (Is|ξx, ξy)P (ξx, ξy)P (k)

P (Ib)
. (4.7)

Directly calculating P (Is, k, ξx, ξy|Ib) is challenging because the true distribution of

Ib is difficult to obtain. The most common strategy is to use MAP, which estimates

the posterior distribution by maximizing it as shown in Eqn. 4.7. However, MAP

with the sparse image prior favors a trivial solution. An alternative strategy is to use

VB, which uses a trivial distribution Q(Is, k, ξx, ξy) (e.g., Gaussian) to approximate

the posterior distribution P (Is, k, ξx, ξy|Ib) by minimizing the KL divergence between
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these two distributions, which can be written as

DKL(Q(Is, k, ξx, ξy)||P (Is, k, ξx, ξy|Ib))

= lnP (Ib)−
∫︂

Q(Is, k, ξx, ξy) ln
P (Is, k, ξx, ξy, Ib)

Q(Is, k, ξx, ξy)
dIsdkdξxdξy

= lnP (Ib)− L(Is, k, ξx, ξy, Ib),

(4.8)

whereDKL represents the KL divergence, and L(Is, k, ξx, ξy, Ib) is the variational lower

bound. Since lnP (Ib) is constant and DKL is non-negative, minimizing DKL is equiv-

alent to maximizing L(Is, k, ξx, ξy, Ib). By assuming that Is and k are independent,

the variational lower bound can be rewritten as

L(Is, k, ξx, ξy, Ib)

=

∫︂
Q(k) ln

P (k)

Q(k)
dk −

∫︂
Q(Is) lnQ(Is)dIs

+

∫︂
Q(Is)Q(ξx, ξy) lnP (Is|ξx, ξy)dIsdξxdξy

+

∫︂
Q(ξx, ξy) ln

P (ξx, ξy)

Q(ξx, ξy)
dξxdξy + EQ(Is,k) [lnP (Ib|Is, k)] ,

(4.9)

where P (Is|ξx, ξy) can be obtained from Eqn. 4.5, P (k) is set as the standard Gaussian

distribution N (0, I). Based on the mean field theory [68, 260], it is more convenient

to simply assume that pixels on images and kernels are all independent. We can
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further rewrite Eqn. 4.9 as

L(Is, k, ξx, ξy, Ib)

=
1

2

I∑︂
i=1

J∑︂
j=1

(2 lnS(k(i, j))− E2(k(i, j))− S2(k(i, j)))

+
1

2

M∑︂
m=1

N∑︂
n=1

2 lnS(Is(m,n))

− 1

4

M∑︂
m=1

N∑︂
n=1

E((Fx(Is)(m,n))2)E(ξx(m,n))

− 1

4

M∑︂
m=1

N∑︂
n=1

E((Fy(Is)(m,n))2)E(ξy(m,n))

+ EQ(Is,k) [lnP (Ib|Is, k)]

+

∫︂
Q(ξx, ξy) ln

P (ξx, ξy)

Q(ξx, ξy)
dξxdξy

+
1

2

∫︂
Q(ξx, ξy)(ρ

∗(
1

2
ξx) + ρ∗(

1

2
ξy))dξxdξy

+ Constant,

(4.10)

where S() and E() denote the standard deviation and the expectation, respectively,

of distribution Q(), (i, j) is the pixel index of k, (m,n) is the pixel index of Is and ξ.

Since only the expectation of ξx and ξy are related to Is, we do not need to consider

their distributions so that the last three rows in Eqn. 4.10 can be ignored. Following

Babacan et al. [68], E(ξx) and E(ξy) can be simply calculated by

E(ξx(m,n)) =
ρ′(vx(m,n))

vx(m,n)
,

E(ξy(m,n)) =
ρ′(vy(m,n))

vy(m,n)
,

(4.11)

vx(m,n) =
√︁
E((Fx(Is)(m,n))2),

vy(m,n) =
√︂
E((Fy(Is)(m,n))2).

(4.12)

For the sparse image prior, Fx(Is)(m,n) and Fy(Is)(m,n) can be reformulated as

Fx(Is)(m,n) = Is(m,n)− Is(m− 1, n),

Fy(Is)(m,n) = Is(m,n)− Is(m,n− 1),
(4.13)

where Is(0, ·) and Is(·, 0) denote paddings.
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Our VDIP can also be extended to the extreme channel prior. For the extreme

channel prior, Fx(Is)(m,n) and Fy(Is)(m,n) can be reformulated as

Fx(Is)(m,n) = min
i∈Ω(m,n)

( min
c∈(r,g,b)

(Ics(i))),

Fy(Is)(m,n) = 1− max
i∈Ω(m,n)

( max
c∈(r,g,b)

(Ics(i)))
(4.14)

where Ω(m,n) denotes a local patch centered at (m,n), and Ics is a color channel

of Is. Further derivation of E((Fx(Is)(m,n))2) and E((Fy(Is)(m,n))2) are shown in

Appendix B.

4.1.3 Variational Deep Image Prior

Conventional variational inference solves Eqn. 4.10 by calculating the closed-form

expectation with respect to each variable over all the other variables to get the dis-

tribution [260], but it is challenging to apply this strategy to deep learning since the

networks are highly non-convex. Hence, we use two networks to learn the distribu-

tion of the latent sharp image and the blur kernel, respectively, in an unsupervised

manner. For simplification, we assume that the standard deviation of the blur kernel

S(k) is constant. We also assume that the additive noise is white Gaussian noise.

Then, we only need to learn the expectation of the image E(Is), the expectation of

the kernel E(k), and the standard deviation of the image S(Is).

We utilize an encoder-decoder as the image generator GI(), a fully-connected net-

work as the kernel generator Gk(), and random noises ZI and Zk as inputs. The image

generator outputs both E(Is) and S(Is), and the kernel generator outputs E(k). We

can now approximate EQ(Is,k) [lnP (Ib|Is, k)] in Eqn. 4.9 and 4.10 by Monte Carlo

estimation using sampling [97]

EQ(Is,k) [lnP (Ib|Is, k)] ≈
1

A

A∑︂
a=1

||Ib − k̂ ⊗ Iaŝ ||22
2σ2

,

k̂ = E(k), Ias
ˆ = E(Is) + ϵa ⊙ S(Is), ϵ

a(m,n) ∼ N (0, I),

(4.15)

where A is the number of samples, σ is the noise level, ⊙ represents the element-wise

multiplication, and ϵa(m,n) is a random scalar sampled from a standard Gaussian
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Algorithm 1: Blind Image Deconvolution Using Variational Deep Image
Prior

Input: blurred image Ib, image generator GI(), kernel generator Gk()
Output: estimated sharp image I∗s and blur kernel k∗

Initialization: fixed noise inputs zI and zk, parameters of two generators θ
(0)
I

and θ
(0)
k to be optimized

for t = 1, 2, . . . , T do
1. generate E(Is)

(t), S(Is)
(t) by GI(zI , θ

(t−1)
I ) and E(k)(t) by Gk(zk, θ

(t−1)
k )

2. calculate E(ξ
(t)
x ) and E(ξ

(t)
y ) using Eqn. 4.11

3. sample Iŝ
(t)

A times and approximate EQ(Is,k) [lnP (Ib|Is, k)](t) using
Eqn. 4.15
4. calculate L(Is, k, ξx, ξy, Ib)

(t) using Eqn. 4.10

5. update θ
(t−1)
I and θ

(t−1)
k by maximizing L(Is, k, ξx, ξy, Ib)

(t)

end for
[E(Is)

(T+1), S(Is)
(T+1)] = GI(zI , θ

(T )
I )

E(k)(T+1) = Gk(zk, θ
(T )
k )

I∗s = E(Is)
(T+1), k∗ = E(k)(T+1)

distribution for the pixel (m,n). The more samplings, the more accurate distribu-

tion will be obtained. Using Monte Carlo estimation, the expectation term is now

differentiable. Our final algorithm is shown in Alg. 1.

The overview comparison of the DIP [51] and our proposed method is shown in

Fig. 4.1. We can see that the DIP only generates a single value E(Is) for each pixel

instead of E(Is) and S(Is) in our VDIP, and the target is minimizing the mean

square error ||Ib−E(k)⊗E(Is)||22. The target of the DIP only focuses on maximizing

P (Ib|Is, k) in Eqn. 4.7, so that P (Is|θI) and P (Ik|θk) are not properly constrained.

In contrast, in our proposed method, we apply a Gaussian prior and a sparse image

prior to constrain P (Ik|θk) and P (Is|θI), respectively, as shown in Eqn. 4.10. Simply

exploiting the additive priors for optimizing Eqn. 4.7 can lead to suboptimal solutions

of sparse MAP. Thus, we adpot the VB to avoid such a problem by introducing the

standard deviation S(Is) to the optimization target. It is noteworthy that Eqn. 4.10

degenerates to the sparse MAP when we fix S(Is) as zero. It shows the limitation of

optimizing the sparse MAP that its solution is difficult to achieve a large variational
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(a) Overview of the DIP [51]

E(Is)

S(Is)

E(k)

GI Gk
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Noise
Zk

Encoder Decoder

Skip Connection

(b) Overview of our proposed VDIP

Figure 4.1: Comparison of the DIP [51] and our proposed VDIP. The number of
decoder outputs are doubled and the loss function is replaced with the variational
lower bound.

lower bound, because lnS(Is) is negative infinity. The VB can nicely avoid it by

considering non-zero S(Is). Besides, the values of E(ξ) act as the penalty weights of

gradients. In particular, small weights for large gradients and large weights for small

gradients. Zero S(Is) may result in over-penalty in regions with small gradients.

4.2 Experiments

4.2.1 Implementation Details

Our proposed method is implemented in PyTorch [248] and evaluated on a single RTX

A6000 GPU with 48GB of memory. The learning rate of the image generator and of

the kernel generator are set as 1 × 10−2 and 1 × 10−4, respectively, and the number

of optimization steps T is 5000. In Eqn. 4.15, the number of samples A is set as 1.

39



Method Manmade Natural People Saturated Text Average

Cho et al. [64] 17.08/0.482 21.15/0.615 20.96/0.630 14.32/0.531 16.01/0.522 17.91/0.556

Levin et al. [261] 15.12/0.284 18.76/0.419 19.55/0.528 13.98/0.487 14.44/0.372 16.37/0.418

Krishnan et al. [66] 16.32/0.476 20.13/0.587 22.59/0.709 14.41/0.545 15.78/0.518 17.85/0.567

Xu et al. [70] 19.11/0.686 22.70/0.754 26.42/0.856 14.97/0.586 20.56/0.789 20.75/0.734

Perrone et al. [262] 18.66/0.676 22.78/0.786 24.79/0.828 14.46/0.531 18.35/0.673 19.81/0.699

Michaeli et al. [73] 18.27/0.509 21.93/0.614 25.74/0.791 14.46/0.539 16.59/0.503 19.40/0.591

Pan et al. [39] 20.00/0.714 24.47/0.801 26.70/0.811 17.46/0.680 21.13/0.762 21.95/0.753

Dong et al. [69] 18.88/0.567 23.42/0.702 25.53/0.769 16.72/0.611 20.05/0.682 20.92/0.666

Tao et al. [21] 17.11/0.381 20.18/0.492 22.12/0.651 15.41/0.545 15.76/0.469 18.12/0.508

Kupyn et al. [20] 17.47/0.414 20.71/0.520 22.71/0.682 15.67/0.565 16.22/0.503 18.55/0.537

Wen et al. [263] 18.06/0.550 22.51/0.669 25.59/0.769 17.79/0.672 17.85/0.598 20.36/0.652

Zamir et al. [11] 17.12/0.392 20.30/0.506 21.50/0.631 15.49/0.547 14.75/0.415 17.83/0.498

Huo et al. [264] 17.11/0.380 20.27/0.495 21.69/0.636 15.45/0.545 15.84/0.478 18.07/0.507

Zamir et al. [12] 17.19/0.389 20.26/0.493 21.67/0.636 15.52/0.545 15.36/0.460 18.00/0.505

Chen et al. [265] 16.89/0.371 20.10/0.484 21.51/0.642 15.59/0.544 14.87/0.401 17.79/0.488

Ren et al. [51] (DIP) 18.12/0.506 21.77/0.608 26.00/0.789 16.64/0.613 20.79/0.686 20.67/0.640

DIP-Extreme 19.90/0.708 21.48/0.656 27.90/0.862 18.10/0.690 24.57/0.840 22.39/0.751

DIP-Sparse 17.59/0.494 23.30/0.723 25.44/0.744 15.95/0.632 20.36/0.703 20.53/0.659

VDIP-Std 18.52/0.542 21.61/0.607 26.61/0.813 16.37/0.596 21.26/0.699 20.87/0.651

VDIP-Extreme 20.50/0.768 25.36/0.882 30.83/0.938 18.09/0.723 25.90/0.892 24.14/0.841

VDIP-Sparse 22.86/0.868 26.18/0.895 30.76/0.927 18.55/0.727 27.24/0.927 25.12/0.869

Table 4.1: Quantitative comparison (PSNR↑/SSIM↑) on the synthetic dataset from
Lai et al. [266].

We use ln |x| as our penalty function ρ(x). Note that the architectures of GI() and

Gk() are the same as those of DIP [51] for fair comparison, except the output layers

of GI() are doubled (half for E(Is) and half for S(Is)). Different from the original

DIP [51] that adds additive random Gaussian noise to ZI and Zk to avoid the local

minima, we do not add additive random noise to the inputs.

4.2.2 Quantitative Comparison

We first evaluate different versions of DIP including our VDIP for image decon-

volution on the synthetic dataset from Lai et al. [266] and compare with several

conventional methods including Cho and Lee [64], Levin et al. [261], Krishnan et

al. [66], Xu et al. [70], Perrone et al. [262], Michaeli and Irani [73], Pan et al. [39],

Dong et al. [69], and Wen et al. [263], and several deep-learning-based methods in-

cluding Tao et al. [21], Kupyn et al. [20], Zamir et al. [11], Huo et al. [264], Zamir et

al. [12] and Chen et al. [265]. To be specific, these deep-learning-based methods are

trained on external datasets [24, 267]. DIP-Extreme and DIP-Sparse represent the
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Method NIQE↓ BRISQUE↓ PIQE↓

Cho et al. [64] 4.0050 36.2829 48.6227

Levin et al. [261] 3.6594 36.5006 46.7037

Krishnan et al. [66] 3.8696 37.9942 50.4024

Xu et al. [70] 3.9536 37.3240 49.5436

Perrone et al. [262] 4.0397 39.7997 51.7650

Michaeli et al. [73] 3.5852 35.1205 46.7085

Pan et al. [39] 4.8790 36.3792 68.9470

Dong et al. [69] 4.7557 37.1199 64.1972

Tao et al. [21] 3.5612 40.1954 53.0908

Kupyn et al. [20] 3.2937 35.8382 40.0545

Wen et al. [263] 4.9210 33.1731 58.3326

Zamir et al. [11] 3.7926 42.4894 52.1181

Huo et al. [264] 3.5222 40.1037 47.0717

Zamir et al. [12] 3.7401 42.9266 50.6804

Chen et al. [265] 4.6754 46.3900 74.0267

Ren et al. [51] (DIP) 4.2460 38.5827 45.8822

DIP-Extreme 4.7763 33.3678 36.6031

DIP-Sparse 7.9063 41.9810 54.9295

VDIP-Std 4.1260 37.0199 42.3010

VDIP-Extreme 4.5072 34.4400 36.1535

VDIP-Sparse 3.8882 32.4120 34.3614

Table 4.2: Quantitative comparison on the real blurred dataset from Lai et al. [266].

DIP [51] with the extreme channel prior and the sparse image prior, respectively. Our

VDIP-Std, VDIP-Extreme and VDIP-Sparse are the corresponding versions of DIP,

DIP-Extreme and DIP-Sparse with non-zero S(Is).

The quantitative comparison is shown in Tab. 4.1. We can see that DIP-Sparse

even perform worse than DIP, which is consistent with the suboptimal problem of

sparse MAP. And non-zero S(Is) without additive priors can only slightly improve

the performance. The combination of additive priors and non-zero S(Is) significantly

increases the evaluation results, where the former helps to constrain the optimization

and the latter avoids the local minimum resulting from the former. For gradient-based

priors, a sparser constrain can lead to better performance comparing L0 norm [70],

L1 norm [262] and L2 norm [64, 261], but the outliers on saturated images should

be properly handled as in [69]. Image-based priors [39, 263] are more robust to

outliers, and the comparison of DIP-Extreme and DIP-Sparse follows this observa-

tion. Additionally, our VDIP-sparse takes advantage of gradient-based priors without

explicitly handling the outliers of saturated images and performs even better than

VDIP-Extreme, which shows the effectiveness of utilizing variational Bayes.
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Method Manmade Natural People Saturated Text Average

Cho et al. [64] 0.00138 0.00121 0.00145 0.00164 0.00139 0.00141

Levin et al. [261] 0.00099 0.00107 0.00117 0.00124 0.00117 0.00113

Krishnan et al. [66] 0.00125 0.00114 0.00128 0.00134 0.00118 0.00124

Xu et al. [70] 0.00114 0.00084 0.00073 0.00144 0.00074 0.00098

Perrone et al. [262] 0.00108 0.00091 0.00111 0.00135 0.00102 0.00109

Michaeli et al. [73] 0.00131 0.00118 0.00102 0.00169 0.00148 0.00134

Pan et al. [39] 0.00078 0.00060 0.00083 0.00099 0.00071 0.00078

Dong et al. [69] 0.00097 0.00078 0.00096 0.00111 0.00082 0.00093

Wen et al. [263] 0.00113 0.00092 0.00089 0.00074 0.00098 0.00093

Ren et al. [51] (DIP) 0.00168 0.00168 0.00164 0.00172 0.00144 0.00163

DIP-Extreme 0.00117 0.00122 0.00084 0.00153 0.00086 0.00113

DIP-Sparse 0.00159 0.00148 0.00136 0.00142 0.00135 0.00144

VDIP-Std 0.00163 0.00167 0.00157 0.00171 0.00140 0.00160

VDIP-Extreme 0.00104 0.00101 0.00098 0.00147 0.00061 0.00102

VDIP-Sparse 0.00073 0.00095 0.00084 0.00146 0.00060 0.00092

Table 4.3: Average kernel recovery error on the synthetic dataset from Lai et al. [266].

Figure 4.2: The optimization time corresponding to the image size and kernel size.
The kernel size is fixed as 31×31 for evaluating the image size, and the image size is
fixed as 500×500 for evaluating the kernel size.

To evaluate the estimated kernel, we calculate the average kernel recovery er-

ror [268] and report the results in Tab. 4.3. Note that the compared deep-learning-

based methods do not estimate the blur kernels. Although the evaluated kernel of

Pan et al. [39] is more accurate than VDIP-Extreme, our VDIP-Extreme performs

better, which demonstrate that a proper deconvolution method is important even

with accurate estimated blur kernels.

We also evaluate the above mentioned methods on the real blurred dataset from

Lai et al. [266]. Since there is no ground truth sharp image, we utilize three no-
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Blurred Pan Dong Wen

DIP VDIP-Std VDIP-Sparse Ground Truth

Blurred Pan Dong Wen

DIP VDIP-Std VDIP-Sparse Ground Truth

Blurred Pan Dong Wen

DIP VDIP-Std VDIP-Sparse Ground Truth

Figure 4.3: Qualitative comparison on the synthetic dataset from Lai et al. [266].
The estimated blur kernels are pasted at the top-left corners of the corresponding
deblurred results.

43



Blurred Levin Pan Dong

Kupyn DIP VDIP-Std VDIP-Sparse

Blurred Levin Pan Dong

Kupyn DIP VDIP-Std VDIP-Sparse

Blurred Levin Pan Dong

Kupyn DIP VDIP-Std VDIP-Sparse

Figure 4.4: Qualitative comparison on the real blurred dataset from Lai et al. [266].
The estimated blur kernels are pasted at the top-left corners of the corresponding
deblurred results.
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reference image quality assessment metrics, in particular, Naturalness Image Qual-

ity Evaluator (NIQE) [269], Blind/Referenceless Image Spatial Quality Evaluator

(BRISQUE) [270], and Perception based Image Quality Evaluator (PIQE) [271] to

quantitatively evaluate the results. As shown in Tab. 4.2, our method can generate

images of the highest quality based on BRISQUE and PIQE among all compared

methods. Similar to all of the compared conventional methods and DIP, our pro-

posed method is also designed for spatially invariant (uniform) blur. However, it

even performs better than deep-learning-based methods that are trained for spatially

variant blur. We think this is because the compared deep-learning-based methods are

all trained on synthetic datasets where the blurred images are generated by averaging

consecutive frames from a high-frame-rate video. The performance of these methods

are limited on the real data with more artifacts because of the domain-shift issue.

4.2.3 Optimization Time

To evaluate the relation between the optimization time and the size of images and

kernels, we run the optimization with varying image size and fixed kernel size, and

then run the optimization with varying kernel size and fixed image size. All of the

experiments are run on a single RTX A6000 GPU with 48GB of memory. As shown

in Fig. 4.2, the optimization time is proportional to the quadratic of image size and

kernel size.

4.2.4 Qualitative Comparison

Some of the qualitative comparisons are shown in Fig. 4.3 and 4.4. Our VDIP-

Sparse can generate sharper results with less noise and artifacts than other methods

including DIP. Specifically, Pan et al. [39] are able to obtain correct blur kernels in

some cases but the deconvolution results are over-smoothed. Dong et al. [69], Wen et

al. [263] and DIP [51] are over-enhanced with many artifacts. Since the blur on

the real images are spatially variant (non-uniform), obtaining perfect results with
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Blurred MAP VB Ground Truth

Figure 4.5: Qualitative comparison of MAP (DIP) and VB (VDIP-Sparse). The
estimated blur kernels are pasted at the top-left corners of the corresponding deblurred
results where the estimated kernels of MAP are all delta kernels.

Blurred Wen DIP VDIP-Sparse

Blurred Wen DIP VDIP-Sparse

Figure 4.6: Failure Cases.
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uniform deconvolution methods is difficult, if not impossible. But our method still

performs better than Kupyn et al. [20] trained on non-uniform blurred datasets [24],

showing the limited generalization ability of external training and the importance of

image-specific information.

As outlined in Section 4.1, when a sparse image prior is employed in conjunction

with Maximum a Posteriori (MAP) estimation, the resulting solution favors a trivial

outcome, wherein the generated kernel is a delta kernel. Fig. 4.5 demonstrates the

effectiveness of our improved approach utilizing Variational Bayes (VB) over the MAP

method. It displays the trivial solution obtained by MAP, where the estimated kernels

collapse to a single white dot (delta kernel). In contrast, VB successfully avoids such

solutions, resulting in more accurate estimations.

4.2.5 Failure Cases

As shown in Fig. 4.6, our VDIP does not perform well on small images with complex

scenes, due to the lack of enough information to properly optimize the network.

4.3 Summary

In this chapter, I propose VDIP to better constrain the optimization of DIP. Along

with the previous chapter, I make efforts on reducing the domain-shift problem of

solving 2D spatial degradation tasks. In the next chapter, we address the 3D spa-

tial degradation which takes advantage of the high-quality generation results of the

pretrained text to image models.
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Chapter 5

Text-Guided Texture Generation
for 3D Objects

Generating high-quality 3D content is an essential component of visual applications

in films, games, and upcoming AR/VR industries. While many prior works on 3D

synthesis have focused on the geometric components of the assets, textures have

garnered less attention which play a vital role in enhancing the realism of 3D assets.

In this chapter, our objective is to achieve automatic text-driven 3D texture synthesis

for arbitrary meshes.

5.1 Proposed Method

5.1.1 Overview

In this section, we present an overview of our proposed Progressive Texture Sam-

pling Scheme to synthesize view-consistent textures from a pre-trained T2I generation

model. We first introduce the sampling process of the Denoising Diffusion Implicit

Models (DDIM) [272], which forms the basis of our texture sampling approach.

DDIM Sampling. Assuming we sequentially sample N distinct views around a 3D

mesh, the DDIM sampling process for each sampled viewpoint i at the denoising step

t can be described as follows:

x̂i
0(x

i
t) =

xi
t −
√
1− αt · ϵθ(xi

t)√
αt

, (5.1)
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xi
t−1 =

√
αt−1 · x̂i

0(x
i
t) +

√︁
1− αt−1 · ϵθ(xi

t), (5.2)

where xi
t represents the noisy latent feature, and ϵθ(x

i
t) represents the estimated noise

from the pre-trained T2I diffusion model. At each denoising step t, we calculate

x̂i
0(x

i
t), representing the predicted xi

0 and dubbed as the denoised observation of xi
t.

αt is the total noise variance parameterized via denoising step t.

Texture Sampling. To address the inconsistencies arising from independently gen-

erated different views, our texture sampling scheme is proposed by leveraging the

sequential nature of the denoising process of the diffusion model and maintaining the

3D consistency of the generated texture at each denoising step.

In detail, at each denoising step t, we conduct the following two steps. First,

we compute a view-consistent denoised observation of a texture map U0̂(x
1...N
t ) by

progressively aggregating the denoised observations x̂i
0(x

i
t) where i = 1, . . . , N via an

attention-guided view aggregation pipeline (Sec. 5.1.2). For brevity, we denote Û
i

0,t

as the partial texture map U0̂(x
1...i
t ) and Û

N

0,t as the complete texture map U0̂(x
1...N
t ),

both at denoising step t. Second, the calculation of the noisy latent feature for the

upcoming denoising step t− 1 is based on the current latent feature xi
t, the denoised

observation x̂i
0(x

i
t), as well as the current texture map Û

N

0,t as detailed in Sec. 5.1.3,

xi
t−1 ∼ q(xi

t−1|xi
t, x̂

i
0(x

i
t), Û

N

0,t). (5.3)

Following the DDIM sampling, we go through the above process with T denoising

steps to arrive at the final generated texture map Û
N

0,1. The texture sampling scheme

is further illustrated in Fig. 5.1. We present the above-mentioned two major steps in

the following sections.

5.1.2 View Sampling&Aggregation (VSA)

The objective of this stage is to determine the denoised observation of the texture

map Û
N

0,t, based on the latent features of x1...N
t at each viewpoint for the current step.
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A lion
Looking 
forward

(a) Illustration of our texture sampling scheme (b) Details of a denoising step

Figure 5.1: Overview of our proposed method. First of all, we sample N viewpoints
across the objects. Our texture sampling scheme is an interleaved process of multi-
view texture aggregation and diffusion denoising. Specifically, our texture sampling
process is structured into T steps of diffusion process. As shown in (a), at denoising
step t, it takes the noisy latent features of sampled views (x1...N

t ) as input to predict the
noisy features for the next denoising step (x1...N

t−1 ) as well as a time-dependent texture

map (Û
N

0,t). Upon completing T steps of sampling, the final texture map (Û
N

0,1) will be
achieved. To elaborate more on each denoising step, we present two novel modules:
View Sampling&Aggregation (VSA) module and Text&Texture Guided Resampling
(T2GR) module. As shown in (b), for view i, the VSA module is used to generate

denoised observation x̂i
0(x

i
t) which will be aggregated onto texture map to form Û

i+1

0,t .

After iterating over all sampled views starting from i = 1 to N , we obtain Û
N

0,t for

each denoising step. Conditioned on the current estimation of texture map Û
N

0,t, the
T2GR module will update the noise estimations ϵtex(x

i
t) to calculate the noisy latent

feature xi
t−1 for the next denoising step.

View Sampling

Following DDIM sampling, for each sampled view i at time step t, the denoised

observation x̂i
0(x

i
t) can be computed as in Eq. 5.1. The latent features are then

decoded into images I it in the RGB space via the VAE decoder D of the pre-trained

stable diffusion [15],

I it = D(x̂i
0(x

i
t)). (5.4)

A naive solution of generating the denoised observation of texture map Û
N

0,t is to

directly fuse I it (for i = 1, . . . , N), after inverse rendering onto the UV space. However,

it will lead to noticeable seams between adjacent views due to the separate and view-

inconsistent generation of each I it .
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View Aggregation

To address the issue of view inconsistency, we adopt an autoregressive generation

strategy. This involves generating the denoised observation x̂i
0(x

i
t) based on previous

denoised views x̂1...i−1
0 (x1...i−1

t ). Starting with the first viewpoint i = 1, we perform

inverse rendering to map I it onto the UV space, obtaining the partial texture map

Û
i

0,t. Then for the subsequent viewpoint i+1, the prediction of x̂i+1
0 (xi+1

t ) depends on

the current partial texture map Û
i

0,t. More specifically, we render the partial texture

map Û
i

0,t onto viewpoint i + 1, denoted as Renderi+1(Û
i

0,t). The rendered output is

then fed as input to the VAE encoder E for obtaining the latent features Gi+1
0,t ,

Gi+1
0,t = E(Renderi+1(Û

i

0,t)). (5.5)

The computation of the denoised observation for viewpoint i+1 at step t is performed

as follows:

x̂i+1
0 (xi+1

t ) =
xi+1
t −

√
1− αt · ϵθ(xi+1

t )
√
αt

, (5.6)

with
xi+1
t =xi+1

t ⊙Mi+1
↓ + (

√
αt ·Gi+1

0,t

+
√
1− αt · ϵ)⊙ (1−Mi+1

↓ ),
(5.7)

whereMi+1 denotes the mask for regions that are viewed for the first time at view i+1

in RGB space, and ↓ symbolizes downsampling to the resolution of latent features.

Attention-Guided View Synthesis

As indicated in Fig. 5.6, sequential generation across different viewpoints often fails

to ensure appearance consistency. To address this, we introduce a novel attention-

guided cross-view generation strategy. Drawing inspiration from the work of Cao et

al. [273], we believe that Key and Value features in the self-attention module of the

stable diffusion encapsulate the local contents and textures of generated images. In

detail, we regard the front view as the reference view and propagate the Key and

Value of the reference view to other views. The process can be outlined as follows:

ϵθ(x
ref
t ), Qref

t , Kref
t , V ref

t ← Unetθ(x
ref
t ), (5.8)
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Figure 5.2: Denoised observation x0̂(x
i
t) with text prompt “A Cyber Punk lion”. The

high-frequency information is gradually generated during sampling.

ϵθ(x
i
t)← Unetθ(x

i
t, K

ref
t , V ref

t ). (5.9)

Herein, Qref
t , Kref

t , and V ref
t denote the Query, Key, and Value features from the

self-attention module of the reference view, respectively. In Eq. 5.9, the Key and

Value features for each viewpoint are substituted with those from the reference view

to calculate its estimated noise. Following this substitution, for each viewpoint i,

the denoised observation x̂i
0(x

i
t) is updated in accordance with Eq. 5.1. As shown in

Fig. 5.2, the texture details will gradually appear in the denoised observation as the

diffusion process proceeds.

5.1.3 Text&Texture Guided Resampling (T2GR)

Upon obtaining the current denoised observation of the texture map Û
N

0,t, we perform

Text&Texture Guided Resampling (T2GR) to update the noisy latent features x1...N
t−1

for the next denoising step.

As shown in Eq. 5.2, the derivation of xi
t−1 depends on the estimated noise ϵθ(x

i
t)

and the denoised observation x̂i
0(x

i
t). Given that x̂i

0(x
i
t) is expected to exhibit view

consistency, as it is maintained by the texture map Û
N

0,t, recalculating the noise map

ϵθ(x
i
t) under the guidance of current denoised observation of texture map Û

N

0,t ensures

to preserve the view consistency. Specifically, in Eq. 5.1 we set x̂i
0(x

i
t) equal to the

current encoded render of the texture map Û
N

0,t at view i. From this, we derive the

recalculated noise map ϵ̂tex(x
i
t) as:

ϵ̂tex(x
i
t) =

xi
t −
√
αt · E(Renderi(Û

N

0,t))√
1− αt

. (5.10)
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This recalculated noise map is then utilized in place of ϵθ(x
i
t) in Eq. 5.1 and Eq. 5.2

for the computation of xi
t−1.

While our noise map update strategy ensures view consistency, it tends to result

in over-smoothed images (as shown in Fig. 5.7). This is primarily because the VAE

encoder E in the stable diffusion model compresses high-frequency details, referred to

as imperceptible details, as noted by [15]. The repeated use of the encoder E leads to

an accumulation of this detail compression, affecting the overall image quality.

To avoid over-smoothness, we take Û
N

0,t as an additional condition to the diffu-

sion model rather than directly replacing ϵθ(x
i
t) with ϵtex(x

i
t). Basically, we want

to compute a texture-conditioned noise estimation which we denote as ϵtex(x
i
t|Û

N

0,t).

By analyzing the formulation of ϵθ(x
i
t), we see that it is essentially a weighted com-

bination of conditional noise prediction ϵθ(x
i
t|c) and unconditional noise prediction

ϵθ(x
i
t|∅), following the Classifier-Free Guidance (CFG) introduced in [274]:

ϵθ(x
i
t) = ϵθ(x

i
t|∅) + ω(ϵθ(x

i
t|c)− ϵθ(x

i
t|∅)), (5.11)

where c and ∅ represent the text prompt and null-text prompt, respectively, and ω

is a user-specified weight.

Similarly, ϵtex(x
i
t) should follow the same formulation of CFG,

ϵtex(x
i
t) = ϵθ(x

i
t|∅) + ω(ϵtex(x

i
t|Û

N

0,t)− ϵθ(x
i
t|∅)). (5.12)

Thus, to disentangle the texture-conditioned noise estimation ϵtex(x
i
t|Û

N

0,t), we sub-

tract the null-text conditioned noise estimation from ϵtex(x
i
t). Here we set ϵtex(x

i
t) =

ϵ̂tex(x
i
t). The computation for the texture-conditioned noise estimation ϵtex(x

i
t|Û

N

0,t) is

as follows:

ϵtex(x
i
t|Û

N

0,t) =
1

ω
(ϵ̂tex(x

i
t)− ϵθ(x

i
t|∅)) + ϵθ(x

i
t|∅). (5.13)

In the end, we formulate our multi-conditioned CFG for the final noise estimation,

which is conditioned on both the textual prompt and texture map:

ϵm(x
i
t) = ϵθ(x

i
t|∅) + ω1(ϵθ(x

i
t|c)− ϵθ(x

i
t|∅)) + ω2(ϵtex(x

i
t|Û

N

0,t)− ϵθ(x
i
t|∅)), (5.14)
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A golden lion

A medieval clock

TEXTure Text2Tex Ours

A penguin covered by a blue sweater

Figure 5.3: Visual comparison of our proposed method against TEXTure [120] and
Text2Tex [121].

where ω1 + ω2 = ω. We exploit a large ω2 for early sampling steps, which decreases

linearly from ω to 0 in the process of denoising. The comprehensive derivation of

Eq. 5.14 can be found in Appendix C. Finally, we compute xi
t−1 for subsequent de-

noising steps by letting ϵθ(x
i
t) = ϵm(x

i
t) in Eq. 5.1 and Eq. 5.2.

5.2 Experiments

5.2.1 Implementation Details

We employ the depth-aware diffusion model provided by ControlNet [52] as our T2I

backbone with the number of denoising steps T = 40. To render an object, we

take eight different viewpoints around the object. The pose is sampled in spherical

coordinates, with the elevation angle set to zero and the azimuth angles is uniformly

sampled between [0◦, 360◦]. An additional top view is sampled. Additionally, we

employ the Xatlas [275] tool to compute the UV atlas for a given mesh.
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A golden lion

A medieval clock

TEXTure Text2Tex Ours

A penguin covered by a blue sweater

Fantasia3D ProlificDreamer Ours

A backpack in Ironman Style

A next gen nascar in red

A metal owl with glowing eyes

Figure 5.4: Visual comparison of our proposed method against Fantasia3D [115] and
ProlificDreamer [116].

Dataset

Our experiment incorporates a diverse collection of 45 meshes, sourced from various

datasets such as Objaverse [276] and ThreeDScans [277], with 2 to 3 distinct prompts

for each mesh. Please refer to Appendix C for details.

5.2.2 Compared Methods

We conduct experimental comparison with several state-of-the-art approaches, in-

cluding TEXTure [120], Text2Tex [121], Fantasia3D [115], ProlificDreamer [116] and

TexFusion [122]. For TEXTure, Text2Tex, and Fantasia3D, we use their respective

publicly available codebase. As the official code for ProlificDreamer is not yet ac-

cessible, we adopt the implementation of ThreeStudio [278] and replace its backbone

with ControlNet [52] to recognize the depth. In the case of TexFusion, where the

implementation is not available, our analysis is limited to a qualitative assessment

using results extracted directly from the original paper. Notably, for all the compared
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Cartoon dragon, red and green

TexFusion Ours

Portrait of Provost, oil paint

Figure 5.5: Visual comparison of our proposed method against TexFusion [122]. The
results of TexFusion are directly copied from its original paper

approaches, the geometry remains fixed during texture generation.

5.2.3 Qualitative Comparison

We provide visual comparison in Fig. 5.3 and Fig. 5.4. Specifically, in Fig. 5.3, we

showcase the robustness of our approach in addressing fragmented textures against

progressively texture aggregation approaches, namely TEXTure [120] and Text2Tex [121].

This improvement is credited to our use of attention-guided view aggregation, com-

bined with a distinct text&texture guided resampling approach that maintains view

consistency at each denoising step to persistently enchance 3D consistency.

In Fig. 5.4, we compare with score distillation based approaches, namely Fanta-

sia3D [115] and ProlificDreamer [116]. As demonstrated, Fantasia3D typically pro-

duces textures that are over-smoothed and over-saturated, while ProlificDreamer,

though with more details and higher contrast, is marred by evident artifacts of blurry

edges. In contrast, our method surpasses these distillation-based methods by gener-

ating more realistic high-quality results.

We also present a qualitative comparison of our method with TexFusion [122]

in Fig. 5.5. TexFusion employs instantNGP [123] to mitigate inconsistencies post-
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Methods FID ↓ KID×10−3 ↓ CLIPScore ↑

TEXTure 99.06 7.23 19.73

Text2Tex 109.94 7.17 21.26

Fantasia3D 108.58 7.52 21.14

ProlificDreamer 94.51 7.00 21.25

Ours 84.65 4.27 22.83

Table 5.1: Quantitative comparison on generated textures.

decoding of latent features into RGB space, which often leads to over-smoothed re-

sults. In contrast, our method effectively generates textures that are consistent across

views and retain rich details. Please refer to Appendix C for more visual results.

5.2.4 Quantitative Comparison

Evaluation Metrics

For quantitative evaluation of the generated texture, we employ two widely used im-

age quality and diversity evaluation metrics, including Frechet Inception Distance

(FID) [279] and Kernel Inception Distance (KID) [280]. These metrics are instru-

mental in measuring the distribution similarity between two sets of images. For each

compared method, we render a set of images by uniformly sampling 32 different views

of the generated textured mesh. To establish a ground truth image set, we follow the

approach outlined by Cao et al. [122], who use a depth-conditioned ControlNet to

synthesize images conditioned on rendered depth maps and corresponding textual

prompts. The background pixels have been removed from all images to mitigate

the influence caused by unconstrained background. Additionally, we incorporate the

CLIPScore metric [281] to assess the congruence and resemblance between the gen-

erated images and their associated text prompts. Specifically, for each method, we

calculate the average CLIPScore across all rendered images relative to the given text

prompts.
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TEXTure ↑ Text2Tex ↑ Fantasia3D ↑ ProlificDreamer ↑

Ours 64.72% 71.46% 70.97% 69.18%

Table 5.2: User Study Preference: The entries in the table indicate our preference
over other methods. A higher value represents a greater preference.

We present the quantitative evaluations of the above-mentioned methods on FID,

KID and CLIPScore in Tab. 5.1. Notably, our approach demonstrates superior per-

formance, outstripping the other methods by at least 10.4% in FID and 39.0% in KID.

The figures showcase our method’s capability to generate textures that not only are

more realistic but also exhibit a wide variety of appearances across diverse objects.

User Studies

To analyze the quality of the generated textures and their fidelity to the correspond-

ing text prompts, we conducted a detailed user study of our method against four

baseline methods. We randomly select 40 meshes from our collected data and feed

them along with a text prompt as the input for each method. For each of these 40

selections, we generate 360◦ rotating view videos using both our method and one of

the baseline methods and display them side-by-side. Participants in the study are

then requested to select the video that not only better matched the given caption but

also exhibited superior quality. The user study yielded a dataset of 2,480 responses

from 62 participants. We report the user preferences in Tab. 5.2. The results indicate

that our method is notably more effective in producing high-quality textures that are

preferred by human evaluators.

5.2.5 Ablation Studies

We first visually evaluate the impact of the attention-guided view synthesis as shown

in Fig. 5.6. The results demonstrate that our proposed method with attention-guided

view synthesis is able to generate textures with consistent appearance in different

58



A robotic frog

Ours w/o 

Attention-Guided View Synthesis Ours

Figure 5.6: Visual comparison of ablation study over attention-guided view synthesis.
Without attention-guided view synthesis, the frog has different appearance patterns
and color tones over different sides such as eyes and back.

A high quality color photo of Tom Cruise

Ours w/ (𝜔1 = 0) Ours w/ (𝜔2 = 0) Ours

Figure 5.7: Visual comparison of ablation study over T2GR module.

viewpoints.

We also evaluate the impact of the T2GR by keeping ω1 = 0 and ω2 = 0 in

Eqn. 5.14, respectively. As shown in Fig. 5.7, the first figure with ω1 = 0 lacks high-

frequency details and tends to be over-smoothed, while the middle figure with ω2 = 0

lacks texture guidance and the aggregated texture from all viewpoints is fragmented.

We also evaluate the generation quality using FID and KID in Tab. 5.3, which shows

that our method with attention-guided view synthesis and T2GR outperforms other

variants by a large margin.

59



Methods FID ↓ KID×10−3 ↓

Ours w/o AGVS 98.62 5.01

Ours w/ (ω1 = 0) 95.97 4.60

Ours w/ (ω2 = 0) 99.46 5.22

Ours 84.65 4.27

Table 5.3: Ablation study over Attention-Guided View Synthesis (AGVS) and T2GR.

spiderman metalironman wooden 

Figure 5.8: Applications of our proposed texture sampling scheme for text-driven
texture editing.

5.2.6 Applications

Our proposed texture sampling scheme can also be applied to texture editing, as

shown in Fig. 5.8. It shares the same pipeline with texture generation, but here

we replace the depth-aware ControlNet with the MultiControlNet [52] that combines

both the depth-guided and edge-guided generation to preserve the original identity,

where the canny edges are extracted from the generated views.

5.2.7 Failure Cases

Fig. 5.9 show a failure case of our method caused by significant semantic mismatch

between text prompts and geometry.
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(a) Occlusion (b) Text-Geometry Confliction

A wooden mug A golden armor with dog face

Figure 5.9: A failure case of our method.

5.3 Summary

In this chapter, I propose a novel texture sampling strategy to generate high quality

textures for 3D objects with the help of the pretrained text to image generation mod-

els. In the next chapter, I solve the domain-shift problem of the spectral degradation

where more than 90% of the spectral information has been lost on RGB images. Since

there is no pretrained models for spectral reflectance generation, and a single image is

not enough to optimize the network parameters of DIP when the information loss is

such high. Thus, I propose a novel learning strategy for spectral reflectance recovery

by combining both the information from the training and testing domains.
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Chapter 6

Spectral Reflectance Recovery
from RGB Images

Unlike traditional RGB images with only three bands (red, green, and blue), the

spectral reflectance captured by a hyperspectral imaging system has a higher sampling

rate in wavelength and provides more spectral information of the scene. The spectral

reflectance of an object is independent of the illumination so that it describes the

distinctive intrinsic characteristics of an object’s materials, which is widely used in

many applications such as remote sensing [282, 283], agriculture [284, 285], medical

imaging [286–289], and food quality evaluation [290, 291]. In this chapter, I utilize

meta-auxiliary learning (MAXL) [49] to take advantage of both internal and external

information for SRR under known illuminations, with the goal to rapidly adapt the

trained parameters to an unseen image using only a few steps of gradient descent

at test time. In particular, we design a neural architecture featuring two tasks:

the primary task focuses on recovering spectral reflectance from RGB images, while

the auxiliary task involves reconstructing RGB inputs from the recovered spectral

reflectance. We adopt both tasks to train the model on paired inputs and outputs

(referred to as external information), and fine-tune the pretrained parameters using a

single testing input (referred to as internal information) leveraging solely the auxiliary

task. Notably, the fine-tuning process eliminates the need for paired ground truth.

Experiments show that MAXL significantly boosts the performance on real data,
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which demonstrates the effectiveness of MAXL in reducing domain gap.

6.1 Proposed Method

6.1.1 Overview

The relationship between an RGB image of a scene and its spectral reflectance can

be expressed as

Ic(x, y) =

∫︂
λ

Sc(λ)L(λ)R(x, y, λ)dλ, (6.1)

where Ic represents channel c of the RGB image (c ∈ {Red,Green,Blue}), R the

spectral reflectance, Sc the CSS of channel c, and L the illumination spectrum. λ

refers to the wavelength, and (x, y) are the spatial coordinates. Assume that the

number of pixels and the number of sampled spectral bands are N and B, respectively,

Eqn. 6.1 can be discretized and represented in matrix form as

I = (S⊙ L) ·R, (6.2)

where I ∈ R3×N is the RGB image, R ∈ RB×N is the spectral reflectance, S ∈

R3×B denotes the CSS, and L ∈ R1×B denotes the illumination spectrum. ⊙ is the

Hadamard product, and · is the matrix multiplication.

Since the system is under-determined, more images of the same scene under dif-

ferent and independent L can help to reduce the unknown, which can be formulated

as

I = H ·R, I =

⎡⎢⎢⎢⎣
I1
...

IM

⎤⎥⎥⎥⎦ , H =

⎡⎢⎢⎢⎣
S⊙ L1

...

S⊙ LM

⎤⎥⎥⎥⎦ , (6.3)

where M is the number of illuminations, I ∈ R3M×N is the stack of RGB images

of the same scene. Our goal is to learn a mapping F (·) from I to R with known

illuminations and unknown CSSs, as

R̂ = F (I,L1, . . . ,LM). (6.4)
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Figure 6.1: The left and right figures show a spectral reflectance curve and the illu-
mination spectrum of a white LED, respectively. We can see that discretization loses
high-frequency information.

Instead of naively learning an end-to-end mapping between I and R, we attempt

to take H into consideration so that the physical relationship of I and R can be

exploited.

Lin et al. [28] prove that all possible solutions of R̂ shares the same component R̂
∥

within the sub-space of H, where

R̂
∥
= HT · (H ·HT )−1 · I. (6.5)

As we can see, R̂
∥
can be directly calculated from H and I, so that they aim at

learning the other component R̂
⊥

within the null-space of H, and the recovered

result is R̂
∥
+ R̂

⊥
. Nevertheless, simply adopting this strategy to our problem may

lead to the following issues:

• Real RGB images are integrated from continuous spectra as in Eqn. 6.1, the

discretized form in Eqn. 6.2 and 6.3 are obtained by sub-sampling, resulting in

information loss in RGB images (as shown in Fig. 6.1);

• S is unknown because it varies from sensor to sensor. We have to train an extra

network to estimate it from I and approximate the matrix H;
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• The real intensity of illumination depends on the standard exposure settings [28],

but our illumination spectra are normalized to [0, 1] which need to be rescaled

with factor ω;

• We empirically observe that the back-propagation of the null-space is extremely

unstable.

To solve the above mentioned problems, the recovered result needs to be reformu-

lated as

R̂ = ω̂R̂Ĥ +∆R̂, (6.6)

R̂Ĥ = Ĥ
T
· (Ĥ · Ĥ

T
)−1 · I, Ĥ =

⎡⎢⎢⎢⎣
Ŝ⊙ L1

...

Ŝ⊙ LM

⎤⎥⎥⎥⎦ , (6.7)

where ω̂ is the estimated rescaling factor for the illumination, and Ŝ denotes the

estimated CSS. We directly generate ∆R̂ ∈ RB×N using the network to avoid the

back-propagation of the null-space.

Theorem 1 All possible solutions of R̂ share the same ω̂R̂Ĥ component.

Proof 1 Let ∆I be the lost information of RGB images by discretization, ∆H be

the difference between H and Ĥ, and ∆ω be the difference between ω and ω̂. R̂ can

be rewritten as

R̂ =R̂
∥
+ R̂

⊥

=(ω̂ +∆ω)(Ĥ+∆H)T

· ((Ĥ+∆H) · (Ĥ+∆H)T )−1 · (I −∆I) + R̂
⊥

=ω̂ Ĥ
T
· (Ĥ · Ĥ

T
)−1 · I⏞ ⏟⏟ ⏞

R̂Ĥ

+∆R̂. (6.8)

■
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In addition to the primary task F (·), we utilize the self-supervised RGB recon-

struction as the auxiliary task G(·) for test-time adaptation, as

Î = G(I, R̂), (6.9)

where the ground truth R is not needed. We empirically show in our experimental

results that the auxiliary task also benefits the primary task, which coincides with

the observation reported in [49].

In this paper, M = 1 or 2, and I1 and I2 represent a pair of RGB images from the

same scene illuminated by a white LED L1 and an amber LED L2, respectively
1. The

number of sampled spectral bands is 31 from 420nm to 720nm at 10nm increments.

More detailed derivations are shown in Appendix D.

6.1.2 Architecture

The overview of our proposed architecture is shown in Fig. 6.2(a). It takes two RGB

images I1 and I2 as inputs, and utilizes two separate conv layers to extract features.

Feature maps from I2 are simply discarded for M = 1 or concatenated with those

from I1 for M = 2. The channel size of the initial conv layers are set as 31 and are

doubled/halved after downsampling/upsampling. All conv kernels are of size 3×3 and

are followed by a LeakyReLU function [292] except those before the concatenations,

the element-wise operations (+,−,×), and the outputs. The output channel size of

the auxiliary task is 3 for M = 1 and 6 for M = 2.

We adopt an encoder-decoder architecture for SRR. Each scale of the encoder con-

tains a conv layer followed by three resblocks. The decoder is similar but has an extra

deconv layer to upscale the spatial dimension and a concatenation for skip-connection.

We utilize four spectral-attention blocks [129] to extract spectral correlation after the

encoder.

1Since the spectrum of an amber LED has a narrow band and is zero in most wavelengths, it can
only serve as an auxiliary light source instead of the main one.
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C

conv layer
conv layer + resblock  3

C

deconv layer
spectral-attention block  4

output module
FUSE

C concatenationC

C C

element-wise 

(a) Overall architecture

Legend(b) Output module (c) Feature-guided upsampling module (FUSE)
Eqn. 7

Figure 6.2: Our proposed network architecture for SRR and meta-auxiliary learning.
ei and di denote the feature map from the encoder and the decoder, respectively,

of scale i (i ∈ {1, 2, 3, 4}), R̂
i
is the recovered reflectance of scale i and R̂

1
repre-

sents the final recovered result R̂. The RGB image stack I is downsampled to the

corresponding scale before calculating R̂
i

Ĥ. θPri and θAux denote the task-specific pa-
rameters for the primary task and the auxiliary task, respectively, and θS denotes the
shared parameters. Our network consists of an encoder network to estimate the CSS,
an encoder-decoder architecture for SRR, four spectral-attention layers to extract

spectral correlation, output modules to generate R̂
i
, and feature-guided upsampling

modules (FUSEs) to upsample R̂
i
with the guidance of ei−1. The global average

pooling before Ŝ is omitted to simplify the illustration.

To explicitly estimate the CSS, we utilize the same encoder as the feature extractor

and a conv layer to reduce the channel size to 3×31, following which is a global average

pooling layer. Despite using the same architecture, we do not share the parameters

of the two encoders because we empirically observe that the network is difficult to

converge.

In the decoder, we adopt a pyramid scheme [21, 293, 294] by generating a spectral

reflectance at the end of each scale, which can act as a “hint” for the prediction of

finer scales. As shown in Fig. 6.2(b), we downsample the RGB image stack I with

bilinear interpolation to match the spatial dimension at scale i (i ∈ {1, 2, 3, 4}) and

calculate R̂
i

Ĥ with the estimated CSS Ŝ. The rescaling factor ω̂i is learned from
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the concatenation of R̂
i

Ĥ and ∆R̂
i
. R̂

i
is obtained by Eqn. 6.8 and R̂

1
is our final

recovered result R̂ in Eqn. 6.4.

A simple approach to fuse R̂
i
with features from scale i − 1 is to directly upsam-

ple R̂
i
to scale i − 1 with deconv layers and then concatenate them together [293].

Nevertheless, the upsampled spectral reflectance lacks high-frequency information

which needs further refinement. Inspired by the generalized Laplacian pyramid al-

gorithm [295] that fuses a high-resolution panchromatic image with a low-resolution

multispectral image by feeding the weighted high-frequency information from the

panchromatic image to the multispectral image, we propose a new Feature-gUided

upSampling modulE (FUSE) that utilizes the feature ei−1 from scale i− 1 of the en-

coder to guide the upsampling. As shown in Fig. 6.2(c), we exploit a downsampling-

upsampling scheme to get the low-pass components of ei−1 and then subtract it from

ei−1 for high-pass components ei−1
high. The remaining low-pass components are concate-

nated with the upsampled recovery output R̂
i
and ei−1 to extract local correlation,

and generate local gain factormi to reweight high-pass components which supplement

the upsampled R̂
i
for refinement.

Most parameters of the two tasks are shared. As shown in Fig. 6.2(a), we separate

the parameters θ of the whole network into three components, θS, θPri and θAux,

where θS represents the shared parameters, θPri and θAux represent the task-specific

parameters for the primary task and the auxiliary task, respectively. We feed the

output of the last shared resblock into two branches, one for generating the spectral

reflectance R̂ (primary task), and the other with R̂ as an extra input to reconstruct

the original RGB images as in Eqn. 6.9 (auxiliary task), so that the parameters of

the primary task can be updated with only the auxiliary loss during test time. We

adopt the L1 loss for both tasks as

LPri(θS, θPri) =
⃦⃦⃦
S− Ŝ

⃦⃦⃦
1
+

4∑︂
i=1

⃦⃦⃦
Ri − R̂

i
⃦⃦⃦
1
, (6.10)

LAux(θS, θPri, θAux) =
⃦⃦⃦
I − Î

⃦⃦⃦
1
. (6.11)
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Algorithm 2: Meta-auxiliary Training

Input: (I,S,R) triples
α, β: learning rates

Output: θ: meta-auxiliary trained parameters
1 Randomly initialize θ, θ = {θS, θPri, θAux}
2 while not converged do
3 Sample a batch of triples {Ik,Sk,Rk}Kk=1

4 Evaluate pre-training loss LPre by Eqn. 6.12
5 Update θ with respect to LPre

6 end
7 while not converged do
8 Sample a batch of triples {Ik,Sk,Rk}Kk=1

9 for each k do
10 Evaluate auxiliary loss LAux by Eqn. 6.11
11 Compute adapted parameters θk with gradient descent by Eqn. 6.13
12 Update θAux by Eqn. 6.16

13 end
14 Update θS and θPri by Eqn. 6.15

15 end

Directly updating the randomly initialized parameters with meta-auxiliary learning

is time-consuming and unstable. Hence, we first initialize all the parameters by pre-

training with the summation of the primary and the auxiliary losses following [49],

which is formulated as

LPre(θ) = LPri(θS, θPri) + LAux(θS, θPri, θAux). (6.12)

6.1.3 Meta-auxiliary Learning

The goal of meta-learning is to learn a general model for different tasks, which is able

to rapidly adapt to new tasks with only a few steps [145]. In our case, we regard each

triple (Ik,Sk,Rk) (k represents the index) as a task2 T k of meta-learning.

2To distinguish from the primary and auxiliary tasks, we utilize “meta-task” in the following
text.
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Meta-auxiliary training

Given a meta-task T k, we first adapt the pre-trained parameters θ using several

gradient descent updates based on only the auxiliary loss

θk = θ − α∇θLT k

Aux(θS, θPri, θAux), (6.13)

where α represents the adaptation learning rate. The update of Eqn. 6.13 includes

all the parameters with only Ik utilized.

The key of making the pre-trained parameters θ suitable for test-time adaptation is

to update θS and θPri of the primary task in the direction of minimizing the auxiliary

loss. Thus, the meta-objective can be defined as

arg min
θS ,θPri

K∑︂
k=1

LT k

Pri(θ
k
S, θ

k
Pri), (6.14)

where K is the number of sampled meta-tasks. The meta-optimization is then per-

formed on Eqn. 6.14 via stochastic gradient descent

θ ← θ − β
K∑︂
k=1

∇θLT k

Pri(θ
k
S, θ

k
Pri), (6.15)

where β represents the meta-learning rate. Note that the gradient in Eqn. 6.15 is

calculated based on θk but updates the original θ in Eqn. 6.13. The full algorithm is

demonstrated in Alg. 2. Only θS and θPri are updated in the outer loop, and θAux is

updated in the inner loop as

θAux ← θAux − α∇θLT k

Aux(θAux). (6.16)

Test-time adaptation

At test-time, we simply fine-tune the meta-learned parameters on a testing I with

Eqn. 6.13 using several steps of gradient descent as shown in Alg. 3.
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Algorithm 3: Test-time Adaptation

Input: A testing RGB image stack I
n: number of gradient updates
α: adaptation learning rate

Output: Recovered spectral reflectance R̂
1 Initialize network parameters with meta-learned θ
2 for n steps do
3 Evaluate auxiliary loss LAux by Eqn. 6.11
4 Update θ ← θ − α∇θLAux(θS, θPri, θAux)

5 end

6 return R̂ from Eqn. 6.4

6.2 Experiments

6.2.1 Datasets

Synthetic data

TokyoTech [296] contains 16 spectral reflectance images from 420nm to 1000nm at

10nm increments, and we utilize the first 31 bands. ICVL [43] contains 201 hyperspec-

tral images under daylight illumination from 400nm to 1000nm at 1.5nm increments.

We divide the hyperspectral images by the daylight illumination spectrum [297] to

simulate the spectral reflectance, then downsample from 420nm to 720nm at 10nm

increments. We randomly select 75% images from two datasets for training and the

rest for testing. Jiang et al. [298] provide 28 CSSs and we randomly select 23 for

generating training inputs and the rest for testing. The illumination spectra of white

and amber LEDs are collected with a Specim IQ mobile hyperspectral camera and

are downsampled using the same scheme. We normalize two illumination spectra to

the range [0, 1] and keep their relative intensity. To simulate the continuous spectra,

we interpolate the spectral reflectance spectra, CSSs and illumination spectra at 1nm

increments before generating RGB images with Eqn. 6.2.
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Real data

To evaluate the robustness of models trained on synthetic data, we collect 25 spectral

reflectance images with a Specim IQ and the corresponding RGB images under white

and amber LEDs with a Canon 6D camera which is not included in the training data.

The illumination spectra are represented as the spectral radiance of a white reference

panel under two LEDs. The reflectance spectra are downsampled from 420nm to

720nm at 10nm increments. We first convert the downsampled spectra to RGB using

a randomly selected CSS from [298], then we adopt feature matching with SIFT

features [299] to align the images of two cameras. Note that images without enough

features for matching are removed. Feasibility analysis of data capture in real world

is shown in Appendix D.

6.2.2 Implementation Details

All images are linearly rescaled to the range [0, 1]. Training images are cropped

into 128×128 patches with a stride of 64, and are augmented by random flips. The

batch size is set to 64. We adopt the Adam optimizer [249] for pre-training with a

learning rate 10−4 and the Cosine Annealing scheme [300] for 300 epochs. During the

meta-auxiliary learning, we set α and β to 1 × 10−2 and 5 × 10−5, respectively. For

test-time adaptation, we perform n = 5 gradient descent updates. All experiments

are conducted on a single NVIDIA RTX A6000 GPU with 48GB of RAM.

We adopt the mean absolute error (MAE), rooted mean square error (RMSE),

spectral angle similarity (SAS [301]), peak signal-to-noise ratio (PSNR [302]) and

structural similarity (SSIM [256]) as the metrics to evaluate the performance of SRR.

6.2.3 Quantitative Comparison

We first evaluate the performance of M = 1. We compare our method with 6 state-

of-the-art methods for spectral reconstruction from a single RGB image, including

HSCNN+ [128], MSDCNN [134], PADFMN [130], QDO [137], MST++ [129], and
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Methods
Synthetic data Real data

MAE↓ RMSE↓ SAS↓ PSNR↑ SSIM↑ MAE↓ RMSE↓ SAS↓ PSNR↑ SSIM↑

HSCNN+ [128] 0.1261 0.1594 0.1418 16.96 0.7837 0.3107 0.3526 0.5521 9.11 0.3877

MSDCNN [134] 0.0877 0.1124 0.1027 19.76 0.8400 0.3136 0.3563 0.5585 9.02 0.3821

PADFMN [130] 0.0851 0.1102 0.1010 20.15 0.8257 0.2746 0.3214 0.5217 9.93 0.3770

QDO [137] 0.1494 0.1889 0.1295 15.14 0.7759 0.4665 0.5330 0.6139 5.52 0.2883

MST++ [129] 0.0724 0.0927 0.0865 21.72 0.8611 0.2400 0.2944 0.5312 10.69 0.3383

DRCRN [30] 0.0750 0.0998 0.0894 20.98 0.8429 0.2717 0.3154 0.5501 10.09 0.3992

Ours (pre-trained) 0.0625 0.0828 0.0748 22.91 0.8818 0.2313 0.2783 0.5174 11.19 0.4721

Ours 0.0607 0.0809 0.0734 23.09 0.8833 0.2136 0.2590 0.4934 11.84 0.4947

Ours† (pre-trained) 0.0580 0.0778 0.0696 23.67 0.8891 0.1657 0.2137 0.4426 13.56 0.5641

Ours† 0.0575 0.0771 0.0691 23.72 0.8905 0.1536 0.1997 0.4095 14.23 0.5796

Table 6.1: Quantitative evaluations. All compared methods are trained on the syn-
thetic data. Ours and Ours† represent the M = 1 (white LED only) and M = 2
(white&amber LEDs), respectively. “pre-trained” represents the model without meta-
auxiliary training and test-time adaptation.

DRCRN [30]. For fair comparison, we remove the DOE optimization of QDO. All

of these competing methods are retrained with our selected synthetic data. The

evaluation results are listed in the first part of Tab. 6.1. We can see that our proposed

architecture outperforms other methods even with only the pre-trained model, and

the MAXL obviously improves the performance especially on the challenging real data

(0.65dB), which demonstrates the importance of utilizing internal information. Since

our model is trained on the synthetic data, it is reasonable that the performance gain

of MAXL on the synthetic data is not as much as that on the real data.

We also evaluate the effectiveness of the extra illumination (M = 2). As reported

in the second part of Tab. 6.1, it demonstrates 0.63dB and 2.39dB improvement over

M = 1 on synthetic data and real data, respectively.

The evaluation of computational complexity on images of size 1392×1303 is shown

in Tab. 6.2. We can see that our method without MAXL is faster than most of the

other methods with comparable number of parameters, and the test-time adaptation

only takes seconds.
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Figure 6.3: Qualitative comparison of error maps (MAE between the recovered results
and the ground truth) with state-of-the-art approaches. The first four columns are
from the synthetic data and last three columns are from our collected real data.
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RGB (white)
0

1.0

RGB (amber) Ground truth Ours (pre-trained) Ours Ours† (pre-trained) Ours†

Figure 6.4: Qualitative comparison of error maps (MAE between the recovered results
and the ground truth) of our method with/without MAXL for M = 1 and M = 2 on
real data.
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Methods #Params FLOPs Inference time

HSCNN+ [128] 7.98×105 2.88×1012 0.020 sec

MSDCNN [134] 2.67×107 2.27×1012 0.023 sec

PADFMN [130] 3.17×107 9.02×1012 0.334 sec

QDO [137] 1.47×109 1.38×1012 0.308 sec

MST++ [129] 1.62×106 1.20×1012 0.239 sec

DRCRN [30] 9.48×106 3.23×1013 0.538 sec

Ours (pre-trained) 2.41×107 5.03×1012 0.145 sec

Ours 2.41×107 2.57×1013 6.018 sec

Ours† (pre-trained) 2.42×107 5.10×1012 0.153 sec

Ours† 2.42×107 2.61×1013 6.082 sec

Table 6.2: Evaluations of computational complexity. Ours and Ours† represent the
M = 1 (white LED only) and M = 2 (white&amber LEDs), respectively. “pre-
trained” represents the model without meta-auxiliary training and test-time adapta-
tion. All evaluations are calculated on images of size 1392×1303.

Nikon D5100 Nikon D200 Canon 300D Point Grey Grasshopper2 14S5C Nikon D700

Figure 6.5: Visual comparison of the ground truth and our estimated CSSs.

6.2.4 Qualitative Comparison

The qualitative comparison results of the 630nm band of the spectral reflectance

are shown in Fig. 6.3. The RGB images under white LED, the ground truth, and

the error maps of all competing methods are shown from top to bottom. The first

four columns and last three columns show the results from synthetic data and real

data, respectively. We can see that our method with MAXL performs better than

others and is more robust on real data. More qualitative evaluations are shown in

the Appendix D.
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Methods MAE↓ RMSE↓ SAS↓ PSNR↑ SSIM↑

Ours (pre-trained) 0.0625 0.0828 0.0748 22.91 0.8818

w/o pyramid 0.1277 0.1585 0.1432 16.58 0.7420

w/o FUSE 0.0676 0.0887 0.0803 22.27 0.8738

w/ zero mi in FUSE 0.0711 0.0922 0.0830 22.08 0.8696

w/o R̂
i

Ĥ 0.0669 0.0876 0.0798 22.55 0.8770

w/o ω̂i 0.0691 0.0909 0.0824 22.24 0.8726

w/o ∆R̂
i

0.3485 17.4572 0.8131 1.19 0.3836

w/ ground truth CSSs 0.0621 0.0824 0.0744 22.95 0.8818

w/o spectral-attention 0.0730 0.0958 0.0894 21.44 0.8678

w/o auxiliary task 0.0674 0.0888 0.0796 22.46 0.8703

Table 6.3: Ablation studies of network components.

Methods MAE↓ RMSE↓ SAS↓ PSNR↑ SSIM↑

Ours (pre-trained) 0.0625 0.0828 0.0748 22.91 0.8818

w/ meta-auxiliary training 0.0611 0.0814 0.0739 23.03 0.8828

w/ test-time adaptation 0.0624 0.0827 0.0745 22.92 0.8822

w/ MAXL 0.0607 0.0809 0.0734 23.09 0.8833

Table 6.4: Ablation studies of learning strategies.

Fig. 6.4 visualizes the effect of using one (M = 1) or two (M = 2) illuminations

with/without MAXL on real data. It shows that the extra illumination can help

to reduce the overall error of the entire image, and the MAXL benefits some local

details.

To evaluate the generated CSSs of five selected testing cameras, we display the vi-

sual comparison between the ground truth and our estimation in Fig. 6.5. It demon-

strates that our proposed method can accurately estimate the CSSs that are unseen

during the training.
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Methods MAE↓ RMSE↓ SAS↓ PSNR↑ SSIM↑

n = 0 0.0625 0.0828 0.0748 22.91 0.8818

n = 1 0.0613 0.0816 0.0737 23.01 0.8826

n = 2 0.0612 0.0812 0.0736 23.02 0.8828

n = 3 0.0611 0.0814 0.0736 23.03 0.8828

n = 4 0.0611 0.0812 0.0735 23.03 0.8830

n = 5 0.0607 0.0809 0.0734 23.09 0.8833

n = 6 0.0609 0.0813 0.0734 23.07 0.8827

Table 6.5: Ablation studies of number of gradient descent updates n.

Methods MAE↓ RMSE↓ SAS↓ PSNR↑ SSIM↑

M = 1 0.0625 0.0828 0.0748 22.91 0.8818

M = 2 0.0580 0.0778 0.0696 23.67 0.8891

M = 3 0.0555 0.0742 0.0674 23.97 0.8939

Table 6.6: Ablation studies of number of different illuminations M .

6.2.5 Ablation Studies

We conduct ablation studies on the synthetic data. As shown in Tab. 6.3, pyramid

learning (multi-scale outputs) plays a vital role in the performance, and a proper

fusion strategy is also important compared with no FUSE (simply output encoder

feature ei−1 in FUSE) and zero mi. We also remove R̂
i

Ĥ (use ∆R̂
i
as R̂

i
), ∆R̂

i
(use

ω̂iR̂
i

Ĥ as R̂
i
) and ω̂i (use R̂

i

Ĥ + ∆R̂
i
as R̂

i
) in all output modules to investigate

the impact of the subspace component. We can see that the physical properties of

the spectral reflectance can benefit its recovery, but its subspace component alone is

insufficient. Utilizing the ground truth CSSs to calculate the Ĥ can further improve

the results. Besides, the performance gain from the spectral-attention blocks illus-

trates the effectiveness of spectral correlation. The experimental results without the

auxiliary task also demonstrate that it can help the optimization of the primary task.
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RGB RGB error Reflectance error

1.0
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Figure 6.6: The application results of recovered spectral reflectance. In each row, we
randomly extract a pixel from the green box as the reference (the source material) and
regard pixels from the blue box as the observation (the target material). A smaller
green box is to reduce the variance of the reference. Then we calculate the error maps
(MAE) between the reference and the observation for both RGB values and recovered
spectral reflectances. The green and the blue box in the first row represent the salt
and the sugar, respectively. The green and the blue box in the second row represent
the flawless tomato peel and the region with a puncture, respectively.

As shown in Tab. 6.4, after fine-tuning the pre-trained model with meta-auxiliary

training, the evaluation results show an improvement but are still sub-optimal. We

also evaluate the performance of direct test-time adaptation without meta-auxiliary

training. While the performance improvement is minor, we do not observe the catas-

trophic forgetting as mentioned in a previous research [49].

We also investigate the effect of gradient descent update step n as reported in

Tab. 6.5. We choose n = 5 for the best performance. More update steps may lead to

the overfitting on the auxiliary task. Note that we utilize the same n during training

and testing.

In Section 6.2.3, we illustrate the performance of using one (M = 1) or two (M = 2)

illuminations. To further demonstrate the robustness of our proposed architecture

with more illuminations, we utilize the spectrum of a halogen light as the illumination

L3 to synthesize the input RGB image I3. Reported in Tab. 6.6 are the results with
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Figure 6.7: Error maps of our recovered 430nm and 600nm bands.

1 ∼ 3 illuminations. As we can see, utilizing a third illumination can further improve

the performance of recovery.

6.2.6 Applications

Spectral reflectance describes the distinctive intrinsic characteristics of an object’s

material or composition and is widely leveraged for material recognition [303–305].

For example, it has been found to be a more reliable cue for assessing the quality of

food, particularly fruits, compared to RGB images [290]. To demonstrate that our

recovered spectral reflectance possesses the same property, we conduct experiments

of distinguishing between salt and sugar, and detecting fruit puncture in a tomato.

The objects in each case have similar RGB colors, with salt and sugar both appearing

white, and the tomato peel and pulp both appearing red.

Fig. 6.6 shows the two example results. We can see that the discrepancy of different

materials (salt and sugar, tomato peel and pulp) are more distinguishable on our

recovered spectral reflectance than that on the original RGB image. For example,

the error between the salt and sugar on RGB images is only 1.78× 10−5 but 0.53 on

the recovered spectral reflectance, and the error between the tomato peel and pulp

on RGB images and spectral reflectance are 0.09 and 0.17, respectively.
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6.2.7 Failure Cases

Our method is limited on bands that have little impact on the RGB images, such as

marginal bands, which is a common issue for most approaches. As shown in Fig. 6.1

and Fig. 6.5, the illumination spectra and CSSs are heterogeneous, and the intensity of

marginal bands (e.g., 430nm) is much lower than that of central bands (e.g., 600nm).

As a result, marginal bands are harder to recover. The error maps of our recovered

430nm and 600nm bands are shown in Fig. 6.7, which illustrate that the errors on

the marginal bands are higher than that of central bands.

6.3 Summary

This chapter proposes a novel meta-auxiliary learning scheme for spectral reflectance

recovery from RGB images. Although the domain-shift problem between the synthetic

and real data has not been totally solved, the performance on the real collected data

is significantly better than models without the meta-auxiliary learning. By the end

of this chapter, I focus on solving the problem of the low level vision tasks. In the

next chapter, I propose to address the glass surface segmentation where the existing

semantic segmentation methods fail to detect the glass correctly.
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Chapter 7

Glass Segmentation with
RGB-Thermal Image Pairs

In this chapter, I first analyse the physical feasibility of combining visible and infrared

light for glass segmentation. A novel transformer-based architecture is proposed for

multi-modality fusion. Experiments show that utilizing RGB-T image pairs performs

significantly better than only using RGB or thermal image.

7.1 Physical Analysis

Glass could have different meanings, broad or narrow, and different types of glass have

different properties and applications. In this section, we first explain the different glass

types, their applications and optical properties. Then we narrow down the glass type

to daily transparent glass as the focus of this paper which is also the most difficult

to segment. Lastly, we introduce our RGB-T fusion idea and discuss the limitations

of other alternative solutions.

Glass is non-crystalline and can be categorized into two types based on its com-

positions [307]. (1) Silicate glass, based on silicon dioxide (SiO2) which is abundant

on earth in the form of quartz and beach sands. SiO2 has a very high melting tem-

perature (∼ 1700◦C), which is hard to work with, and hence, other substances are

often added, e.g.Na2O, CaO, etc., to lower the melting temperature and to tailor to

different applications: vitreous silica (100% SiO2) is used for furnace tubes, soda-lime
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Figure 7.1: Typical glass spectral transmission curve [306] and response bands of
RGB and thermal cameras (colored regions).

silicate (72% SiO2 with Na2O and CaO) is used for windows, containers and table-

ware, “crown” (69% SiO2 with Na2O, B2O3 and K2O) is used for optical lens, and

aluminosilicate (53% SiO2 with Al2O3) is used for fibreglass, etc.. (2) Non-silicate

based glass includes amorphous metals, chalcogenides, fluorides, polymers, etc.

For optical property, glass is transparent to visible light because there are no grain

boundaries (the interface between two crystals formed during cooling) which scatter

light in polycrystalline materials [308]. Meanwhile, silicate glasses absorb light with

wavelengths longer than 4µm, which makes them opaque to long infrared light1 (Fig.

7.1). Non-silicate glass could sometimes transmit long infrared light, e.g., fluoride

glasses and chalcogenide glasses can transmit light up to 7µm and 18µm, respectively,

but they are used for infrared imaging, infrared fiber, and CD/DVDs.

Some processing can change the transparency slightly. Glass equally transmits

visible light at different wavelengths (Fig. 7.1), but can appear tinted after adding

some metallic oxides that absorb light of certain wavelengths, e.g., blue by cobalt,

green by chromium. Sandblasting or acid etching clear glass creates frosted glass

which is translucent. Low-emissivity (Low-e) glass is glass with a thin coating layer

to prevent transmission of light over 780nm and is usually used as a window to the

1In this paper, these words are interchangeable, “thermal radiation, thermal energy, long infrared
light, long-wave infrared light”, all referring to electromagnetic radiation of 8 to 12 µm.
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Figure 7.2: A toy illustration for the imaging models of RGB and thermal cameras
without and with glass in the scene (a,b). The glass plate held by the person is
invisible in the RGB image while visible in the thermal image (c).

outside. Note that no coating can increase the transmission rate.

In this thesis, we limit the scope to daily transparent glass, i.e., the plate

glass normally seen in our daily life such as glass windows, doors and tables, which is

the most difficult to detect and segment. The daily glass in human-made environments

is mostly silicate-based, more specifically, soda-lime silicate (SiO2 + Na2O + CaO).

Silica glass is like a band-pass optical filter which has a cut-on wavelength 350nm

and a cut-off wavelength 4µm (Fig. 7.1). It has high transmission in the visible band

(0.4µm ∼ 0.7µm) but low in the thermal band (8µm ∼ 12µm).

Motivated by this fact, we propose to use an RGB-T image pair to detect

and segment glass. A toy example is shown in Fig. 7.2(a, b). The tree behind the
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Figure 7.3: Examples of RGB-T image pairs with GT masks (bottom row) in our
dataset. The last three columns show images with glass at all pixels or without glass.
Please note that the image border of each mask is set to black for better visualization.

glass is visible to the RGB camera but not to the thermal camera, which is not the

case when the glass is removed. As a result, images captured by thermal cameras

have less arbitrary textures than RGB cameras on glass regions, while keeping similar

textures on non-glass regions. Fig. 7.2(c) shows a real example.

RGB-T is better than the alternative methods. The problem of RGB-UV is that

there is limited UV light indoor. The problem of RGB-MWIR (middle-wave IR) is

that the MWIR camera is very costly ($10−1 per pixel [309]). RGB-Near IR (NIR)

only works for some low-e glass. In contrast, RGB-T works for any silicate glass,

works indoors and is low cost (< $500), and it is extensible to traditional glass

alternatives. We do not know whether some glass in our collected data is made of

polymers like plastics and acrylic because we could not check, but acrylic and plastics

of several millimeters thick are also opaque to thermal radiation. In the future, there

could be new technologies to make glass windows and glass doors; RGB-T should

still work because the new materials are expected to have high visibility and low heat

transmission, i.e.opaque to heat to keep heat out in summer and to prevent heat loss

in winter.

7.2 Proposed Dataset

Coupled RGB-T image pairs is a new idea for robust glass segmentation, for which

this paper contributes a new RGB-T dataset with GT segmentation masks (see Fig.
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(a) Image acquisition device (b) Glass area distribution (c) Connected components distribution (d) Glass location distribution

Figure 7.4: The RGB-T image acquisition device (a) and statistical analysis of our
dataset (b,c,d). See text for details.

7.3).

Dataset construction

We capture RGB-T pairs with a FLIR ONE Pro camera [310], which consists of a

nearly collocated RGB sensor and a thermal sensor. The thermal and RGB images

are aligned with the FLIR Thermal Studio software [311] and both are saved at a

resolution of 640× 4802. During capturing, the camera is connected to an iPhoneXR

for real-time image display (See Fig 7.4(a)). We use LabelMe [312] to manually

annotate segmentation masks over RGB images. Pixels of raw thermal images (only

one channel) represent the absolute temperature in the range −20◦C ∼ 120◦C, we

calculate the min and max values of each thermal image and normalize it to [0, 1]

using min-max normalization for obtaining the relative temperature before inputting

to the algorithm, which is less sensitive to the variation of ambient temperature.

Pseudocolor of thermal images shown in the paper is rendered from grayscale using

Matplotlib [313].

Our new dataset covers a variety of scenes, such as libraries, shopping malls, gal-

leries, train stations, museums, streets and houses, yielding 5551 RGB-T image pairs

from 40 scenes. Among them, we capture 370 pairs without glass in 7 scenes. To

generate the train and test split, we randomly select 23 scenes with glass and 5 scenes

without glass for training and the others are used for testing (4427/1124 RGB-T

2The raw thermal image resolution is 160× 120. The camera software performs super resolution
for the thermal image and resizes it to 640× 480.
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pairs for train/test). Note that for the test split, we manually select some images

with structures that visually look like glass, e.g., door openings, holes in a wall. Such

challenging examples increase the segmentation difficulty for RGB-only solutions and

better reflect the merit of our RGB-T fusion idea (e.g., door openings have very

different appearances with glass in thermal images).

Dataset statistics

Following [56, 57], below we conduct some statistical analyses using GT segmentation

masks from our dataset:

Glass area distribution. For each mask, we calculate the ratio of the glass area to the

entire image area, where a ratio of 0 and 1 indicate, respectively, images without glass

and images with glass at all pixels. As shown in Fig. 7.4(b), most of the captured

images have ratios in the range of [0.2, 0.8]. There are also quite a few images with a

ratio of 0 or 1, which are extreme cases captured on purpose.

Connected components distribution. An image may contain several glass regions. We

compute the number of connected components in each binary mask and show the

histogram in Fig. 7.4(c). The majority of images have 0∼4 connected components

and 52 at most. Images with more than 10 connected components are usually from

complex scenes such as that in a shopping mall.

Glass location distribution. Fig. 7.4(d) shows the probability map of each pixel to be

glass. The center region has the highest probability.

7.3 Proposed Method

7.3.1 Overview

Our architecture follows the standard encoder-decoder framework with skip-connections

for dense segmentation [314], which consists of two encoding branches, one decoding

branch and a multi-modal fusion module (MFM) as the bridge, as shown in Fig. 7.5(a).

Specifically, we apply two ResNet-50 [2] encoders to convert the RGB and thermal
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Figure 7.5: Neural network architecture for RGB-T glass segmentation. Our network
consists of two separate ResNet-50 backbones as encoders for extracting high-level
features from the RGB and thermal images, a transformer-based multi-modal fusion
module for integrating the two modalities and a decoder for generating the segmen-
tation result. Encoder/decoder B.i represents the ith encoder/decoder block.

input images into two H ×W ×C feature volumes, where H,W and C, respectively,

denote the height, the width and the channel size. In our implementation, H and W

are varying and depend on the input image resolution, and C = 256. We supplement

the two features with sinusoidal positional encodings [315] and produce a H×W ×C

fused feature volume by the MFM. The fused feature further passes through a decod-

ing branch with four decoder blocks and is progressively upsampled to the resolution

of the input images. Finally, a convolution layer with a sigmoid function converts the

results to the final segmentation. Note that all convolution layers other than those

before the sigmoid functions are followed by a batch normalization layer and a ReLU

function, which are omitted in Fig. 7.5. The Binary Cross-Entropy loss is used for

training. Please refer to Appendix E for more architectural details.
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7.3.2 Multi-modal Fusion Module (MFM)

The foundation of our RGB-T fusion is the attention mechanism in Transformer,

which is known to be powerful in combining information from different modalities [190,

316]. As shown in Fig. 7.5(b), our MFM contains four iterative blocks and the ith

(i ∈ {1, 2, 3, 4}) block takes in an RGB feature f ir and a thermal feature f it both

with the same resolution of HW × C3. We stack f ir and f it and use a transformer

layer to obtain a 2HW × C feature map f irt. We then generate a 2HW × 1 weight

vector wi by passing f irt through a transformer layer followed by a linear layer and

a sigmoid function. Such a weight vector is further used to update the RGB and

thermal features. Formally, the above process can be summarized as:

f irt = trans(stack(f ir, f
i
t )), (7.1)

wi = sigmoid(linear(trans(f irt))), (7.2)

f i+1
r = trans(f ir) + (wi ⊗ f irt)[: HW, :], (7.3)

f i+1
t = trans(f it ) + (wi ⊗ f irt)[HW :, :], (7.4)

where trans(), linear(), sigmoid(), stack() denote the transformer layer, the linear

layer, the sigmoid function and the stack operation, respectively. The symbol ⊗

denotes the element-wise multiplication. The transformer layer consists of a multi-

head self-attention and a feed-forward network [317] (See Appendix E for details).

Lastly, at the 4th iteration, the fused feature is computed as (w4 ⊗ f4rt)[: HW, :

] + (w4 ⊗ f4rt)[HW :, :] and reshaped back to H ×W × C.

In our MFM, the transformer blocks from the top and the bottom branches ex-

tract non-local intra-modality dependencies from the RGB feature f ir and the thermal

feature f it , respectively, and we utilize an additional transformer block in the middle

branch to extract non-local inter-modality dependencies from the stack of f ir and f it .

Considering the discrepancy of two modalities, deficiencies of one modality should be

properly compensated by the other. Instead of directly unstacking the multi-modal

3f1r and f1t are reshaped from the H ×W × C feature volumes from the two encoders.
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Method #Params
Inference

time

Model

size

Images with glass Images without glass All images

MAE ↓ IOU ↑ Fβ ↑ BER ↓ MAE ↓ IOU∗ ↑ FPR ↓ MAE ↓

RTFNet [214] 185.23M 0.016s 708Mb 0.068 88.92 0.936 6.675 0.188 83.69 0.89 0.058

ShapeConv [319] 41.21M 0.534s 161Mb 0.059 87.65 0.930 6.940 0.019 98.24 0.41 0.054

ESANet [320] 46.88M 0.022s 359Mb 0.051 90.15 0.945 5.863 0.030 97.70 0.25 0.040

CMX [321] 66.56M 0.035s 255Mb 0.031 92.40 0.956 5.421 0.004 99.70 0.06 0.029

Segformer [322] 34.07M 0.017s 131Mb 0.052 89.22 0.934 7.208 0.063 93.72 0.34 0.053

Segmenter [323] 103.15M 1.067s 784Mb 0.072 85.83 0.912 8.451 0.303 92.06 0.31 0.072

MCNet [324] 54.64M 0.266s 210Mb 0.177 67.45 0.782 19.934 0.118 89.51 0.60 0.172

DPANet [325] 92.40M 0.019s 354Mb 0.241 71.51 0.838 15.051 0.291 83.56 0.90 0.154

HAINet [326] 59.82M 0.023s 229Mb 0.078 87.16 0.932 7.247 0.069 94.44 0.48 0.062

Zhang et al. [192] 38.87M 0.053s 445Mb 0.156 75.13 0.842 14.141 0.488 51.57 1.00 0.163

SSF [179] 32.93M 0.028s 126Mb 0.081 84.53 0.909 8.068 0.356 64.47 0.96 0.097

UCNet [174] 31.26M 0.026s 120Mb 0.079 84.70 0.913 8.324 0.028 97.24 0.14 0.071

CoNet [327] 43.66M 0.021s 168Mb 0.118 79.94 0.876 9.336 0.533 46.83 1.00 0.145

ATSA [189] 32.16M 0.021s 124Mb 0.088 83.87 0.903 8.185 0.276 73.57 1.00 0.098

DANet [175] 26.68M 0.007s 102Mb 0.082 85.63 0.915 7.982 0.045 96.36 0.36 0.069

HDFNet [177] 54.77M 0.019s 419Mb 0.055 89.56 0.941 5.673 0.019 98.49 0.59 0.048

FRDT [328] 72.81M 0.013s 279Mb 0.094 82.53 0.890 9.050 0.313 69.49 0.96 0.107

RD3D [176] 46.90M 0.013s 180Mb 0.064 88.94 0.938 6.610 0.037 97.13 0.26 0.045

DCFNet [182] 108.49M 0.064s 373Mb 0.059 88.13 0.930 6.757 0.036 96.45 0.21 0.056

UTA [329] 48.61M 0.023s 98Mb 0.051 89.59 0.933 6.060 0.069 93.00 0.23 0.052

EBS [330] 118.96M 0.036s 467Mb 0.041 91.24 0.946 5.528 0.031 96.97 0.21 0.040

VST [190] 83.83M 0.034s 321Mb 0.050 90.03 0.939 5.857 0.026 97.47 0.15 0.044

CLNet [187] 246.13M 0.142s 941Mb 0.045 91.01 0.945 4.983 0.021 98.03 0.14 0.041

SPNet [185] 175.29M 0.058s 671Mb 0.044 90.76 0.947 5.064 0.035 96.68 0.40 0.041

EBLNet [58] 48.36M 0.012s 185Mb 0.113 80.54 0.880 10.301 0.129 88.67 0.72 0.104

Ours (Thermal-only) 65.14M 0.039s 238Mb 0.189 68.63 0.781 19.315 0.136 86.68 0.55 0.177

Ours (RGB-only) 65.14M 0.039s 238Mb 0.056 88.94 0.929 6.618 0.016 98.42 0.11 0.052

Ours (RGB-T) 85.02M 0.048s 328Mb 0.027 93.80 0.965 4.078 0.003 99.73 0.08 0.024

Table 7.1: Quantitative evaluations. All compared methods (7 for semantic segmen-
tation, 17 for salient object detection and 1 for glass segmentation) are retrained
with our dataset. The performances on images with and without glass are separately
evaluated. We also list the results of our thermal-only and RGB-only variants. The
colors blue and cyan represent the best and the second best methods, respectively.

features f irt along the first dimension and feed them to each modality, we generate

a weight vector wi as the spatial attention mask to remove the detrimental features

and keep the beneficial ones. We apply the weight vector (spatial attention mask) wi

on multi-modal features using residual multiplication following Lee et al. [318].

7.3.3 Decoder

Our decoder consists of four blocks, where each block takes in (1) an RGB feature

volume er from the RGB encoder, (2) a thermal feature et from the thermal encoder,

and (3) a fused feature d from the previous decoder block. We concatenate er and d
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and use three convolution layers and a sigmoid function to compute a single-channel

weight volume wr, which has the same height and width as that of d. We apply the

same operation to et and d and obtain another weight wt. Finally, the output of the

block is calculated as wr⊗er+wt⊗et+d. Similar to the weight vector wi in MFM,

wr and wt are used as the spatial attention mask for feature fusion.

Note that we could have chosen transformer layers for feature fusion in the decoder

as that in MFM, but we opt for a convolution-based spatial attention scheme due

to the intensive memory constraints of self-attention in high resolution [331]. In

addition, each decoder block is further followed by a convolution layer and a bilinear

upsampling to gradually recover the spatial dimension, the detail of which is omitted

in Fig. 7.5(c).

7.4 Experiments

7.4.1 Implementation Details

We have implemented our method in PyTorch [248]. The ImageNet-pretrained ResNet-

50 backbone (encoder block 1∼4) is loaded from torchvision. The batch size is 16.

The learning rate is initialized as 10−4 and changed to 10−5 after 200 epochs. We use

random flipping, resizing and cropping for data augmentation. Our model is trained

with the AdamW [332] optimizer for 300 epochs, which takes around 35 hours on an

NVIDIA RTX A6000 GPU with 48GB of RAM.

We adopt standard segmentation metrics: mean absolute error (MAE), intersec-

tion over union (IOU), maximum F-measure (Fβ) and balanced error rate (BER).

These four metrics are commonly used in previous glass segmentation papers [56–58],

whereas only MAE is valid for evaluating images without glass (i.e., GT mask is

black). To assess our performance on those images without glass in our new dataset,

together with MAE, we use inverse intersection over union (IOU∗) and false positive

rate (FPR). IOU∗ takes inverse masks and is defined as IOU(1 − result, 1 − GT).
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Method MAE↓ IOU↑ BER↓

MirrorNet [333] 0.094 81.3 8.98

GDNet [56] 0.088 82.6 8.42

Translab [159] 0.081 85.1 7.43

EBLNet [58] 0.074 86.0 6.90

Ours (RGB-only) 0.072 86.6 7.35

Table 7.2: Quantitative evaluations on RGB-only glass segmentation dataset
GDD [56]. Evaluation results except ours are directly copied from [58]. The col-
ors blue and cyan represent the best and the second best methods, respectively.

FPR is calculated as the ratio of the number of false positives (i.e., glass are wrongly

detected) to the total number of images without glass. Because MAE is commonly

used, we use it to evaluate on all images.

7.4.2 Quantitative Comparison

RGB-T image pairs are new cues for glass segmentation. We compare three vari-

ants of our method with 24 state-of-the-art methods from other related areas, which

include ShapeConv [319], ESANet [320] and CMX [321] for RGB-D semantic seg-

mentation, RTFNet [214] for RGB-T semantic segmentation, Segformer [322] and

Segmenter [323] for RGB-only semantic segmentation, MCNet [324] for thermal-

only semantic segmentation, DPANet [325], HAINet [326], SSF [179], UCNet [174],

CoNet [327], ATSA [189], DANet [175], HDFNet [177], FRDT [328], RD3D [176],

DCFNet [182], UTA [329], EBS [330], VST [190], CLNet [187] and SPNet [185] for

RGB-D salient object detection, and Zhang et al. [192] for RGB-T saliency detection.

All of these competing methods are retrained with our dataset using RGB-T pairs as

input. We also compare with a state-of-the-art RGB-only glass segmentation method

EBLNet4 [58], which is retrained with the RGB images in our dataset.

4Other recent glass segmentation methods [56, 57, 333] did not provide training codes for their
models.
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Figure 7.6: Qualitative comparison of our method and 5 state-of-the-art methods
(HDFNet [177], ESANet [320], CLNet [187], SPNet [185], and VST [190]). Results of
our RGB-only and thermal-only variants are also displayed. For better visualization,
we set the image border of each mask to black. The superiority of our method can
be clearly validated at various places, as highlighted by the red arrows.
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As shown in Table 7.1, the last three rows give the ablation results of our full RGB-

T method and its two variants that use either thermal or RGB data only. Albeit the

thermal-only variant is the worst, it can significantly boost the performance when

it is combined with RGB images. For example, the MAE of our RGB-T method

on glass images is 86% and 52% better than the two variants, which demonstrates

the effectiveness of our RGB-T fusion idea for glass segmentation. Please refer to

Section 7.4.6 for more ablation studies.

Our approach consistently outperforms previous methods on most metrics by a

large margin. Similar to our method, CMX, EBS and Segformer utilize a combination

of convolution and transformer (hybrid) in their architectures, which achieve superior

performance in the evaluations of RGB-T and RGB-only, respectively. We attribute

it to the hybrid architecture [7, 334], while pure convolution (e.g., ESANet, CLNet,

SPNet, EBLNet) or transformer (e.g., VST, Segmenter) architectures obtain inferior

results.

The performance of our thermal-only variant and MCNet is much worse than that

of other RGB-only and RGB-T methods. We believe that there are two reasons.

First, the resolution of thermal images is lower than that of RGB images. Hence,

the segmentation results of thermal images are poor. Second, even though the glass

is opaque to the thermal light, we need to compare it with the RGB images to see

the contrast. Hence, it is difficult, if not impossible, to distinguish glass and other

opaque objects using a single thermal image.

7.4.3 Qualitative Comparison

Figure 7.6 shows the qualitative comparison results. Our method is able to accurately

segment the glass regions in various challenging scenes, while previous methods and

the RGB-only variant produce a plethora of noticeable errors: (1) blurry segmentation

results and fuzzy boundaries, (2) under-segmentation masks due to the influence by

the background behind glass, and (3) over-segmentation results where cabinet or
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Method
VT5000 [335] VT1000 [191]

MAE ↓ Sm ↑ Fβ ↑ MAE ↓ Sm ↑ Fβ ↑

MTMR [227] 0.114 0.680 0.662 0.119 0.706 0.755

M3S-NIR [228] 0.188 0.631 0.607 0.151 0.717 0.734

SGDL [191] 0.089 0.750 0.738 0.090 0.787 0.807

ADF [335] 0.048 0.864 0.864 0.034 0.910 0.923

MIDD [233] 0.043 0.868 0.872 0.027 0.915 0.926

APNet [194] 0.035 0.876 0.875 0.021 0.921 0.930

ECFFNet [193] 0.038 0.874 0.872 0.021 0.923 0.930

MIA-DPD [336] 0.040 0.879 0.880 0.025 0.924 0.935

DCNet [197] 0.035 0.872 0.870 0.021 0.922 0.928

Ours 0.036 0.881 0.881 0.020 0.929 0.941

Table 7.3: Quantitative evaluations on RGB-T SOD dataset VT5000 [335] and
VT1000 [191]. The colors blue and cyan represent the best and the second best
methods, respectively.

door openings are wrongly identified as glass. The last two rows show two extreme

cases where the scenes are completely covered by glass. The human bodies in the

thermal images are reflections of the photographer, which are invisible in the RGB

images, further validating the different transmission models of visual and thermal light

through glass. Our thermal-only variant tends to recognize the distinct boundaries

which may mislead the segmentation process. We provide more visual results in

Appendix E.

7.4.4 Evaluations on GDD dataset [56]

Table 7.2 compares our RGB-only variant with four state-of-the-art glass segmenta-

tion methods: MirrorNet [333], GDNet [56], Translab [159] and EBLNet [58]. Both

our variant and compared methods are trained and tested on the RGB-only glass seg-

mentation dataset GDD [56]. Our RGB-only variant removes the thermal branch from
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Method
Images with glass Images without glass All images

MAE ↓ IOU ↑ Fβ ↑ BER ↓ MAE ↓ IOU∗ ↑ FPR ↓ MAE ↓

Thermal-only 0.189 68.63 0.781 19.315 0.136 86.68 0.55 0.018

Dual-Thermal 0.189 68.47 0.783 19.120 0.120 88.34 0.50 0.018

RGB-only 0.056 88.94 0.929 6.618 0.016 98.42 0.11 0.052

Dual-RGB 0.055 89.21 0.932 6.250 0.018 98.25 0.10 0.050

RGB-T (Ours) 0.027 93.80 0.965 4.078 0.003 99.73 0.07 0.024

Table 7.4: Ablation studies on input. The colors blue and cyan represent the best
and the second best methods, respectively.

our RGB-T architecture and the resulting RGB-only architecture is a combination

of convolution and transformer, while the four existing methods adopt convolution

only. Our RGB-only variant achieves the best in IOU and MAE and the second

best in BER, echoing recent findings of other recognition methods (e.g., object de-

tection [7], wireframe parsing [334]), which also demonstrate the effectiveness of the

hybrid structure of convolution and transformer.

7.4.5 Evaluations on RGB-T SOD datasets

To show the versatility of our method on other RGB-T tasks, we retrain our model

on the 2500 training images from VT5000 dataset [335] for RGB-T salient object

detection (SOD), then evaluate on the 2500 testing images from VT5000 dataset and

1000 images from VT1000 dataset [191]. Nine state-of-the-art RGB-T SOD methods

are compared including three conventional graph-based methods (MTMR [227], M3S-

NIR [228], SGDL [191]) and six deep learning based methods (ADF [335], MIDD [233],

APNet [194], ECFFNet [193], MIA-DPD [336], DCNet [197]). We take the mean ab-

solute error (MAE), S-measure (Sm) [337], and maximum F-measure (Fβ) to evaluate

the SOD results. As shown in Table 7.3, our method is comparable to methods

specifically designed for RGB-T SOD.
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Method
Images with glass Images without glass All images

MAE ↓ IOU ↑ Fβ ↑ BER ↓ MAE ↓ IOU∗ ↑ FPR ↓ MAE ↓

SFS 0.058 89.88 0.946 5.865 0.041 96.08 0.29 0.045

SFC 0.052 90.47 0.945 5.588 0.025 98.15 0.36 0.043

PAF [61] 0.038 91.73 0.954 5.188 0.010 99.04 0.05 0.035

AT [184] 0.038 91.96 0.953 4.885 0.016 98.48 0.20 0.033

MFM-EGFNet [218] 0.030 92.82 0.960 5.328 0.006 99.42 0.10 0.028

MFM-DS 0.031 93.06 0.959 4.392 0.004 99.59 0.05 0.027

MFM-DC 0.033 92.75 0.958 4.565 0.003 99.69 0.06 0.029

MFM (Ours) 0.027 93.80 0.965 4.078 0.003 99.73 0.07 0.024

Table 7.5: Ablation studies on MFM. The colors blue and cyan represent the best
and the second best methods, respectively.

Method
Images with glass Images without glass All images

MAE ↓ IOU ↑ Fβ ↑ BER ↓ MAE ↓ IOU∗ ↑ FPR ↓ MAE ↓

Decoder-DS 0.033 92.87 0.960 4.460 0.007 99.30 0.11 0.030

Decoder-DC 0.034 92.42 0.956 4.907 0.008 99.24 0.10 0.031

Decoder (Ours) 0.027 93.80 0.965 4.078 0.003 99.73 0.07 0.024

Table 7.6: Ablation studies on decoder. The colors blue and cyan represent the best
and the second best methods, respectively.

7.4.6 Ablation Studies

Below we evaluate the contributions of different components of our architecture, fol-

lowed by limitation analysis.

Impact of inputs

In Table 7.1, we obtain our RGB-only or thermal-only variant by removing the cor-

responding encoders from our architecture. To verify that the performance decrease

is not due to the architectural change, we additionally train another two models by

inputting the same RGB/thermal images to both encoders (dual-RGB/thermal). Ta-

ble 7.4 shows that the differences between RGB/thermal-only and dual-RGB/thermal
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Method
Images with glass Images without glass All images

MAE ↓ IOU ↑ Fβ ↑ BER ↓ MAE ↓ IOU∗ ↑ FPR ↓ MAE ↓

ResNet-18 0.033 92.34 0.956 5.388 0.006 99.48 0.09 0.031

ResNet-34 0.031 92.96 0.959 5.049 0.011 98.90 0.12 0.030

ResNet-101 0.030 93.14 0.961 4.982 0.010 99.04 0.07 0.029

ResNet-50 w/o pretraining 0.057 87.29 0.924 8.063 0.064 94.02 0.50 0.057

ResNet-50 (Ours) 0.027 93.80 0.965 4.078 0.003 99.73 0.07 0.024

Table 7.7: Ablation studies on backbones. The colors blue and cyan represent the
best and the second best methods, respectively.

Method
Images with glass Images without glass All images

MAE ↓ IOU ↑ Fβ ↑ BER ↓ MAE ↓ IOU∗ ↑ FPR ↓ MAE ↓

Training w/ glass images only 0.029 93.03 0.960 5.116 0.006 99.36 0.09 0.028

Training w/ all images (Ours) 0.027 93.80 0.965 4.078 0.003 99.73 0.07 0.024

Table 7.8: Ablation studies on images without glass. The colors blue and cyan
represent the best and the second best methods, respectively.

are negligible, validating that the accuracy gap is because of using single modality

rather than architectural differences.

Effectiveness of MFM

We compare our method with four simple baselines by replacing the MFM with the

simple feature summation (SFS), simple feature concatenation (SFC), the pixel-wise

attention fusion (PAF) [61] and affine transform (AT) [184]. The multi-modal fusion

module from EGFNet [218] for RGB-T fusion are also utilized to replace our MFM.We

also modify our MFM by replacing the weighted summation with direct summation

(DS) or direct concatenation (DC), where the attention weights are discarded in the

two variants. As shown in Table 7.5, our variants using the MFM (the last row)

achieves the best performance.
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RGB Thermal Ours (RGB) Ours (RGB-T) GT

Figure 7.7: Two typical failure examples. The red arrow highlights small glass regions.

Selection of backbones

Following other related methods [174, 179, 325–327], we exploit a pretrained ResNet

backbone. In Table 7.7, we evaluate different pretrained backbones and the ResNet-50

backbone without pretraining. We can see that pretraining is critical for the perfor-

mance and the ResNet-50 yields the best results. We believe that the performance

decrease of ResNet-101 is due to over-parameterization which makes it hard to train.

Variants of our decoder

Similar to the evaluation of the weighted summation in MFM, we also replace the

weighted summation in decoder blocks with direct summation (DS) or direct con-

catenation (DC). As shown in Table 7.6, our decoder that uses weighted summation

outperforms the other two variants.

Images without glass

To reduce the false positive segmentation, our training data includes 370 RGB-

thermal images pairs without any glass. As shown in Table 7.8, the model trained

on only glass images has an obvious performance decrease on both images with and

without glass, which demonstrates the necessity of such samples.
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Figure 7.8: Application of monocular 3D reconstruction. From left to right, it shows
the RGB images, the glass segmentation masks by our method, the raw reconstructed
point clouds by Adabins [338] and our corrected point clouds, respectively.
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Figure 7.9: Application of semantic image segmentation. From left to right, it shows
the RGB images, the glass segmentation masks by our method, the raw semantic
segmenation results of DETR [7] and our refined results, respectively.
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7.4.7 Applications

Monocular 3D Reconstruction

State-of-the-art 3D reconstruction approaches including recent deep-learning-based

ones [338–340] exhibit challenges when handling scenes with glass (e.g., urban build-

ings, indoor scenes). While it seems that glass elements occupy a relatively small

region in an entire scene, inaccurate glass geometry is catastrophic to the overall 3D

reconstruction performance (see Fig. 7.8), leading to undesirable geometry artifacts

and subsequent unpleasant user experiences in downstream applications including

augmented reality, gaming, navigation, rendering.

To correct such reconstruction errors in glass regions, we apply our RGB-T glass

segmentation method and recover each glass region as a 3D plane. Specifically, we

first adopt a recent monocular reconstruction method [338] for depth estimation. We

then follow Mirror3D [341] and estimate the 3D glass plane parameters based on

the depths of the boundary pixels of glass regions. The final 3D point clouds are

generated with pre-defined camera intrinsics in Open3D [342]. As shown in Fig. 7.8,

by accurately segmenting glass surfaces, our plane-based depth correction strategy

significantly improves 3D reconstruction results compared to the raw point clouds

from [338].

Semantic Segmentation

Similar problems also arise in semantic image segmentation [7, 210, 343], as shown in

Fig. 7.9 where the reflections on glass surfaces are mis-recognized. To correct those

errors, we first utilize our RGB-T segmentation method to obtain glass masks and

set the glass regions of RGB images to zero, which serve as inputs to a transformer

architecture DETR [7] (designed for both object detection and semantic segmenta-

tion) to get the refined semantic segmentation results. As shown in Fig. 7.9, such a

simple strategy effectively eliminate inaccurate semantic segmentation.
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7.4.8 Failure Cases

The first row in Fig. 7.7 shows that our method fails when the visual appearances

of glass and non-glass regions are highly similar in both RGB and thermal images,

which is also a difficult, if not impossible, task for the human eye to differentiate

without looking at the GT mask beforehand. Our method also fails to detect small

glass regions, as highlighted by the red arrow in the second row.

7.5 Summary

Since existing semantic segmentation methods are mainly trained on images with only

opaque objects, they usually fail to detect glass surfaces. In this chapter, I solve the

problem of existing semantic segmentation methods on glass scenes by proposing a

new glass segmentation method. An extra thermal image is combined with the RGB

image for better segmentation. Our proposed glass segmentation method is further

aggregated into a pretrained semantic segmentation methods (DETR) generalize it

on glass scenes without retraining.
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Chapter 8

Conclusion and Future Work

In Chapter 3, I propose a novel end-to-end blind non-uniform motion deblurring

network with new ASPDC modules, which are able to apply region-specific convo-

lution to each pixel and integrate features from different receptive fields. Compared

to SOTA methods, my method achieves better performance with high efficiency. In

addition, the performance can be further improved by fine-tuning on the proposed

reblurring network. In the future, I plan to address the fact that none of the existing

methods perform well when the magnitude of motion is large, resulting in issues such

as color degradation or even failure in deblurring. I further plan to study deblurring-

reblurring consistency of non-uniform deblurring in an unsupervised setting without

access to blurred-sharp pairs for the reblurring network.

In Chapter 4, I propose a new variational deep image prior (VDIP) for blind

image deconvolution, which achieves a better performance than that of the DIP.

One common issue of optimizing a model using a single image is high inference time

compared with methods trained on external datasets, which makes it hard to adopt

the method to large testing datasets. My method is also limited when the single

degraded image cannot provide enough information. In my future work, I plan to

adopt meta-learning [149] to train the networks on external datasets and fine-tune on

each test image, which can take advantage of the information from other images and

obtain an image-specific model with only several iterations.
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In Chapter 5, I present a novel texture sampling scheme for text-driven texture

generation on 3D meshes, leveraging depth-aware diffusion models. To address the

significant challenges in 3D content generation, particularly in producing textures

that are consistent across views and rich in detail, I first propose to maintain a

time-dependent texture map that evolves with each denoising step to progressively

reduce the view discrepancy. Specifically, at each denoising step, the texture is ag-

gregated from the denoised observations of sampled views under my attention-guided

inpainting process. It is then utilized in my Text&Texture Guided noise resampling

procedure to further guide the estimated noise fed into the next denoising step. The

effectiveness of my method is evident in its ability to generate superior-quality tex-

tures for diverse 3D objects as well as in its adaptability for texture editing purposes.

Chapter 6 presents a novel architecture motivated by the physical relationship be-

tween RGB images and the corresponding spectral reflectances, by which I estimate

the components within the sub-space of the degradation matrix Ĥ to compensate for

the final output. My proposed architecture can be easily adapted to RGB images illu-

minated by more than one light source with only the output size of the auxiliary task

needs to be changed. I also adopt meta-auxiliary learning to make use of the inter-

nal information of the input RGB images at test-time. Qualitative and quantitative

evaluations demonstrate that my method surpasses state-of-the-art approaches by a

large margin. Extensive ablation studies further justify the significant contribution

of each component in my proposed method.

Chapter 7 presents the idea of leveraging RGB-T image pairs for glass segmen-

tation. I propose a novel neural architecture for fusing features of the RGB and

thermal modalities. I also contribute the first RGB-T glass scene dataset with GT

masks. My extensive evaluations reveal the significantly better performance of us-

ing an RGB-T pair over using a single RGB image, and demonstrate the superiority

of my cross-modality fusion method against existing fusion methods using the same

RGB-T input. Polarization methods have drawbacks in that detection is sparse for a
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plate glass, which can be confused by glass and other dielectric surfaces, and might

not work when transmission ≫ reflection. Since polarization and my method use

completely different cues, they can be combined as “RGB + polarization + thermal”

(polarized RGB like [61] or polarized thermal [344]) to further improve the result,

which is an interesting direction for future work. I could also add an invisible ther-

mal light to address limitations of my method, which makes it an active method. As

shown in the first row of Fig. 7.7, glass and non-glass regions are very similar in both

RGB and thermal images. Considering the different smoothness of glass surface and

other materials like brick wall, the thermal camera should obtain clear reflection of

the thermal light source on glass while a blurry light cone on others.
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Appendix A: Blind Non-Uniform
Motion Deblurring

A.1 More Qualitative Comparison

In this section, we demonstrate more qualitative comparisons. Firstly, we look at the

GoPro dataset [24]. In Figure A.1, Ours+ can recover the face and the body of the

girl with less distortion. In Figure A.2, the original image contains extremely large

motion, but Ours+ can remove most of the artifacts and obtain the sharpest image

among the listed methods. In Figure A.3, Ours+ can recover clearer and smoother

numbers on the plate.

Using the models trained on the GoPro dataset, we also compare the qualitative

performance of the methods on the HIDE dataset [246], containing multiple moving

human subjects in the scenes. In Figure A.4, Ours+ sharpens all the people in the

image with much less artifacts compared to the other competing methods. Figure A.5

shows that Ours+ deblurs the striped jacket closest to that of the ground truth. In

Figure A.6, Ours+ provides a relatively better deblurring of the car when compared

with the other methods.

Lastly, we review some outputs from the Real-World Blurred Image (RWBI) dataset [247].

In Figure A.7, Our+ is the only method that gives sharp output for both the Star-

bucks logo and the tree leaves that are close to the camera. In Figure A.8, only

Ours+ and DeblurGANv2 [20] deblur the letters written on the wall. However, De-

blurGANv2 fails to deblur the grass. In Figure A.9, Ours+ can recover the poster on

the background with the highest quality.
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(a) Blurred input (b) Kupyn [20]

(c) Zhang [22] (d) Tao [21]

(e) Park [253] (f) Prohit [254]

(g) Ours+ (h) Sharp GT

Figure A.1: Qualitative comparison using the GoPro dataset [24].
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(a) Blurred input (b) Kupyn [20]

(c) Zhang [22] (d) Tao [21]

(e) Park [253] (f) Prohit [254]

(g) Ours+ (h) Sharp GT

Figure A.2: Qualitative comparison using the GoPro dataset [24].
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(a) Blurred input (b) Kupyn [20]

(c) Zhang [22] (d) Tao [21]

(e) Park [253] (f) Prohit [254]

(g) Ours+ (h) Sharp GT

Figure A.3: Qualitative comparison using the GoPro dataset [24].
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(a) Blurred input

(b) Kupyn [20] (c) Zhang [22]

(d) Tao [21] (e) Park [253]

(f) Ours+ (g) Sharp GT

Figure A.4: Qualitative comparison using the HIDE dataset [246].
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(a) Blurred input

(b) Kupyn [20] (c) Zhang [22]

(d) Tao [21] (e) Park [253]

(f) Ours+ (g) Sharp GT

Figure A.5: Qualitative comparison using the HIDE dataset [246].
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(a) Blurred input

(b) Kupyn [20] (c) Zhang [22]

(d) Tao [21] (e) Park [253]

(f) Ours+ (g) Sharp GT

Figure A.6: Qualitative comparison using the HIDE dataset [246].
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(a) Blurred input (b) Kupyn [20]

(c) Zhang [22] (d) Tao [21]

(e) Park [253] (f) Ours+

Figure A.7: Qualitative comparison using the RWBI dataset [247].
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(a) Blurred input (b) Kupyn [20]

(c) Zhang [22] (d) Tao [21]

(e) Park [253] (f) Ours+

Figure A.8: Qualitative comparison using the RWBI dataset [247].
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(a) Blurred input (b) Kupyn [20]

(c) Zhang [22] (d) Tao [21]

(e) Park [253] (f) Ours+

Figure A.9: Qualitative comparison using the RWBI dataset [247].
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Appendix B: Blind Image
Deconvolution Using Variational
Deep Image Prior

B.1 Detailed Derivation

In this section, we show more detailed derivation of equations in Chapter 4.1.

B.1.1 Equation 4.8

DKL(Q(Is, k, ξx, ξy)||P (Is, k, ξx, ξy|Ib))

=

∫︂
Q(Is, k, ξx, ξy) ln

Q(Is, k, ξx, ξy)

P (Is, k, ξx, ξy|Ib)
dIsdkdξxdξy

=

∫︂
Q(Is, k, ξx, ξy) ln

Q(Is, k, ξx, ξy)P (Ib)

P (Is, k, ξx, ξy, Ib)
dIsdkdξxdξy

=

∫︂
Q(Is, k, ξx, ξy) lnP (Ib)dIsdkdξxdξy −

∫︂
Q(Is, k, ξx, ξy) ln

P (Is, k, ξx, ξy, Ib)

Q(Is, k, ξx, ξy)
dIsdkdξxdξy

= lnP (Ib)

∫︂
Q(Is, k, ξx, ξy)dIsdkdξxdξy −

∫︂
Q(Is, k, ξx, ξy) ln

P (Is, k, ξx, ξy, Ib)

Q(Is, k, ξx, ξy)
dIsdkdξxdξy

= lnP (Ib)−
∫︂

Q(Is, k, ξx, ξy) ln
P (Is, k, ξx, ξy, Ib)

Q(Is, k, ξx, ξy)
dIsdkdξxdξy

= lnP (Ib)− L(Is, k, ξx, ξy, Ib). (B.1)
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B.1.2 Equation 4.9

L(Is, k, ξx, ξy, Ib)

=

∫︂
Q(Is, k, ξx, ξy) ln

P (Is, k, ξx, ξy, Ib)

Q(Is, k, ξx, ξy)
dIsdkdξxdξy

=

∫︂
Q(Is, k, ξx, ξy) ln

P (Is, k, ξx, ξy)

Q(Is, k, ξx, ξy)
dIsdkdξxdξy

+

∫︂
Q(Is, k, ξx, ξy) lnP (Ib|Is, k, ξx, ξy)dIsdkdξxdξy

=

∫︂
Q(Is, k, ξx, ξy) ln

P (Is, k, ξx, ξy)

Q(Is, k, ξx, ξy)
dIsdkdξxdξy + EQ(Is,k,ξx,ξy) [lnP (Ib|Is, k, ξx, ξy)]

=

∫︂
Q(Is, k, ξx, ξy) ln

P (Is, k, ξx, ξy)

Q(Is, k, ξx, ξy)
dIsdkdξxdξy + EQ(Is,k) [lnP (Ib|Is, k)]

=

∫︂
Q(Is)Q(k)Q(ξx, ξy) · ln

P (k)P (Is|ξx, ξy)P (ξx, ξy)

Q(Is)Q(k)Q(ξx, ξy)
dIsdkdξxdξy + EQ(Is,k) [lnP (Ib|Is, k)]

=

∫︂
Q(Is)Q(k)Q(ξx, ξy)

(︃
ln

P (k)

Q(k)
− lnQ(Is) + lnP (Is|ξx, ξy) + ln

P (ξx, ξy)

Q(ξx, ξy)

)︃
dIsdkdξxdξy

+ EQ(Is,k) [lnP (Ib|Is, k)]

=

∫︂
Q(k) ln

P (k)

Q(k)
dk −

∫︂
Q(Is) lnQ(Is)dIs +

∫︂
Q(Is)Q(ξx, ξy) lnP (Is|ξx, ξy)dIsdξxdξy

+

∫︂
Q(ξx, ξy) ln

P (ξx, ξy)

Q(ξx, ξy)
dξxdξy + EQ(Is,k) [lnP (Ib|Is, k)] . (B.2)

Since ξx and ξy are deterministic given Is following Eqn. 7, we can simply set

EQ(Is,k,ξx,ξy) [lnP (Ib|Is, k, ξx, ξy)] = EQ(Is,k) [lnP (Ib|Is, k)].

B.1.3 Equation 4.10∫︂
Q(k) ln

P (k)

Q(k)
dk

=

∫︂
N (E(k), S2(k)) ln

N (0, I)

N (E(k), S2(k))
dk

=

∫︂
N (E(k), S2(k)) lnN (0, I)dk −

∫︂
N (E(k), S2(k)) lnN (E(k), S2(k))dk

=− 1

2

I∑︂
i=1

J∑︂
j=1

(ln 2π + E2(k(i, j)) + S2(k(i, j))) +
1

2

I∑︂
i=1

J∑︂
j=1

(ln 2π + 1 + 2 lnS(k(i, j)))

=
1

2

I∑︂
i=1

J∑︂
j=1

(1 + 2 lnS(k(i, j))− E2(k(i, j))− S2(k(i, j))), (B.3)

N (E(), S2()) denotes the Gaussian distribution with mean E() and variance S2(),

S() and E() denote the standard deviation and the expectation, respectively, (i, j) is

the pixel index of blur kernel.
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−
∫︂

Q(Is) lnQ(Is)dIs

=−
∫︂
N (E(Is), S

2(Is)) lnN (E(Is), S
2(Is))dIs

=
1

2

M∑︂
m=1

N∑︂
n=1

(ln 2π + 1 + 2 lnS(Is(m,n))), (B.4)

N (E(), S2()) denotes the Gaussian distribution with mean E() and variance S2(),

S() and E() denote the standard deviation and the expectation, respectively, (m,n)

is the pixel index of Is and ξ.

∫︂
Q(Is)Q(ξx, ξy) lnP (Is|ξx, ξy)dIsdξxdξy

=

∫︂
Q(Is)Q(ξx, ξy)

(︃
lnW − ξx(Fx(Is))

2 + ξy(Fy(Is))
2

4
+

ρ∗(12ξx) + ρ∗(12ξy)

2

)︄
dIsdξxdξy

= lnW

∫︂
Q(Is)Q(ξx, ξy)dIsdξxdξy −

∫︂
Q(Is)Q(ξx, ξy)

(︃
ξx(Fx(Is))

2 + ξy(Fy(Is))
2

4

)︃
dIsdξxdξy

+

∫︂
Q(Is)Q(ξx, ξy)

(︄
ρ∗(12ξx) + ρ∗(12ξy)

2

)︄
dIsdξxdξy

=−
∫︂

Q(Is)Q(ξx, ξy)

(︃
ξx(Fx(Is))

2 + ξy(Fy(Is))
2

4

)︃
dIsdξxdξy

+

∫︂
Q(ξx, ξy)

(︄
ρ∗(12ξx) + ρ∗(12ξy)

2

)︄
dξxdξy + lnW. (B.5)

For the sparse image prior, Fx(Is) and Fy(Is) calculate the gradients of two direc-

tions as in Eqn. 4.13.

Let us first look at the Fx(Is) related term in Eqn. B.5.
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−
∫︂

Q(Is)Q(ξx, ξy)
ξx(Fx(Is))

2

4
dIsdξxdξy

=−
∫︂

Q(Is)Q(ξx)
ξx(Fx(Is))

2

4
dIsdξx

=−
∫︂

Q(Is)Q(ξx)

∑︁M
m=1

∑︁N
n=1 ξx(m,n)(Fx(Is)(m,n))2

4
dIsdξx

=− 1

4

M∑︂
m=1

N∑︂
n=1

E((Fx(Is)(m,n))2)E(ξx(m,n)).

=− 1

4

M∑︂
m=1

N∑︂
n=1

E((Is(m,n)− Is(m− 1, n))2)E(ξx(m,n))

=− 1

4

M∑︂
m=1

N∑︂
n=1

E(ξx(m,n))[E2(Is(m,n)) + S2(Is(m,n))− 2E(Is(m,n))E(Is(m− 1, n))

+ E2(Is(m− 1, n)) + S2(Is(m− 1, n))]

=− 1

4

M∑︂
m=1

N∑︂
n=1

[(E(Is(m,n))− E(Is(m− 1, n)))2 + S2(Is(m,n)) + S2(Is(m− 1, n))]E(ξx(m,n)).

(B.6)

The Fy(Is) related term can be derived in a similar way.

−
∫︂

Q(Is)Q(ξx, ξy)
ξy(Fy(Is))

2

4
dIsdξxdξy

=− 1

4

M∑︂
m=1

N∑︂
n=1

E((Fy(Is)(m,n))2)E(ξy(m,n))

=− 1

4

M∑︂
m=1

N∑︂
n=1

E((Is(m,n)− Is(m,n− 1))2)E(ξx(m,n))

=− 1

4

M∑︂
m=1

N∑︂
n=1

[(E(Is(m,n))− E(Is(m,n− 1)))2 + S2(Is(m,n)) + S2(Is(m,n− 1))]E(ξy(m,n)).

(B.7)

Combining Eqn. B.3 ∼ B.7, we can get the variational lower bound as Eqn. 4.10.

Different from the sparse image prior which is differentiable and continuous, Fx(Is)

and Fy(Is) (in Eqn. 4.14) are non-differentiable and discrete becasue of the max() and

the min(). Thus, we cannot obtain closed-form expressions corresponding to Fx(Is)

and Fy(Is) as in Eqn. B.6 and Eqn B.7. To solve this problem, we approximate

E((Fx(Is))
2) and E((Fy(Is))

2) by Monte Carlo estimation using sampling [97].

Let us first look at the Fx(Is) related term in Eqn. B.5.
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−
∫︂

Q(Is)Q(ξx, ξy)
ξx(Fx(Is))

2

4
dIsdξxdξy

=−
∫︂

Q(Is)Q(ξx)
ξx(Fx(Is))

2

4
dIsdξx

=−
∫︂

Q(Is)Q(ξx)

∑︁M
m=1

∑︁N
n=1 ξx(m,n)(Fx(Is)(m,n))2

4
dIsdξx

=− 1

4

M∑︂
m=1

N∑︂
n=1

E((Fx(Is)(m,n))2)E(ξx(m,n)).

=− 1

4

M∑︂
m=1

N∑︂
n=1

E(( min
i∈Ω(m,n)

( min
c∈(r,g,b)

(Ics(i))))
2)E(ξx(m,n))

=− 1

4

M∑︂
m=1

N∑︂
n=1

E( min
i∈Ω(m,n)

( min
c∈(r,g,b)

(Ics(i)
2)))E(ξx(m,n)). (B.8)

Based on Eqn. B.8, we need to approximate the expectation of min
i∈Ω(m,n)

( min
c∈(r,g,b)

(Ics(i)
2))

by sampling I2s . Thus, we need to calculate both E(I2s ) and S(I2s ) as follows [345]:

E(I2s ) = E(Is)
2 + S(Is)

2, (B.9)

S(I2s ) =
√︁
4E(Is)2S(Is)2 + 2S(Is)4. (B.10)

Then the expectation can be reformulated as

E( min
i∈Ω(m,n)

( min
c∈(r,g,b)

(Ics(i)
2))) ≈ 1

A

A∑︂
a=1

min
i∈Ω(m,n)

( min
c∈(r,g,b)

(I2s
ˆ a

(i))))

I2s
ˆ a

= E(I2s ) + ϵa ⊙ S(I2s ), ϵ
a ∼ N (0, I), (B.11)

where A is the number of samples, σ is the noise level, ⊙ represents the element-

wise multiplication, and ϵa is a random scalar sampled from a standard Gaussian

distribution.
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The Fy(Is) related term in Eqn. B.5 is slightly different.

−
∫︂

Q(Is)Q(ξx, ξy)
ξy(Fy(Is))

2

4
dIsdξxdξy

=− 1

4

M∑︂
m=1

N∑︂
n=1

E((Fy(Is)(m,n))2)E(ξy(m,n))

=− 1

4

M∑︂
m=1

N∑︂
n=1

E((1− max
i∈Ω(m,n)

( max
c∈(r,g,b)

(Ics(i))))
2)E(ξy(m,n))

=− 1

4

M∑︂
m=1

N∑︂
n=1

E(( min
i∈Ω(m,n)

( min
c∈(r,g,b)

(1− Ics(i))))
2)E(ξy(m,n))

=− 1

4

M∑︂
m=1

N∑︂
n=1

E( min
i∈Ω(m,n)

( min
c∈(r,g,b)

((1− Ics(i))
2)))E(ξy(m,n)). (B.12)

Based on Eqn. B.12, we need to approximate the expectation of min
i∈Ω(m,n)

( min
c∈(r,g,b)

((1−

Ics(i))
2)) by sampling (1− Is)

2. Similarly, we need to calculate both E((1− Is)
2) and

S((1− Is)
2) as follows:

E((1− Is)
2) = (1− E(Is))

2 + S(Is)
2, (B.13)

S((1− Is)
2) =

√︁
4S(Is)2 + 4E(Is)2S(Is)2 + 2S(Is)4. (B.14)

The form of expectation is the same as that shown in Eqn. B.11 except that Is is

replaced by 1− Is.
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Appendix C: Text-Guided Texture
Generation for 3D Objects

C.1 Algorithm Details

To better illustrate the working flow of our proposed method, we present the detailed

algorithm in Alg. 4

C.2 Derivation of Eq. 5.14

As discussed in Eq. 5.14 of Chapter 5.1.3, we apply the classifier-free guidance (CFG)

on noise estimation with two conditions: the textual prompt c and the intermediate

texture map Û
i

0,t. The original text guided diffusion model targets at learning P (xt|c)

where xt denotes the noisy latent feature at time step t. Now we extend the target of

the original diffusion model to P (xi
t|c, Û

N

0,t), which has an additional condition Û
N

0,t to

constrain the generated xi
t to be view-consistent. We assume P (c|xi

t, Û
N

0,t) = P (c|xi
t).

Following Bayes’ theorem, P (xi
t|c, Û

N

0,t) can be reformulated as

P (xi
t|c, Û

N

0,t) =
P (xi

t)P (c|xi
t)P (Û

N

0,t|xi
t)

P (c, Û
N

0,t)
. (C.1)

By taking logarithm on both sides of the above equation, we get

log(P (xi
t|c, Û

N

0,t)) = log(P (xi
t)) + log(P (c|xi

t)) + log(P (Û
N

0,t|xi
t))− log(P (c, Û

N

0,t)).

(C.2)

As mentioned in [112], estimating ϵm(x
i
t) is related to predicting the score function

sm(x
i
t) of the approximate marginal distribution P (xi

t|c, Û
N

0,t), which can be formu-
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Algorithm 4: Progressive Texture Sampling

Input: A 3D Mesh
A textual prompt c
A set of viewpoints vi, i ∈ {1, . . . , N}
Number of denoising step T
VAE encoder E and decoder D
Depth conditioned ControlNet Unetθ

Output: Generated texture map Û
N

0,1

1 Randomly initialize xi
T ∼ N (0, I), i ∈ {1, . . . , N}

2 for t = T, ..., 1 do
3 View Sampling&Aggregation (VSA):
4 for i = 1, . . . , N do
5 Substitute the Key and Value features for viewpoint i with those from

reference view to calculate ϵθ(x
i
t) by Eq. 5.8 and Eq. 5.9

6 Obtain the x̂i
0(x

i
t) with xi

t and ϵθ(x
i
t) by Eq. 5.1

7 Decode the x̂i
0(x

i
t) to obtain I it in RGB space by Eq. 5.4

8 Inverse render the I it to obtain the partial texture map Û
i

0,t

9 if i < N then

10 Render and encode Û
i

0,t to obtain Gi+1
0,t by Eq. 5.5

11 Update xi+1
t with Gi+1

0,t and view aggregation maskMi+1 by
Eq. 5.7

12 end

13 end
14 Text&Texture Guided Resampling (T2GR):
15 for i = 1, . . . , N do
16 Calculate the ϵ̂tex(x

i
t) by Eq. 5.10

17 Obtain the texture-conditioned noise estimation ϵtex(x
i
t|Û

N

0,t) by
Eq. 5.13

18 Combine the texture-conditioned noise estimation ϵtex(x
i
t|Û

N

0,t),
text-conditioned noise estimation ϵθ(x

i
t|c), and unconditioned noise

estimation ϵθ(x
i
t|∅) to calculate the final noise estimation ϵm(x

i
t) by

Eq. 5.14
19 if t > 1 then
20 Substitute ϵθ(x

i
t) with ϵm(x

i
t) in Eq. 5.1 and Eq. 5.2 to calculate

the xi
t−1 for the next denoising step

21 end

22 end

23 end
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lated as:

sm(x
i
t) = ∇xi

t
log(P (xi

t|c, Û
N

0,t)), (C.3)

ϵm(x
i
t) = −σtsm(x

i
t), (C.4)

where σt is the standard deviation of the latent noise parameterized by denoising step

t. The score function ∇xi
t
log(P (xi

t|c, Û
N

0,t)) can be further derived from Eq. C.2 as:

∇xi
t
log(P (xi

t|c, Û
N

0,t)) = ∇xi
t
log(P (xi

t)) +∇xi
t
log(P (c|xi

t)) +∇xi
t
log(P (Û

N

0,t|xi
t)),

(C.5)

with

∇xi
t
log(P (c|xi

t)) = ∇xi
t
log(P (xi

t|c))−∇xi
t
log(P (xi

t)), (C.6)

∇xi
t
log(P (Û

N

0,t|xi
t)) = ∇xi

t
log(P (xi

t|Û
N

0,t))−∇xi
t
log(P (xi

t)), (C.7)

which correspond to the terms in our multi-conditioned CFG in Eq. 5.14 as:

ϵθ(x
i
t|∅) = −σt∇xi

t
log(P (xi

t)), (C.8)

ϵθ(x
i
t|c)− ϵθ(x

i
t|∅) = −σt(∇xi

t
log(P (xi

t|c))−∇xi
t
log(P (xi

t))), (C.9)

ϵtex(x
i
t|Û

N

0,t)− ϵθ(x
i
t|∅) = −σt(∇xi

t
log(P (xi

t|Û
N

0,t))−∇xi
t
log(P (xi

t))). (C.10)

Following CFG [274], we apply two guidance scales ω1 and ω2 on two guidance

terms. Finally, we have the multi-conditioned CFG as:

ϵm(x
i
t) = ϵθ(x

i
t|∅) + ω1(ϵθ(x

i
t|c)− ϵθ(x

i
t|∅)) + ω2(ϵtex(x

i
t|Û

N

0,t)− ϵθ(x
i
t|∅)). (C.11)

C.3 Additional Experiments

C.3.1 Inference Time

In Tab. C.1, we compare the inference time of our proposed method with that of

baseline methods on a single NVIDIA Tesla V100 GPU with 32GB memory.

C.3.2 More Qualitative Evaluations

More qualitative evaluations are shown in Fig. C.1, Fig. C.2, and Fig. C.3.

151



Methods Inference Time (minutes) ↓

TEXTure 3.94

Text2Tex 20.64

Fantasia3D 109.67

ProlificDreamer 483.92

Ours 46.83

Table C.1: Inference time of compared methods using images with resolution of
512×512 on a single NVIDIA Tesla V100 GPU with 32GB memory.

C.4 User Study Details

We develop a WIX-based web application for the user study. As shown in Fig. C.4, for

each video pair, participants are required to choose the video that best illustrates the

given textual prompt with the highest quality. They should then click the rounded

check-box below the selected video and proceed to the next video pair. Finally, we

determine the user preferences by counting all user selections.

C.5 Data Description

We present the details of our collected data in Tab. C.2, Tab. C.3, and Tab. C.4 with

corresponding textual prompts.
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An oil painted apple A medieval armor

A brick fireplace A stone lantern

A Mandalorian helmet in silver A pottery with flowers

A wooden refrigerator A coca cola vending machine

A telephone with golden dials A dark blue shark

A chocolate doughnut An ironman monitor

Figure C.1: More texture generation results of our proposed method.
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A wooden dresser

TEXTure Text2Tex Ours

A cute 3D cartoon lion with brown hair

Statue of a wolf

A metal turtle with red eyes

A high quality color photo of Benedict Cumberbatch

Figure C.2: Visual comparison of our proposed method against TEXTure [120] and
Text2Tex [121].
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A game controller with black buttons on the top

Fantasia3D ProlificDreamer Ours

A fireplug, red and yellow

Spiderman with white hairs

A pumpkin with red eyes

Figure C.3: Visual comparison of our proposed method against Fantasia3D [115] and
ProlificDreamer [116].
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Figure C.4: Screenshot of the user study web application
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Object Source Description Textual Prompts

eb219212147f4d84b88f8e103af8ea10 Objaverse frog
“A robotic frog”

“A green frog”

a8813ea1e0ce47ab97a416637a7520d7 Objaverse helmet
“A Mandalorian helmet in silver”

“A black helmet”

e0417d1e05984727a50f9ab1451d162d Objaverse lantern
“A stone lantern”

“A medieval lantern”

9fa2da2c42234b58896e8d23393cac24 Objaverse backpack

“A backpack in ironman style”

“A backpack in spiderman style”

“A 3D backpack”

a51751c9989940e592eb61be41ee35cc Objaverse baby owl
“A baby owl with fluffy wings”

“A toy owl”

f73e2e1c8ad241ff859aca7e032ec262 Objaverse lion
“A cute 3D cartoon lion with brown hair”

“A marble lion”

91c5283b27c74583900d5e26e2fcd086 Objaverse mug
“A wooden mug surrounded by silver rings”

“A mug with cloud”

b6db59bd7f10424eae54c71d19663a65 Objaverse car
“A next gen nascar in red”

“A next gen nascar”

a2832b845e4e4edd9d439342cf4fd590 Objaverse wolf
“Statue of a wolf”

“A white wolf”

b19ef2650b4347348710eb6364ca90bd Objaverse penguin
“A black penguin”

“A penguin covered by a blue sweater”

bd384d46514548cf8c4202f1ae6ea551 Objaverse refrigerator
“A wooden refrigerator”

“A high tech refrigerator”

f1aa479977a74a608d362679ed5ca721 Objaverse piano
“A medieval piano”

“A piano with flowers”

4c4690ba918f477b829990dd2e960c21 Objaverse lion
“A golden lion”

“A cyber punk lion”

f87caf6ac5a445ccad1a97653688e16e Objaverse dresser
“A wooden dresser”

“A marble dresser”

f15298421b3d4e0fab4c43863a7e72fd Objaverse shark
“A deep ocean shark”

“A dark blue shark”

d4c560493a0846c5943f3aeea58acb72 Objaverse soccer ball
“A soccer ball in black and white”

“A stone soccer ball”

c6509a8fe1f44a5eac8aebe12be2699e Objaverse tiger
“A tiger walking on the grass”

“A plastic toy tiger”

bff537fb09b641c59b2ad123da0ca3dc Objaverse turtle
“A metal turtle with red eyes”

“A sea turtle”

d726514a97f74f168b104fd6ba538331 Objaverse vase
“An ancient vase”

“A painted vase”

01ab0842feb1448bb18e8c7b85326d11 Objaverse pottery
“An antique pottery”

“A pottery with flowers”

f2d31eb0ddac4d21944df7dcc4af6d28 Objaverse vending machine
“A coca cola vending machine”

“A silver vending machine”

Table C.2: Description of 3D Meshes in our collected data.
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Object Source Description Textual Prompts

e1f96691aaf648b885d927f5c3f5be61 Objaverse apple
“A red apple”

“An oil painted apple”

8a60954eccad433e987bbcafc7657140 Objaverse armor
“A medieval armor”

“A Japanese armor”

f98c5ee54c4a48f8b5eafd35a81dde4d Objaverse owl
“A metal owl with glowing eyes”

“A wooden owl”

fadefc1eee3246a189f6b79c7c671343 Objaverse lion
“A lion looking forward”

“Statue of a lion”

9a0c52d350634e419aaf0eea1e67d9da Objaverse knight
“A golden knight”

“A silver knight”

fa2c41a7a6c84fcb871a24016fa9a932 Objaverse doughnut
“A chocolate doughnut”

“An icecream doughnut”

f05b0c2f9bcf41cea188a4b4c848068a Objaverse fireplug
“A fireplug, red and yellow”

“A fireplug with yellow top”

0db114d7753344d6825aa4f21ec56db9 Objaverse crate
“A wooden crate”

“A bronze crate”

72826cd5c17a42798a8e8e36c05c5035 Objaverse clock
“A medieval clock”

“A electric clock”

ac5df73de2c54239833643423a152592 Objaverse dresser
“A wooden dresser”

“A marble dresser”

90009fa6fa0b4d4bb1a1203431954097 Objaverse keg
“A metal keg in silver”

“A wooden keg”

b26a53419075442ca284cdf1d5541765 Objaverse monitor
“A mac monitor”

“An ironman monitor”

f75caead1dc1474195eb32a7f4c71117 Objaverse control
“A game controller with black buttons on the top”

“A PS5 controller”

edbeb81ef32645cea8bef89338f7e213 Objaverse telephone
“A telephone with golden dials”

“A classic telephone”

fc9cc06615084298b4c0c0a02244f356 Objaverse piano
“A medieval piano”

“A piano with flowers”

7adc9c74b75e4860b0a51c850bde9957 Objaverse dress
“A princess dress”

“A dress with spider patterns”

2fc0fc6ebe564a249c4617e6b3e6da93 Objaverse fireplace
“A brick fireplace”

“A stone fireplace”

14b8ae60eae240ff8bf1abdf9af5e49c Objaverse refrigerator
“A wooden refrigerator”

“A high tech refrigerator”

62897c52e967469c85df9c6abdd09d16 Objaverse doll
“A doll with yellow hairs”

“A spiderman doll”

6f5480698a7a43c7a8c0a8b1e295e4a0 Objaverse pumpkin
“A pumpkin with red eyes”

“A Halloween pumpkin”

Table C.3: Description of 3D Meshes in our collected data.
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Object Source Description Textual Prompts

Napoleon ler ThreeDScans statue

“A high quality color photo of Tom Cruise”

“A high quality color photo of Benedict Cumberbatch”

“A high quality color photo of Robert Downey Jr.”

Plastic Dragon ThreeDScans statue
“Cartoon dragon, red and green”

“A 3D dragon”

Francois ThreeDScans statue
“Spiderman with white hairs”

“A boy in suits”

Provost ThreeDScans statue
“Portrait of Provost, oil paint”

“A statue of Provost”

Table C.4: Description of 3D Meshes in our collected data.
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Appendix D: Spectral Reflectance
Recovery from RGB Images

This appendix provides 1) the detailed derivation of Eqn. 4.14 in Sec. D.1; 2) more

qualitative evaluations with competing approaches in Fig. D.1∼D.3 of Sec. D.2; 3)

recovered reflectance curves and correlation coefficients (corr) between the recovered

reflectance and the ground truth in Fig. D.4∼D.7 of Sec. D.2; 3) Feasibility analysis

of data capture in real world in Sec. D.3.
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D.1 Detailed derivation of Eqn. 4.14

R̂ =(ω̂ +∆ω)(Ĥ+∆H)T · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 · (I −∆I) + R̂
⊥

=ω̂(Ĥ+∆H)T · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 · I

− ω̂(Ĥ+∆H)T · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 ·∆I

+∆ω(Ĥ+∆H)T · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 · (I −∆I) + R̂
⊥

=ω̂Ĥ
T
· ((Ĥ+∆H) · (Ĥ+∆H)T )−1 · I

+ ω̂∆HT · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 · I

− ω̂(Ĥ+∆H)T · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 ·∆I

+∆ω(Ĥ+∆H)T · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 · (I −∆I) + R̂
⊥

=ω̂Ĥ
T
· (Ĥ · Ĥ

T
+ Ĥ ·∆HT +∆H · Ĥ

T
+∆H ·∆HT )−1 · I

+ ω̂∆HT · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 · I

− ω̂(Ĥ+∆H)T · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 ·∆I

+∆ω(Ĥ+∆H)T · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 · (I −∆I) + R̂
⊥
. (D.1)

Define the singular value decomposition of Ĥ ·∆HT +∆H · Ĥ
T
+∆H ·∆HT as

U ·Σ · V T = SV D(Ĥ ·∆HT +∆H · Ĥ
T
+∆H ·∆HT ). (D.2)
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Following the derivation of Henderson and Searle [346], Eqn. D.1 can be reformulated

as

R̂ =ω̂Ĥ
T
· ((Ĥ · Ĥ

T
)−1 − (Ĥ · Ĥ

T
)−1 ·U · (I (D.3)

+Σ · V T · (Ĥ · Ĥ
T
)−1 ·U)−1 ·Σ · V T · (Ĥ · Ĥ

T
)−1) · I

+ ω̂∆HT · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 · I

− ω̂(Ĥ+∆H)T · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 ·∆I

+∆ω(Ĥ+∆H)T · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 · (I −∆I) + R̂
⊥

=ω̂Ĥ
T
· (Ĥ · Ĥ

T
)−1 · I

− ω̂Ĥ
T
· ((Ĥ · Ĥ

T
)−1 ·U · (I +Σ · V T · (Ĥ · Ĥ

T
)−1 ·U)−1 ·Σ · V T · (Ĥ · Ĥ

T
)−1) · I

+ ω̂∆HT · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 · I

− ω̂(Ĥ+∆H)T · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 ·∆I

+∆ω(Ĥ+∆H)T · ((Ĥ+∆H) · (Ĥ+∆H)T )−1 · (I −∆I) + R̂
⊥

=ω̂ Ĥ
T
· (Ĥ · Ĥ

T
)−1 · I⏞ ⏟⏟ ⏞

R̂Ĥ

+∆R̂,

where I represents the identity matrix.

D.2 More Evaluation Results

162



R
G

B
G

ro
un

d 
tru

th
O

ur
s

H
SC

N
N

+
M

SD
C

N
N

PA
D

FM
N

Q
D

O
M

ST
++

D
R

C
R

N

0 1.0

Figure D.1: More qualitative comparison of error maps (MAE between the recovered
results and the ground truth) on synthetic data with state-of-the-art approaches.
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Figure D.2: More qualitative comparison of error maps (MAE between the recovered
results and the ground truth) on synthetic data with state-of-the-art approaches.
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Figure D.3: More qualitative comparison of error maps (MAE between the recovered
results and the ground truth) on real data with state-of-the-art approaches.
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Figure D.4: Comparison of recovered spectral reflectance curves on synthetic data.
We can see that our recovered spectral reflectance has higher correlation with the
ground truth than that of other methods.
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Figure D.5: Comparison of recovered spectral reflectance curves on synthetic data.
We can see that when the quality of our recovered spectral reflectance under a single
illumination is non-ideal, one more illumination can significantly improve the perfor-
mance of our method.
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Figure D.6: Comparison of recovered spectral reflectance curves on real data. We
can see that one more illumination can also help to improve the performance when
testing on real data.
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Figure D.7: Comparison of recovered spectral reflectance curves on real data. We
can see that using a single illumination may still suffer from the domain gap and one
more illumination can reduce this problem.
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Figure D.8: True tone flash of an iPhone XR with LEDs off (left), white LEDs on
(middle) and amber LEDs on (right). The middle and the right images are obtained
from [347] which need jailbreak to change the color of flashlights.

D.3 Feasibility analysis of data capture

Our method needs RGB images of the same scene under different illuminations as

the input. Capturing RGB images of the same scene under different illuminations is

feasible and has been realized in tasks like photometric stereo. To our knowledge,

two options exist. Firstly, sequential acquisition is common if the scene is static.

Secondly, a commodity high-speed camera such as iPhone can be utilized. Specifically,

consider the exposure time of RGB images is short, one could record high-speed

videos (120/240 FPS) with alternating light sources to obtain images under different

illuminations as in [348]. The iPhone flashlights consist of both white and amber

LEDs (see Fig. D.8), which can be used as alternating light sources. The impact of

ambient light can be removed by subtracting images captured with white/amber LEDs

off. Small motion in high-speed videos is negligible. Extremely fast object/camera

motion is beyond the scope of this paper. In addition to exploit the flashlight and

the rear-facing camera of an iPhone, one could also explore the screen light and the

front-facing camera.
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Appendix E: Glass Segmentation
with RGB-Thermal Image Pairs

This appendix provides 1) the full architectural specifications in Table E.1, E.2

and E.3; 2) information of competing methods in Section E.1; and 3) more quali-

tative comparison in Section E.2.

E.1 Information of competing methods

In Chapter 7.4 of the thesis, we compare our proposed method with 20 state-of-

the-art methods which are retrained on our dataset. We show the implementation

frameworks, source code links and corresponding licenses (if available) in Table E.4.

For semantic segmentation methods, we change the number of output classes to 2

(glass/non-glass). For all competing methods, We change the input to RGB-T image

pairs from our dataset, except that EBLNet [349] takes RGB images only. Default

training settings from their source codes are used.

E.2 More qualitative results

Figure E.1, E.2, E.3, E.4, E.5 and E.6 show more qualitative comparisons of our RGB-

T fusion method with a RGB-only variant and five competing methods (HDFNet [177],

ESANet [320], CLNet [187], SPNet [185], and VST [190]) using our test split. The

results are sorted in the order of increasing glass area. Visually, our RGB-T method

consistently outperforms the RGB-only method by a large margin. Note that the five

competing methods also take RGB-T pairs as input, whereas our method achieves
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network layer k s channel input output size

RGB

resnet-50

encoder

conv r1 7 2 3/64 RGB image 240 × 320 × 64

max pool r 3 2 64/64 conv r1 120 × 160 × 64

resblock r1 64/256 max pool r 120 × 160 × 256

resblock r2 256/512 resblock r1 60 × 80 × 512

resblock r3 512/1024 resblock r2 30 × 40 × 1024

resblock r4 1024/2048 resblock r3 15 × 20 × 2048

conv r2 1 1 2048/256 resblock r4 15 × 20 × 256

Thermal

resnet-50

encoder

conv t1 7 2 3/64 Thermal image 240 × 320 × 64

max pool t 3 2 64/64 conv t1 120 × 160 × 64

resblock t1 64/256 max pool t 120 × 160 × 256

resblock t2 256/512 resblock t1 60 × 80 × 512

resblock t3 512/1024 resblock t2 30 × 40 × 1024

resblock t4 1024/2048 resblock t3 15 × 20 × 2048

conv t2 1 1 2048/256 resblock t4 15 × 20 × 256

MFM

trans r1 256/256 conv r2 15 × 20 × 256

trans t1 256/256 conv t2 15 × 20 × 256

stack 1 256/256 conv r2, conv t2 30 × 20 × 256

trans s1 256/256 stack 1 30 × 20 × 256

trans m1 256/256 trans s1 30 × 20 × 256

linear 1 256/1 trans m1 30 × 20 × 1

sigmoid 1 1/1 linear 1 30 × 20 × 1

sum r1 256/256 trans r1, sigmoid 1, trans s1 15 × 20 × 256

sum t1 256/256 trans t1, sigmoid 1, trans s1 15 × 20 × 256

trans r2 256/256 sum r1 15 × 20 × 256

trans t2 256/256 sum t1 15 × 20 × 256

stack 2 256/256 sum r1, sum t1 30 × 20 × 256

trans s2 256/256 stack 2 30 × 20 × 256

trans m2 256/256 trans s2 30 × 20 × 256

linear 2 256/1 trans m2 30 × 20 × 1

sigmoid 2 1/1 linear 2 30 × 20 × 1

sum r2 256/256 trans r2, sigmoid 2, trans s2 15 × 20 × 256

sum t2 256/256 trans t2, sigmoid 2, trans s2 15 × 20 × 256

trans r3 256/256 sum r2 15 × 20 × 256

trans t3 256/256 sum t2 15 × 20 × 256

stack 3 256/256 sum r2, sum t2 30 × 20 × 256

trans s3 256/256 stack 3 30 × 20 × 256

trans m3 256/256 trans s3 30 × 20 × 256

linear 3 256/1 trans m3 30 × 20 × 1

sigmoid 3 1/1 linear 3 30 × 20 × 1

sum r3 256/256 trans r3, sigmoid 3, trans s3 15 × 20 × 256

sum t3 256/256 trans t3, sigmoid 3, trans s3 15 × 20 × 256

trans r4 256/256 sum r3 15 × 20 × 256

trans t4 256/256 sum t3 15 × 20 × 256

stack 4 256/256 sum r3, sum t3 30 × 20 × 256

trans s4 256/256 stack 4 30 × 20 × 256

trans m4 256/256 trans s4 30 × 20 × 256

linear 4 256/1 trans m4 30 × 20 × 1

sigmoid 4 1/1 linear 4 30 × 20 × 1

fusion out 256/256 sigmoid 4, trans s4 15 × 20 × 256

Table E.1: Detailed specifications of the proposed neural network architecture. k is
the kernel size, s the stride, channel the number of channels of input and output,
input the input to the layer, and output size the size of the output in the form of
height×width×channel. All convolution layers are each followed by a ReLU and a
batch norm layer except for those before the sigmoid functions.
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network layer k s channel input output size

Decoder

conv d r4 1 1 2048/256 resblock r4 15 × 20 × 256

conv sigmoid r4 3 1

⎡⎢⎢⎣
512/256

256/256

256/1

⎤⎥⎥⎦ conv d r4, fusion out 15 × 20 × 1

conv d t4 1 1 2048/256 resblock t4 15 × 20 × 256

conv sigmoid t4 3 1

⎡⎢⎢⎣
512/256

256/256

256/1

⎤⎥⎥⎦ conv d t4, fusion out 15 × 20 × 1

sum d4 256/256
conv sigmoid r4, conv sigmoid t4,

conv d r4, conv d t4, fusion out
15 × 20 × 256

conv d4 3 1 256/256 sum d4 15 × 20 × 256

bilinear 4 256/256 conv d4 30 × 40 × 256

conv d r3 1 1 1024/256 resblock r3 30 × 40 × 256

conv sigmoid r3 3 1

⎡⎢⎢⎣
512/256

256/256

256/1

⎤⎥⎥⎦ conv d r3, blinear 4 30 × 40 × 1

conv d t3 1 1 1024/256 resblock t3 30 × 40 × 256

conv sigmoid t3 3 1

⎡⎢⎢⎣
512/256

256/256

256/1

⎤⎥⎥⎦ conv d t3, bilinear 4 30 × 40 × 1

sum d3 256/256
conv sigmoid r3, conv sigmoid t3,

conv d r3, conv d t3, bilinear 4
30 × 40 × 256

conv d3 3 1 256/128 sum d3 30 × 40 × 128

bilinear 3 128/128 conv d3 60 × 80 × 128

conv d r2 1 1 512/128 resblock r2 60 × 80 × 128

conv sigmoid r2 3 1

⎡⎢⎢⎣
256/128

128/128

128/1

⎤⎥⎥⎦ conv d r2, blinear 3 60 × 80 × 1

conv d t2 1 1 512/128 resblock t2 60 × 80 × 128

conv sigmoid t2 3 1

⎡⎢⎢⎣
256/128

128/128

128/1

⎤⎥⎥⎦ conv d t2, bilinear 3 60 × 80 × 1

sum d2 128/128
conv sigmoid r2, conv sigmoid t2,

conv d r2, conv d t2, bilinear 3
60 × 80 × 128

conv d2 3 1 128/64 sum d2 60 × 80 × 64

bilinear 2 64/64 conv d2 120 × 160 × 64

conv d r1 1 1 256/64 resblock r1 120 × 160 × 64

conv sigmoid r1 3 1

⎡⎢⎢⎣
128/64

64/64

64/1

⎤⎥⎥⎦ conv d r1, blinear 2 120 × 160 × 1

conv d t1 1 1 256/64 resblock t1 120 × 160 × 64

conv sigmoid t1 3 1

⎡⎢⎢⎣
128/64

64/64

64/1

⎤⎥⎥⎦ conv d t1, bilinear 2 120 × 160 × 1

sum d1 64/64
conv sigmoid r1, conv sigmoid t1,

conv d r1, conv d t1, bilinear 2
120 × 160 × 64

conv d1 3 1 64/32 sum d1 120 × 160 × 32

bilinear 1 32/32 conv d1 480 × 640 × 32

conv d0 3 1 32/16 bilinear 1 480 × 640 × 16

conv out 1 1 16/1 conv d0 480 × 640 × 1

Table E.2: Detailed specifications of the proposed neural network architecture (con-
tinued).
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layer head channel output size

self-attention 8 256/256 15 × 20 × 256

linear 1 256/256 15 × 20 × 256

linear 2 256/256 15 × 20 × 256

Table E.3: Details of the transformer layer [7].

Method Original task Framework Code link License

RTFNet [214] RGB-T semantic segmentation PyTorch link MIT License

ShapeConv [319] RGB-D semantic segmentation PyTorch link Apache-2.0 License

ESANet [320] RGB-D semantic segmentation PyTorch link BSD 3-Clause License

DPANet [325] RGB-D salient object segmentation PyTorch link MIT License

HAINet [326] RGB-D salient object segmentation PyTorch link -

Zhang et al. [192] RGB-T salient object segmentation TensorFlow link -

SSF [179] RGB-D salient object segmentation PyTorch link -

UCNet [174] RGB-D salient object segmentation PyTorch link -

CoNet [327] RGB-D salient object segmentation PyTorch link -

ASTA [189] RGB-D salient object segmentation Pytorch link -

DANet [175] RGB-D salient object segmentation PyTorch link MIT License

HDFNet [177] RGB-D salient object segmentation PyTorch link MIT License

FRDT [328] RGB-D salient object segmentation PyTorch link -

RD3D [176] RGB-D salient object segmentation PyTorch link MIT License

DCFNet [182] RGB-D salient object segmentation PyTorch link MIT License

UTA [329] RGB-D salient object segmentation PyTorch link Apache-2.0 License

VST [190] RGB-D salient object segmentation PyTorch link -

CLNet [187] RGB-D salient object segmentation PyTorch link -

SPNet [185] RGB-D salient object segmentation PyTorch link -

EBLNet [349] RGB-only glass segmentation PyTorch link -

Table E.4: Information of competing methods
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https://github.com/yuxiangsun/RTFNet
https://github.com/hanchaoleng/ShapeConv
https://github.com/TUI-NICR/ESANet
https://github.com/JosephChenHub/DPANet
https://github.com/MathLee/HAINet
https://github.com/nexiakele/Revisiting-Feature-Fusion-for-RGB-T-Salient-Object-Detection
https://github.com/OIPLab-DUT/CVPR_SSF-RGBD
https://github.com/JingZhang617/UCNet
https://github.com/jiwei0921/CoNet
https://github.com/OIPLab-DUT/ATSA
https://github.com/Xiaoqi-Zhao-DLUT/DANet-RGBD-Saliency
https://github.com/lartpang/HDFNet
https://github.com/jack-admiral/ACM-MM-FRDT
https://github.com/PPOLYpubki/RD3D
https://github.com/jiwei0921/DCF
https://github.com/iCVTEAM/UTA
https://github.com/nnizhang/VST
https://github.com/jingzhang617/cascaded_rgbd_sod
https://github.com/taozh2017/SPNet
https://github.com/hehao13/EBLNet


cleaner and sharper segmentation results due to our powerful cross-modality fusion

scheme.
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RGB Thermal GT Ours (RGB-T) Ours (RGB) HDFNet ESANet CLNet SPNet VST

Figure E.1: More qualitative comparison results.
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RGB Thermal GT Ours (RGB-T) Ours (RGB) HDFNet ESANet CLNet SPNet VST

Figure E.2: More qualitative comparison results.
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RGB Thermal GT Ours (RGB-T) Ours (RGB) HDFNet ESANet CLNet SPNet VST

Figure E.3: More qualitative comparison results.
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RGB Thermal GT Ours (RGB-T) Ours (RGB) HDFNet ESANet CLNet SPNet VST

Figure E.4: More qualitative comparison results.
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RGB Thermal GT Ours (RGB-T) Ours (RGB) HDFNet ESANet CLNet SPNet VST

Figure E.5: More qualitative comparison results.
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RGB Thermal GT Ours (RGB-T) Ours (RGB) HDFNet ESANet CLNet SPNet VST

Figure E.6: More qualitative comparison results.
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